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derived under risk neutrality. Such behavior could be generated by two entirely different

classes of decision rules: (i) rules that are optimal conditional on utility functions that
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capacities and satisfycing. In this paper, we develop and test search models that depart

from the standard assumption of risk neutrality in order to distinguish these two possi-

bilities. In our experiment, we present subjects not only with a standard search task, but

also with a series of lottery tasks that serve to elicit the shape of their utility functions.

We do not find a relationship between behavior in the search task and measures of risk

aversion. Our data suggest, however, that loss aversion is important for explaining search

behavior.
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1 Introduction

Behavior in search situations receives much attention in various fields of economics, such

as labor economics and marketing science.1 But behavior in search tasks is interesting

not only for the analysis of many substantive issues, it has also proven a useful object of

behavioral research in psychology and behavioral economics. Search tasks are attractive

for experimental studies because of their (superficially) simple structure that masks an

underlying optimization problem that is quite complicated and in most cases cannot be

solved in a human’s mind but requires numerical methods and a computer. Conceptu-

ally, search tasks are representative for a situation, in which one has to decide between

committing resources to an attractive proposition or deferring the decision in the hope of

receiving a better deal.

A simplified version of the consumer price search problem is the so-called secretary prob-

lem, the first statement of which appeared in February 1960 in a column by Martin

Gardner in the Scientific American and which has subsequently been theoretically inves-

tigated by many researchers in probability theory. The secretary problem is an optimal

stopping decision task in which the decision whether to stop or to continue the search

depends on the relative ranks of the presented alternatives. Experiments that investigate

individuals’ behavior in the standard secretary problem have been conducted by Rapoport

and Tversky (1970) and Seale and Rapoport (1997).

The secretary problem is conceptually at the origin of the price search problem, which

has been discussed in various forms by numerous authors, Hey (1981, 1982, 1987), Kogut

(1990), Harrison and Morgan (1990), Sonnemans (1998, 2000), and Houser and Winter

(2004) . Since individual price search behavior is difficult to examine in the field, research

on price search is generally based on experimental studies. The existing experimental

evidence suggests that relatively simple heuristics describe observed search behavior better

than the optimal stopping rule. It has been found, though, that subjects’ search behavior

is very good in the sense that their earnings are close to the earnings if they followed an

optimal strategy. This, however, does not indicate that their stopping rule is close to the

1 See Eckstein and van den Berg (2003) and Zwick et al . (2003) for reviews of the literature in these
fields.



optimal rule, it rather indicates that the payoff to search experiments is not too sensitive

to deviations in the stopping strategy. Evidence from experimental studies suggests that

individuals tend to search too little relative to the optimal strategy (Hey, 1987; Cox and

Oaxaca, 1989; Sonnemans, 1998). Cox and Oaxaca suggest that this might be traced back

to risk-averse behavior of the individuals (Cox and Oaxaca, 1989). Using an electronic

information board method, Sonnemans (1998) finds that differences in learning behavior

of the subjects might also be responsible for the observation of early stopping.

The existing experimental literature on search behavior is based on the assumption of risk

neutrality. Under risk neutrality, optimal stopping rules can be derived, and experimental

studies typically find that most subjects do not use such rules but rather follow some

heuristic. These heuristics are often sophisticated in the sense that they allow subjects to

get quite close to the payoffs they would have obtained using optimal rules. However, once

one allows for heterogeneity with respect to the individual risk attitudes, the situation is

more complicated: Decisions rules that have been treated as heuristics in the literature

could, in fact, be optimal conditional on the individual risk attitude. Consequently,

search behavior that cannot be explained by the optimal stopping rule derived under risk

neutrality could be generated by two entirely different classes of decision rules: (i) rules

that are optimal conditional on the individual utility function or (ii) heuristics that derive,

say, from satisfycing or other cognitive processes. Distinguishing these two possibilities

requires an independent measure of risk attitudes.

