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Chapter 1

General Introduction

This dissertation contains three essays in industrial organisation. Chapter 2 analyses

Þrms� incentives to preannounce innovations when consumers have costs of switching

from one product to another. Chapter 3 deals with the emergence and consequences

of price leadership in two different industry settings. And chapter 4 investigates the

interaction between Þrms� R&D decisions and locational choices.

Each chapter is an independent piece of work, and can be read separately. The

chapters contain their own introduction that raises the issues studied, relates them to

the literature in the area, and highlights the contributions made. Here, I will therefore

conÞne myself to provide the reader a short outline of each essay of this thesis.

In many markets consumers who have previously purchased from one Þrm have costs

of switching to a competitor�s product. These switching costs imply that especially

in industries with fast technological progress buyers are confronted with an intertem-

poral trade-off between buying the presently available technology with the risk of

economic obsolescence due to the arrival of an innovation and waiting for the new

technology without locking into the old one. In Chapter 2 we study the incentives

of innovating Þrms to preannounce new technologies in order to increase the expected

value of waiting for consumers. In particular, we will point out that this kind of ad-
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vance information might not always be entirely beneÞcial for innovators. Announcing

a new developed product might help to prevent the lock-in of potential customers

into the old technology before the launch of the new product. But, at the same time,

the information about future entry spills over to the incumbent Þrm and gives it the

opportunity to take preemptive actions against the innovative Þrm. In this work we

want to show how this trade-off inßuences the preannouncement behaviour of inno-

vative entrants and derive conditions under which preannouncements are more likely

to be observed. The welfare analysis of the model is supposed to give us indications

for a sensible competition policy regarding innovation announcements.

For this purpose we make use of a two period model of vertical product differentiation

with overlapping consumer generations and analyse intertemporal consumer choice

under uncertainty and imperfect competition in the product market.

To sum up, we Þnd that innovative Þrms may not always have an incentive to pre-

announce a new product generation. They might prefer not to inform their potential

future clientele in order to avoid the information spillover and a tug-of-war with

the incumbent. In this vein, preannouncements are more likely in industries where

the innovation step of the new technology is relatively high, the time between an-

nouncement and launch is short and consumers are not to heterogenous. The welfare

analysis shows that, from the point of view of the consumers, there might be too few

or too many announcements and depending on the characteristics of the industry,

announcement bans or enforcements might improve on the free market outcome.

Chapter 3 contains two duopolistic models that challenge commonly held views on

the emergence and consequences of endogenous price leadership in industries. In the

Þrst part, we investigate again an industry with vertical product differentiation. In

particular, we analyse the typical two stage setting in which Þrms Þrst set qualities

and then engage in price competition. But instead of assuming simultaneous choices

we endogenise the timing in the price game and explicitly allow price leadership to
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emerge. In a Þrst step, we demonstrate that price leadership is actually the equilib-

rium outcome of the second stage with the high-quality Þrm as the industry leader.

More interestingly, the emergence of price leadership affects the quality choices in the

Þrst stage of the game. That means, Þrms anticipate that price leadership reduces

the intensity of price competition in the short run and this gives the low-quality Þrm

a stronger incentive to decrease product differentiation and to invest more in quality.

By consequence, price leadership leads to higher prices for given qualities but it also

implies a higher average product quality in the industry. Taken together, we can show

that in this sense price leadership can actually be beneÞcial for consumers and hurt

Þrms in the overall game.

In the second part of this chapter, we reconsider a model by Deneckere and Kovenock

and Lee (1992) who study incentives for price leadership in markets with consumers�

switching costs. Previous studies have demonstrated that when one identiÞes Þrm

size with capacity then price leadership of the large Þrm should arise because the

smaller Þrm stands to lose more by moving Þrst and being undercut from its rival.

Deneckere et al. argue that the same holds true if one measures Þrms size with the size

of a Þrm�s locked-in customer base. The model presented in Chapter 3 demonstrates

that this claim crucially hinges on the size of switching costs for the consumers. In

particular, they suppose that switching costs are prohibitive, i.e. once a consumer

has bought a Þrm�s product she can not switch afterwards. We relax this assumption

and show that for positive but Þnite consumers� switching costs the opposite result

holds. In contrast to their model, here the large Þrm stands to lose a lot if it leads and

is undercut by its rival since in our model consumers can switch and the incentive to

cut prices for the small Þrm is the larger, the bigger the base of its rival. In addition

to this, the follower role makes the large Þrm tame since it would have to apply any

price cut to his large customer base. Anticipating this, the small Þrm is willing to

move Þrst and this coincidence of incentives gives rise to situations in which one Þrm

strictly prefers to lead while the other one strictly prefers to follow. Interestingly,



General Introduction 4

our welfare considerations indicate that over a large range of the parameter space the

endogenously determined price leadership pattern maximises social welfare.

Finally, inChapter 4, which is joint work with Thomas Rønde and Konrad Stahl, we

investigate the interaction between Þrms� R&D decisions and their location choices

in product and/or geographical space. In the vein of the seminal paper of Hotelling

(1929) Þrms� location choices follow the trade-off between two by now standard ef-

fects: a demand effect that induces the individual Þrm to move towards the center

of the market, and a competition effect that drives the Þrms away from each other.

It was Hotelling�s belief that the former is stronger and Þrms tend to supply identi-

cal products. However, d�Aspremont and Gabszewicz and Thisse (1979) showed Þfty

years later that Hotelling�s analysis was wrong and that for symmetric product qual-

ities and quadratic transportation costs, the �principle of maximum differentiation�

holds, i.e. the competition effect always dominates the market effect.

In our benchmark model, we introduce stochastic R&D in the Hotelling framework

and show that this can restore Hotelling�s initial result even in a model with quadratic

transportation costs of consumers. The intuition for this result is that if market entry

(or product quality) depends on the stochastic outcome of Þrms� R&D activities, a

Þrm meets a successful competitor in the product market only with a certain probabil-

ity. This weakens the competition effect while the demand effect remains unchanged.

In modiÞcations of this benchmark model we look at the impact of R&D spillovers

and patent protection on Þrms� location choices and show that the former has a

deglomerating effect while the latter has an agglomerating effect.

In the second part of this work, we extend our framework and allow Þrms to choose

their R&D technology together with their location. More speciÞcally, Þrms can adopt

either a safe R&D project yielding a low-quality product or a risky project aiming at

a large innovation step. We show that for a large range of the parameter space the

following three types of equilibria can emerge. Either Þrms choose dispersed locations
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and adopt the safe R&D technology. Or, they agglomerate in the center and one of the

Þrms opts for the risky technologies. Or, Þnally, they agglomerate and both choose

the risky R&D technology. This result hints at a strong complementarity between

risk taking in R&D and geographical concentration of Þrms. Finally, our welfare

analysis gives a rather diverse picture. There may be excessive differentiation and

concentration in product space and too less or too much risk taking in the choice of

the R&D technology.

References

d�Aspremont, C., Gabszewicz, J. J., and J.-F. Thisse (1979): OnHotelling�s

Stability in Competition, Econometrica, 47, 1145-1150.

Deneckere, R., Kovenock, D. and R. Lee (1992): AModel of Price Leadership

based on Consumer Loyalty, The Journal of Industrial Economics, 40, 147-156.

Hotelling, H (1929): Stability in Competition, The Economic Journal, 39, 41-57.
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Chapter 2

Innovation Preannouncement in a

Vertically Differentiated Industry

2.1 Introduction

In industries with consumers� switching costs and fast technological progress, buy-

ers face an intertemporal choice between subsequent product generations. Buying

the presently available product entails the risk of early economic obsolescence due

to an immediately afterwards upcoming innovation. This potential lock-in has to be

traded off with the expected cost of waiting for a better technology. Product pre-

announcements are an appropriate and widely observed strategy for innovating Þrms

to increase the expected value of waiting for the consumers and prevent the loss of

potential future demand. For example, Volkswagen announced the arrival of its new

beetle car three years in advance and one year before its availability, they already had

70.000 orders from waiting customers.

Nevertheless, such advance communications may not always be entirely beneÞcial to

the innovative Þrm. Although they are directed to inform potential customers, the

message will obviously reach incumbent competitors, too. And as many markets with
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fast technological progress are dominated by Þrms with a certain degree of temporary

market power, strategic interaction is most probable as the following examples from

the video game market demonstrates.

In 1988, Sega introduced its 16-bit-Mega Drive home video system which was at

that time a large innovation step beyond the existing 8-bit systems. They sold the

console for $190 and games were priced between $40 and $70. Nintendo, Sega�s closest

competitor, reacted and gave its customers a reason to wait by preannouncing their

own new 16-bit system. As an immediate response to this, Sega started offering their

system in bundle with one game for $150. One year later, Nintendo entered the

market and soon prices dropped under $100.1

The 32-bit generation of game consoles was announced by the new entrant Sony in

1994. The year before its actual launch in 1995 was the poorest in terms of sales

Þgures of the whole industry history because consumers were waiting for the new

technology to arrive.2

Finally, in the end of 1995, Nintendo announced the launch of its 64-bit console

machine in autumn 1996. From the day of the announcement until its introduction

the prices of Sega�s and Sony�s 32-bit systems dropped from $299 to $149.3

Another well-known and well-reported preannouncement story, the Control Data anti-

trust case in 1967 is another example for the severity of strategic reactions. The

sales of the computer manufacturer Control Data suffered tremendously when IBM

announced the arrival of its new and largely superior System/360 model in 1964 which

was Þnally not available before 1967. But the immense price cuts that Control Data

had to offer to attract customers, induced them to bring an anti-trust charge against

IBM.4

1For more details see Brandenburger and Nalebuff (1996), p. 237-242.
2see �Power games�, Marketing Week: London; May 19, 1995.
3see �Sony and Sega plan price cuts to torpedo Nintendo 64 launch�, Marketing Week : London;

July 26, 1996.
4Fisher and McGowan and Greenwood (1985) devote a whole book to the IBM/Control Data
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With the use of preannouncements, Þrms can retain customers from buying substitute

products and thus preserve their own potential demand until the period of product

introduction. At the same time, as the examples above show, this advance informa-

tion spills over to the incumbent competitor and gives him the opportunity for an

additional strategic move before the innovative Þrm�s entry.

The aim of the present paper is to analyse the strategic role of innovation prean-

nouncements in an imperfectly competitive market setting. It will be shown how the

described trade-off affects the announcement behaviour of an innovative Þrm in the

context of a vertically differentiated market with overlapping consumer generations.

We analyse situations in which the preannouncement of a new, superior technology

by an outside Þrm gives the incumbent monopolist incentives for preemptive price

cuts in the pre-entry period in order to attract consumers before the availability of

the new product. The main results can be summarised as follows. The probability

that an innovating Þrm will preannounce its product is high, if

� the innovation step beyond the existing technology is sufficiently large,

� time between preannouncement and launch is short (or the consumers are im-
patient),

� the average consumers� valuation for quality is rather low and/or

� consumers are more heterogeneous with respect to their valuation of quality.

At a Þrst glance, the welfare results of the model are somewhat surprising. From

the consumers� point of view, the market can produce too few or too many pre-

announcements. While the under-provision of information seems obvious given a

preemptive reaction by an incumbent, the over-provision result stems from the con-

sumers� trade-off between efficient information transmission and market contestabil-

ity. Preannouncements of new products entail efficient information transmission and

case taking place between 1960 and 1980.
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an efficient matching between consumers and product generations over time. How-

ever, with the entrant�s use of preannouncements, markets lose the threat of entry in

periods when there is no innovation and the incumbent regains market power. We

show that consumers would prefer a ban on preannouncements in situations in which

the upcoming innovation step is of an intermediate size and ex ante expectations

about its introduction are rather high.

The previous work dealing with preannouncements of strategies mainly analyses prob-

lems related to commitment effects. Henkel (1996) studies games in which in an

announcement stage each player commits partly to a strategy. The degree of commit-

ment is endogenous and individually chosen and later deviation from the announce-

ment is costly. The author Þnds that in the case of strategic complements in the basic

game the introduction of the announcement stage induces the players to commit partly

and thus supports collusion. Crawford and Sobel (1982) show that announcements

without any direct inßuence on the payoffs (�cheap talk�) can be relevant in games

with private information. Farrell (1987) does the same for games in which there is a

coordination problem.

The present paper departs from this strand of literature with the somewhat extreme

assumption that the preannouncement of the innovation is fully credible, i.e. the

innovative Þrm can perfectly commit to timing and quality of the new product. In

other words, we completely abstract from any kind of untruthful preannouncement

that might lead to �vaporware�-products. We think that this is appropriate since

it allows us to concentrate on the �strategic reaction� effect of preannouncements

without affecting the qualitative nature of our results (see the last section for a further

discussion).

With this assumption, our work is much closer to some other studies. Farrell and

Saloner (1985) analyse the effect of preannouncements on the adoption of a new

incompatible good in the presence of network externalities. In this context, pre-
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announcements make the adoption of the new technology more likely which can be

socially desirable. A major drawback of their model is that it does not consider strate-

gic pricing but assumes a competitive supply of the old and the new technology. Yin

(1995) presents a study, in which an innovating Þrm can announce the quality of its

product early or late. Delaying the announcement means that the competitor has

to set its own quality on the basis of the distribution of the possible innovation out-

comes. In this model, the innovator has no incentive to announce early and the results

are straightforward: Although the early announcement policy is socially desirable, it

is not supported in equilibrium. Gerlach (1999) analyses the preannouncement be-

haviour of a monopolist. Announcing a superior technology cannibalises the present

sales of the old technology if consumers have some kind of switching costs. The author

shows that monopolists may have an incentive not to preannounce in order to make

consumers buy the old and switch to the new product afterwards. Furthermore, this

work analyses the rationale behind �vaporware�, i.e. products that are announced

although they will knowingly not be available at the promised date.

Our work also relates to the literature on information exchange among Þrms and

their impact on competition. Kühn and Vives (1995) provide quite general conditions

including the type of competition and the nature of uncertainty under which Þrms

have an incentive to share information about cost or demand. The scenario that comes

closest to our model is Bertrand competition with private value cost uncertainty in

which Þrms typically have no incentives to share information with their competitor. In

our framework, however, innovations are preannounced because Þrm want to inßuence

consumers� decisions.

The organisation of the paper is along the dynamic structure of the presented game-

theoretical model starting from backwards. The following section presents the basic

assumptions of the model. Section 2.3 is devoted to the price quilibria in the second

period in the case with and without an innovation. In section 2.4 we look at the

Þrst period pricing behaviour of the incumbent and the purchase decision of the
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consumers. The following two sections respectively analyse the preannouncement

behaviour of the innovating Þrm and its welfare implications. Finally, section 2.7

concludes with the discussion of the proposed framework, some robustness checks

and possible extensions. Note that all proofs are delegated to the appendix.

2.2 The Model

We consider a simple two period model of a vertically differentiated industry in the

spirit of Gabszewicz and Thisse (1979) and Shaked and Sutton (1982, 1983). In

every period, t = 1, 2, a cohort of consumers who only differ in their taste for quality

θ, will enter the market. Though the valuation of a consumer is only known to

himself, it is common knowledge that the taste parameter is uniformly distributed

on [a − h, a + h]. The parameter a can be interpreted as the average valuation of
consumers for quality, while h reßects the degree of heterogeneity of the consumer

population. We normalise the mass of consumers in each cohort to 1 and we will

submit the distribution parameters to the following restriction:

a ≥ 5h. (2.1)

This condition states that consumers� tastes are not too heterogeneous with respect

to the average valuation of the population and it ensures us covered market equilibria

in both periods. In the considered time span, every consumer can afford to buy at

most one unit of the durable good. This means for cohort 1 consumers that switching

from a product they bought in the Þrst period to another in period 2 is prohibitively

costly.

On the supply side, we consider two Þrms, an incumbent monopolist, referred to as

Þrm 1, and a potentially innovating outside Þrm 2. While the incumbent offers in both

periods product 1 of quality q1, Þrm 2 conducts R&D to develop a superior technology.

This innovation process is stochastic, though the R&D investment decision is not
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explicitly modelled. With probability ρ0, the next step on an imaginary quality

ladder is done and the resulting product is of a given quality q2 > q1. In the �no

innovation� event (with probability 1 − ρ0), the only available quality is q1, which
prevents Þrm 2 from entering the market as there is some small entry cost ε > 0.

For simplicity, both Þrms are assumed to produce at zero marginal costs. Firms and

consumers have rational expectations, are risk neutral and discount future revenues

using discount factors 0 ≤ δ ≤ 1 per period. Finally, it will be convenient to use

∆ ≡ q2−q1

q1
as a measure for the size of the upcoming innovation step.

Innovation 
with

probability ρ0

New cohort and 
waiting consumers 
can buy q1, (q2) 

or not at all

Consumer cohort
enters market,
buy q1, or wait

Incumbent firm 1
offers q1 at price p

Introduction of
new product q2

if available

Innovative firm 2
decides about

preannouncement

t=0 t=1 t=2

Figure 2.1: Time Structure of the Model.

The time structure of the model is as follows (cf. Figure 2.1). Before period 0, nature

moves and Þrm 2 succeeds with probability ρ0 in developing the new product which

can be introduced to the market as soon as period 2.5 In this case, Þrm 2 can decide

whether to preannounce the product or not.6 In period 1, the incumbent Þrm offering

a product of quality q1 and the Þrst cohort consumers use the preannouncement signal

to update their prior beliefs and form expectations about the market outcome in

5Think of the delay as the time for testing the product, preparing mass production and negotiate
distribution channels.

6Notice that, this choice is only to be made in the innovation subgame since in this simple two
period framework, untruthful preannouncements make no sense for Þrm 2. See the last section for
a discussion of this assumption.
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period 2. After the incumbent monopolist has set a price p, consumers can either

purchase good q1 in t = 1, or wait for the second period. In period t = 2, two

constellations are possible. If there is no innovation to be introduced, Þrm 1 keeps on

selling the old product at a price pM1 . Otherwise, if Þrm 2 launches the innovation,

we have a duopolistic market in which Þrms simultaneously set their prices pD1 and

pD2 , respectively. Finally, the waiting Þrst cohort and the entering second cohort

consumers can buy product q1, q2 (if available) or not all (the value of the outside

option is normalised to 0). In order to keep matters as simple as possible, we exclude

transactions via a resale market and any depreciation of the durable good.

With these assumptions, a consumer θ, who buys product q1 in period 1, derives an

overall net utility of

U11(θ) ≡ θq1 − p+ δθq1, (2.2)

where Uij denotes the total net utility of consuming product i in period 1 and j in

period 2. The expected net utility of waiting (this Þrst period option is denoted by

0) and buying either product q1 or q2 in period 2 is

E[U0(θ)] ≡ δρ Max{θq1 − pD1 , θq2 − pD2 }+ δ(1− ρ)(θq1 − pM1 ). (2.3)

We will look for Perfect Bayesian equilibria of this game and start our analysis by

looking at the second period market outcome taking into consideration the Þrst cohort

consumers that decided to wait. Then we turn to the Þrst period and assume that

the market participants rationally anticipate the future market constellations. In the

case of an innovation announcement, priors are updated to one and there is complete

certainty about the upcoming launch of a new product. If there is no announcement,

beliefs can also be reconsidered since no communication can mean that either there

is no innovation or that it is not proÞtable for the Þrm to preannounce it. Finally,

we look at the announcement decision of the innovating Þrm who rationally expects

the behaviour of her competitor and the consumers.
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2.3 Second Period

In the last period, the entering second cohort consumers join the waiting Þrst cohort

consumers which results in some aggregate distribution function. As it will turn out

in the next section, we can conÞne ourselves to two possible outcomes. Throughout

the paper, we will refer to the situation in which low-valuation consumers in the

interval [a− h, x], with a − h ≤ x ≤ a + h, decide to wait as constellation I. The

aggregate consumer density function in the second period is then simply

faggI (θ, x) ≡
 2 if a− h ≤ θ ≤ x,
1 if x < θ ≤ a+ h.

In constellation II, high-valuation consumers in [y, a+ h], with a − h ≤ y < a + h,
stay in the market until period 2, which results in

faggII (θ, y) ≡
 1 if a− h ≤ θ ≤ y,
2 if y < θ ≤ a+ h,

Given these two possible consumer populations (x or y are endogenously determined

in the Þrst period), we have to consider two possible market structures depending on

the success of the R&D activity of Þrm 2. If the new product is not available, Þrm 1

keeps its monopolistic position and offers a product of quality q1 at a price p1. As the

second period net utility of a consumer θ is given by θq1 − p1, the consumer who is
indifferent between buying and the outside option of value 0 is at p1

q1
.With a consumer

population given by faggI (θ, x), the monopolist faces a second period demand

DM
I (p1, x) ≡


(x− (a− h)) + 2h if p1 ≤ (a− h)q1,
(x− p1

q1
) + (a+ h− p1

q1
) if (a− h)q1 ≤ p1 ≤ xq1,

Min{a+ h− p1

q1
, 0} if p1 ≥ xq1.

For low prices the monopolist serves all or at least some of the waiting consumers.

If p1 > xq1 he only sells to cohort 2 consumers with a high valuation. The demand
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function is continuous, piecewise linear and convex since its slope in [(a − h)q1, xq1]
is higher than in the regime with p1 > xq1. These properties yield a proÞt function

p1D
M
I (p1, x) which may have two local maximisers. Nevertheless, it is straightforward

to show that the slope of the proÞt function is negative for all p1 ≥ (a− h)q1 as long
as a ≥ 3h (see proof of Lemma 1 in the appendix). Thus, we have

Lemma 1 Given demand DM
I (p1, x) and for all a ≥ 3h, a monopolist offering a

product of quality q1, optimally chooses pM1 = (a − h)q1 and serves all consumers in
the market.

If the consumer population is given by faggII (θ, y), the demand function is

DM
II (p1, y) ≡


(a+ h− y) + 2h if p1 ≤ (a− h)q1,
(a+ h− y) + (a+ h− p1

q1
) if (a− h)q1 ≤ p1 ≤ yq1,

Min{2(a+ h− p1

q1
), 0} if p1 ≥ yq1.

If the waiting consumers are on the upper end of the taste scale, the demand has a

piecewise linear but concave shape and incentives to set low prices become weaker

since they would have to be applied over a larger mass of high valuation consumers.

