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Biases and Error Measures:
How to Compare Valuation Methods

Abstract

We investigate biases of valuation methods and document that these depend largely on

the choice of error measure (percentage vs. logarithmic errors) used to compare valuation

procedures. We analyze four multiple valuation methods (averaging with the arithmetic

mean, harmonic mean, median, and the geometric mean) and three present value approaches

(dividend discount model, discounted cash flow model, residual income model). Percentage

errors generate a positive bias for most multiples, and they imply that setting company values

equal to their book values dominates many established valuation methods. Logarithmic

errors imply that the median and the geometric mean are unbiased while the arithmetic

mean is biased upward as much as the harmonic mean is biased downward. The dividend

discount model dominates the discounted cash flow model only for percentage errors, while

the opposite is true for logarithmic errors. The residual income model is optimal for both

error measures.
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1 Introduction

This paper analyzes a methodological question that turns out to be of primary importance

for valuation research: what are the consequences of different error measures when comparing

alternative valuation methods. Of the fourteen papers on horse races of multiples and present

value methods we are aware of, nine measure valuation accuracy based on the percentage

difference between estimated values and market values, whereas another five use log errors,

defined as the logarithm of the ratio of the estimated value to the market value.1 Only

two of the articles that use percentage errors motivate their choice, and no paper explicitly

recognizes the choice of error measure as a critical decision in the research design.2 Also, no

paper reports results for both error measures. In this paper we show that the researcher’s

choice of error measure is critical. This choice determines whether a valuation method

produces a bias or not and therefore predisposes the conclusion in favor of certain types of

valuation methods.

Percentage errors penalize overvaluations more than undervaluations. While undervalu-

ations in excess of -100% are impossible by virtue of limited liability, overvaluations are not

limited and often much more extreme than +100%. As a consequence, judging valuation

methods on the basis of percentage errors favors methods that avoid large overvaluations. In

contrast, logarithmic errors create more symmetric distributions of valuation errors because

for each overvaluation there exists an undervaluation of equal absolute size. Statistically,

logarithmic error distributions are closer to satisfying the normality assumptions often made

for statistical inference.3

1Alford (1992), Beatty, Riffe and Thompson (1999), Dechow, Hutton and Sloan (1999), Bhojraj and Lee
(2002), Cheng and McNamara (2000), Francis, Olsson and Oswald (2000), Liu, Nissim and Thomas (2002a,
b), and Penman and Sougiannis (1998) use percentage errors, while Gilson, Hotchkiss and Ruback (2000),
Herrmann and Richter (2003), Kaplan and Ruback (1995), Kim and Ritter (1999), and Lie and Lie (2002)
use log errors.

2Alford (1992) argues that absolute percentage errors put equal weight on positive and negative errors.
Beatty, Riffe, and Thompson (1999) also provide an explicit justification.

3To the best of our knowledge, only Baker and Ruback (1999) have explicitly tested if the normality
assumption applies to their sample and they could not reject it. However, their sample of 225 observations
is rather small by the standards of the valuation literature. Kaplan and Ruback (1995), Lie and Lie (2002),
and Hermann and Richter (2003) explicitly motivate the use of log errors with the skewness of percentage
errors or the distributions of the underlying fundamental variables.
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Error measures are inherently subjective as they are determined by the loss function of

the researcher or analyst who needs to choose a valuation procedure.4 Therefore, our analysis

cannot establish which error measure should be used. Instead, our objective is to highlight

the effects of the choice of error measure, so that researchers and analysts alike can draw

their own conclusions about the error measure and, eventually, about the valuation methods

they wish to use. To this end, we revisit two important questions in valuation analysis.

In our first application, we compare four methods for averaging multiples: the arithmetic

mean, median, harmonic mean, and the geometric mean. The use of averaging procedures

in academic research does not reveal a consensus: median, arithmetic mean, and harmonic

mean are used by different researchers, and some papers use several averaging procedures

simultaneously without providing the reader with explicit guidance as to which one is prefer-

able. Several researchers have recently argued in favor of the harmonic mean as the best

choice as it avoids the apparent upward bias of the arithmetic mean.5 Our analysis replicates

the finding that the harmonic mean is less biased than the arithmetic mean, the geometric

mean, or the median if percentage errors are used. For logarithmic errors, however, the har-

monic mean is biased downward as much as the arithmetic mean is biased upward, whereas

the geometric mean and the median are unbiased.

Our second analysis compares the dividend discount model, the residual income model,

and the discounted cash flow model. We show that the ranking of these three models in

terms of forecast accuracy depends on the error measure used for the comparison. While the

residual income model turns out to be most accurate according to both measures (which is

in line with Penman and Sougiannis, 1998, and Francis, Olsson and Oswald, 2000), the divi-

dend discount model dominates the discounted cash flow model if percentage errors are used,

whereas logarithmic errors arrive at the opposite conclusion. The reason is that value esti-

4Basu and Markov (2003) and Rodriguez (2005) infer the loss function of analysts regarding their earnings
forecasts from their forecasts. Their results do not carry over to valuations, however, because earnings
forecasts and valuations are conceptionally different quantities with different properties: Earnings can become
negative while values cannot.

5Baker and Ruback (1999) argue that the harmonic mean is an ML-estimator in a model where valuation
errors are normally distributed. Liu, Nissim and Thomas (2002a, 2002b) provide a derivation that supports
the use of the harmonic mean as a viable and unbiased estimator. Beatty, Riffe, and Thompson (1999),
Bhojraj and Lee (2002), and Herrmann and Richter (2003) also use the harmonic mean.
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mates based on dividends strongly underestimate the value of the firm. This undervaluation

is penalized more severely by logarithmic errors than by percentage errors.

We also include two ad-hoc methods in the two applications, in order to establish to

what extent the biases of valuation procedures are a consequence of the error measure chosen

rather than of the valuation procedure itself. We show that an ad hoc method that ignores

all comparable and analyst information and sets the predicted market value equal to the

firm’s book value turns out to be just as good or even better than any of the four comparable

procedures and the discounted cash flow method when percentage errors are used. Moreover,

ignoring all information and arbitrarily setting the predicted firm value equal to $1 leads to

comparatively low percentage errors and — in some situations — turns out to be the best

valuation method when judged by percentage errors.

Our explanation for these results is simple. Setting market values equal to book values

severely undervalues companies on average as the market-to-book ratio is 1.9 for the typical

company in our sample, but this ad hoc procedure avoids large overvaluations. The same is

true for the more extreme approach of setting company values equal to $1. Effectively, this

sets all percentage errors equal to —100% by fiat. However, all averaging methods produce

percentage errors in excess of +100% between one fifth and one third of the time, and errors

exceeding 200% or more are not uncommon. The "method" of setting company values

arbitrarily equal to $1 conveniently avoids percentage errors of this magnitude and allows

this procedure to perform relatively well compared to proper valuation methods. On the

other hand, logarithmic errors arrive at exactly the opposite conclusions: With logarithmic

errors, both ad hoc methods turn out to be clearly inferior to any valuation method that

uses comparable companies or analyst forecast data. Altogether our results demonstrate

that the error measure is a critical design feature in a horse race between different valuation

methods.

The following Section 2 contains our comparison of four averaging methods for multiples.

We first establish our empirical results with a sample of 52,112 U.S. firm-year observations

from 1994 to 2003. We then use theory and simulations to generalize our empirical results and
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to generate further insights. Section 3 contains a similar empirical comparison of dividend,

free cash flow, and residual income valuation methods based on analyst forecasts. Section 4

concludes and offers some recommendations for the research design when valuation methods

need to be compared. Technical material is deferred to the appendix.

2 Comparing four averaging methods for multiples

2.1 Dataset

Our analysis is based on annual data from Compustat between 1994 and 2003. We select

all companies domiciled in the United States whose sales and total assets both exceed $1

million. We also require that the market value of equity four months after the fiscal year end

is available. The four months lag ensures that the company’s financial statements have been

publicly available to investors and are therefore reflected in the market value. We exclude

those companies where the SIC code is either not available or equals 9999 (not classifiable).6

We are left with a final dataset with 52,112 firm-year observations.

We focus on three widely used multipliers:7

• market-to-book ratio, defined as the market value of equity divided by the book value
of equity.

• value-to-sales ratio, defined as the ratio of enterprise value to sales, where enterprise
value is the market value of equity plus total debt.

• price-earnings ratio, defined as market value of equity divided by net income.

