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Abstract

The understanding of human behavior in sequential decision tasks is im-
portant for economics and socio-psychological sciences. In search tasks,
for example when individuals search for the best price of a product, they
are confronted in sequential steps with different situations and they have
to decide whether to continue or stop searching. The decision behavior of
individuals in such search tasks is described by a search strategy.

This paper presents a new approach of finding high-quality search
strategies by using genetic algorithms (GAs). Only the structure of the
search strategies and the basic building blocks (price thresholds and price
patterns) that can be used for the search strategies are pre-specified. It
is the purpose of the GA to construct search strategies that well describe
human search behavior. The search strategies found by the GA are able
to predict human behavior in search tasks better than traditional search
strategies from the literature which are usually based on theoretical as-
sumptions about human behavior in search tasks. Furthermore, the found
search strategies are reasonable in the sense that they can be well in-
terpreted, and generally that means they describe the search behavior of
a larger group of individuals and allow some kind of categorization and
classification.

The results of this study open a new perspective for future research in
developing behavioral strategies. Instead of deriving search strategies from
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theoretical assumptions about human behavior, researchers can directly
analyze human behavior in search tasks and find appropriate and high-
quality search strategies. These can be used for gaining new insights into
the motivation behind human search and for developing new theoretical
models about human search behavior.

1 Introduction

The study of individuals’ decision behavior in search situations is important
for the economic and socio-psychological sciences. A common and intuitive
example for search tasks is taken from consumer economics: How do people
behave when they want to find the best price for an item that they want to
buy? There are costs associated with visiting each store and there is an optimal
number of search steps that maximizes the profit of the human searcher. The
search strategy of an individual describes when the individual stops searching
for a better price. Unfortunately, humans in the real world do not behave as
described by analytical models since they are in most cases not able to compute
the optimal solution. Therefore, search strategies that allow us to predict and
explain human search behavior are important.

The different approaches for predicting and classifying human behavior in
sequential decision situations can be categorized in two different groups. Tra-
ditional methods [16, 2, 3] which use a set of pre-specified decision rules and
are based on theoretical explanation models for human behavior. Human be-
havior in decision tasks is classified according to these sets of decision rules.
Finding appropriate decision rules means searching for rules (from the set of
pre-specified rules) that best describe human behavior. These methods are ef-
ficient if the pre-specified rules describe human decision behavior well. Newer
approaches [4, 12] choose a different way that is less restrictive concerning the
nature of the search strategies. Only the basic structure of decision rules is
pre-specified and decision rules that explain human behavior are derived from
the observed empirical data.

This paper presents an approach on how to derive decision rules (search
strategies) for human behavior in search tasks by the use of genetic algorithms.
The paper assumes that only the basic structure of the search rules is pre-
specified and the strategies are constructed based on the observed human be-
havior; therefore, the proposed approach is less restrictive concerning the char-
acter of the rules than existing approaches. For finding appropriate search
strategies a traditional simple genetic algorithm [6] is used. The purpose of this
paper is to present how complex search strategies can be created from a set of
basic “building blocks” by the use of a genetic algorithm and to compare the
prediction quality of the resulting search strategies to existing standard search
strategies from the literature. Furthermore, the paper investigates the search
strategies constructed from basic building blocks and examines the relationship
between finding general rules that describe the search behavior of a larger group
of individuals well and specific rules that are only used by a few individuals.

The paper is organized as follows: in the following section, we define human
behavior in search tasks and discuss how the predictive quality of different
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search strategies can be measured. The basic building blocks that are used to
create human search strategies are presented in section 3. Section 4 describes
the laboratory experiment on human search behavior which provides the data
for the investigations, and presents details of the genetic algorithm which is
used for finding appropriate search strategies. The results of the experiments
are shown in section 5. The paper ends with concluding remarks.

2 Human Decision Behavior in
Search Tasks

Describing the behavior of humans in complex decision situations is of interest
to economics, for example in marketing science for determining price behavior of
consumers [23] or in labor economics for explaining human job search behavior
[1].

