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1 Introduction

Frequently, interaction in an economic, social, political or computational
context is local in the sense that it consists of pairwise interactions between
neighbors. In widely used pairwise matching models, if an agent interacts at
all in a particular period, he interacts with only one (temporary or perma-
nent) partner. Since the early 90s, a sizeable literature on pairwise interac-
tions between neighbors on a graph has emerged.1 The novel feature is that
direct interaction of an agent is confined to his neighhbors, frequently but not
necessarily a small group, while indirect interaction via a chain of neighbors
may occur between any pair of agents. As a rule, it has been assumed that
the underlying interaction structure (network, graph) does not change over
time. This assumption captures the case of rather rigid social ties.

Very valuable insights have been gained from studying pairwise interac-
tion under the assumption of a fixed interaction structure. However, social
ties are not always rigid. First, they may change because of stochastic shocks.
Examples of the latter are random encounters or noisy communication. Sec-
ond, social ties may be formed or severed as the consequence of deliberate
actions taken by individuals.2 Third, network design and network utiliza-
tion may go hand in hand. The specific contributions by Droste, Gilles and
Johnson (2000), Jackson and Watts (2002), Goyal and Vega-Redondo (2005),
Hojman and Szeidl (2006), and Ehrhardt, Marsili and Vega-Redondo (2006)
will be discussed in subsection 5.3.

Here we explore the first possibility. The interaction structure is exoge-
nous and random. It changes over time, following an i.i.d. process. This as-
sumption captures the case of rather loose social ties. It allows us to directly
compare the effects of two polar cases — fixed versus random interaction
structure, rigid versus loose social ties — without altering the local inter-
action model in other respects. The assumption of an exogenous, randomly
changing interaction structure also offers an interesting contrast to models
where both network formation and network utilization are endogenous.

1For pioneering contributions to this literature, see Anderlini and Ianni (1996), Bern-
inghaus and Schwalbe (1996a,b), Blume (1993, 1995), Ellison (1993), Goyal and Janssen
(1997), among others.

2See the literature on strategic network formation in the tradition of Jackson and
Wolinsky (1996) and Bala and Goyal (2000).
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The bulk of the literature on local interaction with a fixed interaction
structure studies spatial games. Such games are characterized by pairwise
strategic interactions between neighbors on a graph. They constitute a sub-
stantial part of the economically motivated literature on evolutionary games.
The class of spatial games is especially useful in explaining and investigating
the emergence, coexistence, persistence as well as disappearance of conven-
tions and social norms. It also lends itself to the study of the formation
of industry standards and norms. In this paper, we consider a generaliza-
tion of the traditional concept of spatial games. We develop and analyze an
evolutionary game that constitutes a dynamic spatial game with randomly
changing interaction structure, evolves in discrete time, and has the following
particular features:

Base or constituent game. In every period, the players play a local
interaction or spatial game. Every time, each player has to make a binary
choice between two actions, X and Y , and receives the sum of his payoffs
from interacting once with each of his neighbors. Payoffs from each pairwise
interaction are based on the same symmetric 2×2 coordination game, called
base or constituent game in the literature. Consequently, players are con-
formists: If all his neighbors play X, a player prefers to play X; if all the
neighbors play Y , he prefers Y .

Interaction structure. An interaction structure describes who in-
teracts with whom. It specifies for each agent a set of neighbors, the set of
agents with whom the agent interacts. In the sequel, an “interaction struc-
ture” is modeled as an undirected finite graph whose vertices or nodes are
the members of the player population. Two players are neighbors, if they
form an edge of the graph. Global interaction prevails if any two players are
neighbors. Otherwise, interaction is local. In principle, one can generalize
and replace the graph by a weighted graph. But we refrain from doing so in
the present paper and rather generalize in a different direction, allowing for
random graphs.

Dynamics. The model has two dynamic elements. On the one hand,
the interaction structure (modeled as a graph) can change over time: A
stochastic process generates a random sequence of graphs. This con-
trasts with models where the initial interaction structure (represented by a

3



deterministic graph or the realization of a random graph) cannot change over
time.3

On the other hand, we consider best response dynamics where at
each time, one or every player chooses a (static) best response against the
empirical distribution of the last strategies played by his neighbors. This
constitutes rational behavior impaired by myopia. Myopia in the tempo-
ral sense means that the player is not forward looking, does not take into
account that other players might be changing their strategies.4 Myopia in
the spatial sense means that the player is influenced only by his local envi-
ronment, the previous choices of his neighbors. Deterministic best response
dynamics of local interaction games has been pioneered by Blume (1995) and
Berninghaus and Schwalbe (1996a,b). Blume (1995) studies and compares
local and global interaction for specific interaction structures (infinite and
finite two-dimensional lattices). In an otherwise deterministic model, Blume
assumes asynchronous updating where each period, a player is selected at
random and plays a myopic best response against his neighbors’ previous
actions while the other players repeat their previous actions. Berninghaus
and Schwalbe (1996a,b), in a model with simultaneous updating, analyze de-
terministic best response dynamics with global or local interaction. Unless
specified otherwise, we shall proceed under the assumption of simultaneous
updating.

Contagion. Contagion is said to occur if one action can spread by a
contact effect from a particular group of agents, typically a small group, to
the entire population. Suppose that originally, only a small group of people
chooses action X. We say that contagion (with respect to X) occurs, if with
probability 1, the entire population ends up playing X. Under the myopic
best response dynamics assumed in the present paper, an agent is playing X
in the current period if and only if a sufficiently high proportion of his current
contacts (neighbors) has played X in the last period. Analogous definitions

3In the setting of Blume (1995) and Berninghaus and Schwalbe (1996a,b), the same
exogenously given interaction structure (graph) is present in all periods. In the model
of López-Pintado (2006), an interaction structure (network, graph) is chosen at random
prior to the game and does not change throughout a particular play of the game. For a
more detailed comparison, see subsection 5.2.

4Hence, unlike the standard treatment of repeated games, our analysis is not concerned
with perfectly rational outcomes such as the perfect equilibria of the repeated game.
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and observations apply to the alternative action, Y .
Our definition of contagion, which requires that an action, trait, defect,

virus, etc. spreads to the entire population, has been used in computer science
[Flocchini et al. (2001, 2004), Peleg (1998, 2002)], economics [Morris (2000),
Lee and Valentinyi (2000)], and game theory [Berninghaus et al. (2006),
Durieu et al. (2006)]. Different definitions of contagion have been proposed
and are appealing in certain contexts. In a social context, our definition rules
out the long-run coexistence of conventions. A less demanding definition of
contagion would require that an action spreads to a significant proportion
of the player population and remains there forever. This definition — which
allows for the long-run coexistence of conventions — is akin to that adopted
by López-Pintado (2006) in a social interaction setting and by Pastor-Satorrs
and Vespignani (2001) in an epidemiological model.

Main results. Our analysis is focused on models with two kinds of
random graphs. In the first type of models, the support of the random graph
consists of regular graphs, where all players have the same number of neigh-
bors. In the second type of models, the underlying random graph is binomial.

