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1 Introduction

The appeal of evolutionary game theory to social scientists in general and
economists in particular rests on the fact that it allows to investigate the
dynamics and long-run properties of a population of interacting bound-
edly rational players. Methods borrowed from biology have helped to ad-
dress questions of equilibrium selection and stability as documented in sev-
eral monographs: van Damme (1991), Weibull (1995), Samuelson (1997).
In the young tradition of Blume (1993, 1995), Berninghaus and Schwalbe
(1996a,b), Kandori, Mailath, and Rob (1993), abbreviated KMR in the se-
quel, Ellison (1993), Rhode and Stegeman (1996), Young (1998, Ch. 6), and
Baron et al. (2002a,b), we consider best response dynamics where at each
time, one or every player plays a (static) best response against the empirical
distribution of the last strategies played by his neighbors. This constitutes
rational behavior impaired by myopia. Myopia in the temporal sense means
that the player is not forward looking, does not take into account that other
players might be changing their strategies. This trait is shared, for example,
by naive Bayesian learners [Eichberger et al. (1993)]. Myopia in the spatial
sense, if applicable, means that the player is influenced only by his local
environment.

In the sequel, an “interaction structure” is modelled as an undirected finite
graph whose vertices or nodes are the members of the player population.
Two players are neighbors, if they form an edge of the graph. We assume
that the graph and a fortiori the interaction structure is regular, i.e. all
players have the same number of neighbors. We finally assume that direct
interaction is only possible between neighbors. We are going to analyze lo-
cal as well as global interaction in population games, using the formalism of
neural networks. More specifically, we forward a modelling approach to best
response dynamics that (a) allows for rather general interaction structures;
(b) exhibits spatial patterns of play; (c) exhibits non-uniform noise; (d) links
stochastic and deterministic dynamics; (e) involves asynchronous updating;
(f) encompasses majority imitation.

Blume (1995) studies and compares local and global interaction for spe-
cific interaction structures (infinite and finite two-dimensional lattices). In
an otherwise deterministic model, Blume assumes asynchronous updating
where each period, a player is selected at random and plays a myopic best
response against his neighbors’ previous actions. Berninghaus and Schwalbe
(1996a,b), in a model with simultaneous updating, were the first to demon-
strate that the theory of neural networks can be successfully applied to an-
alyze deterministic best response dynamics with global or local interaction.
Here we go beyond Blume (1995) and Berninghaus and Schwalbe (1996a,b)
and introduce noise, random non-best responses to be precise, into the sys-
tem. This has been done before, notably by Blume (1993) who pioneered
the use of statistical mechanics methods for population games on infinite
lattices. KMR and Ellison allow for noise in what they call “best reply”
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and other dynamics.1 We use a “Boltzmann machine”, a particular kind
of stochastic neural network, to model noise. The noise operates on the
thresholds of the threshold automata (neurons) constituting the network.
This produces two major innovations. First, a state of the system describes
a spatial pattern of play, not merely a summary statistics as in KMR and
Ellison. Second, the probability of a “flip”, i.e. of non-best-response play
is a continuous and decreasing function of the payoff loss caused by the flip
whereas in KMR and Ellison the probability is independent of state and
player.

Running the “Boltzmann machine”, we obtain an explicit formula for the
stochastic steady state (invariant distribution) in terms of the parameters
of the model for any regular interaction structure. In fact, we obtain an
invariant distribution of the Gibbs-Boltzmann type.2 We are able to re-
late the long-run equilibria à la KMR (introduced as stochastically stable
states in Foster and Young (1990)) to the deterministic steady states. We
can, in principle, compute all long-run equilibria for any symmetric 2 × 2
game and any regular interaction structure, by solving a discrete optimiza-
tion problem without resorting to a root counting procedure. We not only
determine how often a strategy occurs, but also detect the spatial pattern
of play in a long-run equilibrium. The explicit determination of long-run
equilibria in Haller and Outkin (1999) shows that by and large, the prop-
erties of long-run equilibria reported by KMR and Ellison are confirmed
which implies a certain robustness of the model. Notice that Rhode and
Stegeman have amended and corrected some of the KMR results, ending up
with a richer taxonomy of games. Notice further that according to Bergin
and Lipman (1996), different types of noise can give rise to different sets of
long-run equilibria. Baron et al. (2002a) provide an explicit example that
yields different long-run equilibria in our model and a model with Bernoulli
or uniform trembles.

The distinction between global and local interaction is only interesting, if it
makes a difference. Apart from purely descriptive reasons, the comparison of
interaction structures has been motivated by the pioneering work of Novak
and May (1993) whose simulations of deterministic best performance imita-
tion have generated significant differences across interaction structures. The
theoretical analysis of deterministic best response dynamics by Berninghaus
and Schwalbe (1996b) shows that the size and shape of neighborhoods can
affect the nature, number, stability, and attractiveness of limit cycles and
steady states. Also notice L. Blume’s lucid comment on the impact of the
interaction structure on the rate of convergence [Blume (1995, p. 130)]. In
the case of differentiation or anti-coordination games (games with no sym-

1See also the comment on KMR by Rhode and Stegeman (1996). See further Foster
and Young (1990), Young and Foster (1991), Fudenberg and Harris (1992), Young (1993),
and Binmore et al. (1995). Our approach, while independently conceived and developed,
is closely related to Chapter 6 of Young (1998).