The corresponding proÞts are single-peaked and it can be shown that

Lemma 2 For all a ≥ 5h, a monopolist that faces DM
II (p1, y) sets p

M
1 = (a − h)q1

and serves all consumers in the market.

The intuition for these two lemmas is straightforward. In Lemma 1, there is an addi-

tional mass of low valuation consumers that gives the monopolist a strong incentive

to decrease the price in order to serve all consumers. On contrary, if the bulk of

consumers is on the upper end of the taste scale, Þrm 1 is inclined to raise its price

and give up some of the low-valuation consumers. But as Lemma 2 shows, this is not

optimal as long as (2.1) holds.



Innovation Preannouncement in a Vertically Differentiated Industry 16

Let us now turn to the case in which the outside Þrm introduces the new product of

quality q2 in the second period and both Þrms play a simultaneous Nash equilibrium in

prices. As long as all consumers derive a positive net utility, the indifferent consumer

between buying q1 at p1 and q2 at p2 is at
p2−p1

q2−q1
. Consider Þrst a population faggI (θ, x)

and denote the demand for Þrm 1 as DD
I,1(p1, p2, x). For sufficiently low prices p1, Þrm

1 attracts all cohort 1 consumers and high valuation consumer of cohort 2. For higher

prices some waiting cohort 1 consumers start to switch to the high quality product.

DeÞne for notational convenience ∆q ≡ (q2 − q1) and ∆p ≡ (p2 − p1), then

DD
I,1(p1, p2, x) =


(x− a+ h) + 2h if ∆p > (a+ h)∆q,

(x− a+ h) + (∆p
∆q
− a) if x∆q ≤ ∆p ≤ (a+ h)∆q,

Min{2(∆p
∆q
− a+ h), 0} if ∆p < x∆q.

Note again that this demand schedule is piecewise linear and concave because Þrm

1 serves with a relatively high price the high-density segment of the consumer dis-

tribution. The corresponding proÞts are therefore single-peaked and one gets Þve

candidate solutions to the proÞt maximisation problem given a price p2 of the high-

quality Þrm: three corner solutions and two interior solutions. Accordingly, the best

response function for Þrm 1, RDI,1(p2, x), consists of Þve parts

RDI,1(p2, x) =



0 if p2 ≤ ep1,
1
2
[p2 − (a− h)∆q] if ep1 ≤ p2 ≤ ep2,
p2 − x∆q if ep2 ≤ p2 ≤ ep3,
1
2
[p2 − (2a− 2h− x)∆q] if ep3 ≤ p2 ≤ ep4,
p2 − (a+ h)∆q if p2 > ep4,

with ep1 ≡ (a−h)∆q, ep2 ≡ (2x−a+h)∆q, ep3 ≡ (2a−2h−3x)∆q and ep4 ≡ (4h+x)∆q.
This reaction functions is continuous, piecewise linear and monotonically increasing

in p2.
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The demand of the high-quality Þrm faced with a consumer distribution faggI (θ, x) is

DD
I,2(p1, p2, x) =


Min{(a+ h− ∆p

∆q
), 0} if ∆p > x∆q,

(x− ∆p
∆q
) + (a+ h− ∆p

∆q
) if (a− h)∆q ≤ ∆p ≤ x∆q,

(x− a+ h) + 2h if ∆p < (a− h)∆q.

This function is convex and the corresponding proÞt function can have two peaks.

Nevertheless, as long as a ≥ 3h, the marginal proÞts are negative for all p2 ≥ p1 +

(a− h)(q2 − q1). Thus, the best response function simpliÞes to

RDI,2(p1, x) = p1 + (a− h)(q2 − q1).

Solving for the Nash equilibrium, we get

Lemma 3 Consider a simultaneous price setting duopoly with a high quality Þrm q2,

a low quality Þrm q1 and the consumer population f
agg
I (θ, x) given above. For a ≥ 3h,

the unique Nash equilibrium in prices is given by pD1 = 0 and p
D
2 = (a − h)(q2 − q1).

The high-quality Þrm serves all consumers in the market.

This equilibrium with one active Þrm is mainly due to the assumption that the con-

sumers are not too heterogeneous with respect to the taste parameter. Additionally, if

the mass of low-valuation consumers is large, the Þrm with the high quality good has

an even stronger incentive to serve all consumers by driving the low-quality supplier

out of the market.

If Þrms are confronted with a faggII (θ, y) population, the respective demand function

of Þrm 1 is

DD
II,1(p1, p2, y) =


(a+ h− y) + 2h if ∆p > (a+ h)∆q,

(∆p
∆q
− y) + (∆p

∆q
− a+ h) if (a+ h)∆q ≥ ∆p ≥ y∆q,

Min{(∆p
∆q
− a+ h), 0} if ∆p < y∆q.
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This convex demand schedule implies a proÞt function that has two peaks for certain

values of p2. And this is reßected in a discontinuity in the best response pattern of

Þrm 1:

RDII,1(p2, y) =



0 if p2 < ep1
1
2
[p2 − (a− h)∆q] if ep1 ≤ p2 ≤ ep5,
p2

2
− y+a−h

4
∆q if ep5 ≤ p2 ≤ ep6,

p2 − (a+ h)∆q if p2 > ep6,
with ep5 ≡ (y+ y−a√

2
)∆q and ep6 ≡ 1

2
(3a+5h− y)∆q. This best response has a disconti-

nuity at p2 = ep6, where the low-quality Þrm is indifferent between serving some of the
bigger mass of high-valuation consumers at a low price and serving only low-valuation

consumers from cohort 2 at a rather high price.

Finally, if high-valuation consumers wait for the second period, the demand of Þrm 2

is

DD
II,2(p1, p2, y) =


Min{2(a+ h− ∆p

∆q
), 0} if ∆p > y∆q,

(a+ h− y) + (a+ h− ∆p
∆q
) if y∆q ≥ ∆p ≥ (a− h)∆q,

(a+ h− y) + 2h if ∆p < (a− h)∆q.

When looking at the corresponding proÞts of Þrm 2, we can again show that as long

as (2.1) holds marginal proÞts are negative for all p2 ≥ p1 + (a − h)(q2 − q1) and
positive for lower p2. Hence the reaction function is

RDII,2(p1, y) = p1 + (a− h)(q2 − q1).

Solving for the Nash equilibrium gives

Lemma 4 Consider a simultaneous price setting duopoly with the consumer popu-

lation faggII (θ, y) given above. For a ≥ 5h, the unique Nash equilibrium in prices is

given by pD1 = 0 and p
D
2 = (a−h)(q2−q1). The high-quality Þrm serves all consumers

in the market.
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As for the monopolist, the duopolist has an incentive to serve even the consumer

with the lowest valuation as long as average valuation is sufficiently large relative

to consumer heterogeneity. Therefore, condition (2.1) ensures us that in the second

period only one Þrm will be active in the market, the incumbent in the no innovation

case or the innovator otherwise. Furthermore, all waiting consumers will be served

in equilibrium at a price that equals the valuation (or difference in valuation in the

duopoly case) of the consumer with the lowest θ.

2.4 First Period

After Þrm 2 had the opportunity to preannounce the new product in t = 0, the

incumbent Þrm and the cohort 1 consumers update their initial belief ρ0 to eρ. And
with this additional information consumers decide whether to lock in product q1 or

to wait for the next period. The net utility of the Þrst alternative is given by U11(θ)

from (2.2). Plugging the second period equilibrium values in (2.3), we get for the

expected utility of waiting

E[U0(θ)] = eρ[δθq2 − δpD2 ] + (1− eρ)[δθq1 − δpM1 ] (2.4)

= eρδ[θq2 − (a− h)(q2 − q1)] + (1− eρ)δ[θq1 − (a− h)q1].
Note that both in the innovation and the no innovation event, all consumers expect

a positive net utility in the second period. Further, although the duopoly price of

the high quality good increases with the quality difference (q2 − q1), every consumer
beneÞts from a larger innovation step. Figure 2.2 depicts the indirect utility of the

two alternatives as a function of the consumers� taste parameter θ. Two parameter

regimes have to be distinguished. If ∆ ≤ 1eρδ , then the slope of U11(θ) is steeper than
the slope of E[U0(θ)], implying that high-valuation consumers are more inclined to

buy in the Þrst period than low-valuation consumers. If ∆ > 1eρδ , then the expected
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Figure 2.2: (Indirect) utility functions for ∆ ≤ 1eρδ (left) and for ∆ > 1eρδ (right)

quality of the second period purchase is sufficiently high to make the high-valuation

consumers more patient than the low-valuation consumers.

In both cases, one gets the position of the consumer who is just indifferent between

buying q1 in period 1 and waiting for the second period, by setting equal (2.2) and

(2.4). This yields

eθ(p) ≡ p− (a− h)eρδ(q2 − q1)− (1− eρ)(a− h)δq1
q1 − eρδ(q2 − q1) . (2.5)

This threshold value determines the composition of the demand for the incumbent�s

product. If ∆ ≤ 1eρδ , all consumers in [eθ(p), a + h] will buy q1 in the Þrst period
and and leave the market. The remaining Þrst cohort consumers wait for the second

period, generating a consumer population faggI (θ, x = eθ(p)). Thus, the incumbent�s
demand from cohort 1 consumers is split into a certain Þrst period demand and an

expected second period demand that depends on the launch of the new technology.

Therefore, the incumbent�s expected proÞt function for this parameter regime7 takes

7Notice that our notation is in accordance with the two different demand constellations discussed
in Section 2.3.
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the following form

E[ΠI(p,eρ)] ≡ p[a+ h− eθ(p)] + δ(1− eρ)(a− h)q1[(eθ(p)− (a− h)) + 2h],
which he maximises for given (updated) expectations eρ with respect to the Þrst period
price p. Note that the incumbent serves the whole market in the Þrst period if and

only if (1 + δ)(a− h)q1 − p ≥ E[U0(a− h)] or

p ≤ (1 + δ − eρδ)(a− h)q1. (2.6)

For ∆ > 1eρδ , the discounted, expected value of the new product is higher than the
�buy and keep� value of the incumbent�s product. For this reason, consumers with a

higher marginal utility of quality are more willing to wait for the second period. This

also means that for a given Þrst period price p, all consumers in [a− h,eθ(p)] will buy
q1 and leave the market, while the upper part of the cohort will wait for the second

period and generate a faggII (θ, y =
eθ(p)]) population. In this parameter regime (II),

the incumbent maximises

E[ΠII(p,eρ)] ≡ p[eθ(p)− (a− h)] + δ(1− eρ)(a− h)q1[(a+ h− eθ(p)) + 2h], (2.7)

and serves all cohort 1 consumers in the Þrst period if and only if (1+δ)(a+h)q1−p ≥
E[U0(a+ h)] or

p ≤ (a+ h+ (a− h)δ(1− eρ)q1 − eρδ2h(q2 − q1). (2.8)

Proposition 1 summarises the solution to the maximisation problem of the incumbent

in both parameter regimes. DeÞne

b∆ ≡ a+ 3h

4heρδ ,
then
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Proposition 1 For given expectations eρ, the incumbent�s optimal price in the Þrst
period is:

p∗ =


(1 + δ − eρδ)(a− h)q1 if 0 ≤ ∆ ≤ 1eρδ ,
(1 + δ − eρδ)(a− h)q1 − 2h(eρδ(q2 − q1)− q1) if 1eρδ ≤ ∆ ≤ b∆,
(1 + δ − eρδ)(a− h)q1 − (a−h)q1

2
if ∆ > b∆.

For innovation steps ∆ ≤ 1eρδ , the incumbent�s product has a higher expected quality
than the new technology which makes it optimal for Þrm 1 to preempt the market

with the price that makes the consumer with the lowest valuation indifferent between

buying and waiting. For intermediate values of ∆ (later referred to as parameter

regime II.1 ), the expected value of the new technology is higher than the quality of

the existing one but they are still close substitutes which implies that the incumbent

has relatively low costs (in terms of a relatively high Þrst period price p) to attract

the whole market. However, if ∆ exceeds the threshold value b∆ (region II.2 ), it is no
longer optimal to serve the highest valuation consumers with a lower price and the

incumbent only sells to low-valuation consumers, while all consumers θ in [eθ(p∗), a+h]
wait for the second period. The optimal price p∗ decreases with a higher quality q2

and higher expectations eρ since these variables make the consumers more patient and
require stronger price cuts from the incumbent in order to retain demand.

To conclude this section, we will look at the impact of the incumbent�s pricing strategy

on the residual demand RD from cohort 1 in period 2. Plugging the optimal price

from Proposition 1 into (2.5), one obtains

Corollary 1 The residual demand from cohort 1 consumers is given by

RD∗(eρ, .) ≡
 0 if 0 ≤ ∆ ≤ b∆,
2h− (a−h)q1

2[eρδ(q2−q1)−q1]
if ∆ > b∆.

In fact, in the present model, Þrm 2 is solely interested in the mass of cohort 1

consumers that is waiting since the price in the second period is independent of
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the composition of the consumer population. Corollary 1 shows that the incumbent

prefers to preempt the market as long as the upcoming innovation step is not too

large. For sufficiently high ∆, the mass of waiting cohort 1 consumers increases with

a higher q2, eρ, h and δ. It decreases with a higher a.
2.5 The Preannouncement Decision

When considering the preannouncement decision, the innovating entrant rationally

anticipates the behaviour of the incumbent in the pre-entry period and knows that his

signal is used by the market participants to update their priors. In this section, we will

look for Perfect Bayesian equilibria of this game, in which Þrm 2 chooses a cohort 1

demand maximising announcement strategy for beliefs that are updated according to

Bayes� rule. Let us denote β as the probability that Þrm 2 preannounces an innovation.

Two types of equilibria can be distinguished: no announcement (�pooling�) equilibria

and announcement equilibria.

In an announcement equilibrium (β∗=1)8, consumers and the incumbent know that

it is proÞtable for an entrant to preannounce its new product, i.e. they can infer from

the absence of an announcement that there has been no innovation, i.e.

eρ = E[innovation | no announcement] = 0. (2.9)

This Bayesian updating is anticipated by the entrant who has an incentive to prean-

nounce whenever the following condition holds

RD∗(ρ = 1, .) > RD∗(ρ = 0, .). (2.10)

In a pooling equilibrium (β∗ = 0), the entrant prefers not to announce the innovation.

Thus, consumers and Þrm 1 can interpret the absence of an announcement either

8Since we do not consider the case of untruthful preannouncements, any preannouncement
changes the priors to eρ = 1.
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with the possibility that there is no innovation or with the event that the innovation

is not preannounced. Their priors remain unchanged,

eρ = E[innovation | no announcement] = ρ0. (2.11)

This argument yields the following necessary and sufficient condition for pooling equi-

libria:

RD∗(ρ = ρ0, .) ≥ RD∗(ρ = 1, .). (2.12)

Proposition 2 gives the different equilibria regimes.

Proposition 2 Depending on the size of the innovation step ∆, we get the following

two types of Perfect Bayesian equilibria:

1. 0 ≤ ∆ ≤ ∆A ≡ a+3h
4δh
: The innovating Þrm does not preannounce (β∗=0) and

market participants hold the belief given in (2.11).

2. ∆ > ∆A: It is always proÞtable for the innovating Þrm to preannounce (β∗=1);

belief updating follows (2.9).

Figure 2.4 in the next section shows the graph of the preannouncement probability

β∗ as a function of the new product�s quality. The main comparative statics of these

equilibria are summarised in the next corollary.

Corollary 2 Comparative statics of the equilibria described in Proposition 2 yield:

∂∆A(.)

∂a
> 0,

∂∆A(.)

∂h
< 0,

∂∆A(.)

∂δ
< 0.

The rationale behind Corollary 2 is rather simple. Preannouncements will take place

for parameter constellations at which preemption is most expensive for the incumbent.

Ceteris paribus, this is true whenever the upcoming innovation step is sufficiently
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large or if the discount rate is high, which is equivalent to saying that time between

launch and preannouncement is short for a given discount rate. Furthermore, there

are more preannouncements in industries with a more heterogenous population of

consumers. This holds because inframarginal rents for consumers are higher when

tastes are more dispersed and this increases the value of waiting for higher quality. In

the limiting case, where h → 0, the incentive to preannounce disappears completely

because consumers foresee that the innovating Þrm can appropriate all the innovation

rents and this makes it easy for the incumbent to preempt the market in the pre-entry

period.

By contrast, the average consumer valuation has a negative impact on the occurrence

of an announcement because it raises disproportionately the value of today�s purchase

option compared to any expected value of future product generations. Interestingly,

the initial innovation probability ρ0 has no impact on the preannouncement behaviour

of an entrant. On the one hand, a higher innovation probability increases the incen-

tives for consumers to wait, but on the other, it makes the incumbent more aggressive

in the pre-entry period. Taken together, these effects cancel out.

2.6 Welfare Implications

Obviously, there are two potential welfare distortions in this model. First, we have

imperfect competition in both periods and second, there is an asymmetric information

constellation between the potentially innovating Þrm and the other market partici-

pants. This section will show that in some sense our social planner has to trade off

these two imperfections.

In order to analyse the welfare effects of the preannouncement behaviour in this

second-best world, we will take the market structure as given and concentrate on the

efficiency of the information transmission in the economy. Our welfare measure will
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be the ex ante expected total consumer surplus of cohort 1 which is the sum of the

expected net utility of the consumers who buy product q1 in period 1 and the expected

net utility of cohort 1 consumers who buy a product of quality qi, i = 1, 2, in period 2.9

For the computations of these measures, we have to return to the parameter regimes

in Proposition 1, since each of them corresponds to a different allocation of consumers

to products and periods and to a different Þrst period price of the incumbent. Denote

E[CSkr (eρ)] the interim consumer surplus with k = Inno (NoIn) standing for the (no)
innovation subgame and r ∈ {I, II.1, II.2} standing for the respective parameter
regime.10

If 0 ≤ ∆ ≤ 1eρδ ,all consumers in [a− h, a+ h] buy the incumbent�s product in the Þrst
period. Therefore, for given (updated) expectations eρ, the interim consumer surplus

for cohort 1 is the same whether there is an innovation or not, i.e.

E[CSInnoI (eρ)] = E[CSNoInI (eρ)] = 1

2h

Z b

a

((1 + δ)θq1 − (1 + δ − eρδ)(a− h)q1)dθ.
For 1eρδ < ∆ ≤ b∆, all consumers of cohort 1 buy product q1 and pay p∗ = (1 + δ −eρδ)(a− h)q1 − 2h(eρδ(q2 − q1)− q1), this yields

E[CSInnoII.1 (eρ)] = E[CSNoInII.1 (eρ)] = 1

2h

Z b

a

((1 + δ)θq1 − p∗)dθ.

Finally, in the second part of parameter region II the incumbent�s optimal Þrst period

price is (1+ δ−eρδ)(a−h)q1− (a−h)q1

2
and consumers with a valuation in [eθ(p∗), a+h]

decide to wait for the second period. Thus, the launch of a new product generates a

consumer surplus of

E[CSInnoII.2 (eρ)] = 1

2h

Z eθ(p∗)
a−h

((1 + δ)θq1 − p∗)dθ + 1

2h

Z a+h

eθ(p∗) δ(θq2 − (a− h)(q2 − q1))dθ.

9Note that consumers of cohort 2 are not affected by any preannouncements and can thus be left
out of the welfare considerations.

10The term �interim� refers to the moment after the signalling of the entrant but before the possible
introduction of a new product.
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If the innovation is not introduced, we have

E[CSNoInII.2 (eρ)] = 1

2h

Z eθ(p∗)
a−h

((1 + δ)θq1 − p∗)dθ + 1

2h

Z a+h

eθ(p∗) δ(θq1 − (a− h)q1)dθ.

Before proceeding to the ex ante measures, some comments on the interim sur-

plus functions are in order. First, it is straightforward to show that if there is

a new product, more certainty about it is always beneÞcial to the consumers, i.e.

E[CSInno(ρ00)] > E[CSInno(ρ0)] for ρ00 > ρ0. Higher innovation expectations entail a

higher threat of entry and thus a lower Þrst period price of the incumbent, an effect

that in the following will be referred to as the contestability effect. Moreover, in the

innovation event a higher eρ means that the purchase decision is based on better in-
formation (since the true probability of the launch of a new product is 1) and there

is less scope for a mismatch between consumers and products.

Nevertheless, in the no innovation event, better information (a lower eρ) is not always
beneÞcial. Figure 2.3 below depicts the interim consumer surplus in the innovation

and in the no innovation event. High expectations in the no innovation event lead to

a mismatch of consumers to periods and a loss of consumer rent due to waiting. But

once this mismatch is eliminated (which is the case in the regimes I and II.1 since

the incumbent preempts the market), the negative effect of the decreasing threat of

entry (implying a higher Þrst period price) is dominating and the consumer surplus

decreases for lower eρ.
With this in mind, let us now turn to the calculation of the optimal preannouncement

probability βopt. Assume βopt can be implemented exogenously by a social planner

that is maximising the ex ante expected consumer surplus. To compute this measure,

one has to take into account three different events and the respective beliefs held

by the incumbent and the consumers. First, with probability ρ0β, there will be an

innovation that is preannounced in period 0. Secondly, with probability ρ0(1 − β),
a new product is introduced but not preannounced and Þnally, with the remaining
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Figure 2.3: Expected (interim) consumer surplus

probability (1− ρ0) there will be no innovation. The absence of a preannouncement
given any β leads to the following Bayesian� belief updating

eρ(β) =
prob(innovation/no announcement)

prob(innovation/no announcement) + prob(no innovation)

=
ρ0(1− β)

ρ0(1− β) + 1− ρ0
=
ρ0(1− β)
1− ρ0β

.

Thus, the ex ante expected consumer surplus can be written as follows

E[CS(β)] ≡ ρ0βE[CSInno(1)] + ρ0(1− β)E[CSInno(
ρ0(1− β)
1− ρ0β

)] + (2.13)

(1− ρ0)E[CSNoIn(
ρ0(1− β)
1− ρ0β

)].

