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Chapter 1

Introduction

1.1 Problem and Main Results

Recent developments vividly illustrate the importance of financial markets and

financial institutions to a well-functioning modern economy. A seemingly small

disruption in the sub-prime mortgage market has spread out to other financial

markets and led to a severe crisis in the banking sector. Moreover, even the real

sector of the economy is heavily impacted.

A central part of financial institutions, the banking sector, is heavily regulated and

interventions in the banking sector undoubtedly have an impact on the economy far

beyond the regulated banking institution or even the banking sector itself. Thus,

the central question arises of whether regulation indeed supports financial stability

or not?

The building block of the current banking regulation are risk-sensitive capital

requirements, which are based upon the Value-at-Risk (VaR) as a measure for risk.

This measure can be easily understood and it is proposed by many institutions such

as the Basle Committee on Banking Supervision, the SEC, the G30, the ISDA, and

the Derivatives Group. Moreover, it is implemented by risk management systems

such as RiskMetrics and it is widely accepted in the industry.



2 1 Introduction

In this thesis we do not question whether banks should be regulated or not1,

nor whether VaR is the optimal choice for a risk measure2 to base regulation3

on. Instead, we take the common banking regulation with VaR based capital

requirements as given and analyze the impact of regulation on the stability of the

banking sector.

First, we discuss how regulation affects the investment decision of the representative

bank. The main results are the following. Banks are restricted if their nominal debt

volume exceeds a certain threshold, and, if so, provide more equity capital to cover

possible negative outcomes. There are two direct consequences. The representative

bank is less able to maintain high nominal debt volumes. Moreover, debt holders

are better protected in case of defaults due to regulation and charge a lower credit

yield spread relative to an unregulated economy.

However, the indirect consequence of regulation is a higher probability of distress of

the banking system and higher losses in case of defaults. This result can be traced

back to the dynamic trading strategy, which replicates the change in the optimal

profile that is directly attributable to regulation. This change consists of transferring

wealth into all regulated states of the economy; the transfer is paid by the cheapest,

unregulated states, namely the most extreme (negative) outcomes. The regulation-

induced change in the trading strategy can be represented as a static derivatives

position; hence, the optimal investment decision under regulation may serve as one

explanation for the highly innovative derivatives market and the shifting of risk into

the tails of the distribution by banks before the current crisis emerged.

Second, the impact of regulation on endogenous market prices of assets, debt, and

equity as well as their dynamic structure is analyzed. Under endogenous prices,

qualitatively the same results can be deduced as in the above discussed case with

fixed prices. However, the increased demand by the trading strategy which replicates

the adaption to regulation, shifts prices in a way that the implementation of the same

1See e.g. Dewatripont and Tirole (1994) or Freixas and Rochet (1999)
2See e.g. Artzner et al. (1999)
3See e.g. Danielsson et al. (2001)
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trading strategy is more expensive. Consequently, the probability of distress soars

even more in equilibrium and, if there is a crisis, the aggregate wealth of the economy

is less than in a corresponding economy with an unregulated financial system.

In equilibrium, wealth is transferred between different states in order to fulfill the

regulatory requirements. Yet, there exists a second transfer of wealth between the

agents of the economy specific to the equilibrium formulation. Not only debt holders

profit from the equity capital provisions of banks, but also the unrestricted investor

since asset prices also move in favor of investors.

The volatility of assets is reduced due to regulation in most cases. Nevertheless, es-

pecially as the economic situation deteriorates, volatility is increasing substantially.

Depending on the tightness of regulation, the volatility can be much higher than in

an economy with unregulated financial intermediaries. Moreover, volatility is highly

sensitive to a change in the underlying economic development, i.e. volatility changes

quickly from low to high and back in adverse economic situations.

Third, we shed light onto the problem of how to improve the banking regulation, if

banks actively manage both, assets and liabilities. The additional degree of freedom

that arises if banks simultaneously manage their assets and liabilities, enables banks

to mitigate the burden of regulation to some extent. This, in turn, results in a

higher danger of defaults in the banking sector.

Since the central bank is able to control, at least in parts, the overall leverage of the

economy and thereby the probability of distress, we propose to include the central

bank into the set of regulatory authorities. We show, that in order to cope with the

indirect incentives implied by the risk-sensitive capital requirements, leverage has

to be decreased when a stricter regulatory regime is applied to the economy and

the probability of distress is kept constant. This approach to regulation reduces the

value of aggressively ’gaming’ the VaR restriction.

Finally, one has to keep in mind that, if VaR-based capital requirements - which

are imposed today - are not accompanied by state contingent costs - which arise

after uncertainty has been resolved - regulation looses its power. To reach the

same objectives with lower default costs, regulation must be much tighter. Hence,
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credibly incorporating parts of systemic costs in case of distress is essential for a

well-functioning regulatory regime.

In the following the organization of the thesis is outlined.

Chapter 2 introduces the general economic setting and the pricing of contingent

claims in complete markets under no-arbitrage considerations. Then it reviews the

well-known consumption-investment problem for an unrestricted investor as well as

for a VaR restricted investor. Finally, the valuation of assets in a pure exchange

equilibrium is discussed for an economy with both types of investors.

In Chapter 3 the optimal asset choice of the banking sector is analyzed by

introducing banks into the setting of the previous chapter. The banking sector

is characterized by having debt outstanding and, in order to capture the regulatory

impact, a restriction by a VaR constraint. The banking sector is modelled in

aggregate terms by specifying a pay-off structure dependent on the total assets at

maturity. Assets are allocated using the first priority rule. However, if a bank fails,

default costs accrue. Afterwards, the endogenous decision in terms of the optimal

terminal wealth of the banking system under exogenously given prices is derived and

analyzed. Furthermore, the resulting dynamic asset selection is discussed.

In Chapter 4, a competitive pure exchange equilibrium is formulated. This allows us

to study the impact of the VaR regulation on market prices and their evolution over

time. By comparing the regulated banking sector with (a) an otherwise identical

unrestricted financial intermediary and (b) the banking sector under fixed prices,

the wealth transfer consequences of regulation are deduced.

In contrast to previous chapters, where a fixed nominal debt volume was assumed,

Chapter 5 studies the impact of the combined asset liability decision of the banking

sector. It is first illustrated that the additional degree of freedom in the choice of

their capital structure enables banks to mitigate regulatory constraints. Thereby,

the banking system is even more susceptible to a financial crisis.

Based on the last results, a holistic regulatory approach is proposed. It includes the

central bank in the regulatory authorities. The objective with regard to regulation
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is to control the probability of distress; as an instrument the central bank utilizes

the capability to restrict the overall leverage as a price-leading agent.

Chapter 6 summarizes the results, discusses the robustness of the results, and

concludes with policy implications derived from the presented model.

1.2 Review of the Related Literature

Pyle (1971) and Hart and Jaffee (1974) were the first to apply a (mean-variance)

portfolio selection approach to banks, while Kahane (1977) and Koehn and

Santomero (1980) included capital constraints. They showed that a higher capital

requirement may lead to a more risky portfolio selection in terms of the amount

invested into risky assets. As there may exist some banks that are more risky and

some that are less, the impact on the systemic risk is unclear. To remedy the

problem of riskier investments due to regulation, they suggest risk-sensitive capital

weights; Kim and Santomero (1988) find that this approach is indeed reducing risk,

but only if the risk weights are set optimally. Alexander and Baptista (2004, 2006)

refine those approaches, but still conclude that regulation in some circumstances

increases fragility in the financial system.

Even though we are using a dynamic framework, we also recover similar results with

respect to the portfolio selection problem. However, we are able to characterize the

results more precise than in the static frameworks. In most economic situations,

portfolios are indeed less risky than the ones of an unregulated economy. However,

especially when the economic development deteriorates, regulation fails with respect

to the portfolio decision, as banks substantially increase risk by investing more into

risky assets. Moreover, the magnitude of this adverse portfolio decision is heavily

dependent on the VaR horizon and on the tightness of regulation.

The importance of a dynamic model is illustrated by Blum (1999) in a two-period

model. There exist four different cases, depending in which period regulation is

binding; two of them are of special interest: If the capital constraint is active in
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the first period, whereas not in the second, there exists a risk reducing effect of

regulation. However, if the case is reversed, i.e. the capital constraint is binding in

the second period, whereas not in the first period, the bank increases its risk profile in

the first period, in order to lessen the impact of the restriction in the second period

by an increased capital basis, if the investment turns out to be successful. This

simple argument in Blum’s article shows that incorporating dynamic aspects into

the analysis substantially adds to a better understanding of the effects of banking

regulation. In the following we mainly focus on continuous time models.

Bodie et al. (2007) and Gray and Malone (2008) decompose the balance sheets of

the main aggregated sectors of the economy into a set of derivatives in the style of

Merton (1974) for the balance sheet of a levered firm. Lehar (2005) uses a similar

approach to discuss empirically the probability of systemic crisis and the expected

shortfall in a crisis.

Our approach has in common the modelling of the aggregate sectors, albeit less

detailed than theirs. However, their modelling approach is not applicable to the

question whether banking regulation contributes to financial stability, as there is

no room for agents to adjust their portfolio decisions optimally due to the imposed

restrictions, such as a VaR restriction. Banks do not actively manage their asset or

liability side.

Basak and Shapiro (2001) introduced a VaR restriction into the optimization

problem of an otherwise unrestricted investor in a complete market setting. They

find that the VaR restriction induces gambling for resurrection, while the wealth of

the VaR restricted agent is in the proximity of the VaR boundary. Leippold et al.

(2006) set up a model with a VaR restriction in an incomplete market. The implicit

incentive of a VaR restriction is an increased risk exposure in high volatility states.

Kaplanski and Levy (2007) extend the analysis of Basak and Shapiro (2001) by

additionally introducing a minimum capital requirement at the VaR horizon, which

has to be fulfilled in any state. If regulation could in fact impose such a restriction

to individual banks, systemic risk could be banned, as there never exist substantial

defaults in the banking system. Obviously, this is in fact not the case.
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We follow these models in explicitly considering a VaR restriction similar to theirs.

However, since these models only contain individual investors without debt, they do

not capture a central characteristic of financial intermediaries and/or banks.

In contrast, Basak and Shapiro (2005) present a structural model, incorporating

the investment decision of a levered investor. They analyze the impact of costly

default on credit spreads. Cuoco and Liu (2006) adopt insured debt in the form of a

riskless zero bond and a VaR restriction. They focus on the impact of a simultaneous

reporting and investment strategy with VaR. Since constantly reporting too low VaR

values will increase the capital requirement, VaR in conjunction with a back-testing

procedure reduces portfolio risk. Essential for deriving the results are the implicit

costs associated with a violation of the reported VaR, namely an increased capital

requirement in the next period.

We extend the model of Basak and Shapiro and include both, risky debt and a VaR-

based capital requirement. In contrast to their focus on a single investor, we apply

the results presented in Eisenberg and Noe (2001); they derive the payment vector

(clearing vector) in a financial system, when firms default, obeying priority of debt

claims and limited liability of equity. Their results allow us to model the banking

sector on an aggregated level. A natural benchmark for comparison of the regulated

banking sector with unregulated financial intermediaries can be easily obtained by

relaxing the VaR restriction.

Decamps et al. (2004) and Dangl and Lehar (2004) discuss the impact of regulation

with capital requirements under the endogenous decisions to deliberately violate the

regulation. They conclude that there is (in most cases) no risk shifting due to capital

requirements.

This strand of literature is of less interest to our work for three reasons. First, their

focus is on problems of moral hazard in conjunction with regulation. Second, the

structure of their modelling approach involves significant technical problems, when

a VaR restriction with an inherently finite horizon is factored in. Third, and most

important, deriving endogenous prices for assets can be hardly achieved in their

setup.
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Building on the pure exchange equilibrium formulation as in Cox and Huang (1991)

and Karatzas et al. (1990), Basak and Shapiro (2001) derive the feedback effect of

a VaR restricted investors on market prices and volatility. The excess demand,

induced by portfolio decision of the VaR restricted investors, has a substantial

impact on prices; in prosperous times and under very adverse situations, the value

of assets is decreased, while in intermediate states assets are worth more. In

equilibrium, the gambling for resurrection type of portfolio decision will increase

the volatility of markets. Danielsson et al. (2004) deploy a similar setting in discrete

time. They construct the solution by a sequence of myopic general equilibrium

economies. They also find that there will be feedback effects of trading decisions

which increase volatility and exacerbate financial stability. Leippold et al. (2006)

apply an incomplete market framework. While the VaR restriction results in

riskier portfolios, when the exogenous volatility is high, in equilibrium, effects are

ambiguous.

We extend the model with fixed price dynamics to a pure exchange equilibrium using

similar techniques as Basak and Shapiro. Thereby, we are able to analyze the impact

of regulation on endogenous prices of an economy with a regulated banking sector.

The core difference to their paper is the combination of the levered investment and

the VaR-based capital requirements.

Finally, there are other strands of the literature discussing the problem that banks

are not only able to choose their asset portfolio, but can also manage their liabilities,

especially their deposit volume. Blum (1999), Calem and Rob (1999), Hellmann

et al. (2000), Estrella (2004), and Repullo and Suárez (2004) analyze the impact

of an endogenous deposit volume decision on a bank’s stability under different

assumptions. Their general conclusion is that capital requirements are (in many

cases) effective in reducing the risk of failure, since a high leverage today induces

large indirect costs tomorrow if, under adverse economic developments, regulatory

constraint have to be fulfilled by substantially reducing the credit volume.

We undertake a first step of how to address the endogeneity of the liability side of the

aggregate banking sector’s balance sheet. Since the central bank is able to control,
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at least in parts, the overall nominal debt level, we introduce the central bank as

another regulatory authority. Its only goal is to keep the probability of distress in

the financial system at a certain level. We abstract, thereby, from other objectives

such as inflation targeting. The banking sector and the central bank form a market,

where the central bank acts as a price-leading agent. While at the asset side of the

banking sector, there still is a dynamic competitive equilibrium, the market for debt

is open only once at the beginning.



10 1 Introduction



Chapter 2

Individual Decision

and Valuation in Equilibrium

This thesis is based upon an economy with two essential properties: first, the state

variables describing the economy are diffusion processes. This includes both time as

well as the driving economic variables. The second assumption concerns the security

markets: only complete markets are considered. This restriction is important, as it

enables agents in the economy to contract on any state of the world.

In this chapter we first review the standard framework. A complete security market

is described and the fundamental equivalence between the concept of a representative

agent, the notion of no-arbitrage, stochastic discount factors, and an equivalent

martingale measure is introduced.

In the following part, the individual consumption and investment decisions of an

unrestricted investor and of an investor who faces a Value-at-Risk (VaR) constraint

are presented.

In the last section, a pure exchange equilibrium is defined and the conditions for its

existence are specified. As a tool for solving equilibrium, a representative agent is

introduced. Finally, using the optimal decisions of investors, asset prices are derived

in economies with and without Value-at-Risk restrictions.

Most of the results in this chapter are well known, see for example Karatzas
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and Shreve (1998). The optimal consumption-investment decision under a VaR

restriction, i.e. Section 1.2.3, is non-standard, but was derived by Basak and Shapiro

(2001). The pure exchange equilibrium with agents that face a VaR restriction, i.e.

Section 1.3.2, was in two ways modified relative to the one presented in Basak and

Shapiro (2001). One modification was introduced in order to circumvent a jump

of asset prices at maturity; the other one allows for a general utility function with

constant relative risk aversion.

The formal setup is close to Karatzas and Shreve (1998), Chapters 1, 3, and 4; we

also refer to Duffie (2001), Korn (1997), Bjoerk (2009), and Pliska (1997) for further

reading.

However, we use some more restrictive assumptions than in the general framework

of Karatzas and Shreve (1998) in order to keep the technical level as simple as

possible without loosing economically relevant results. As a primer we state the

main assumption used throughout the thesis:

• As only complete markets are of interest, we restrict, without loss of generality,

the number of securities N to the number of risk sources D, i.e. N = D.

Furthermore, these securities are independent in the sense, that the covariance

matrix Σ has full rank and is, hence, invertible.

Additionally, there are no frictions on financial markets such as short selling.

Even though these two assumption are idealizing the world possibly too much,

we first need to address the problem of how banking regulation impacts

financial stability under perfect conditions. The question of how frictions or

the incompleteness of markets affect financial stability is clearly of importance,

but subject of future research.

• All stochastic variables and processes are measurable and adapted with respect

to the filtration F , if not specified otherwise.

• Furthermore, we assume that the processes for the interest rate r, the return

rate µ, and the covariance matrix Σ as well as its inverse Σ−1 are bounded.

Relaxing boundedness is not difficult, but introduces a series of additional
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regularity conditions without adding to the economic content in our case. By

this assumption, as an example, we exclude standard models for the interest

rate process like the one of Cox et al. (1985b). Nevertheless, this poses no

problem in our framework, since the dynamics of the riskless interest rate is

not the focus of the thesis; in many cases it is for simplicity set to a constant

or turns out to be in equilibrium constant.

The consumption process c and the portfolio process π satisfy the square-

integrability conditions E[
∫ T

0
c2
tdt] < ∞ and E[

∫ T
0
π2
t dt] < ∞; the wealth at

the horizon WT satisfies E[W 2
T ] < ∞. Thereby, arbitrage opportunities are

dismissed (see Harrison and Pliska (1981)). In the pure exchange equilibria of

later sections, these conditions are endogenously fulfilled.

• The security market will turn out to be a particular case of the standard

financial market in the sense of Karatzas and Shreve (1998), Definitions (1.1.3)

and (1.5.1).

• All agents optimize their decision using expected utility; they share the some

coefficient of constant relative risk aversion CRRA.

2.1 Valuation of Securities under No-Arbitrage

Underlying the economy is a complete probability space (Ω,F ,P) and the time

period [0, T ]. The set of states of the nature is denoted Ω, F a σ-Algebra on Ω, and

P the real world probability measure defined on Ω.

A D-dimensional standard Brownian motion w = (w1, · · · , wD)> is defined on

(Ω,F ,P), which drives the uncertainty within the economy. (·)> denotes the

transposed vector. Let Ft be the continuous filtration generated by the Brownian

motion ws∈[0,t] up to time t, augmented by all null subsets. This filtration represents

the information available to agents in the economy.



14 2 Individual Decision and Valuation in Equilibrium

Securities and their Dynamics

The security market consists of a money market account with dynamics

dBt = rtBtdt, B0 = 1 , (2.1)

where r is the locally risk-free rate.

In addition, there are N = D risky assets with price dynamics

dP Y,n
t = dP n

t + δnt dt = P n
t (µnt dt+ σnt dwt) , (n = 1, . . . , N) . (2.2)

P n is the ex dividend price of the risky asset, whereas P Y,n is the price that includes

the accumulated yield from the dividend stream δn. The measurable and bounded

processes for the interest rate r, the instantaneous expected return vector µ, and the

volatility matrix Σ = {(σ1
d, . . . , σ

N
d ) d = 1, . . . , D} are adapted to the filtration F

and fulfil regularity conditions, such that the stochastic differential equations (2.1)

and (2.2) is well defined.

Most important for modelling a complete market is that there exists (almost surely)

a unique solution vector κ to the equation

µt − rt1 = Σtκt ,

which is true given the standing assumptions, as Σ is invertible. The unique market

price of risk is given by

κt = Σ−1
t (µt − rt1) . (2.3)

1 denotes the unit vector (1, 1, . . . , 1)> of dimension N . The solution of the asset

price dynamics (2.2) is

P Y,n
t = P n

0 exp

(∫ t

0

(
µns −

1

2
‖ σns ‖2

)
ds+

∫ t

0

σns dws

)
, (2.4)

where the initial condition P Y,n
0 = P n

0 is used and ‖x‖ =
(∑D

i=1 x
2
i

) 1
2
.
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Trading Strategies

Each agent has a (possibly state- and time-dependent) non-negative consumption

process c and a (possibly state- and time-dependent) trading strategy, π =

(π1, · · · , πN)>, where πn is the dollar amount held in the risky asset n. When

investing in asset n at timte t and holding the asset over the next infinitesimal

period, one has to pay the ex price P n
t in order to obtain the capital gain dP n

t as

well as the cahs flow δnt dt. Thus, the total return can be written as

dRn
t =

dP Y,n
t

P n
t

, (n = 1, . . . , N) .

Let W π denote the wealth of an agent given a trading strategy π and including

dividends as inflow. The requirement that there is no outflow beside consumption

over time t ∈ (0, T ] makes the portfolio strategy self-financing. Consequently, the

amount (W π − π>1) is risklessly invested in the money market with instantaneous

return r. Hence, the wealth process follows

dW π
t =

(
W π
t − π>t 1

)
rtdt+ π>t dRt − ctdt

= (W π
t rt − ct) dt+ π>t (µt − rt1) dt+ π>t Σtdwt

=
(
W θ
t rt +W θ

t θ
>
t (µt − rt1)− ct

)
dt+W θ

t θ
>
t Σtdwt .

θ is the same portfolio strategy as π, however, expressed as the fraction of wealth

invested in the risky assets, i.e. π = W πθ and W π = W θ.

To ensure the existence of a solution we need standard regularity conditions in order

to have a well-defined solution.

However, this is not enough. In addition we have to exclude cases where
∫ T

0
π>t Σtdwt

looses the martingale property. This restriction is necessary as, with a portfolio

violating this restriction, an investor will be able to profit from investing in a fair

game, e.g. by doubling the bet every time on credit. One possible constraint to

ensure that portfolio strategies with exploding variance such as a doubling strategies

are not feasible, is to keep V[
∫ T

0
π>t Σtdwt] under control by the square integrability
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constraint

E

[(∫ T

0

‖πs‖2ds

)]
<∞ .

Another possibility to tame the portfolios is to restrict the ability to go short risky

assets by a credit constraint.

Stochastic Discount Factors and Arbitrage

When using a self-financing portfolio strategy it is obvious that there also exists a

self financing trading strategy in some other numeraire. More generally, when there

exists a self-financing trading strategy for the price process P = (P 1, · · · , PN)>,

there also exists a self-financing trading strategy for a deflated price process ξP ,

when the deflator is strictly positive, ξ > 0. As a deflator may serve any one-

dimensional and adapted process. Following Cox and Huang (1989), Cox and Huang

(1991), Harrison and Kreps (1979), Karatzas et al. (1987), and Pliska (1986), the

stochastic discount process is defined by

ξt = ξ0 exp

(
−
∫ t

0

(rs +
1

2
‖ κs ‖2)ds−

∫
0

κ>s dws

)
(ξ0 > 0) . (2.5)

By construction, ξ > 0. Applying Ito’s lemma, the dynamics of the stochastic

discount factor is

dξt = −ξt(rtdt+ κ>t dwt). (2.6)

Without any risk (w = 0) or when risk is not priced (κ = 0), ξ is the price of a zero

bond. When priced risks are involved, the stochastic discount factor ξ adjusts in

addition by the market price of risk κ.

From Karatzas and Shreve (1998), Theorem (1.4.2), we know that there exists no

arbitrage, if and only if the market price of risk κ is well defined by

(µt − rt1) = Σtκt (2.7)
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and fulfils the requirements

∫ T

0

‖κs‖2ds <∞ ,

E

[
exp

(
−1

2

∫ T

0

‖κs‖2ds−
∫ T

0

κ>s dws

)]
= 1 . (2.8)

When the standing assumptions on page 12 are applied to the theorem, the market

price of risk κ exists by assumption. Moreover, as µ, r, Σ, and Σ−1 are bounded, κ

itself is bounded as well, which is sufficient to fulfil the stated requirements. Since

κ is unique by assumption (2.3), the stochastic discount factor is as well.

As the ’only if’ part is true as well, we can also state that, if there exists a deflator

under which security prices are martingales, than there exists no arbitrage; see also

the Corollary in Duffie (2001) on page 110.

Market Completeness

If the solution to the market price of risk κ in equation (2.7) is unique, the market

is complete, see Karatzas and Shreve (1998) Theorem (1.6.6) or Corollary (1.6.8).

This property is essential for the following reason: in a complete market, every

contingent claim XT that is a FT measurable random variable with finite variance

can be replicated by a self-financing trading strategy π with a specific initial wealth

x0, see Karatzas and Shreve (1998), definition (1.6.1).

Furthermore, by no-arbitrage, the unique price at time t is, see also Remark (1.6.3),

Xt = Et

[
ξT
ξt
XT

]
,

where Et[XT ] = E[XT |Ft] denotes the conditional expectation with respect to the

filtration Ft. If t = 0, we refrain from indexing expectations (and variances).

If an exogenous cash-flow stream c is added, then the value Xt of the contingent

claim XT is, under the previous assumptions and no-arbitrage,

Xt = Et

[∫ T

t

ξs
ξt
csds+

ξT
ξt
XT

]
. (2.9)
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Remark. Relation between Stochstic Discount Factors and the Equiva-

lent Martingale Measure (EMM)

Given some contingent claim XT , the value at some time t can be written in different

forms

Xt = EP
t

[
ξT
ξt
XT

]
Def. (2.5)

= EP
t

[
exp

(
−
∫ T

t

(rs +
1

2
‖ κs ‖2)ds−

∫ T

t

κ>s dws

)
XT

]
= EP

t

[
exp(−

∫ T

t

rsds) exp

(
−
∫ T

t

1

2
‖ κs ‖2 ds−

∫ T

t

κ>s dws

)
XT

]
= EQ

t

[
exp(−

∫ T

t

rsds)XT

]
= EQ

t

[
Bt

BT

XT

]

The last equation represents the well-known risk-neutral pricing approach with a

change of measure

dQ

dP
= exp

(
−
∫ T

0

1

2
‖ κs ‖2 ds−

∫ T

0

κ>s dws

)
.

The martingale requirement in equation (2.8) guarantees that Q is in fact an

equivalent martingale measure. Again, when the market price risk is unique, there

is a unique state price and, consequently, a unique equivalent martingale measure.

Risky Asset Prices

With result (2.9) at hand we can derive the price of risky assets

P n
t = Et

[
ξT
ξt
P n
T +

∫ T

t

ξs
ξt
δns ds

]
(n = 1, · · · , N). (2.10)

= EQ
t

[
Bt

BT

P n
T +

∫ T

t

Bt

Bs

δns ds

]

The proof can be found in Cox and Huang (1989), Lemma 2.4.
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2.2 Optimal Consumption

and Optimal Terminal Wealth

Investors trade securities in order to optimize their expected utility over consumption

and terminal wealth. To study this optimization problem we first consider an

investor whose portfolio strategy is not restricted by regulation. We refer to

a method introduced into the finance literature by Cox and Huang (1989) and

independently by Karatzas et al. (1987).

Merton (1969, 1971) derives the dynamic portfolio strategy by deducing the non-

linear Hamilton-Jacobi-Bellman partial differential equation which more often than

not can be attacked numerically only. The second difficulty adheres to the

verification problem, if standard theorems are not applicable.

The advantage of the Cox and Huang approach is that it is much more flexible in

the choice of processes and the handling of additional constraints. The optimization

problem is first rewritten in a static variational form. Afterwards, one can further

disintegrate it to separate state-wise problems which can be solved using standard

deterministic optimization tools. The main drawback relative to the HJB approach

is that it necessarily needs complete markets to achieve the first step of converting

it to a static problem. However, as our setup is in a complete market setting, the

Cox and Huang approach is better suited for our problem.

2.2.1 The Non-Regulated Investor

The unrestricted investor maximizes his expected utility by choosing an appropriate

consumption process cu > 0 and a self-financing trading strategy θu with initial

wealth W u
0 > 0, which leads to a terminal wealth W u

T . In addition, he can spend

only his initial wealth W u
0 on setting up the trading strategy, that is, θu must be

(budget) feasible.

Remark. In this subsection, that is from page 19 to 29, we refrain from using the

u-indexed variables, as only the unrestricted investor is of interest.
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The optimization problem of the unrestricted investor is

sup
{ct,θt}t∈[0,T ]

U(c,W ) = E

[∫ T

0

u(ct) dt+ u(WT )

]
(2.11)

s.t.



θ>t Pt + (1− θ>t 1)Bt

= W0 +
∫ t

0
θ>s dP

Y
s +

+
∫ t

0
(1− θ>s 1)dBt

−
∫ t

0
csds ≥ 0 ∀t

θ>T PT + (1− θ>T 1)BT

= WT ≥ 0

.

The solutions for the unconstrained investor are derived in Cox and Huang (1989);

Kramkov and Schachermayer (1999) deduct the solution in an even more general

framework than the former authors used.

Utility Function

Each investor in the economy maximizes his decisions with respect to the expected

utility (representation) E[u(W )], where the (von Neumann and Morgenstern (1944))

utility function u(·) of wealth W and/or consumption c fulfils the following

properties. For analytical tractability, the utility function is three times continuously

differentiable. In addition, agents are always non-satiated, i.e. more is better, all

other things being equal. Consequently, we require u′ > 0. This property is essential

when no-arbitrage arguments are put forward. When there is satiation, there may

be an arbitrage opportunity, but when all agents are satiated, no one will use this

opportunity, because it decreases their utility level.

Furthermore, agents are required to be risk averse. This translates to a concave

utility function, i.e. u′′ < 0. Relative risk aversion is defined as (see e.g. Pratt

(1964))

R(W ) = −u
′′(W )W

u′(W )
.

If R′(W ) > 0, the agent has increasing relative risk aversion; decreasing relative risk

aversion is defined analogously.
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Essentially we restrict our analysis to the case of constant relative risk aversion

R(W ) = γ > 0. Integrating the previous equation twice results in the well-known

utility function,

u(W ) =

 1
1−γW

1−γ if γ ∈ (0,∞)\{1}

lnW if γ = 1
. (2.12)

In the case of one risky and one riskless asset, this type of utility function exhibits

decreasing absolute risk aversion −u′′

u′
; hence, the demand for the risky asset is

normal, i.e. increasing with wealth, see Arrow (1970) or Pratt (1964). On the other

hand, due to constant relative risk aversion, the fraction of wealth invested in the

risky assets is independent of wealth.

Furthermore, in the case with N securities and one period, two fund separation

holds, since this type of utility function belongs to the HARA class, see Cass and

Stiglitz (1970); for a similar result in the case of multiple securities in a continuous

time financial market, see also Chamberlain (1988) or Schachermayer et al. (2009).

The utility is equipped with the regularity conditions

lim
W→0

u′(W ) =∞

lim
W→∞

u′(W ) = 0 ,

consequently the utility function fulfils the Inada (1963) conditions. To shorten the

notation,

I(·) = (u′)−1(·) : (0,∞)→ (0,∞) (2.13)

is the inverse function of marginal utility. Together with the previous assumption,

I(·) is continuous and strict monotonously decreasing over its domain.

Finally, we assume that all agents share the same utility function, in particular the

same coefficient of relative risk aversion γ.

Remark. The HARA class consists of utility functions, where the coefficient of risk

tolerance − u′

u′′
is of the form am + bmW , satisfying the necessary conditions, such
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that a utility function is indeed defined; see Merton (1990).

Most results of this thesis can also be obtained by using a subset of utility functions

of the HARA class, where investors wish to maintain at least some investor-specific

minimum terminal wealth Km ≥ 0, but share the same coefficient b. Additionally,

the adapted Inada conditions have to be fulfilled. In particular, these utility functions

are of the form

u(W ) =

 1
1−γ (W −Km)1−γ if γ ∈ (0,∞)\{1}

ln(W −Km) if γ = 1
.

The requirement bm = b translates into γm = γ, ∀m, in the case of the CRRA utility

function. This subset of HARA functions implies that the aggregation property in

the sense of Rubinstein (1974) holds.

The Growth Optimal Portfolio: A Special Case

Before we discuss the general problem (2.11) we consider the special case where all

investors are equipped with the log utility (γ = 1) and maximize terminal wealth

only (ct = 0,∀t). We discuss the case separately, because this portfolio enables us

in later sections to reduce dynamic trading strategies to much simpler static option

portfolios with a scaled growth optimal portfolio as an underlying.

Integrating the dynamic budget equation (2.5) we obtain the following

representation of terminal wealth for log utility

WT = W0 exp

(∫ T

0

rs + θ>s (µs − rs1)− 1

2
θ>s σs ds+

∫ T

0

θ>s Σsdws

)
.

Inserting into expected utility, we obtain

E[ln(WT )] = ln(W0) + E

[∫ T

0

rs + θ>s (µs − rs1)− 1

2
‖θ>s Σs‖2 ds

]
.

The optimization of the expected log utility is equivalent to maximizing the expected

growth rate of wealth (expressed as percentage return p.a.) E

[
ln
WT
W0

T

]
.
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The optimal portfolio can be determined by maximizing pointwise

θ>t (µt − rt1)− 1

2
‖θ>t Σt‖2 .

There exists a unique solution, since Σ is invertible by assumption. After

substituting the market price of risk in equation (2.3), the optimal portfolio is

θGOPt = Σ−1
t κt . (2.14)

Latane (1959) and Hakansson (1971) call this specific portfolio the growth optimal

portfolio (GOP). The value dynamics of the GOP, G = P>θGOP , is

dGt

Gt

= (rt+ ‖ κt ‖2)dt+ κ>t dwt . (2.15)

Comparing the dynamics of the GOP (2.15) and the dynamics of the stochastic

discount factor (2.6), one can deduce the relation

Gt

G0

=
ξ0

ξt
,

that is, deflating prices with ξ, i.e. ξP , can be interpreted as discounting with the

mutual fund G, i.e. P
G

, whose portfolio policy is the growth optimal portfolio.