A multiple that is negative according to these definitions is set to a missing value. We

also set the market-to-book ratio equal to a missing value if shareholders’ equity is smaller

than $1 million. We can compute the market-to-book ratio for 47,614 firm-year observations,

6We use the historical SIC code (SICH) when available. If the historical SIC code is not recorded on
Compustat, we use the current SIC code (SIC).

7Our empirical results for these three ratios are exemplary. In Section 2.3, we show theoretically that the
results carry over to any muliplier with a skewed distribution.
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the value-to-sales ratio for 51,899 observations, and the price-earnings ratio for 33,753 obser-

vations. Finally, we winsorize the data separately for each multiple and each year at 1% and

99%.8 We report descriptive statistics for all three ratios and for their natural logarithms in

Table 1.

[Insert Table 1 about here]

The table shows that the median market-to-book ratio in our sample is 1.87. The me-

dian value-to-sales ratio is 1.63, and the median price-earnings ratio is 17.1. Bhojraj and

Lee (2002) report a similar median market-to-book ratio of 1.84. Their mean (2.26) is sub-

stantially lower than our mean, because they delete extreme values while we winsorize them;

also their sample ranges from 1982 to 1998 and excludes the high valuation years 1999 and

2000 included in our sample.9 As usual, all distributions are highly skewed and means sub-

stantially exceed medians. Table 1 also reports considerable positive excess kurtosis for all

three distributions, i.e. all distributions have fatter tails than the normal distribution.

2.2 Empirical analysis

We consider the financial ratio xi of the market value of company i, denoted by MVi, to

some base Bi, where the base is the book value of assets, sales revenues, or net income, so

that xi = MVi/Bi. Our aim is to estimate the market value of a target firm j, for which a

set of comparable firms is available that does not include the target firm. The base B must

be positive for the target and for all comparable firms. We compute an average financial

ratio x̄j across all comparable firms and multiply it by firm j’s base Bj in order to obtain

8We repeated our analysis twice, once with a stronger winsorization at 2.5% and 97.5% and once without
winsorization and obtained identical qualitative and similar quantitative results. We therefore only report
the results for the 1% winsorization in our tables.

9Of the other comparable studies, Beatty, Riffe, and Thompson (1999) and Liu, Nissim, and Thomas
(2002a) report all variables scaled by price, which is the inverse of our ratio and has different statistical
properties. Alford (1992) and Cheng and McNamara (2000) work with much older samples. Lie and Lie
(2002) work with different definitions (enterprise value to total assets instead of market-to-book) and only
with 1998 data.
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an estimate of firm j’s market value:

dMV j := x̄j ×Bj . (1)

We consider four different averaging methods:

Arithmetic Mean: x̄Aj =
1

n

nX
i=1

xi (2)

Harmonic Mean: x̄Hj =
1

1
n

Xn

i=1

1
xi

(3)

Geometric Mean: x̄Gj =
Yn

i=1
x
1/n
i = exp

½
1

n

Xn

i=1
ln (xi)

¾
(4)

Median: x̄Mj =Median (xi) (5)

The second expression in (4) shows that the geometric mean can be interpreted as a retrans-

formed arithmetic mean of the logs of the multiples xi.

In order to compare the precision of the four averaging methods, we need an error measure

that defines what we mean by ‘relative precision.’ Two error measures are commonly used

in the literature on company valuation (see also footnote 1 above):

Percentage Error: epct (j) =
dMV j −MVj

MVj
=

x̄j ×Bj − xj ×Bj

xj ×Bj
=

x̄j
xj
− 1 , (6)

Log Error: elog (j) = ln

ÃdMV j

MVj

!
= ln (1 + epct(j)) = ln

µ
x̄j
xj

¶
. (7)

Some of the literature following Alford (1992) has also looked at the mean or median absolute

error and we will therefore also look at E (|epct|).
The two error measures do not differ significantly for small errors as we have epct = elog+

O
¡
(elog)

2¢ from a first order Taylor expansion. However, valuation errors with multiples are
often large and then the two error functions generate some notable differences. In particular

they differ in their relative treatment of over- and undervaluations. Percentage errors have

the same absolute magnitude for overvaluations and undervaluations by the same dollar
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amount, so for a firm with a value of 100 a valuation of 150 and a valuation of 50 generate

the same absolute percentage error. By contrast, logarithmic errors have the same magnitude

for overvaluations and undervaluations if the ratio is the same, so a twofold overvaluation

(i.e., 200) generates the same log error as an undervaluation by a factor of two (i.e., 50).

Note that the function ln(1 + x) that maps percentage errors into log errors is monoton-

ically increasing and sign preserving. Therefore, both measures provide the same ranking

and the same signs of valuation errors. The two error measures only differ in the size of the

errors relative to one another. Percentage errors state, for instance, that a forecast of 200

is twice as bad as a forecast of 150 for a firm with a true value of 100. By contrast, the

logarithmic error suggests that a forecast of 200 is only about 70% worse than a forecast of

150. Note that both measures agree on the fact that 200 is worse than 150.

In addition to the four averaging methods (2) to (5), we also consider two benchmark

valuation procedures. These procedures make no use of comparable information and we

would expect that any valuation procedure that incorporates more information should also

generate lower errors. In particular:

1. We set the value of the target company arbitrarily equal to its book value, which

amounts to setting the market-to-book value of the target company equal to one. We

therefore call this strategy in the tables below “MTB = 1.” This is clearly a very

rough and imprecise valuation method that is based on only one piece of accounting

information. Note that this method is biased downward as the median and mean

market-to-book ratio are substantially larger than one in our sample.

2. We set the value of the company arbitrarily equal to a very small value close to zero.

For this we choose $1. We refer to this procedure as “Value = $1” in the tables. This

procedure is even worse than the first as it relies on no company information at all and

any reasonable procedure should find it easy to beat this benchmark.

Both dummy-procedures lead on average to undervaluations and large biases. However,

they generate very little dispersion and avoid overvaluations. The Value=$1 procedure also
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avoids errors of more than 100% in absolute value. We use these ad hoc procedures in

order to establish more clearly which results should be attributed to characteristics of the

valuation procedures, and which results should be attributed to the error measures chosen

to characterize the valuation procedures.

For all firms in the dataset we select a set of at least five comparables from the same

industry. Following Alford (1992), we start at the 4-digit SIC level. If we cannot find at least

five comparable firms, we proceed to the 3-digit SIC level and, likewise, to the 2-digit SIC

level. We delete all firms for which we cannot find at least five comparables at the 2-digit

SIC level.10 We repeat this for every year from 1994 to 2003. For each firm-year and each

averaging method, we then calculate the estimated firm value and the three error measures:

the log error (7), the percentage error (6) and the absolute percentage error. Table 2 reports

sample statistics for the three error measures for the market-to-book ratio.11

[Insert Table 2 about here]

The table shows that the bias (i.e. the mean error) for percentage errors (Table 2, Panel

B) is highest for the arithmetic mean (1.211), lowest for the harmonic mean (0.135), with the

geometric mean and the median about halfway in between (0.538 and 0.530, respectively).

We therefore reproduce the result stated in the previous literature that the harmonic mean

dominates all other valuation methods in terms of percentage errors. In terms of log errors

(Table 2, Panel A) however, the geometric mean is unbiased and the median exhibits a

very small but statistically highly significant negative bias (-0.018). With a bias of 0.318,

the arithmetic mean is biased upward by about as much as the harmonic mean is biased
10See Cheng and McNamara (2000) and Bhojraj and Lee (2002) for an analysis of more sophisticated

methods to choose comparables.
11In Tables 2, 3, and 4, we exclude observations with valuation errors larger than 1000 (i.e. 100,000%)

under percentage errors before calculating the statistics shown in the table. Accordingly we exclude one
observation for Table 2 (market-to-book), one observation for Table 3 (enterprise-value-to-sales), and 13
observations for Table 4 (price-earnings). These obvious outliers heavily influence standard deviations and
RMSEs under percentage errors. On the other hand, they have only little effect on the numbers reported for
log errors. As a robustness check, we repeated our analysis and excluded all observations with errors larger
than 10 (i.e. 1,000%), which amounts to 31% of all observations for the market-to-book ratio (results not
shown in the tables). Not surprisingly, average errors drop considerably, and median and geometric mean
now show a negative bias for logarithmic errors. The rankings of the valuation methods according to bias or
RMSE, however, do not change with the only exception that MTB=1 (and not anymore Value=1$) is the
best method according to the RMSE and percentage errors.
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downward (-0.296). The MTB=1 method dominates the median, the geometric mean and

the arithmetic mean in terms of percentage errors (Table 2, Panel B) and the bias for MTB=1

is only slightly higher in absolute value to that of the harmonic mean. However, MTB=1

is worse than all comparable methods for log errors (Table 2, Panel A). Interestingly, while

the pattern of mean errors (i.e. bias) differs significantly between percentage errors and log

errors, the median errors generate the same message for percentage errors and log errors:

they are very small for the median and the geometric mean, positive for the arithmetic mean,

and negative for the harmonic mean. This is due to the fact that the function that maps

percentage errors into logarithmic errors is monotonic so that the median (and also other

quantiles) produces by construction a similar ranking among the valuation methods.

