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1 Introduction

The case-based decision theory has been proposed by Gilboa and Schmeidler (1995, 1997, 2001)

as an alternative theory for decision making under uncertainty. Differently from the expected

utility theory, it models decisions in situations of structural ignorance, in which neither states of

the world, nor their probabilities can be naturally derived from the description of the problem.

It is assumed that a decision-maker can only learn from experience, by evaluating an act based

on its own past performance and on the performance of acts similar to it. Hence, the notion of

similarity plays an essential role in the case-based decision theory.

Nevertheless, the implications of the form of the similarity function for decision-making have

remained by large unstudied in the literature. The application of the case-based decision theory

to a specific economic environment necessitates a specification of a similarity function. How-

ever, since similarity is a relatively new concept in economic theory, there seems to be little

intuition about the ’’right’’ assumptions to be imposed on the similarity function. Obviously, the

acceptance of these assumptions is going to be influenced by the effects they produce on eco-

nomic behavior. Hence, the question of the relationship between the similarity function and the

decisions made is of importance.

In this paper, I address one part of this question: how does the form of the similarity function

influence the willingness of decision-makers to diversify? I define preference for diversification

as in Dekel (1989) and Chateauneuf and Tallon (2002). A decision-maker exhibits preference

for diversification, if, whenever he is indifferent between two acts, he weakly prefers any linear

combination of these two acts to each of them. Since a case-based decision-maker has very

little information about the decision problem he is facing, his initial decisions might be due

to chance. Hence, his preferences if elicited in the initial periods might vary significantly. To

avoid this initial randomness, I use the limit evaluation of acts after the same decision has been

repeated for a long period of time to define the preferences of the decision-maker. It is with

respect to these limit preferences that preference for diversification is defined.

The findings of the paper show that the willingness to diversify depends on two factors: the

height of the aspiration level and the curvature of the similarity function, but not on the curva-

ture of the utility function. Especially, a decision-maker with a relatively low aspiration level
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will express preference for diversification independently of the form of his similarity function.

However, if the aspiration level is chosen sufficiently high, preference for diversification only

obtain if the similarity function is convex.

A convex similarity function implies that the greater the distance of two acts from the referential

act, the less is the decision-maker able to distinguish between these two acts with respect to their

similarity to the referential one. If we are ready to assume this property, then preference for

diversification will obtain independently of the aspiration level of the decision-maker. Billot,

Gilboa and Schmeidler (2004) have recently provided an axiomatization of a case-based rule

that uses an exponential similarity function to model similarity between acts situated on the

real line. However, their model does not provide an intuition of why the exponential relation

might be a sensible one. This paper provides a support for the usage of an exponential similarity

function. Indeed, if willingness to diversify seems to be an appealing behavioral property, then

a convex similarity function would insure that this property holds in a model with case-based

decision-makers.

The rest of the paper is structured as follows: in section 2, I present the model, which is similar

to the model of Gilboa and Schmeidler (1996). In section 3, I discuss preference for diversifica-

tion when the similarity function is convex, whereas section 4 deals with the case of a concave

similarity function. Section 5 discusses some related results from the literature and concludes.

The proofs of all results are stated in the appendix.

2 The Model

I use a version of the model of Gilboa and Schmeidler (1996). A decision-maker faces an iden-

tical decision problem p in each period t = 1, 2.... A ≡ [0; 1]K with K ∈ N denotes the set

of available acts. One can think about the corner acts (the unit vectors of the K-dimensional

simplex) as of projects with unknown probability distribution of returns, into which a decision-

maker would like to invest his initial endowment of one unit. The simplex A then represents

all possible allocations of his endowment among the projects available. Let δ1...δK denote the

random payoffs of the corner acts and suppose that for all i = 1...K, the distribution of δi is

continuous and i.i.d. over time (although δi and δj might be correlated) with finite expectation,

finite variance and bounded support. Obviously, the payoff of any act in the simplex can be
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expressed as a linear combination of δ1...δK .

If the utility function of the decision-maker is bounded and continuous, then the utility resulting

from the choice of a ∈ A is an i.i.d. random variable Ua with a continuous distribution function

(Πa)a∈A. The distributions (Πa)a∈A have finite expectations µa, finite variance σa and bounded

and convex supports ∆a. µa is continuous with respect to a.

The decision-maker’s perception of similarity is described by a function s : A×A→ [0; 1]:

s (a; a) = 1

s (a; a�) = s (a�; a)

s ei; ej = 0

for all distinct i and j ∈ {1...K}, where ei denotes the ith unit vector. s depends only on the

Euclidean distance between a and a�.

