
Amun: A Python Honeypot
Technical Report

Jan Göbel
Laboratory for Dependable Distributed Systems

University of Mannheim, Germany
jan.goebel@informatik.uni-mannheim.de

Abstract
In this report we describe a low-interaction honeypot,
which is capable of capturing autonomous spreading mal-
ware from the internet, named Amun. For this purpose,
the software emulates a wide range of different vulnera-
bilities. As soon as an attacker exploits one of the em-
ulated vulnerabilities the payload transmitted by the at-
tacker is analyzed and any download URL found is ex-
tracted. Next, the honeypot tries to download the mali-
cious software and store it on the local harddisc, for fur-
ther analyses. As a result, we are able to collect at best
unknown binaries of malware that automatically spreads
across the network. The collected samples can for ex-
ample be used to help anti-virus vendors improve their
signatures.

1 Introduction and Motivation
Autonoumously spreading malware is one of the main
threats in todays’ Internet. Worms and bots constantly
scan network ranges worldwide for vulnerable machines
to exploit and compromise. Compromised machines are
then used to form large botnets for example to perform
distributed denial of service attacks or send out masses of
email spam.

With the help of honeypots we are able to capture such
malware in a fast and straightforward fashion. Especially
low-interaction honeypots, i.e. honeypots which allow lit-
tle to no interaction with the attacker are very useful in
this area of security. Server based honeypots ,like Amun,
provide a range of emulated services to lure attackers and

analyze the exploit code to get hold of the actual malware
binary.

Low-interaction honeypots provide a low risk method
for capturing information on initial probes, as there is no
full interaction with an attacker. Thus, these honeypots
are easier to maintain and enable the collection of infor-
mation in an automated manner. This property renders
low-interaction honeypots excellent sensors for intrusion
detection systems (IDS).

2 Related Work
Several honeypot solutions have been developed in the
past. In this section we introduce, three different imple-
mentations, that follow a similar approach as Amun does.

One of the most well known low-interaction honeypots
is Honeyd [9]. It is a small Linux daemon, i.e. a program
which runs in the background, creates a virtual host on a
network and offers arbitrary vulnerable services. This vir-
tual host can be configured to appear as a certain operating
system, such as Microsoft Windows. Honeyd features a
plug-in system for easy extension and some helpful tools
like Honeycomb [7, 6], which can automatically gener-
ate intrusion detection signatures from the captured data.
Generated signatures are currently support by Bro [8] and
Snort [5]. The focus of Honeyd is mainly on the collec-
tion of attack information rather than capturing malware
binaries.

The next two low-interaction honeypots follow the
same scheme as Amun does. The first is called
Nepenthes [1]. The second is called Omnivora [10]. Just
like Amun, both honeypots aim at capturing malware in

1

oelhoff
Textfeld
Technical Report TR-2009-008

an automated manner. The emulated services allow as
much interaction as is needed for malicious software to
download itself to the system. As soon as a connection is
established to an emulated service, the appropriate vulner-
ability module is loaded to handle the incoming exploita-
tion attempt. The payload send by an attacker is then an-
alyzed to extract the location of the binary file, such as a
trojan or worm. In the final step the honeypots download
and store these files, so they can be further analyzed. Both
solutions perform very well, but require good program-
ming skills with either C++ or Delphi in order to extend
the honeypots to personal needs.

In contrast to the latter two honeypots, Amun provides
a wider range of vulnerability modules and is, due to its
simpler structure, easier to deploy and maintain. The
usage of a scripting language provides a straightforward
way to extend Amun with new features without having to
recompile the software everytime.

3 Amun Honeypot
In the following sections we describe the implementation
and setup of the Amun honeypot software. First, we give
a broad overview of the system followed by a detailed de-
scribtion of the different parts that are involved whenever
an exploitation of the honeypot occurs.

3.1 Implementation
Amun is written in Python1, a small and simple script-
ing language. The honeypot is made up of different com-
ponents, which will be described in this section in more
detail. Following is a short list of the most important com-
ponents of Amun:

• Amun Kerneli (Section 3.1.1)

• Request Handler (Section 3.1.3)

• Vulnerability Modules (Section 3.1.4)

• Shellcode Analyzer (Section 3.1.5)

• Download Modules (Section 3.1.6)

• Logging Modules (Section 3.1.8)
1http://www.python.org

submit
modules

vulnerability modules

vulnerability ports

logging modules Amun
kernel

TCP
445

TCP
135

TCP
80

TCP
...

lsass

download

exploit

...

CWSandbox

file

MySQL

...

...

dcom

dcom

...

http

...

...

download modules

http

ftp

...

shellcode
analyzer

decoder

URL

hex-dump

... shell modules

bind port

emulation

connect
back

Figure 1: schematic setup of Amun

• Submission Modules (Section 3.1.7)

Figure 1 shows the schematic setup of Amun and the
interaction of each part of the software with the kernel.
Each of the above mentioned components is described in
detail in the following sections.

3.1.1 Amun Kernel

The Amun Kernel is the core component of the honeypot.
This part contains the startup and configuration routines,
as well as, the main routines of the software. Amun is a
single threaded application that uses the select oper-
ator to iterate over its sockets. Besides the socket oper-
ations Amun handles downloads, configuration reloads,
shell spawning, and event logging in the main loop as
well.

During the startup phase, the Amun Kernel initialises
the regular expressions that are used for shellcode match-
ing (Section 3.1.5), reads the main configuration file
(Section 3.1.2), creates the internal logging modules, and
loads all external modules. External modules are the vul-
nerability modules, that are responsible for emulating sin-
gle vulnerabilities, the logging modules, that log attack
information to other services like databases, and the sub-
mission modules, that for example write downloaded bi-
naries to harddisc.