2This kind of distribution has been derived or postulated before; see in particular
Blume (1997) and Young (1998). Baron et al. (2000a,b) extend the analysis to the case
of non-binary choices, among other variations.
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metric pure strategy equilibrium), our analysis of stochastic best response
dynamics with asynchronous updating demonstrates a significant difference
of long-run equilibria across interaction structures, an important new discov-
ery: With an even number of players and a circular graph, in each long-run
equilibrium, the two actions of the constituent game are alternating along
the graph; hence the ratio of their frequencies is 50:50. In a global inter-
action game, the ratio approximately equals the ratio of the probabilities
in a mixed equilibrium strategy of the constituent game and can be quite
different from 1.

Careful inspection reveals a close relation between our analysis and Chapter
6 of Young (1998). More generally, we establish a link between the neural
network approach and the stochastic discrete choice approach. In the spe-
cific case at hand, we show that if the thresholds of the neural network are
perturbed by logistic noise, then state transitions of the system are governed
by the log-linear response rule (6.3) of Young (1998). The neural network
approach leads to a convenient explicit formula for a potential of the “spa-
tial game”. This finding allows us to determine long-run equilibria without
resorting to the more cumbersome tree counting method introduced into
game theory by Foster and Young (1990).

Applications in Industrial Economics: The model lends itself to the
study of various coordination problems in industrial economics, for example
the choice of industry standards and norms. In Section 7, we elaborate on
a specific application, a model of formation of user networks.

In the next two sections, we redesign and augment the basic deterministic
model of Berninghaus and Schwalbe (1996b). We proceed to the more elab-
orate stochastic model in Section 4. Section 5 is a digression on invariant
Gibbs-Boltzmann distributions. Section 6 specializes, introducing logistic
noise into the model which gives rise to a log-linear response model and
invariant Gibbs-Boltzmann distributions. Section 8 concludes.

2 Networked Models

In the sequel we consider dynamics that can be represented by means of
neural networks, a special case of automata networks. The use of automata
networks is quite common in computer science. For instance, the interaction
within a computer network falls into this category. Parallel processing is an-
other example. The approach also suggests itself for decentralized models of
robots interacting in a production process. Maes (1989) aims at “the build-
ing of an intelligent system as a society of interacting mindless agents, each
having their own specific competence.” Similarly, in the area of industrial
organization, automata networks appear well suited for the description of
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information flows between units or divisions of an organization (firm, indus-
try). For extensive reading on automata networks, see Coughlin and Baran
(1995), Goles and Martinez (1990, 1992), Haykin (1994). We commence
with a few formal definitions, first of an Automata Network (AN) and then
of a Neural Network (NN). Throughout, I = {0, 1, . . . , N} with N ≥ 1 is
a non-empty finite set representing the player population. Let us denote
J ≡ {J ⊆ I : |J | = 2}, the set of two-member subsets of I.

An Automata Network on I is a triple A = (G,Σ, (fi, i ∈ I)) where:
G = (I, V ) is a (undirected) graph.
Σ is the set of states of any vertex of the graph G.
fi is the transition function associated with the vertex i ∈ I.

First, the graph G = (I, V ) comprises I, its set of vertices (points, nodes),
and V ⊆ J , the set of edges (arcs, links) of the graph. I will be interpreted
as the player population. I can also be interpreted at a set of locations where
each location i is occupied by exactly one player whom we conveniently label
i as well. We interpret G or simply V as “interaction structure.” Namely,
given the player population I, the edges of the graph define the opportuni-
ties for direct interaction. If i, j ∈ I and i 6= j, we interpret {i, j} ∈ V as
i and j being adjacent or neighbors. A player i ∈ I directly interacts with
and only with players in his neighborhood Vi = {j ∈ I : {i, j} ∈ V }.3 We
assume the interaction structure to be regular, i.e. there is a number n ∈ IN
with |Vi| = n for all i ∈ I, and to be connected. Second, for every vertex
i ∈ I, the set Σ represents the potential states of vertex i — or of the player
located at vertex i. A state of vertex or player i is denoted by si. In our
context, si is a strategy played by player i. Moreover, we restrict ourselves
to binary choices from Σ = {0, 1}. Third, to each vertex or player i, we
associate the transition function fi : ΣVi → Σ. This means that the current
strategic choices of his neighbors determine a player’s next strategic choice.
The evolution in discrete time t of the global state s(t) ∈ ΣI is governed by
the global transition function F : ΣI → ΣI obtained as composition of all
the local ones: F (s) = (fi((sj)j∈Vi)i∈I for s = (s1, . . . , sN ) ∈ ΣI . Each fi is
also called a (memory-less) automaton.