The memory of the decision-maker is represented by a set of cases. A case is a triple of a

problem encountered, an act chosen and a utility realization achieved. Since the problem is

identical in each period of time, a case is characterized by an act and a utility realization. As in

Gilboa and Schmeidler (1996), the memoryMt contains only cases actually encountered by the

decision-maker until period t:

Mt = ((aτ ;uτ ))τ=1,2...t .

The aspiration level of the decision-maker in period t is ūt. In the present paper, I will assume

that ūt = ū = const and concentrate only on the influence of ū and s on the willingness to

diversify, thus neglecting the effect of aspiration adaptation.

The case-based decision-rule prescribes choosing the act with maximal cumulative utility in

each period of time. The cumulative utility of an act a at time t is given by:

Ut (a) =
t

τ=1

s (a; aτ) (uτ − ū) .

The set of all possible decisions paths that can be observed can be written as

S0 = ω = (at;ut; ū)t=1,2... | at ∈ A, ut ∈ ∆ ,

where ∆ = ∪a∈A∆a denotes the set of possible utility realizations. Let S1 be the set of those

paths on which the decision-maker chooses argmaxa∈A Ut (a) in each period:

S1 = ω ∈ S0 | at = argmax
a∈A

Ut (a) for all t = 1, 2... .
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As well as at and ut all variables introduced below depend on the path ω. I neglect this depen-

dence in the notation for simplicity of exposition.

Ct (a) denotes the set of periods preceding t in which a has been chosen:

Ct (a) = {τ < t | aτ = a}

Let P be a probability measure on S1 consistent with (Πa)a∈A, as in Gilboa and Schmeidler

(1996, p.11).

Denote by

π (a) = lim
t→∞

|Ct (a)|
t

the frequency with which a is chosen, if the limit on the right hand side exists. In general, this

frequency will be path-dependent.

Willingness to diversify is defined as in Dekel (1989) and Chateauneuf and Tallon (2002). As-

sume that

a1 ∼ a2 ∼ ... ∼ an.
Then a decision maker exhibits preferences for diversification if for any β1...βn ≥ 0 such that

n
i=1 βi = 1

n

i=1

βiai � ak for any k = 1...n.

The preferences of a case-based decision-maker are captured by the cumulative utility he assigns

to different acts. Clearly, these preferences will in general vary over time. Hence, to derive

meaningful statements about the willingness to diversify, it seems reasonable to consider the

preferences of a decision-maker in the limit as t→∞. Then, a1 ∼ a2 will correspond to

lim
t→∞

Ut (a1)

Ut (a2)
= 1.

Preference for diversification will obtain if for all a1...an such that

lim
t→∞

Ut (ak)

Ut (al)
= 1 for all k and l ∈ {1...n}

limt→∞Ut (
n
i=1 βiai)

limt→∞ Ut (ak)
≥ 1,

if both the numerator and the denominator converge to +∞ and
limt→∞Ut (

n
i=1 βiai)

limt→∞ Ut (ak)
≤ 1,

if the numerator and the denominator converge to −∞. Note that the definition of preference

for diversification depends (through Ut) on the chosen decision path. However, it will be shown
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that the emergence of preferences for diversification will depend only on the aspiration level

and on the form of the similarity function and not on the specific path ω.

3 Preference for Diversification with a Convex Similarity
Function

Consider a decision-maker whose perception of similarity is described by

s (a; a�) = f (na− a�n) ,

with f � < 0. The matrix

f ��dE · (dE)T + d2Ef �
is assumed to be positive definite, where E denote the Euclidean distance functional. Note that

this assumption implies that for a given a s (a; a�) is convex on any set Â ⊂ A such that a /∈ Â.

This follows from the fact that for a 9= a� s (a; a�) is differentiable with:

d2s = f ��dE · (dE)T + d2Ef �.
The similarity function s (·; ·) is illustrated in figure 1 for the caseK = 2.

â a0 1

s(a; a�)

.............................

...................1

s(â; a)

.....

Figure 1

Note that the similarity function itself cannot be convex over the whole set [0; 1]K since it must

assume a maximum at s (a; a). However, I will refer to similarity functions described above as

convex.

Let a1 = ā denote the act chosen in the first period and assume that ā ∈ int (A). Ω describes

the set of possible paths:

Ω = ω ∈ S1 | ūt = ū for all t = 1, 2, ...
a1 = ā

.
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Let P denote a probability measure on Ω consistent with (Πa)a∈A as in Gilboa and Schmeidler

(1996, p.11).