For each loaded vulnerability module the Amun Kernel
retrieves the list of accociated ports and stores the vulner-
ability module in an array with the port as key (Figure 2).

2

Array
(

[139] => Array
(

[0] => vuln-netdde
[1] => vuln-ms06040

)
[445] => Array

(
[0] => vuln-ms08067
[1] => vuln-ms06040
[3] => vuln-ms06070

)
)

Figure 2: schematic view of the port to vulnerability array

In the next step for each port a vulnerability module
has registered to, i.e. the keys of the array (Figure 2),
a TCP server is started. Amun also supports the use of
UDP based services, but this feature is currently not in use
and therefore it is not accessible through the configuration
files.

After all initial modules are loaded and the appropri-
ate TCP servers are started, Amun Kernel enters the main
loop. During this loop, it iterates over all connected sock-
ets, triggers download events, transfers information to cer-
tain modules, and re-reads the main configuration file for
changes. The re-reading of the main configuration file al-
lows to change certain settings during runtime, i.e. Amun
does not have to be stopped and restarted.

3.1.2 Amun Configuration

Amun utilizes a single configuration file for adjusting all
parameters necessary to run the honeyot. In this section
we will briefly describe each of the options, their possible
values and how it affects the honeypot. The main configu-
ration file of Amun is the so-called amun.conf file, located
in the configuration directory.

One of the core parameters is ip. It defines the IP
address Amun will listen on during runtime. It takes
a single IP address as parameter or the wildcard IP ad-
dress 0.0.0.0 to listen on all addresses and interfaces
assigned to the host system. It is also possible to pro-
vide an interface name (e.g. eth0), IP address ranges
(192.168.0.1 - 192.168.0.5), CIDR notation for networks
(192.168.0.0/24), or single comma separated IP adresses.
Note that these last options do not scale well with large IP

address ranges, as the operating system is limited to the
number of opened socket descriptors. If more than about
one hundred IP addresses are to be assigned, it is required
to use the wildcard address.

Besides the IP address of the honeypot a user and
group can be defined, which limit the privileges of
Amun. After startup Amun will switch to the user and
group defined here. However, in some cases exploits re-
quire the honeypot to open a ports below 1024, which can
only be done with root privileges. In case Amun is run-
ning as non-root these request cannot be served.

Next, are some timeout parameters, which adjust the
way Amun timeouts connections, open ports, and down-
load requests. As some attacks might not work correctly
it is possible, that attackers for example do not connect
to the requested port, therefore, Amun needs to close
this port after a certain amount of time has been passed.
The options are named: connection timeout,
bindport timeout, and ftp timeout. The de-
fined value represents the number of seconds to wait until
Amun closes a connection.

Amun also offers the possibility to reject certain attack-
ing hosts from reconnecting in the case of certain events.
These events are: malware download was refused, down-
load did not finish due to a timeout, a binary was already
successfully downloaded, and the host already success-
fully exploited the honeypot. For each of the mentioned
events the configuration file allows to set the block value
and additionally a timeout value (seconds), defining how
long a host should be blocked (Figure 3).

[...]
block refused IPs, timeouts, successfull downloads,
or successfull exploits for x seconds
(can be changed while running)
refused_blocktime: 1200
timeout_blocktime: 1200
sucdown_blocktime: 1200
sucexpl_blocktime: 1200

block ips which refuse a connection, throw a
timeout, or from which we already have a
successfull download or exploit
(can be changed while running)
block_refused: 0
block_timeout: 0
block_sucdown: 0
block_sucexpl: 0
[...]

Figure 3: configure certain block events

3

These options are especially interesting if Amun is used
as an intrusion sensor, for example. Most infected hosts
attack a honeypot more than once, especially if the honey-
pot has more than one IP address assigned. To reduce the
amount of log messages that are produced it is possible to
block such a host for a certain amount of time. The reason
why we also allow the blocking of hosts, from which we
successfully downloaded a binary is, that in most cases
a single host distributes only one binary within a certain
time. It would be a waste of resources downloading the
same file over and over again from the same host. There-
fore we can reject any further connects from those hosts
for a given time period.

For the TFTP download module Amun
offers three extra options which can be
modified: tftp retransmissions,
tftp max retransmissions, and
store unfinished tftp. As TFTP uses the
UDP protocol it can happen that packets get lost. For this
reason Amun allows to set a number of retransmissions
before giving up. The first option determines how many
seconds to wait before a TFTP request is retransmitted,
whereas the second options defines how many retransmis-
sions Amun will make at all. The last option determines
if Amun should also store unfinished TFTP downloads,
i.e. a file is only partly downloaded.

A similar option as the store unfinished tftp
is the check http filesize option. A lot of mal-
ware downloads use HTTP as transfer protocol and one
feature of a HTTP server is to store the file size in the
HTTP header of the reply. If check http filesize
is enabled, Amun will compare the size of the downloaded
binary with the value in received in the HTTP header. In
case there is a mismatch, the downloaded file is discarded.

Another important feature is the replace local ip
parameter. Whenever the Shellcode Analyzer extracts a
download URL from the payload of an exploit, any found
IP address is checked against a list of local IP addresses
(e.g. 192.168.0.0/24). If replace local ip is enabled,
Amun will replace all those IP addresses with the one of
the attacker who send the exploit. Local IP addresses in
shellcode occur whenever a host behind a Network Adress
Translation (NAT) server is infected, because most mal-
ware acquires the IP address from the host configuration.