The announcement probability β enters this surplus function in two ways. In case

of an innovation, it inßuences the relative weight of preannouncement versus pooling

equilibria. In this respect, the effect of increasing β is - ceteris paribus - always

positive. But it also appears as a measure of the contestability of the market if no

preannouncement occurs, since it determines the belief updating. A higher β implies
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that consumers and the incumbent ascribe the absence of an announcement more to

the possibility that there is no innovation since eρ(β) decreases in β. And - as discussed
above - lower innovation expectations might have a negative impact on E[CSNoIn].

We demonstrate in the appendix that these two opposed effects generate a surplus

function that has two local maxima over a large range of parameters. One at β = 1

which takes advantage of the beneÞts of an announced innovation and one at a lower

level of β which relies on keeping up the threat of entry and thus reducing the market

power of the incumbent in the case of no innovation. The result of the social planner

solving the programmemaxβE[CS(β)] is explicitly derived in the appendix and given

in the following proposition. DeÞne

∆0 ≡ 1

δ
,

∆1 ≡ 4h+
p
ρ20(a− h) + 16h2(1− ρ0)2

4ρ0δh
and

∆2 ≡ a+ 3h

4ρ0δh
.

Then,

Proposition 3 If ∆ ≤ ∆0, consumers are indifferent between all β in [0,1]. Other-
wise, the preannouncement probability that maximises the expected consumer surplus

(2.13), is given by

βopt =


1 if ∆0 ≤ ∆ ≤ ∆1,

0 if ∆1 < ∆ ≤ ∆2,
1− (1−ρ0)(a+3h)q1

ρ0[4δh(q2−q1)−(a+3h)q1]
if ∆ > ∆2.

Figure 2.4 below sketches the graph of the efficient preannouncement probability βopt

as a function of the innovation step size ∆. For ∆ ≤ ∆0, the overall value of the

new technology is too small to make a difference. Consumers will choose the old

product independently of their beliefs about an innovation. By contrast, for larger
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innovation steps, the result of Proposition 3 reßects the trade off between information

transmission leading to a better match between consumers and products and the

contestability of the market implying low Þrst period prices in the no innovation

event. For rather low values of ∆, the threat of entry is not sufficient to force the

incumbent to set a low Þrst period price. On the other hand, a high ∆ increases the

value of a good match between products and consumers. Therefore, only intermediate

values of ∆ make it optimal to choose a low announcement probability β in order to

let consumers beneÞt from a contestable market.

1

0

*β
optβ

∆
0∆ A∆ 1∆ 2∆

β

Figure 2.4: Equilibrium (β∗) and efficient (βopt) announcement probability

Now, we are in the position to compare the efficient preannouncement with the market

outcome described in Proposition 2. Since it turns out that ∆0 ≤ ∆A ≤ ∆1 we obtain

Corollary 3 The market outcome, as described by Proposition 2, can yield efficient

preannouncement, excessive announcement and excessive pooling.

This overprovision result is due to the fact that from an ex ante point of view, the

innovative Þrm only considers the impact of the preannouncement on the market
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outcome if the new product can actually be launched. She does not take into account

the effect of her preannouncement behaviour if there is no innovation, i.e. the potential

entrant is not concerned about the contestability of the market. In a situation,

in which a preannouncement is optimal, its absence generates the certainty that

there is no upcoming innovation and without the threat of entry, the incumbent Þrm

regains market power and can extract more consumer surplus. Thus, the innovating

Þrm confers a negative externality to the consumers and tends to make too many

preannouncements.

��

excessive pooling

excessive
announcing

efficient 
announcing

efficient 
announcing

A∆

0∆

)( 01 ρ∆

)( 03 ρ∆

0ρ
0ρ

∆

Figure 2.5: Excessive announcing and pooling in the ∆− ρ0-space

Finally, let us compare the market outcome with two scenarios that are somehow

more realistic than the randomising choice of a social planner considered above. First,

consider a full information scenario (FIS), in which the result of the R&D process

is common knowledge in the economy. One might think, for example, of a law that

forces innovating Þrms to preannounce their new product at least a minimum time

before the actual launch. Or perhaps of an omniscient innovation agency that is able
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to gather and spread all information about upcoming product launches. Formally,

this means that the incumbent and the consumers can update their priors correctly

and we get

E[CSFIS] = E[CS(1)] = ρ0E[CS
Inno(1)] + (1− ρ0)E[CSNoIn(0)]. (2.14)

Further, consider a scenario, in which a law prohibits preannouncements of any kind.

In such a no information scenario (NIS), consumers would derive a surplus of

E[CSNIS] = E[CS(0)] = ρ0E[CS
Inno(ρ0)] + (1− ρ0)E[CSNoIn(ρ0)]. (2.15)

The next corollary compares the consumers� surplus in the full information and the

no information scenario. DeÞne

∆3 :=
2
p
(a− h)2 + 16h2

δ(1 + ρ0)
p
(a− h)2 + 16h2 − δp(1 + ρ0)2(a− h)2 + 16h2(1− ρ0)2 ,

then

Corollary 4 If ∆1 < ∆ < ∆3, then E[CSNIS] > E[CSFIS], else E[CSNIS] ≤
E[CSFIS].

Figure 2.5 illustrates this result in the ∆ − ρ0−parameter space and relates the effi-
cient consumer policy to the market outcome of Proposition 2. Consumers would be

best off if product announcements were banned for all ∆ in [∆1,∆3], that means if

the upcoming innovation step is intermediate but the innovation probability is rather

high. By contrast, if ∆ is in [∆0,∆
A] the best consumer policy is to enforce prean-

nouncements in order to prevent excessive pooling of the innovating Þrm. Eventually,

in the remaining parameter space, the market outcome coincides with the consumers�

optimal choice between FIS and NIS.
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2.7 Concluding remarks

This paper analyses the role of innovation preannouncements in markets with im-

perfect competition and rational, forward looking consumers. For innovative Þrms,

preannouncements are a way to induce potential customers to wait for the innovation

instead of buying the presently available technology. But in the presence of an incum-

bent Þrm with market power, this advantage has to be traded off with the possibility

of a strategic reaction of the latter in the form of preemptive pricing in the pre-entry

period. Our model incorporates the intertemporal product choice of consumers under

uncertainty into the framework of a vertically differentiated industry and enables us

to rationalise some of the Þndings of an empirical study on product preannounce-

ments by Eliahsberg and Robertson (1988). In analysing interview data of 75 Þrms,

they concluded that preannouncements are more likely if the measure for competitive

environment is low, if the upcoming innovation step is large and if consumers are

sufficiently forward-looking.

More surprisingly, the welfare analysis of our model shows that, from the ex ante

point of view of the consumers, the signalling equilibria of the market can lead to

under- and overprovision of preannouncements. This result is due to the fact that

a policymaker has to trade off transmission of information in the economy and the

contestability of the pre-innovation market. In this vein, a ban on preannouncements

is the best consumer policy in constellations in which the industry is expected to

grow fast and the next innovation step is neither too large nor too small. Innovation

preannouncements have to be enforced when the new technology is not much better

than the old one.

To conclude, let us discuss some limitations of this work that could serve as possible

starting point for extensions of the framework. First, we conÞned our analysis to the

case in which the incumbent can not introduce the new technology. This extension

would enrich the possible strategic interaction of the model, in particular, it would
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allow for the use of product preannouncements as a means to deter entry into the

industry, a strategy that is often mentioned in relation with Microsoft�s product

introductions.

A second issue is the exclusion of untruthful preannouncement which enabled us to

concentrate on the �strategic reaction� argument. In the absence of a contract between

consumer and preannouncing Þrm, the costs of waiting for any new technology will

be sunk as soon as the Þrm is not able to introduce the innovation at the promised

date. Thus, in a setting with more than two periods, the innovating Þrm could be

tempted to preannounce the product too early to make consumers wait and postpone

the launch afterwards. Rational consumers would anticipate this and would no longer

believe in announcements without commitment. Therefore, in order to make trustable

announcements the innovative Þrm would additionally need some commitment mech-

anisms (like reputation or sunk costs) to make consumers wait and this might dilute

the communication process between the Þrm and the market to some degree but the

qualitative nature of the effects discussed in this work would not change.
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2.8 Appendix

Proof of Lemma 1

The proÞt function of the monopolist is piecewise concave and continuous. For Lemma

1 to hold it suffices to show that the marginal proÞt is negative for all p1 ≥ (a−h)q1.
For (a− h)q1 ≤ p1 ≤ xq1, the marginal proÞt is a+ h+ x− 4p1

q1
, which is negative for

all p1 >
q1

4
(a+h+x). This threshold is smaller than (a−h)q1 for all x in [a−h, a+h]

if and only if a > 3h. For xq1 ≤ p1 ≤ (a + h)q1, the marginal proÞt is a + h − 2p1

q1
,

which is negative for all p1 >
q1

2
(a + h). This threshold is smaller than xq1 for all x

in [a− h, a+ h] if and only if a > 3h. Thus, p∗1 = (a− h)q1.¥

Proof of Lemma 2

For (a− h)q1 ≤ p1 ≤ yq1, the marginal proÞt is 2(a+ h)− x− 2p1

q1
, which is negative

for all p1 >
q1

2
(2a + 2h − x). This threshold is smaller than (a − h)q1 for all y in

[a−h, a+ h] if and only if a > 5h. For p1 > yq1, the marginal proÞt is 2(a+ h)− 4p1

q1
,

which is negative for all p1 >
q1

2
(a+ h). This threshold is smaller than yq1 for all y in

[a− h, a+ h] if and only if a > 3h. Thus, if a > 5h, p∗1 = (a− h)q1.¥

Proof of Lemma 3

Given the piecewise linear and globally concave demand schedule, the proÞt function

of Þrm 1 is always single-peaked. The interior maximum for x∆q ≤ ∆p ≤ (a+ h)∆q
is then deÞned by ∂[p1((x− a+ h) + (∆p∆q − a))]/∂p1 = 0, which yields

p1 =
1

2
[p2 − (2a− 2h− x)∆q].

It is straightforward to check that this value is in the regime range whenever ep3 ≤ p2 ≤ep4,with ep2, ep3 deÞned in the text. Equivalently, the interior solution for ∆p < x∆q is
given by ∂[p12(

∆p
∆q
− a+ h)]/∂p1 = 0 or

p1 =
1

2
[p2 − (a− h)∆q].
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This solution holds for all p2 in [ep1, ep2]. Finally, taking into account the three possible
corner solutions, one can compose the reaction function RDI,1(p2, x).

Firm 2�s proÞt function is continuous. In order to show that RDI,2(p1, x) = p1 + (a −
h)∆q, it suffices to show that the marginal proÞt is negative for p2 ≥ p1+ (a− h)∆q.
For (a−h)∆q ≤ ∆p ≤ x∆q the marginal revenue is negative if p1 > 1

2
[5h−3a+x]∆q,

which is negative and holds for all non-negative p1 and all x whenever a > 3h. For

∆p > x∆q the marginal revenue is negative if p1 > 1
2
[a+h−2x]∆q, which is negative

and holds for all non-negative p1 and all x whenever a > 3h.

Hence, for a > 3h, it is easy to check that (p∗1 = 0, p∗2 = (a − h)∆q) is the unique
solution to the equation system

p1 = R
D
I,1(p2, x) and p2 = R

D
I,2(p1, x).

which proves the lemma.¥

Proof of Lemma 4

Consider Þrm 1�s maximisation problem. The interior maximum for (a + h)∆q ≥
∆p ≥ y∆q is given by

p1 =
p2
2
− y + a− h

4
∆q

and the interior maximum for ∆p < y∆q by

p1 =
1

2
[p2 − (a− h)∆q].

Check that Þrm 1�s proÞt function has two peaks for p2 in [12(3x−a−h)∆q, (2x−a−
h)∆q]. The local maximum value of the smaller maximiser is larger than the local

maximum of the larger one whenever p2 > ep6, with ep6 given in the text.
Consider the maximisation problem of Þrm 2. For y∆q ≥ ∆p ≥ (a − h)∆q, its
marginal revenue is negative whenever p1 > (4h− y)∆q, which is negative and holds
for all non-negative p1 and all y whenever a > 5h. For∆p > y∆q the marginal revenue
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is negative if p1 > [3h−a]∆q, which is negative and holds for all non-negative p1 and
all x whenever a > 3h.

Hence, for a > 5h, we have the reaction functions given in the text and from this, it

is straightforward to check that (p∗1 = 0, p
∗
2 = (a− h)∆q) is the unique mutually best

reply.¥

Proof of Proposition 3

The analysis of the consumer surplus E[CS(β)] is rather tedious because dependent

on beliefs and other parameters the economy can be in one of the three regimes

identiÞed in Proposition 1. We will proceed in two steps. First, we will identify local

maxima over the whole parameter range. And then, for all regions where there are

more than one, we will pick the global maximiser.

Given a preannouncement probability β, the economy is in region II.2 whenever 0 ≤
β ≤ β1 ≡ ρ0δ(q2−q1)−q1

ρ0[δq2−(1+δ)q1]
, it is in region II.1 if β1 < β ≤ β2 ≡ 1− (1−ρ0)(a+3h)q1

ρ0[4δh(q2−q1)−(a+3h)q1]

and in region I for β2 < β ≤ 1. Note that β1 > 0 if ∆ > ∆2 and β2 > 0 if ∆ > b∆ >
∆0 (∆0, ∆2, b∆ are deÞned in the text). Some calculations give the slopes of the ex

ante consumer surplus in these three parameter ranges. For region I, one gets

∂E[CSI(β)]

∂β
=


0 if 0 ≤ ∆ ≤ ∆0

2h[ρ0[δq2 − (1 + δ)q1] > 0 if ∆0 ≤ ∆ ≤ ∆A
16h2(δ∆q−q1)+(a−h)2

16h(δ∆q−q1)
> 0 if ∆ > ∆A.

Region II.1 only exists if ∆ > b∆ thus,

∂E[CSII.1(β)]

∂β
=

 0 if b∆ ≤ ∆ ≤ ∆A
[4hδ∆q+(a−3h)q1][(a+3h)q1−4hδ∆q]ρ0

16h(δ∆q−q1)
< 0 if ∆ > ∆A.

Finally, in region II.2 which exists for ∆ > ∆2,

∂E[CSII.1(β)]

∂β
=

δ2(a− h)2(∆q)2q21(1− ρ0)2ρ0
16h(δ∆q − q1)[q1(1 + ρ0δ − (1 + δ)ρ0β)− (1− β)ρ0δq2]2

> 0.
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At least four conclusions can be drawn from this. First, for 0 ≤ ∆ ≤ ∆0, the only

relevant region is I and in this region the slope is 0, i.e. consumers are indifferent.

Second, for ∆0 ≤ ∆ ≤ ∆A, there is only local maximum at β = 1 since the slope in

region II.1 is 0 and positive for higher β in region I. Third, for ∆A ≤ ∆ ≤ ∆2, two
local maxima exist, one at β = 0 and one at β = 1. Finally, if region II.2 exists for

∆ > ∆2, the two local maxima are β = β2 and β = 1 because
∂E[CS(β)]

∂β
> 0 for all β

in [0,β2].

To conclude, we look for the global maximiser in all cases in which we have more

than one local maximiser. For ∆A ≤ ∆ ≤ ∆2, the choice is between β = 0 and β = 1.
Some calculations yield that E[CS(1)] ≥ E[CS(0)] if ∆ ≤ ∆1 with ∆1 given in the

text. For ∆ > ∆2 we get that E[CS(β2)] ≥ E[CS(1)]. This completes the proof.¥

Proof of Corollary 3

The only change to the previous proof of Proposition 3 is that for ∆ > ∆2 we have

to compare the local maxima at β = 0 and β = 1. Straightforward calculations show

that E[CS(1)] ≥ E[CS(0)] if and only if ∆ > ∆3(> ∆2).¥
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Chapter 3

Two Notes on Models with

Endogenous Price Leadership

3.1 Introduction

Price leadership in markets is an ever recurring topic in industrial organisation and

competition policy since its Þrst discussion by Stigler (1947) and Markham (1951).

These two authors assumed dominant Þrm markets with one Þrm controlling at least

50 percent of the industry�s output and a price taking fringe of small Þrms. They con-

cluded that the large Þrm should have an incentive to commit Þrst to an �umbrella�

price for the industry with all small Þrms following suit. All later work concen-

trated on extending this dominant Þrm paradigm to oligopolistic industries where

Þrms realise their interdependence, act strategically and where leadership arises en-

dogenously. Our work takes on this line of research and challenges two of their main

Þndings.

In the Þrst part, we analyse a vertically differentiated industry in which two Þrms

Þrst set qualities and then prices. We show that when one allows for endogenous price

leadership it is the high-quality Þrm that takes the lead and that equilibrium prices
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are higher compared to simultaneous price setting. Nevertheless, the emergence of

price leadership affects the quality choices of Þrms in the Þrst stage. In particular, less

aggressive sequential price setting in the short run increases the incentive of the low-

quality Þrm to invest in quality and therefore to decrease product differentiation in

the long run. Consequently, price leadership implies higher prices and higher average

product quality which in sum may lead to a net gain for consumers.

In a second model, we investigate the role of Þrm size as a determinant of price

leadership in industries. Previous studies showed that if Þrm size is measured by

capacity then price leadership of the large Þrm arises endogenously because the small

capacity Þrm stands to lose more by being undercut by a large rival. Consequently,

the smaller Þrm should have a stronger preference for assuming the followership role.

Deneckere and Kovenock and Lee (1992) claim that the same holds when one identiÞes

Þrm size with the base of loyal costumers. Our note demonstrates that this result

crucially depends on the size of switching costs for the consumers. In Deneckere et

al. (1992) it is assumed that switching costs are prohibitive, i.e. once a consumer has

bought a brand he will never switch afterwards. Thus, demand consists of consumers

that are either locked in at Þrm 1 or at Þrm 2 or are not brand loyal at all. The

endogenous determination of moves emerges from the fact that the small base Þrm

has a greater incentive to follow in order to undercut and grab the unlocked customers

that are in the market (while the large base Þrm would stand to lose more from

undercutting since a low undercutting price would also have to be applied over the

larger loyal base). In this work, we reconsider the framework of this model but allow

for non-prohibitive switching costs. Once consumers are able to switch the supplier at

some Þnite cost, incentives change because both Þrms can undercut as well as being

undercut. We will show that the threat of being undercut is higher for the Þrm with

the large customer base and that endogenous price leadership arises with the smaller

Þrm as leader. Moreover, we will demonstrate that consumer switching costs give

rise to what has been called - but to the best of our knowledge never been found -
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in this literature a �marriage in heaven�: one Þrm strictly prefers to lead, the other

one to follow. Finally, welfare considerations indicate that over a large range of the

parameter space the endogenously emerging price leadership pattern maximises total

welfare and that only for rather symmetric customer bases simultaneous price setting

would be welfare improving.

Both parts of this paper are related to the steadily growing body of literature on

industry leadership that analyses under which conditions Þrms have incentives to

lead, to follow or to move simultaneously. First results were concerned with the

nature of competition between Þrms. It was found that quantity competition induces

a struggle for industry leadership while price competition gives Þrms a preference

for followership (cf. Gal-Or (1985), Dowrick (1986)). When the strategy space is

extended to quantity-price pairs Þrms prefer to follow rather than to lead (Boyer and

Moreaux (1987)). While we assume price competition in both models below, it is

only in the Þrst one that Þrms display a strict preference to follow.

A second issue is the identity of the industry leader. It has been argued that the Þrm

with

� the larger capacity (Deneckere and Kovenock (1992)),

� the higher costs (Ono (1972), Deneckere and Kovenock (1992)),

� the better information about market conditions (Rotemberg and Saloner (1990),
Cooper (1996)) and

� the higher cost variance (Albaek (1990))

can be expected to be the industry leader. In this paper, we add two more Þrm

characteristics to this list, namely, a high product quality and a small loyal customer

base.
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Finally, from a methodological point of view, the literature on price leadership can be

divided in two different approaches to the endogenisation of the leadership structure.

The �choice of role� approach systematically introduced by Hamilton and Slutsky

(1990) extends the original basic game by adding a preplay stage at which Þrms

simultaneously decide whether to move early or late in the basic game. The basic

game is then played according to these timing decisions. The second approach is to

explicitly model the dynamic game of price setting as it is demonstrated in Deneckere

and Kovenock (1992) or Maskin and Tirole (1988). In this paper, we follow the Þrst

approach and claim that our results should also hold in a dynamic version of the

model.

This work is organised as follows. In the next section we analyse the �classical�

model of vertically differentiated industry. In section 3 we look at the model with

consumers� switching costs while the last section is meant for some concluding remarks

and comments on the empirical relevance of the two models. The inner organisation

of section 2 and 3 is identical. We Þrst characterise price equilibria, then investigate

the incentives for an endogenous determination of the timing of price announcements

and Þnally compare the equilibrium outcome with the social optimum. All relevant

proofs are delegated to the appendix.

3.2 Price leadership and vertical differentiation

3.2.1 The Model

Consider the following model of vertical product differentiation introduced by Shaked

and Sutton (1982). A consumer�s utility is described by U = θqi−pi if he consumes a
good of quality qi and pays price pi and by 0 otherwise. The parameter θ which mea-

sures the taste for quality is uniformly distributed across the population of consumers

in [0, 1]. Total mass of consumers is normalised to 1.
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Suppose there are two Þrms, 1 and 2, that produce and offer products of quality

q1 and q2 at prices p1 and p2. To simplify the exposition, assume that Þrms have

no production costs. Suppose further that only product qualities in [0, q] can be

implemented but that this choice is costless.1

The time structure of the model is as follows. In the Þrst stage, Þrms simultaneously

choose the quality qi of their product. In the second stage, Þrms will set their prices

pi. In order to endogenise the timing of (committed) price quotes we will consider

a simple timing subgame in which Þrms are assumed to choose the point in time of

their price announcement. Afterwards, all prices are set accordingly and consumers

choose whether to buy product 1, 2 or not all. This overall structure insinuates that

quality choices are a Þrm�s long term variable whereas prices can be changed more

often. We look for subgame perfect equilibria of the game and solve the model by

backward induction.