Proposition 1 Suppose that the similarity function is convex. If the aspiration level satisfies
µa < ū for all a ∈ A then for all a and a� ∈ A

lim
t→∞

Ut (a)

Ut (a�)
= 1

holds P -almost surely.

Proposition 2 Suppose that the similarity function is convex. If the aspiration level satisfies
µa > ū for some a ∈ A, then P -almost surely an act

a∗ ∈ Ã = {a ∈ A | µa > ū}
is chosen with frequency 1 in the limit.

Obviously, if the aspiration level of the decision-maker is relatively low, he will choose a single

act a∗ with frequency one in the limit. Moreover, µa∗ > ū holds. In this case,

lim
t→∞

Ut (a) = +∞
holds for all a ∈ A and

lim
t→∞

Ut (a
∗)

Ut (al)
=

1

s (a∗; al)
≥ 1

lim
t→∞

Ut (ak)

Ut (al)
=

s (a∗; ak)
s (a∗; al)

.

If a∗ = ei for some i ∈ {1...K}, there will be no distinct ak and al such that

lim
t→∞

Ut (ak)

Ut (al)
= 1

holds. Hence, the condition of preference for diversification is trivially satisfied. If, however

a∗ ∈ int (A), then

s (a∗; aj) = s (a∗; ai) ,

iff

na∗ − ajn = na− ain . (1)

Obviously, then for any a1...an satisfying (1) for any i, j ∈ {1...n},

na∗ − akn ≥ a∗ −
n

i=1

βiai

for every βi ∈ [0; 1], n
i=1 βi = 1. Hence,

s
n

i=1

βiai; a
∗ ≥ s (a∗; ai) = s (a∗; aj)

for all i and j ∈ {1...n} and, therefore n
i=1 βiai is (weakly) preferred to ai in the limit for all
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i = 1...n:

lim
t→∞

Ut (
n
i=1 βiai)

Ut (ai)
=
s (a∗; n

i=1 βiai)

s (a∗; ai)
≥ 1.

In the case of high aspiration level (proposition 1), since all acts fulfill

lim
t→∞

Ut (a)

Ut (a�)
= 1,

preference for diversification trivially obtains.

The following corollary obtains:

Corollary 3 If the similarity function is convex, preference for diversification obtains indepen-
dently of the aspiration level of the decision-maker.

4 The Case of Concave Similarity Function

Assumption 1
s (a; a�) = f (na− a�n) ,

where f � < 0 and the matrix
f ��dE · (dE)T + d2Ef �,

is negative definite.

Note that this assumption implies that s is concave.

s is illustrated in figure 2 forK = 2.

The concavity of s implies that the greater the distance of two acts a� and a�� from the reference

act a, the more the decision-maker distinguishes between a� and a�� with respect to their similarity

to a.

The next proposition shows how a decision-maker will behave if his aspiration level is higher

than the mean utility of the initially chosen act.

Proposition 4 Let the similarity function s (a; a�) of a decision-maker be concave. If ū > µā
and

• ū > max {µe1 ; ...;µeK}, then

P ω ∈ Ω | ∃π (a) : [0; 1]K → [0; 1] and
π (ei)

π (ej)
=
µej − ū
µei − ū

, π (a) = 0for a ∈ int (A) = 1;

• ū > µei for all i ∈ K � ⊂ {1...K}, then

P ω ∈ Ω | ∃π (a) : [0; 1]→ [0; 1] and ∃ i ∈ K � such that π ei = 1 = 1.
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aa�

s(a; a�)

1 ....................................................................................
1

.....................................

s(a; a�)

Figure 2

If the aspiration level of a decision-maker is relatively low, then the result of corollary 3 holds

and preference for diversification obtains.

However, this is not the case for relatively high aspiration levels. The following corollary ob-

tains:

Corollary 5 If the similarity function is concave, a decision-maker exhibits preference for di-
versification if and only if his aspiration level satisfies ū < µa for some a ∈ A.

To see that the result of the corollary indeed holds, consider the case of ū > maxi∈{1...K} {µei}.
An examination of the proof of proposition 4 shows that in this case:

lim
t→∞

Ut (e
i)

Ut (ej)
= 1

for all i and j ∈ {1...K} and

lim
t→∞

Ut (a) = −∞
9



for all a ∈ A, whereas

lim
t→∞

Ut (a)

Ut (ei)
= lim

t→∞
Ut (a)

Ut (ei)
> 1

for all i ∈ {1...K} and all a ∈ int (A). Note, however that any interior act can be expressed as

a =
K

i=1

βie
i

for some non-negative βi with K
i=1 βi = 1 and still the corner acts ei are strictly preferred to a ∈

int (A) in the limit. Hence, the decision-maker does not exhibit preference for diversification

in this case. Note further that this result does not depend on the form of the utility function u.