However, replacing the IP addresses also allows easy
detection of the honeypot. If for example an attacker

sends exploits with download URLs containing local IP
addresses and the exploited host suddenly tries to down-
load a file from the attackers host, the attacker knows that
the IP address from the exploit must have been replaced
and thus the attacked host must be a honeypot. Therefore,
replace local ip is turned off by default.

Next, Amun allows the configuration of modules that
should be started. The submit modules list contains the
modules that are responsible of handling any downloaded
binary. The default module that is loaded is the submit-
md5 module, that simply stores any downloaded unqiue
file to harddisc. Uniqueness is determined by the MD5
hash of the file. Additional modules of this type al-
low the transmission of binaries to external services like
CWSandbox [11]. The log modules are modules that per-
form certain logging functionality. In most cases these
modules send information to external intrusion detection
systems. The vuln modules list contains all the vulnera-
bility modules that should be load at the startup of Amun.
Figure 4 displays the part of the configuration file that
states what vulernability modules are to be loaded and
what port is associated with each of the modules.

[...]
define the vulnerability modules to load
(can be changed while running)
vuln_modules:

vuln-ms08067,
vuln-netdde,
vuln-ms06040,
vuln-ms06070,
[...]
vuln-helix,
vuln-hpopenview

define ports for vulnerability modules
(can be changed while running)
vuln-ms08067: 445
vuln-netdde: 139
vuln-ms06040: 139,445
vuln-ms06070: 445
[...]

Figure 4: excerpt from the Amun main configuration file

Finally, the configuration file contains some param-
eters that seldom need to be adjusted, namely: hon-
eypot pingable, check new vulns, output curr sockets,
log local downloads, and verbose logging. The first op-
tion allows to setup an iptables rule which blocks all in-
coming ping requests. The purpose of this option is to let
the honeypot behave a little more like an out of the box

4

Microsoft Windows installation, as Windows also blocks
ICMP echo requests by default. The second option deter-
mines the number of seconds to pass until Amun re-reads
the configuration file for any changes. The third option
is for debug purposes only. If it is set, Amun writes a
list of all connected hosts to a file in the Amun root di-
rectory whenever a re-read of the configuration file oc-
curs. The fourth option enables logging for download
URLs containing local IP addresses and the last option
provides more extensive logging for all parts of the hon-
eypot. These options are usually needed for debugging,
thus, by default they are turned off.

3.1.3 Request Handler

The Request Handler is responsible for all incoming and
outgoing network traffic of the honeypot. For every con-
nection request, that reaches the Amun Kernel a Request
Handler is created, that handles the connection until it is
closed. The Request Handler maintains the list of loaded
vulnerability modules and delegates the incoming traffic
to those modules that are registered for the current port.

Consider a connection coming in on port 445, if it is
a new connection the Request Handler loads all vulnera-
bility modules for port 445 by checking the vulnerability
array (Figure 2) at the key 445. In the next step the incom-
ing traffic is distributed to each of the modules returned
by the previous step. Each of the vulnerability modules
checks if the incoming traffic matches the service that is
emulated and returns if it accepts or rejects the connec-
tion. As a result, the list of emulated vulnerabilities for
a connection is thinned out with each incoming request
of the attacker. In the worst case none of the registered
modules matches the attack pattern and the connection
is closed. Otherwise, there is exactly one module left,
which successfully emulates all needed steps performed
by the attacker and receives the final payload containing
the download information of the malware. Note that in-
coming network packets can be distributed to all regis-
tered vulnerabilitiy modules, but a reply can only be send
by one. In the best case there should only be one module
left to reply after the first packet is received, however, if
there are more left, the reply of the first module in the list
is chosen.

Connections that for some reason do not match any of
the vulnerability modules, or do not fit an emulated ser-

vice at any stage create a log entry in the Amun Request
Handler log. This log contains information about the at-
tacking host and the request that was send. This infor-
mation help to update existing vulnerability modules or
create new ones.

The Request Handler also receives the results of the
vulnerability module that successfully emulated a service
and obtained the exploit payload from the attacker. This
payload is passed on to the Shellcode Analyzer to detect
any known shellcode. The results of the Shellcode Ana-
lyzer are again returned to the Request Handler, thus the
Request Handler is the crucial point for any attack.

3.1.4 Vulnerability Modules

The vulnerability modules make up the emulated ser-
vices which lure autonomous spreading malware. Each
module represents a different service, for example a FTP
server. The services are emulated only to the degree that
is needed to trigger a certain exploit. That means, the em-
ulated services cannot be regularly used, i.e. they do not
offer the full functionality of the original service.

Start Stage
1

Stage
2

e x

Exit

* \ {"e"} * \ {"x"}

... Finish

p t

* \ {"p"}

Figure 5: finite state machine

Vulnerabilities are realized as finite state machines.
They usually consist of several stages that lead through
the emulated service. Figure 5 shows an example of a
finite state machine matching the word “exploit”. That
means, each incoming network packet of an attacker is
matched against the next state of the finite state machine.
If it matches, the state of the vulnerbility module switches
to the next stage, otherwise the vulnerabilitiy module re-
jects the incoming request. That way Amun assures that
only requests that lead to the exploit of the emulated ser-
vice are accepted. All data that leads to an undefined state
is logged by the Request Handler. With this information

5

it is possible to determine changes in exploit methods and
add new stages or even built new vulnerability modules.

To facilitate the process of writing new vulnerability
modules, Amun supports XML to describe a module.
This XML file is subsequentially transformed to Python
code by Amun and can then be used as a vulnerability
module. This means, that for simple vulnerability mod-
ules there is no need to write Python code.