The contribution of our paper to the search literature is, therefore, to study the relation

between properties of subjects’ preferences (specifically, measures of risk attitude) and

decision rules used in search tasks. We do this by presenting subjects not only with a

search task that follows the standard in the literature, but also with lottery tasks that

serve to elicit their utility functions and specifically their degree of loss aversion. In

addition, we use a questionnaire to obtain a psychometric measure of risk attitudes as an

independent individual-level source of information on risk behavior.

In section 2, we present the design of our experiment. Section 3 describes our procedures

to draw inferences on subjects’ search behavior and risk attitudes. In section 4, we link

these elements and discuss the results of our experiment. Section 5 concludes.
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2 Design and Administration of the Experiment

Our experiment consists of three parts (A, B, and C) that were presented to the subjects

in fixed order. Part A of the experiment serves to elicit features of subjects’ preferences,

namely, the shape of their utility functions in the gain and loss domains. Part B consists

of a series of repeated price search tasks that is used to identify subjects’ search heuristics.

Part C is a survey instrument developed in the psychology literature to generate a measure

of subjects’ risk behavior. We describe these four parts in turn.

2.1 Parts A: Preferences

Part A builds on a method recently proposed by Abdellaoui (2000). A series of lottery

tasks serve to elicit subjects’ utility and probability weighting functions in a parameter-

free way. In part A, we elicit each subject’s utility function on the gain and loss domain,

using a series of 64 lottery choice questions in total. Four of the lottery questions appear

twice during the lottery elicitation process. This gives us the possibility to investigate

whether subjects behave consistently during the utility elicitation questions, or whether

preference reversals have occurred.2

The experiment used in Part A for the elicitation of subjects’ utility function is based

on the construction of “standard sequences of outcomes”, i. e., monetary outcomes that

are equally spaced in terms of utility. In our design, we use a 5-step bisection procedure

to determine an outcome x1 that makes the subject indifferent between two lotteries

A = (x0, p; R, 1− p) and B = (x1, p; r, 1− p); where p is set to 2/3 and we have 0 ≤ r <

R < x0 < x1. The parameters r, R, and x0 are held fixed during the whole experiment.

The first 5 presented lottery-pairs let us determine the desired x1 that makes the subject

indifferent between the lotteries A and B. The next step of this procedure is to present

another 5 pairs of lotteries in order to determine a value x2 that makes the subject

2 In our experiment, we also elicited each subject’s probability weighting functions for gains and losses
through a series of 72 lottery choice questions. Since subjects’ probability weighting functions are not
of interest in this study, we do not discuss results from these additional lottery tasks. The results from
our probability weighting function elicitation are comparable to the results reported by Abdellaoui
(2000); in particular, our estimates of the shape of the probability weighting function are similar to
those obtained by Abdellaoui. The results of the probability weighting function elicitation part of the
experiment can be obtained from the authors upon request.
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indifferent between the lotteries (x1, p; R, 1 − p) and (x2, p; r, 1 − p). This procedure

continues until we have determined an x6. In our experiment, we set (in the gain domain)

R to e100, r to e0, and x0 to e200. In the loss domain, we use the negative of these

values.

Now, assume that preferences can be represented by cumulative prospect theory (CPT).3

Let u(·) denote the utility function on the gain or the loss domain and let w(·) denote the

probability weighting function for the respective domain. Then indifference between two

lotteries implies pairs of equations of the following type:

w(p)u(xi) + (1− w(p))u(R) = w(p)u(xi+1) + (1− w(p))u(r) (1)

w(p)u(xi+1) + (1− w(p))u(R) = w(p)u(xi+2) + (1− w(p))u(r) (2)

From these two equations it follows:

u(xi+1)− u(xi) = u(xi+2)− u(xi+1) (3)

That is, in terms of utility, the trade-off of xi for xi+1 is equivalent to the trade-off of

xi+1 for xi+2. We obtain a standard sequence of outcomes, {x0, x1, ..., x6}, which is –

by construction – increasing for gains and decreasing for losses. Note that the range

of monetary outcomes in the elicitation procedure is specific for each subject, since it

depends on individual decisions.