5 Conclusion

The findings of the paper are consistent with the model of preferences for diversity proposed

by Nehring and Puppe (2002, 2003). Differently from the approach of Gilboa and Schmeidler

(1997), Nehring and Puppe derive a similarity function indirectly by first imposing conditions

guaranteeing preference for diversity and then concluding what the similarity perceptions of a

decision-maker with such a utility function might be. This approach does not, however guarantee

that similarity is a complete relation. They compute the similarity function corresponding to

preferences for diversity over acts situated on a one-dimensional simplex. They conclude that

preference for diversity implies a similarity function which is convex in the Euclidean distance.

Hence, despite the differences in the structure of the models, the implications of the curvature

of the similarity function seem to be similar in both settings.

Up to now, few works have used the concept of similarity in case-based decisions. Gilboa and

Schmeidler (2001, chapter 19) show that positive (negative) similarity between goods can be

interpreted in terms of complementarity (substitutability). Blonski (1999) proposes to model

social structures using similarity functions. The similarity describes how relevant the experience

of other members of the society is for the decision-maker at hand. He shows that different

equilibria emerge depending on the structure of the society. However, both papers use similarity

functions on finite set of acts, whereas similarity functions defined on uncountable sets are still

largely unstudied, except for Gayer (2003).

Empirical evidence about similarity perceptions in economic situations is by large missing, the

few exceptions being Buschena and Zilberman (1995, 1999) and Zizzo (2002). Their findings
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show that similarity between is related to the Euclidean distance between payoffs. The present

paper stresses that the exact form of the dependence on the Euclidean distance might matter at

least in certain applications. It suggests that empirical research about the form of the similarity

function might provide more insights about the willingness of people to diversify and might help

to solve empirical puzzles related to this issue.

Appendix

I start with two lemmas which will be useful in proving the results.

Lemma 6 If ū < µā, then the expected time, during which the decision-maker will hold ā is
infinite. If ū > µā, then the decision-maker will almost surely switch in finite time to a corner
act ei such that

a = max
i∈{1...K}

ei − ā .

Proof of lemma 6

Suppose first that ū < µā. The cumulative utility of ā, as long as the investor holds it, is then a

random walk with differences

µā − ū.

Since the expected value of the difference is µā− ū > 0 and the process starts at 0, the expected

time until the first period in which the process reaches 0 is ∞. But, as long as Ut (ā) > 0,

Ut (a) = s (a; ā)Ut (ā) ≥ Ut (ā), since s (a; ā) ∈ [0; 1] and, therefore, ā is chosen.

Now suppose that ū > µā. Then, the expected increments of U (ā) are negative. Therefore,

when the process starts at 0, it will cross any finite barrier below 0 in finite time. Let t be the

first period, at which Ut (ā) < 0. Then Ut (a) = s (a; ā)Ut (ā) < 0. Since s = (a; a�) is strictly

decreasing in the distance between the acts, Ut (a) has a maximum either at one of the corner

acts. It follows that

at+1 = max
i∈{1...K}

ei − ā .

Lemma 7 Define Vt (a) as:
Vt (a) =

τ∈Ct(a)
[uτ (a)− ūt] .

An act a is only abandoned in periods t̃ such that Vt̃ (a) < 0.

In lemma 6, it has already been shown that the statement of the lemma is true up to time t̄ such
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that

t̄ = min {t | Ut (ā) < 0} .

To argue by induction, suppose that the statement holds up to a period t− 1 and consider period

t. Denote by a1...al the acts that have been chosen up to period t in this order, al = at. Suppose

that Vt (a) ≥ 0. Then the cumulative utility of al at t can be written as:

Ut (al) =
l

i=1
i�=l

Vt (ai) s (ai; al) + Vt (al) ≥

≥
l

i=1
i�=l

Vt̄�� (ai) s (ai; al) + Vt̄�� (al) ,

where t̄��+1 denotes the last period prior to t in which the decision-maker has switched to al from

a different act. The inequality follows from the fact that Vt̄�� (al) ≤ 0, since either act al has been

chosen for the first time at t�� and therefore Vt̄�� (al) = 0 or al has been abandoned for the last

time at some time t�� + 1 < t̄�� + 1 and then

Vt̄�� (al) = Vt�� (al) < 0

must hold. Since the acts different from al have not been chosen after period t̄��,

Vt̄�� (ai) = Vt (ai)

holds for i ∈ {1...l − 1}.