Figure 6 illustrates an example of a XML docu-
ment representing the parameters necessary to create
the Plug and Play (PNP) vulnerability. It shows the
number of stages (<Stage>) needed to trigger the ex-
ploit and for each stage the expected number of bytes
(<ReadBytes>) together with the according byte se-
quence (<Request>). After the sixth stage the modul
enters the shellcode collecting stage, i.e. at this point the
exploit should already have taken place, and the attacker
sends the shellcode. All data that is collected during the
shellcode collection stage is subsequentially passed to the
Request Handler and then to the Shellcode Analyzer.

To convert an XML file to its needed Python code
there exists a small script named vuln creator.py.
Usage is as follows: python vuln creator.py
-f filename.xml. This eventually creates two
new files named: filename modul.py and
filename shellcodes.py. The first file con-
tains the actual emulated service with the different stages
and replies. The second file is optional and can contain
certain requests needed to enter a new stage, like the
request defined in the first stage of the example XML file
displayed in Figure 6.

The final Python code of a vulnerability module con-
sists of several different functions. The first function is
for initialization of the module, here the name of the vul-
nerability, the starting stage, and a welcome message is
defined. The welcome message is for example a banner
displaying the service name and version upon the connec-
tion of an attacker. An example is shown in Figure 7.
The main function of a vulnerability module is called
incoming. This function receives the network packet,
the number of bytes of this packet, the attacker IP address,
a logging module, a previously created random reply, and
the IP address of the honeypot. Figure 8 shows parts of the
incoming function belonging to the vulnerability module
that was created using the XML file described earlier.

In the first part of the incoming function a new reply

<Vulnerability>
<Init>
<Name>PNP</Name>
<Stages>6</Stages>
<WelcomeMess></WelcomeMess>
<Ports>
<Port>445</Port>
</Ports>
<DefaultReply>random</DefaultReply>
</Init>
<Stages>
<Stage stage="1">
<ReadBytes>137</ReadBytes>
<Reply position="9">\x00</Reply>
<Request>\x00\x00\x00\x85\xFF\x53\x4D\x42

\x72\x00\x00\x00\x00\x18\x53\xC8
\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\xFF\xFE
\x00\x00\x00\x00\x00\x62\x00\x02
\x50\x43\x20\x4E\x45\x54\x57\x4F
\x52\x4B\x20\x50\x52\x4F\x47\x52
\x41\x4D\x20\x31\x2E\x30\x00\x02
\x4C\x41\x4E\x4D\x41\x4E\x31\x2E
\x30\x00\x02\x57\x69\x6E\x64\x6F
\x77\x73\x20\x66\x6F\x72\x20\x57
\x6F\x72\x6B\x67\x72\x6F\x75\x70
\x73\x20\x33\x2E\x31\x61\x00\x02
\x4C\x4D\x31\x2E\x32\x58\x30\x30
\x32\x00\x02\x4C\x41\x4E\x4D\x41
\x4E\x32\x2E\x31\x00\x02\x4E\x54
\x20\x4C\x4D\x20\x30\x2E\x31\x32
\x00</Request>

</Stage>
<Stage stage="2">
<ReadBytes>168</ReadBytes>
<Reply position="9">\x00</Reply>
<Request> [...] </Request>
</Stage>
<Stage stage="3">
<ReadBytes>222</ReadBytes>
<Reply position="9">\x00</Reply>
<Request> [...] </Request>
</Stage>

[...]
<Stage stage="5">
<ReadBytes>106</ReadBytes>
<Reply position="9">\x00</Reply>
<Request> [...] </Request>
</Stage>
<Stage stage="6">
<ReadBytes>160</ReadBytes>
<Reply position="9">\x00</Reply>
<Request> [...] </Request>
</Stage>
</Stages>

</Vulnerability>

Figure 6: simple vulnerability module in XML

6

[...]
def __init__(self):

try:
self.vuln_name = "PNP Vulnerability"
self.stage = "PNP_STAGE1"
self.welcome_message = ""
self.shellcode = []

except KeyboardInterrupt:
raise

[...]

Figure 7: vulnerability module initialization function

[...]
def incoming(self, message, bytes, ip, vuLogger, \

random_reply, ownIP):
try:
self.reply = []
for i in range(0,62):

try:
self.reply.append("\x00")

except KeyboardInterrupt:
raise

resultSet = {}
resultSet[’vulnname’] = self.vuln_name
resultSet[’result’] = False
resultSet[’accept’] = False
resultSet[’shutdown’] = False
resultSet[’reply’] = "None"
resultSet[’stage’] = self.stage
resultSet[’shellcode’] = "None"
resultSet["isFile"] = False

if self.stage=="PNP_STAGE1" and (bytes==137 or \
bytes==176):

if pnp_shellcodes.pnp_request_stage1==message:
resultSet[’result’] = True
resultSet[’accept’] = True
self.reply[9] = "\x00"
resultSet[’reply’] = "".join(self.reply)
self.stage = "PNP_STAGE2"
return resultSet

[...]

Figure 8: vulnerability module incoming function

is generated. Afterwards the result set, that is returned
to the Request Handler after each stage, is defined. The
result set contains the following keys:

• vulnname - name of the vulnerability module

• accept - defines if the incoming request matches the
stage

• result - defines if the emulation is finished

• reply - contains the reply message

• stage - contains the current stage

• shutdown - indicates premature closing of the current
connection

• shellcode - contains the shellcode that was transmit-
ted by an attacker

• isFile - indicates if the shellcode field contains a file,
i.e. instead of shellcode the attacker submitted a bi-
nary directly

The last part of the displayed incoming function shows
the first stage check, the other stages are similar. In
a first step a stage checks if the number of incoming
bytes matches the length of an expected request, then it
is checked if the request is identical to the one expected,
this step is not always necessary. If all matched, the ac-
cept and result values are set to true, a reply is prepared
and the next stage is set as new starting point for the next
incoming request.

