
Establishing Properties of
Interaction Systems

Inauguraldissertation

zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Moritz Martens

aus Köln

Mannheim, November 2009

Dekan: Professor Dr. Felix Freiling, Universität Mannheim

Referentin: Professor Dr. Mila Majster-Cederbaum, Universität Mannheim

Korreferent: Professor Dr. Felix Freiling, Universität Mannheim

Tag der mündlichen Prüfung: 18. Dezember 2009

Abstract

We exhibit sufficient conditions for generic properties of component based

systems. The model we use to describe component based systems is the

formalism of interaction systems. Because the state space explosion problem

is encountered in interaction systems (i.e., an exploration of the state space

gets unfeasible for a large number of components), we follow the guideline

that these conditions have to be checkable efficiently (i.e., in time polynomial

in the number of components). Further, the conditions are designed in such

a way that the information gathered is reusable if a condition is not satisfied.

Concretely, we consider deadlock-freedom and progress in interaction

systems. We state a sufficient condition for deadlock-freedom that is based

on an architectural constraint: We define what it means for an interaction

system to be tree-like, and we derive a sufficient condition for deadlock-

freedom of such systems. Considering progress, we first present a charac-

terization of this property. Then we state a sufficient condition for progress

which is based on a directed graph. We combine this condition with the char-

acterization to point out one possibility to proceed if the graph-criterion does

not yield progress. Both sufficient conditions can be checked efficiently be-

cause they only require the investigation of certain subsystems. Finally, we

consider the effect that failure of some parts of the system has on deadlock-

freedom and progress. We define robustness of deadlock-freedom respec-

tively progress under failure, and we explain how the sufficient conditions

above have to be adapted in order to be also applicable in this new situation.

Zusammenfassung

Wir präsentieren hinreichende Bedingungen für allgemeine Eigenschaften

von komponentenbasierten Systemen. Als Formalismus zur Modellierung

komponentenbasierter Systeme nutzen wir Interaktionssysteme (interaction

systems). Da für Interaktionssysteme das Problem der Zustandsraumexplo-

sion auftritt (d.h. für eine große Anzahl von Komponenten ist eine Analyse

des gesamten Zustandsraums nicht durchführbar), sollen die Bedingungen

effizient überprüfbar sein (d.h. mit polynomiellem Aufwand in der Anzahl

der Komponenten). Des Weiteren sind die Bedingungen so geartet, dass

die gesammelte Information wiederbenutzbar ist, falls eine Bedingung nicht

erfüllt sein sollte.

Im Einzelnen betrachten wir Deadlockfreiheit und Fortschritt in Inter-

aktionssystemen. Wir formulieren eine hinreichende Bedingung für Dead-

lockfreiheit, welche auf einer Einschränkung an die Kommunikationsarchi-

tektur basiert: Wir definieren baumartige Interaktionssysteme und leiten

dann eine hinreichende Bedingung für die Deadlockfreiheit solcher Systeme

her. Im Hinblick auf Fortschritt geben wir zunächst eine Charakterisierung

dieser Eigenschaft an. Dann formulieren wir basierend auf einem gerichteten

Graphen eine hinreichende Bedingung für Fortschritt. Wir kombinieren

diese Bedingung mit der Charakterisierung, um einen Ausweg aufzuzeigen,

falls das Graphkriterium nicht erfüllt ist. Beide hinreichenden Bedingungen

können effizient überprüft werden, weil nur die Analyse bestimmter Teilsys-

teme erforderlich ist. Schließlich untersuchen wir noch die Auswirkungen,

welche der Ausfall bestimmter Teile eines Systems auf Deadlockfreiheit und

Fortschritt hat. Wir definieren zunächst Robustheit von Deadlockfreiheit

beziehungsweise Fortschritt unter Ausfall. Dann erklären wir, wie die obi-

gen hinreichenden Bedingungen angepasst werden müssen, damit sie auf

diese neue Situation angewendet werden können.

To Hennes VII
Ruhe in Frieden, Unglücksbock!

Contents

1 Introduction 1

1.1 Component Based Systems 1

1.2 Establishing Properties — Goal of this Thesis 4

1.2.1 Methodologies . 4

1.2.2 Goal of this Thesis . 9

1.3 Other Approaches Towards Component Systems 10

1.4 Thesis Outline . 15

2 Interaction Systems 19

2.1 Components, Interactions, and Interaction Systems 19

2.2 Properties of Interaction Systems 28

2.3 Conclusion and Discussion . 34

3 Deadlock-Freedom for Component Systems with Architec-

tural Constraints 37

3.1 Motivation . 37

3.2 Reachability in Interaction Systems 39

3.3 Architectural Patterns . 50

3.4 Deadlock-Freedom for Tree-Like Component Architectures . . 54

3.4.1 Interaction Systems with Multiway Cooperation . . . 54

3.4.2 Strongly Tree-Like Interaction Systems 64

3.5 Freedom of Local Deadlocks for Tree-Like Component Archi-

tectures . 69

3.5.1 Strongly Tree-Like Interaction Systems 69

3.5.2 Interaction Systems with Multiway Cooperation . . . 70

3.6 Examples . 71

3.6.1 A Banking System . 71

i

ii CONTENTS

3.6.2 The River Delta . 77

3.6.3 The Railway Track . 80

3.7 Conclusion and Related Work 86

3.7.1 Conclusion and Discussion 86

3.7.2 Related Work . 91

3.8 Proofs . 96

3.8.1 Proofs for Section 3.2 96

3.8.2 Proofs for Section 3.3 97

3.8.3 Proofs for Section 3.4.1 100

3.8.4 Proofs for Section 3.4.2 113

3.8.5 Proofs for Section 3.5.1 124

3.8.6 Proofs for Section 3.5.2 126

4 Progress in Interaction Systems 131

4.1 Introduction . 131

4.2 Characterizing Progress . 131

4.3 Testing Progress . 134

4.3.1 A Graph Criterion . 135

4.3.2 Enhancing the Graph 144

4.3.3 Failure of the Criterion 147

4.4 Example — The Dining Philosophers 150

4.5 Conclusion and Related Work 153

4.5.1 Conclusion and Discussion 153

4.5.2 Related Work . 154

4.6 Proofs . 155

4.6.1 Proofs for Section 4.2 155

4.6.2 Proofs for Section 4.3.2 156

4.6.3 Proofs for Section 4.3.1 166

4.6.4 Proofs for Section 4.3.3 167

5 Robustness of Properties of Interaction Systems 171

5.1 Motivation . 171

5.2 Defining Robustness of a Property 172

5.3 Testing Robustness of Properties 176

CONTENTS iii

5.3.1 Robustness of Deadlock-Freedom for Tree-Like Systems176

5.3.2 Progress without Participation of a Set of Ports 184

5.4 Conclusion and Related Work 188

5.4.1 Conclusion and Discussion 188

5.4.2 Robustness of Other Properties 191

5.4.3 Related Work . 191

5.5 Proofs . 194

5.5.1 Proofs for Section 5.3.1 194

5.5.2 Proofs for Section 5.3.2 199

6 Conclusion and Discussion 203

6.1 Achievements . 203

6.2 Classification of the Results 206

6.3 Future Work . 207

Bibliography 211

Index 225

Acknowledgments

First, I am grateful to Professor Mila Majster-Cederbaum for introducing

me to this new area of research and for being a great supervisor. She was

always approachable, helping me with guidance, advice, and encouragement.

I also thank the second referee Professor Felix Freiling. He took the time

to discuss the thesis with me in great detail, giving me valuable feedback.

Finally, I thank all my colleagues on the corridor — I had a (X)Blast

with you. In particular, my fellow co-workers Christoph, Nils, and Christian

made my time very enjoyable. Special thanks go to Nils and Christian for

proof-reading countless pages and spending a lot of time listening to my

results.

v

Chapter 1

Introduction

1.1 Component Based Systems

With the large variety of communicating parallel systems occurring in all

kinds of areas — which of course include but are by far not restricted to com-

puter science — concurrency (theory) has developed into a central branch

of scientific research. Dating back its emergence to works by Petri [117] and

by Dijkstra [59], there are now scores of different formalisms providing the

means to specify and investigate parallel systems1.

Being one particular field of research in concurrency, component based

systems or simply component systems have emerged as a more recent area

of increasing significance. Component based design and engineering have

proved an important paradigm to master design complexity and reusability

(of parts) of parallel systems. There is a collection of component based tech-

nologies (cf. JavaBeans [4, 105], the Microsoft Component Object Model [2],

or CORBA [3], for example2) all using component related concepts and no-

tions in one way or the other without rigorously defining what a component

respectively a component based system really are, not to mention agree-

ing on common definitions and terminology. The mere existence of these

technologies and the resulting ambiguities about the notion of a component

necessitate a firm theoretical foundation which allows to model and inves-

tigate systems in such technologies. In order to get such a foundation, it is

first of all important to agree upon an understanding of what a component

1Cleaveland and Smolka [53] give a more comprehensive survey of the various theories.
2Lau and Wang [94] give a more comprehensive survey of the technologies in use.

1

2 1.1 Component Based Systems

is. As noted above, in the various technologies there have been different con-

ceptions of what a (software) component should be, but it is widely agreed

that components are individual entities providing certain services to their

environment. Further, since the need to enhance the reusability of parts of

distributed systems is one motivation for component based design, compo-

nents should be as independent as possible from their context of use. Ideally,

a component may be deployed in any meaningful environment that can use

the component’s functionality. Contrary to other approaches, a component

is in particular not allowed to invoke operations or access data of other

components directly. It should be made sure that the communication be-

tween the individual components of a system is not intrinsically linked to

their respective behavior. Instead, a component should hide as much of its

internals as possible from the environment. It should only provide an in-

terface consisting of ports which can be used by the environment to access

the services the component offers. These ports can be used to glue several

components together by means of an external gluing mechanism which is

separately adapted to each concrete setting a set of components is used in.

Combining such common aspects in the requirements imposed on a com-

ponent, Messerschmitt and Szyperski [106] list the following characterizing

properties of a component:

• It should be reusable in multiple projects.

• It should be independent of the context it may be used in.

• It should be composable with other components.

• It should be encapsulated, i.e., the environment should be able to

access the services a component provides through the component’s

interface but it should not be able to access or even change the internals

of the component through this interface.

• It should be a unit of independent deployment and versioning. In

particular, replacement or upgrade of single components in a given

system should be possible independently of the other components.

These characteristics are not mutually exclusive, and they can be interpreted

to various extents. Regarding composition of components, for example, one

1.1 Component Based Systems 3

can choose a point of view towards hierarchical composition (composing

several components yields a new component, the identities of the original

components are lost) vs. parallel composition (composing several compo-

nents yields a component system which maintains the identity of the original

components). On the other hand, the rigor of encapsulation that is reason-

able in practice depends on the scenario the components are deployed in,

what properties should be guaranteed for the composition of these compo-

nents, and so forth. Despite the various possibilities to realize these items

we want to agree that they should be required at the least.

Having chosen this kind of global characterization of a component, it is

now possible to develop formalisms which can be used to design and model

distributed systems constructed from components as well as to specify and

verify their properties. The fact that the defining characteristics of a com-

ponent may be interpreted differently has lead to a wide range of formalisms

for component based systems, each one adequately tailored to fulfill a certain

purpose. There have been attempts to compare these models by applying

them to a common benchmark example in order to see how they cope with

standard problems encountered in component based design and to ultimately

find or develop a unified component model. Most recently there has been

the CoCoME3 contest [82], for instance. Without going into the details of

the conclusions drawn, we substantiate the necessity — despite the variety

of existing models — for further research towards a well-founded formalism

of component based systems and in particular towards feasible ways to es-

tablish properties by shortly quoting the final verdict of the CoCoME jury

[40]: “[...], the gap between practical applicability and demonstrated modeling

capability remains significant, leaving much room for further work.” This

thesis is concerned with establishing properties of component based systems.

Gössler and Sifakis [70–72] introduced one formalism for component sys-

tems — namely interaction systems. The formalism has been devised with

the objective to closely follow the characteristics listed for a component

above. Most notably, the formalism strictly separates the description of the

glue-code, i.e., of the communication, from the description of the behavior of

3Common Component Modeling Example

4 1.2 Establishing Properties — Goal of this Thesis

the components. These issues are defined in two independent layers that are

orthogonal to each other in the sense that each layer can be modified easily

without touching the other. Because the formalism is fairly general we feel

that it is well suited to model and investigate component systems on a level

of abstraction which is initially concerned with questions about component

interoperability rather than verification of concrete specifications. One issue

occurring at this level of abstraction is the investigation of generic properties

such as deadlock-freedom or progress of a component. Based on interaction

systems we investigate how such generic properties can be established with-

out analyzing the global system. It should be noted that the model can be

refined in order to also account for the investigation of concrete functional

properties once the properties above have been dealt with.

1.2 Establishing Properties — Goal of this Thesis

Before going into the details of how we go about establishing deadlock-

freedom and progress in interaction systems we review some methodologies

that have been conceived for establishing properties. We take a more general

perspective by discussing these not in the context of component systems but

in the context of concurrent systems and concurrent programs.

1.2.1 Methodologies

In order to be able to check general properties for concurrent systems, it

is first necessary to be able to specify properties and to state when they are

satisfied by a system. The main approaches for specification of properties

use temporal logics such as LTL [120], CTL [49], or the µ-calculus [91], re-

spectively behavioral relations like bisimulation or observational equivalence

as discussed by Milner [107]. In the latter approach the same formalism has

to be used for the description of the system and of the specification. Equiv-

alence of the two assesses that the model of the system is indeed a correct

implementation of the specification. In the temporal logic approach spe-

cific properties are formulated in the corresponding logic which can then be

checked against the description of the system in the chosen formalism. Both

1.2.1 Methodologies 5

approaches are amenable for algorithmic verification in the finite state case.

Model checking [49, 51] allows for an automatic check whether a given sys-

tem satisfies a property expressed in a temporal logic. Algorithms have also

been conceived for the automatic computation of various equivalences. We

refer to the algorithms of Kanellakis and Smolka [87] and of Paige and Tarjan

[114], for example, which can be used to compute the bisimulation quotient

of a transition system. Cleaveland and Sokolsky [54] give a more detailed

survey of results concerning the establishment of various equivalences. The

important point to note is the fact that for both model checking and equiva-

lence checking the size of the system to be treated appears as a factor in the

complexity of the algorithms. Since any formalism for concurrent systems

has to cope with the state space explosion problem it becomes clear that the

feasibility of these approaches is limited. For interaction systems this “in-

feasibility” has been formalized by showing that deciding deadlock-freedom

and progress, for example, is PSPACE-complete [99, 101, 128].

There are various techniques that can be applied to diminish the impact

of the state space explosion problem. Such techniques may work very well for

the reduction of the relevant state space of a concrete system and therefore

may be of benefit if they are combined with model checking, for instance.

However, the complexity result stated above shows that there will always be

systems that cannot be handled if we try to establish a property in inter-

action systems directly. The helpfulness of these techniques may depend on

certain structural characteristics of the system. For example, if the system

exhibits a high degree of asynchrony, i.e., there is a lot of interleaving, then

partial order reduction (cf. Godefroid [67] or Peled [116]) is one way to try

to substantially reduce the state space. The idea of partial order reduction

is to identify so-called independent actions which are actions whose order

of execution does not have any effect on the resulting state. For such ac-

tions it suffices to only investigate one thread of execution as opposed to

all threads resulting from the possible orderings of the actions. Other mea-

sures that may help to reduce the state space that has to be investigated

exploit symmetries of a system [50, 63], compositionality [52] (i.e., one tries

to combine properties that have been established for subsystems by means

of model checking, for example, in order to argue about a global property),

6 1.2 Establishing Properties — Goal of this Thesis

or one might even use behavioral equivalences as above in order to obtain a

compactified system which abstracts from the details that are not relevant

for the respective question. More generally, abstraction techniques aim at

reducing the part of the a system or program that has to be investigated

with regard to a certain problem, and they may be combined with various

verification methods: The goal is to derive from a concrete semantics an

abstract semantics which is more simple and therefore easier to handle on

the one hand, but which should convey enough information such that the

problem in question can still be answered. Abstract interpretation as in-

troduced by Cousot and Cousot [55] is one approach which formalizes such

program abstraction and analysis methods by means of Galois connections

between partially ordered sets. These sets represent the semantics (or in-

terpretation) of a program and its abstraction(s). A notion of consistency

of an abstract interpretation is given with respect to a concrete one. Using

arguments about fixed points in complete lattices, information about pro-

gram behavior is obtained. This approach can be seen as a unification of

various other abstraction and analysis methods. We refer to Cleaveland and

Smolka [53] for a more thorough review of the methodologies above and to

Baier and Katoen [23] for an elaboration of the details.

The methodologies above deliver a definitive answer to the question

whether a given (abstract) model of a system has a property/implements a

specification or not. However, it is advisable to sound a note of caution with

regard to what this means for more concrete models respectively the system

itself. Such an answer holds for the system model that has been investigated,

and if abstraction techniques have been used to obtain this model (which is

almost always the case because a description of a system which takes into

account all details cannot be handled) it has to be clarified if information

about the property in question carries over to a more concrete semantics. In

the case of abstract interpretation as mentioned above, for example, a posi-

tive answer to the question whether a property is satisfied by an abstraction

of a system carries over to more concrete semantics. If it turns out that the

abstraction does not have the property, it is in general not possible to derive

information regarding the question whether more concrete models have the

property or not. In such cases where the chosen model proves to be too

1.2.1 Methodologies 7

abstract, i.e., no information can be derived for more concrete semantics or

the actual system, the model must be refined4.

Thus, it is not always possible to derive information about the presence

of a property in a concrete system by means of investigating abstractions

of the system — even if it is possible to give a definitive answer for such

an abstraction. Because of this observation it is possible to conceive differ-

ent methodologies which desist from the claim that at the level of a given

abstraction a definitive answer has to be given. These methodologies yield

correct answers in some cases (from which information about the concrete

system can be derived). On the other hand, for such an approach it may also

be possible that the answer is “don’t know”, i.e., no information is provided

as for whether the abstraction or even the system itself has the property in

question. Settling for such an approach, the disadvantage of not being able

to provide any answer in some cases can be compensated by the fact that

such approaches may be checkable very efficiently. In view of the complex-

ity results stated above and the state space explosion problem this is not

an unattractive option at all. Since model checking or equivalence checking

as above will become infeasible and therefore will definitely not provide any

answer for increasingly large systems, more efficient albeit incomplete proce-

dures present an alternative which should be taken into account. At worst,

we do not know anything after the application of the procedure, and we can

still apply model checking, for example. There are various methodologies

towards establishing properties which fall into this category. They of course

differ in the way how they go about establishing properties. However, they

also fundamentally differ in what kind of answer they can possibly convey:

1. (Software) testing [111], on the one hand, is an approach which tries to

find errors in a program or system respectively in parts of a program or

system at the stage where they are (almost) ready to use. By testing it

for a number of inputs or more formally test cases [122], which consist

of an input and an expected output, the goal is to find possible errors

in the implementation. This approach cannot prove that a system is

correct with respect to a specification or property (unless it uses an

4Refinement can be understood to be the counterpart of abstraction.

8 1.2 Establishing Properties — Goal of this Thesis

exhaustive set of test cases which is not feasible again). Even if no

considered test case violates the specification or property there might

be other test cases for which this is the case. Only if a test yields a not

intended result a definitive (negative) answer can be given. Ideally, in

this case the test case should also provide information about the nature

of the violation and where possible corrections could be necessary.

The various testing methods are usually categorized as black box test-

ing or white box testing5 where the difference lies in the knowledge the

tester has about internal details of the implementation [122]. There are

scores of different testing procedures and approaches, where amongst

other issues particular importance is granted to the generation of an

adequate set of test cases. In the context of this thesis, we only further

mention model-based testing [39] because it uses formal models such

as automata, for example, for an automatic generation of test cases.

Since testing is deployed on an actual implementation of a system it

should be noted that the ambiguities arising from the use of an ab-

straction of a concrete system mentioned above do not occur. A fault

detected during the process of testing is an actual fault in the system.

2. If sufficient conditions for a property are to be exhibited a definitive

answer is only possible if the system satisfies the condition. Otherwise,

one might be tempted to interpret this as an indicator that the system

does not have the property. However, in this case no information about

the presence or absence of the property can be derived.

There is no general or even best way how to develop sufficient con-

ditions for a property. The details may significantly differ depending

on the underlying formalism, the approach, and even on the prop-

erty itself. For example, it is possible to consider a situation where a

property is violated and to derive a necessary condition for such a vi-

olation. Negating this condition, then yields a sufficient condition for

the property. Approaches following this idea have been presented by

Attie and Emerson [21] and by Attie and Chockler [20] with respect to

deadlock-freedom, for example. On the other hand, it is also promising

5There are gray box approaches combining aspects of the two, though.

1.2.2 Goal of this Thesis 9

to include structural information into the considerations about suffi-

cient conditions. This can be the information that the communication

architecture has a certain structure (e.g., it is given by a tree) [33, 79]

or that the maximal branching degree of any state of any process is

bounded by a fixed number [21], for example. Fairly often, the con-

ditions are based on information derived from analyses of subsystems,

i.e., abstraction is realized by hiding processes [84, 100, 102] (also

compare the approaches above). Note, though, that other abstraction

methods can be used, as well. Gössler and Sifakis [70], for example,

try to establish deadlock-freedom in interaction systems based on a

cycle analysis in a certain graph which constitutes a simplified repre-

sentation of the possible dependencies between the components.

There are further methodologies (e.g., formal systems consisting of axioms

and inference rules as discussed by Apt et al. [12] and Francez [64] in the

context of CSP, for example) to argue about correctness and properties of

systems. However, at this point we conclude the discussion and explain

which methodology we choose to follow in this thesis.

1.2.2 Goal of this Thesis

This thesis is supposed to advance the understanding as well as the

practical usefulness of interaction systems. As stated above we investigate

deadlock-freedom and progress. These properties are clearly desirable and

important in systems design. Moreover, deadlock-freedom is of interest be-

cause checking regular safety properties can be reduced to checking deadlock-

freedom [68]. On the other hand, the complexity results above show that

dealing with these properties has to be handled with care. Just like in other

formalisms for concurrent systems, the above-mentioned state space explo-

sion problem is encountered in interaction systems, and therefore a direct

check of the properties by analyzing the global state space is not feasible.

Indeed, the complexity results show that any approach trying to present

an efficient decision-procedure for one of the properties which works for all

systems is doomed to failure. In this thesis we want to tackle the complexity

issues by following the last methodology presented above, i.e., we want to

10 1.3 Other Approaches Towards Component Systems

exhibit sufficient conditions for the properties. In the following we establish

a few paradigms that we want to follow in the search for such conditions:

• Since we settle for sufficient conditions for a property this “incom-

pleteness” should be made up for by the fact that the conditions can

be checked efficiently6.

• We want to accomplish the conditions in a compositional manner. For

example, we only want to consider parts of the system by hiding com-

ponents and combine the information gathered from the subsystems

to obtain a statement about a property of the global system. This way

we make sure that the conditions can indeed be checked efficiently.

• We want to formulate these conditions in such a way that the infor-

mation necessary for checking them has not been gathered in vain if

the condition is not satisfied, even though the conditions are only suf-

ficient: In this case we want to be able to draw conclusions about

further steps that can be taken to detect the property in question.

The reason we follow the methodology of exhibiting sufficient conditions is

twofold: First, model checking has been thoroughly investigated and is well

understood. If no other technique is at hand it can be consulted to in in-

teraction systems just like in most other formalisms for concurrent systems.

We do not feel it would be too much of a contribution to investigate model

checking in the context of interaction systems. Second, the strict separation

of behavior and communication in interaction systems has proved to be very

suitable for stating sufficient conditions. Once certain characteristics of a

property have been identified they can be tackled on each layer of description

of interaction systems independently without having to touch the other.

1.3 Other Approaches Towards Component Systems

We conclude by giving a short review of some of the models that are

used for the investigation of component based systems. For some of these

6Here “efficiently” means “in time polynomial in the number and size of the components

and the size of the glue-code”.

1.3 Other Approaches Towards Component Systems 11

models the main purpose consists of providing a means to support systems

design and to allow for a convenient way to describe and discuss component

systems. Others also emphasize the investigation of various properties. We

shortly discuss these in the context of the methodologies considered above.

Reflecting the condition that the internals of a component should not be

accessible directly from the outside, most formalisms have in common that

components are equipped with some kind of interface consisting of ports

which can be used to access the services a component offers. The inter-

faces can be used to combine various components yielding complex systems.

In order to make allowance for a high degree of encapsulation there is a

range of approaches which consider a component as a black box that does

not make any specification about the internal behavior of the component

[32, 41, 48, 109]. A component only provides the I/O behavior which is

externally observable for each port. The approaches differ in how the ports’

behaviors are specified (using pre- and postconditions or data-streams, for

instance) and what kind of statements are possible about the constructs ob-

tained from composing components. Such approaches allow for automatic

reasoning about component compatibility or about properties specified on

the data-streams. However, for the properties, that we are interested in,

this high degree of encapsulation is not practicable. For example, it does

not suffice to compare the execution traces of communicating components to

exclude the possibility of deadlocks [107, Chapter 9.4]. Thus, for the purpose

of analyzing such properties the model used to describe components must

also provide information about the internal behavior of each component.

There is a variety of proposals on how to incorporate this information

into the formal description of the components. There have been approaches

(cf. Bastide and Barboni [28] and Aoumeur and Saake [11], for example) to

describe the local behavior of components using Petri nets. Petri nets are

convenient to describe concurrent processes because they convey an intuitive

graphical idea7 of the system’s structure and behavior without neglecting

the requirements for a well-grounded formalism. Furthermore, it is possible

to formulate and investigate a range of interesting properties, and Petri nets

7An intuitive access to a formalism is a convenient feature not least with regard to

using it as a basis for systems design.

12 1.3 Other Approaches Towards Component Systems

allow for formal verification by means of model checking. However, in our

view Petri nets are suitable to only a limited extent as a formal model for

component based systems owing to the fact that there is no adequate general

composition operator for Petri nets. This is a drawback because one of the

defining properties of a component named in Section 1.1 is composability.

Thus, any formalism modeling the components by Petri nets must provide

explicit rules on how to construct the Petri net describing the global sys-

tem from the nets of the single components respectively subsystems. Such

constructions can be rather complicated: For the definition of the net de-

scribing a composed system Bastide and Barboni [28], for example, have to

fall back to an extension of Petri nets causing various properties to become

undecidable. In addition, explicitly constructing a Petri net for the global

system has the disadvantage that the identities of the single components are

lost, i.e., there is no canonical way to relate the places and transitions of the

global net to the net of the component they came from.

Since component based systems are concurrent systems after all it makes

sense to use the existing and well-understood formalisms that are based on

process algebra and automata respectively labeled transition systems to de-

scribe the (branching) behavior of a component. This way of describing

the behavior of the components has its strength in the fact that process

algebras have been thoroughly investigated. They provide a means to de-

scribe the branching behavior of concurrent processes, and they allow for

an easy and intuitive way for parallel composition of processes. There is a

range of behavioral equivalences which are — as mentioned in the previous

section — an important instrument with regard to showing that a system

conforms to a specification. Furthermore, transition systems are amenable

to model checking. The latter two features are indeed extensively used for

the verification of component systems in models based on process algebra

or automata.

There are various component models which are based on process alge-

bras such as CCS [107], CSP [83], or the π-calculus [108], or on combinations

respectively subclasses of these. The models falling into this category [e.g.,

8, 33, 38, 84, 85, 97, 112] differ in the calculus that is used and in the de-

tails of which parts of the components’ behavior are modeled. Interestingly,

1.3 Other Approaches Towards Component Systems 13

though, quite a few of these models try to establish deadlock-freedom of

a composed system (respectively of the construct obtained by gluing sev-

eral ports together in the case of Allen and Garlan [8]) by following the

methodology of presenting sufficient conditions. These conditions are based

on various ideas. On the one hand, Brookes and Roscoe [38] derive deadlock-

freedom results from constraints on the communication architecture of the

system. Similarly, Bernardo et al. [33] also put restrictions on the archi-

tecture (the authors consider star topologies and rings of components) and

additionally check behavioral equivalences for systems resulting from certain

subsets of components. A (partial) behavioral equivalence between pairs of

components is also defined and used by Inverardi and Uchitel [84]. Roughly

speaking, this equivalence makes sure that the components’ behaviors are

compatible until they do not require cooperation with each other any more.

Finally, Allen and Garlan [8] derive deadlock-freedom from conditions that

can be checked on the glue-code used to combine ports of several compo-

nents. These approaches aim at conditions whose check is not as complex

as an analysis of the global system. Despite the fact that process algebras

have been thoroughly investigated and that there exists a great variety of

formal tools which can be used to verify process properties in such alge-

bras, they also have a drawback when it comes to modeling components: In

general, process algebras do not cleanly detach synchronization between the

processes from their behavior. Considering CSP, for example, the possible

candidates for synchronization over an action a are predetermined by the

name of the action. Synchronization is always accompanied by renaming of

actions of the respective processes (which constitutes an interference with

the behavior of the processes).

There are numerous models which use slightly more general notions

of automata or labeled transition systems to describe the components8.

To begin with, there are I/O-automata [96], interface automata [56], and

team automata [62, 134]. Based on these formalisms there are various

other approaches towards providing components with an internal behav-

ior (cf. Baumeister et al. [30] and Hennicker et al. [79] based on interface

8Not all of these models have been explicitly designed to model component systems.

Nonetheless, they are suitable to be used in this context, as well.

14 1.3 Other Approaches Towards Component Systems

automata or the CoIn approach [37, 46] based on team automata, for ex-

ample). The SOFA component model and its extension SOFA2.0 [45, 119]

use behavior protocols [90, 118] to describe the behavior of the components.

Note that the above-mentioned model FRACTAL [41] has been extended

by behavior protocols to also allow for specification of component behavior

(cf. Bulej et al. [44]). Furthermore, there is the Vereofy setting [6] which

extends the Reo coordination language [13, 14] by constraint automata [15]

in order to describe the components’ behavior (and in fact also the behavior

of the glue-code). Bergner et al. [32] suggest state transition diagrams as

another possibility to describe the I/O-behavior of a component. We con-

clude by mentioning that there are various further ways to use automata to

provide components with an internal behavior, for example, statecharts [78]

from which the UML state machine diagrams [5] have been derived.

Not all of the above-mentioned models put the main focus on the in-

vestigation of properties (in particular, those properties we are interested

in). It is clear, though, that model checking is a valid option. Indeed, some

of the models above have been formulated and applied in the context of

certain model checking tools. This is the case for the CoIn approach [137]

towards the CoCoME project using the DiVinE model checker [25] and for

the Vereofy setting which provides a model checker9 of its own, for exam-

ple. On the other hand, Lynch and Tuttle [96] use compositional proof

rules in the context of I/O-automata in order to allow for arguments about

composed systems without having to investigate the global state space. Fur-

thermore, there also are results on testing of I/O-automata [136]. Finally,

some authors, e.g., Hennicker et al. [79], provide sufficient conditions for

properties using architectural constraints. This approach has also been

taken in the context of establishing deadlock-freedom in interaction sys-

tems [70, 100, 102]. Note that Attie and Chockler [20] use similar ideas as

the latter two works in a setting for general concurrent systems.

It remains to be said that the above review of component models is far

from complete. We mainly focused on such models where similar questions

9This model checker features Binary Decision Diagrams (BDDs) [36, 42, 43] as the

underlying data structure of the description of the automata. BDDs allow for an efficient

representation and manipulation of the automata.

1.4 Thesis Outline 15

to the ones we will treat here arise. Needless to say, there are numerous ad-

ditional interesting properties which have been formulated and investigated

in other component models. Each of these models exhibits various strengths

with regard to the concrete problem to be treated, and it is difficult to re-

late these to the problems we treat in the context of interaction systems.

Exemplarily, we say a few words about some other approaches towards com-

ponent based systems and the properties that have been investigated. There

are various models such as the KobrA component design method [18, 19]

which set greater store by the actual modeling and design of a system than

by analysis and verification of system properties. Such models are supposed

to provide a common basis for the discussion of questions arising in the devel-

opment process of a system. On the other hand, there are approaches, e.g.,

the Palladio Component Model [123], providing a means to investigate non-

functional properties (performance, reliability, resource management, etc.)

which exceed the requirements put upon a component system by a speci-

fication. In particular, with regard to application of components it can be

essential to also be able to evaluate the quality of a system with respect

to such issues. The various approaches mentioned so far have one thing in

common: They are all based on a discrete setting, i.e., each component has

countably many (typically finitely many) states and actions. This suffices

to treat a great variety of situations. In contrast, Masaccio [80] is a model

for component systems that allows for continuity by letting the states of the

components range over the real numbers, while the components’ behavior

is described by differential equations. Such an approach offers a whole new

field of possibilities which cannot be handled in any discrete setting.

1.4 Thesis Outline

The thesis consists of 6 chapters. Chapters 3, 4, and 5 are followed by

an appendix containing the proofs of the results presented in the chapter.

There is only one exception to the convention of moving the proofs to the

end of each chapter. We state one proof right away. It is a constructive proof

whose construction is necessary to understand the arguments to follow.

• Chapter 2 contains the definitions of the basic notions with respect to

16 1.4 Thesis Outline

interaction systems. We define deadlock-freedom and progress. The

chapter also presents an example modeling the dining philosophers as

an interaction system.

• Chapter 3 uses architectural constraints in order to derive deadlock-

freedom results for a subclass of interaction systems. We first deal with

reachability in interaction systems and we explain how the reachability

of given combinations of states may be excluded by only analyzing sub-

systems of size two. We define the interaction graph of an interaction

system which we require to be a tree. This constraint is used to iden-

tify pairs of states that may cause global deadlocks. We combine these

results with the considerations about reachability in order to exclude

the possibility that combinations of such pairs are in fact reachable.

We simplify the results for systems obeying to further restrictions. We

discuss three complex examples.

• In Chapter 4 we consider progress of a set of ports. We first present

a characterization of all sets of ports that make progress in a given

system. Thereafter, we turn to the question of how progress can be

detected in practice. We state a sufficient condition for progress which

is based on a graph. The preciseness of the criterion can be controlled

according to a parameter d which is incorporated into the construction

of the graph. This construction can be achieved efficiently where the

degree of efficiency is governed by d. By discussing situations where

the criterion is not satisfied we motivate how the information gathered

from the graph can be combined with other criteria. Finally, we use the

results to show that every philosopher makes progress in the system

modeling the dining philosophers introduced in Chapter 2.

• In Chapter 5 we consider situations where certain components respec-

tively ports may fail during the execution of the system. We inves-

tigate how properties of a system are influenced by this failure. We

define robustness of deadlock-freedom with respect to failure of a set

of ports respectively progress without a set of ports. Next, we show

that the approaches chosen towards deadlock-freedom and progress in

1.4 Thesis Outline 17

the previous two chapters can be adapted to also account for this new

situation. We obtain results which adjust the criteria presented in

these chapters to systems where ports may fail.

• Chapter 6 concludes the thesis. We review the results and classify

them with regard to other methodologies and the question in what

ways the challenge has been met. We point out directions for future

work.

Chapter 2

Interaction Systems

In this chapter we state the definitions concerning the formalism of interac-

tion systems. All results in this thesis are based on these definitions. We first

define interaction systems by giving the two layers that an interaction sys-

tem is composed of. We continue by defining deadlock-freedom and progress

in interaction systems. This chapter is a collection of the notions introduced

by Gössler, Sifakis, and others [71–74, 102] although it should be noted that

we do not always stick to the nomenclature chosen there. Furthermore, in

some regards we consider slight generalizations of the notions introduced in

these papers. Nonetheless, interaction systems originate from these sources

(in particular from the works by Gössler and Sifakis [71, 72]). Readers who

are familiar with interaction systems may want to skim through this chapter

in order to get accustomed to the notations we use in this thesis and use it

as reference for clarification of terms occurring in the following chapters.

Before going into the details note that the BIP- [29] and the PROME-

THEUS-tool [69] implement data structures which are based on interaction

systems. Furthermore, the model is used as a common formal platform in

the EU project SPEEDS [22, 35].

2.1 Components, Interactions, and Interaction Systems

There are two layers of description for an interaction system. We will first

define an interaction model which constitutes the static layer of description of

an interaction system. An interaction model consist of a component system

19

20 2.1 Components, Interactions, and Interaction Systems

and an interaction set. The component system comprises the names of the

components and their port sets. The interaction set defines the “glue-code”

used to stick the components together. It is given by so-called interactions

which are sets of ports such that each component participates with at most

one port1. Intuitively, an interaction α describes a possible cooperation of

the participating components over the ports contained in α.

Definition 2.1.1. A component system is a pair CS = (K, {Ai}i∈K).

Here K = {1, 2, . . . , n} is a finite set of components. We usually use

variables i, j, k, . . . to denote the components. Ai denotes the port set of

component i ∈ K. We assume that the port sets are nonempty, finite, and

pairwise disjoint. We usually denote the elements of Ai by ai, bi, ci, . . . and

call them ports or actions. The union A =
⋃

i∈K Ai of all port sets is

called the port set of CS.

A nonempty subset α ⊆ A is called an interaction of CS if
∣

∣α ∩Ai

∣

∣ ≤ 1

for all i ∈ K. We usually use variables α, β, γ, . . . to denote interactions.

For i ∈ K and interaction α we define i (α) := Ai ∩ α, and we say that

i participates in α if i (α) 6= ∅. An interaction set (for CS) is a set

Int of interactions of CS that covers all ports, i.e.,
⋃

α∈Int α = A . The

function comp : Int → 2K where comp (α) := {i ∈ K|i (α) 6= ∅} yields the

components that participate in α. We say that two components i and j,

i 6= j, interact if there is an interaction α ∈ Int with i, j ∈ comp(α). For

interacting components i and j we define the set of ports of i that are used

for communication with j as comm i (j) := {ai ∈ Ai|∃α ∈ Int with ai ∈

α and j (α) 6= ∅}. Further, let i ∈ K be a component and let Int′ ⊆ Int be

a subset of interactions. By Int′(i) := {α ∈ Int′|i(α) 6= ∅} we denote the set

of interactions in Int′ that i participates in.

The pair IM := (CS, Int) is called an interaction model.

At this level of description we still completely abstract from the local

behavior of the components, but even at this level the same set of compo-

nents may yield various component systems because the components can be

1This requirement makes sure that no component ever has to perform a self-

synchronization which is a natural assumption if one considers ports to be atomic actions

which can be executed by a component one at a time.

2.1 Components, Interactions, and Interaction Systems 21

glued together using different sets of interactions. Thus, interaction systems

adhere to one of the characteristics, namely context independence, required

for components in Section 1.1. By separating the glue from the specification

of the behavior of a component, which will be given by the second layer of

description, we ensure that each component is as independent from the con-

text it is supposed to be used in as possible. For many formalisms behavior

and communication are not cleanly detached from each other. This is in par-

ticular the case if for a given action those actions of other components that

are possible candidates for communication are predetermined by the name

of the action: If communication consists of renaming before synchronization

then this separation is not enforced (cf. CCS [107], for example).

Figure 2.1 below indicates how an interaction model can be depicted

graphically. We represent components by large white squares whereas the

ports are given by small black squares on the edges of the corresponding com-

ponent. An interaction is depicted as a line connecting the ports it contains.

In the following chapters we do not build on such graphical representations

which is why we will not go into the details of depicting the interaction

models of upcoming examples. It should be borne in mind, though, that the

notion of interaction model allows for an intuitive access which is, as stated

in Chapter 1, a convenient feature in systems design.

Remark 2.1.1. There are various other definitions of an interaction model

which put further requirements on the interaction sets. For example, there

exist notions of a connector c and a connector set C [72–74]. A connector

is an interaction in our sense. A connector set is an interaction set that

satisfies the additional condition that all connectors in C are maximal with

respect to set inclusion. Using this notion there is a further special case:

Arbitrary subsets of connectors may be declared as complete interactions2.

The interaction set for this kind of system is then given by C ∪Comp where

Comp is the set of complete interactions.

It is clear that these definitions are special cases of the notion of an

interaction set Int as defined above. We will always work with this notion

2Further restrictions may be imposed on the set of complete interactions. For example,

Gössler and Sifakis [72] require every superset of a complete interaction to also be complete.

22 2.1 Components, Interactions, and Interaction Systems

of an interaction set, keeping in mind that the results hold for the special

cases, as well.

We present an example illustrating the notions. We model a version

of the dining philosophers [60] as an interaction system. In such concrete

examples we deviate from the naming scheme in Definition 2.1.1 if intuitive

names for the objects help for a better understanding.

Example 2.1.1. The problem of the dining philosophers as posed by Dijk-

stra is set in an academia inhabited by five philosophers. The life cycle of a

philosopher primarily consists of his considerations. Every once in a while

he gets hungry whereupon he will sit down at the circular dining table. Five

plates and five forks are arranged around the table such that in between any

two plates there is one fork. In order to be able to eat a philosopher has to

pick up both forks to the sides of his plate.

We model a slightly more general version of the dining philosophers con-

sisting of m ≥ 2 philosophers and m forks that have to be shared. We

represent each philosopher by a component pi and each fork by a compo-

nent fi where 0 ≤ i ≤ m − 1. We get K ′
philm

:= {pi, fi|0 ≤ i ≤ m − 1}. The

port set Api
of philosopher pi contains the ports activatei, enteri, get

r
i , getli,

eati, putri , putli, and leavei. So far, we have not provided any explanation for

the ports activatei, enteri, and leavei. For now, we only require that the

philosophers have to be activated simultaneously, i.e., there is an interac-

tion act := {activate0, . . . , activatem−1}. The port set of fork fi is given by

Afi
:= {geti, puti}. There are two interactions allowing the i-th philosopher

to pick up and put down the fork to his right: acquirer
i := {getri , geti} respec-

tively releaser
i := {putri , puti}. Analogously, there are interactions involving

the i-th philosopher and the fork to his left: acquirel
i := {getli, geti+1 mod m}

respectively releasel
i := {putli, puti+1 mod m}. Finally, we introduce the inter-

actions {eati} allowing pi to eat and {enteri} respectively {leavei}. We define

Int′philm := {act, acquirer
i , release

r
i , acquirel

i,release
l
i,{eati},{enteri},{leavei} |

1 ≤ i ≤ m} and IM′
philm

:= (CS′
philm

, Int′philm).

IM′
philm

is depicted in Figure 2.1. The line connecting the ports activatei

represents the interaction act, for example. No lines end in enteri, eati, and

leavei because these ports are contained in singleton interactions.

2.1 Components, Interactions, and Interaction Systems 23

p1

activate1

enter1

getr1getl1

eat1

putr1putl1

leave1

f1

put1

get1

p0

activate0

enter0

getr0getl0

eat0

putr0putl0

leave0

f0

put0

get0

Figure 2.1: Graphical representation of IM′
philm

The example illustrates the great flexibility which is provided by the no-

tion of an interaction model. Int′philm contains interactions consisting of a

single action, binary interactions, as well as an interaction involving m com-

ponents. The degree of synchronization is not restricted. This is not the

case for formalisms only allowing binary interaction between the processes

such as CCS [107], for example. Other formalisms like CSP [83] or I/O--

automata [96] allow multiway communication between an arbitrary number

of components but such a communication has to be realized by synchroniza-

tion over ports of the same name. In particular, this means that one port of

a component can only be used for exactly one cooperation, namely for coop-

eration with all other components whose alphabets contain that respective

port. By contrast, the ports of fi are used for synchronization with various

components (the two philosophers next to the fork). In some models these

problems can be circumvented but this is not achieved straightforwardly and

partly requires comparatively involved constructions.

The second layer of description of an interaction system is the dynamic

layer. It is given by the local behavior of the components. For each compo-

nent we specify the local behavior by a labeled transition system where the

labels are taken from the port set of the component. The global behavior

of the system is obtained by combining these local systems according to the

interaction set: In a global state an interaction α can be performed if all

components involved in α offer the required port in the corresponding local

states. Performing α results in the global state change obtained by perform-

ing the corresponding local transitions for the components involved. Thus,

the availability of actions in the global system is restricted in two ways.

On the one hand, it is restricted by the order of execution of the actions

24 2.1 Components, Interactions, and Interaction Systems

specified by the transition system of the component. It is also restricted by

the requirement that every action has to be synchronized according to one

of the interactions it is contained in.

Definition 2.1.2. Let IM be an interaction model. Let {Ti}i∈K be a

family of labeled transition systems. Ti :=
(

Qi,Ai,→i, q
0
i

)

is a tuple,

where Qi is a finite set of local states, →i⊆ Qi × Ai × Qi is the lo-

cal transition relation3, and q0
i ∈ Qi is the local initial state. For

qi ∈ Qi we define en (qi) := {ai ∈ Ai|∃q′i ∈ Qi with qi
ai→i q′i} the set

of ports that are enabled in qi. Further let Int′ ⊆ Int be a subset of

interactions. Int′ (qi) := {α ∈ Int′|α ∩ en (qi) 6= ∅} denotes the set of in-

teractions in Int′ that contain a port in en (qi). A local state qi is called

complete if there exists an interaction α = {ai} ∈ Int (qi). We write

need(qi) :=
⋃

α∈Int(qi)
comp(α)\{i} for the set of components that i poten-

tially needs for cooperation in qi.

Sys :=
(

IM, {Ti}i∈K

)

is an interaction system with induced global

transition system T̃Sys :=
(

QSys, Int,→, q0
)

. Here:

1. QSys :=
∏

i∈K Qi, we call q = (q1, . . . , qn) a (global) state of Sys.

2. →⊆ QSys × Int×QSys is the (global) transition relation where for

all q, q′ ∈ QSys and all α ∈ Int we have q
α
→ q′ if and only if for all

i ∈ comp (α) with i(α) = {ai} we have qi
ai→i q′i and q′i = qi for all

other components.

3. q0 =
(

q0
1, . . . , q

0
n

)

is the (global) initial state.

For a state q and interaction α we say that α is enabled in q if i(α) ⊆ en(qi)

for all i ∈ comp (α). A state q is reachable in Sys if there is a sequence

σ = q0 α0→ q1 α1→ . . .
αl→ q in T̃Sys that starts in q0 and ends in q. We denote the

set of reachable states in Sys by reach(Sys) := {q|q is reachable in Sys}. We

define TSys := (reach(Sys), Int,→, q0) to be the induced global behavior

of Sys. Here →⊆ reach(Sys) × Int × reach(Sys) is the labeled transition

relation of T̃Sys restricted to the reachable states.

3We write qi
ai→i q′i instead of (qi, ai, q

′
i) ∈→i.

2.1 Components, Interactions, and Interaction Systems 25

A path of length l in Sys is a sequence σ = q
α0→ q1 α1→ . . .

αl−1
→ ql in

TSys
4. A run in Sys is an infinite sequence σ = q

α0→ q1 α1→ q2 α2→ . . . in TSys.

A cycle in Sys is a path σ of length ≥ 1 in TSys such that the first and the

last state of σ coincide. Let A0 ⊆ A be a set of ports and let σ be a path

or a run. We say that A0 participates in σ if there is an interaction αs on

σ such that A0 ∩ αs 6= ∅. We say that a component i participates in σ if

Ai participates in σ.

We will write Q instead of QSys if there is no danger of resulting confu-

sion. Further, we will also refer to Ti as the local behavior of i. Note that

paths, runs, and cycles are defined for the reachable part of Sys, i.e., each

path, run, or cycle always starts in a reachable state. It becomes clear now

why we made the assumption that every interaction α contains at most one

port of every component. Because every local transition is labeled with ex-

actly one port it would not be clear what effect the execution of α containing

two ports ai 6= bi of component i would have for i.

Remark 2.1.2. Without loss of generality we assume that en(qi) 6= ∅ for

all i and all qi, i.e., there are no local sink states or dead ends but every

local state has at least one outgoing transition. This property can always

be enforced by introducing idle actions allowing a component to loop in a

state that originally did not enable any action. We get Int (qi) 6= ∅ for all qi

and need (qi) 6= ∅ for all qi that are not complete. We also assume that for

each i and each ai ∈ Ai at least one transition in Ti is labeled with ai and

that every qi is reachable from q0
i in Ti.

The way that labeled transition systems are used for the description of

the behavior of the components is similar to the approach taken for interface-

automata [56] and I/O-automata [96]. It is possible to model a system in

these formalisms by an interaction system. Furthermore, CCS- and CSP-

processes [83, 107] can also be modeled as an interaction system. Conversely,

it is also possible to model an interaction system in these models. It should

be noted that this translation is more intricate because the flexibility pro-

vided by the notion of an interaction set has to be modeled in a more

4If l = 0 we set ql := q.

26 2.1 Components, Interactions, and Interaction Systems

restrictive setting, i.e., only binary communication is allowed respectively

synchronization is only possible over actions of the same name.

Example 2.1.1 continued: We assume that all philosophers respectively

all forks exhibit the same following behavior up to renaming of states and

actions. When a philosopher gets hungry he first has to be activated. We

assume that the table is situated in a distinct dining room. Therefore the

philosopher has to enter the dining room before being able to take the fork

to his right and then take the fork to his left. Having acquired both forks he

may eat. Afterwards he puts down the forks and leaves the dining room to

go back to his considerations. The transition system modeling this behavior

is given in Figure 2.2 a) for pi. The set of local states is Qpi
:= {q0

pi
, . . . , q7

pi
}.

For better readability, we denote qx
pi

by its superindex x in the figure. The

behavior of the forks is very simple: Each fork can be picked up and put

down afterwards. This behavior is depicted in Figure 2.2 b) for fi. We have

Qfi
:= {q0

fi
, q1

fi
}. We use the same convention for denoting the states of fi

in the figure. We get Sys′philm := (IM′
philm

, {Ti}i∈K ′
philm

).

0

pi :a)

1

2

3

45

6

7

activatei

enteri

getri

getli

eati

putri

putli

leavei
0

fi :

b)

1

getiputi

Figure 2.2: The local behavior of the components in K ′
philm

It is easy to equip a component with a different behavior. For example,

by simply adjusting Tpi
we could allow the i-th philosopher to pick up the left

fork first or we could even allow him to nondeterministically choose which

fork to pick up first. We emphasize once more that this can be done without

touching the glue-code defining the interactions between the components.

In this thesis Sys will always denote an interaction system where IM

2.1 Components, Interactions, and Interaction Systems 27

and the Ti are given as above. When an interaction system is specified in

an example, we usually state the set K of components, the port sets Ai,

the interaction set Int, and the local behaviors Ti. We shall then simply

speak of the induced interaction system Sys, where Sys :=
(

IM, {Ti}i∈K

)

,

IM := (CS, Int), and CS := (K, {Ai}i∈K).

For a given interaction system Sys we need a notion of subsystem with

respect to a nonempty subset K ′ ⊆ K of components.

Definition 2.1.3. Let Sys be an interaction system and let K ′ ⊆ K be

a nonempty subset of components. The projection of Sys to K ′ is the

interaction system given by Sys ↓K ′ :=
(

IM ↓K ′ , {Ti}i∈K ′

)

. Here

• IM ↓K ′ := (CS ↓K ′ , Int ↓K ′),

• CS ↓K ′ := (K ′, {Ai}i∈K ′),

• and Int ↓K ′ := {α ↓K ′ |α ∈ Int and comp(α) ∩ K ′ 6= ∅}

where α ↓K ′ := {aj|aj ∈ α ∧ j ∈ K ′} is the projection of α to K ′. More

generally, let Int′ ⊆ Int be a subset of interactions. We write Int′ ↓K ′ :=

{α ↓K ′ |α ∈ Int′ and comp(α) ∩ K ′ 6= ∅}. The projection of a state q to

K ′ is q ↓K ′ := (qi)i∈K ′ .

Let σ = q
α0→ q1 α1→ . . .

αl−1
→ ql be a path in Sys. Let 0 ≤ m1 < m2 < . . . <

mr ≤ l denote those indices with K ′ ∩ comp(αms) 6= ∅. The projection of

σ to K ′ is given by:

σ ↓K ′ := q ↓K ′

αm1↓K′
−→ qm1+1 ↓K ′

αm2↓K′
−→ qm2+1 ↓K ′

αm3↓K′
−→ . . .

αmr↓K′
−→ qmr+1 ↓K ′

Let σ = q
α0→ q1 α1→ q2 α2→ . . . be a run in Sys. If there are finitely many m

with K ′ ∩ comp(αm) 6= ∅ then the projection of σ to K ′ is the path

σ ↓K ′ := q ↓K ′

αm1↓K′
−→ qm1+1 ↓K ′

αm2↓K′
−→ qm2+1 ↓K ′

αm3↓K′
−→ . . .

αmr↓K′
−→ qmr+1 ↓K ′

in Sys ↓K ′ where 0 ≤ m1 < m2 < . . . < mr < ∞ are defined as above.

Otherwise the projection of σ to K ′ is the run

q ↓K ′

αm1↓K′
−→ qm1+1 ↓K ′

αm2↓K′
−→ qm2+1 ↓K ′

αm3↓K′
−→ . . .

in Sys ↓K ′ where 0 ≤ m1 < m2 < . . . are defined as above.

28 2.2 Properties of Interaction Systems

Remark 2.1.3. We also call Sys ↓K ′ the subsystem of Sys with respect to

K ′. Note that we do not necessarily obtain a run σ ↓K ′ when we consider

the projection to K ′ of a run σ of the global system because K ′ may only

participate in a finite number of the interactions occurring on σ.

2.2 Properties of Interaction Systems

Next, we define the properties of interaction systems that we will inves-

tigate. We deal with deadlock-freedom first. There are various reasons why

deadlock-freedom is a key property with regard to distributed systems:

1. Deadlock-freedom itself is a desirable property in systems-design. The

case that a system may reach a state where all components mutually

block each other due to a conceptual mismatch in the specification of

the system should clearly be avoided. In such a state the system will

not be able to fulfill its functionality any more and depending on where

the system is deployed the consequences may vary from nuisance over

financial loss to disaster.

2. Deadlock-freedom is a basic requirement in order to be able to define

other generic properties that make statements about all runs (e.g.,

progress), because this kind of property would be present automati-

cally if there is no run. For a deadlock-free system every path can be

elongated to form a run because in every reachable state at least one

interaction is enabled.

3. Checking an arbitrary regular safety property can be reduced to check-

ing deadlock-freedom [68]. Thus, a range of properties can be handled

once one has a thorough understanding of deadlock-freedom.

We define the notions of deadlock in a state q respectively of deadlock--

freedom of Sys. We distinguish between local and global deadlocks in q.

A deadlock is a state q which does not enable any interaction, i.e., a dead

end in T̃Sys. Deadlock-freedom of Sys simply describes the fact that no such

dead end is reachable in Sys.

2.2 Properties of Interaction Systems 29

Definition 2.2.1. Let Sys be an interaction system and let q ∈ QSys be a

global state. We say that q is a (global) deadlock (state) of Sys if no

interaction is enabled in q. Sys is free of global deadlocks or deadlock-

free if it does not contain any reachable (global) deadlock.

Let D ⊆ K be a nonempty subset of components. D is a local deadlock

in q if for all i ∈ D we have:

α ∈ Int (qi) ⇒ ∃j ∈ D ∩ comp (α) with j (α) 6⊆ en (qj)

Sys is free of local deadlocks if it does not contain any reachable local

deadlock.

A global deadlock in q is a local deadlock with D = K. If D constitutes

a local deadlock in q then the components in D will never change their local

state any more. Furthermore, whenever we consider a local deadlock D in a

state q we can always find a minimal local deadlock D′ ⊆ D in q (in the sense

that D′ is a local deadlock but no proper subset of D′ has this property).

Thus, we may always assume that D is minimal.