Revisiting the connection between the stochastic discount factor and the equivalent

martingale measure (EMM), we obtain for any given contingent claim XT , the initial

value

X0 = EP

[
ξT
ξ0

XT

]
= EP

[
G0

GT

XT

]
= EQ

[
e(
∫ T
0 rsds)XT

]
= EQ

[
B0

BT

XT

]
,
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i.e., as Q is the EMM with respect to the money market account as a numeraire,

whereas the numeraire that makes P an EMM is the growth optimal portfolio G.

Solving the Optimization of the Unregulated Investor

By virtue of definition, complete markets ensure that any consumption process ct, t ∈

[0, T ], and terminal wealth WT can be attained by a self-financing trading strategy

with a given (unique) initial value. Instead of searching for a optimal consumption-

trading strategy (ct, θt), t ∈ [0, T ], it is, therefore, sufficient to search for an optimal

consumption ct, t ∈ [0, T ], an terminal wealth WT for a given static budget equation.

On the other hand, every trading strategy has a certain pay-off profile. This one-

to-one correspondence between pay-off and trading strategies are difficult to proof

in a continuous time and continuous state framework (see Cox and Huang (1989));

however, they are intuitive in the standard binomial tree approach of Cox et al.

(1979), as the connection between the state contingent pay-offs and the trading

strategy is a linear system of equations with a unique solution.

The budget dynamics in equation (2.5) can be transformed into a static budget

equation by (2.9). After theses changes the optimization problems is

sup
{ct,WT }t∈[0,T ]

U(c,W ) = E

[∫ T

0

u(ct) dt+ u(WT )

]
(2.16)

s.t. E

[∫ T

0

ξtct dt+ ξTWT

]
≤ ξ0W0

ct ≥ 0 ∀t

WT ≥ 0 .

Hence, it is in some cases more convenient to split the solution of the problem into

two parts.

1. Find an optimal (ct, t ∈ [0, T ],WT ) pair that can be financed with initial

wealth W0. This is a static problem, since the solution to the process c can be

achieved by pointwise solving the problem.

2. If needed, recover the unique self-financing portfolio strategy θ using the

market completeness. This is the representation problem.
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The two-step procedure will be discussed now in detail:

Step 1: Solving the Static Problem

From the previous analysis, the budget feasibility of the dynamic budget constraint

in equation (2.5) can be simplified by no-arbitrage considerations in equation (2.9)

to the static budget equation

B(c,W ) = E

[∫ T

0

ξscsds+ ξTWT

]
= ξ0W0 (2.17)

For convenience, the pair (c, t ∈ [0, T ],WT ) is abbreviated by (c,W ).

Let us to define the Lagrangian, with Lagrange multiplier y,

L(c,W ; y) = U(c,W )− y(B(c,W )− ξ0W0)

= E

[∫ T

0

(
u(cs)− yξscs

)
ds+

(
u(WT )− yξTWT

)
+ yξ0W0

]
,

which depends only on (c,W ), but not explicitly on the trading strategy θ any more.

When applying the saddle point theorem, we obtain that (c∗,W ∗, y∗) solves the

optimization problem (2.11), if it is a saddle point, i.e. if

L(c∗,W ∗; y) ≥ L(c∗,W ∗; y∗) ≥ L(c,W ; y∗) ∀ (c,W ) , y ≥ 0 . (2.18)

Thus, the procedure is:

1. Consider the Lagrangian multiplier y as parameter and find the optimal

solution (ĉ, Ŵ )(y),∀y > 0, as a function of y. The case y = 0 can be

disregarded due to the utility’s non-satiation property.

2. Substitute (ĉ, Ŵ )(y) into the budget equation (2.17) such that

B
(
(ĉ, Ŵ )(y∗)

)
= ξ0W0

holds. Afterwards obtain the candidate optimal solution (c∗,W ∗, y∗) =

(ĉ(y∗), Ŵ (y∗), y∗).
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3. Check, whether the candidate solution (c∗,W ∗, y∗) is indeed a correct solution

to the optimization problem.

Step 1.1: Find Parametric Solution

The first-order condition (FOC) of the Lagrangian with respect to (c,W ) can be

’split’ into the pointwise optimization problem

u′(ct) = yξt , ∀t

u′(WT ) = yξT .

By the strict monotonicity of the utility function u the first-order conditions can be

inverted to obtain (ĉ, Ŵ ) as a function of the Lagrange multiplier y > 0,

ĉt(y) = I(yξt) , ∀t

ŴT (y) = I(yξT ) .

The boundary cases ct = 0 or WT = 0 do not exist by the Inada conditions, as

the marginal utility approaches ∞ for these boundaries. From the strict concavity

follows that the solution corresponds to a maximum. Furthermore, the assumptions

of the stochastic discount factor ξ, namely being measurable and adapted, translate

into the solution (ĉ, Ŵ ) as well.

Step 1.2: Solve for the Lagrange Multiplier

The parametric solution (ĉ, Ŵ ) naturally fulfils the following conditions

E[
∫ T

0
ξsĉs(y)ds] <∞ , ∀y > 0

E[ξT ŴT (y)] <∞ , ∀y > 0 ,

since (ĉ, Ŵ ) is bounded due to the corresponding property of the process ξ. The

budget equation B(ĉ(y), Ŵ (y)) =: B(y) = ξ0W0, which will be always hold with

equality due to the non-satiation property of the utility function, has a unique

solution y∗, if B(y) inherits the properties of I(·), namely being continuous and

strictly decreasing in y. B(·) maps from (0,∞) into (0,∞). These properties can be

easily checked by actually inserting the corresponding functions and applying the
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properties of I(y). Consequently, the static budget constraint as a function of the

Lagrange multiplier, B(y), is invertible.

B−1(W0) maps from (0,∞) to (0,∞), so that there is a unique Lagrange multiplier

for each level of initial wealth,

y∗ = B−1(W0) , ∀W0 > 0 .

We thus arrive at the candidate solution

c∗t = ĉt(y
∗) = I(B−1(W0)ξt)

W ∗
T = ŴT (y∗) = I(B−1(W0)ξT ) .

Step 1.3: Check the Candidate Solution

Finally, we have to check whether the candidate solution is indeed a correct solution

to the optimization problem. Let (c̄, W̄ ) be an arbitrarily consumption-wealth pair

that satisfies the constraint B(c̄, W̄ ) ≤ ξ0W0. Then

E

[∫ T

0

u(c∗s)ds+ u(W ∗
T )

]
− E

[∫ T

0

u(c̄s)ds+ u(W̄T )

]
= E

[∫ T

0

u(c∗s)ds+ u(W ∗
T )

]
− E

[∫ T

0

u(c̄s)ds+ u(W̄T )

]
− y∗ξ0W0 + y∗ξ0W0

≥ E

[∫ T

0

u(c∗s)ds+ u(W ∗
T )

]
− E

[∫ T

0

u(c̄s)ds+ u(W̄T )

]
−y∗E

[∫ T

0

ξsc
∗
sds+ ξTW

∗
T

]
+ y∗E

[∫ T

0

ξsc̄sds+ ξT W̄T

]
≥ 0 ,

where the first inequality follows from the static budget constraint holding with

equality for (c∗,W ∗) while with inequality for any strategy θ corresponding to an

arbitrarily (c̄, W̄ ) pair. The second inequality follows from the specific property of

the utility function

u(I(y))− yI(y) ≥ u(x)− yx , ∀x ≥ 0, y > 0 .
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Step 2: Recovering the Portfolio

In order to obtain an explicit characterization of the portfolio strategy, some

additional assumptions are needed. As an example consistent with the results in

the equilibrium of later sections, we require both the interest rate r and the market

price of risk κ to be constants, whereas µt and σt are not necessarily constant;

notwithstanding, the stochastic discount factor ξ follows a geometric Brownian

motion, as can be seen in equation (2.6).

Remark 1. There will be no essential difference in the results when assuming a time-

dependent, but deterministic market price of risk κ(t). In the multidimensional case,

an equivalent restriction sets ||κ||2 as constant (or deterministically time-depended).

The individual market prices of risk κd are not necessarily deterministic functions

and may stochastically evolve over time which adds far more degrees of freedom than

in the case of a constant opportunity set (r, µ, σ) in the sense of Merton (1973a) or

even with constant κd, ∀d ∈ {1, . . . , D} , see Nielsen and Vassalou (2006).

The restriction effectively implies that the instantaneous capital market line is at

most a deterministic function of time. Consequently, there is no hedge motive and

the (D + 2) funds separation of Merton (1990) or Ross (1978) reduces to a two-

fund separation, the money market account and the growth optimal portfolio G,

(more specifically, a fund proportional to the GOP). Furthermore, the GOP θGOP

in equation (2.14) on p. 23 is in general stochastic.

With these additional structural assumptions, one can easily compute the wealth of

agent u

ξtWt = Et

[∫ T

t

ξsc
∗
sds+ ξTW

∗
T

]
= Et

[∫ T

t

ξsI(y∗ξt)ds+ ξTI(y∗ξT )

]
=

∫ T

t

Et

[
ξ
− 1
γ

+1
s

]
I(y∗)ds+ Et

[
ξ
− 1
γ

+1

T

]
I(y∗)

=

∫ T

t

ξ
− 1
γ

+1

t I(y∗)a(s− t)ds+ ξ
− 1
γ

+1

t a(T − t)I(y∗) ,

Wt =
(
A(T − t) + a(T − t)

)
I(y∗ξt) , (2.19)
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with

ρ =
1− γ
γ

(
r +

1

2γ
κ2

) 
> 0 if 0 < γ < 1

= 0, if γ = 1

< 0 if γ > 1

(2.20)

a(τ) = eρτ > 0 (2.21)

A(τ) =

∫ t+τ

t

eρsds =
1− eρτ

ρ
> 0 . (2.22)

By applying Ito’s lemma on optimal wealth (2.19), the dynamics of wealth

dWt = (. . . ) dt+
∂W

∂ξ
(ξt, t) (−ξtκ>)dwt (2.23)

= (. . . )dt + (−Wt

γξt
) (−ξtκ>) dwt

are derived and, by equating the diffusive coefficient, with the one from the dynamic

budget constraint (2.5), WtθtΣtdwt,

(−Wt

γξt
)(−κ>ξt) = Wtθ

>
t Σt (2.24)

we finally obtain the solution for the optimal portfolio

θt =
1

γ
(Σ)−1

t κ =
1

γ
θGOPt .

This interesting result illustrates that the two-fund separation holds, because agent

invests in a multiple of the GOP and the riskless asset, as outlined in Remark 1.

Moreover, the portfolio decision is independent of wealth or the horizon.

2.2.2 The Regulated Investor

Following Artzner et al. (1999) or Föllmer and Schied (2002) we define risk measure

as a map % from the set of random variables, describing the wealth distribution

at the terminal date T , to the extended reals, R ∪∞, which satisfies the (inverse)
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monotonicity property

if W 1
T ≤ W 2

T , then %( W 1
T ) ≥ %(W 2

T )

and the translation invariance property (add some cash m into the position)

if m ∈ R, then %(WT +m) = %(WT )−m .

A further useful property is that diversification is appropriately mapped, which

results in the convexity property

%($W 1
T + (1−$)W 2

T ) ≤ $%(W 1
T ) + (1−$)%(W 2

T ), for 0 ≤ $ ≤ 1 .

If, in addition, the risk measure is positive homogeneous

if $ ≥ 0 then %($WT ) = $%(WT ) ,

then it is a also a coherent measure.

The Value-at-Risk Measure

The Value-at-Risk (VaR) at the level α ∈ (0, 1) is defined by

V aRα(WT ) = inf{w ∈ R : P[WT ≤ w] > α}

= sup{w ∈ R : P[WT < w] ≤ α} .

The VaR is the terminal wealth level, that is undershot only with some given

probability α; in ’usual’ situations, i.e. in (1 − α) percent of the cases, terminal

wealth will be greater than the VaR.

The VaR is always finite, as compared e.g. to the variance. It is well known that

the VaR can be very sensitive to changes in the underlying probability α due to

its left continuity. Moreover, the VaR is in general not a convex risk measure that

is, there are cases where a better diversified portfolio has a higher VaR than a less

diversified one. Some authors question, whether the absence of subadditivity of the
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VaR indeed poses a problem, see Danielsson et al. (2005) and the references therein.

When an investor is optimizing his investment strategy θ, the distribution of terminal

wealth WT is endogenous, hence the V aRα of his strategy. For regulatory reasons,

however, the VaR from the investment strategy has to comply with an exogenous

given wealth level W . For technical reasons based on the later optimization problem,

the VaR restriction is reformulated to

V aRα(WT ) ≤ W ⇔ P[WT < W ] ≤ α⇔ P[WT ≥ W ] ≥ (1− α) . (2.25)

The Investment-Consumption Problem with VaR Restriction

The optimization problem of the VaR-restricted investor v with intial wealth W v
0 is

different to the unrestricted investor, as he has to obey, in addition, the regulatory

risk constraint (2.25).

Remark. As we discuss in the following only the VaR restricted investor v, there

arises no confusion about which agent is meant. Hence, we simplify the notation

and omit the index v from page 31 to 36.

The dynamic problem recast in its static (variational) form reads

sup
{ct,WT }t∈[0,T ]

U(c,W ) = E

[∫ T

0

u(ct) dt+ u(WT )

]
(2.26)

s.t.



E
[∫ T

0
ξscsds+ ξTWT

]
= ξ0W0

P[WT ≥ W ] ≥ (1− α)

ct ≥ 0 ∀t

WT ≥ 0 .

.

Again, as for the unregulated investor, we apply the two step procedure and discuss

the static problem first and recover afterwards the optimal portfolio decision.

Step 1: The Static Problem

In order to have a continuous cumulative distribution function (CDF) of ξt
ξ0

, the
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condition ∫ T

0

‖κs‖2ds 6= 0

is needed additionally. It excludes trivial changes of measure Q = P and/or risk

neutrality. Consequently, there exists a unique ζ = CDF−1
ξt
ξ0

(1 − α) ξ0, such that

P[ξT > ζ] = α.

There exists a feasible solution to the problem (2.26), if

W0

W
> E

[
ξT
ξ0

1{ξT≤ζ(α)}

]
(2.27)

holds. In order to proof the sufficiency of this condition, consider the following

feasible trading strategy: choose a very small constant consumption level with value

ε. Furthermore, implement a trading strategy that results in the constant payment

W for all ξT < ζ. Invest in all other states of the world ξT ≥ ζ such that WT

is constant and equal to w. Obviously this trading strategy is feasible as long as

w ≥ 0. The necessary budget ξ0ε + WE[ξT1ξT≤ζ ] + wE[ξT1ξT>ζ ]. Finally, letting

w → 0 and ε→ 0, the minimum initial wealth which is needed to finance W equals

WE[ξT1ξT≤ζ ], which proves (2.27).

Remark. We simplify the previously used notation where the optimal solution was

explicitly indicated by star and omit this indication to enhance better readability.

The solution of the optimization problem is, as derived by Basak and Shapiro (2001),

ct(y) = I (yξt)

WT (y) =


I(yξT ) if ξT ≤ ζ

W if ζ < ξT ≤ ζ

I(yξT ) if ζ < ξT

(2.28)

with boundaries

ζ = u′(W )
y

ζ : P[ξT ≥ ζ] = α ,
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where the Lagrange multiplier y > 0 is the solution to the (static) budget equation

E

[∫ T

0

ξtct(y)dt+ ξTWT (y)

]
= ξ0W0. (2.29)

Note that the relation ζ < ζ holds, if the VaR restriction is binding. If not, I(yζ) ≥

W and the unrestricted optimal solution already fulfills the VaR constraint. In this

case, the Lagrange multipliers of the unrestricted and the restricted investor are the

same. If the VaR constraint is binding, this is not true and the Lagrange multiplier

of the restricted investor is larger than the one of the unrestricted, since the budget

is tighter with a binding restriction (see Basak and Shapiro (2001), Proposition 1).

In the following, low discount factors ξ are associated with a ’good’ economic

situation and vice versa; this wording is backed by the equilibrium consideration put

forward in the next Section 2.3.1, especially in equation (2.40), where low discount

factors are associated to a high aggregate consumption of the representative agent.

The solution consist of three regions in the state space:

1. ’Good’ states ξT ≤ ζ: In this region the agents behaves as if being unrestricted.

2. ’Intermediate’ states ξT ≤ ζ: In this region the VaR-constrained investor just

maintains the sufficient wealth level W to fulfill regulatory constraint.

3. ’Bad’ states ζ < ξT : In this region the investor is effectively unrestricted, as

the loss his strategy is incurring is not limited by the risk measure, but only

by his risk aversion.

Berkelaar et al. (2002) point out that the solution under a VaR restriction is

qualitatively similar to that of an unrestricted agent, who exhibits loss aversion

in the sense of Kahneman and Tversky (1979). Agents are more cautious in ’good’

states and take more risks, when losses arise.

The optimal wealth WT jumps downward at ζ. With this time T solution at hand,

it is obvious, that the classical approach of Merton using the HJB equation poses

significant technical problem, when applied to this problem, as terminal wealthWT is
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neither continuous nor convex in ξ; standard verification theorems are no applicable.

Note that the state ζ, where the VaR restriction becomes binding, is independent

of the preferences or the initial endowment of the investor; it depends only on the

distribution of the stochastic discount factor ξT and on the VaR probability α.

Hence, aggregating multiple investors with different initial wealth, but the same

regulatory constraint, into a single representative agent with the same solution

structure can be easily achieved. Ahn et al. (1999) study the use of a finite number

of standard options for risk management with VaR. They find an analogous results,

namely, that ζ is independent of individual agents’ characteristics.

To illustrate the solution, if binding, in an economically more intuitive way, we

replicate it by

1. the scaled GOP fund GT = I(yξT ) of the unrestricted investor, and

2. a put long with maturity T , strike price W , and down-and-out barrier

K = I(yζ), K < W .

The optimal solution WT of the restricted investor can be reformulated as a static

derivative position

WT = GT︸︷︷︸
(1.)

+ max{(W −GT ), 0}1{GT≥K}︸ ︷︷ ︸
(2.)

. (2.30)

Note that the VaR restricted investor is less invested in the mutual fund, since the

additional option has a positive value, which in turn tightens the budget as expressed

by a larger Lagrange multiplier y for the VaR restricted investor.

In the extreme case α = 0, the investor in fact prevents terminal wealth from falling

beyond the boundary W as the knock-out barrier K(α) → 0. With α > 0, there

always exist states, where wealth is below the exogenous boundary W .

Step 2: Recovering the Portfolio Decision

To derive the optimal strategy analytically we again assume that the interest rate

r and the market price of risk κ are constant. The result also can be also found in
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Basak and Shapiro (2001). If the optimal Lagrange multiplier y satisfies y ≤ u(W )

ζ
,

then the optimal strategy of the unrestricted investor emerges, as the unrestricted

optimal profile already fulfills the VaR restriction. In case of y > u(W )

ζ
the optimal

wealth reads

Wt =
(
a(T − t) + A(T − t)

)
I(yξt)︸ ︷︷ ︸

(i)

+a(T − t)I(yξt)
(
Φ(−d1(ζ))− Φ(−d1(ζ))

)︸ ︷︷ ︸
(ii)

−e−r(T−t)W
(
Φ(−d2(ζ))− Φ(−d2(ζ))

)︸ ︷︷ ︸
(iii)

,

where Φ is the standard normal distribution and

d1(ζ) =

(
r − κ2

2

)
(T − t) + ln

(
ζ
ξt

)
+ κ2

γ
(T − t)

√
T − t κ

(2.31)

d2(ζ) =

(
r − κ2

2

)
(T − t) + ln

(
ζ
ξt

)
√
T − t κ

.

The deviation of Wt can be found in the Appendix to Chapter 3.

As shown in (2.30), WT consists of two components. The first part (i) corresponds

to investment in the growth optimal fund with terminal value GT , see (1.) in (2.30).

The second and third parts (ii) and (iii) represent together the value of the put

option with strike price W and knock-out barrier K at point in time t, compare (2.)

in (2.30).

We want to state that the budget equation B(c(y),W (y)) = ξ0W0 cannot be inverted

analytically to obtain the optimal Lagrange multiplier y. Thus (2.29) has to be

inverted numerically for y. Nevertheless, by the implicit function theorem, the

derivatives with respect to exogenous variables, say χ, y′(χ) = dB−1

dχ
are known in

the neighborhood of the optimal solution y. It enables us to derive analytically the

sign of effects in the comparative static.

Applying the portfolio comparison as in equation (2.23) on p. 29, the optimal
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strategy turns out to be

θt = qtθ
u
t = qt

1

γ
θGOPt (2.32)

qt = 1︸︷︷︸
(i)

−e−r(T−t) W
Wt

(
Φ(−d2(ζ))− Φ(−d2(ζ))

)
︸ ︷︷ ︸

(ii)

+e−r(T−t)
J

Wt

γ

‖κ‖
√
T − t

φ(−d2(ζ))︸ ︷︷ ︸
(iii)

,

where θu is the optimal strategy of the unrestricted investor and J = W − I(yζ) =

W−K is the jump’s size. The derivation of the optimal strategy can be accomplished

along the lines presented in the Appendix to Chapter 3.

The portfolio consists of investing in the growth optimal fund, part (i), in a put

option, part(ii), and in the replication of the knock-out feature, part (iii). Parts (i)

and (ii) of (2.32) sum to less than 1, as the investment into the fund (i) has a delta

hedge of 1, and the put option (ii) a delta hedge of (0,-1).

The portfolio decision is a multiple of the GOP, that is, the VaR restriction does not

change the (relative) structure of the portfolio itself, but only how much is invested

in the risky asset in total. Basak and Shapiro (2001) shows that there exists a

(deterministic) ξ(t)∗, where qt > 1, ∀ξt > ξ(t)∗, that is, a point where the portfolio

with VaR constraint (2.32) is more risky then the unrestricted one (2.24). This

behaviour shows the incentive of a VaR restriction to ’gamble for resurrection’ in

adverse situations.

Finally note, that the optimal strategy now depends on the current wealth level,

even though the utility function has constant relative risk aversion.

Remark 2. This section can be interpreted as production economy as well. Assume

that there is a single perishable good, which must be consumed or invested in the

production. There exist different production technologies with constant returns to

scale. If a quantity of the physical good P n is invested in the production n, its pay-

off in the next time instant is P n + dP Y,n. The coefficient functions µ and Σ are, in

this case, exogenously given and are possibly driven by F-measurable state variables.
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The production technology is perfectly elastic.

The difference between our model and the one of Cox et al. (1985a) is that the locally

risk-less production technology is perfectly elastic, whereas in Cox et al. (1985a) the

riskless asset in zero net supply. Our model is in line with Constantinides (1990)

and Obstfeld (1994).

2.3 Asset Prices in a Pure Exchange Equilibrium

This section describes asset pricing in a pure exchange economy of the Lucas (1978)

type. First, we characterize the equilibrium in terms of aggregate demand, state

prices (stochastic discount factor), and the marginal utility of the representative

agents. Then, the results are applied to an economy, where some agents face a VaR

restriction.

2.3.1 Definition and Characterization of the Equilibrium

There is an aggregate ’tree’ which produces the aggregate cash-flow stream δt =∑N
n=1 δ

n
T , the ’appels’. The aggregate cash-flow stream follows the exogenously given

dynamics
dδt
δt

= µδ(δt, t)dt+ σδ(δt, t)
>dwt ,

where µδ is the instantaneous return process and σδ the volatility process. Moreover,

δ0 > 0. The number N of trees is fixed (totally inelastic) and normalized to one. In

a production economy like the one of Cox et al. (1985a), the decision on how much

to invest in the different production technologies is endogenous as opposed to the

fixed supply in the pure exchange economy of the Lucas type.

There are m ∈ {1, . . . ,M} agents in the economy, each with a percentage initial

endowment em0 > 0, (e0 = (e1
0, . . . , e

M
0 >), 1>e0 = 1, in the tree. Agents can trade

continuously in the (complete) financial market, as outlined in the previous section.

It consists of the risk-less investment with dynamics (2.1) and of the risky securities
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with dynamics (2.2).

Definition of Equilibrium

An equilibrium is defined as a collection of optimal consumption, optimal portfolio

and resulting optimal wealth processes (cm, θm,Wm), as well as the investment

opportunity processes of the market (r, µM , σM), such that the market for the

consumption good with supply δt, the markets for the risky assets and the market

for the money market clear for all t,

∑M
m=1 c

m
t = δt∑M

m=1 θ
m
t W

m
t = PM

t (2.33)∑M
m=1(1− θmt )Wm

t = 0 ,

where P = (P 1, . . . , PN)> is the vector of security prices and PM = P>1 denotes

the market value.

Characterization of the Equilibrium in Terms of the Aggregate

Demand

From the definition of equilibrium we obtain, together with the optimal

consumption, that in any equilibrium

δt =
M∑
m=1

cmt =
M∑
m=1

I(ymξt)

holds, where the optimal Lagrange multiplier ym for the agent m must satisfy the

static budget equations (2.17)

E

[∫ T

0

ξs (I(ymξs)) ds+ ξTW
m
T (ym)

]
= em0 E

[∫ T

0

ξsδsds+ ξT1>PT

]
, ∀m .

On the other side, if all budgets under optimal consumption are fulfilled and the

consumption market clears, it is an equilibrium, see Theorem (4.5.2) in Karatzas

and Shreve (1998).

In the following, the characterization of the equilibrium is reformulated in such a
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way that the individual decision can be recovered from aggregate quantities, namely

from δ and the initial distribution of endowments.

Let us define the aggregate demand function for consumption D : (0,∞) → (0,∞)

by

D(ξ; y) =
M∑
m=1

I(ymξ) with y = (y1, . . . , yM)> ,

where D(ξ; y) is a continuous, strictly decreasing, and convex function in ξ, for all

y ∈ Rm
+ . Thus, an inverse demand function D−1 exists. Consumption clearing in

equilibrium can be rewritten as

D(ξt; y) = δt , ∀t .

Inverting this equation, the stochastic discount factor corresponds to the inverse

demand function

ξt = D−1(δt; y) , ∀t, (2.34)

and, by inserting back into the static budget equation, the system of equations

E0

[∫ T

0

D−1(δs; y)
(
I(ymD−1(δs; y))

)
ds+D−1(δT ; y)Wm

T (ym)

]
= em0 E

[∫ T

0

D−1(δs; y)δsds+D−1(δT ; y)PM
T

]
, ∀m (2.35)

emerges. Again, if all budgets under optimal consumption are fulfilled, if the

consumption market clears, and if prices calculated by the inverse demand function

as a discount factor, it is an equilibrium (see Corollary (4.5.4) in Karatzas and

Shreve (1998)). This result is of importance, since, if we find the ’right’ discount

factors, such that the market for consumption clear and all budget constraints are

fulfilled, we also find an equilibrium.

In the previous derivation, we used the important property that clearing only the

consumption good market also clears asset markets and, according to Walras’s

law, the riskless asset market as well, see Karatzas et al. (1990) (zero net supply

securities) and Basak (1995) (positive net supply securities). Therefore, we need not
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to consider separately the situation at time t = T .

Individual consumption can be now characterized with respect to the (inverse)

demand function

cmt = I
(
ymD−1(δt; y)

)
. (2.36)

From this equation a linear sharing rule follows as, for two agents m an n

cmt
cnt

=
I(ym)

I(yn)
, ∀t

holds.

Remark 3. There are slight differences how to model the terminal date in the

economy. Our model uses utility at the horizon which can most easily be understood

as a bequest function; at time T , the market value PM
T is transferred to the heirs of

the representative agent, and the economy stops. With this approach, there are no

jumps in prices from T− to T . This approach was also chosen by Basak (2002) and

Berkelaar et al. (2002).

Alternatively, the utility at the horizon of restriction can be modelled as the indirect

utility of an ongoing economy, as in Basak (1995) or Basak and Shapiro (2001). In

this case, a single predictable jump in asset prices P occurs at the horizon of the

restriction between T− and T , since, all market participant know, that the restriction

is relaxed and all market participant can follow their unrestricted investment strategy

from then on; notwithstanding discounted prices ξPt will still be continuous, as to

prevent arbitrage opportunities. To maintain the easiest framework, the first variant

is chosen.

Characterization of the Equilibrium in Terms of a Representative

Agent

Now, we make use of two characteristics of the model to simplify the solution to

the system of budget equations (2.35). (i) Complete markets enable us, to define

a representative agent, where we can isolate the impact of the wealth distribution

between agents from the pricing kernel in equilibrium. (ii) As all agents share
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the same coefficient of relative risk aversion γ, only the initial wealth distribution

will be affecting equilibrium prices. In the special case of an economy with only

unrestricted investors, prices are independent of the wealth distribution, which is a

standard result of the utility function with constant relative risk aversion.

In the following the representative agent is constructed, as in Huang (1987) or

Karatzas et al. (1990). Afterwards, the connection between the (inverse) demand

function, the representative agent’s marginal utility, state prices, and the stochastic

discount factor is illustrated. Finally, we illustrate, how to apply the concept on an

representative agent to solve for the equilibrium.

Define the representative agent as the weighted sum of individual utilities

U(Ct, λ) = max
cm:
∑M
m=1 c

m
t =Ct

M∑
m=1

λmu(cmt ) , t ∈ [0, T ] (2.37)

with positive weights λm > 0; the vector of weights is denoted by λ = (λ0, . . . , λM)>.

In the later part of this section, the connection between the vector of weights λ and

the vector of Lagrange multipliers y which codes the initial wealth distribution, will

become evident. C is the aggregate consumption. The analogous definition holds

for the representative agent’s utility function for terminal wealth. Using z as the

Lagrange multiplier for consumption clearing and solving the utility function, one

obtains the utility function of the representative agent1

U(C, λ) = u(C)‖λ‖γ
U(W,λ) = u(W )‖λ‖γ

(2.38)

with

z = UC(C, λ) = u′(C)‖λ‖γ ,

1The utility function is normalized in the level by a constant g > 0 which is, however, irrelevant
for the following analysis.
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where ‖λ‖γ =
∑M

m=1

(
λ

1
γ
m

)γ
and UC(C, λ) = ∂U

∂C
.

When differentiating the utility function of the representative agent with respect to

aggregate consumption, the relation

UC(Ct = δt;λ) = D−1(δt; y), ∀t

holds, if and only if

λm =
1

ym
, (m = 1, . . . ,M) (2.39)

holds. If and only if the relation between the weights attributed by the representative

agent to the individual investor and the Lagrange multiplier of the individual

budget constraints is given by (2.39), the individual consumptions, expressed in

dependence of the inverse demand function from equation (2.36), are indeed the

optimal solution for the representative agent’s utility maximization problem (2.37).

Thus, the representative agent attributes, in particular, constant weights to the

various agents.

Note that in equilibrium the following relations are valid

ξt = UC
(
δt;

1

y

)
= u′(δt)‖1/y‖γ

= D−1(δt; y) (2.40)

= zt .

The stochastic discount factor ξ can thus alternatively be interpreted as the

representative’s agent marginal utility UC , or as the value of the inverse demand

function of the market D−1, or as the running shadow price of market clearing

constraint z of the representative agent, given the state of the economy δ. The last

interpretation motivates the name state price.

Note, that the aggregate consumption and the marginal aggregate consumption are
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linear homogenous in the second argument λ

U(C, aλ) = aU(C, λ)

UC(C, aλ) = aUC(C, λ) ,

which gives one degree of freedom for the parameter vector λ; in our applications,

we will use this homogeneity property to normalize the utility function of the

representative agent with the condition ‖λ‖γ = 1.

Now equilibrium values for the instantaneous risk-free rate (process) r and market

price of risk (process) κ can be easily derived by applying Ito’s lemma to ξ as

characterized in equation (2.6) and to UC(δ; 1/y) in equation (2.40) and equalizing

the coefficients of dt and dwt. The interest rate and the market price of risk are

found by comparing coefficients

rt =

(
−UCC
UC

)
· µδδt −

1

2

((
−UCC
UC

)(
−UCCC
UCC

))
‖σδδt‖2

= γµδ (δt, t)−
1

2
γ(1 + γ)‖σδ (δt, t) ‖2

κt =

(
−UCC
UC

)
σδδt

= γσδ (δt, t) , (2.41)

where −UCCUC C is the relative risk aversion of the representative agent and −UCCCUCC
C

is the coefficient of relative prudence.

Using that the utility function for the representative agent exhibits also CRRA, we

further obtain that the relative risk aversion is −UCCUC C = γ and the coefficient of

relative prudence −UCCCUCC
C = (1+γ). Consequently, neither the interest rate process

r nor the market price of risk process κ depend on the initial distribution of wealth

of individual investors, as represented by the vector y. If, in addition, the coefficients

of the cash-flow process of the economy, µδ and σδ, are constant, rt and κt are also

constant.

Inserting the state price ξ = D−1(δ, 1/y) together with the interest rate r and the

market price of risk κ back into the system of static budget equations (2.35), the
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determination of equilibrium finally boils down to finding the Lagrange multipliers

y that satisfy the system of equations (2.35).

Remark. Relation to the (Consumption)CAPM of Breeden (1979)

By using the definition of the market price of risk κ and its functional form in

equation (2.41), the excess return of any security, say X, with diffusion coefficient

vector σXt , is in equilibrium

µXt − rt = γσ>δ σ
X
t . (2.42)

Alternatively, a similar result, the Euler equation, can be obtained using the marginal

utility of an agent along its optimal individual consumption path

µXt − rt = γ Ct

[
dXt

Xt

,
dcmt
cmt

]/
dt .