2.2 Part B: Search Behavior

In part B of the experiment, subjects perform a sequence of search tasks. Each subject’s

goal is to purchase an object which they value at e500. This article is sold at infinitely

many locations, and visiting a new location costs e1. At each location, a price is ran-

domly drawn from a known distribution. On the instruction sheet, subjects are informed

graphically and verbally that the price at each location is drawn independently from a

truncated normal distribution with a mean of e500, a standard deviation of e10, and

truncation at e460 and e540. The distribution is discretized such that only integer prices

are realized.

3 The elicited utility function on gains is, indeed, a von-Neumann-Morgenstern utility function. Equation
(3) holds also under Expected Utility Theory, as can be found by substituting p for w(p) in equations
(1) and (2).
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After each new price draw (that is, at each location they visit), subjects are allowed to

recall previously rejected price offers. That is, after each price draw, subjects can stop

and choose any price (location) encountered so far, or they can continue their search at

the incremental cost of another euro. The outcome of each search task is calculated as

the evaluation of the object (e500) minus the price at the chosen location minus the

accumulated search cost.

Note that we allow for recall in order to be closer to situations such as price-search in

the internet: Indeed, in real-world situations, individuals can often perform their search

and compare offers as long as they want; at a certain moment, they decide to stop their

search and choose one of the offers that they have came across during their search.

Conceptually, the search problem presented in Sonnemans (1998, 2000) is similar to our

search task: The number of searches is unlimited, recall is accepted, the costs of one

search action is constant and the price at each location is drawn independently from

a distribution that is known to the searcher. In contrast to our setup, however, the

price offers are drawn from a discrete uniform distribution in Sonnemans’ experiments on

search. In Hey (1982), the subjects also face an identical situation; however they do not

know that the distribution of prices is normal (without truncation).

To ensure that subjects were experienced with the task and comfortable with the computer

interface, and to minimize the impact of learning, subjects were allowed to perform an

unlimited number of practice search tasks before performing a sequence of 10 or 11 tasks

that determined their payoff for part B of the experiment.4 Finally, after the experiment

was completed, one of these rounds was selected randomly to determine the part B pay-off.

2.3 Part C: Risk Attitudes

The experiment ends with a short computerized questionnaire (part C). This survey in-

strument for assessing risk-taking was developed by Weber et al. (2002). Subjects rate

their behavior with respect to 4 risky activities in the behavioral risk domain of gambling.

Specifically, subjects report how likely it is that they engage in a certain gambling-related

4 35 subjects played ten search rounds, and the second half, another 33 subjects, played 11 payment-
relevant search rounds.
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activity on a five-point rating scale ranging from 1 (“Extremely likely”) to 5 (“Extremely

unlikely”)5.

Risk attitude is generally considered to be content-specific in recent psychological litera-

ture (e. g., Bromiley and Curley, 1992). Based on our questions, we have a psychometric

measure for individual risk attitude in the gambling domain. In our subsequent analy-

sis, we correlate these measures with measures of risk attitudes obtained using the lottery

tasks of part A and with behavior in the search tasks observed in part B of the experiment.

2.4 Administration

The study was conducted in the fall of 2003 in the experimental laboratory of Sonder-

forschungsbereich 504, a research center at the University of Mannheim. In four sessions,

a total of 68 subjects participated in the main study.6 These subjects were recruited from

the general student population. All experiments were run entirely on computers using

software written by the authors.

All payments were made after subjects had completed all four parts of the experiment.

For each subject, the outcome of one of the 10 or 11 payment-relevant search tasks in

part B was selected randomly, and added to or subtracted from a flat e8 show-up fee,

depending on whether it was a gain or a loss. Subjects were told that their total payoff

was truncated at e0, that is they would at least earn e0 from the experiment. Finally, one

of the (on average) 17 subjects participating in each experimental session was randomly

selected to play for a real monetary pay-off based on his or her choices made in one of the

lottery tasks in parts A of the experiment. Since the outcomes of the lotteries were up to

e6000, we informed the subjects that the randomly selected person played for only 1%

of the positive outcomes (i. e., the gains) presented in the lotteries.