Furthermore, since at̄��+1 = al, it must be that for all a ∈ A:

Ut̄�� (al) =
l

i=1
i�=l

Vt̄�� (ai) s (ai; al) + Vt̄�� (al) ≥ Ut̄�� (a)

holds. But then

Ut (al)− Ut (a) =
l

i=1
i�=l

Vt (ai) [s (ai; al)− s (ai; a)] + Vt (al) (1− s (al; a))

≥
l

i=1
i�=l

Vt̄�� (ai) [s (ai; al)− s (ai; a)] + Vt̄�� (al) (1− s (al; a))

= Ut̄�� (al)− Ut̄�� (a) ≥ 0.
Hence, at+1 = al if Vt (al) ≥ 0 and hence, an act al can be only abandoned in a period t̃ such

that Vt (al) < 0 holds.
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Proof of proposition 1

The proof of the proposition proceeds in two steps. First I show that each open subset of A

is chosen by the decision-maker for an infinite number of periods. This is an implication of

the convexity of the similarity function and the negativity of net expected payoffs. Second, the

negativity of net expected payoffs and the i.i.d. process of payoffs are used to demonstrate that

the difference between the cumulative utilities of any two acts remains bounded in the limit.

This implies the result of the proposition.

Lemma 8 There is no x ∈ int (A) such that for all acts a ∈ Bx (") (where Bx (") is an open
ball with radius " around x ∈ (0; 1)), |Ct (a)| <∞ holds.

Proof of lemma 8

First note that no single act a can be chosen with frequency one, since then for any act a� 9= a,
the µa − ū < 0 would imply:

lim
t→∞

[Ut (a)− Ut (a�)] = lim
t→∞

Vt (a) [1− s (a�; a)]→−∞ a.s.

Hence, choosing a in each period of time would contradict the case-based rule.

Suppose, therefore that only two acts a� and a�� are chosen infinitely often. Hence, there is a

time T such that at ∈ {a�; a��} for all t > T . Denote the acts chosen in periods 1...T by a1...al.

The cumulative utility of act a at t > T is given by:

Ut (a) = Vt (a
�) s (a; a�) + Vt (a��) s (a; a��) +

l

i=1

Vt (ai) s (a; ai) .

By lemma 7, a decision-maker will only switch away from an act a if Vt (a) < 0. Hence,

Vt (ai) < 0 holds for all i = 1...l. Whereas Vt (ai) are finite for all i = 1...l , Vt (a�) and

Vt (a
��) a.s. tend to−∞, i.e. for almost each ω there exists some time t (ω) such that Vt (a�) and

Vt (a
��) are negative for all t ≥ t (ω).

Since the similarity function is convex, it follows that Ut (a) is strictly concave on the intervals:

a�; min min
i∈{1...l}

{ai | ai > a�} ; a��

max 0; max
i∈{1...l}

{ai | ai < a�} ; a� ,

as well as on

a��; min min
i∈{1...T}

{ai | ai > a��} ; 1

13



max a�; max
i∈{1...T}

{ai | ai < a��} ; a�� .

Hence, on almost each path, there exists a period of time T � (ω) such that there exist acts a��� and

a�v such that

Ut (a
���) > Ut (a

�)

Ut (a
�v) > Ut (a

��)

for all t ≥ T � (ω) and still at ∈ {a�; a��} is chosen. This obviously contradicts the case-based

rule. Clearly, the argument does not depend on the number of acts which are chosen infinitely

often, as long as this number remains finite. Hence, an infinite (but countable) set of acts A�

must be chosen infinitely often.

Suppose now thatA� does not contain an act out ofBx (") for some x ∈ int (A). By an argument

similar to the above, we could find an element of Bx ("), ã which has been chosen only for a

finite number of times and show that from some point of time T �� (ω), the cumulative utility of

the acts in the interval

(supA�\ [x+ "; 1] ; ã)

is a concave function for all t ≥ T �� (ω). Hence, for all

a ∈ (supA�\ [x+ "; 1] ; ã)

Ut (a) > Ut (supA
�\ [x+ "; 1]) .

By the continuity of the cumulative utility function, there exists an act a� ∈ A�which is chosen

infinitely often and the cumulative utility of which lies below the cumulative utility of a in each

period t ≥ T �� (ω), a contradiction.

Remark 1 A similar argument can be used to show that every corner act in the simplex will be
chosen infinitely often.

To complete the proof of the proposition, I now show that the difference between the cumulative

utilities of any two acts:

Ut (a)− Ut (a�) =: εt (a; a�) (2)

a.s. remains bounded over time. Since the expected mean payoffs of all acts are negative,

lim
t→∞

Ut (a) = −∞
a.s. for all acts a ∈ A. This implies that

lim
t→∞

Ut (a)

Ut (a�)
= lim

t→∞
Ut (a)

Ut (a) + εt (a; a�)
= 1
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holds on all paths on which εt (a; a
�) remains bounded.