According to Remark 2.1.2 we only consider interaction systems where

the local transition systems do not contain any sink states. Furthermore,

we have
⋃

α∈Int = A. This means that there cannot be any deadlocks which

are caused by the fact that one or more components have reached a local

state that does not enable any port. Since we only consider finite systems

it can therefore be seen that a deadlock can only occur because there are

groups of components that mutually block each other. In particular, if

there is a deadlock in q it is always possible to find a subset K ′ of at least

two components such that there exists a cycle of waiting relations between

the components in K ′. This means that the components can be given an

order such that each component wants to perform an interaction involving

the next (calculating mod |K ′|) component which in turn does not enable

the required port. Of course, in a system where certain local states do

not enable any port there can also be global states which do not enable

any interaction because none of the local states offers a transition. We do

not consider this kind of deadlock because usually such local sink states

indicate some kind of successful termination of a process, and reaching a

combination of such states should not be considered a fault of the system.

30 2.2 Properties of Interaction Systems

A global deadlock as above on the other hand indicates that there has been a

conceptual mismatch in the combination of the components. One might ask

whether it is possible that the system can indefinitely delay the execution

of an enabled interaction and this way cause a “deadlock” even though

interactions are enabled. However, interaction systems are not designed for

such “malicious” behavior on the part of the system (which simply decides

that it does not want to perform any interaction). The global semantics of an

interaction system describes which global states are reachable by executing

any possible finite sequence of enabled interactions. Then a deadlock is a

state which cannot be left any more.

Example 2.1.1 continued: We take a closer look at the deadlock-be-

havior of Sys′philm . For simplicity we consider m = 3. The following consid-

eration can be repeated analogously for arbitrary m. By performing the in-

teractions act, {enter1}, {enter2}, {enter3}, acquirer
0, acquirer

1, and acquirer
2

in Int′philm the system will reach the state:

(

q1
f0

, q3
p0

, q1
f1

, q3
p1

, q1
f2

, q3
p2

)

In this state every philosopher has one fork and waits for the other. This

constitutes a deadlock, and Sys′philm is not deadlock-free. This is not sur-

prising, though, because it is well-known that the dining philosophers are

afflicted by deadlocks if the system is not further restricted in some way.

Various strategies have been presented in order to avoid deadlocks in

the system of the dining philosophers (cf. Ben-Ari [31], for example). The

strategy we model here uses a control component c to make sure that at most

m−1 philosophers are at the table at the same time. We extend the example

as follows: Set Kphilm
:= K ′

philm
∪ {c} with Ac := {enter, leave}. We get the

new component system CSphilm
:= (Kphilm

, {Ai}i∈Kphilm
). The interaction

set Intphilm is obtained from Int′philm by replacing each interaction {enteri} by

ǫi = {enteri, enter} and each interaction {leavei} by λi = {leavei, leave}. We

get IMphilm
:=

(

CSphilm
, Intphilm

)

. The local behavior of c is given in Figure

2.3. Again, in the figure we denote local states in Qc := {qx
c |0 ≤ x ≤ m− 1}

by their superindex x. Note that x denotes the number of philosophers that

are currently in the dining room. In Sysphilm at most m−1 philosophers are

able to acquire at least one fork at the same time because each philosopher

2.2 Properties of Interaction Systems 31

0

c :

1 2 m − 1

enter enter enter

leave

enter

leaveleave leave

Figure 2.3: The local behavior of c

has to perform his enteri action before he can actually take a fork. This

action has to be synchronized with enter of c which can be performed at

most m− 1 times without any philosopher leaving the table by means of an

interaction λi. The pigeonhole-principle can be used to show that in this case

there is always at least one philosopher who can pick up two forks and eat.

The deadlock above cannot be reached. A simple case distinction shows that

there is no other reachable deadlock. Therefore Sysphilm is deadlock-free.

The example shows that the definition of the allowed communications be-

tween components has to be handled with care because seemingly reasonable

interaction rules (i.e., each philosopher may take any of his adjacent forks

whenever it is free) may result in cyclic waiting relations and unpredictable

problems in the global system. Deciding deadlock-freedom of a given system

directly from the definition is difficult. Intuitively this is clear because any

decision procedure for deadlock-freedom would have to involve a reachability

analysis of the global state space which is obtained by taking the Cartesian

product of the local state spaces. Therefore we encounter the state space

explosion problem mentioned in Chapter 1. A reachability analysis is not

feasible. This statement has been formally substantiated by showing that

deciding virtually any property of interaction systems is PSPACE-complete.

In detail, a reduction from 1-safe Petri nets to interaction systems was given

by Majster-Cederbaum and Minnameier [99]. As a result it was possible to

derive the PSPACE-hardness of deciding reachability and deadlock-freedom

in interaction systems. Majster-Cederbaum and Minnameier [101] exploited

and extended these results by giving a chain of reductions between various

properties starting with reachability (which is PSPACE-hard) and ending in

a property5 which was shown to be in PSPACE. This showed that deciding

5This property is availability of a component. It states that on every run interactions

involving the component in question are repeatedly enabled.

32 2.2 Properties of Interaction Systems

any property appearing in the chain is PSPACE-complete. These results

yield a firm classification of the complexity of deciding the generic proper-

ties we investigate here. They show that we cannot expect to find a decision

procedure for deadlock-freedom that can be realized in time polynomial in

Sys and that works for all systems.

We turn to progress of a set of components. Intuitively, a component

i makes progress if at any point during the execution of the system it will

eventually participate in some interaction no matter how the system be-

haves. For a finite system deciding this property comes down to checking

that there is no cycle in TSys not allowing i to participate. Again, it is clear

that there is no efficient decision procedure for progress. In fact, progress

is one of the properties in the chain of reductions mentioned above showing

that deciding progress is PSPACE-complete. Here we consider the slightly

more general notion of progress of a set of ports.

Definition 2.2.2. Let Sys be a deadlock-free interaction system and let

A0 ⊆ A be a nonempty subset of ports. We say that A0 makes progress

in Sys if A0 participates in every run of Sys. Let K ′ ⊆ K be a nonempty set

of components. We say that K ′ makes progress in Sys if
⋃

i∈K ′ Ai makes

progress in Sys. If K ′ = {i} we say that i makes progress in Sys.

Recall that we only use the term “run” to denote infinite sequences start-

ing in a reachable state. Thus, the definition above only makes a statement

about TSys. We require Sys to be deadlock-free. This way we make sure

that the definition is consistent with the intuitive meaning of progress of a

component. The component should participate in some interaction eventu-

ally no matter how the system evolves. This condition is not satisfied if the

system may reach a global deadlock. In the extreme case there are no runs

at all in a system that contains deadlocks. Then any subset of components

would make progress. This does not comply with the idea of progress.

Before continuing, we point out a correlation between local deadlocks and

progress. If D is a local deadlock in q no component in D will participate

in any interaction any more. This directly implies that D cannot make

progress in Sys even if Sys is deadlock-free. No run starting in q allows D

to participate. The converse is not true. If D does not make progress in Sys

2.2 Properties of Interaction Systems 33

there does not have to be a state q such that D is a local deadlock in q.

Example 2.1.1 continued: We discuss progress of an arbitrary philoso-

pher in Sysphilm . Because every philosopher’s behavior consists of a linear

sequence in which the phases “think” and “eat” alternate, the requirement

that he should make progress in the system can be interpreted as making

sure that he will not starve to death. If a philosopher makes progress he

regularly returns to the table and eats. Before going back to Sysphilm we

want to understand why it is not a priori clear that a modeling obeying

to the specification of the dining philosophers will not let any philosopher

starve even if that particular modeling is deadlock-free: Even though the

group of philosophers makes progress as a whole this does not mean that

every philosopher will be able to eat eventually. This might simply be be-

cause one of the philosophers is extremely slow in picking up the forks so

that the forks are always taken when he is trying to acquire them or because

of an unfair scenario which favors one or more philosophers over others. For

example, a setting which never allows philosopher pm−1 to sit down at the

table certainly avoids a global deadlock because of circular waiting between

the philosophers. On the other hand it is clear that this solution is far from

being optimal because this setting basically results in a situation where the

number of forks exceeds the number of philosophers which does not reflect

the original specification of the problem.

Consider Sysphilm. Since all philosophers exhibit the same behavior we

may investigate progress of philosopher p0 and without loss of generality

generalize the result to the other philosophers. We investigate progress of

A0 := Api
. At the moment we only informally argue why p0 indeed makes

progress. We have already seen that the system is deadlock-free. Before ex-

plaining why p0 makes progress we note that for every α ∈ Intphilm at least

one philosopher participates. This means that in every global step at least

one philosopher changes his local state. Now assume that p0 does not make

progress. Let σ be a run of the system which p0 does not participate in. Be-

cause there are only m philosophers but σ is infinite there must be a philoso-

pher pj 6= p0 that participates infinitely often in σ. The local behavior of this

philosopher shows that repeatedly he has to execute the transition labeled

34 2.3 Conclusion and Discussion

activatej . Globally this is only possible if all other philosophers, in particu-

lar p0, join pj to perform the interaction act = {activate0, . . . , activatem−1}.

This shows that p0 participates in σ after all. We will return to the question

whether p0 makes progress in Chapter 4 after having introduced a framework

allowing for a formal investigation of progress.

2.3 Conclusion and Discussion

This chapter accumulates the basic definitions of the notions needed to

be able to speak about interaction systems. We summarized and partially

extended the definitions given by Gössler, Sifakis, and others [71–74, 102].

We stated the definitions of an interaction system and of a subsystem of an

interaction system with respect to a subset K ′ of components. Furthermore,

we stated the definitions of deadlock-freedom and progress.

We have already mentioned that we did not always stick to the defi-

nitions and notations that were originally introduced. This should not be

too confusing because it is still possible to relate the corresponding notions

and definitions coming from the various sources. We only want to point out

one detail which might cause confusion after all: Gössler et al. [74] define a

notion of liveness which basically coincides with the notion of progress that

we stated in this chapter. To make things even more complicated Gössler

et al. [73, 74] also include definitions of a notion called progress. It should

be noted that this notion of progress does not describe the same circum-

stances we treat here. This tangle of names is rather unfortunate but in the

course of time it seemed more appropriate to follow the naming scheme we

chose above because it is more coherent with the nomenclature chosen for

corresponding properties in other formalisms6.

We could have chosen a slightly different approach towards the definition

of progress. It would have been possible to requireA0 to participate infinitely

often in every run. This yields a notion of progress which is equivalent to

the formulation given in Definition 2.2.2: If A0 makes progress in Sys and

6The notion of liveness in Petri nets [110] is more closely related to the notion of

progress defined by Gössler et al. [73, 74] than to progress as in Definition 2.2.2.

2.3 Conclusion and Discussion 35

σ is a run then A0 participates in σ. We can write σ = σ′σ′′ such that A0

participates in σ′ and σ′′ is again a run of Sys. Using the fact that A0 makes

progress we see that A0 also participates in σ′′. Repeating this argument,

we see that A0 participates infinitely often in σ. The opposite implication

clearly holds. We chose the formulation given in Definition 2.2.2 to make

sure that the definition is more along the lines of the definition of a liveness

property given Lamport [93]. There, a liveness property was described as

a property stating that “something (good) must happen eventually”. In

our context the “good thing” that is supposed to happen is participation of

A0 no matter how the system behaves. This definition was taken on and

formalized by Alpern and Schneider [9]. Regarding a property of a system

as a set of infinite executions of the system, Alpern and Schneider [9] de-

fine a liveness property L by requiring that any (finite) execution fragment

α can be extended by an infinite execution α′ such that αα′ ∈ L. Defini-

tion 2.2.2 can be interpreted in this context as follows: Any finite execution

fragment of an interaction system Sys is a path σ in Sys which starts in q0

and ends in some reachable state. The definition of progress of A0 states

that any extension of σ allows A0 to participate, and deadlock-freedom of

Sys guarantees that there is indeed at least one such extension. Note that

various slightly different definitions of a liveness property have been given

(cf. Sistla [130], for example). Alpern and Schneider [9] argue that their

definition is the most general one and therefore we will not further discuss

the other definitions. We would also like to mention that often liveness

properties are investigated under certain fairness assumptions (e.g., strong

or weak fairness) about a scheduler which coordinates the execution of the

various enabled transitions. Roughly speaking, such fairness assumptions

make sure that the scheduler must not exclude a transition, that is repeat-

edly/permanently enabled, from execution indefinitely. In our context we do

not discuss such fairness assumptions. However, one can interpret progress

of A0 in such a way that even an unfair scheduler which tries to prevent

A0 from participating in a run will fail to do so and will have to execute

an interaction involving A0 eventually. We refer to Kindler [88] for a more

detailed discussion of liveness properties.

In Section 1.1 we named composability with other components as one

36 2.3 Conclusion and Discussion

of the main characteristics a component should exhibit. For interaction

systems composability is obtained by deriving an induced semantics for the

global system from the local transition systems and the interaction set. The

formal instruments described so far do not allow for composition of two

interaction systems, though. Such a composition operator is desirable, as

well, and it exists in the context of interaction systems, cf. Gössler and

Sifakis [72] and Gössler et al. [73] for the more special setting treated there

or Lambertz [92]. The results of this thesis do not use this operator, which

is why we will not go into its details.

We conclude the discussion by mentioning one last issue: Using the

concept of an interaction we only model the act of communication between

several components. The formalism in its present form does not provide for

passing of information between the components. This is not necessary for our

considerations because the properties we investigate are mainly influenced

(in that a system does or does not have the property) by the fact that and

with whom the components communicate but not by the data they may

exchange. Of course, for the verification of a specification that also refers

to the information passed on it is necessary to extend the formalism such

that it is also able to handle value passing. It is not difficult to do so,

for example, by introducing local variables for the components that can be

updated according to certain ports and interactions. Variables have been

introduced into the data structure implemented in the BIP-tool [29], for

example.

Chapter 3

Deadlock-Freedom for

Component Systems with

Architectural Constraints

3.1 Motivation

We derive a sufficient but efficiently checkable condition for deadlock-

freedom by restricting the class of systems we investigate. We get a trade-off.

We exclude many systems beforehand that cannot even be handled. How-

ever, by only treating a subclass of systems we have extra-information about

the systems to be dealt with that can be incorporated into the considera-

tions about the sufficient condition. We specify the subclass by restricting

the (communication-)architecture. We will represent the interaction model

by a graph on which we will impose the restriction that it should be a tree. A

variety of interesting classes of systems can be obtained by alternatively re-

stricting the graph to be, for example, a star, a ring, or a simple mesh. The

subclass of tree-like systems is of interest because such systems naturally

arise in many applications [30, 33, 79, 84, 103, 104, 115, 131]. Further-

more, tree-like architectures exist in systems with a hierarchical structure.

In particular, networks that are built according to the master-slave oper-

ator respectively the principle of subordination are tree-like [38, 83]. The

client/server systems considered by Abdulla et al. [7] also fall into that cat-

egory. Roughly speaking, the authors consider such systems consisting of

37

38 3.1 Motivation

disconnected stars where a number of clients is connected to a server in the

center of the star. A client may be connected to at most one server but the

connections between the nodes may change, i.e., clients, servers, respectively

edges may be added and deleted. Sommerville [131] also considers tree-like

systems resulting from client/server architectures.

The underlying idea of the condition that we derive from the tree-like ar-

chitecture is the prospect of being able derive deadlock-freedom of the global

system by only investigating subsystems consisting of two interacting com-

ponents. Naively, one might presume that a tree-like architecture of a system

alone is sufficient to ensure deadlock-freedom. However, this is by far not suf-

ficient to ensure deadlock-freedom. Thus, conditions have to be established

that can be checked for subsystems of size two. A conjecture which stands

to reason is that it might suffice to check these subsystems for deadlock-

freedom. However, the hope that this is sufficient for deadlock-freedom is in

vain. Consider the system consisting of K := {i, j, k}, the transition systems

depicted in Figure 3.1, and Int := {{ai, aj}, {bi, bj}, {cj , ck}, {dj , dk}}.

q0
i

q1
i

aibi

q0
j

q1
j

bj djajcj

q0
k

q1
k

ckdk

Figure 3.1: The local behavior of the components i, j, and k

Without having formally defined what this means, we content ourselves

at the moment with accepting that in an intuitive sense the system has

a tree-like communication architecture because a simple cycle of waiting

relations involving all three components cannot occur. The subsystems con-

sisting of i and j respectively of j and k are deadlock-free. On the other

hand, the system is not deadlock-free because the initial state is a dead-

lock. We see that it is not sufficient to check for deadlock-freedom in the

subsystems of a tree-like system. However, the example also already hints

at what should be checked for instead. In each subsystem a pair of local

states (namely the initial state of the subsystem) is reachable where the

components want to cooperate while this is impossible because the actions

3.2 Reachability in Interaction Systems 39

offered are not compatible. Combining these local states we end up with

the deadlock in the global system. Amongst others, this observation will be

exploited in the sufficient condition for deadlock-freedom. In the end of the

chapter we will return to the point of origin, and we will discuss whether it

is sufficient to check deadlock-freedom of subsystems of size two in order to

ensure global deadlock-freedom if the system’s structure is further restricted.

3.2 Reachability in Interaction Systems

The difficulty of deciding deadlock-freedom stems from the fact that

it requires a reachability analysis on the global state-space. In fact, the

PSPACE-completeness of deciding deadlock-freedom in interaction systems

can be attributed to the PSPACE-completeness of deciding reachability of

a state q. Having said that, it is clear that the two conditions occurring in

the definition of a deadlock state (reachability of q vs. deadlock in q) are

independent of each other. It makes sense to separate concerns. Reachability

in interaction systems — or more generally in any kind of transition system

for that matter — is an interesting question in itself, and we will treat it

separately in this section.

The complexity result mentioned above shows that we cannot expect an

efficient decision procedure for reachability that always works. We will ex-

hibit a condition which can be checked efficiently and allows to exclude the

possibility that certain global states are reachable. We want to motivate our

approach by first taking a slightly more general view at the techniques that

will be used. We want to derive results about the reachability of global states

from investigating reachability in subsystems. The definition of Sys ↓K ′ for a

subset K ′ of components makes sure that the projection q ↓K ′ of a reachable

global state q is also reachable in the subsystem. In some cases, this obser-

vation may be used to show that a global state is not reachable. It is clear

that computing reach (Sys ↓K ′) is less complex than analyzing the global

system. On the other hand, by hiding components we loose information.

Thus, we have to find a balance between precision and efficiency where the

two extremes of the spectrum consist of a completely precise but completely

inefficient approach (we investigate the subsystem defined by K ′ = K, i.e.,

40 3.2 Reachability in Interaction Systems

q0
2

q1
2

q0
1

q1
1

q0
3

q1
3

a1b1a2b2 a3b3

Figure 3.2: The local behavior of the components in K1

Sys itself) on the one hand and a very efficient approach that does not con-

vey any information at all (we investigate subsystems where K ′ consists of

a single component, i.e., we investigate the local transition systems). As

noted in the previous section, we want to focus on subsystems consisting

of two components, only. Interestingly, it is possible to derive nontrivial

information about reachability from these subsystems even though it might

seem that this approach is still a very imprecise one.

In this chapter we consider systems where every port of every component

occurs in exactly one interaction.

Definition 3.2.1. Let IM = (CS, Int) be an interaction model. IM has

strongly exclusive communication if for α,α′ ∈ Int with α 6= α′ we

have α ∩ α′ = ∅. If Sys is an interaction system whose interaction model

has strongly exclusive communication we also say that Sys has strongly

exclusive communication.

Example 3.2.1. We introduce two running examples for this chapter.

1. Consider K1 := {1, 2, 3}. The transition systems of the components

are depicted in Figure 3.2. For each i the port set is understood

to coincide with the set of labels of Ti. Define Int1 := {{a1, a2},

{a1, a3} , {b1, b2} , {b1, b3}}. We denote the interactions (in the order

above) by α1 to α4. The induced interaction system is called Sys1.

2. Consider K2 = {5, 6, 7, 8}. The transition systems of the components

are depicted in Figure 3.3. Define Int2 := {{a5, a6, a7} , {a6, a7, a8},

{b5, b6, b7} , {b6, b7, b8}}. Denote the interactions (in the order above)

by β1 to β4. The induced interaction system is called Sys2.

Neither Sys1 nor Sys2 have strongly exclusive communication. For example,

3.2 Reachability in Interaction Systems 41

q0
5

q1
5

q0
6

q1
6

q0
7

q1
7

q0
8

q1
8

a5b5 a6b6 a7b7 a8b8

Figure 3.3: The local behavior of the components in K2

we have α1 ∩ α2 6= ∅ for Sys1 and β1 ∩ β2 6= ∅ for Sys2.

At first glance the requirement about strongly exclusive communication

seems to be rather strong. In particular, it appears to refute one of the

features of interaction systems that we stressed in Chapter 2: the fact that

one port may appear in various interactions. However, the following lemma

and corollary show that this assumption is not a restriction after all. For an

interaction system Sys we may construct in polynomial time a system Sys

that essentially exhibits the same behavior as Sys and has strongly exclusive

communication. Roughly speaking, Sys results from Sys by replacing in Ti

every transition labeled ai by a set of parallel transitions labeled by an

indexed version of ai such that there is one transition for every interaction

that ai occurs in. In order to be able to distinguish the transition relation

in Sys from the transition relation in Sys we write ⇀ respectively → in this

lemma. Contrary to our convention of moving proofs to the appendix of each

chapter we include the proof of the lemma here because it is a constructive

proof explaining how Sys is assembled.

Lemma 3.2.1. Let Sys be an interaction system.

There is an interaction system Sys with strongly exclusive communication

such that K = K, Qi = Qi,
∣

∣Int
∣

∣ = |Int|, and for any q, q̃ ∈ Q = Q there

exists α ∈ Int with q
α
⇀ q̃ if and only if there exists α ∈ Int with q

α
→ q̃. Sys

can be constructed in time polynomial in the size of Sys.

Proof. We construct Sys in a step-by-step manner. Set K := K and consider

ai ∈ Ai. For every α ∈ Int with ai ∈ α we define a new port aα
i . We set:

Ai :=
⋃

α∈Int,ai∈α

aα
i

42 3.2 Reachability in Interaction Systems

Component i participates with at most one port in every interaction of Sys.

Therefore, |Ai| ∈ O (|Int|). We get CS := (K, {Ai}i∈K). Next we define the

new interaction set Int. Consider an interaction α = {ai1 , . . . , aik} ∈ Int. We

define α :=
{

aα
i1

, . . . , aα
ik

}

and we set Int :=
⋃

α∈Int α. Clearly,
∣

∣Int
∣

∣ = |Int|.

Finally, we define the local transition systems for the components in K.

Let i ∈ K. We set Qi := Qi and q0
i := q0

i . The new transition relation

⇀i⊆ Qi ×Ai × Qi is defined as follows. For qi, q̃i ∈ Qi and aα
i ∈ Ai we set

qi
aα

i⇀i q̃i if and only if qi
ai→i q̃i. Sys has strongly exclusive communication.

We have to show that for any q, q̃ ∈ Q = Q there is α ∈ Int with q
α
⇀ q̃

if and only if there is α ∈ Int with q
α
→ q̃. Let α =

{

aα
i1

, . . . , aα
ik

}

. We have:

q
α
⇀ q̃ ⇔ ∀ij ∈ comp (α) : qij

aα
ij

⇀ij q̃ij and ∀i /∈ comp (α) : q̃i = qi

⇔ ∀ij ∈ comp (α) : qij

aij
−→ij q̃ij and ∀i /∈ comp (α) : q̃i = qi

⇔ q
α
→ q̃

Clearly, Sys can be constructed in time polynomial in the size of Sys. ⊓⊔

The following corollary is an immediate consequence. It states that Sys

and Sys exhibit the same behavior with respect to freedom of local and

global deadlocks.

Corollary 3.2.1. Let Sys be an interaction system and let Sys be defined as

above. Let q ∈ Q = Q.

1. q is reachable in Sys if and only if it is reachable in Sys.

2. q is a deadlock of Sys if and only if it is a deadlock of Sys.

3. D ⊆ K = K is a local deadlock of Sys in q if and only if it is a local

deadlock of Sys in q.

Whenever we investigate freedom of local or global deadlocks of a system

Sys we construct and investigate Sys instead. We want to stress that Sys is

only constructed for the sake of proving deadlock-freedom. Once deadlock-

freedom has been established for Sys (and consequently also for Sys) we

discard Sys and deploy the original interaction system in whatever situation

intended (in particular we maintain the possibility of using one port of a

component for various cooperations).

3.2 Reachability in Interaction Systems 43

q0
2

q1
2

q0
3

q1
3

aα1
2bα3

2 aα2
3bα4

3

q0
1

q1
1

aα1
1bα3

1 aα2
1bα4

1

Figure 3.4: The local behavior of the components in K1

Example 3.2.1 continued: We trace the construction in the proof of

Lemma 3.2.1 by constructing Sys1 and Sys2.

1. We get K1 = {1, 2, 3}. The port sets are A1 = {aα1
1 , aα2

1 , bα3
1 , bα4

1 },

A2 = {aα1
2 , bα3

2 }, and A3 = {aα2
3 , bα4

3 }. We get Int1 = {{aα1
1 , aα1

2 },

{aα2
1 , aα2

3 } , {bα3
1 , bα3

2 } , {bα4
1 , bα4

3 }} where the interactions are named α1

to α4. The local transition systems are given in Figure 3.4 (note that

the local behaviors of 2 and 3 have not changed up to renaming of the

transition labels).

2. We have K2 = {5, 6, 7, 8}. Furthermore, A5 = {aβ1
5 , bβ3

5 }, A6 =

{aβ1
6 , aβ2

6 , bβ3
6 , bβ4

6 }, A7 = {aβ1
7 , aβ2

7 , bβ3
7 , bβ4

7 }, and A8 = {aβ2
8 , bβ4

8 }. The

interaction set is Int2 := {{aβ1
5 , aβ1

6 , aβ1
7 }, {aβ2

6 , aβ2
7 , aβ2

8 }, {bβ3
5 , bβ3

6 , bβ3
7 },

{bβ4
6 , bβ4

7 , bβ4
8 }} where the interactions are named β1 to β4. The local

transition systems are given in Figure 3.5.

q0
5

q1
5

q0
8

q1
8

aβ1
5bβ3

5 aβ2
8bβ4

8

q0
6

q1
6

aβ1
6bβ3

6 aβ2
6bβ4

6

q0
7

q1
7

aβ1
7bβ3

7 aβ2
7bβ4

7

Figure 3.5: The local behavior of the components in K2

In the following we will make extensive use of the notion of a subsystem

of Sys with respect to K ′. We have the following lemma.

Lemma 3.2.2. Let Sys be an interaction system. Let K ′ ⊆ K and q, q′ ∈ Q.

Let α ∈ Int be an interaction with comp (α) ∩ K ′ 6= ∅ and q′
α
→ q.

1. There is a transition q′ ↓K ′
α↓K′
→ q ↓K ′ in T̃Sys↓K′ .

44 3.2 Reachability in Interaction Systems

2. If q is reachable in Sys then q ↓K ′ is reachable in Sys ↓K ′.

Summarizing the bottom line of the previous lemma, we conclude that

the projection to K ′ of reach(Sys) is contained in reach(Sys ↓K ′). We say

that reach(Sys ↓K ′) is an over-approximation of reach(Sys) ↓K ′ . If a state

(qi)i∈K ′ is not reachable in Sys ↓K ′ then there cannot be any reachable global

state q with q ↓K ′= (qi)i∈K ′ . Moreover, the interactions in Int leading to

a reachable state in Sys must be consistent with the interactions in Int ↓K ′

leading to the projection of the state in Sys ↓K ′ . These facts can be used

to exclude the possibility that global states are reachable. Since it is not

feasible to compute reach (Sys ↓K ′) for all subsets K ′ ⊆ K we consider those

subsystems obtained by projecting Sys to pairs of interacting components.

By means of Sys1 we illustrate the ideas we use to obtain results about

reachability of global states by only looking at pairs of components.

Example 3.2.1 continued: Consider Sys1. We want to ensure that the

state
(

q1
1, q

0
2 , q

0
3

)

is not globally reachable, but we only want to examine

subsystems of size two. When we consider the subsystems Sys1 ↓{1,2},

Sys1 ↓{1,3}, and Sys1 ↓{2,3} we see that all projections of
(

q1
1 , q

0
2, q

0
3

)

to

the corresponding pairs of components are reachable. We cannot use the

second statement of Lemma 3.2.2 to exclude the possibility that
(

q1
1, q

0
2 , q

0
3

)

is reachable in Sys1. On the other hand, in Sys1 ↓{1,2} the state
(

q1
1, q

0
2

)

can only be reached by executing the port aα2
1 while in Sys1 ↓{1,3} the state

(

q1
1 , q

0
3

)

can only be reached by executing aα1
1 . The first statement of the

lemma shows that
(

q1
1, q

0
2 , q

0
3

)

is not globally reachable because the ports of

1 that would have to be executed are not consistent. Such comparisons of

ports, that can be used to reach states in subsystems, may help to exclude

the possibility that a global state is reachable. The comparisons can be

performed efficiently since we only consider pairs of components.

On the other hand, there are limitations to the exactness of this tech-

nique. We replace the local behavior of component 1 by the transition

system given in Figure 3.6 (note that implicitly we also change A1 because

we introduce new ports), and we add the new component 4 whose behav-

ior is also given in Figure 3.6. We write K3 := {1, 2, 3, 4} and Int3 :=

Int1 ∪ {{cα5
1 , cα5

4 } , {dα6
1 , dα6

4 }}. We name the new interactions α5 and α6.

3.2 Reachability in Interaction Systems 45

Denote the induced interaction system by Sys3.

q0
1

q1
1

q2
1

q3
1

aα1
1

aα2
1

cα5
1bα4

1

bα3
1

dα6
1

q0
4

q1
4

cα5
4dα6

4

Figure 3.6: The local behaviors of components 1 and 4 in K3

We are now interested in the question whether there is q ∈ reach(Sys3)

with q ↓{1,2,3}=
(

q2
1, q

0
2 , q

0
3

)

. Repeating the considerations above, we see that

in Sys3 ↓{1,2} and in Sys3 ↓{1,3} the states
(

q2
1, q

0
2

)

respectively
(

q2
1 , q

0
3

)

can

both be reached by executing the interaction {cα5
1 } which is in Int3 ↓{1,2}

as well as in Int3 ↓{1,3}. At first glance, we cannot as above exclude the

possibility that q2
1, q0

2, and q0
3 are globally reachable in that combination

even though they are not. However, when we only focus on 1, 2, and 3, it is

clear that cα5
1 can always be performed by 1 when it is enabled because it

never has to wait for 2 or 3. Starting from q2
1 we search for all local states

that can be reached by going backwards along those transitions labeled with

ports, that are not meant for communication with 2 or 3. This “backward-

search” results in the local states q2
1 and q1

1 . As above we then compare the

ports of 1 (which were not used for the backward-search) that can be used

in Sys3 ↓{1,2} and Sys3 ↓{1,3} to reach q0
2 respectively q0

3 in combination with

one of these local states. The only possible such port when we observe 1

in parallel with 2 is aα2
1 , while the only possible such port when we observe

1 in parallel with 3 is aα1
1 . Again, by only looking at pairs of components

we may conclude that the combination of the three states in question is not

globally reachable.

We now formally define the notions needed in order to substantiate the

ideas motivated above. We start by defining the backward-search operator

BWS for a local state qi and a subset K ′ of components. K ′ is used to

parametrize the operator, and it has to be chosen accordingly to the situa-

tion. All ports of i that are not used for communication with any component

46 3.2 Reachability in Interaction Systems

in K ′ are eligible for the computation of BWS.

Definition 3.2.2. Let Sys be an interaction system with strongly exclusive

communication. Let i ∈ K and K ′ ⊆ K\ {i}. For qi ∈ Qi we define

BWS
(

qi,K
′
)

:= {q′i|∃ q′i
a1

i→ . . .
am

i→ qi in Ti such that

m ≥ 0 and ∀l : al
i /∈

⋃

k∈K ′

comm i (k)}

the set of local states of i from which qi can be reached by only performing

actions that are not used for cooperation with components in K ′.

Let Q′
i ⊆ Qi and K (Q′

i) = {Kqi
}qi∈Q′

i
be a family of subsets of compo-

nents such that Kqi
⊆ K\ {i} for all qi ∈ Q′

i. We define

BWS
(

Q′
i,K

(

Q′
i

))

:=
⋃

qi∈Q′
i

BWS (qi,Kqi
) .

If Kqi
= K ′ for all qi ∈ Q′

i we write BWS(Q′
i,K

′) instead of BWS(Q′
i,K(Q′

i)).

The idea of BWS(qi,K
′) is to find those local states q′i from which qi

can be reached without communication with any component in K ′. In other

words, if Sys has reached a state q′ with q′i ∈ BWS(qi,K
′) then the com-

ponents in K ′ cannot prevent the system from moving to a state q whose

entry for i coincides with qi.

Example 3.2.1 continued: Because paths of length 0 are admitted in

the definition, for all local states qi and all permitted K ′ we get qi ∈

BWS (qi,K
′). Further, for all local states qi the set BWS (qi, ∅) coincides

with the set of local states of i from which qi is reachable. Let i be a

component that only communicates with one other component, i.e., there

exists a component j such that for all α ∈ Int with i(α) 6= ∅ we have

comp(α) = {i, j}. This implies that all transitions in Ti are labeled with

ports in comm i (j). Furthermore, need(qi) = {j} for all qi ∈ Qi and therefore

BWS(qi,need(qi)) = {qi}.

1. We compute BWS for some local states in Sys3. Consider the local

transition systems of components 2 and 3 and of components 1 and 4

as depicted in Figure 3.4 (p. 43) respectively Figure 3.6 (p. 45). We

have BWS
(

q2
1, {2, 3}

)

=
{

q2
1, q

1
1

}

. Similarly, we get BWS
(

q0
1, {2, 3}

)

=

3.2 Reachability in Interaction Systems 47

{

q0
1, q

3
1

}

. On the other hand, BWS
(

q2
1 , {2}

)

= Q1 because then the

edges labeled aα2
1 respectively bα4

1 can also be used for the backward-

search. For i ∈ {2, 3, 4} and qi ∈ Qi we get BWS(qi,K
′) = {qi}

if 1 ∈ K ′ and BWS(qi,K
′) = Qi otherwise because the components

contained in {2, 3, 4} only communicate with 1. In particular, for

i ∈ {2, 3, 4} and qi ∈ Qi we have BWS(qi,need(qi)) = {qi} because

need(qi) = {1}. For q1 ∈ Q1 the set BWS(q1,need(q1)) contains q1

and its predecessor in T1.

2. We similarly deal with the local states in Sys2. Consider the local

transition systems of the components as depicted in Figure 3.5 (p. 43).

For q5 ∈ Q5 we have BWS (q5,K
′) = {q5} if K ′ ∩ {6, 7} 6= ∅ and

BWS (q5,K
′) = Q5 otherwise because for all q5 ∈ Q5 there is only

one ingoing transition. This transition is labeled with a port that is

used for communication with 6 and 7. An analogous statement holds

for q8 ∈ Q8. Note that Int2 contains interactions of size 3. Therefore

the port aβ1
6 , for example, occurs in comm6 (5) and comm6 (7). When

we consider BWS(q1
6,K

′) this port is only eligible for the computation

of the backward-search if neither 5 nor 7 are in K ′. An analogous

statement holds for aβ2
6 . In detail, we get BWS(q1

6,K
′) = {q1

6} if

7 ∈ K ′ or if {5, 8} ⊆ K ′. Otherwise we have BWS(q1
6 ,K

′) = Q6.

The local state q0
6 and q7 ∈ Q7 can be treated likewise. This means

that, for all local states qi in Sys2 we have BWS(qi,need(qi)) = {qi}.

This results from the facts that for i ∈ {5, 8} and qi ∈ Qi we have

need(qi) = {6, 7}, for q6 ∈ Q6 we have need(q6) = {5, 7, 8}, and for

q7 ∈ Q7 we have need(qi) = {5, 6, 8}.

For a local state qi and a subset Q′
j of local states we define the notion

of entry actions. The BWS-operator appears in the context of qi and in the

context of Q′
j. Thus, the entry actions must be parametrized with a subset

K ′ of components (for BWS with respect to qi) and a family K(Q′
j) =

{Kqj
}qj∈Q′

j
of subsets of components (for BWS with respect to Q′

j).

Definition 3.2.3. Let Sys be an interaction system with strongly exclusive

communication. Let i ∈ K and K ′ ⊆ K\ {i}. Let j ∈ K\{i}. Consider

48 3.2 Reachability in Interaction Systems

qi ∈ Qi and Q′
j ⊆ Qj. Further let K(Q′

j) = {Kqj
}qj∈Q′

j
be a family of

subsets of components with Kqj
⊆ K\ {j}.

We define

EA(qi,K
′, Q′

j ,K(Q′
j)) := {ai ∈

⋃

k∈K ′

comm i (k) |

• ∃(q′i, q
′
j) ∈ BWS(qi,K

′) × BWS(Q′
j ,K(Q′

j))

• ∃(q′′i , q′′j)reachable from(q0
i , q

0
j)

• ∃α ∈ Int ↓{i,j} such that:

ai ∈ α and (q′′i , q′′j)
α
→ (q′i, q

′
j)}

as the set of entry actions of i with respect to qi, K ′, Q′
j, and K(Q′

j).

If Kqj
= K ′′ for all qj ∈ Q′

j we write EA(qi,K
′, Q′

j,K
′′) instead of

EA(qi,K
′, Q′

j ,K(Q′
j)). If Q′

j = {qj} we write EA(qi,K
′, qj,Kqj

) instead of

EA(qi,K
′, Q′

j ,K(Q′
j)).

An entry action ai ∈ EA(qi,K
′, Q′

j ,K(Q′
j)) is a port which is for com-

munication with a component in K ′ and which can be used in Sys ↓{i,j} to

reach a state (q′i, q
′
j) where q′i ∈ BWS (qi,K

′) (and q′j ∈ BWS(Q′
j ,K(Q′

j))

for that matter). Intuitively, this means that ai is the last port on a path

ending in qi whose execution can be influenced by one or more components

in K ′. Thus, at least from the point of view of K ′, it has to be assumed that

Sys will reach a state q whose projection to i and j is contained in {qi}×Q′
j

once an interaction involving ai has been executed.

Example 3.2.1 continued: We compute this notion for our examples:

1. Using the results that we computed for the BWS-operator above, for

Sys3 (cf. Figure 3.4 (p. 43) respectively Figure 3.6 (p. 45)) we obtain

EA
(

q2
1,need(q2

1), q
0
2 ,need(q0

2)
)

= {aα2
1 } on the one hand as well as

EA
(

q2
1,need(q2

1), q
0
3 ,need(q0

3)
)

= {aα1
1 } on the other. This is because

in the corresponding subsystems
(

q1
1, q

0
2

)

and
(

q1
1, q

0
3

)

can be reached

by executing these ports. Similarly, EA
(

q0
1,need(q0

1), q
1
2 ,need(q1

2)
)

=

{bα4
1 } and EA

(

q0
1,need(q0

1), q
1
3 ,need(q1

3)
)

= {bα3
1 }. Note that switch-

ing the order of the states in EA changes the result. For example, we

have EA
(

q0
2,need(q0

2), q
2
1 ,need(q2

1)
)

= ∅ because even though
(

q0
2, q

1
1

)

3.2 Reachability in Interaction Systems 49

is reachable in the corresponding subsystem there is no port in A2

that can be used to enter it. The analogous result is obtained when

we switch the order of the states in the other sets of entry actions com-

puted above. On the other hand, we get EA
(

q2
1, {2} , q0

2, {1}
)

= {bα3
1 }.

The only ports that can possibly be contained in this set are the

ports in comm1 (2) = {aα1
1 , bα3

1 }. We have already seen above that

BWS
(

q2
1, {2}

)

= Q1 and that BWS(q0
2 , {1}) = {q0

2}. In Sys3 ↓{1,2}

the state
(

q1
3, q

0
2

)

is reached by performing {bα3
1 , bα3

2 }. Therefore bα3
1 ∈

EA
(

q2
1, {2} , q0

2 , {1}
)

. The port aα1
1 is not contained in the set of en-

try actions. Whenever it is executed in Sys3 ↓{1,2} it must synchronize

with aα1
2 causing component 2 to move to q1

2. For local states of com-

ponents other than 1 the entry actions are computed likewise.

We point out one detail: Let i ∈ K3\ {1}. Then i only communicates

with 1. We get comm i (1) = Ai and comm i (j) = ∅ for any other

component j. Computing a set of entry actions only those ports that

are for communication with one of the components in K ′, i.e., the

ports in
⋃

k∈K ′ comm i (k), are eligible. For 1 /∈ K ′ we therefore always

get EA(qi,K
′, Q′

j ,K(Q′
j)) = ∅ for any choice of qi, Q′

j , and K(Q′
j).

2. Next, consider Sys2 (cf. Figure 3.5 (p. 43)). For j ∈ {6, 7} we obtain

EA(q0
5 ,need(q0

5), q
1
j ,need(q1

j)) = ∅. We have already computed the

necessary BWS-sets above. Indeed, the state (q0
5, q

1
j) is reachable in the

corresponding subsystem, but it can only be reached by performing the

port aβ2

j . It cannot be reached by any port of component 5. Therefore

the set of entry actions is empty. We get a different result by changing

the order of the states: EA(q1
j ,need(q1

j), q
0
5 ,need(q0

5)) = {aβ2
j }. Anal-

ogously, we get EA(q1
5 ,need(q1

5), q
0
j ,need(q0

j)) = ∅ on the one hand,

and EA(q0
j ,need(q0

j), q
1
5 ,need(q1

5)) = {bβ4

j }, on the other. Replacing

the local state of 5 in the computations above by the corresponding

local state of 8 we get analogous results where the two nonempty sets

of entry actions are equal to {aβ1
j } respectively {bβ3

j }.

The following lemma summarizes the observations made for the example

we used to motivate the backward-search and the entry actions. It shows

50 3.3 Architectural Patterns

how observing the entry actions can help to exclude the possibility that

global states are reachable if K ′ and K(Q′
j) are chosen appropriately.

Lemma 3.2.3. Let Sys be an interaction system with strongly exclusive com-

munication. Let i ∈ K, K̃ ⊆ K\ {i}, and qi such that q0
i /∈ BWS(qi, K̃).

For each j ∈ K̃ let Q′
j ⊆ Qj be a nonempty subset of local states.

If
⋂

j∈K̃ EA(qi, K̃,Q′
j , {i}) = ∅ then there is no q ∈ reach (Sys) with

q ↓({i}∪K̃)∈ {qi} ×
∏

j∈K̃ Q′
j .

Taking the intersection of the sets of entry actions in the lemma cor-

responds to the comparison between the ports that could be used to reach

certain states of subsystems of Sys3 that concluded the informal argument

before the introduction of BWS.

Example 3.2.1 continued: We formally substantiate the observations

made for Sys3 on pp. 44ff. We want to know if there is q ∈ reach(Sys3)

with q ↓{1,2,3}=
(

q2
1, q

0
2 , q

0
3

)

. We apply the lemma with K̃ = {2, 3} and

Q′
j = {q0

j } for j ∈ K̃. We already know EA
(

q2
1 ,need(q2

1), q
0
2 ,need(q0

2)
)

=

{aα2
1 } respectively EA

(

q2
1,need(q2

1), q
0
3 ,need(q0

3)
)

= {aα1
1 } (note that K̃ =

{2, 3} = need(q2
1) and need(q0

2) = need(q0
3) = {1}). The intersection of these

sets is empty and the lemma implies that no such global state is reachable.

3.3 Architectural Patterns

In this section we introduce the architectural pattern defining the sub-

class of tree-like interaction systems for which we will exhibit a sufficient

condition for deadlock-freedom. The pattern only refers to the interaction

model of an interaction system, i.e., it restricts the way in which the compo-

nents may interact. For an interaction model we introduce two (undirected)

interaction graphs named G∗ and G. They give a simple description of the

possible interactions between the components. In a first intuitive approach

we simply represent each component by a node, and we introduce an edge

between two components if they interact. This is the definition of G∗ which

describes all direct cooperations that are allowed between the components.

Requiring G∗ to be a tree results in a sufficiently interesting class of interac-

3.3 Architectural Patterns 51

tion systems. On the other hand, no system with interactions involving more

than two components falls into this class. Following the informal description

of G∗ it is clear that every interaction results in a complete subgraph of G∗.

Such a subgraph contains cycles if it involves more than two components.

Thus, an interaction model for which G∗ is a tree only contains singleton

or binary interactions which is a rather strong limitation. This motivates

the definition of the more general graph G which allows the definition of

tree-like architectures even for systems with multiway cooperation. Again

there is one node for every component. Further, we also introduce a second

type of node. These nodes represent sets of components which are obtained

by intersecting the sets of components participating in two (not necessarily

distinct) interactions. Roughly speaking, the edges of G represent “subset

inclusion” of sets of components.

Definition 3.3.1. Let IM be an interaction model.

1. Define G := (V,E). The set of nodes is defined by V := V1 ∪ V2

where V1 := {{i}|i ∈ K} and V2 := {comp (α) ∩ comp (α′) |α,α′ ∈ Int

and comp (α) ∩ comp (α′) 6= ∅}. For K ′,K ′′ ∈ V there is an edge

{K ′,K ′′} ∈ E if and only if K ′ (K ′′ and there is no K̄ ∈ V with

K ′ (K̄ (K ′′. G is the interaction graph of IM. If Sys is an

interaction system we also speak of the interaction graph of Sys. If

G is a tree we say that IM respectively Sys is tree-like.

2. Define G∗ := (K,E∗). For i, j ∈ K there is an edge {i, j} ∈ E∗ if

and only if there is an interaction α ∈ Int with i, j ∈ comp (α). If

G∗ is a tree we say that IM is strongly tree-like. Sys is a strongly

tree-like interaction system if G∗ is a tree for IM.

Example 3.2.1 continued: G and G∗ of Sys3 (cf. Figure 3.4 (p. 43)

respectively Figure 3.6 (p. 45)) are depicted in Figure 3.7. Sys3 is strongly

tree-like. For each α ∈ Int3 there is a node comp(α) in G. This is true in

general, because the definition of V2 does not exclude the possibility α = α′.

Figure 3.8 a) shows G∗ of Sys2 (cf. Figure 3.5 (p. 43)). The system is not

strongly tree-like because there are interactions involving three components.

Sys2 is tree-like, though, as can be seen in Figure 3.8 b). Note that there is

52 3.3 Architectural Patterns

2

a)

1

34

{2}

b)

{1}

{3}{4}

{1, 2}

{1, 3}{1, 4}

Figure 3.7: a) G∗ and b) G for Sys3

5
a)

6

7 8

{6}b)

{7}{5}

{8}

{5, 6, 7} {6, 7} {6, 7, 8}

Figure 3.8: a) G∗ and b) G for Sys2

a node {6, 7} ∈ V2 even though there is no α ∈ Int2 with comp (α) = {6, 7}.

This node stems from the intersection of the two nodes representing {5, 6, 7}

and {6, 7, 8}.

In the following we state some lemmas that summarize a few simple

results about the interrelations between the two graphs and the consequences

of the definition. We first formalize the observation that every interaction

in a strongly tree-like interaction model involves two components at most.

Lemma 3.3.1. Let IM be an interaction model.

If IM is strongly tree-like then |α| ≤ 2 for all α ∈ Int.

The lemma justifies the distinction between G∗ and G. If we only con-

sidered (the more simple) strongly tree-like interaction models there would

be systems which we would not be able to treat even though they have a

natural tree-like structure. It is possible to transform an arbitrary interac-

tion system to an interaction system where all interactions involve at most

two components, but this approach is not feasible in the context of tree-like

communication architectures: In general, the techniques used to transform

3.3 Architectural Patterns 53

a system result in systems for which G∗ contains cycles even if G is a tree.

Thus, in order to be able to speak about tree-like architectures for systems

where interactions of arbitrary size are allowed we need G.

It is intuitively clear that a strongly tree-like interaction model is tree-

like and that a tree-like interaction model where all interactions are of size

one or two is strongly tree-like:

Lemma 3.3.2. Let IM be an interaction model.

1. If IM is strongly tree-like then it is tree-like.

2. If for all α ∈ Int we have |α| ≤ 2 and IM is tree-like then IM is strongly

tree-like.

The first part of the following lemma formalizes the observation that for

all α ∈ Int there is a node comp (α) ∈ V2. Further, the lemma describes the

structure of paths in G between interacting components. In general, there

can be several such paths. If G is a tree, though, the paths are unique.

Lemma 3.3.3. Let IM be an interaction model.

1. For all α ∈ Int there is a node comp (α) ∈ V2.

2. Let α ∈ Int and i ∈ comp (α). There is a simple path πi,α connecting

{i} and comp(α) in G. All nodes on πi,α are subsets of comp (α). If

|comp(α)| ≥ 2 then all nodes on πi,α except {i} contain two components

at least.

3. Let α ∈ Int and i, j ∈ comp (α). There is a simple path πα
i,j connecting

{i} and {j} in G. All nodes on πα
i,j are subsets of comp (α). All nodes

on πi,α except {i} and {j} contain two components at least. The paths

πα
i,j, πi,α, and πj,α can be chosen such that there is a node K ′ on πα

i,j

such that the sub-path of πα
i,j from {i} to K ′ is a sub-path of πi,α and

the sub-path of πα
i,j from K ′ to {j} is a sub-path of πj,α.

4. Let α,α′ ∈ Int with |comp (α) ∩ comp (α′)| ≥ 2 and let i ∈ comp (α)

and j ∈ comp (α′). There is a simple path πα,α′

i,j connecting {i} and

{j} in G. All nodes on πα,α′

i,j are subsets of comp (α) or comp (α′). The

first node after {i} is contained in comp (α) and the last node before

54 3.4 Deadlock-Freedom for Tree-Like Component Architectures

{j} is contained in comp (α′). All nodes on πα,α′

i,j except {i} and {j}

contain two components at least.

The motivation for using a tree-like architecture was the prospect of

only having to investigate two components at a time. Strictly speaking, we

do not need the assumption that G respectively G∗ are connected for this

purpose. It suffices to require that the graphs are free of cycles. However, an

interaction model whose interaction graph is not connected describes several

independent systems corresponding to the connected subgraphs. It would

make sense to decompose such a system into its independent subsystems and

to apply the results to each of these subsystems. Thus, we do not infringe

on generality by assuming that G is connected.

3.4 Deadlock-Freedom for Tree-Like Component Architec-

tures

We will now develop a methodology for checking deadlock-freedom of

tree-like interaction systems. It allows to derive information about the global

property deadlock-freedom by means of a compositional analysis which only

investigates the system locally, i.e., subsystems of size two. We present a

sufficient condition for deadlock-freedom. One might ask why this is even

necessary. If we only consider this subclass of interaction systems it might

be the case that there is an efficient decision procedure for deadlock-freedom.

Results presented by Semmelrock and Majster-Cederbaum [128] show that

this is not the case: Even for strongly tree-like interaction systems deciding

deadlock-freedom is PSPACE-complete.

This section contains two subsections. The first subsection develops a

criterion for deadlock-freedom of tree-like interaction systems. In the second

subsection we show how the notions and conditions can be simplified to

obtain a criterion for strongly tree-like systems.

3.4.1 Interaction Systems with Multiway Cooperation

The requirement that the interaction graph should be a tree restricts

the architecture of the interaction model. Using this extra information we

3.4.1 Interaction Systems with Multiway Cooperation 55

will now exhibit conditions that take hold at the level of the local transition

systems of the components. These conditions help to detect combinations

of local states that could result in deadlocks. This separation of concerns

reflects the two layers of description for an interaction system mentioned in

Chapter 2. The layers help to take a precise approach to solving the problem

of checking deadlock-freedom. In this subsection Sys always denotes a tree-

like interaction system with strongly exclusive communication.

Since we only want to investigate pairs of interacting components, we

first have to characterize those pairs of states that may possibly be involved

in a deadlock. Once we have found a suitable characterization of such a

“problematic” pair of states we use the techniques presented in Section 3.2

to check whether combinations of such pairs which could result in deadlocks

are possibly reachable in Sys. If this is not the case we conclude that Sys is

deadlock-free. Since all conditions only refer to subsystems of size two the

overall procedure causes cost polynomial in the size of Sys.

The notion of problematic states is central to our considerations. Before

giving the formal definition, we want to motivate how this notion evolves

from the architectural constraint by means of the following remark.

Remark 3.4.1. Consider an interaction system Sys and a deadlock in the

global state q. Because of the assumption that every local state of every

component enables at least one port, every component i is ready to par-

ticipate in at least one interaction α. On the other hand, because q is a

deadlock, for every α there is j ∈ comp (α) such that qj does not enable

j (α). Thus, it is possible to construct sequences

1. of components i0, i1, . . . , ir−1 and

2. of interactions α0, α1, . . . , αr−1

such that for all 0 ≤ s ≤ r − 1 we have (writing ir = i0 and αr = α0):

• αs ∈ Int (qis), i.e., is is ready to perform αs in the local state qis ,

• is+1 (αs) 6= ∅, i.e., is+1 is needed by is in order to perform αs,

• but is+1 (αs) 6⊆ en
(

qis+1

)

, i.e., is+1 does not enable its port in αs.

56 3.4 Deadlock-Freedom for Tree-Like Component Architectures

For simplicity, we say that in qis component is waits for is+1 with respect

to αs. Informally speaking, these sequences constitute a cycle of waiting

relations between the components. Such a cycle is depicted in Figure 3.9 a).

i0 i1

i2

i3

i4
i5

ir−1

α0
α1

α2

α3

α4

αr−1

. . .

α5

αr−2

a) b)

is+1

is

Figure 3.9: a) Cycle of waiting relations, b) Part of G∗

In order to accentuate the idea that we want to motivate we take a short

digression by considering strongly tree-like interaction systems first. We

want to retrace the cycle in G∗. Therefore, we contrast it with G∗ in Figure

3.9 b). Because the system is strongly tree-like the cycle is represented by

edges in G∗ that are first traveled in one direction and later in the opposite

direction. This is schematically depicted in Figure 3.10. In particular, it can

is+1

is

Figure 3.10: Superimposing the images in Figure 3.9

be seen that there must be components is and is+1 that wait for each other,

i.e., is ∈ need(qis+1) and vice versa, but no interaction is enabled because

the ports that are offered are not compatible. The existence of such a pair

of components is a necessary condition for q to be a deadlock in Sys if the

system is strongly tree-like. We now elaborate on this observation in order

to derive a similar condition for tree-like interaction systems.

3.4.1 Interaction Systems with Multiway Cooperation 57

Before continuing, note that the sequences above can be chosen such that

the components respectively the interactions are pairwise distinct. As above,

we retrace the cycle of waiting relations in G. Figure 3.11 a) shows the part

of the cycle that is concerned with is and is+1. Figure 3.11 b) depicts part

of the interaction graph1. Superimposing the two images in Figure 3.12, we

a)

is

is+1

αs−1

αs

αs+1

b)

{is}

{is+1}

Figure 3.11: a) Part of the cycle, b) Part of G

schematically represent the fact that is waits for is+1 because of αs by a

directed path which follows the unique simple non-directed path between

{is} and {is+1} in G. The set K ′ that has been highlighted contains two

{is} K ′

{is+1}

Figure 3.12: Superimposing the images in Figure 3.11

components at least, and it is contained in comp(αs) and in comp(αs+1).

We will formalize this observation. Lemma 3.3.3 shows that for each is

and is+1 there exists a simple path παs

is,is+1
in the interaction graph of Sys

connecting {is} and {is+1}. It only visits nodes (except {is} and {is+1}) that

contain two components at least and that are subsets of comp (αs). Denote

1The nodes of G are sets of components which do not necessarily contain only one

component.

58 3.4 Deadlock-Freedom for Tree-Like Component Architectures

this path by πs. Walking the paths πs consecutively for s = 0, . . . , r − 1

we obtain a path π in G which starts in {i0}, visits all components above

exactly once, and then returns to {i0}. In between the nodes representing

components this path only visits nodes that contain two components at least.

We consider

πs = {is} — . . . — K ′ e′
— {is+1}

and

πs+1 = {is+1}
e′′
— K ′′ — . . . — {is+2},

two consecutive parts of π. We argue that e′ — the last edge on πs — and e′′

— the first edge on πs+1 — must be equal. Assume that this is not the case.