Among regular graphs, circular graphs are of special interest. Pre-
sumably, circular graphs are the local interaction structures most frequently
studied in game theory and economics. In such a graph, the players can be
arranged in a circle so that each player has one neighbor to the left and one
neighbor to the right. We find that if the support of the underlying ran-
dom graph consists of all circular graphs, at least one player chose the risk
dominant action initially, and updating is simultaneous, then contagion with
respect to the risk dominant action occurs. In contrast, with simultaneous
updating, an even number of players, and a fixed circular graph, convergence
to a two-cycle can occur. We extend the analysis to so-called OR networks
à la Goles and Hernández (2000). We obtain less conclusive results for arbi-
trary regular graphs where each player has more than two neighbors.

In a binomial random graph, also known as an Erdős-Rényi random
graph, each possible edge is included independently of others with a given
probability, which is the same for all edges. This is the random graph model
most commonly studied in mathematics and statistics, sometimes even re-
ferred to as “the random graph.” In a dynamic context it reflects best the
idea of loose social ties. We find that when the evolution of the interac-
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tion structure is based on a binomial random graph, then with probability
one, contagion (either with respect to action X or with respect to action Y )
occurs. We further show that if at least one player chooses the risk dom-
inant action initially, then with positive probability, all players choose the
risk dominant action in period 2. However, given a limited number of players
choosing an action initially, the probability that eventually all players choose
the alternative action approaches one as the population size goes to infinity.
Thus, if just a few players choose the risk dominant action initially, then
with positive probability, contagion with respect to the risk dominant action
occurs very rapidly; but in a large population, it is much more likely that
contagion with respect to the alternative action occurs.

In the next section, we present the general model. In Section 3, we
consider interaction on regular graphs, with a special emphasis on circular
graphs and OR networks. In Section 4, we study interaction on binomial
graphs. In Section 5, we offer qualifying remarks. Specifically, subsection
5.1 deals with asynchronous updating, subsection 5.2 puts our results into
context, and subsection 5.3 elaborates on the endogenous co-evolution of
local interaction and the local interaction structure.

2 Preliminaries

We consider a dynamic game that evolves in discrete time, with periods
t = 0, 1, 2, . . . . The game is played by a finite population of N ≥ 3 players
i ∈ I = {1, . . . , N}. In each period t each player i is matched with every
player in his neighborhood Vi(t) to play a 2-person coordination game.

The primitive data of the model are the player set I, a binary individual
action set {X,Y }, payoffs for the 2-player coordination game, a stochastic

process Ṽ (0), Ṽ (1), . . . generating sequences of interaction structures (graphs,
networks) V (0), V (1), . . ., and an updating rule.

2.1 Base or constituent game

In each period, each player i chooses an action si ∈ Si = {X,Y }. The
binary action set is the same for all players at all times. S = {X, Y }N

is the set of all action profiles. If players i and j interact once, i chooses
action si and j chooses action sj, then player receives payoff π(si, sj) and
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player j receives payoff π(sj, si) from their pairwise interaction. The pairwise
interaction payoff function π : {X,Y }2 → R applies to all players at all
times, where the first argument is always the action taken by the player,
say i, whose payoff is to be determined while the second argument is the
action of the particular player j with whom i interacts. If i and j, i 6= j,
is an arbitrary pair of players, then their one time pairwise interaction is
described by a symmetric 2 × 2 game, the base or constituent game. In
case i is treated as row player and j as column player, the base game assumes
the matrix form

i

j

X Y
X a,a b,c
Y c,b d,d

where a = π(X,X), b = π(X, Y ), c = (Y, X), d = (Y, Y ). We assume that
the base game is a coordination game, that is a > c and d > b.5 In that
case, the Nash equilibrium (X, X) is payoff dominant if a > d whereas (Y, Y )
is payoff dominant if a < d. The Nash equilibrium (X, X) or the action X is
risk dominant if a− c > d− b. (Y, Y ) or Y is risk dominant if a− c < d− b.

2.2 Interaction structures

An interaction structure describes who interacts with whom. This can simply
be achieved by listing, for each player i ∈ I, the group Vi ⊆ I \ {i} of players
with whom i interacts. Now a binary relation V ⊆ I × I can be equivalently
represented by its sections Vi ≡ {j ∈ I|(i, j) ∈ V }, i ∈ I. The pair (I, V ) is
also called a graph or network with I as its set of nodes and V as the set of
edges. Thus listing who interacts with whom amounts to fixing a graph. It
often proves convenient to refer to V rather than (I, V ) as the graph.

We only consider graphs which have no loops [V is irreflexive: (i, i) /∈ V
for i ∈ I] and are undirected [V is symmetric: (i, j) ∈ V ⇒ (j, i) ∈ V or,
equivalently, j ∈ Vi ⇔ i ∈ Vj]. Let V denote the set of all such “graphs” V .
The elements V ∈ V are interpreted as interaction structures, describing
who interacts with whom: If V is the prevailing interaction structure and
i, j ∈ I, then i can interact with j and vice versa if and only if j ∈ Vi and

5The base game is an anti-coordination game if a < c and d < b.
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i ∈ Vj. In particular, V (t) denotes the interaction structure at time t and
the section Vi(t) is the set of neighbors or partners with whom player i is
matched and interacts in period t.

Instead of representing an undirected graph as a symmetric binary re-
lation, it is often advantageous to resort to an alternative representation:
Edges are unordered pairs {i, j}. j ∈ Vi and i ∈ Vj iff {i, j} ∈ V . We shall
resort to the latter representation from now on.

2.3 Dynamics

Let si(t) ∈ Si denote the action chosen by player i in period t. Further let
x(t) = |{i ∈ I : si(t) = X}| denote the number of players choosing action X
and s(t) = (s1(t), . . . , sN(t)) denote the action profile in period t.

We are interested in properties of the sequences s(t), t = 0, 1, . . ., and
x(t), t = 0, 1, . . . , which of course depend on how the sequences are gener-
ated. In contrast to most models of biological evolution, models of economic
and social evolution have explored the assumption that a player can only in-
teract with a subset of the population, his neighborhood or reference group.6

Moreover, it has been typically assumed that the exogenously given interac-
tion structure is totally rigid over time: Vi(t) = Vi(0) for all i and t. While
many socio-economic relations are fairly stable, others are not or emerge
only over time, and few are totally stable. Here we keep the concept of an
interaction structure, but allow for the possibility that the structure changes
over time. In principle, there could be inertia in the system so that only a
few edges are added or deleted from one period to the next. The interaction
structure of the next period could depend on the current interaction structure
as well as the current action profile. Here we ignore these possibilities and fo-
cus on the direct opposite of a totally rigid interaction structure. We assume
a stochastic process of i.i.d. random variables Ṽ (t) : Ω → V , t = 0, 1, . . .,
defined on an underlying probability space (Ω,F ,P) and assuming values in

a subset V of V. The realizations of the process Ṽ (0), Ṽ (1), . . . constitute
sequences of interaction structures (graphs, networks) V (0), V (1), . . .. The
independence assumption means that past connections do not influence cur-
rent or future connections and, thus, captures the idea that social connections

6See Berninghaus and Schwalbe (1996a,b), Blume (1993, 1995), and references therein
and thereafter.
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may not be rigid at all.
Given an action profile s = (s1, . . . , sN) ∈ S and an interaction structure