Every stationary population game dynamics with finite strategy sets and fi-
nite neighborhoods corresponds to an automata network. This by itself does
not allow strong conclusions. To arrive at interesting results, more struc-
ture has to be imposed. For our purposes, the more restrictive structure of
a neural network is imposed:

A Neural Network (Threshold Automata Network) is a particular
type of automata network. Its individual state space is binary. Here we
assume for convenience that Σ = {0, 1}. The network’s transition function

3Notice that by definition, i /∈ Vi which is the prevalent convention in graph theory.
See for instance Chartrand (1985). The convention i ∈ Vi coexists.
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and, implicitly, its graph are based on a weight structure, given by a symmet-
ric N×N -matrix W = (wij). Namely: every arc (i, j) ∈ V is assigned a real
number wij ∈ IR which represents its weight. If i and j are not neighbors,
we put wij = 0. The transition function takes on the following form:

si(t + 1) = L


∑

j∈Vi

wijsj(t)− bi


 (1)

where bi is a threshold and the function L(·) is given by L(x) = 0 if x ≤ 0
and L(x) = 1 if x > 0. An automaton described by (1) is called a neuron
or threshold automaton.

As the term suggests, neural networks can be used to model the interaction
between brain or nerve cells: If and only if a receptor-transmitter receives
a strong enough stimulus, it will emit a signal of its own. In a similar vein,
in a social environment, an individual’s decision to be violent or not may
depend on the amount of violence in the neighborhood. Our current interest
in neural networks stems from the fact that simple best response dynamics,
among others, can be described in terms of a neural network.

3 Deterministic Best Response Models

Consider a symmetric two person game:

0 1
0 a, a b, c
1 c, b d, d

(2)

Like Berninghaus and Schwalbe (1996b), we are going to represent the best
response dynamics of an associated population game as an NN. The player
population is I, endowed with an interaction structure V . We shall assume
that all players have the same number of neighbors n ≥ 1: |Vi| = n for
all i ∈ I. In other words, the interaction structure (graph) is n-regular.
We further assume that only pure strategies are played. The set of pure
strategies available to each player is Σ = {0, 1}, and the state space of the
entire system is ΣI = {0, 1}I . A state records the action taken by each of
the players.

3.1 Nash Configurations

Let us first consider the static spatial game associated with the interaction
structure V and introduce the concept of Nash configuration. Player i ∈ I
directly interacts only with his neighbors and has information only about the
strategies played in his neighborhood, Vi. For a state s = (s1, . . . , sN ) and a
player i ∈ I, let s−i = (sk)k∈Vi denote the profile of strategies played in Vi.
Let πi(si, s−i) denote the aggregate payoff to player i from playing strategy
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si once against each neighbor, if s−i is the profile of strategies played in his
neighborhood. The static spatial game assumes the normal form

Γ = (I, (Si)i∈I , (νi)i∈I)

where Si = Σ for all i ∈ I and νi(s) = πi(si, s−i) for all i ∈ I and s =
(s1, . . . , sN ) ∈ S ≡ S1 × . . . × SN = ΣI . Obviously, global states and
strategy profiles for Γ are the same. Following Blume (1993, 1995), the
Nash equilibria in pure strategies of Γ will be called Nash configurations.

3.2 A Potential

A potential of the spatial game is a function H : S → IR such that if i ∈ I
and s, s′ ∈ S differ only in the i’th component, then

νi(s)− νi(s′) = H(s)−H(s′). (3)

In the sequel, we denote the differences in (3) by ∆νi and ∆H, respectively.
Young (1998, Ch. 6) demonstrates that the spatial game has a potential.
Here we derive an explicit formula for a potential that will prove very useful
later on. To this end, let us determine ∆νi for some player i ∈ I. Given a
profile s−i of strategies played in Vi, let zi equal the number of players using
strategy 1 in Vi and n− zi equal the number of players using strategy 0 in
Vi. Then i’s aggregate payoffs are

πi(0, s−i) = (n− zi)a + zib;

πi(1, s−i) = (n− zi)c + zid.

Hence the payoff difference ∆πi = πi(1, s−i(t))− πi(0, s−i(t)) satisfies

∆πi = zi(a− c + d− b) + n(c− a)

=
∑

j∈Vi

(a− c + d− b)sj − n(a− c)

= w
∑

j∈Vi

sj − nβ

(4)

where β = a− c and w = a− c + d− b. Now define H : S → IR by

H(s) =
∑

k∈I

sk


1

2
w

∑

j∈Vk

sj − nβ


 . (5)

Next consider two states s, s′ ∈ S which differ only in the i’th coordinate.
Without loss of generally, assume si = 1 and s′i = 0. Then

H(s)−H(s′) = w
∑

j∈Vi

sj − nβ

whereas by (4), νi(s)− νi(s′) = ∆πi = w
∑

j∈Vi

sj − nβ. Thus we have shown:

Proposition 1 The function H defined by (5) is a potential function for
the spatial game.
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4 Deterministic Neural Network Dynamics
and Contagion

Now we model the dynamics of myopic best-response play in terms of a neu-
ral network. Again, player i ∈ I directly interacts only with his neighbors
and has information only about the strategies played in his neighborhood,
Vi. We assume that a player (when he has a choice) employs a myopic best
response, i.e. the strategy he chooses for the period t + 1 is a best response
against the empirical distribution of strategies played in his neighborhood
at time t. One can find a discussion of validity of the myopia assumption in
KMR and Ellison (1993).

We denote by s−i(t) the profile of strategies played in Vi at time t and by
πi(si, s−i(t)) the aggregate payoff to player i at time t from playing strategy
si once against each neighbor. This means that all neighbors are equally
important. Alternatively, one could work with average payoffs.