Users of valuation methods are not only interested in the bias of valuation procedures

but also in the dispersion of valuation errors. We measure these by the standard deviation

and the root mean squared error (RMSE). The squared RMSE is equal to the variance plus

the squared bias and can be rationalized from minimizing a quadratic loss function. While

the RMSE combines bias and standard deviation in a convenient way, the bias may be more

important than is reflected in RMSEs for many applications in practice. For example, for

a successful acquisition strategy it may be more important to avoid consistently overpaying

for acquisition targets. On the other hand, bidding for companies in an auction puts a

higher emphasis on the dispersion of the valuations in order to avoid the winner’s curse. We

therefore also report biases and standard deviations throughout, as different applications

may warrant different weights for the bias and the dispersion of valuation methods.

For percentage errors the RMSE generates a remarkable result: Estimating the target

firm’s market value by its book value (MTB=1) outperforms all other valuation methods.

The more extreme ad hoc procedure of setting the target firm’s market value to $1 (Value=$1)

turns out to be even better. The reason is that percentage errors are bounded from below

at -100% but they are not bounded from above. If errors on the unlimited upside are severe,

methods that undervalue firms on average (or even set the error equal to the lower bound

as Value=$1 does) appear to be preferable. The second to last column of Table 2, Panel B
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shows that, for more than a third of the firms, the percentage error of the arithmetic mean

exceeds 100%, while the median and the geometric mean lead to percentage errors in excess

of 100% for about one fifth of all firms. These high overvaluations are largely avoided by

MTB=1 and completely eliminated by Value=$1.

Log errors, on the other hand, have an unlimited downside and penalize large undervalu-

ations as much as large overvaluations. Table 2, Panel A shows that the Value=$1 procedure

is heavily penalized for the extreme undervaluations it generates. The MTB=1 procedure

has a higher RMSE than all comparables-based procedures because of its large downward

bias, which is assessed at 69% in terms of log errors, but only 18% in terms of percentage

errors. Absolute errors behave broadly similarly to percentage errors (see Panel C of Table

2). Note that MTB=1 also dominates the harmonic mean for absolute percentage errors.

The fact that over- and undervaluations are treated asymmetrically by percentage errors

is also reflected in the skewness of valuation errors. Percentage errors are highly skewed

while log errors are much closer to being symmetric. We suspect that the skewness of

percentage errors caused by the limited downside and unlimited upside is the reason why

many researchers who work with percentage errors or absolute percentage errors report

medians (and sometimes other percentiles) rather than means of the error distribution. This

approach ignores the large incidence of extreme overvaluations, however.

[Insert Figure 1 about here]

Figure 1 contains eight graphs that show the error distributions: each of the four rows

corresponds to one of the four averaging methods (arithmetic mean, median, geometric mean,

and harmonic mean). The left graphs give the distributions of percentage errors, whereas the

right graphs show the distributions of log errors. Clearly, all distributions of percentage errors

are highly skewed. Also, all distributions exhibit a significant proportion of percentage errors

that exceed 100%. The graphs confirm our intuition that errors based on log transformations

are much closer to the model of a normal distribution than percentage errors. Apparently,

the log transformation is successful in generating a symmetric distribution centered around

zero for the median and the geometric mean, whereas the distributions of log errors for the
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arithmetic mean and the harmonic mean are not symmetric. The distribution of log errors

for the arithmetic mean has an extremely fat right tail, and its mode is clearly positive.

The harmonic mean, on the other hand, exhibits a fat left tail and a negative mode. Hence,

the harmonic mean generates more undervaluations, whereas the arithmetic mean generates

more overvaluations.

[Insert Tables 3 and 4 about here]

Tables 3 and 4 display the results for, respectively, the value-to-sales ratio and the price-

earnings ratio. Instead of MTB=1 we use, respectively, Value=Sales and P/E=10 as ad hoc

valuation methods. We do not continue to use MTB=1, because setting the market value of

the firm equal to the book value would not mean using less information than the averaging

methods in the table, but would imply using different information. Tables 3 and 4 show

that all results for the market-to-book ratio continue to hold for the other two ratios. Note

that the statistics in Tables 2 to 4 are not comparable across tables, because they refer to

slightly different sets of firms. For instance, firms with negative earnings are included in the

samples analyzed in Tables 2 and 3 while they have been excluded for the calculations shown

in Table 4.

2.3 Theoretical results

So far we have shown for a typical empirical application that the choice of error measure

has an important influence on the ranking of valuation procedures, and that simple ad-hoc

valuation procedures dominate more sophisticated multiple valuation methods for percentage

errors, but not for logarithmic errors. In the remaining part of this section, we address

the question whether these results are robust, i.e. whether they continue to hold for other

multiples and for other, possibly more sophisticated comparable selection methods. We show

theoretically that our qualitative results are robust to the choice of comparables and that

they continue to hold for any multiple that has a similarly skewed distribution. In particular

we show that the arithmetic mean has always a large positive bias according to both error
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measures, that the geometric mean is unbiased for logarithmic errors and positively biased for

percentage errors, and that the harmonic mean is downwards biased for logarithmic errors.

Our theoretical analysis also generates three important additional insights. First, it

shows that it is the skewness of the multiple distributions that makes the geometric mean

unbiased for log errors. Taking logs removes the skewness, and this is exactly what the

geometric mean effectively does before averaging (see the second transformation in equa-

tion (4)). Second, our simulations show that, as the dispersion among comparable firms

increases, all valuation methods - including MTB=1 - have a positive bias for percentage

errors. So the finding that a valuation method has a positive bias according to percentage

errors is not informative about the valuation method, as it might just have been caused

by high dispersion among comparable firms. Third, our simulations reveal that the effect

of the averaging method becomes quantitatively less important (for both error measures)

if the variation among comparable firms becomes smaller. This result justifies the more

sophisticated comparable selection methods used by analysts in practice.

We assume throughout this subsection that the target and its comparables have been

drawn independently from an identical distribution.12 We start this section by collecting

some basic results about the relative size of the four averages (2) to (5). We give a short

proof in the appendix, which follows directly from Jensen’s inequality and the law of large

numbers.

Result 1 (Means):

(i) The arithmetic mean always results in a higher market value estimate than the geo-

metric mean or the harmonic mean, and the harmonic mean always results in a lower market

value estimate than the geometric mean:

x̄Hj < x̄Gj < x̄Aj .

The relative position of the median, x̄Mj , depends on the distribution of the ratios.

12In addition, we assume that there are at least two comparables (n ≥ 2) that differ from one another. We
maintain the independence assumption only for expositional convenience. All our results can also be derived
under weaker assumptions that allow for dependence between the xj .
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(ii) If the ratios have been drawn from a symmetric distribution, then the median is

close to the arithmetic mean in sufficiently large samples. More formally:
¡
x̄Mj − x̄Aj

¢ −→ 0

almost surely as n→∞.

(iii) If the ratios have been drawn from a lognormal distribution, then the median is

close to the geometric mean in sufficiently large samples. More formally:
¡
x̄Mj − x̄Gj

¢ −→ 0

almost surely as n→∞.

Hence, an analyst who uses the harmonic mean will always arrive at lower value estimates

than her colleague who works with the geometric mean, given that they use the same set

of comparable companies. Both will obtain lower estimates than a third analyst using the

arithmetic mean. The differences between these three averages are larger if the variation in

the sample is large. So for a set of comparables with little variation, the four methods arrive

at similar results.

Result 2 summarizes our theoretical results about the biases of the different valuation

methods with the two error measures. These results are based on the assumption that

financial ratios are lognormally distributed. In Appendix A we compare the distributions of

the standard financial ratios (market-to-book, value-to-sales, price-earnings), their inverses

(i.e., book-to-market, etc.) and their log transformations (i.e. ln(market-to-book), etc.). We

show that the log-transformed ratios are much better described by a normal distribution

than the original ratios or their inverses, even though formal tests reject the normality

assumption for all three distributions. We therefore conclude that the lognormal distribution

is a reasonable assumption to base our theory on.