V in a particular period, player i receives an aggregate payoff

ui[s ; V ] =
∑
j∈Vi

π(si, sj) (1)

from pairwise interactions in that period. The dynamic game starts with an
initial state s(0) ∈ S and an initial interaction structure, V (0). In every pe-

riod t ≥ 1, given the realization V (t) of Ṽ (t), players update their strategies,
following a “myopic best response rule”: Player i chooses a best response
against the previous play of his current neighbors,

si(t) ∈ arg max {si ∈ Si |ui[(si, s−i(t− 1)); V (t)] } . (2)

Ties are broken in favor of X unless a player has no neighbors. In some
realizations of some random graph, a player may end up neighborless, Vi(t) =
∅, in which case we assume that the player exhibits inertia: si(t) = si(t− 1).
Let ni(t) = |{j ∈ Vi(t) : sj(t− 1) = X}| be the number of i’s neighbors who
chose X last period. Then i with Vi(t) 6= ∅ will choose X this period if

ni(t) ≥ |Vi(t)| · d− b

a− c + d− b
. (3)

Player i with Vi(t) 6= ∅ will choose Y in period t if

ni(t) < |Vi(t)| · d− b

a− c + d− b
. (4)

On purely descriptive grounds, one can envisage that an updating player
maximizes against previous play of previous neighbors, that is si(t) maxi-
mizes ui[(si, s−i(t − 1)); V (t − 1)]. Yet given the i.i.d. assumption on the

process Ṽ (0), Ṽ (1), . . ., this descriptive difference merely translates into a
notational difference and not a material one.

2.4 Long-run behavior and contagion

We examine the long-run behavior of the path s(0), s(1), . . . . Contagion
(with respect to action X) occurs from an initial subset I0 of I, if si(0) = X
for i ∈ I0, si(0) = Y for i 6∈ I0, and there exists T ∈ N such that si(t) = X for
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all i ∈ I and t ≥ T or, equivalently, x(t) = N for all t ≥ T . Contagion with
respect to action Y is defined in an analogous way. Contagion is especially
forceful, if an action spreads to the entire population starting from a small
group of players.

In the case of a fixed deterministic interaction structure, that is V ∈ V
such that V (t) = V for t = 1, 2, . . . , one obtains that s(t) converges either to
a fixed point (steady state) or to a two-cycle; see Berninghaus and Schwalbe
(1996b, Theorem 2), Goles (1987), Goles and Olivos (1980), Goles and Mar-
tinez (1990). Notice that convergence to a steady state does not necessarily
imply occurrence of contagion. Berninghaus and Schwalbe (1996b) give an
example of a discrete 6× 6 torus (lattice with von Neumann neighborhoods)
and a steady state where both conventions or actions, X and Y , coexist.

In general, the path s(0), s(1), . . . generated by simultaneous myopic best
response updating is random when the sequence of interaction structures is
random.7 The fact that the interaction structure is newly formed each period
can drastically affect contagion, even if the same network architecture is re-
alized every period. The difference between a fixed deterministic interaction
structure and a random sequence of interaction structures becomes evident
in the case of circular graphs (2-regular connected graphs) studied in the
next section.

3 Interaction on Regular Graphs

For a player or node i ∈ I and a graph V ∈ V, the degree of i in V ,
di(V ), is defined as the number of i’s neighbors in V : di(V ) ≡ |Vi|. Let n
be a nonnegative integer. The graph V is n-regular, if each player has n
neighbors in V : di(V ) = n for all i ∈ I. Let C(n) denote the class of all
connected and n-regular graphs on I.

7In models of adaptive play, there can be other sources of randomness: With asyn-
chronous updating, there may be a random selection of the player who updates. Players
may play stochastically perturbed best responses caused by errors, trembles, or mutations.
A player may respond to a random sample of his neighbors.
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3.1 Interaction on circular graphs

Circular graphs very likely are the local interaction structures most frequently
studied in game theory and economics. In such a graph, the players can be
arranged in a circle so that each player has one neighbor to the left and one
neighbor to the right. Formally, such a graph assumes the form V β with
sections V β

i = {j ∈ I| β(j) = β(i) ± 1 modulo N} where β is a permuta-
tion of I. In V β, we say that j is the left neighbor of i with respect to β if
β(j) = β(i)− 1 mod N and j is the right neighbor of i with respect to β if
β(j) = β(i) + 1 mod N . Notice that there exist permutations α 6= β such
that V α = V β, but j is a left neighbor of i with respect to α and a right
neighbor of i with respect to β. Let R(2) denote the class of circular graphs
on I. It is easy to see that R(2) = C(2).

For the sake of comparison, let us briefly reconsider the adjustment dy-
namics in the case of a fixed deterministic interaction structure of the form
V β, with β a permutation of I. Let k ∈ I, sk(0) = X and si(0) = Y for all
i 6= k. If action Y is risk dominant then in one step contagion with respect
to action Y occurs. If action X is risk dominant and N is even then conver-
gence to a two-cycle occurs. If action X is risk dominant and N is odd, then
contagion with respect to action X occurs.

Let us next consider i.i.d. random variables Ṽ (t) : Ω →R(2), t = 0, 1, . . .,

so that V = R(2) = {V β|β a permuation of I} and each Ṽ (t) is uniformly
distributed on R(2). Now again, if k ∈ I, sk(0) = X, si(0) = Y for all i 6= k,
and action Y is risk dominant, then in one step contagion with respect to
action Y occurs. However, if action X is risk dominant, contagion occurs
regardless of N :

Proposition 1 Suppose each Ṽ (t) is uniformly distributed on the set of cir-
cular graphs. If X is risk dominant and x(0) > 0 then with probability one,
the entire population will end up choosing X in finite time.

proof. Let X be risk dominant. Notice that then on a circular graph,
a player chooses X if at least one of his neighbors has chosen X. First we
show

Claim 1: x(t) is nondecreasing in t.
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Namely, let V (t) = V β for some permutation β. If si(t − 1) = X and
si(t) = Y , then sj(t − 1) = Y and sj(t) = X where j is i’s right-hand
neighbor with respect to β. Hence there are at least as many switches from
Y to X as there are from X to Y , which shows the claim. Next we show

Claim 2: If 0 < x(t− 1) < N then x(t) > x(t− 1)
with probability ≥ 1/|R(2)|.

For if x(t − 1) = 1, si(t − 1) = X, and V (t) = V β then i’s left and right
neighbors with respect to β choose X in period t. If 1 < x(t− 1) < N then
with probability at least 1/|R(2)|, V (t) assumes the form V β−1

such that
sβ(1)(t− 1), sβ(2)(t− 1), . . . , sβ(N)(t− 1) equals
XX . . .XY or Y X . . .XY or Y X . . .XY Y or
Y X . . .XY Y . . . Y , respectively,

and, therefore,
sβ(1)(t), sβ(2)(t), . . . , sβ(N)(t) equals
XX . . .XX or XX . . .XX or XX . . . XXY or
XX . . .XXY . . . Y , respectively.

This shows the claim. The assertion of the proposition follows from the two
claims. Q.E.D.