In order to obtain a result more in line with the CAPM, let us define a self-financing

portfolio θM with value PM which contains the exact risk structure as the aggregate

dividend (
θMt
)>
D (Pt) Σt = δtσ

>
δ ,

where D(P ) is the diagonal matrix of the vector of prices P . This can be interpreted

as the ’market’ portfolio. This portfolio leads, under the assumed dynamics

dPM
t = PM

t µMt dt+ PM
t

(
σMt
)>
dwt ,

to an instantaneous volatility of

σMt =
1

PM
t

·D (Pt) Σtθ
M
t =

δt
PM
t

σδ

by construction. Substituting σδ of previous equation into the CCAPM relation

(2.42) and using the instantaneous excess return in equilibrium (2.42) on the
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portfolio itself, the equations for the instantaneous expected excess return

µXt − rt = γ
δt
PM

t

(
σMt
)>
σXt

µMt − rt = γ
δt
PM

t

(
σMt
)>
σMt

emerge which result in a typical CAPM relation

µXt − rt = βXt (µMt − rt)

where

βXt =

(
σMt
)>
σXt

(σMt )
>
σMt

=
Ct

[
dXt
Xt
, dP

M
t

PMt

]
Vt

[
dPMt

PMt

] .

2.3.2 Equilibrium with VaR-constrained Agents

In this section, we analyze in addition the specific assumption that the aggregate

cash-flow follows a geometric Brownian motion with only one risk source,

dδt
δt

= µδdt+ σδdwt (δ0 > 0) . (2.43)

First, we solve analytically the pure exchange equilibrium with only unrestricted

agents. Afterwards, we consider an economy with two groups of agents, one group

of unrestricted agents and a second group of VaR constrained agents.

In both cases, the techniques to solve for the equilibrium are similar: The system

of budget equations (2.35) for the individual investor together with the equilibrium

state prices in equation (2.34) have to be solved. This will be done in three steps.

First, the state prices can be determined by applying equation (2.40). Second,

inserting these state prices into equation (2.35), all variables beside the Lagrange

multipliers will be known, i.e. finding the equilibrium is reduced to solving for the

vector of Lagrange multipliers. Third, one needs to show existence and uniqueness

of a solution vector.
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Unconstrained Equilibrium

The derivation of the unconstrained equilibrium follows closely the steps in Section

2.2.1, in which we recovered the portfolio from the optimal terminal wealth. Due to

the homogeneity property of the representative agent’s utility function U in λ, the

normalization ‖λ‖γ = 1 can be applied. Applying Ito’s lemma on ξt = UC(δt, λ) and

equating the term dξt from (2.6)

− rdt+ κdwt
(2.6)
=

dξt
ξt

=
d UC(δt, λ)

UC(δt, λ)

(2.38)
=

d u′(δt)

u′(δt)

(2.43)
= −

(
γµδ −

1

2
γ(1 + γ)σ2

δ

)
dt− (γσδ) dwt

(2.44)

allows us to identify the equilibrium interest rate and market price of risk.

Comparing the LHS with the RHS

r = γµδ −
1

2
γ(1 + γ)σ2

δ (2.45)

κ = γσδ , (2.46)

and substituting the equilibrium state prices (2.44) into equation (2.19), evaluated

at t = 0, we obtain

Wm
0 =

(
a(T ) + A(T )

)
I(ym)δ0 . (2.47)

On the other hand, the vale of the market PM = 1>Pt in (2.10), i.e. the aggregate

wealth at time t, using the equilibrium state prices, is given by

PM
t = Et

[∫ T

t

ξs
ξt
δsds+

ξT
ξt
PM
T (δT )

]
=
(
a(T − t) + A(T − t)

)
δt . (2.48)

The functions a and A are as in (2.21) and (2.22), in which the interest rate and

market price of risks in equilibrium, (2.45) and (2.46), are substituted in. Inserting

(2.47) and (2.48), evaluated at t = 0, into the budget equation of investor m,

(
a(T ) + A(T )

)
I(ym)δ0 = Wm

0 = em0 P
M
0 = em0

(
a(T ) + A(T )

)
δ0 , (m = 1, . . . ,M),
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the Lagrange multipliers in equilibrium read

ym = u′(em0 )

=
1

λm
. (2.49)

The last equation uses the former result (2.39), that the weight of the representative

agent λm and the Lagrange multiplier are inversely related (see also Karatzas et al.

(1990), Theorem 10.2 and Theorem 10.3).

In order to solve for the drift and the volatility of the market portfolio, we apply

Ito’s lemma on the market value PM in equation (2.48) and obtain

dPM
t = (·)dt+

(
a(T − t) + A(T − t)

)
(σδδt)dwt

= (·)PM
t dt+ σδP

M
t dwt .

Comparing the diffusion coefficients with the dynamic budget (2.5), where W θ=1 is

replaced by PM , the instantaneous market volatility and drift are

σMt = σM = Σ1 = σδ

µMt − r = µM − r = 1>Σκ = γ‖σδ‖2 ,
(2.50)

where the drift term can be more easily derived from the equation µMt = r + κσMt .

Equilibrium with VaR-Constrained Agents

Now, the set of investors is split into two subsets. The first R investors are

unconstrained as before, (1, . . . ,mR), in contrast, the remaining investors (mR +

1, . . . ,M) face a VaR restriction.

The VaR restrictions for the agents are assumed to be homogenous in the VaR

probability α and the resistance level W , i.e. they are identical for all the restricted

investors. Thus, the investors can be aggregated to two representative agents u

(unrestricted) and v (VaR restricted), where the unrestricted one holds as initial

endowment the fraction ω ≥ 0 of the market, whereas the restricted agent v holds

(1− ω).
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By introducing the VaR constrained agents, the structure of the utility function of

the (total) representative agent does not change. Only the level depends on the new

weights (λu, λv), as can be seen in equation (2.38). From (2.44) follows that the

state prices are not changed if VaR constrained agents are added.

From the homogeneity property of the representative agent’s utility function U(C, λ)

in λ and the normalization

1 = ‖Λ‖γ =

(
λ

1
γ
u + λ

1
γ
v

)γ
follows

1 = λ
1
γ
u + λ

1
γ
v

=

(
1

yu

) 1
γ

+

(
1

yv

) 1
γ

= I(yu) + I(yv) .

The last equation enables us to solve for the Lagrange multiplier of the unrestricted

agent u as a function of the Lagrange multiplier of the restricted agent v,

yu(yv) = u′
(
1− I(yv)

)
. (2.51)

Finally we need to solve the system of budget equations (2.35), analogously to the

unrestricted case. To do this we insert into the RHS and the LHS of (2.35) (i) the

equilibrium state prices D−1(δt, y) = ξt = u′(δt) from (2.44), (ii) the equilibrium

interest rate r from (2.45) and the market price of risk κ from (2.46), and (iii) the

initial endowment (eu0 = ω, ev0 = (1 − ω)). As results we obtain the following two

equations for the two groups of investors

W u
0 (yu) = ωP0(yv, yu) ,

W v
0 (yv)︸ ︷︷ ︸
LHS

= (1− ω)P0(yv, yu)︸ ︷︷ ︸
RHS

. (2.52)
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Substituting the representation of yu(yv) from (2.51), we are able to reduce equations

(2.52) to the single equation
W u

0 (yv)

P0(yv)
= ω . (2.53)

(2.53) can be solved for yv. In our case of a VaR restriction, this has to be done

numerically. Nevertheless, existence and uniqueness can be shown. As the same

technique will be used later in a more complex setting, the following part illustrates,

how to show the existence and uniqueness of the equilibrium. We do this by proving

that there exists a unique yv satisfying the above-stated equilibrium equation.

Proof:

Since

I(yu) + I(yv) = 1 ∧ yu > 0 ∧ yv > 0

hold, the Lagrange multipliers have to satisfy yv > 1 and yu > 1.

To simplify the notation we replace W u
0 (yv),W v

0 (yv), and P0(yv) by Wu,Wv, and

P . Since Wv,Wu and P are function of yv only, the derivative with respect to yv is

denoted by (·)′.

The fraction held by the unrestricted investors Wu

P
is strictly increasing in yv since

dWu

P

dyv
=

W ′
uP −Wu(P

′)

P 2

P=Wu+Wv=
W ′
uP −Wu(W

′
u +W ′

v)

P 2

=
W ′
u(P −Wu)−WuW

′
v

P 2

P−Wu=Wv=
W ′
uWv −WuW

′
v

P 2

> 0 . (2.54)

In the derivation of (2.54) we need (i) Wu > 0,Wv > 0, which is obvious, and (ii)

W ′
v < 0,W ′

u > 0. W ′
v < 0 directly follows from yv being the Lagrange multiplier;

W ′
u =

(
Wu(y

u(yv))
)′

= W ′
u(y

u)y′u(y
v) > 0 holds, as W ′

u(y
u) < 0 and y′u(y

v) > 0.
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Furthermore, the domain of yv is

lim
yv→∞

Wu

P
= ω̂

lim
yv→1

Wu

P
= 0 ,

where ω̂ is defined by

1− ω̂
ω̂

=

Wv/P :yv→∞︷ ︸︸ ︷
WE

[
ξT
ξ0

1{δT≤δ}

]
E

[∫ T

0

ξs
ξ0

δsds+
ξT
ξ0

δT

]
︸ ︷︷ ︸

Wu/P :yv→∞

.

The second assertion follows from

Wu = I(yu)E

[∫ T

0

ξs
ξ0

δsds+
ξT
ξ0

δT

]
yv→1⇔yu→∞−→ 0 .

Consequently, there is a unique yv satisfying the equilibrium condition, if the initial

endowment of the unrestricted investor ω is in [0, ω̂).

�

In contrast to the unrestricted case, where any wealth distribution was possible, the

restricted agent v needs to hold at least a market share of (1− ω̂) in order to finance

the minimum wealth requirement of the VaR restriction in equilibrium, which is

WE

[
ξT
ξ0

1{δT≤δ}

]
.

Finally, we need to find the drift and the volatility of the market portfolio. The

drift will be µMt = r + κσMt , once we have derived the volatility. The market value
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PM = 1>P is

PM
t =

(
a(T − t) + A(T − t)

)
δt

+a(T − t)I(yv)δt
(
Φ(−d1(δ))− Φ(−d1(δ))

)
−We−r(T−t)

(
Φ(−d2(δ))− Φ(−d2(δ))

)
where the functions a and A are as in (2.21) and (2.22), using in addition the

following variables for the equilibrium, corresponding to the variables in partial

equilibrium in the first column,

r → r = γµδ − 1
2
γ(1 + γ)‖σδ‖2

κ → κ = γσδ

ζ∗ → δ∗ = W∗
I(yv)

ζ∗ → δ∗ = W∗
I(hyv)

ζ → δ = W
I(yv)

ζ → δ = δ0e
(µδ−1/2‖σδ‖2)T+‖σδ‖Φ(−1)(α)

√
T ,

with Φ(−1)(α) being the inverse cumulative distribution of the standard normal

density. By applying Ito’s lemma to the market value PM and comparing the

diffusive coefficients with the dynamic budget constraint (2.5), which has to hold

for the market portfolio as well, i.e. PM = W θ=1, the market volatility and, hence,

the drift are

σMt = qMt σδ

µMt − r = γqMt σδ
(2.55)

where

qMt = 1− e−r(T−t) W
PM
t

(
Φ(−d2(δ))− Φ(−d2(δ))

)
+e−r(T−t)

J

PM
t

γ

‖κ‖
√
T − t

φ(−d2(δ)) .

with

J = W − I(hyv)δ
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and φ being the standard normal density. Note the close resemblance to the

investment strategy in (2.32).



Chapter 3

Regulating the Banking Sector:

The Banks’ Optimal Decision

This chapter introduces a banking sector into the economy. Banks are characterized

as having debt outstanding and being under the supervision of a regulator. We

discuss neither the existence of banks nor the optimality of regulation. Moreover,

banks are not analyzed on an individual level and aggregated afterwards. Instead,

the entire banking sector is directly modelled on an aggregate level. This new

modelling approach builds on the results of Eisenberg and Noe (2001). They show,

starting at the micro level, what the cash-flow consequences of an interconnected

financial system with many firms/banks under default are.

We proceed as follows. First, the consequences of the banking sector’s strategy are

modelled by specifying payments to outside claim holders at the planning horizon.

Second, the corresponding optimization problem for the aggregate banking sector

is stated and the solution is characterized by comparative statics. In deriving

the results the methodological approach of Basak and Shapiro (2001) and Basak

and Shapiro (2005) is adopted and generalized by considering simultaneously debt

financing and VaR regulation at the same time. Third, the consequences of

regulating on the debt capacity and capital provisioning of the banking sector is

discussed as well as the impact of regulation on the banks’ debt market. Finally,
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the dynamics of the portfolio decision and its implications are illustrated.

3.1 The Banking Sector within the Economy

In order to keep the model as parsimonious as possible, the dimensionality of the

underlying risk factors is set to D = 1. Consequently, there is only one risky asset

necessary for a complete market. The whole analysis can easily be performed with

D factors driving the macro-economic risk, as long as the market remains complete.

The D-factor model yields almost no further insights, but comes with an additional

notational burden.

The Aggregate Debt Portfolio to the Real Sector

As we model the entire banking sector, the (aggregate) assets of the banking sector

are represented by the intermediated share of the total outstanding loans to the real

sector of the economy (borrowers). We assume, that the value P of total loans given

to the borrowers of the real sector follows the dynamics

(
dPt + δtdt

)
/Pt = µtdt+ σtdwt , (3.1)

where δ is the cash-flow process associated with the aggregate loan portfolio. The

cash-flow stream δ represents the (dollar) flow of interest (coupon) payments of

the borrowers. It is stochastic as companies within the real sector refinance their

capital needs depending on the state of nature. Note, that there is no redemption

of the aggregate loan portfolio at time t = T . µ is the instantaneous gross expected

return of this aggregated loan portfolio and σ its volatility. In the following, we

discuss (i) why a continuous process for the value of aggregate outstanding loan P

to borrowers is a feasible modelling choice and (ii) why the value of the loan portfolio

is only driven by a single factor. At first sight, the assumption of a continuous value

process is usually problematic, if a portfolio contains credit risk, since, when a

company within the loan portfolio defaults, there is a jump in value. However, as

we do not explicitly model each individual loan disbursed to a company of the real
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sector, it is feasible to model the aggregate loan portfolio as a continuous process

by two reasons.

First, a loan portfolio is exposed to systematic and idiosynchratic risks. It is

reasonable to assume that the systematic risk is driven by macro-economic factors,

and that their dynamics can be modelled by a diffusion. We do not model these

factors explicitly, but represent it in a reduced form by a standard Brownian motion.

Second, our real economy consists of many companies, rolling over their loans with

different maturities and coupons. Assuming that the loans of these companies build

an infinite granular portfolio, the idiosynchratic default risk is perfectly diversified

(see e.g. Gordy (2003)), and only systematic risk matters.

The total loans to the real economy are for brevity usually called the risky asset. .

The Economic Agents of the Economy

The economy is populated by two types of agents. The

unrestricted investor u represents all those investors who can directly invest

in the market. He optimizes his expected utility over consumption cu and

terminal wealth W u
T by his decision on the allocation of wealth W u. He

can invest in the (locally) riskless asset with interest rate r and the risky

asset with payment stream δ and price P . Since the trading portfolio θu

(fraction of wealth invested in the risky asset) is self-financing, the wealth of

the unrestricted investor follows the dynamics,

dW u
t = (W u

t rt +W u
t θ

u
t (µt − rt)− cut ) dt+W u

t θ
u
t σtdwt , (3.2)

with initial wealth W u
0 > 0. The

regulated banking sector b is partly financed by equity holders with an initial

equity value W b
0 > 0. In addiction, the banking system issues at time t = 0 a

zero bond with exogenously given nominal F > 0 and maturity T at the fair

value D0. Both, equity and debt, are held by external agents, which are a not
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a part of the set of participants in the model. Additionally, the supervising

authority imposes a VaR based equity requirement for the banking system.

The banking system invests the total amount V = D + W b in the same

investment opportunities as the unrestricted investor u, namely the locally

riskless asset and the aggregate loan portfolio P . The resulting portfolio

strategy fulfils the same budget dynamics (3.2) as the one of the unrestricted

investor u, where u is replaced by b.

Next, we characterize the claims of the banking system at the horizon T . In the

classical Merton (1974) approach a levered firm defaults, if the value of the firm’s

total assets VT at maturity T is lower than the nominal debt F . The equity position

WT is zero and the external debt holder is entitled to all the remaining assets,

DT = VT . Otherwise, the debt is repaid, DT = F , and equity holders are entitled

to all the remaining asset value, WT = (VT − F ).

The characteristics of the equity and debt claims at T for a single firm are unrealistic,

when the entire banking system is considered. (i) The model excludes cases where

one bank is in default, while another one is still solvent, as DT < F holds iff the

equity W b
T of the whole banking system is zero. This result implies, that all banks

default simultaneously, an unrealistic consequence. (ii) Another drawback, when

applied to the aggregate case , is that even if there are substantial defaults within

the banking system, no costs for the solvent banks in a distressed banking system

arise. As the banking system is vital to any modern economy, this assumption

is unreasonable. Furthermore, without costs of distress, there is no room for an

endogenous default decision, as there are no incentives to deviate from the optimal

solution without debt. (iii) Due to the importance of the banking sector to the

economic development, banks are regulated. The core of any regulatory approach

is to restrict the business activities of banks by requiring an underlying amount of

equity capital.

Consequently, three additional components have to be included in a model of the

Merton type, if the aggregate banking sector is considered:
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Panel 1: Equity Panel 2: Debt
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Figure 3.2: Payments at Horizon

This figure shows the payments at maturity depending on the value of total asset VT .
The aggregate equity position W b

T is displayed in Panel 1; aggregate debt redemption
payment DT on nominal F in Panel 2. The dashed line represents the Merton (1974)
case, whereas the dotted line the Eisenberg and Noe (2001) model. The dotted-dashed
lines are the payment as used in the model before costs, whereas the solid is after

costs.

1. The payments to the claimants of the aggregate banking system at the planing

horizon have to be modified, in order to gain a better image of heterogenous

banks within the banking system.

2. Direct and indirect distress costs have to be modelled.

3. It has to be considered that banks are regulated.

Modelling Heterogeneous Banks

When aggregating individual banks’ balance sheets into a single aggregate balance

sheet of the banking sector, it is at first sight unclear how the interbank market

influences the repayments to the outside claim holders at the horizon. The problem

appears as each individual bank holds on the assets side of the balance sheet

liabilities of other banks and vice versa. At the horizon, all these different contractual

relations have to be cleared. By applying the results of Eisenberg and Noe (2001),

Lemma 5, the clearing vector (the repayments on the different debt titles) is a

concave and increasing (non-expansive) function of operating cash-flows. Including
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the claim of the outside debt holders as an additional agent in the model of Eisenberg

and Noe (2001), the redemption payment DT must inherit in particular these

properties as well, see also Shin (2008), Lemma 1. In our modelling framework,

the relevant operating cash-flow is total assets VT . Hence, we assume that the

default relations within the aggregate banking sector result in the following linear

approximation of redemption payments for external debt with nominal F as

DT = min{(1− β)VT , F} . (3.3)

The parameter β ∈ (0, 1/2] is a measure of heterogeneity, where larger values

correspond to a more heterogenous banking system. The restriction to this interval

is for technical reasons. Economically it excludes cases, where the equity value of the

total banking system will be higher than the debt value, when some banks default.

Figure 3.2 illustrates the differences in modelling by showing equity W b
T (Panel 1)

and debt DT (Panel 2) at the planning horizon T , depending on the total assets

(cash-flows) of the banking system VT . The Merton (1974) solution is depicted by

the dashed line, a function of the Eisenberg and Noe (2001) type is plotted as a

dotted line, and our linear approximation by the dotted-dashed line.

In order to motivate, why β is related to heterogeneity in the banking system, two

aspects of heterogeneity are presented, namely the leverage and the business model

of banks. We illustrate these two aspects by considering two extreme cases.

In the first case, banks have an homogenous business model and each bank invests

(directly or by the use of the interbank market) in the well-diversified portfolio of

loans to the real sector. Consequently, there are no idiosyncratic risks in each of

the banks loan portfolios. The probability of default due to an idiosyncratic event

is zero. However, in aggregate, because the banks’ assets are perfectly correlated

(an implication of diversification) on an individual level, the systemic risk to the

banking sector is large. Banks default sequentially, starting at the bank with the

highest leverage ratio. Banks default, even if the aggregate cash-flow VT is still larger

than the aggregate nominal debt F . This property implies β � 0. In contrast, if all
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banks are homogenous with respect to their leverage, they default at the same time

and we recover in aggregate the Merton (1974) solution, i.e. β = 0.

As an example, Allen and Carletti (2006) formalize this argument and show in their

model that credit risk transfers between banks, i.e. the construction of the well-

diversified portfolios in our model context, can lead to contagion via the interbank

market and effectively increase the risk of systemic crisis. Duffie (2008) also intensely

discusses the problems arising from credit risk transfers.

In the second case banks set up very heterogenous business models: each bank

invests in a ’single sector’ of the economy and hence the loan portfolio of each bank

contains sector risks. Notwithstanding, the aggregate credit portfolio of banks is

again well diversified. In this case, the probability of default due to sector risks is

larger than in the previous example. However, even with identical banks in terms

of leverage, there will be no common default of the banking system.

From the viewpoint of the aggregated balance sheet of the banking sector, both

types of heterogeneity have at least two consequences: debt may not be fully paid,

DT < F , while at the same time there is still equity capital left, W b
T > 0. Moreover,

the more the business models of banks differ, the earlier the first default of a bank

within the system occurs. Thus, the specific value of total assets VT , where debt

will not fully be paid, is increasing in the heterogeneity parameter β.

On a theoretical level, the above argument is also put forward e.g. by the works of

Wagner (2006, 2008) and Acharya (2009). The impact of theses two cases is in line

with the empirical findings of e.g. Baele et al. (2007).

Costs, when Banks Default

First, we discuss the different components of costs that arise, if there are defaults

within the banking system. Afterwards, we show that a part of these costs is

borne by the banking system. In our modelling framework, we again use a linear

formulation for the part of costs that is attributed to the banking system

Default costs may consist not only of direct costs, such as administrative costs

and costs of liquidation (takeover), but also of indirect losses such as reputational
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considerations and the loss of future business possibilities (bank charter). These

losses can be substantial parts of the value of defaulted assets as the Committee on

Banking, Finance, and Urban Affairs of the United States Congress (1984) reports.

James (1991) estimates 10% for administrative costs and a total loss in assets of

30%.

From an economic perspective, some of these costs might have systemic relevance

in the sense that they impact market participants that are not directly connected

to the defaulted banking institution: The forced liquidation of assets may depress

their market prices and affect other banks, see e.g. Hombert (2007) or Acharya et al.

(2009); damages to the reputation of the banking (group) may spread through the

system and generate informational contagion. In extreme cases, there might even

arise a breakdown of some markets, see Leland and Pyle (1977).

Since individual banks in general cannot invest into the well-diversified portfolio

directly, banks will not only hold position of pure credit risk, but are additionally

engaged in the interbank and derivatives markets in order to transfer risk and

diversify the idiosyncratic risks’ components they obtained due to their business

model. This risk-sharing function of the interbank markets is obviously welfare

enhancing, when comparing a banking system in autarky, where every bank holds

its own portfolio including large idiosyncratic risks, with a banking system, where

any risk can be transferred, i.e. complete markets. When aggregating over all banks,

the interbank market is in zero net supply, as long as there are no defaults, which

is in our model framework over the period t ∈ [0, T ) and in t = T in case of no

defaults. If, however, an individual bank defaults in T , not only are external debt

holders confronted with costs due to a default, but also ’internal’ debt holders, i.e.

other banks by their contractual relations through the interbank markets. Hence, a

part of total costs of a banking system in distress, i.e. where some banks default,

transmits to the aggregate equity position of the banking system.

Beside these contagion effects within the banking sector, there might be a

transmission into the real sector of the economy, e.g. via a credit crunch, with

large costs to the economy, see e.g. Honohan and Klingebiel (2000) and Caprio and
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Klingebiel (2002).

Parts of these default costs have to be covered by the holders of the aggregate equity

position. They are modelled as

CT =

 λ(F −DT ) VT > V̌

βVT VT ≤ V̌
, (3.4)

with

V̌ =
λ

β + λ(1− β)
F . (3.5)

The loss given default in aggregate terms, (F−DT ), proxies the severity of a banking

system in distress. It seems reasonable that costs are increasing with the volume

under distress. The cost share1 λ ∈ (0, 1] guarantees that the banking system covers

a non-negative amount of costs and at most 100% of the loss given default. The case

VT ≤ V̌ is introduced in order to enforce limited liability, as otherwise equity W b
T

can be negative; V̌ is defined as the terminal value of assets, where equity is for the

first time zero. The second part of the cost function is chosen such that WT = 0, if

VT ≤ V̌ . Finally, the model we use is (up to now) formally a particular case of the

one presented by Basak and Shapiro (2005).

In Panel 1 of Figure 3.2, the costs can be seen as the difference between the dotted-

dashed line W b
T + CT and the solid line W b

T . In addition, Panel 1 in Table 3.1

summarizes the cash-flows at maturity, dependent on VT . For further reference,

Panel 2 shows the redemption payment structure after inversion to W b
T , if VT ≥ V̌ .

Regarding the direct cost components, the proportionality factor λ can be seen as a

proxy of intensity of the contractual interbank relations. We illustrate the argument

with two examples:

First, think of a bank that has no relations to other banks; consequently, other

banks face no loss due to their contractual relations with this bank, irrespective of

the volume of total losses in the loan portfolio of this specific bank.

1Even though λ was used in the previous chapter, no confusion should arise, as in the following
λ will denote the cost share.
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In contrast, imagine a bank that is primarily financed using the interbank market.

If this bank defaults - and assuming that the default raises the same costs as in

the previous example and that the bank holds a loan portfolio of the same size -

almost all the costs are effectively borne by the equity of other banks, since interbank

liabilities make up a high proportion of the total debts and have the same seniority

as external debt (senior unsecured).

In these two examples, the degree of linkages between banks affects, which part of

the total costs stays within the banking system (and how the costs are distributed

within the banking sector); this argument can be made more precise within a network

type of model like Allen and Gale (2000), Freixas et al. (2000), Nier et al. (2007),

and Elsinger et al. (2006).

When using a strict interpretation, the model presented above allows only for costs

that results in leakage of cash-flows, i.e. direct costs. All other costs components

without a direct cash-flow consequence are not included.

However, following Remark 3 on p. 40, alternative interpretations are possible.

Instead of cash-flows, one can also think in continuation values for equity and debt

in a post-horizon economy, if it were specified. Within such an environment, other

cost components such as indirect costs, systemic costs and costs from feedback effects

can be incorporated indeed.

The systemic parts of the costs of a banking system in distress cannot be attributed

easily: by the fair value principle in accounting, depressed prices due to (cascades

of fire) sales obviously spread into the equity value of other banks. However, it is

not obvious to what extend this transmission channel is linked to the structure of

the interbank markets. Even more complex is the question of how a credit crunch

impairs the real economy and thereby feeds back into the portfolio of total loans.

Still, it seems reasonable to assume that systemic and feed back effects are positively

related to the volume under distress; for the case of system effects see e.g. Nier et al.

(2007) and Elsinger et al. (2006).

Remark. Costs arising to other economic agents, in particular the bank’s debt

holders, do not directly affect the optimal portfolio decisions, as bank managers solely
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act in the interest of equity holders in this model framework. Problems regarding

managerial agency problems are discussed e.g. in Rochet (1992) and Jeitschko and

Jeung (2005). In order to keep the model parsimonious, valuation is being conducted

without costs or benefits to the external debt holder.

Regulation and Risk Management of Banks

The failure of some small banking institutions will not constitute a crisis to the

system as a whole. Notwithstanding, there is no clear understanding of how to

differentiate on an economic basis between harmless losses and those critical losses

that are threatening to the survival of the banking system as a whole.

However, one can characterize two critical levels. At V̌ , given in equation (3.5), all

the equity capital is needed to cover costs CT , that is, W b
T = 0 or all the banks are

in default.

The second level arises due to regulation. Most regulatory policies with respect to

the banking system are based on the principle, that, for any business activity on the

active side of the balance sheet, there has to be a certain, possibly risk-weighted,

amount of equity on the passive side, i.e. regulation restricts the size of the business

in which a bank is able to engage. Consequently, one can implicitly define critical

states depending on regulation, where there is ’too much’ aggregate business activity

per aggregate equity, i.e. W b

V
≤ n, where the Cooke ratio n ∈ [0, 1] is the regulatory

control. The boundary V can be determined by using the results from Table 3.1;

one obtains

V =
λ

β + λ(1− β)− n
F . (3.6)

Hence, we are able to identify on a formal basis four regions by their special

characteristics, namely a

normal economic environment, VT ≥ F
(1−β)

, where there is no individual default

in the banking system; debt is fully paid and the remaining value is paid as

equity capital, i.e. W b
T = VT − F . The second region constitutes a

distress of the financial system, V ≤ VT <
F

(1−β)
, where some banks default, but
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losses are not critical in a regulatory sense, i.e. on the aggregate level W b
T ≥

nVT . The third region is called a

crisis of the financial system, V̌ < VT < V , where the banking system is operating

with less than the required equity capital on average, but some banks are still

solvent, i.e. 0 < W b
T < nVT . The last region encompasses the

breakdown of the financial system, 0 < VT ≤ V̌ , where all banks are in default,

i.e. W b
T = 0.

The regulatory policy within our model framework requires that the banking system

initially holds enough capital such that there is currently no crisis,

W b
0 ≥ nV0 . (3.7)

Moreover, in order to react to events that may bring forth a violation of the

regulation constraint in the future, regulation enforces risk management systems

such that the banking system behaves as if it uses a VaR-based capital requirement

of the form

P[W b
T ≥ nVT ] ≥ (1− α) . (3.8)

By this restriction, the aggregate equity capital W b
T will be more than the total assets

weighted by the Cooke ratio, nVT , under ’normal market conditions’, meaning in at

least (1− α) percent of cases; crisis happens in at most α per cent of the cases.

We do not intend to discuss whether a VaR rule for risk management can be obtained

as a solution to an optimal contracting problem, e.g. Adrian and Shin (2008a).

This rule is meaningful for different reasons. Risk management by Value-at-Risk

has become the industry standard, since the VaR idea emerged into markets from

JPMorgan’s RiskMetrics Group. Finally, it gained its seal of approval, when it

became the fundamental idea behind regulation in most countries due to the 1996

Market Risk Amendment of the Basel Accord and the Basel II Regulation.
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We want to stress two aspects of this risk-sensitive capital requirement:

First, it is not obvious that a VaR-based risk management of an individual bank

translates into this form for the aggregate case. From a purely theoretical viewpoint,

the VaR restriction is not an impediment to aggregation if the VaR probability is

identical across banks (homogenous regulation) and if the additional assumption

holds that the behaviour of the market participants does not influence neither the

interest rate nor the market price of risk (valuation irrelevance of regulation). Then,

the state of the economy where the VaR restriction becomes binding at an individual

level is independent of the agent’s characteristics and, hence, the same for every

decision maker, see Basak and Shapiro (2001). Therefore, aggregation is simplified,

as the individual restriction can be replaced by the one formulated on aggregate

variables. It turns out that the pure exchange equilibrium in Chapter 4 and 5 is in

compliance with this condition.

Second, the combined capital requirements (3.7) and (3.8) are (time-)inconsistent.

Rational bank managers should take account in their decision strategy today that

they have to comply at least with some probability with regulation again as time

goes by. In a perfect framework, the regulatory restrictions should hold at any point

in time. Instead, we choose to incorporate a single restriction over the period [0, T ].

An intuitive argument runs as follows: most large banks have invested substantial

amounts of money and knowledge in their risk management systems. This system

influences the bank behaviour on at least two levels. (i) On the executive board

level, the management chooses its decision based on the information supplied by

the risk management tools; annual reports of most banking institutions extensively

discuss their VaR estimates. Furthermore, many banks define a range for their

regulatory capital ratios within they attempt to operate, c.f. Annual Report (2007)

of Commerzbank AG, p. 225 ’Comfort Zone’ for Tier 1 (6.5% − 7.5%) and Tier

2 (10.5% − 11.5%). (ii) The second level can be attributed to the incentives of

compensation schemes within banks. For the evaluation which activities are the

most profitable ones, the adjustments for the risk and the costs of (regulatory)

equity heavily depend on the risk management system as well. Extrapolating these
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arguments, one can imagine that, once these systems are installed, banks choose

their portfolios quasi-’automatically’. Even though, these systems provide a ’state’

dependent answer, they are slow to adapt to structural changes. Therefore, we

prefer to use the commitment solution over the time-consistent solution with an

continuously updated VaR restriction. For a discussion on time consistency see

Strotz (1955) or in an investment decision framework Basak and Chabakauri (2009).

Remark. Section 2 of the concluding Chapter 6 discusses the robustness of the

results, when generalizing the structure of redemption payments, the costs structure,

or the homogeneity assumption within the VaR restriction. Moreover, it argues that

the VaR restriction is merely the one with the most pronounced impact, but many

other risk measures will in fact generate similar results.

Remark. There are three different time horizons to consider in the model: the VaR

horizon, the maturity of the bond, and the lifetime of the agents. We have chosen

to use the same horizon for all of them. This choice induces a non-path-dependent

solution. Furthermore, a more complex model with different time horizons will have

a smoothing effect, which is documented in similar models: for the case of a VaR

restriction see Basak and Shapiro (2001) and for debt see Basak and Shapiro (2005).