3.2.2 Price competition

In the last stage, qualities have already been chosen and the sequence of price quotes

is agreed upon. In order to analyse the price competition between the two Þrms, we

will proceed in two steps. In the spirit of subgame perfectness, we will Þrst derive the

demand functions for any given pair of prices and then solve for a Nash equilibrium

in prices. Assume without loss of generality q1 > q2.

The consumer eθ who is indifferent between buying product 1 or 2 can be found by
solving eθq1 − p1 = eθq2 − p2, which yields eθ = p1−p2

q1−q2
. The consumer that is indifferent

between buying the low quality or not all is at p2

q2
. Thus, the demand for the high

quality good q1 consists of all high valuation consumers in [eθ, 1] while consumers in
1This formulation concentrates on the pure product differentiation effects and allows for explicit

solutions of all subgames. Introducing linear quality costs does not qualitatively affect any of our
results.
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[p2

q2
,eθ] choose q2. Hence, demand functions are given by

D1(p1, p2) = (1− p1 − p2
q1 − q2 ), (3.1)

D2(p1, p2) = (
p1 − p2
q1 − q2 −

p2
q2
).

With no marginal costs, Þrms maximise piDi(p1, p2) with respect to pi taking the other

Þrm�s choice as given. Simple calculations yield the respective reaction functions

pR1 (p2) =
p2 + q1 − q2

2
(3.2)

and

pR2 (p1) =
p1q2
q1
. (3.3)

As one can easily check, prices are strategic complements, i.e. a Þrm�s optimal price

increases in its rival�s price. Note however, that the low-quality Þrm�s incentive to

follow price increases of the high-quality supplier is lower the greater the quality

differential.

When considering the endogenous timing of price announcements in this duopoly,

three situations can be distinguished. First, Þrms may set prices simultaneously.

Solving the equation system given by (3.2) and (3.3) with respect to (p1, p2), we

obtain the following Bertrand-Nash-equilibrium in prices

psim1 (q1, q2) =
2q1(q1 − q2)
4q1 − q2 , psim2 (q1, q2) =

q2(q1 − q2)
4q1 − q2 (3.4)

and the corresponding proÞts

Πsim1 (q1, q2) =
4q21(q1 − q2)
(4q1 − q2)2 , Π

sim
2 (q1, q2) =

q1q2(q1 − q2)
(4q1 − q2)2 . (3.5)

It is obvious that the price and the proÞts of the high-quality Þrm increase in the

quality differential (q1 − q2). By contrast, an increase in product differentiation has
a non-monotonous impact on price and proÞts of the low-quality Þrm 2, which Þrst

increase due to stronger product differentiation but then decrease.



Endogenous Price Leadership 47

Secondly, if the high-quality Þrm commits to a price before Þrm 2, it takes the latter�s

optimal reaction into account and maximises p1D1(p1, pR2 (p1)) with respect to p1. This

yields

p121 (q1, q2) =
q1(q1 − q2)
2q1 − q2 , p

12
2 (q1, q2) =

q2(q1 − q2)
4q1 − 2q2 (3.6)

as equilibrium prices and

Π121 (q1, q2) =
q1(q1 − q2)
4q1 − 2q2 , Π

12
2 (q1, q2) =

q1q2(q1 − q2)
4(2q1 − q2)2 (3.7)

as equilibrium proÞts.

Finally, if the low-quality Þrm takes the price leadership it maximises p2D2(pR1 (p2), p2)

which results in an equilibrium given by

p211 (q1, q2) =
(4q1 − q2)(q1 − q2)

8q1 − 4q2 , p212 (q1, q2) =
q2(q1 − q2)
4q1 − 2q2 (3.8)

and

Π211 (q1, q2) =
(4q1 − q2)2(q1 − q2)
16(2q1 − q2)2 , Π212 (q1, q2) =

q2(q1 − q2)
16q1 − 8q2 . (3.9)

Let us compare prices and returns of the two Þrms in the different settings

Remark 1 For given qualities (q1, q2), we obtain

p121 (q1, q2) > p
21
1 (q1, q2) > p

sim
1 (q1, q2)

and

p122 (q1, q2) = p
21
2 (q1, q2) > p

sim
2 (q1, q2).

For the Þrms� proÞts, i=1, 2, j=3-i, we get:

Πjii (q1, q2) > Π
ij
i (q1, q2) > Π

sim
i (q1, q2).
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The high-quality Þrm can charge the highest price when it moves Þrst and the lowest

when prices are set simultaneously. The low-quality Þrm sets the same price as leader

or follower but a lower price whenever they set prices simultaneously. By consequence,

we get, when comparing equilibrium proÞts, the well-known result that Þrms prefer to

follow rather than to take the lead under price competition (Gal-Or (1985), Dowrick

(1986)). Nevertheless, they also prefer both to take the lead instead of setting prices

simultaneously.

3.2.3 Endogenous Price Leadership

With the results from the previous section, we can now investigate the endogenous

timing of price quotes. The standard approach to this problem is to introduce a

preliminary stage in which Þrms are assumed to choose their �roles� in the pricing

game. Assume that only two dates of price quoting are possible, t0 and t1, and that

Þrms simultaneously commit to one of these two dates (see Hamilton and Slutsky

(1990) or Robson (1990) for a more detailed description of this game). Figure 3.1

gives the payoff matrix of this coordination game.
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),( 211 qqsimΠ

),( 212 qqsimΠ

Figure 3.1: Pay-off matrix of the timing game

It is then straightforward to check that
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Lemma 1 Sequential price moves are the only two Nash equilibria in pure strategies

of the timing game.

The proof of this lemma is obvious from Remark 1 in the preceding section. Firms

would never choose the same date since waiting or postponing the price quote always

yields higher proÞts. Further, any unilateral deviation from leadership or followership

is never proÞtable. Therefore, this game has two strict Nash equilibria for all possible

product qualities. Standard reÞnements like perfectness, properness, or strategic

stability do not select among strict Nash equilibria. In addition to this, each Þrms

prefers the equilibrium in which it follows, thus none of the two equilibria Pareto

dominates the other one. Nevertheless, there is one solution concept that is typically

used to select among equilibria in this kind of situation, the risk dominance criterion

introduced by Harsanyi and Selten (1988). This criterion selects equilibria by deÞning

a measure for the �riskiness� of equilibrium points. This is done by calculating for

each equilibrium the gains each player can make by predicting correctly that the

other player will play the respective equilibrium strategy instead of predicting wrongly

(and reacting optimally to this false prediction). Then, the risk dominance criterion

states that the equilibrium with the highest product of the players� gains is to be

chosen. Besides the intuition and axiomatisation provided by Harsanyi and Selten

(1988), there are several reasons given in the literature why risk dominance could be

considered a good equilibrium selection criterion. Perhaps the most persuasive one is

that it has well performed in experimental analysis (see Cabrales and Garcia-Fontes

and Motta (2000) and references therein). The proof of Proposition 1 is given in the

appendix.

Proposition 1 For all qualities q1, q2, the risk dominance criterion selects the equi-

librium with the high-quality Þrm setting its price at t0 and the low-quality Þrm setting

its price in t1.



Endogenous Price Leadership 50

Before moving to the quality choices in the Þrst stage of the game, some comments on

the coordination game that we used above are in order. We want to argue that this

coordination game should be considered as a strategic equilibrium selection game. To

understand why, take the above model but look at a two stage �waiting game� for the

two Þrms. In the Þrst stage, Þrms have the choice between either setting a price that

they can not change afterwards or waiting for the second period. In t = 2, all Þrms

that have not set a price in the Þrst stage can do so in this period. After stage 2,

consumers get to know the prices and decide which product to buy. Finally, proÞts

are realised. This type of waiting game seems to be a natural candidate for modelling

price leadership but it has the inconvenient property that all possible orders of moves

can be sustained as an equilibrium outcome, namely simultaneous price setting in

period 1, the high-quality Þrm as price leader or the low-quality Þrm as price leader.

Moreover, it turns out that prices and proÞts in these equilibria coincide with the

price equilibria of the previous section. Therefore, given that equilibrium selection is

needed anyway, we chose to do it in the strategical model proposed by Hamilton and

Slutsky (1990).

3.2.4 Quality competition

In the Þrst stage of the game, Þrms simultaneously choose their qualities without

further costs and anticipate the endogenous price setting order in the second stage.

It is easy to check that the high quality supplier always gains more than the low

quality Þrm. Thus, in our symmetric setting both Þrms would like to choose the

highest possible quality q. But since identical qualities would entail zero proÞts, one

gets two perfectly symmetric Nash equilibria. One in which Þrm 1 offers q and Þrm

2 a best response to it and one with reversed roles. Let us assume, without loss

of generality that Þrm 1 is the high-quality supplier and offers the highest possible

quality q. Firm 2 responds optimally to this quality by maximising Π122 (q1 = q, q2)
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from (3.7) with respect to q2. It follows that

Proposition 2 In a subgame perfect Nash equilibrium, Þrm 1 chooses q∗1 = q and

Þrm 2 chooses q∗2 =
2
3
q.

The low-quality Þrm has an incentive to evade price competition by increasing product

differentiation. In the subgame perfect equilibrium in which the high-quality Þrm is

price leader in the second stage, the low-quality Þrm optimally chooses a quality that

is 2
3
of the highest possible quality. In order to compare this equilibrium outcome

with situations in which another price setting order would be implemented in the

second period, we will give the optimal quality choices for these subgames in

Remark 2 If Þrms were to choose prices simultaneously in the second stage, the low-

quality Þrm would choose qsim2 = 4
7
q h 0, 571q and if the low quality supplier would

act as price leader, it would set q212 = (2−
√
2)q h 0, 585q in the Þrst stage.

Thus, with simultaneous price setting in the short run, Þrms choose the highest degree

of product differentiation since price competition is most intense. If they anticipate

that they will set prices sequentially, they will decrease product differentiation with

the low-quality Þrm choosing a higher quality. In this sense, average product quality

is maximised when Þrms can agree on price leadership of the high-quality Þrm.

Interestingly, the different quality choices under the different price setting orders in

the second period lead to a change in the price and proÞts ranking of Remark 1.

Plugging the optimal qualities into the second period prices, we now get

Remark 3 Comparing equilibrium prices under the different price setting regimes

with endogenous qualities yields

p121 (1, q
12
2 ) = p

21
1 (1, q

21
2 ) = p

sim
1 (1, qsim2 )
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and

p212 (1, q
21
2 ) > p

12
2 (1, q

12
2 ) > p

sim
2 (1, qsim2 ).

Now compare Remark 1 and 3. For given exogenous qualities the high-quality charged

higher prices under sequential moves. But this price difference is outweighed when

quality is endogenised and Þrms anticipate the price equilibrium they play in the

short run. This effect beomces important when looking at welfare in the next section.

3.2.5 Welfare

Let us Þnally assess the consequences of the above results for the economy�s welfare.

In particular, we are interested in comparing the welfare levels for the overall game

for the different orders of move in the second stage. DeÞne consumer surplus CS as

the sum of all consumers� utility. Thus,

CS(p1, p2, q1, q2) =

Z eθ
p2
q2

(θq2 − p2)dθ +
Z 1

eθ (θq1 − p1)dθ. (3.10)

The total welfare W of the economy is the sum of consumer surplus and the Þrms�

proÞts,

W = CS +Π1 +Π2 (3.11)

Proposition 3 compares these measures for the cases of sequential and simultaneous

price setting in the second period.

Proposition 3 It holds that

CS1,2 > CSsim > CS2,1

and

W 2,1 > W sim > W 1,2.
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Proposition 3 states our main result. Price leadership in the short run can be beneÞcial

to consumers and society when it affects Þrms� long term variables which are in this

case product qualities. More speciÞcally, consumers are best off under the derived

subgame perfect Nash equilibrium, i.e. in the equilibrium in which the high-quality

Þrm takes the lead in the price setting game. The loss in the intensity of price

competition through sequential moves is made up by the increased average product

quality in the economy. It is easy to see from Proposition 3 (but also derived in the

appendix) that the sum of the Þrms� proÞts is higher in the two other price subgames.

With equal weights for consumers� and Þrms� rents, the Þrms� losses outweigh the

consumers� gains and the overall economy would be better off if Þrms chose their

prices simultaneously or if the low quality Þrm took the lead.
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3.3 Price leadership in markets with consumers�

switching costs

3.3.1 The Model

We consider an industry with two (active) Þrms, i = 1, 2, that produce a non-storable

good at a constant and identical unit cost which, for simplicity, is assumed to be zero.

Demand is derived from a continuum of consumers with mass 1 who are differentiated

along two dimensions, purchase history and brand switching costs. In particular,

we will assume that a fraction α of all consumers has previously bought Þrm 1�s

product while the remaining (1 − α) consumers purchased Þrm 2�s product. In all

what follows, we will consider Þrm 1 as the Þrm with the large customer base, thus

we assume that 1
2
≤ α < 1. Although the two products are functionally identical,

previous consumption of one of the goods creates some kind of lock-in and we assume

that consumers differ in their costs s of switching from the previously bought brand

to the new one. More precisely, let us suppose that the switching costs of consumers

are uniformly distributed on the interval [0, σ], with σ > 0. Hence, for any s0 in

[0, σ], the mass of brand 1 consumers whose switching costs are not larger than s0 is

given by 1
σ
αs0 and σ/2 is the average switching cost in the industry. Figure 3.2 below

illustrates the initial consumer distributions.

In the considered time span, each consumer buys one unit of the product. If he opts

to buy his previous brand again, he gets a net utility of

Uii = −pi, (3.12)

where i = 1, 2 and pi is the price that Þrm i charges. If a consumer with switching

costs s who has previously bought brand i switches to brand j, i 6= j, he gets

Uij(s) = −pj − s. (3.13)
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Figure 3.2: Initial consumer distribution

We assume that α, σ are common knowledge but that Þrms are unable to determine

to which group any given consumer belongs, i.e. interpersonal price discrimination

with respect to s is not possible.

The time structure of the model is as follows. First, we endogenise the price lead-

ership by assuming a timing subgame in which Þrms choose the time of their price

commitment. Then, Þrms set their prices accordingly and Þnally, consumers choose

one of the two brands or the outside option of value 0. We look for subgame perfect

Nash equilibria of this game and solve the model backwards.

We will start by deriving the demand for both Þrms for any given prices p1, p2. If one

Þrm sets a lower price than its rival, it will attract some or all of its rival�s previous

customers. The size of this ßow depends on the price difference, the average switching

costs and the size of the customer base of the Þrm with the higher price. Suppose

that p1 < p2, then Þrm 1 will induce all his old customers to repeat purchases and get

all customers from Þrm 2�s base with switching costs s ≤ p2−p1. Equivalently, if Þrm
1 charges a higher than Þrm 2, it will lose customers from his base with switching
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costs lower than p1 − p2. Thus, Þrm 1�s demand is

D1(p1, p2) =



1 if p1 < p2 − σ,
α+ (1− α)p2−p1

σ
if p2 − σ ≤ p1 ≤ p2,

α− α p1−p2

σ
if p2 ≤ p1 ≤ p2 + σ,

0 if p1 > p2 + σ,

(3.14)

while Þrm 2 serves the remaining customers and has a demand of

D2(p1, p2) =



1 if p2 < p1 − σ,
(1− α) + αp1−p2

σ
if p1 − σ ≤ p2 ≤ p1,

(1− α)(1− p2−p1

σ
) if p1 ≤ p2 ≤ p1 + σ,

0 if p2 > p1 + σ.

. (3.15)

Note that both Þrms� demand schedules are continuous and piecewise linear. Inter-

estingly, Þrm 1�s demand is concave while Þrm 2�s demand is convex. This is due to

the fact that at equal prices p1 = p2, a price cut from Þrm 1 attracts less consumers

from the small base Þrm than a similar price cut of Þrm 2 would do. Or, equivalently,

price increases have a stronger effect on both Þrms� demand as long as the marginal

consumer belongs to the large Þrm�s customer base.

3.3.2 Simultaneous Price Setting

With the above demand functions, we can now proceed to determine the optimal

price Ri(pj) that Þrm i sets in response to any price pj of its rival. Thus, we have to

solve for both Þrms, i = 1, 2, the following maximisation problem

max
pi

piDi(pi, pj). (3.16)

Consider the problem of Þrm 1 and check that it follows from (3.14) that we have four

(possible) local maxima that can qualify for a global optimum. The interior solution
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for all p2 − σ ≤ p1 ≤ p2 is given by

R11(p2) ≡
ασ + (1− α)p2
2(1− α) ,

with a maximum value of (ασ+(1−α)p2)2

4(1−α)σ . The interior, local maximiser for all p2 ≤ p1 ≤
p2 + σ is at

R21(p2) ≡
σ + p2
2

,

which implies proÞts of α(σ+p2)2

4σ
. Further, we have two (candidate) corner solutions

at p1 = p2 − σ, i.e. when Þrm 1 grabs the whole market and at p1 = p2 where

no consumers switches. It follows from straight comparison of the respective local

maximum values that Þrm 1�s reaction function consists of four parts. If p2 ≤ σ, Þrm
1 optimally chooses a price that is higher than the price of his rival and lets some of

his previous consumers switch. For intermediate values of p2, it just meets the price

of Þrm 2 and keeps all his previous customers. If Þrm 2�s price is higher than ασ
(1−α) ,

then it undercuts its rival and attracts some customers from its base and Þnally, if p2

exceeds 2−α
1−ασ, Þrm 1 grabs the whole market. Hence, we have

R1(p2) =



R21(p2) if p2 ≤ σ,
p2 if σ < p2 ≤ α

(1−α)σ,

R11(p2) if α
(1−α)σ < p2 ≤ 2−α

1−ασ,

p2 − σ if p2 > 2−α
1−ασ.

(3.17)

Firm 2�s maximisation problem is similar, although the solution will be qualitatively

different. The local maximiser for p2 in [p1− σ, p1], i.e. if Þrm 2 undercuts its rival is
at

R12(p1) ≡
(1− α)σ + αp1

2α

and the local maximiser for p1 ≤ p2 ≤ p1 + σ is given by

R22(p1) ≡
σ + p1
2

.
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Together with the corner solutions p2 = p1 − σ and p2 = p1, we again have four

candidates for the global maximiser. Straightforward computations give the local

maximum values for the interior solutions as ((1−α)σ+αp1)2

4ασ
and (1−α)(σ+p1)2

4σ
respectively.

Comparing them with the corner maxima yields

R2(p1) =


pR2b(p1) if p1 ≤

q
1−α
α
σ,

pR2a(p1) if
q

1−α
α
σ < p2 ≤ 1+α

α
σ,

p1 − σ if p1 > 1+α
α
σ.

(3.18)

By contrast to Þrm 1�s reaction function, the Þrm with the small customer base has

a disontinuity in its best response schedule. At p1 =
p
(1− α)/ασ, it is indifferent

between charging a low price and cutting into Þrm 1�s customer base and a rather

high price which would entail the loss of some of its own customers. This discontinuity

stems from the fact that Þrm 2�s demand is convex in p2. At equal prices p2 = p1, a

marginal price decrease attracts α consumers from Þrm 1�s base while a marginal price

increases makes only 1-α of its own consumers switch. Thus, the kink in D2(p1, p2)

makes both the low- and the high-price strategy attractive for the Þrm with the small

customer base. This discussion is summarised with the plot of the reaction functions

in Figure 3.3.

Let us now analyse the price equilibrium when Þrms post their prices simultaneously.

Proposition 4 When the Þrms post their prices simultaneously, the unique equilib-

rium is given by

psim1 =
1 + α

3α
σ and psim2 =

2− α
3α

σ.

The corresponding equilibrium proÞts are

Πsim1 =
(1 + α)2

9α
σ and Πsim2 =

(2− α)2
9α

σ.

As illustrated in Figure 3.3, the unique intersection of the Þrms� reaction functions is

in the regime where Þrm 1�s price is higher than Þrm 2�s price. This follows directly
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Figure 3.3: Firms� reaction functions

from two observations. First, at its discontinuity R2(p1) jumps down to a price that is

smaller than p1 but always larger than the value at this point of the inverted reaction

function of Þrm 1. And second, for all p1 > psim1 , both functions are continuous, with

R2(p1) never having a steeper slope than the inverted reaction function of Þrm 1.

Therefore, in any equilibrium with simultaneous price moves, p1 > p2 and consumers

with low switching costs will change from Þrm 1 to Þrm 2.

Let us look at the interesting comparative statics of this equilibrium. First, notice

that equilibrium prices and proÞts of both Þrms decrease as the base of the large

Þrm increases. With customer bases of almost equal size, both Þrms have a stronger

incentive to exploit their own base with rather high prices. This strategy becomes

less proÞtable for the smaller Þrm when markets become unequal and it is more and

more tempting to cut into the large customer base of its rival. Hence, unequal market

shares foster price competition and hurt both Þrms.
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Second, the difference in equilibrium prices between the large and the small Þrm is

psim1 − psim2 =
2α− 1
3α

σ

and increases when more customers are initially attached to Þrm 1. This relies on

two effects. A larger customer base turns Þrm 1 into a �fat cat� in the sense that it is

more inclined to exploit its locked-in customers with a high price. At the same time,

the small Þrm becomes increasingly aggressive and cuts its price. Taken together,

the more unequal the two Þrms are, the higher the price difference and the more

consumers will switch from the large to the small Þrm. Consequently, the size of the

customer bases converges. Nevertheless, check that for all α ≥ 1/2, the proÞts of

the large base Þrm are always higher than those of the small base Þrm and that this

difference is also increasing in α.

By contrast, it is straightforward to verify that higher consumers� switching costs

hamper competition and help Þrms to sustain higher prices and proÞts. And, last

but not least, it is noteworthy that we get equilibria in pure strategies for all values

of α and σ, which is by no means common in models with simultaneous pricing and

consumers� switching costs.

3.3.3 Firm 1 as price leader

When the Þrm with the larger customer base posts its price Þrst, it takes into account

the optimal reaction of his rival from (3.18). If it sets a price lower than
p
(1− α)/ασ,

the Þrm with the smaller customer base will respond with a higher price and give up

some of its previous consumers with low switching costs. If the posted price of Þrm 1

exceeds this threshold, its rival will respond with price cutting and consumers switch

in the opposite direction. Plugging (3.18) into (3.16) gives the following proÞt function
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for Þrm 1,

Πlead1 (p1) ≡ p1


(1+α)σ−(1−α)p1

2σ
if p1 ≤

q
1−α
α
σ,

(1+α)σ−αp1

2σ
if p1 >

q
1−α
α
σ.