In the deterministic case (with a fixed interaction structure of the form V β−1
)

when action X is risk dominant and N is even, convergence to a two-cycle
occurs. Given the prevailing interaction structure V β−1

, the two elements
s′, s′′ of the two-cycle exhibit an alternating pattern of X’s and Y ’s, say
s′β(1), . . . , s

′
β(N) = XY XY . . . XY and s′′β(1), . . . , s

′′
β(N) = Y XY X . . . Y X. In

the stochastic case, even if at some time t, s(t) exhibits an alternating pat-
tern with respect to V (t), this does not lead to a permanent two-cycle. For
the probability that s(τ) constitutes an alternating pattern with respect to
V (τ) for all τ > t is zero. With probability one, the cycle will be interrupted
and contagion occurs.

The proposition can be generalized in two ways. First, it suffices to
assume that each of the i.i.d. random variables Ṽ (t) has as support the set of
circular graphs. In the proof, the probability 1/|R(2)| has to be replaced by
min{Prob(V (1) = V ) : V ∈ R(2)} > 0. Second, the set of all circular graphs
can be replaced by the set of all 2-regular graphs, that is graphs where
each player has exactly two neighbors. The reason is that the connected
components of a 2-regular graph are circular graphs.
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3.2 Interaction with more than two neighbors

Proposition 1 shows the relevance of risk dominance for contagion in so-
cieties with small neighborhood groups. The following two examples and
Proposition 2 demonstrate that only weaker conclusions can be drawn when
neighborhood size increases.

Suppose n ∈ N, 2 ≤ n < N and the support of each Ṽ (t) is contained in
the set of n−regular graphs on I, the graphs where each player has exactly
n neighbors. If x(0)/n < (d − b)/(a − c + d − b), then (4) holds for t = 1
and all i and, therefore, contagion with respect to action Y occurs in one step.

Example 1. Let a = 3, d = 2, b = c = 0. Then action X is both payoff
dominant and risk dominant. Further let N ≥ 4 be even — to guarantee the
existence of 3-regular graphs — and x(0) = 1. If n = 2, then a variant of
Proposition 1 applies: With probability one, contagion with respect to action
X occurs. If n = 3, then x(0)/3 = 1/3 < 2/5 = (d − b)/(a− c + d− b) and
contagion with respect to Y occurs in a single step. While risk dominance of
an action favors contagion with respect to that action, nevertheless the risk
dominant action gets extinct when only a relatively small fraction of players
has chosen it and the random graph generates rather large neighborhoods.

Now let n ≥ 2 be even and in analogy to R(2), define the set R(n)
of n-regular graphs where each player has n/2 left neighbors and n/2 right
neighbors (with respect to a permutation β of N that defines the graph).

Proposition 2 Suppose each Ṽ (t) has support R(n). If X is risk dominant
and N > x(0) > n/2 then with positive probability, the entire population will
end up choosing X in finite time.

proof. Let p = min{Prob(V (1) = V ) : V ∈ R(n)} > 0. If t ≥ 1
and N > x(t − 1) > n/2, then with probability at least p, there exists a
permutation β of I such that V (t) is defined by β−1,

sβ(1)(t− 1) = . . . = sβ(x(t−1))(t− 1) = X and
sβ(1)(t) = . . . . . . = sβ(x(t−1)+1)(t) = X.

Hence for some k ∈ {1, . . . , N − x(0)}:
x(0) < x(1) < . . . < x(k) = N with probability at least pk,

since the random variables Ṽ (1), Ṽ (2), . . . are i.i.d. Q.E.D.

13



Proposition 2 draws a weaker conclusion than Proposition 1. Indeed,
in Proposition 2, “positive probability” cannot be replaced by “probability
one”. To see this, consider

Example 2. Suppose each Ṽ (t) has support R(n). Let a = 3, d = 2, b =
c = 0. Then action X is both payoff dominant and risk dominant. Fur-
ther let N = 18 and n = 4 so that n/2 = 2. Suppose that si(0) = X for
i ∈ {1, 7, 13} and si(0) = Y for i /∈ {1, 7, 13}. Then x(0) = 3 > n/2. Now let
V ′ ∈ R(4) be defined by the permutation β = idN , that is {i, j} ∈ V ′

iff j = i ± 1 or i ± 2 mod N . If V (1) = V ′, then ni(1) ∈ {0, 1} and
|Vi(1)| · (d − b)/(a − c + d − b) = n(d − b)/(a − c + d − b) = 8/5 for all
i ∈ I; hence (4) holds for t = 1 and all i and contagion with respect to ac-
tion Y occurs in one step. With positive probability, V (1) = V ′. Thus, the
hypothesis of Proposition 2 is satisfied whereas the event “the entire popula-
tion will end up choosing X in finite time” has probability less than one.

3.3 OR networks

A successful approach to the contagion question in the computer science
literature is known under the rubric of AND and OR networks; see Goles
and Hernández (2000). Let us consider OR networks in more detail. These
are defined by the property

si(t) = X ⇐⇒ ni(t) ≥ 1. (5)

By (3) and (4), in our context condition (5) is equivalent to 1 ≥ |Vi(t)| · (d−
b)/(a−c+d−b). In case V (t) is n-regular with n ≥ 2, the latter is equivalent
to 1 ≥ n(d − b)/(a − c + d − b) or a − c ≥ (n − 1)(d − b). This condition
obviously requires that X be sufficiently risk dominant in order to obtain
an OR network. In case n = 2, the risk dominance condition a − c > d − b
suffices. In case n = 4, the stronger condition a− c ≥ 3(d− b) is required.

Concerning contagion it is easy to see that similar arguments as in the
proof of Proposition 1 yield the following result:
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Proposition 3 Let n ≥ 2 be even and a− c ≥ (n− 1)(d− b). Suppose each

Ṽ (t) has support R(n) — so that each realization V (t) constitutes an OR
network. If x(0) > 0 then with probability one, the entire population will end
up choosing X in finite time.

Proposition 3 can be extended to random graph processes where the sup-
port of each Ṽ (t) contains R(n) and possibly includes other members of C(n)
with the property that each node can be assigned a “select right-hand neigh-
bor”. In the proof of Proposition 1, the argument for Claim 1 relies on the
fact that for V ∈ R(2), V = V β and i ∈ I, we can assign to i its right-hand
neighbor j with respect to β, given by β(j) = β(i) + 1 mod N . Similarly,
for any even n > 2, V ∈ R(n) defined by a permutation β of N and i ∈ I, i’s
neighborhood is Vi = {j ∈ I : β(j) = β(i)± 1 or . . . or β(i)± n/2 mod N}
and i can be assigned a “select right neighbor j with respect to β”, again
given by β(j) = β(i) + 1 mod N . Therefore, the argument for Claim 1 can
be made again. It can be generalized to graphs V ∈ C(n)\R(n) in which
every node i can be assigned a “select right neighbor”.

For instance, let N = 60 and n = 4. Then each i ∈ I has a unique
representation i = 20i1 + i2 with i1 ∈ {0, 1, 2} and i2 ∈ {1, . . . , 20}. Define a
von Neumann neighborhood for i via Vi ≡
{

j ∈ I

∣∣∣∣
j = 20j1 + j2 with j1 ∈ {0, 1, 2}, j1 6= i1, j2 = i2 or
j = 20j1 + j2 with j1 = i1, j2 ∈ {1, . . . , 20}, j2 = i2 ± 1 mod 20

}
.