Regarding amplifications of volatility due to regulatory impact, our model represents

the worst case.
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3.2 Characterization of the Optimal Solution

In this section, we formulate the optimization problem of the unrestricted agent u

and of the banking sector b. The solution requires no assumption in addition to the

ones outlined in the previous chapter, mainly a complete market and an adapted

investment opportunity set (µ, r, σ). Furthermore, in their optimal decision, agents

take the prices as given. Consequently, the wealth of the unrestricted agent W u
0 and

equity value W b
0 are exogenous.

On this general level, we are able to discuss the impact of regulation at two points

in time: first, the direct effect of a changing regulation at time t = T on the optimal

profile of the banking system W b
T ; second, by virtue of the budget constraint in

t = 0, there is also an indirect impact of regulation, as these direct effects have to

be financed by a modification of the portfolio decision.

3.2.1 Formulation of the Optimization Problems

The unrestricted agent u as well as the banking system b optimize the expected

utility

E

[∫ T

0

u(cns ) ds+ u(W n
T )

]
n ∈ {u, b} ,

with a CRRA utility function as defined in (2.12) on p. 21. As heterogeneity

in agents’ characteristics introduces superimposing effects, economic agents are as

similar as possible. Therefore, both representative agents share the same coefficient

of constant relative risk aversion γ.

Since the market is complete, the problem can be solved using the martingale

techniques of Cox and Huang (1989) and Karatzas et al. (1987), which convert

the dynamic optimization problem into a static variational one. The state-price

density process is defined as in the previous chapter,

dξt = −ξt(rtdt+ κtdwt) ,
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where r is the locally risk-free interest rate and κ = µ−r
σ

the market price of risk

process, both adapted to F .

The resulting static-variational optimization of the aggregate banking sector reads

as follows

max
{ct,WT }

E

[∫ T

0

u(cbt)dt+ u(W b
T )

]
(3.9)

s.t.



E[
∫ T

0
ξtc

b
tdt+ ξT (W b

T + CT )] ≤ ξ0W
b
0 Budget with Costs

Eq. (3.3) and (3.4) Aggregate Behavior

Eq. (3.7) and (3.8) Regulation

cbt ≥ 0, W b
T ≥ 0 Non-Negativity.

This new optimization encompasses the particular case of an

unrestricted agent u as in Cox and Huang (1989). He is not indebted and has

no other exogenous restrictions; i.e. (F = 0, α = 1, n = 1). Furthermore, the

case of an

VaR restricted agent v as in Basak and Shapiro (2001) is nested. The agent

uses a VaR management, which aims at maintaining a certain wealth level

with at least a probability of α, but no debt; i.e. (F = 0, n = 1). Finally, the

optimization problem of the

unrestricted financial intermediary i as in Basak and Shapiro (2005) can be

recovered by setting (α = 1, n = 1). This agent has debt outstanding, but has

no regulation and VaR management.

This case is also of further interest since it represents the case where the

banking sector is not regulated. To facilitate an easy comparison of different

solutions, we denote this unregulated banking sector in the following as

financial intermediary i. Furthermore, regulation is in some cases effectively

not binding, meaning that, even though there exists regulation, initial equity

W b
0 is sufficient such that the VaR restriction does not bind.
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3.2.2 Optimal Solution

First, the solution to the unrestricted representative agent u is repeated. Afterwards,

the solution of the restricted banking system is given and characterized.

Solution of the Unrestricted Investor

The solution to the problem of the unrestricted investor u is, as outlined in the

previous chapter,

cut (y
u) = I (yuξt) , W u

T (yu) = I(yuξT ) , (3.10)

where the Lagrange multiplier of the unrestricted agent yu > 0 is the solution to the

static budget equation

E

[∫ T

0

ξsc
u
s (y

u)ds+ ξTW
u
T (yu)

]
= ξ0W

u
0 . (3.11)

I(y) is the inverse function of marginal utility, see equation (2.13) on p. 21.

Optimal Solution of the Banking Sector

We characterize the solution when the VaR restriction is binding

cbt(y
b) = I

(
ybξt
)

W b
T (yb) =



I(ybξT ) if ξT ≤ ζ∗

W∗ if ζ∗ < ξT ≤ ζ∗

I(hybξT ) if ζ∗ < ξT ≤ ζ

W if ζ < ξT ≤ ζ

I(hybξT ) if ζ < ξT

(3.12)

with the boundaries

W∗ = β
(1−β)

F ζ∗ = u′(W∗)
yb

ζ∗ = ζ∗
h

W = ψ(n) β
1−βF ζ = u′(W )

hyb
ζ : P[ξT ≥ ζ] = α ,

(3.13)

the costs sensitivity

h =
β

β + λ(1− β)
∈ (0, 1) , (3.14)
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and a variable, representing the strictness of regulation

ψ(n) =
1− β
β

nλ

β + λ(1− β)− n)
∈ (0, 1) , (3.15)

where again the Lagrange multiplier of the banking sector yb > 0 is the solution to

the static budget equation

E

[∫ T

0

ξsc
b
s(y

b)ds+ ξT (W b
T (yb) + C(W b

T (yb))

]
= ξ0W

b
0 . (3.16)

The proof is provided in the Appendix. If ζ > ζ, the VaR restriction is effectively

not binding. In this case or when the solution of the financial intermediary i is of

interest, it can be recovered by formally setting ζ = ζ.

The feasibility constraint for the restricted problem is

W b
0

F
≥ βλ

β + λ(1− β)− n
E0

[
ξT
ξ0

1{ξT≤ζ(α)}

]
+

βλ

β + λ(1− β)
E0

[
ξT
ξ0

1{ξT>ζ(α)}

]
. (3.17)

If capital requirements n (given α) are too restrictive, the solution ceases to exist, as

a foreclosure of any banking business activity is optimal. Accordingly, the condition

n ≤ β (3.18)

represents an incentive compatibility constraint.

Remark. h can be seen as cum-ex sensitivity of equity in case of distress or crisis,

∂(W b
T+CT )/∂VT
∂W b

T /∂VT
|VT<F/(1−β), see Table 3.1, Panel 1. A decrease in h measures the loss

in equity return due to bankruptcy costs,
W b
T+CT
WT

, with respect to a loss in VT . Under

optimality, the agent balances state-by-state these losses with the marginal loss, paid

to the outsiders, by setting up a portfolio policy to increase (resp. decrease) VT ,

thereby providing more (resp. less) equity wealth net of fees in this particular state.
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Table 3.2: Standard Parameter Set

This table reports the set of parameters that will be used, if not stated otherwise.

partial equilibrium

riskless rate market price of risk initial state initial wealth (distr.)

r = 5% κ = 40% ξ0 = 3.69
W u

0 = 2
W b

0 = 2

pure exchange equilibrium

growth c.f. vola. c.f. initial c.f. initial endowment
µδ = 8.5% σδ = 20% δ0 = 0.52 1− ω = 7

9

agents’ data

CRRA coefficient horizon
γ = 2 T = 5

nominal heterogeneity prop. costs
F = 7 β = 14.10% λ = 5.34%

regulation

Cooke ratio VaR probability
n = 13.3% α = 1%

resulting economy in a balance sheet (present value)

tot. debt to real sector
P0 = 9

total assets
V0 = 7

banks’ equity
W b

0 = 2

banks’ debt
D0 = 5

wealth unr. agent
W u

0 = 2
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Figure 3.3: The Bank Sector’s Optimal Solution for Terminal Wealth

This figure shows the solution of the optimization problem using the set of standard
parameters. Each graph is plotted over the scaled state price ξT /ξ0, where low values
represent ’good’ times and vice versa. Panel 1 shows the total value VT , whereas
Panel 2 the equity capital W b

T , and Panel 3 the debt redemption payment DT . The
parameters are as defined in the standard parameter set in Table 3.2.
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Figure 3.3 illustrates the optimal solution in the form of a balance sheet: the

resulting total value VT is displayed in Panel 1, debt value DT in Panel 2, and

terminal equity value W b
T in Panel 3, each plotted against the scaled state price

ξT/ξ0. High scaled state prices correspond to economically ’bad’ times, whereas low

state prices indicate a favourable economic development. Due to the fixed default

procedure, total assets VT and equity W b
T are structurally identical. For those states

in which default occurs, debt DT also inherits a similar structure. The graphs are

plotted using the parameters of the model as given in Table 3.2 (standard parameter

set).

The optimal solution splits the entire state space into the same regions mentioned

on p. 65, namely a

normal economic environment with ξT ≤ ζ∗ and ζ∗ < ξT ≤ ζ∗. This region can

be further separated into two parts. In economically ’good’ time, the banking

systems behaves as if being unrestricted. However, at ζ∗ the retention level to

distress W∗ starts, corresponding to F/(1− β) on the total asset level. Here,

the agent avoids the first default, as long as the default costs are higher than

the costs of obviation, i.e. up to the distress boundary ζ∗. A

distress of the financial system will occur in the regions ζ∗ < ξT ≤ ζ and ζ < ξT ≤

ζ. In the first part, the banking system behaves like the unregulated financial

intermediary i.

The second part with the retention level W is induced by the VaR requirement.

The least wealth W that is required to maintain the VaR restriction, is reliant

on regulation through its dependence on the regulation parameter n. The

VaR boundary ζ is the (1 − α) quantile of the state price density and thus

independent of preferences and endowments. The last region corresponds to a

crisis of the financial system that occurs in the states ζ < ξT . In these remaining

states, wealth W b
T is not restricted and is proportional to the unrestricted

profile I(ξT ). This property is especially noteworthy in the ’tail’ of the

distribution, as VaR does not restrict wealth in these states.
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Finally, at the VaR boundary ζ, a jump from the retention level to the

unrestricted policy appears,

J = W − I(hybζ) ≥ 0 . (3.19)

A total

breakdown of the financial system is not sustainable due to the form of the utility,

which prevents the banking sector from reaching a breakdown, as u′(W )→∞

for W → 0.

The optimal wealth at time T can be replicated by a static portfolio of derivatives.

As in the previous chapter, one can define a mutual fund G = I
(
yb ξT

ξ0

)
and

decompose the optimal solution into

1. I(h) units of the fund G,

2. I(h) > 1 calls options short with strike W∗
I(h)

,

3. 1 call option long with strike W∗,

4. I(h) > 1 puts long with strike W
I(h)

and knock-out barrier K(α)
I(h)

,

where K(α) = I(hybζ). Positions (1., 2., 3.) correspond to the solution of the

unrestricted financial intermediary i and position (4.) is necessary to generate the

deviation from optimal policy due to the VaR constraint. The static decomposition

in more formal terms is

W b
T = I(h)GT −max{I(h)GT −W∗, 0}+ max{GT −W∗, 0}︸ ︷︷ ︸

Solution of i

+ max{W − I(h)GT , 0}1{I(h)GT≥K(α)}︸ ︷︷ ︸
VaR - effect

.
(3.20)

Note the resemblance to the static derivatives position of the VaR restricted agent

in (2.30) on p. 34. This static derivative portfolio is of importance for an attempt to

explain the risk taking behaviour of banks and the success of derivatives’ innovations
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before the current financial crisis emerged, based on a regulatory side effect2. The

completeness of markets, be it based on dynamic trading or on a sufficient set of

derivatives existent on markets, enables banks to exactly fulfill the requirements of

regulation. However, it also permits to make full use of all states, where regulation

is not binding. Within any kind of VaR based measure, these states are inherently

in the tails of the distribution, as is illustrated in the above derivative position

through the knock-out options. In a more general understanding, which overcomes

our specific model framework, these states may cover also developments, where

markets participants expect regulatory authorities to lessen their policy and/or to

intervene, in order to stabilize the system. Finally note, that this side effect of

regulation is increasing with the nominal debt level of the banking system.

As our model framework provides a close link between dynamic trading strategies

and static derivative positions via market completeness, this side effect cannot be

obtained in a standard static framework with linear contracts.

3.2.3 Reaction of the Banking System to Regulation

This model framework facilitates the separation of the reaction to a change of a

parameter by comparative statics of the solution into three effects:

Step 1 results in the direct effect on the optimal decision in time T , i.e. how do

boundaries change and what are the implications for equity wealth in these

states? The parameters of interest χ are the VaR probability α, the aggregate

capital requirements n, nominal debt F , and the parameters that structure

the model, λ (costs fraction borne by the banking sector) and β (heterogeneity

within the banking sector).

These parameters may have an impact on the relevant boundaries ζ, W∗, and

W as well as on the cost sensitivity h. Thereby, terminal wealth reacts to

changes in parameters,
∂W b

T

∂χ
.

2This certainly covers only one aspect of the crisis. Other ones, such as compensation schemes
or problems of moral hazard due to securitization, are not the focus of this thesis.
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Step 2 results in the indirect reactions due to wealth transfers at time t = T , i.e.

how are the previously mentioned changes in wealth financed? In general, the

budget equation does not hold any more after the first step. The only way to

fulfil the budget equation optimally is to adjust wealth in these states, where

a solution of the unregulated type I(·) prevails, i.e. in the regions (0, ζ∗],

(ζ∗, ζ], and (ζ,∞). By the relation
∂W b

T

∂yb
< 0 in these regions, this adjustment

effectively amounts to changing yb. Thereby, indirect effects of financing arise,

as expressed by the sign of y′b(χ).3

Step 3 results in the induced provisioning of equity capital at time t = 0. Capital

provisioning is defined as how much equity capital of (constant) total equity

W b
0 has to be ’put aside’, in order to pay for the modifications of the portfolio

strategy necessary to generate the direct (Step 1) and indirect (Step 2) changes.

W b
0 −W i

0(yb) measures exactly the amount of capital that has to be put aside.

The possibility of this separation is due to the new model proposed and solved above.

Remark. The following arguments are with respect to equity capital. As the total

assets V are a monotonous transformation of W b, the same results are valid for the

total assets. Debt D also inherits the same characteristics in the distress and crisis

regions ξT > ζ∗.

For further reference, Table 3.3 at the end of this section lists derivatives with respect

to the VaR probability α, the Cooke ratio n, costs λ, heterogeneity parameter β, and

nominal debt level F . In Step 1, the sign of the derivatives needed for the direct

effect, namely the ones of the distress level W∗, crisis level W , VaR boundary ζ,

and the costs sensitivity h are displayed. Step 2 shows the impact on the Lagrange

multiplier yb. Lastly, the change in capital provision for Step 3 is given.

Finally we have to address of how to measure financial (in)stability. Going further,

the literature (and regulatory authorities) does not even provide a generally accepted

3In order to keep notation simple we define y′
b(χ) = dy(χ)

dyb .
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definition of what constitutes a stable (fragile) financial system, what the systemic

risks are, and how to define a crisis in the financial system, see de Bandt and

Hartmann (2000), Davis (2003) or Goodhart (2006) for a discussion. In our analysis

we follow the micro-economically founded models of Tsomocos (2003), Catarineu-

Rabell et al. (2005), Goodhart et al. (2006), and Goodhart and Tsomocos (2007)

and use not only the probability of distress as a measure, but also the wealth of the

economy in crisis and the sensitivity of the economy to the driving economic factor in

distress and/or crisis. These authors note that an increasing probability of distress

might just represent increased risk taking, but is not harmful to the economy if it

is not accompanied by serious loss to profitability (in our case equity wealth) in the

economy.

Let H be an endogenous variable representing an aspect of financial stability and

χ one of the exogenous parameters, then the (total) derivative can be decomposed

into
d

dχ
H(yb(χ), χ) =

∂H

∂yb
y′b(χ)︸ ︷︷ ︸

indirect effect

+
∂H

∂χ︸︷︷︸
direct

(3.21)

Table 3.3, Panel 2 displays the sign of all three relevant derivatives. H are variables

that measure aspects of financial stability, which are the probability of distress,

P[DT < F ], the probability of crisis, P[W b
T < nVT ], capital provision (needed for

Step 3), W b
0 −W i

0(yb), the jump size J , and the equity value in crisis, I(hybξT )|ξT>ζ .

Regulation by the VaR probability

As an example, we discuss the case where the banking system faces stricter regulation

by the VaR probability, that is, α decreases. The decomposition of the effects on

the optimal solution are displayed in Figure 3.4. The

direct effect of Step 1 is displayed in Figure 3.4, Panel 1. The VaR boundary ζ,

by virtue of its definition increases, see Change 1. The optimal solution (3.12)

is not affected in its principal structure (W∗ and W are constant), only the

region, where wealth is kept at level W becomes wider, see Region A. Thus,
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Figure 3.4: Impact of a Change in the Regulation Parameter α

This figure decomposes the impact of stricter regulation on terminal wealth into its
direct effect in Panel 1 and into the indirect effect in Panel 2, as in Equation (3.21).

there are some states where wealth has to be raised from the lower unrestricted

wealth I(hybξT ) to the level W . Furthermore, the jump size J is enlarged, see

Change 2. The

wealth transfers of Step 2 are displayed in Figure 3.4, Panel 2. Obviously, the

budget equation does not hold any more; this profile needs more initial capital

due to region A in Panel 1. As the resistance levels W∗ and W do not change,

the only way to ’refinance’ these positive wealth differences is to reduce the

wealth in all non-restricted states, i.e. the Regions B, C, and E in Panel 2, i.e.

an increase in the shadow price of equity capital yb, exactly up to the point

where the budget equation will hold again. The present value of regions B, C,

and E is identical to the one of region A in order to fulfil the budget equation.

The

provisioning of equity capital in Step 3 can be deduced, when comparing the

region that is enclosed by the solution of the unrestricted financial intermediary

i (dashed line in Panel 1) and the solution of the banking system b before a

change of α (solid line, before changes), with the same region in Panel 2 (after

changes); the difference is the combined Regions A and D. Thereby we obtain

a raised risk provision that can be directly attributed to the VaR constraint.
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However, this form of regulation impairs financial stability by its side effects:

reducing the probability of crisis P[W b
T < nVT ] = P[ξT > ζ] by means of stricter

regulatory policy comprises indirectly a higher probability of distress, P[DT < F ] =

P[ξT > ζ∗], as ζ∗ decreases through the indirect refinancing effect, see Panel 2,

Change 3. Moreover, the crisis becomes more pronounced as the jump size J

heightens, both directly as a result of the regulatory impact of α on the VaR

boundary ζ (Panel 1, Change 2) as well as indirectly through the effect of wealth

transfers, as expressed by yb, on ζ∗, see Panel 2, Change 4. The jump size is of

interest with regard to financial stability, as it is related to the question to what

extent the banking system reacts to a small change in the underlying economic

situation; it thus can be seen as a way to measure the escalation potential of less

favourable economic situations. In addition, the severity of crises, as measured

by aggregate wealth in case of a crisis I(hybξT )|ξT>ζ , will be lower than in a less

regulated economy, see Panel 2, Change 5.

This discussion of the change in the VaR probability α on the solution vividly

illustrates that (stricter) regulation, i.e. Change 1 in Panel 1, leads to complex

modifications in the behaviour of the banking system. These modifications may

result in less financial stability when other viable measures of financial stability are

in view. In particular it is to stress that, even with the minimal assumption in place,

the probability of distress in the financial system is increasing due to regulation.

Tracing back the result to the static derivative portfolio of equation (3.20) shows

that this side effect will also happen in world with sufficient innovations in the

derivative markets.

Capital Requirement

While α restricts the probability of a crisis, a positive change in the capital

requirements n alleviates the severity of the distress in the banking sector by

increasing the retention level W .

By an analogous argument, the indirect financing effect countervails this positive

influence, since a similar argument as before shows that the probability of distress,

the jump size and the severity in crisis increase, see Table 3.3.
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From the viewpoint of regulatory policy, both instruments, the capital adequacy n

and the VaR probability α imply adverse reactions: while stability benefits directly

from regulation the way one expects, indirect (optimal) wealth transfers are to the

detriment of stability in the banking system.

Relation to the Structural Parameters of the Economy

Even though, within the modelling framework, the nominal debt level F , costs λ,

and heterogeneity β are given constants, they may, in fact, not be constant, since

they are subject to the Lucas (1978) critique. Thus a study of the effect stemming

from changes in theses variables is necessary in order to assess the robustness of

regulatory policies. The arguments in the following are based on Table 3.3.

The banking system e.g. might respond to a change in regulatory policy by

downsizing its business activities by lowering aggregate debt exposure F . This in

turn lessens both retention levels in absolute terms. Lower retention levels do not

matter in this case, as on a relative scale the ratios W∗/F or W/F will not change.

Yet, even on a relative scale, the jump size is reduced and positive wealth transfers

additionally amend the situation with respect to the probability of distress and

the recovery rates of debt DT/F . When combined in this way, the reaction of the

banking system to a change in regulation ameliorates the secondary negative effects

of regulation.

Without any VaR restriction, i.e. the unregulated financial intermediary i, costs

λ decrease h and thus raise the terminal equity value of the financial intermediary

W i
T in the distress region ξT > ζ∗. The increase, though, is financed over both

unrestricted areas, ξT < ζ∗ and ξT > ζ∗. Consequently, terminal wealth in distress

W i
T |ξT>ζ∗ is still increased after shifts due to financing. If there are no cost λ = 0, a

Modigliani and Miller (1958) type of argument holds and there is no disturbance of

the unrestricted policy with terminal profile I(ybξT ).

When financial intermediaries already expect at time t = 0 to be hit by some losses

due to defaults within the financial system, they behave as if they are more risk

averse. If every bank indeed shows this behaviour, the unregulated financial system
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behaves unambiguously as being more risk averse in order to avoid these exogenous

costs. This is in contrast to standard results in literature, as in Jensen et al. (1976),

where there are risk-increasing incentives due to limited liability. In this model

framework, financial intermediaries do know that they will be hit by some losses

from other institutions, which in turn lessen their willingness to take larger risks.

The regulated banking sector b differs with respect to costs by the additional

retention level to crisis W ; for λ = 0 it is zero, i.e. VaR is non-binding. As λ

increases, W increases and may become binding; when leverage is too low, it will

never be binding. Relative to the unrestricted case, the retention level W must

be financed, resulting in a faster relative increase of the budget tightness yb. On

the other hand, if λ is very high, the VaR restriction is effectively not binding, as

the costs themselves are already a big enough incentive. Thus, regulation is non-

monotonous in systemic costs.

Costs reduce the riskiness of the banking system. However, the effectiveness of

a VaR-based regulation depends on the degree of systemic costs; it only works

well for moderate costs. If the costs are ’prohibitively’ high, there is simply no

need for regulation, as agents voluntarily reduce their exposure. Two properties of

costs in our model framework are essential: if costs are not ’expected’ to appear by

market participants, they will not change their optimal decision; regulation becomes

ineffective as well. Moreover, the costs in our model framework are borne by the

banking system. If the ’total’ costs (consisting of direct, indirect, systemic, real

feedback) do not generate enough costs, which are borne by equity holders of banks,

regulation is effectively impaired as well. Note that one of the main determinants of

the costs fraction λ consist of the degree of connectivity within the banking system.

Hence, a well-functioning interbank-market has a disciplining effect.

Remark. The impact of heterogeneity β is indistinctive, as even the direct effects of

the unregulated financial intermediary are ambivalent. Both retention levels W∗ and

W are (progressively) increasing inducing a tighter budget equation. At the same

time, the increase in h lessens the restrictiveness of the budget. Without further

assumption, it is unclear which effect prevails.
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3.3 The Banking Sector in Partial Equilibrium

In order to obtain quantitative statements or to explore the characteristics of the

solution at some arbitrary point in time t ∈ (0, T ), we need to impose further

structure on the investment opportunity set.

In the previous section, we presented the solution where all the agents take the

investment opportunity (r, µ, σ) set as a given. It was required to be continuous

and adapted to the filtration F . In order to be consistent with the pure exchange

equilibrium in the following chapter, we assume a constant interest rate

rt = r ≥ 0 , ∀t .

Moreover, the adapted processes (µ, σ) are connected in such a way as to guarantee

a constant market price of risk

κt =
µt − r
σt

= κ > 0 , ∀t .

With these additional assumptions, the state price process ξ in equation (2.5) on p.

16 follows a geometric Brownian motion. This enables us to evaluate the expectation

operators (semi-)analytically.

Yet, there is no need to specify the drift and the volatility of the risky asset more

explicitly. In contrast to the following chapter, prices are still exogenous by the

choice of r and κ.

Remark. On the impact of this structural assumption, see Remark 1 on page 28.

In this section, we analyze the restrictiveness of the VaR. We do this by

characterizing (i) the point, where the VaR restriction becomes binding and (ii)

the capacity of the banking system to load on nominal debt.

We then quantify the equity capital provisions of the VaR constraint and the impact

on the banks’ debt market.

Finally, we discuss the evolvement of the portfolio decision of the aggregate banking
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sector over time and states and link it to an instantaneously adjusted risk aversion,

caused by the incentives given through the VaR restriction.

Remark. Analogous to the discussion in Remark 2 on p. 36, this framework can

be seen as a Cox et al. (1985a)-type production economy. Then, prices have to be

interpreted as quantities.

3.3.1 Value of the Optimal Solution

The wealth of the unrestricted investor is, as shown in (2.19) on p. 28,

W u
t (yu) = I(yuξt)

(
a(T − t) + A(T − t)

)
.

Using the static budget equation of the unrestricted investor W u
t (yu)|t=0 = W u

0 , we

can solve for the Lagrange multiplier analytically

yu =

(
a(T ) + A(T )

W u
0

)γ
1

ξ0

.

By the same procedure, the aggregate equity position of the banking system b is, as

sketched in the Appendix,

W b
t (yb) = (A(T − t) + a(T − t)) I(ybξt)

+a(T − t) I(ybξt)
(
− I(h)(Φ(−d1(ζ∗))− hΦ(−d1(ζ∗)))

−I(h)(hΦ(−d1(ζ))− hΦ(−d1(ζ))
)

+ e−r(T−t) W∗

(
Φ(−d2(ζ∗))− hΦ(−d2(ζ∗))

)
+ e−r(T−t) W

(
hΦ(−d2(ζ))− hΦ(−d2(ζ))

) ,
(3.22)

where Φ is the standard normal distribution and

d1(ζ) =

(
r − κ2

2

)
(T − t) + log

(
ζ
ξt

)
+ κ2

γ
(T − t)

√
T − t κ

d2(ζ) =

(
r − κ2

2

)
(T − t) + log

(
ζ
ξt

)
√
T − t κ
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are as in equation (2.31) on p. 35.

The budget equation W b
t (yb)|t=0 = W b

0 cannot be solved in closed form. The

function W b
t (yb)|t=0 is strictly (and progressively) decreasing in yb, see equation

(3.45); therefore, a unique Lagrange multiplier yb, satisfying the budget equation,

exists, given that the feasibility condition is fulfilled.

Equipped with the numerical solution to the Lagrange multiplier, one can recover

other variables of interest. Even though we have to rely on a numeric procedure for

yb itself, derivatives with respect to some parameter χ of the Lagrange multiplier,

y′b(χ), can be analytically derived, by applying the implicit function theorem on the

static budget equation, W b
t (yb(χ), χ)|t=0 = W b

0 .

Remark. When directly comparing the regulated banking sector b with the

unregulated financial intermediaries i, we use the superscript b or i also on total

asset V , debt D, or other variables of interest. If no superscript is used, the regulated

banking sector b (alone) is discussed.

Figure 3.3 shows the balance sheet of the banking sector at time t = 4 as a function

of the scaled state price ξt/ξ0. The aggregate assets V n
t are shown in Panel 1, equity

W n
t in Panel 2, and debt Dn

t in Panel 3, where n ∈ {b, i}. The corresponding

formulae are given in the Appendix.

The decomposition of terminal wealth presented in equation (3.20) illustrates that

aggregate wealth has a formula of the Black and Scholes (1973) type. The principal

structure of W b
t as a function of the state price ξt is similar to the one at time T ;

however, time to maturity has a smoothing effect. Since aggregate equity capital

W b
T is monotonous in the state prices ξT , the continuous solution in t is strictly

monotonous as well. The non-convexities of W b
T in ξT are also transmitted. It is

easy to imagine how the curve shapes out over time into the retention levels W∗, W ,

and the jump J at the VaR boundary ζ. The additive first term captures the value

of future consumption.



88 3 Regulating the Banking Sector: The Banks’ Optimal Decision

Panel 1: Assets Panel 2: Equity

0 1 2 3 4 5 6 7

5

6

7

8

9

10

11

scaled state price Ξt�Ξ0

va
lu

e
of

to
ta

la
ss

et
s

V
t

@€
D

Vt
b

Vt
i

0 1 2 3 4 5 6 7

0.8

1.0

1.2

1.4

1.6

1.8

scaled state price Ξt�Ξ0

eq
ui

ty
va

lu
e

W
t

@€
D

Wt
b

Wt
i

Panel 3: Debt
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Figure 3.5: Value of Total Assets, Equity and Debt

This figure shows the balance sheet of the aggregate banking sector in present value
terms at time t = 4, for the restricted banking sector as solid lines and for the
unrestricted financial intermediary as dotted lines. Each panel is plotted over the
scaled state-price-density ξt/ξ0, where low values represent ’good’ times and vice versa.
Panel 1 shows the total value Vt, whereas Panel 2 the equity Wt, and Panel 3 the debt
value Dt. The parameters are as in the standard parameter set in Table 3.2.
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The mean and volatility of the aggregate equity value W b are stochastic, even

if the underlying investment opportunity set (r, µ, σ) is set constant. This is to

be expected, as the returns are transformed by the structure of the aggregate

balance sheet. However, as the total assets VT are a piecewise linear function of

the aggregated wealth W b
T , the total assets also have stochastic mean and volatility,

even though the model framework is alike a ’classical’ Black and Scholes (1973) and

Merton (1973b) type of economy. This result turns out to be robust, as it only needs

a fixed settlement procedure at time T , which results in some disturbance of the

unrestricted optimal profile I(·).

Remark 4. This stochastic behaviour of µ and σ translates into total assets as

well. This contrasts many models assuming that the total assets (or cash flows)

follow a geometric Brownian motion, see Merton (1974), Black and Cox (1976),

Leland (1994), Leland and Toft (1996), Goldstein et al. (2001), and Dangl and

Zechner (2004) regarding corporate debt contracts, and Merton (1977), Merton

(1978), Fries et al. (1997), Bhattacharya et al. (2002), and Dangl and Lehar (2004)

on a regulatory framework.

3.3.2 Restrictiveness of the VaR Restriction

Given a regulation policy (α, n), the restrictiveness of the VaR restriction is

characterized by two specific nominal debt levels: (i) by the transition point ~F where

the restricted solution first becomes effectively restrictive and (ii) by the (maximum)

debt capacity F̂ , the highest level of nominal F that the banking system is able to

maintain, given fixed initial value of equity.

Remark. There are two laterally reversed variables of interest, W b
0 and F , see

also the feasibility constraint (3.17). The question of the maximal feasible nominal

debt level F is equivalent to the minimal initial equity capital W b
0 or the maximal

nominal leverage F/W b
0 . For expositional reasons, we vary the nominal debt level

F . All conclusions are analogous if one picks one of the other variables.
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When F = 0, the VaR restriction is obviously non-restrictive and yb = yi = yu.

Furthermore, comparative statics in the previous section shows that y′b(F ) ≥ y′i(F ) >

0, where the equality holds if the VaR restriction is not binding. Consequently, once

VaR is first binding, it is binding from than on, when increasing the nominal debt

level F .

The transition point ~y, where the restricted solution changes from being effectively

unrestricted to being restricted, can be characterized by

~y =
u′(W )

hζ
.

By inserting into the budget equation W i
t (~y)|t=0 = W b

0 and solving for F , on obtains

the analytical solution to the transition nominal ~F .

The maximum debt capacity F̂ can be characterized by evaluating the feasibility

condition for the solution and solving for F ,

F̂ = erTW b
0

β + λ(1− β)

ψ(n)Φ(d2(ζ(α))) · β + λ(1− β)
, (3.23)

where ψ(n) is defined in equation (3.15). Note that ~F ≤ F̂ , where equality holds in

the non-generic cases α = 1, n = 0, or λ = 0. It is in these cases that the restricted

problem is in fact equivalent to the unrestricted for all F .

Figure 3.6 shows the type of solutions: Region A, where the VaR restriction is not

binding, corresponds to 0 ≤ F ≤ ~F , and Region B, where the effectively restricted

solution is obtained, to ~F < F < F̂ .

Regulation

Panel 1 of Figure 3.6 depicts the type of solution in terms of the VaR probability α.

Debt capacity in the unrestricted banking sector is F̂ (α = 1, n = 0) = erTW b
0

1
hλ

=

63.75 and with maximal regulation F̂ (α = 0, n = β) = erTW b
0

1−β
β

= 15.65.

Since region B is generically non-empty, i.e. 0 < ~F < F̂ , the banking system will

actively manage its portfolios in order to comply with the VaR restriction. Whether
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Figure 3.6: Restrictiveness of the VaR Restriction

This figure shows the type of solutions if varying the regulation instrument α (Panel 1)
or the costs fraction λ (Panel 2) together with the nominal debt level F . In region A,
the VaR restriction is not active, whereas in region B, the VaR restriction is binding.
The transition nominal ~F separates Region A (non active / effectively unrestricted)
from Region B (active / effectively restricted). F̂ b and F̂ i are the debt capacities
of the restricted banking sector b and of the unrestricted financial intermediary i,
respectively. All other parameters are as defined in the standard parameter set in
Table 3.2.

the banking sector reacts to the introduction or a change in regulation depends on

the nominal debt level F . Furthermore, stricter regulatory policy (n, α) reduces the

transition nominal, ~F ′(α) > 0, ~F ′(n) < 0; the banking system reacts earlier.

If financial stability is measured by the maximum debt capacity F̂ of the banking

system, regulation is effective in reducing the maximum exposure, in our numerical

example from (i) : 63.75→ (b) : 18.26.