Because of (4), the decision rule for a population of best response players
can be written in a threshold form:

si(t + 1) = L


w

∑

j∈Vi

sj(t)− nβ


 . (6)

Thus deterministic best response dynamics is modelled as a neural network.

4.1 Simultaneous or Synchronous Updating

Simultaneous or synchronous updating means that the updating rule (6) is
applied to all i and t. The model has been analyzed in depth by Bern-
inghaus and Schwalbe (1996b) who follow the logic of Goles and Martinez
(1990) and find, using a potential like (5), that with simultaneous updating
the only cyles are fixed points (steady states) and two-cycles. Their analysis
also shows that both the size and shape of neighborhoods can affect the na-
ture, number, stability, and attractiveness of limit cycles and steady states.
Durieu et al. (2005) investigate and characterize contagion for the dynami-
cal system with simultaneous updating when w ≥ β ≥ 0. Contagion (with
respect to action 1) occurs from an initial subset I0 of I, if si(0) = 1
for i ∈ I0, si(0) = 0 for i 6∈ I0, and there exists T ∈ IN such that si(t) = 1
for all i ∈ I and t ≥ T . We say that contagion is optimal, if contagion does
not occur from any proper subset I ′0 of I0. We call contagion monotone if
si(t + 1) ≥ si(t) for all i and t. In view of the result of Goles and Martinez,
there are three possibilities: (a) contagion; (b) convergence to a fixed point
without contagion; (c) convergence to a two-cycle. The analysis of Durieu et
al. (2005) indicates that, as a rule, that is no fast way to verify (a), whereas
there exist several fast routines (easy-to-check necessary conditions) to rule
out (a).
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Clearly, contagion cannot occur if the constituent bi-matrix game is a differ-
entiation or anti-coordination game. These are the “games with no symmet-
ric pure strategy equilibrium” where it is in both players’ interest to choose
strategies different from each other. Examples are fashion games among
nonconformists and hawk-dove games. These games are characterized by
a − c < 0 and d − b < 0, hence w < β < 0. Obviously, contagion cannot
occur either if 0 is a strictly dominant strategy of the constituent bi-matrix
game, like in a Prisoner’s Dilemma game, which amounts to a− c > 0 and
d− b < 0. In the opposite case, when a− c < 0 and d− b > 0 and 1 is the
strictly dominant strategy, contagion does occur. In the case of coordination
games, where a− c > 0 and d− b > 0, the outcome depends on the interac-
tion structure, I0, and which action is risk dominant. Consider for example
N ≥ 2, V the circular graph given by Vi = {j ∈ I|j = i ± 1moduloN} for
i ∈ I, and I0 = {k} for some k ∈ I. If action 0 is risk dominant — which is
the case if a − c > d − b > 0 — then in one step, convergence to the fixed
point where all play 0 occurs. If N is even and action 1 is risk dominant
— which is the case if d − b > a − c > 0 — the convergence to a two-cycle
occurs. If N is odd and action 1 is risk dominant, then optimal contagion
occurs.

We further observe that larger neighborhoods (larger interaction windows)
and, hence, more connectivity may but need not favor contagion.

4.2 Asynchronous Updating

Asynchronous updating means that at any time only one player will be
updating his state. This is modelled by means of a sequence K(t), t =
0, 1, 2, . . ., of I-valued random variables. K(t) determines which of the play-
ers will have a chance to alter his strategy at time t. Accordingly, the
updating rule (6) is applied if i = K(t); otherwise, si(t + 1) = si(t).

We assume that the stochastic process K(t), t = 0, 1, . . ., is recurrent, that
is for each i ∈ I and t ≥ 0, almost certainly the process returns to i after
time t:

Prob ({K(t′) = i for some t′ > t}) = 1.

Recurrence is satisfied, for instance, by the periodic deterministic sequence
0, 1, . . . , N−1, 0, 1, . . . given by K(t) = t modulo N at one extreme and by a
sequence of independent and identically distributed (i.i.d.) random variables
with full support I at the other extreme. As an immediate consequence of
Proposition 1, we obtain

Proposition 2 Under asynchronous updating governed by a recurrent pro-
cess K(t), t = 0, 1, . . ., convergence to a Nash configuration of Γ occurs with
probability 1.

Like with simultaneous updating, contagion cannot occur if the constituent
bi-matrix game is an anti-coordination game or if 0 is a strictly domi-
nant strategy. In case that 1 is the strictly dominant strategy, contagion
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does occur with probability 1. In the case of coordination games, consider
again the example N ≥ 2, V the circular graph given by Vi = {j ∈ I|j =
i± 1moduloN} for i ∈ I, and I0 = {k} for some k ∈ I. Moreover, assume
that the random variables K(t) are independent and identically distributed
(i.i.d.) with Prob ({K(0) = i}) = 1/N for all i ∈ I. If action 0 is risk
dominant then with probability 1, there is convergence to the Nash config-
uration where all play 0. If action 1 is risk dominant, then with probability
1/3, convergence to the Nash configuration where all play 0 occurs and with
probability 2/3 contagion occurs. In contrast to simultaneous updating, the
latter result holds irrespective of the odd- or evenness of N .

In the following sections, we shall go beyond Berninghaus and Schwalbe by
adding noise to the basic model.