To quickly analyze certain ports for incoming attacks,
Amun has a so-called analyzer vulnerability modul. This
modul simply registers for certain ports defined via the
configuration file, collects all incoming data, and sends it
to the Shellcode Analyzer. The purpose of this module is
to quickly analyze traffic hitting a certain port and see if
there are any exploits in the wild.

Currently, Amun emulates 43 different vulnerable ser-
vices on 53 different ports, an extract of the more well
known vulnerabilities is displayed in Table 1. Most of the
vulnerability modules have been constructed by analysing
proof of concept exploits as provided by Milw0rm2. Oth-
ers resulted from analysis of incoming requests recorded
by the Request Handler.

2http://www.milw0rm.com/

7

CVE-ID Description

CVE-2005-1272 Buffer Overflow CA ARCserver Backup
Agent

CVE-2005-0491 Knox Arkiea Server Backup Stack
Overflow

CVE-2003-0818 Buffer Overflow Microsoft ASN.1 -
MS04-007

- Axigen Mailserver Vulnerabilities

CVE-2005-0582 Buffer Overflow Comp-Associates
License Client

- DameWare Mini Remote Control Buffer
Overflow

CVE-2003-0352 Buffer Overrun Windows RPC -
MS03-026

CVE-2007-1748 Windows DNS RPC Interface -
MS07-029

CVE-2007-1675 Buffer Overflow Lotus Domino
Mailserver

- Vulnerabilities in different FTP Server
implementations

- GoodTech Telnet Server Buffer Overflow
CVE-2006-6026 Heap Overflow Helix Server
CVE-2008-2438 HP OpenView Buffer Overflow

CVE-2006-4379 Stack Overflow Ipswitch Imail SMTP
Daemon

CVE-2003-0533 Buffer Overflow LSASS - MS04-011

CVE-2005-0684 Buffer Overflow MaxDB MySQL
Webtool

CVE-2005-4411 Buffer Overflow Mercury Mail
CVE-2005-2119 MSDTC Vulnerability - MS05-051

CVE-2005-0059 Buffer Overflow MS Message Queuing
MS05-017

CVE-2006-3439 Microsoft Windows Server Service
Buffer Overflow - MS06-040

CVE-2004-0206 Buffer Overflow Network Dynamic Data
Exchange - MS04-031

CVE-2005-1983 Stack Overflow MS Windows PNP -
MS05-039

CVE-2008-4250 Microsoft Windows RPC Vulnerability -
MS08-067

- Buffer Overflow Password Parameter
SLMail POP3 Service

CVE-2006-2630 Symantec Remote Management Stack
Buffer Overflow

CVE-2007-1868 Buffer Overflow IBM Tivoli Provisioning
Manager

CVE-2007-4218 Buffer Overflows in ServerProtect service

CVE-2001-0876 Buffer Overflow MS Universal Plug and
Play

CVE-2004-1172 Stack Overflow Veritas Backup Exec
Agent

CVE-2004-0567 Buffer Overflow Windows Internet
Naming Service

CVE-2006-4691 Workstation Service Vulnerability -
MS06-070

Table 1: excerpt of Amun vulnerability modules

3.1.5 Shellcode Analyzer

In case a vulnerability module successfully emulated a
service to the point where the attacker sends exploit code,
all incoming data is recorded and finally transferred to the
Shellcode Analyzer. The Shellcode Analyzer is the back-
bone of Amun, as it is responsible for shellcode recogni-
tion and decoding. Shellcode is recognized using several
regular expression that match known parts of shellcode.
In most cases this is the decoder part, a small loop that de-
codes the obfuscated shellcode back to its original. Figure
9 shows an example of a regular expression matching the
decoder part of a certain shellcode. The four single bytes
extracted make up the key that is used to decode the pay-
load.

re.compile(’\\xd9\\x74\\x24\\xf4\\x5b\\x81\\x73
\\x13(.)(.)(.)(.)\\x83\\xeb\\xfc\\xe2\\xf4’, re.S)

Figure 9: regular expression to match decoder part

One can distinguish between clear text and encoded
(obfuscated) shellcode. Obfuscation of shellcode is of-
ten achieved with the XOR operator using a single byte
(simple XOR) or four bytes (multibyte XOR) or by using
an alphanumeric encoding.

Clear text shellcode does not provide any methods of
hiding its content, thus it simply contains for example an
URL like http://192.168.0.1/x.exe. Therefore, one of the
first steps of the Shellcode Analyzer is to check for un-
encoded URLs within the payload an attacker injected in
our emulated vulnerabilities.

Simple XOR encoding means the shellcode is encoded
using a single byte. The actual shellcode needs to be de-
coded prior to execution on the victim host, thus this kind
of shellcode contains a so called decoder part at the be-
ginning. The decoder part is a loop performing a XOR
operation with the appropriate byte against the rest of the
payload. The Shellcode Analyzer has several regular ex-
pression matching those decoder parts and extracting the
needed XOR byte. In the next step the shellcode is de-
coded and the intructions are extracted. Instructions can
again be a simple download URL, but also commands to
open a certain port or connect back to the attacker and
spawning a shell. The multibyte XOR variant is very
much the same, but utilizes more than one byte to en-

8

code the shellcode. Figure 10 shows the decoder part for
a multibyte XOR encoded shellcode. This assembler part
preceeds the rest of the shellcode and is thus executed at
first. The XOR key is 0x9432bf80.