(3.19)

Some remarks on this function which is depicted in Figure 3.4 are in order. First,

the demand is more price elastic in the second part of this function, i.e. when Þrm

1�s price will be undercut by its rival. Second, this function has a discontinuity

at p1 = σ
p
(1− α)/α, where the follower�s price cut leads to a downward jump in

demand and proÞts of the price leader. Finally, note that Πlead1 (p1) has two local

maxima, one at a price below or equal to the threshold price, at which the small base

Þrm would start cutting into Þrm 1�s customer base and one for a relatively high

price, at which Þrm 1 would lose some of its customers with low switching costs.

p1
α

ασ )1( −
α

σα
2

)1( +

)( 11 pleadΠ

Figure 3.4: ProÞts of Þrm 1 as price leader for α = 0, 6 and σ = 0, 4.

This trade-off between exploiting its more attached customers with a high price and

expanding its customer base with a low price is resolved in the following proposition.

The complete proof can be found in the appendix.
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Proposition 5 Assume price leadership of the Þrm with the larger customer base.

Then, the unique price equilibrium is

plead1 =
1 + α

2α
σ and pfollow2 =

3− α
4α

σ,

and the corresponding equilibrium proÞts are

Πlead1 =
(1 + α)2

8α
σ and Πfollow2 =

(3− α)2
16α

σ.

Like in the case of simultaneous price setting, the equilibrium is in the regime where

the large base Þrm sets a higher price than the smaller base Þrm. Hence, consumers

switch from Þrm 1 to Þrm 2. Moreover, this equilibrium displays similar comparative

statics, i.e. prices and proÞts fall if the base of the larger Þrm increases and they rise

with higher average switching costs of consumers. The price difference is

plead1 − pfollow2 =
3α− 1
4α

σ,

which again increases with α. Note however, that under price leadership of the large

Þrm, the smaller one can earn higher proÞts than its rival whenever α < 4
√
2− 5 ≈

0.6568. This is due to the fact that being undercut as a price leader is the more

detrimental, the less attached consumers a Þrm has.

3.3.4 Firm 2 as price leader

Finally, we look at the case where the Þrm with the smaller installed base posts its

price Þrst. Again, the leader takes into account the reaction of the follower. From

(3.17) we know that for small prices p2 ≤ σ, Þrm 1 will react with a higher price

and exploit its old customers with high switching costs. For intermediate prices, it

will exactly meet the leader�s price and induce repeat purchases from its customer

base. For sufficiently high prices of the leader, the large base Þrm 1 will undercut and
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attract new customers. Therefore, Þrm 2�s proÞt function as a price leader is

Πlead2 (p2) = p2


(2−α)σ−αp2

2σ
if p2 ≤ σ,

1− α if σ < p2 ≤ α
(1−α)σ,

(2−α)σ−(1−α)p2

2σ
if p2 > α

(1−α)σ.

(3.20)

As depicted in Figure 3.5, this function has no discontinuity and is concave. Further it

is easy to check that, by contrast to (3.19), the small Þrm�s demand as price leader is

more price elastic when its own price is low, i.e. when Þrm 2 cuts into its rival�s large

customer base and consumers switch from 1 to 2. For higher prices, price increases

induce the loss of Þrm 2�s own, small customer base.

����
����σ )1(2
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α
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−
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Figure 3.5: ProÞts of the small base Þrm for α = 0, 6 and σ = 0, 6.

Again, the price leader considers two possible strategies. Either quoting a low price

and forcing the follower to yield some of its customers or to post a high price and

giving up its own customers with low switching costs. Solving the corresponding

maximisation problem for Þrm 2 entails the characterisation of local maxima and the

identiÞcation of a global maximum. This is delegated to the appendix, the result is

given in
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Proposition 6 Assume price leadership of the Þrm with the smaller customer base.

Then, we get as unique price equilibria

pfollow1 =


(2+α)
4(1−α)σ if α ≤ 2/3,
α

(1−α)σ if α > 2/3
and plead2 =


(2−α)
2(1−α)σ if α ≤ 2/3,
α

(1−α)σ if α > 2/3.

The corresponding equilibrium proÞts are

Πfollow1 =


(2+α)2

16(1−α)σ if α ≤ 2/3,
α2

(1−α)σ if α > 2/3
and Πlead2 =


(2−α)2
8(1−α)σ if α ≤ 2/3,
ασ if α > 2/3.

The equilibrium with the small Þrm as a price leader is qualitatively different from

the two others described above. First, in equilibrium, the large base Þrm never sets a

higher price than its rival, i.e. the large Þrm will not lose customers. While for rather

small differences in the size of the customer base (an α close to 1/2), the following,

large Þrm has an incentive to cut into the small Þrm�s base, a large initial base makes

Þrm 1 �fat� and he will just meet the leader�s price to retain his customers. By this,

the price difference is in this case

pfollow1 − plead2 =


(3α−2)
4(1−α)σ if α ≤ 2/3,
0 if α > 2/3,

which is decreasing in absolute terms if the customer base advantage of Þrm 1 in-

creases. However, notice that increasing Þrm 1�s base α and increasing the switching

costs σ have a positive effect on prices and proÞts of both Þrms. In the following

section, we will compare prices and proÞts of the three pricing subgames and analyse

the endogenous choice of price leadership.

3.3.5 Endogenous Price Leadership

In this section, we will examine the endogenous determination of the timing of price

announcements. But let us Þrst compare the results of the three price subgames

derived in the previous section. The following lemma looks at Þrms� prices
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Lemma 2 If 1
2
≤ α <

√
7−1
3

' 0.5486, we get for the Þrm with the larger customer

base that

plead1 > pfollow1 > psim1

else it holds that

pfollow1 > plead1 > psim1 .

For the Þrm with the smaller base, it always holds that

plead2 > pfollow2 > psim2 .

Note Þrst that simultaneous price setting always entails the lowest prices in the econ-

omy. Second, being a follower in the price moves makes Þrms aggressive since they

have the last say and can grab the other Þrm�s market. Nevertheless, this price cutting

is anticipated by the leader and the more �hungry� the follower, the more cautious

the leader will be. Therefore, the small Þrm will set a higher price as leader than as

follower for two reasons: Þrst, it expects a �fat� follower when it leads and second,

it is itself aggressive when it follows. For the large base Þrms, we have to distinguish

two cases. For α close to 1/2, we get the same result as for the small Þrm, the large

Þrm is aggressive when it follows and sets a higher price when it leads. However, a

larger customer base makes the large Þrm softer and the smaller Þrm aggressive and

the price ranking is just reversed.

This argumentation also carries over to the comparison of the price difference under

the different scenarios. Please check that for all relevant α and σ, the price difference

is largest in the subgame where Þrm 1 acts as price leader. In the two remaining cases,

the (absolute) price difference is higher under simultaneous price setting whenever α

is sufficiently large, otherwise it is higher in the subgame with the small Þrm as price

leader.

As a next step, we compare the Þrms� proÞts.
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Lemma 3 For the Þrm with the larger customer base it always holds that

Πfollow1 > Πlead1 > Πsim1 .

If 1
2
≤ α < 0.5942, Þrm 2 has the following ranking:

Πfollow2 > Πlead2 > Πsim2 ,

otherwise it holds that

Πlead2 > Πfollow2 > Πsim2 .

Lemma 3 states that both Þrms prefer sequential timing to the simultaneous move

equilibrium. For a rather small α, both Þrms would prefer to follow since both of

them fear the aggressivity of the other one as a second-mover. But, as mentioned

before, a large costumer base makes Þrm 1 soft and allows the small Þrm to set a

sufficiently high price as Þrst mover without being undercut. Thus, for α ≥ 0.5942,
the small Þrm strictly prefers to lead in the price game and the large Þrm strictly

prefers to follow.

Let us now proceed to the analysis of the endogenous timing of price announcements

as we did in the Þrst part of this chapter. We look at the same coordination subgame

in which Þrms are assumed to choose their �roles�. Suppose again that only two

dates of price quoting are possible, t0 and t1 and that Þrms simultaneously commit

to one of these two dates. It is obvious from the previous lemma that Þrms would

never choose the same date since waiting or postponing the price quote always yields

higher proÞts. But although we have �a marriage in heaven� for high values of α,

we will have two strict Nash equilibria. This is due to the fact that we allow in our

simple timing game for simultaneous moves which gives Þrms no incentive to deviate

from a sequential equilibria and thus both of them qualify for Nash equilibria.

Nevertheless, we can resort again to the risk dominance criterion to select between

these two equilibria. The following proposition summarises the equilibrium analysis.

The proof of this proposition is given in the appendix.
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Proposition 7 For all α ∈ [ 1
2
, 1], the risk dominance criterion selects the equilibrium

with the small customer base Þrm as price leader.

The risk dominance criterion unambiguously selects the equilibrium with the small

Þrm as a price leader for both regimes of Lemma 3, i.e. for the case where both Þrms

prefer to follow and for the case where they agree on price leadership of the small

Þrm.

3.3.6 Welfare

Let us Þnally have a look at welfare in this economy under the different price leader-

ship scenarios. More speciÞcally, we will investigate what price quoting order a social

planner would choose and compare it to the market outcome of the previous section.

DeÞne consumer utility CS as the sum of all consumers� utility. If p1 < p2, some

previous consumers of Þrm 2 will switch to Þrm 1 and CS is

CS(p1, p2) |p1<p2 = 1−α
σ

p2−p1Z
0

(−p1 − s)ds+ 1−α
σ

σZ
p2−p1

(−p2)ds− αp1

= (p2−p1)
2σ

(2ασ + (1− α)(p2 − p1))− p2.
(3.21)

If p1 ≥ p2 consumers switch from Þrm 1 to Þrm 2 and consumer surplus is deÞned as

CS(p1, p2) |p1≥p2 = α
σ

p1−p2Z
0

(−p2 − s)ds+ α
σ

σZ
p1−p2

(−p1)ds− (1− α)p2

= (p1−p2)
2σ

(−2ασ + α(p1 − p2))− p2.
(3.22)

We deÞne the total welfare W of the economy as the unweighted sum of consumer

surplus and the Þrms� proÞts. Since consumers� expenditures become Þrms� revenues,

all what accounts for social welfare is the sum of consumers� switching costs. Thus
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W simpliÞes to

W (p1, p2) = CS(p1, p2) +Π1(p1, p2) +Π2(p1, p2)

=

 − (1−α)(p2−p1)2

2σ
if p1 < p2,

−α(p1−p2)2

2σ
if p1 ≥ p2.

(3.23)

DeÞne CSsim(W sim), CS1leads(W 1leads) and CS2leads(W 2leads) as consumer surplus

(social welfare) under simultaneous pricing, price leadership of Þrm 1 and price lead-

ership of Þrm 2, respectively. Plugging the results from Proposition 4, 5 and 6 into

(3.21) or (3.22), we get for the consumer surplus under simultaneous price moves

CSsim = −σ(11− 8(1− α)α)
18α

.

When Þrm 1 acts as price leader we have

CS1lead = −σ(23− 5(2− 3α)α)
32α

and with 2 as price leader

CS2lead =

 −σ(28−5(4−3α)α)
32(1−α) if α ≤ 2/3,

− ασ
(1−α) if α > 2/3.

The total consumer surplus is determined by the absolute price level and the relative

price level which induces costly switching. In this respect, it is obvious from our

previous analysis of the different equilibria that in all three cases, consumer surplus

decrease when average switching costs increase. By contrast, increasing asymmetry

between Þrms� customer bases, i.e. a higher α, lowers prices and thus raises consumer

welfare in the setting with simultaneous price quotes and with the large Þrm as leader

but raises prices and lowers surplus when the large Þrm follows.

Equivalently, one can compute the measures for total welfare in the economy which

corresponds to the switching costs that consumers have to incur in the different price
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equilibria. Simple algebra gives

W sim = −σ(1− 2α)
2

18α
, W 1lead = −σ(1− 3α)

2

32α
and (3.24)

W 2lead =

 −σ(2−3α)2
32(1−α) if α ≤ 2/3,
0 if α > 2/3.

Proposition 8 compares the measures for consumer surplus and total welfare.

Proposition 8 Consumers have the ranking

CSsim > CS1leads > CS2leads.

The socially efficient ranking for 1
2
≤ α < 0, 5963 is

W sim > W 2leads > W 1leads

and

W 2leads > W sim > W 1leads

otherwise.

The maximisation of consumers� surplus has to take into account the price difference

and the price levels of the different scenarios. From the above discussion of the

corresponding equilibrium prices, it is easy to see that simultaneous price setting

offers consumers the best deal with respect to price levels and the second best with

respect to price differences, which translate into switching costs that consumers have

to incur. Nevertheless, the absolute price levels dominate this ranking which is just

the reverse order of the Þrms� price ranking of Lemma 2.

Contrarily to that, all what counts for total welfare is the price difference in the three

pricing scenarios. The higher the price difference, the more consumers will incur

switching costs and change to the low price Þrm. Thus, social welfare is maximised
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either under simultaneous price setting (for α close to 1/2) or under leadership of the

small Þrm (for sufficiently large α). This is simply due to the fact that - as we already

argued - the large Þrm has less of an incentive to undercut when it follows because it

has to apply a low price to its locked-in customers, too. The higher α, the stronger

the incentive to meet the posted price of the small Þrm and the less consumers have

to switch.

Finally, it follows directly from Proposition 4 and 5 that for rather symmetric cus-

tomer bases price leadership arises although simultaneous pricing would be socially

optimal. However, for sufficiently large α, the endogenisation of price moves generates

the socially optimal order for α > 0, 5963.

3.4 Conclusions

This chapter contains two notes on models of endogenous price leadership. In the

Þrst one, we analysed a vertically differentiated industry and found that under price

competition the high and the low-quality supplier would both prefer to follow but

that the risk dominance criterion unambiguously selects the high quality Þrm as a

price leader. The reason for this is that the high quality Þrm has a higher potential

to undercut its low quality rival and this latter has therefore more of an incentive to

outwait the price quote of the former. More importantly and completely independent

of the price equilibrium selection we showed that the emergence of price leadership

softens the competitive pressure in the industry with the result that in the long run

Þrms would choose products of higher quality and decrease product differentiation.

Taken together, we demonstrated that price leadership may actually hurt Þrms but

beneÞt consumers.

Notice that the results of the Þrst note are conÞrmed by at least two empirical studies

on price leadership. Roy and Hanssens and Raju (1994) examined the mid-size sedan
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segment of the US automobile market and found evidence that the high end car Ford

Thunderbird acted as a price leader to Chrysler�s New Yorker for the duration of the

study (28 years). Kadiyali and Vilcassim and Chintagunta (1996) investigated the

market for liquid laundry detergents and showed that Procter & Gamble and Lever

used their respective upper quality brands as price leaders for the low quality brands

of the industry.

In the second model, we took a closer look at price leadership in markets with con-

sumers� switching costs. Deneckere et al. (1992) argued that the size of a Þrm�s

customer base has the same impact on endogenous price leadership as Þrms� produc-

tion capacity has. In our model, we show that this conclusion crucially hinges on

their assumption of prohibitive switching costs. If one allows consumers to switch

suppliers at some positive, but Þnite cost, the Þrm with the larger segment of loyal

customers stands to lose more by being undercut since its smaller rival faces a higher

(absolute) demand elasticity and less own customers over which to spread the lower

price when it follows. In this vein, we demonstrate that industries with consumers�

switching costs provide a natural example for a constellation that has - to the best

of our knowledge - not yet been found in the literature: one Þrm strictly prefers to

lead and the other one strictly prefers to follow. Moreover, we can show that the

market outcome, which is price leadership of the small Þrm, minimises consumers�

switching costs and is the socially efficient order of price quotes over a large range of

parameters.

Finally, from a conceptual point of view, we presented a model of an industry with

consumers� switching costs that explicitly allows for closed form solutions and unique

equilibria in pure strategies. Both properties are rather the exception in this strand

of literature.

To conclude, notice that a relevant market for which there have been empirical studies

on price leadership is the US cigarette market. Scherer and Ross (1990) report that
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during 1921 and 1965 market share leader Reynolds (Camel) seemed to be more

reluctant to lead price decreases than its rivals American and Liggett & Myers.
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3.5 Appendix

Proof of Proposition 1

From Lemma 1, we know that only two equilibria in pure strategies can exist, (t0, t1)

and (t1, t0), where the dates denote the point in time at which Þrm 1 and Þrm 2

will quote their price. Following Harsanyi & Selten (1988), we will say that the

former equilibrium risk dominates the latter whenever G121 G
12
2 > G

21
1 G

21
2 , with G

12
1 ≡

Π121 − Πsim1 , G122 ≡ Π122 − Πsim2 , G211 ≡ Π211 − Πsim1 and G212 ≡ Π212 − Πsim2 . Tedious

calculations show that

G121 G
12
2 −G211 G212 =

(q1 − q2)2q41(8q1 − q2)
128(2q1 − q2)3(4q1 − q2)2 > 0.

Hence, (t0, t1) is the risk dominant equilibrium in the above sense. ¥

Proof of Proposition 3

Consumer surplus is deÞned in (3.10). With (3.4), we get the consumer surplus when

prices are set simultaneously

CSsim(q1, q2) =

Z 2q1−q2
4q1−q2

q1−q2
4q1−q2

(θq2 − p2)dθ +
Z 1

2q1−q2
4q1−q2

(θq1 − p1)dθ = q21(4q1 + 5q2)

2(4q1 − q2)2 .

If the low quality Þrm would be the second stage price leader, one would have, using

(3.8),

CS2,1(q1, q2) =

Z 4q1−3q2
8q1−4q2

q1−q2
4q1−2q2

(θq2 − p2)dθ +
Z 1

4q1−3q2
8q1−4q2

(θq1 − p1)dθ

=
4q21(4q1 + 3q2) + 3q

2
2(q2 − 5q1)

32(2q1 − q2)2 .

and similarly with the high quality Þrm as price leader and (3.6)

CS1,2(q1, q2) =

Z 1
2

q1−q2
4q1−2q2

(θq2 − p2)dθ +
Z 1

1
2

(θq1 − p1)dθ = q1(4q1 + q1q2 − q22)
8(2q1 − q2)2 .

Plugging in the optimal qualities from Proposition 2 and Remark 2 yields

CSsim = 0, 29166, CS2,1 = 0, 28888, CS1,2 = 0, 296875.
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For the Þrms proÞts, one gets

Π21 = Π211 +Π
21
2 = (7− 3

√
2) = 0, 17233,

Π12 = Π121 +Π
12
2 =

1
8
+ 1

32
= 0, 15625,

Πsim = Πsim1 +Πsim2 = 7
48
+ 1

48
= 0, 16.

And Þnally, it is straightforward to calculate the total welfare in the different regimes

W sim = 0, 45833,W 2,1 = 0, 4611,W 1,2 = 0, 4531.¥

Proof of Proposition 5

First, check that (piecewise) concavity and the downward discontinuity of the proÞt

function gives rise to three potential local maxima. First, the interior solution for

0 < p1 ≤ σ
p
(1− α)/α, which is at p1 = 1+α

2(1−α)σ and which is larger than the upper

threshold value σ
p
(1− α)/α of this region for all α ≥ 1/2. Therefore, the local

maximum in this price regime is exactly at the threshold value p1 = σ
p
(1− α)/αand

takes a value of (1 + α)σ
p
α(1− α)/2α − (1−α)2

2α
. The third local maximum can be

found for p1 >
p
(1− α)/ασ. Taking the Þrst order condition of the second part of

Πlead1 (p1) yields p1 = 1+α
2α
σ and a maximum value of (1+α)2

8α
σ. Comparing the local

maximum values and plugging the optimal price for Þrm 1 in R2(p1) and in the proÞt

functions gives Proposition 5. ¥

Proof of Proposition 6

Note Þrst that the proÞt function is continuous and (piecewise) concave. Solving

the maximisation problem of Þrm 2 again implies the identiÞcation of local maxima.

First, consider the price regime 0 < p2 ≤ σ. The Þrst order condition of this Þrst part
of the proÞt function yields p2 = 2−α

2α
σ, which is smaller than σ whenever α ≥ 2/3.

Thus, for 1/2 < α < 2/3, the local maximum is the corner solution p2 = σ, otherwise

it is at 2−α
2α
σ with a maximum value of (2−α)

2

8α
σ.

For σ < p2 < α
(1−α)σ, the proÞt function is strictly increasing in p2, therefore a second

local maximum may only be found for p2 > α
(1−α)σ. Deriving the Þrst order condition
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for the third part of Πlead2 (p2) and solving it, gives p2 =
(2−α)
2(1−α)σ with a maximum value

of (2−α)
2

8(1−α)σ. This solution is interior as long as
(2−α)
2(1−α)σ >

α
(1−α)σ or 1/2 < α < 2/3.

Otherwise, for α > 2/3, the local maximum is at α
(1−α)σ.

To sum up, for 1/2 < α < 2/3, the unique local maximum is (2−α)
2(1−α)σ. For α ≥ 2/3, the

proÞts at 2−α
2α
σ are always larger than those at α

(1−α)σ. Plugging these optimal prices

into the reaction function of Þrm 1 and into the proÞt functions gives Proposition 6.¥

Proof of Proposition 7

Following Harsanyi and Selten (1988), we will say that the equilibrium with Þrm 1 as

follower risk dominates the equilibrium with 1 as price leader whenever Gfollow1 Glead2 ≥
Glead1 Gfollow2 , with Glead1 ≡ Πlead1 − Πsim1 , Gfollow2 ≡ Πfollow2 − Πsim2 , Gfollow1 ≡ Πfollow1 −
Πsim1 and Glead2 ≡ Πlead2 −Πsim2 . Tedious calculations show that

Gfollow1 Glead2 −Glead1 Gfollow2 =

Z(α, σ) ≡


(1−2α)(24α5−45α4−86α3+103α2+140α−55)
1152α2(1−α)2 σ2 if α ≤ 2/3,

(1+α)(1137α4−454α3−168α2−58α+55)
1152α2(1−α) σ2 if α > 2/3.