5 Based on subjects’ ratings in the risk domains (i) financial, (ii) recreational, (iii) social, (iv)
health/safety, and (v) ethical., Weber et al. (2002) construct domain-specific scales of subjects’ risk
attitudes and evaluate the construct validity and the consistency of these scales using standard ap-
proaches. However, for our purpose, only the domain of gambling risk is of interest.

6 A separate group of 5 subjects participated in a pilot study which allowed for fine-tuning of the
parameters of the lottery and search tasks, the adjustment of the software, and optimization of the
experimental protocol.
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3 Inference on Search Heuristics and Risk Attitudes

In this section, we discuss how we use the data from our experiment to draw inferences on

subjects’ preferences (the shape of their utility functions, as revealed in the lottery tasks)

and behavior (the heuristics they use in solving the search task). The last subsection

briefly explains how the psychometric measures of subjects’ risk attitudes are obtained.

3.1 Estimation of the Shape of the Utility Function

As mentioned in section 2.1, the lottery tasks presented in part A of our experiment are

based on those developed by Abdellaoui (2000). He uses his experimental data to estimate

utility functions in the gain and loss domain as well as the corresponding probability

weighting functions nonparametrically. For the purpose of our study, we need to order

subjects according to their risk attitudes. We therefore use a parametric approach and

specify the subjects’ risk attitude based on the functional specification of a utility function

with constant absolute risk aversion form (CARA). We estimate the utility function in

the gain and loss domains separately using nonlinear least squares and the data from part

A of the experiment.

We should point out that the procedure we use to elicit the shape of the utility function

(Part A) operates on a monetary range of gains and losses that is different from the range

considered in the search experiments (Part B). We made this decision on purpose, and

we should digress here for a brief discussion of the rationale for this decision. As pointed

out by Wakker and Deneffe (1996), in order to make the curvature of the utility function

sufficiently pronounced that is in order to reliably identify the curvature of the utility

function econometrically, a sufficiently wide interval of outcomes has to be investigated.

Accordingly, our method elicits individuals’ utility functions for monetary outcomes in a

wide interval (the size of which depends on the subjects decisions, see Abdellaoui (2000))

below e-200 or above e200, respectively. In the search game, where actual payments were

made, we had to reduce the outcome scale outcomes between e-40 and e40 because of

budget limitations. It may well be the case that individual risk attitudes are different for

high and low monetary outcomes. However, all we need for our empirical analysis is that

the rank order of individuals by the measures of risk attitudes is preserved between the
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high-outcome range for which it is elicited and the low-outcome range that is relevant for

the analysis of behavior in the search game.7 This is, in our view, a reasonable assumption

which is, in fact, a corollary of using a CARA-utility specification.

Based on, e. g., Currim and Sarin (1989) and Pennings and Smidts (2000) , we assume

the following exponential specification for our CARA-utility function on gains8:

u(x) =
1− e−γ(x−xG

min)

1− e−γ(xG
max−xG

min)
(5)

Here, xG
max is the largest elicited value of x in the gain domain (in absolute values), i. e., x6;

xG
min is the smallest elicited x-value on the gain domain, i. e., x0. For obtaining the utility

function in the loss domain, we replace xG
max and xG

min by xL
max and xL

min, respectively, we

use the absolute value of the denominator and the numerator and we take the negative

of the right-hand side. For γ = 0 the function is defined to be linear, i. e., the subject is

risk-neutral.

In our specification, the coefficients are estimated separately for gains and losses (γ and

δ, respectively). These coefficients characterize each subject’s risk attitude in the sense

of an Arrow-Pratt-measure (Pratt, 1964) of risk attitude, that is −u′′(x)/u′(x) = γ for

gains and −u′′(x)/u′(x) = δ for losses. If γ < 0, the subject has a convex utility function

and is risk-seeking on gains, if γ > 0, the subject is risk-averse, her utility function on

gains is concave.