5 Noisy Best Response Dynamics

In many cases it is beneficial to introduce randomness into the model. For ex-
ample, deterministic models may have cycles or multiple equilibrium points.
Frequently, under reasonable assumptions, a random Markov process on the
same system has a unique stationary distribution. Also, we know from com-
puter science that the learning capabilities of a stochastic network can be
substantially better than those of a deterministic one. Whenever applicable,
we keep the previous notation. Again, two polar updating rules are possible:
synchronous and asynchronous iteration. In the synchronous or simultane-
ous mode we assume that all agents update their strategies at the same
time, and in the asynchronous mode we assume that at any given time only
one agent can update his strategy. We shall adopt the latter assumption in
the sequel. However, we first present a model of synchronous updating to
exhibit the difference.

Synchronous Updating. A model of synchronous updating is described
by (6) with noise added. The noise shifts the thresholds nβ. It is given by
a family of random variables εi(t), i = 1, . . . , N ; t = 0, 1, 2, . . ., so that

si(t + 1) = L


w

∑

j∈Vi

sj(t)− βn + εi(t)


 (7)

for all i and t. The noise can come from several sources: noise in the level
of the threshold, in the strategy played or perhaps in the payoff parameters;
in Ellison’s eloquent words, noise in the form of deliberate experimentation,
trembles in strategy choices and the play of new players unfamiliar with the
history of the game. If the noise distribution εi(t) is continuous and has
sufficiently large support, (7) means that the probability of a “flip”, i.e. of
non-best-response play is a continuous and decreasing function of the payoff
loss caused by the flip whereas in KMR and Ellison the probability is inde-
pendent of state and player.
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Asynchronous Updating. Our subsequent analysis is based on asyn-
chronous updating, i.e. only one player will be updating his state at a time.
We can express this by means of an updating rule similar, but not identical
to (7): The updating rule (7) is applied if i = K(t) whereas si(t+1) = si(t)
if i 6= K(t) where as before, K(t), t = 0, 1, 2, ..., is a sequence of I-valued
random variables. K(t) determines which of the players will have a chance
to alter his strategy at time t. Again, the noise is modelled by means of a
family εi(t), i = 1, . . . , N ; t = 0, 1, 2, ..., of real-valued random variables. We
shall proceed under the following further

ASSUMPTIONS:

(I) The random variables K(t) are independent and identically dis-
tributed (i.i.d.) with full support I.

(II) The random variables εi(t) are independent (across i and t) and
given any i, identically distributed.

(III) The player-picking process {K(t)} and the noise process {εi(t)} are
independent.

(IV) The event {εi(t) > n · (|w| + |β|)} has positive probability for each
pair (i, t).

(V) The event {εi(t) < −n · (|w|+ |β|)} has positive probability for each
pair (i, t).

Assumptions (I) – (III) guarantee that the dynamic process with asyn-
chronous updating is a stationary Markov process on ΣI whose transition
matrix we denote by P . A generic entry P (s′|s) of the transition matrix P
is the probability that the next state is s′, if the current state is s.

Assumptions (IV) and (V) guarantee that “flips” occur with positive proba-
bility regardless of the state of the system. Thus players are payoff-sensitive
even when making mistakes. Consequently, the Markov chain generated by
P is aperiodic and irreducible. Moreover, if the distributions εi(t) are con-
tinuous, then the probability of a “flip”, i.e. of non-best-response play is a
continuous and decreasing function of the payoff loss caused by the flip.

Let us represent probability distributions on S by means of |S|-dimensional
probability vectors ρ = (ρ(s))s∈S . If ρt is the distribution of states at some
time t, then the distribution at time t + 1 is given by

ρt+1 = P · ρt. (8)

A distribution ρ is called an invariant distribution or a stochastic steady
state, if

ρ = P · ρ. (9)
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Now well known results for discrete time Markov processes with finite state
space yield:

Proposition 3 If (I)-(V) hold, then the Markov chain has a unique in-
variant distribution ρ which has full support. Moreover, the distributions
ρt defined recursively by (8) converge in distribution to ρ regardless of the
initial distribution of states, ρ0.

Among the classical references for this sort of result are Doob (1953), Feller
(1968), and Loève (1960). Grimmet and Stirzaker (1982) and Seneta (1981)
provide easy access to the material.

6 Digression on Gibbs-Boltzmann Distributions

The invariant distribution, i.e. the solution of (9) is an eigenvector of P
with eigenvalue 1. It can be found by means of routine, albeit cumbersome
techniques. If, however, P is of a particular form, then the unique invariant
distribution assumes the Gibbs-Boltzmann form (12) below whose explicit
formula proves quite useful. Most of the literature on Gibbs-Boltzmann
distributions is instructive, but rather sketchy and/or preoccupied with de-
riving certain properties from first principles of statistical mechanics. There-
fore, we provide a brief, yet self-contained treatment of our own, following
Haykin (1994, section 8.12) to some degree.

To begin with, let us assume that the transition process P on the finite state
space S, specifically S = ΣI in our case, can be factored into two steps:

P (s′|s) = r(s′|s) · q(s′|s) for s 6= s′ (10)

where r(s′|s) is the probability of an opportunity for a transition from state
s to state s′ and q(s′|s) is the probability of a transition conditional on the
event that an opportunity arises. Further restrictions are:

• Symmetry: r(s′|s) = r(s|s′) for all s 6= s′

• Normalization:
∑

s′ 6=s r(s′|s) = 1

• Complementarity: q(s′|s) + q(s|s′) = 1 for s 6= s′

The key result is

Proposition 4 Suppose that:

(a) There is a unique invariant measure ρ that has full support.