Remark. The results with respect to the capital adequacy restriction n is similar,

see the Appendix.

The Underlying Economic Structure

Panel 2 of Figure 3.6 depicts the type of solution in terms of the costs λ.

The cost fraction λ weakens the debt capacity F̂ , irrespective of being restricted,

F̂ b, or not, F̂ i, as the aggregate banking sector expects more losses to come. Recall

that the fraction of ’total’ costs due to a financial system in distress, which are

transmitted to the equity position of the banking system itself, depends crucially on

the degree of connectivity within the banking sector. The result states that (rational)
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agents are willing to extend less credit in aggregate to a financial system with a large

interbank market. This contrasts with an argument, where a financial system is able

to maintain more debt, because losses will be (effectively) more diversified across

banks within the financial system.

Regulation further abates the ability of the economy to leverage up, F̂ b < F̂ i as it

entails ancillary capital provisions.

The effect of costs on the transition nominal ~F is ambiguous. When increasing costs

at a low level of λ, the transition point ~F (usually) declines, as the VaR retention

level W is positively related to the costs fraction λ and thus the VaR restriction is

binding earlier.

On the other side, costs increase wealth in distress, I(hybξT )|{ξT>ζ}, and thereby

VaR is less restraining. Since ~F grows at high costs, the second effect dominates the

first effects.

The fraction of costs, where the derivative d~F/dλ changes sign, also relies on risk

aversion. If risk aversion is very high, in our numerical example γ ≥ 97.14, the

second wealth effect always dominates, d~F/dλ < 0 for all feasible parameters of

regulation (n, α).

Remark. With regard to the parameter of heterogeneity β, the arguments concerning

~F are similar.

The debt capacity F̂ i of the unregulated financial intermediary i is lowered. However,

in the regulated economy b the sign of F̂ ′b(β) is determined by a complex relation

between the parameters α, n, λ and β itself; hence neither ~F nor F̂ b is monotonous

in the degree of heterogeneity β.

With these results in view, the ’effectiveness’ of regulation, when measured by the

ability to change the decision of the banking system, depends non-monotonously

on the underlying economic structure (λ, β). As we directly model the aggregate

banking sector, our model is subject to the Lucas (1976) Critique. If regulation in

fact affects also the underlying structure, like the size of the interbank markets or

the business model of banks, the previous analysis shows that the (net) impact of
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Figure 3.7: VaR Induced Difference in Optimal Solution

This figure shows the VaR induced changes in equity capital in Region A by displaying
equity capital with VaR, W b

T (yb) (solid line), and equity capital of the financial
intermediary using the same tightness of the budget constraint as the regulated banking
sector, W i

T (yb) (dotted line). The parameters are as defined in the standard set in
Table 3.2.

regulation is hard to predict, even within this simple economy.

3.3.3 VaR-induced Capital Provision

This section quantifies how much equity capital the banking system has to provide

purely due to the VaR regulation. Figure 3.7 plots the terminal equity wealthW b
T (yb)

over the scaled state prices ξT/ξ0 as a solid line. The dotted line corresponds to

W i
T (yb). It differs from the regulated banking sector W b

T (yb) only in those states

that are affected by VaR, namely ξT ∈ (ζ, ζ).

Accordingly, W i
0(yb) is the initial equity capital needed to implement an unregulated

portfolio strategy with a terminal equity position that coincides in all states but

those directly attributable to the VaR restriction, see Region A.

Our measure of capital provision due to VaR is

CP =
W b

0 −W i
0(yb)

W b
0

. (3.24)

The normalization by the initial wealth W b
0 to a proportion of equity capital makes

CP comparable in size to a capital requirement, based however on equity capital.
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Figure 3.8: VaR Induced Capital Provisions

This figure shows the (relative) capital provision CP of the banking sector. Panel
1 graphs provisioning with respect to the regulatory parameter α. The solid line
represents the standard case (F = 7, n = 13.3%) , whereas the dashed line the case of
(F = 11, n = 13.3%) and the dotted-dashes the case of (F = 11, n = 10%). Panel 1
displays the capital provisioning with respect to the costs share λ. All other parameters
are as defined in the standard set in Table 3.2.

Because W i
T (yb) captures all the equity capital that a rational agent provides due

to debt financing, CP can also be interpreted as (relative) excess capital to cover

’unexpected losses’.

Figure 3.8 shows (relative) capital provisions CP for two nominal debt levels F and

two Cooke ratios n, depending on the regulatory control α in Panel 1 and depending

on the cost fraction λ in Panel 2.

Regulation

With a stricter regulation policy, the aggregate banking system’s capital provisions

(progressively) rise due to regulation. Even though it seems tautological, this result

is not directly obvious, as regulation restricts equity capital to be less than nV0

and less than nVT with probability α. However, CP is different from the capital

requirement n, as it measure the restrictiveness of the VaR restriction in terms of

initial equity. Conditioning on some regulatory policy, capital provision CP may be

higher or lower than the capital requirement n, depending on nominal debt F , as

can be seen in Figure 3.8, Panel 1.

There is an upper bound ĈP in risk provision, when (α = 0%, n = β), where debt is
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risk-free. In our numerical example, maximal risk provision will be (ĈP (F = 7) =

5.62%, ĈP (F = 11) = 39.11%).

Furthermore, given an arbitrary regulation, CP is increasing in the nominal debt

level F . Governing excess capital provisions of the banking system by means of a

capital adequacy requirement without having control over nominal debt levels F

turns out to be futile within this model framework.

Structural Parameters

Panel 2 of Figure 3.8 plots the capital provisions in dependence of the costs λ. It

further underlines the result from the previous subsection that the ’effectiveness’ of

regulation non-monotonously relies on the underlying economic structure.

For low costs λ, the VaR-regulated banking system increases capital provisions in

order to finance an increased retention level W . For high costs, the impact of λ on

W is almost negligible, whereas raised costs increase the wealth in distress of the

unrestricted intermediary (as a direct effect, not through the budget constraint),

which lessens the capital provisions.

3.3.4 The Impact of Regulation on Debt Markets

In this section, three standard variables of interest in debt markets - (i) the

probability of distress, (ii) recovery rates, and (iii) spreads - are discussed.

However, as recovery rates and spreads are calculated with aggregated quantities

of the banking system, they should be interpreted rather as indicators than as true

market variables.

Probability of Distress

The (conditional) probability of distress PDt is defined as

PDt = Pt[DT < F ] = Φ ( −d0 (ζ∗) ) where ζ∗ =
u′
(

β
1−βF

)
hyb

< 0 . (3.25)

The definition of ζ∗ is repeated to show that it neither depends on α nor on n. The

impact of regulation is only indirectly through the repercussion of wealth transfers at
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Figure 3.9: Initial Probability of Default and Yield Spread

This figure shows the probability of distress in the banking system PD0 (Panel 1) and
the yield spread s0 (Panel 2) as function of the Cooke ratio n. Both are illustrated
for three different levels of VaR probabilities, α = 10% (dotted dashed line), α = 1%
(solid line), and α = 0.1% (dashed line). The probability of distress of the unrestricted
financial intermediary is 19.1% and the yield spread 226 bp p.a. All other parameters
are as defined in the standard set in Table 3.2.

time T wherby the probability of distress enlarges. Figure 3.9, Panel 1, quantifies the

results regarding the initial probability of distress PD0 using the standard parameter

set. Clearly both regulatory instruments (α, n) increase the probability of distress.

Figure 3.10 shows the difference between the conditional probability of distress

under the risk-neutral measure Q and the real one P. The dotted line displays

the unregulated financial intermediary i, and the solid line the regulated banking

system b.

When the economic situation turns out to be very ’good’, ξt → 0, the chance of

distress approaches zero. Using a sloppy formulation, there is no need for a change

of measure. The analogous argument holds for the opposite case, where distress is

almost sure when ξt →∞.

In between, the risk neutral PDQ
t is, consistent with risk aversion, strictly greater

than the real probability measure PDP
t , with a peak at ξt = e−r(T−t)ζ∗; empirically,

Bliss and Panigirtzoglou (2004) document similar results using an options data

set. When the economic situation is worsening from ’boom’, prices reflect a fast-

increasing risk aversion with respect to defaults, as the difference in probability of



3.3 The Banking Sector in Partial Equilibrium 97

0 1 2 3 4 5

0

5

10

15

scaled state prices Ξt�Ξ0

ch
an

ge
of

m
ea

su
re

P
D

tQ
-

P
D

tP

Figure 3.10: Probability of Distress: Change of Measure

This figure shows the difference between the probability of distress under the risk-
neutral measure and the real one, PDQ

t − PDP
t , dependent on the scaled state prices

ξt/ξ0 at time t = 4. The solid line displays the regulated banking system b, whereas
the dotted line the unregulated financial intermediary i. The parameters are as defined
in the standard set in Table 3.2.

distress exhibits a large slope with respect to the state prices. In contrast, when the

economy recovers from ’bust’, the implicit risk aversion is more inert than otherwise.

Coudert and Gex (2008) empirically find a similar result. The graph also illustrates

that regulation shifts the change of measure to the right.

Recovery Rates

The recovery rates in this model are

RT =
DT

F
.

As DT is a function of state prices ξT , the recovery rate itself is stochastic. It

ranges between 1 in case of no distress and the minimum recovery rate, given by

Ř = h(1−β)λ
β

.

Furthermore, the expected recovery rate is

Rt = EP
t [RT ] , (3.26)

where the expectation is under the real-world measure P.
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Figure 3.11: Recovery Rates

This figure shows the expected recovery rates, Rt, dependent on the scaled state prices
ξt/ξ0 at time t = 4. The solid line displays the regulated banking system b, whereas
the dotted line the unregulated financial intermediary i. For reference, the dashed line
represents the state depended recovery rates of the baking system RbT . The parameters
are as defined in the standard set in Table 3.2.

Figure 3.11 shows the recovery rate RT (dashed line) and the expected recovery, Rt,

depending on the scaled state prices, ξT/ξ0, respectively ξt/ξ0.

The model endogenously determines the state-dependent recovery rates, irrespective

of using a regulated or unregulated financial system. State-dependent recovery

rates are opposed to the ’standard’ assumption in the credit risk literature, where a

constant recovery rate is usually a modeling assumption, see Jokivuolle et al. (2003)

and Schuermann (2004) for a discussion of this point with regard to advanced IRB

approach in Basel II. Our model predicts that the recovery rates are in fact lower in

economically worse times; Altman et al. (2004) and Acharya et al. (2003) empirically

underline the same result.

Regarding regulation, the effects are twofold: on the one hand, there is a higher

recovery rate in those states that are now better insured, i.e. in the crisis retention

region ζ < ξT ≤ ζ; on the other hand, the recovery rate is lowered by the indirect

wealth transfers at time T , as represented by the higher Lagrange multiplier y, i.e.

lower recovery rates in the regions ζ∗ < ξT < ζ and ξT > ζ.

Time to maturity quickly smooths out the kinks and the jump of the terminal

recovery rates RT . The expected recovery rates are strictly decreasing in state
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prices, starting at 1 and also approximating Ř in economically ’bad’ times.

Yield Spread

The (conditional) yield spread

st =
log
(
F
Dt

)
T − t

− r =
log
(

F

EQt [e−r(T−t)DT ]

)
T − t

− r =
logRQ

t

T − t
(3.27)

is a transformation of the expected recovery rate under Q.

The yield spread falls with stricter regulation, as displayed in the Panel 2 of Figure

3.9. Since, at regulation level (α = 0%, n = β), the debt is risk-free, the yield spread

will be s0 = 0.

Summarizing the impact on a hypothetical debt market, one can state that

regulation puts debt holders of the banking system at time t = 0 in a better position,

when measured by the spread, however worse off when the probability of distress is

in view.

At maturity, t = T , the question of whether debt holders are better off or worse,

depends on the economic development: they are negatively affected by regulation

in crisis and at the beginning of distress, ζ∗ < ξT < ζ, however, they are negatively

affected in between.

3.3.5 Implied Risk Aversion of the Banking System

The aim of this subsection is to show the impact of regulation on the portfolio

decision of the banking system b, relative to an unregulated financial system i.

Since the portfolio decision is in the general case not univariate, an indirect approach

is chosen. We first define an univariate measure, the implied risk aversion of an agent,

by relating its portfolio decision with a hypothetical risk aversion, which results in

the same portfolio decision. The ratio of the implied risk aversion of the banking

sector to the one of the unregulated financial system maps the incentives given by

regulation into a relative change of risk aversion derived from the portfolio.
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The Definition of Implied Risk Aversion

The optimal portfolio decision of the unrestricted investor u, which is identical to

the portfolio of the mutual fund G in the decomposition (3.20), is

θut =
1

γ

µt − r
σ2
t

=
1

γσt
κ.

Imagine that an investor n chooses a possibly state- and time-dependent multiple

of the mutual fund G, namely qnθu; his instantaneous portfolio choice would be

the same as if he were an unrestricted investor with an instantaneous relative risk

aversion coefficient at time t of γ/qnt . This inspires the definition of an implied risk

aversion qn. If qn < 1 the portfolio choice is like the one of a more risk-averse agent,

whereas qn > 1 relates to less risk aversion, than the unrestricted investor. Note

that relative risk aversion is univariate even in a case with multiple assets.

The Definition of Implied Relative Risk Aversion

The implied relative risk aversion is defined as,

IRRAt =
qbt
qit

(3.28)

where qnt , n ∈ {i, b}, represents the time t load of the unrestricted investor i and the

banking system b to the mutual fund portfolio of the unrestricted investor θu. Here,

the riskiness of the portfolio of the banking system is normalized to the one of the

unrestricted banking system i. Thus, IRRAt measures the proportional change

in implied risk aversion relative to the equivalent unrestricted banking system,

when the regulated banking system behaves less riskily than the unregulated one,

IRRAt < 1, and vice versa.

The Portfolio Choice of the Unregulated and Regulated Financial

Sector

The portfolio of any wealth process can be derived by applying Ito’s lemma to the

respective time t fair value V n and equating diffusionary parts with the budget
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dynamics in equation (3.2),

∂V n
t

∂ξ
(−κξt) = V n

t θ
n
t σt

= V n
t q

n
t θ

u
t σt = V n

t q
n
t

1

γ
κ

qnt = −γ
∂V n

V n

∂ξ
ξ

∣∣∣∣∣
(ξt,t)

,

where, in the second line, first the definition of implied risk aversion is substituted

and afterwards the optimal portfolio decision of the unrestricted investor θu as in

equation (3.28). Hence, implied risk aversion qn is proportional to the sensitivity of

the portfolio value V n with respect to the state price ξ.

When applied to the total assets of the regulated banking system V b (resp. to V i),

the implied risk aversion amounts to

qbt = 1︸︷︷︸
(i)

(3.29)

−e−r(T−t)W∗
V b
t

(
(1− β)

β
+
(
Φ (−d2(ζ∗))− hΦ (−d2(ζ∗))

) )
︸ ︷︷ ︸

(ii)

−e−r(T−t)h
β

W

V b
t

(
Φ
(
−d2(ζ)

))
− Φ

(
−d2(ζ)

)
︸ ︷︷ ︸

(iii)

+e−r(T−t)
h

β

J

V b
t

γ

κ
√
T − t

φ
(
−d2(ζ)

)
︸ ︷︷ ︸

(iv)

.

It can be decomposed into four parts:

(i) the unrestricted portfolio part,

(ii) the replication strategy, which insures the retention level to distress W∗,

(iii) the replication strategy, which that generates the minimum wealth required

to comply with VaR level W , and

(iv) the replication strategy, which results in the jump J at the VaR boundary ζ,

which similar to the dynamic duplication of a binary option.
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Figure 3.12: Implied Risk Aversion of the Financial Sector

Panel 1 of this figure shows the implied risk aversion of the restricted banking system,
qbt , as a solid line, and of the unrestricted financial intermediary, qit, as a dotted
line. Panel 2 displays the implied relative risk aversion qbt/q

i
t. The parameters are as

defined in the standard parameter set in Table 3.2 and t = 4.5.

The portfolio multiple qi of the unrestricted banking system comprises only the

parts (i) + (ii). Accordingly, (iii) + (iv) are attributable to the impact of VaR

regulation.

Implied Risk Aversion of the Financial Sector

Figure 3.12, Panel 1 shows the principal structure qi (dotted line) and qb (solid

line) as a function of the scaled state prices ξt/ξ0. The implied risk aversion of the

unrestricted financial intermediary qi can be shown to lie within the unit interval,

i.e. total assets V i of the intermediated financial system are less risky than the

wealth of the unrestricted agent W u, when the respective portfolio strategies are

compared.

The structural form can be explained by using the identity σV,nt V n
t = σW,nt W n

t +

σD,nt Dn
t , n ∈ {i, b}. First, the behaviour at the boundaries ξt → 0 and ξt → ∞ is

described for the case of a financial intermediary with no regulation. Following this,

the intermediate behaviour is motivated. Afterwards, the previous arguments are

carried over to the case of the regulated banking sector.

When times are ’really good’, i.e. ξt → 0, the total assets V i
t of the unregulated

financial intermediary i are very high, hence debt is almost riskless, σD,it ' 0, and

equity participates almost one-to-one in changes in the mean variance portfolio, i.e.
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σW,it ' σut . Consequently, qit ' W i
t /V

i
t holds.

On the other hand, if times are ’really bad’, i.e. ξt → ∞, V i
t slowly approaches

V̌ in equation (3.5) from above in the style of a portfolio insurance strategy, thus

σV,it ' 0, or qit → 0.

In between, the properties of terminal asset value pertain. Total assets of the

unregulated financial intermediary V i
T are continuously decreasing in ξT , have two

kinks at ζ∗ and ζ∗, and are linear in I(·) otherwise. Accordingly, at any time t the

sensitivity is in (0, 1) by the smoothing property of this type of dynamic problems.

The kinks cause the single downward hump.

In the case of the VaR regulated banking sector b, the limits with respect to ’good’

or ’bad’ times of the portfolio multiple of the restricted banking system qb do not

change by the same arguments as presented above, namely qbt → W b
t /V

b
t as ξt → 0

and qbt → 0 as ξt →∞.

In the states between those two extremes, the optimal time T profile V b
T has two

retention levels, h
β
W∗ and h

β
W , and a jump of size h

β
J at the VaR boundary ζ.

The second retention level results in another downward hump, whereas the jump

effectuates the upward hump at approximately ζ; this is due to the part (iv) in

equation (3.29) and is more pronounced depending on the jump size J and time to

maturity T − t.

In the aggregate case, the costs due to an unregulated financial system i under

distress, ξt > ζ∗, spread via the interbank market through the system and are

in part absorbed by equity capital, not only by debt holders. As managers

rationally incorporate this, there is a considerable risk reduction relative to an un-

intermediated economy, i.e. relative to the unrestricted investor u with portfolio

θut = 1
γσt
κ, as qit < 1.

When additionally introducing regulation of the financial system, the same argument

still holds; however, the VaR restriction substantially increases the implied risk

aversion in the proximity of the VaR boundary ζ, i.e. banks follow riskier policies

under regulation. González (2005) documents in a study covering 36 countries that

stricter regulation in fact increases the risk taking of banks.
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Figure 3.13: Level Curves of Implied Relative Risk Aversion

This figure shows in Panel 1 the level curves of the IRRA coefficient over the state
space (ξ, t). The dashed lines localize the 1% and 50% quantiles. Panel 2 is identical
to Panel 2 in Figure 3.12 with interchanged coordinates; it is the cut through the state
space at time t = 4.5, represented by the dotted line in Panel 1. Parameters are as
defined in the standard parameter set in Table 3.2.

Changes in the Risk Attitude due to Regulation

The resulting implied relative risk aversion as a function of the state price, IRRA(ξt)

is displayed in Figure 3.12, Panel 2. It has the following structure which is

qualitatively stable over time: it starts at 1, has a S-shaped curve, first downwards,

then upwards, and eventually converges to unity again. As a reference point, Panel

2 in Figure 3.13 as well as Panel 2 in Figure 3.14 are the same graph, albeit with

interchanged coordinates.

Panel 1 of Figure 3.13 is the contour plot of the IRRA coefficients. It shows for

each time and state (t, ξt) the level of the IRRA coefficient. Panel 2 is the cut at

time t = 4.5.

Both regions IRRA� 1 and IRRA� 1 disperse in time and states; time smooths

the impact of the VaR restriction and the humps in the ξt cut of the IRRA level

plot become less incisive, as time to maturity is further away.

As the IRRA coefficient can be considerably greater than one, the banking

system takes much more risk relative to being unrestricted under some specific

circumstances. This behaviour can be attributed to the characteristic of the VaR
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measure that it limits losses by their probability, yet, the level of losses beyond

the limit is not relevant for the measure. When VaR is not only used as a passive

risk measure for risk, but used actively to manage the risk of the banking sector,

there is an incentive to transfer losses beyond the 1% quantile, that is, into the

crisis states. Within the model framework, two sources ameliorate this incentive,

increasing marginal utility for decreasing wealth and the additional proportional

costs to equity.

The circumstances, in which the banking system behaves in such a way are fairly

special. The upper dashed line presents the (running) 1% quantile of the economy

starting at ξ0, whereas the lower dashed line shows the median state. In most states

of the world, there is almost no effect, as IRRA ' 1 below the median, or a risk

reduction, as almost all IRRA coefficients below the 1% quantile are less than 1.

Even though risk taking is improbable, it happens just at the moment when the

economy is already in trouble, that is, where the marginal utility of the representative

agent ξ is already very high. Furthermore, the level plot in Figure 3.13 shows,

especially for short VaR horizons that there is almost no ’separating’ area IRRA ' 1

in between the two regions IRRA � 1 and IRRA � 1. The behaviour of risk

taking, both in absolute and relative terms, will be very sensitive to changes in the

underlying economic variables in these cases.

Changes in Regulation

Figure 3.14 illustrates that, if the banking sector is regulated more strictly, two

effects appear: first, the point where the banking sector becomes riskier than the

unregulated intermediary slightly decreases to ’better’ states. Second, the risk

exposure is increased. Both effects are not desirable from the viewpoint of regulation.

Especially when crisis is already ahead, regulation is implicitly an incentive for

increased risk taking. Even worse, the more regulation, the increasing more risk

loading, relative to an unrestricted financial intermediary.

Remark. If not stated otherwise, the results in this subsection are not proven in

a rigorous way, as the formulae are too complex to determine signs of derivatives.

However, well known results from hedging binary options suggest that the stated
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Figure 3.14: Impact of Regulation on Implied Relative Risk Aversion

This figure shows in Panel 1 the level of the IRRA coefficient for various (ξt, n)
combinations at time t = 4.5. Panel 2 is identical to Panel 2 in Figure 3.12 with
interchanged coordinates; it is the cut at n = 13 1/3%, represented by the dotted line
in Panel 1. All other parameters are as defined in the standard parameter set in Table
3.2.

arguments are not subject to the specific parameter set used as an example.

Remark 5. Relating to Remark 2 on p. 36 an alternative interpretation can be

used. In an economy of the Cox et al. (1985a) type, equilibrium is not in the form

of prices, but in the form of the quantity attributed to the real production economy

with a risk-less and a risky investment opportunity. Then, Figure 3.13 implies that

a stricter regulation may increase volatility of aggregate production relative to an

unregulated economy and thereby generates an additional potential for amplifying

economic cycles.

Changes in the Underlying Structure

Figure 3.15 shows the impact of costs λ (Panel 1) and heterogeneity β (Panel 2) on

the implied risk aversion q.

In the case of an unrestricted financial intermediary i, the costs fraction λ decreases

the overall level of implied risk aversion qi, as the agent is more sensitive to tail risk,

namely dh
dλ
< 0. Obviously, the same is also valid for the restricted banking system

b. The implied relative risk aversion IRRA depends heavily on the jump size J ,
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Figure 3.15: Impact of Costs and Heterogeneity on Implied Risk Aversion

This figure shows the impact of the costs to the banking sector and the heterogeneity
on the implied risk aversion; Panel 1 illustrates the impact of a change in the costs
fraction from λ = 5.3% to λ = 15%, Panel 2 of the heterogeneity parameter β =
14.1% to β = 15%. Both panels contain four lines: (i) for the unrestricted financial
intermediary i (dotted line, S shaped) and (ii) for the restricted banking sector b (solid
line, double S shaped) with the standard parameterizations. (iii) for the unrestricted
financial intermediary i (dotted-dashed line, S shaped) and (iv) for the restricted
banking sector b (dashed line, double S shaped) with the alternative parametrization.
All other parameters are as defined in the standard parameter set in Table 3.2.

which is raised on the one hand due to the increase in W , whereas the jump size is

lowered by the impact on h. In relative terms, it is not clear which effect dominates.

Regarding heterogeneity β, it has no level effect in contrast to the costs λ. It shifts

the ’hump’ of the unrestricted financial intermediary into lower state prices, that

is, into better economic situations. In the numerical example, it flattens out the

second hump from the VaR restriction of the banking system. Nevertheless, one can

construct (extreme) parameter constellations, where there exists the opposite effect

of increasing IRRA coefficients.



108 3 Regulating the Banking Sector: The Banks’ Optimal Decision

3.4 Appendix to Chapter 3

3.4.1 Proof of the Optimal Solution

The proof is structured into two parts. In Part 1, a similar problem is solved, where

the VaR restriction (3.8) is replaced by

P[WT ≥ W ] ≥ (1− α).

Part 1 is subdivided into three sections: Part 1.0 discusses some trivial subcases,

Part 1.1 is the main proof, Part 1.2 outlines the boundary cases, which are formally

not included in the main proof.

Finally, Part 2 reformulates the former problem back to the original one.

Since only the banking sector b is of relevance, we abstract from using the index b

in the following.

Part 1.0:

If F = 0, the solution of the problem is known to be WT = W v
T as in equation (9) of

Basak and Shapiro (2001). Similarly, if α = 1, the VaR restriction is never binding

and we recover the unrestricted solution with debt WT = W i
T as in equation (5) of

Basak and Shapiro (2005). Therefore, we assume in the following parts (F > 0, α ∈

[0, 1)).

Part 1.1: Assume W < β
1−βF and α ∈ (0, 1).

Define WT as in equation (3.12) on p. 71. If P[WT ≥ W ] < α, then, by definition,

ζ < ζ and, hence, the VaR restriction is not binding; the solution is WT = W i
T ,

which is the optimal unrestricted solution, following the arguments presented in

Basak and Shapiro (2005).

Otherwise, P[WT ≥ W ] = α and thus ζ ≥ ζ holds. If ζ = ζ, the VaR restriction is

effectively not binding and the unrestricted solution W i
T is obtained. Since h ∈ (0, 1),

ζ∗ = hζ∗ < ζ∗, and since W < W∗, ζ = u′(W )
hy

> u′(W∗)
hy

= ζ∗ holds. This case

corresponds a (mesh) structure ζ∗ < ζ∗ < ζ < ζ and is the one, where the VaR
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restriction is effectively binding.

Lemma 1: Pointwise, for all ξT , the optimal solution is

V ∗T = (I(yξT ) + F )1{ξT<ζ∗}) +
h

β
(I(hyξT ) + λF )(1{ζ∗≤ξT<ζ} + 1{ξT≥ζ})

1

1− β
F1{ζ∗≤ξT<ζ∗} +

h

β
(W + λF )1{ζ≤ξT<ζ}

= arg max
V

u
(
V −D(V )− C(V )

)
− yξT

(
V −D(V )

)
+ y21{W (V )≥W}

= arg max
V
L(V ) , (3.30)

where

D(V ) = F 1{(1−β)V≥F} + 1{(1−β)V <F}
(
(1− β)V

)
C(V ) = 0 1{(1−β)V≥F} + 1{(1−β)V <F}

(
λ(F −D(V )

)
W (V ) = (V − F ) 1{(1−β)V≥F} + 1{(1−β)V <F}

(
βV + λ((1− β)V − F )

)
y2 =

(
u
( h
β

(I(hyζ) + λF )
)
− yζ

( h
β

(I(hyζ) + λF )
))

−
(
u
( W

1− β
)
− yζ W

1− β

)
and all other variables as in equation (3.12).

Proof: The function L(V ) is not concave in V , but can exhibit two ’inner’ maxima

{i1, i2} and two ’boundary’ maxima {b1, b2} only at

Vi1 = I(yξT ) + F, if (1− β)V1 ≥ F ;

Vi2 = h
β

(I(hyξT ) + λF ), if (1− β)V2 < F ;

Vb1 = 1
1−βF,

Vb2 = h
β

(W + λF ) .

(3.31)

Let us define the Lagrange functions

L1(V, ξ) = u ((V − F ))− yξ(V − F ) + y21{(V−F )≥W} if (1− β)V ≥ F

L2(V, ξ) = u

(
β

h
V − λF

)
− yξβV + y21{β

h
V−λF≥W} if (1− β)V < F .
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Then the global maximimizer is

V ∗(ξT ) = arg max
V
{L1(Vi1, ξT ),L2(Vi2, ξT ),L1(Vb1, ξT ),L2(Vb2, ξT )} (3.32)

over the respective state space mesh ζ∗ < ζ∗ < ζ < ζ, corresponding to the

different regions. By assumption it is in any region true that Vi2 > Vi1 and

Vb1 > Vb2.

Region 1, ξT < ζ∗: In this region we have Vi1 > Vb1 > Vb2 and Vb1 − F > W .

By the arguments presented in Basak and Shapiro (2005) equation (A.3),

L1(Vi1, ξT ) > L1(Vb1, ξT ) = sup{V >F/(1−β)} L2(V, ξT ). Finally, we compare

L1(Vi1, ξT ) and L2(Vb2, ξT ). Let us define

a = (u(I(yξT ))− yξTI(yξT ))− (u(W )− yξTW )

> 0 if W < I(yξT )

b = (L1(Vi1, ξT )− L2(Vb2, ξT ))− a

= yξT ((h− 1)W + Fhλ)

≥ 0 if W ≤ β

1− β
F.

Hence,

0 < a+ b = (L1(Vi1, ξT )− L2(Vb2, ξT ))

holds. Therefore, V ∗(ξT ) = I(yξT ) + F , respectively W ∗(ξT ) = I(yξT ), is the

optimal solution in this region.

Region 2, ζ∗ ≤ ζ < ζ∗: Following Basak and Shapiro (2005), equation (A.4),

L1(Vb1, ξT ) > L2(Vi2, ξT ) and L1(Vb1, ξT ) ≥ L1(Vi1, ξT ) is true. By the

properties of the convex conjugate, L2(Vi2, ξT ) > L2(Vb2, ξT ) holds. Thus,

V ∗(ξT ) = 1
(1−β)

F , respectively W ∗(ξT ) = β
1−βF , is the optimal solution in this

region.

Region 3 : When ζ∗ ≤ ξT < ζ, then Vb1 ≥ Vi2 > Vb2 holds and the unrestricted
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order is L2(Vi2, ξT ) ≥ L2(Vb1, ξT ). Since β
h
Vi2 − λF > W , we still have

L2(Vi2, ξT ) > L2(Vb2, ξT ). The optimal solution is V ∗(ξT ) = h
β

(I(hyξT ) +λF ),

respectively W ∗(ξT ) = I(hyξT ).

Region 4 : Vb1 > Vb2 ≥ Vi2 holds, since ζ ≤ ξT < ζ. Also it is true that

L2(Vb2, ξT ) = u(I(hyζ))− hyζI(hyζ) + hyW (ζ − ξT )− hyξTλF

> u(I(hyξT ))− hyξTI(hyξT )− hyξTλF

= L2(Vi2, ξT ) ,

where the inequality follows from ξT < ζ, and, for all ξ > ζ,

∂

∂ξ

(
u(I(hyξ)− hyξI(hyξ) + hyWξ

)
= hy(W − I(hyξ) ≥ 0. (3.33)

Therefore, V ∗(ξT ) = h
β

(W + λF ), respectively W ∗(ξT ) = W , is the optimal

solution in this region.

Region 5 : Finally, in region ζ ≤ ξT , the same arguments as in the previous

region apply, however, the inequality in equation (3.33) is reversed; thereby

we obtain the optimal solution V ∗(ξT ) = h
β

(I(hyξT ) + λF ), respectively

W ∗(ξT ) = I(hyξT ).

y2 ≥ 0: Lastly,

y2 =
(
u(I(hyζ))−hyζI(hyζ)+hyWζ

)
−
(
u(I(hyζ))−hyζI(hyζ)+hyWζ

)
≥ 0 ,

by using equation (3.33).

�
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Let V (T ) be any candidate optimal solution satisfying the static budget constraint

(3.16) and the VaR restriction (3.8). Then we obtain

E[u(V ∗T −D(V ∗T )− C(V ∗T ))]− E[u(VT −D(VT )− C(VT ))]

= E[u(V ∗T −D(V ∗T )− C(V ∗T ))]− E[u(VT −D(VT )− C(VT ))]

−yξ0W0 + yξ0W0 − y2(1− α) + y2(1− α)

≥ (E[u(V ∗T −D(V ∗T )− C(V ∗T ))]− E[yξTV
∗
T −D(V ∗T )] + E[y21{W (V ∗T )>W}]])

−(E[u(VT −D(VT )− C(VT ))]− E[yξTVT −D(VT )] + E[y21{W (VT )>W}]])

≥ 0 ,

where the former inequality follows from the static budget constraint and the VaR

restriction holding with equality for V ∗T , while holding with inequality for VT . The

latter inequality follows from Lemma 1. Thus, V ∗T is optimal and equivalently W ∗
T .

Finally, as the VaR constraint must hold with equality, the definition of ζ follows.