Result 2 (Biases): Assume that xj and all comparable ratios xi are distributed lognor-

mal with parametersμ and σ2 > 0.

(i) For percentage errors, the geometric mean and the arithmetic mean are both biased

upward. The bias of the arithmetic mean is stronger than that of the geometric mean.

0 < E
¡
eGpct
¢
< E

¡
eApct
¢
.

The expected error of the harmonic mean is smaller than that of the geometric mean:
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E
¡
eHpct
¢
< E

¡
eGpct
¢
, and the median is also biased upward in large samples.

(ii) For log errors, the geometric mean is unbiased, the arithmetic mean is biased

upward, and the harmonic mean is biased downward.

E
¡
eHlog
¢
< E

¡
eGlog
¢
= 0 < E

¡
eAlog
¢
.

In absolute terms, the harmonic and the arithmetic mean are equally biased: E
¡
eHlog
¢
=

−E ¡eAlog¢. The median is unbiased in large samples.
The arithmetic mean has a positive bias for both definitions of valuation errors. The

distribution of xi is skewed and the arithmetic mean gives equal weight to all observations,

including large positive outliers that necessarily occur with skewed distributions. The geo-

metric mean is unbiased for log errors for reasons that are intuitive from looking at the

second transformation in equation (4). The geometric mean is the retransformed arithmetic

mean, applied to the logarithms of the financial ratios xi, and ln(xi) is distributed normal.

Hence, this implicit logarithmic transformation removes the skewness of the original dis-

tribution and the transformed distribution is symmetric, which is exactly what is required

for generating unbiased logarithmic errors. However, unbiased logarithmic errors are not

equivalent to unbiased percentage errors. From (7) observe that epct = exp(elog)−1 and this
convex transformation gives positive errors a larger weight than negative errors, creating an

upward bias. By comparison the harmonic mean is biased downward for logarithmic errors.

The skewness of the lognormal distribution implies that large outliers are balanced by a

larger number of very small observations, which then create very large numbers 1/xi from

the definition of the harmonic mean. This inflates the denominator of x̄Hj and biases the

valuation errors downward. Interestingly, the harmonic mean is biased downward just as

much as the arithmetic mean is biased upward.

Note that all theoretical predictions from Result 2 are borne out by the empirical results

shown in Tables 2 to 4. This implicitly supports our assumption that multiples are lognor-

mally distributed and implies that the same qualitative results will obtain for any type of

multiple that has a similar skewness as the three multiples analyzed above.
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2.4 The impact of dispersion among comparable firms

An important determinant for the size of the bias of a particular averaging method is the

dispersion of financial ratios among comparable firms. A good valuation procedure should be

able to cope with industries that exhibit large dispersions of financial ratios. We investigate

the effect of an increase in dispersion with a simulation study.

For each of the 100,000 runs of our base scenario, we draw 40 market-to-book ratios from

a lognormal distribution with μ = 0.593 and σ = 0.838. These parameters are the average

industry mean and the average within-industry standard deviation of the log market-to-book

ratio across the 608 industry-years in our sample. The median industry comprises 38 firms.

We therefore consider industries with 40 firms in our simulations.13 Likewise, we draw 40

book-values from a lognormal distribution with μ = 18.329 and σ = 1.838. Again these

parameters have been estimated from our dataset. We analyze this simulated dataset in the

same way as we analyzed the empirical data in Tables 2 to 4.

[Insert Table 5 about here]

The left part of Table 5 shows the results for this base scenario. The numbers are similar

to those in Table 2, and all qualitative results are identical, which confirms that the lognor-

mal distribution is an adequate model. The main difference is the smaller standard deviation

of errors for the simulated data, evidently a consequence of the fact that the empirical dis-

tribution function has fatter tails than the lognormal distribution (see Figure 2 in Appendix

A). The right part of Table 5 displays the results we obtain when we repeat this simulation

with a standard deviation for the market-to-book ratio that is raised by 33% to σ = 1.115

(all other parameters stay the same). We choose a rather extreme increase in the standard

deviation (only 7.2% of the 608 industry-years in our sample have a standard deviation that

exceeds 1.115) in order to better demonstrate the effects of increased dispersion.

13The standard deviation is lower than the overall standard deviation in our sample (0.919, see Table 1),
so choosing firms from the same industry reduces the dispersion as it removes between-industry variation.
The mean is also different because we average first within each industry and then across industries, which
gives firms in smaller industries a larger weight.
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In many ways, an increase in dispersion magnifies the effects we have discussed previ-

ously. The bias, the standard deviation and the proportion of errors exceeding 100% increase

dramatically for all valuation methods and all definitions of valuation errors. A notable ex-

ception is the geometric mean and the median with log errors, which remain unbiased.

Interestingly, even the MTB=1 procedure now overvalues the target firm with percentage

errors (on average by 2.9%), confirming our result above that overvaluation is a feature of

percentage errors and not informative about the valuation procedures themselves. More

importantly, MTB=1 now dominates all averaging methods including the harmonic mean,

which has a bias of 5.8%. Note that MTB=1 still heavily underestimates company values

according to log errors.

Investment bankers and practitioners who use multiples to value acquisition targets or

IPOs seem to have an intuitive grasp of the necessity to reduce the variation among compa-

rables. They typically inspect the distribution and eliminate what appear to be outliers that

are not representative of the industry and can be attributed to circumstances inapplicable

to the target firm. In the light of the evidence given in Table 5, this approach appears rea-

sonable when the arithmetic or the harmonic mean are used. If practitioners would use the

median or the geometric mean, then such an ex post pruning of the sample is not necessary

and (because of the loss of information) not helpful.

We have also performed simulations where industries are smaller or larger than 40 firms

(results not reported in the tables). It turns out that reducing industry size has a similar

effect as increasing dispersion as shown in Table 5. The only exception is that the median

has a positive bias in industries with less than 10 firms if the number of comparable firms

(excluding the target firm) is even. The reason is that the median is equal to the arithmetic

mean of the two most central observations if the number of comparables is even, so that the

bias of the arithmetic mean carries over to the median if the number of comparables is small

and even.
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3 Comparing dividend, free cash flow, and residual in-

come valuation methods

In this section, we show that the choice of error measures is also relevant when comparing

more sophisticated valuation methods that are based on discounting future expected income

flows. We compare the dividend discount model, the residual income model, and the dis-

counted cash flow model. The analysis in this chapter is in the spirit of Francis, Olsson and

Oswald (2000) who provide a comprehensive comparison of these three methods using per-

centage errors. We cannot replicate their results, as they work with a hand collected dataset

from a different data source. We also keep this analysis deliberately simple, because our

main aim is to demonstrate the impact of the error measure on the comparison of valuation

methods.

We use the following specification of the dividend discount model (DDM):

dMV
DDM

=
5X

t=1

divt
(1 + rE)t

+
div5(1 + g)

(1 + rE)5(rE − g)
. (8)

Here, divt is the forecasted annual dividend (IBES mean) for year t. We require that div1

is available for all firms in our dataset. If div2, ..., div5 are not available, we calculate them

from the last available dividend forecast and from the IBES long-term earnings growth rate.

rE is the cost of equity capital, which we set equal to the risk-free rate (five year government

bond rate) plus a risk-premium of 6%. The terminal growth rate g is set equal to 3%.

The residual income model (RIM) is given by

dMV
RIM

= bv0 +
5X

t=1

rit
(1 + rE)t

+
ri5(1 + g)

(1 + rE)5(rE − g)
, (9)

where residual income is defined by rit = it − rEbvt−1 with net income it and book value

bvt.14 The terminal growth rate g is equal to 3% as in the other two models. We require

that bv0 is available from Compustat (item 60) and that at least i1 and the forecasted long-

14See Ohlson (1995) for a derivation and detailed discussion of this model.
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term earnings growth rate are available on IBES for all firms in our sample. If i2, ..., i5 are

not available, we calculate them from the last available earnings forecast and the earnings

growth rate. The book value is updated over time by assuming that 50% of the earnings it

are reinvested, i.e., bvt = bvt−1 + 0.5it. See Claus and Thomas (2001) for a justification of

this approach.