Finally, check that Z(1/2, σ) = 0, that it is monotonically increasing for a ∈ [1/2, 1]
and that Z(α, σ)→∞ for α→ 1. Thus, Z(α, σ) ≥ 0 for all σ and a ∈ [1/2, 1]. ¥
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Chapter 4

Agglomeration in R&D Intensive

Industries

4.1 Introduction

When selecting amongst portfolios of alternative product speciÞcations, under which

conditions do Þrms tend to agglomerate and thus seek competition instead of look-

ing for a market niche they can supply monopolistically? Similarly, what are the

characteristics of Þrms and products that lead Þrms to agglomerate in geographical

space, vs. those that lead Þrms to seek a solitary location? How do the incentives

to agglomerate in product, or geographical spaces change with exogeneities, such as

transaction costs and differences in consumers� taste? Are the tendencies towards

agglomeration (or dispersion) in harmony, or in disharmony with those leading the

social planner to propose agglomeration vs. dispersion?

Questions of this nature have been addressed in a long string of literature. Within the

new industrial economics emerging from the seventies, many authors have analysed

variants of Hotelling�s seminal (1929) paper. The question of agglomeration also

features centrally in the New Economic Geography. Yet, to our surprise, while there
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is ample empirical documentation at least of agglomeration in geographical space with

Silicon Valley and Route 128 as the most prominent examples for the agglomeration

of innovative hi-tech industry, little has been said to date in the theoretical literature

about the relationship between Þrms� innovative activity and their incentives towards

agglomeration.

The interest in this issue is far from being only of a theoretical nature - in particular

when it comes to the geographical interpretation of these questions. Geographical

agglomerations of innovative industrial activity are thought to contribute particularly

much to the generation of employment, and indeed, to lead the growth path of entire

national economies. Take again Silicon Valley as an example. In spite of ups and

downs in employment demand during the nineties of the last century, the employment

growth rate in Silicon Valley outpaced with an impressive 15 per cent the U.S. national

employment growth rate and the mean personal income per head was up to 50 per cent

higher than the corresponding national income Þgure (Audretsch, 1998). Yet it is fair

to ask whether a dispersion of these activities could induce not only a more equitable

allocation, but could also increase the efficiency in the allocation of economic activity.

It is thus of utmost importance to investigate, and to evaluate in detail the reasons

for such agglomerations to form.

More speciÞcally, the question is as to the strategic forces that lead these innovative

Þrms to choose locations close to each other, and thus to opt for aggressive competition

in either input, or output markets or both, rather than to evade it. The story in favor

of agglomeration in the geographical case proposed by data analysts e.g. by Saxenian

(1994), Harhoff (1995), Audretsch and Feldman (1995, 1996) or Audretsch (1998) is

that Þrms seek to partake in an �information rich environment�: Þrms beneÞt from

clustering together because tacit knowledge is transmitted either in informal contacts

between employees of different Þrms, or via the movement of these employees across

Þrms.1

1Knowledge spillovers through employee mobility have been studied by Fosfuri et al. (1999) and
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Our explanation of agglomeration in innovative industries does not build on spillovers

but on the inherent stochasticity of R&D activities. In the vein of Hotelling�s clas-

sical paper Þrms� location choices are governed by the trade-off between two by now

standard effects: a demand effect that induces the individual Þrm to move towards

the center of the market, and a competition effect that drives the Þrms away from

each other. For symmetric and certain product qualities and quadratic transporta-

tion costs, we know from the �principle of maximum differentiation� established by

d�Aspremont and Gabszewicz and Thisse (1979) that the competition effect always

dominates and that Þrms locate at the opposite ends of the line. However, if market

entry (or product quality) depends on the stochastic outcome of Þrms� R&D activities,

a Þrm meets a successful competitor in the market only with a certain probability.

This weakens the competition effect while the demand effect remains unchanged. In

the Þrst part of this work, we show in a simple variant of the Hotelling framework

that this can actually lead to complete agglomeration of Þrms in the center of the

market. From a welfare point of view, Þrms choose too much concentration (disper-

sion) if innovation probabilities are low (high). Moreover, we investigate the impact of

R&D spillovers and patent protection on the location equilibrium. We show that the

former is actually working against agglomeration because it increases the probability

that Þrms end up in a duopoly while patent protection leads to more monopolistic

outcomes and therefore constitutes an agglomerative force in our model.

In the second part, we extend our framework and allow Þrms to choose their R&D

technology together with their location. More speciÞcally, Þrms can adopt either a

safe R&D project yielding a low-quality product or a risky project aiming at a large

innovation step. We show that for a large range of the parameter space the following

three types of equilibria can emerge. Either Þrms choose dispersed locations and

adopt the safe R&D technology. Or, they agglomerate in the center and one of the

Þrms opts for the risky technologies. Or, Þnally, they agglomerate and both choose

Rønde (2000), among others.
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the risky R&D technology. Following the intuition of the Þrst part, this result hints at

a strong complementarity between risk taking in R&D and geographical concentration

of Þrms. Our welfare analysis gives a rather diverse picture. There may be excessive

differentiation and concentration in product space and too less or too much risk taking

in the choice of the R&D technology.

Finally, our model allows an interesting reinterpretation in terms of the labour market

pooling argument forwarded by Marshall (1920). He argued that Þrms might have

incentives to locate in the same region when they face stochastic labour demands that

are imperfectly correlated. By this, the Þrm with the high demand can draw skilled

labour at low cost from the common local labour market since the labour demand

of the other Þrm is low. In a straightforward reformulation of our product market

model, Þrm-speciÞc shocks to the labour demand are generated by the stochastic

R&D technology. And when Þrms choose locations they have to trade off labour

market competition and access to labour (which is cheapest in the center of the line).

To clearify this reinterpretation, we will explicitly formulate the model variant of the

Þrst part of our work from this input market perspective.

To the best of our knowledge, there are only two papers linking location decisions in

the geographical interpretation to innovation issues and both have spillovers as the

unique agglomerative force. Gersbach and Schmutzler (1999) analyse agglomeration

due to localised technological spillovers within a discrete location framework. They

explicitly look at a model in which Þrms are not only recipients of positive spillovers,

but they may also be the victim of undesired information leakages. Their focus

is on the interplay between internal interplant spillovers as well as external interÞrm

spillovers from cost reducing R&D efforts on the plant location decisions of duopolistic

Þrms. Abstracting from the price competition stage, they compare in detail the

reduced form proÞts net of the Þxed costs of establishing a plant and of (certain)

innovation, to arrive at what they call research centre, or alternatively, technology

sourcing equilibria that differ by the fact that in the former, both Þrms exercise
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innovation efforts, while in the latter, only one Þrm does this.

Mai and Peng (1999) concentrate on an explicit form of co-operation between Þrms as

the explicit reason for agglomerations to form. They modify the Hotelling-framework

by assuming that distance dependent communication between competitors reduces

production costs. In their model, the Þrms will symmetrically move the closer to

each other, the stronger the cost reducing effect of communication, and the more

drastic the increase in communication costs with distance. However, the Þrms will

fully agglomerate only if the positive externality is inÞnitely large.

The literature on clustering in product space is much richer. For instance, Bester

(1998) and Vettas (1999) look at a situation where Þrms signal the quality of their

products to imperfectly informed consumers and show how this might lead to ag-

glomeration. The authors use a set-up similar to ours, with horizontal product dif-

ferentiation as well as vertical quality differences. Vettas looks at a location model

in which one Þrm sells an exogenously speciÞed low quality product, whilst the other

one sells a high quality product. He shows that by locating close to the low quality

Þrm, the high quality Þrm can signal the superiority of the quality offered, whilst

the low quality Þrm seeks a niche location. Bester looks at model where it is more

costly to produce high quality than low quality. He shows that this leads to a lower

bound on price that the Þrms can charge and still (credibly) commit to supplying high

quality. Therefore, Þrms do not compete away all proÞts as they move close to each

other in the horizontal dimension, and agglomeration might occur in equilibrium. In

our model, consumers can perfectly observe the quality of the products, so signalling

does not play a role. The effects leading to agglomeration in our model are thus quite

different from those in Bester and Vettas.

Within a modiÞed Hotelling framework, Neven and Thisse (1993) and Irmen and

Thisse (1998) demonstrate clustering effects in one of two dimensions of product

differentiation, where one is vertical and the other horizontal, and both are horizontal,
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respectively. Their central point is on sufficient conditions under which (maximal)

product differentiation in one dimension suffices for Þrms to agglomerate in the center

of the market in another dimension, without the effect that proÞts evaporate. Echoing

somewhat this type of results, we show in our model that there exists an equilibrium

where the Þrms choose the same horizontal product characteristic but different R&D

strategies: one Þrm pursues a high risk-high return project whilst the other one

chooses a more conservative R&D strategy.

There are also models on competitive R&D portfolio choices that demonstrate clus-

tering effects, by authors such as Bhattacharya and Mokherjee (1986), Dasgupta and

Maskin (1987), and Cardon and Sasaki (1998), among others. Bhattacharya and

Mokherjee compare private and social incentives towards risk in R&D projects with

winner-takes-all outcomes enforced by a patent mechanism. Their primary interest is

in the exploration of relative levels of risk taking and in correlation choices. Our focus

is different. We are interested in exploring the trade off between Þerce competition

that arises when Þrms locate close to each other and are equally (un-)successful; and

dominant Þrm proÞts if only one succeeds. However, in second part of our work,

we include in a rudimentary way the choice amongst research portfolios according to

risk/return relationships. In doing so, we are able to analyse asymmetric choices be-

tween Þrms, which is not possible in the otherwise more general models by Dasgupta

and Maskin, and Cardon and Sasaki.

There is a large literature analysing market structure in industries with network exter-

nalities. It is shown how network externalities create �bandwagon� effects that make

Þrms and consumers choose products that are standardized or compatible across Þrms;

see, e.g., Katz and Shapiro (1985) and Farrell and Saloner (1986). Our paper is most

closely related to Katz and Shapiro (1986), who introduce a stochastic R&D technol-

ogy into a network industry. Two generations of homogenous consumers choose which

technology to buy, and the Þrms decide whether to make their proprietary technolo-

gies compatible. The decision to make the products compatible resembles the choice
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of agglomerating in product space, as the products become closer substitutes. Katz

and Shapiro show that the winner in the R&D race beneÞts from compatibility, as

the consumers have a higher willingness to pay for the product. However, the loser is

better off under incompatibility, as she might avoid being pushed out of the market.

Finally, in models in the �herding� tradition, authors such as Banerjee (1992) or

Hirshleifer et al. (1992) demonstrate imitative behavior within a dynamic framework.

Unlike in our model, imitation is driven here by consumer biases.

There is Þnally a particularly small literature related to the second interpretation of

our model, namely Þrms� location decisions in geographical space, relative to localised

labor markets. While authors such as Topel (1986), Baumgardner (1988), or most

recently Picard and Toulemonde (2000) and Combes and Duranton (2000) all focus

on different issues such as workers� migration incentives, division of labor as changing

with labor market size, agglomeration as a result of supply elasticity of labor, and

the advantages of labor market pooling vs. the disadvantages of labor poaching,

respectively.

The remainder of the paper is organised as follows: In the next section, we present our

benchmark model, in which an unsuccessful Þrm, while ex ante active, will be inactive

ex post in both, its product market and labor market interpretations. In sections 3 and

4, we determine and characterise the price equilibrium, and the location equilibrium

and welfare outcomes, respectively. In Section 5, we endogenise R&D decisions and

again derive and characterise equilibria and welfare outcomes. In the concluding

section, we summarise our results and speculate about possible extensions.

4.2 The Benchmark Model

The Product Market Interpretation We employ the standard Hotelling (1929)

duopoly model in the version of d�Aspremont, Gabszewicz & Thisse (1979) with
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quadratic consumer transportation costs. The market area is described by the unit

interval M=[0,1]. There is a unit mass of consumers whose locations are uniformly

distributed over M.

We consider an industry with two Þrms i = A,B potentially active in the market,

that choose locations a, b ∈M , a ≤ b, at which they offer their good. Each consumer
buys at most one unit of the product and incurs costs of overcoming space that are

quadratic in the distance travelled. Thus a consumer located at y derives net utility

UA(a, qA, pA, y) = qA − pA − t(a− y)2

when buying good A and

UB(b, qB, pB, y) = qB − pB − t(y − b)2

when buying B. qi and pi are the quality and the price of Þrm i�s product, respectively.

t > 0 reßects the degree of consumer heterogeneity or horizontal product differentia-

tion. We assume that all variables are common knowledge in the economy.

We assume that the Þrms costlessly invest in R&D. With probability ρ a Þrm�s project

succeeds. Then the Þrm sells a product of quality q. The successes of the Þrms are

uncorrelated . In order to make the model tractable, we assume that the Þrms have

no fall-back quality. Therefore, if the project is unsuccessful, the Þrm is, while in the

market, not active. One can think of this as a situation where there are signiÞcant

retooling or marketing costs, so a quick change in the production schedule if the R&D

project is a failure is not possible. We will later consider variations of these assump-

tions, but these will be explained when introduced.

The timing is the following: First, Þrms simultaneously choose their locations (a, b).

Second, the outcomes of their R&D investments are realised. Finally, Þrms set prices

simultaneously, consumers buy one of the available products, and proÞts are realised.
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The Labor Market Interpretation The presentation of the model was thus far

held in the context of horizontal product differentiation. Yet there is another funda-

mentally different, but rather realistic interpretation of the model, running as follows.

Suppose that the Þrms have to locate somewhere in a valley of length one. At each

point in the valley lives one worker endowed with utility function

U(w, x) = w − t(x)2

where w is the wage earned and x is the distance travelled to work. Our two Þrms

hire the workers to produce a vertically differentiated commodity with a one-to-one

production function. The Þrms engage in wage competition once the outcome of R&D

is known. The commodity is sold on a competitive world market, and Firm i sells its

product at price pi = qi.

The product differentiation and local labor market formulations are formally equiva-

lent and thus give rise to precisely the same equations. When interpreting our results

we will refer to the product market interpretation of the model, and come back later

to its labor market interpretation.

4.3 Price Equilibrium for given qualities and loca-

tions

Depending on the outcome of the R&D process after the location is Þxed, the typical

Þrm may produce and sell a product at positive quality, or it may remain inactive if

unsuccessful. If successful, it may either be a monopolist or a duopolist, depending

on the success or failure of its competitor.

In the present stage, the Þrms� locations and product qualities are known and taken as

given when they set their prices. First, we derive the monopoly price, and afterwards

the duopoly ones. For future reference, we calculate equilibrium prices and proÞts
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allowing for quality differences between the Þrms� products.

4.3.1 The Monopoly Outcome

Suppose that only one Þrm, say Þrm A, located at a ≤ 1
2
succeeded in developing

a marketable product of quality qA. The consumers indifferent between buying the

product at a price pA and not purchasing at all (at opportunity utility of 0) are located

at

ey1 =Max{0, a−rqA − pA
t

} and ey2 =Min{0, a+rqA − pA
t

}.

With this, we can derive Þrm A�s demand as monopolist, DM(qA, a, pA), which is

given by

DM(qA, a, pA) =



0 if pA > qA

2
q

qA−pA

t
if qA ≥ pA > qA − ta2

a+
q

qA−pA

t
if qA − ta2 ≥ pA > qA − t(1− a)2

1 if pA ≤ qA − t(1− a)2.

The monopolist maximizes his proÞts, pDM(qA, a, p). Lemma 1, which follows from

simply calculating the monopolist�s proÞt maximum, characterises the solution to this

problem under an assumption that leads the market to be covered under any market

arrangement.

Lemma 1 Let qA ≥ 3t. Then, for all a ∈ [0, 1
2
], the monopolist charges the price

pMA = qA − t(1− a)2 and covers the market.

For simplicity, we will in the sequel only consider that situation:

A. 1. The market is covered, qi ≥ 3t.
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Since the monopolist serves all consumers and the total mass of consumers is 1, the

monopoly proÞt ΠM(qA, a) is equivalent to the monopoly price, pMA = qA − t(1− a)2.
Thus,

ΠMA (qA, a) = qA − t(1− a)2.

Suppose instead that Þrm B, located at b ∈ [1
2
, 1], is a monopolist in the market. It

follows from symmetry that under assumption A.1. Þrm B charges the price pMB =

qB − t(b)2 and covers the market.

4.3.2 The Duopoly Outcome

This is the case where both Þrms conduct successful R&D, resulting in qualities qA

and qB, respectively. Let the consumer located at ey be indifferent between buying
from between Þrm A or Þrm B. ey is given as the solution to the following equation:

qA − pA − (ey − a)2 = qB − pB − (b− ey)2.
Solving for ey, we obtain:

ey =Max½0,Min½a+ b
2

− qB − qA + pA − pB
2t(b− a) , 1

¾¾
. (4.1)

By assumption A.1., the market is covered, so Þrm A�s demand is ey and Þrm B�s

demand is 1 − ey. Firms simultaneously set prices and the corresponding Bertrand-
Nash equilibrium is given in Lemma 2.

Lemma 2 (i) For qA−qB < −t(b−a)(2+a+b), Þrm B is the only Þrm with positive
market share. The unique price equilibrium is

pDA(a, b, qA, qB) = 0 and p
D
B(a, b, qA, qB) = qB − qA − t(b2 − a2). (4.2)
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(ii) For −t(b − a)(2 + a + b) < qA − qB < t(b − a)(4 − a − b), the Þrms share the
market. The unique price equilibrium is

pDA(a, b, qA, qB) =
1

3
(qA − qB + t(b− a)(2 + a+ b)) and (4.3)

pDB(a, b, qA, qB) =
1

3
(qB − qA + t(b− a)(4− a− b)).

(iii) For qA − qB > t(b − a)(4 − a − b), Þrm A is the only Þrm with positive market

share. The unique price equilibrium is

pDA(a, b, qA, qB) = qA − qB − t(b− a)(2− a− b) and pDB(a, b, qA, qB) = 0. (4.4)

Proof: See Appendix.

In the proof we derive the reaction functions and show that the price equilibrium is

unique. Not unexpectedly, Lemma 2 demonstrates that if there are quality differences,

the low quality Þrm is dominated by the high quality one if the quality difference is

large relative to the transportation cost t.

Using Lemma 2, we can derive the equilibrium proÞts. In case (i) where Þrm A is

inactive, the proÞts are given as

ΠDB(a, b, qA, qB) = qB − qA − t(b2 − a2) and (4.5)

ΠDA(a, b, qA, qB) = 0.

Similarly, if Þrm B is inactive as in case (iii), the proÞts are

ΠDA(a, b, qA, qB) = qA − qB − t(b− a)(2− a− b) and (4.6)

ΠDB(a, b, qA, qB) = 0.

Finally, in the case where the Þrms share the market, they earn proÞts

ΠDA(a, b, qA, qB) =
(qA − qB + t(b− a)(2 + a+ b))2

18t(b− a) and (4.7)

ΠDB(a, b, qA, qB) =
(qB − qA + t(b− a)(4− a− b))2

18t(b− a) .

This completes the analysis of price competition in the market place.
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4.4 Location under Stochastic R&D Outcomes

4.4.1 The Equilibrium

We now turn to the Þrms� location decisions. They have to take place before the

outcomes of their R&D efforts are known. Each of the Þrms innovates with probability

ρ. If both Þrms are successful, they produce and sell a product of the same quality,

qA = qB = q .Therefore, if actively competing in the market, the Þrms have the same

quality commodity. For given locations, the expected proÞts of the Þrms are:

E(ΠA(a, b, qA, qB, ρ)) = ρ(ρΠDA(a, b, q, q) + (1− ρ)ΠM(q, a)) and
E(ΠB(a, b, qA, qB, ρ)) = ρ(ρΠDB(a, b, q, q) + (1− ρ)ΠM(q, b)).

Using Lemma 1 and equation (4.7), we obtain the Þrst order condition for Þrm A

when choosing its location a:

∂E(ΠA(a, b, qA, qB, ρ))

∂a
=
t

18

¡
36(1− a)− (40 + 3a2 − 2a(14− b)− b2)ρ¢ .

It can be shown that ÞrmA�s problem is concave, so solving the equation ∂E(ΠA(a,b,ρ))
∂a

=

0, we Þnd the optimal location of Þrm A as a function of the location of Þrm B. The

reaction function of Þrm A is given as:

RA(b, ρ) =
−36 + 28ρ− 2bρ−p(36− 28ρ+ 2bρ)2 − 12ρ(−36 + 40ρ− b2ρ)

6ρ
.

The reaction function of Þrm B is derived the same way.

Figure 4.1 shows the reaction functions of the two Þrms for ρ = 0.8 (solid) and for

ρ = 0.9 (dashed). It illustrates that the Þrms agglomerate closer to the center of the

market for low values of ρ and separate for higher values. The equilibrium is derived

formally in Proposition 1.

Proposition 1 Consider the choice of location in the Þrst stage of the game.

i) For ρ ≤ 2
3
, the unique equilibrium locations are a∗ = b∗ = 1

2
.
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Figure 4.1: The reaction functions of Þrm A and B.

ii) For 2
3
< ρ ≤ 1, the unique equilibrium locations for a ≤ b are

a∗ =Max
½
0,
1

2
− Γ

¾
and b∗ = 1− a∗, .

where Γ≡ 3(3ρ−2)
4(3−2ρ) .

Proof: See appendix.

4.4.2 Discussion

The equilibrium outcome can easily be understood in terms of the effects of the

model. On one hand, the typical Þrm wishes to choose a location that captures as

many consumers as possible, as this increases the sales and proÞts for given prices.

This �demand� effect tends to make the Þrm locate in the centre of the market, as

pointed out by Hotelling (1929). On the other hand, moving towards the centre of
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the market also means moving closer to the other Þrm. This intensiÞes competition,

which reduces proÞts.

D�Aspremont, Gabszewicz and Thisse (1979) show that if both Þrms are active with

certainty, the �competition� effect dominates, so Þrms locate as far as possible from

each other. However, in our model, the Þrms foresee that if they enter the market,

they will only meet an active competitor with probability ρ. This weakens the com-

petition effect but not the demand effect, as a Þrm beneÞts from a central location

as a monopolist, and this the more the smaller ρ. Therefore, there can be agglom-

eration in equilibrium. Complete agglomeration can only occur for ρ ≤ 2/3 where

the probability of ending up in a duopoly situation is low. For ρ > 2/3, the duopoly

outcome becomes so likely that the competition effect starts to dominate and Þrms

fragment in equilibrium. Indeed, as in d�Aspremont, Gabszewicz and Thisse, that

outcome does not depend on t.