Hence, the proof of the following lemma would complete the proof of proposition 1:

Lemma 9 Define εt (a; a
�) as in (2). On almost each path ω, εt (a; a�) is bounded.

Proof of lemma 9

Consider first the acts in A� as defined in the proof of lemma 8. Consider a period t in which

the decision-maker switches to an act a ∈ A� from a different act a� ∈ A�. Obviously, to satisfy

the case-based rule:

Ut−1 (a�) ≥ Ut−1 (a)
and

Ut (a) ≥ Ut (a�)
must hold. Hence,

Ut (a)− Ut (a�) ∈ 0; ū− min
u∈∆a�

u (1− s (a; a�)) .

Now note, that starting from the interval

0; ū− min
u∈∆a�

u (1− s (a; a�)) ,

the difference between the cumulative utilities of a and a� behaves as a random walk on a half-

line with negative expected increments:

[1− s (a; a�)] (µa − ū) < 0,
as long as a is chosen. Define ε̃t (a; a

�) as

ε̃t (a; a
�) = εt (a; a

�) if εt (a; a�) ≥ 0
ε̃t (a; a

�) = 0, else.

Such a random walk has an accessible atom at 0 (Meyn and Tweedie (1996, p. 105) give a

definition of an accessible atom). Moreover, each set of the type [0; c] is regular, see Meyn and

Tweedie (1996, p. 278). This means that the state 0 is reached in finite expected time, starting

from each set of the type [0; c] and especially, starting from the set

0; ū− min
u∈∆a�

u (1− s (a; a�)) .

Denote the supremum of these expected times byN and observe that it is finite according to the

definition of regular sets. Note that

ū1 − min
u∈∆a�

u
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equals the supremum of εt (a; a�) in a period, in which the decision-maker switches from an

arbitrary ã to a. Observe as well that since the probability that εt (a; a�) = 0 is 0 (for atomless

distributions Πa), it follows that ε̃t (a; a�) = 0 a.s. coincides with εt (a; a
�) < 0. Hence, the

decision-maker switches away from a when ε̃t (a; a
�) = 0 is reached or in an earlier period. It

follows that the expected time for which an arbitrary act a is held in a row is finite and uniformly

bounded from above.

It remains to show that εt (a; a�) is bounded on almost each path of dividend realizations. At

times at which a is chosen εt (a; a
�) never falls below 0, since this would contradict choosing the

act with highest cumulative utility in each period. Suppose, therefore that there is a sequence of

periods t�, t��..., such that εt� (a; a�), εt�� (a; a�)... grows to infinity. In other words, suppose that

for eachM > 0 there is a k, such that εtn (a; a�) >M for all n > k. It has been shown above

that each other act inA� and especially a� is chosen infinitely many times on almost each path of

dividend realizations. But each time that the act a� is chosen, the difference εt (a; a�) falls below

0. If εtn (a; a�) >M, the time needed to return to the origin is at least
M

(1− s (a; a�)) [ū1 −minu∈∆a u]
,

which grows to infinity, as εtn and, hence, M becomes very large. However, as has been ex-

plained above, the expected time for return to the origin 0 of ε̃t (a; a�) is finite and uniformly

bounded above by N . The Law of Large Numbers then implies that for each κ > 0 on almost

each path of dividend realizations there is a period K (ω), such that
n
i=1 τ i
n

≤ N + κ

for all n ≥ K (ω), where τ i denotes the time needed for ε̃t (a; a
�) to reach the origin, once

a has been chosen. On the other hand, the assumption that εtn (a; a�) → ∞ implies that the

stopping times τ i become infinitely large as the time grows — a contradiction. Hence, almost

each sequence εt� (a; a
�), εt�� (a; a�)... (where t�, t��... denote periods at which a is chosen) is

bounded from above. A symmetric argument for a� shows that εt (a; a�) is bounded from below.

It follows that on almost each path ω ∈ Ω

lim
t→∞

Ut (a)

Ut (a�)
= lim

t→∞
Ut (a)

Ut (a) + εt (a; a�)
= 1

holds for all acts a, a� ∈ A�.