Then the 3× 20 lattice or torus V given by the neighborhoods Vi, i ∈ I, be-
longs to C(4)\R(4). To i = 20i1 + i2, one can assign the right-hand neighbor
j = 20j1 + i2 with j1 ∈ {0, 1, 2}, j1 = i1 + 1 mod 3. This is not the only
possibility: The assignment j = 20i1 + j2 with j2 ∈ {1, . . . , 20}, j1 = i1 + 1
mod 20 will also do. The construction can be applied to any V ∈ C(n)\R(n)
which is representable as a finite lattice without boundary (discrete torus).
Still for N = 60, n = 4, one can also consider a 5 × 2 lattice or torus or a
3-dimensional 2× 2× 15 lattice or cube, etc.

Goles and Hernádez (2000) observe that deterministic OR networks form
a class of neural networks. Any deterministic OR network dynamics with
simultaneous updating exhibits contagion (with respect to action X or with
respect action Y ) or converges to a unique 2-cycle. In contrast to n = 2,
deterministic OR network dynamics based on a fixed network V ∈ R(n)
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with n even, n > 2, and x(0) > 0 always exhibits contagion with respect to
action X. Thus, in the long-run, interaction based on a fixed interact struc-
ture and interaction on a sequence of random interaction structures results
in the same outcome. However, as elaborated in the previous paragraph,
the assumed support R(n) in Proposition 3 can be replaced by a superset
of R(n) which contains other elements V ′ of C(n) where each node can be
assigned a “select right neighbor”. For example, in case N = 16, n = 4,
a 4 × 4 torus (lattice without boundary) V ′ will qualify. Deterministic OR
network dynamics based on V ′ with x(0) = 1 converges to a 2-cycle. In that
case, interaction on a sequence of random interaction structures makes a dif-
ference: Replace the support R(n) in Proposition 3 by R(n) ∪ {V ′} and set
ε ≡ Prob(V (1) 6= V ′) > 0. For arbitrarily small ε, contagion with respect to
action X occurs although V ′ has a much greater chance to be realized than
not.

The OR network property, that is sufficiently strong risk dominance of
action X, proves very conducive to contagion with respect to action X. If, on
the other hand, the OR network property fails to hold, then it is perhaps not
surprising that contagion with respect to action X may fail in some instances
as well. However, ceteris paribus, the impact of the lack of the OR network
property turns out to be quite drastic: Suppose a− c < (n− 1)(d− b) while
the other assumptions of Proposition 3 remain unchanged. Then in large
populations, with positive probability contagion with respect to action Y
occurs even when a vast majority of the players initially chooses action X.

Proposition 4 Let n ≥ 2 be even and a− c < (n− 1)(d− b). Suppose each

Ṽ (t) has support R(n) — so that none of the realizations V (t) constitutes
an OR network. If N − x(0) ≥ 5n2 then with positive probability, the entire
population will end up choosing Y in finite time.

proof. Let again p = min{Prob(V (1) = V ) : V ∈ R(n)} > 0. By
assumption, there are at least 5n2 players who initially choose action Y . In
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case x(0) ≥ 2n + 1 there exists a permutation β of I such that

sβ(i)(0) =





Y for i = 1, . . . , 2n;
X for i = (1 + k)2n + 1, k = 0, 1, . . . , 2n;
Y for i = (1 + k)2n + `, k = 0, 1, . . . , 2n, ` = 0, 2, . . . , 2n;
Y for i = (2n + 3)2n, . . . , (2n + 3)2n

+ N − x(0)− (4n2 − 1 + 2n) = 4n + 1 + N − x(0);
X for i = 4n + 1 + N − x(0), . . . , N.

If V (1) is the element of R(n) defined by β−1, then the 2n + 1 players
β(i) with i = (1 + k)2n + 1, k = 0, 1, . . . , 2n have at most one neighbor
in V (1) who previously played X. Because of a − c < (n − 1)(d − b),
they switch from X in period 0 to Y in period 1. Each player β(i) with
i ∈ {n + 1, . . . , 4n + 1 + N − x(0) − n} and sβ(i)(0) = Y has at most one
neighbor in V (1) who previously played X and, therefore, β(i) keeps playing
Y in period 1. Therefore, at most 2n players switch from Y in period 0 to X
in period 1. Hence the number of players switching from Y to X (at most 2n)
is less then the number of players switching form X to Y (at least 2n + 1).
With probability at least p, this realization of V (1) occurs and x(1) < x(0).

In case x(0) < 2n + 1, there exists a permutation β of I such that

sβ(i)(0) =





X for i = 2kn + 1, k = 0, 1, . . . , 2n− 1;
Y for i = 2kn + `, k = 0, 1, . . . , 2n, ` = 0, 2, . . . , 2n;
Y for i = 4n2 + 2n, . . . , N ;

If V (1) is the element of R(n) defined by β−1, then each player has at
most one neighbor in V (1) who previously played X. Because of a − c <
(n − 1)(d − b), every player chooses action Y in period 1. With probability
at least p, this realization of V (1) occurs and x(1) = 0.

We conclude that with probability at least p, x(1) ≤ max{0, x(0) − 1}
and N − x(1) ≥ N − x(0) ≥ 5n2. Since the random variables Ṽ (1), Ṽ (2), . . .
are i.i.d., induction with respect to t yields existence of k ∈ {1, . . . , x(0)}
such that x(k) = 0 with probability at least pk. Q.E.D.

In the first part of the proof, the case x(0) ≥ 2n + 1, consider the players
arranged on a circle, each with n/2 neighbors on either side. The circle is
partitioned into four segments A, B, C, and D which are arranged clockwise,
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say. Segment A consists of 2n players choosing action Y initially. Segment B
consists of 2n+1 initial X-players plus 2n(2n−1) initial Y -players where any
two X-players are separated by 2n− 1 initial Y -players. Segment C consists
of the remaining at least 2n players choosing action Y initially. Segment D
consists of the rest of the initial X-players. The initial X-players in segment
B will switch from X to Y . All initial Y -players in segment B keep playing
Y . At most n players (close enough to segment D) in segment A and at most
n players (close enough to segment D) in segment C will switch from Y to X.

Returning to our earlier assertion, let us assume that N = Kn2 and
N − x(0) = 5n2. Then x(0)/N = 1 − 5/K → 1 as K → ∞. Hence for
sufficiently large population size, with positive probability contagion with
respect to action Y occurs even when a vast majority of the players initially
chooses action X.

4 Interaction on Binomial Random Graphs

In the random graph model most commonly studied in mathematics and
statistics, each possible edge {i, j} is included independently of others with
probability p ∈ (0, 1). The model is denoted by G(N, p) and known as the
Erdős-Rényi random graph or the binomial random graph. Sometimes, the
term “random graph” is used for this particular random graph model.

Throughout this section, we assume an i.i.d. process Ṽ (t) : Ω → V, t =

0, 1, . . ., where each Ṽ (t) is distributed according to a binomial random graph
G(N, p). Hence Prob (V (1) = V ) = p|V |(1 − p)N(N−1)/2−|V | for V ∈ V. In
the literature, frequently p = p(N) is assumed and asymptotic properties of
the random graph G(N, p(N)) as N →∞ are investigated. We are going to
encounter two special cases: (a) fixed p and N ; (b) fixed p while N →∞.