Finally, we specify the discounted cash flow (DCF) valuation model

dMV
DCF

=
5X

t=1

lcft
(1 + rE)t

+
lcf5(1 + g)

(1 + rE)5(rE − g)
, (10)

where lcft is the levered cash flow to equity, i.e. the unlevered free cash flow to the firm

minus interest expenses plus the interest tax shield. The discount factor is consequently

the cost of equity rE. We calculate lcft as the IBES operating cash flow forecasts (which is

before investment) minus a mechanical capital expenditure forecast. For year t = 1, capital

expenditures are assumed to be equal to actual capital expenditures in year t = 0, which we

obtain from Compustat (item 128).15 For the following years, we assume that the ratio of

capital expenditures to operating cash flows remains constant, i.e. capital expenditures grow

(or shrink) at the same rate as operating cash flows. We require that at least next year’s

cash flow forecast is available on IBES. If the forecasts for years 2 to 5 are not available, we

calculate them from the last available cash flow forecast and the long-term earnings growth

rate. Finally, we obtain the actual market value of equity MV from IBES.

There are 864 observations that fulfil our data requirements. We lose many observations,

because cash flow and especially dividend forecasts are only infrequently available from IBES.

In addition, we exclude 210 firm-year observations for which any of the three valuation

methods yields a non-positive value.16 Our final dataset contains 654 observations.

15If capital expenditures are not directly available from Compustat, we calculate them as PPEt−PPEt−1+
DEP , where PPE is property, plant and equipment (item 8) and DEP is depreciation and amortization
(item 14). This gives us 80 additional observations that would otherwise be lost. Results do not change if
these 80 observations are excluded from the sample.
16Francis, Olsson and Oswald (2000) set negative value forecasts equal to zero, which is not an option for

our analysis, because the logarithm of zero is not defined. We argue that excluding non-positive estimates
is reasonable because the typical user of these valuation methods is unlikely to infer from a negative value
estimate that the value of the firm is zero. She would rather conclude that the valuation method is not
applicable under the given circumstances.
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[Insert Table 6 about here]

Table 6 presents our results. The residual income model (RIM) turns out to be the

least biased valuation method according to all three error measures. It leads to an average

overvaluation of 8% with log errors and 23% with percentage errors. This is in line with

the findings of Penman and Sougiannis (1998) and Francis, Olsson and Oswald (2000). By

contrast, the ranking of discounted cash flow model (DCF) and dividend discount model

(DDM) depends on the error measure: With log errors (Table 6, Panel A), DCF turns out

to be superior to DDM according to all criteria (mean, median, RMSE, standard deviation),

whereas the opposite is true if percentage errors are used (Panel B).17 The reason for this

reversal of the ranking is again the asymmetric treatment of positive and negative errors

by the percentage error measure. The dividend discount model avoids large positive errors,

whereas 52% of all DCF estimates have an error that exceeds +100%. Percentage errors

punish positive errors more than negative errors, so that DCF appears much worse than

DDM. Note that DDM is even superior to RIM if judged by the RMSE criteria for percentage

errors.

We also include the two benchmark valuation methods that do not make use of any

forecasts: "MTB=1" and "Value=1$". If log errors are used, these two benchmark methods

turn out to be much worse than any of the methods that are based on analyst forecasts.

With percentage or absolute percentage errors, however, both methods are superior to DCF

according to all criteria.

4 Discussion and conclusion

This paper demonstrates that the choice of error measure can critically affect the ranking of

valuation methods obtained in a horse race. Percentage errors have a limited downside and

17Francis, Olsson and Oswald (2000) find that the DCF model is superior to the DDM model with per-
centage errors. At least a part of this effect is due to the fact that they retain zero value estimates and
set negative value estimates to zero. In their sample 19% of the DDM estimates are zero; if these were
excluded, DDM would clearly improve. For DCF, on the other hand, the bias would increase if such zeroes
were dropped. Please also see footnote 16.
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an unlimited upside and therefore tend to favor methods that produce low valuations. We

demonstrate this in two prominent applications. First, we compare four multiple valuation

methods and replicate the finding that the harmonic mean turns out to be least biased

when percentage errors are used, whereas the arithmetic mean is most biased. When this

comparison is done with logarithmic errors, however, then the harmonic mean is biased

downward as much as the arithmetic mean is biased upward while the geometric mean and

the median are unbiased. In our second application, we compare three present value methods

and establish that the dividend discount model is more precise than the discounted cash flow

model when percentage errors are used, whereas logarithmic errors arrive at the opposite

conclusion. According to both error measures, the residual income model is the most precise

present value approach.

Error measures are determined by the researcher’s or user’s loss function which is part of

their preferences. Therefore, we cannot make any general recommendation as to which error

measure should be used. Nevertheless even if the choice of error measure has already been

made, our analysis yields a number of insights that help to interpret the results of existing

studies and to improve the design of future studies:

• The tendency of percentage errors to favor methods that undervalue becomes stronger
as the dispersion among comparables increases. Our results imply that in industries

or years with large dispersion the use of the book value as forecast of the market

value might even turn out to be the most precise valuation method. Studies that use

percentage errors should therefore make sure that they employ an elaborate comparable

selection procedure that reduces this dispersion. For logarithmic errors, on the other

hand, this is not necessary. We show that the results obtained with log errors are little

affected by the dispersion among comparables, because log errors are more robust to

outliers. While the removal of outliers is desirable in all cases, it might not be possible

or economical; then results are more reliable when log errors are used.

• We demonstrate that the dispersion among comparables strongly affects the biases
obtained with percentage errors. The higher the dispersion is (i.e. the less represen-
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tative the comparable firms are) the higher is the bias for all valuation methods, even

for the harmonic mean. In contrast, results obtained with logarithmic errors are not

affected by changes in dispersion among comparable firms. Therefore, the result that a

particular valuation method is unbiased according to logarithmic errors is much more

informative than if it is unbiased according to percentage errors. We suggest that in

studies that use percentage errors, the focus should be on the bias relative to other

methods rather than on the level of the bias itself.

• In this paper we followed the convention to define the bias as the mean error. How-
ever, it is also possible to rank valuation methods according to the median error.

For logarithmic errors, mean and median error always arrive at the same conclusions.

For percentage errors, however, this is not true: the median percentage error comes

to similar conclusions as the (mean or median) logarithmic error, whereas the mean

percentage error yields very different results (as discussed above). As a consequence,

studies with percentage errors should also report the median errors as these are in-

dicative of the results that would be obtained with logarithmic errors. Several existing

studies already do this.

• Percentage errors and logarithmic errors will produce different rankings among valu-
ation methods whenever these valuation methods differ in the skewness of the error

distribution they produce. If the methods compared in a horse race only differ in

their precision (i.e. error variance) but not their skewness, the choice of error measure

will not influence the results. For instance, if the forward looking P/E ratio is com-

pared with the historical P/E ratio (all else being equal), then both error measures

will arrive at the same conclusion, because the choice of the base alone does not affect

the skewness (whereas the way of averaging comparable information does as Figure

1 demonstrates). Hence, the choice of error measure is only critical if the candidate

methods differ in the skewness of their error distributions.

For researchers or users who are agnostic about the choice of error measure, our results
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suggest that logarithmic errors should be preferred to percentage errors. The reason is that

ranking valuation methods based on percentage errors leads to a number of counterintuitive

consequences that few practitioners would endorse. In particular:

• Ignoring all valuation information except the book value and setting the target firm
value equal to its book value results in more precise and less biased forecasts than using

the arithmetic mean or the median and becomes optimal relative to any multiple for

sufficiently dispersed samples. It also dominates the discounted cash flow model.

• Ignoring all information altogether and setting the target firm value equal to $1 turns
out to be a reasonable valuation method and even becomes optimal if the dispersion

of the sample is sufficiently large.

• As the variation among comparable firms increases, the bias of all averaging methods
increases. Eventually, even the harmonic mean, which tends to produce low valuations,

features a large positive bias.

Logarithmic errors avoid these pitfalls. With logarithmic errors, both ad hoc methods

turn out to be clearly inferior to any valuation method that uses comparable or analyst

forecast data, and the rankings obtained in horse-races are independent of the variation

among comparable firms. Any reader who subscribes to this view should avoid the arithmetic

and the harmonic mean in multiple valuation and apply the geometric mean or the median

instead.

A frequently voiced argument against logarithmic errors is that investors are interested

in percentage errors. Consider an investor who uses a valuation method in order to form

an equally weighted portfolio of undervalued firms. If market prices subsequently move

towards the predicted prices, the portfolio return is equal to the initial average percentage

error of portfolio firms. Note, however, that the investor is never interested in the bias,

i.e. the percentage error of all (under- and overvalued) firms. Instead, the investor will

pick a given number of the most undervalued firms or possibly all undervalued firms. As

both error measures generate the same ordering among firms, the choice which firms enter
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the investor’s portfolio is independent of the error measure used. Therefore, the investor is

effectively indifferent between using percentage or logarithmic errors.