From the solution (3.12) it is clear that, except at the default retention level W∗ and

the VaR retention level W ,
∂W ∗T
∂y

< 0 holds.

Since W i
T (y) = W b(y;α = 1) ≤ W ∗

T (y) and
∂W ∗T
∂α

< 0, in order to allow the budget

constraint to hold with equality, we must have y ≥ yi ≥ yu. The last inequality is

from Basak and Shapiro (2005).

Analogously, since W v(y) = W b(y;F = 0) ≤ W ∗
T (y) and

∂W ∗T
∂F

> 0, in order to allow

the budget constraint to hold with equality, we must have y ≥ yv ≥ yu. The last

inequality is from Basak and Shapiro (2001). �
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Part 1.2: Boundary Cases

Case W < W∗ and α = 0: In this case ζ →
α→0
∞ and the last part of solution (3.12)

vanishes. It corresponds a modified portfolio insurance solution, as wealth WT ≥ W .

Also note, that this solution is continuous. The proof is analogous to the previous

one, however, by definition there is no Region 5.

Case W = W∗ and α ∈ (0, 1): In this case ζ∗ = ζ holds, hence, the unrestricted part

of the solution (3.12) between ζ∗ and ζ disappears. The default boundary is ζ, thus,

the probability of default equals the VaR probability α. The proof is analogous to

the previous one, however, by definition, there exists no Region 3.

Case W = W∗ and α = 0: This is the combined case of the former ones, ζ →
α→0
∞

and ζ∗ = ζ. In this case, there is no default, i.e. DT = F and the solution in terms

of wealth WT equals the portfolio insurance solution of Basak (1995). The proof is

analogous to the previous one, however, by definition there exits no Region 3 and

no Region 5.

There exist further cases as well. However, these are of no interest due to economic

reasons. If W > W∗, there is more insurance to equity holders than necessary to

protect debt; however, a part of the associated costs will be paid by debt holders.

As they do not benefit from this insurance, this solution cannot be sustained in a

rational equilibrium.
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Part 2:

Next we reformulate the VaR restriction of the former proof in such a way, that it

corresponds to the original problem.

P

[
WT

VT
≤ n

]
= P

[
WT

h
β
(WT + λF )

≤ n

]
if n < β

= P

[
WT ≥

(
hn(β − 1)λ

(hn− β)β

)
β

1− β
F

]
if n <

β

h

= P

[
WT ≥ ψ(n)

β

1− β
F

]
= P [WT ≥ W ]

The condition n < β
n

is always fulfilled, since n < β in order to satisfy W < W∗.

Moreover, ψ(n) ∈ [0, 1], with ψ(0) = 0 and ψ(β) = 1.

The feasibility constraint can be derived by

D0

W0

≤ 1− β
β

,

since otherwise it is optimal to close down business as of today. Therefore, the

constraint reads, by letting y →∞,

W0 ≥
β

1− β
E

[
ξT
ξ0

(
DT (W = W )1{ξT≤ζ} +DT (W = 0)1{ξT>ζ}

)]
(3.34)

=
ψ(n)β + λ(1− β)

β + λ(1− β)

β

1− β
FE

[
ξT
ξ0

1{ξT≤ζ}

]
+

βλ

β + λ(1− β)
FE

[
ξT
ξ0

1{ξT>ζ}

]

�
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3.4.2 Comparative Statics

As most variables of interest, sayH, depend on χ ∈ {α, n, λ, β, F}, but the multiplier

y as well, one can more easily determine signs by first calculating the derivatives

y′(χ), using the budget equation (3.16), B(y, χ) = ξ0W0 (under the assumption, that

we do not change the case), and afterwards the comparative static of the variable

of interest
d

dχ
H(y(χ), χ) =

∂H

∂y
y′(χ) +

∂H

∂χ
(3.35)

The standing assumptions used are:



F > 0

β ∈ (0, 1
2
)

λ ∈ (0, 1)

n < β

α ∈ (0, 1)

(3.36)

as well as

ψ(n) ∈ (0, 1)

h = β
β+λ(1−β)

∈ (0, 1) .
(3.37)

The derivation of the sign of a variable H has the following structure:

Step 1: Derive the impact of χ on the relevant variables W∗,W , ζ and h.

Step 2: If the analysis in Step 1 results in a monotone increase (monotone decrease)

of the optimal profile WT , i.e.

W ′
∗ ≥ 0 ∧W ′ ≥ 0 ∧ ζ ′ ≥ 0 ∧ h′ ≤ 0 , (3.38)

(respectively all inequalities reversed), with at least one inequality holding as

equality, the budget in t = 0 is strictly increasing (strictly decreasing ) as well,

∂B(y,χ)
∂χ

> 0. If is is not possible fulfill one of the two condition, no general

conclusion about the change of the budget can be derived without further
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assumptions.

As the budget is strictly decreasing in y, ∂B(y,χ)
∂y

< 0, the sign of the derivative

y′(χ) can be determined, as the budget equation B(y, χ) = ξ0W0 must be

fulfilled as well.

Step 3: By using (3.35), the sign of the variables of interest H is (possibly)

determined.

The results are presented Table 3.3 on page 84.

Step 1 can be easily verified by checking the sign of derivatives of the respective

variables, using the stated assumptions (3.36) and (3.37). Step 2 is obtained by the

previous argument. For Step 3, the following characteristics are useful:

P[DT < F ] = P[ξT > ζ∗] with ζ∗(y, F ) =
u′( β

1−βF )

hy

P[WT < nVT ] = P[ξT > ζ]

I ′(x) = −I(x)

γx
< 0 (x > 0, γ > 0)

For further reference we need to show that y′b(F ) > y′i(F ) holds, if the VaR restriction

is binding:

h and ζ do not depend on F and dW b
∗

dF
= dW i

∗
dF

= β
1−β > 0. Furthermore, dW

dF
=

ψ(n) β
1−β > dW

i

dF
= 0 and

∂ζ

∂F
= −γζ

F
< 0 hold. Hence, region A in Figure 3.7 on

page 93 is increasing in F , while all partial effects are identical between i and b.

Consequently, y′b(F ) > y′i(F ).
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3.4.3 Deduction of Dynamic Wealth

This section shows how to derive the dynamic value of the optimal solution or one

of its transformations, given a constant interest rate r and a constant market price

of risk κ.

All solutions consist of two types of functional forms (i) W1 = I(yξT )1{ξT≤ζ}

(respectively I(yξT )1{ξT>ζ}) or (ii) W2 = K1{ξT>ζ} (respectively K1{ξT≤ζ}). By

knowing these, one can easily reproduce the given solutions. Note, that if W1 +W2

is continuous, it is equivalent to a portfolio insurance on the unrestricted wealth

with pay-off profile max{W u, K}.

Solutions for constant parts W = K 1{ξT>ζ}:

By arbitrage free pricing we obtain

ξtWt = Et[ξTWT ]

= Et[ξTK1{ξT>ζ}]

= KEt[ξT (1− 1{ξT≤ζ})]

= KEt[ξT1]−KEt[ξT1{ξT≤ζ})])

= Kξte
−r(T−t) −Kξte−r

(T−t)Φ
(
d2(ξt, (T − t), ζ)

)
⇔

Wt = Ke−r
(T−t)Φ

(
− d2(ξt, (T − t), ζ)

)
, (3.39)

where the Φ is the standard normal distribution and d2 is given in equation (3.22)

on p. 86. The derivation of the expectation Et[ξT1{ξT≤ζ})] is similar to a Black and

Scholes (1973) and Merton (1973b) framework, as

ln ξT | ln ξt ∼ N
(

ln ξt − (r +
1

2
κ2)(T − t), κ2(T − t)

)
.
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Solutions for unregulated-style parts W = I(yξT )1{ξT≤ζ}:

By arbitrage free pricing we obtain

ξtWt = Et[ξTWT ]

= Et[ξTI(yξT )1{ξT≤ζ}]

= I(y)Et[ξTI(ξT )1{ξT≤ζ}]

= I(y)Et[ξ
(− 1

γ
+1)

T 1{ξT≤ζ})])

= I(y)ξ
(− 1

γ
+1)

T a(T − t)Φ
(
d1(ξt, (T − t), ζ)

)
⇔

Wt = I(yξt)a(T − t)Φ
(
d1(ξt, (T − t), ζ)

)
. (3.40)

The derivation of the conditional expectation Et[ξ
(− 1

γ
+1)

T 1{ξT≤ζ})] is similar to a

modified Black and Scholes (1973) framework, as

ln ξcT | ln ξct ∼ N
(
c ln ξt − (r +

1

2
κ2)(T − t), c2κ2(T − t)

)
c ∈ (−∞, 1).

The time-dependent factor a captures the relative prudence effect on portfolios. In

case of γ = 1, a = 1 and we recover the well known Black and Scholes (1973)

formula.

The Portfolio Insurance

W1 +W2 = I(yξt)a(T − t)Φ
(
d1(ξt, (T − t), ζ)

)
+Ke−r

(T−t)Φ
(
− d2(ξt, (T − t)ζ)

)
= I(yξt)a(T − t)

(
1− Φ

(
− d1(ξt, (T − t), ζ)

)
+Ke−r

(T−t)Φ
(
− d2(ξt, (T − t)ζ)

))
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Value of Debt and Total Value

Analogously, one can construct the debt value

Dt = e−r(T−t)F (1− hΦ (−d2(ζ∗)))

+e−r(T−t) h
β
(1− β)W

(
Φ
(
−d2(ζ)

)
− Φ

(
−d2(ζ)

))
h
β
(1− β)a(T − t)I(hyξ0)

(
Φ (−d1(ζ∗)) + Φ

(
−d1(ζ)

)
− Φ

(
−d1(ζ)

))
and the value of total assets

Vt = A(T − t)I(yξt) + a(T − t)I(yξt)

∗

(
(Φ(−d1(ζ∗)) + Φ(−d1(ζ))− Φ(−d1(ζ)))h

γ−1
γ

β
− Φ(−d1(ζ∗)) + 1

)

+
er(t−T )F (−Φ(−d2(ζ∗))β + β + hΦ(−d2(ζ∗))− 1)

β − 1

+
er(t−T )hW (Φ(−d2(ζ))− Φ(−d2(ζ)))

β
(3.41)

Useful Facts for Applications:

The most important partial derivatives used are

ζ∗(1,0)(y, F ) → −ζ
∗

y

ζ∗(0,1)(y, F ) → −γζ
∗

F

ζ(1,0)(y, F ) → −
ζ

y

ζ(0,1)(y, F ) → −
γζ

F

ζ̄ ′(α) → − erT
√
Tκζ̄2

ξ0φ
(
−d2

(
ξ0, T, ζ̄

)) . (3.42)
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Lemma 2: For the function

H1(y, F ) =
e−rTFβ

1− β
− C0(y, F ),

where C0 is the price of a call option on the underlying I(yξT ) with strike W ,

C0(y, F ) = I(yξ0)a(T ) (1− Φ (−d1(ζ∗))) +
e−rTFβΦ (−d2(ζ∗))

1− β
,

the following relation holds under the budget restriction

H1 < 0 , ∀(F, y(F )) . (3.43)

Proof: The function H1 is strictly increasing in F

H
(1,0)
1 (y, F )y′(F ) +H

(0,1)
1 (y, F ) = (I(yξ0)a(T )(1− Φ(−d1(ζ∗))))

y′(F )

γy

+e−rT
β

1− β
(1− Φ(−d2(ζ∗)))

> 0

and has the limits, as F → 0, H1(y(0), 0) = −a(T )I(yuξ0) < 0 and, as F → F̂ ,

H1(y(F̂ ), F̂ ) = 0. Thus, H1 < 0 holds.

�

Lemma 3: For the function

H2(y, F ) = hβΦ(−d2(ζ∗))− βΦ(−d2(ζ∗)) + hβδ(Φ(−d2(ζ))− Φ(−d2(ζ)))

the following relation holds under the budget constraint

− erT (1− β)
W0

F
< H2 < 0 ∀(F, y(F )) . (3.44)
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Proof: From the previous analysis, the property ∂W0(y,F )
∂F

> 0 is known. Inserting

H2 we obtain
∂W0(y, F )

∂F
= −H2

e−rT

1− β
> 0

hence, H2 < 0.

Furthermore, since y′(F ) = −∂W0(y,F )
∂F

/∂W0(y,F )
∂y

> 0, we obtain

y′(F ) = − H2yγ

H2F − erTW0(β − 1)
> 0 .

Hence, H2 > − erTW0(1−β)
F

.

�

With these substitutions the partial derivatives of equity and debt value are

W0
(0,1)(y, F ) =

e−rTH2

β − 1
> 0

W0
(1,0)(y, F ) =

e−rTFH2

y(β − 1)γ
− W0

yγ
< 0 (3.45)

W0
(0,1)(y, α) =

Fhβζ̄ (ψ − ψ2)

(β − 1)ξ0

< 0

D0
(0,1)(y, F ) =

e−rT (H2 + β (Φ (−d2 (ζ∗))− 1))

β
> 0

D0
(1,0)(y, F ) =

(β − 1)H1

yβγ
− e−rTF (Φ (−d2 (ζ∗))− 1)

yγ
+

(1− β)W0
(1,0)(y, F )

β
< 0

D0
(0,1)(y, α) = −Fhζ̄ (ψ − ψ2)

ξ0

< 0

y′(F ) = −W0
(0,1)(y, F )

W0
(1,0)(y, F )

> 0 . (3.46)

In case D0
(1,0)(y, F ), the sign cannot be directly seen from the formula itself; it is

shown in the the derivation in equation (4.7) on p. 160. However, it can be also

easily deducted from the time T solution of the problem.
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3.4.4 Proofs of the Results in Partial Equilibrium

Restrictiveness

By evaluating the feasibility constraint (3.17), under the restriction W i
0 = W b

0 = W0,

we obtain the debt capacity

F̂ i (r,κ)
=

erTW0(β(1− λ) + λ)

βλ

and

F̂ b =
W0(β − 1)(λβ − β − λ)

β(E[ ξT
ξ0

1{ξT≤ζ}]βψ(n)− βλ+ λ)

(r,κ)
= erTW0

(1− β)(β(λ− 1)− λ)

β((β − 1)λ− βψ(n)Φ(d2(ζ)))

Further properties of the debt capacity are

F̂ b ∈ [
erTW0(1− β)

β
, F̂ i] ,

and

F̂ i = F̂ b(n = 0, α = 1)

= F̂ b(n = 0) = F̂ b(α = 1) = F̂ b(λ = 0)

F̂ ′b(n) < 0

F̂ ′b(α) > 0

F̂ b(n = β, α = 0) = erTW0(1−β)
β

,

in particular, F̂ b < F̂ i holds, unless n = 0 or α = 1, i.e. under no regulation.

The transition point (~F , ~y) is defined as the tuple, where the VaR starts to bind and

the budget equation is fulfilled, i.e. the solution of the system I(hyζ) = ψ(n) β
1−βF

B(y, F ) = W0


The system can be successively solved for the solution.



3.4 Appendix to Chapter 3 123

In order to show ~F < F̂ b, we address the problem more generally. Let us define

y1 = u′(W )/(hy); because (i) limF→0 y1 = ∞, y′1(F ) < 0, and limF→∞ y1 = 0,

and (ii) - with the previous results from the budget equation B(y, F ) = ξ0W
b
0 -

y(0) > 0, y′(F ) > 0, and limF→F̂ y(F ) = ∞, there exists a unique solution to the

system (~y, ~F ). In particular, ~F < F̂ b holds.

Capital Provisions

Because yb(F ) > yi(F ) for F > ~F ,
∂W i

0

∂yi
< 0, and W i

0 > W̌ , we obtain

CP ∈ (1, 0) .

Define stricter regulation by χ ∈ {−α, n}. Then,

dCP

dχ
= −(W i

0)′(yb)

W i
0︸ ︷︷ ︸

<0

y′b(χ) > 0.

holds.

Using a simplified notation with
∂W i

0

∂x
= W i

x, we obtain the result for increasing

nominal debt

dCP

dF
= − 1

W i

(
W i
yy
′
b(F ) +W i

F

)
=

W i
F

W i

((
−
W i
y

W i
F

)
y′b(F )− 1

)
=

W i
F

W i︸︷︷︸
>0

(
y′b(F )

y′i(F )
− 1

)
︸ ︷︷ ︸

>0

> 0 (F > ~F ) .
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Debt Markets

The comparative statics of the Probability of Distress is

dPDt

dα
=

dPt[DT < F ]

dα
=
dΦ (d0 (ζ∗(y(α))))

dα
=
φ(−d0(ζ∗))√
T − tyκ

y′(α) < 0

dPDt

dn
=

dΦ (d0 (ζ∗(y(n))))

dα
=
φ(−d0(ζ∗))√
T − tyκ

y′(n) > 0

dPDt

dF
=

dΦ (d0 (ζ∗(y(F ), F )))

dα
=
φ(−d0(ζ∗))√
T − tyκ

(yγ + Fy′(F )) > 0

dPDt

dλ
=

dΦ (d0 (ζ∗(y(λ))))

dα
=
φ(−d0(ζ∗))√
T − tyκ

y′(λ) < 0 .

For the spread s0, see equation (3.27), we obtain the analogous results.

ds0

dα
=

e(r+s0)Tβ(ψ − ψ2)ζ
(
−H1e

rT (β − 1)− Fβ + FβΦ(−d2(ζ∗))
)

T (H2F − erTW0(β − 1)) (β(λ− 1)− λ)ξ0

< 0

ds0

dF
=

1

F

(
1−

Fβ(ψ − ψ2)ζ
(
−H1e

rT (β − 1)− Fβ + FβΦ(−d2(ζ∗))
)

(H2F − erTW0(β − 1)) (β(λ− 1)− λ)ξ0

)
> 0 .

Define the Change of Measure for the probability of distress by

∆PDt = PDQ
t − PDP

t = Φ (d2 (ζ∗(y)))− Φ (d0 (ζ∗(y))) .

The first order condition d∆PDt
dξ

= 0 shows, the maximum is attained at ξ̂(t) =

e−r(T−t)ζ∗. Furthermore,
d∆PDt|ξ̂(t)

dy
= 0 holds, i.e. the size of the (maximum) change

of measure is not changed by regulation. However, because the structural form is the

same and ξ̂i(t) > ξ̂b(t), the change of measure is shifted to the left due to regulation.

By calculating
d∆PDt|ξ=ξ̂ε

dε
d∆PDt|ξ=ξ̂/ε

dε

= −1

we additionally obtain the property that the change of measure is increasing faster

when ξt is raising from a low level, than increasing when ξt is falling from a high

level.
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3.4.5 Deduction of the Portfolio Decision

In this section we derive the portfolio decision along the lines presented in Chapter

2. As a building block, the Portfolio Insurance example of Section 3.4.3 is revisited.

The diffusion part of any wealth dynamics follows Wtθtσtdwt. On the other hand,

by using Ito’s lemma, the same diffusion part is ∂W(ξt,t)
∂ξ

(−κξt)dwt. Thus one obtains

θt =
1

σt
·
∂W(ξt,t)

∂ξ
(−κξt)

W(ξt, t)

=
1

γσt
κ ·
(
− γ ∂W

∂ξ
/
W
ξt

)
= θu · qWt

By this decomposition, one can easily see that the deduced portfolio policy is to

invest into a stochastic multiple of the myopic mean-variance portfolio.

The partial derivatives with respect to the state price ξ of these two functional types

are

∂W2

∂ξ
= e−r(T−t)F

φ(−d2(ξt, T − t, ζ))√
T − tκξt

∂W1

∂ξ
= −I(yξt)a(T − t)Φ(d1(ξt, T − t, ζ))

1

γξt
− e−r(T−t)I(yζ)

φ(−d2(ξt, T − t, ζ))√
T − tκξt

.

Adding both parts we obtain as the multiplier

qWt = 1− e−r(T−t) F
Wt

Φ(d2(ξt, T − t, ζ)))

+(e−r(T−t)
I(yζ)

Wt

(
1− F

I(yζ)

)
γφ(−d2(ξt, T − t, ζ))√

T − tκ
.

If the solution is continuous, then, by definition, I(yζ) = K and thus

qWt = 1− e−r(T−t) F
Wt

Φ(d2(ξt, T − t, ζ)) ∈ (0, 1)

holds. Otherwise, if there is an downward discontinuity, there exist cases depending

on the state (ξ, t), where the volatility multiplier q is even greater than 1. An

analogous derivation is applicable for more complex solutions.
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Chapter 4

The Equilibrium Impact of a

Regulated Banking Sector on

Financial Markets

In equilibrium, the aggregated decisions of agents influence market prices and thus

indirectly affect other market participants as well. In particular, the market value

of aggregate debt to the real sector is endogenous, but also equity and banks’ debt

prices and volatilities.

When all agents are fully rational, they are able to anticipate all of these effects.

However, if this endogeneity of prices cannot be properly ’predicted’ by market

participants, their decisions can be heavily biased. Prediction is not meant with

respect to the underlying economic uncertainty as represented by the Brownian

motion, but with respect to the indirect impact of the restriction on market prices.

When, as an example, a company of the real sector plans its financial decision

purely based on market prices, but is not able to anticipate the effect of the VaR

restriction correctly, its ’wrong’ state-contingent decision may lead to procyclicality

in the economy.
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4.1 Construction of the

Pure Exchange Equilibrium

The influence of the aggregate banking sector is not of a strategic nature, as all

banking institutes within the banking sector will not take the impact of their own

decision on the decision of other banks into account. Therefore, we discuss the

market in a competitive pure exchange equilibrium in the style of Lucas (1978).

First, we state the equilibrium condition and then solve for the resulting equilibrium.

We characterize the investment opportunity set in equilibrium and discuss prices and

volatility.

4.1.1 Definition and Existence

Produced by the real sector of the economy, there is an exogenously given cash flow

from the coupons, δ, which follows a geometric Brownian motion

dδt
δt

= µδdt+ σδdwt . (4.1)

The constant µδ is the instantaneous growth rate of cash-flows, and σδ its volatility.

The process starts at a known δ0 > 0.

As in the previous chapter, this cash-flow represents aggregate coupon payments of

the aggregate debt to the real economy, the risky asset in the economy. It has fair

value P , paying coupon stream δ. Additionally, there exists a riskless investment

opportunity, the money market account, which is in zero net supply.

The unrestricted agent u is endowed with a fraction ω ∈ [0, 1] of aggregate debt.

Remark. Specifying the cash-flows exogenously implies that there are no feed back

effects between the evolvements on the financial side of the economy, such as asset

prices, and the real one, as expressed by the amount of cash-flows. If this attitude

is supported, the following model constitutes a general equilibrium.

This independency might not be a realistic setting, especially when considering times
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of economic distress. With this argumentative viewpoint, the model is still a partial

equilibrium, since a feedback of a possibly occurring credit crunch in the real economy

will not affect asset prices on the financial market. Yet, this modeling technique

permits the analysis in equilibrium where, at least, the direct effect of regulation on

the financial markets can be studied.

Definition of Equilibrium

The definition of equilibrium in this pure exchange economy is a collection of optimal

consumption, optimal terminal wealth, and optimal total assets of the banking sector

(cu, cb,W u, V ) and the investment opportunity set (r, µ, σ), such that the markets

for consumption, for the risky asset, and for the money market account clear any

time t, i.e. recalling the market clearing conditions (2.33) on p. 38,

cut + cbt = δt

θutW
u
t + θbtVt = Pt

(1− θut )W u
t + (1− θbt )Vt = 0 ,

where θb is the optimal portfolio decision of the banking sector b and where P is the

total (financial) value of the cash-flow-producing real economy, see (2.10) on p. 18,

ξtPt = Et

[∫ T

t

ξsδsds+ ξTPT

]
.

Analogously, equilibrium in an unregulated economy is defined by replacing the

banking sector b with the unregulated financial system i.

Existence

By the arguments presented in Chapter 2, if there exists a state price process ξ,

satisfying

δt = I(yuξt) + I(ybξt), ∀t ,

where {yb > 0, yu > 0} solve the static budget equations with the optimal solutions

(cu,W u) (equation (3.10) on p. 71) and (cb,W b) (equation (3.12) on p. 71)



130 4 Equilibrium Impact of a Regulated Banking Sector on Markets

substituted,

E

[∫ T

0

ξsc
u
s (y

u)ds+ ξTW
u
T (yu)

]
= ωξ0E0[

∫ T

0

ξsδsds+ ξTPT ]

E

[∫ T

0

ξsc
b
s(y

b)ds+ ξT (W b
T (yb) + C(W b

T (yb))

]
= (1− ω)ξ0E0[

∫ T

0

ξsδsds+ ξTPT ] ,

(4.2)

then all equilibrium conditions (2.33) on p. 38 are satisfied.

Inverting the unique alternative equilibrium representation, the state prices are given

by

ξt =
u′(δt)

u′(I(yu) + I(yb))
. (4.3)

Normalizing u′(I(yu) + I(yb)) = 1, substituting into optimal consumption and

terminal wealth, the expectations in the static budget equations (4.2) are well defined

for all (yb > 0, yu > 0).

There exists a solution (yb, yu) to the static budget equations (4.2), if the endogenous

equity value of the aggregate banking sector W b
0 is sufficient to support the nominal

debt level F ; formulated as a restriction on the exogenous parameters, there exists

an equilibrium ω ∈ [0, ω̂), where

1

ω̂
= 1 +

e−rThF
(
− βλ+ λ+ βψ(n)Φ

(
d2

(
ζ̄
)) )

(a(T ) + A(T ))δ0

(
(1− β)β

) .

The proof can be found in the Appendix.

Remark. We introduce some notation to facilitate comparisons. The letter B or B

in super/subscripts refers to a regulated economy. It comprises the regulated banking

system b and the unrestricted representative investor u. I or I denotes an economy

with an unrestricted investor u and the unregulated financial intermediary i. Pure

exchange equilibria are calligraphic B or I. If one takes the equity value W u
0 and

W b
0 , resp. W i

0, in the static budget equations (3.11) and (3.16) as exogenously fixed,

then we refer to this case as a partial equilibrium B, resp. I, in standard typeface.
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4.1.2 The Investment Opportunity Set in Equilibrium

The endogenous interest rate rt and the market price of risk κt = µt−rt
σt

can be

recovered by applying Ito’s lemma to the inverted state price in equation (4.3) and

comparing coefficients with the dynamics in (2.6) on p. 16, to obtain

r = γµδ − 1
2
γ(1 + γ)σ2

δ

κ = γ|σδ|
(4.4)

which shows that both the interest rate and market price of risk are constants. The

stochastic discount factor ξ is independent of the aggregate behaviour of agents and

initial endowments. It only depends on risk aversion as well as the growth and

volatility of the aggregate coupon payments in the economy.

Consequently, the same endogenous riskless interest rate and market price of risk

will prevail, if there is only an unrestricted investor, or some unregulated financial

intermediaries, or a regulated banking system. Neither the introduction nor a change

in the weight of the banking system hence induces a ’valuation risk’ in the sense

that there is a change in the state price process. All the observed effects can be

attributed to a ’cash-flow risk’. This separation is on the one hand convenient and

enables us, to solve in closed form; on the other hand, there will be no additional

ambiguous effects resulting from distortion due to valuation.

This valuation invariance is the implication of the specific exogenously given

aggregate cash flows, of the aggregation property of the utility functions, and of

complete markets.

By evaluating Pt explicitly and applying Ito’s lemma, one can derive from the

dynamics

dPt + δtdt = µtPtdt+ σtPtdwt

the instantaneous expected return µt of the market in equilibrium

µt = r + σt · κ
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and the volatility σt of the market in equilibrium

σt = σδ − σδ e−r(T−t)
h

β

W∗
Pt

((1− β)

β
+ Φ (−d2(δ∗))− hΦ (−d2(δ∗))

)
︸ ︷︷ ︸

(i)

+σδ
h

β
e−r(T−t)

W

Pt

(
Φ (−d2(δ))− Φ

(
−d2(δ)

) )
︸ ︷︷ ︸

(ii)

(4.5)

+e−r(T−t)
h

β

J

Pt
√
T − t

φ(−d2(δ))︸ ︷︷ ︸
(iii)

.

The transformation of the boundaries on the level of state prices

{ζ∗, ζ∗, ζ, ζ}

into the corresponding boundaries on the level of coupon payments

{δ∗, δ∗, δ, δ}

are given in the Appendix.

The solution to the unregulated economy I is identical to the first term (i) of

equation (4.5). It can be shown to be strictly less than σδ. In a world without any

financial intermediary, regulated or not, the volatility of the market is σt = σδ.

Remark. As the banking systems needs enough equity capital to support the debt,

see equation ((3.23) on p. 90), the case ω = 1 is in general not nested. However,

the solution of an economy without any financial intermediation can be found in

equation (2.50) on p. 47.

The market volatility of the regulated economy σt in equation (4.5) retains the

same structure as the implied risk aversion qbt in (3.29) on p. 101 of the regulated

banking system. Hence, if the VaR restriction is binding, volatility inherits the same

properties. Therefore the arguments made in partial equilibrium are qualitatively

still valid; VaR regulation induces in some states of the economy higher volatility
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relative to an unregulated banking sector.The effects, however, are smoothed by

the presence of the unrestricted investor. The main difference to the formula of the

implied risk aversion is that Vt is replaced by Pt = W u
t +Vt > Vt. Thus, the impact of

the banking sector on volatility is diluted due to the additional unrestricted capital

W u.

Remark. Given that the underlying economy is not influenced by the financial

market, i.e. σδ remains constant, this derivation formalizes the ’market wisdom’

that volatility is an indicator of how ’nervous’ the market is. Buraschi and Jiltsov

(2006) derive a similar result from a differences in beliefs aproach and empirically

finds that volatility is increasing in heterogeneity. In our model framework, volatility

is mainly driven by implied risk aversion of the banking sector qb, which can be,

loosely speaking, seen as another measure of how ’nervous’ the banking sector is.

Remark. Relating to equation (2.55) on p. 51, the equilibrium investment

opportunity set is stochastic. When discussing the effects of regulation, some authors

assume a constant opportunity set for total assets. This assumptions only sustains

a discussion in a partial equilibrium, see Dangl and Lehar (2004), Kupiec (2007) or

Bodie et al. (2007) as examples.

4.1.3 Asset Prices and Volatility in Equilibrium

After deriving the equilibrium prices of aggregate debt to the real sector P , market

prices for total assets, equity, and debt as well as their volatilities can be analyzed

as well.

The Banking Sector’s Balance Sheet in Equilibrium: Value

Figure 4.1 shows the balance sheet of the banking sector, where dotted lines show

the comparison with the case of an unregulated economy. Note that the scaled

cash-flows δt/δ0 are proportional to the value of the underlying ’mutual’ fund of the

decomposition (3.20) on p. 76.
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Panel 1: Total Assets Panel 2: Equity
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Panel 3: Debt
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Figure 4.1: Equilibrium Balance Sheet of the Banking Sector: Value

This figure shows the banking sector’s balance sheet in value at time t = 4 in
equilibrium. The dotted lines represents the unregulated financial intermediary i,
whereas the solid lines the one of the regulated banking system b. The parameters
are as defined in the standard parameter set in Table 3.2.



4.1 Construction of the Pure Exchange Equilibrium 135

In both economies, the regulated and the unregulated one, there is a minimum value

if the economy almost breaks down, δt → 0. If the economic situation turns out to

be very favorable, equity profits one-to-one from increases in the total asset, whereas

debt is almost riskless.

In the unregulated economy I, the equity value is almost linear in between and

the debt title behaves as in a Merton (1974) type of economy. In contrast to the

unregulated balance sheets, the VaR restriction introduces a dent in the total assets,

which distributes to equity and debts as well.

In consequence, the equity position (or equivalently total assets) is higher under

regulation in economically worse times, whereas it is less in good times, as can

be seen by the small difference in the slopes of the total assets or equity in very

good economic situations. This transfer of wealth between states of the economy in

equilibrium can be seen as evidence that the regulation of the banking sector renders

the economy in fact less prone to a credit crunch relative to the corresponding

unregulated economy.

The Banking Sector’s Balance Sheet in Equilibrium: Volatilities

Figure 4.2 shows the balance sheet from the perspective of volatilities; the ’budget’

equation in volatility terms is σVt Vt = σWt Wt + σDt Dt.

The reasoning regarding the structural form of volatility again follows a similar

argument as in the discussion of the implied risk aversion. In very adverse economic

situations, the portfolio decision resembles that of a portfolio insurance. This

behaviour transmits through the balance sheet, as all volatilities approach zero.

In favorable economic devolvements, equity volatility is approximately σδ, whereas

debt, as it is now almost risk-free, has no volatility any more. The volatility of the

total assets in this part is approximately σVt ' Wt

Vt
σδ.

In the unregulated economy I, there is a hump in volatility in between those

extremes which transmits mainly into the debt title; this also applies to the volatility

effect of the VaR restriction.

This results in a situation, where - in the numerical example - debt holders face
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Panel 1: Total Assets Panel 2: Equity
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Panel 3: Debt
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Figure 4.2: Equilibrium Balance Sheet of the Banking Sector: Volatility

This figure shows the banking sector’s balance sheet in volatility terms at time t = 4
in equilibrium. The dotted lines represent the unregulated financial intermediary i,
whereas the solid lines the one of the regulated banking system b. The parameters are
as defined in the standard parameter set in Table 3.2.
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in some states of the economy, namely around the VaR boundary δ, a volatility of

almost 20%, which is not only substantially higher than in an unregulated economy

I, but is in fact comparable to the volatility in a totally un-intermediated economy

or to the volatility of equity in a regulated economy. If regulation is also intended

to protect debt holders, regulation fails at this point.