[...]
000001F9 EB19 jmp short 0x214
000001FB 5E pop esi
000001FC 31C9 xor ecx,ecx
000001FE 81E989FFFFFF sub ecx,0xffffff89
00000204 813680BF3294 xor dword [esi],0x9432bf80
0000020A 81EEFCFFFFFF sub esi,0xfffffffc
00000210 E2F2 loop 0x204
[...]

Figure 10: multibyte XOR decoder

Alphanumeric shellcode encoding is a bit more differ-
ent as its purpose is to use only alphanumeric characters
for representation. The reason for using such prepared
shellcode is that many new applications and intrusion de-
tection mechanisms filter uncommon characters, thus us-
ing only characters like 0-9 and A-Z greatly reduces de-
tection and improves the success rates.

In case the analyzed payload is not recognized by any
of the regular expressions, a file containing the data is
written to harddisc. This can be manually analyzed to
integrate new regular expressions for shellcode detection.

cmd /c
net stop SharedAccess &
echo open 192.168.1.3 60810 >> tj &
echo user d3m0n3 d4rk3v1l >> tj &
echo get sr.exe >> tj &
echo bye >> tj &
ftp -n -v -s:tj &
del tj &
sr.exe &
net start SharedAccess

Figure 11: command found in shellcode

Figure 11 shows an example of a FTP command that
was found in encoded shellcode. The code instructs a
Windows system to first disable the firewall and then write
some instructions to a file named tj. This file is then exe-
cuted as parameter to the FTP command. The file contains
the address of the remote FTP server, username and pass-
word, as well as, the name of the file to download. After
the binary is downloaded the tj file is deleted, the freshly
downloaded file is executed, and the firewall is activated

again.
The -n parameter given to the FTP command supresses

the auto-login upon initial connection. The -v param-
eter supresses the display of remote server responses and
-s:filename allows the specification of a text file con-
taining FTP commands. The commands will be automat-
ically executed upon the start of FTP.

The Shellcode Analyzer tries to extract all the informa-
tion needed for the FTP download from such a command
and triggers a download event at the Amun Kernel.

3.1.6 Download Modules

As described in the previous section the Shellcode Ana-
lyzer extracts the commands from the shellcode. These
commands end up to be some kind of download method
to get the actual malware, e.g. the worm binary.

As the goal of Amun is to capture autonomously
spreading malware, we want to get hold of any advertised
binary file, thus we need Amun to be able to handle dif-
ferent kinds of download methods. For each download
method we can provide a module that is loaded upon the
start of the honeypot. Amun currently provides four ba-
sic download modules, namely: HTTP, FTP, TFTP, and
direct download. Following are examples for each of the
different download methods. We use an URL like repre-
sentation, as it is easier to read and display.

• http://192.168.0.1/x.exe

• ftp://a:a@192.168.0.1:5554/32171 up.exe

• tftp://192.168.0.1:69/teekids.exe

• cbackf://192.168.0.1/ftpupd.exe

The first three mehtods are well known and need not
be described any further. The direct download method
(cbackf) does not involve a transfer protocol. Amun
simply connects to the provided IP address at a specified
port and receives in return the binary directly. In a few
cases some kind of authentication is needed, that is in-
cluded in the shellcode. After connecting, the honeypot
needs to send a short authentication string prior to receiv-
ing any data. This kind of download method has been
named “connect back filetransfer” (cbackf).

Some shellcode does not contain download commands
but require the honeypot to open a certain port or connect

9

to a certain IP address and spawn a Windows command
shell. Such commands a handled by the bindshell mod-
ule. This module emulates a Windows XP or 2000 shell to
the connected attacker and understands a few commands.
That means a human attacker will notice directly that this
is not a real shell, however automated attack tools sim-
ply drop their instructions to the shell and exit. These
instructions are collected and again analyzed by the Shell-
code Analyzer to extract the actual download command.
Figure 12 shows an interesting example of commands
send to an emulated shell of Amun.

Cmd /c
md i &
cd i &
del *.* /f /q &
echo open new.setheo.com > j &
echo new >> j &
echo 123 >> j &
echo mget *.exe >> j &
echo bye >> j &
ftp -i -s:j &
del j &&
echo for %%i in (*.exe) do
start %%i > D.bat &
D.bat &
del D.bat

Figure 12: command received at emulated shell

The commands instruct the victim system to create a
new directory called i, change to it and delete all files in
there, using the parameters for quiet mode (/q), i.e. no
questions asked, and the parameter to enforce deletion of
read-only files as well (/f). In the next step a new file
is created containing FTP commands to download certain
files similar as in the example shown earlier. This time
the attacker uses the mget command to retrieve multiple
files. In the FOR-loop each downloaded binary is executed
in its own separate window (start).

3.1.7 Submission Modules

Once a file has been downloaded using any of the above
mentioned download modules it needs to be processed
further. That means it can be stored to harddisc for ex-
ample, or send to a remote service.

In the default configuration Amun only loads the
submit-md5 module. This modules stores each down-
loaded binary to a certain folder on the harddrive. As a

filename it uses the MD5 hash of the content of the file.
The submit-md5 module consist of only a single function
called incoming that is displayed in Figure 13.

[...]
def incoming(self, file_data, file_data_length, \

downMethod, attIP, victimIP, smLogger, \
md5hash, attackedPort, vulnName, downURL, \
fexists):

try:
self.log_obj = amun_logging.amun_logging(\

"submit_md5", smLogger)

store to harddisc
filename = "malware/md5sum/%s.bin" % (md5hash)
if not fexists:
fp = open(filename, ’a+b’)
fp.write(file_data)
fp.close()
self.log_obj.log("download (%s): %s (size: %i) \
- %s" % (downURL, md5hash, file_data_length, \
vulnName.replace(’ Vulnerability’,’’)), 12, \
"div", Log=True, display=True)

else:
self.log_obj.log("file exists", 12, "crit", \
Log=False, display=False)

except KeyboardInterrupt:
raise

[...]