In search tasks, humans (searchers) iteratively face different situations. In
each situation the searcher gets some amount of reward and has to decide
whether to stop or to continue the search. Furthermore, there are search costs
implied by every search step. The goal of the searcher is to maximize its profit
which is the difference between the reward resulting from the different alterna-
tives that are observed during the search process, and the search cost, which
depend on the number of search steps. A common example of a search task
is comparing the price of an item in different stores. The price of the item is
different in each store and search costs are associated with visiting a store.

Formally, we want to assume that a searcher sequentially observes a number
of realizations xi of a random variable X which has the cumulative distribu-
tion function F (x). F (x) is a discrete normal distribution with mean µX and
standard deviation σX and describes for example the price x of a product in
different locations. i ∈ {1, . . . , t} denotes the number of the search step. The
cost c of each search step is constant. We want to assume that the searcher can
assess in search step t all previous situations xi, where i ≤ t, without additional
costs. This means for the example of finding the lowest price of an item that the
searcher can go back to a store visited in earlier search steps without additional
costs. Therefore, the searcher has to decide in each search step t whether she
wants to continue the search or to stop and choosing xi, where i ∈ {1, . . . , t}.
If the searcher stops after t steps, she chooses the lowest price of the item, i.e.
she buys the item at the price xmin = min{x1, . . . , xt}.

Basic search theory assumes that individuals treat the cost of each search
step, once completed, as sunk costs [15, 14]. Therefore, to decide whether to
continue the search process in iteration t, an individual compares the cost c of
one additional search step to the expected benefit. It will only continue if the
expected benefit is greater than the cost of the additional search step. Then,
subjects solve the problem based on a one-step forward-induction strategy. The
expected benefit G from searching one more step can be calculated as:
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G = xmin − c− (1− F (xmin))xmin︸ ︷︷ ︸
A

−
∫ xmin

−∞
xdF (x)

︸ ︷︷ ︸
B

, (1)

where xmin = min{x1, . . . , xt}. There are two different cases for the variable
xt+1 observed in the next search step. xt+1 is either larger or lower than
xmin. Term A describes the case that a value xt+1 larger than xmin is found
(with probability (1 − F (xmin))). In this case, xmin = min{x1, . . . , xt} =
min{x1, . . . , xt+1} remains the lowest price. Term B assumes that a value xt+1

lower than xmin is found. The expected value xt+1 = min{x1, . . . , xt+1} is
calculated as

∫ xmin

−∞ xdF (x).
As G describes the expected benefit from continuing the search, a human

searcher continues the search if G > 0 and stops otherwise. If we assume that
xmin = ∞, the expected benefit G is always greater than zero (G > 0) and
the searcher continues the search. On the other hand, if xmin = −∞, the
expected benefit G = −c < 0 and the searcher stops the search. As we assume
that G(xmin) is continuous and monotonic, there is an unique x∗min, where
G(x∗min) = 0. Therefore, the best strategy is to stop searching at search step t
if xt < x∗min. This means the searcher should stop searching whenever a price
is below a certain threshold price x∗min.

In general, x∗min cannot be analytically calculated and is usually determined
by numerical methods. The model presented here is simple as it assumes that
a searcher only plans ahead for one search step and that she fully ignores sunk
costs. However, in reality, humans do not completely ignore sunk costs and also
try to predict the outcome of future search steps. For an overview over more
comprehensive models describing human behavior in search tasks the reader is
referred to the literature [9, 11, 13, 18].

This section presented a basic model for describing human search behavior.
Based on the model, an optimal stopping criterion for the search can be derived.
As already mentioned in the introduction, classical decision models use a set
of decision rules that are based on such theoretical models trying to model
human search behavior. However, consumers in the real world do not behave
according to the theoretical models. Therefore, in section 3 this paper presents
basic building blocks that can be used for constructing search strategies (and
stopping criteria) that are based on the observed human behavior and not on
theoretical models.

2.1 Standard Strategies in Search Tasks

Although in the previous paragraphs we described that there is an optimal
stopping criterion for search tasks (stopping at time t if xt < x∗min), individuals
do not follow this rule but in reality show a different stopping behavior. Con-
sequently, a large number of studies [8, 10, 11, 14, 7, 19, 20, 13] investigated
human behavior in search tasks and tried to identify search strategies that are
used by individuals in reality. All these studies used controlled laboratory ex-
periments where individuals (subjects) search for the best price of a product
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and search costs are associated with every search step. Furthermore, it is as-
sumed that the subjects do not change their search strategy over time. For the
experiments, the search tasks are repeated a certain number of times for each
subject.