Starting from {is+1}, we walk π in either direction (the first edge traveled

in one direction is e′ and the first edge traveled in the other direction is e′′).

We denote by K̄ the first node that occurs on both paths. It is clear that

K̄ exists because both paths end in {i0}. We obtain two paths connecting

{is+1} and K̄. From these two paths we can construct simple paths π′ and

π′′ connecting {is+1} and K̄. Note that π′ and π′′ do not share any nodes

other than {is+1} and K̄ because K̄ was chosen to be the first node occurring

on both paths above. Because the sequence of components was chosen such

that the components are pairwise distinct the first edge of π′ must be e′

and the first edge of π′′ must be e′′. Since these edges are different from

each other by assumption we see that π′ and π′′ are also different from each

other. This is a contradiction because G is a tree. We see that e′ = e′′ and in

particular K ′ = K ′′. By construction of πs respectively πs+1 we know that

this node is contained in comp (αs) as well as in comp (αs+1). We conclude

|comp(αs) ∩ comp(αs+1)| ≥ 2.

Summarizing, we see that if Sys is tree-like and a deadlock exists in Sys

then there must be sequences as above where a) each component waits for

the successive component because of the corresponding interaction and b)

two consecutive interactions have at least two components in common.

Negating this necessary condition for q to be a deadlock, yields a suffi-

cient condition which ensures for a local state of a component that it cannot

be part of a deadlock state: If we can show the following Condition 3.4.1 for

a local state qi then we can be sure that qi will never be part of a cycle of

3.4.1 Interaction Systems with Multiway Cooperation 59

waiting conditions as in the remark.

for all α ∈ Int(qi) and all j ∈ comp(α)\{i} no qj exists such

that in (qi, qj) component i waits for j because of α and such

that there is some α′ ∈ Int(qj) with |comp(α) ∩ comp(α′)| ≥ 2

(3.4.1)

Given Condition 3.4.1 qi will never cause a global deadlock (by participating

in a cycle as above). Note that qi may be part of a global deadlock all the

same, because it is possible that i waits for other components which are

part of a cycle as above. However, for our purposes it suffices to identify

for each component those states that may cause a deadlock in the sense

above. Condition 3.4.1 is still rather restrictive as it requests that for qi

no interaction α ∈ Int(qi) can ever be part of a cycle of waiting relations as

above. In order to make sure that qi never causes a deadlock in a global state

q it actually suffices to ensure that for each qi there is at least one interaction

α ∈ Int(qi) that can never be part of such a cycle. Thus, for i ∈ K and

qi ∈ Qi we may substitute the condition by Condition 3.4.2 below where we

replace the universal quantifier for α ∈ Int (qi) by an existential quantifier:

there is α ∈ Int(qi) such that for all j ∈ comp(α)\{i} no qj exists

such that in (qi, qj) component i waits for j because of α and

such that there is α′ ∈ Int(qj) with |comp(α) ∩ comp(α′)| ≥ 2

(3.4.2)

Note that j participates in α as well as in α′. Thus, the requirement that

there should be an interaction α′ ∈ Int (qj) with |comp(α) ∩ comp(α′)| ≥ 2

is equivalent to demanding that there should be α′ ∈ Int (qj) such that at

least one component other than j participates in α and in α′. Finally, since

α′ ∈ Int (qj) this requirement is equivalent to need (qj)∩ comp (α) 6= ∅. This

last condition is used in the definition below. In a first approach for qi, α ∈

Int (qi), and j ∈ comp (α) \{i} a state qj could be called problematic with

respect to qi and α if need (qj)∩comp (α) 6= ∅ and in qi component i waits for

j because of α. However, it can be seen that a state qj is not problematic with

respect to qi and α after all if there is at least one interaction β ∈ Int (qj) for

which no problematic states exist (for none of the components in comp (β)).

Starting with those states of j that violate Condition 3.4.2, we define for qi,

α ∈ Int (qi), and j ∈ comp (α) a descending sequence of superscripted sets

60 3.4 Deadlock-Freedom for Tree-Like Component Architectures

of problematic states by eliminating those states qj that do not satisfy this

additional requirement. The intersection of these sets is then defined to be

the set of states of j that are problematic with respect to qi and α.

Definition 3.4.1. Let Sys be a tree-like interaction system. For i ∈ K,

qi ∈ Qi incomplete, α ∈ Int (qi) and j ∈ comp (α) \ {i} we inductively define

a descending sequence of sets by:

PS0
j (qi, α) := {qj | • qj incomplete

• need (qj) ∩ comp (α) 6= ∅

• (qi, qj) is reachable in Sys ↓{i,j}

• j (α) 6⊆ en (qj)

• ∄α̃ ∈ Int(qi) ∩ Int(qj) with |α̃| = 2}

PSl+1
j (qi, α) := {qj |qj ∈ PSl

j (qi, α) and ∀β ∈ Int(qj)∃k ∈ comp(β)\ {j}

with PSl
k (qj, β) 6= ∅}

The set of states of j that are problematic with respect to qi and α is

PSj (qi, α) :=
⋂

l∈N

PSl
j (qi, α) .

We obtain a descending sequence of sets. Furthermore, there is an index

l for which the sequence becomes stationary such that the computation can

be stopped. By way of imprecision we sometimes also say that a state

contained in one of the superscripted sets is problematic when there is no

danger of resulting confusion. The definition for the 0-th instance of the

set of problematic states of component j restates the conditions derived

above. We further elaborated this condition in two ways. First, we require

that (qi, qj) should be reachable in the subsystem consisting of i and j.

If this is not the case Lemma 3.2.2 shows that there is no global state

q ∈ reach(Sys) with q ↓{i,j}= (qi, qj). Therefore this pair of states will not

cause a reachable deadlock. Second, we treat a pair of states offering an

interaction of the global system of size one or two differently. Complete

local states are excluded from the definition. It is clear that a global state

q such that qi is complete for at least one component i is not a deadlock.

The conditions for α̃ simply say that there must not be an interaction which

3.4.1 Interaction Systems with Multiway Cooperation 61

only involves i and j and which is enabled in (qi, qj). Again it is clear that

such a pair of states would never be part of a deadlock because α̃ could

be performed globally. We cannot argue analogously for interactions of size

greater than two if i and j both enable their part of the interaction because

we cannot be sure whether all other required components enable their ports.

Example 3.2.1 continued: Consider Sys2 (cf. Figure 3.5 (p. 43)). The

only interaction in Int(q0
5) is β1. Therefore need(q0

5) = {6, 7}. Let j ∈

{6, 7}. The state (q0
5, q

1
j) is reachable in Sys2 ↓{5,j} and j

(

β1

)

= {aβ1

j } is

not enabled. We have 5 ∈ need(q1
j), and therefore need(q1

j) ∩ comp(β1) 6= ∅

(depending on the choice of j component 6 or 7 is also contained in that

intersection). Finally, no global interaction of size one or two is enabled

in (q0
5, q

1
j). We conclude q1

j ∈ PS0
j

(

q0
5, β1

)

. It is the only state in this set

because j
(

β1

)

⊆ en(q0
j). The other states can be treated likewise. For

j ∈ {6, 7} we have PS0
j (q

1
5, β3) = {q0

j }, and analogously PS0
j

(

q0
8, β2

)

= {q1
j }

and PS0
j(q

1
8 , β4) = {q0

j }. Further, PS0
5(q

0
j , β1) =

{

q1
5

}

and PS0
5(q

1
j , β3) =

{

q0
5

}

respectively PS0
8(q

0
j , β2) =

{

q1
8

}

and PS0
8(q

1
j , β4) =

{

q0
8

}

. Note that

PS0
7(q6, β) = PS0

6(q7, β) = ∅ for any q6 ∈ Q6 and β ∈ Int(q6) respectively

q7 ∈ Q7 and β ∈ Int(q7). Treating q0
6 and β1 ∈ Int(q0

6), for example, we

compute PS0
7(q

0
6, β1). The components 6 and 7 always have to cooperate.

Therefore, the only reachable states in Sys2 ↓{6,7} are
(

q0
6, q

0
7

)

and
(

q1
6 , q

1
7

)

.

The conditions of the definition are not satisfied for q0
7. Thus, it is not in

PS0
7(q

0
6, β1), and this set is empty.

For Sys2 iterating the computation of the problematic states does not

have any effect: Even though some sets of problematic states of the 0-th

stage are empty, for every qj and β ∈ Int(qj) there is at least one component

in comp(β)\{j} for which the 0-th stage set of problematic states is not

empty. Thus, for all combinations of local states and interactions the 0-th

stage set of problematic states is equal to the final set of problematic states.

In the following we combine the concepts about reachability developed

in Section 3.2 with the notion of problematic states. We merge the notions

by computing the entry actions with respect to qi and PSj (qi, α) for α ∈

Int(qi) and j ∈ comp (α) \ {i}. We then use an idea similar to the one

suggested in Lemma 3.2.3 to make sure that no combinations of states are

62 3.4 Deadlock-Freedom for Tree-Like Component Architectures

reachable where for all interactions in Int(qi) at least one of the needed

communication partners is in a problematic state with respect to qi and

the corresponding interaction. All interactions in Int(qi) are blocked in

such a combination of states, and therefore it might ultimately cause a

deadlock. In the following definition the BWS-operator for qi and PSj (qi, α)

is parametrized with need (qi) respectively need(qj) for every qj ∈ PSj (qi, α).

We use the following notation for a subset Q′
j ⊆ Qj:

need
(

Q′
j

)

:= {need(qj)}qj∈Q′
j

We call the entry actions computed with respect to qi and PSj (qi, α) the

actions that are problematic with respect to qi, α, and j because they may

be used to reach BWS (qi,need (qi))×BWS(PSj (qi, α) , need (PSj (qi, α))) in

Sys ↓{i,j}. Once the system has reached a state in this set we have to assume

that it is also possible to reach a state in {qi} × PSj (qi, α).

Definition 3.4.2. Let Sys be a tree-like interaction system with strongly

exclusive communication. Let i ∈ K, qi ∈ Qi incomplete, α ∈ Int (qi), and

j ∈ comp (α) \ {i}. We define

PA (qi, α, j) := EA (qi,need (qi) ,PSj (qi, α) , need (PSj (qi, α)))

the set of problematic actions of i with respect to qi, α, and j.

Example 3.2.1 continued: Using the results gathered above we can

now specify the sets of problematic actions for Sys2 (cf. Figure 3.5 (p. 43)).

It becomes apparent now, that the combinations of states for which we

computed the BWS-operator and the entry actions (cf. pp. 47 and 49) were

those combinations that are relevant for stating the problematic actions. It is

clear that PA
(

q6, β, 7
)

= PA
(

q7, β, 6
)

= ∅ for any q6 ∈ Q6 and β ∈ Int(q6)

respectively q7 ∈ Q7 and β ∈ Int(q7) because the corresponding sets of

problematic states are empty. For q5 ∈ Q5 and β ∈ Int(q5) respectively q8 ∈

Q8 and β ∈ Int(q8) and j ∈ {6, 7} we get PA
(

q5, β, j
)

= PA
(

q8, β, j
)

= ∅

because the corresponding sets of entry actions are empty. Switching the

roles of the components we obtain PA(q0
j , β1, 5) = {bβ4

j }, PA(q0
j , β2, 8) =

{bβ3
j }, PA(q1

j , β3, 5) = {aβ2
j }, and PA(q1

j , β4, 8) = {aβ1
j } where j ∈ {6, 7}.

3.4.1 Interaction Systems with Multiway Cooperation 63

Finally, we explain how to combine all these notions in order to derive

information about deadlock-freedom. Consider an arbitrary local state qi.

An interaction α ∈ Int (qi) is blocked if at least one of the components

j in comp (α) \ {i} is in a local state qj with j (α) 6⊆ en(qj). Therefore,

when we want to know which actions of i might lead to a state where α is

blocked we have to take the union of all sets PA (qi, α, j) where j ranges

over comp (α) \ {i}. A state qi can only be part of a global deadlock if all

interactions in Int (qi) are blocked. This can only be the case if there is a

port of i that is problematic with respect to all α ∈ Int (qi) and at least one

j ∈ comp (α) \ {i}. If there is no such action then the global system will

never be able to reach a state where all α ∈ Int (qi) are blocked and qi will

never cause a global deadlock. Therefore, we take the intersection over all

α ∈ Int (qi) of the unions mentioned above. This intersection contains those

ports of i that may lead to a state where all α ∈ Int(qi) are blocked.

The first condition below caters for the case that there are local states

qi with q0
i ∈ BWS (qi,need (qi)). This situation has to be treated separately

because the reachability of qi in combination with problematic states cannot

be restricted by the consistency check for problematic actions described

above because qi may be reached without performing any such action.

Proposition 3.4.1. Let Sys be a tree-like interaction system with strongly

exclusive communication.

If the following two conditions hold then Sys is deadlock-free:

1. ∀i∀qi : qi complete ∨ q0
i /∈ BWS (qi,need(qi)) ∨ ∃α ∈ Int (qi) such that

∀j ∈ comp (α) \ {i} : q0
j /∈ BWS (PSj (qi, α) , need (PSj (qi, α)))

2. ∀α̃ ∈ Int with |comp(α̃)| ≥ 2 ∃i ∈ comp (α̃) such that for all qi ∈ Qi

that are incomplete:

i (α̃) 6⊆
⋂

α∈Int(qi)

⋃

j∈comp(α)\{i}

PA (qi, α, j)

The conditions can be checked in time polynomial in the size of Sys.

Example 3.4.1. Example: Proposition 3.4.1 shows that Sys2 (cf. Figure

3.5 (p. 43)) is deadlock-free. Recall that for all local states qi of all compo-

nents i ∈ K2 we computed BWS(qi,need(qi)) = {qi} (cf. p. 47). Thus, the

64 3.4 Deadlock-Freedom for Tree-Like Component Architectures

first condition above is definitely satisfied for all local states other than the

local initial states. On the other hand, consider i ∈ K2, q0
i , and β ∈ Int(q0

i).

We have already seen above that for any j ∈ comp(β) and qj ∈ PSj(q
0
i , β)

we have qj 6= q0
j . Thus, the first condition also holds for q0

i .

Considering the sets of problematic actions computed above we see that

all the intersections that have to be computed for the second condition are

empty. Therefore, this condition is also satisfied.

3.4.2 Strongly Tree-Like Interaction Systems

In this subsection we address deadlock-freedom of strongly tree-like in-

teraction systems. Lemma 3.3.2 showed that a strongly tree-like interaction

system is tree-like. Therefore we can apply Proposition 3.4.1 to strongly

tree-like systems. We will see now that restricting the interactions to size

two or one results in a further simplification of the notions. We formulate

an equivalent but more simple version of Proposition 3.4.1 for strongly tree-

like interaction systems. In this subsection Sys denotes a strongly tree-like

interaction system with strongly exclusive communication. For this kind of

system, a component i, and two other components j 6= k that interact with

i we get comm i (j) ∩ comm i (k) = ∅ because for every interaction α with

i (α) 6= ∅ there is at most one other component that also participates in α.

Since all interactions are pairwise disjoint i (α) can only be contained in at

most one set comm i (j).

We define a notion of problematic states which is more simple than the

one from Definition 3.4.1. In particular, it is independent of α ∈ Int(qi).

Definition 3.4.3. Let Sys be a strongly tree-like interaction system. For i ∈

K, qi ∈ Qi incomplete, and j ∈ need (qi) we inductively define a descending

sequence of sets by:

PS0
j (qi) = {qj | • qj incomplete

• i ∈ need (qj)

• (qi, qj) is reachable in Sys ↓{i,j}

• Int(qi) ∩ Int(qj) = ∅}

PSl+1
j (qi) = {qj |qj ∈ PSl

j (qi) and ∀k ∈ need (qj) : PSl
k (qj) 6= ∅}

3.4.2 Strongly Tree-Like Interaction Systems 65

The set of states of j that are problematic with respect to qi is

PSj (qi) :=
⋂

l∈N

PSl
j (qi) .

Note how this definition differs from Definition 3.4.1. We have already

mentioned that it is independent of α ∈ Int(qi). This means that all con-

ditions in Definition 3.4.1 that refer to α have to be replaced. On the one

hand, we write i ∈ need (qj) instead of comp(α) ∩ need(qj) 6= ∅. Note that

this condition corresponds to the one that we derived in the beginning of Re-

mark 3.4.1 (p. 55). On the other hand, the last condition above replaces the

two conditions j (α) 6⊆ en (qj) and ∄α̃ ∈ Int(qi) ∩ Int(qj) with |α̃| = 2 that

were stated in Definition 3.4.1. It suffices to require Int(qi) ∩ Int(qj) = ∅:

Any interaction α̃ ∈ Int(qi) ∩ Int(qj) would automatically satisfy |α̃| = 2

because all interactions involve two components at most. If we combine the

conditions about α̃ and about the incompleteness of qi and qj with the fact

that all interactions involve two components at most we get an equivalent

formulation which simply states that no interaction α ∈ Int, i.e., no global

interaction, is enabled in (qi, qj).

Example 3.2.1 continued: We compute some sets of problematic states

for Sys3 (cf. Figure 3.4 (p. 43) respectively Figure 3.6 (p. 45)). Consider

Sys3 ↓{1,4} first. In this system no pair (q1, q4) can be reached where q1

is problematic with respect to q4 or vice versa. For any such pair either

4 /∈ need(q1) or an interaction in Int3 is enabled. This implies that all sets

of problematic states of the 0-th instance are empty for 1 and 4. We conclude

PS1(q
0
4) = PS1(q

1
4) = ∅ and PS4(q

1
1) = PS4(q

3
1) = ∅.

For j ∈ {2, 3} the state (q2
1, q

0
j) is reachable in Sys3 ↓{1,j} (by first

performing {aα2
1 } respectively {aα1

1 } depending on whether j = 2 or j =

3 followed by the transition labeled {cα5
1 }). We have 1 ∈ need(q0

j) and

j ∈ need(q2
1), and no interaction in Int3 is enabled in (q2

1 , q
0
j). This means

q2
1 ∈ PS0

1(q
0
j) and q0

j ∈ PS0
j(q

2
1). Analogously, we see q0

1 ∈ PS0
1(q

1
j) and

q1
j ∈ PS0

j(q
0
1). Iterating the computation of the problematic states does not

have any effect for the sets above. All sets of problematic states are equal

to the 0-th stage sets of problematic states above.

It can be seen that qj is problematic with respect to qi if and only if it

66 3.4 Deadlock-Freedom for Tree-Like Component Architectures

is problematic with respect to qi and all α ∈ Int (qi) with j (α) 6= ∅:

Lemma 3.4.1. Let Sys be a strongly tree-like interaction system. Let i ∈ K,

qi ∈ Qi incomplete, and j ∈ need(qi). Let qj ∈ Qj .

We have qj ∈ PSj (qi) if and only if for all α ∈ Int (qi) with j (α) 6= ∅

we have qj ∈ PSj (qi, α).

The lemma shows that for strongly tree-like interaction systems the sim-

plification of the definition of a problematic state (in particular the inde-

pendence of α) does not come at the expense of generality. It is clear that

the change in the definition of the sets of problematic states also results in a

change in the definition of the sets of problematic actions. Since α ∈ Int (qi)

does not occur in the definition of PSj (qi) any more it can be canceled from

the definition of PA (qi, α, j), as well.

Definition 3.4.4. Let Sys be a strongly tree-like interaction system with

strongly exclusive communication. For i ∈ K, qi ∈ Qi incomplete, and

j ∈ need (qi) we define

PA (qi, j) := EA (qi,need (qi) ,PSj (qi) , need (PSj (qi)))

the set of problematic actions of i with respect to qi and j.

Example 3.2.1 continued: Using the results gathered above, we specify

the sets of problematic actions for Sys3 (cf. Figure 3.4 (p. 43) respectively

Figure 3.6 (p. 45)). The local states for which we computed the BWS-

operator and the entry actions (cf. pp. 46 respectively 48) were those lo-

cal states that are significant for stating the problematic actions now. For

q4 ∈ Q4 and q1 ∈ Q1 we have PA (q4, 1) = PA (q1, 4) = ∅ because the cor-

responding sets of problematic states are empty. For j ∈ {2, 3} and qj ∈ Qj

we have PA (qj, 1) = ∅, even though the corresponding sets of problem-

atic states are non empty. This is because in Sys3 ↓{1,j} a relevant pair

of states can only be entered by performing interactions in Int3 ↓{1,j} that

only involve ports of component 1. These ports are exactly the ones listed

in the following sets of problematic actions. We get PA(q0
1 , 2) = {bα4

1 },

PA(q0
1 , 3) = {bα3

1 }, PA(q2
1, 2) = {aα2

1 }, and PA(q2
1, 3) = {aα1

1 }.

The following corollary follows from the definitions and Lemma 3.4.1.

3.4.2 Strongly Tree-Like Interaction Systems 67

Corollary 3.4.1. Let Sys be a strongly tree-like interaction system with

strongly exclusive communication. Let i ∈ K, qi ∈ Qi incomplete, and

j ∈ need(qi). Let ai ∈ Ai.

We have ai ∈ PA (qi, j) if and only if for all α ∈ Int (qi) with j (α) 6= ∅

we have ai ∈ PA (qi, α, j).

We rephrase Proposition 3.4.1 for strongly tree-like interaction systems.

Corollary 3.4.2. Let Sys be a strongly tree-like interaction system with

strongly exclusive communication

If the following two conditions hold then Sys is deadlock-free:

1. ∀i∀qi : qi complete ∨ q0
i /∈ BWS (qi,need (qi))∨

∃j ∈ need (qi) with q0
j /∈ BWS (PSj (qi) , need (PSj (qi)))

2. ∀α̃ ∈ Int with |comp(α̃)| = 2 ∃i ∈ comp (α̃) such that for all qi ∈ Qi

that are incomplete:

i (α̃) 6⊆
⋂

k∈need(qi)

PA (qi, k)

The conditions can be checked in time polynomial in the size of Sys.

Checking the technicalities and details of Proposition 3.4.1 and Corol-

lary 3.4.2 is rather tedious and certainly not suitable to be done by hand

for large systems. It is essential to provide an adequate tool-support allow-

ing to automatically check whether systems are tree-like and whether the

conditions are satisfied. Such tool-support is also important with regard to

testing how the procedures scale for large systems and how they compare

to other automated verification methods. Building on the tool PrInSESSA

[127], a trial version of an algorithm based on the corollary has been imple-

mented. It is in the testing phase. An extension of the tool is planned. In

particular, an algorithm checking the conditions of Proposition 3.4.1 shall

be provided. Furthermore, a data-structure for interaction systems based

on binary decision diagrams [36, 42, 43] is being implemented which allows

for a very efficient implementation of the necessary checks.

Example 3.2.1 continued: Deadlock-freedom of Sys3 (cf. Figure 3.4

(p. 43) respectively Figure 3.6 (p. 45)) follows from the corollary. From the

68 3.4 Deadlock-Freedom for Tree-Like Component Architectures

sets of problematic actions computed above it is clear that all intersections

that have to be considered in the second condition are empty. Therefore,

the second condition is satisfied. The first condition is also satisfied. This

follows from the sets of problematic states computed above and from the

results computed for the BWS-operator (cf. p. 46).

We conclude by returning to the original idea discussed in Section 3.1

where we posed the question whether it is possible to derive deadlock-

freedom of a tree-like system from deadlock-freedom of all subsystems con-

sisting of two interacting components. We saw that in general this is not

possible. However, having developed a formal framework for tree-like in-

teraction systems, we are now in a position to state under what further

circumstances it is possible to do so: If a strongly tree-like interaction sys-

tem has the property that for every local state of every component there is

at most one possible communication partner (i.e., |need (qi)| ≤ 1 for all qi)

then checking deadlock-freedom of Sys comes down to checking deadlock-

freedom of Sys ↓{i,j} for every edge {i, j} in G∗. This requirement is not

as strong a restriction as one might think. There are various results con-

cerning systems where each process can only communicate with exactly one

other process in every state (cf. Brookes and Roscoe [38] or Dijkstra and

Scholten [58], for example). It is possible to model various interesting sys-

tems according to this requirement. In this situation Corollary 3.4.3 below

constitutes a further compactification of our results. Interestingly, Brookes

and Roscoe [38] present a sufficient condition for deadlock-freedom that also

checks deadlock-freedom of all subsystems of size two. This condition is

based on the same assumptions as the corollary. In particular, it also re-

quires a tree-like communication architecture and a condition corresponding

to the additional requirement |need(qi)| ≤ 1 we impose here.

Corollary 3.4.3. [38] Let Sys be a strongly tree-like interaction system with

strongly exclusive communication and |need(qi)| ≤ 1 for all i ∈ K and for

all qi ∈ Qi.

If Sys ↓{i,j} is deadlock-free for all {i, j} ∈ E∗ then Sys is deadlock-free.

We make a final remark about the Corollaries 3.4.2 and 3.4.3. They

3.5 Freedom of Local Deadlocks for Tree-Like Component Architectures 69

state sufficient conditions for deadlock-freedom of strongly tree-like interac-

tion systems. However, they actually comprise stronger statements: In the

proofs we will not only show that the conditions entail deadlock-freedom.

Instead, we will show that for a strongly tree-like system the conditions of

Corollary 3.4.2 are equivalent to those of Proposition 3.4.1. Thus, there is

no strongly tree-like interaction system where Corollary 3.4.2 fails to prove

deadlock-freedom while the conditions of Proposition 3.4.1 are met. The ad-

ditional restriction of the architecture causes a simplification of notions and

a reduction of complexity without harming the generality of the criterion.

The same is true for Corollaries 3.4.3 and 3.4.2 with respect to strongly tree-

like interaction systems satisfying the additional requirement above. We did

not explicitly include these facts into the formulation of the corollaries in

order to get more concise statements.

3.5 Freedom of Local Deadlocks for Tree-Like Component

Architectures

We complete the results by a short section about freedom of local dead-

locks of tree-like systems. The approach does not have to be altered very

much in order to be able to handle freedom of local deadlocks, as well. We

state if and how the results have to be adapted to deal with this slightly dif-

ferent problem. We treat strongly tree-like interaction systems first because

for this class of systems the conditions in Corollary 3.4.2 already ensure

freedom of local deadlocks. In the general case we have to sharpen the con-

ditions of Proposition 3.4.1. Since freedom of local deadlocks is not the main

concern of this thesis and because the approach only has to be changed a

little we simply state the results without further explanation. In this section

D denotes a local deadlock in q.

3.5.1 Strongly Tree-Like Interaction Systems

We state the following result regarding freedom of local deadlocks for

strongly tree-like interaction systems:

Corollary 3.5.1. Let Sys be a strongly tree-like interaction system with

70 3.5 Freedom of Local Deadlocks for Tree-Like Component Architectures

strongly exclusive communication.

If the following two conditions hold then Sys does not contain any local

deadlock:

1. ∀i ∀qi : qi complete ∨ q0
i /∈ BWS (qi,need (qi))∨

∃j ∈ need (qi) with q0
j /∈ BWS (PSj (qi) , need (PSj (qi)))

2. ∀α̃ ∈ Int with |comp(α̃)| = 2 ∃i ∈ comp (α̃) such that for all qi ∈ Qi

that are incomplete:

i (α̃) 6⊆
⋂

k∈need(qi)

PA (qi, k)

The conditions can be checked in time polynomial in the size of Sys.

The two conditions in the corollary coincide with those in Corollary 3.4.2.

As far as strongly tree-like interaction systems are concerned the approach

does not have to be changed in order to treat freedom of local deadlocks.

3.5.2 Interaction Systems with Multiway Cooperation

For tree-like interaction systems it is not possible to simply adopt Propo-

sition 3.4.1. The second condition has to be sharpened in order to be able

to also handle local deadlocks. The reason for this phenomenon can be mo-

tivated as follows: For a strongly tree-like interaction system we know that

all interactions in Int involve two components, at most. Thus, if D is a local

deadlock in q then for i ∈ D all α ∈ Int(qi) involve exactly two components.

Otherwise qi would be complete, and no complete local state can be part of

a local deadlock. Using this observation, it can be seen that for a local dead-

lock D in q we have comp(α) ⊆ D for all i ∈ D and all α ∈ Int(qi). Every

α ∈ Int(qi) is blocked by a component in comp(α)∩D. There is exactly one

choice for this component namely the component that participates in α other

than i. Therefore, this component must be contained in D. This fact will

be needed in the proof of Corollary 3.5.1. For tree-like interaction systems

we cannot argue the same way any more. Given a local deadlock D in q we

only know that for all i ∈ D and all α ∈ Int (qi) there has to be at least one

other component in comp (α) that is also contained in D (and that blocks

3.6 Examples 71

α). We do not know whether the other components that participate in α

are contained in D or not. However, it is still possible to state a criterion for

freedom of local deadlocks in tree-like interaction systems which is similar

to Proposition 3.4.1. The first condition of the proposition can be adopted

without change. We replace the second condition by the requirement that

no α̃ ∈ Int contains a port ai for which there is an incomplete local state

qi such that ai is problematic with respect to all α ∈ Int(qi). This simply

results in the requirement that all intersections in the second condition of

the proposition must be empty.

Proposition 3.5.1. Let Sys be a strongly tree-like interaction system with

strongly exclusive communication.

If the following two conditions hold then Sys is free of local deadlocks:

1. ∀i∀qi : qi complete ∨ q0
i /∈ BWS (qi,need(qi)) ∨ ∃α ∈ Int (qi) such that

∀j ∈ comp (α) \ {i} : q0
j /∈ BWS (PSj (qi, α) , need (PSj (qi, α)))

2. ∀i ∈ K and ∀qi ∈ Qi that are incomplete:

⋂

α∈Int(qi)

⋃

j∈comp(α)\{i}

PA (qi, α, j) = ∅

The conditions can be checked in time polynomial in the size of Sys.

3.6 Examples

This section is devoted to three larger examples. They model real life

situations taken from different scenarios. They show that our results can be

applied to arbitrarily large systems: The first example is parametrized to

allow for an arbitrary number of components. Therefore it yields a class of

examples. The third example models a system that can be multiplied and

combined to construct arbitrarily large systems.

3.6.1 A Banking System

We model a banking system which is similar to the one described by

Baumeister et al. [30]. It consists of a clearing company, a number of banks,

72 3.6 Examples

and a number of ATMs for each bank. We only model the withdrawal of

money at an ATM, and we do not specify other functionalities the different

components may have. A withdrawal should obey the following protocol:

An ATM can request money from its bank. With the help of the clearing

company the bank then checks the correctness of the PIN that was delivered.

Depending on the reply of the clearing company the ATM may disburse

money or cancel the transaction. We abstract from the actual values of the

PIN and the amounts of money on the accounts since we are only interested

in the communication between the components.

We define an interaction system behaving according to this specification.

There are m ≥ 1 banks. Each bank is represented by a component bi where

1 ≤ i ≤ m. For each bi there are ni ≥ 1 ATM components atmi
j where

1 ≤ j ≤ ni. The clearing company is represented by the component cc. We

get Kbank := {cc, bi, atm
i
j |1 ≤ i ≤ m, 1 ≤ j ≤ ni}. The transition systems

modeling the local behavior of the components are depicted in Figure 3.13.

For each i the port set Ai is understood to coincide with the set of labels of

Ti. We will write qi
j instead of qatmi

j
to denote a local state of atmi

j.

idlebi

bi :

checkingbi

waitingbi

okbi
¬okbi

withdrawbi

requestbi

checkbi

correctbi

¬correctbi

pinOKbi

wrongpinbi

disbursebi

cancelbi

idlei
j

atmi
j :

waitij

withdrawi
j

requestij

pinOKi
j

takemoneyi
j

wrongpini
j

cancelij

idlecc

cc :

checkingcc

checkcc

correctcc

¬correctcc

Figure 3.13: The local behavior of the components in Kbank

The following interactions describe the cooperations that are allowed

between the components. Using {requestbi
, requestij}, an ATM may send a

request for money to its bank. The bank checks the PIN with the clear-

ing company according to the interaction {checkbi
, checkcc}. The clear-

ing company then informs the bank whether the PIN was correct or in-

correct using {correctbi
, correctcc} respectively {¬correctbi

,¬correctcc}. Be-

3.6.1 A Banking System 73

cause we abstract from the value of PIN the choice happens nondetermin-

istically. The interactions {pinOKbi
, pinOKi

j} and {wrongpinbi
,wrongpini

j}

are used by the bank to inform the ATM about the result of the check.

If necessary the bank disburses money using {disbursebi
, takemoneyi

j} or

the transaction is canceled using the interaction {cancelbi
, cancelij}. We get

the following subsets of interactions. For each bank bi we define Inti :=

{{checkbi
, checkcc} , {¬correctbi

,¬correctcc}, {correctbi
, correctcc}}. For each

bi and each atmi
j the set Intij contains the interactions {pinOKbi

, pinOKi
j},

{wrongpinbi
,wrongpini

j}, {requestbi
, requestij}, {disbursebi

, takemoneyi
j}, and

{cancelbi
, cancelij}. Define

Intbank :=

m
⋃

i=1

Inti ∪

m,ni
⋃

i=1,j=1

Intij

and denote the induced interaction system by Sysbank.

In the following we exemplarily compute the notions of this chapter and

retrace the results for Sysbank. In general (if there are at least two banks or

if there is a bank with at least two ATMs), Sysbank does not have strongly

exclusive communication. Each port of cc occurs in different interactions

(in one for each bank). Likewise the ports of a bank bi that are meant for

communication with the ATMs also occur in various interactions. We carry

out the construction of Sysbank defined in Lemma 3.2.1 in detail. Being

somewhat imprecise to increase readability, we do not superscript the new

ports of the components in Kbank by the names of the interactions they occur

in. Instead we simply superscript each port by the name of the component

it is used to communicate with. Further, we do not replace those ports that

already occur in one interaction only, i.e., we keep the names of the ports of

the ATMs and the names of the ports that a bank uses for communication

with the clearing company. The port checkcc occurs in all interactions of the

form {checkbi
, checkcc}. Thus, Acc contains the subset

{

check1
cc, . . . , check

m
cc

}

of ports replacing checkcc. The port checki
cc is only used for communication

with checkbi
. In Tcc the transition labeled checkcc is replaced by the set of

parallel edges depicted in Figure 3.14 a). The other ports of cc are treated

analogously. Next, consider requestbi
∈ Abi

. It occurs in {requestbi
, requestij}

for 1 ≤ j ≤ ni. As above, a subset {request1bi
, . . . , requestni

bi
} of new ports

74 3.6 Examples

replaces requestbi
in Abi

. The transitions replacing the transition labeled

requestbi
are depicted in Figure 3.14 b). G∗ for Sysbank is depicted in Figure

3.15. It is a tree.

idlebib)

checkingbi

. . .request1bi
requestni

bi

idlecca)

checkingcc

. . .check1
cc checkm

cc

Figure 3.14: The construction of Sysbank

cc

b1 bm

atm1
1 atm1

m1
atmm

1 atmm
nm

. . .

.

Figure 3.15: G∗ of Sysbank

Corollary 3.4.2 proves that Sysbank and consequently Sysbank are dead-

lock-free. We carry out one of the computations necessary for the appli-

cation of the corollary. Consider bank bi, and assume that it has at least

two ATMs2. Consider okbi
. We have need(okbi

) = {atmi
1, . . . , atm

i
ni
}. We

compute the problematic states of atmi
j with respect to okbi

. It is clear

that waitij is not problematic with respect to okbi
because it enables the

port pinOKi
j. The other two local states idlei

j and withdrawi
j of atmi

j do not

enable this port. In addition bi ∈ need(qi
j) for both these states. We only

further have to check whether each of these two states is reachable in com-

2If there is only one ATM atmi
1 the situation is much more simple because PSatmi

1
(qbi

)

and PSbi
(qi

1) are empty for all local states qbi
of bi and qi

1 of atmi
1.

3.6.1 A Banking System 75

bination with okbi
. This is the case because bi can proceed independently

of atmi
j by performing ports that are for communication with ATMs atmi

j′

other than atmi
j. We get PS0

atmi
j

(okbi
) = {idlei

j ,withdrawi
j}. In order to see

that we also have PSatmi
j
(okbi

) = {idlei
j,withdrawi

j} we have to compute the

0-th stage problematic states for the local states qi
j of atmi

j , as well. This can

be done in the same way as described above. It can be seen that for all qi
j we

have PS0
bi
(qi

j) 6= ∅. In fact, for reasons of symmetry we have qbi
∈ PS0

bi
(qi

j)

if and only if qi
j ∈ PS0

atmi
j

(qbi
). We get PSatmi

j
(okbi

) = {idlei
j ,withdrawi

j}.

Next, we compute the problematic actions. We first have to evaluate the

BWS-operator for the states involved. Note that atmi
j constitutes a leaf

of G∗. Therefore and because there are no singleton interactions it only

communicates with bi and according to the statement made in beginning of

Example 3.2.1 (p. 46) we have BWS(qi
j ,need(qi

j)) = {qi
j} for all local states

of atmi
j . All labels on the path

checkingbi

checkbi→ waitingbi

correctbi→ okbi

are ports that are used for communication with cc, i.e., these ports are not

in
⋃

k∈need(okbi
) comm bi

(k). Therefore, we conclude BWS(okbi
,need(okbi

)) =

{okbi
,waitingbi

, checkingbi
}. Since we are interested in PA(okbi

, atmi
j) we

must check whether one of these three states can be reached in combination

with idlei
j or withdrawi

j in Sysbank ↓{bi,atmi
j
} by performing a port that is used

for communication with a component in need(okbi
) = {atmi

1, . . . , atm
i
ni
}.

The only combinations of these states that are relevant are (checkingbi
, idlei

j)

and (checkingbi
, waitingi

j). Both pairs of states can be reached by perform-

ing {requestj
′

bi
} for j′ ∈ {1, . . . , ni}\{j}. If an interaction in Intbank ↓{bi,atmi

j}

involving requestjbi
(i.e., {requestjbi

, requestij}) is performed then requestij must

also be performed. This results in atmi
j changing to waitij. Therefore

requestij is not problematic with respect to okbi
and atmi

j . Letting j vary in

need(okbi
) = {atmi

1, . . . , atm
i
ni
} we get analogous results for all other ATMs.

This shows:
⋂

j∈need(okbi
)

PA(okbi
, j) = ∅

The other states of bi can be treated similarly. Again the intersections

of the sets of problematic states are empty. Considering cc, an analogous

76 3.6 Examples

argument shows that for each qcc and each bi those ports of cc which label

a transition entering qcc and which are used for communication with bi are

not problematic with respect to qcc and bi. Thus, the intersection of the sets

of problematic actions for qcc is again empty. Finally, for any local state qi
j

of an atmi
j it can be seen that PA(qi

j, bi) = ∅. Even though PSbi
(qi

j) 6= ∅

combinations of such states can only be reached in Sysbank ↓{atmi
j ,bi}

by

performing interactions in Intbank ↓{atmi
j ,bi}

not involving atmi
j. Therefore,

there are no problematic actions of atmi
j with respect to qi

j and bi. We

conclude that all intersections of sets of problematic actions that have to be

considered in the second condition of Corollary 3.4.2 are empty. Therefore,

the condition is satisfied. The first condition only has to be checked for

local states qi with q0
i ∈ BWS(qi,need(qi)). These are idlei

j for atmi
j and

idlecc, as well as idlebi
and checkingbi

for the banks. Considering the sets

of problematic states for these local states, it is easy to see that the first

condition is satisfied for these states. We conclude that Sysbank is deadlock-

free. In fact, Corollary 3.5.1 shows that Sysbank is also free of local deadlocks.

According to Lemma 3.2.1, Sysbank has these properties, as well. The set

of reachable global states of Sysbank is exponentially large in the number

of components if there are several banks and several ATMs for each bank.

Therefore, it would not be feasible to check deadlock-freedom for Sysbank

directly even if the system only consists of comparatively few components.

This example indicates an interesting feature of the criterion: The ap-

proach works particularly well if applied to systems where groups of com-

ponents that compete for cooperation with i ∈ K (in the sense that i has

states where it can choose between these components) have similar or even

the same behavior. As seen above the intersections in the second condition

will be empty in this case because whenever we observe i in parallel with j

the ports in comm i (j) do not lead to a problematic state. Such a port has

to synchronize with j in Sys ↓{i,j}, and this synchronization should not lead

to a pair of states where the ports offered by i and j are not compatible. If

it did this could be interpreted as an indicator that the system has not been

specified correctly. Sysbank has the above property: All communication part-

ners of cc (the banks) are the same up to nomenclature. All communication

partners of bi (the ATMS) but one — namely cc which never competes with

3.6.2 The River Delta 77

the ATMs for cooperation — also behave in the same way. However, note

that such symmetries are not necessary for the applicability of the criterion.

3.6.2 The River Delta

We consider a system of barrages and locks in a river delta. The system

has to control the closing of the barrages to protect the coastline in case of

imminent storms. Further, the coordination between the various elements of

a lock has to be organized. We do not discuss the application of Proposition

3.4.1 in detail. We primarily use this example to show that there are systems

with a natural tree-like architecture where this is not obvious at first glance.

Figure 3.16 shows the stylized coastline of an imaginary country. The

b

b1

l

b2

ws

r

Figure 3.16: The estuary

area comprises the estuary of a river which splits up just before flowing

into the sea. One river arm flows through an industrial area and has been

developed for shipping traffic while the other further divides into a delta.

Both arms are equipped with a barrage. The industrial arm is additionally

equipped with a river lock in order to coordinate the arrival and departure

of ships. There is a weather station on the coast and a scientific buoy off

shore that is supposed to deliver early warning in case of impending storms.

Finally, there is a reservoir upstream that can be opened to relax floods

in the industrial arm of the river which may be caused by shutting the

gates of the barrages. Each barrage has two different functions. First, the

78 3.6 Examples

b:
0

1

stormbcalmb

ws:
0

3 1

2

stormws

warningwscalmws

clearancews

r:
0

1

openRrcloseRr

l:
0

1 32

approachl

clearl

clearl

enterl

leavel

approachl

b1:
0

312 4

5

warningb1
approachb1

closeb1

warningb1

warningb1

clearb1

shutb1

drainb1
releaseb1

b2:
0

1 2

3

4

5 6

warningb2

shutb2

openRb2

releaseb2

closeRb2

flood∆b2

warningb2

shutb2

drain∆b2

Figure 3.17: The local behavior of the components in K∆

barrages are supposed to cooperate in order to protect the coastal area from

being flooded in case of surges. Such surges are forecast by the buoy which

subsequently informs the weather station. The weather station then has to

coordinate the simultaneous closing of the gates. Further the barrages may

be closed independently of each other. The first one can work together with

the lock in order to allow the passage of ships whereas the other one can

be shut in order to permit a (controlled) flooding of the delta (which might

be necessary for agricultural reasons, for example). The reservoir has to be

opened whenever the second barrage is shut. Closing of the barrages in case

of storms always has to be possible. It has to be made sure that the barrages

are permanently ready to receive a warning from the weather station.

We model the river delta as an interaction system. Each of the different

devices is represented by a component. There are the barrages b1 and b2, the

river lock l and the reservoir r as well as the weather station ws and the buoy

b. We get K∆ = {b1, b2, l, r,ws, b}. The transition systems modeling the

local behavior of the components are depicted in Figure 3.17. In the figure

a state of component i ∈ K∆ labeled x is understood to denote qx
i ∈ Qi. For

each i ∈ K∆ the port set Ai coincides with the set of labels of Ti.

We introduce the following interactions: The buoy notifies the weather

station of impending or abating storms by means of the interactions α1 :=

{stormb, stormws} respectively α2 := {calmb, calmws}. The weather station

3.6.2 The River Delta 79

{ws, b1, b2} {ws} {ws, b} {b}

{b1, b2} {b1}{b2}{b2, r} {b1, l}{r} {l}

Figure 3.18: The interaction graph of Sys∆

then has to inform the barrages of the incoming or retreating storm. For this

purpose we introduce α3 :=
{

warningws,warningb1,warningb2

}

respectively

α4 := {clearancews, releaseb1 , releaseb2}. In the first event the two barrages

have to be shut simultaneously using α5 := {shutb1 , shutb2}. Furthermore,

the second barrage has to prompt the reservoir to be opened or closed. We

add interactions α6 :=
{

openRb2 , openRr

}

and α7 := {closeRb2, closeRr}.

On the other hand, the barrages have to be able to proceed independently

in order to fulfill their respective functionalities. The first one must make

sure that the passage of ships is coordinated with the lock. There are in-

teractions indicating the approach α8 :=
{

approachb1 , approachl

}

, entering

α9 := {closeb1 , enterl}, and departure α10 := {drainb1 , leavel} of a ship. Note

that the barrage is ready to obtain a storm-warning in the process of allow-

ing the passage of a ship. In case of such a warning the lock has to be cleared

using the interaction α11 := {clearb1 , clearl}. The second lock has to fulfill

the purpose of temporarily flooding the delta. In order to open and close

the reservoir in this case there are interactions α12 := {flood∆b2 , openRr}

and α13 := {drain∆b2 , closeRr}. We define Int∆ := {αl|1 ≤ l ≤ 13}, and we

denote the induced interaction system by Sys∆.

Deadlock-freedom of Sys∆ is crucial. Figure 3.18 shows that Sys∆ is

tree-like, and Proposition 3.4.1 shows that Sys∆ is deadlock-free. Of course,

further investigations are necessary in order to prove other important prop-

erties for this system. For example, it has to be guaranteed that closing of

the barrages in case of a storm always has priority over all other function-

alities. Priorities can be included into the formalism of interaction systems

[72]. Under certain conditions it can be shown that a system with priorities

is deadlock-free if the underlying system without priorities is deadlock-free.

80 3.6 Examples

3.6.3 The Railway Track

Having seen two examples that can be modeled as tree-like systems, we

conclude by discussing a system which does not have an underlying tree-

like architecture. However, we will show how a simple construction can be

used to obtain an equivalent system that is tree-like. As in the case of Sys

introduced in Lemma 3.2.1 it is not the point to replace the original system.

Instead, we prove that the adapted system is deadlock-free and carry the

result over to the original system.

We model a simple substructure of a network of train stations and tracks.

It consists of two stations, st1 and st2, and the track between them. This

track is a single track which has to be traveled in both directions. In order

to allow trains to avoid collision with oncoming trains the track is equipped

with a bifurcation b in the middle. The segment is schematically depicted

in Figure 3.19. Assume that all trains that arrive at the bifurcation coming

st1 st2t1 t2b

Figure 3.19: Basic segment of the train network

from t1 take the lower branch of the bifurcation whereas all trains coming

from t2 take the upper branch. Once this substructure is defined, it can be

multiplied and stuck together at the stations in order to construct complex

railroad systems. This nicely reflects the requirement put upon a component

in Section 1.1: It should be reusable and independent of the context it will be

used in. Here the context independence is given to a certain degree because

the substructure can be used to construct many different networks of tracks.

We model the segment by an interaction system. We have Ktrack :=

{st1, st2, t1, t2, b}. We set Asti :=
{

fromt
i, to

t
i

}

. These two ports describe the

fact that the respective station can receive a train from respectively send a

train to the corresponding track. Similarly, each track ti has ports which al-

low for passage of a train to and from the corresponding station respectively

to and from the bifurcation. We get Ati :=
{

tost
i , fromst

i , tob
i , from

b
i

}

. The

3.6.3 The Railway Track 81

bifurcation may send a train to or receive a train from either of the tracks.

For ti these actions are described by toti respectively fromti . The bifurcation

further has the task to control the entering into the tracks of trains com-

ing from the corresponding stations. For each ti the bifurcation therefore

provides a port enterti . We get A ′
b :=

{

toti , fromti , enterti |i ∈ {1, 2}
}

. The

local behavior of the components is given in Figure 3.20. We denote the

transition system of b by T ′
b.

sti :

q0
i

fromt
i

tot
i

t1 :

free1

right1 left1

fromst
1

tob
1

fromb
1

tost
1

t2 :

free2

left2 right2

fromst
2

tob
2

fromb
2

tost
2

b :
0
0

0
1

1
0

1
1

1
1 lock

0
1crit

1
0crit

fromt1

tot2

fromt2

tot1

fromt2

tot1

fromt1

tot2

entert1 , entert2

entert2 entert1

entert2
entert1 ,

fromt1fromt2

entert1 entert2

tot1 tot2

entert2 entert1

tot2 tot1

Figure 3.20: The local behavior of the components in Ktrack

The names of the states were chosen to give an intuitive idea of their

meaning. For example, the state right1 of t1 indicates that the track is

occupied by a train traveling from st1 to b. The states of b have been labeled

by elements (x, y) ∈ {0, 1}2 depicted as x
y . Here x and y indicate whether

the top respectively lower branch of b are occupied. Since both branches

may only be traveled in one direction it suffices to keep track of whether

they are occupied or not. The transition systems convey the behavior that

would be expected of the components. There are only a few subtleties to

82 3.6 Examples

be noted. We do not specify the behavior of the stations in detail. Each

station may repeatedly and nondeterministically send trains to and receive

trains from its corresponding track. This behavior can be concretized if

necessary. For the moment we settle for this general description of the

stations. The diamond formed by the upper four states in T ′
b describes the

behavior one would want the bifurcation to have. There are three additional

states, though. They restrict the admittance to the tracks of trains coming

from the stations. Depending on the state b does not allow trains coming

from st1 or from st2 or any train at all to enter the track.

We define the following interactions. There is one interaction which al-

lows a train coming from station sti to enter track ti. This cooperation is

monitored by b. It is given by α1
i :=

{

tot
i, from

st
i , enterti

}

. The interaction

α′2
i :=

{

fromt
i, to

st
i

}

allows a train coming from track ti to enter the sta-

tion sti. Similarly, there are interactions allowing for a train to enter the

bifurcation coming from track ti or to enter track ti coming from the bifur-

cation. These are α3
i :=

{

tob
i , from

ti
}

respectively α4
i :=

{

fromb
i , to

ti
}

. We

get Int′track :=
{

α1
i , α

′2
i , α3

i , α
4
i |i = 1, 2

}

. We denote this system by Sys′track.

The system has strongly exclusive communication. However, Figure 3.21

shows that it is not tree-like. Proposition 3.4.1 cannot be applied.

{b}{b, t1}{b, t1, st1}

{t1, st1} {t1}{st1}

{b, t2} {b, t2, st2}

{t2, st2}{t2} {st2}

Figure 3.21: The interaction graph of Sys′track

The situation can be remedied by a simple adjustment. The cycle involv-

ing t1 arises because there are interactions involving t1 and st1 on the one

hand respectively t1 and b on the other as well as an interaction involving all

three of these components. The latter interaction is necessary to allow for

the bifurcation to control the admittance of trains coming from st1 into t1.

Even though the bifurcation does not have to monitor the arrival at st1 of

a train coming from t1 we may force it to do so without changing the global

3.6.3 The Railway Track 83

behavior of Sys′track by carrying out the following construction. We extend

A ′
b by leavet1 . For each local state qb in T ′

b we add a loop qb
leavet1
→ qb. Finally,

we replace α′2
1 =

{

fromt
1, to

st
1

}

by α2
1 :=

{

fromt
1, to

st
1 , leavet1

}

. A state q of

the resulting interaction system is reachable if and only if it was reachable in

the original system. Further, it is a deadlock if and only if it was a deadlock

there. We treat t2 analogously. We denote the new port set and local be-

havior of b by Ab respectively Tb and the new set of interactions by Inttrack.

The resulting interaction system is denoted by Systrack. Its interaction graph

depicted in Figure 3.22 is a tree. Thus, we may apply Proposition 3.4.1 to

obtain results about Systrack and consequently about Sys′track. There are

limitations to the applicability of this technique, though. First of all, the

interaction graph may contain so many cycles that the construction cannot

be performed efficiently. Further, not all cycles can be removed this way. A

cycle can only be eliminated if it has a similar structure as the ones encoun-

tered in the interaction graph of Sys′track. In particular, we cannot get rid of

cycles involving more than one node representing a single component.

{b}{b, t1}{b, t1, st1}

{st1} {t1}

{b, t2} {b, t2, st2}

{st2}{t2}

Figure 3.22: The interaction graph of Systrack

We want to show that Systrack is deadlock-free. This is by no means

obvious. Consider a situation where the upper branch of b is occupied by

a train traveling towards st1 whereas the lower branch is occupied by a

train traveling towards st2. As long as at least one of the tracks is free

there is no problem. However, a situation might arise where each station

sends another train to its track before one of the trains in the bifurcation

continues its journey. This causes a deadlock because neither of the trains

in the bifurcation can leave the bifurcation before one of the trains on the

tracks leaves the track and vice versa. It is not clear from the definition of

84 3.6 Examples

Systrack that no global state3 will ever be reached whose entries for b and

the ti coincide with 1
1 or 1

1 lock
respectively right1 and left2, and it definitely

does not follow from the informal specification of the system given in the

beginning of this subsection.

Deadlock-freedom of Systrack in fact follows from Proposition 3.4.1. We

omit the details of the necessary computations. We just state a few facts re-

sulting from the computation. Contrary to Sysbank where we had PS0
j(qi) =

PSj(qi) for all relevant combinations of qi and j, here we profit from iterat-

ing the construction of the problematic states. We are able to eliminate a

significant number of local states from the sets of problematic states. Simi-

larly to Sysbank, most of the intersections that have to be computed for the

second condition of the proposition are empty, but it can be seen that for

both stations we have

⋂

α∈Int(q0
i
)

⋃

j∈comp(α)\{sti}

PA(q0
i , α, j) = {tot

i}

whereas for both tracks we have

⋂

α∈Int(qi)

⋃

j∈comp(α)\{ti}

PA(qi, α, j) = {fromst
i }

where qi denotes right1 if we consider t1 and left2 if we consider t2. However,

this does not cause a problem. The only interaction containing some of these

ports is α1
i = {tot

i, from
st
i , enterti}. It is clear that α1

i satisfies the second

condition of Proposition 3.4.1, though, because the port enterti makes sure

that α1
i cannot be used to reach a state where all components in comp(α1

i) are

blocked. We conclude that second condition of the proposition is satisfied.

The first condition is satisfied by Systrack, as well. Thus, Systrack is deadlock-

free. This result carries over to Sys′track as originally considered.

We point out a few details. We argued informally above that it is not

obvious that Systrack is deadlock-free. In particular, a state where the bifur-

cation is occupied and on each track a train is waiting to enter the bifurcation

would cause a deadlock. If in a first naive specification the local transition

system of b had only consisted of the diamond of the upper four states with-

out keeping track of trains entering t1 and t2 from the stations this deadlock

3Note that D = {b, t1, t2} also constitutes a local deadlock in any such state.

3.6.3 The Railway Track 85

would have indeed been reachable. Retracing the computations for such a

system it would become clear that the second condition of Proposition 3.4.1

would not be satisfied for those interactions allowing the global system to

move to a state whose entry for b coincides with 1
1 . In such a state b would

not be able to influence trains entering the tracks, and the deadlock might

occur. Thus, the need for b to be able to control the entering into the tracks

of trains coming from the corresponding stations is directly reflected in the

conditions of the proposition. By introducing the local states 0
1crit

, 1
1 lock

,

and 1
0 crit

we made sure that b is indeed able to exercise this control.

As stated in Definition 3.4.1 for each qi, α ∈ need(qi), and j ∈ comp(α)

we obtain a descending sequence PSl
j (qi, α) of sets of problematic states.

In particular, we have PSj (qi, α) ⊆ PSl
j (qi, α) for all l ∈ N. This means

that the proposition could have been formulated with PSl
j (qi, α) instead

of PSj (qi, α) for any index l. This would result in a less general criterion

but it would not harm the correctness of the proposition. If the conditions

in Proposition 3.4.1 already hold for some l (adapting the definition of the

problematic actions by computing the entry actions with respect to the l-th

stage sets of problematic states) they certainly also hold for the intersection

of all sets of problematic states. If the conditions of Proposition 3.4.1 had

been computed for Systrack with PS0
j (qi, α) instead of PSj (qi, α) they would

already have been satisfied. Even though we were able to remove several

states from the sets of problematic states by iterating their construction

this would not have been necessary. Without going into the details, we

use this remark to motivate that strategies could be conceived that help to

avoid carrying out all computations to the last detail. In the worst case all

iterations have to be followed through but for a concrete implementation of

the criterion this observation may help to further improve the runtime of an

algorithm based on the proposition.