Figure 13: incoming function of the submit-md5 module

The function gets several parameters from the Amun
Kernel, including the file content, length, and MD5 hash.
If the file does not already exist it is stored.

Other submission functions that are included with
Amun are: submit-cwsandbox, submit-anubis, submit-
joebox, and submit-mysql. These modules submit down-
loaded binaries to different sandbox services, that execute
and analyze the behaviour of malware. The resulting re-
ports are then accessible either by web or email.

Writing new submission modules is not very hard. The
basic layout of a new submission module is illustrated
in figure 14. The slots variable holds all vari-
ables which are global within an object created from the
class. In this example this is the submission module name
(submit name) and the reference to the logging module
(log obj). If further global variables are defined, they
need to be added to this list. In the init function
the name of the submission module can be defined and all
other preparations, that need to be made during the startup
of Amun. The incoming function is called every time a
binary is downloaded.

The following parameters are passed to the incoming

10

import psyco ; psyco.full()
from psyco.classes import *

import amun_logging

class submit(object):
__slots__ = ("submit_name", "log_obj")

def __init__(self):
try:

self.submit_name = "Submit MY_MODULE_NAME"
except KeyboardInterrupt:

raise

def incoming(self, file_data, file_data_length, \
downMethod, attIP, victimIP, smLoggr, \
md5hash, attackedPort, vulnName, \
downURL, fexists):

try:
self.log_obj = amun_logging.amun_logging(" \

submit_MY_MODULE_NAME", smLogger)

[...]

except KeyboardInterrupt:
raise

Figure 14: submission module layout

function of each submission module:

• file data - actual binary data

• file data length - length of the file

• downMethod - the download protocol, e.g. http

• attIP - IP address of the attacking host

• victimIP - IP address of the honeypot

• smLogger - reference to the submission log

• md5hash - MD5 hash of the file

• attackedPort - contains the port that was attacked

• vulnName - vulnerability modul that was exploitet

• downURL - URL where the binary was retrieved
from

• fexists - does the file already exist on harddisc

When creating a new submission module the di-
rectory and files need to have the following form.
The new directory needs to be placed within

the submit modules directory and the name
must be of the form submit-ModulName, e.g.,
submit-example. The actual Python code must
be placed within this new directory, in a file named
submit ModulName, e.g., submit example. Note
the underscore in the filename. To load the module
add it to the main configuration file, as described in the
configuration section.

3.1.8 Logging Modules

The logging modules provide an easy way to generate
different kinds of notifications whenever an exploit oc-
curs. Currently Amun offers five modules: log-syslog,
log-mail, log-mysql, log-surfnet, and log-blastomat. The
last logging module belongs to an intrusion detection sys-
tem (IDS) developed at the RWTH Aachen called Blast-
o-Mat [2]. The IDS uses honeypots as intrusion sensors
to detect attacks in the network.

The log-syslog module sends all incoming attack infor-
mation to the local syslog daemon. That way it is also
possible to send attack information to remote machines,
e.g., a central logging server. Another method is to use the
log-mail module, that sends information about exploits to
a predefined email address. Note, that according to the
number of attacks, a lot of emails can be generated and
flood the mail server. To prevent this, the block options
of the configuration file can be used, as described in the
configuration section.

The log-mysql module, allows the logging of attack
information to a MySQL database. The layout for the
database is stored in the configuration directory of Amun.
This module is however still in development.

The log-surfnet module, allows the integration of
Amun into the surfnet IDS, also called SURFids [4].
SURFids is an open source Distributed Intrusion Detec-
tion System based on passive sensors, like honeypots.
SURFids uses PostgreSQL as underlying database.

Logging modules support three main functions to
log events: initialConnection, incoming, and
successfullSubmission. The first function is trig-
gered upon a connection request of a host to the honeypot.
This request must not be malicious at this point in time.
The second function is called as soons as an exploit is
detected and some kind of download method has been of-
fered. The last function is called whenever a binary was

11

successfully downloaded, thus, this function receives the
same parameters as the incoming function of the submis-
sion modules described previously.

import psyco ; psyco.full()
from psyco.classes import *

import time
import amun_logging
import amun_config_parser
import psycopg2

class log:
def __init__(self):

try:
self.log_name = "Log MODUL"
conffile = "conf/log-MODUL.conf"
config = amun_cfg_parser.ConfigParser(conffile)
self.sensorIP = config.getSingleValue("sensorIP")
[...]

except KeyboardInterrupt:
raise

def initialConnection(self, attackIP, attackPort, \
victimIP, victimPort, identifier, \
initialConnectionsDict, loLogger):

[...]

def incoming(self, attackIP, attackPort, victimIP, \
victimPort, vulnName, timestamp, \

downloadMethod, loLogger, attackerID, \
shellcodeName):

[...]

def successfullSubmission(self, attIP, attaPort, \
victimIP, downloadURL, md5hash, data, \

filelength, downMethod, loLogger, \
vulnName, fexists):

[...]

Figure 15: logging module layout

Figure 15 shows the basic structure of a logging mod-
ule. In the initialisation function, the name of the logging
module is defined and if needed, a configuration file can
be parsed. All operations defined in this function are per-
formed at the start of Amun. Next are the three main log-
ging functions that are executed by the Amun Kernel upon
certain events. Most parameters are already described in
section 3.1.7. The only new parameter is attackerID,
which links an initial connection entry to the actual ex-
ploit that might happen. Note, that due to the single
threaded design of Amun it is not possible to keep track
of everything a single attacker performed.