The goal of such investigations is to find general rules that describe the
search behavior of individuals. The studies revealed a few simple search strate-
gies, which describe the observed behavior of individuals more accurately than,
for example, the optimal stopping rule described in the previous section. Sur-
prisingly, though individuals do not follow the optimal stopping rules, their
search behavior is efficient in the sense that their earnings are similar to the
earnings if they would follow the optimal stopping rule. This, however, does not
indicate that their search strategy is close to optimal, it indicates rather that
the payoff of search experiments is not sensitive to deviations in the stopping
strategy.

Based on experimental research in search behavior (e.g., [10, 17]), there are
three different basic search strategies that are used by individuals in search
tasks. These three search strategies have subsequently been used by most of
the later approaches trying to model the behavior of humans in search tasks:

• Constant reservation price heuristic (CRPH): The search is
stopped in iteration t if xt is lower than or equal to the reservation price
pr (xt ≤ pr). This stopping criteria is optimal (pr = x∗min) if the searcher
ignores sunk costs and only plans one step ahead (compare the previous
paragraphs).

• Satisficer heuristic (SH): The search is stopped in iteration t if either
the payoff is greater than a certain threshold T , or after a maximum
number of search steps tmax. The payoff is the difference between the
profit resulting from a situation xi, where i ∈ {1, . . . , t}, and the overall
search cost, tc.

• Bounce heuristic (BH): The search is stopped in iteration t, where
t > 1, either only if xt ≥ xt−1 or only if xt ≤ xt−1.

These different models for human search behavior can be formulated by either
defining reservation prices pr for the different search steps t (CRPH and SH),
or by specifying price patterns that represent falling and rising xi (BH). For
further information about models describing human search behavior we refer to
the literature [8, 10, 11, 13, 18].

2.2 Measuring the Quality of Search
Strategies

The quality of a search strategy is determined by how well it predicts the
observed human behavior in real-world search tasks. The quality of a search
strategy is high if individuals decide according to the search strategy and low
otherwise. In search tasks, the individuals decision is whether to continue the
search or whether to stop.
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The quality of a search strategy can be measured as follows: each search
strategy cj ∈ C, where C is the set of all possible search strategies, is a unique
mapping from individual i’s information set Sit (which usually depends on t)
to his continuation decision dit ∈ {0, 1} : d

cj

it (Sit) → {0, 1}. The continuation
decision is performed in each search step t and the search is continued if dit(t) =
1 and stopped if dit(t) = 0. Let d∗it(t) denote the observed decision of individual
i in iteration t. Then, we can define the indicator function:

X
cj

it (Sit) =

{
1 if d∗it = d

cj

it (Sit)
0 if d∗it 6= d

cj

it (Sit)
(2)

Let tmax be the maximum number of decisions that we observe for individual
i. Then, for each individual i,

T̂i =
tmax∑

t=1

X
cj

it (Sit) (3)

is the number of decisions that are correctly explained by search strategy ci.
Therefore, the quality of a search strategy cj can be measured by

fit(cj) =
T̂i

tmax
, (4)

given the observed search behavior of an individual i.
Therefore, the fitness of a search strategy measures the number of individ-

uals’ decisions that are consistent with the search strategy cj . The higher the
fitness of a search strategy, the better it allows us to predict the individuals’
behavior in search tasks.

3 Building Search Strategies
from Building Blocks

Section 2.1 described standard search strategies used for explaining human be-
havior in search tasks. They are based on the assumption that individuals
behave either conditionally on some simple preference parameters such as risk
attitudes [13], or according to some pre-specified heuristics. A step towards find-
ing reasonable search strategies that are more powerful and flexible in the sense
that they better fit the data is to assume that decision rules can be constructed
by using simple building blocks and combining them to form complete search
strategies. From a behavioral point of view, this approach can be motivated by
recent economic and psychological work [5], which claims that domain-specific
heuristics are composed of cognitive building blocks.