Technological Spillovers and Patent Protection

As emphasized in the introduction, technological spillovers are often cited as one of

the main reasons why Þrms in R&D intensive industries agglomerate. It is thus worth

investigating in our model the effect spillovers have on Þrms� locations. We model

spillovers the following way: If one of the Þrms innovates, but the other one does

not, the unsuccessful Þrm receives a spillover that allows it to become active with

probability σ. Solving for the equilibrium locations in the proof of Proposition 1 by

allowing for positive technological spillovers, we obtain

Corollary 1 Consider the choice of location in the Þrst stage of the game when there

are positive spillovers.

i) The optimal locations are given as

a∗ =Max
½
0,Min

½
1

2
,
1

2
−Ψ

¾¾
and b∗ = 1− a∗,
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where Ψ ≡ 3(−2+3ρ+4(1−ρ)σ)
2(6−4ρ−2(1−ρ)σ) .

ii) Technological spillovers are a deglomerating force, i.e.

∂a∗

∂σ
= −∂b

∗

∂σ
≤ 0.

Proof: See proof of Proposition 1.

The intuition behind this result is straightforward: Spillovers make it more likely

that the Þrms end up in duopoly. This strengthens the competition effect and makes

agglomeration less attractive. Suppose that these spillovers are localized in the sense

that spillovers increase with the proximity of the Þrms. An empirical example for

the geographical interpretation of the model is given by Jaffe et al. (1993). This,

however, only reinforces the deglomerating effect of spillovers. The reason is that

moving closer in product space becomes more costly marginally, as this increases

the probability that the Þrms end up in a duopoly. The model thus provides an

interesting contrasting view on the effects of spillovers to the standard argument sug-

gesting that agglomeration in R&D intensive industries is due to knowledge spillovers.

There is another interpretation for the spillover parameter. Reinterpret the inverse

of σ as the time period elapsing between marketing the original innovation, and

marketing its clone. Then, in the original model, that time period is inÞnitely long

(zero spillovers) whilst in the version of this section, it is Þnitely long and decreasing

in σ. Clearly, the innovator�s tendency to choose a central location increases in the

time he has monopolistic control over his innovation. Conversely, an increase in the

adoption lag with the distance from the innovator�s location increases the tendency

towards deglomeration.

Following the same logic, it is clear that any factor that prevents the duopoly outcome

from occurring tends to make Þrms agglomerate. The best example is probably

patent protection. If the innovators are sufficiently close, it is possible that only one
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patent would be granted. This, of course, would prevent the duopoly outcome from

occurring. We model patent protection by assuming that if both Þrms innovate, there

is a probability γ that only one of the Þrms can enter the market (the Þrms are equally

likely to be excluded from the market). Corollary 2 summarises the analysis of this

case:

Corollary 2 Consider the choice of location in the Þrst stage of the game when there

is patent protection.

i) The optimal locations are given as

a∗ =Max
½
0,Min

½
1

2
,
1

2
− Φ

¾¾
and b∗ = 1− a∗,

where Φ = 3(−2+3ρ−2γρ)
2(6−4ρ+γρ) .

ii) Patent protection is an agglomerating force, i.e.

∂a∗

∂γ
= −∂b

∗

∂γ
≥ 0.

Proof: See proof of Proposition 1.

Finally, notice that positive or negative correlation in R&D outcomes would have

an effect similar to spillovers and patent protection, respectively.2 Hence, a positive

correlation between R&D outcomes would lead to less agglomeration in equilibrium

compared to the benchmark model, and negative correlation to more.

4.4.3 Welfare

In the previous section we have derived the Þrms� equilibrium locations. As discussed

in the introduction, it is important to know whether there is too much, or too little

2Yet the effects are not identical. Take the case of spillovers. With spillovers, the fact that a
Þrm fails to innovate does not contain information about the other Þrm�s likelihood of failing, as it
would if projects were positively correlated. A postive correlation in R&D outcomes might occur for
exogenous reasons (for example, the next step forward is evident to participants in the industry) or
might be the conscious choice of Þrms, see also Cardon and Sasaki (1998).
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agglomeration as compared to the locational choice of a hypothetical social planner.

The following two observations greatly simplify the calculation of the welfare max-

imising locations. First, having assumed that the market is always covered, we do

not need to worry about how many consumers buy the product. Second, as the con-

sumers exercise unit demand, there is no deadweight loss due to monopoly pricing.

Therefore, the welfare optimal locations are simply those that minimise consumers�

expected transportation costs. The next proposition, in which we again allow for

spillovers, states the welfare maximising locations of the two Þrms.

Proposition 2 The welfare maximising locations are:

aW =Max

½
0,Min

½
1

2
,
1

2
− Ω

¾¾
and bW =Min

½
Max

½
1

2
,
1

2
+ Ω

¾
, 1

¾
,

where Ω ≡ρ+2(1−ρ)σ
4(2−ρ) .

Proof: See appendix.

In interpreting the welfare result and comparing it with the equilibrium locations

derived in proposition 1, let us Þrst concentrate on the situation without spillovers.

In stage 3 of our game, i.e. after the R&D outcomes are realised, the optimal loca-

tions depend on whether there are one or two Þrms active in the market. For the

monopolist, the welfare maximising location is 1/2. The duopolists� optimal loca-

tions are a = 1
4
and b = 3

4
, respectively. These locations all minimise the welfare loss

due to transportation costs. What does this imply for the Þrms� welfare maximising

locations in stage 1, i.e. before the outcomes of the R&D efforts are revealed?

Suppose Þrst that there are no spillovers between the Þrms. Let ρ, the probability

that a Þrm innovates, become very small. In this case, if there is an innovation, the

innovator will tend to be a monopolist. For ρ → 0, the optimal location is thus

a = b = 1
2
. As ρ increases, the probability that a duopoly arises increases. Therefore,

the welfare maximising locations are such that the Þrms are located symmetrically
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Figure 4.2: The equilibrium and the welfare maximising locations.

around 1
2
and with a positive distance (smaller than 1

2
) between them. Finally, for

ρ = 1 there will be a duopoly with certainty, so the welfare maximising locations are

a = 1
4
and b = 3

4
, respectively.

Comparing Proposition 1 and Proposition 2, we obtain immediately

Corollary 3 Consider the model without spillovers. There exists a unique value eρ
such that

i) ρ < eρ implies a∗ < aw (b∗ > bw)
ii) ρ > eρ implies a∗ > aw (b∗ < bw).
Figure 4.2 illustrates the welfare maximising locations (dashed) as well as the equilib-

rium locations (solid). The Þgure shows how there is excessive spatial concentration

for low ρ, and excessive spatial dispersion for high ρ.
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Figure 4.3: The regions with excessive concentration and dispersion.

Consider now the situation with positive spillovers (σ > 0). Spillovers imply that

the success of one Þrm increases the other Þrm�s probability of success. Compared

to the situation with no spillovers, the duopoly outcome is more likely to occur (and

monopoly less likely). Hence the social planner would opt for relatively more disper-

sion. In equilibrium, spillovers lead also to more dispersion. Figure 4.3 illustrates

how, as a result of these two effects, the region with excessive spatial concentra-

tion decreases as the technological spillovers between Þrms increase. Indeed, the line

segmenting the two regions is given by the function ρ(σ). This is summarised in

Corollary 4 There exists a monotonically declining function ρ(σ) such that for any

σ ≤ σ, ρ < ρ(σ) implies excessive concentration, whence ρ > ρ(σ) implies excessive
dispersion. For σ > σ, there is excessive dispersion for any ρ.
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4.5 Endogenous R&D Decisions

In the benchmark model, the Þrms had no choice of how to pursue their R&D ac-

tivities. In this section, we allow the Þrms to choose between two R&D strategies.

They can costlessly follow either a �safe� and well-known path (�S �) or a riskier and

more innovative path (�R�). Following the safe path, the Þrm develops with certainty

a product of quality qL. If instead the Þrm follows the riskier path, it develops, with

probability ρ, a product of higher quality qH . We denote ∆ ≡ qH−qL. The outcomes
of risky R&D efforts are again uncorrelated. We assume that the Þrms can only follow

one of the paths. Hence, if a Þrm tries to develop the high quality product but fails,

it cannot switch to the low risk strategy, and thus must stay inactive ex post.

The Þrms simultaneously choose their location and R&D strategies. We already have

determined the equilibrium prices for given location and qualities, so we only have to

look for a Nash-equilibrium jointly in locations and R&D choices. We denote Þrm A�s

strategy by sA = (a, z), where a is the location and z ∈ {S,R} is the R&D project.
Firm B�s strategy is denoted in the same manner.

4.5.1 The Equilibrium

Our procedure for determining the equilibria in this game is as follows. In the en-

suing two lemmata, we specify the locational equilibria conditional on chosen R&D

strategies. These lemmata are used in the Þnal proposition to show that payoffs in

the equilibrium candidates, in which both R&D and locational strategies are jointly

determined, remain undominated.

Proposition 1 speciÞes the equilibrium location conditional upon Þrms both choosing

the risky R&D path. The equilibrium location of the Þrms if they choose the safe

technology is already known, so we will just state the result.
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Lemma 3 Consider a candidate equilibrium, in which both Þrms choose the safe

technology. Then, each Þrm�s optimal location, given any location of the other Þrm,

is the one that is furthest away from its competitor�s location.

Proof: See d�Aspremont, Gabszewicz & Thisse (1979).¥

Consider now locational equilibria conditional when one Þrm chooses the safe tech-

nology and the other the risky one. In this case the reaction functions are highly

non-linear. Towards solving the model closed form we need to make restrictions

on some parameters. The following assumption states sufficient (but not necessary)

conditions on these:

A. 2. ∆ ≥ ∆ = t and ρ ≤ 2
3
= ρ.

Assumption 2 excludes technologies that improve little on the safe technology and/or

are successful with a very high probability.

In the next lemma, we specify the relevant equilibrium locations..

Lemma 4 Let Assumption 2 hold and consider a candidate equilibrium, in which one

Þrm (say, A) chooses the safe technology while the other (B) chooses the risky one.

Then, Þrm A�s optimal location for any b is a = 1/2. Firm b�s optimal location given

a is b = a.

Proof: See appendix.¥

The reaction functions of the two Þrms illustrate how differently they weigh the

possible outcomes. If the risky R&D project is successful, the Þrm that has chosen

the safe technology is not going to earn much proÞts no matter where it locates, as it

supplies an inferior product. Therefore, it chooses the central location, because that

maximizes its proÞts when it is alone in the market. The Þrm that chooses the risky
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R&D project only earns proÞt if it is successful. It also prefers to go to the centre

of the market, as this results in the highest possible price obtainable, whilst the low

quality Þrm is driven out of the market.

The fact that the high quality Þrm drives the low quality Þrm out of the market is a

consequence of Assumption 2 that rules out very small quality differences. However,

it is important to notice that the possibility that both Þrms stay in the market is not

ruled out by Assumption 2. From Lemma 2, it follows that if the Þrms would locate

at the opposite ends of the line, the low quality Þrm would stay in the market as long

as ∆ ≤ 3t.

Using Lemma 3 and 4 and Proposition 1, it is now possible to derive the equilibria

of the full game. We will denote the possible equilibria by{sA, sB} where the two
entries refer to Þrm A�s Þrm B�s strategies respectively. Abusing notation slightly,

we will denote by ΠDi (sA, sB) Þrm i�s expected proÞt as a function of the two Þrms�

strategies.

Proposition 3 i) {(1
2
, R), (1

2
, R)} is a unique equilibrium if and only if

∆ ≥ (1− ρ)(4qL − t)
4ρ

. (4.8)

ii) {(1
2
, S), (1

2
, R)} and {(1

2
, R), (1

2
, S)} are equilibria that (modulo symmetry) are

unique if and only if

25t

144ρ
≤ ∆ ≤ (1− ρ)(4qL − t)

4ρ
. (4.9)

iii) {(0, S), (1, S)} is a unique equilibrium if and only if

∆ ≤ t

2ρ
. (4.10)
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Proof: Part i) Consider the strategy choice {(1
2
, R), (1

2
, R)}. We know from Proposi-

tion 1 that if both Þrms choose the risky technology, the unique equilibrium locations

are a = b = 1
2
under Assumption 2. Therefore, we only need to check for deviations

involving the safe technology. It follows from Lemma 4 that the optimal deviation

for Þrm A (B,respectively) would be to the strategy (1
2
, S). Therefore, that strategy

choice is an equilibrium iff. ΠDA((
1
2
, R), (1

2
, R)) ≥ ΠDA((12 , S), (12 , R)), which reduces to

equation (4.8).

Part ii) Consider instead the strategy choice {(1
2
, S), (1

2
, R)} (the analysis for {(1

2
, R),

(1
2
, S)} is analogous) It follows from Lemma 4 that if the Þrms choose different tech-

nologies, the only candidate equilibrium locations are both Þrms choosing 1
2
. Again,

we consider deviations to a different technology. Proposition 1 implies that the opti-

mal deviation for Þrm A is (1
2
, R), while Lemma 3 implies that the optimal deviation

for Þrm B is (1, S) (or, (0, S)). It follows that strategy choice is an equilibrium iff

ΠDA((
1
2
, S), (1

2
, R)) ≥ ΠDA((12 , R), (12 , R)) and if ΠDB((12 , S), (12 , R)) ≥ ΠDB((12 , S), (1, S)),

which reduce to equation (4.9), respectively.

Part iii) Consider the strategy choice {(0, S), (1, S)}. From Lemma 3 it follows that

this is the candidate equilibrium given the technology choice. Suppose that ÞrmB (or,

alternatively, A) would choose the technology R. From Lemma 4 it follows that the

optimal deviation would be to (0, R). Therefore, the strategy choice is an equilibrium

iff. ΠDA((0, S), (1, S)) ≥ ΠDA((0, S), (0, R)), which reduces to equation (4.10).¥

4.5.2 Discussion

Figure 4.4 summarises the equilibrium outcomes. For low values of both ∆ and ρ, the

expected return on the risky technology is so low that the Þrms prefer choosing the

safe technology, in which case the Þrms locate as far as possible from each other. By

contrast, if both, ∆ and ρ exhibit high values, the risky technology is more attractive.

Under Assumption 2, the Þrms thus locate together in the middle and choose the risky
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Figure 4.4: The equilibrium outcome with endogenous R&D choices.

technology. The most interesting equilibria arise for intermediate values of ∆ and ρ.

As shown in the Þgure, we Þnd equilibria where the Þrms agglomerate in the centre,

but choose different technologies. In these equilibria, the Þrms do not differentiate

themselves by choosing different horizontal characteristics, but instead by choosing

different R&D strategies which, in our model, invariably lead to differing outcomes:

one of the Þrms will dominate the market, whilst the other will remain inactive.

This result provides an interesting link to different branches of the literature. For

instance, in the literature on multi-dimensional horizontal differentiation, it has been

shown how Þrms differentiate themselves maximally in one dimension and minimally

in the other one, see Irmen and Thisse (1998). This is similar to what happens in our

model for low and intermediate values of ∆ and ρ. For low values, they differ max-

imally in locations but minimally in the vertical dimension, whilst for intermediate

values, locational differentiation is minimal and vertical differentiation is maximal.
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Yet this cannot happen for high values: Since consumers are willing to pay more

for higher quality, both Þrms differentiate minimally in space, and prefer the risky

technology if it has a high expected pay-off.

The risk-return trade-off in R&D has been studied by Dasgupta and Maskin (1987)

and Bhattacharya and Mookherjee (1986), among others. They used very general

risk-return functions. However, to make the analysis tractable, the authors restricted

their attention to symmetric R&D choices by the Þrms in the industry. In a less

general model, we demonstrate that imposing symmetry might be quite restrictive.

Indeed, our results suggest that Þrms have incentives to differentiate themselves also

along R&D dimension, in order to compete less Þercely in the product market.

The following corollary looks at the equilibrium outcome under a speciÞc subset of

the risky innovation technologies, namely all mean-preserving spreads of the safe

innovation technology.

Corollary 5 If the Þrms can choose between two technologies with the same mean

but a different spread, i.e. qL = ρqH, the equilibrium outcome under Assumption 2 is

{(1
2
, R), (1

2
, R)}.

Proof: Using qL = ρqH , we can express the quality difference as ∆ = 1−ρ
ρ
qL, which

is strictly greater than (1−ρ)(4qL−t)
4ρ

. It follows from Proposition 3 that the unique

equilibrium under Assumption 2 is {(1
2
, R), (1

2
, R)}.¥

In the Hotelling model considered here, competition between the Þrms dissipates

aggregate rents.3 However, if possible, the Þrms prefer to participate in a lottery

where they sometimes win and be alone in the market, and sometimes loose (with

the same probability) and be inactive. If both Þrms choose the risky technology,

3In most standard models of competition, like, e.g., Cournot or Bertrand competition with ho-
mogenous goods, competition destroys rents compared to a situation of monopoly. In this case, �the
efficiency effect� or �the joint proÞt effect� is said to hold.
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they are essentially partaking in such a lottery. The cost of the lottery, however, is

that if neither of the Þrms innovates, they cannot serve the market. It turns out, as

Corollary 5 shows, that the beneÞt from gambling in the technology choice outweighs

the cost if the risky technology has the same mean quality as the safe one.

4.5.3 Welfare

Let us now assess the welfare properties of the equilibrium derived in the previous

section. In order to Þnd the welfare maximising pairs of locations and innovation tech-

nologies for both Þrms, we will proceed as follows. First, we will derive the socially

efficient locations for all three possible innovation patterns in the industry. Then,

we will compare the attainable welfare levels under these innovation patterns given

optimal locations and determine the global maximum. And Þnally, we compare these

results with the equilibrium outcome.

Suppose Þrst that both Þrms were to employ the risky technology. Then the results of

Proposition 2 apply. The corresponding expected welfare level for these locations is

derived in the appendix. Second, if both Þrms are given the safe technology, then, as

argued in the benchmark model, the transportation costs are minimised and welfare

maximised for a = 1
4
and b = 3

4
.

The last possibility is that one Þrm chooses the risky R&D strategy and the other the

safe one. Here, we need to take into account not only the transportation costs, but

also the quality of the products bought by the consumers. Assumption 2 implies that

no matter how far the Þrms are located from each other, it is welfare maximising that

all consumers buy the high quality product whenever it is developed. This is so, as, by

Assumption 2 the maximal travelling cost (t) is lower than the quality difference (∆).

The welfare maximising locations are thus a = b = 1
2
because this ensures that the
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Þrm with the highest available quality serves the whole market at the lowest possible

transportation cost. This is shown formally in the following lemma.

Lemma 5 Suppose that Assumption 2 holds and that one Þrm is endowed with the

safe technology and the other with the risky one. Then the welfare maximising loca-

tions are a=b=1
2
.

Proof: See appendix.

We are now in the position to compare the welfare outcomes under the different

technology choices and corresponding optimal locations of Þrms. The next proposition

states the main welfare result. DeÞne

∆W1 ≡ t

16ρ
and ∆W2 ≡ 1− ρ

ρ
qL +

t(ρ3 − 16ρ2 + 20ρ− 8)
48t(1− ρ)(2− ρ) ,

then

Proposition 4 Suppose that Assumption 2 holds. Then the welfare maximising

strategies {sWA , sWB } are

{sWA , sWB } =


{(1
4
, S), (3

4
, S)} for 0 < ∆ ≤ ∆W

1 ,

{(1
2
, S), (1

2
, R)} and {(1

2
, R), (1

2
, S)} for ∆W

1 < ∆ ≤ ∆W
2 ,

{(aW , R), (bW , R)} for ∆ > ∆W2 .

where aW and bW are as in Proposition 2.

Proof: See appendix.

The welfare maximising technology and location choice is illustrated in Figure 4.5.

First, for low values of ∆ and % where the expected return of risky R&D strategy is

low, it is optimal that both Þrms choose the safe technology. In order to minimise

the transportation costs, the Þrms should then locate at 1
4
and 3

4
. For intermediate

values of ∆ and %, it is optimal that one Þrm tries to develop the high quality product
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while the other Þrm develops the safe, low quality product that is then available if

the risky R&D strategy fails. Here, as discussed above, the optimal locations are

a = b = 1
2
. Finally, if ∆ and % are high, the risky technology is so attractive that

both Þrms should choose it from point view of welfare. The optimal locations are

then symmetric around 1
2
and situated between 1

4
and 3

4
as discussed in section 4.
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Figure 4.5: Welfare properties of the equilibrium.

Finally, the last corollary compares the socially efficient allocation with the equilib-

rium outcome.

Corollary 6 Comparing Proposition 3 and Proposition 4, we get

(i) If 0 < ∆ ≤ ∆W1 , Þrms excessively differentiate in product space but the optimal

innovation techniques.

(ii) If ∆W1 < ∆ ≤ t
2ρ
, Þrms excessively differentiate in product space and one Þrm

inadequately chooses the safe production strategy.
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(iii) If 25
144ρ

< ∆ ≤ (1−ρ)(4qL−t)
4ρ

, Þrms choose the welfare maximizing allocation.

(iv) If (1−ρ)(4qL−t)
4ρ

< ∆ ≤ ∆W2 , Þrms choose optimal locations but one Þrm inade-

quately adopts the risky innovation strategy.

(v) If ∆ > ∆W2 , Þrms excessively concentrate in product space but select the optimal

innovation techniques.

Figure 4.5 shows that for low values of ∆ and % (point (i) and (ii) in the corollary),

the Þrms adopt the safe technology and differentiate themselves in the horizontal

dimension. In equilibrium, there is too much horizontal differentiation given the safe

technology choice. Furthermore, there is a region, described in point (ii), where there

is too little R&D differentiation. For intermediate values ∆ and % (point (iii)), the

Þrms choose the optimal location as well as technology. For high values of ∆ and

% (point (v)), the Þrms adopt the risky technology, which is the welfare maximising

choice. However, when choosing their location the Þrms put too much weight on

the monopoly outcome relative to duopoly. The reason is that the Þrms extract all

social surplus under monopoly but not under duopoly. Therefore, there is too little

horizontal differentiation in equilibrium, as the Þrms agglomerate in the middle (the

optimal location under monopoly). Finally, there is a small region where the Þrms

choose the optimal horizontal product characteristics, but end up with too much R&D

differentiation (point (iv)).