So far, we have only investigated a substructure as depicted in Figure

3.19. We briefly explain how such substructures have to be assembled in

order to create larger railway networks that can still be investigated using

Proposition 3.4.1. The assumption that all results of this chapter are based

on requires the system to be tree-like. Therefore, the building blocks given

by Sys′track have to be stuck together in such a way that no cycle arises. This

86 3.7 Conclusion and Related Work

is not as strong a restriction as one might think at first glance. There are

examples of public transport systems that are designed this way. This holds

in particular for all such systems that are organized in a centralized manner

where all lines radiate from a central station. Because Sys′track is deadlock-

free there is no further need to consider the substructures. We only have to

make sure that no deadlock is caused by composing the various sections of

the railroad network. Taking the current specification of the stations, this

is not possible. Depending on the scenario, it might be necessary to further

specify the behavior of the stations, though. Changing the specification of

the stations (for example, the number of trains a station can accommodate

could be restricted), might cause problems and has to be handled with care.

The key point is that such a change would not destroy the tree-like structure

of Sys′track, and Proposition 3.4.1 would still be applicable.

We conclude by a short remark explaining why it is not possible to

model Systrack as a strongly tree-like interaction system. Any interaction in

a strongly tree-like system involves two components at most. Thus, if we had

tried to model the substructure of tracks by a strongly tree-like interaction

system we would have had to realize all cooperations by interactions involv-

ing two components. The argument concerning possible deadlocks caused

by trains freely entering the tracks shows that there would definitely have to

be a cooperation between sti and b making sure that before sending a train

to the track the station checks whether it is allowed to do so. However,

there also have to be cooperations between ti and sti respectively ti and b.

These interactions would cause a cycle in G∗ showing that it is impossible

to model Systrack by a strongly tree-like interaction system. Already for this

relatively simple system the notion of strongly tree-like interaction systems

does not suffice any more.

3.7 Conclusion and Related Work

3.7.1 Conclusion and Discussion

We presented a compositional analysis of deadlock-freedom for the sub-

class of tree-like interaction systems. We first dealt with reachability. We

3.7.1 Conclusion and Discussion 87

defined a backward-analysis for local states and a notion of entry actions

which can be computed for subsystems consisting of two components. We

presented a result allowing to exclude the possibility that certain global

states are reachable only by comparing the relevant sets of entry actions.

We introduced two interaction graphs — G and G∗ — representing the

allowed interactions between the components. These graphs were used to

restrict the communication among the components by requiring them to

form trees. This architectural constraint was used to introduce a notion

of problematic states with respect to a local state qi describing those lo-

cal states of components in need(qi) that do not enable compatible ports.

Bringing together the different threads, we used the results about reacha-

bility to make sure that no combinations of problematic states are globally

reachable that might result in a global deadlock. Accommodating for the

two different versions of interaction graphs, we first presented the results

for the general case based on G. Then we simplified the results for systems

where all interactions involve two components at most. Finally, we modified

the results to also account for freedom of local deadlocks.

The results are based on information that we derive from the analysis

of subsystems consisting of two interacting components. One might wonder

whether it is really necessary to consider a tree-like system in order to apply

the techniques presented above or whether they may also help in cases where

the interaction graph contains cycles. The following example shows that this

is not possible. Consider the system consisting of the components i, j, and

k which results from the transition systems depicted in Figure 3.23 and the

interaction set Int := {{ai, aj}, {bj , bk}, {ci, ck}}. The system is not tree-like.

q0
i

q1
i

aici

q0
j

q1
j

bjaj

q0
k

q1
k

ckbk

Figure 3.23: The local behavior of the components i, j, and k

Furthermore, its initial state is a deadlock. However, if we were to compute

the sets of problematic states all these sets would be empty. For q0
i and j,

88 3.7 Conclusion and Related Work

for example, q0
j /∈ PSj(q

0
i) because i /∈ need(q0

j) and qj /∈ PSj(q
0
i) because

(q0
i , qj) enables {ai, aj}. A system where all sets of problematic states are

empty satisfies the conditions in our criteria. Thus, the ideas of this chapter

cannot be used if the communication architecture is cyclic. In particular, it

does not suffice to only consider subsystems of size two for such a system.

At this point we would like to advise the reader that it is also possible to

take a slightly different point of view towards the results presented in this

chapter. So far, we have always taken up the position that the interaction

system for which we want to establish deadlock-freedom is given and will

not be changed. For such a system we may check whether G is a tree and

whether the conditions are satisfied. However, it is also possible to use the

results to create systems from scratch that are deadlock-free by construc-

tion. In Section 2.3 we mentioned that there is a composition operator for

interaction systems [92]. Because it is commutative and associative it al-

lows to construct complex systems by composing components respectively

systems. The most simple way to do so is by adding one component to an

existing system at a time. This approach has the advantage that it can be

realized such that the changes to the existing system are always local, i.e.,

they only affect those components for which interactions involving the newly

added component are introduced. Based on this observation we can derive

instructions for the construction of deadlock-free systems with a tree-like ar-

chitecture by making sure that every time we add a new component a) the

system’s architecture remains tree-like and b) adding the component does

not lead to a violation of the conditions formulated for deadlock-freedom in

this chapter. Exhibiting such design-guidelines which put requirements on

the new component and on the way it is added, it is then possible to derive

results for a global system by only performing very few checks every time a

component is added. The ultimate goal of this approach is a construction

kit for interaction systems which are deadlock-free (respectively correct with

regard to some other property) by construction.

We want to stress that the techniques we developed (i.e., the results

about reachability respectively the architectural constraints and the conse-

quential definition of problematic states) are orthogonal to each other in the

sense that they may be isolated and employed in different contexts. There

3.7.1 Conclusion and Discussion 89

are other situations where statements about the reachability of global states

are necessary. Basically every property of interaction systems only refers the

set of reachable states. Since we detached the notions and conditions refer-

ring to reachability of states from the considerations about restricting the

architecture and the implications for deadlock-freedom, the results presented

in Section 3.2 can be applied in other contexts, as well. Also it should not

prove too difficult to adapt the ideas to other automata based formalisms in

order to obtain results about reachability there. On the other hand, differ-

ent characteristic architectures may be conceived which might also allow to

extract information about possible deadlocks from subsystems. In a similar

vein one can turn to a different property either by maintaining the tree-like

architecture or by devising a new one which is more appropriate for the

property in question. Following the way in which the notion of problematic

states was derived in Remark 3.4.1, one then has to characterize those com-

binations of local states which might lead to a violation of the property. The

orthogonality also manifests itself in the fact that the different aspects of our

approach take hold at the different layers of description for an interaction

system that were mentioned in Section 2.1. The architectural constraint

only restricts the interaction model of an interaction system, i.e., the static

layer. Only the results about reachability and about the problematic states

also refer to the local behavior of the components, i.e., the dynamic layer.

The strict separation of communication from behavior enforced for interac-

tion systems in fact helps to derive results about the behavior of a system

since it allows to treat issues only concerning one of the layers in an isolated

manner without having to tamper with the other.

We presented three real life examples that can be shown to be deadlock-

free using the results of this chapter. There are of course deadlock-free

systems where our results cannot be used to prove it. This is not surpris-

ing, though. The complexity results mentioned in Section 3.4 show that we

cannot expect to find a characterization of deadlock-freedom that can be

checked efficiently for all systems even if we confine the class of systems by

only treating strongly tree-like interaction systems. We want to complete

the discussion of the results by taking a closer look at the limitations of the

approach and by hinting at some “back doors” that may be resorted to if

90 3.7 Conclusion and Related Work

the conditions are not satisfied. First, it is clear that there is a large class

of interaction systems that our criterion is not even capable of dealing with,

precisely because we confine the interaction systems by demanding them to

be tree-like. However, also in this subclass of interaction systems there are

deadlock-free systems for which our criteria are not able to definitely answer

the question whether there are reachable deadlocks. Recall that the crite-

ria only offer a sufficient condition. We cannot make any statement about

deadlock-freedom if the conditions are violated. There are two main reasons

for this phenomenon. First, for components i and j the set of reachable

states of Sys ↓{i,j} is an over-approximation of the projection of reach(Sys)

to {i, j}, i.e., reach(Sys) ↓{i,j}⊆ reach(Sys ↓{i,j}). Thus, we may find lo-

cal states which are problematic with respect to each other even though

they can never be globally reached in this combination. Keeping track of

the actions that lead to problematic states, as we do, helps to make the

over-approximation more precise. Nonetheless, the possibility remains that

we recognize conjectured deadlocks in states that are not globally reachable.

Secondly, condition 2) of Proposition 3.4.1 makes sure that for every interac-

tion (representing a global step) at least one component participates which

cannot — by performing its port in the interaction — reach a state where all

possible communication partners do not offer the required ports. If there is

an interaction α̃ violating this condition then α̃ could lead to a state q where

the components in comp(α̃) constitute a set K ′ of components for which the

possible communication partners block each other even though the system

is not in a deadlock. This is because other components that are independent

(in q) of the components in K ′ may be able to proceed. Such a state cannot

be distinguished from a real deadlock state by only looking at subsystems

of size two because we loose information by projecting Sys to such subsets.

It may be possible that the other components proceed to a state that helps

to resolve the blockade of the components in K ′. On the other hand, it is

of course also possible that the components in K ′ are blocked forever even

though the system can still proceed. It may be desirable to also avoid this

kind of situation, justifying the relatively sharp requirement which avoids

the second situation described above.

The conditions in Proposition 3.4.1 have been devised such that their

3.7.2 Related Work 91

violation can be understood as an indicator for where to perform a specific

direct check for deadlocks respectively reachability. Such a violation is al-

ways directly linked to the components, local states, interactions, and ports

that cause the violation. Thus, it may be possible to use the information

gathered to pinpoint those global states and interactions that have to be

checked directly. In the best case this direct check shows that no reachable

deadlock arises. On the other hand, it may become evident that the vio-

lation of the conditions is indeed caused by a reachable deadlock. Even in

this case the states and actions that fail to comply with the conditions may

indicate in what ways the system has been designed faultily and how it has

to be changed in order to avoid the deadlock. Only in cases where a direct

check proves to be infeasible one might have to resort to different approaches

to prove deadlock-freedom. Summarizing, we state that in case of failure

of the criterion the information gathered may be used to investigate those

states directly, i.e., based on the definition of deadlock-freedom, even though

the proposition only states a sufficient condition for deadlock-freedom.

3.7.2 Related Work

Originally, the work presented in this chapter emanated from consider-

ations by Bernardo et al. [33] respectively Baumeister et al. [30], the latter

providing a more simple version of Sysbank as discussed in Section 3.6.1.

Bernardo et al. [33] present an abstract description language for component

based systems called PADL. It uses process algebra to model a component

system (called an architectural type) allowing multiway synchronization by

several components over the same action. A notion of acyclic architec-

tural type similar to the one we presented is given. It is also based on

a graph which is required to be a tree. A criterion for deadlock-freedom

of such architectural types is discussed. It ensures deadlock-freedom by

requiring that no component i is restricted in its behavior by the commu-

nication with any of its possible partners j for cooperation, i.e., Sys ↓{i,j}

restricted4 to Ai should be weakly bisimular to Ti for all interacting com-

4Roughly speaking, this restriction is obtained by projecting all transition labels in

TSys↓{i,j}
to i where every label which only involves j is replaced by τ .

92 3.7 Conclusion and Related Work

ponents i and j. Consider the set K := {i, j, k} of components where the

transition systems of the components are given in Figure 3.24. We define

Int := {{ai, aj} , {bi, bj} , {cj , ck} , {dj , dk}}. The induced interaction sys-

tem is strongly tree-like. Up to nomenclature it can also be seen as an

acyclic architectural type in PADL. Corollary 3.4.2 shows that the system is

deadlock-free. However, Bernardo’s condition fails since the behavior of j is

restricted by the communication with i, which prevents j to ever choose the

right branch of Tj . Even though the example is rather small it exhibits one

q0
k

q0
jq2

j

q1
j

q3
j

q4
j

q0
i

q1
i

aj

bj cjajdj

bj

aibi ck

dk

Figure 3.24: Component j is restricted by i

characteristic that will always cause Bernardo’s condition to fail: If a com-

ponent offers a choice between various services but another component only

utilizes one of these services then all the other services will be “cut off” by

the communication. Therefore the behavior of the service-component will be

restricted. The conditions presented in this chapter allow for such a “partial

use” of offered services as long as the component making use of the services

is well-behaved (in the sense that it will not cause the subsystem consisting

of these two components to reach a pair of states that are problematic with

respect to each other). This shows that there are deadlock-free tree-like in-

teraction systems where Bernardo’s condition fails whereas Proposition 3.4.1

respectively Corollary 3.4.2 are sufficient for deadlock-freedom. Considering

the opposite direction, it can be shown that Corollary 3.4.2 covers all deter-

ministic5 strongly tree-like systems that can be shown to be deadlock-free

using Bernardo’s condition. It is an open question whether there are tree-like

systems that can be proven to be deadlock-free using Bernardo’s condition

while Proposition 3.4.1 fails, i.e., whether our criterion is more powerful

than Bernardo’s condition or whether the approaches are not comparable.

5In the sense that qi
ai→i q′i and qi

a′
i→i q′′i imply ai 6= a′

i.

3.7.2 Related Work 93

Systems having an underlying tree-like architecture are also considered

by Baumeister et al. [30] and in the follow-up paper [79]. Further restrictions

are imposed on the systems, though. The first paper presents a deadlock-

freedom result for such a system consisting of three components only. The

second paper extends these considerations to star-like component architec-

tures of arbitrary size. The results presented in these papers elaborate on

an idea similar to the one used by Bernardo et al. [33] also requiring that the

communication between two components should not restrict these compo-

nents’ behavior. However, the authors focus on a different issue. The papers

investigate the question what part of the behavior of a component has to

be disclosed to possible communication partners and investigated with re-

spect to these partners in order to still be able to make statements about

deadlock-freedom of the composed system. The underlying idea is that there

is no reason why a component i should have to inform j about a branch in

its behavior that is altogether reserved for communication with a different

component k. This idea is approached by providing each port with its own

behavior (called a port protocol) which has to comply with the component’s

behavior in a certain sense. The criterion then only checks whether the pro-

tocols of connected ports are compatible. These ideas are of an interesting

nature. They reflect the requirement stated in Section 1.1 that a compo-

nent should encapsulate its behavior. An interesting field of future work on

interaction systems unfurls because it seems promising to combine the no-

tion of port protocols with our results for tree-like component architectures.

To begin with we would have to define what it means for a port protocol

to comply with the component’s behavior. In particular, it is necessary to

extend interaction systems by some sort of behavioral equivalence.

As noted in Section 3.4.2, the ideas of Brookes and Roscoe [38] show

some intriguing parallels to our results with respect to strongly tree-like

interaction systems. The authors consider networks of communicating pro-

cesses in the failures model of CSP restricted to two-way communication.

The networks they are dealing with are depicted by so-called communica-

tion graphs. The definition of these communication graphs is almost iden-

tical to G∗, the only difference being that Brookes and Roscoe [38] allow

a node to also stand for a subsystem. Apart from that an edge also rep-

94 3.7 Conclusion and Related Work

resents direct communication between its nodes. The deadlock-behavior of

networks of communicating processes are investigated, and conditions for

deadlock-freedom of networks whose communication graphs obey to certain

restrictions are presented. The authors do not explicitly focus on tree-like

structures. However, their statement which is equivalent to Corollary 3.4.3

is obtained as a corollary by further restricting the graph to be a tree. It

is an interesting fact that Brookes and Roscoe [38], despite working into a

different direction, obtain results that can be related to our approach.

Brookes and Roscoe [38] as well as Bernardo et al. [33] additionally treat

systems whose communication architecture is not given by a tree. It is there-

fore clear that these works are more general in that regard. It should be

noted, though, that this generality comes at the expense of not being able

to only consider systems consisting of pairs of interacting components any

more. For example, Bernardo et al. consider any subsystem consisting of

components forming a cycle in G∗. Aside from the fact that it is not clear

that there are reasonably few such cycles, Sys′philm as introduced in Chapter

2 shows that such a subsystem may coincide with the original system. The

investigation of this “subsystem” does not have any benefit compared to the

consideration of the system itself. Nonetheless, extensions in this direction

constitute a valuable addition with respect to our comments about the use-

fulness of a construction kit for component systems. Results as the ones

by Brookes and Roscoe respectively Bernardo et al. can be incorporated in

order to allow the construction of (sub)systems with a simple cyclic struc-

ture. Note that Brookes and Roscoe also interpret the results in a context

considering them as part of a design rule guaranteeing deadlock-freedom.

Next, we take a closer look at another result on deadlock-freedom in in-

teraction systems [102]. This approach also computes an over-approximation

of the projection of reach(Sys) to certain subsystems where the size of the

subsystems can be customized according to a parameter d. The proce-

dure gets more precise for larger d causing cost bounded by a polynomial

of degree d. A sufficient condition for deadlock-freedom is checked on the

over-approximation. Roughly speaking, this condition ensures that no state

constitutes a chain of waiting relations between three components. Such a

chain could in the worst case be completed by other components to form

3.7.2 Related Work 95

a cycle of waiting relations in a global state and therefore cause a global

deadlock. Corollary 3.4.2 is more powerful than the criterion by Majster-

Cederbaum et al. [102] applied to strongly tree-like interaction systems. The

condition above implies that for no interacting components i and j a pair

of states is reachable which are problematic with respect to each other.

Thus, for all strongly tree-like systems that can be shown to be deadlock-

free using the criterion of Majster-Cederbaum et al. Corollary 3.4.2 also

implies deadlock-freedom. On the other hand, it is easy to see that the

condition of Majster-Cederbaum et al. fails to prove deadlock-freedom of

Sysbank: There are reachable global states where some ATM waits for its

bank whereas the bank waits for the clearing company. Such states consti-

tute a chain of waiting relations which causes a violation of the condition

checked by Majster-Cederbaum et al.. By taking the tree-like structure into

account we obtain a more powerful criterion for strongly tree-like systems

compared to the criterion by Majster-Cederbaum et al. applied to such sys-

tems, even though we only consider subsystems of size two as opposed to

size d. Turning to tree-like interaction systems, there are systems that can

be proven to be deadlock-free using Proposition 3.4.1 while the condition

of Majster-Cederbaum et al. fails but it is an open question whether our

proposition is more powerful than this condition applied to such systems.

Majster-Cederbaum and Minnameier [100] use a cross-checking technique to

improve the over-approximation of the projection of reach(Sys) to subsys-

tems of size d computed by Majster-Cederbaum et al. [102]. There are no

results, yet, on how the approach of Majster-Cederbaum and Minnameier

[100] applied to systems with a tree-like architecture compares to our results.

Finally, we point out that Abdulla et al. [7] hint at an interesting exten-

sion of tree-like systems that may well be incorporated into the approach we

presented here. Translated to our setting, this generalization results in in-

teraction systems that are not necessarily tree-like. However, for each state

q the “snapshot” of G with respect to q is a tree. Such a snapshot would

be obtained by only taking the interactions in Int(qi) into account when

possible edges involving i are considered. A more general setting is obtained

because G may contain cycles when all interactions are considered. On the

other hand, it seems likely that the ideas presented for tree-like interaction

96 3.8 Proofs

systems can be transferred to this setting.

3.8 Proofs

3.8.1 Proofs for Section 3.2

Lemma 3.2.2. Let Sys be an interaction system. Let K ′ ⊆ K and q, q′ ∈ Q.

Let α ∈ Int be an interaction with comp (α) ∩ K ′ 6= ∅ and q′
α
→ q.

1. There is a transition q′ ↓K ′
α↓K′
→ q ↓K ′ in T̃Sys↓K′ .

2. If q is reachable in Sys then q ↓K ′ is reachable in Sys ↓K ′.

Proof. We show the two statements separately.

1. Because comp (α) ∩ K ′ 6= ∅ we know α ↓K ′ 6= ∅ and therefore α ↓K ′∈

Int ↓K ′ . Together with q′
α
→ q and the definition of the transition

relation of an interaction system this directly implies that there is a

transition q′ ↓K ′
α↓K′
→ q ↓K ′ in T̃Sys↓K′ .

2. The proof of the lemma is a straightforward induction argument: Let

σ be a path of length l from q0 to q in Sys.

l = 0: Then q = q0. q0 ↓K ′ is reachable in Sys ↓K ′ .

l ⇒ l + 1: Let σ = q0 α0→ . . .
αl−1
→ ql αl→ q be a path of length l + 1. By

induction we know that ql ↓K ′ is reachable in Sys ↓K ′ . If α ↓K ′= ∅

we do not have to show anything because in this case q ↓K ′= ql ↓K ′

is reachable. Otherwise the first statement implies that there is a

transition ql ↓K ′
αl↓K′
−→ q ↓K ′ showing that q ↓K ′ is reachable.

⊓⊔

Lemma 3.2.3. Let Sys be an interaction system with strongly exclusive

communication. Let i ∈ K, K̃ ⊆ K\ {i}, and qi such that q0
i /∈ BWS(qi, K̃).

For each j ∈ K̃ let Q′
j ⊆ Qj be a nonempty subset of local states.

If
⋂

j∈K̃ EA(qi, K̃,Q′
j , {i}) = ∅ then there is no q ∈ reach (Sys) with

q ↓({i}∪K̃)∈ {qi} ×
∏

j∈K̃ Q′
j .

Proof. We make a general observation first: Consider α ∈ Int with i (α) 6= ∅

but K̃ ∩ comp(α) = ∅. Then i (α) 6⊆
⋃

k∈K̃ comm i (k). Otherwise there

3.8.2 Proofs for Section 3.3 97

would be another interaction α̃ with K̃ ∩ comp(α̃) 6= ∅ and α ∩ α̃ = i(α).

This is not possible because Sys has strongly exclusive communication.

Now assume that there is a global state q ∈ reach (Sys) with q ↓({i}∪K̃)∈

{qi} ×
∏

j∈K̃ Q′
j . There is a path

σ = q0 α0→ . . .
αl−1
→ ql αl→ q.

There must be an index l′ with i (αl′) 6= ∅ and K̃∩comp (αl′) 6= ∅. Otherwise

for each αr on σ with i (αr) 6= ∅ the observation above implies i (αr) 6⊆
⋃

k∈K̃ comm i (k). Then the projection of σ to i would yield a path from q0
i

to qi in Ti which is only labeled with ports that are not in
⋃

k∈K̃ comm i (k),

and q0
i ∈ BWS(qi, K̃). This is a contradiction to the assumption. Let l0 be

the largest index on σ with i (αl0) 6= ∅ and K̃ ∩ comp (αl0) 6= ∅. Using the

same argument as above we see that ql0+1
i ∈ BWS(qi, K̃).

Choose j ∈ K̃. For all l0 < s ≤ l the choice of l0 implies i (αs) = ∅

if j (αs) 6= ∅. Therefore ql0+1
j ∈ BWS (qj, {i}) where again we use the fact

that Sys has strongly exclusive communication. We have BWS (qj, {i}) ⊆

BWS(Q′
j , {i}) since qj ∈ Q′

j. We conclude (ql0+1
i , ql0+1

j) ∈ BWS(qi, K̃) ×

BWS(Q′
j , {i}). Lemma 3.2.2 shows that (ql0

i , ql0
j) ∈ reach(Sys ↓{i,j}) and

that there is a transition (ql0
i , ql0

j)
αl0

↓{i,j}
−→ (ql0+1

i , ql0+1
j). This means i (αl0) ⊆

EA(qi, K̃,Q′
j , {i}). Note that indeed i (αl0) ⊆

⋃

k∈K̃ comm i (k). The other

components in K̃ can be treated analogously, and we conclude i (αl0) ⊆
⋂

j∈K̃ EA(qi, K̃,Q′
j, {i}). This is a contradiction because the intersection is

empty by assumption. ⊓⊔

3.8.2 Proofs for Section 3.3

Lemma 3.3.1. Let IM be an interaction model.

If IM is strongly tree-like then |α| ≤ 2 for all α ∈ Int.

Proof. For any α ∈ Int it is clear that G∗
α := (comp (α) , Eα) with Eα :=

{e|e ∈ E ∧ e ⊆ comp (α)} ⊆ E constitutes a complete subgraph of G∗. Thus,

IM always contains cycles if there exists α ∈ Int with |comp (α)| > 2. Con-

sequently, if IM is strongly tree-like all interactions are binary. ⊓⊔

Lemma 3.3.2. Let IM be an interaction model.

98 3.8 Proofs

1. If IM is strongly tree-like then it is tree-like.

2. If for all α ∈ Int we have |α| ≤ 2 and IM is tree-like then IM is strongly

tree-like.

Proof. We prove the statements separately.

1. Let IM be strongly tree-like. Assume that G contains a cycle. Because

of Lemma 3.3.1 at most two components participate in any interac-

tion α. Since E does not contain any edges connecting two nodes

representing components the cycle must be of the form

{i0} — comp (α0) — {i1} — . . . — {im−1} — comp (αm−1) — {i0}

where αl ∈ Int and comp (αl) = {il, il+1} (the indices are calculated

mod m). We get {il, il+1} ∈ E∗ for all l, and G∗ contains a cycle which

is a contradiction.

On the other hand, assume that G is not connected. There are nodes

K ′ and K ′′ in V such that no path connecting these nodes exists.

At least one node representing a component is reachable from every

node in V2. Therefore, without loss of generality, we assume K ′ = {i}

and K ′′ = {j}. In G∗ there exists a path connecting i and j because

G∗ is a tree. For every edge {il, il+1} on this path there is some

αl ∈ Int with comp(αl) = {il, il+1}. This means that E contains edges

{il, comp (αl)} and {comp (αl) , il+1}, and the path can be transferred

to G, showing that {i} and {j} are connected. This is a contradiction.

2. Let IM tree-like, and let |α| ≤ 2 for all α ∈ Int. Assume that G∗

contains a cycle π. Reasoning the same way as in the second argument

above, we see that π can be transferred to G. This is a contradiction.

Assume that G∗ is not connected. Choose components i and j such

that no path connecting these components exists. There is a path

connecting {i} and {j} in G. The same way as in the first argument

above this path can be transferred to G∗. This is a contradiction.

⊓⊔

Lemma 3.3.3. Let IM be an interaction model.

3.8.2 Proofs for Section 3.3 99

1. For all α ∈ Int there is a node comp (α) ∈ V2.

2. Let α ∈ Int and i ∈ comp (α). There is a simple path πi,α connecting

{i} and comp(α) in G. All nodes on πi,α are subsets of comp (α). If

|comp(α)| ≥ 2 then all nodes on πi,α except {i} contain two components

at least.

3. Let α ∈ Int and i, j ∈ comp (α). There is a simple path πα
i,j connecting

{i} and {j} in G. All nodes on πα
i,j are subsets of comp (α). All nodes

on πi,α except {i} and {j} contain two components at least. The paths

πα
i,j, πi,α, and πj,α can be chosen such that there is a node K ′ on πα

i,j

such that the sub-path of πα
i,j from {i} to K ′ is a sub-path of πi,α and

the sub-path of πα
i,j from K ′ to {j} is a sub-path of πj,α.

4. Let α,α′ ∈ Int with |comp (α) ∩ comp (α′)| ≥ 2 and let i ∈ comp (α)

and j ∈ comp (α′). There is a simple path πα,α′

i,j connecting {i} and

{j} in G. All nodes on πα,α′

i,j are subsets of comp (α) or comp (α′). The

first node after {i} is contained in comp (α) and the last node before

{j} is contained in comp (α′). All nodes on πα,α′

i,j except {i} and {j}

contain two components at least.

Proof. We prove the statements separately.

1. Setting α′ = α in Definition 3.3.1 we see that there is a node comp(α)∩

comp(α) = comp(α) ∈ V2.

2. From the first statement we know comp(α) ∈ V . We also have {i} ∈ V .

Consider a sequence {i} = K1,K2, . . . Km = comp(α) of subsets of

components having the following properties:

(a) For all l we have Kl ∈ V .

(b) For all 1 ≤ l ≤ m−1 we have Kl ⊆ Kl+1, and there is no K ′ ∈ V

with Kl (K ′ (Kl+1.

It is clear that there is such a sequence. For all 1 ≤ l ≤ m− 1 there is

an edge {Kl,Kl+1} ∈ E. The path πi,α := K1 — . . . — Km has the

required properties.

100 3.8 Proofs

3. Consider πi,α and πj,α as defined in the previous statement. Let K ′ ∈

V be the first node (starting to count from {i} respectively {j}) that

occurs on both paths. It is clear that K ′ exists because both paths end

in comp(α). The path πα
i,j := {i} — . . . — K ′ — . . . — {j} obtained

by connecting the fragments of the two paths ending in K ′ has the

required properties.

4. If comp (α) = comp (α′) the statement follows from the previous part

of the lemma.

Otherwise consider the nodes comp (α), comp (α′), and comp (α) ∩

comp (α′) in V . Since comp (α)∩ comp (α′) ⊆ comp(α) and comp (α)∩

comp (α′) ⊆ comp(α′) we may construct simple paths πα,α′

α connect-

ing comp(α) with comp (α) ∩ comp (α′) respectively πα,α′

α′ connect-

ing comp(α′) with comp (α) ∩ comp (α′) in the same way as in the

proof of the second statement. All nodes on these two paths contain

two components at least because |comp (α) ∩ comp (α′)| ≥ 2. Piec-

ing together the paths πi,α and πα,α′

α in comp(α), πα,α′

α and πα,α′

α′ in

comp (α)∩comp (α′), and πα,α′

α′ and πj,α′ in comp(α′) we obtain a path

connecting {i} and {j} that has all the required properties with the

exception that it may not be simple. It is clear that it contains a

simple path πα,α′

i,j with the required properties.

⊓⊔

3.8.3 Proofs for Section 3.4.1

The proof of Proposition 3.4.1 consists of two steps. First we state several

lemmas and corollaries. Then we use these results and Lemma 3.2.2 to prove

the proposition itself.

We formulate the following lemmas in a more general fashion than nec-

essary at the moment. The lemmas applied to the concrete situation we are

dealing with are stated as corollaries. The general formulation requires a

slight generalization in the notions. We introduce an auxiliary definition. It

will only be needed for the proofs of the lemmas.

Definition 3.8.1. Let Sys be an interaction system. Let i ∈ K and qi ∈ Qi.

3.8.3 Proofs for Section 3.4.1 101

Let Int′(qi) ⊆ Int(qi) be a nonempty subset of interactions. We define:

need′(qi) :=
⋃

α∈Int′(qi)

comp(α)\{i}

We need some preliminary notation. For better readability we introduce

it before stating the following lemmas. Consider α ∈ Int with |comp(α)| ≥ 2

and j ∈ comp(α). Let

πj,α = {j}
e

— K̄ — . . . — comp(α)

be a path connecting {j} and comp(α) in G as constructed in Lemma 3.3.3.

We have K̄ ⊆ comp(α) and |K̄| ≥ 2. Denote by Ḡ := (V,E\ {e}) the

subgraph of G which is obtained by removing the edge e.

Lemma 3.8.1. Let Sys be an interaction system and let q ∈ Q be a state.

For all i ∈ K let Int′(qi) ⊆ Int(qi) be a nonempty subset of interactions.

Let α ∈ Int and j ∈ comp(α) such that need′(qj) ∩ comp(α) = ∅. Let

k ∈ K be a component such that {k} is reachable from {j} in Ḡ where Ḡ

is defined as above for α and j. Further, let β′ ∈ Int′(qk) and β ∈ Int with

|comp (β′) ∩ comp (β)| ≥ 2.

For all l ∈ comp(β) the node {l} ∈ V is reachable from {j} in Ḡ.

Proof. If l = k it is clear that {l} is reachable from {j} in Ḡ. Let l ∈

comp(β)\{k}. Consider a simple path πβ′,β
k,l connecting {k} and {l} in G as

constructed in Lemma 3.3.3. We consider cases:

1. l = j: Then it is clear that {l} is reachable from {j} in Ḡ.

2. l 6= j and k 6= j: The edge e which was removed from E connects the

two nodes {j} and K̄. The only two nodes K ′ occurring on πβ′,β
k,l with

|K ′| = 1 are {k} and {l} both of which are not equal to {j}. Therefore

e does not occur on πβ′,β
k,l , and the path is not affected by the removal

of e. Thus, {l} is reachable from {k} in Ḡ. {k} is reachable from {j}

in Ḡ by assumption and therefore {l} is reachable from {j} in Ḡ.

3. k = j: In this case need′ (qj) ∩ comp (α) = ∅ implies comp (α) ∩

comp (β′) = {j}: It is clear that j participates in both interactions.

102 3.8 Proofs

There cannot be any other component in this intersection because this

component would also be contained in need′ (qj) ∩ comp (α).

The only edge on πβ′,β
k,l which can possibly coincide with e is the first

edge because it is the only edge on πβ′,β
k,l which ends in {k} = {j}.

Assume that this edge coincides with e. Then K̄ ⊆ comp (β′) because

Lemma 3.3.3 states that at least the first node on πβ′,β
k,l is contained in

comp (β′). We get K̄ ⊆ comp (α) ∩ comp (β′). This is a contradiction

because |K̄| ≥ 2 on the one hand but comp (α) ∩ comp (β′) = {j} on

the other. We conclude that e does not occur on πβ′,β
k,l . Then πβ′,β

k,l is

not affected by the removal of e, and {l} is reachable from {j} in Ḡ.

⊓⊔

The following two lemmas are the only results that directly use the fact

that the system is tree-like.

Lemma 3.8.2. Let Sys be a tree-like interaction system and let q ∈ Q be

a state. For all i ∈ K let Int′(qi) ⊆ Int(qi) be a nonempty subset of in-

teractions such that need′(qi) 6= ∅. Let K̃ ⊆ K be a nonempty subset of

components such that for all i ∈ K̃, all α′ ∈ Int′ (qi), and all α ∈ Int with

|comp (α′) ∩ comp (α)| ≥ 2 we have comp (α) ⊆ K̃.

There exists a nonempty set K ′ ⊆ K̃ such that for all i ∈ K ′ and all

α′ ∈ Int′ (qi) the following two conditions hold:

1. ∀α ∈ Int with |comp (α′) ∩ comp (α)| ≥ 2 we have comp (α) ⊆ K ′

2. ∀j ∈ comp (α′) \ {i} : need′ (qj) ∩ comp (α′) 6= ∅

For Int′ = Int the second condition restates the condition that we de-

duced in Remark 3.4.1 in order to check whether a pair of local states can

possibly be involved in a deadlock.

Proof. Setting α = α′ in the condition for K̃ we get comp (α′) ⊆ K̃ for all

i ∈ K̃ and all α′ ∈ Int′ (qi) with |comp(α′)| ≥ 2. Therefore need′ (qi) ⊆ K̃

for all i ∈ K̃. Since need′ (qi) 6= ∅ for all i ∈ K̃ and K̃ 6= ∅ this means that

K̃ contains at least two elements.

We will prove the lemma by induction on m = |K̃|. According to the

previous argument the induction has to start for m = 2.

3.8.3 Proofs for Section 3.4.1 103

m = 2 : Then K̃ = {i, j}. We show that condition 2 above holds for K̃.

We have already assessed need′(qi) ⊆ {i, j} and need′(qj) ⊆ {i, j}. To-

gether with need′(qi) 6= ∅ and need′(qj) 6= ∅ this implies need′(qi) = {j}

and need′(qj) = {i}. Choose α′ ∈ Int′(qi). We have comp(α′) ⊆ K̃ =

{i, j}. The second condition trivially holds if α′ = {ai}. Therefore as-

sume comp(α′) = {i, j}. We already know need′(qj) = {i}. Therefore

need′(qj) ∩ comp(α′) = {i}, and the second condition is satisfied. An

interaction β′ ∈ Int′(qj) is treated analogously. This shows that con-

dition 2 is satisfied for both components in {i, j} and all α′ ∈ Int′(qi)

respectively β′ ∈ Int′(qj). We choose K ′ = K̃.

m ⇒ m + 1 : Let |K̃| = m + 1. If for all i ∈ K̃, all α′ ∈ Int′ (qi), and all

j ∈ comp (α′) \ {i} we have need′ (qj) ∩ comp (α′) 6= ∅ then K̃ satisfies

condition 2. Condition 1 is satisfied by assumption. Choose K ′ = K̃.

Otherwise there exist i ∈ K̃, an interaction α′ ∈ Int′ (qi), and a com-

ponent j ∈ comp (α′) \ {i} with need′ (qj) ∩ comp (α′) = ∅. From

α′ ∈ Int′(qi) we get j ∈ need′(qi) and therefore j ∈ K̃. According

to Lemma 3.3.3 consider

πα′

j,i = {j}
e
− K̄ − . . . − {i}

the simple path connecting {j} and {i} in G. All nodes between {j}

and {i} are subsets of comp (α′) and contain at least two components.

Furthermore, the first edge e of πα′

j,i is the same edge as the first edge on

the path πj,α′ between {j} and comp(α′). Therefore Ḡ := (V,E\ {e})

is the same graph as defined before Lemma 3.8.1. We denote by K̂

the set of those k ∈ K̃ where {k} is reachable from {j} in Ḡ:

K̂ := K̃ ∩
{

k|{k} is reachable from {j} in Ḡ
}

The following facts hold for K̂:

1. j ∈ K̂. This is clear.

2. i /∈ K̂: Assume i ∈ K̂. Then there would be a path π′ connecting

{j} and {i} in Ḡ. This path does not involve the edge e. There-

fore πα′

j,i 6= π′, and there would be two different paths connecting

{i} and {j} in G. This is not possible because G is a tree.

104 3.8 Proofs

3. For all k ∈ K̂, all β′ ∈ Int′ (qk), and all β ∈ Int such that

|comp (β′) ∩ comp (β)| ≥ 2 we have comp (β) ⊆ K̂: On the one

hand, k ∈ K̂ implies that {k} is reachable from {j} in Ḡ. Lemma

3.8.1 then shows that for all components l ∈ comp(β) the node {l}

is also reachable from {j} in Ḡ. On the other hand, comp(β) ⊆ K̃

follows from the assumption about K̃ because k ∈ K̂ also means

k ∈ K̃. We conclude comp(β) ⊆ K̂.

The first fact above shows K̂ 6= ∅. It is clear that K̂ ⊆ K̃. The

second fact shows that K̂ is a proper subset of K̃. Finally, the third

fact states that K̂ again satisfies the condition required for K̃ in the

lemma. We have already seen that this implies need′(qk) ⊆ K̂ for all

k ∈ K̂. Together with K̂ 6= ∅ and need′(qk) 6= ∅ for all k ∈ K̂ this

means that K̂ contains at least two elements.

Summarizing, we assess that K̂ satisfies the condition required for K̃

and that 2 ≤ |K̂| ≤ m. Applying the induction hypothesis to K̂ we

see that there is a set K ′ ⊆ K̂ ⊆ K̃ as required.

⊓⊔

We only used the requirement need′(qi) 6= ∅ for those i that are contained

in K̃. This means that we could have formulated the lemma based on the

less restrictive assumption need′(qi) 6= ∅ for all i ∈ K̃.

Corollary 3.8.1. Let Sys be a tree-like interaction system. Let q ∈ Q be a

state with need(qi) 6= ∅ for all i ∈ K.

There exists a nonempty subset K ′ of components such that for all i ∈ K ′

and for all α′ ∈ Int (qi) the following two conditions hold:

1. ∀α ∈ Int with |comp (α′) ∩ comp (α)| ≥ 2 we have comp (α) ⊆ K ′

2. ∀j ∈ comp (α′) \ {i} : need (qj) ∩ comp (α′) 6= ∅

Proof. K satisfies the condition required for K̃ in Lemma 3.8.2 because

comp(α) ⊆ K for all interactions α. Applying Lemma 3.8.2 with K̃ = K

and Int′(qi) = Int(qi) for all i yields the statement of the corollary. ⊓⊔

3.8.3 Proofs for Section 3.4.1 105

Returning to the setting described in Lemma 3.8.2 it is clear that K ′

can always be chosen to be minimal in the sense that no proper subset of

K ′ also has the two properties. We get the following result:

Lemma 3.8.3. Let Sys be a tree-like interaction system and let q ∈ Q be a

state. For all i ∈ K let Int′(qi) ⊆ Int(qi) be a nonempty subset of interactions

such that need′(qi) 6= ∅. Let K ′ be a minimal nonempty set of components

satisfying the two conditions stated in Lemma 3.8.2. Let α ∈ Int be an

interaction with comp(α) ⊆ K ′ and |comp(α)| ≥ 2. Let j ∈ comp(α) be a

component.

We have need′(qj) ∩ comp(α) 6= ∅.

Proof. By way of contradiction assume need′(qj) ∩ comp(α) = ∅. We will

show that in this case K ′ is not minimal.

According to Lemma 3.3.3 let

πj,α = {j}
e

— K̄ — . . . — comp(α)

be the path connecting {j} and comp(α) in G such that all nodes in between

{j} and comp(α) are contained in comp(α). Consider Ḡ := (V,E\ {e}) as

defined before Lemma 3.8.1. We denote by K̂ the set of components in K ′

that are reachable from {j} in Ḡ:

K̂ := K ′ ∩
{

k|{k} is reachable from {j} in Ḡ
}

We have K̂ ⊆ K ′. We show that it is a proper subset. By assumption

we know |comp(α)| ≥ 2. Choose i ∈ comp(α)\{j}. We claim that i is not

contained in K̂. Assume this was the case. Then there must be a path

connecting {j} and {i} in Ḡ. This path does not involve the edge e. On

the other hand according to Lemma 3.3.3 in G there is also the path πα
j,i

connecting {j} and {i} whose first edge is e. This means that there are two

different paths between {j} and {i} in G which is not possible because G

is a tree. We conclude i /∈ K̂. Therefore K̂ is a proper subset of K ′. The

following facts hold for K̂:

1. j ∈ K̂. This is clear.

106 3.8 Proofs

2. For k ∈ K̂, β′ ∈ Int′ (qk), and β ∈ Int with |comp (β′) ∩ comp (β)| ≥ 2

we have comp (β) ⊆ K̂. Using Lemma 3.8.1 this is shown exactly the

same way as the corresponding fact in the proof of the previous lemma.

These two facts show that K̂ is a proper nonempty subset of K ′ that satisfies

the requirements stated for K̃ in Lemma 3.8.2. Lemma 3.8.2 then shows

that there exists K̆ ⊆ K̂ satisfying both conditions stated in the lemma.

Because K̆ is a proper subset of K ′ we conclude that K ′ is not a minimal

set satisfying the two conditions. This is a contradiction. We conclude

need′(qj) ∩ comp(α) 6= ∅. ⊓⊔

Corollary 3.8.2. Let Sys be a tree-like interaction system. Let q ∈ Q be

a state with need(qi) 6= ∅ for all i ∈ K. Let K ′ be a minimal nonempty

set of components satisfying the two conditions stated in Corollary 3.8.1.

Let α ∈ Int be an interaction with comp(α) ⊆ K ′ and |comp(α)| ≥ 2. Let

j ∈ comp(α) be a component.

We have need(qj) ∩ comp(α) 6= ∅.

Proof. Applying Lemma 3.8.3 with Int′(qi) = Int(qi) for all i yields the

statement of the corollary. ⊓⊔

Lemma 3.8.4. Let Sys be a tree-like interaction system and let q ∈ Q. For

all i ∈ K let Int′(qi) ⊆ Int(qi) be a nonempty subset of interactions such that

need′(qi) 6= ∅. Let K ′ be a nonempty set of components satisfying the two

conditions stated in Lemma 3.8.2. Let i ∈ K ′ and α ∈ Int with i (α) 6= ∅.

If there is k /∈ K ′ with k (α) 6= ∅ then comp (α) ∩ need′ (qi) = ∅.

Proof. Let j ∈ comp (α) \ {i} and assume j ∈ need′ (qi). There must be an

interaction α′ ∈ Int′ (qi) with j ∈ comp (α′). We get {i, j} ⊆ comp (α′) ∩

comp (α) and therefore |comp (α′) ∩ comp (α)| ≥ 2. Since i ∈ K ′ and α′ ∈

Int′ (qi) the first property of K ′ implies comp (α) ⊆ K ′. This is a contradic-

tion because k ∈ comp (α) but k /∈ K ′.

We conclude comp (α) ∩ need′ (qi) = ∅. ⊓⊔

Corollary 3.8.3. Let Sys be a tree-like interaction system with strongly

exclusive communication. Let q ∈ Q be a state with need(qi) 6= ∅ for all

3.8.3 Proofs for Section 3.4.1 107

i ∈ K. Choose K ′ as in Corollary 3.8.1. Let i ∈ K ′ and α ∈ Int with

i (α) 6= ∅.

If there is k /∈ K ′ with k (α) 6= ∅ then i (α) 6⊆
⋃

j∈need(qi)
comm i (j).

Proof. Setting Int′(qi) = Int(qi) in Lemma 3.8.4 we see comp (α)∩need (qi) =

∅. Assume i (α) ⊆
⋃

j∈need(qi)
comm i (j). Since comp (α)∩need (qi) = ∅ there

must be an interaction α′ 6= α with comp(α′)∩need(qi) 6= ∅ and i(α′) = i(α).

This is impossible since Sys has strongly exclusive communication. ⊓⊔

The previous lemma and corollary only use the first defining property of

K ′. We could have formulated these results for a set K̃ only satisfying:

∀i ∈ K̃ ∀α′ ∈ Int′ (qi) ∀α ∈ Int with

∣

∣comp
(

α′
)

∩ comp (α)
∣

∣ ≥ 2 we have comp (α) ⊆ K̃

The following lemma makes a statement about the existence of problem-

atic states. Again, we want to state a general lemma. This necessitates a

generalization of the notion of problematic states

Definition 3.8.2. Let Sys be a tree-like interaction system. Let for all i ∈ K

and all qi ∈ Qi subsets Int′(qi) ⊆ Int(qi) be given. For i ∈ K, qi ∈ Qi such

that there is no α ∈ Int′(qi) with |α| = 1, α ∈ Int′(qi), and j ∈ comp(α)\{i}

we define a descending sequence of subsets of Qj by:

PS′0
j (qi, α) := {qj| • ∄β ∈ Int′(qj) with |β| = 1

• need′ (qj) ∩ comp (α) 6= ∅

• (qi, qj) is reachable in Sys ↓{i,j}

• α /∈ Int′ (qj)

• ∄α̃ ∈ Int′(qi) ∩ Int′(qj) with |α̃| = 2}

PS ′l+1
j (qi, α) := {qj|qj ∈ PS ′l

j (qi, α) and ∀β ∈ Int′(qj)∃k ∈ comp(β)\ {j}

with PS′l
k (qj, β) 6= ∅}

We set:

PS′
j (qi, α) :=

⋂

l∈N

PS ′l
j (qi, α)

108 3.8 Proofs

It is not surprising that this notion of problematic states coincides with

the one presented in Definition 3.4.1 (cf. p. 60) if we choose Int′(qi) = Int(qi)

for all i and all qi. This statement is formalized by the following lemma.

Lemma 3.8.5. Let Sys be a tree-like interaction system. Let i ∈ K, qi

incomplete, α ∈ Int(qi), and j ∈ comp(α)\{i}.

If Int′(qk) = Int(qk) for all k ∈ K then

PSl
j(qi, α) = PS ′l

j (qi, α)

for all l ∈ N.

Proof. We will show that each of the conditions stated in the definition of

the problematic states (Definition 3.4.1) is equivalent to the corresponding

condition in Definition 3.8.2. It is clear that qi is incomplete if and only

if there is no α ∈ Int′(qi) = Int(qi) with |α| = 1. Thus, the precondition

required for qi in Definition 3.4.1 is equivalent to the precondition required

for qi in Definition 3.8.2. The actual proof uses induction over l.

l = 0 : Setting Int′(qi) = Int(qi) for all i and all qi in Definition 3.8.2 the

conditions stated there are equivalent to the corresponding conditions

in Definition 3.4.1: As above we argue that qj is incomplete if and

only if there is no β ∈ Int′(qj) = Int(qj) with |β| = 1. Using the

fact that Int′(qj) = Int(qj) also implies need′(qj) = need(qj), we see

that the second condition above is equivalent to the corresponding

one in Definition 3.4.1. The condition about reachability of (qi, qj)

is the same in both definitions. If Int′(qj) = Int(qj) then it is clear

that α /∈ Int′(qj) if and only if j(α) 6⊆ en(qj) showing that the fourth

conditions are equivalent. Finally, the last condition stated above is

the same as the last condition in Definition 3.4.1 if Int′(qi) = Int(qi)

and Int′(qj) = Int(qj).

We conclude PS0
j(qi, α) = PS ′0

j (qi, α).

l ⇒ l + 1 : We have:

PSl+1
j (qi, α) = {qj|qj ∈ PSl

j (qi, α) and ∀β ∈ Int(qj)∃k ∈

comp(β)\ {j} with PSl
k (qj, β) 6= ∅}

3.8.3 Proofs for Section 3.4.1 109

= {qj|qj ∈ PSl
j (qi, α) and ∀β ∈ Int′(qj)∃k ∈

comp(β)\ {j} with PSl
k (qj, β) 6= ∅}

= {qj|qj ∈ PS′l
j (qi, α) and ∀β ∈ Int′(qj)∃k ∈

comp(β)\ {j} with PS ′l
k (qj, β) 6= ∅}

= PS′l+1
j (qi, α)

The second equality uses Int′(qj) = Int(qj) whereas the third equality

applies the induction hypothesis.

⊓⊔

Lemma 3.8.6. Let Sys be a tree-like interaction system and let q ∈ Q be

a reachable state. For all i ∈ K and all qi ∈ Qi let Int′(qi) ⊆ Int(qi) be a

nonempty subset of interactions. Let K̃ ⊆ K be a set of components such

that for all i ∈ K̃ and all α ∈ Int′ (qi) there exists j ∈ comp (α) \{i} ∩ K̃

with α /∈ Int′(qj) and need′ (qj) ∩ comp (α) 6= ∅.

For all i ∈ K̃ and all α ∈ Int′ (qi) there exists j ∈ comp (α) \{i}∩K̃ with

qj ∈ PS′
j (qi, α).

Proof. We make the following observation: If i ∈ K̃ then there is no α ∈

Int′(qi) with |α| = 1. For such α we have comp(α)\{i} = ∅ and there would

not be any j satisfying the condition required for i ∈ K̃ and α ∈ Int′(qi).

Let i ∈ K̃ and α0 ∈ Int′ (qi). Choose j0 ∈ comp (α0) \{i} ∩ K̃ with

α0 /∈ Int′(qj0) and need′ (qj0) ∩ comp (α0) 6= ∅. We assess:

• ∄β ∈ Int′(qj0) with |β| = 1 because j0 ∈ K̃.

• need′ (qj0) ∩ comp (α0) 6= ∅ by assumption.

• (qi, qj0) is reachable in Sys ↓{i,j0} because of the reachability of q and

Lemma 3.2.2.

• α0 /∈ Int′(qj0) by assumption.

• ∄α̃ ∈ Int′(qi) ∩ Int′(qj0) with |α̃| = 2 because i, j0 ∈ K̃. It would not

be possible to find a component in comp(α̃) satisfying the condition

required for interactions in Int′(qi) respectively Int′(qj0).

110 3.8 Proofs

We conclude qj0 ∈ PS′0
j0 (qi, α0). We want to show qj0 ∈ PS ′

j0 (qi, α0). By

way of contradiction assume qj0 /∈ PS ′
j0 (qi, α0). There must be an index

l ∈ N with qj0 /∈ PS ′l
j0 (qi, α0). Denote the smallest such index by l0. We get

qj0 /∈ PS′l0
j0

(qi, α0), but qj0 ∈ PS′m
j0 (qi, α0) for all 0 ≤ m < l0. There must

be α1 ∈ Int′ (qj0) with:

(+) ∀k ∈ comp (α1) \ {j0} the set PS′l0−1
k (qj0, α1) is empty.

Because j0 ∈ K̃ we know that there exists j1 ∈ K̃ ∩ comp (α1) \ {j0} with

α1 /∈ Int′(qj1) and need′ (qj1)∩ comp (α1) 6= ∅. Repeating the steps above we

see that qj1 ∈ PS ′0
j1 (qj0, α1). We denote by l1 the smallest index such that

qj1 /∈ PS′l1
j1

(qj0, α1). This index exists and it is smaller than l0 because of

(+). Repeating this argument we obtain sequences

• j0, j1, j2, . . . of components

• α0, α1, α2, . . . of interactions

• l0 > l1 > l2 > . . . ≥ 0 of indices

with qjr ∈ PS′0
jr

(

qjr−1, αr

)

but qjr /∈ PS ′lr
jr

(

qjr−1, αr

)

(we write j−1 := i).

Because the sequence of the lr is descending but bounded below by 0, after

a finite number of steps there must be an index s with ls = 0. For this index

we have qjs ∈ PS ′0
js

(

qjs−1, αs

)

but qjs /∈ PS ′ls
js

(

qjs−1, αs

)

= PS ′0
js

(

qjs−1, αs

)

which is a contradiction.

We conclude qj0 ∈ PS ′
j0 (qi, α0). ⊓⊔

Corollary 3.8.4. Let Sys be a tree-like interaction system. Let q ∈ Q be a

reachable deadlock. Let K ′ be given for q as in Corollary 3.8.1. Let i ∈ K ′

and α ∈ Int (qi).

There exists j ∈ comp (α) \ {i} ∩ K ′ with qj ∈ PSj (qi, α).

The corollary requires q to be a deadlock state. In particular this means

that no qi is complete and therefore need(qi) 6= ∅. Thus, the conditions for

Corollary 3.8.1 are met and we may indeed choose K ′ for q as above.

Proof. The second defining property of K ′ implies need(qj) ∩ comp (α) 6= ∅

for all j ∈ comp (α) \ {i}. Because q is a deadlock state we know that there

3.8.3 Proofs for Section 3.4.1 111

is at least one component j ∈ comp (α) \{i} with j (α) 6⊆ en (qj). The

first defining property of K ′ together with i ∈ K ′ and α ∈ Int (qi) implies

comp (α) ⊆ K ′. We conclude j ∈ K ′.

Setting Int′(qk) = Int(qk) for all k ∈ K and qk ∈ Qk the conditions for

Lemma 3.8.6 are met. We conclude that there is j ∈ comp (α) \ {i}∩K ′ with

qj ∈ PS′
j (qi, α) = PSj (qi, α), the equality following from Lemma 3.8.5. ⊓⊔

We move on to the proof of Proposition 3.4.1.

Proposition 3.4.1. Let Sys be a tree-like interaction system with strongly

exclusive communication.

If the following two conditions hold then Sys is deadlock-free:

1. ∀i∀qi : qi complete ∨ q0
i /∈ BWS (qi,need(qi)) ∨ ∃α ∈ Int (qi) such that

∀j ∈ comp (α) \ {i} : q0
j /∈ BWS (PSj (qi, α) , need (PSj (qi, α)))

2. ∀α̃ ∈ Int with |comp(α̃)| ≥ 2 ∃i ∈ comp (α̃) such that for all qi ∈ Qi

that are incomplete:

i (α̃) 6⊆
⋂

α∈Int(qi)

⋃

j∈comp(α)\{i}

PA (qi, α, j)

The conditions can be checked in time polynomial in the size of Sys.