Remark. Note that the volatility of equity (or any other part of the balance sheet)

seen as a function of equity value is non-linear and also non-invertible, as there are

multiple equity values, which result in the same volatility. Both, volatility and the

volatility of volatility, are stochastic.

Another notable feature of the model is that decreasing prices correspond to

increasing volatilities, when the financial system reaches a region where distress

becomes probable, i.e. where leverage is quickly increasing. Thus, the

model reproduces the well-documented empirical fact that deteriorating economic

development leads to higher volatilities as expressed for example by the VIX.

Moreover, volatility of volatility is countercyclical as well, see Jones (2003) and

Corsi et al. (2008).

When crisis is actually almost inevitable, the banking system substantially reduces

risky investments in order to stabilize the asset side of its balance sheet. Not even in

this simple economy is a decreasing volatility after some time of distress with high

volatility an unmistakable sign of a recovering economy.

Remark. This remark briefly discusses the impact of the fraction of intermediated

capital ω on volatility.

When, as an example, the banking system is the dominant factor, ω → 0, the risky

asset only comprises the total assets of the banking system, P = V , and the implied

risk aversion of the banking system translates one-to-one into market volatility.

However, the specific form of volatility is dependent on whether the VaR restriction is

binding or not. When increasing the initial endowment ω of the unrestricted investor

u, the endogenously determined equity capital of the banking sector W b decreases;

thus, the typical VaR behaviour becomes more pronounced when seen relative to the

unregulated economy I. The bigger the share of the banking sector, the smaller the
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effect of VaR. This possibly counterintuitive fact is generated by keeping nominal debt

F constant, while at the same time increasing equity capital that supports this debt,

thereby effectively reducing the leverage. A higher share of intermediated capital,

regulated or not, benefits financial stability, if not combined at the same time with a

higher leverage of the economy.

4.2 Comparing

Partial and Pure Exchange Equilibria

In this section, the impact of regulation on prices and their implicit impact through

wealth transfers is discussed. For comparison, there are two equilibria of interest: the

pure exchange equilibrium B with a regulated banking system and the pure exchange

equilibrium I with an unregulated financial intermediary. When comparing the

benchmark case I with B, differences resulting from regulation are of interest, taking

all endogenous price impacts into account.

In addition, a specific partial equilibrium is of special interest: B is defined by

keeping equity prices fixed to the benchmark case I, i.e.

W u
0 |B = W u

0 |I
W b

0 |B = W i
0|I .

Using this equilibrium, the differences in equilibria I and B can be decomposed into

two parts: when comparing I with B, the introduction of regulation is of interest,

while keeping equity prices fixed. The comparison of economy B with economy B

isolates the effects of regulation on prices since, in both economies, regulation does

not change.

First we discuss in which way equilibrium effects the demand for the risky asset.

Afterwards, it is argued that the endogeneity of prices effectively results in a transfer

of wealth between the participating members of the economy.

Finally, reflecting the discussion under partial equilibrium, differences attributable
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to the endogenous price reaction with respect to the restrictiveness of regulation,

capital provisions and the banks’ debt markets are briefly discussed.

Aggregate Demand

Equilibrium does not directly change the agents’ decisions. This is an implication

of (i) competitive markets, because agents take prices in their decision as given,

as well as (ii) the valuation invariance characteristic, because the VaR boundary

itself is independent of prices. Hence, the demand for the risky asset is only affected

indirectly through the endogeneity of prices. Equilibrium modifies financing costs,

as expressed by the Lagrange multiplier yb.

Remark. The normalization I(yb) + I(yu) = 1 allows us to reduce the system of

equations (4.2) to a single equation. Only the Lagrange multiplier of the banking

system yb needs to be solved for; the one of the unrestricted agent follows from the

normalization. In the following, we simplify notation by using y instead of yb.

It is shown in the Appendix that y|B ≥ y|B ≥ yi|I , where equality holds only for an

effectively unregulated economy. Consequently, the risky asset is in equilibrium less

valuable than in the corresponding equilibrium with fixed prices, P0|B ≤ P0|B, as

dP
dy
< 0. This result demonstrates that there is an increased aggregate demand due

to regulation as well as due to the endogeneity of prices. Furthermore, as
dW b

0

dy
< 0,

the equity value of the banking sector is less in equilibrium, while at the same time

the wealth of the unrestricted agent increases
dWu

0

dy
> 0. Hence, equilibrium shifts

wealth between agents.
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I → B I → B

∆W u
0 /∆P0 0 ω > 0

∆W b
0/∆P0 0 −ε < 0

∆D0/∆P0 1 0 < 1− ω + ε < 1∑
1 1

Table 4.1: Wealth Transfers due to Endogenous Prices

This table reports the wealth transfers’ effect that arise if regulation becomes stricter,
i.e. ∆P0 > 0, assuming VaR is effectively restricting . I → B denotes the case where
regulation is introduced, yet, prices are fixed, whereas I → B denotes the case, where
regulation is introduced and prices adapt. Furthermore, ε > 0.

Wealth Transfers

Table 4.1 reports who profits and who looses from stricter regulation, in the case with

fixed prices in economy, i.e. I → B, and in the case where prices are endogenous in

economy, i.e. I → B.

With a change from the unregulated economy in equilibrium I to the partial

equilibrium B, the total surplus generated by a stricter regulation policy ∆P0 > 0

is completely attributed to debt D0; as prices are fixed, W u
0 and W b

0 do not react to

a change in regulatory environment.

The endogeneity of prices in equilibrium B results in an indirect wealth transfer.

The equilibrium condition W u
0 = ωP implies ∆W u

0 |B = ω∆P0 > 0, meaning

that the unrestricted investor shares ω of the surplus. The additional value is

∆V0|B = (1− ω)∆P0 > 0.

Prices move against the interest of the banking sector ∆W b
0 |B < 0, while at the same

time debt still profits from the additional value, 0 < ∆D0/∆P0|B < 1. Accordingly,

debt is only relatively worse off in equilibrium B, as it does not profit from the total

regulatory surplus. The banking system is losing even on an absolute basis, since

it indirectly subsidizes the unrestricted investor u. This distributional impact of

regulation on other market participants has not been discussed in the literature.
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Figure 4.3: Comparing Equilibria: Debt Capacity and Capital Provisions

This figure shows the differences in the restrictiveness of regulation by comparing
partial and pure exchange equilibrium. In region A in Panel 1 the banking sector
is effectively unregulated, whereas in region B the VaR restriction is binding. The
additional region C, encompassed by the dashed line, illustrates the reduction in debt
capacity due to endogenous prices. Panel 2 plots the differences in capital provisions
CP due to the endogeneity of prices. All other parameters are defined as in the
standard parameter set in Table 3.2.

Restrictiveness of Regulation and Capital Provision

The fact that endogenous prices increase financing costs can also be seen by

comparing the debt capacity F̂ under fixed prices B and with endogenous prices

B. It can be shown that that the debt capacity is less, F̂ |B ≤ F̂ |B, as can be seen

in Panel 1 of Figure 4.3, Region C.

Aggregate excess demand due to regulation reduces prices, not only as of today,

but there will be also a price impact in the future as the economy evolves. In this

light, the difference in capital provisions ∆CP = CP |B − CP |B can be interpreted

as (net) premium, which is necessary to cover the future price impact of regulation.

This premium constitutes an essential part of the total capital provisions due to

VaR in equilibrium. As it is intuitive, this premium increases with higher leverage

or stricter regulation.

Let us flip the side: if regulatory policy is not aware of its own effect on prices,

capital provisions may turn out to be too low. If the banking sector uses the wrong

CP |B instead of CP |B, they will not be able to keep the necessary positions as to
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Figure 4.4: Comparing Equilibria: Probability of Distress and Spreads

This figure shows the effect of endogenous prices on the probability of distress PD0

and the yield spread s0. In Panel 1, PD0 is graphed over the Cooke ratio n, whereas
in Panel 2, the yield spread s0 is displayed. All other parameters are defined as in the
standard parameter set in Table 3.2.

comply with the VaR when times turn ’bad’ and prices move against them.

Even worse, in this case, regulation generates a problem that wasn’t there before.

The Banking Sector’s Debt Market

Relative to the case without an endogenous price effect, the probability of distress

in the banking system is increasing in equilibrium, while the spread s0 is also higher

in equilibrium. Notwithstanding, the overall effect on the spread is still lowered

by regulation. The qualitatively same effects arise by an analysis of the impact of

regulation via the Cooke ratio n.

Remark. Changing the initial value δ0 is equivalent to an economy where the initial

distribution is adequately adapted. It is therefore not discussed.

4.3 Beyond Full Rationality

The question we ask in this section is what happens on the individual level, if not

all the agents within the economy have the necessary information (informational

asymmetries) and/or are able (the problem is too complex) or willing (bounded
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rationality, sparse time) to base their decision on full information and/or full

rationality. We do not to discuss the impact of such agents on equilibrium for

technical reasons. Hence, two further assumption are needed in order to derive

consistently the results in this section.

1. Some agents neglect parts of the impact of endogenous prices for some

exogenous reason not modeled explicitly. This assumption generates the

results.

2. These agents have a measure of zero. This assumption in fact removes the

price impact of these agents; it is needed in order to avoid an inconsistency

when equilibrium is calculated the same way as before.

When abstracting from this assumption, equilibrium prices are affected in

a complex way, as there arise feedback effects. Sircar and Papanicolaou

(1998) for example analyze an equilibrium where some participants apply for

exogenous reasons a ∆-hedging strategy.

Alternatively, one can also interpret the results as an ’as if’ study to give first insights

into the first-order effects in an economy with a ’true’ general equilibrium.

Remark. In contrast to most other results presented throughout this thesis, the

conclusions in this section are only based on numerical evidence and are not proved

in a formal way.

4.3.1 Realized vs. Expected Shocks

The question under consideration in this subsection is whether the equity capital of

the banking system evolves better under the same economic development (i) when

unexpected or (ii) when expected. We demonstrate the differences by using the

same underlying development δ0 → δT , but under two extreme assumptions, namely

case (i) with only realized shocks, where the whole movement is solely due to

the realization of the Brownian motion wT − w0 and thus not expected, i.e.



144 4 Equilibrium Impact of a Regulated Banking Sector on Markets

µδ = 0. The contrary extreme is

case (ii) with only expected shocks, where there is no unexpected movement,

that is, wT = 0, but δT is only explained by µδ. Note that in between t = 0

and t = T the economy evolves along the same path as before, as expressed

by aggregate coupon payments δt.

Remark. The source of ’incomplete’ rationality is that agents do not take the

assumed dynamics into account in their decisions in advance. Otherwise, there

will be arbitrage, since δ then follows a Brownian Bridge; see e.g. the discussion in

Loewenstein and Willard (2000) or Liu and Longstaff (2004)

Figure 4.5 shows terminal wealth WT over a range of possible δT
δ0

, in Panel 1 for the

unregulated economy I and in Panel 2 for the regulated economy B. The ordinates

are in

case (i) with only realized shocks (dotted lines in Figure 4.5; constant zero

expectation µδ = 0)

terminal wealth WT

(
y(µδ = 0), µδ = 0, δT (µδ = 0, wT )

)
over δT

δ0

(
µδ = 0

↑
no expectations

, wT

)
= e

(
0−σ

2
δ
2

)
T+σδ

√
TwT

,

whereas in

case (ii) with only expected shocks (solid lines; no unexpected shock wT = 0)

terminal wealth WT

(
y(µδ), µδ, δT (µδ, wT = 0)

)
over δT

δ0

(
µδ, wT = 0

↑
pure expectations

)
= e

(
µδ−

σ2
δ
2

)
T+σδ

√
T0
.

δT
δ0

(µδ = 0, wT = 0) is approximately 0.90.

Remark 6. The analysis is evaluated at time t = T for simplicity. Although similar,

’smoother’ results can be obtained when using some arbitrarily time in between (0, T ).
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Figure 4.5: Expected vs. Realized Shocks

This figure shows terminal equity wealth WT for a range of paths δT /δ0. Solid lines
represent the case where the path was perfectly expected, i.e. δT /δ0(µδ), whereas dotted
lines, if the realization was purely unexpected, δT /δ0(wT ). Panel 1 plots the results
for the unregulated economy I and Panel 2 for the regulated banking system B. All
other parameters are as defined in the standard parameter set in Table 3.2.

In the economy without regulation, terminal equity wealth W i
T is not identical for the

same economic development, that is for the same path δ0 → δT . With a successful

development of the economy, e.g. (δT/δ0) ≥ (δT/δ0)(µδ = 0, wT = 0), the equity

value is larger, when the boom was expected, wT = 0 (solid line in Panel 1 in Figure

4.5) than when it just happened, µδ = 0 (dotted line in Panel 1), where, ex post,

the banking system behaved in too precautionary a manner. The analogous result

turns out to be true on the opposite side: equity value is larger when recession is a

surprise, rather than when it was expected.

When one imagines an additional period, where the model is restarted again, the

equity wealth at time t = T constrains the ability to give credit to the real sector

in the next period. Extrapolating the above-mentioned result, where equity wealth

was higher in ’good’ times and lower in ’bad’ times, procyclicality in t = T due to

(common) expectations of the unregulated banking sector at time t = 0 can arise.

Within a regulated economy, the same argument for equity wealth W b
T as before

holds, at least in booms. Yet, regulation eliminates the analogous effect in

recessionary times. Expectations do not affect equity wealth any more.
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With this result at hand, regulation eliminates the procyclical effect of expectations,

at least in the numerical example, for both cases, realized recessions (µδ = 0, wT ≤ 0;

solid line in Panel 2) and expected ones, (µδ ≤ 0, wT = 0; dotted line in Panel 2).

It comes at the cost of lower equity levels in ’good’ times.

This is true for moderate parameterization. When using extreme parameterization,

one will still find the procyclical effect mentioned in the unregulated case.

Nevertheless, procyclicality occurs only for much more extreme economic

developments δ0 → δT and terminal wealth is still larger under regulation than

without.

Therefore, we cannot conclude that regulation feeds additional procyclicality into

the real sector, neither when recession is just occurring nor when it is expected; on

the contrary, it might have a dampening effect.

4.3.2 Endogeneity of Volatility and VaR Estimations

VaR regulation superimposes additional effects on market volatility, as argued e.g.

by Danielsson et al. (2001) and Danielsson (2002). To illustrate the impact of

endogenous market volatility, we study the impact of regulation with VaR on the

VaR estimates of the market itself. One agents is able to incorporate fully all the

endogenous effects into his VaR calculation; the other one uses only market data as

of today for his VaR estimate.

If all the effects of endogeneity of prices are incorporated, that is, considering all

the agent’s aggregate influence on prices by market clearing, the true probability

distribution of any price in the future Pt+τ , τ ∈ [T − t, 0) is known. The endogenous

VaR, E-VaR, of an investment in the market portfolio measured over a period τ is

therefore

E-VaR[t;τ ] := inf{x ≥ 0 : P[Pt − Pt+τ ≥ x|Ft] < 1%}

⇒ E-VaR[t,τ ] = P (t, δt)− P (t+ τ, δ[t;τ ])

δ[t;τ ] = e(µδ−1/2σ2
δ)τ+σδΦ

(−1)[0.01]
√
τδt.
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However, since some market participants on the aggregate market may not anticipate

the behaviour of other market participants and the resulting effects on prices and

volatility, they will report a VaR estimate that can only depend on past market data

and actual market data. Since our economy is Markovian, including past data will

not render any systematical enhancement of the VaR. By using only market data as

of today,(µt, r, σt), the estimate of the VaR based on market data, M-VaR, is

M-VaR[t;τ ] := inf{x ≥ 0 : P[Pt − Pt+τ ≥ x|Ft] < 1%}

Pt+τ = Pt +

∫ t+τ

s=t

µtPsds+

∫ t+τ

s=t

σtPsdws

⇒ M-VaR[t;τ ] = P (t, δt)− P (t, δt)e
(µt−1/2σ2

t )τ+σtΦ(−1)[0.01]
√
τ

Table 4.2 on p. 153 reports the market value Pt and the two VaR numbers as

negative annualized percentage returns

E-VaR% = −
ln
(
P (t+τ,δ)
P (t,δt)

)
τ

M-VaR% = −(µt − 1/2σ2
t )τ + σtΦ

(−1)[0.01]
√
τ)

τ
,

at which the endogenous VaR and, analogously, the market VaR are situated in the

distribution. The fourth number shows the difference between the two different VaR

calculations. The states of the world are chosen in such a way as to represent ’bad’

states in economic development; the values of the aggregate payments δt correspond

to the {0.1%, 1%, 2.5%, 10%} quantiles of the δ-distribution.

The maximum underestimation in percentage returns is 32.35%, whereas the

maximum overestimation is 12.77%, both in the same case (F = 11, α = 1%).

With higher nominal debt, estimates seem to be more biased, both in mean and

maxima. Increasing the nominal debt results in a market behaviour that is more

determined by the financial intermediary than by the unrestricted agent. It seems

to be plausible that increased debt worsens the approximation quality.

The relation between states of the world δt and the endogenous VaR turns out to
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be non-monotonous in the states of the world; neither does market data in ’bad’

times imply higher VaR estimations. They may go even in adverse directions, as in

the case of (F = 7, α = 1%; δt = 0.27 vs. 0.21) the endogenous E-VaR decreases by

7.8%, whereas the market M-VaR estimate increases by 3.4%.

Given the data in Table 4.2, regulation does not systematically reduce

underestimation. Moreover, it seems more likely that it worsens the problem at

hand, as the mean over the four states increases with regulation in both cases F = 7

and F = 11.

The results in this model of financial intermediation shows that the endogeneity of

volatility due to VaR regulation poses a substantial problem in the use of VaR as a

regulatory tool itself. Not only there seems to be a tendency to underestimate VaR

in ’bad’ times, but also there is no clear systematic effect that could be captured by a

’simple’ multiplier to the VaR calculations. In ’good’ times, regulation has almost no

influence on the VaR estimates (not shown). It underpins the arguments put forward

by Danielsson (2002) and references therein that VaR approaches are misleading

or even break down in crisis, as markets do not behave ’regularly’ any more and

exhibit very different statistical properties. Lehar (2005) (indirectly) illustrates the

argument in his empirical study.

4.3.3 Procyclicality and Credit Crunch

In this section, we discuss whether regulation introduces procyclicality effects on the

real side of the economy and whether regulation contributes to a credit crunch.

In order to illustrate this topic we imagine a single (atomic) corporation, whose

strategy is to invest only in the market portfolio P . The corporation is equipped with

equity capital W. In addition, the corporation leverages the investment with nominal

debt F and maturity of one year from the banking system. For an exogenous reason,

the corporation is willing to pay at most a (constant) credit spread of s = 55bp.

There are no frictions due to bankruptcy, so banks use a Merton (1974) option-style

framework for valuing the debt claim D and the equity claim of this company W. In
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contrast to the standard Merton case, the task of valuing the options has to be done

numerically, as the market volatility σP (δt, t) is stochastic. Note that in an economy

without any financial intermediation, the volatility of the market is constant and

the standard Merton case emerges. Consequently, given that the equity position is

equal over time, the nominal debt level F will also be constant.

Remark. The notation for the corporate is analogous to the banking sector, yet with

gothic letters. Note further that the corporation has no impact on the equilibrium.

The underlying economy is not changing due to the existence of this additional

market participant.

Dynamic View

First, we take a picture at time t = 4; nevertheless, the qualitative structure remains

stable over time. Figure 4.6 shows in Panel 1 the maximum leverage ratio Dt/Wt

the corporation is able to maintain for adverse states of the economy, given the

previous assumptions. Panel 2 shows the corresponding conditional volatility σP for

this time instant.

When comparing Panel 1 and Panel 2 in Figure 4.6 one immediately notes the

(inverse) relation between the volatility and the leverage over the different states

δt. Since we used the Merton model for valuing the claim to the company, the debt

claim is the combination of a riskless asset and a put short. At a low volatility, debt

is worth more. As we keep the equity wealth W and the spread s constant, the debt

volume D consequently is higher with lower volatility.

The mapping is not as ’perfect’ as described above, because volatility is, in contrast

to the Merton model, time- and state-dependent and thus evolving over time.

When trying to measure the procyclicality effects of the banking system in our

dynamic economy, there are two components of interest. The

level impact should prevent a possible shortage of the availability of credit to good

creditors. It is desirable to have a higher nominal debt level in economically

hard times,

FB > FI .
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Panel 1 Panel 2
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Figure 4.6: Procyclicality

This figure shows in Panel 1 the leverage ratio Dt/Wt and in Panel 2 the volatility
σP over adverse states δ at time t = 4.

However, if the economic situation is doing well, we may accept the case, where

debt is lower than in an unregulated economy. The

relative impact is more in the spirit of a cyclical development in an economy.

Here, the question is, whether the impact of regulation dampen both ups

and downs in the economy by reducing leverage in good times and increasing

leverage in (temporarily) bad situations,

dFB

dδ
dFI

dδ

≤ 1 .

By this definition of procyclicality, nominal debt levels increase relative to

an unregulated economy, if the economy is in recession. However, when the

economy recovers, leverage is less and the company will profit less from the

upturn.

The common pattern is as follows:

When the state of the economy is very good, volatilities almost coincide and thus

there is no significant impact on the availability of credit due to regulation, neither

on the debt level nor on the relative effect.

When the economic state worsens, under regulation the corporation is able to obtain
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a higher credit volume than in an unregulated economy; regulation is also first not

procyclical in relative terms. As there is a second, downward hump in volatility in

the proximity of δ4 = 0.4, it even translates into an anticyclical (relative) behavior,

as the company can borrow more since even sign of the relative measure changes.

However, as the recession worsens, regulation has a large procyclical effect in relative

terms.

In the third part, beyond some threshold, regulation affects credit volume in such

a way that the corporation is given less by banks than in an unregulated economy.

However, on a relative basis, procyclicality vanishes again. If the economy is well

in crisis, the impact of regulation is almost non-existent, as both economies behave

identically.

With these results at hand, there is no clear-cut answer to the question of

procyclicality, neither on a relative nor on an absolute level. As a recession emerges,

debt capacity is less scarce and even may increase slightly; nevertheless, when

recession deepens further, the possibility for the real economy to obtain credit from

the regulated banking system is reduced even more than in an unregulated economy.

The discussion above relies on a one point in time perspective and is heavily reliant

on the volatility.

Dynamic and Path-Dependent View

Up to now, the analysis has been dynamic, but not path dependent, since the value

of equity was reset to a constant each time. When the economy evolves, not only

does the availability of credit change, but also the equity position itself is influenced.

In Table 4.3 the combined effects are exemplified in the style of a binomial tree.

For each time-state-path combination there is a panel of the following structure:

the time-state pair (t, δt) is given in the upper left corner of each panel, and the

respective paths are encoded underneath by the possible up (u) and down (d)

combinations. In the first two rows, the value of the equity position Wt and the debt

level Ft = Ft(Wt) at the constant spread of s = 55bp of the company is displayed,

for both the economy with a regulated banking sector B as well as with unregulated
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financial intermediaries I. The small numbers set underneath the numbers in the

unregulated case I represent the difference from the regulated case B in percentage

terms, 100Wt|B−Wt|I
Wt|I

for the two underlying economies I and B.

The third row is the availability of debt, when the shock to the equity position in

the last period is neglected, F−1 = Ft(Wt−1), that is, without the path dependency

in the last period. Underset are the percentage differences to the case with a shock

to the equity capital, 100Ft(Wt)−Ft(Wt−1)
Ft(Wt−1)

for the two underlying economies I and B.

The corporation starts with the same initial equity W0 = 1.35; yet, under regulation,

the nominal debt level F is less by 1.8%.

When comparing the extreme paths uuu and ddd, the equity position Wt is less

extreme, i.e. higher in bad times and lower in good ones, which is also true for

the debt level Ft. One might argue that this is simply the result of the reduced

initial debt level in case of regulation. Although, when comparing the debt capacity

without the equity increase or decrease in the last period F−1 with the respective

debt level Ft, the absolute difference in percentage terms (i.e. comparing the

absolute percentage terms beneath F−1) is higher throughout the whole table. This

is evidence that the dampening effect of regulation cannot be attributed to the initial

conditions alone.

The path dependency of this dynamic approach can be best seen in t = 3. The results

with two ups δ3 = 0.57 or two downs δ3 = 0.48 are very dispersed; however, when

the boom was first (u at front position) and the bust late (d on last position), the

equity position is more depressed. At the same time, regulation again ameliorated

the situation.

This dynamic and path dependent study is evidence that regulation does not

introduce additional procyclicality; it is even more reasonable to assume that

regulation in fact has anticyclical effects in dynamic and path-dependent framework.

Hence, the anticyclical property of the valuation as shown in Section 2.1 of this

chapter dominates the partially procyclical effects of volatility as illustrated in the

above discussed perspective.
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4.4 Appendix to Chapter 4

4.4.1 Proofs for the General Equilibrium Section

Proof of Existence and Uniqueness of Equilibrium

In order to show the existence and uniqueness of the equilibrium, all we need to

show is, that there exists a unique solution (yb, yu) to the system of equations (2.33)

under the state price density (4.3).

First, the normalization (1 degree of freedom) is used

u′
(
I(yu) + I(yb)

)
= 1 . (4.6)

Thus y′u(y
b) < 0 holds.

In the following the notation is shortened, namely yb → y, W u
0 → Wu,W

b
0 →

Wb, V0 → V, and P0 → P . Furthermore, Wb,Wu, V , and P are seen as functions of

y alone. Because

d

dy

(
Wu

P

)
=

W ′
nP −WnP

′

P 2
=
W ′
nP −Wn(W ′

n + V ′)

P 2

=
W ′
n(P −Wn)−WnV

′

P 2
=
W ′
nV −WnV

′

P 2

> 0 ,

i.e. Wu

P
is strictly increasing and

Wu

P

y→∞→
(yu→1)

Wu(1)

e−rT (VT (W = W )Φ(d2(ζ)) + VT (W = 0)Φ(−d2(ζ))) +Wu(1)

=: ω̂

Wu

P

y→1→
(yu→∞)

0,

we obtain that there exists a unique equilibrium, if the unrestricted investor holds

a share of the market ω ∈ [0, ω̂. Results from the partial analysis, namely V ′ < 0

and W ′
u = W ′

u(y
u)y′u(y) > 0, were used.
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Transformations: Using the Lagrange multiplier of the equilibrium condition

and the following list of transformations

ξt → u′(δt)

I(ξt) → δt

r → γµδ −
1

2
γ(1 + γ)σ2

δ

κ → γσδ

ζ∗ → δ∗ =
W∗
I(yb)

ζ∗ → δ∗ =
W∗
I(hyb)

ζ → δ =
W

I(hyb)

ζ → δ = e(µδ−1/2σ2
δ)τ+σδΦ

(−1)[0.01]
√
τδ0

on the formulas in the partial equilibrium section, one can recover all relevant

equilibrium values W u
t ((2.19) on p. 28), W b

t ((3.22) on p. 86), Dt ((3.41) on

p. 119), Vt ((3.41) on p. 119), and Pt = Vt + W u
t . Applying the same techniques

as presented in Section 2.3.2 and Section 3.4.5 of the Appendix to Chapter 3 the

corresponding volatilities σt = σPt as well as σWt , σ
D
t , σ

V
t can be recovered.
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4.4.2 Comparison of Equilibria

The goal is to show the relations yb|B ≥ yb|B ≥ yiI , which hold as strict inequalities,

if the VaR restriction is binding, F > ~F . This is approached by a constructive proof

with the following steps:

Step 1: Set α = 1 and all other parameters to the identical ones for B and I;

match the exogenous (r, κ;W b
0 = W i

0,W
u
0 ) for B, such that they match the

endogenous (r, κ;W b
0 = W i

0,W
u
0 ) of the economies B and I.

By construction

Lb0(α = 1)|B = Lb0(α = 1)|B = Li0|I
yb(α = 1)|B = yb(α = 1)|B = yi|I

where Lb0 =
Db0
W b

0
and analogously for i.

Step 2 Decrease α up to the transition point ~α < 1:

(i) yi(α)|I = yi|I , as the economy with agent i is not regulated, thus nothing

changes, in particular, (W u
0 |I ,W i

0|I) as well as Li0|I is constant.

(ii) Up to the point, where the VaR restriction becomes binding, neither

(W u
0 |B,W b

0 |B) nor (W u
0 |B,W b

0 |B) (and the corresponding leverage ratios) react.

The VaR restriction starts to bind at the same point ~α|B = ~α|B = ~α.

Step 3 Decrease α further beyond ~α < 1:

(i) It is irrelevant to the economy I.

(ii) In economy B the prices are exogenous, but y′b(α)|B < 0 still applies, by

the results from the previous sections. Hence Lb0(α)|B > Li0|I
yb(α)|B > yi|I .
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Step 4: Construct a general equilibrium B(F (α)) relative to B:

As the VaR restriction starts to be binding at the same point ~α, we will fulfill

L′b(α)|B(F (α)) = L′b(α)|B
y′b(α)|B(F (α)) = y′b(α)|B


in order to obtain yb(α)|B(F (α)) = yb(α)|B and Lb0(α)|B(F (α)) = Lb0(α)|B.

The result is, that F ′(α) < 0, ∀α < ~α, and, hence, F (α) < F , if the VaR

restriction is binding.

Step 5: Finally, we obtain the original equilibrium B by adjusting F (α) back to F

within the equilibrium economy. Because y′b(F )|B > 0, the final result follows,

yb|B > yb|B > yiI , if the VaR restriction is binding, and yb|B = yb|B = yiI

otherwise.

Proof of Step 2: The VaR restriction starts to bind at the same

point

Inverting the transition point F = ~F (W b
0 , ζ(α)) on obtains (a unique) ~α(W b

0 , F ).

The only variable, which might be different in equilibrium B, relative to economy

B, where W b
0 is exogenously given, is W b

0 itself, since it is an endogenous variable.

However, the endogenous variable W b
0 will only react to regulation, if the VaR

restriction first becomes binding. Consequently, the VaR restriction starts to bind

at ~α, irrespective of the type of economy.

�

Proof of Step 3: yb(α)|B > yi|I
As economy I is equivalent to an economy I, when varying regulation, it follows

from the previous result that (i) yb(α)|B ≥ yi|I , and (ii) dD0

dα
> 0, where a strict

inequality holds, if the VaR restriction is binding. Furthermore, dW0

dα
= 0 holds in

any partial equilibrium.

�
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Proof Step 4: F ′(α) < 0 ∀α < ~α

In the following the notation is shortened, namely yb → y, W u
0 → Wu, and D0,→ D.

f (0,1,0) denotes the partial derivative with respect to the second argument, other

derivatives are defined analogously.

Totally differentiating the equilibrium condition

Wu(y) = ω (D(y, F, α) +Wb(y, F, α) +Wu(y))

and inserting

y′(α)|B(α,F (α)) = −Wb
(0,0,1)(y, F, α)

Wb
(1,0,0)(y, F, α)

one can solve for

dF

dα
=
−(1− ω)W ′

uWb
(0,0,1) + ω

(
Wb

(0,0,1)D(1,0,0) −Db
(0,0,1)Wb

(1,0,0)
)

ω (D(0,1,0) +Wb
(0,1,0))Wb

(1,0,0)

where the arguments were omitted.

The sign of partial derivatives can be found in Table 3.3.

The denominator is

ω
(
D(0,1,0) +Wb

(0,1,0)
)
Wb

(1,0,0) < 0

since ω > 0 ∧Wb
(0,1,0) > 0 ∧D(0,1,0) > 0 ∧Wb

(1,0,0) < 0.

The first part of the numerator is

− (1− ω)W ′
uWb

(0,0,1) > 0

since 0 < ω < 1 ∧W ′
u > 0 ∧Wb

(0,0,1) < 0.

The second part of the numerator is

ω
(
Wb

(0,0,1)D(1,0,0) −D(0,0,1)Wb
(1,0,0)

)
> 0



160 4 Equilibrium Impact of a Regulated Banking Sector on Markets

since D(0,0,1) < 0 ∧W (0,0,1)
b < 0 ∧D(1,0,0) and because

W
(1,0,0)
b (y, F, α)

W
(0,0,1)
b (y, F, α)

−D
(1,0,0)(y, F, α)

D(0,0,1)(y, F, α)
=
e−rT ξ0

(
erT (β − 1)H1 − Fβ (Φ (−d2 (ζ∗))− 1)

)
Fhyβγζ̄ (ψ − ψ2)

> 0,

(4.7)

where Lemma 2, equation (3.43) on p. 120, was used. Hence, F ′(α) < 0 must hold.

�

Proof Step 5: y′(F )|B > 0

The equilibrium condition is

Wu(y) = ωP (y, F ) = ω(Wu(y) + V (y, F )) .

Applying the implicit function theorem, we obtain the sign of the derivative

y′(F ) = − −V (0,1)

W ′
u(1− ω)− V (1,0)

> 0 ,

together with the assumption/results from the previous sections, namely V (0,1) >

0,W ′
u > 0, V (1,0) < 0, and 0 < ω < 1.

�



Chapter 5

A Two-Sided Equilibrium Model

In all the previous chapters and in most parts of the relevant literature, the liability

side, i.e. the nominal debt level F of the economy, is fixed. In the following, we argue

that the overall debt level of the economy is, at least partly, under the control of

the supervising authorities; for ease of reference, we call this part of the supervising

authorities the central bank. In principle, the central bank is willing to disburse

any nominal debt level F at the fair price of the modeled economy. To demonstrate

the implications, we propose two different goals of the central bank, which constrain

their willingness to disburse debt, namely (i) keeping the leverage ratio in present

value terms under control; or (ii) keeping the probability of distress under control.