Ultimately, the error measure chosen must depend on the application in question. The

objective function for a bidder in an auction for a company may be different from that of a

security analyst who values a market traded company for investment purposes. Depending

on risk aversion, degree of diversification, asymmetric information, and other considerations,

practitioners will give different weights to small valuation errors versus large errors. Also,

they wish to equate either equal relative mispricings (the case for percentage errors) or equal

multiplicative mispricings (the case for log errors), or treat undervaluations and overvalua-

tions differently altogether. Rigorous answers to these questions can only be obtained based

on an axiomatic approach that relates decision rules to preferences and to the salient fea-

tures of the application. We are not aware that such an approach has ever been pursued and

believe that this will be a fertile area for future research.
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A Distribution of multiples

Figure 2 graphs the standardized distributions of the three multiples and their log transfor-

mations. We standardize each observation by deducting the industry-year mean and dividing

by the industry-year standard deviation. In the left column of Figure 2, we always compare

the empirical distribution of the untransformed data (solid line) with the best fits obtained

for the normal distribution (dotted line). In the right column we compare the distribution

of the logarithmic transformations of the original data with the normal distribution (dotted

line).

[Insert Figure 2 about here]

Clearly, the lognormal distribution is a better model than the normal distribution for all

three financial ratios. From a visual inspection of the graph, the lognormal distribution ap-

pears to be a reasonable model for the market-to-book ratio and the value-to-sales ratio, but

a less convincing model for the price-earnings ratio. For all ratios, the empirical distributions

are more skewed and exhibit fatter tails than the lognormal distribution.

We test the fit of the distributions to the data more formally by applying three standard

tests for normality to the ratios and their log transformations.18 These results are reported

in Table 7. We also analyze the inverse of the three ratios, because it is well known that the

distribution of the earnings-price ratio is closer to a normal distribution than the distribution

of the price-earnings ratio.

[Insert Table 7 about here]

All three tests reject the normal distribution as the correct model for the distributions of

all three ratios as well as for their logarithmic transformations and their inverses. Hence, we

also reject the lognormal distribution as the correct distributional model. This is unsurprising
18All three tests compare the empirical distribution function with the normal distribution function where

the mean and the variance are estimated from the sample. The Kolmogorov-Smirnov test is based on the
maximum absolute distance between the two distributions. In contrast, the Cramer-von Mises test and the
Anderson-Darling test are based on the expected sum of squared distances under the normal distribution
function. While the Cramer-von Mises test gives equal weight to all observations, the Anderson-Darling test
gives higher weight to the tails of the distribution. See D’Agnostino and Stephens (1986), p.100.
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given that we have a very large dataset, so that the tests have high power. However, a closer

look at the test statistics supports the same conclusion already suggested by Figure 2: the

lognormal distribution is a much better model for all three financial ratios than the normal

distribution, given that the data are highly skewed. The Kolmogorov-Smirnov test statistic

falls by between 70% (price-earnings) and 90% (value-to-sales), the Cramér-von Mises and

Anderson Darling test statistics even fall by up to 99% for the value-to-sales ratio. By taking

the inverses of the ratios, the test statistics can also be reduced, but not by nearly as much

as by applying the logarithmic transformation. In all cases the relative improvement of the

log transformation is largest for the value-to-sales ratio and smallest for the price-earnings

ratio, which is consistent with our visual inspection of these distributions in Figure 2. We

therefore conclude that the lognormal distribution works best for the value-to-sales ratio and

worst for the price-earnings ratio.

There is also a theoretical reason why some financial ratios are better approximated by

the lognormal distribution than others. Variables like market value, book value, sales, total

assets, or the number of employees are measures of firm size. They can only be positive and

their distribution is highly skewed. If these variables are lognormally distributed (which is

an established assumption in empirical applications), then the ratio of two of these variables

is also lognormally distributed. This argument does not hold for performance measures, like

net income or EBIT.
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B Proof of Theoretical Results

B.1 Proof of Result 1

(i) From Jensen’s inequality we have:

ln
¡
x̄Aj
¢
= ln

Ã
1

n

nX
i=1

xi

!
>
1

n

nX
i=1

ln (xi) = ln
¡
x̄Gj
¢
. (11)

Similarly, we can apply Jensen’s inequality to the rewritten harmonic mean:

ln
¡
x̄Hj
¢
= − ln

Ã
1

n

nX
i=1

1

xi

!
< −1

n

nX
i=1

ln (1/xi) =
1

n

nX
i=1

ln (xi) = ln
¡
x̄Gj
¢
.

As the logarithm is a monotonic transformation, we obtain x̄Hj < x̄Gj < x̄Aj .

(ii) Let M denote the median and μ the mean of the distribution of the ratios xi. As the

distribution is symmetric, we have M = μ. The law of large numbers implies that

sample moments converge to population moments, so x̄Mj − x̄Aj
a.s.−→ M − μ = 0 as

n→∞. The convergence is almost surely (a.s.) or with probability one.

(iii) Denote the parameters of the lognormal distribution fromwhich the xi have been drawn

by μ and σ2. Then, the median of the distribution is M = exp{μ} and E (ln (xi)) = μ,

so that x̄Mj − x̄Gj = x̄Mj − exp
n
1
n

Xn

i=1
ln (xi)

o
a.s.−→M − exp(μ) = 0 as n→∞ by the

same argument as in (ii).

B.2 Proof of Result 2

We only need to show that E
¡
eGlog
¢
= 0, E

¡
eGpct
¢
> 0, and E

¡
eHlog
¢
= −E ¡eAlog¢ . The

remaining statements of the proposition then follow immediately from Result 1.

From (4) we have:

ln
¡
x̄G
¢
=
1

n

nX
i=1

ln (xi) ,

so ln
¡
x̄G
¢
is distributed normal with mean μ and variance σ2/n. Hence, eGlog = ln

¡
x̄G
¢−
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ln(xj) is distributed normal with mean zero and variance 1+nn σ2, so the geometric mean leads

to unbiased estimates in terms of logarithmic errors. As a consequence, 1 + eGpct = exp
¡
eGlog
¢

is distributed lognormal with parameters 0 and 1+n
n
σ2, so we obtain:

E
¡
eGpct
¢
= exp

µ
1 + n

2n
σ2
¶
− 1 > 0 ,

as long as σ2 > 0. This shows that the geometric mean leads to biased estimates in terms of

percentage errors.

Showing that E
¡
eHlog
¢
= −E ¡eAlog¢ requires a little more work: First note that

E
¡
ln
¡
x̄H
¢¢
= −E

Ã
ln

Ã
1

n

nX
i=1

exp (− lnxi)
!!

= −E
Ã
ln

Ã
1

n

nX
i=1

exp (−ui)
!!

, (12)

where ui = lnxi, which is distributed normal with expectation μ and variance σ2. We expand

this expression and perform the substitution vi = −ui + 2μ for all i = 1...n.

E
¡
ln
¡
x̄H
¢¢
=

= −
h
σ
√
2π
i−n ∞Z

−∞

...

∞Z
−∞

ln

Ã
1

n

nX
i=1

exp (−ui)
!

nY
i=1
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(
−1
2

µ
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σ

¶2)
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h
σ
√
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!
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µ
ln

µ
1

n
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i=1
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= 2μ−E

¡
ln
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x̄A
¢¢

The second line rewrites (12) more explicitly and the third line applies the transformation

ui = −vi + 2μ. Here, we use the fact that dvi
dui

= −1, which cancels with the factor −1
caused by the necessary transformation of the integration limits. The fourth line follows

upon rearranging, and the fifth line rewrites the same expression using the expectations

operator. Observe that vi is also distributed normal with mean μ and variance σ2. Hence,
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E
¡
ln
¡
x̄H
¢¢− μ = − £E ¡ln ¡x̄A¢¢− μ

¤
. As E (ln(xi)) = μ, this implies E

¡
eHlog
¢
= −E ¡eAlog¢

from the definition of log errors (7).
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Table 1: 
Descriptive Statistics for Multiples 

This table displays descriptive statistics (number of observations, mean, median, standard deviation, 
skewness, excess kurtosis, and the 10% and 90% quantile) for the distributions of the market-to-book ratio, 
the value-to-sales ratio, and the price-earnings ratio for the pooled sample from 1994 to 2003. The lower 
part of the table shows the statistics for the natural logarithms of these ratios. For each multiple and each 
year, the multiples have been winzorized at the 1% and 99% quantile. 
 