Proof. Assume that the two conditions in the proposition hold but there is a

reachable deadlock. There is a path σ := q0 α0→ . . .
αl−1
→ ql αl→ q such that no

interaction is enabled in q. In particular this means that no qi is complete

and therefore need(qi) 6= ∅ for all i ∈ K. We choose a minimal set K ′ for q

according to Corollary 3.8.1, and we distinguish two cases:

1. For all s ≤ l we have |αs| = 1 or there is k /∈ K ′ with k (αs) 6= ∅. If αs =

{ai} for a component i ∈ K ′ we have i (αs) 6⊆
⋃

j∈need(qi)
comm i (j)

because Sys has exclusive communication. In the second case Corollary

3.8.3 shows that i (αs) 6= ∅ implies i (αs) 6⊆
⋃

j∈need(qi)
comm i (j) for

all i ∈ K ′. Thus, for all i ∈ K ′ the projection of σ to i yields a path

in Ti starting in q0
i and ending in qi that is only labeled with actions

ai ∈ Ai\
⋃

j∈need(qi)
comm i (j). We conclude q0

i ∈ BWS (qi,need(qi))

for all i ∈ K ′.

112 3.8 Proofs

Corollary 3.8.4 implies that for all i ∈ K ′ and all α ∈ Int (qi) there is

j ∈ comp (α) \ {i} ∩ K ′ with qj ∈ PSj (qi, α). Using j ∈ K ′, we get

q0
j ∈ BWS (qj,need(qj)). Thus, for all i ∈ K ′ and all α ∈ Int (qi) there

is j ∈ comp (α) \ {i} with q0
j ∈ BWS (PSj (qi, α) , need (PSj(qi, α))).

This is a contradiction to the first condition because we have already

seen above that qi is incomplete and q0
i ∈ BWS (qi,need(qi)).

2. Otherwise let s0 ≤ l be the largest index with comp (αs0) ⊆ K ′ and

|αs0 | ≥ 2. For all s0 < s ≤ l we have |αs| = 1 or there exists a

component h /∈ K ′ with h (αs) 6= ∅. As above, we see that for all

i ∈ K ′ the projection to i of the segment of σ starting in qs0+1 yields

a path that is only labeled with ports ai ∈ Ai\
⋃

j∈need(qi)
comm i (j).

We get qs0+1
i ∈ BWS (qi,need(qi)) for all i ∈ K ′.

Choose i ∈ comp (αs0) ⊆ K ′ and fix α′ ∈ Int (qi). According to Corol-

lary 3.8.4 there exists j ∈ comp (α′) \ {i} ∩ K ′ with qj ∈ PSj (qi, α
′).

Also fix j. We have αs0 ↓{i,j}∈ Int ↓{i,j}. It is clear that i (αs0) ∈

αs0 ↓{i,j} and that (qs0
i , qs0

j) is reachable in Sys ↓{i,j} (the latter follows

from Lemma 3.2.2). Using i, j ∈ K ′, we get qs0+1
i ∈ BWS (qi,need(qi))

and qs0+1
j ∈ BWS (qj,need(qj)). From qj ∈ PSj (qi, α

′) we conclude

BWS (qj,need(qj)) ⊆ BWS (PSj (qi, α
′) , need (PSj(qi, α

′))). Finally,

Corollary 3.8.2 shows need(qi)∩comp(αs0) 6= ∅, and therefore i(αs0) ⊆
⋃

k∈need(qi)
comm i (k). Altogether this produces:

i (αs0) ⊆ EA(qi,need(qi),PSj(qi, α
′), need(PSj(qi, α

′)))

= PA
(

qi, α
′, j

)

⊆
⋃

m∈comp(α′)\{i}

PA
(

qi, α
′,m

)

Repeating this argument for all α ∈ Int (qi), we get

i (αs0) ∈
⋂

α∈Int(qi)

⋃

m∈comp(α)\{i}

PA (qi, α,m) .

Analogously we get

k (αs0) ∈
⋂

α∈Int(qk)

⋃

m∈comp(α)\{k}

PA (qk, α,m)

for all other k ∈ comp (αs0). This is a contradiction to the second

condition.

3.8.4 Proofs for Section 3.4.2 113

The assumption that q is a reachable deadlock state is wrong, and therefore

Sys is deadlock-free.

It is clear that the conditions can be checked in time polynomial in the

size of Sys because all parameters can be computed by analyzing only Int,

the local transition systems, and the subsystems Sys ↓{i,j} where i and j are

interacting components. ⊓⊔

3.8.4 Proofs for Section 3.4.2

Lemma 3.4.1. Let Sys be a strongly tree-like interaction system. Let i ∈ K,

qi ∈ Qi incomplete, and j ∈ need(qi). Let qj ∈ Qj .

We have qj ∈ PSj (qi) if and only if for all α ∈ Int (qi) with j (α) 6= ∅

we have qj ∈ PSj (qi, α).

Proof. We make a general observation first. Let k ∈ K, qk ∈ Qk incomplete,

and α ∈ Int (qk). We have |comp (α)| = 2. There is a component other than

k that participates in α because otherwise qk would be complete. Lemma

3.3.1 shows that there cannot be more than two components in comp(α)

because Sys is strongly tree-like.

We will now show qj ∈ PSl
j (qi) if and only if for all α ∈ Int (qi) with

j (α) 6= ∅ we have qj ∈ PSl
j (qi, α) by induction over l.

l = 0 : We will show both directions.

⇒: Let qj ∈ PS0
j (qi) and α ∈ Int (qi) with j ∈ comp (α). In order to

prove qj ∈ PS0
j (qi, α) we have to show the following:

• qj is incomplete: This follows from the definition of PS0
j (qi).

• need (qj) ∩ comp (α) 6= ∅: It is clear that i ∈ comp (α). Fur-

thermore, we have i ∈ need (qj) by definition of PS0
j (qi).

• (qi, qj) is reachable in Sys ↓{i,j}: This follows from the defi-

nition of PS0
j (qi).

• j (α) 6⊆ en (qj): Assume j (α) ⊆ en (qj). We get α ∈ Int(qi)∩

Int(qj). This is not possible according to the requirement

Int(qi) ∩ Int(qj) = ∅ stated in the definition of PS0
j (qi).

114 3.8 Proofs

• ∄α̃ ∈ Int(qi) ∩ Int(qj) with |α̃| = 2: This follows from the

requirement Int(qi) ∩ Int(qj) = ∅ stated in the definition of

PS0
j (qi).

We conclude qj ∈ PS0
j (qi, α).

⇐: Assume that for all α ∈ Int (qi) with j (α) 6= ∅ we have qj ∈

PS0
j (qi, α). Fix α ∈ Int (qi) with j (α) 6= ∅. In order to prove

qj ∈ PS0
j (qi) we have to show the following:

• qj incomplete: This follows from the definition of PS0
j (qi, α).

• i ∈ need (qj): From the definition of PS0
j (qi, α) we know

that need (qj) ∩ comp (α) 6= ∅. The observation above shows

comp (α) = {i, j}. By definition we have j /∈ need (qj). Thus,

the only component that can be contained in need (qj) ∩

comp (α) is i. We conclude i ∈ need (qj).

• (qi, qj) is reachable in Sys ↓{i,j}: This follows from the defi-

nition of PS0
j (qi, α).

• Int(qi) ∩ Int(qj) = ∅: Assume there is α ∈ Int(qi) ∩ Int(qj).

The observation above shows |comp(α)| = 2. This is a con-

tradiction to the last condition in the definition of PS0
j (qi, α).

We conclude qj ∈ PS0
j (qi).

l ⇒ l + 1 : Again we will show both directions.

⇒: Let qj ∈ PSl+1
j (qi) and α ∈ Int (qi) with j ∈ comp (α). In order

to prove qj ∈ PSl+1
j (qi, α) we have to show the following:

• qj ∈ PSl
j (qi, α): By definition of PSl+1

j (qi) we have qj ∈

PSl
j (qi). The induction hypothesis implies qj ∈ PSl

j (qi, α).

• ∀β ∈ Int (qj)∃k ∈ comp (β) \ {j} with PSl
k (qj, β) 6= ∅: Let

β ∈ Int (qj). Because qj ∈ PSl+1
j (qi) we know that qj is

incomplete. According to the observation above this implies

|comp (β)| = 2. We write comp(β) = {j, k}. We get k ∈

need (qj). The definition of PSl+1
j (qi) implies PSl

k (qj) 6= ∅.

The induction hypothesis applied with qj, k, and β implies

PSl
k (qj, β) 6= ∅.

3.8.4 Proofs for Section 3.4.2 115

We conclude qj ∈ PSl+1
j (qi, α).

⇐: Assume that for all α ∈ Int (qi) with j (α) 6= ∅ we have qj ∈

PSl+1
j (qi, α). In order to prove qj ∈ PSl+1

j (qi) we have to show

the following:

• qj ∈ PSl
j (qi): By definition of PSl+1

j (qi, α) we have qj ∈

PSl
j (qi, α). The induction hypothesis implies qj ∈ PSl

j (qi).

• ∀k ∈ need (qj) we have PSl
k (qj) 6= ∅: Let k ∈ need (qj).

There is β ∈ Int (qj) with comp (β) = {j, k}. Because qj ∈

PSl+1
j (qi, α) there is k′ ∈ comp (β) \ {j} with PSl

k′ (qj, β) 6=

∅. The only possible choice for k′ is k. This argument can

be repeated for all β ∈ Int(qj) with k ∈ comp(β). Therefore,

the induction hypothesis applied with qj, k, and any such β

implies PSl
k (qj) 6= ∅.

We conclude qj ∈ PSl+1
j (qi).

For all l ∈ N we have qj ∈ PSl
j (qi) if and only if for all α ∈ Int (qi) with

j (α) 6= ∅ we have qj ∈ PSl
j (qi, α). This implies that qj ∈ PSj (qi) if and

only if for all α ∈ Int (qi) with j (α) 6= ∅ we have qj ∈ PSj (qi, α). ⊓⊔

The following lemma will be needed for the proof of Corollary 3.4.2.

Lemma 3.8.7. Let Sys be a strongly tree-like interaction system that has

strongly exclusive communication. Let i ∈ K and qi ∈ Qi incomplete.

1. Let α ∈ Int (qi) with comp(α) = {i, j}. We have:

BWS (PSj (qi) , need (PSj (qi))) =

BWS (PSj (qi, α) , need (PSj (qi, α)))

2. We have:

⋂

α∈Int(qi)

⋃

j∈comp(α)\{i}

PA (qi, α, j) =
⋂

k∈need(qi)

PA (qi, k)

Proof. We prove the two statements separately.

116 3.8 Proofs

1. Lemma 3.4.1 shows PSj (qi) = PSj (qi, α). Therefore need (PSj (qi)) =

need (PSj (qi, α)), and we conclude BWS (PSj (qi) , need (PSj (qi))) =

BWS (PSj (qi, α) , need (PSj (qi, α))).

2. Let α ∈ Int (qi). The observation made in the beginning of the previous

proof shows |α| = 2. We write comp(α) = {i, jα}. We get:

⋂

α∈Int(qi)

⋃

j∈comp(α)\{i}

PA (qi, α, j) =
⋂

α∈Int(qi)

PA (qi, α, jα)

=
⋂

α∈Int(qi)

PA (qi, jα)

=
⋂

k∈need(qi)

PA (qi, k)

The second equality follows from Corollary 3.4.1. ⊓⊔

Corollary 3.4.2. Let Sys be a strongly tree-like interaction system with

strongly exclusive communication

If the following two conditions hold then Sys is deadlock-free:

1. ∀i∀qi : qi complete ∨ q0
i /∈ BWS (qi,need (qi))∨

∃j ∈ need (qi) with q0
j /∈ BWS (PSj (qi) , need (PSj (qi)))

2. ∀α̃ ∈ Int with |comp(α̃)| = 2 ∃i ∈ comp (α̃) such that for all qi ∈ Qi

that are incomplete:

i (α̃) 6⊆
⋂

k∈need(qi)

PA (qi, k)

The conditions can be checked in time polynomial in the size of Sys.

Proof. We show that for strongly tree-like interaction systems the conditions

above are equivalent to the corresponding conditions of Proposition 3.4.1:

1. The first two terms in the disjunction are the same as the correspond-

ing terms in Proposition 3.4.1. With regard to the third term we write

comp(α) = {i, jα} for α ∈ Int(qi) as in the previous proof. We get:

∃α ∈ Int (qi)∀j ∈ comp (α) \ {i} :

3.8.4 Proofs for Section 3.4.2 117

q0
j /∈ BWS (PSj (qi, α) , need (PSj (qi, α))) ⇔

∃α ∈ Int (qi) : q0
jα

/∈ BWS (PSjα (qi, α) , need (PSjα (qi, α))) ⇔

∃α ∈ Int (qi) : q0
jα

/∈ BWS (PSjα (qi) , need (PSjα (qi))) ⇔

∃j ∈ need (qi) : q0
j /∈ BWS (PSj (qi) , need (PSj (qi)))

The second equivalence follows from Lemma 3.8.7.1. The third term

in the first condition of the corollary is therefore equivalent to the cor-

responding term in the first condition of Proposition 3.4.1. Thus, for

strongly tree-like interaction systems these conditions are equivalent.

2. From Lemma 3.3.1 we know that all interactions involve two compo-

nents at most. Thus, the universal quantifier in the second condition

of Proposition 3.4.1 referring to all α̃ with |comp(α̃)| ≥ 2 in fact refers

to all α̃ with |comp(α̃)| = 2. Lemma 3.8.7.2 directly shows that for

strongly tree-like interaction systems the condition stated is equivalent

to the corresponding condition in Proposition 3.4.1.

Now assume that the two conditions above are satisfied. Using Lemma

3.3.2 and the equivalences derived above, we conclude that Sys is a tree-

like interaction system with strongly exclusive communication for which the

conditions in Proposition 3.4.1 are satisfied. The proposition shows that Sys

is deadlock-free. ⊓⊔

As mentioned in Section 3.4.2 we proved a statement which is more

general than the corollary’s statement. The corollary states that Sys is

deadlock-free if the two conditions are satisfied. We showed that for strongly

tree-like interaction systems the two conditions are equivalent to the corre-

sponding conditions in Proposition 3.4.1. It would have been possible to give

a direct proof for Corollary 3.4.2: Using a subset K ′ satisfying slightly sim-

plified conditions compared to those in Lemma 3.8.2 the proof would have

followed the lines of the proof of Proposition 3.4.1. It should be noted, that

such a direct argument would have been more simple than the proof given

above. On the other hand, such a simple proof would not have guaranteed

that there are no strongly tree-like interaction system for which Proposition

3.4.1 proves deadlock-freedom while Corollary 3.4.2 fails to do so. This is

why we presented the more involved proof above.

118 3.8 Proofs

Before proving Corollary 3.4.3 we need some lemmas.

Lemma 3.8.8. Let Sys be an interaction system with strongly exclusive com-

munication. Let i 6= j ∈ K and qi, q
′
i ∈ Qi and qj, q

′
j ∈ Qj.

We have q′i ∈ BWS(qi, {j}) and q′j ∈ BWS(qj, {i}) if and only if in

Sys ↓{i,j} there exists a sequence

σ =
(

q′i, q
′
j

) α0

→ . . .
αl

→ (qi, qj)

with |αs| = 1 for all 0 ≤ s ≤ l.

Proof. We will show both directions.

⇒: Assume q′i ∈ BWS(qi, {j}) and q′j ∈ BWS(qj , {i}). There are paths

q′i
a0

i→ . . .
a

li
i→ qi in Ti with as

i /∈ comm i (j) for all 0 ≤ s ≤ li respectively

q′j
b0j
→ . . .

b
lj
j
→ qj in Tj with bs

j /∈ comm j (i) for all 0 ≤ s ≤ lj. Consider

as
i and α ∈ Int with as

i ∈ α. We have j /∈ comp(α) because as
i /∈

comm i (j). We get α ↓{i,j}= {as
i} ∈ Int ↓{i,j}. Analogously we have

{bs
j} ∈ Int ↓{i,j} for all bs

j . Thus, in Sys ↓{i,j} there is a sequence

σ =
(

q′i, q
′
j

) {a0
i }−→ . . .

{a
li
i }

−→
(

qi, q
′
j

) {b0j}
−→ . . .

{b
lj
j }

−→ (qi, qj)

as required in the lemma.

⇐: Assume that in Sys ↓{i,j} there exists a sequence

σ =
(

q′i, q
′
j

) α0

→ . . .
αl

→ (qi, qj)

with |αs| = 1 for all 0 ≤ s ≤ l. Consider an arbitrary αs. Assume

comp(αs) = {i}, and write αs = {ai}. There exists α ∈ Int with

αs = α ↓{i,j}. Clearly, j does not participate in α. Because Sys has

strongly exclusive communication there is no other interaction α̃ ∈ Int

with ai ∈ α̃. We conclude ai /∈ comm i (j). Projecting σ to i we obtain

a path q′i
a0

i→ . . .
a

li
i→ qi in Ti that is only labeled with ports that are not in

comm i (j). This implies q′i ∈ BWS(qi, {j}). The case comp(αs) = {j}

is treated analogously, and we infer q′j ∈ BWS(qj, {i}).

⊓⊔

3.8.4 Proofs for Section 3.4.2 119

Lemma 3.8.9. Let Sys be a strongly tree-like interaction system such that

|need(qi)| ≤ 1 for all i ∈ K and qi ∈ Qi. Consider an edge {i, j} ∈ E∗ and

local states qi ∈ Qi and qj ∈ Qj.

If (qi, qj) is a deadlock state of Sys ↓{i,j} then need (qi) = {j} and

need(qj) = {i}.

Proof. Assume that the statement is not true. Because |need(qk)| ≤ 1 for all

k ∈ K and all local states qk we therefore have j /∈ need (qi) or i /∈ need(qj).

Without loss of generality j /∈ need (qi). Choose α ∈ Int(qi). Because

j /∈ need(qi) we have j /∈ comp (α). Therefore α ↓{i,j}= {ai} ∈ Int ↓{i,j}.

This interaction is enabled in (qi, qj) which is a contradiction since (qi, qj)

is a deadlock in Sys ↓{i,j}. We get need (qi) = {j} and need(qj) = {i}. ⊓⊔

Lemma 3.8.10. Let Sys be a strongly tree-like interaction system such that

|need(qi)| ≤ 1 for all i ∈ K and qi ∈ Qi. Consider an edge {i, j} ∈ E∗ and

local states qi ∈ Qi and qj ∈ Qj.

We have:

qj ∈ PSj (qi) ⇔ (qi, qj) is a reachable deadlock in Sys ↓{i,j}

Proof. We will show the following two equivalences which together yield the

statement of the lemma:

1. qj ∈ PSj (qi) ⇔ qj ∈ PS0
j (qi)

2. qj ∈ PS0
j (qi) ⇔ (qi, qj) is a reachable deadlock in Sys ↓{i,j}

Consider the first equivalence. Because PSj (qi) ⊆ PS0
j (qi) it suffices to

show that qj ∈ PS0
j (qi) implies qj ∈ PSj (qi). We first show

(3.8.1) qj ∈ PSl
j (qi) ⇒ qi ∈ PSl

i (qj)

for all l ∈ N by induction over l.

l = 0 : Let qj ∈ PS0
j (qi). It is clear that qi ∈ PS0

i (qj) because the condi-

tions stated in Definition 3.4.3 for qj to be contained in PS0
j (qi) are

symmetric in i and j.

120 3.8 Proofs

l ⇒ l + 1 : Let qj ∈ PSl+1
j (qi). Then we also have qj ∈ PSm

j (qi) for all

0 ≤ m ≤ l. Together with the induction hypothesis this implies qi ∈

PSm
i (qj) for all 0 ≤ m ≤ l. In particular, qi ∈ PS0

i (qj) implies

j ∈ need(qi). Because need(qi) contains at most one element we get

need(qi) = {j}. We want to prove qi ∈ PSl+1
i (qj). The above implies

qi ∈ PSl
i (qj). We still have to show that for all k ∈ need(qi) = {j}

we have PSl
k (qi) 6= ∅. We know qj ∈ PSl

j (qi), and we conclude qi ∈

PSl+1
i (qj).

Using condition 3.8.1, we now directly show that for all l ∈ N we have:

(3.8.2) qj ∈ PSl
j (qi) ⇒ qj ∈ PSl+1

j (qi)

Let qj ∈ PSl
j (qi). In order to conclude qj ∈ PSl+1

j (qi) it suffices to show

that for all k ∈ need(qj) we have PSl
k (qj) 6= ∅. From qj ∈ PSl

j (qi) we infer

qj ∈ PS0
j (qi). As above, this implies need(qj) = {i}. Thus, we only have to

show PSl
i (qj) 6= ∅. This follows from qj ∈ PSl

j (qi) and condition 3.8.1. We

get qj ∈ PSl+1
j (qi).

Now, assume qj ∈ PS0
j (qi). Then, condition 3.8.2 implies qj ∈ PSl

j (qi)

for all l ∈ N. Therefore, we have qj ∈ PSj (qi). This concludes the proof of

the first equivalence above.

Next, we show that qj ∈ PS0
j (qi) if and only if (qi, qj) is a reachable

deadlock in Sys ↓{i,j}.

⇒: Let qj ∈ PS0
j (qi). We want to show that (qi, qj) is a reachable deadlock

in Sys ↓{i,j}. The conditions stated in Definition 3.4.3 for qj to be

contained PS0
j (qi) imply that (qi, qj) is reachable in Sys ↓{i,j}, that

both qi and qj are incomplete, and that j ∈ need(qi) and i ∈ need(qj).

Because these sets contain one component at most we get need (qi) =

{j} and need(qj) = {i}.

Now assume that some α ∈ Int ↓{i,j} is enabled in (qi, qj). Let α′ ∈ Int

be an interaction with α′ ↓{i,j}= α. According to Lemma 3.3.1 we have

|α′| ≤ 2. We consider the following cases:

• comp(α′) = {i}: Then qi would be complete which is not possible.

The case comp(α′) = {j} is treated analogously.

3.8.4 Proofs for Section 3.4.2 121

• comp(α′) = {i, k} with k 6= j: We get k ∈ need(qi). This is a

contradiction to need(qi) = {j}.

The case comp(α′) = {j, k} with k 6= i is treated analogously.

• comp(α′) = {i, j}: We get α′ = α′ ↓{i,j}= α. Because α is enabled

in (qi, qj) this implies α′ ∈ Int(qi) ∩ Int(qj) which is not possible

because qj ∈ PS0
j (qi).

Therefore, no α ∈ Int ↓{i,j} is enabled in (qi, qj). We conclude that

(qi, qj) is a reachable deadlock of Sys ↓{i,j}.

⇐: Let (qi, qj) be a reachable deadlock in Sys ↓{i,j}. We want to show qj ∈

PS0
j (qi). It is clear that qi and qj are incomplete because otherwise

(qi, qj) would not be a deadlock. Lemma 3.8.9 shows need (qi) = {j}

and need(qj) = {i}. Therefore PS0
j (qi) is well defined, and the first

two conditions for qj to be contained in this set are satisfied. By

assumption (qi, qj) is reachable. There cannot be any interaction α̃ ∈

Int(qi) ∩ Int(qj) because α̃ ↓{i,j} would be enabled in (qi, qj) in this

case, and (qi, qj) would not be a deadlock of Sys ↓{i,j}. We conclude

qj ∈ PS0
j (qi).

Combining the two equivalences, we see that qj ∈ PSj (qi) if and only if

(qi, qj) is a reachable deadlock in Sys ↓{i,j}. ⊓⊔

Combining the results above we obtain the following lemma:

Lemma 3.8.11. Let Sys be a strongly tree-like interaction system that has

strongly exclusive communication such that |need(qi)| ≤ 1 for all i ∈ K and

qi ∈ Qi. Let qi, q
′
i ∈ Qi and q′j ∈ Qj .

There exists qj ∈ Qj and a path σ = (q′i, q
′
j)

α0

→ . . .
αl

→ (qi, qj) in

Sys ↓{i,j} such that |αs| = 1 for all 0 ≤ s ≤ l and such that (qi, qj) is a

reachable deadlock of Sys ↓{i,j} if and only if q′i ∈ BWS(qi,need(qi)) and

q′j ∈ BWS (PSj (qi) , need (PSj (qi))).

Proof. We will show both directions:

⇐: Let q′i ∈ BWS(qi,need(qi)) and q′j ∈ BWS (PSj (qi) , need (PSj (qi))).

Thus, there is a local state qj ∈ PSj (qi) with q′j ∈ BWS (qj,need(qj)).

122 3.8 Proofs

Lemma 3.8.10 shows that (qi, qj) is a reachable deadlock of Sys ↓{i,j}.

Lemma 3.8.9 shows need(qj) = {i} and need(qi) = {j}. This means

that q′i ∈ BWS (qi, {j}) and q′j ∈ BWS (qj, {i}). Lemma 3.8.8 yields

the existence of a path σ = (q′i, q
′
j)

α0

→ . . .
αl

→ (qi, qj) in Sys ↓{i,j} such

that |αs| = 1 for all 0 ≤ s ≤ l.

⇒: Consider a path σ = (q′i, q
′
j)

α0

→ . . .
αl

→ (qi, qj) such that |αs| = 1 for

all 0 ≤ s ≤ l and (qi, qj) is a reachable deadlock state. Lemma 3.8.10

shows that qj ∈ PSj (qi). Using Lemma 3.8.8, we get q′i ∈ BWS(qi, {j})

and q′j ∈ BWS(qj, {i}). Because (qi, qj) is a deadlock state, Lemma

3.8.9 implies need(qj) = {i} and need(qi) = {j}. We conclude q′i ∈

BWS(qi,need(qi)) on the one hand and q′j ∈ BWS(qj,need(qj)) ⊆

BWS (PSj (qi) , need (PSj (qi))) on the other.

⊓⊔

Corollary 3.4.3.[38] Let Sys be a strongly tree-like interaction system with

strongly exclusive communication and |need(qi)| ≤ 1 for all i ∈ K and for

all qi ∈ Qi.

If Sys ↓{i,j} is deadlock-free for all {i, j} ∈ E∗ then Sys is deadlock-

free.

Proof. We show that under the additional requirement |need(qi)| ≤ 1 for all

i ∈ K and qi ∈ Qi the two conditions in Corollary 3.4.2 hold if and only if

Sys ↓{i,j} is deadlock-free for all {i, j} ∈ E∗.

⇒: Assume that the conditions of Corollary 3.4.2 are satisfied but there

is an edge {i, j} ∈ E∗ such that Sys ↓{i,j} contains a deadlock. Let

(qi, qj) be a reachable deadlock state in Sys ↓{i,j}. Consider a path

(q0
i , q

0
j)

α0

→ . . .
αl

→ (qi, qj) .

Lemma 3.8.9 shows need (qi) = {j} and need(qj) = {i}. We distinguish

two cases:

1. |αs| = 1 for all s: Lemma 3.8.11 shows q0
i ∈ BWS(qi,need(qi))

and q0
j ∈ BWS (PSj (qi) , need (PSj (qi))). Then qi violates the

3.8.4 Proofs for Section 3.4.2 123

first condition of Corollary 3.4.2 because it is clear that qi is

incomplete and because the only component in need(qi) is j.

2. There is s with |αs| = 2: Let s0 denote the largest such index.

We write αs0 = {as0
i , as0

j }. For all s0 + 1 ≤ r ≤ l we get |αr| =

1. Lemma 3.8.11 shows qs0+1
i ∈ BWS(qi,need(qi)) and qs0+1

j ∈

BWS (PSj (qi) , need (PSj (qi))). In Sys ↓{i,j} there is a transition

(qs0
i , qs0

j)
αs0
→ (qs0+1

i , qs0+1
j) and (qs0

i , qs0
j) is reachable. It is also

clear that as0
i ∈ comm i (j) =

⋃

k∈need(qi)
comm i (k). Combining

these facts we obtain as0
i ∈ PA(qi, j) =

⋂

k∈need(qi)
PA(qi, k).

Analogously we have as0
j ∈

⋂

k∈need(qj)
PA(qj, k). Then αs0 vio-

lates the second condition of Corollary 3.4.2.

We conclude that Sys ↓{i,j} is deadlock-free for all {i, j} ∈ E∗.

⇐: Assume that Sys ↓{i,j} is deadlock-free for all {i, j} ∈ E∗ but one of the

conditions of Corollary 3.4.2 is violated:

1. The first condition is violated. There exist i ∈ K and qi ∈ Qi

such that qi is incomplete, q0
i ∈ BWS (qi,need (qi)), and for all

j ∈ need (qi) we have q0
j ∈ BWS (PSj (qi) , need (PSj (qi))). The

last term above quantifies over all j ∈ need(qi). Since there can

be at most one such j and because qi is incomplete there is exactly

one such j. For j we have q0
j ∈ BWS (PSj (qi) , need (PSj (qi))).

Lemma 3.8.11 shows that there is a path (q0
i , q

0
j)

α0

→ . . .
αl

→ (qi, qj)

in Sys ↓{i,j} such that (qi, qj) is a reachable deadlock. This is a

contradiction because Sys ↓{i,j} is deadlock-free.

2. The second condition is violated. There exists α̃ ∈ Int with

|α̃| = 2 such that ∀i ∈ comp (α̃) there is qi ∈ Qi incomplete with

i (α̃) ⊆
⋂

k∈need(qi)
PA (qi, k). Fix α̃, i ∈ comp (α̃), and qi incom-

plete with i (α̃) ⊆
⋂

k∈need(qi)
PA (qi, k). Because qi is incomplete

we have need(qi) 6= ∅. Therefore need(qi) = {j} for some compo-

nent j. Writing i (α̃) = {ai}, we get ai ∈
⋂

k∈need(qi)
PA (qi, k) =

PA (qi, j). Thus, there exists a reachable state (q′i, q
′
j) in Sys ↓{i,j}

that can be entered by an interaction involving ai such that

q′i ∈ BWS(qi,need(qi)) and q′j ∈ BWS(PSj(qi), need(PSj(qi))).

124 3.8 Proofs

Lemma 3.8.11 shows that there is a path (q′i, q
′
j)

α0

→ . . .
αl

→ (qi, qj)

in Sys ↓{i,j} such that (qi, qj) is a reachable deadlock state. This

is a contradiction because Sys ↓{i,j} is deadlock-free.

Now assume that Sys is a strongly tree-like interaction system with

|need(qi)| ≤ 1 for all i ∈ K and qi ∈ Qi such that Sys ↓{i,j} is deadlock-

free for all {i, j} ∈ E∗. The equivalences derived above show that Sys

is a strongly tree-like interaction system for which the conditions of

Corollary 3.4.2 are satisfied. Therefore Sys is deadlock-free.

⊓⊔

The remark made after the proof of Corollary 3.4.2 is true in particular

for the proofs above. A direct proof of Corollary 3.4.3 would have been much

more simple than the involved proofs of the equivalences above (Lemma

3.8.10). It would not have been as general, though. We would not have

been able to see that the two corollaries are equally general for strongly

tree-like interaction systems satisfying the additional requirement above.

3.8.5 Proofs for Section 3.5.1

We need two lemmas for the proof of Corollary 3.5.1.

Lemma 3.8.12. Let Sys be a strongly tree-like interaction system and let

D be a local deadlock in q.

For all i ∈ D and all α ∈ Int(qi) we have comp(α) ⊆ D.

Proof. Choose i ∈ D and α ∈ Int(qi). Because D is a local deadlock there

exists j ∈ comp (α)∩D with j(α) 6⊆ en(qj). Thus, j ∈ D. By assumption we

have i ∈ D. It is clear that i 6= j. According to Lemma 3.3.1 there cannot

be more than two components in comp(α). Therefore comp(α) ⊆ D. ⊓⊔

Lemma 3.8.13. Let Sys be a strongly tree-like interaction system and let

D be a local deadlock in q.

There exists a non empty subset D′ ⊆ D such that for all i ∈ D′ and all

α′ ∈ Int (qi) the following two conditions hold:

1. ∀α ∈ Int with |comp (α′) ∩ comp (α)| ≥ 2 we have comp (α) ⊆ D′

3.8.5 Proofs for Section 3.5.1 125

2. ∀j ∈ comp (α′) \ {i} : need (qj) ∩ comp (α′) 6= ∅

Proof. Let i ∈ D, α′ ∈ Int(qi), and α ∈ Int with |comp (α′) ∩ comp (α)| ≥

2. Lemma 3.3.1 states |comp(α′)| ≤ 2 and |comp(α)| ≤ 2. We conclude

|comp (α′) ∩ comp (α)| = 2 and therefore comp(α) = comp(α′). Lemma

3.8.12 implies comp(α′) ⊆ D, and this means comp(α) ⊆ D.

Setting Int′(qi) := Int(qi) for all i ∈ K, this means that D satisfies the

condition required for K̃ in Lemma 3.8.2. It is clear that need(qi) 6= ∅ for

all i ∈ D because D is a local deadlock. The lemma shows that there is a

subset D′ having the desired properties. ⊓⊔

Strictly speaking we are not allowed to apply Lemma 3.8.2 because it

requires need(qi) 6= ∅ for all i ∈ K. We can only guarantee that need(qi) 6= ∅

for all i ∈ D. According to the remark made after the proof of Lemma 3.8.2

this suffices to apply the lemma, though, because in the proof of Lemma

3.8.2 the requirement is only needed for the components in K̃.

Corollary 3.5.1. Let Sys be a strongly tree-like interaction system with

strongly exclusive communication.

If the following two conditions hold then Sys does not contain any local

deadlock:

1. ∀i ∀qi : qi complete ∨ q0
i /∈ BWS (qi,need (qi))∨

∃j ∈ need (qi) with q0
j /∈ BWS (PSj (qi) , need (PSj (qi)))

2. ∀α̃ ∈ Int with |comp(α̃)| = 2 ∃i ∈ comp (α̃) such that for all qi ∈ Qi

that are incomplete:

i (α̃) 6⊆
⋂

k∈need(qi)

PA (qi, k)

The conditions can be checked in time polynomial in the size of Sys.

Proof. Assume that there exists a reachable local deadlock D in q. Choose

a minimal subset D′ ⊆ D of components according to Lemma 3.8.13. For

all i ∈ D′ all α ∈ Int (qi) are blocked by a component j ∈ comp(α) ∩ D

because D is a local deadlock. On the other hand, i ∈ D′ and α ∈ Int(qi)

126 3.8 Proofs

imply comp(α) ⊆ D′ using the first defining property of D′. Thus, for all

i ∈ D′ and α ∈ Int (qi) the component j is actually contained in D′.

We have seen in the proof of Corollary 3.4.2 that for strongly tree-like

systems the two conditions in the corollary above are equivalent to the con-

ditions in Proposition 3.4.1. The proof of Proposition 3.4.1 showed that the

existence of a minimal subset D′ for q where

1. the two conditions in Corollary 3.8.1 (respectively Lemma 3.8.13) hold

2. for all i ∈ D′ all α ∈ Int (qi) are blocked by a component in D′

yields a contradiction to the conditions in Proposition 3.4.1.

We conclude there is no reachable local deadlock D in Sys. ⊓⊔

3.8.6 Proofs for Section 3.5.2

The following lemma combines Lemmas 3.8.2 and 3.8.6 and adapts them

to the new situation.

Lemma 3.8.14. Let Sys be a tree-like interaction system. Let D be a min-

imal local deadlock in q.

1. For all i ∈ D, α ∈ Int (qi), and j ∈ D ∩ comp (α) \ {i} we have:

j (α) 6⊆ en (qj) ⇒ need (qj) ∩ comp (α) 6= ∅

2. If q is reachable then for all i ∈ D and α ∈ Int (qi) there exists j ∈

D ∩ comp(α) with qj ∈ PSj (qi, α).

Proof. We treat the two statements separately.

1. By way of contradiction assume that the statement is not correct. We

will show that in this case D is not minimal.

Choose i ∈ D, α ∈ Int (qi), and j ∈ comp (α) ∩ D\ {i} with j (α) 6⊆

en (qj) and need (qj) ∩ comp (α) = ∅. Consider the path

πj,α = {j}
e
— K̄ — . . . — comp(α)

3.8.6 Proofs for Section 3.5.2 127

according to Lemma 3.3.3 and let Ḡ := (V,E\ {e}) be defined the same

way as before Lemma 3.8.1. We denote by D̂ the set of components

in D that are reachable from {j} in Ḡ:

D̂ := D ∩
{

k|{k} is reachable from {j} in Ḡ
}

Using the same argument as in the proof of Lemma 3.8.3, for all k′ ∈

comp(α)\{j} we see that {k′} is not reachable from {j} in Ḡ. In

particular this implies i /∈ D̂. Therefore, D̂ is a proper subset of D.

We will show that D̂ is a local deadlock in q. Let k ∈ D̂ and ᾱ ∈

Int (qk). Because k ∈ D there is a component l ∈ D ∩ comp(ᾱ) with

l (ᾱ) 6⊆ en (ql). Because k ∈ D̂ we know that {k} is reachable from

{j} in Ḡ. Setting Int′(qh) = Int(qh) for all h ∈ K, we use Lemma 3.8.1

with β′ = β = ᾱ and conclude that {l} is also reachable from {j} in

Ḡ. This shows that l ∈ D̂. Thus, D̂ is a local deadlock in q such that

D̂ (D. This is a contradiction because D was chosen to be minimal.

2. According to the first part of the lemma for all i ∈ D, α ∈ Int (qi),

and j ∈ D ∩ comp (α) \ {i} we have need (qj)∩ comp (α) 6= ∅ if j (α) 6⊆

en (qj). Because D is a local deadlock, for all i ∈ D and α ∈ Int (qi)

at least one such j exists. Since q is reachable we apply Lemma 3.8.6

with Int′(qh) = Int(qh) for all h ∈ K to see that for all i ∈ D and

α ∈ Int (qi) there is j ∈ D ∩ comp(α) with qj ∈ PSj (qi, α).

⊓⊔

Proposition 3.5.1. Let Sys be a tree-like interaction system with strongly

exclusive communication.

If the following two conditions hold then Sys is free of local deadlocks:

1. ∀i∀qi : qi complete ∨ q0
i /∈ BWS (qi,need(qi)) ∨ ∃α ∈ Int (qi) such that

∀j ∈ comp (α) \ {i} : q0
j /∈ BWS (PSj (qi, α) , need (PSj (qi, α)))

2. ∀i ∈ K and ∀qi ∈ Qi that are incomplete:

⋂

α∈Int(qi)

⋃

j∈comp(α)\{i}

PA (qi, α, j) = ∅

128 3.8 Proofs

The conditions can be checked in time polynomial in the size of Sys.

Proof. Assume that the conditions are satisfied but there exists a local dead-

lock. There is a path σ = q0 α0→ . . .
αl−1
→ ql αl→ q and a subset D ⊆ K of

components such that D is a minimal local deadlock in q. For all i ∈ D the

local state qi is incomplete. We distinguish two cases:

1. For all s ≤ l and all i ∈ D we have i (αs) 6⊆
⋃

k∈need(qi)
comm i (k) if

i (αs) 6= ∅. Because Sys has strongly exclusive communication for all

i ∈ D the projection of σ to i yields a path from q0
i to qi that is only

labeled with ports in Ai\
⋃

k∈need(qi)
comm i (k). For all i ∈ D we get

q0
i ∈ BWS (qi,need (qi)).

Lemma 3.8.14 shows that for all i ∈ D and all α ∈ Int(qi) there

is a component j ∈ D ∩ comp (α) with qj ∈ PSj (qi, α). Further

q0
j ∈ BWS (qj,need (qj)) ⊆ BWS (PSj (qi, α) , need (PSj (qi, α))) holds

because j ∈ D. This is a contradiction to the first condition above

because qi is incomplete for all i ∈ D.

2. Otherwise let s0 ≤ l be the largest index such that there exists i ∈

D ∩ comp(αs0) with i (αs0) ⊆
⋃

k∈need(qi)
comm i (k). Let i0 denote

such a component. For all s0 < s ≤ l and all i ∈ D we have i (αs) 6⊆
⋃

k∈need(qi)
comm i (k) if i (αs) 6= ∅. As above for all i ∈ D this means

qs0+1
i ∈ BWS (qi,need (qi)).

Consider α ∈ Int (qi0). According to Lemma 3.8.14 there exists j ∈

comp (α) ∩ D with qj ∈ PSj (qi0 , α). Using the same argument as in

the proof of Proposition 3.4.1 we get

i0 (αs0) ∈ PA (qi0, α, j) ⊆
⋃

j∈comp(α)\{i0}

PA (qi0, α, j) ,

and repeating the argument for all α ∈ Int (qi0) we get

i0 (αs0) ∈
⋂

α∈Int(qi0
)

⋃

j∈comp(α)\{i0}

PA (qi0, α, j) .

This is a contradiction to the second condition above.

The assumption that Sys contains a reachable local deadlock is wrong.

Therefore the system is free of local deadlocks.

3.8.6 Proofs for Section 3.5.2 129

The conditions can be checked in time polynomial in the size of Sys,

because all parameters can be computed by analyzing Int, the Ti, and the

subsystems Sys ↓{i,j} where i and j are interacting components. ⊓⊔

Chapter 4

Progress in Interaction

Systems

4.1 Introduction

In this chapter we deal with progress in interaction systems. Since check-

ing progress of a set of components can be reduced to checking progress of

a set of ports we will only consider progress of a set A0 of ports. If one

is interested in progress of a subset K ′ of components the results can be

applied with
⋃

i∈K ′ Ai. We will denote the union
⋃

i∈K ′ Ai by AK ′ . In this

chapter we always assume that Sys is a deadlock-free interaction system.

We first present a characterization of progress of a subset of ports. The

section thereafter exhibits a directed graph and a sufficient condition for

progress which is based on this graph. We demonstrate how information

gathered from the graph can be incorporated into an iteration of the con-

struction of the edges in order to enhance the graph. We explain how to

combine the characterization with the graph-criterion if the latter fails to

establish progress. The chapter is concluded by an application of the results

to the example of the dining philosophers introduced in Chapter 2.

4.2 Characterizing Progress

For a deadlock-free interaction system Sys we present a characterization

of the subsets A0 ⊆ A that make progress in Sys. The complexity result

stated in Section 2.2 shows that we cannot expect the conditions of this

131

132 4.2 Characterizing Progress

characterization to be checkable efficiently in general. The characterization

is of theoretical benefit helping to better understand progress in interaction

systems. It can be put to practical use in some cases as well, though, because

it is fit to be combined with other conditions for progress in cases where these

conditions alone do not yield progress of A0.

In the following for a given set A0 of ports we need to distinguish the

interactions that contain at least one port in A0 from those that do not.

Definition 4.2.1. Let Sys be an interaction system and let A0 ⊆ A be a

subset of ports. By excl
(

A0

)

:=
{

α ∈ Int|α ∩A0 = ∅
}

we denote the set of

interactions that do not contain any port in A0.

The interactions in excl
(

A0

)

play an important role in the investiga-

tion of progress because a run which violates the condition for A0 to make

progress is only labeled with these interactions. This observation will be

used in the characterization presented below. The characterization resorts

to a labeled transition system where all labels are in excl
(

A0

)

(and which is

possibly smaller than TSys itself) and makes a statement about the existence

of certain cycles in this transition system.

Definition 4.2.2. Let Sys be a deadlock-free interaction system and let

A0 ⊆ A be a subset of ports. Set:

K
A0

:=
⋃

α∈excl(A0)

comp(α)

Further define

Sys
A0

:= (K
A0

, {Ti}i∈K
A0

, excl(A0))

whose induced behavior is given by the labeled transition system T
A0

:=

(Q
A0

, excl(A0),→). Here

1. Q
A0

:=
∏

i∈K
A0

Qi is the state space of T
A0

. We denote states by

tuples q = (qi)i∈K
A0

.

2. →⊆ Q
A0

× excl
(

A0

)

× Q
A0

is the labeled transition relation with:

p
α
→ q̄ ⇔ ∀i ∈ K

A0
pi

ai→ qi if i(α) = {ai} and pi = qi otherwise.

4.2 Characterizing Progress 133

K
A0

contains those components that participate in at least one interac-

tion not involving any port in A0. Conversely, the components in K\K
A0

are those components which need the ports in A0 in the sense that whenever

an interaction involving a component in K\K
A0

is performed then a port

in A0 must also participate. In other words, for all α ∈ excl(A0) and all

k ∈ K\K
A0

we have k(α) = ∅. Note that i ∈ K\K
A0

always holds for a

component i if Ai ⊆ A0. K
A0

is relevant when we are interested in progress

of A0 because if there is a run which does not allow A0 to participate (and

therefore refutes progress of A0) then every interaction on this run only in-

volves components in K
A0

. Thus, the behavior of Sys
A0

can be understood

as the part of Sys which may possibly prevent A0 from making progress.

Therefore it suffices to only investigate T
A0

. This result is stated in the

following theorem.

Theorem 4.2.1. Let Sys be a deadlock-free interaction system and let A0 ⊆

A be a subset of ports.

A0 makes progress in Sys if and only if T
A0

does not contain any cycles

visiting a state q for which there exists q′ ∈
∏

i∈K\K
A0

Qi such that (q, q′) is

in reach(Sys).

Sys
A0

does not have an initial state. It is possible to reach a cycle in

Sys that is only labeled with interactions in excl(A0) by first performing

some interactions that involve A0. Therefore, we must consider all cycles

in T
A0

because the interactions that involve A0 are not present in Sys
A0

.

This characterization cannot be tested efficiently in general. First of all, it

is not clear that going from K to K
A0

substantially reduces the size of the

system to be investigated. In the worst case every component participates

in at least one interaction α ∈ excl(A0). Then the system is not reduced in

size at all. But even in cases where Sys
A0

results in a remarkably smaller

system than Sys itself, it may still the case that the condition stated in the

theorem does not help to decide progress of a given set A0 of ports. This

is because the condition makes a statement about the reachability of global

states. This is not surprising, though, because the difficulty of deciding

progress also stems from the fact that the definition refers to runs starting

in reachable states. Clearly, we cannot expect to get rid of this factor in the

134 4.3 Testing Progress

complexity of deciding progress by formulating a different characterization.

Nonetheless, the characterization is not solely of theoretical interest.

Despite the problems mentioned above progress of A0 may be deduced in

some cases where this is not clear from the original definition. If excl(A0)

contains few interactions which do not involve many components (in relation

to the total number n of components) then T
A0

may be relatively small and

sparse. In the extreme case every interaction involves a port in A0, and K
A0

is empty. In this case it is clear that A0 makes progress anyway, though. If

T
A0

does not contain any cycles then the condition of the theorem is satisfied.

But even if there are cycles it may be possible to refute their reachability

by other techniques which are concerned with reachability of global states

(cf. Section 3.2 or Majster-Cederbaum et al. [100, 102] for other techniques

in the context of interaction systems, for example). If one tries to establish

progress of A0 directly from Definition 2.2.2 in such a situation, it may not

be clear at all that every run involves a port in A0 even though excl(A0)

does not contain many elements.

4.3 Testing Progress

We turn to the question of how progress of a set of ports can be tested

in practice. We present a graph-based criterion for progress. The definition

of the graph has passed through several stages making the criterion more

precise. We will take the following approach here: In the first subsection we

give the general definition of the graph which involves a parameter d referring

to the size of the subsystems that have to be investigated for the construction

of the edges. We then turn to the special case where d = 1 which constitutes

the graph as it was originally conceived. For larger d we get a more general

criterion at the cost of an increase in complexity. The original result using

the graph for d = 1 can then be formulated as a corollary. This corollary is

less powerful, however it allows for a simplification of notions. The second

subsection deals with an extension of the graph. Iterating the definition

of the edges, we incorporate information about progress gathered from the

graph constructed so far into the further construction of the edges. The

important point about the criterion is that the construction of the graph

4.3.1 A Graph Criterion 135

and checking the condition can be performed automatically and efficiently

where the degree of efficiency is controlled by d.

4.3.1 A Graph Criterion

The directed graph we use to test progress of A0 has one node for every

component. In addition, there is a special node 0 representing the set A0

that we check for progress. We want to realize a notion of directed edges

where for components i and j the existence of an edge (i, j) indicates that

j “needs” i in the sense that no matter how the system behaves j can only

participate in a finite number of global transitions before a transition labeled

with an interaction involving a port in Ai must be performed1. Similarly, we

want to have edges (0, j) for those components j that “need” A0 in the same

sense. Agreeing to this meaning of the edges for the moment, it can be seen

that all components that are reachable from a given component i can only

participate in a finite number of global transitions before i does so as well.

The test for progress of A0 presented in our criterion will come down to a

simple reachability analysis in the graph where we check whether all nodes

are reachable from 0. The important point concerning the applicability of

the criterion is to make sure that for the definition of the edges we only have

to resort to information that can be checked locally in order to make sure

that the graph can be constructed efficiently. The reachability analysis in

the graph can be performed efficiently as well, because the graph has n + 1

nodes and at most n2 edges.

We define a graph reflecting the informal requirement on the edges stated

above. The construction of the graph only requires the investigation of

subsystems of the global system. We first need a notion describing for such

a subsystem the fact that interactions from a given subset of interactions

occur on every cycle in that subsystem. For this purpose we introduce two

different notions of inevitability of a set of interactions. These notions are

independent of the fact that we are only going to use them for interaction

systems. We state them for a general finite labeled transition system and

1This requirement can be rephrased saying that j can only participate infinitely often

in a run of Sys if i does so as well.

136 4.3 Testing Progress

then derive the corresponding notions for interaction systems.

Definition 4.3.1. Let T = (Q,L,→) be a finite labeled transition system

where Q is the set of states, L is the set of labels and →⊆ Q×L×Q is the

labeled transition relation. Let L′,L′′ ⊆ L be subsets of labels.

1. L′ is inevitable with respect to L′′ in T if for every cycle π = q
α0→

q1 α1→ . . .
αl→ q in T the following condition holds:

∃0 ≤ r ≤ l with αr ∈ L′′ ⇒ ∃0 ≤ s ≤ l with αs ∈ L′

2. L′ is inevitable in T if for every cycle π = q
α0→ q1 α1→ . . .

αl→ q in T

the following condition holds:

∃0 ≤ s ≤ l with αs ∈ L′

Let Sys be an interaction system. Let j be a component and let Int′ ⊆ Int

be a set of interactions.

1. Int′ is inevitable with respect to j in Sys if Int′ is inevitable with

respect to Int(j) in TSys.

2. Int′ is inevitable in Sys if Int′ is inevitable in TSys.

Int′ is inevitable in Sys if on every cycle in Sys at least one interaction

in Int′ occurs. Because every cycle can be used to construct a run and every

run contains at least one cycle (using the fact that Sys is finite), this means

that on every run of Sys an interaction in Int′ occurs. Inevitability of Int′ in

Sys implies that the set
⋃

α∈Int′ α of ports that are contained in at least one

interaction in Int′ makes progress in Sys. The converse is not true, though.

There are systems such that a set Int′ of interactions is not inevitable even

though the set of ports contained in at least one interaction in Int′ makes

progress. Inevitability of Int′ with respect to a component j generalizes this

notion by requiring an interaction in Int′ to occur only on those cycles that

j also participates in. Note that inevitability of Int′ implies inevitability of

Int′ with respect to any component j.

4.3.1 A Graph Criterion 137

Definition 4.3.2. Let Sys be an interaction system and let A0 ⊆ A be a

set of ports. Let 1 ≤ d ≤ n be given. The d-th stage progress graph for

Sys and A0 is defined by:

G1
d :=

(

V, E1
d

)

Here V := K ∪ {0}. The set of directed edges is given by

E1
d := {(i, j) |j 6= i, 0 and there is Kd ⊆ K with |Kd| = d and j ∈ Kd such

that Int ↓Kd
\excl(Ai) ↓Kd

is inevitable with respect to j in

Sys ↓Kd
}

For the construction of E1
d we have to consider inevitability of a certain

subset of interactions of Sys ↓Kd
. Namely, for a possible edge (i, j) these are

the interactions in Int ↓Kd
\excl(Ai) ↓Kd

. We take a closer look at what it

means for an interaction to be contained in this set. We defined excl(Ai) to

be the set of interactions of the global system that do not allow any port in

Ai to participate. When we project this set of interactions to Kd we obtain

those interactions in Int ↓Kd
that are contained in at least one such global

interaction. By removing the interactions in excl(Ai) ↓Kd
from Int ↓Kd

we

are left with those interactions αd in Int ↓Kd
such that every global interac-

tion containing αd must also involve at least one port in Ai. Therefore the

interactions in Int ↓Kd
\excl(Ai) ↓Kd

represent global interactions involving

Ai. Keeping track of these interactions in the subsystems may help to detect

progress of a set of ports. The definition of a subsystem makes sure that

every global step can be retraced in the subsystem. By requiring inevitabil-

ity of Int ↓Kd
\excl(Ai) ↓Kd

with respect to j we see that in this case every

run σ of Sys which j participates infinitely often in must also involve Ai

in some step. Otherwise the projection of σ to Kd would result in a cycle

that allows j to participate at some point but does not contain any label in

Int ↓Kd
\excl(Ai) ↓Kd

. In particular, this means that an edge (i, j) indeed

conveys the meaning that was motivated above. It also becomes clear that 0

represents the set A0 of ports since we consider A0 in the definition when we

check the existence of a possible edge (0, j). Note that Int ↓Kd
\excl(Ai) ↓Kd

is not inevitable in Sys ↓Kd
if there is a cycle that is only labeled with in-

teractions in excl(Ai) ↓Kd
. Similarly, Int ↓Kd

\excl(Ai) ↓Kd
is not inevitable

138 4.3 Testing Progress

with respect to j in Sys ↓Kd
if there is a cycle that allows j to participate

and that is only labeled with interactions in excl(Ai) ↓Kd
.

Before considering the construction of G1
d by means of an example we

want to emphasize two issues concerning the choice of d. First, for the special

case given by d = 1 the definition of the edges can be simplified. For the

construction of a d-stage edge (i, j) we have to find a set Kd containing j and

d−1 other components such that the conditions are satisfied. If d = 1 there

is only one possible choice. Namely, K1 must be equal to {j}. In this case

Sys ↓{j} and Int ↓{j} coincide with Tj respectively Aj (up to identification

of {aj} and (qj) with aj respectively qj). The following lemma shows that

it suffices to check inevitability of Aj\exclj(Ai) in Tj . Here exclj(Ai) ⊆ Aj

is the subset of ports that occur in at least one interaction not involving Ai.

Lemma 4.3.1. Let Sys be an interaction system and let A0 ⊆ A be a set of

ports.

Setting exclj(Ai) :=
{

aj|∃α ∈ excl(Ai) : aj ∈ α
}

, we have

E1
1 :=

{

(i, j) |j 6= i, 0 and Aj\exclj(Ai) is inevitable in Tj

}

.

Further, we delve into the relation between the progress graphs of dif-

ferent stages. It is more expensive to compute a higher stage graph because

we hide fewer components in the subsystems we consider. Therefore, it only

makes sense to do so if this increase in complexity yields more specific in-

formation. In particular, the existence of an edge (i, j) ∈ E1
d′ should imply

the existence of the same edge in E1
d for any d > d′. This way we can be

sure that once we have decided upon a parameter d (and therefore have

chosen the degree of complexity we are willing and/or able to handle) we do

not have to concern ourselves with any stage of the progress graph which is

smaller than d. The following lemma shows that this statement is true.

Lemma 4.3.2. Let Sys be an interaction system and let A0 ⊆ A be a subset

of ports. Let 1 ≤ d′ < d ≤ n and let i ∈ K ∪ {0} and j ∈ K.

If (i, j) ∈ E1
d′ then we also have (i, j) ∈ E1

d .

Example 4.3.1. Consider K1 := {1, 2, 3, 4}. The transition systems of the

components are depicted in Figure 4.1. For each i ∈ K1 the port set Ai is

understood to coincide with the set of labels of Ti. We define Int1 to contain

4.3.1 A Graph Criterion 139

the interactions {a1, a3}, {a2, a3}, {b1, b3}, {b2, b3}, {c1, c2}, {d1, d4}, and

{e1, e4}. We denote the induced interaction system by Sys1.

q0
1

q1
1 q2

1

d1

e1

a1

b1

c1

q0
2

q1
2 q2

2

c2

c2

a2

b2

q0
3

q1
3

a3b3

q4
1 d4

e4

Figure 4.1: The local behavior of the components in K1

We consider the question whether A0 := {a3, d4} makes progress in Sys1.

We construct the first and second stage progress graph for Sys1 and A0.