Proposition 5 Let N > 2 and p ∈ (0, 1) be given. If x(0) > 0 and X is risk
dominant, then with positive probability, the entire population will choose the
risk dominant action X in period 2.

proof. Suppose si(0) = X. With probability pN−1 · (1 − p)(N−1)(N−2)/2

the star with center i is formed in period 1, in which case sj(1) = X for all
j 6= i. With probability pN(N−1)/2, the complete network is formed in period
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2. In that case sj(1) = X for j 6= i implies sj(2) = X for all j. Hence
with probability at least p(N+2)(N−1)/2 · (1 − p)(N−1)(N−2)/2, the population
will choose X in period 2. Q.E.D.

In general, the probability p(N+2)(N−1)/2 · (1− p)(N−1)(N−2)/2 given in the
proof is merely a lower bound, since other sequences of networks can also
have the population choose X in period 2. Nonetheless, the probability that
the entire population chooses X in finite time may be very small, as the
following result shows. Indeed, the probability that the population ends up
choosing Y in period 1 (and in all subsequent periods) can become extremely
high.

Proposition 6 Let p ∈ (0, 1) be fixed. Suppose that exactly one player
chooses the risk dominant strategy X in period 0. Then as N tends to infin-
ity, the probability that the population chooses Y in period 1 goes to one.

Notice that Y is player i’s best reply if (4) holds. In case exactly one player
has chosen X, n(i) equals 0 or 1 for every player. Then

1 < |V (i)| · d− b

a− c + d− b
(6)

for all i is a sufficient condition for the population choosing Y . We are going
to show that with high probability, all neighborhoods are “too” large in the
sense of inequality (6) as N becomes large. To be precise, let us define the
event E ≡ 〈 (6) holds for all i in period 1〉. We shall show Prob(E) → 1 as
N →∞.

proof. We want to show Prob(E) → 1 as N → ∞. Let m denote
the smallest integer greater than or equal to (a − c + d − b)/(d − b). Then
|V (i)| > m is sufficient for (6).

Now consider N > 4m. Define N ′ = (N − 2)/2 for N even and N ′ =
(N − 1)/2 for N odd. For i ∈ I, consider the set of pairs (links, edges)
Li = {{i, j} : j = i + ` mod N for some ` ∈ {1, . . . , N ′}}. Then |Li| > m for
all i and Li ∩ Li′ = ∅ for i 6= i′. Further consider, for i ∈ I, the events E ′

i ≡
〈More than m of the links in Li exist〉 and F ′

i ≡ 〈At most m of the links in
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Li exist〉. Now

Prob (F ′
i ) =

m∑

k=0

(
N ′

k

)
pk(1− p)N ′−k

≤ (m + 1)(N ′)m/(m!)q · (1− p)N ′
= c · (N ′)m · (1− p)N ′

where q = maxm
k=0(p/(1 − p))k and c = q(m + 1)/(m!). Since N ′ → ∞ for

N →∞, it follows c · (N ′)m · (1− p)N ′ → 0 for N →∞.
Next observe that E ′

1, E
′
2, . . . , E

′
N are independent events. Hence for suf-

ficiently large N , c · (N ′)m · (1− p)N ′
< 1 and

Prob (
⋂
i∈I

E ′
i) =

∏
i∈I

Prob (E ′
i) =

∏
i∈I

[1− Prob (F ′
i )]

≥
[
1− c · (N ′)m · (1− p)N ′

]N

≥ 1−Nc · (N ′)m · (1− p)N ′

≥ 1− 4c · (N ′)m+1 · (1− p)N ′
.

Finally, consider the events E∗
i ≡ 〈 |V (i)| > m holds in period 1〉 and Ei ≡

〈 (6) holds in period 1〉 for i ∈ I. Then
⋂

i E
′
i ⊆

⋂
i E

∗
i ⊆

⋂
i Ei = E and,

consequently, Prob(E) ≥ Prob (
⋂

i E
′
i) ≥ 1 − 4c · (N ′)m+1 · (1 − p)N ′

. Hence
Prob(E) → 1 for N →∞ as asserted. Q.E.D.

The basic insight behind Proposition 6 is that large neighborhoods are
very likely in a large population. In the event that all neighborhoods are
sufficiently large, a single X cannot survive. Obviously, the result can be
generalized to the case where si(0) = X for at most h players, for a fixed
positive integer h. In that case replace the left-hand side of (6) by h and de-
fine m as the smallest integer greater than or equal to h·(a−c+d−b)/(d−b).

In view of Propositions 5 and 6, several questions arise:

1. Can one obtain good approximations of the probabilities that in finite
time, the population ends up choosing X and that in finite time, the
population ends up choosing Y ?

2. Is it the case that with probability one, the population in finite time
either will end up choosing X or will end up choosing Y ? Note that
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in addition to coordination on X or coordination on Y , two more pos-
sibilities might exist when the graph or interaction structure is deter-
ministic: 2-cycles and stationary points where some players choose X
while others choose Y .

3. How does the dynamics evolve if X is prevalent in the initial state?

Whereas the first question appears to be hard, the other two have straight-
forward answers. To begin with, we obtain almost analogous results after
switching the roles of X and Y in Propositions 5 and 6 — which answers
the third question. Namely, the analog of Proposition 5 holds under the as-
sumption 1/(N − 1) < (d− b)/(a− c + d− b). The analog of Result 6 holds
without further stipulations.

To address the second question, we consider the evolution of the variable
x(t) = |{i ∈ I : si(t) = X}|. For given N , let X = {0, 1, . . . , N}. Note
that the random graph evolves independently of players’ choices. Moreover,
the random graph process Ṽ (t) : Ω → V , t = 0, 1, . . ., based on the bi-
nomial random graph G(N, p) is symmetric in the sense that if V, V ′ ∈ V
and β a permutation of I such that {i, j} ∈ V ⇐⇒ {β(i), β(j)} ∈ V ′,
then Prob (V (t) = V ) = Prob (V (t) = V ′). Hence for x, x′ ∈ X and t ≥ 1,
q(x′|x) = Prob (x(t) = x′ if x(t− 1) = x) is well defined (and independent
of t) and x(t) follows a Markov process with state space X and transition
probabilities q(x′|x). Under the assumption 1 < (N−1)(d−b)/(a−c+d−b),
the transition probabilities satisfy

q(0|0) = q(N |N) = 1;
q(x− 1|x) > 0 for x 6= 0, N .

Under the assumption N − 2 ≥ (N − 1)(d− b)/(a− c + d− b), the transition
probabilities satisfy

q(0|0) = q(N |N) = 1;
q(x + 1|x) > 0 for x 6= 0, N .

But either 1 < (N−1)(d−b)/(a−c+d−b) or (N−1)(d−b)/(a−c+d−b) ≤
1 ≤ N − 2. Therefore, {0} and {N} are the only ergodic sets of the process.
Consequently, lim t→∞ Prob (x(t)∈{0, N}) = 1. This provides the answer to
our second question:

Proposition 7 With probability one, the population will be coordinated in
finite time (on action X or on action Y ).
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5 Remarks and Ramifications

Here we review some of our findings in a broader context. We briefly elab-
orate on some alternatives, like asynchronous updating and the endogenous
co-evolution of local interaction structures and local interaction.