(b) There is a function G : ΣI → IR such that

q(s′|s) =
1

1 + exp(G(s)−G(s′))
=

exp(G(s′))
exp(G(s)) + exp(G(s′))

. (11)
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Then ρ assumes the Gibbs-Boltzmann form:

ρ(s) =
exp(G(s))∑
s′ exp(G(s′))

. (12)

Proof. Suppose (a), (b) and that ρ is given by (12). Then by (11), a strong
“detailed balance principle” holds:

q(s′|s)ρ(s) = q(s|s′)ρ(s′) for all s 6= s′. (13)

As an immediate consequence of (13), (10), and symmetry, we obtain the
usual “detailed balance principle”:

P (s′|s)ρ(s) = P (s|s′)ρ(s′) for all s 6= s′. (14)

But (14) combined with the fact that P is a stochastic matrix and the nor-
malization condition on the probabilities of opportunity implies (9): For any
s′,

∑
s P (s′|s)ρ(s) =

∑
s P (s|s′)ρ(s′) = ρ(s′)

∑
s P (s|s′) = ρ(s′), that is (9).

By (a), the assertion follows. 22

Notice that because of (11), complementarity has been used implicitly in
the proof. Also notice that (14) implies (13), in case r(s′|s) > 0 for all
s 6= s′. The latter will not be the case in our application. But suppose
that it is the case and that (14) can be assumed on a priori grounds. Then
like in the literature, the order of crucial arguments can be reversed. In
particular, (11) need not be assumed any longer, but is rather a consequence.
Namely, first (14) implies (13). But then, by complementarity, (11) holds
with G(s) ≡ lnρ(s):

q(s′|s) =
1

1 + ρ(s)/ρ(s′)
=

1
1 + exp(G(s)−G(s′))

7 Logistic Noise

We now are ready to apply Proposition 4 in the game-theoretic context of
Section 4. Throughout, we assume noisy best response dynamics with asyn-
chronous updating and make the above assumptions (I) – (V). Moreover,
we specialize and assume here that

(VI) each noise variable εi(t) is a logistic random variable with zero mean
and common scaling parameter T , i.e. the cumulative distribution
function (c.d.f.) is given by:

Pr[εi(t) ≤ ε] =
1

1 + exp[−ε/T ]
, ∀ i, t (15)

One can prove:
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Proposition 5 In a population of best response players, with the noise being
distributed according to (15), the invariant distribution of strategies has the
Gibbs-Boltzmann form (12) where G(s) = H(s)/T and H is the potential
function of the spatial game defined by (5).

Proof. Let us verify that the system has the two-step factorization property.
Let s 6= s′. A direct transition from s to s′ requires that s and s′ differ in
exactly one coordinate, say the i-th. Then an “opportunity” for a transition
from s to s′ arises if and only if it is i’s turn to move. Also, an “opportunity”
for a transition from s′ to s arises if and only if it is i’s turn to move. Thus
r(s′|s) = r(s|s′) = Prob(K(0) = i). In case s and s′ differ in more than one
coordinate, let us set r(s′|s) = r(s|s′) = 0. Suppose that at time t + 1, the
current state is s and player i has the opportunity to change si from 1 to 0,
resulting in the new state s′. This transition only happens if

w
∑

j∈Vi

sj − nβ + εi(t) ≤ 0 or εi(t) ≤ nβ − w
∑

j∈Vi

sj .

The probability of the latter event is

q(s′|s) =
1

1 + exp[(w
∑

j∈Vi
sj − nβ)/T ]

=
1

1 + exp[(H(s)−H(s′))/T ]
.

Clearly, complementarity applies: If the current state is s′ and player i
has the opportunity to change s′i from 0 to 1, then the probability of this
happening is q(s|s′) = 1− q(s′|s) and, therefore,

q(s|s′) =
1

1 + exp[(H(s′)−H(s))/T ]
. (16)

Since s and s′ were arbitrary, this covers all relevant contingencies. For
the sake of completeness, we may extend the formula for q(s′|s) to the case
where s and s′ differ in more than one coordinate. By Proposition 4, the
assertion follows. 22

7.1 The Log-Linear Response Model

Here we uncover the connection between the neural network model with
logistic noise and the log-linear response model. Young (1998, ch. 6) assumes
Pr({K(0) = i}) = 1/N for all i and shows that for the log-linear response
model with parameter 1/T , the invariant distribution is of the form

ρ(s) = exp[R(s)/T ]/
∑

s′
exp[R(s′)/T ] (17)

where R is a particular potential function of the spatial game. Obviously, in
(17) R can be replaced by any other potential function of the spatial game,
for example H, but by none other than a potential function. Indeed, if R is
any potential function of the spatial game and the noise is logistic with zero
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mean and scale parameter T , then (12) holds true for G = R/T . Moreover,
the neural network model then gives rise to the log-linear response model
with parameter 1/T , as given by (6.4) in Young (1998). From Proposition 4,
we know that (12) and, hence, (17) holds for arbitrary Pr({K(0) = i}) > 0.
The explicit form (5) of the potential function H which we found via the
neural network approach, proves very useful for the determination of long-
run equilibria.