They are given in Figure 4.2. The edges in E1
1 ⊆ E1

2 are depicted as solid

lines whereas the edges that are only in E1
2 are depicted as dashed lines.

1 2 3 4

0

Figure 4.2: The first and second stage progress graphs of Sys1

We go into a few details concerning the construction. We have (0, 3) ∈

E1
1 . Intuitively, this can be seen as follows: Whenever an interaction α with

a3 ∈ α is executed in Sys1 thenA0 also participates in α (this is clear because

a3 itself is in A0). However, in T3 at most one transition can be executed

before the transition labeled a3 must be executed. Together this implies

that if component 3 participates infinitely often in a run then eventually

a port in A0 also participates in that run (in fact, this will be the case for

every other step, that 3 participates in, of the run). Considering the formal

definition of E1
1 , we first compute A3\excl3(A0) = {a3}, i.e., the set of ports

of 3 that only occur in global interactions that also involve A0. This set of

ports is inevitable in T3, and therefore (0, 3) ∈ E1
1 . Similarly, the existence

of the other edges in E1
1 can be explained. On the other hand (3, 1) /∈ E1

1 ,

for example, because in T1 there is a cycle that is only labeled with the port

140 4.3 Testing Progress

c1 ∈ excl1(A3).

On the other hand we have (3, 1) ∈ E1
2 . Choosing K2 := {1, 2}, we see

excl(A3) ↓K2= {{c1, c2}, {e1}, {d1}}. These are the interactions in Int ↓Kd

which occur in at least one global interaction which does not involve 3. In

Sys1 ↓K2 there are no cycles that are only labeled with these interactions.

In particular, the loop in q2
1 whose label c1 does not need 3 and which

was the reason for (3, 1) /∈ E1
1 is forced open by pairing component 1 with

component 2. Inevitability of Int ↓K2 \excl(A3) ↓K2 follows (i.e., in Sys ↓Kd

only a finite number of steps is possible before an interaction which globally

always requires cooperation with 3 must be performed) showing that (3, 1) ∈

E1
2 . For the construction of the edge (0, 4) we profit from the fact that an

edge (i, j) is defined requiring inevitability of Int ↓Kd
\excl(Ai) ↓Kd

with

respect to j (for a suitable set Kd) rather than mere inevitability of Int ↓Kd

\excl(Ai) ↓Kd
: For K2 = {1, 4} we have excl(A0) ↓K2= {{b1}, {c1}, {e1, e4}}.

In Sys1 ↓K2 there is a cycle which is only labeled with interactions from this

set (namely the loop labeled {c1}). Nonetheless, Int ↓K2 \excl(A0) ↓K2 is

inevitable with respect to 4 because this cycle does not involve 4.

In order to be able to use the graph in practice it is necessary that it

can be constructed efficiently. Considering the definition of the edges it is

clear that the “most efficient” we can get is O(|Tmax|
d) where |Tmax| is the

size of the largest local system because we investigate subsystems of size

d. All the same, it is not even obvious at first glance whether checking

inevitability of Int ↓Kd
\excl(Ai) ↓Kd

with respect to j in a given subsystem

of size O(|Tmax|
d) can indeed be performed within these bounds. It is not

feasible to simply check every existing cycle for the condition stated in the

definition because the number of cycles in a directed graph can be more than

exponentially large in the number of nodes (cf. Tarjan [133], for example).

Nonetheless, a procedure to check the conditions efficiently can be conceived.

It will be given in the proof section to this chapter. Momentarily we only

explain what the procedure does and argue why it can be implemented in

time linear in the product of |TSys↓Kd
| and |Int ↓Kd

\excl(Ai) ↓Kd
|.

The procedure first removes all edges labeled with an interaction in

Int ↓Kd
\excl(Ai) ↓Kd

from TSys↓Kd
. This can be done in the time bounds

4.3.1 A Graph Criterion 141

given above. Then it performs a check for cycles in the remaining graph.

Checking whether a directed graph contains cycles can be done in time lin-

ear in the size of the graph, i.e., in O(|Tmax|
d) in our case. If there are no

cycles then every cycle of the original system contained at least one edge

labeled with an interaction in Int ↓Kd
\excl(Ai) ↓Kd

. Otherwise we have to

make sure that none of the cycles in the remaining system contain an edge

labeled with an interaction involving j. We compute the strongly connected

components (SCCs) of the remaining system. For each of these we check

whether they contain an edge labeled with an interaction involving j. It can

be seen that this is the case for an SCC if and only if in this SCC there is

a cycle containing an edge labeled with an interaction involving j. Again,

the computation of the SCCs of a directed graph can be performed in time

linear in the size of the graph. The same is true for checking whether there

is an edge labeled with an interaction involving j within one of these SCCs.

Thus, the procedure complies with the required time bounds. The following

lemma is the crucial point regarding the applicability of the progress graph.

Lemma 4.3.3. Let Sys be an interaction system and let 1 ≤ d ≤ n. Let

A0 ⊆ A be a set of ports.

The d-th stage progress graph for Sys and A0 can be constructed in time

polynomial in the size of Sys. An upper bound for the cost is given by

O(|Int|2nd+2 + |Int|nd+1|Tmax|
d)

where |Tmax| denotes the size of the largest local transition system.

The lemma only states a rough upper bound for the cost of constructing

the graph. This bound is independent of the underlying implementation

used for interaction systems. Depending on the chosen implementation the

bound can be made more precise. The important point is the fact that the

parameter d is the variable factor where incrementing d increases the degree

of the polynomial bounding the complexity. The statement of Lemma 4.3.2

shows that this increase in complexity pays off because we obtain a more

general graph and therefore also a more general criterion. The size d of the

subsystems to be investigated is indeed the lever which can be used to adjust

the criterion to a given situation.

142 4.3 Testing Progress

Proposition 4.3.1. Let Sys be a deadlock-free interaction system and let

A0 ⊆ A be a subset of ports. Let 1 ≤ d ≤ n and let G1
d be defined as above.

If all nodes in V are reachable from 0 in G1
d then A0 makes progress in

Sys. The condition can be checked in time polynomial in the size of Sys.

The proposition only requires reachability in G1
d starting from 0. This

explains why Definition 4.3.2 excludes edges entering 0. Such edges are

not needed. The proof of the proposition is based on a simple inductive

argument. On every run there is a component j that participates infinitely

often. Since there is a path from 0 to j in G1
d we may repeat the argument

motivating the definition of E1
d for every edge on the path to conclude that

eventually some port in A0 must participate in the run.

Example 4.3.1 continued: The proposition together with G1
2 depicted

in Figure 4.2 (cf. p. 139) shows that A0 makes progress in Sys1. G1
1 is not

sufficient to show that A0 makes progress in Sys1.

Using Lemma 4.3.2 we immediately get the following corollary which

shows that increasing the parameter d yields a more powerful criterion.

Corollary 4.3.1. Let Sys be a deadlock-free interaction system and let A0 ⊆

A be a subset of ports. Let 1 ≤ d′ < d ≤ n and let G1
d′ respectively G1

d be

defined as above.

If all components are reachable from 0 in G1
d′ then they are also reachable

from 0 in G1
d .

Wrapping things up, we conclude by taking a closer look at two points

worth noting. First, we say a few words about the implications arising from

the existence of one or more components i with Ai ⊆ A0. Investigating

progress of a set K ′ ⊆ K constitutes a special case of this situation. Having

motivated that an edge (i, j) has the meaning that j “needs” i, one would

expect that there is an edge (0, j) for any component j with Aj ⊆ A0 because

in this case whenever j participates with port aj in an interaction it is clear

that A0 also participates in that interaction. Therefore j indeed “needs” A0

to proceed. The following lemma formally substantiates this argument.

Lemma 4.3.4. Let Sys be an interaction system and let A0 ⊆ A be a set of

4.3.1 A Graph Criterion 143

ports. Let j be a component with Aj ⊆ A0.

For all d there is an edge (0, j) ∈ E1
d .

Finally, we turn to the role of the node 0. One might argue that at least

for those cases where progress of a set K ′ of components (i.e., A0 = AK ′) is

investigated the additional node 0 which was somehow artificially introduced

into G1
d is not necessary and could be eliminated. In this case a slightly

modified progress graph, that is defined in the same way as in Definition

4.3.2 except that 0 and the corresponding edges are omitted, could be used.

In order to show that K ′ makes progress in Sys the criterion would have to

be reformulated requiring that for every j ∈ K there has to be i ∈ K ′ such

that j is reachable from i in the modified graph. This criterion is sound.

Further, it is clear that whenever the condition based on the modified graph

shows that K ′ makes progress then Proposition 4.3.1 using G1
d does so as

well. This is because G1
d contains all edges that exist in the modified graph.

Additionally, there may be edges from 0 to certain components. Lemma

4.3.4 shows that there is an edge (0, i) for all i ∈ K ′. Then it is clear that all

components are reachable from 0 in G1
d if all components are reachable from

a component i ∈ K ′ in the modified graph. The following example shows

that the criterion which is based on G1
d is in fact more general for a fixed

parameter d.

Example 4.3.2. Consider K2 := {5, 6, 7, 8}. The transition systems of

the components are depicted in Figure 4.3. For i ∈ K2 the port set Ai

is understood to coincide with the set of labels of Ti. We set Int2 :=

{{a5, a7} , {b5, b7} , {e5} , {c6, c7} , {d6, d7} , {f6}, {g7, g8}, {h7, h8}}, and we

call the induced interaction system Sys2.

q0
5

q1
5

a5b5

e5

q0
6

q1
6

c6d6

f6

q0
7

q1
7 q2

7

h7

b7

g7

d7

c7

a7

q0
8

q1
8

g8h8

Figure 4.3: The local behavior of the components in K2

We consider the question whether A0 := A5∪A6 makes progress in Sys2.

144 4.3 Testing Progress

Figure 4.4 depicts G1
1 .

5 6

0

7 8

Figure 4.4: The first stage progress graph of Sys2

For each component i 6= 8 there is an edge (0, i) ∈ E1
1 . Further (7, 8) ∈

E1
1 . Proposition 4.3.1 shows that A0 makes progress in Sys2. Figure 4.4 also

shows that it would not be possible to apply the criterion using the modified

graph without 0 motivated above in order to show that A0 makes progress

because there are no edges from 5 or 6 to 7 and 8 in E1
1 .

This can be explained as follows: The extra node 0 allows to identify

the union of A5 and A6 with the single port set A0. Without doing so, 7

neither needs 5 nor 6 since it may always exclude one of these components

by only interacting with the other. However, 7 cannot proceed without any

of the ports in the combined port set A0 being performed eventually.

4.3.2 Enhancing the Graph

We conclude this section by looking at an extension of the progress graph.

In the previous subsection we interpreted the fact that a component j is

reachable in G1
d from i such that j eventually needs component i in order to

advance. This way it was possible to formulate Proposition 4.3.1 requiring

that all nodes are reachable from 0 in G1
d . If this condition is not satisfied

the information derived can be used to iterate the construction of the edges.

Before formalizing the approach, we demonstrate this iteration by means of

an example. The components in this example do not do very much but they

illustrate the idea we utilize.

Example 4.3.3. Consider K3 = {9, 10, 11}. The transition systems of

the components are depicted in Figure 4.5. For each i the port set Ai

is understood to coincide with the set of labels of Ti. We define Int3 :=

{{a9, a10} , {b10, b11} , {c9, c11}}. The induced interaction system is Sys3.

4.3.2 Enhancing the Graph 145

q0
9

a9

c9

q0
10

q1
10

a10

a10b10

q0
11 b11

c11

Figure 4.5: The local behavior of the components in K3

We consider the question whether A0 := A9 makes progress in Sys3.

The first stage progress graph is depicted in Figure 4.6. We cannot use

9 10 11

0

Figure 4.6: The first stage progress graph for Sys3

Proposition 4.3.1 to infer that A9 makes progress because 11 is not reachable

from 0. However, we know that component 10 can only participate in a finite

number of global steps before 9 has to participate because 10 is reachable

from 9. Thus, if we are able to show that in T11 the set of ports that need

cooperation with 9 or 10 (i.e., A11\excl11(A9 ∪A10)) is inevitable it would

make sense to introduce the edge (9, 11) during the first iteration process

because if 11 repeatedly needs 10 we already know that indirectly it will

also need 9 to participate at some point. We have excl(A9 ∪A10) = ∅. This

implies A11\excl11(A9 ∪ A10) = A11 which is inevitable in T11. Thus, we

add an edge (9, 11) after the first iteration, and 11 is reachable from 0. This

shows that A0 = A9 does make progress in Sys3 after all.

These considerations suggest the following iteration of the construction

of the edges: During the m-th phase of the construction we first compute

for each node i the set of nodes that are reachable from i according to the

edges constructed so far. For the edge (i, j) we then consult to Int ↓Kd

146 4.3 Testing Progress

\excl(Arm−1
d

(i)) ↓Kd
in the check for inevitability with respect to j. Here

Arm−1
d

(i) denotes the union of the port sets of those nodes that are reachable

from i in the progress graph containing the edges constructed during the

first m − 1 phases.

Definition 4.3.3. Let Sys be an interaction system and let A0 ⊆ A be a

set of ports. Let 1 ≤ d ≤ n. The extended d-th stage progress graph

for Sys and A0 is defined as follows:

Gd := (V, Ed)

The set of nodes is V := K ∪ {0}. The set of edges is Ed :=
⋃

m≥1 E
m
d . For

m ≥ 1 the sets Em
d of directed edges are inductively defined by:

Em
d := {(i, j) |j 6= i, 0 and ∃Kd ⊆ K with |Kd| = d and j ∈ Kd such that

Int ↓Kd
\excl(Arm−1

d
(i)) ↓Kd

is inevitable with respect to j

in Sys ↓Kd
}

Here rm−1
d (i) := {k|k is reachable from i in (V,

⋃m−1
l=1 E l

d)} denotes the set

of nodes that are reachable from i in the graph constructed so far.

E1
d also occurs in Definition 4.3.2. Note that r0

d(i) = {i} because for

m = 1 the graph that has been constructed so far does not contain any

edges. Therefore the original definition of E1
d coincides with the one given

above for m = 1. In particular, G1
d is a subgraph of the extended progress

graph. We get statements analogous to the results stated in the previous

subsection.

Lemma 4.3.5. Let Sys be an interaction system and let A0 ⊆ A be a set of

ports.

1. For m ≥ 1 we have

Em
1 :=

{

(i, j) |j 6= i, 0 and Aj\exclj(Arm−1
1 (i)) is inevitable in Tj

}

.

2. Let 1 ≤ d′ < d ≤ n and m ≥ 1 and let i ∈ K ∪ {0} and j ∈ K. If

(i, j) ∈ Em
d′ then we also have (i, j) ∈ Em

d .

4.3.3 Failure of the Criterion 147

For the construction of the first stage of the extended progress graph we

may again resort to the more simple definition of inevitability. The second

part of the lemma states that for a chosen stage d of the extended progress

graph we do not have to consider any stage d′ where d′ < d because Ed′ ⊆ Ed.

The extended progress graph of stage d can be constructed efficiently.

Lemma 4.3.6. Let Sys be an interaction system and let 1 ≤ d ≤ n. Let

A0 ⊆ A be a set of ports.

The extended d-th stage progress graph for Sys and A0 can be constructed

in time polynomial in the size of Sys. An upper bound for the cost of the

construction is given by

O(|Int|2nd+4 + |Int|nd+3|Tmax|
d)

where |Tmax| denotes the size of the largest local transition system.

Proposition 4.3.2. Let Sys be a deadlock-free interaction system and let

A0 ⊆ A be a subset of ports. Let 1 ≤ d ≤ n and let Gd be defined as above.

If all nodes in V are reachable from 0 in Gd then A0 makes progress in

Sys. The condition can be checked in time polynomial in the size of Sys.

Using the second part of Lemma 4.3.5 we get the following corollary

showing that increasing the parameter d yields a more powerful criterion.

Corollary 4.3.2. Let Sys be a deadlock-free interaction system and let A0 ⊆

A be a subset of ports. Let 1 ≤ d′ < d ≤ n and let Gd′ respectively Gd be

defined as above.

If all components are reachable from 0 in Gd′ then they are also reachable

from 0 in Gd.

4.3.3 Failure of the Criterion

We conclude by discussing situations where Proposition 4.3.2 fails to

provide an answer to the question whether A0 makes progress. It is clear

that this case arises since the criteria we presented only constitute sufficient

conditions. We have already mentioned that deciding progress is PSPACE-

complete. Therefore there will always be situations where the conditions

do not hold and we cannot make any statement about progress of the set

148 4.3 Testing Progress

of ports in question. One technique which could be used in a first attempt

to try and prove that A0 makes progress if Proposition 4.3.2 does not yield

this information even though there is reason to believe that A0 does make

progress has already been provided by the previous subsections: We may

increment d in the hope to get a more precise criterion. Of course there are

limitations to this approach. We cannot be sure whether we indeed get more

information by increasing d, and after all there is still the possibility that

the condition is not satisfied simply because A0 does not make progress.

In this case increasing d does not make any difference. The condition of

Proposition 4.3.2 will never be satisfied. If nothing else, this technique is

limited by our ability to handle subsystems of increasing size.

Thus, we are dealing with the question what to do if Proposition 4.3.2

is not helpful in deciding whether A0 makes progress. It would of course be

possible in this case to try to check the conditions in the definition of progress

of A0 directly or to revert to model-checking. Any such approach has to cope

with the problem of the state space explosion, though. Moreover such an

approach does not use the information gathered during the construction of

the graph in any way whatsoever. Thus, it contravenes the paradigm we

stated in Section 1.2.2.

In the following we briefly suggest an approach that may help to answer

the question about progress without investigating the complete system even

if the conditions for the graph criteria presented above do not hold. In

particular, we pay attention to making sure that we use the information

gathered in the construction of the graph. We will combine this information

with the characterization of progress from Section 4.2.

All steps taken in the motivation and construction of the various progress

graphs were aimed at getting a notion of directed edges (i, j) conveying the

meaning that j can only participate infinitely often in a run if i does so

as well. Extending this statement to all runs (i.e., j can only participate

infinitely often in every run if i does so as well), we see that an edge (i, j)

can also be interpreted in such a way that it has the significance that j can

only make progress in Sys if i also makes progress in Sys. When we deal

with a concrete case where progress of a set A0 has to be checked this means

that once we have constructed the progress graph of a certain stage and have

4.3.3 Failure of the Criterion 149

computed the set rd(0) of nodes that are reachable from 0 we might as well

try to decide progress of Ard(0). The statement above shows that this set

can only make progress if A0 itself makes progress. This argument results

in the following lemma.

Lemma 4.3.7. Let Sys be a deadlock-free interaction system and let A0 ⊆ A

be a subset of ports. Let 1 ≤ d ≤ n and let Gd be defined as above.

A0 makes progress in Sys if and only if Ard(0) makes progress in Sys

where we write rd(i) := {j ∈ V|j is reachable from i in Gd}.

Based on these considerations we propose an idea which links the results

in this chapter together. We are not going to formally work out the details.

Instead, our main objective here is to motivate one way in which the results

from the construction and investigation of the graph can be put to further

use. The definitive approach has to be devised for each case individually.

In particular it will in general require careful consideration about what pa-

rameter d is to be chosen in order to try to avoid the case where the graph

criterion fails. Having decided upon a parameter d for a given interaction

system Sys and a subset A0 of ports, we first compute Gd for Sys and A0.

If Proposition 4.3.2 yields progress of A0 we are done. Otherwise we go on

with checking progress of rd(0) directly: We compute Sys
Ard(0)

as defined in

Section 4.2 and check the condition stated in Theorem 4.2.1. The outcome

of this check yields a definitive answer to the question whether Ard(0) makes

progress. Together with the lemma above we therefore have also decided

whether A0 itself makes progress. In particular, if the condition stated in

the theorem is not satisfied we know that A0 does not make progress.

However, this seemingly neat result has to be somewhat put into per-

spective. It is not clear whether it is possible to check the condition in the

allocated time. As mentioned in Section 4.2 checking the conditions of the

characterization cannot be performed efficiently in general. The point that

we want to stress here is that by checking progress of Ard(0) we incorporate

the information obtained from the graph. This may result in an effectively

smaller system to be investigated. Therefore we follow the objective of

the corresponding paradigm stated in Section 1.2.2 instead of starting from

scratch again. Nonetheless, the following lemma in a sense shows that even

150 4.4 Example — The Dining Philosophers

by following this approach and by using the information gathered we have

to expect that — if A0 indeed makes progress in Sys — the remaining effort

to check the conditions in the characterization of progress for Ard(0) is at

least of the complexity that was necessary for constructing the graph.

Lemma 4.3.8. Let Sys be a deadlock-free interaction system and let A0 ⊆ A

be a subset of ports. Let 1 ≤ d ≤ n and let Gd be defined as above. Let

K 6⊆ rd(0).

If Sys
Ard(0)

does not contain any cycles then |K
Ard(0)

| > d.

The lemma shows that for the case where no further investigation is

necessary2 we must analyze a system whose size is greater than the size of

the subsystems that we considered during the construction of Gd.

4.4 Example — The Dining Philosophers

We return to Sysphilm as introduced in Chapter 2 (cf. pp. 22, 26, and

30). We use Proposition 4.3.2 to formally prove that philosopher p0 makes

progress. An algorithm based on the proposition is in development. Here,

we will explain why the results are applicable to Sysphilm. We discuss an

interesting fact regarding the comparison of the progress graph of a certain

stage d and its extension.

First, we point out some details with respect to the construction of the

progress graph for Sysphilm . When we actually depict the progress graph we

carry out the following simplifications that increase readability. We consider

the case m = 3, and we will omit the node 0. Since we are interested in the

case A0 = Ap0 we know that there is an edge (0, p0) in Ed. It will therefore

suffice to show that all components are reachable from p0.

The first stage progress graph for Sysphil3 is depicted in Figure 4.7. It

cannot be used to show that p0 makes progress in Sysphil3. The only compo-

nents that are reachable from p0 are the other two philosophers. The reason

that there is no edge (p0, c) can be explained as follows. The ports enter

and leave of c also occur in interactions involving philosophers other than

2If Sys
Ard(0)

contains cycles we still have to check the condition about reachability

stated in Theorem 4.2.1 for the states occurring on the cycle.

4.4 Example — The Dining Philosophers 151

f0 f1 f2

p0 p1 p2

c

Figure 4.7: G1
1 for Sysphil3

p0. Thus, they are not in Ac\exclc(Ap0). Therefore, this set is empty, and

it cannot be inevitable in Tc. The same way it can be seen that there are

no edges (p0, f0) and (p0, f1) (it is clear that (p0, f2) /∈ E1
1 because these two

components do not interact).

In the second stage of the progress graph for all philosophers pj the

edge (pj, fj) is added. This can be seen by choosing K2 = {fj , pj−1},

i.e., we pair the fork with the other philosopher that uses it. We get

Int ↓K2 \excl(Apj
) ↓K2= {{activatej−1}, {getj}, {putj}}. Every cycle in

Sys ↓K2 involves an edge labeled with one of these interactions. Similarly, it

can be seen that for every pj the edge (pj , fj+1) is added. Thus, increment-

ing the considered stage of the graph by one yields the further information

that besides all philosophers, also all forks are reachable from p0. Having

said that, also for E1
2 (if m > 2) there are no edges of the form (i, c) for any

component i ∈ Kphilm
, though. No matter which subset {j, c} ⊆ Kphilm

con-

sisting of c and some other component j is considered, the set excl(Ai) ↓K2

contains the two interactions {leave} and {enter}. In Sys ↓K2 there are cy-

cles only involving these two labels showing that Int ↓K2 \excl(Ai) ↓K2 is

not inevitable with respect to c in Sys ↓K2 and therefore there cannot be

any edge of the form (i, c).

This problem causing the nonexistence of an edge (i, c) for any i ∈ Kphilm

persists for any stage d of the graph where d < m. This is because for any

such d and any set Kd containing c there will be at least one philosopher pk

with i 6= pk which is not in Kd. This means that again there are interactions

{leave} and {enter} in excl(Ai) ↓K2 and we get the same kind of cycles as

above. Only by choosing d ≥ m, it is possible to obtain edges of the form

152 4.4 Example — The Dining Philosophers

(i, c) ∈ E1
d , in particular the edge (p0, c). For example, for d = m we

choose Km = {c, p1, . . . , pm−1}. It can be seen that for this choice of Km

the set Int ↓Km \excl(Ap0) ↓Km is inevitable with respect to c in Sys ↓Km .

Therefore, the m-th stage progress graph can be consulted in order to show

that philosopher p0 makes progress in Sysphilm because in this case at last

all components are reachable from p0.

Of course, this result is not satisfactory because the computational check

of the argument above would require the analysis of subsystems whose size is

exponential in m, which parametrizes the number of philosophers. Clearly,

any procedure exhibiting a complexity which is exponential in an input

parameter is not practical. This statement directly leads to the extended

progress graph defined in Section 4.3.2. We have seen above that for every

philosopher pj the set r1
1(pj) of components that are reachable from pj in

G1
1 is {p0, . . . , pm−1}. Thus, excl(Ar1

1(pj)) is empty because every interaction

involves at least one philosopher, and for any component k which does not

represent a philosopher an edge (pj, k) is introduced in E2
1 because we have

Ak\exclk(Ar1
1(pj)

) = Ak. Ak is obviously inevitable in Tk. After only one

iteration of the construction of the edges of the extended first stage progress

graph we may conclude that p0 makes progress in Sysphilm .

The extended first stage progress graph is depicted in Figure 4.8. The

edges added after the first iteration are depicted as dashed lines. We only

depicted those new edges starting in p0 that lead to nodes that were not

reachable from p0 in G1
1 . All components are reachable from p0. According

to the remark from the beginning of this section, all components are therefore

also reachable from 0.

We conclude this example by a short remark regarding an issue that has

not been discussed yet, but is brought up by the explanations above. We

have already mentioned that increasing the parameter d yields a more gen-

eral criterion at the cost of an increase in complexity. Using Lemmas 4.3.3

and 4.3.6, to compare the upper bounds for the complexity of constructing

G1
d respectively Gd we see that passing on to the extended progress graph

increases the degree of the polynomial that bounds the complexity of the

construction by 2 without actually considering any subsystem of size greater

than d. One might therefore argue that the additional effort for constructing

4.5 Conclusion and Related Work 153

f0 f1 f2

p0 p1 p2

c

Figure 4.8: G1 for Sysphil3 after one iteration of the construction of the edges

the extended d-th stage progress graph is not justified because it might be

possible to get more precise information from increasing d itself (i.e., one

could hide two components less by considering subsystems of size d + 2) in-

stead of constructing the extended progress graph of stage d. The discussion

of Sysphilm above shows that this statement is not tenable. In order to show

that p0 makes progress using G1
d we had to pick d ≥ m. On the other hand,

already G1 is sufficient to show that the philosopher makes progress.

This example demonstrates that it is not necessarily the best solution

to always increase the stage of the progress graph when progress of a given

set of ports is to be shown. It is not possible to answer in general the

question which stage of the (extended) progress graph is best suited (in

the sense that it conveys the necessary information at the lowest possible

complexity) to test progress in a concrete system. This question has to be

answered depending on the considered example on the one hand but also on

complexity that we are able to handle during the construction of the graph.

4.5 Conclusion and Related Work

4.5.1 Conclusion and Discussion

We investigated progress of a set A0 of ports. We started by giving a

characterization of the sets A0 that make progress in a given interaction

system. Recalling the PSPACE-completeness results of deciding progress, it

is clear that this characterization cannot constitute a condition which is ver-

154 4.5 Conclusion and Related Work

ifiable efficiently, in general. Nonetheless, we explained that it might come

in handy in some situations where checking the conditions of the original

definition would be more complex. Next, we presented a graph criterion

stating a sufficient condition for progress. The quality of the graph proved

to be the fact that it can be constructed automatically and efficiently. We

defined the graph such that it is possible to adjust the exactness of the cri-

terion based on the graph according to a parameter d describing the size

of the subsystems that have to be investigated for the construction of the

graph. By means of an example we motivated a possible extension of the

graph. This extension included information gathered from the graph con-

structed so far into its further construction. We rounded the results off by

suggesting one approach for dealing with situations where the criterion fails

and therefore does not allow any statement about progress. We proposed to

combine the information obtained from the graph with the characterization

of progress. This way it is possible to hope for a definite answer to the ques-

tion whether A0 makes progress. Further, we do not discard the information

we gained from the graph. We applied our results to Sysphilm showing that

every philosopher makes progress. On the basis of this example, we pointed

out that it is not necessarily the best approach to increase the parameter d

in the definition of the progress graph. Using the extended progress graph

of a lower stage may yield the same information as the progress graph for a

large d at a lower cost. However, a general statement about which graph of

which stage is best suited for which problem was not found.

4.5.2 Related Work

There are scores of works that investigate progress(-like properties) or

more generally liveness properties in concurrent systems. Various formalisms

have been used and the issues discussed include adequate temporal logics,

fairness, and a variety of proof techniques for these properties. These in-

clude proof rules which are compositional with respect to parallel compo-

sition [121] and can be extended to form proof lattices for various liveness

properties [113], arguments using Büchi-automata [10], translation of live-

ness checking into safety checking (which has been studied more thoroughly)

4.6 Proofs 155

[34], and the discussion of implementation relations according to certain pre-

orders [65, 66]. Due to the great variety in the formalisms used and in the

approaches taken towards proving liveness properties (and even in the per-

ception of what a liveness property is, as mentioned in Section 2.3) it is

difficult to directly relate our results with respect to progress in interaction

systems to these works. It should be noted, though, that various of the

liveness manifestos issued at the Beyond Safety International Workshop [1]

emphasize that checking liveness in finite systems always involves cycle de-

tection3 in some way. We also encountered this issue in the characterization

of progress (Theorem 4.2.1) as well as in the construction of the progress

graph in Section 4.3. As for the construction of the graph, it is worth noting

that we shifted this cycle detection to subsystems and therefore reduced its

complexity. We mention the closed covers technique presented by Gouda

[75] as one example of an approach that also tries to prove a progress prop-

erty in a system consisting of two communicating finite state machines4 by

formulating conditions that have to hold for cycles in each of the single state

machines instead of checking cycles of the composed system. The hope to

be able to apply such techniques of shifting cycle detection to subsystems to

other formalisms which provide for suitable notions of compositionality and

of subsystem does not seem to be illusory at all. In particular, such ideas

could be used as a preprocessing to model checking, either making model

checking unnecessary or at least rendering it more efficient by combining it

with information derived from Gd.

4.6 Proofs

4.6.1 Proofs for Section 4.2

Theorem 4.2.1. Let Sys be a deadlock-free interaction system and let

A0 ⊆ A be a subset of ports.

3Interestingly, some manifestos claim that liveness is obsolete because in practice one is

only interested in bounded liveness properties which are in fact safety properties. Others

argue against this position. A discussion of these issues is out of the scope of this thesis.
4The technique is generalizable to an arbitrary number of state machines.

156 4.6 Proofs

A0 makes progress in Sys if and only if T
A0

does not contain any cycles

visiting a state q for which there exists q′ ∈
∏

i∈K\K
A0

Qi such that (q, q′) is

in reach(Sys).

Proof. We will show both directions:

⇒: Assume that A0 makes progress in Sys but T
A0

contains a cycle visiting

a state q as above. In detail, let

q
α0→ q1 α1→ . . .

αm→ q

constitute such a cycle in T
A0

where αl ∈ excl
(

A0

)

for all 0 ≤ l ≤

m. Choose q′ ∈
∏

i∈K\K
A0

Qi such that (q̄, q′) is reachable in Sys. No

component in K\K
A0

participates in any αl for 0 ≤ l ≤ m. Therefore

(

q, q′
) α0→

(

q1, q′
) α1→ . . .

αm→
(

q, q′
) α0→

(

q1, q′
) α1→ . . .

yields a run in Sys which starts in a reachable state but is only labeled

with interactions in excl(A0). This shows that A0 does not make

progress in Sys which is a contradiction.

⇐: Assume that in T
A0

there is no cycle as above. We want to show that

A0 makes progress in Sys. Assume that this is not the case. Then

there must be a run

σ = q
α0→ q1 α1→ . . .

in Sys such that q is reachable and no αl involves any port in A0.

This means that every αl is in excl
(

A0

)

. By deleting all local states ql
i

with i ∈ K\K
A0

we get an infinite sequence σ
A0

in T
A0

(in particular,

the labels are in excl(A0)) such that all ql on σ
A0

have the property

described in the theorem. Because T
A0

is finite it is clear that σ
A0

contains a cycle. This is a contradiction.

⊓⊔

4.6.2 Proofs for Section 4.3.2

For better understanding we took the following approach in Section 4.3:

We first introduced the more specific results based on G1
d . Then we used

4.6.2 Proofs for Section 4.3.2 157

G1
d to motivate its extension and to obtain more general statements. As for

the proofs it makes more sense to treat the results from Section 4.3.2 first

because the other results can then be formulated as corollaries.

We need the following lemma for the proof of Lemma 4.3.5. It formalizes

the argument that followed Definition 4.3.2. Roughly speaking, it states that

if α′ ∈ Int ↓K ′ and α ∈ Int are interactions of Sys ↓K ′ respectively of Sys

with α′ ∈ Int ↓K ′ \excl(A0) ↓K ′ and α ↓K ′= α′ then α ∩A0 6= ∅.

Lemma 4.6.1. Let Sys be an interaction system, let Int′ ⊆ Int, and let

K ′ ⊆ K be a subset of components. Further, let A0 ⊆ A be a set of ports.

We have:

Int′ ↓K ′ \excl(A0) ↓K ′=

{α′ ∈ Int′ ↓K ′ |∀α ∈ Int : α ↓K ′= α′ ⇒ α ∩A0 6= ∅}

Proof. By definition excl(A0) =
{

α ∈ Int|α ∩A0 = ∅
}

is the set of interac-

tions that do not involve any port in A0. Projecting this set to K ′, we obtain

excl(A0) ↓K ′ the set of interactions α′ of Sys ↓K ′ such that there is at least

one α ∈ excl(A0) with α ↓K ′= α′. Therefore:

Int′ ↓K ′ \excl(A0) ↓K ′= {α′ ∈ Int′ ↓K ′ |¬(∃α ∈ Int with α ∈ excl(A0)

and α ↓K ′= α′)}

= {α′ ∈ Int′ ↓K ′ |∀α ∈ Int : α ↓K ′ 6= α′

or α /∈ excl(A0)}

= {α′ ∈ Int′ ↓K ′ |∀α ∈ Int : α ↓K ′= α′ ⇒

α ∩A0 6= ∅}

⊓⊔

We move on with the proof of Lemma 4.3.5.

Lemma 4.3.5. Let Sys be an interaction system and let A0 ⊆ A be a set

of ports.

1. For m ≥ 1 we have

Em
1 :=

{

(i, j) |j 6= i, 0 and Aj\exclj(Arm−1
1 (i)) is inevitable in Tj

}

.

158 4.6 Proofs

2. Let 1 ≤ d′ < d ≤ n and m ≥ 1 and let i ∈ K ∪ {0} and j ∈ K. If

(i, j) ∈ Em
d′ then we also have (i, j) ∈ Em

d .

Proof. We treat the statements separately.

1. For any subset Int′ ⊆ Int of interactions we can identify Int′ ↓{j}=

{{aj}|aj ∈ Aj ∧ ∃α ∈ Int′ : aj ∈ α} with Int′j = {aj ∈ Aj|∃α ∈ Int′ :

aj ∈ α}. Further, in TSys↓{j}
there is a transition (qj)

{aj}
→ (qj) if and

only if in Tj there is a transition qj
aj
→ qj.

Consider a cycle in Sys ↓{j}. All labels occurring on this cycle involve

j. Thus, the precondition of the implication in the definition of in-

evitability of Int ↓{j} \excl(Arm−1
1 (i)) ↓{j} with respect to j in Sys ↓{j}

is always satisfied. Therefore Int ↓{j} \excl(Arm−1
1 (i)) ↓{j} is inevitable

with respect to j in Sys ↓{j} if and only if it is inevitable in Sys ↓{j}.

Identifying Int ↓{j} with Aj, excl(Arm−1
1 (i)) ↓{j} with exclj(Arm−1

1 (i)),

and TSys↓{j}
with Tj as above, we conclude that Aj\exclj(Arm−1

1
(i)) is

inevitable in Tj if and only if Int ↓{j} \excl(Arm−1
1 (i)) ↓{j} is inevitable

with respect to j in Sys ↓{j}. The statement of the lemma follows.

2. Fix d′ and d with d′ < d. We use induction over m:

m = 1 : We have m − 1 = 0. Therefore rm−1
d′ (i) = rm−1

d (i) = {i} for

all i ∈ V because no edges have been constructed so far.

Now assume (i, j) ∈ E1
d′ but (i, j) /∈ E1

d . Choose a subset Kd′ of

d′ components with j ∈ Kd′ such that Int ↓Kd′
\excl(Ai) ↓Kd′

is

inevitable with respect to j in Sys ↓Kd′
. On the other hand,

Int ↓Kd
\excl(Ai) ↓Kd

is not inevitable with respect to j in

Sys ↓Kd
for all subsets Kd of d components with j ∈ Kd. Choose

Kd with Kd′ ⊂ Kd. In Sys ↓Kd
there is a cycle σd such that:

(a) j participates in at least one interaction on σd

(b) no interaction on σd is in Int ↓Kd
\excl(Ai) ↓Kd

Projecting σd to Kd′ we write σd′ := σd ↓Kd′
. Since j ∈ Kd′ we

obtain a cycle σd′ in Sys ↓Kd′
that j participates in. Because

Int ↓Kd′
\excl(Ai) ↓Kd′

is inevitable with respect to j in Sys ↓Kd′

there is an interaction αd′ ∈ Int ↓Kd′
\excl(Ai) ↓Kd′

on σd′ . Let αd

4.6.2 Proofs for Section 4.3.2 159

be the interaction on σd with αd ↓Kd′
= αd′ . We have αd /∈ Int ↓Kd

\excl(Ai) ↓Kd
. According to Lemma 4.6.1 there is an interaction

α with α ↓Kd
= αd and α ∩ Ai = ∅. On the other hand, we

also have α ↓Kd′
= αd′ because αd ↓Kd′

= αd′ . Using Lemma 4.6.1

again this shows α∩Ai 6= ∅ because αd′ ∈ Int ↓Kd′
\excl(Ai) ↓Kd′

.

This is a contradiction. We conclude (i, j) ∈ E1
d .

m ⇒ m + 1 : Assume that (i, j) ∈ Em+1
d′ but (i, j) /∈ Em+1

d . We pro-

ceed as above: Choose Kd′ with j ∈ Kd′ such that Int ↓Kd′

\excl(Arm
d′

(i)) ↓Kd′
is inevitable with respect to j in Sys ↓Kd′

and Kd with Kd′ ⊂ Kd. Because (i, j) /∈ Em+1
d we know that

Int ↓Kd
\excl(Arm

d
(i)) ↓Kd

is not inevitable with respect to j

in Sys ↓Kd
. Following the same line of argument as above we

find αd′ ∈ Int ↓Kd′
\excl(Arm

d′
(i)) ↓Kd′

and αd ∈ Int ↓Kd
such

that αd ↓Kd′
= αd′ and αd /∈ Int ↓Kd

\excl(Arm
d

(i)) ↓Kd
. Ac-

cording to Lemma 4.6.1 there is α ∈ Int with α ↓Kd
= αd and

α∩Arm
d

(i) = ∅. From the induction hypothesis we know E l
d′ ⊆ E l

d

for all 1 ≤ l ≤ m. This implies rm
d′ (i) ⊆ rm

d (i) and therefore also

Arm
d′

(i) ⊆ Arm
d

(i). Together with α∩Arm
d

(i) = ∅ we get α∩Arm
d′

(i) =

∅. As above, we also have α ↓Kd′
= αd′ . Lemma 4.6.1 together

with αd′ ∈ Int ↓Kd′
\excl(Arm

d′
(i)) ↓Kd′

implies α ∩ Arm
d′

(i) 6= ∅.

This is a contradiction. We conclude (i, j) ∈ Em+1
d .

⊓⊔

The proof of Lemma 4.3.6 needs some preliminaries. For the construction of

Ed we resort to Algorithm 1 below that has already been discussed in Section

4.3.1. It can be used to check whether a set of interactions is inevitable with

respect to a component in a given interaction system. We formulate a more

general algorithm that decides inevitability of L′ with respect to L′′ in a

finite labeled transition system T with label set L.

Lemma 4.6.2. Algorithm 1 is correct. It can be realized such that it termi-

nates in time linear in the product of the size of T and the size of L.

Proof. For denotational purposes we introduce TL\L′
to identify the transi-

tion system obtained by removing all edges whose labels are in L′ from T .

160 4.6 Proofs

Algorithm 1 INEVITABILITY(T,L′,L′′)

Input: a finite labeled transition system T = (Q,L,→) and L′,L′′ ⊆ L

Output: true if L′ is inevitable with respect to L′′ in T , false otherwise

1: remove all edges whose label is in L′ from T

2: if T does not contain any cycles then

3: return true

4: else

5: compute the strongly connected components of T

6: if no strongly connected component contains an edge whose label is

in L′′ then

7: return true

8: return false

This means that after line 1 the algorithm operates on TL\L′
. We first show

that the algorithm is correct.

Assume that the algorithm returns true. There are two cases:

1. It returns true in line 3. Then TL\L′
does not contain any cycles.

Thus, every cycle in T contained at least one of the edges that were

removed. All labels of these edges are in L′ and therefore L′ is in-

evitable with respect to L′′ in T (in fact L′ is even inevitable in T).

2. It returns true in line 7. It is easy to see that in TL\L′
a strongly

connected component containing an edge whose label is in L′′ exists if

and only if a cycle containing such an edge exists in TL\L′
. The algo-

rithm only reaches line 7 if TL\L′
still contains cycles but no strongly

connected components that contain an edge whose label is in L′′. The

statement above shows that in this case none of the cycles in TL\L′

contain an edge whose label is in L′′. Therefore all the cycles in T that

correspond to a cycle in TL\L′
satisfy the condition in the definition of

inevitability with respect to L′′ because they do not contain any label

in L′′. All other cycles of T have been eliminated by removing an edge

whose label is in L′. As above we see that these cycles also satisfy the

condition for inevitability of L′ with respect to L′′.

Thus, L′ is inevitable with respect to L′′ in T if the algorithm returns true.

4.6.2 Proofs for Section 4.3.2 161

Now assume that L′ is inevitable with respect to L′′ in T . Again there

are two cases:

1. All cycles in T contain at least one edge whose label is in L′. Since all

these edges are removed in the first line of the algorithm there cannot

be any cycles left in TL\L′
. The algorithm returns true in line 3.

2. All cycles in T that do not contain an edge whose label is in L′ do

not involve an edge whose label is in L′′. Then all cycles that are

left in TL\L′
do not involve an edge whose label is in L′′. The fact

stated above shows that in this case there also is no strongly connected

component containing an edge whose label is in L′′. The algorithm

returns true in line 7.

The algorithm returns true if L′ is inevitable with respect to L′′ in T .

Correctness of Algorithm 1 follows.

It is clear that the algorithm terminates. Removing all edges whose label

is in L′ in the first line can be done in O(|T | |L′|) = O(|T ||L|). Deciding the

existence of a cycle in a directed graph can be done in time linear in sum of

the number of nodes and edges using a depth-first-search that keeps track

of backward edges, for example. Thus, the cost of the if -block in the second

line is in O(|TL\L′
|) = O(|T |). The same time bounds can be realized for

the computation of the strongly connected components of a directed graph

using Tarjan’s algorithm [132], for example. Finally, checking whether there

is a strongly connected component containing an edge whose label is in L′′

can be realized in time O(|TL\L′
||L′′|) = O(|T ||L|). Altogether we see that

the algorithm can be realized in O(|T | |L|). ⊓⊔

Lemma 4.3.6. Let Sys be an interaction system and let 1 ≤ d ≤ n. Let

A0 ⊆ A be a set of ports.

The extended d-th stage progress graph for Sys and A0 can be constructed

in time polynomial in the size of Sys. An upper bound for the cost of the

construction is given by

O(|Int|2nd+4 + |Int|nd+3|Tmax|
d)

where |Tmax| denotes the size of the largest local transition system.

162 4.6 Proofs

Proof. We do not make any assumptions about the underlying implementa-

tion of interaction systems. Depending on the implementation the following

computations may be performed more efficiently than the upper bounds that

we derive. Since we are only interested in such an upper bound (and in the

fact that it is polynomial in the size of Sys) this suffices for our purposes.

We first consider the complexity of constructing Em
d for m ≥ 1 fixed.

We have to find rm−1
d (i) for every node i ∈ V, i.e., for every i we have to

perform a reachability analysis in the progress graph constructed so far. A

reachability analysis in a directed graph G = (V,E) can be performed in

O(|E| + |V |). |E| is in O(n2). Therefore the computation of rm−1
d (i) for

every i can be done in O(n3).

Having found rm−1
d (i), next for all i we compute excl(Arm−1

d
(i)) once and

store it for later reference. For i fixed we have to check for every interaction

α ∈ Int whether α ∩ Arm−1
d

(i) = ∅. Fix α. Since α contains at most n

ports this can be realized in O(n|Arm−1
d

(i)|) = O(n|A|). Thus, the cost for

the computation of excl(Arm−1
d

(i)) is bounded by O(|Int|n|A|). We have

these costs for every i ∈ V and therefore altogether this step causes cost

O(n2|Int||A|).

Now fix i ∈ V and j ∈ V\{i, 0} and consider the cost for checking whether

(i, j) ∈ Em
d . We have to check whether there is a subset Kd of d compo-

nents with j ∈ Kd such that Int ↓Kd
\excl(Arm−1

d
(i)) ↓Kd

is inevitable with

respect to j in Sys ↓Kd
. There are (n−1

d−1) possible choices for Kd. Fix such

a set Kd. We first have to compute Int ↓Kd
\excl(Arm−1

d
(i)) ↓Kd

. Projecting

an interaction α to Kd can be done in O(n) because α contains at most

n elements. Computing Int ↓Kd
, we get this cost for every interaction α.

We further have to check for every α whether α ↓Kd
is already contained in

the set of interactions projected so far. The size of this set is bounded by

|Int|. Thus, Int ↓Kd
can be computed in time O(|Int|n|Int|) = O(n|Int|2).

The same argument and the fact that |excl(Arm−1
d

(i))| = O(|Int|) show that

excl(Arm−1
d

(i)) ↓Kd
can also be found in time O(n|Int|2). The complexity

of computing the complement of Int ↓Kd
with respect to excl(Arm−1

d
(i)) ↓Kd

is bounded by O(|Int ↓Kd
||excl(Arm−1

d
(i)) ↓Kd

|) = O(|Int|2). Therefore

Int ↓Kd
\excl(Arm−1

d
(i)) ↓Kd

can be found in time O(n|Int|2). Finally,

Lemma 4.6.2 shows that inevitability of Int ↓Kd
\excl(Arm−1

d
(i)) ↓Kd

with

4.6.2 Proofs for Section 4.3.2 163

respect to j in Sys ↓Kd
can be decided in time O(|TSys↓Kd

||Int ↓Kd
|) =

O(|Tmax|
d|Int|). Altogether checking whether (i, j) ∈ Em

d can be done in

time O((n−1
d−1)(n|Int|2 + |Tmax|

d|Int|)) = O(nd|Int|2 + |Int|nd−1|Tmax|
d).

We have to perform the check above for at most n edges of the form

(0, j) where j ∈ K and for at most n(n − 1) edges of the form (i, j) where

i, j ∈ K but i 6= j. This means that we get the cost derived above at most

n2 times. Combining all the results above, we see that Em
d can be found in:

O(n3 + n2|Int||A| + nd+2|Int|2 + |Int|nd+1|Tmax|
d)

The first term, i.e., n3, is accounted for by nd+2|Int|2 because d ≥ 1. Thus,

we may simplify the bound to:

O(n2|Int||A| + nd+2|Int|2 + |Int|nd+1|Tmax|
d)

Next we consider |A|. A is given by the union of all Ai. Therefore we can

write |A| = O(n|Amax|) where Amax denotes the largest port set. Further,

because every interaction contains at most one port of every component we

have |Amax| = O(|Int|). Combining these bounds, we see |A| = O(n|Int|)

and therefore n2|Int||A| = O(n3|Int|2). Using d ≥ 1 again, we conclude that

n2|Int||A| is also accounted for by nd+2|Int|2. We finally get the bound

O(nd+2|Int|2 + |Int|nd+1|Tmax|
d)

for the construction of Em
d .

The construction of the edges has to be iterated at most n2 times be-

cause there can be at most n2 edges in Ed. Thus, the total cost for com-

puting Ed is bounded O(n2(nd+2|Int|2 + |Int|nd+1|Tmax|
d)) = O(|Int|2nd+4 +

|Int|nd+3|Tmax|
d). ⊓⊔

Proposition 4.3.2. Let Sys be a deadlock-free interaction system and let

A0 ⊆ A be a subset of ports. Let 1 ≤ d ≤ n and let Gd be defined as above.

If all nodes in V are reachable from 0 in Gd then A0 makes progress in

Sys. The condition can be checked in time polynomial in the size of Sys.

Proof. We need some preliminaries first. Consider an arbitrary run σ. We

prove the following two facts by a nested induction over m ∈ N:

164 4.6 Proofs

1. (i, j) ∈ Em
d implies that i participates infinitely often in σ if j does so.

2. If j is reachable from i in (V,
⋃m

l=1 E
l
d) then i participates infinitely

often in σ if j does so.

m = 1 : We will show that both statements hold for m = 1.

1. Let (i, j) ∈ E1
d and assume that j participates infinitely often in

σ. From the definition of E1
d we know that there exists a set Kd

of d components with j ∈ Kd such that Int ↓Kd
\excl

(

Ai

)

↓Kd

is inevitable with respect to j in Sys ↓Kd
. Because j participates

infinitely often in σ the projection σ ↓Kd
of σ to Kd results in a

run in Sys ↓Kd
which j participates an infinite number of times in.

There must be a cycle π in TSys↓Kd
that contains an edge labeled

with an interaction involving j such that this cycle appears in-

finitely often as a sub-path of σ ↓Kd
. Since Int ↓Kd

\excl
(

Ai

)

↓Kd

is inevitable with respect to j in Sys ↓Kd
there must be at least

one interaction αd ∈ Int ↓Kd
\excl

(

Ai

)

↓Kd
on π. This interac-

tion occurs infinitely often on σ ↓Kd
and therefore on σ an infinite

number of interactions α occur with α ↓Kd
= αd. Lemma 4.6.1

shows that for all these interactions α we have α∩Ai 6= ∅, proving

the first statement for m = 1.

2. Let j be reachable from i in (V, E1
d) and assume that j participates

infinitely often in σ. We will prove the second statement for

m = 1 by induction over the length s of a shortest path from i to

j in (V, E1
d). If s = 1 then the path is simply an edge (i, j) ∈ E1

d .

The statement then follows from the first statement for m = 1.

Now assume that the shortest path from i to j in (V, E1
d) has

length s+1 and consider such a path: i → . . . → k → j. Using the

first statement, from (k, j) ∈ E1
d we conclude that k participates

infinitely often in σ. It is clear that i → . . . → k is a shortest

path from i to k in (V, E1
d). It has length s. Since k participates

infinitely often in σ the induction hypothesis about the length of

the shortest path shows that i participates infinitely often in σ.

m ⇒ m + 1 : Assume that both statements hold for m.

4.6.2 Proofs for Section 4.3.2 165

1. Let (i, j) ∈ Em+1
d and assume that j participates infinitely often

in σ. The same argument (with Arm
d

(i) replacing Ai) that was

used in the proof of the first statement for m = 1 is used now to

show that on σ there must be an infinite number of interactions

α with α∩Arm
d

(i) 6= ∅. Therefore there must be a node k ∈ rm
d (i)

(i.e., k is reachable from i in (V,
⋃m

l=1 E
l
d)) such that on σ there

are infinitely many interactions α with α∩Ak 6= ∅. The induction

hypothesis applied to the second statement above shows that i

must participate infinitely often in σ.

2. Let j be reachable from i in (V,
⋃m+1

l=1 E l
d) and assume that j

participates infinitely often in σ. As above we will prove the

second statement by induction over the length s of a shortest

path from i to j in (V,
⋃m+1

l=1 E l
d). If s = 1 then the path is

simply an edge (i, j) ∈
⋃m+1

l=1 E l
d. The statement then follows

from the first part if (i, j) ∈ Em+1
d respectively from the induction

hypothesis for the first part if (i, j) ∈
⋃m

l=1 E
l
d. Now assume that

the shortest path from i to j in (V,
⋃m+1

l=1 E l
d) has length s + 1

and consider such a path: i → . . . → k → j. As above from

(k, j) ∈
⋃m+1

l=1 E l
d we conclude that k participates infinitely often

in σ. Then i → . . . → k is a shortest path from i to k and

it has length s. Since k participates infinitely often in σ the

induction hypothesis about the length of a shortest path shows

that i participates infinitely often in σ.

Now let j be reachable from i in Gd and assume that j participates infinitely

often in σ. Consider a path connecting i to j in Gd. There exists m0 ∈ N such

that all edges along the path are in
⋃m0

l=1 E
l
d. Therefore j is reachable from i

in (V,
⋃m0

l=1 E
l
d). The second statement above implies that i also participates

infinitely often in σ. The proof of the theorem is straightforward now.

Indeed, let σ be a run in Sys. There is a component j that participates

infinitely often in σ. This component is reachable from 0 and thus 0 also

participates in σ (i.e., there is an interaction α on σ such that A0 ∩ α 6= ∅).

The condition can be checked in time polynomial: Gd can be constructed

in time polynomial according to Lemma 4.3.6. The check of the condition

166 4.6 Proofs

requires a reachability analysis in Gd which can be performed in O(n2). ⊓⊔

4.6.3 Proofs for Section 4.3.1

The proofs for Section 4.3.1 are easy applications of the results above.

Lemma 4.3.1. Let Sys be an interaction system and let A0 ⊆ A be a set

of ports.

Setting exclj(Ai) :=
{

aj|∃α ∈ excl(Ai) : aj ∈ α
}

, we have

E1
1 :=

{

(i, j) |j 6= i, 0 and Aj\exclj(Ai) is inevitable in Tj

}

.

Proof. This directly follows from the first part of Lemma 4.3.5 with m = 1

(note that in this case we have rm−1
1 (i) = r0

1(i) = {i}). ⊓⊔

Lemma 4.3.2. Let Sys be an interaction system and let A0 ⊆ A be a subset

of ports. Let 1 ≤ d′ < d ≤ n and let i ∈ K ∪ {0} and j ∈ K.

If (i, j) ∈ E1
d′ then we also have (i, j) ∈ E1

d .

Proof. This follows from the second part of Lemma 4.3.5 with m = 1. ⊓⊔

Lemma 4.3.3. Let Sys be an interaction system and let 1 ≤ d ≤ n. Let

A0 ⊆ A be a set of ports.

The d-th stage progress graph for Sys and A0 can be constructed in time

polynomial in the size of Sys. An upper bound for the cost is given by

O(|Int|2nd+2 + |Int|nd+1|Tmax|
d)

where |Tmax| denotes the size of the largest local transition system.

Proof. The proof of Lemma 4.3.6 stated that Em
d can be found in time

O(|Int|2nd+2 + |Int|nd+1|Tmax|
d) for any m. Setting m = 1, we see that

the construction of E1
d can be performed in the time bound above. ⊓⊔

Proposition 4.3.1. Let Sys be a deadlock-free interaction system and let

A0 ⊆ A be a subset of ports. Let 1 ≤ d ≤ n and let G1
d be defined as above.

4.6.4 Proofs for Section 4.3.3 167

If all nodes in V are reachable from 0 in G1
d then A0 makes progress in

Sys. The condition can be checked in time polynomial in the size of Sys.

Proof. G1
d is a subgraph of Gd. Thus, if all nodes are reachable from 0 in G1

d

they are also reachable from 0 in Gd. The statement of the proposition then

follows from Proposition 4.3.2.