By lemma 8, there is no open subset ofA such thatA� does not contain an act out of this interval,
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hence for each " > 0, and x ∈ int (A), there is an a ∈ A� ∩Bx ("). Moreover, for all " > 0,

lim
t→∞

Ut (ã)

Ut (a)
= 1,

where ã ∈ A� ∩Bx (") and a ∈ A�, a 9= ã. Since

lim
"→0

A� ∩Bx (") = x
and Ut (ã) is continuous in ã, it follows that

lim
t→∞

Ut (x)

Ut (a)
= 1,

even if x /∈ A�. This completes the proof of the proposition.

Proof of proposition 2

The proof of proposition 1 has shown that if there is an open subset Ã ⊂ [0; 1] such that

µa − ū > 0
for all a ∈ Ã, then the decision-maker will eventually choose an act out of this set. By continuity

of µa with respect to a, if Ã is not an open set, it must consist of a single corner act. By remark

1, every corner act is also eventually chosen by the decision-maker. Moreover, by the proof of

proposition 2, it cannot be that only acts outside Ã are chosen infinitely often. This means that

at least one act a ∈ Ãwill be chosen infinitely often. Suppose to the contrary of the statement of

the proposition that there are two acts from Ã, a and a�, which are chosen with positive frequency.

It is easy to show that this leads to a contradiction.

Indeed, consider the periods z1a, z2a,...∈ N at which the decision-maker switches to act a and

denote by z1a� , z2a� ,...∈ N the times, at which the decision-maker switches to a�. Then the proof

of lemma 7 shows that:

Vz1a (a) > Vz1a� (a) = Vz2α (a) > Vz2a� (a) = Vz3a (a) > ...

But these inequalities imply thatVt (a), which is a random walk with positive expected increment

µa− ū > 0, crosses each of the infinitely many boundaries Vzka (a) from above. Since, however,

there is a positive probability that a random walk with positive expected increment starting from

a given point, never crosses a boundary lying below this point, see Grimmet and Stirzaker (1994,

p. 144), and since the stopping times are independently distributed, it follows that the probability

of infinitely many switches between a and a� is 0. Hence, only one of these two acts can be

chosen with positive frequency in the limit.

Alternatively, suppose that an act a� from the setA\Ã is chosen infinitely often with an act from
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Ã. Then, with probability 1, the cumulative utility of a will become infinitely high, whereas the

cumulative utility of a� will become infinitely low, as the number of periods grows to infinity.

Hence, choosing act a� infinitely often will contradict the case-based decision rule, as well.

Proof of proposition 4

It has already been shown, see lemma 6 that for µā − ū < 0, the investor switches in fi-

nite time to a corner act. Let ei be the first corner act chosen at some time t̄, such that t̄ =

min {t | Ut (ā) < 0}. Two cases are possible: either µei − ū < 0 or µei − ū > 0. Then at time

t > t̄ such that aτ = ei for all t̄ < τ ≤ t, the cumulative utility of an act a can be written as:

Ut (a) = Vt̄ (ā) s (a; ā) + Vt e
i s a; ei .

As long as Vt (ei) ≥ 0, ei is chosen, according to lemma 7. If µei− ū > 0 holds, then Vt (ei) > 0

holds infinitely long in expectation. If, however, µei − ū < 0, then

Vt e
i <

Vt̄ (ā) (s (e
j; ā)− s (ei; ā))

1− s (ei; 1) < 0

obtains in finite time for some j ∈ {1...K}. Let now t̄� denote

t̄� = min t | Vt (0) < Vt̄ (ā) (s (e
j; ā)− s (ei; ā))

1− s (0; 1) for some j ∈ {1...K} .

Note that at t̄� the cumulative utility of a = ej is:

Ut̄� e
j = Vt̄ (ā) s e

j; ā .

Moreover, since now Vt̄ (ā) < 0, Vt̄� (0) < 0 and s is concave, it follows that at t̄� Ut̄� (a) is

convex for every a ∈ A. Therefore, the optimal act is a corner one. Now restrain ej to belong

to the set:

K̃ = arg max
k∈{1...K}\i

Ut̄� e
k .

Hence,

Ut̄� e
j = Vt̄ (ā) s e

j; ā > Vt̄ (ā) s e
i; ā + Vt̄� e

i = Ut̄� e
i ,

so that one of the acts ej in set K̃ is chosen.

Again, if µej − ū > 0, then a = ej will be held infinitely long in expectation, whereas if

µej − ū < 0, then the cumulative utility of ej becomes lower than the cumulative utility of any

other corner act in finite time.

Lemma 10 at ∈ ek
K

k=1
for all t > t̄.
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Proof of lemma 10

It has already been shown that the statement holds until period t̄�. To argue by induction, suppose

that only corner acts have been chosen up to some time t. At time t, the cumulative utility of an

act a is given by:

Ut (a) = Vt (ā) s (a; ā) +
K

k=1

Vt e
k s ek; a .