5.1 Asynchronous updating on circular graphs

Following in the footsteps of Berninghaus and Schwalbe (1996a,b), we have
assumed simultaneous or synchronous updating so far. The main alter-
native, asynchronous updating means that only one player is updating
his action at any time. Formally, this is modeled by means of a sequence
K(t), t = 0, 1, 2, . . ., of I-valued random variables. K(t) determines which
of the players will have a chance to alter his action at time t. The selected
player i = K(t) will update his action according to the rule (2), amended
by the tie breaking and inertia conventions. Players j 6= K(t) repeat their
previous action, sj(t) = sj(t−1). Similar to Blume (1995), we assume for the
current purposes that the stochastic process K(t), t = 0, 1, . . . is independent

of the process Ṽ (t), t = 0, 1, . . . and consists of a sequence of i.i.d. random
variables with full support I.8

Huberman and Glance (1993) suggest that the order of updating, syn-
chronous versus asynchronous, can matter. This can be easily demonstrated
in the context of circular interaction structures. First, with a fixed determin-
istic interaction structure of the form V β, each K(t) uniformly distributed
on I, risk dominance of action X, and x(0) = 1, contagion with respect to
action X occurs with probability 2/3 and contagion with respect to action
Y occurs with probability 1/3. This is significantly different from the cor-
responding case with simultaneous updating, where either contagion with
respect to action X (for N odd) or convergence to a 2-cycle (for N even)
occurs. Second, we have seen that with simultaneous updating, a random
change of the interaction structure can interrupt cycles and, therefore, is
conducive for contagion with respect to the risk dominant action. In stark
contrast, with asynchronous updating, a random change of the interaction
structure can reverse the contagion process and proves detrimental to conta-

8The assumption is frequently made in models with logit perturbed best responses. See
Blume (1997), Young (1996, Ch. 6), Baron et al. (2002a, b).
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gion with respect to the risk dominant action.

To see this, assume N ≥ 4, that each Ṽ (t) is uniformly distributed
on the set of circular graphs, and as before, each K(t) is uniformly dis-
tributed on I, action X is risk dominant, and x(0) = 1. Let P be the
probability that contagion with respect to action X occurs. Further let
P ′≡ Prob (contagion occurs|x(1)=2). Recall that in the deterministic case,
P = 2/3. Also notice that in the deterministic case, P ′ = 1, since the two
players choosing X at time t = 1 will be neighbors forever.

We find that randomness of the interaction structure proves detrimental
to contagion with respect to the risk dominant action, indeed:

Claim: With the random interaction structure, P ′ < 1 and P < 2/3.

Namely, without loss of generality, suppose that s1(1) = s2(1) = X and
sj(1) = Y for j 6= 1, 2. Since N ≥ 4, there exists V β ∈ R(2) such that 1
and 2 are not neighbors. Now if V (2) is such that 1 and 2 are not neighbors
and K(2) ∈ {1, 2}, then the selected player i ∈ {1, 2} will change his action
from si(1) = X to si(2) = Y . The specific realizations will occur with
probability 1

|R(2)| · 2
N

. Hence Prob (x(2) = 1|x(1) = 2) ≥ 1
|R(2)| · 2

N
. Further

Prob (x(3) = 0| x(2) = 1) = 1/N . Therefore, Prob (x(3) = 0|x(1) = 2) > 0
and P ′ < 1. Finally,

P = Prob (contagion occurs|x(0)=1)

= Prob (x(1) = 1|x(0) = 1) P + Prob (x(1) = 2|x(0) = 1) P ′

=
N − 3

N
P +

2

N
P ′

or P = (2/3) P ′ < 2/3 which proves the claim.

5.2 Related literature and concepts

The parameter ϑ = (d− b)/(a− c+d− b) is what López-Pintado (2006) calls
the “degree of risk dominance” of action X. X is risk dominant if ϑ < 1/2.
X becomes more risk dominant when ϑ becomes smaller. Condition (3) can
be rewritten as ni(t)/|Vi(t)| ≥ ϑ. That means, ceteris paribus, the more risk
dominant is action X, the more likely occurs contagion with respect to action
X. Following Morris (2000), let us define the contagion threshold ξ as the
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largest ϑ for which contagion with respect to action X is possible.

Let us first consider circular graphs. In case a single player chooses X
initially, we observe the following. With a fixed circular graph and N odd,
ξ = 1/2. With a fixed circular graph and N even, ξ = 0, since limit cycles do
not qualify as contagion according to our definition. With a random circular
graph, ξ = 1/2. Further, with asynchronous updating and (fixed or random)
circular graph, ξ = 1/2, since contagion with respect to action X occurs with
positive probability if and only if X is risk dominant. Now di(V ) = 2 for all
i ∈ I, V ∈ R(2). Hence a player’s degree distribution is always concentrated
on the value 2, regardless whether the circular graph is fixed or random. No-
tice that even though the degree distribution is not affected by a change from
a fixed circular graph to a random graph, there is an effect on the probabil-
ity of contagion with respect to the risk dominant action X. With N even
and simultaneous updating, the probability shifts from zero to one. In the
instance of asynchronous updating investigated in 5.1, the probability shifts
from P = 2/3 to P < 2/3. Therefore, it makes a difference, in terms of the
probability of contagion with respect to the risk dominant action X, whether
a new graph is drawn at random every period or only once before the play
begins. We find that in our context, it matters both qualitatively and quan-
titatively whether the random graph is generated every period or only once.
However, López-Pintado (2006, p. 374) states “. . . the model that we analyze
with the mean-field equations is analogous to one where the random network
is generated every period, although the connectivity of each individual re-
mains constant. We believe that the qualitative results of this alternative
model coincide with the results of the original model where the network is
fixed throughout the dynamics but has been generated by a random process.”

Further notice that while risk dominance, ϑ ≤ 1/2, is necessary for conta-
gion with respect to X, stronger risk dominance does not make a difference:
If x(0) = 1 and ϑ′ < ϑ ≤ 1/2, the dynamics corresponding to ϑ′ and ϑ are
the same. Finally notice that for the n-regular OR networks studied in 3.3,
ξ = 1/n.

Let us consider binomial graphs next. In case a single player chooses X
initially, we observe the following. If ϑ ≤ 1/2, then with positive probability
contagion with respect to action X occurs. If ϑ > 1/2, then with probability
one contagion with respect to action Y occurs. Hence ξ = 1/2. The probabil-
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ity of contagion with respect to action X is weakly decreasing in ϑ. It jumps
at the points ϑ = r/s, r, s ∈ N, r ≤ s/2. Ceteris paribus, the probability goes
to zero as N goes to infinity. It also converges to zero, ceteris paribus, when
p → 1 — which is easy to prove. To understand these asymptotic properties,
let us look at the distribution of individual degrees. For a binomial random
graph G(N, p) and a player (node) i ∈ I, the degree di(·) is a random vari-
able. For k ∈ {0, 1, . . . , N − 1}, let pik(N, p) = Prob (di = k) denote the
probability that i has degree k in the random graph G(N, p). Obviously,

pik(N, p) =

(
N−1

k

)
pk(1− p)N−1−k.