The fact that the condition can be checked in time polynomial is shown

analogously to the corresponding argument in the proof of Proposition 4.3.2

this time using Lemma 4.3.3. ⊓⊔

Lemma 4.3.4. Let Sys be an interaction system and let A0 ⊆ A be a set

of ports. Let j be a component with Aj ⊆ A0.

For all d there is an edge (0, j) ∈ E1
d .

Proof. Fix d and consider an arbitrary subset Kd such that |Kd| = d and

j ∈ Kd. Let αd ∈ Int ↓Kd
be an interaction with j(αd) 6= ∅. Every α ∈ Int

with α ↓Kd
= αd also involves j, and therefore we have α /∈ excl(A0). Thus,

αd /∈ excl(A0) ↓Kd
but αd ∈ Int ↓Kd

\excl(A0) ↓Kd
.

Now consider a cycle σd in TSys↓Kd
. If there is a transition labeled with

an interaction in Int ↓Kd
\excl(A0) ↓Kd

on σd then the postcondition of

the implication in the definition of inevitability with respect to j is satisfied

for σd. If this is not the case then the above shows that in particular no

interaction involving j occurs as a label on σd. Therefore in this case the

precondition of the implication is satisfied for σd. This shows that all cycles

in TSys↓Kd
satisfy the condition for inevitability of Int ↓Kd

\excl(A0) ↓Kd

with respect to j. Thus, (0, j) ∈ G1
d . ⊓⊔

4.6.4 Proofs for Section 4.3.3

Lemma 4.3.7. Let Sys be a deadlock-free interaction system and let A0 ⊆ A

be a subset of ports. Let 1 ≤ d ≤ n and let Gd be defined as above.

A0 makes progress in Sys if and only if Ard(0) makes progress in Sys

where we write rd(i) := {j ∈ V|j is reachable from i in Gd}.

Proof. IfA0 makes progress thenArd(0) makes progress becauseA0 ⊆ Ard(0).

168 4.6 Proofs

Assume that Ard(0) makes progress, and consider a run σ of Sys. Since

Ard(0) participates in σ we can write σ = σ′σ′′ such that σ′ is a path in Sys

that Ard(0) participates in, and σ′′ is again a run. Repeating this argument

for σ′′ we see that Ard(0) participates infinitely often in σ. There must be

a component i ∈ rd(0) that participates infinitely often in σ. The same

argument that was used in the proof of Proposition 4.3.2 shows that A0

participates in σ. Since σ was chosen arbitrarily we see that A0 makes

progress in Sys. ⊓⊔

Lemma 4.3.8. Let Sys be a deadlock-free interaction system and let A0 ⊆ A

be a subset of ports. Let 1 ≤ d ≤ n and let Gd be defined as above. Let

K 6⊆ rd(0).

If Sys
Ard(0)

does not contain any cycles then |K
Ard(0)

| > d.

Proof. We make a general observations first. We have rd(0) ∩ K
Ard(0)

= ∅:

Let i ∈ rd(0) be a component and let α ∈ Int be an interaction with i(α) 6= ∅.

Then α /∈ excl(Ard(0)), and therefore i /∈ K
Ard(0)

=
⋃

α∈excl(Ard(0))
comp(α).

Now we assume that |K
Ard(0)

| = d′ ≤ d, and we show that this leads to a

contradiction. We write Kd′ := K
Ard(0)

, and we choose an arbitrary subset

Kd′′ with Kd′ ∩ Kd′′ = ∅ and |Kd′′ | = d − d′. We write Kd := Kd′ ∪ Kd′′ .

Thus, |Kd| = d.

Choose an arbitrary j ∈ Kd′ . From the above we know that j /∈ rd(0). In

particular, there is no edge (0, j) ∈ Ed, and this means that there is no l such

that Int ↓Kd
\excl(Arl−1

d
(0)) ↓Kd

is inevitable with respect to j in Sys ↓Kd
.

Because there exists an index m0 with Ed =
⋃m0

l=1 E
l
d this also implies that

Int ↓Kd
\excl(Ard(0)) ↓Kd

is not inevitable with respect to j in Sys ↓Kd
.

Therefore in TSys↓Kd
there is a cycle

(qKd′
, qKd′′

)
α0,d
→ (q1

Kd′
, q1

Kd′′
)

α1,d
→ . . .

αr,d
→ (qKd′

, qKd′′
)

such that for all 0 ≤ s ≤ r we have αs,d ∈ excl(Ard(0)) ↓Kd
but at least one

αs,d involves j. Thus, for all s there is an interaction αs ∈ excl(Ard(0)) with

αs ↓Kd
= αs,d. Because αs ∈ excl(Ard(0)) we have comp(αs) ⊆ K

Ard(0)
=

Kd′ , and together with Kd′ ⊆ Kd this implies αs ↓Kd
= αs. We conclude

αs,d = αs. Because Kd′ ∩Kd′′ = ∅ we also get comp(αs) ∩ Kd′′ = ∅. We can

4.6.4 Proofs for Section 4.3.3 169

therefore write the cycle as

(qKd′
, qKd′′

)
α0→ (q1

Kd′
, qKd′′

)
α1→ . . .

αr→ (qKd′
, qKd′′

)

where all αs are in excl(Ard(0)). Canceling qKd′′
from the cycle we obtain

qKd′

α0→ q1
Kd′

α1→ . . .
αr→ qKd′

which is a cycle in Sys
Ard(0)

. This is a contradiction. ⊓⊔

Chapter 5

Robustness of Properties

of Interaction Systems

5.1 Motivation

In the long run, the goal for a component model has to be applicability

to real life systems. Of course, it is desirable to have theoretical results

building the foundation of such a formalism, in particular results which en-

sure important properties of a system. The previous chapters presented

various results of this kind. Despite their importance for a thorough in-

vestigation of systems and with regard to applicability of a formalism such

results also have a drawback: Modeling a real life situation by means of

a formalism usually requires abstraction from a lot of details and assumes

a setting which is sometimes not so realistic after all. Of course, such ab-

straction is unavoidable because modeling a given situation in every detail

is not possible, not to mention testing or deciding properties of a setting

which takes into account every detail. The results that can be deduced from

a theoretical setting are an important factor in the design of the system.

Nonetheless, it is also an interesting question how the occurrence of events

that are not expected during the regular operation of a system can be in-

corporated into the formalism without having to specify every such event

explicitly. In particular, it is desirable or — depending on the application

area — even imperative that a system exhibits some kind of fault tolerance

with respect to failure of one or more of its components. Indeed, Cleave-

171

172 5.2 Defining Robustness of a Property

land and Smolka [53] state fault tolerance of concurrent systems as one item

of a list of nonfunctional properties that are of particular importance with

regard to design and applicability of concurrent systems.

We investigate how a system’s behavior is influenced by the breakdown

of some of its components or more generally of some of its ports. The fact

that a system maintains some kind of basic functionality upon failure of

ports can be interpreted such that the system respectively its properties

are robust. The investigation of this particular unexpected event, i.e., a

partial or complete failure of certain components, deserves special attention

because the assumption that parts of a system may break down during the

execution is very natural. Depending on what kind of real life system is

considered, it may be essential that some basic functionality is maintained

because the consequences of a complete failure may be catastrophic. Having

said that, we still have to specify what it means for a system to “maintain

some basic functionality”. In this chapter, we consider the question how

properties of an interaction system are influenced by a failure of a set of

ports during runtime. Therefore in the following, we will speak (in a sense

still to be defined) about robustness of a property of an interaction system

rather than robustness of the system itself.

5.2 Defining Robustness of a Property

We formally define what effect failure of a set of ports during the execu-

tion of a system has on the system’s properties. We will denote the set of

ports that may fail by A ′ (A.

We want to motivate why the definition of robustness of a property has

to be approached with care. First of all, we have to decide what effect

the failure of a port should have. We take up the position that failure of

a port results in a situation were the corresponding local transitions are

not enabled any more. This simply means that failure of a port always

entails failure of all interactions involving this port. One could choose a

different interpretation where from the outside it is not possible to notice

that certain ports fail. This could be modeled such that an interaction α

involving a defective port ai would still be enabled in a state q enabling

5.2 Defining Robustness of a Property 173

all ports in α. Then α would result in a state change where component

i (and possibly some other components that also participate in α with a

defective port) remains in its local state. This approach would result in a

much more complicated setting because it implies that new combinations of

states would be reachable that are not accounted for in the specification of

the system. We cannot expect such a system to behave in an orderly fashion

without including particular treatment of these cases in the specification of

the system. Instead, we choose the approach above. Considering robustness

of deadlock-freedom, for example, we ask whether every reachable state still

offers at least one interaction if the ports in A ′ fail. But even in this case

the definition is not as straightforward as one might think at first glance.

Defining robustness of deadlock-freedom with respect to absence of A ′,

one might be tempted to consider the “interaction system” obtained by

deleting those local transitions from the local behaviors that are labeled with

a port ai ∈ A ′ and by deleting those interactions from Int that contain at

least one such port. Then one might argue that deadlock-freedom is robust

with respect to absence of A ′ if the resulting system is deadlock-free. This

approach is problematic in various aspects. First, it is not formally correct.

In general, we do not obtain an interaction system by simply removing tran-

sitions from the local transition systems and by deleting interactions. This

may result in a system for which the local transition systems are terminat-

ing or for which there exist ports that are not contained in any interaction.

These are technical details, and the definition of interaction systems could

be adapted to a new situation allowing for such subtleties. Nonetheless, the

main reason persists why this definition does not convey the meaning of

robustness that we intend: By removing transitions and interactions before

investigating the resulting system, we obtain a system whose set of reachable

states may be a proper subset of the set of reachable states of the original

system. Thus, even if we are able to show that every reachable state of the

modified system enables an interaction not involving A ′ we cannot be sure

that in the original system deadlock-freedom is robust with respect to failure

of A ′. There may be a deadlock in a state q of Sys that is caused by failure

of A ′ but cannot be detected by looking at the modified system simply be-

cause q is not reachable in that system. We need a definition which models

174 5.2 Defining Robustness of a Property

the fact that the ports in A ′ may fail at any point during the execution of

the system and which makes sure that even in case of such a failure in every

reachable state still at least one interaction α with α ∩A ′ = ∅ is enabled.

Definition 5.2.1. Let Sys be a deadlock-free interaction system and let

A ′ (A be a nonempty subset of ports. Deadlock-freedom is robust with

respect to absence or failure of A ′ in Sys if for every q ∈ reach(Sys)

there exists α ∈ excl
(

A ′
)

that is enabled in q.

We require Sys to be deadlock-free. This is necessary because a state

which does not enable any interaction will certainly not satisfy the condition

in the definition. Before turning to the effect that a failure of A ′ has on

progress we want to point out an interesting relation between progress of A ′

in Sys and robustness of deadlock-freedom with respect to absence of A ′. If

Sys is deadlock-free and A ′ makes progress in Sys then deadlock-freedom is

not robust with respect to absence of A ′. If this was the case it would be

possible to construct a run not letting any port in A ′ participate, and this

is not possible. The converse does not hold.

Having defined what it means for deadlock-freedom to be robust with

respect to absence of A ′, we investigate the effect that a failure of these

ports has on the question whether a different set A0 of ports makes progress

in Sys. We first have to adapt the notion of a run.

Definition 5.2.2. Let Sys be a deadlock-free interaction system andA ′ (A

be a subset of ports. A run without A ′ is an infinite sequence σ = q
α0→

q1 α1→ q2 α2→ . . . in TSys with q ∈ reach(Sys) and αl ∈ excl(A ′) for all l ∈ N.

We define what it means for a subset A0 to make progress without A ′.

Definition 5.2.3. Let Sys be a deadlock-free interaction system and let

A ′,A0 (A be disjoint subsets of ports. Let deadlock-freedom in Sys be

robust with respect to absence of A ′. A0 makes progress without (par-

ticipation of) A ′ if for every run σ = q
α0→ q1 α1→ . . . without A ′ there is an

index l with αl ∩A0 6= ∅.

Recalling the definition of robustness of deadlock-freedom, we see that

the definition of progress without A ′ is slightly different. We do not require

5.2 Defining Robustness of a Property 175

A0 to make progress in Sys. Further, we do not speak of robustness of

progress but of progress without A ′. The reason can easily be explained. If

A0 makes progress in Sys then A0 participates in every run of Sys. This is

true in particular for the runs without A ′. Therefore, we would not obtain

an interesting property if we defined robustness of progress analogously to

the way we defined robustness of deadlock-freedom. This property would

directly follow from the fact that A0 makes progress and from robustness

of deadlock-freedom. On the other hand, it is interesting to investigate

whether A0 makes progress without A ′ because it is possible that certain

runs in which A0 does not participate are no longer present when the ports in

A ′ are not available any more. We require Sys to be a deadlock-free system

where deadlock-freedom is robust with respect to absence of A ′. This is

necessary to exclude the case that A0 makes progress in a system that does

not have any run without A ′1.

Before considering the question how to investigate the effect that a failure

of A ′ has on a property, we need a few more definitions which adjust existing

notions to the new situation.

Definition 5.2.4. Let Sys be an interaction system and let A ′ (A be

a nonempty subset of ports. Let i ∈ K and qi ∈ Qi. By IntA ′(qi) :=
{

α ∈ Int(qi)|i(α) 6⊆ A ′
}

we denote the set of those interactions containing

a port in en(qi)\A
′. We say that qi is complete with respect to A ′

if there exists an interaction α = {ai} ∈ IntA ′(qi). The set of potential

communication partners of component i in qi after failure of A ′ is defined

by needA ′(qi) :=
⋃

α∈IntA′ (qi)
comp(α)\{i}.

IntA ′(qi) describes the interactions that i still wants to perform in qi if

the ports in A ′ are not available any more. There can be an interaction

α ∈ IntA ′(qi) with α ∩ A ′ 6= ∅. In a global state q the system will not be

able to perform such an interaction α if A ′ fails but from the point of view

of i it does not make any difference whether this is the case because there

is a component j ∈ comp(α)\{i} with j(α) ⊆ A ′ or with j(α) 6⊆ en(qj).

1This requirement is analogous to the requirement that Sys should be deadlock-free

made in Definition 2.2.2.

176 5.3 Testing Robustness of Properties

5.3 Testing Robustness of Properties

Having formally defined robustness of deadlock-freedom with respect to

absence of A ′ and progress without A ′, we turn to the investigation of these

properties. In particular, we are interested in the question how they can be

tested efficiently. The need for such tests is supported by the fact that the

complexity results for deciding the various properties carry over to deciding

the corresponding property under absence ofA ′. These results have not been

published, yet, but a reduction from deciding deadlock-freedom to deciding

robustness of deadlock-freedom, for example, can easily be accomplished as

follows: For every component i we extend Ai by a new port ai and for all

qi we add a loop labeled ai. Adding the new interaction {a1, . . . , an} to Int,

we obtain a deadlock-free system for which deadlock-freedom is robust with

respect to failure of A ′ := {a1, . . . , an} if and only if the original system was

deadlock-free.

Robustness of a property is closely related to the property itself. There-

fore an approach suggests itself which adapts existing conditions and ideas

to the new situation. This way we hope to be able to profit from previ-

ous results. We follow this line of reasoning in the following subsections.

We explain in detail how the sufficient conditions presented in Chapters 3

and 4 for deadlock-freedom of a tree-like interaction system respectively for

progress can be adapted to treat these properties in case of failure of A ′.

5.3.1 Robustness of Deadlock-Freedom for Tree-Like Systems

The adaptation of the ideas presented in Chapter 3 is particularly con-

venient because the conditions for deadlock-freedom of tree-like interaction

systems were formulated making sure that the different issues concerning

deadlock-freedom, i.e., reachability of q and the fact that no interaction is

enabled in q, were strictly separated. Thus, we may approach the question

where to adapt the conditions formulated for each specific issue without

having to tamper with the notions and conditions referring to the other.

In particular, the strength of the approach chosen towards reachability in

Section 3.2 becomes apparent. There, we did not really elaborate on how

to suitably choose the parametrization of EA . We only stated a simple

5.3.1 Robustness of Deadlock-Freedom for Tree-Like Systems 177

lemma (Lemma 3.2.3) indicating one possibility to draw conclusions about

the reachability of a global state by choosing the parameters adequately.

Now we recognize how the sets of components used to parametrized BWS

and EA can be chosen to find out whether a certain combination of states

is reachable: In Section 3.4.1 we defined the problematic actions of a com-

ponent i with respect to a local state qi using the notion of entry actions

parametrized with need(qi). The reason for this choice of parameter was the

fact that — at least in the view of qi — the components in need(qi) had to

be paired with i in order to find the sets of problematic states. This idea

carries over to the current situation. Similarly, to the argument in Section

3.4.1 we want to identify those local states which may cause a deadlock un-

der failure of A ′ when reached in combination with qi. Only this time we

consider the components in needA ′(qi). In order to exclude the possibility

that critical combinations of such states are globally reachable we compute

the sets of entry actions where the parametrization has been adapted to the

situation, i.e., we use needA ′(qi) to parametrize BWS and EA .

In Chapter 3 the motivation behind the definition of problematic states

of j with respect to qi and α ∈ Int(qi) was to pinpoint those local states of

j that might cause the system to deadlock if reached in combination with qi

(and possibly some other states). In Remark 3.4.1 (cf. pp. 55ff.) we infor-

mally derived this notion from considering a deadlock in a tree-like system.

We saw that qj did not necessarily have to be problematic with respect to

qi and α even if j(α) 6⊆ en(qj). We only identified those qj as problematic

where j(α) 6⊆ en(qj) and need(qj)∩ comp(α) 6= ∅. Considering robustness of

deadlock-freedom with respect to failure of A ′, we check the analogous con-

dition needA ′(qj)∩ comp(α) 6= ∅ in order to identify those states of j which

are problematic with respect to qi and α ∈ IntA ′(qi) because also in this

case cyclic waiting between the components may ultimately cause a dead-

lock. Only this time the sequences constituting the cycle of waiting relations

we derived in Remark 3.4.1 must further satisfy the condition is (αs) 6⊆ A ′.

Otherwise is would not be ready to perform αs anyway. This becomes man-

ifest in the fact that in the condition mentioned above we replace need(qi)

and Int(qi) by needA ′(qi) respectively IntA ′(qi). Note that α ∈ IntA ′(qi)

not only can be blocked by j ∈ comp(α) because j(α) 6⊆ en(qj) but also

178 5.3 Testing Robustness of Properties

because j(α) ⊆ A ′. Thus, in order to find out whether qj is problematic

with respect to qi and α we have to check both conditions. It is easy to see

that this is equivalent to checking the more concise condition α /∈ IntA ′(qj).

The condition about the availability of interactions of size one or two also

has to be adapted to the situation: Instead of checking completeness of a

local state we check for completeness with respect to A ′. For the same rea-

son we check whether an interaction α ∈ excl(A ′) (instead of α ∈ Int) with

comp(α) = {i, j} is enabled in (qi, qj). This amounts to checking whether

there is α ∈ IntA ′(qi) ∩ IntA ′(qj) with comp(α) = {i, j}. The requirement

about reachability of (qi, qj) does not have to be changed.

Definition 5.3.1. Let Sys be a tree-like interaction system and let A ′ (A

be a nonempty subset of ports. For i ∈ K, qi ∈ Qi incomplete with respect to

A ′, α ∈ IntA ′ (qi), and j ∈ comp (α) \ {i} we inductively define a descending

sequence of subsets of Qj by:

PS0
j,A ′ (qi, α) := {qj | • qj incomplete with respect to A ′

• needA ′ (qj) ∩ comp (α) 6= ∅

• (qi, qj) is reachable in Sys ↓{i,j}

• α /∈ IntA ′ (qj)

• ∄α̃ ∈ IntA ′(qi) ∩ IntA ′(qj) with |α̃| = 2}

PSl+1
j,A ′ (qi, α) := {qj |qj ∈ PSl

j,A ′ (qi, α) and ∀β ∈ IntA ′(qj)∃k ∈

comp(β)\ {j} with PSl
k,A ′ (qj, β) 6= ∅}

The set of states of j that are problematic with respect to qi, α, and

A ′ is given by:

PSj,A ′ (qi, α) :=
⋂

l∈N

PSl
j,A ′ (qi, α)

The condition in the inductive definition of the further sets of problem-

atic states has also been adapted correspondingly by requiring the condition

only for β ∈ IntA ′(qi). For better readability we will simply speak of prob-

lematic states if there is no danger of confusion. In particular, in this chap-

ter we will not explicitly mention A ′ because we only consider robustness

of deadlock-freedom rather than deadlock-freedom itself and therefore it is

clear that we always speak about problematic states with respect to A ′.

5.3.1 Robustness of Deadlock-Freedom for Tree-Like Systems 179

Using the adapted notion of problematic states and keeping in mind the

introductory remark to this section about the choice of the parameters for

the entry actions, it is now straightforward to define a notion of problematic

actions for the current setting.

Definition 5.3.2. Let Sys be a tree-like interaction system with strongly

exclusive communication and let A ′ (A be a nonempty subset of ports.

Let i ∈ K, qi ∈ Qi incomplete with respect to A ′, α ∈ IntA ′ (qi), and

j ∈ comp (α) \ {i}. We define

PA
(

qi, α, j,A ′
)

:=

EA

(

qi,needA ′ (qi) ,PSj,A ′ (qi, α) , needA ′(PSj,A ′ (qi, α))
)

the set of problematic actions of i with respect to qi, α, j, and A ′.

For Q′
j ⊆ Qj we write: needA ′(Q′

j) := {needA ′(qj)}qj∈Q′
j
.

The definitions above only treat the case where α ∈ IntA ′(qi), i.e., we

explicitly exclude situations where for qi and α ∈ Int(qi) we have i(α) ⊆

A ′. At the moment we can ignore such interactions because for now we

only consider deadlocks resulting from a cycle of waiting relations between

components. As mentioned above a component i can only participate in such

a cycle with interaction α if it is ready to perform α. In case of failure of A ′

this is not the case if i(α) ⊆ A ′. On the other hand, the failure of A ′ may

also cause deadlocks which are not generated by cyclic waiting. It is possible

that no interaction α with α∩A ′ = ∅ is enabled in q any more simply because

all interactions that were enabled in q involved at least one port in A ′. This

is only one possibility to get a deadlock which is not caused by cyclic waiting

between the components. An alternative variant for such a deadlock in q

would only require the existence of a single component j with IntA ′(qj) = ∅.

In this situation it might be possible that all other components (directly or

indirectly) need j in order to proceed such that no α ∈ excl(A ′) would be

enabled. However, there would be no cycle of waiting relations and qj would

not be problematic with respect to any local state of any other component

precisely because needA ′(qj) = ∅ follows from IntA ′(qj) = ∅. Therefore the

condition in Definition 5.3.1 referring to needA ′(qj) would never be satisfied.

We conclude that the notion of problematic states is not suitable to deal with

180 5.3 Testing Robustness of Properties

local states qj where IntA ′(qj) = ∅. According to our assumption en(qj) 6= ∅

for all local states qj, this is equivalent to en(qj) ⊆ A ′. We have to deal with

such states directly by a priori excluding the possibility of their occurrence.

This leads to the changes that have to be carried out with regard to

the first condition of Proposition 3.4.1. First of all, we have to change

the condition about completeness of a local state qi to completeness with

respect to A ′. The second part is only concerned with reachability of qi from

q0
i . We simply adapt the parametrization of BWS by replacing need(qi)

by needA ′(qi). We get the condition q0
i /∈ BWS(qi,needA ′(qi)). The last

condition is adapted such that it makes sure that there is at least one α ∈

IntA ′(qi) that cannot be blocked if qi does not satisfy the first two conditions:

∃α ∈ IntA ′(qi)∀j ∈ comp(α)\{i} :

q0
j /∈ BWS

(

PSj,A ′ (qi, α) , needA ′(PSj,A ′ (qi, α))
)

The combination of the three conditions mentioned above makes sure that

there cannot be a local state qi with en(qi) ⊆ A ′, without requiring this fact

directly: If there was such a qi it would definitely be incomplete with respect

to A ′. Further, en(qi) ⊆ A ′ implies IntA ′(qi) = ∅ and therefore needA ′(qj) =

∅. Since qi is reachable from q0
i in Ti we get q0

i ∈ BWS(qi,needA ′(qi)).

Finally, IntA ′(qi) = ∅ also shows that the third condition stated above is not

satisfied for qi. Thus, a state qi with en(qi) ⊆ A ′ violates the first condition

of the proposition stated below. Therefore this situation is taken care of in

the criterion. Gathering the details we obtain the following result adjusting

Proposition 3.4.1 to the situation where A ′ may fail.

Proposition 5.3.1. Let Sys be a deadlock-free tree-like interaction system

with strongly exclusive communication. Let A ′ (A be a nonempty subset

of ports.

If the following two conditions hold then deadlock-freedom is robust with

respect to failure of A ′ in Sys.

1. ∀i∀qi : qi complete with respect to A ′ ∨ q0
i /∈ BWS(qi,needA ′(qi))∨

∃α ∈ IntA ′ (qi) such that ∀j ∈ comp (α) \ {i} :

q0
j /∈ BWS

(

PSj,A ′ (qi, α) , needA ′(PSj,A ′ (qi, α))
)

5.3.1 Robustness of Deadlock-Freedom for Tree-Like Systems 181

2. ∀α̃ ∈ Int with |comp(α̃)| ≥ 2 ∃i ∈ comp (α̃) such that for all qi ∈ Qi

that are incomplete with respect to A ′:

i (α̃) 6⊆
⋂

α∈IntA′ (qi)

⋃

j∈comp(α)

PA
(

qi, α, j,A ′
)

The conditions can be checked in time polynomial in the size of Sys.

In order to get a better understanding of the implications caused by the

changes in the notions and the criterion we consider the application of the

results to Systrack and Sysbank introduced in Chapter 3. We point out some

peculiarities that have to be taken into account when considering robustness

of deadlock-freedom and applying the criterion.

Example 5.3.1. Consider Systrack as defined in Section 3.6.3 (cf. pp. 80ff.).

The remark made before Proposition 5.3.1 shows that the first condition

and consequently the whole criterion is not satisfied if we consider failure

of A ′ such that there is i ∈ Systrack and qi ∈ Qi with en(qi) ⊆ A ′. In

particular, this holds for any choice of A ′ where A ′ = en(qi). Setting

A ′ = {tob
1} = en(right1), for example, we obtain such a situation. The

criterion is not satisfied. Of course initially this does not mean anything for

the existence of a deadlock in Systrack if tob
1 fails. It can be seen, though,

that such a failure means that the first track is not able to allow a train

waiting in the track to move on to the bifurcation any more (i.e., t1 cannot

leave the state right1 because the only port that was enabled has failed). In

this situation the system can reach a state q with qb = 1
0 crit

and qt2 = left2.

Such a state does not enable any α ∈ excl({tob
1}), and there is a deadlock.

For this deadlock there does not exist a cycle of waiting relations between

the components. Instead, a situation arises where t1 does not wait for any

component because IntA ′(right1) = ∅ and therefore also needA ′(right1) = ∅.

All other components directly (st1 and b) or indirectly (t2 and st2) wait for

t1. In fact, there will always be reachable deadlocks in Systrack if a set of

ports A ′ = en(qi) for some qi fails. In general, A ′ = en(qi) for some qi and

the consequential violation of the first condition do not necessarily mean

that deadlock-freedom is not robust. If we consider robustness of deadlock-

freedom of Sysbank (cf. pp. 71ff.) with respect to A ′ = {requestb1} for an

182 5.3 Testing Robustness of Properties

instance of the system with at least two banks, for example, cc still operates

correctly with all other banks. Deadlock-freedom is robust after all. The

criterion cannot recognize this situation because it might be the case that all

other components wait for b1 but no cycle of waiting relations arises. This

is indeed the case if b1 is the only bank of the system.

Returning to Systrack, we consider failure of A ′ = {fromst
1 }. The only

interaction involving this port is α1
1 =

{

tot
1, from

st
1 , entert1

}

. We obtain

IntA ′(free1) = {α4
1} and needA ′(free1) = {b}. All ports of t1 are used for

communication with b. Thus, BWS(free1,needA ′(free1)) = {free1}. No other

local state is influenced by the failure of A ′. Therefore, the results obtained

for BWS in Section 3.6.3 still hold. Computing the sets PSj,A ′(qi, α), it can

be seen that for all combinations of qi, α ∈ IntA ′(qi), and j ∈ comp(α)\{i}

that have to be investigated we have PSj,A ′(qi, α) = PSj(qi, α). Compared

to the computation of PSj(qi, α), in this case the computation of the sets of

problematic states requires one more iteration, though, before they become

stationary and the computation can be stopped. We do not have to compute

PSj,A ′(free1, α
1
1) for any j ∈ {st1, t1}. In fact, this expression is not even

defined because α1
1 /∈ IntA ′(free1). Since all sets of problematic states with

respect to A ′ coincide with the corresponding regular sets of problematic

states we also get PA(qi, α, j,A ′) = PA(qi, α, j) for all combinations of local

states, interactions, and components. The only choice of qi for which we may

possibly have

⋂

α∈IntA′ (qi)

⋃

j∈comp(α)

PA
(

qi, α, j,A ′
)

6=
⋂

α∈Int(qi)

⋃

j∈comp(α)

PA (qi, α, j)

is qi = free1 because it is the only state with IntA ′(qi) 6= Int(qi). The sets of

problematic actions with respect to failure of A ′ coincide with the regular

sets of problematic actions in all cases. In particular, PA
(

free1, α
4
1, b

)

=

PA
(

free1, α
4
1, b,A

′
)

. Checking the details, we get PA
(

free1, α
4
1, b

)

= ∅.

Thus, both intersections above are empty and therefore coincide after all.

Combining these arguments, we see that the second condition of Proposition

5.3.1 holds. The first condition only has to be checked for the local initial

states of the components. It can be seen that it is also satisfied. Therefore, in

Systrack deadlock-freedom is robust with respect to failure of A ′ = {fromst
1 }.

5.3.1 Robustness of Deadlock-Freedom for Tree-Like Systems 183

At this point it is advisable to step back and to classify this result by

looking at the bigger picture. We have shown that in Systrack deadlock-

freedom is robust with respect to failure of {fromst
1 }. However, it is also clear

that the functionality of the railway segment has been significantly impaired.

Failure of {fromst
1 } results in a track that can henceforth only be traveled

by trains coming from st2, i.e., the segment has become a one-way track.

Using this observation, we want to motivate that robustness of deadlock-

freedom should be handled with care. We only guarantee that the system

will not deadlock. We do not make any statement about the remaining

functionality of the system. It is not surprising that the functionality of a

system is influenced by the failure of some of its ports. Using our results,

we can check whether this malfunction also involves deadlocks or whether

the system may at least still proceed without the defective ports.

We conclude these arguments by pointing out a detail that should always

be taken into account when applying the criterion. Since Proposition 5.3.1

requires Sys to have strongly exclusive communication we have to clarify how

failure of a subset A ′ of ports in Sys is adequately represented by failure of

a subset of ports in Sys. A port ai in Sys is modeled by a subset {aα
i |α ∈

Int with ai ∈ α} of ports in Sys. Therefore, failure of ai has to be modeled

by failure of all the ports representing ai in Sys. It is intuitively clear that

this approach is reasonable, and one might ask why further consideration

should be put into the use of Sys when we consider robustness of deadlock-

freedom. The point is that we are only allowed to pass on to Sys after we

have decided on A ′. The problem that may arise otherwise can be motivated

by means of Sysbank. Considering Sysbank one might be tempted to expect

that deadlock-freedom is robust with respect to failure of {request1bi
} if the

bank bi has several ATMs. In this case the bank would not allow its first

ATM to request money any more but because there is at least one more

ATM the bank can still cooperate with the other ATMs and the system is

deadlock-free. It might therefore come as a surprise that the conditions of

Proposition 5.3.1 are not satisfied for Sysbank andA ′ = {request1bi
}. For j 6= 1

the interaction {requestjbi
, requestij} does not satisfy the second condition

of the proposition. We encounter the following problem: Even though it

is a meaningful question to ask whether deadlock-freedom is robust with

184 5.3 Testing Robustness of Properties

respect to failure of {request1bi
} in Sysbank this question is posed disregarding

the fact that request1bi
was introduced as only one port in a set of ports

representing the port requestbi
in Sysbank. From this point of view it does not

make sense to consider failure of only one of these ports in Sysbank because

it is not clear how this failure should be interpreted by the failure of a

corresponding port in Sysbank. We conclude that Sys may still be resorted

to when we consider robustness of deadlock-freedom for a system without

strongly exclusive communication. However, we have to choose the set A ′

before the transition to Sys and we have to model failure of A ′ in Sys by

failure of A ′ := {aα
i |ai ∈ A ′ ∧ α ∈ Int ∧ ai ∈ α}.

5.3.2 Progress without Participation of a Set of Ports

We turn to progress without A ′. The ideas developed in Chapter 4 in

order to establish progress can also be used to treat progress without A ′.

However, we will not follow the same approach that was taken in Chapter 4

where we first presented the progress graph of stage d in order to highlight

the ideas used and to motivate the construction of the extended progress

graph based on these ideas. Instead, we directly adapt the extended progress

graph and state the most general result. The results also hold for an adapted

progress graph where the construction of the edges is not iterated.

Again, we follow the guideline that the criterion should only be adjusted

to the new situation as opposed to devising a completely new condition.

Thus, our goal is a progress graph where an edge (i, j) conveys the meaning

that for any run without A ′ component j can only participate a finite number

of times before an interaction involving a port in Ai has to be performed.

The idea originally used for the construction of Ed required inevitability of

the set of interactions that globally “need” Ai with respect to j in at least

one subsystem of size d, i.e., every cycle in the subsystem had to contain at

least one of these interactions if j also participated in the cycle. It is easy

to adjust this condition: We maintain the condition about inevitability but

we only require it for those cycles in the subsystem that could possibly have

resulted from a run without A ′. In the following we formalize these ideas.

First, we need some preliminaries.

5.3.2 Progress without Participation of a Set of Ports 185

Definition 5.3.3. Let T = (Q,L,→) be a finite labeled transition system

where Q is the set of states, L is the set of labels, and →⊆ Q × L × Q

is the labeled transition relation. Let L′ ⊆ L be a subset of labels. We

define the behavior of T restricted to L′ by the labeled transition system

TL′
:= (Q,L′,→) where →⊆ Q×L′×Q is the labeled transition relation of

T restricted to those transitions whose label is in L′.

The behavior of T restricted to L′ is obtained by deleting all transitions

whose label is not in L′. If T has a designated starting state q0 there may

be nodes that are not reachable from q0 in TL′
.

Definition 5.3.4. Let Sys be an interaction system and let A0,A
′ (A be

disjoint subsets of ports. Let 1 ≤ d ≤ n be given. The extended d-th

stage progress graph for Sys and A0 with respect to failure of A ′

is defined as follows:

Gd,A ′ := (V, Ed,A ′)

The set of nodes is V := {i|i ∈ K∧Ai 6⊆ A ′}∪{0}. The set of directed edges

is Ed,A ′ :=
⋃

m≥1 E
m
d,A ′ . For m ≥ 1 the sets Em

d,A ′ are inductively defined by:

Em
d,A ′ := {(i, j) |j 6= i, 0 and ∃Kd ⊆ K with |Kd| = d and j ∈ Kd such that

excl(A ′) ↓Kd
\excl(Arm−1

d,A′ (i)) ↓Kd
is inevitable with respect

to excl(A ′, j) ↓Kd
in T

excl(A ′)↓Kd

Sys↓Kd

}

We write excl(A ′, j) := excl
(

A ′
)

(j) for the set of interactions α ∈ excl(A ′)

with j(α) 6= ∅ and rm
d,A ′(i) := {k|k is reachable from i in (V,

⋃m
l=1 E

l
d,A ′)}.

We get statements analogous to the results stated in Chapter 4.

Lemma 5.3.1. Let Sys be an interaction system and let A0,A
′ (A be

disjoint subsets of ports.

1. For m ≥ 1 we have

Em
1,A ′ = {(i, j) |j 6= i, 0 and exclj(A

′)\exclj(Arm−1
1,A′ (i))

is inevitable in T
exclj(A

′)
j }.

186 5.3 Testing Robustness of Properties

2. Let 1 ≤ d′ < d ≤ n and m ≥ 1 be given and let i ∈ V and j ∈ V\{i, 0}.

If there is an edge (i, j) ∈ Em
d′,A ′ , then we also have (i, j) ∈ Em

d,A ′ .

For the construction of the first stage of the extended progress graph with

respect to failure of A ′ we may again resort to the more simple definition of

inevitability. The second part of the lemma states that for a chosen stage d

of the extended progress graph with respect to failure of A ′ we do not have

to consider any stage d′ where d′ < d because Ed′,A ′ ⊆ Ed,A ′ .

We adapt Lemma 4.3.6 and Proposition 4.3.2 to the new situation.

Lemma 5.3.2. Let Sys be an interaction system, and let 1 ≤ d ≤ n be

given. Let A0,A
′ (A be disjoint subsets of ports.

Gd,A ′ can be constructed in time polynomial in the size of Sys. An upper

bound for the cost is given by

O(|Int|2nd+4 + |Int|nd+3|Tmax|
d)

where |Tmax| denotes the size of the largest local transition system.

Proposition 5.3.2. Let Sys be a deadlock-free interaction system and let

A0,A
′ (A be disjoint subsets of ports. Let deadlock-freedom be robust with

respect to failure of A ′ in Sys. Let 1 ≤ d ≤ n be given and let Gd,A ′ be

defined as above.

If all nodes in V are reachable from 0 in Gd,A then A0 makes progress

without A ′ in Sys. The condition can be checked in time polynomial in the

size of Sys.

We end this section by discussing an example. It is merely a toy example

which could easily be verified by hand. We mainly want to illustrate the

construction of the graph and the criterion.

Example 5.3.2. Example: We model a small server/user system consist-

ing of a user u who may choose between three different services. The first

one is offered by server s1, the second one is offered by server s2, and the

third service requires both servers simultaneously. The system also includes

two maintenance components m1 and m2 whose job it is to check the servers

after they have provided service to u.

5.3.2 Progress without Participation of a Set of Ports 187

We define Ks/u := {u, s1, s2,m1,m2}. The transition systems of the

components are depicted in Figure 5.1. For each i the port set Ai is un-

derstood to coincide with the set of labels of Ti. We define Ints/u to be

the set of interactions containing {internal}, {req1,2, service1, service2}, and

{reqi, servicei} respectively {mainti,m
i
j} for any choice of i, j ∈ {1, 2}. We

call the induced interaction system Syss/u.

u0

u1u2

u3

req1

internal

req2

internal

req1,2 internal

s0
1

s1
1

service1

maint1

s0
2

s1
2

maint2

service2

q0
1m1

1 m2
1 q0

2m1
2 m2

2

Figure 5.1: The local behavior of the components in Ks/u

Syss/u is deadlock-free, and deadlock-freedom is robust with respect to

failure of Am2. We consider the question whether A0 := Am1 makes progress

without A ′ := Am2 in Syss/u, and we retrace the construction of G1,Am2
.

Figure 5.2 depicts part of the graph. The edges in E1
1,A ′ are represented as

solid lines. We are not able to conclude that Am1 makes progress without

Am2 because u is not reachable from 0. The dashed edge from 0 to u is

added during the first iteration step of the construction of the edges. It is

not in E1
1,A ′ because exclu(A ′)\exclu(A0) = ∅. When we consider E2

1,A ′ we

can take into account the fact that at this point all other components are

reachable from 0. The set exclu(A ′)\exclu(Ar1
1,A′ (0)

) = {req1, req2, req1,2} is

inevitable in Tu, and therefore (0, u) ∈ E2
1,A ′ . Progress of m1 without m2

follows from Proposition 5.3.2.

u s1 s2 m1

0

Figure 5.2: (Part of) G1,Am2
for Syss/u

188 5.4 Conclusion and Related Work

This property can be understood such that each service component still

undergoes maintenance regularly even if the second maintenance component

fails. The example could be extended to allow for arbitrarily many users such

that an analogous statement about progress of Am1 without Am2 holds.

5.4 Conclusion and Related Work

5.4.1 Conclusion and Discussion

We investigated the effect that failure of a set of ports has on the prop-

erties of a system. We defined robustness of deadlock-freedom with respect

to failure of A ′ and progress of A0 without A ′. Since the presence of a

property under the assumption that the ports in A ′ fail is closely related

to the presence of the property itself in the original system, we chose the

approach to consider the criteria introduced before and to adapt the ideas

to a situation where A ′ fails. We carried out the details of this approach

for deadlock-freedom of tree-like interaction systems and for progress of A0

without A ′. By means of the examples presented in Chapter 3 we pointed

out some details that have to be taken into account when dealing with ro-

bustness of deadlock-freedom. Furthermore, we presented a small example

illustrating the criterion for progress without A ′.

We would like to draw attention to one issue that has been omitted so

far. We considered existing criteria and adapted the underlying ideas to a

situation where A ′ fails. This is reasonable because of the similarities of

the definition of a property compared to the definition of the corresponding

property under the assumption that the ports in A ′ fail. However, so far we

have not incorporated any previous knowledge we might have into our cri-

teria. Recall that we had to require the original system to be deadlock-free

in order to be even able to define robustness of deadlock-freedom. Thus, at

least as far as robustness of deadlock-freedom is concerned we indeed have

previous knowledge that could be incorporated into the investigation. We

know that Sys is deadlock-free. We have not used this knowledge in our

approach. We informally explain one idea indicating how this could be real-

ized: The notion of problematic states is fundamental to our considerations

5.4.1 Conclusion and Discussion 189

regarding deadlock-freedom of tree-like interaction systems. A deadlock in

q always entails the existence of a cycle of waiting relations as mentioned

in Remark 3.4.1. The converse is not true in general. There may be cycles

of waiting relations among components in q without q being a deadlock.

In Chapter 3 we were not able to distinguish the fact that two local states

where problematic with respect to each other because of such an “unprob-

lematic” cycle from the fact that this was because of a cycle which is really

involved in a global deadlock in q. Therefore, we had to assume the worst

case meaning that any problematic state had to be taken into account. We

had to accept the possibility that some of these states might never cause

deadlocks. The situation is different now. Roughly speaking, we know that

the problematic states that result from a cycle of waiting conditions in q

such that no component i on this cycle is influenced by the failure of A ′

(i.e., IntA ′(qi) = Int(qi) for all these components) are not problematic after

all. For example, consider a case where A ′ only consists of one port ak.

There could be a set K ′ of components and local states qi for i ∈ K ′ that on

the one hand are completely independent of any state qk that is influenced

by the failure of ak, i.e., these local states never need cooperation with qk,

but where the corresponding sets of problematic states among the compo-

nents in K ′ are of such nature that the conditions of Proposition 5.3.1 are

violated. Since we know that the original system is deadlock-free, we know

that this violation of the conditions cannot be the cause of a deadlock after

failure of A ′. This does not necessarily mean that in a global state consisting

of a combination of these problematic states an interaction only involving

components in K ′ is enabled. Indeed, such a state could be a global dead-

lock precisely because ak failed. What we do know is the fact that for K ′

these local states must already have been problematic with respect to each

other before failure of ak because IntA ′(qi) = Int(qi). Since we know that

Sys is deadlock-free, we know that for every reachable global state whose

entries for K ′ coincide with a combination of these problematic states at

least one interaction α was enabled. Either we have ak /∈ α for at least one

such α showing that α is enabled in q even if ak is not available any more.

On the other hand, if all interactions α that were enabled in q involve ak we

have seen that one of the conditions in Proposition 5.3.1 must be violated.

190 5.4 Conclusion and Related Work

The important point is that this violation will manifest itself in components

that are not in K ′ because of the assumption that the components in K ′

are independent of any local state qk that enables ak. We conclude that in

this case we may ignore any violation of Proposition 5.3.1 which is caused

by components that are not influenced by a failure of the ports in A ′.

Having discussed this idea, we also have to acknowledge that even though

it is promising with regard to improving the preciseness of the criterion it is

not as simple and practical as it might seem at first glance. Even though one

might have an intuitive idea of what it means for i respectively qi not to be

influenced by the failure of A ′ it proves to be more complicated to formally

grasp this notion. First, it is not obvious how to define it because a local

state qi might be influenced by the failure of aj not allowing j to proceed

any more, not only because qi directly waits for j but also because it waits

for j because of a chain of waiting relations. Second, this argument already

hints at a problem that arises from the fact that we only want to consider

subsystems consisting of pairs of interacting components. It is not clear

how to find those states in practice that are directly or indirectly influenced

by the failure of A ′, while still only considering subsystems of size two. A

thorough treatment of this idea and similar enhancements would go beyond

the scope of this chapter. We omit it with the conclusion that such detailed

refinements are possible once the criterion has reached a stage where it is

implemented and used in practice.

We conclude the discussion of the results by a short remark about those

cases where the criteria presented above fail to show that the property in

question is present if the ports in A ′ are defective. These cases will arise

because of the complexity results motivated in the beginning of Section 5.3.

It is clear that the criteria have the same weaknesses as the counterparts

they have been derived from. Note that ideas as the one sketched above may

help to circumvent some of these shortcomings because in case of failure of

the criterion we may still be able to derive information about the property

from previous knowledge about the system. This is a significant difference

compared to the treatment of the corresponding properties in the original

system where we do not have such previous knowledge. On the other hand,

the criteria of course also have the same strengths as the corresponding

5.4.2 Robustness of Other Properties 191

criteria they are derived from. Again a failure of Proposition 5.3.1 can be

interpreted as an indication where to perform direct checks in the same way

that was motivated in the discussion to Chapter 3. Similarly, ways out can

be found if Proposition 5.3.2 fails to show that A0 makes progress without

A ′. If the assumption that A0 indeed makes progress without A ′ seems

likely but the condition in Proposition 5.3.2 is not satisfied it is possible

to increment the parameter d used in the construction of Gd,A ′ in order to

increase the precision of the criterion. Alternatively, the information derived

from Gd,A ′ could be combined with other conditions conceived for progress

without A ′ in a similar manner to the suggestions given in Section 4.3.3

with regard to joining Theorem 4.2.1 and Proposition 4.3.1.

5.4.2 Robustness of Other Properties

Other properties can be considered with respect to failure of A ′, as well.

It is possible to define robustness of freedom of local deadlocks analogously

to Definition 5.2.1. The result concerning freedom of local deadlocks of

tree-like interaction systems presented in Section 3.5.2 can be adapted to

account for this property in the same way that we deduced Proposition

5.3.1 from Proposition 3.4.1. Furthermore, it is possible to carry out the

same simplifications in the notions and criteria that were obtained from

considering strongly tree-like systems in Sections 3.4.2 respectively 3.5.1.

We further refer to Majster-Cederbaum and Martens [98]. Section 5.3.2

extends some of the results presented there. The paper also includes further

results about robustness of deadlock-freedom. In addition, an approach to

treat liveness2 without A ′ and ideas on how to adjust the results of Majster-

Cederbaum et al. [102] in order to be able to treat robustness of freedom of

local deadlocks are sketched.

5.4.3 Related Work

Having been an active field of research for a long time (cf. Lee and

Anderson [95] or Jalote [86], for example), there are vast numbers of works

2We have not considered liveness in this thesis.

192 5.4 Conclusion and Related Work

that investigate dependability in distributed systems in all kinds of contexts.

Being a rather general term3 it comprises such concepts as reliability and

availability [95], for example. Reliability is concerned with investigating how

probable it is that a system does not conform to its specification because of

faults in the design or in one of the parts of the system. The above descrip-

tion, though not being formally precise, clearly implies that such approaches

must involve concepts taken from probability theory in order to describe the

probability that a system behaves correctly with regard to its specification.

Thus, such approaches cannot really be compared to the approach taken

in this chapter. We mention that there are various works considering reli-

ability of component systems in the sense above. Based on Markov Chain

theory, Cheung [47] or Reussner et al. [124], for example, offer frameworks

which can be used to estimate reliability of component systems. We refer to

Dimov and Punnekkat [61] for a review of further existing approaches and

directions of current research in reliability of component systems.

The results presented in this chapter can rather be interpreted in the

context of availability or more precisely fault tolerance whose maximization

is striven for in order to make sure that for “most of the time” a system

is delivering its service respectively at least a limited form of it. There

are various definitions of fault tolerance. For example, Arora and Kulkarni

[17] define three types of fault tolerance which differ in the kind of proper-

ties they preserve (i.e., only safety properties or only liveness properties or

both). The authors introduce so called detectors and correctors and show

that each of these components of a program is necessary and sufficient for

that program to exhibit a certain type of fault tolerance. On the other hand,

there are definitions that characterize fault tolerance in four phases: error

detection, damage confinement/assessment, error recovery, and fault treat-

ment/continued system service [86, 95]. The realization of these phases is

tackled differently in various approaches, but the listing above shows that

such approaches at best aim at fully restoring a faulty system. There are

approaches to incorporate fault tolerance in this sense into component based

systems (cf. Troubitsyna [135] or recently Hamid et al. [76, 77]), but it is

3Lee and Anderson [95] define dependability as that property of a (computing) system

which allows reliance to be justifiably placed on the service it delivers.

5.4.3 Related Work 193

also clear that our notion of robustness of a property is different.

In our perspective robustness can be seen as one type of graceful degra-

dation or survivability. In many cases it is not possible to afford the cost

of implementing the phases above. Graceful degradation offers a compro-

mise which allows for a weaker degree of fault tolerance. In this context,

Herlihy and Wing [81] use relaxation lattices to specify different constraints

describing the different requirements put upon the system behavior in the

presence of anomalies in the environment the system is deployed in. Under

the expected circumstances the system has to conform to all constraints but

they can be weakened (or “gracefully relaxed”) to describe what deviation

from the specification is acceptable if unexpected faults occur. Survivability

constitutes a variant of graceful degradation. There are various (informal)

definitions of what it means for a system to be survivable4. Deutsch and

Willis [57], for example, describe survivability as the ability of a system to

maintain the availability of essential functions even though some part of

the system is down (i.e., not working correctly or even not working at all).

Even though they are not equivalent, all these characterizations require a

system to be able to bridge phases where its service is impaired in a not

intended way by still offering some (possibly degraded) service instead of

completely shutting down. Robustness of deadlock-freedom as described in

this chapter is a necessary condition for a system to be survivable because

the system definitely will not provide any service at all under failure of A ′

if it reaches a state which does not offer any interaction in excl(A ′). There

are works which investigate survivability in the context of component sys-

tems. Shelton and Koopman [129], for example, achieve survivability by

offering alternative services if a component fails. Saridakis [125, 126], on

the other hand, does so by shutting down components that are affected by

a failure and by propagating the effect of this shutdown to the other com-

ponents in the hope that it will not affect all components. However, these

results are too different in order to relate them to our approach. It might

be interesting, though, to see whether it is possible to define a notion of

robustness of deadlock-freedom corresponding to the one we presented in

4We refer to Knight et al. [89] for one attempt to formalize the notion of survivability.

194 5.5 Proofs

this chapter for the component models we discussed in Section 3.7.2. Then,

one could try to adapt the conditions that were presented in those models to

be suitable to also handle robustness. As noted in the previous subsection

Majster-Cederbaum and Martens [98] present an informal explanation how

to adapt the results by Majster-Cederbaum et al. [102] to be able to also

treat robustness of freedom of local deadlocks. On the other hand, it is not

self-explanatory how to incorporate failure of actions into the equivalences

used to formulate the other criteria discussed in Section 3.7.2. We will not

further delve into these considerations here.

We conclude by pointing out that even though we investigated a special

form of fault tolerance (in fact, even a special form of survivability for that

matter) in the example discussing Syss/u we encountered a characteristic

which is a common factor to all approaches dealing with fault tolerance:

redundancy. Redundancy refers to those parts of a system that are not

needed for the correct functioning of the system if no fault tolerance is to be

supported [86]. In the example the redundancy expressed itself in the fact

that there were two maintenance components m1 and m2 even though one

would suffice under normal conditions. It might not seem very sophisticated

to mask possible failures by replicating components. However, it is not

realistic to expect a system to be fault tolerant (respectively a property to

be robust) without beforehand providing some mechanism which is able to

absorb the effects of a failure during runtime.

5.5 Proofs

5.5.1 Proofs for Section 5.3.1

At last it becomes obvious why we — seemingly — took a detour in the

proof section of Chapter 3 by proving lemmas that were more general than

necessary. We are now able to give the statements needed for the proof of

Proposition 5.3.1 as simple corollaries to the lemmas derived in Section 3.8.

Corollary 5.5.1. Let Sys be a tree-like interaction system and let A ′ (A

be a nonempty subset of ports. Let q ∈ Q be a state with needA ′(qi) 6= ∅ for

all i ∈ K.

5.5.1 Proofs for Section 5.3.1 195

There exists a nonempty subset K ′ of components such that for all i ∈ K ′

and for all α′ ∈ IntA ′ (qi) the following two conditions hold:

1. ∀α ∈ Int with |comp (α′) ∩ comp (α)| ≥ 2 we have comp (α) ⊆ K ′

2. ∀j ∈ comp (α′) \ {i} : needA ′ (qj) ∩ comp (α′) 6= ∅

Proof. The condition required for K̃ in Lemma 3.8.2 is satisfied for K since

comp(α) ⊆ K for all α ∈ Int. Applying the lemma with K̃ = K and

Int′(qi) = IntA ′(qi) for all qi, yields the statement of the corollary. ⊓⊔

Corollary 5.5.2. Let Sys be a tree-like interaction system and let A ′ ⊆ A

be a nonempty subset of ports. Let q ∈ Q a state with needA ′(qi) 6= ∅ for

all i ∈ K. Choose K ′ to be a minimal set of components satisfying the

two conditions stated in Corollary 5.5.1. Let α ∈ Int be an interaction with

comp(α) ⊆ K ′ and |comp(α)| ≥ 2 and let j ∈ comp(α).

We have needA ′(qj) ∩ comp(α) 6= ∅.

Proof. Applying Lemma 3.8.3 with Int′(qi) = IntA ′(qi) for all i and all qi,

yields the statement of the corollary. ⊓⊔

Corollary 5.5.3. Let Sys be a tree-like interaction system with strongly

exclusive communication and let A ′ (A be a nonempty subset of ports.

Let q ∈ Q be a state with needA ′(qi) 6= ∅ for all i ∈ K. Choose K ′ as in

Corollary 5.5.1. Let i ∈ K ′ and α ∈ Int with i (α) 6= ∅.

If there is k /∈ K ′ with k (α) 6= ∅ then i (α) 6⊆
⋃

j∈needA′ (qi)
comm i (j).

Proof. Assume i (α) ⊆
⋃

j∈needA′ (qi)
comm i (j). Applying Lemma 3.8.4 with

Int′(qk) = IntA ′(qk) for all k ∈ K shows comp (α) ∩ needA ′ (qi) = ∅. Thus,

there must be α′ 6= α with comp(α′)∩needA ′(qi) 6= ∅ and i(α′) = i(α). This

is not possible because Sys has strongly exclusive communication. ⊓⊔

The following lemma takes up the generalized notion of problematic state

that was introduced in Definition 3.8.2 (cf. p. 107) and shows that it coincides

with PSj,A ′(qi, α) if we set Int′(qk) = IntA ′(qk) for all k ∈ K.

Lemma 5.5.1. Let Sys be a tree-like interaction system and let A ′ (A be

a subset of ports. Let i ∈ K, qi incomplete with respect to A ′, α ∈ IntA ′(qi),

and j ∈ comp(α)\{i}.

196 5.5 Proofs

Setting Int′(qk) = IntA ′(qk) for all k ∈ K, we have

PSl
j,A ′(qi, α) = PS′l

j (qi, α)

for all l ∈ N.

Proof. We will show that each of the conditions stated in the definition of

problematic states with respect to failure of A ′ (Definition 5.3.1, p. 178)

is equivalent to the corresponding condition stated in Definition 3.8.2. It

is clear that qi is incomplete with respect to A ′ if and only if there is no

α ∈ IntA ′(qi) = Int′(qi) with |α| = 1. Therefore the precondition stated for

qi in Definition 5.3.1 is equivalent to the precondition in Definition 3.8.2.