Remark. Recent work by Baron et al. (2002a) establishes the Gibbs-
Boltzmann form (12) with G(s) = H(s)/T on the basis of a different set
of first principles: The logit adjustment rule (11) is the solution of a maxi-
mization problem involving a trade-off between the magnitudes of trembles
and control costs. The approach encompasses constituent games with more
than two strategies. Baron et al. (2002b) extend some of the analysis to
games which are not necessarily spatial games or potential games.

7.2 Long-Run Equilibria

The scaling parameter T that is controlling the noise distribution is fre-
quently interpreted as temperature in a physical context. In a socio-economic
context, one can interpret T as a macroeconomic parameter which deter-
mines the level of exogenous noise at the microeconomic level. This inter-
pretation presumes that the neural network operates in a larger unspecified
economic environment. A similar interpretation is less compelling for uni-
form noise models à la KMR.

In case T → ∞, the c.d.f. (15) becomes flat and half of the mass is moved
towards either tail. The noise becomes the sole driving force of the dynamics.
Accordingly, H(s)/T → 0 and in the limit, the invariant measure assigns
equal probability to all states. The case T → 0 shifts all the mass towards
the mean of the noise distribution and, thus, constitutes a gradual removal
of noise. The support of the resulting limit distribution ρ∗ consists of the
states s̄ at which H is maximized, to which ρ∗ assigns equal probabilities.
The points in the support (carrier) of ρ∗ have been called stochastically
stable states by Foster and Young (1990) and long-run equilibria by
KMR. It turns out that in general, the long-run equilibria form a subset
of the steady states of the associated deterministic dynamics. For a concise
formulation of the result, let us say that there are ties, if w

∑
j∈Vi

sj−nβ = 0
for some i ∈ I and s ∈ ΣN . In such a case, the argument of L(·) in (6) is 0.
Player i is indifferent between si = 0 and si = 1. The convention L(0) = 0
breaks the tie in favor of si = 0. We say further that H attains a local
maximum at state s, if H(s) ≥ H(s′) for all s′ that differ from s in only
one component.
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Proposition 6 Suppose that there are no ties. Then for any state s̄ ∈
ΣI , properties (i) and (ii) are equivalent and properties (iii) and (iv) are
equivalent.

(i) s̄ is a long-run equilibrium.

(ii) H(s̄) is a maximum of H.

(iii) H(s̄) is a local maximum of H.

(iv) s̄ is a steady state of the deterministic dynamics.

Remark. Statement (iv) allows for both synchronous and asynchronous
updating. s̄ is a steady state of the (synchronous or asynchronous) de-
terministic dynamics, if and only if none of the players wishes to deviate
unilaterally from s̄ when the opportunity arises. The only difference is that
in the synchronous case the opportunity to deviate from s̄ occurs, with cer-
tainty, for all players simultaneously whereas in the asynchronous case an
opportunity to deviate from s̄ occurs with positive probability for each of
the players. As observed in Section 4, the coincidence of steady states does
not mean that the dynamics are identical. With or without ties, the prop-
erty that nobody wants to deviate unilaterally defines a Nash configuration
in the sense of Blume (1993, 1995).

Proof. The equivalence of (i) and (ii) has already been established. s̄ is a
steady state of the (synchronous or asynchronous) deterministic dynamics,
if and only if none of the players wishes to deviate unilaterally from s̄ when
the opportunity arises. If there are no ties, this is equivalent to s̄ being a
Nash configuration. Since H is a potential function of the spatial game, the
latter is equivalent to H attaining a local maximum at s̄. It follows that the
conditions for a local maximum and a steady state coincide. This shows the
equivalence of (iii) and (iv). 22

Corollary 1 Suppose that there are no ties. Then each long-run equilibrium
is a steady state of the associated deterministic dynamics.

Corollary 2 There exists a deterministic steady state.

If there are ties, then not every local maximum of H is a deterministic steady
state. Namely, the condition L(0) = 0 breaks ties in favor of 0. It therefore
can happen that a transition from si = 1 to si = 0 does not affect the value
of H. We can conclude, however, that every long-run equilibrium is a Nash
configuration and a deterministic steady state with respect to some, possibly
personalized, tie-breaking rule. Notice that the choice of tie-breaking rule
has no impact on the stochastic dynamics, since there ties are zero proba-
bility events.
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Connectivity of the interaction structure is not required for our results.
Suppose for example that N is even, N = 2Z for some large Z. Then a
1-regular interaction structure consists of Z pairs of players with interaction
only within each pair. The long-run behavior of the system is the same as
if we had tracked each pairwise interaction separately. Hence in a sense, it
is a matter of convenience whether one studies the population game with
2Z players or Z population games with 2 players each. However, there is
a short-run difference between the two models. The two dynamic processes
progress at different speeds. Namely, for any pair {i, j} ∈ V , the chance
that i or j is picked as the next mover from the entire population is less
than one — in fact much less than that for most pairs. In contrast, in the
2-player population game with population {i, j}, one of them is picked with
certainty. Hence Z parallel 2-player population games tend to move faster
than the corresponding 2Z-player population game.