4.6 Conclusions

In this paper, we analyse the interaction between Þrms� R&D decisions and their loca-

tion choices in product or geographical space which have not been analysed heretofore.

In a benchmark model, we introduce stochastic R&D in the classical Hotelling model

and show that this might restore the principle of minimum differentiation even in a

model with quadratic transportation costs of consumers. The intuition for this result
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is that if R&D success is stochastic, a Þrm only meets a competitor in the product

market with a certain probability and this weakens the centrifugal �competition� effect

that normally dominates the centripetal �demand� effect in the Hotelling model.

ModiÞcations of the model to include R&D spillovers or patenting show clearly that

spillovers exercise a deglomerating and patents an agglomerating effect. The reason

is that spillovers align the Þrms� R&D successes and make them more competitive

when they are close to each other. Whereas patent protection lead one of the Þrms

to win, at the cost of the other which decreases the competitive pressure.

In the second part of the paper, we combine locational choices of Þrms with an

endogenisation of their R&D technologies in the sense that they can choose between

riskless production of a low quality good or a risky development of a high quality

good. Our results hint at a strong complementarity between risk taking in R&D and

clustering in product or geographical space. We Þnd three different types of equilibria:

(i) Þrms stay apart from each other and choose the safe innovation technology, (ii)

they cluster in the center and choose the risky technology or (iii) they cluster in the

center and differentiate themselves along the R&D dimension.

As far as welfare comparisons is concerned, we obtain excessive dispersion (yet com-

pliance with the welfare allocation with respect to the chosen R&D technique) for low

quality differences, and similarly excessive concentration for high quality differences.

For intermediate differences, we obtain either the welfare result or deviations with

respect to the chosen R&D strategy.

There is an utterly clear labor market interpretation for the model results for the case

where both Þrms choose to agglomerate whilst employing the risky R&D technology:

Firms agglomerate to share the same (large) labor market when chances are high that

only one of the two Þrms (at a time) beneÞts from it. To us, this most clearly reßects

the hearsay about Silicon valley dynamics. According to that, �Þrms come and go,

labor stays�.
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It remains to speculate about possible extensions of the model. A particularly inter-

esting, yet difficult one seems to be to consider that Þrms produce several products

and compete only in a subset of these, yet beneÞt from a central location in two

ways. First, from participation in a large output (or labor) market; and second, from

shared knowledge that helps improving also on the product lines in which they don�t

compete.

Another interesting extension, especially within the geographical interpretation of

the model would be to explicitly account for the localized cumulative effects of R&D.

Empirical research suggests that knowledge seems not to spread as easily as one would

expect. It is not only embedded in human beings, but also in, possibly informal,

institutions. It seems that this feature also enhances the spatial concentration of

Þrms in R&D intensive industries. Yet, as usual, this, as well as other potential

extensions of our model, must be left for further consideration.
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4.8 Appendix

Proof of Lemma 2

The demand of Þrm A can is given as

ey =Max½0,Min½a+ b
2

− epA − epB
2t(b− a) , 1

¾¾
,

where epi = qi−pi is the quality adjusted price of Þrm i. We know from d�Aspremont,
Gabszewicz & Thisse (1979) that ey is continuous in (epA, epB), so it follows immediately
that it is also continuous in (pA, pB). Quality differences do thus not create problems

for the existence of a price equilibrium.

DeÞne pA ≡ pB + qA − qB + (b2 − a2)t and pA ≡ pB + qA − qB − (b − a)(2− a − b).
The proÞt function of Þrm A (for given a, b, qA, and qB) can be written as:

ΠDA(pA, pB) =


0 for pA > pA

pA
³
a+b
2
− pA−pB

2t(b−a)
´
for pA ≥ pA ≥ pA

pA 0 ≤ pA < pA.

It is easy to verify that ΠDA(pA, pB) is continuous in pA. Furthermore, Π
D
A(pA, pB)

consists of concave segments and the left hand side derivative (LHS) at p
A
is larger

than the right hand side (RHS) derivative. Therefore, ΠDA(pA, pB) is concave for

pA ≤ pA, so whenever the exists an optimal price, p∗A, such that ΠDA (p∗A, pB) > 0, p∗A
is unique. The proÞt function of Þrm B is derived analogously. Suppose Þrst that

there exists an interior solution where both Þrms have a positive market share. The

Þrst order conditions of the two Þrms are given as:

∂ΠDA(pA, pB)

∂pA
=

a+ b

2
− 2pA − pB − qA + qB

2(b− a)t = 0

∂ΠDB(pA, pB)

∂pB
= (1− a+ b

2
)− 2pB − pA − qB + qA

2(b− a)t = 0.
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Solving for (pA, pB), we obtain (4.3). We need to check for corner solutions. Take

the case of qA − qB > t(b − a)(4 − a − b). We will now verify that prices given by
(4.4) constitute an equilibrium. For Þrm A, the LHS derivative at p

A
is 1, while the

RHS derivative is ∂Π
D
A (pA,pB)

∂pA
|(pA,pB)=(pA

,0)< 0. Hence, the optimal price is p∗A = pA =

qA− qB − t(b− a)(4− a− b). For Þrm B, pB < 0, so Þrm B earns zero proÞts. Thus,

p∗B = 0 is an optimal price. The other corner solution, given by (4.2), can be veriÞed

in a similar way. Finally, it can be shown that under the assumption pA, pB ≥ 0, the
price equilibrium is unique.¥

Proof of Proposition 1

We we will here solve the model allowing for spillovers. If there are spillovers, the

proÞt of Þrm A is given as:

E(ΠA(a, b, qA, qB, ρ)) = ρ(ρ(1− σ)ΠDA(a, b, 0) + (1− ρ(1− σ))ΠM(q, a)).

Solving the Þrst-order condition, and excluding solutions that do not satisfy 0 ≤ a ≤
1, we obtain the reaction function:

RA(b) =
(−36− 4 (−5 + b) σ − ρ (−28 + 2b+ 20σ − 4bσ) +√V +W )

6ρ+ 12 (1− ρ) σ ,

where

V := (36 + 2 (−14 + b) ρ− 4 (5− b) (1− ρ) σ)2

and

W := 4 (3ρ+ 6 (1− ρ)σ) ¡36− 40ρ+ b2ρ− 2 ¡22− b2¢ (1− ρ) σ¢
.

Deriving the reaction function of Þrm B, we have:

RB(a) =
36− 4 (1 + a)σ − 2ρ (10 + a− 2 (1 + a)σ)−√X − Y

6ρ+ 12 (1− ρ)σ ,
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where

X := (36− 2 (10 + a) ρ− 4 (1 + a) (1− ρ)σ)2

and

Y := 12
¡
16− a2¢ (ρ+ 2σ − 2ρσ)2

.

It can be veriÞed that RB(1 − x) = 1 − RA(x). Using the symmetry, we solve

RA(b) = 1− b and RB(a) = 1− a for (a, b), which proves Corollary 1. Proposition 1
follows directly by setting σ = 0. Corollary 2 is proved in a similar way.¥

Proof of Lemma 4

We will without loss of generality focus on situations where a ≤ b and Þrm A has

chosen the safe technology and Þrm B the risky.

The reaction function of Þrm A

>From equation (4.7) it follows that Þrm A is driven out the market when Þrm B

innovates iff. t(b− a)(2+ a+ b)−∆ ≤ 0. Therefore, there exists a value of a, a, such
that Firm A stays in the market if Firm B innovates iff. a ≤ a. a is gives as:

a ≡Max
(
0,−1 +

p
(1 + b)2t−∆√

t

)
.

Using equation (4.7), the proÞt function of Þrm A can be written as:

ΠDA((a, S), (b,R) = ρ (t(b−a)(2+a+b)−∆)
2

18t(b−a) + (1− ρ)(qL − t(Max{a, 1− a})2) for a ≤ a
(1− ρ)(qL − t(Max{a, 1− a})2) for a > a.
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Case 1: a = 0

Maximizing the proÞts wrt. a yields:

∂ΠDA((a, S), (b, R))

∂a
=

 2(1− ρ)(1− a)t for a ≤ 1
2
.

−2(1− ρ)at for a > 1
2
.

(4.11)

It follows that the optimal location is a∗ = 1
2
.

Case 2: 0 < a ≤ 1
2

It follows from (4.11) that the ΠDA((a, S), (b, R)) is increasing for
1
2
≥ a > a and

decreasing after 1
2
. We now look at a ≤ a. Maximizing the proÞts wrt. a yields:

∂ΠDA((a, S), (b,R))

∂a
=

1

18

Ã
−2 (∆) ρ+ (∆)2ρ

(a− b)2t −
¡
36 (−1 + a) + ¡40 + 3a2 + 2a (−14 + b)− b2¢ ρ¢ t!

We have that

∂2ΠDA((a, S), (b, R))

∂a∂b
=
tρ

9

µ
(b− a)− 1

(b− a)3
¶
< 0.

This implies that ∂ΠD
A ((a,S),(b,R))

∂a
≥ ∂ΠD

A ((a,S),(1,R))

∂a
for all (a, b). We want to show that

∂ΠD
A ((a,S),(b,R))

∂a
≥ 0 and it is thus sufficient to show that ∂ΠD

A ((a,S),(1,R))

∂a
≥ 0 for all a ≤ a.

As a Þrst step, we look at the ∂ΠD
A ((a,S),(1,R))

∂a
evaluated at a = 0. From Assumption 2

it follows that

∂ΠDA((0, S), (1, R))

∂a
=
1

18

µ
−2∆ρ+ ∆

2ρ

t
+ (36− 39ρ) t

¶
≥ 0.

Second, we show that ∂ΠD
A ((a,S),(1,R))

∂a
is positive at a = 1

2
(the maximal value of a).

Straight forward calculations show that ∂ΠD
A ((

1
2
,S),(1,R))

∂a
is positive if Assumption 2
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holds:

∂ΠDA((
1
2
, S), (1, R))

∂a
=
1

18

µ
−2∆ρ+ 4∆

2ρ

t
+

µ
18− 107ρ

4

¶
t

¶
≥ 0.

We have now shown that ∂ΠD
A ((a,S),(1,R))

∂a
is positive at the minimal and the maximal

value of a. What is left to show is that ∂Π
D
A ((a,S),(1,R))

∂a
cannot take on negative values

between 0 and 1
2
. We show this in two steps: First, we show that ∂2ΠD

A ((
1
2
,S),(1,R))

∂a2 is

negative at a = 0 and a = 1
2
. Afterwards, we show that ∂ΠD

A ((
1
2
,S),(1,R))

∂a
is convex,

i.e. ∂3ΠD
A ((

1
2
,S),(1,R))

∂a3 ≥ 0. This imply that the Þrst order condition is positive for all

0 ≤ a ≤ 1
2
.

We have:

∂2ΠDA((0, S), (1, R))

∂a2
= −2

9
(9− 7ρ) < 0 and

∂2ΠDA((
1
2
, S), (1, R))

∂a2
= (−2 + 13

6
ρ) < 0,

where ∂2ΠD
A ((

1
2
,S),(1,R))

∂a2 < 0 holds because of Assumption 2. Finally, using Assumption

2, we have:

∂3ΠDA((a, S), (1, R))

∂a3
=
ρ

3

µ
∆2

t(b− a)4 − t
¶
> 0.

Hence, we conclude that if a ≤ 1
2
, the Þrst order condition is positive for all a ≤ 1

2

and negative for 1
2
< a ≤ b. It follows that a∗ = 1

2
.

Case 3: a > 1
2

It follows from the analysis of Case 2 that the Þrst order condition is positive for

a ≤ 1
2
. Consider now 1

2
< a ≤ a < b. Here, the Þrst order condition is given as

∂ΠDA((a, S), (b,R))

∂a
=

ρ(∆− t(b− a)(2 + a+ b)t)(∆+ t(b− a)(2 + 3a− b)t)
18(b− a)2 + (−2(1− ρ)at) < 0.
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It follows form the analysis of Case 1 that ∂ΠD
A ((a,S),(1,R))

∂a
< 0 for a < a ≤ b. Hence,

a∗ = 1
2
. This proves part i) of Lemma 4.

The reaction function of Þrm B

If Þrm B innovates, it drives Þrm A out the market t(b − a)(2 + a + b) − ∆ ≤ 0.

Therefore, there exists a value of b, b, such that Firm A stays in the market if Firm

B innovates iff. b ≥ b. b is gives as:

b ≡Min
(
1,−1 +

p
(1 + a)2t+∆√

t

)
.

Using equation (4.7), the proÞt function of Þrm B can be written as:

ΠDB((a, S), (b,R) =

 ρ(∆− t(b2 − a2)) for b ≤ b
ρ (t(b−a)(4−a−b)−∆)

2

18t(b−a) for b > b.

First, we consider the consider the case of b ≤ b. Here, we have
∂ΠDB((a, S), (b, R))

∂b
= −2ρbt < 0 for b ≤ b.

Next, we consider b > b:

∂ΠDB((a, S), (b,R))

∂b
=

− ρ(∆− (b− a)(4 + a− 3b)t)(∆+ (b− a)(4− a− b)t)
18(b− a)2 for b > b.

As a Þrst step, we show that this function is convex in the relevant range.

∂2ΠDB((a, S), (b,R))

∂b2
= ρ

³
− ∆2

(a−b)3 − t(8− a− 3b)t2
´

9t

It can be shown that the ∂3ΠD
B ((a,S),(b,R))

∂b3 > 0. Hence, in order to show that the

function is convex, it is enough to show that it is convex at the lowest possible value
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of b, b. Calculations show that ∂3ΠD
B ((a,S),(b,R))

∂b2∂a
|b=b> 0 under Assumption 2. To show

convexity, it is thus sufficient to show that ∂
2ΠD

B ((a,S),(b,R))

∂b2 |(a,b)=(0,b)> 0. We have that
∂2ΠDB((a, S), (b, R))

∂b2
|(a,b)=(0,b)=

4ρ

9∆

³
t(t− 2∆) +√t(t+∆)3/2

´
.

Analysis of this function shows that it has a global minimum at ∆ = 3t where it takes

on the value 4ρt
9
. Hence, we have

∂2ΠD
B ((a,S),(b,R))

∂b2 >
∂2ΠD

B ((a,S),(b,R))

∂b2 |(a,b)=(0,b)> 0 for (a, b) in the relevant range, so the

ΠDB((a, S), (b,R)) is convex. In order to show that
∂ΠD

B ((a,S),(b,R))

∂b
< 0 for all b > b, it

is thus enough to show that ∂Π
D
B ((a,S),(b,R))

∂b
|b=1< 0. We have that

∂2ΠDB((a, S), (1, R))

∂b∂∆
< 0.

Hence, the Þrst order condition is maximized for the minimal value of ∆. Under

Assumption 2, this is ∆ = t. Therefore, we have

∂ΠDB((a, S), (1, R))

∂b
<
∂ΠDB((a, S), (1, R))

∂b
|∆=t= −(−2 + a)

2a2ρt

18(1− a)2 < 0.

We conclude that ∂ΠD
B ((a,S),(b,R))

∂b
< 0 for all b > b. Hence, the ∂ΠD

B ((a,S),(b,R))

∂b
< 0 for

all b ≥ a, so b∗ = a. This proves part ii) of Lemma 4.¥
Proof of Proposition 2

Total welfare in a monopoly where a Þrm offers a product of quality q at location a,

0 ≤ a ≤ 1 is given by

WM :=

1Z
0

(q − t(y − a)2)dy = q − t

2
+ at(1− a).

In a duopoly with Þrms located at a and b, 0 ≤ a ≤ b ≤ 1 and offering a product of
quality q, welfare is

WD : =

2+a+b
6Z
0

(q − t(a− y)2)dy +
1Z

2+a+b
6

(q − t(b− y)2)dy

= q − t

3
+ bt(1− b) + t

36
(b− a)(2 + a+ b)(5b+ 5a− 2).
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Expected welfare in the economy, EW (a, b), is then deÞned as

EW (a, b) := ρ2WD + ρ(1− ρ)WM(a) + (1− ρ)ρWM(b).

Taking the Þrst derivatives of this function with respect to the locations a and b yields

the following two necessary conditions:

(4− a (16 + 15 a)− 10 a b+ 5 b2) ρ2 t
36

+ (1− 2 a) (1− ρ) ρq = 0

and

(32− 56 b+ 5 (a+ b) (−a+ 3 b)) ρ2 t
36

+ (1− 2 b) (1− ρ) ρq = 0.

These conditions are also sufficient for a maximum since

∂2EW (a, b)

∂a2
=
− ((8 + 15 a+ 5 b) ρ2 t)

18
− 2 (1− ρ) ρ q < 0

and

∂2EW (a, b)

∂b2
= −2 q (1− ρ) ρ− (28− 5 a− 15 b) ρ

2 t

18
< 0.

Thus, solving the two Þrst order conditions above for (a, b) yields the welfare max-

imising locations given in the proposition.¥

Proof of Lemma 5

We assume as in the proof of Lemma 4 that Þrm A chooses the safe technology and

Þrm B the risky. a and b are deÞned in Lemma 4. If Þrm A is alone in the market,

the welfare under Assumption 1 is given as:

WM
A (a) =

1Z
0

¡
qL − t(a− x)2

¢
dx = qL − t

3
+ at(1− a).

If Þrm B innovates and b ≥ b, so Þrm A stays active in the market, the welfare is

given as:

WD
A,B(a, b) =

eyZ
0

¡
qL − t(a− x)2

¢
dx+

1Z
ey
¡
qH − t(b− x)2

¢
dx
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where ey is given by 4.1. Integrating this expression, we obtain:
WD
A,B(a, b) =

1

36
(2 (4 + 5a+ 5b) qL + 28qH − 10 (a+ b) qH − 5(qL − qH)

2

(a− b) t −¡
12 + 5a3 − (−4 + b) b (−8 + 5b) + a2 (8 + 5b)− a4 + 5b2)¢ t).

Finally, if Þrm B innovates, and b < b, the expected welfare is given by:

WD
B (b) =

1Z
0

¡
qH − t(b− x)2

¢
dx = qH − t

3
+ bt(1− b).

The expected ex-ante welfare is then given as:

E(W (a, b)) =

 ρWD
A,B(a, b) + (1− ρ)WM

A (a) if b ≥ b
ρWD

B (b) + (1− ρ)WM
A (a) if b < b.

We Þrst the optimal location of Þrm B. It is easily shown that for b < b, E(W (a, b))

is maximized for b = Min{1/2, b}. Consider now b ≥ b. The Þrst-order condition

wrt. to b is given as:

∂E(W (a, b))

∂b
=
r

36

µ
(32− 56b− 5 (a− 3b) (a+ b)) t− 10∆− 5∆2

(a− b)2t

¶
.

We want to show that ∂E(W (a,b))
∂b

< 0 in the relevant area. Since ∂
2E(W (a,b))
∂b∂a

, ∂
2E(W (a,b))
∂b∂∆

<

0, ∂E(W (a,b))
∂b

takes on the highest value for the lowest admissible values of ∆ and a:

∆ = t and a = 0. Plugging these values into the Þrst-order condition, we obtain:

∂E(W (0, b))

∂b
=

rt

36b2
¡−5 + b2 (22 + b (−56 + 15b))¢

In order to Þnd the maximal value of ∂E(W (0,b))
∂b

, we solve:

∂2E(W (0, b))

∂b2
=
(5 + b3 (−28 + 15b)) rt

18b3
= 0.

We Þnd that there is only one extremum in [0, 1] at b ≈ 0, 6494. Furthermore, as
∂3E(W (0,b))

∂b3 < 0, this is a maximum. Finally, we show that ∂E(W (0,b))
∂b

|b=0,6494< 0.
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Hence, ∂E(W (a,b))
∂b

< 0 for all (a, b) st. b ≥ b. It follows that the optimal b is given by
b∗ =Min{1/2, b}.

b =Min{1/2, b} implies that Þrm A is out of the market whenever Þrm B innovates.
This implies readily that a∗ = 1

2
. Finally, a∗ = 1

2
implies that 1

2
< b, so b∗ = 1

2
.¥

Proof of Proposition 4

Expected welfare if both Þrms have the safe technology and are located at 1
4
and 3

4
,

respectively is denoted by WSS and equals

WSS = qL − t

48
.

If both Þrms adopt the risky technology and locate as stated in Proposition 2 at

(aW , bW ), the expected welfare, WRR, is given by

WRR = (qL +∆)ρ(2− ρ)− ρt

48(2− ρ)(16(1− ρ) + ρ
2) .

Finally, if Þrms have different innovation technologies and are located at the center

of the line, we get

WRS = qL + ρ∆− t

12
.

>From this, if follows that

WRR > WSS ⇐⇒ ∆ > ∆W
3 :=

qL(1− ρ)2
(2− ρ)ρ − (1− ρ)(2− (15− ρ)ρ)t

48(2− ρ)2ρ
and that

WRS > WSS ⇐⇒ ∆ > ∆W
1

and Þnally

WRR > WRS ⇐⇒ ∆ > ∆W2 .

We will now proceed by showing that under our assumptions A.1. and A.2., the

ranking of these threshold values is unambiguous. First, notice that the following
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ordering holds. If qL > eqL := (14−29ρ+19ρ2−ρ3)t
48(2−ρ)(1−ρ) , then ∆W

1 < ∆W3 < ∆W2 , otherwise we

have ∆W2 < ∆W3 < ∆W
1 . Verify that eqL is increasing in ρ. Further check that eqL is

smaller than 3t as long as ρ < 0.8756. Hence, we have that for all parameter values

that satisfy A.1. and A.2., the ranking is ∆W
1 < ∆W3 < ∆W2 . This means that if

WRR > WRS, then it also holds that WRR > WSS. And, from WSS > WRS it follows

that WSS > WRR. We thus get the result stated in Proposition 4.¥