Building blocks that can be used to construct complete search strategies can
be defined based on the search strategies described in section 2.1. Therefore,
either price threshold levels (so-called “reservation prices”) or price patterns can
be used. The price threshold level or price pattern that is used by an individual
during the search can be different in different stages of the search. Conse-
quently, these building blocks can be combined to construct search strategies
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that allow a more accurate modeling of human search behavior. The following
three elements are necessary to construct search strategies from simple building
blocks (modules):

1. price threshold module: For each search step t a price threshold level
pt is defined. The search is stopped at step t if pt is activated (compare
3.) and xt ≤ pt.

2. pattern module: The decision whether to continue the search at time-
point t depends on whether a specific pattern of xi exists in the last few
search steps. A possible example for such a pattern is: rising-falling-rising.
The search is stopped if the last realizations of xi follow a pre-specified
pattern. When using the pattern rising-falling-rising, the search would be
stopped at t if xt ≥ xt−1 ≤ xt−2 ≥ xt−3.

3. activation module: As there are different stopping criteria (price
thresholds and patterns) at each time t available, it must be defined which
modules are activated at time t and influence the individuals’ decision
whether to stop the search or to continue. The idea is that an individual
might use a reservation price in certain search steps (for example in the
first three search steps), but switch after that to a pattern-based rule.

By using these simple building blocks, a complete search strategy can be con-
structed that can be used for describing human behavior in search tasks. In
each search step, a price threshold module or a pattern module (or both) can
be activated determining whether the search stops or continues. By using these
modules, all standard search strategies described in section 2.1 can be mod-
eled. For example a constant reservation price heuristic is modeled using a
price threshold level pi = pr (i ∈ {1, . . . , t}) and activating the price threshold
module in all search steps.

4 Experimental Design

4.1 Measuring Human Search Behavior

The data about human behavior in search tasks was collected in extensive
experimental studies. In search experiments 64 human individuals (denoted as
subjects) were asked to perform 10 independent search tasks. The goal of the
subjects was to purchase an item at the lowest price. The price of the item
follows a normal distribution X with mean µX = 500 and standard deviation
σX = 10. Additionally, X is truncated at xlow = 460 and xhigh = 540. The
subjects knew that in each search step the price was drawn randomly from
the described distribution. The subjects had 500 units of money available and
each search step has cost c = 1. They can stop in each search step t and buy
the item at a price xmin = min{x1, . . . xt}. Their payoff can not be negative
(subjects can not loose money) and is calculated as 500− xmin − tc. There are
a maximum of tmax = 40 search steps possible as the overall payoff is zero for
t ≥ 40 (the lowest possible price is 460).
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To ensure that subjects were experienced with search tasks and to minimize
the impact of learning, subjects were allowed to perform an unlimited number
of training search tasks before performing a sequence of 10 tasks that deter-
mined their payoff. After the experiment was completed, one of these 10 rounds
was selected randomly and the payoff of this round was paid (in Euro) to the
subjects.

All results presented in the following sections of this paper are based on the
data obtained in the experiment described above.

4.2 A Genetic Algorithm for Finding High-Quality Search
Strategies

Section 3 described the building blocks that can be used to build search strate-
gies describing human behavior in search tasks. To construct high-quality
search strategies a genetic algorithm (GA) was developed. The quality of the
search strategies created by the GA is measured by applying the quality measure
for search strategies from section 2.2 using the experimental data from section
4.1. The following paragraphs describe the encoding, the search operators, and
the fitness evaluation of the GA.

4.2.1 Encoding of Search Strategies

Each individual of a GA represents one complete search strategy1 and each
search strategy is created from the basic building blocks described in section
3. Therefore, each individual must contain for each search step t ≤ tmax a
price threshold pt, the corresponding activation athresh

t for the price threshold,
a possible pattern pa, which describes whether xi is either falling or rising
in subsequent search steps, and the corresponding activation apattern

t for the
pattern pa. Table 1 illustrates the encoding of search strategies in the genotype.
Each genotype consists of three vectors of length l = tmax and a pattern pa of
maximum length l = 4. Two of the vectors define the threshold components
(threshold value pT and activation athresh

t ) and two define possible patterns
(structure of the pattern pa and activation apattern

t ).