Let at = el. As shown in lemma 7, if Vt el ≥ 0, then at+1 = el. If, however Vt el < 0, then,

by lemma 7, Vt ek ≤ 0 holds for all k = 1...K with strict inequality for all corner acts selected

at least once in the past. Since s (·; ·) is a concave function, Ut (a) becomes convex and has a

corner maximum. Hence, at+1 ∈ ek
K

k=1
.

Consider first the case of µek < ū for all k ∈ {1...K}.
Lemma 11 Each of the corner acts ek, k ∈ {1...K} satisfies limt→∞ Ct e

k =∞.

Proof of lemma 11

Suppose that one of the corner acts is not chosen infinitely often. Let this be act ek Obviously,

since the number of corner acts is finite, at least one of them must be chosen infinitely often.

Let this be act ej . Then, it follows that

lim
t→∞

Ut e
j = lim

t→∞
Vt̄ (ā) s e

j; ā + Vt e
j = −∞,

since Vt̄ (ā) is finite and µej − ū < 0, whereas Ut ek remains finite. Hence, a.s. there is a time

T (ω) such that

Ut e
j < Ut e

k

for all t > T (ω) and still at = ej in some of the periods in contradiction to the case-based

rule.

Now, consider the following process: let k, l ∈ {1...K}, k 9= l and

εt̄ e
k; el = Vt̄ (ā) s e

k; ā − s el; ā
εt+1 (1; 0) =

εt + ut δkt − ū, if εt ≥ 0
εt + ut δlt − ū, if εt < 0

.

εt e
k; el represents the difference between the cumulative utilities of the acts ek and el after

period t̄. To see this note that for t ≥ t̄,
Ut e

k − Ut el

= Vt e
k + Vt̄ (ā) s e

k; ā − Vt e
l + Vt̄ (ā) s e

l; ā =

19



= Vt e
k − Vt el + Vt̄ (ā) s e

k; ā − s el; ā =

= εt e
k; el .

An argument analogous to the one used to prove lemma 9 shows that εt ek; el is bounded on

almost each path ω and therefore:

lim
t→∞

Ut e
k

Ut (el)
= lim

t→∞
Ut e

l + εt e
k; el

Ut (el)
= 1

with probability 1. Hence,

lim
t→∞

Vt e
k + Vt̄ (ā) s e

k; ā

[Vt (el) + Vt̄ (ā) s (el; ā)]
= 1

lim
t→∞

Ct e
k

τ∈Ct(ek)
[uτ−ū]|Ct(ek)| + Vt̄ (ā) s e

k; ā

|Ct (el)| τ∈Ct(el)
[uτ−ū]
|Ct(el)| + Vt̄ (ā) s (el; ā)

= 1.

Since Ct e
k →∞ and Ct e

l →∞ on almost each path, it follows according to the Law

of Large Numbers that

lim
t→∞

τ∈Ct(ek) [uτ − ū]
|Ct (ek)| = µek − ū

lim
t→∞

τ∈Ct(el) [uτ − ū]
|Ct (el)| = µel − ū

obtain almost surely in the limit. Hence,

lim
t→∞

Ct e
k (µek − ū) + Vt̄ (ā) s ek; ā

[|Ct (el)| (µel − ū) + Vt̄ (ā) s (el; ā)]
= 1.

lim
t→∞

Ct e
k (µek − ū) + Vt̄ (ā) s ek; ā

[|Ct (el)| (µel − ū) + Vt̄ (ā) s (el; ā)]

= lim
t→∞

|Ct(ek)|
|Ct(el)| (µek − ū) +

Vt̄(ā)s(ek;ā)
|Ct(el)|

(µel − ū) +
Vt̄(ā)s(el;ā)
|Ct(el)|

=

= lim
t→∞

|Ct(ek)|
|Ct(el)| (µek − ū)
(µel − ū)

= 1

almost surely holds (since Vt̄ (ā) is finite on almost all paths, it does not influence the limit

behavior). Therefore, the limit frequencies π ek and π el satisfy
π ek

π (el)
= lim

t→∞
Ct e

k

|Ct (el)| =
µel − ū
µek − ū

.

If at least one of the mean utilities µek exceeds ū, then applying the argument of the proof of

proposition 2 shows that one of the acts with µek > ū is chosen with frequency 1 in the limit.
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04-14 Volker Stocké The Interdependence of Determinants for the
Strength and Direction of Social Desirability Bias
in Racial Attitude Surveys

04-13 Christopher Koch
Paul Fischbeck

Evaluating Lotteries, Risks, and Risk-mitigation
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