7.3 Long-Run Equilibria and Contagion

Haller and Outkin (1999) and Baron et al. (2000a) determine the long-
run equilibria for various games and interaction structures. In particular,
if the constituent bi-matrix game is a coordination game and has a risk
dominant equilibrium (r, r), then the stochastic best-reply dynamics has a
unique long-run equilibrium where all players choose action r. Now suppose
that r = 1 is the risk dominant strategy. Does this mean that contagion
occurs? Not exactly. For the long-run equilibrium is the state in which the
system stays most of the time (but not necessarily all the time) when very
little, but still some noise remains. Therefore, very likely contagion occurs.
But whenever contagion has occurred, there is a small chance that at some
point a deviation happens, then very likely contagion occurs again, etc.

8 Network Formation

Network formation can be analyzed within our formal setting or modifica-
tions thereof. Network formation means either creation of a graph (network)
or formation of user networks. The first case, creation of a graph (network)
is considered in Baron et al. (2006). In the second case, each user has to
adopt one of a finite number of technologies or network goods, for instance
computer systems, word processors, or internet providers, and the adopters
of the same good constitute a user network. With perfect incompatibility
of technologies and identical users, the value of such a network is merely a
function of its size, that is the number of its users. Kandori and Rob (1998)
allow for the more realistic case of partial compatibility so that the value
of a network is affected not only by its size. Otherwise, their evolutionary
model is cast in the framework of population and spatial games and takes
the “uniform error” approach like KMR and Ellison (1993).

Using the “logit error” approach, Baron et al. (2000b) also examine a model
of user network formation. They find, among other things, that all long-run
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equilibria can be asymmetric (different technology choices by different peo-
ple) even though the game has symmetric equilibria. In that case, occur-
rence of contagion is rather unlikely. In principle, a little bit of persistent
noise — the premise underlying the concept of long-run equilibrium — can
break up path dependence and overcome lock-ins in technology choice. It
suffices that the perturbed dynamical system is an irreducible Markov pro-
cess with finite state space. Irreducibility means that the system passes
in finitely many steps from any given state to any other state, with posi-
tive, perhaps very small probability. Almost certainly such a system will
not remain in an inferior state forever nor will it stay in any other state.
Rather it tends to visit every state from time to time. But some states
may be visited much more frequently than others. While the system no
longer gets locked into a particular state in a deterministic sense, it may be
hooked to certain states, in a statistical sense. These are the stochastically
stable states or long-run equilibria. Stochastic evolution (persistent noise)
overcomes path dependence and dependence on initial conditions. But the
run-long equilibria, the states where the system resides most of the time,
can be inferior states. For instance, suppose the choice is between two par-
tially compatible technologies, 0 and 1, represented by a coordination game
with a = 5, c = 4, d = 3, b = 1. Then coordination on action 0 is payoff
dominant whereas coordination on action 1 is risk dominant, and, therefore,
constitutes the long-run equilibrium behavior.

9 Conclusion

The paper demonstrates both the power and the limitations of neural net-
work theory when applied to best response dynamics. Propositions 4 and 5
hold for any regular interaction structure. A potential shortcoming shared
with some of the most prominent alternative approaches, e.g. KMR’s, is
that the neural network theory applied here seems to require that each
player makes binary choices. This theory also seems to require asynchronous
updating.4 The homogeneity of the population assumed in the paper and
the literature is convenient, but of limited appeal in socioeconomic contexts
and, perhaps, not absolutely necessary. Conceivably each pair of players
might have a pair-specific symmetric payoff matrix. Neighborhood mem-
bership can be fuzzy like in Young (1998, ch. 6) and Baron et al. (2000a)
— which would allow to distinguish between strong and weak links, near
and distant neighbors.

There are several, more or less related literatures that we have barely touched
upon until now. The potential fruitfulness of statistical mechanics ap-
proaches to socioeconomic interaction has been demonstrated further by
Föllmer (1974), Blume (1997), Durlauf (1993, 1997), among others. Au-
tomata have been used before for other game-theoretical modelling purposes:

4With respect to simulations, Huberman and Glance (1993) suggest that the order
(synchronous versus asynchronous) of updating matters. See also Blume (1995).
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A small strand of literature, pioneered by Neyman (1985) and Rubinstein
(1986) has used finite automata to model the complexity of strategies and
bounded rationality in repeated games. Finally, instead of being rational, a
player can follow other principles. Imitation is but one possibility. Imita-
tion among humans is the premise underlying social learning theory [Ban-
dura (1977)]. Define the “reference group” of a player as his neighborhood
plus himself. Then imitation broadly defined means that the player plays
tomorrow one of the strategies that are played in his reference group today.
Following a rôle model is a very special case of imitation. Berninghaus and
Schwalbe have observed that majority imitation (following the majority in
the reference group) can be modelled by means of neural networks. In con-
trast, best performance imitation cannot be modelled by means of neural
networks. Best performance imitation, akin to fitness criteria in biology, has
been studied by, among others, Nowak and May (1993) who find through
simulation of Prisoner’s Dilemma games that local interactions are dramat-
ically different from global ones. Notice, however, the caveat by Huber-
man and Glance (1993) that the differences might disappear if simulations
adhered to asynchronous rather than simultaneous updating. Subsequent
theoretical analysis has been performed by Eshel, Samuelson, and Shaked
(1998), Kirchkamp (2000), and Outkin (2003).
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