genotype

threshold pt 494 494 494 494 490 · · ·
athresh

t 1 0 0 0 1 · · ·
pattern pa 110 (rising-rising-falling)

apattern
t 0 0 0 1 1 · · ·

Table 1: Encoding of search strategies

The activation variables athresh
t and apattern

t indicate whether the corre-
sponding threshold value or pattern are used as stopping criteria in the tth
search step. For the threshold component, pt defines the threshold relevant in

1Except for the results presented in section 5.2 where one individual encodes r different
search strategies.
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search step t. The activation athresh
t = {0, 1} determines whether the threshold

pt is considered for the stopping decision of the subject. If athresh
t = 1, the

subject stops searching if xt ≤ pt; if athresh
t = 0, the threshold pt is not relevant

in search step t. For patterns, pa describes the structure of a pattern. Each
pattern has a maximum length of four and consists of a sequence of zeros and
ones. A one indicates that xt is rising and a zero indicates a falling xt. The
activation apattern

t describes whether the corresponding pattern pa is relevant
for the stopping decision of the individual at time t. If both building blocks,
threshold and pattern, are activated at time t (athresh

t = 1 and apattern
t = 1),

the individual only stops if xt ≤ pt and the pattern pa is correct in the last few
search steps (logical AND).

We want to give a brief example for the construction of a search strategy
from the genotype. According to the search strategy defined in table 1 the
subjects stops the search after the first search step t = 1 if x1 ≤ 494. Otherwise,
it continues. In the second and third search steps (t = 2 and t = 3), the
individual never stops as athresh

2 = athresh
3 = 0 and apattern

2 = apattern
3 = 0. In

step t = 4, only the pattern 110 is considered for the stopping decision and
the individual stops if x4 ≤ x3 ≥ x2 ≥ x1 (rising-rising-falling). For t = 5 the
individual stops only if x5 ≤ 490 and xi is falling from t = 4 to t = 5 and rising
from t = 2 to t = 3 and from t = 3 to t = 4 (x5 ≤ x4 ≥ x3 ≥ x2).

4.2.2 Operators

Search operators can be defined straightforwardly for the encoding defined in
the previous paragraphs. Possible crossover operators are uniform [21], or n-
point crossover. For our experiments we have chosen a five-point crossover to
ensure a proper mixing of the alleles [22], and to consider the fact that many
subjects stop searching after a few search steps and do not search tmax = 40
search steps. Therefore, to ensure a proper mixing of the alleles, crossover oper-
ators with a high number of crossover-points are necessary. We found five-point
crossover a good compromise between uniform crossover, which destroys most
of the sub-structures in the genotype, and one-point crossover which results
in an improper mixing of the first and most meaningful alleles. The crossover
probability in the experiments was set to pcross = 0.8.

A mutation means either flipping a bit (activation variables and pattern
pa), adding a random variable drawn from a Gaussian distribution with zero
mean and standard deviation of two to the threshold pt, or adding/removing a
randomly chosen bit to a pattern pa. As tmax = 40, the maximum number of
alleles is 124 (40 bits for both activation variables, 40 integers for the thresholds
pt, and a maximum number of four bits for the pattern pa). The mutation
operator mutates all alleles with probability 1/124 ≈ 0.008.

In all experiments a tournament selection without replacement and tourna-
ment size 3 was used.
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4.2.3 Fitness evaluation

The fitness of a search strategy that is encoded as described in the previous
paragraphs is calculated according to section 2.2. We want to give a brief
example.

t 1 2 3 4

experiment
xt 499 498 496 495
decision cont. cont. cont. stop

pt 498 500 496 500
search athresh

t 1 1 0 0
strategy pa 00 (last two round falling)

apattern
t 0 0 0 1

indicator funct. Xt 1 0 1 1

Table 2: Example for fitness evaluation

Table 2 presents the experimental data observed for a subject which stops
the search after t = 4 search steps (denoted as experiment). Furthermore, the
table presents an example of a search strategy and the value of the indicator
function Xt (compare equation 2). For example, the search strategy says that
for t = 1 the subject stops if x1 ≤ 498. However, x1 > p1 and the search strategy
correctly predicts that the user continues the search (X1 = 1). According to
equation 3, T̂ is calculated for the example as T̂ = 3 as the evaluated search
strategy correctly predicts the subjects behavior three times. Therefore, the
fitness fit of the search strategy is 0.75 (tmax = 4).