4 Limitations
Although low-interaction server honeypots are a great ad-
dition to todays’ intrusion detection mechanism, they also
have some limitations. The most obvious limitation with
low-interaction honeypots in general is the lack of captur-
ing zero day attacks. The reason is that only vulnerabil-
ities can be emulated that we already know of, thus this
approach is always one step behind. The same restriction
applies to the use of shellcode.

Next is the fact that the vulnerable services are not fully
simulated with every feature they offer, but only the parts
needed to trigger an exploit. As a result, low-interaction
honeypots will not fool any human attacker, but only au-
tonomous spreading malware, which does not verify the
functionality of a service in the first place. Although such
checks could be easily added, todays’ malware is rather
poorly written. There exist cases were not even the server
reply is checked and the malware sends its shellcode re-
gardless of the attacked service being vulnerable or not.

5 Results
In this section we present some statistics collected from
a single Amun honeypot installation with a few thousand
IP addresses assigned. The data was collected during the
last twelve months, thus ranging from December 2008 till
December 2009, with almost no downtime of the sensor.

Figure 16: oberserved network traffic

Figure 16 shows the amount of network traffic observed
at the honeypot. The data was generated in five minute
intervals using RRDTool3. The average number of Kilo-
bytes received is 126.36KB, whereas we saw a maximum
during February 2009 with 469.48KB. Compared to the

3http://oss.oetiker.ch/rrdtool/

12

incoming traffic, the outgoing traffic is rather low, with an
average of 27.2KB. The reason for this difference is, that
the honeypot also receives the malware binaries, which
usually make up the biggest amount of traffic.

Figure 17: successfull downloads of malicious software

Figure 17 displays the number of successfully down-
loaded malware binaries seen over the last twelve months.
For comparison, Figure 18 shows the number of success-
fully downloaded binaries for the last 24 hours. It shows
that we have captured an average of 73 binaries every 5
minutes, with a maximum of 170 binaries, which is very
similar to what we have seen over the last twelve months.

Figure 18: successfull downloads of malicious software in
the last 24 hours

Figure 19 shows the increasing number of unqiue mal-
ware binaries that we have collected. Uniqueness is de-
termined using the MD5 hash value of a binary. During
the twelve months measurement period we have collected
a total of 4790 malware binaries.

A more detailed analysis of honeypot data captured
with low-interaction honeypots is presented here [3]. The
complete analysis of all collected information during the
twelve months period is left as future work.

Figure 19: unique malware binaries captured

6 Conclusion
In this report we presented the low-interaction server
based honeypot Amun. We gave a detailed describtion
of the different parts of the software that are responsible
to handle the emulation of vulnerabilities. We showed the
individual modules for vulnerability emulation, logging,
shellcoded analyses, and submission. All coordination
between the different modules is handled by the Amun
Kernel, which is the core part of Amun.

The main focus of Amun is to provide an easy plat-
form for malware collection , like worms or bots. For this
purpose Amun uses the simple scripting language Python
and a XML based vulnerability module generation pro-
cess to support an easy creation of new vulnerabiity mod-
ules. Thus, malware analysts are able to collect current
malware in the wild and have the opportunity to extend
the software without much programming knowledge.

Although low-interaction honeypots do have some lim-
itation regarding zero-day attack detection, they also
make up a great addition to todays’ network security sys-
tems. Considering well placed honeypots throughout a
network. These passive sensors can detect any scanning
machine and report it to a central IDS, without any false
positives. That means an alarm is only raised upon the
exploitation of an emulated vulnerability.

Finally, honeypots are an important tool to study and
learn about attackers and their procedures.

Acknowledgements.

We would like to thank Philipp Trinius who provided
valuable feedback on a previous version of this report that
substantially improved its presentation. Markus Engel-
berth for creating the schematic overview picture at the
beginning of this report.

13

References
[1] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and

F. Freiling. The Nepenthes Platform: An Efficient
Approach to Collect Malware. In RAID’06: 9th In-
ternational Symposium On Recent Advances In In-
trusion Detection, 2006.

[2] J. Göbel. Advanced Honeynet based Intrusion De-
tection. Master’s thesis, RWTH Aachen University,
July 2006.

[3] J. Göbel, C. Willems, and T. Holz. Measurement
and Analysis of Autonomous Spreading Malware in
a University Environment. In DIMVA’07: Detec-
tion of Intrusions and Malware, and Vulnerability
Assessment, 2007.

[4] R. Gozalbo. Honeypots aplicados a IDSs: Un caso
practico. Master’s thesis, University Jaume I., April
2007.

[5] J. Koziol. Intrusion Detection with Snort. Sams,
Indianapolis, IN, USA, 2003.

[6] C. Kreibich and J. Crowcroft. Automated NIDS
Signature Generation using Honeypots. In SIG-
COMM’03: Special Interest Group on Data Com-
munication, 2003.

[7] C. Kreibich and J. Crowcroft. Honeycomb - creat-
ing intrusion detection signatures using honeypots.
In HotNets’03: Second Workshop on Hot Topics in
Networks, 2003.

[8] V. Paxson. Bro: A System for Detecting Network In-
truders in Real-Time. In 7th USENIX Security Sym-
posium, 1998.

[9] N. Provos. A Virtual Honeypot Framework. In 13th
USENIX Security Symposium, 2004.

[10] P. Trinius. Omnivora: Automatisiertes Sammeln von
Malware unter Windows. Master’s thesis, RWTH
Aachen University, September 2007.

[11] C. Willems, T. Holz, and F. Freiling. CWSandbox:
Towards Automated Dynamic Binary Analysis.
IEEE Security and Privacy, 5(2), 2007.

14