Multiple # obs. Mean Std. dev. Skewness Kurtosis P10 Median P90 
market-to-book 47,614 3.222 4.582 5.173 40.187 0.682 1.867 6.601
value-to-sales 51,899 4.061 9.690 9.493 129.104 0.392 1.634 8.027
price-earnings 33,753 34.755 71.490 5.980 40.997 7.520 17.073 57.317
log(market-to-book) 47,614 0.693 0.919 0.327 0.600 -0.382 0.624 1.887
log(value-to-sales) 51,899 0.553 1.216 0.325 0.165 -0.937 0.491 2.083
log(price-earnings) 33,753 2.947 0.935 0.698 2.471 2.018 2.837 4.049
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Table 2:  
Empirical error distributions for valuations  

based on the market-to-book ratio 
This table displays descriptive statistics of the valuation errors from six valuation methods based on the 
market-to-book ratio. It is calculated from 47,614 firm-year observations from 1994 to 2003, and shows the 
mean, median, root mean squared error, the standard deviation, skewness, the proportion of observations 
larger than or equal to +100%, and the t-statistic of the two sided t-test that the mean equals zero. For the 
methods 'arithmetic mean,’ 'median,’ 'geometric mean,’ and 'harmonic mean,’ the industry peer group 
market-to-book ratios are averaged with the respective method and the result is multiplied by the target 
firm's book value to arrive at a forecast of the target firm's market value. The method 'MTB=1' sets the 
target firm's market value of equity equal to its book value, and the method 'Value=$1' sets the target firm's 
market value of equity equal to $1. Panel A shows the results for log errors, Panel B for percentage errors, 
and Panel C for absolute percentage errors. 
 

Panel A: Log errors 
 

Method Mean Median RMSE Std. dev. Skewness Prop≥100% T-test 
Arithmetic mean 0.318 0.277 0.961 0.907 -0.002 0.202 76.48
Median -0.018 0.002 0.891 0.891 -0.223 0.106 -4.47
Geometric mean -0.001 0.018 0.882 0.882 -0.227 0.109 -0.34
Harmonic mean -0.296 -0.228 0.944 0.896 -0.415 0.056 -71.95
MTB=1 -0.693 -0.624 1.182 0.958 -0.362 0.030 -157.67
Value=$1 -18.788 -18.676 18.919 2.222 -0.247 0.000 -1841.93
 

Panel B: Percentage errors 
 

Method Mean Median RMSE Std. dev. Skewness Prop≥100% T-test 
Arithmetic mean 1.211 0.319 6.964 6.858 72.757 0.305 38.48
Median 0.530 0.002 5.341 5.315 94.589 0.180 21.71
Geometric mean 0.538 0.018 5.127 5.099 91.479 0.183 22.98
Harmonic mean 0.135 -0.204 3.879 3.877 99.864 0.106 7.61
MTB=1 -0.175 -0.464 3.873 3.869 107.339 0.055 -9.87
Value=$1 -1.000 -1.000 1.000 0.000 26.598 0.000 -9.7E+08
 

Panel C: Absolute percentage errors 
 

Method Mean Median RMSE Std. dev. Skewness Prop≥100% T-test 
Arithmetic mean 1.467 0.554 6.964 6.808 74.267 0.305 46.95
Median 0.941 0.461 5.341 5.258 97.478 0.180 38.99
Geometric mean 0.938 0.463 5.127 5.040 94.456 0.183 40.56
Harmonic mean 0.712 0.461 3.879 3.813 104.492 0.106 40.70
MTB=1 0.692 0.555 3.873 3.811 111.660 0.055 39.56
Value=$1 1.000 1.000 1.000 0.000 -26.598 0.000 9.7E+08
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Table 3:  
Empirical error distributions for valuations  

based on the value-to-sales ratio 
This table displays descriptive statistics of the valuation errors from six valuation methods based on the 
value-to-sales ratio. It is calculated from 51,899 firm-year observations from 1994 to 2003, and shows the 
mean, median, root mean squared error, the standard deviation, skewness, the proportion of observations 
larger than or equal to +100%, and the t-statistic of the two sided t-test that the mean equals zero. For the 
methods 'arithmetic mean,’ 'median,’ 'geometric mean,’ and 'harmonic mean,’ the industry peer group 
value-to-sales ratios are averaged with the respective method and the result is multiplied by the target firm's 
sales to arrive at a forecast of the target firm's enterprise value. The method 'Value=Sales' sets the target 
firm's enterprise value equal to its sales, and the method 'Value=$1' sets the target firm's enterprise value 
equal to $1. Panel A shows the results for log errors, Panel B for percentage errors, and Panel C for 
absolute percentage errors. 
 

Panel A: Log errors 
 

Method Mean Median RMSE Std. dev. Skewness Prop≥100% T-test 
Arithmetic mean 0.435 0.357 1.140 1.053 0.123 0.258 93.89 
Median -0.025 0.004 0.996 0.996 -0.395 0.122 -5.65 
Geometric mean 0.004 0.024 0.988 0.988 -0.373 0.130 0.83 
Harmonic mean -0.367 -0.269 1.080 1.015 -0.718 0.062 -82.31 
Value=Sales -0.555 -0.491 1.370 1.253 -0.379 0.089 -100.71 
Value=$1 -19.009 -18.892 19.142 2.257 -0.268 0.000 -1915.35 
 

Panel B: Percentage errors 
 

Method Mean Median RMSE Std. dev. Skewness Prop≥100% T-test 
Arithmetic mean 1.984 0.428 8.133 7.888 23.422 0.360 57.20 
Median 0.638 0.004 3.962 3.911 39.864 0.198 37.09 
Geometric mean 0.671 0.024 3.879 3.821 36.722 0.206 39.94 
Harmonic mean 0.121 -0.236 2.409 2.406 42.597 0.110 11.48 
Value=Sales 0.211 -0.388 3.500 3.494 43.786 0.150 13.77 
Value=$1 -1.000 -1.000 1.000 0.000 119.448 0.000 -7.3E+08 
 

Panel C: Absolute percentage errors 
 

Method Mean Median RMSE Std. dev. Skewness Prop≥100% T-test 
Arithmetic mean 2.235 0.645 8.133 7.820 23.942 0.360 64.99 
Median 1.067 0.492 3.962 3.816 42.582 0.198 63.61 
Geometric mean 1.087 0.497 3.879 3.724 39.342 0.206 66.38 
Harmonic mean 0.743 0.488 2.409 2.292 48.495 0.110 73.76 
Value=Sales 0.999 0.683 3.500 3.355 48.758 0.150 67.70 
Value=$1 1.000 1.000 1.000 0.000 -119.448 0.000 7.3E+08 
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Table 4:  
Empirical error distributions for valuations  

based on the price-earnings ratio 
This table displays descriptive statistics of the valuation errors from six valuation methods based on the 
price-earnings ratio. It is calculated from 33,753 firm-year observations from 1994 to 2003, and shows the 
mean, median, root mean squared error, the standard deviation, skewness, the proportion of observations 
larger than or equal to +100%, and the t-statistic of the two sided t-test that the mean equals zero. For the 
methods 'arithmetic mean,’ 'median,’ 'geometric mean,’ and 'harmonic mean,’ the industry peer group 
price-earnings ratios are averaged with the respective method and the result is multiplied by the target 
firm's net income to arrive at a forecast of the target firm's market value. The method 'P/E=10' sets the 
target firm's market value of equity equal to ten times its net income, and the method 'Value=$1' sets the 
target firm's market value of equity equal to $1. Panel A shows the results for log errors, Panel B for 
percentage errors, and Panel C for absolute percentage errors. 
 