5 Results

This section presents different types of results. In section 5.1 we use the genetic
algorithm for finding high-quality search strategies and compare their fitness
to the existing standard search strategies from section 2.1. In the remaining
sections we extend the investigation and assume that different subjects have
different preferences (i.e. human beings are heterogeneous with respect to their
preferences) and therefore use different search strategies. We use a GA to
identify relevant search strategies and investigate how well the found search
strategies predict human search behavior.

For each of the experiments we run 10 independent GA runs and present
the best found search strategy. The individuals in the initial population are
chosen randomly. The population size of the GA was always set to N = 4, 000
and the GA run was stopped either after the population was fully converged,
or a maximum number of tconv = 1, 000 generations. We are aware of the fact
that using such a large N and tconv is computationally demanding and may not
be necessary to obtain good results. However, the goal of the experiments was
to identify “optimal” search strategies and the computational effort was only
of minor importance.
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5.1 One Search Strategy Fits All

Table 3 compares the average fitness µ(fit) (compare equation 4) of the optimal
(in the sense of highest fitness) constant reservation price heuristic (CRPH), the
optimal satisficer heuristic (SH), and the best search strategy that was found
by the genetic algorithm for the data set described in section 4.1. The fitness
µ(fit) is averaged over the fitness fit of a search strategy for all 64 subjects
participating in the experiment.

GA CRPH SH
µ(fit) 0.902 0.883 0.886

Table 3: Average fitness of the optimal search strategies

The optimal CRPH search strategy is a reservation price xr = 491, which
results in an average fitness of µ(fitCRPH) = 0.883. Therefore, averaged over all
64 subjects, about 88% of the humans search decisions are correctly predicted
by the CRPH search strategy with xr = 491. The optimal SH search strategy
is using a payoff of five (this means the search is stopped in step t if 500 −
min{x1, . . . , xt} − tc > 5) and has an average fitness of µ(fitSH) = 0.886. The
best strategy found by the GA is to use only reservation prices and no patterns
(all apattern

t are zero). The reservation prices pt are decreasing with t and are
found as p1 = 498, p2 = 494, p3 = 491, p4 = 488, . . . The average fitness of this
search strategy is 0.902 and is significantly higher than the optimal CRPH and
SH search strategy.

5.2 Different Search Strategies for Different Subjects

In this section, we assume that human subjects decide differently in the same
search task due to different individual preferences. This means, there exists not
only one search strategy c that is followed by all subjects S, but there are a
number r of different search strategies cr that are each used by a subset Sr of
the subjects. Consequently, exactly one out of the r different search strategies
is used to explain the search behavior of an individual. The average fitness
of a set of search strategies is calculated as µ̃(fit) = 1/|S|∑S maxr fit(cr),
where |S| denotes the number of subjects participating in the search experiment.
maxr fit(cr) denotes the maximal fitness of one of the r search strategies cr for
one individual.

fit(cj)
c1 0.8 0.95 1
c2 0.85 0.7 0.8

Table 4: Example fitness evaluation

We want to give a brief example for the calculation of µ̃. We assume that
there are r = 2 search strategies cr and |S| = 3 subjects. Table 4 shows the
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fitness fit(cr) of the search strategies c1 and c2 for three different subjects.
maxr fit(cr) is shown in bold. The average fitness of the search strategies is
calculated as µ̃(fit) = 1/3(0.85 + 0.95 + 1) = 0.93.

GA CRPH SH
µ̃(fit) 0.949 0.933 0.927

Table 5: Average fitness of the optimal search strategies for r=5

Table 5 shows the average fitness of the optimal search strategies for r = 5,
this means five different search strategies are used to explain the search behav-
ior of the 64 subjects. When allowing five different CRPH search strategies,
the average fitness of the five search strategies is µ̃(fit) = 0.933 using the reser-
vation prices p1

r = 498, p2
r = 494, p3

r = 491, p4
r = 488, and p5

r = 485. When
using five different SH search strategies, the optimal strategies show a payoff
of 1, 3, 5, 7, and 13. Their average fitness is µ̃(fit) = 0.927. When using a
GA for finding r = 5 search strategies, each individual of the GA consists of 5
search strategies and the fitness of an individual is µ̃(fit). The GA is able to
find search strategies with µ̃(fit) = 0.949. This outperforms the classification
based on standard search strategies.