It follows ∂
∂p

pik(N, p) > 0 ⇔ k > (N − 1)p and pik(N + 1, p) > pik(N, p) ⇔
k > Np. Hence an increase of p or N leads to a new distribution of individual
degrees that first-order stochastically dominates the old one. But such a shift
towards higher degrees, that is larger neighborhoods, can be detrimental to
the occurrence of contagion. Namely, for contagion to have a chance at all
when j is the player who chooses X initially, players i adjacent to j must
have few neighbors.

Instead of the distribution of individual degrees, the literature considers
the degree or connectivity distribution PV across nodes for a graph V ∈ V.
The probability vector PV = (PV

0 ,PV
1 , . . . ,PV

N−1 ∈ RN
+ is defined by PV

k =
1
N
|{i ∈ I : di(V ) = k}| for k = 0, . . . , N − 1. PV

k is the fraction of nodes
in V with degree k. For a probability vector P = (P0,P1, . . . ,PN−1) ∈ RN

+ ,
let Π(P) = {V ∈ V : PV = P}, denote the set of graphs with connectivity
distribution P. López-Pintado (2006) and others consider random graphs
whose support is contained in a set Π(P). Binomial random graphs do not
belong to that category, since a binomial random graph has full support V.
For a given binomial random graph G(N, p), the empirical distributions PV

are random. However, we can compute the expectations P̂ ≡ E[PV ]. Because
of the homogeneity of G(N, p), the average or expected connectivity degree
distribution coincides with each of the individual degree distributions. To see
this, define the indicator functions 1ik(V ) for i ∈ I, k = 0, 1, . . . , N − 1, with
value 1 if di(V ) = k and value 0 if di(V ) 6= k. Then for k = 0, 1, . . . , N − 1,

P̂k = E[PV
k ] = E[

1

N

∑
i

1ik(V )] =
1

N

∑
i

E[1ik(V )] =
1

N

∑
i

pik(N, p).
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Hence P̂k = pik(N, p) for all k and i. P̂ responds to changes in p or N the
same way as the individual degree distributions.

5.3 Endogenous co-evolution of local interaction struc-
tures and local interaction

In principle, players may take actions which determine payoffs from local
interaction as well as the local interaction structure. Such a scenario gives
rise to the endogenous co-evolution of local interaction structures and local
interaction.

Jackson and Watts (2002) consider a model where maintaining a link
{i, j} is costly for players i and j and requires the consent of both players,
corresponding to pairwise stability à la Jackson and Wolinsky (1996). The
authors allow for the possibility that over time, i and j get an opportunity to
add or delete the link. Also, there is asynchronous updating of the strategies
in the 2× 2 coordination game. Jackson and Watts determine the stochasti-
cally stable states (sss) based on uniform trembles. They find, among other
things, that for some parameter configurations, there exist a sss where play-
ers coordinate on a strategy which is neither efficient nor risk dominant and
the network is fully connected (complete).

Droste, Gilles and Johnson (2000) consider a model where the players
are located on a circle, in the order 1, . . . , N for N players and with equal
distances between adjacent players. The cost of a link between two players
is proportional to their shortest distance on the circle. In the sss based on
uniform trembles, the players coordinate on the risk dominant action. The
sss network V belongs to some R(n) where n is depends on the model pa-
rameters and V is given by the identity permutation of I, β(i) = i, that is
the canonical order 1, . . . , N . The unperturbed dynamics exhibits additional
absorbing states: Coordination on the action which is not risk dominant as
well as “coexistence of conventions” are possible.

Hojman and Szeidl (2006) adopt a version of Bala and Goyal’s (2000)
one-way flow model of network formation, where each player unilaterally can
form links and bears the cost of these links. A player receives benefits from
playing a finite symmetric game Γ with each (direct and indirect) neighbor.
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In the unperturbed dynamics, contagion always occurs. When Γ is a 2 × 2
coordination game, then in contrast to Jackson and Watts (2002), a strategy
which is both efficient and risk dominant will always be selected in the sss
if it exists; otherwise, there is a tradeoff between payoff dominance and risk
dominance. The limit networks are wheels.

Goyal and Vega-Redondo (2005) adopt a version of Bala and Goyal’s
(2000) two-way flow model of network formation, where each player unilater-
ally can form links and bears the cost of these links. A player receives benefits
from playing a symmetric 2× 2 coordination game with each (direct) neigh-
bor where the player or the neighbor may have formed the link. It is assumed
that one action is risk dominant while the other one is payoff dominant. In
the sss, a complete and essential network obtains, except when link forma-
tion costs are extremely high, in which case the empty network obtains. In
the sss with a complete and essential network, players coordinate on the risk
dominant action if costs per link are below a certain threshold and they coor-
dinate on the payoff dominant action if costs per link are above the threshold.

Ehrhardt, Marsili, and Fernando Vega-Redondo (2006) primarily focus
on the process of network formation and how it is affected by efforts to
coordinate on one of several action. Over time, new links are created if
they are profitable and existing links may disappear due to decay. Efforts
to coordinate and the network co-evolve in continuous time. The authors
find that in the long-run, the finite set of nodes (players) is partitioned into
the set G0 of isolated nodes plus, for each action r, the (possibly empty) set
Gr consisting of the non-isolated nodes (players) choosing action r. Hence
coexistence of actions is a likely outcome. Concerning the long-run network
architectures, the degree distribution is determined.
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Contagion,” Revue d’Économie Industrielle, 114/115, 205-224.

Binmore, K.G., Samuelson, L., and R. Vaughan (1995): “Musical Chairs:
Modeling Noisy Evolution,” Games and Economic Behavior, 11, 1-35.

Blume, L.E. (1993): “The Statistical Mechanics of Strategic Interaction,”
Games and Economic Behavior, 5, 387-424.

Blume, L.E. (1995): “The Statistical Mechanics of Best-Response Strategy
Revisions,” Games and Economic Behavior, 11, 111-145.

28



Blume, L.E. (1997): “Population Games,” in W.B. Arthur, S.N. Durlauf,
and D.A. Lane (eds.), Economics as an Evolving Complex System II.
Santa Fe Institute Proceedings Volume XXVII. Reading, MA: Addison-
Wesley, pp. 425-460.

Doob, J.L. (1953): Stochastic Processes. New York: John Wiley & Sons,
Inc.

Droste, E., Gilles, R. P., and C. Johnson (2000): “Evolution of Conventions
in Endogenous Social Networks,” Working Paper,
http://fmwww.bc.edu/RePEc/es2000/0594.pdf

Durieu, J., Haller, H., and P. Solal (2007): “Contagion and Dominating
Sets,” Ch. 6 in Richard Topol and Bernard Walliser (eds.): Cognitive
Economics: New Trends. Contributions to Economic Analysis, Volume
280. Amsterdam: Elsevier.

Ellison, E. (1993): “Learning, Local Interaction, and Coordination,” Econo-
metrica, 61, 1047-71.

Eshel, I., Samuelson, L., and A. Shaked (1998): “Altruists, Egoists, and
Hooligans in a Local Interaction Model,” American Economic Review,
88, 157-179.

Ehrhardt, G., Marsili, M., and F. Vega-Redondo (2006): “Networks Emerg-
ing in a Volatile World,” Mimeo.

Feller, W. (1968): An Introduction of Probability Theory and its Applica-
tions. Vol. 1, third edition, revised printing. New York: John Wiley
& Sons, Inc.
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