The proof uses induction over l.

l = 0 : Setting Int′(qi) = IntA ′(qi) for all i and all qi in Definition 3.8.2,

we see that each condition is equivalent to the corresponding one in

Definition 5.3.1 where as above we argue that qj is incomplete with

respect to A ′ if and only if there is no β ∈ Int′(qj) = IntA ′(qj)

with |β| = 1 and we use the fact that Int′(qj) = IntA ′(qj) for all qj

also implies need′(qj) = needA ′(qj). Note that the condition about

reachability of (qi, qj) the same in both definitions. We conclude

PS0
j,A ′(qi, α) = PS ′0

j (qi, α).

l ⇒ l + 1 : We have:

PSl+1
j,A ′ (qi, α) = {qj |qj ∈ PSl

j,A ′ (qi, α) and ∀β ∈ IntA ′(qj)

∃k ∈ comp(β)\ {j} with PSl
k,A ′ (qj, β) 6= ∅}

= {qj |qj ∈ PSl
j,A ′ (qi, α) and ∀β ∈ Int′(qj)

∃k ∈ comp(β)\ {j} with PSl
k,A ′ (qj, β) 6= ∅}

= {qj |qj ∈ PS ′l
j (qi, α) and ∀β ∈ Int′(qj)

∃k ∈ comp(β)\ {j} with PS ′l
k (qj , β) 6= ∅}

= PS ′l+1
j (qi, α)

The third equality applies the induction hypothesis.

⊓⊔

5.5.1 Proofs for Section 5.3.1 197

Corollary 5.5.4. Let Sys be a tree-like interaction system and let A ′ (A

be a subset of ports. Let q ∈ reach(Sys) be a state with needA ′(qi) 6= ∅ for

all i such that no α̃ ∈ excl(A ′) is enabled in q and let K ′ be given for q as

in Corollary 5.5.1. Let i ∈ K ′ and α ∈ IntA ′ (qi).

There exists j ∈ comp (α) \ {i} with qj ∈ PSj,A ′ (qi, α).

Proof. The second defining property of K ′ implies needA ′(qj)∩comp (α) 6= ∅

for all j ∈ comp (α) \ {i}. Because no α̃ ∈ excl(A ′) is enabled in q we know

that there is at least one j ∈ comp (α) with α /∈ IntA ′(qj). The first defining

property of K ′ together with i ∈ K ′ and α ∈ IntA ′ (qi) implies comp (α) ⊆ K ′

and therefore j ∈ K ′.

Setting Int′(qk) = IntA ′(qk) for all qk ∈ Qk, the conditions for Lemma

3.8.6 are met. We conclude qj ∈ PS ′
j (qi, α) = PSj,A ′ (qi, α) where the

equality follows from Lemma 5.5.1. ⊓⊔

Proposition 5.3.1. Let Sys be a deadlock-free tree-like interaction system

with strongly exclusive communication. Let A ′ (A be a nonempty subset

of ports.

If the following two conditions hold then deadlock-freedom is robust with

respect to failure of A ′ in Sys.

1. ∀i∀qi : qi complete with respect to A ′ ∨ q0
i /∈ BWS(qi,needA ′(qi))∨

∃α ∈ IntA ′ (qi) such that ∀j ∈ comp (α) \ {i} :

q0
j /∈ BWS

(

PSj,A ′ (qi, α) , needA ′(PSj,A ′ (qi, α))
)

2. ∀α̃ ∈ Int with |comp(α̃)| ≥ 2 ∃i ∈ comp (α̃) such that for all qi ∈ Qi

that are incomplete with respect to A ′:

i (α̃) 6⊆
⋂

α∈IntA′ (qi)

⋃

j∈comp(α)

PA
(

qi, α, j,A ′
)

The conditions can be checked in time polynomial in the size of Sys.

Proof. Assume that the two conditions in the proposition hold but there is

q ∈ reach(Sys) such that no interaction not involving A ′ is enabled: There

is a path σ := q0 α0→ . . .
αl−1
→ ql αl→ q and no α ∈ excl(A ′) is enabled in q.

198 5.5 Proofs

First we will show needA ′(qi) 6= ∅ for all qi. It is clear that qi is incomplete

with respect to A ′ for all i. Otherwise there would be a component i such

that an interaction α = {ai} ∈ excl(A ′) would be enabled in q. This is not

possible. Therefore, there can only be a qi with needA ′(qi) = ∅ if en(qi) ⊆ A ′

because this implies IntA ′(qi) = ∅ and therefore also needA ′(qi) = ∅. In this

case, from needA ′(qi) = ∅ and from the fact that qi is reachable from q0
i

in Ti we conclude q0
i ∈ BWS(qi,needA ′(qi)). Then qi is a local state which

does not satisfy the first condition in the proposition (the last term in the

condition is not satisfied because IntA ′(qi) = ∅). This is a contradiction. We

conclude needA ′(qi) 6= ∅ for all qi, and we may choose a minimal set K ′ for

q according to Corollary 5.5.1. There are two cases:

1. For all s ≤ l there is k /∈ K ′ with k (αs) 6= ∅ or |αs| = 1. In the first case

Corollary 5.5.3 shows i (αs) 6= ∅ ⇒ i (αs) 6⊆
⋃

j∈needA′(qi)
comm i (j) for

all i ∈ K ′. If αs = {ai} for a component i ∈ K ′ we also have i (αs) 6⊆
⋃

j∈needA′(qi)
comm i (j) because Sys has strongly exclusive communica-

tion. Thus, for any i ∈ K ′ the projection of σ to i is a path in Ti from

q0
i to qi that is only labeled with ports in Ai\

⋃

j∈needA′(qi)
comm i (j).

For all i ∈ K ′ we get q0
i ∈ BWS(qi,needA ′(qi)).

Corollary 5.5.4 shows that for all i ∈ K ′ and all α ∈ IntA ′ (qi) there

is j ∈ comp (α) \ {i} with qj ∈ PSj,A ′ (qi, α). Using the first prop-

erty of K ′ and i ∈ K ′ we get comp(α) ⊆ K ′. Therefore j ∈ K ′,

and consequently q0
j ∈ BWS(qj,needA ′(qj)). Thus, for all i ∈ K ′

and all α ∈ IntA ′ (qi) there is a component j ∈ comp (α) \ {i} with

q0
j ∈ BWS

(

PSj,A ′ (qi, α) , needA ′(PSj,A ′(qi, α))
)

. This is a contradic-

tion to the first condition because we have already seen above that qi

is incomplete with respect to A ′ and q0
i ∈ BWS(qi,needA ′(qi)).

2. Otherwise, let s0 ≤ l be the largest index with comp (αs0) ⊆ K ′ and

|comp(αs0)| ≥ 2. For all s0 < s ≤ l there is h /∈ K ′ with h (αs) 6= ∅

or |comp(αs)| = 1. As above, we see that for all i ∈ K ′ the projection

to i of the segment of σ starting in qs0+1 yields a path in Ti that

is only labeled with ports ai ∈ Ai\
⋃

j∈needA′ (qi)
comm i (j). We get

qs0+1
i ∈ BWS(qi,needA ′(qi)) for all i ∈ K ′.

Fix i ∈ comp (αs0) ⊆ K ′ and α′ ∈ IntA ′ (qi). According to Corollary

5.5.2 Proofs for Section 5.3.2 199

5.5.4, there is j ∈ comp (α′) \ {i} with qj ∈ PSj,A ′ (qi, α
′). Also fix j.

We have αs0 ↓{i,j}∈ Int ↓{i,j} and i (αs0) ⊆ αs0 ↓{i,j}. Furthermore,

(qs0
i , qs0

j) is reachable in Sys ↓{i,j} (Lemma 3.2.2). Because i ∈ K ′ we

have qs0+1
i ∈ BWS(qi,needA ′(qi)). The first property of K ′ implies j ∈

comp (α′) ⊆ K ′. Therefore we also have qs0+1
j ∈ BWS(qj,needA ′(qj)),

and because qj ∈ PSj,A ′ (qi, α
′) we further get BWS(qj,needA ′(qj)) ⊆

BWS(PSj,A ′ (qi, α
′) , needA ′(PSj,A ′(qi, α

′))). Finally, Corollary 5.5.2

shows needA ′(qi) ∩ comp(αs0) 6= ∅. This means that we have i(αs0) ⊆
⋃

k∈needA′ (qi)
comm i (k). Altogether this produces:

i (αs0) ⊆ EA(qi,needA ′(qi),PSj,A ′(qi, α
′), needA ′(PSj,A ′(qi, α

′)))

= PA
(

qi, α
′, j,A ′

)

⊆
⋃

m∈comp(α′)

PA
(

qi, α
′,m,A ′

)

Repeating this argument for all α ∈ IntA ′ (qi) we get

i (αs0) ⊆
⋂

α∈IntA′ (qi)

⋃

m∈comp(α)

PA
(

qi, α,m,A ′
)

.

Analogously we get

k (αs0) ⊆
⋂

α∈IntA′(qk)

⋃

m∈comp(α)

PA
(

qk, α,m,A ′
)

for all other k ∈ comp (αs0). This is a contradiction to the second

condition.

The assumption that q is a reachable state where no α ∈ excl(A ′) is enabled

is therefore wrong, and deadlock-freedom is robust with respect to failure of

A ′ in Sys.

The conditions can be checked in time polynomial in the size of Sys, be-

cause all parameters can be computed by analyzing Int, the local behaviors,

and the subsystems Sys ↓{i,j} for interacting components i and j. ⊓⊔

5.5.2 Proofs for Section 5.3.2

We only slightly have to adjust the proofs given in Section 4.6.2.

Lemma 5.3.1. Let Sys be an interaction system and let A0,A
′ (A be

disjoint subsets of ports.

200 5.5 Proofs

1. For m ≥ 1 we have

Em
1,A ′ = {(i, j) |j 6= i, 0 and exclj(A

′)\exclj(Arm−1
1,A′ (i))

is inevitable in T
exclj(A ′)
j }.

2. Let 1 ≤ d′ < d ≤ n and m ≥ 1 be given and let i ∈ V and j ∈ V\{i, 0}.

If there is an edge (i, j) ∈ Em
d′,A ′ , then we also have (i, j) ∈ Em

d,A ′ .

Proof. We treat the statements separately.

1. The proof is analogous to the proof of the first part of Lemma 4.3.5. We

simply replace Int ↓{j} and Aj by excl(A ′) ↓{j} respectively exclj(A
′)

and Sys ↓{j} and Tj by T
excl(A ′)↓{j}

Sys↓{j}
respectively T

exclj(A
′)

j .

2. The proof is analogous to the proof of the second part of Lemma

4.3.5. In the start of the induction we replace Int ↓Kd′
and Int ↓Kd

by excl(A ′) projected to Kd′ respectively Kd, and we replace Sys ↓Kd′

and Sys ↓Kd
by T

excl(A ′)↓K
d′

Sys↓K
d′

respectively T
excl(A ′)↓Kd

Sys↓Kd

. Using a proof

by contradiction, in T
excl(A ′)↓Kd

Sys↓Kd

we find a cycle σd with properties

corresponding to the ones stated in the proof of Lemma 4.3.5. Since all

interactions on σd are in excl(A ′) ↓Kd
and because j participates in σd,

the projection σd′ of σd to Kd′ again results in a cycle in T
excl(A ′)↓K

d′

Sys↓K
d′

.

Using the same argument that was used in Lemma 4.3.5 from σd′ and

σd we deduce the existence of αd′ ∈ excl(A ′) ↓Kd′
\excl(Ai) ↓Kd′

and

αd /∈ Int ↓Kd
\excl(Ai) ↓Kd

with αd ↓Kd′
= αd′ which then result in

an interaction α ∈ Int with α ∩ Ai = ∅ and α ∩ Ai 6= ∅ yielding the

desired contradiction5.

The inductive step follows the same steps (adjusted appropriately)

that were taken in the proof of Lemma 4.3.5 where this time we use

the inductive hypothesis to show Arm
d′,A′ (i)

⊆ Arm
d,A′(i)

.

⊓⊔

Lemma 5.3.2. Let Sys be an interaction system, and let 1 ≤ d ≤ n be

given. Let A0,A
′ (A be disjoint subsets of ports.

5Note that α does not necessarily have to be in excl(A ′).

5.5.2 Proofs for Section 5.3.2 201

Gd,A ′ can be constructed in time polynomial in the size of Sys. An upper

bound for the cost is given by

O(|Int|2nd+4 + |Int|nd+3|Tmax|
d)

where |Tmax| denotes the size of the largest local transition system.

Proof. Since |excl(A ′)| ∈ O(|Int|) and |T
exclj(A

′)
j | ∈ O(|Tmax|) for all j ∈ K

the upper bound is derived in exactly the same way as in Lemma 4.3.6. ⊓⊔

Proposition 5.3.2. Let Sys be a deadlock-free interaction system and let

A0,A
′ (A be disjoint subsets of ports. Let deadlock-freedom be robust with

respect to failure of A ′ in Sys. Let 1 ≤ d ≤ n be given and let Gd,A ′ be

defined as above.

If all nodes in V are reachable from 0 in Gd,A then A0 makes progress

without A ′ in Sys. The condition can be checked in time polynomial in the

size of Sys.

Proof. Again the proof is analogous to the proof of Proposition 4.3.2. This

time we consider a run σ without A ′. Using the same arguments as before,

the following two facts can be shown by a nested induction over m ∈ N:

1. If (i, j) ∈ Em
d,A ′ then i participates infinitely often in σ if j does so.

2. If j is reachable from i in (V,
⋃m

l=1 E
l
d,A ′) then i participates infinitely

often in σ if j does so.

The induction follows the same steps that were taken in the proof of Propo-

sition 4.3.2. Replacing Int ↓Kd
and TSysKd

by excl(A ′) ↓Kd
respectively

T
excl(A ′)↓Kd

SysKd

in the start of the induction for the first statement, we see that

the first statement above holds for m = 1. The proof of the second state-

ment is independent of Int and excl(A ′) it simply extends the significance

derived for an edge in the first statement to a path of arbitrary length.

Therefore the start of the induction for the second statement is the same as

the corresponding argument in the proof of Proposition 4.3.2.

In the inductive step we replace Arm
d

(i) by Arm
d,A′(i)

before reproducing

the argument given in the proof of Proposition 4.3.2. For the same reasons as

202 5.5 Proofs

mentioned above the inductive step for the second statement can be adopted

without change.

Using the second statement, the proof of the proposition is now analogous

to the proof of Proposition 4.3.2. Using Lemma 5.3.2, we see that the

conditions can be checked in polynomial time. ⊓⊔

Chapter 6

Conclusion and Discussion

We recapitulate the results presented in this thesis. We want to see to

what extend we have achieved the goals that we formulated in Chapter 1.

Furthermore we want to rate the results in the context of the methodologies

discussed in Section 1.2.1. Finally, we point out directions for future work.

6.1 Achievements

We have investigated deadlock-freedom and progress in interaction sys-

tems. The major achievement consisted of exhibiting sufficient conditions for

both properties. Furthermore, we defined robustness of deadlock-freedom

with respect to failure of a set A ′ of ports respectively progress without A ′.

We adapted the conditions to also be applicable in situations where A ′ fails.

The condition for deadlock-freedom was derived using a restriction of the

communication architecture. We first presented results about reachability.

Then, we introduced the interaction graph of an interaction system, and we

required it to be a tree. Based on this restriction we characterized pairs of

states that could possibly be involved in a deadlock. We combined the results

in order to exclude the possibility that combinations of these states that

might cause a deadlock are reachable. This approach was suitable not only

to treat deadlock-freedom but also freedom of local deadlocks. Furthermore,

we simplified the results for systems that only allow binary interactions.

Besides stating the sufficient conditions, the achievements also lay in the

fact that the interaction graph and the results about reachability can be

203

204 6.1 Achievements

used in other settings (not necessarily pertaining to deadlock-freedom), as

well.

Treating progress we first stated a theorem characterizing progress. Next

we went about stating a sufficient condition for progress. This condition is

based on a directed graph whose intuitive meaning conveyed which compo-

nents were needed by others in order to be able to proceed. The definition of

the graph involved a parameter d influencing the precision of the criterion

on the one hand and the complexity of the construction of the graph on

the other hand. We explained how to generalize the graph respectively the

criterion based on it by iterating the construction of the edges. Finally, we

exemplarily motivated a remedy in cases where the condition is not satis-

fied. We proposed one way how the information obtained from the condition

might be combined with the characterization of progress in order to be able

to make a statement about progress even in cases where the criterion fails.

The situation was slightly different as far as the consideration of failure

of a set A ′ was concerned because we were not able to resort to a suitable

notion of how failure of ports might influence a given system. Thus, we first

had to define the notions of robustness of deadlock-freedom with respect

to failure of A ′ respectively progress without A ′. Having given the formal

definitions, they facilitated an adaptation of the conditions presented before

for deadlock-freedom and progress because the definitions are akin to the

definitions of the original properties. We presented this adaptation in detail

for robustness of deadlock-freedom of a tree-like interaction system with

respect to failure of A ′ and for progress without A ′ pointing out that other

properties could have been treated likewise.

Next, we want to see whether our results live up to the paradigms that

we had intended to follow throughout this thesis. These stated that the

conditions should

• be sufficient for the property in question but efficiently checkable,

• be compositional, and

• allow for reuse of the information gathered if the condition is not

satisfied.

6.1 Achievements 205

As stated above, we have clearly abode by the first paradigm in that we ex-

hibited sufficient conditions for deadlock-freedom and progress respectively

for these properties under the assumption that ports may fail. We have

proved the sufficiency of the conditions. Furthermore, we have indeed bene-

fited in terms of efficiency. The conditions can be checked in time polynomial

in the size of the system in question. This fact is actually closely related

to the second paradigm. The criteria can be checked efficiently precisely

because they are compositional. Compositionality is obtained by projecting

the global system to subsystems whose analysis is feasible — as opposed

to an investigation of the global system — and by then combining the in-

formation extracted from the subsystems. Depending on the property in

question these subsystems were of size two (for deadlock-freedom) respec-

tively of arbitrary size d (for progress) where d determined the degree of

the polynomial bounding the complexity of the checks and therefore also

the degree of efficiency. The important point to note is that the polynomial

complexity indeed represents an improvement compared to the exponential

cost necessary for an analysis of the global state space.

Finally, we want to explain in what ways we adhered to the last of the

three paradigms. We did so in various ways. In Section 3.7.1 we stated

that a violation of the conditions presented is also always a hint as to where

a possible deadlock — if there exists one in the global system — has to

be searched for. Often the information gathered may be used to isolate

small(er) parts of the global state space of an interaction system which have

to be subjected to a direct analysis. In the case of progress of a set A0

of ports, on the other hand, we motivated a different approach towards

reuse of the data collected. There we combined the information obtained

from analyzing Gd with a different condition for progress in order to show

that the set components that are reachable from the node 0 in Gd makes

progress — already knowing that these components cannot proceed without

A0. In addition, increasing the variable parameter d presented one possible

option to counteract the failure of the condition we presented. At last, note

that Chapter 5 can also be seen along the lines of the last paradigm if we

interpret it a little more liberally: In this chapter we did not exactly reuse

information obtained from checking a condition. Instead, we reused the

206 6.2 Classification of the Results

existing conditions themselves by only adapting them slightly to the new

situation instead of devising completely new ideas.

6.2 Classification of the Results

Next, we discuss where to rank our results in the context of the other

methodologies that we mentioned in Section 1.2.1. There we discussed a

range of approaches towards establishing properties of concurrent systems.

These included model checking and preorder/equivalence checking, various

abstraction methods, and testing. Furthermore, there are proof systems

(cf. Francez [64], for example) or approaches following the correctness-by-

construction paradigm that has already been mentioned in Section 3.7.1.

Even though we more or less exclusively stuck to the approach resulting

from our paradigms, i.e., we sought for sufficient but efficiently checkable

conditions for a given property, we do not want our results to be understood

such that this approach is the “silver bullet” with respect to proving prop-

erties of component based systems or more generally of concurrent systems.

From our point of view, it is not useful to only focus on a limited set of meth-

ods all using similar ideas. Instead, we argue that any attempt to investigate

concurrent systems should be based on a combination of as many different

approaches as possible. The underlying idea of such a combined approach

is of course the hope that the respective weaknesses of one technique can be

compensated for by the strengths of the others. The more so as some of the

techniques cannot even be uniquely attached to a single methodology. For

example, we saw that it was also possible to interpret the results presented

in Chapter 3 along the lines of the correctness-by-construction paradigm.

Similarly, the projection to subsystems (obtained by hiding components)

is an abstraction technique. Combining different methodologies to obtain

more precise results is of course not a new idea. For example, Broy et al.

[39, Part VI] is devoted to techniques which extend the testing approach

taken there by investigating how it can be combined with model checking.

In summary, we see the results presented in this thesis as one step to-

wards a better understanding of (properties of) interaction systems. We do

not see them as an exclusive technique but as one approach which is equal

6.3 Future Work 207

among a selection of various techniques that can and should be chosen from

and be combined. The possibilities for such combinations are manifold:

Concretely, checking the sufficient conditions we presented could be added

as a preprocessing to model checking, for example, possibly rendering this

second — usually more complex step — unnecessary. Even if the condition

is not satisfied, we have already explained, how additional information can

be derived which could be incorporated into the process of further investi-

gations and which might help to reduce the complexity of subsequent model

checking. If our conditions are to be combined with a testing approach one

could similarly attempt to derive very specific test cases from the compo-

nents and states which violate the conditions we presented. This way it

might be possible to find out if the property in question is really violated.

Likewise, a system may be constructed trying to maintain a tree-like struc-

ture for as long as possible where only those edges which cause cycles in the

interaction graph require special attention in the end.

6.3 Future Work

Still a lot remains to be done with regard to both the theoretical ground-

work of the formalism and its practical application. We list a few issues that

require further research:

Equivalences: In Section 1.2.1 we mentioned behavioral equivalences in

the context of the paradigms for establishing properties. In fact, for

more or less every formalism for concurrent systems one field of re-

search deals with various notions of equivalences. Such equivalences

allow to identify processes that “exhibit the same behavior”. This way

it is possible to replace equivalent processes, and to transfer statements

that have been proven for one process to other equivalent processes.

Furthermore, equivalences allow to lump states of a given process to-

gether making it possible to consider a smallest possible representative

of an equivalence class of processes. Not least with respect to efficiency

of investigating such a process this is an interesting feature. Since we

have emphasized the importance of deadlock-freedom for interaction

systems it is clear that the minimum requirement to be put on such an

208 6.3 Future Work

equivalence is that it should preserve deadlock-freedom. Thus, trace-

equivalence, for example, is not suitable. On the other hand, it is

desirable that the equivalence is a congruence with respect to compo-

sition, i.e., replacing component i in an interaction system Sys by an

equivalent component i′ should result in an interaction system which is

equivalent to Sys. Equivalences such as weak bisimulation [107] seem

to be a suitable choice. It has to be clarified how such an equivalence

can be defined. In particular, it has to be seen how “silent” τ -ports

can be introduced into the concept of interaction systems. Lambertz

[92] presents some first considerations and results with regard to these

questions.

The investigation of appropriate behavioral equivalences is also inter-

esting because as stated in Section 3.7.2 such equivalences might be

combined with the results in Chapter 3. If it is possible to hide those

parts of the behavior of a component i from component j which are

not meant for communication with j, then there would be a notion

of “partial behavior of i with respect to j”. It might suffice to only

investigate the composition of the corresponding partial behaviors of

the two components instead of investigating the subsystem consisting

of i and j. It has to be resolved in what way the partial behavior of i

must be related to Ti. Such an approach can be interpreted according

to the requirement mentioned in Section 1.1 that a component should

encapsulate its internals. It only makes that part of a component’s be-

havior available to possible communication partners which is relevant

for the respective cooperation.

With regard to introducing behavioral equivalences to interaction sys-

tems we refer to Arnold [16] (respectively Barros et al. [26, 27] in the

context of component systems). A formalism for parallel processes

is presented which is quite similar to interaction systems. The com-

munication between the processes is also realized by specification of

all allowed synchronizations. In particular, the formalism allows for

the use of one port in various synchronizations and, in principle, for

synchronizations of arbitrary degree. In practice, though, n-ary com-

6.3 Future Work 209

munication is enforced, where n is the number of processes, by means

of null actions. This is not advisable in the context of component

based systems because it requires adaptation of a component’s behav-

ior depending on the cooperations it will or will not participate in.

On the other hand, Arnold [16] presents some interesting ideas with

regard to suitable logics for specification and verification of properties

and with regard to equivalences for such processes. It might prove

fruitful to try to carry these ideas over to interaction systems.

Tool support: It is essential that the existing theoretical results are sup-

ported by a comprehensive tool in order to allow for an automatic

check of the various conditions. This way it will be possible to apply

our ideas to large (benchmark-)examples and to also present quantita-

tive results showing how our approach compares to others and where

its strengths and weaknesses lie. As mentioned in Section 3.4.2 an

algorithm based on Corollary 3.4.2 has been implemented in the tool

PrInSESSA [127] which offers a data structure for interaction systems.

Furthermore, this tool offers an implementation of the conditions for

deadlock-freedom presented by Majster-Cederbaum et al. [100, 102].

Currently, the tool is being revised in order to provide a new data

structure for interaction systems which is based on binary decision

diagrams1 (BDDs) [36, 42, 43]. BBDs allow for an efficient represen-

tation of the local transition systems. Further, it is possible to perform

operations such as reachability analyses or computation of subsystems

on these local transition systems efficiently. Therefore BDDs are well

suited for an implementation of the conditions we presented. Partic-

ular importance should be attached to realizing the various methods

that are necessary efficiently in order to possibly improve the rough

bounds that were partly presented in the previous chapters.

Specification and Verification: So far, most research — in this thesis

but also in general — in interaction systems has been directed at the

investigation of generic properties. Of course it is important to know

1More precisely an extension of BDDs called Reduced Ordered Binary Decision Dia-

grams is used.

210 6.3 Future Work

that a system is deadlock-free, for example. Nonetheless, it is also

clear that further investigation is necessary to find out whether the

system really does what it is supposed to do, i.e., it is necessary to ob-

tain a well-founded way of specifying functional properties of a system

and of verifying that a system meets such a specification. Of course,

model checking would be an option for verifying interaction systems.

There exist translations [24] from interaction systems to the compo-

nent model of the Vereofy setting [6] and vice versa. Because Vereofy

provides a model checker this translation offers one way to incorpo-

rate model checking into interaction systems. Contrariwise, it might

be possible to apply some of the concepts that have been developed

for interaction systems (in this thesis but also elsewhere [100, 102]) in

the Vereofy setting and to combine them with the model checking ap-

proach taken there. In this regard, it is also interesting in general to see

to what extend ideas pertaining to reachability such as the ones from

Section 3.2 or the cross-checking techniques by Majster-Cederbaum

and Minnameier [100] can be combined with model checking in order

to reduce the complexity of computing the reachable state space. It

may be possible to verify a property without having to explore the

complete global state space. Instead, one could try to identify states

which violate the specification and to exclude their reachability by

means of the techniques above. As stated in Section 1.2.1 a suitable

set of equivalences can also be used for verifying that a system meets

certain specifications if the specification is also given in terms of a la-

beled transition system. In this case verification consists of checking

whether the system is able to simulate every behavior that can be ob-

tained from the specification. A lot remains to be done with regard to

these questions. If nothing else it is necessary to agree upon an ade-

quate logic for the formulas describing the properties to be checked.

Bibliography

[1] Beyond Safety International Workshop. See: http://cs.nyu.edu/

acsys/beyond-safety/, April 25 - 28 2004. Schloss Ringberg, Ger-

many.

[2] Microsoft Component Object Model. See: http://msdn.microsoft.

com/en-us/library/aa139693.aspx.

[3] CORBA. See: http://www.omg.org.

[4] Enterprise JavaBeans. See: http://java.sun.com/products/ejb.

[5] The Unified Modelling Language. See: http://www.uml.org/.

[6] Vereofy/TU-Dresden. See: http://www.vereofy.de.

[7] P. A. Abdulla, G. Delzanno, and A. Rezine. Automatic Verification

of Directory-Based Consistency Protocols . In Proceedings of LIX

Colloquium Reachability Problems’09, volume 5797 of LNCS, pages

36–50. Springer, 2009.

[8] R. Allen and D. Garlan. A Formal Basis for Architectural Connection.

ACM Trans. Softw. Eng. Methodol., 6(3):213–249, 1997.

[9] B. Alpern and F. B. Schneider. Defining Liveness. Inf. Process. Lett.,

21(4):181–185, 1985.

[10] B. Alpern and F. B. Schneider. Recognizing Safety and Liveness.

Distributed Computing, 2:117–126, 1986.

[11] N. Aoumeur and G. Saake. A component-based Petri net model

for specifying and validating cooperative information systems. Data

Knowl. Eng., 42(2):143–187, 2002.

211

212 BIBLIOGRAPHY

[12] K. R. Apt, N. Francez, and W. P. de Roever. A Proof System for Com-

municating Sequential Processes. ACM Trans. Program. Lang. Syst.,

2(3), 1980.

[13] F. Arbab. A Channel-Based Coordination Model for Component

Composition. Technical report SEN-R0203, CWI, 2002.

[14] F. Arbab. Reo: A Channel-Based Coordination Model for Component

Composition. Mathematical Structures in Computer Science, 14(3):

329–366, 2004.

[15] F. Arbab, C. Baier, J. Rutten, and M. Sirjani. Modeling Component

Connectors in Reo by Constraint Automata: (Extended Abstract). In

Proceedings of FOCLASA’03, volume 97 of ENTCS, pages 25 – 46.

Elsevier, 2004.

[16] A. Arnold. Finite Transition Systems. Series in Computer Science.

Prentice/Hall International, 1994.

[17] A. Arora and S. S. Kulkarni. Detectors and Correctors: A Theory

of Fault-Tolerance Components. In Proceedings of ICDCS’98, pages

436–443. IEEE Computer Society, 1998.

[18] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger,

R. Laqua, D. Muthig, B. Paech, J. Wust, and J. Zettel. Component-

Based Product Line Engineering with UML. Component Software Se-

ries. Addison-Wesley Professional, 2001.

[19] C. Atkinson, P. Bostan, D. Brenner, G. Falcone, M. Gutheil, O. Hum-

mel, M. Juhasz, and D. Stoll. Modeling Components and Component-

Based Systems in KobrA. In The Common Component Modeling Ex-

ample, volume 5153 of LNCS, pages 54–84. Springer, 2008.

[20] P. C. Attie and H. Chockler. Efficiently Verifiable Conditions for

Deadlock-Freedom of Large Concurrent Programs. In Proceedings of

VMCAI’05, volume 3385 of LNCS, pages 465–481, 2005.

BIBLIOGRAPHY 213

[21] P. C. Attie and E. A. Emerson. Synthesis of Concurrent Systems with

Many Similar Processes. ACM Trans. Program. Lang. Syst., 20(1):

51–115, 1998.

[22] E. Badouel, A. Benveniste, M. Bozga, B. Caillaud, O. Constant,

B. Josko, Q. Ma, R. Passerone, and M. Skipper. SPEEDS Metamodel

Syntax and Draft Semantics, January 2007. Deliverable D2.1c.

[23] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press,

2008.

[24] C. Baier, M. Majster-Cederbaum, C. Lambertz, N. Semmelrock,

C. Minnameier, M. Martens, S. Klüppelholz, T. Blechmann, and

J. Klein. Reo and Constraint Automata vs. Interaction Systems —

A Comparison, 2009. Technical Report to be published.

[25] J. Barnat, L. Brim, I. Cerná, P. Moravec, P. Rockai, and P. Sime-

cek. DiVinE — A Tool for Distributed Verification. In Proceedings of

CAV’06, volume 4144 of LNCS, pages 278–281. Springer, 2006.

[26] T. Barros, R. Boulifa, and E. Madelaine. Parameterized Models for

Distributed Java Objects. In Proceedings of FORTE’04, volume 3235

of Lecture Notes in Computer Science, pages 43–60. Springer, 2004.

[27] T. Barros, L. Henrio, and E. Madelaine. Behavioural Models for Hi-

erarchical Components. Technical Report INRIA Research Report

RR-5591, INRIA, Sophia-Antipolis, 2005.

[28] R. Bastide and E. Barboni. Software Components: A Formal Se-

mantics Based on Coloured Petri Nets. In Proceedings of FACS’05,

ENTCS, pages 57 – 73, 2005.

[29] A. Basu, M. Bozga, and J. Sifakis. Modeling Heterogeneous Real-Time

Components in BIP. In Proceedings of SEFM’06, pages 3–12. IEEE

Computer Society, 2006.

[30] H. Baumeister, F. Hacklinger, R. Hennicker, A. Knapp, and M. Wirs-

ing. A Component Model for Architectural Programming. In Pro-

214 BIBLIOGRAPHY

ceedings of FACS’05, volume 160 of ENTCS, pages 75–96. Elsevier,

2006.

[31] M. Ben-Ari. Principles of Concurrent Programming. Prentice Hall

Professional Technical Reference, 1982.

[32] K. Bergner, A. Rausch, M. Sihling, A. Vilbig, and M. Broy. A Formal

Model for Componentware. In G. T. Leavens and M. Sitaraman, edi-

tors, Foundations of Component-Based Systems, pages 189–210. Cam-

bridge University Press, 2000.

[33] M. Bernardo, P. Ciancarini, and L. Donatiello. Architecting Families

of Software Systems with Process Algebras. ACM Trans. on Software

Engineering and Methodology, 11:386 – 426, October 2002.

[34] A. Biere, C. Artho, and V. Schuppan. Liveness Checking as Safety

Checking. In Proceedings of FMICS’02, ENTCS, 2002.

[35] M. Bozga, O. Constant, B. Josko, Q. Ma, and M. Skipper. SPEEDS

Metamodel Syntax and Static Semantics, February 2007. Deliverable

D2.1b.

[36] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient Implementation

of a BDD Package. In Proceedings of DAC’90, pages 40–45. IEEE

Computer Society Press, 1990.

[37] L. Brim, I. Černá, P. Vařeková, and B. Zimmerova. Component-

Interaction Automata as a Verification-Oriented Component-Based

System Specification. In Proceedings of SAVCBS’05, pages 31–38.

Iowa State University, USA, 2005.

[38] S. Brookes and A. Roscoe. Deadlock Analysis in Networks of Com-

municating Processes. Distributed Computing, 4(4):209–230, 1991.

[39] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner,

editors. Model-Based Testing of Reactive Systems, volume 3472 of

LNCS, 2005. Springer.

BIBLIOGRAPHY 215

[40] M. Broy, J. Siedersleben, and C. Szyperski. CoCoME Jury Evalua-

tion and Conclusion. In The Common Component Modeling Example,

volume 5153 of LNCS, pages 449–458. Springer, 2008.

[41] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani.

The FRACTAL Component Model and its Support in Java. Softw.,

Pract. Exper., 36(11-12):1257–1284, 2006.

[42] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manip-

ulation. IEEE Trans. Computers, 35(8):677–691, 1986.

[43] R. E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-

Decision Diagrams. ACM Comput. Surv., 24(3):293–318, 1992.

[44] L. Bulej, T. Bureš, T. Coupaye, M. Děcký, P. Ježek, P. Paŕızek,

F. Plášil, T. Poch, N. Rivierre, O. Šerý, and P. Tůma. CoCoME

in Fractal. In The Common Component Modeling Example, volume

5153 of LNCS, pages 357–387. Springer, 2008.

[45] T. Bures, P. Hnetynka, and F. Plasil. SOFA 2.0: Balancing Ad-

vanced Features in a Hierarchical Component Model. In Proceedings

of SERA’06, pages 40–48, 2006.

[46] I. Černá, P. Vařeková, and B. Zimmerova. Component-Interaction

Automata Modelling Language. Technical Report FIMU-RS-2006-08,

Masaryk University, Faculty of Informatics, 2006.

[47] R. C. Cheung. A User-Oriented Software Reliability Model. IEEE

Trans. Software Eng., SE-6(2):118–125, 1980.

[48] S. Chouali, M. Heisel, and J. Souquières. Proving Component Inter-

operability with B Refinement. In Proceedings of FACS 05, volume

160 of ENTCS, pages 67–84, 2006.

[49] E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchroniza-

tion Skeletons Using Branching Time Temporal Logic. In Proceedings

of Logics of Programs’81, volume 131 of LNCS, pages 52–71. Springer,

1982.

216 BIBLIOGRAPHY

[50] E. M. Clarke, T. Filkorn, and S. Jha. Exploiting Symmetry In Tem-

poral Logic Model Checking. pages 450–462.

[51] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification

of Finite-State Concurrent Systems Using Temporal Logic Specifica-

tions. ACM Trans. Program. Lang. Syst., 8(2):244–263, 1986.

[52] E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional Model

Checking. In Proceedings of LICS’89, pages 353–362. IEEE Computer

Society, 1989.

[53] R. Cleaveland and S. A. Smolka. Strategic Directions in Concurrency

Research. ACM Comput. Surv., 28(4):607–625, 1996.

[54] R. Cleaveland and O. Sokolsky. Equivalence and Preorder Checking

for Finite-State Systems, chapter 6, pages 391–424. Elsevier, 2001.

[55] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice

Model for Static Analysis of Programs by Construction or Approxima-

tion of Fixpoints. In Proceedings of POPL’77, pages 238–252, 1977.

[56] L. de Alfaro and T. A. Henzinger. Interface Automata. In Proceedings

of FSE’01, pages 109–120, 2001.

[57] M. S. Deutsch and R. R. Willis. Software Quality Engineering: A Total

Technical and Management Approach. Series in software engineering.

Prentice Hall, 1988.

[58] E. Dijkstra and C. Scholten. A Class of Simple Communication Pat-

terns, EWD643. In E. Dijkstra, editor, Selected Writings on Comput-

ing, pages 334–337. Springer, 1982.

[59] E. W. Dijkstra. Cooperating sequential processes. In F. Genuys,

editor, Programming Languages: NATO Advanced Study Institute,

pages 43–112. Academic Press, London, 1968. Originally appeared as

Tech. Rep. EWD-123, Technical University of Eindhoven, the Nether-

lands, 1965.

BIBLIOGRAPHY 217

[60] E. W. Dijkstra. Hierarchical Ordering of Sequential Processes. Acta

Inf., 1:115–138, 1971.

[61] A. Dimov and S. Punnekkat. On the Estimation of Software Reliability

of Component-Based Dependable Distributed Systems. In Proceedings

of QoSA/SOQUA’05, volume 3712 of Lecture Notes in Computer Sci-

ence, pages 171–187. Springer, 2005.

[62] C. Ellis. Team Automata for Groupware Systems. In Proceedings of

GROUP ’97, pages 415–424. ACM, 1997.

[63] E. A. Emerson and A. P. Sistla. Symmetry and Model Checking. In

Proceedings of CAV’93, volume 697 of LNCS, pages 463–478. Springer,

1993.

[64] N. Francez. Program Verification. Addison-Wesley, 1992.

[65] R. Gawlick, R. Segala, J. F. Søgaard-Andersen, and N. A. Lynch. Live-

ness in Timed and Untimed Systems. Technical Report MIT/LCS/

TR-587, Massachusetts Institute of Technology, Cambridge, 1993.

[66] R. Gawlick, R. Segala, J. F. Søgaard-Andersen, and N. A. Lynch.

Liveness in Timed and Untimed Systems. In Proceedings of ICALP

’94, volume 820 of LNCS, pages 166–177. Springer-Verlag, 1994.

[67] P. Godefroid. Using Partial Orders to Improve Automatic Verification

Methods. In Proceedings of CAV’90, volume 531 of LNCS, pages 176–

185. Springer, 1990.

[68] P. Godefroid and P. Wolper. Using Partial Orders for the Efficient Ver-

ification of Deadlock Freedom and Safety Properties. Form. Methods

Syst. Des., 2(2):149–164, 1993. ISSN 0925-9856.

[69] G. Gössler. Component-based Design of Heterogeneous Reactive Sys-

tems in Prometheus. Technical report 6057, INRIA, December 2006.

[70] G. Gössler and J. Sifakis. Component-Based Construction of Dead-

lock-Free Systems. In Proceedings of FSTTCS’03, volume 2914 of

LNCS, pages 420–433, 2003.

218 BIBLIOGRAPHY

[71] G. Gössler and J. Sifakis. Composition for component-based modeling.

Sci. Comput. Program., 55(1-3):161–183, 2005.

[72] G. Gössler and J. Sifakis. Composition for Component-Based Model-

ing. In Proceedings of FMCO’02, volume 2852 of LNCS, pages 443–

466, 2003.

[73] G. Gössler, S. Graf, M. Majster-Cederbaum, M. Martens, and

J. Sifakis. Ensuring Properties of Interaction Systems. In Pro-

gram Analysis and Computation, Theory and Practice, volume 4444

of LNCS, pages 201–224, 2007.

[74] G. Gössler, S. Graf, M. Majster-Cederbaum, M. Martens, and

J. Sifakis. An Approach to Modelling and Verification of Compo-

nent Based Systems. In Proceedings of SOFSEM 07, volume 4362 of

LNCS, pages 295–308, 2007.

[75] M. G. Gouda. Closed Covers: To Verify Progress for Communicating

Finite State Machines. IEEE Trans. Software Eng., 10(6):846–855,

1984.

[76] B. Hamid, A. Radermacher, A. Lanusse, C. Jouvray, S. Gérard, and

F. Terrier. Designing Fault-Tolerant Component Based Applications

with a Model Driven Approach. In Proceedings of SEUS’08, volume

5287 of LNCS, pages 9–20. Springer, 2008.

[77] B. Hamid, A. Radermacher, P. Vanuxeem, A. Lanusse, and S. Gérard.

A Fault-tolerance Framework for Distributed Component Systems. In

Proceedings of SEAA’08, pages 84–91. IEEE, 2008.

[78] D. Harel. Statecharts: A Visual Formulation for Complex Systems.

Sci. Comput. Program., 8(3):231–274, 1987.

[79] R. Hennicker, S. Janisch, and A. Knapp. On the Observable Behaviour

of Composite Components. In C. Canal and C. Pasareanu, editors,

Proceedings of FACS’08, ENTCS, pages 1–26. Elsevier, 2008.

BIBLIOGRAPHY 219

[80] T. A. Henzinger. Masaccio: A formal model for embedded compo-

nents. In Proceedings of the First IFIP International Conference on

Theoretical Computer Science, pages 549–563, 2000.

[81] M. P. Herlihy and J. M. Wing. Specifying Graceful Degradation. IEEE

Trans. Parallel Distrib. Syst., 2(1):93–104, 1991.

[82] S. Herold, H. Klus, Y. Welsch, C. Deiters, A. Rausch, R. Reussner,

K. Krogmann, H. Koziolek, R. Mirandola, B. Hummel, M. Meisinger,

and C. Pfaller. CoCoME — The Common Component Modeling Ex-

ample. In The Common Component Modeling Example, volume 5153

of LNCS, pages 16–53. Springer, 2008.

[83] C. A. R. Hoare. Communicating Sequential Processes. Series in Com-

puter Science. Prentice/Hall International, 1985.

[84] P. Inverardi and S. Uchitel. Proving Deadlock Freedom in Component-

Based Programming. In Proceedings of FASE’01, volume 2029 of

LNCS, pages 60–75, 2001.

[85] P. Inverardi, A. L. Wolf, and D. Yankelevich. Static Checking of

System Behaviors Using Derived Component Assumptions. ACM

Trans. Softw. Eng. Methodol., 9(3):239–272, 2000.

[86] P. Jalote. Fault Tolerance in Distributed Systems. Prentice Hall, 1998.

[87] P. C. Kanellakis and S. A. Smolka. CCS Expressions, Finite State

Processes, and Three Problems of Equivalence. Inf. Comput., 86(1),

1990.

[88] E. Kindler. Safety and Liveness Properties: A Survey. EATCS-

Bulletin, 53:268–272, 1994.

[89] J. C. Knight, E. A. Strunk, and K. J. Sullivan. Towards a Rigor-

ous Definition of Information System Survivability. In Proceedings of

DISCEX (1)’03, pages 78–89. IEEE Computer Society, 2003.

[90] J. Kofron. Extending Behavior Protocols With Data and Multisyn-

chronization. Technical Report 2006/10, Dep. of SW Engineering,

Charles University in Prague, 2006.

220 BIBLIOGRAPHY

[91] D. Kozen. Results on the Propositional µ-Calculus. Theoretical Com-

puter Science, 27(3):333–354, 1983.

[92] C. Lambertz. Exploiting Architectural Constraints and Branching

Bisimulation Equivalences in Component-Based Systems. 2009. To be

published as a technical report of Eindhoven University of Technology.

[93] L. Lamport. Proving the Correctness of Multiprocess Programs. IEEE

Trans. Software Eng., 3(2):125–143, 1977.

[94] K.-K. Lau and Z. Wang. Software Component Models. IEEE

Trans. Software Eng., 33(10):709–724, 2007.

[95] P. A. Lee and T. Anderson. Fault Tolerance Principles and Prac-

tice, volume 3 of Dependable Computing and Fault-Tolerant Systems.

Springer Verlag, second, revised edition, 1990.

[96] N. A. Lynch and M. R. Tuttle. An Introduction to Input/Output

Automata. CWI-Quarterly, 2(3):219–246, 1989.

[97] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Dis-

tributed Software Architectures. In W. Schafer and P. Botella, editors,

Proceedings of ESEC’95, volume 989, pages 137–153, Sitges, Spain,

1995. Springer-Verlag, Berlin.

[98] M. Majster-Cederbaum and M. Martens. Robustness in Interaction

Systems. In Proceedings of FORTE’07, volume 4574 of LNCS, pages

325–340, 2007.

[99] M. Majster-Cederbaum and C. Minnameier. Deriving Complexity Re-

sults for Interaction Systems from 1-safe Petri Nets. In Proceedings of

SOFSEM’08, volume 4910 of LNCS, pages 352–363. Springer, 2008.

[100] M. Majster-Cederbaum and C. Minnameier. Cross-Checking — En-

hanced Over-Approximation of the Reachable Global State Space of

Component-based Systems. In Proceedings of the LIX Colloquium on

Reachability Problems’09, 2009. accepted for publication.

BIBLIOGRAPHY 221

[101] M. Majster-Cederbaum and C. Minnameier. Everything is PSPACE-

complete in Interaction Systems. In Proceedings of ICTAC’08, volume

5160 of Lecture Notes in Computer Science, pages 216–227. Springer,

2008.

[102] M. Majster-Cederbaum, M. Martens, and C. Minnameier. A Poly-

nomial-Time Checkable Sufficient Condition for Deadlock-Freedom of

Component Based Systems. In Proceedings of SOFSEM’07, volume

4362 of LNCS, pages 888–899, 2007.

[103] M. Martens and M. Majster-Cederbaum. Compositional Analysis of

Tree-Like Component Architecures. In Proceedings of EMSOFT’08,

pages 199–206. ACM, 2008.

[104] M. Martens and M. Majster-Cederbaum. Using Architectural Con-

straints for Deadlock-Freedom of Component Systems with Multiway

Cooperation. In Proceedings of TASE’09, pages 225–232. IEEE Con-

ference Publishing Services, 2009.

[105] V. Matena, S. Krishnan, L. DeMichiel, and B. Stearns. Applying En-

terprise JavaBeans 2.1: Component-Based Development for the J2EE

Platform. Addison-Wesley Professional, 2nd edition, 2003.

[106] D. Messerschmitt and C. Szyperski. Software Ecosystem — Under-

standing an Indispensable Technology and Industry. MIT Press, 2003.

[107] R. Milner. Communication and Concurrency. Prentice/Hall, 1989.

[108] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes,

Parts I and II. Information and Computation, 100(1):1 – 77, 1992.

[109] S. Moschoyiannis and M. W. Shields. Component-Based Design: To-

wards Guided Composition. In Proceedings ACSD’03, pages 122–131.

IEEE Computer Society, 2003.

[110] T. Murata. Petri Nets: Properties, Analysis and Applications. Pro-

ceedings of the IEEE, 77(4):541–580, 1989.

222 BIBLIOGRAPHY

[111] G. J. Myers. The Art of Software Testing. Wiley, revised 2nd edition,

2004.

[112] O. Nierstrasz and F. Achermann. A Calculus for Modeling Software

Components. In Proceedings of FMCO’02, volume 2852 of LNCS,

pages 339–360, 2003.

[113] S. S. Owicki and L. Lamport. Proving Liveness Properties of Con-

current Programs. ACM Trans. Program. Lang. Syst., 4(3):455–495,

1982.

[114] R. Paige and R. E. Tarjan. Three Partition Refinement Algorithms.

SIAM J. Comput., 16(6), 1987.

[115] P. Parizek and F. Plasil. Modeling Environment for Component Model

Checking from Hierarchical Architecture. In Proceedings of FACS’06,

volume 182 of ENTCS, pages 139–153. Elsevier, 2007.

[116] D. Peled. All from One, One for All: on Model Checking Using Rep-

resentatives. In Proceedings of CAV’93, volume 697 of LNCS, pages

409–423. Springer, 1993.

[117] C. A. Petri. Kommunikation mit Automaten. Bonn: Institut für

Instrumentelle Mathematik, Schriften des IIM Nr. 2, 1962. English

translation available as Communication with Automata, New York:

Griffiss Air Force Base, Technical Report RADC-TR-65–377, Vol. 1,

Pages: Suppl. 1.

[118] F. Plasil and S. Visnovsky. Behavior Protocols for Software Compo-

nents. IEEE Transactions on Software Engineering, 28(11):1056–1076,

2002.

[119] F. Plasil, D. Balek, and R. Janecek. SOFA/DCUP: Architecture for

Component Trading and Dynamic Updating. In Proceedings of IC-

CDS’98. IEEE Computer Society, 1998.

[120] A. Pnueli. The Temporal Logic of Programs. In Proceedings of

FOCS’77, pages 46–57. IEEE, 1977.

BIBLIOGRAPHY 223

[121] A. Pnueli, N. Shankar, and E. Singerman. Fair Synchronous Transition

Systems and Their Liveness Proofs. In Proceedings of FTRTFT’98,

volume 1486 of Lecture Notes in Computer Science, pages 198–209.

Springer-Verlag, 1998.

[122] A. Pretschner and M. Leucker. Model-Based Testing — A Glossary.

In Model-Based Testing of Reactive Systems, volume 3472 of LNCS,

pages 607–609. Springer, 2005.

[123] R. Reussner, S. Becker, J. Happe, H. Koziolek, K. Krogmann, and

M. Kuperberg. The Palladio Component Model. Technical Report

Interner Bericht 2007-21, Universität Karlsruhe, 2007.

[124] R. H. Reussner, H. W. Schmidt, and I. Poernomo. Reliability Predic-

tion for Component-Based Software Architectures. Journal of Systems

and Software, 66(3):241–252, 2003.

[125] T. Saridakis. Graceful Degradation for Component-Based Embedded

Software. In Proceedings of IASSE’04, pages 175–182. ISCA, 2004.

[126] T. Saridakis. Surviving Errors in Component-Based Software. In Pro-

ceedings of EUROMICRO-SEAA’05, pages 114–125. IEEE Computer

Society, 2005.

[127] R. Schaube. Effiziente Überapproximation des globalen Zustand-

sraums komponenten-basierter Systeme durch Cross-Checking in Sub-

systemen. Master’s thesis, University of Mannheim, 2008.

[128] N. Semmelrock and M. Majster-Cederbaum. Reachability in Tree-

Like Component Systems is PSPACE-Complete. In Proceedings of

FACS’09, 2009. accepted for publication.

[129] C. P. Shelton and P. Koopman. Improving System Dependability with

Functional Alternatives. In Proceedings of DSN’04, pages 295–304.

IEEE Computer Society, 2004.

[130] A. P. Sistla. On Characterization of Safety and Liveness Properties

in Temporal Logic. In Proceedings of PODC ’85, pages 39–48. ACM,

1985.

224 BIBLIOGRAPHY

[131] I. Sommerville. Software Engineering, chapters 11 and 12. Pearson

Education Limited, 8th edition, 2007.

[132] R. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM

Journal on Computing, 1(2):146–160, 1972.

[133] R. Tarjan. Enumeration of the Elementary Circuits of a Directed

Graph. SIAM Journal on Computing, 2(3):211–216, 1973.

[134] M. H. ter Beek, C. A. Ellis, J. Kleijn, and G. Rozenberg. Synchroniza-

tions in Team Automata for Groupware Systems. Computer Supported

Cooperative Work, 12(1):21–69, 2003.

[135] E. Troubitsyna. Developing fault-tolerant control systems composed

of self-checking components in the action systems formalism. In H. D.

Van and Z. Liu, editors, Proceedings of the Workshop on Formal As-

pects of Component Software FACS’03, Pisa, Italy, Sep 2003.

[136] M. van der Bijl and F. Peureux. I/O-automata Based Testing. In

Model-Based Testing of Reactive Systems, volume 3472 of LNCS, pages

173–200. Springer, 2004.

[137] B. Zimmerova, P. Vareková, N. Benes, I. Cerná, L. Brim, and J. So-

chor. Component-Interaction Automata Approach (CoIn). In The

Common Component Modeling Example, volume 5153 of LNCS, pages

146–176. Springer, 2008.

Index

actions, 20

α ↓K ′ , see subsystem

behavior

induced global, 24

local, 25

BWS, 46

comm i (j), 20

comp(α), 20

complete

interaction, 21

local state, 24

with respect to A ′, 175

component system, 20

components

interacting, 20

set of, 20

connector, 21

connector set, 21

CS, see component system

cycle, 25

deadlock

-free, 29

-freedom, 29

freedom of global, 29

freedom of local, 29

global, 29

local, 29

Dining Philosophers, 22, 26, 30f.,

33f., 150ff.

enabled

interaction, 24

port, 24

en(qi), 24

EA , 47

excl
(

A0

)

, 132

G, see interaction graph

G∗, see interaction graph

G1
d , see progress graph of stage d

Gd,A ′ , see extended progress graph of

stage d with respect to fail-

ure of A ′

Gd, see extended progress graph of

stage d

IM , see interaction model

IM′
philm

, 22

IM ↓K ′ , see subsystem

IMphilm
, 30

inevitable, 136

with respect to L′′, 136

with respect to j, 136

Int, see interaction set

Int′(i), 20

225

226 INDEX

Int′(qi), 24

Int ↓K ′ , see subsystem

IntA ′(qi), 175

interaction, 20

interaction graph, 51

interaction model, 20

interaction set, 20

interaction system Sys, 24

Intphilm , 30

K, see set of components

K
A0

, 132

need(qi), 24

needA ′(qi), 175

need′(qi), 100

path, 25

port set

of CS, 20

of i, 20

ports, 20

problematic action

PA
(

qi, α, j,A ′
)

, 179

PA (qi, α, j), 62

PA (qi, j), 66

problematic state

PS′
j (qi, α), 107

PSj,A ′ (qi, α), 178

PSj (qi, α), 60

PSj (qi), 64

progress, 32

without A ′, 174

progress graph of stage d, 137

extended, 146

with respect to failure of A ′,

185

reach(Sys), 24

robustness

of deadlock-freedom, 174

run, 25

without A ′, 174

σ ↓K ′ , see subsystem

state

global, 24

global initial, 24

initial, 24

local, 24

reachable, 24

set of global, 24

strongly exclusive communica-

tion, 40

subsystem, 27

Sys′philm , 26

Sys ↓K ′ , see subsystem

Sys, 41

Sys
A0

, 132

Sysbank, 71ff., 181ff.

Sys∆, 77ff.

Sysphilm , 30

Syss/u, 186ff.

Systrack, 80ff., 181ff.

T
A0

, 132

TL′
, 184

transition relation

global, 24

local, 24

INDEX 227

transition system

induced global, 24

labeled, 24

tree-like, 51

strongly, 51

TSys, see induced global behavior

T̃Sys, see induced global transition

system