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

854321

µ(
fit

) 

r

Figure 1: µ̃(fit) over the number r of search strategies

Finally, figure 1 shows the average fitness µ̃(fit) of the set of search strate-
gies for the 64 subjects that have been found by the GA over the number r of
different search strategies. The results show that with increasing r, this means
using a larger number of search strategies, the behavior of the subjects can be
better explained. This is per se no surprise since a larger number r of possible
search strategies allows the GA to adopt each strategy to a smaller number of
subjects. However, the results illustrate nicely that the GA is able to identify
appropriate search strategies that are able to explain a large portion of human
search behavior.

5.3 Searching for General Search Strategies

In the remainder of this section we want to examine more closely the character
of the search strategies found by the GA. The question is whether the GA is able
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to identify characteristic search strategies that are used by a large proportion
of the subjects.

When searching for r “optimal” search strategies for a group of people
there is a trade-off between finding general search strategies that are used by
a larger number of subjects and finding specific search strategies that more
accurately describe the behavior of only a few subjects. Thus, with increasing
r it is possible that either more general search strategies are found that better
explain the behavior of a larger group of subjects, or we obtain very specific
search strategies that are well adapted to the search behavior of only a few
subjects. To find general rules that correctly predict the behavior of a large
proportion of subjects is more important as such rules allow us to develop
general classifications of humans’ behavior.

64
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Figure 2: Average number of subjects whose search behavior is explained by
the r different search strategies that are found by the GA.

Figure 2 shows the average number of subjects whose search behavior is
explained by one of the r search strategies over r. For example, when using a
GA for finding r = 3 different search strategies, on average 28.3 subjects use
search strategy c1, 23.8 of the subjects use search strategy c2 and the behavior
of only 11.9 subjects can be explained by search strategy c3. When increasing
r to r = 8, one of the eight search strategies still explains the behavior of, on
average, 18.6 subjects. In contrast, the GA also finds very specialized search
strategies that can explain the behavior of on average only 1.7, 2.6, or 4.2
subjects. Such search rules are very specific and no generalizations of these
search strategies are possible.

To investigate how general the found search strategies are, figure 3 shows
the number of subjects per search strategy, whose fitness is higher than 0.93
(maxj fit(cj) > 0.93). Therefore, only subjects are considered for whom a
search strategy correctly predicts more than 93% of the decisions. When de-
termining one search strategy (r = 1) only the search behavior of on average
22.5 subjects can be well explained (the prediction quality is on average larger
than 93%). The numbers reveal that when increasing the number r of search
strategies, the number of subjects whose behavior can be well explained by the
two most general search strategies decreases only slightly. For r = 2, the be-
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Figure 3: Average number of subjects, whose search behavior is explained by
the r different search strategies better than 93% (maxj fit(cj) > 0.93)

havior of on average 39.6 subjects can be explained with maxj fit(cj) > 0.93.
For r = 8, the behavior of on average 28.6 subjects can still be explained by the
two most common search strategies. For r = 8, the remaining six other search
strategies are able to explain the behavior of only, on average, 32.2 subjects
with prediction quality maxj fit(cj) > 0.93.

The results indicate that there are only a few (about two or three) general
search strategies that well explain the behavior of a large number of subjects.
To assume that there are a larger number (more than three) of different and
meaningful search strategies is not justified as searching for a larger number of
rules only allows us to find very specific rules that only can explain the search
behavior of a few subjects.

5.4 Finding General Search Strategies

In the following paragraphs, we take a closer look at the search heuristics that
have been found by the GA for different r.