Panel A: Log errors 
 

Method Mean Median RMSE Std. dev. Skewness Prop≥100% T-test 
Arithmetic mean 0.396 0.359 1.107 1.033 -0.173 0.221 70.10 
Median -0.054 0.004 0.968 0.967 -0.505 0.081 -10.14 
Geometric mean -0.001 0.056 0.970 0.970 -0.518 0.090 -0.17 
Harmonic mean -0.318 -0.188 1.049 1.000 -0.772 0.048 -58.28 
P/E=10 -0.648 -0.535 1.198 1.007 -0.752 0.029 -117.70 
Value=$1 -19.194 -19.144 19.321 2.204 -0.140 0.000 -1594.55 
 

Panel B: Percentage errors 
 

Method Mean Median RMSE Std. dev. Skewness Prop≥100% T-test 
Arithmetic mean 2.232 0.433 18.700 18.566 29.987 0.331 22.01 
Median 0.878 0.004 11.641 11.608 39.050 0.137 13.85 
Geometric mean 0.949 0.057 11.346 11.306 36.159 0.158 15.37 
Harmonic mean 0.381 -0.171 8.009 8.000 41.555 0.083 8.72 
P/E=10 0.036 -0.415 6.601 6.601 41.423 0.046 0.99 
Value=$1 -1.000 -1.000 1.000 0.000 31.443 0.000 -6.7E+08 
 

Panel C: Absolute percentage errors 
 

Method Mean Median RMSE Std. dev. Skewness Prop≥100% T-test 
Arithmetic mean 2.454 0.612 18.700 18.538 30.088 0.331 24.23 
Median 1.265 0.382 11.641 11.572 39.313 0.137 20.02 
Geometric mean 1.311 0.408 11.346 11.270 36.414 0.158 21.30 
Harmonic mean 0.937 0.404 8.009 7.955 42.070 0.083 21.57 
P/E=10 0.855 0.488 6.601 6.545 42.110 0.046 23.91 
Value=$1 1.000 1.000 1.000 0.000 -31.443 0.000 6.7E+08 
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Table 5:  
The influence of an increase of dispersion on the error distributions 

This table displays descriptive statistics of the simulated valuation errors from six valuation methods based 
on the market-to-book ratio. It shows the mean, median, standard deviation, and the proportion of 
observations larger than or equal to +100%. In each of the 100,000 runs, we simulate an industry with 40 
companies and value each of these companies using comparable information from the remaining 39 firms. 
For the methods 'arithmetic mean', 'median', 'geometric mean', and 'harmonic mean', the 39 market-to-book 
ratios are averaged with the respective method and the result is multiplied by the target firm's book value to 
arrive at a forecast of the target firm's market value. The method 'MTB=1' sets the target firm's market 
value equal to its book value, and the method 'Value=$1' sets the target firm's market value equal to $1. For 
the "Base scenario" we assume that market-to-book ratios are lognormally distributed with mean 0.593 and 
standard deviation 0.838, and that the book value is lognormally distributed with mean 18.329 and standard 
deviation 1.838. In the simulations with "Increased dispersion" we increase the standard deviation of the 
log market-to-book ratio to 1.115 (+33%). Panel A shows the results for log errors, and Panel B for 
percentage errors. 
 

Panel A: Log errors 
 

  Base scenario Increased dispersion 

Method Mean Median Std. 
dev. 

Prop≥ 
100% Mean Median Std. 

dev. 
Prop≥ 
100% 

Arithm. mean 0.338 0.338 0.852 0.219 0.593 0.593 1.140 0.360
Median 0.000 0.000 0.854 0.121 0.000 0.000 1.137 0.189
Geom. mean 0.000 0.000 0.848 0.119 0.000 0.000 1.129 0.188
Harm. mean -0.338 -0.338 0.852 0.058 -0.592 -0.591 1.140 0.081
MTB=1 -0.593 -0.593 0.838 0.029 -0.593 -0.593 1.115 0.076
Value=$1 -18.921 -18.921 2.035 0.000 -18.923 -18.922 2.164 0.000

 
 

Panel B: Percentage errors 
 

  Base scenario Increased dispersion 

Method Mean Median Std. 
dev. 

Prop≥ 
100% Mean Median Std. 

dev. 
Prop≥ 
100% 

Arithm. mean 1.017 0.402 2.087 0.338 2.465 0.809 5.647 0.465
Median 0.441 0.000 1.493 0.208 0.908 0.000 3.087 0.271
Geom. mean 0.433 0.000 1.472 0.207 0.890 0.000 3.021 0.270
Harm. mean 0.026 -0.287 1.060 0.113 0.058 -0.446 1.715 0.130
MTB=1 -0.215 -0.447 0.793 0.062 0.029 -0.447 1.609 0.124
Value=$1 -1.000 -1.000 0.000 0.000 -1.000 -1.000 0.000 0.000
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Table 6:  
Comparison between present value methods based on  

dividends, residual income, or cash flows 
This table displays descriptive statistics of the valuation errors from three present value methods: The 
dividend discount model (DDM), the residual income model (RIM), and the discounted cash flow model 
(DCF). In addition, results for two benchmark methods are presented: The method MTB=1' sets the target 
firm's market value of equity equal to its book value, and the method 'Value=$1' sets the target firm's 
market value of equity equal to $1. The table is calculated from 654 firm-year observations from 1994 to 
2005, and shows the mean, median, root mean squared error, the standard deviation, skewness, the 
proportion of observations larger than or equal to +100%, and the t-statistic of the two sided t-test that the 
mean equals zero. Panel A shows the results for log errors, Panel B for percentage errors, and Panel C for 
absolute percentage errors. 
 

Panel A: Log errors 
 

Method Mean Median RMSE Std. dev. Skewness Prop≥100% T-test 
DDM -0.912 -0.743 1.322 0.958 -1.357 0.005 -24.35 
RIM 0.078 0.089 0.524 0.518 -0.847 0.034 3.86 
DCF 0.735 0.730 1.001 0.680 -1.105 0.329 27.66 
MTB=1 -7.467 -5.077 10.268 7.054 -1.487 0.003 -27.07 
Value=$1 -22.594 -22.615 22.640 1.446 0.035 0.000 -399.62 
 

Panel B: Percentage errors 
 

Method Mean Median RMSE Std. dev. Skewness Prop≥100% T-test 
DDM -0.435 -0.525 0.620 0.443 2.095 0.009 -25.13 
RIM 0.231 0.093 0.823 0.791 6.453 0.070 7.46 
DCF 1.605 1.076 2.844 2.350 7.142 0.523 17.46 
MTB=1 -0.913 -0.994 0.956 0.283 8.053 0.003 -8.2E+01 
Value=$1 -1.000 -1.000 1.000 0.000 6.067 0.000 -2.8E+10 
 

Panel C: Absolute percentage errors 
 

Method Mean Median RMSE Std. dev. Skewness Prop≥100% T-test 
DDM 0.539 0.552 0.620 0.308 1.094 0.009 44.73 
RIM 0.432 0.254 0.823 0.701 8.609 0.070 15.78 
DCF 1.661 1.076 2.844 2.310 7.479 0.523 18.39 
MTB=1 0.939 0.994 0.956 0.180 1.126 0.003 1.3E+02 
Value=$1 1.000 1.000 1.000 0.000 -6.067 0.000 2.8E+10 
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Table 7:  
Tests for Normality 

This tables shows the test statistics of three tests for normality (Kolmogorov-Smirnov, Cramér-von Mises, 
and Anderson-Darling) applied to the pooled sample (1994-2003) of three different financial ratios, their 
logarithmic transformations, and their inverses. All observations have been standardized by deducting the 
industry-year mean and then dividing by the industry-year standard deviation, where the industry is given 
by the two-digit SIC code. For the Kolmogorov-Smirnov test, the table displays the usual test statistic 
multiplied by the square root of the number of observations in order to make comparisons across samples 
meaningful. For the thus transformed Kolmogorov-Smirnov test statistic, the 1% critical value is 1.035. For 
the Cramér-von Mises and the Anderson-Darling test the 1% critical value are 0.179 and 1.035, 
respectively. Critial values have been obtained from D'Agnostino and Stephens (1986), p.123. 
 

Test statistics 
Multiple Kolmogorov-

Smirnov 
Cramer- 

von Mises 
Anderson-

Darling 
market-to-book 40.81 683.06 3,734.04 
value-to-sales 48.07 910.45 4,800.33 
price-earnings 50.21 957.28 4,862.20 
log(market-to-book) 4.61 7.16 44.87 
log(value-to-sales) 5.04 8.76 58.02 
log(price-earnings) 14.56 74.61 426.01 
(market-to-book)–1 31.31 390.97 2,201.48 
(value-to-sales)–1 37.45 579.93 3,209.81 
(price-earnings)–1 31.11 371.94 2,048.24 
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Figure 1:  
Empirical error distributions 

The figure shows the empirical error distributions based on the market-to-book ratio, calculated with 100 
histogram intervals from 47,614 firm-year observations from 1994-2003. The left column shows the 
percentage errors, whereas the right column shows log errors. The rows correspond to one averaging 
method each. The data have been truncated to generate meaningful plots. 
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Figure 2:  
Empirical density functions of financial ratios 

The figure shows the empirical distributions of the financial ratios (left column) and their logarithmic 
transformations (right column), calculated with 100 histogram intervals. In each plot, the solid line shows 
the actual distribution of the data and the dotted line shows the density function of a normal distribution 
with mean and variance fitted to the data. All observations have been standardized by deducting the 
industry-year mean and then dividing by the industry-year standard deviation, where the industry is given 
by the two-digit SIC code. The data have been truncated to generate meaningful plots. 
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