Furthermore, we calculate an individual-specific index for loss aversion from our data. Be-

cause subjects generally evaluate their choice options relative to salient reference points,

Tversky and Kahneman propose that individuals process losses differently than gains

(Tversky and Kahneman, 1992). That is, loss aversion can be considered a psychological

factor, capturing the trade-off between gain- and loss-utility units. Generically, loss aver-

7 Accordingly, our empirical analysis will only be based on rank correlations, that is “comparative risk
aversion”.

8 Note that another normalized version of the CARA-utility has the following form:

u(x) =
1− e

−γ
x−xG

min
xG

max−xG
min

γ
(4)

Fitting this function yields a significantly higher mean relative standard error of the coefficient estimate
and a significantly lower coefficient of determination than fitting the functional form in equation (5).
The substantive conclusions of our analysis remain unchanged when we use the form (4).
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sion is defined by u(x) − u(y) ≤ u(−y) − u(−x) for all x > y ≥ 0 (Schmidt and Traub,

2002).

Based on work by Benartzi and Thaler (1995), Koebberling and Wakker (2003) propose

an index of loss aversion that is – in contrast to other indices discussed in the literature

– invariant to changes in the scale of the utility function, u(·), and it is invariant to scale

transformations of the outcomes. This index is given by

λ =
u′↑(0)

u′↓(0)
. (6)

Based on Koebberling and Wakker (2003) and our utility elicitation procedure, the index

of loss aversion has the following form for γ 6= 0 and δ 6= 0:

λ =

δ·(e−δ·(|xL−xL
min|))

1−e
−δ·(|xL

max−xL
min

|)

γ·e−γ(xG−xG
min

)

1−e
−γ·(xG

max−xG
min

)

(7)

For γ = 0, we have u′↓(0) = 1
xG

max−xG
min

, for δ = 0, we have u′↑(0) = 1
|xL

max−xL
min|

entering

expression (7) in the denominator and numerator, respectively.

Note that our estimate for individual loss aversion is based on the assumption that the

estimated form of the CARA-utility function of the individual is characteristic for her

utility function over the whole domain, and identically scaled both on gains and on losses9.

3.2 Classification of Decision Rules Used in the Search Task

The next step of our analysis is to determine, for each subject, the decision rule he or

she uses in the search task. We specify a fixed set of candidate decision rules, comprised

of the optimal decision rule and several simple heuristics that have been used in the

earlier literature (e. g., Hey (1982), Moon and Martin (1990) and Houser and Winter

(2004)) to describe search behavior. For each subject and each candidate decision rule,

9 Though the estimates for loss aversion are based on that strong assumption, we claim that the com-
bination of our utility elicitation method and Koebberling and Wakker’s (2003) characterization of an
index for loss aversion yields a reasonable overall estimate for comparative individual loss aversion. Our
findings on psychometric risk attitudes, reported later, seem to support this claim. We acknowledge,
however, that methods of eliciting an index for loss aversion based on mixed lotteries (e.g. Schmidt and
Traub, 2002), though also suffering from considerable uncertainty, should as well be used in a context
such as ours. We suggest that further experimental studies investigate the relationship between loss
aversion indices derived from mixed lotteries (e. g., Schmidt and Traub , 2002) and indices derived
from outward methods and pure lotteries, such as the method applied in the present paper.
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we compute the number of stopping decisions that are correctly predicted. We assign

to the subject the decision rule that generates the largest fraction of correct predictions,

i. e., that fits observed behavior best. We derive decision rules both under risk neutrality

and without restrictions on individual risk attitude. For the derivation of the decision

rules, we consider two cases: In the first case, the cost of each completed search step are

treated as sunk cost; in the second case, we derive the finite horizon optimal stopping rule

assuming that subjects do not treat past search cost as sunk costs. Finally, we discuss

the set of alternative heuristics, and describe our classification procedure more formally.