Section 5.1 already presented the best search strategy that is found by the
GA and which on average predicts 90.2% of an individuals decision for the case
r = 1. Table 6 presents the best search strategies found for r = 2. We only
show the first five search steps t, as on average the subjects stop after 5.07
search steps. The search strategy c1 is similar to the constant reservation price
rule with pT = 494. In addition, the pattern “falling” is relevant for t = 2,
t = 4, and t = 5. c2 is a combination of falling (t = 1, t = 2, and t = 3) and
constant (t = 4 and t = 5) reservation prices. No patterns are acitvated. Very
similar search strategies are found by the GA for r = 3 (compare table 7) as the
search strategies c1 and c2 are similar to the case r = 2. There is an additional
search strategy c3 with increasing reservation prices, which starts from a low
threshold pT = 484.

Examining the search strategies found by the GA reveals that the search
strategies are reasonable and can be used for interpreting human search be-
havior. Although there are no pre-specified rules available and only the basic
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search strategy c1 search strategy c2

pt 494 494 494 493 493 491 490 488 489 489
athresh

t 1 1 1 1 1 1 1 1 1 1
pa 0 (last step falling) no pattern
apattern

t 0 1 0 1 1 activated

Table 6: Found search strategies for r = 2

search strategy c1 search strategy c2 search strategy c3

494 494 494 494 493 492 490 491 489 488 484 485 486 488 489
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 (last step falling) no pattern no pattern
0 1 0 1 1 activated activated

Table 7: Found search strategies for r = 3

building blocks of the search strategies are pre-defined, some of the found rules
are similar to the existing rules from the literature (like the CRPH search heuris-
tic). In addition, the GA is able to identify unexpected search strategies (like c3

for r = 3) that can help us to gain a better understanding of human search be-
havior. Summarizing the results, the GA is able to reproduce search strategies
that are commonly used in the literature and to create new search strategies
that can be used for developing better models to explain human behavior in
search tasks.

6 Conclusions

This paper develops a new, modular approach for describing the behavior of
humans in search tasks. In search tasks, individuals are confronted in sequential
search steps with different situations and they have to decide in each step
whether they want to continue or stop the search. The human behavior in search
tasks (continuing or stopping) is described by a search strategy. The economic
and socio-psychological sciences developed a variety of theoretical models that
try to describe human behavior and from which optimal search strategies can be
derived. However, in the real world, humans behave differently due to limited
cognitive abilities and the search strategies derived from theoretical models do
not often well predict human behavior. This paper presents a different approach
where search strategies are not derived from models about human behavior but
the search strategies are directly derived from the observed human behavior.
Only the basic structure of decision rules are pre-specified and decision rules
that explain human behavior are constructed from the observed empirical data
by a genetic algorithm (GA).

To present the new approach this paper has done a variety of different things.
It discussed human behavior in search tasks and exemplary illustrated how
an optimal search strategy can be derived from some theoretical assumptions
about human behavior. Furthermore, the paper presented the basic elements
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(building blocks) that can be used to construct search strategies. The building
blocks used characteristic elements of standard search strategies and consisted
of price thresholds and price patterns. Finally, the paper compared the decision
rules, that are directly constructed from the observed human behavior by a GA,
to standard search strategies from the literature. Various results are presented
for the predicting quality which describes how well a search strategy predicts
human behavior in search tasks.

In summary, this paper presented a GA-based approach that allows us to
construct search strategies directly from the observed experimental data. A
comparison to existing standard search strategies revealed that the new, mod-
ular approach resulted in search strategies with higher prediction quality. In
addition, the found search strategies are general in the sense that they describe
the behavior of a larger group of individuals well, and therefore, allow a cate-
gorization of human search behavior. Furthermore, the results show that the
GA is able to reproduce search strategies that are similar to commonly used
strategies in the literature as well as to create new search strategies which can
be used as a basis for gaining new insights into human behavior in search tasks.

In the past, the most common approach in economic and socio-psychologi-
cal sciences was to construct a theoretical model that explains human behavior.
Based on the theoretical model and the underlying assumptions, rules describing
the behavior of humans in decision situations, like search tasks, are derived.
The results presented in this paper show that with the help of optimization
methods like GAs, models about human behavior can be derived directly from
the observed human behavior. Due to the observed high quality of the modular
search strategies found by the GA, we recommend using heuristic optimization
methods like GAs for the identification of human decision rules. A greater
use of such optimization methods in economic and social sciences would allow
us to keep the focus on human behavior, and validate the meaningfulness of
theoretical models.
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