With this approach, a first step into a combined asset-liability management of

regulated banks is undertaken. The intention of this chapter is to give a first

insight to the question of how banks may use this additional degree of freedom

in their decision. However, it is only a first step, as it incorporates only a market

for debt once, namely at time t = 0. However, when advancing this road further to

a completely dynamic and double-sided model, technical complexity substantially

increases.
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5.1 The Structure of the Two-Sided Equilibrium

We propose a two sided market which endogenizes the previously exogenous nominal

debt level F . The structure of the economy is illustrated in Figure 5.1.

Dynamic Market for Financial Assets

On the left-hand side in Figure 5.1, there is the dynamic economy as described

in the previous chapters with an aggregate banking sector b (or alternatively as a

benchmark the unregulated investors i) and the unrestricted investor u. Together

they form a continuous competitive market for loans P , which is a claim to the

coupon payment stream δ.

The banking sector takes nominal debt F as a given its optimal decision. The

Lagrange multiplier yB(F ) is the shadow price of the static budget equation in

utility terms. Thus, if the price for a marginal unit of nominal debt F is low, i.e.

yB is small, the banking sector has a large incentive to take on more debt, et vice

versa. By inverting yB(F ), we therefore deduct a demand curve for nominal debt,

given the willingness to add debt, as expressed by the (shadow) price of debt yB,

F (yB).

Static Market for Nominal Debt

The ’central bank’ uses its instrument, namely setting the ’price’ for the supply of

nominal debt by the choice of interest rate it charges to banks, which refinance their

capital needs in order to control the supply. Within our model, the central bank

uses its market power to set the shadow price y given the optimal answer of the

banking system.

We do not consider other possibilities of central banks to control the money supply,

like e.g. minimum reserve requirement, open market operations, or buying covered

bonds.

Note that the central bank is not a price-taking economic agent and is leading

the market. We define the residual supply/demand −FC , which the central bank

supplies, by the demand/supply of the total market FM less the demand of the
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banking system FB,

− FC = FM − FB .

For simplicity, we assume that the central bank has discretionary power over the

debt volume and there exists no additional demand/supply, i.e. a credit multiplier

of 1, then FM = 0, and in equilibrium

FC = FB .

Hence, the optimization problem resulting in the nominal debt volume in equilibrium

F̄ is

F̄ = arg max
F≥0

F (5.1)

s.t.


D0(y,F )

W b
0 (y,F )

≤ L0 or P[DT (y, F ) < F ] ≤ p CB goals

W u(y, F ) = ωP (y, F ) FM equilibrium

The optimal solution to the optimization problem reduces to solving two equations,

the demand function of the banking system F (yB) from the Financial Market

equilibrium, and the supply function of the central bank FC(y) from the Central

Bank’s goal, to obtain the equilibrium (ȳ, F̄ ).

Since the budget equations of the unrestricted investor u and the banking system b

hold with equality, all markets clear any time in the two-sided equilibrium.

Remark. Since, for simplicity, the central bank holds all debt, it is naturally exposed

to all the credit risk. Alternatively one could model FM > 0 as capital market debt,

whereas the central bank only holds with its share FC senior debt of the banking

system. The resulting spread will be substantially reduced.

Nevertheless, the central bank (better supervisory authorities) charges a yield spread

relative to the riskless instrument, which can also be interpreted as a fair deposit

insurance premium.

Remark. In the following, we denote both F (yB) and the inverted function yB(F )

a supply function and FC(y) and the inverted function y(FC) a demand function.
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5.2 Constant Leverage Ratio

Let η0 = W b
0/W

u
0 measure the capital distribution (of equity wealth) and L0 =

D0/W
b
0 the leverage ratio in present value terms. Then initial endowment can be

rewritten as

η0(1 + L0) =
1− ω
ω

.

In partial equilibrium B, where prices are fixed, the behavior of the banking sector,

as expressed in L0, is independent of the capital distribution η0. In the pure exchange

equilibrium prices adjust in such a way as to ensure that this functional relation

between leverage and capital distribution holds.

If there is a change in an economic fundamental, say χ, and if the central bank

reacts to this change by choosing a new money supply F (χ), such that the leverage

ratio L0 does not change, i.e. dL0 = 0 by intervention, then the new pure

exchange equilibrium B with endogenous prices is identical to the respective partial

equilibrium B with fixed prices, because the capital distribution η0 will not change

in a pure exchange equilibrium, i.e. dη0 = 0 by equilibrium mechanism. With this

assumed reaction of the central bank, prices of equity W b
0 , debt D0 and the wealth of

the investor W u
0 do not change in the pure exchange equilibrium, only the nominal

debt level F̄ (χ).

We illustrate consequences by using the probability of distress PD0, see Panel 1

of Figure 5.2. From comparative static analysis of Chapter 3 stricter regulation

affected probability of distress negatively, i.e. dPD0/dα < 0. However, when

banks are forced to react (or react themselves) in the assumed way, regulation does

in fact generate more stability when it is measured through distress probability,

dPD0/dα|L0 > 0. The difference is as follows: the debt title D0 is more valuable

due to the regulation and banking system is thereby more levered. Thus, regulation

forces banks to maintain a constant leverage, F̄ ′(α) < 0. This reduction implies a

decline in the probability of distress, which turns out to outweigh the first effect.

At the same time, debt gains twofold, as both stricter regulation and the reduction
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Figure 5.2: Probability of Distress and Spread: Constant Leverage Ratio

This figure shows probability of distress in the financial system PD0 and yield
spread s0, dependent on the leverage ratio in present value terms L = D0/W0.
Panel 1 plots the probability of distress PD0 for different levels of VaR probabilities
α ∈ {10%, 1%, 0.1%}. Panel 2 graphs the yield spread s0 alike. All other parameters
are as defined in the standard parameter set in Table 3.2.

of the nominal debt level reduce the risk, as can be seen inspecting the spreads in

Panel 2 of Figure 5.2. In our numerical example, there is a substantial reduction

due to regulation in this case.

The key difference is the reaction of the nominal debt level in equilibrium F̄ . We

assumed that the central bank keeps the leverage ratio in present value terms

constant. This simple assumption reversed the destabilizing impact of regulation

into a stabilizing one.

Remark. The experience of the years between the introduction of banking regulation

and the financial crisis seems to suggest that the reaction to regulation was in

fact to increase nominal leverage and risk exposures, as is empirically documented

in Adrian and Shin (2008b). This behaviour may be attributed to a sense of

better control over risk which in turn entrapped banking institutions into enhancing

their return on equity by leveraging up with new financial products that had low

regulatory capital requirements; see Peltzman (1975) for a similar case. With this

behavioural assumption in mind, regulation is doubly adverse to financial stability

in our framework.



5.3 Controlling the Probability of Distress 167

Hellwig (1995) already mentions the concern that financial innovations - partly

driven due to regulatory arbitrage - undermine the effectiveness of regulation;

thereby, regulation may in fact induce an increased systemic risk.

Additionally, regulation will indirectly support a higher degree of homogeneity in the

banking portfolios. For a detailed analysis of the homogenization impact of regulation

see Freixas et al. (2007) and Wagner (2008).

5.3 Controlling the Probability of Distress

In this part, we consider as the target of the central bank to control the probability

of distress

p = P[DT < F ] = Φ (−d0(ζ∗(y, F ))) . (5.2)

The central bank (supervising authorities) uses the price the banking sector is

willing to pay to derives a supply of debt. If the price for debt y is low, banks

are more aggressive in taking on higher debt levels. This comes at the cost of a

higher probability of distress. Banks increase the debt level up to the point where

it matches the fixed probability p of the supervising authorities.

Panel 1 of Figure 5.3 shows the two (inverted) supply and demand functions. The

downward-sloping (inverted) supply function y(FC) can be derived analytically and

is identical in both cases of an unregulated or restricted economy. The second dashed

line represents the supply function at the lower distress probability p/2. It is shown

in the Appendix that a decline in the distress probability results in a downward shift

of y(FC).

The upward-sloping solid line shows the (inverted) demand yB(F ) for the regulated

banking system, whereas the dotted-dashed line represents the unregulated demand

yI(F ). Due to the properties of these supply and demand curves, there exists a

unique equilibrium (ȳ, F̄ ), which is shown in the Appendix. As the demand does not

change with respect to central bank’s policy p in both cases B or I, any equilibrium

(ȳ(p), F̄ (p)) is along the demand curve yB(F ).
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Figure 5.3: Varying the Probability of Distress

This figure shows the equilibrium (ȳ, F̄ ) and its dependence on the control variable
p of the central bank. Panel 1 reflects demand (downward-sloping lines) and supply
(upward-sloping lines). The dashed line graphs the supply for p/2, whereas the dotted
line the demand in the unrestricted economy. Panel 2 plots the equilibrium debt volume
F̄ as a function of the underlying control p. All other parameters are as defined in
the standard parameter set in Table 3.2.

Panel 2 of Figure 5.3 shows the impact of the policy p of the central bank on the

nominal debt volume in equilibrium F̄ (p) for both cases, the regulated economy B

(solid line) and the unregulated economy I (dotted-dashed line).

If the probability of distress is effectively unrestricted, p = 100%, the banks chooses

the maximum debt capacity F̂B and F̂ I , respectively. On the other hand, if p = 0 is

required, the banking sector is unable to take on any debt. At the transition point

ȳ = ~y, in our numerical example, at p ≤ 3.2%, the restricted economy B changes

to the unrestricted solution, i.e. behaves as if being effectively unrestricted. As the

equilibrium (ȳ(p), F̄ (p)) is along yB(F ) and increasing p shifts y(FC) upwards, the

equilibrium inherits the properties (dȳ
dp
> 0, dF̄

dp
> 0) as well.

Consequently, we recover in equilibrium the standard result that a declining leverage

results in less probability of distress (or the probability of default of the first

individual bank).
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Figure 5.4: Varying the Probability of Crisis

This figure shows the equilibrium (ȳ, F̄ ) and its dependence on the control variable α of
the regulator. Panel 1 reflects demand (downward-sloping line) and supply (upward-
sloping lines). The dotted line represents the demand of the unrestricted financial
intermediary (α = 100%), whereas the dot-dashed line the the demand of a restricted
banking system with a VaR probability of 10%. Panel 2 plots the equilibrium debt
volume F̄ as a function of the regulatory control α. All other parameters are as
defined in the standard parameter set in Table 3.2.

When discussing the effects of regulation on the equilibrium, first note that

the downward-sloping supply y(FC) does not rely on the regulation parameters

(α, n). On the demand side, we know from the previous analysis that yB(F )

will (increasingly) shift upwards with stricter regulation. The equilibrium (ȳ, F̄ )

therefore evolves upwards along the supply curve y(FC) with stricter regulation,

that is, ( dȳ
dα

< 0, dF̄
dα

> 0) and ( dȳ
dn

> 0, dF̄
dn

< 0). Panel 1 of Figure 5.4 shows the

unrestricted case α = 100% as a dotted-dashed line, a case with α = 10% as a

dashed line, and the standard case with α = 1% as a solid line. Panel 2 of Figure

5.4 shows the nominal debt level in equilibrium F̄ over a range of VaR probabilities.

The notable result of the analysis is that under regulation lower debt levels are

needed than in an equivalent unregulated economy, if the same probability of distress

in the banking system should be maintained. Even keeping the nominal debt level

constant increases the probability of distress in fact.

The economic intuition behind the result is as follows: if there is regulation, debt

is better secured and thus more valuable. This wealth increase of debt investors is
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Figure 5.5: Varying Costs

This figure shows the equilibrium (ȳ, F̄ ) and its dependence on the cost share λ. Panel
1 reflects demand (downward-sloping lines) and supply (upward-sloping linea). The
dotted-dashed line displays the demand with increased costs of λ = 10%, whereas the
dashed line graphs the change of supply due to the the same change in costs. Panel
2 plots the resulting equilibrium debt volume F̄ as a function of the costs fraction λ,
the solid line illustrates the solution for the restricted banking sector b, whereas the
dotted line for the unrestricted financial intermediary i. All other parameters are as
defined in the standard parameter set in Table 3.2.

financed by adding some risk to the asset side, when risk is measured by the distress

probability. To keep the probability of distress constant, the nominal debt level

must be declining to compensate the former effect.

In an economy without any regulation, I or I, a high fraction of costs prevent agents

from using excessive tail risk in their portfolio choices, as dWT

dλ
|WT<W > 0, see Table

3.3. From the viewpoint of the supervising authorities, h is a measure of punishment

of tail risks. Consequently, with rising costs, the central bank is willing to provide

more credit, F ′C(λ)|I > 0, while still keeping the probability of distress constant.

Regulation needs financing of the retention level W , in addition. Panel 1 of Figure

5.6 measures these costs by the necessary capital provisions. However, this financing

effect increases the probability of distress. Thus, within a regulated economy, the

equilibrium outcome may result in a case where there is a decrease in the nominal

volume, i.e. F ′C(λ)|B < 0, as one can see in Panel 2 of Figure 5.5. This side

effect is even more pronounced when regulation itself is very efficient, that is, when



5.3 Controlling the Probability of Distress 171

Panel 1 Panel 2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

cost share Λ

ca
pi

ta
lp

ro
vi

si
on

C
P

@%
D

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

350

cost share Λ

in
tia

ly
ie

ld
sp

re
ad

s 0
@b

p
p.

a.
D

i

b

Figure 5.6: Constant Probability of Distress: The Impact of Cost

This figure shows the dependence of capital provisions CP (Panel 1) and the yield
spread s0 (Panel 2) on the cost share λ. The dotted line in Panel displays the
corresponding yield spread in an unregulated economy. All other parameters are as
defined in the standard parameter set in Table 3.2.

there are large capital provisions due to the VaR restriction with moderate systemic

costs. This can be seen by comparing F̄ (λ) in Figure 5.5, Panel 2, with CP (λ) in

Figure 5.6, Panel 1 in the region λ ' 5%. Even though the difference in capital

provisions is small, the impact an the yield spread is substantial when compared to

the corresponding unregulated financial system, see Figure 5.6, Panel 2.

When the combined approach is relevant for systemic stability, namely keeping

the probability of crisis and the one of distress constant, regulation introduces

interferences that need a different behaviour of the central bank, depending on

the (expected) level of systemic costs. Furthermore, internalizing more costs into

the banking sector, has the secondary impact that the jump size J (as well as the

relative jump size J/F ) increases.
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5.4 Appendix to Chapter 5

5.4.1 Constant Leverage

From the equilibrium condition we obtain

η0
dL0

dF
+ (L0 + 1)

dη0

dF
= 0 .

Consequently, if dL0 = 0, then dη0 = 0 holds in equilibrium. Therefore, when neither

L0 nor η0 change in equilibrium, it is equivalent, but more convenient, to use the

budget equation together with the restriction on the leverage than the equilibrium

condition itself.

In order to evaluate the impact of the VaR restriction under a constant leverage

ratio L0, the system of equations D0(yb, F, α) = L0W
b
0 (yb, F, α)

W b
0 (yb, F, α) = W b

0


is totally differentiated with respect to the VaR probability α.

In the following the notation is shortened, namely yb → y, W b
0 → Wb, and D0,→ D.

The resulting reaction functions are

dF

dα
= − D(0,0,1)(y, F, α)W

(1,0,0)
b (y, F, α)−W (0,0,1)

b (y, F, α)D(1,0,0)(y, F, α)

W
(0,1,0)
b (y, F, α)D(1,0,0)(y, F, α)−D(0,1,0)(y, F, α)W

(1,0,0)
b (y, F, α)

= −
Fhβζ̄ (ψ − ψ2)

(
Fβ (Φ (−d2 (ζ∗))− 1)− erT (β − 1)H1

)
(β − 1)ξ0 (βWb (Φ (−d2 (ζ∗))− 1)−H1H2)

> 0

.

dy

dα
=

D(0,0,1)(y, F, α)W
(0,1,0)
b (y, F, α)−W (0,0,1)

b (y, F, α)D(0,1,0)(y, F, α)

D(0,1,0)(y, F, α)W
(1,0,0)
b (y, F, α)−W (0,1,0)

b (y, F, α)D(1,0,0)(y, F, α)

=
Fhyβ2γζ̄ (ψ − ψ2) (Φ (−d2 (ζ∗))− 1)

(β − 1)ξ0 (βWb (Φ (−d2 (ζ∗))− 1)−H1H2)

< 0
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where ψ2 is defined by the identity

ψ2
β

1− β
F = I(hyζ) ,

hence, ψ2 < ψ for F > ~F .

To determine signs, Lemma 2, equation (3.43) on p. 120, and Lemma 3, equation

(3.44) on p. 120, are used.

Finally, the change of the probability of distress under constant leverage is

d

dα
PD0(F, y, α)

∣∣∣∣
L0

=
φ(−d0(ζ∗)) (yγF ′(α) + Fy′(α))

Fyκ
√
T

.

One can easily determine the sign of

yγF ′(α) + Fy′(α) = − erTFhyβγζ̄H1 (ψ − ψ2)

ξ0 (H1H2 + βW0 − βW0Φ (−d2 (ζ∗)))

> 0 (F > ~F )

by the use of Lemma 2, equation (3.43) on p. 120, and Lemma 3, equation (3.44)

on p. 120. The result follows, namely that
dPD0|L0

dα
> 0 holds, i.e. stricter regulation

decreases the probability of default.
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5.4.2 Constant Probability of Distress

From the previous analysis we know that the Lagrange multiplier, yB(F ) ∈ [1,∞)

for F ∈ [0, F̂ ). Furthermore, y′B(F ) > 0, y′′B(F ) < 0, and yB(F → F̂ )→ +∞.

As

Φ
(
−d0(ζ∗(y, FC))

)
= p

is solvable to a continuous supply function FC(y), or directly to the inverted supply

function

y(FC) =
e(r+κ2

2
)T+κΦ(−1)[p]

√
Tu′( β

1−βF
C)

hξ0

(5.3)

with the properties

y′(FC) = − yγ
FC

< 0

y′′(FC) =
yγ(γ + 1)

(FC)2
> 0

y(FC → 0) → +∞ ,

there exists a unique fixpoint (ȳ, F̄ ) to the system of equations in partial equilibrium

{W b
0 (y, F ) = W b ,Φ (−d0(ζ∗(y, F ))) = p}

and in pure exchange equilibrium

{W b
0 (y, F ) = ωP0(y, F ) , Φ (−d0(ζ∗(y, F ))) = p} .

Moreover, the system is also solvable in closed form, for both types of economies,

by first inserting the supply y(FC) in (5.3) into the budget equation (partial

equilibrium) or the initial endowment equation (pure exchange equilibrium), then

solving for F̄ , and finally substituting back into the supply function (5.3).

By totally differentiating the system with respect to some parameter, say χ, one can

also recover the derivatives (ȳ′(χ), F̄ ′(χ)).
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Central Banks Policy p:

Since the control for the probability of distress p shifts only the supply function

upwards,
dy(FC , p)

dp
=

√
Tyκ

φ(−d0(ζ∗))
> 0 , ∀FC

the result in equilibrium is (ȳ′(θ) > 0, F̄ ′(θ) > 0) (together with the remaining

properties of the demand and supply function). As the supply function of the

unrestricted investor is less increasing, yI(F ) ≤ yB(F ), the nominal debt level will

be higher (equal if not binding) in economy I than in economy B.

Regulation:

y(FC) is independent of regulation χ ∈ {−α, n}; thus the supply does not shift. On

the other hand, from the previous analysis we know, that the demand shift upwards

with tighter regulation, y′B(χ) > 0. Consequently, (ȳ′(θ) > 0, F̄ ′(θ) < 0) holds.

Analogously to the previous argument, nominal debt level will be higher (equal if

not binding) in economy I than in economy B.

Cost Share λ:

Costs shift the supply upwards,

dy(FC , λ)

dλ
= y

1− β
β + λ(1− β)

> 0 , ∀FC > 0 , (5.4)

as well as the demand side, y′B(λ) > 0. Analogously to the previous argument,

nominal debt level will be higher (equal if not binding) in economy I than in economy

B, since yB(λ) ≥ yI(λ).
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Chapter 6

Summary and Conclusion

6.1 Summary of Results

What are the consequences of regulation, which can be deduced from the previous

model framework? We summarize the results by answering a set of questions.

Does the banking system (in general, rationally) respond to regulation? Does

regulation impair the ability of the aggregate banking sector to load on debt?

If the banking system has a low leverage, the capital requirements are automatically

fulfilled and banks do not respond to regulation in their risk management.

Otherwise, both regulation instruments, the VaR probability and the (average)

capital requirement, effectively reduce debt capacity.

How much equity capital does the banking system in fact provide in order to sustain

the regulation requirement (not the capital requirement)?

Both regulatory instruments, the VaR probability and the (average) capital

requirement, effectively increase capital provisions. Furthermore, capital

provisioning increases in the overall riskiness of the banking system as expressed

by the leverage. Our model framework enables us to separate different parts of

capital provisioning. As banks already rationally provide some equity capital for

debt without any regulation, capital provisioning that is solely attributable to VaR

regulation is different from the (total) capital requirements demanded by regulation.



178 6 Summary and Conclusion

It can be greater or less than the Cooke ratio n, depending on the parameter set.

Without control over leverage, managing capital provisions is ineffective.

What are the distortions of regulation on the portfolio decision?

In this model framework, the (risky) portfolio decision does not change in its relative

proportions: holding the growth optimal/myopic portfolio is still optimal. However,

regulation alters the amount held in the myopic portfolio. This property enables us

to relate the portfolio decision to an implied risk aversion coefficient, which captures

the incentives induced by the VaR regulation.

In most economic circumstances, the banking system behaves in a more risk-averse

manner than an unregulated one. Nevertheless, as the economic situation worsens,

the banking system may (rapidly) convert to a much more risky strategy.

Does regulation accentuate the sensitivity of the aggregate banking sector and/or the

market to an economic change?

Especially when the VaR horizon is short and the economy development turns out

to be in the proximity of the VaR quantile, the optimal portfolio decision is very

sensitive to the fundamental economic dynamics.

Does regulation reduce the probability of the banking system being in distress? If so,

how does regulation affect aggregate losses?

Regulation raises the probability of distress; this implication is not directly caused

by regulation, but through the increased risk provisions. The effect on losses in

distress is ambiguous: while regulation reduces losses in some sates, refinancing the

charge for regulation increases losses in some other states.

What is the impact of regulation on the value and volatility of the (total asset)

market?

Regulation has a positive effect on the total asset value. In the pure exchange

equilibrium, price adjustments further improve the (initial) value of the market.

Relative to an unregulated economy, the properties of the implied risk aversion of the

aggregate banking system are transformed in equilibrium into similar characteristics

in the volatility. Namely, as the economic situation worsens, the volatility may
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increase significantly. The situation further escalates due to the high sensitivity of

portfolio decisions.

Are debt holders impaired by regulation?

At maturity, debt holders profit on the one hand from regulation, as they gain a

higher recovery rate in the states that are affected by VaR; on the other hand,

the losses are higher in the non-affected states. In terms of the initial spread on

(aggregate) banks’ debt, regulation increases the value of debt.

With prices fixed, debt holders gain the whole share of the increased asset value of

the economy. In equilibrium, the debt value still increases due to regulation, but

there is an indirect wealth transfer to the unrestricted investors due to adjusting

prices. Furthermore, by virtue of the banking sector’s balance sheet, the specific

properties of market volatility are also transmitted into debt.

How is banks’ equity affected?

By definition, regulation does not affect the initial equity value in partial equilibrium.

In equilibrium, price adjustments result in a loss of value. Effectively, there is an

indirect transfer via prices to the un-intermediated sector.

Does the estimation of VaR with market data pose a significant problem if the

estimation neglects the endogeneity of volatility?

Standard VaR calculations depend on past and current data. When comparing

these calculations with the VaR which fully incorporates the endogenous nature of

volatility the calculated VaR underestimates, in most cases substantially, the true

VaR by neglecting the endogenous behaviour of market participants.

What happens in the real sector in response to regulation?

If the aggregate dividend is below a threshold, the real sector will be affected in

a procyclical way due to regulation, meaning that a given corporation will gain

less credit volume at the same contractual specifications relative to an unregulated

economy. Above this threshold, the credit volume will be anticyclical with respect

to an unregulated economy; in some instances, the credit volume will be expanded

in equilibrium, hence being anticyclical in absolute terms.
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The presented dynamic and path-dependent example is evidence that regulation can

be even anticyclical.

6.2 Robustness of the Results

This section qualitatively discusses how the results will change when the essential

assumptions for the derivation of the results are altered.

Linear Approximations for Redemption Payments at the Terminal Date:

The solution (3.12) on p. 71, as displayed in Figure 3.3, may look artificial at

first sight, but it is robust to changes in the underlying economic modelling.

The retention level at the distress boundary is clearly attributable to the

simple β-linearization in equation (3.3) on p. 59. If one instead imagines a

more general piecewise linear function, the sequence of kinks in the (VT ,WT )

space (Figure 3.2 on p. 58) induces a sequence of resistance levels in the

(WT , ξT ) space (Figure 3.3 on p. 74), each of them continuously connected

by parts of the type I(·ξT ). Thus, a more general, progressively increasing

function WT (VT ), as displayed in Figure 3.2 as dotted line, still generates

a region where wealth is much slower decaying in state prices ξT than the

unrestricted profile.

An analogous argument can be constructed with regard to the cost structure

CT .

With the first approach (piecewise defined approximation) one obtains a more

complex solution without rendering substantial further insights, whereas in

the second approach (continuous function) analytical solvability is in general

lost and a numerical procedure is needed. However, the main arguments and

conclusions put forward in this paper will not be affected, as this smoother

model only lessens the quantitative impacts, but not their sign.
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VaR boundary:

The VaR boundary itself is independent of an individual bank’s characteristics;

it is the same state of the world ζ, irrespective of any individual bank that

comprises the banking system. Consequently, there is a jump in aggregate

terms as well, if there is at least one effectively regulated bank of positive

measure. This argument is valid under the assumption that regulation and

risk management is homogeneous in the sense that every single bank uses the

same probability α. Multiple regulatory probabilities will soften the single

jump event by dispersing it to multiple jumps over a small part of state space.

Consequently, a regulation regime that brings different risk management

systems of banks more in line with each other inherently increases systemic

risk in the sense that a small change in the economic underlying may cause a

rapid movement in endogenous variables such as total assets. Even worse, this

happens exactly when the world turned ’bad’, i.e. for high state prices ξT .

Generalizing the model framework with respect to some of these features

does not render new insights. Their main consequence lies in smoothing

out the ’extreme’ behaviour due to the replication of a binary option needed

to generate the jump in the optimal profile. As the main interest is in the

regulated banking sector with the unregulated banking system as a reference,

the main implications remain true as long as there is only smoothing but no

adverse effects due to a modification in the model framework.

Other Measures of Risk:

In this study the Value-at-Risk is used as a way to regulate risk in the banking

sector. There are other measures of risk proposed in literature with ’better’

properties to determine risk-sensitive weights. When comparing the portfolio

decisions of Basak and Shapiro (2001) (expected loss under Q), Gabih et al.

(2005) (expected loss under P, utility-weighted loss), or Gundel and Weber

(2008) (utility-based shortfall risk), one obtains that the ’tail’ effects from the

VaR measure (jump) are not existent. Still, there are ways to ’game’ the risk

measure which result in a more risky portfolio choice of the regulated banking
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sector relative to an unregulated financial system.

When expected shortfall is used, as example, the terminal wealth profile is

continuous (see Basak and Shapiro (2001), Equation (14) on p. 386 or Figure

6 on p. 387), i.e. the resulting portfolio is less risky than the corresponding

unregulated one, however, there is still a ’hump’ (see Basak and Shapiro (2001),

Proposition 5 on p. 387 or Figure 8(b) on p. 390) due to the kink in the

optimal wealth profile. Consequently, the substitution of the VaR based capital

requirement with a one based on expected loss will still render a more risky

portfolio behaviour than in the analogous unregulated economy.

The results can be viewed as an example of the Corollary 1 to Goodhart’s Law

(Goodhart (1974))

‘A risk model breaks down when used for regulatory purposes.’ See

Danielsson (2002) p. 1276.

Consumption:

In our model framework, the banking system is a consuming one. This

assumption is essential in deriving analytical results. When using instead only

the terminal wealth objective, the interest rate and the market price of risk

are stochastic. Optimal portfolio decision are altered in order to form hedge

portfolios to account for the changes in the stochastic investment set. Some

results can still be deduced, when recovering the optimal portfolio decision

by the use of Malliavin calculus. For examples of how to recover a portfolio

decision in a framework with a complete market see Detemple et al. (2003)

or Stefanova (2008); for a technique to derive the equilibrium see e.g. Serrat

(2001).

However, the optimal terminal wealth solution is unaffected, since the markets

are still complete.

Incomplete Markets:

The single most important assumption we need is a complete (financial)

market; without it, the derivation of the feasible optimal profile(s) is drastically
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aggravated. The assumption of continuous processes substantially reduces

the complexity of the problem, but is not essential as long as the financial

market remains complete; see e.g. Liu and Pan (2003) for the question of

how to recover the portfolio profile in such a case. However, when discussing

systemic risk, non-diversifiable jump events (macroeconomic shocks) should,

in particular, not be excluded from a further analysis, since these systemic

jumps will have a significant influence on the portfolio decisions, see e.g. Das

and Uppal (2004); in the banking context; Koziol and Lawrenz (2009) highlight

the importance of considering jump events with regard to banking regulation.

Reaction of Banks:

Besides Chapter 5, the standing assumption was that banks do not respond

to changes in the economic environment by adapting their nominal debt level.

However, we also showed in Chapter 5 within a two-sided equilibrium that this

point turns out to be crucial if one wants to assess the problem at hand from

a holistic viewpoint, as ’pure’ comparative static results may reverse.

Furthermore, the strand of literature analyzing the liability side of banks,

e.g. Blum (1999) or Koziol and Lawrenz (2009), suggests that a deeper

understanding will be reached if a continuous adjustment of the passive side

is possible. For a first approach of how to technically tackle the problem of

continuous changes in the deposit volume, see Kaniel and Hugonnier (2008)

and Breton et al. (2008).

6.3 Conclusion

We conclude that the debt capacity is reduced under regulation, capital provisions

are increased, and spreads are lowered. These ’static’ indictors show that the

banking system benefits from regulation. However, the detriment of regulation is

intrinsic to dynamics. As the VaR measure is indifferent to the extent of losses within

the VaR quantile, there is an incentive to enter into contracts or portfolio strategies
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that contain tail risks. When (part of) these risks realize due to an unfavourable

economic development, the banking sector rapidly changes between two extreme

positions: first, the banking sector excessively adds new business by buying in new

risks, and then, in a flight-to-quality type of reaction, it sells the risky portfolio

and invests (almost) all in the risk-less security. Neither investment positions are in

the interest of financial stability. Adding risk in ’bad’ times is obviously not to the

benefit of financial stability; but a massive flight to quality depresses prices of the

risky investments.

The arguments made above hinge on the notion of a ’bad’ economic development.

The recent financial crisis did not happen in economically ’bad’ times, when seen

from the viewpoint of the real sector. From the position of standard commercial

banks, the last years before the crisis were, in fact, ’bad’ times, as credit spreads

were, historically seen, very low and, in addition, there existed little ’standard’

banking business to expand into. At the same time, however, there was a boom in

other banking activities shortly before the crisis, where banks loaded on tail risk

while keeping capital requirements almost stable. Especially these markets are now

illiquid in crisis, while at the same time risk-less investments soar.

Banking regulation should not be considered as a matter of risk-sensitive ex ante

capital requirements alone: the combination of the Value-at-Risk - not as a measure

of risk, but as a tool to manage risks actively - and limited liability - possibly

enhanced by implicitly too-big-to-fail guarantees - creates externality effects, since

tail risks become attractive under VaR. Other measures such as expected shortfall

may reduce the problem of tail risks; still, gambling the risk measure on limited

liability remains attractive (regulatory arbitrage). Finally, even if a bank does not

use tail risk, systemic risk can be only in parts accommodated by individual risk

management systems.

An equally important regulatory aspect is the distribution of costs ex post, arising

if the banking system is in distress. Letting the costs of distress that are shared

by the banking sector be zero, capital regulation with VaR is effectively useless.

On the other hand, if banks are burdened with all costs due to a distress in the
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financial system, no regulation is needed, as there are no defaults. This extreme

case is obviously not a realistic one, but illustrates the impact.

Thus, moderate parts of total costs due to a distress in the banking sector should

be existent, if they are seen as a purely exogenous parameter, or needed, if they

are under the control of a regulatory authority. Only under moderate costs, capital

requirements are working well.

Finally, even if those two effects interact well, a leverage restriction is still necessary,

since the usual risk-increasing incentive of limited liability may still work.

There are three reasons to consider:

1. Banks circumvent regulation by directly or indirectly (financial innovation)

increasing leverage.

2. The regulating authority is unable to detect risky portfolios (transparency) or

is unable to charge fines (political pressure).

3. Bank mangers expect in advance that limited liability is not strictly adhered

to in times of crisis, as individual banks might be too-big-to-fail.

Hence, a cap on the leverage ratio increases the equity capital in crisis (at the

horizon), thereby enabling an efficient regulation.

Theoretically Bichsel and Blum (2005) and Blum (2008) propose a similar approach,

although, founded on a model with informational asymmetries and externality

effects. The empirical studies from Avery and Berger (1990), Estrella et al. (2000),

and Hovakimian and Kane (2000) suggest that the combination of risk-sensitive

capital requirements and an additional leverage constraint indeed serves financial

stability better than either one alone.
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