Stopping Rules in Search Tasks under Risk Neutrality

Assume that the searcher observes sequentially any number of realizations of a random

variable X which has the distribution function F (·). In our case, F (·) is a discrete trun-

cated normal distribution with mean e500 and standard deviation e10, the truncation

is at e460 and e540. Let the cost of searching a new location be c. Assume that at

some stage in the search process, the minimal value that the searcher has observed so

far is m, and the searcher wonders whether to continue searching or whether to stop the

search. Basic search theory assumes that individuals treat the cost of each search step,

once completed, as sunk costs (Lippman and McCall, 1976; Kogut, 1990) and compare

the payoff of one additional search step with the payoff from stopping.10

Then, subjects solve the problem based on a one-step forward-induction strategy and the

expected gain from searching once more before stopping in a search task such as ours,

G(m), is generally given by:11

G(m) = − [1− F (m)]m︸ ︷︷ ︸⊗
−

∫ m

460

xdF (x)

︸ ︷︷ ︸⊕

−c + m. (8)

The term
⊗

accounts for the case where a value larger than m is found with probability

(1 − F (m)). In this case, m remains the minimum price. The term
⊕

stands for the

case where we find a lower value than m and calculates the expected value in this case.

10 Kogut’s (1990) findings show that a certain proportion of subjects does not treat sunk costs as sunk.
11 Note that the one-step forward induction strategy is identical with the optimal solution of the infinite

horizon problem if the searcher is risk-neutral.
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After some manipulation, we obtain the following condition for the parameter values of

our search task,

G(460) = −c < 0. (9)

That is, it does not make sense to continue searching if one draws the minimal value of

e460. In our specification, the highest price that can be drawn is e540. In this case,

the expected gain from searching at least one more time is always positive (since payoffs

cannot become negative), so

G(540) > 0. (10)

From these properties of G(·), it follows that there exists a unique value at which G(·) = 0.

We denote this value by m∗ and solve equation (8) for m∗. Straightforward manipulation

shows that the solution to this problem is identical to solving the following problem for

m:

π(500−m + 8) = (1−F (m))π(500−m− c + 8) +

∫ m

460

π(500− x− c + 8)dF (x)(11)

Here, π(·) is the payoff-function from the search game and the show-up fee of e8 is

included in this equation, since subjects’ payoff from the search game is directly linked to

the show-up fee. π(·) has the following form:

π(x) = max{0, x} (12)

In equation (11), the left-hand side of the equation is the payoff from stopping and the

right-hand side denotes the payoff from continuing search. We find that the optimal

strategy is to keep searching until a value of X less than, or equal to, the optimal value

m∗ has been observed. In our problem, we find that m∗ = 490. That is, we have the

following optimal decision rule for a risk-neutral searcher: Stop searching as soon as a

price less than or equal to e490 is found.

Now, consider that subjects do not treat search costs as sunk costs. That is, for their

decision whether to stop or to continue the search, they consider the total benefits and

costs of search; the agent stops searching only if the stopping value is higher than the

continuation value. In this case, subjects would not search for more than 48 steps since

after 48 search steps the continuation value from the experiment would definitely be zero.
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It follows that the problem is treated as a finite horizon problem that is solved backwards.

Define St = {t, m} as the agents’ state vector after making t search steps.

After the agent has stopped searching, she will buy the item and receives a total payoff

of:

Π(St) = max{0, 500−m− t · c + 8}. (13)

Now, the agent stops searching only if the continuation value of search is lower than the

stopping value. The recursive formulation of the decision problem is therefore:

Jt(St) = max{Π(St), E[Jt+1(St+1)|St]}. (14)

E(·) represents the mathematical expectations operator, and the expectation is taken with

respect to the distribution of St+1|St. Again, this problem has, at every t, the reservation

price property. The reservation price begins at 490, then starts decaying slowly, reaches

483 in the 24th round and then decays at a rate of about one per round from that point

forward.

Stopping Rules in Search Tasks Without Restrictions on Risk Attitudes

The derivations above are based on the assumption of a risk-neutral searcher. Sonnemans

(1998), for example, refers to a model of the form (8) as an optimal stopping rule. Houser

and Winter (2004) refer to a model of the form (14) as an optimal stopping rule. Note,

however, that it is individually rational to use the risk-neutral optimal stopping rule only

for risk-neutral subjects. Put differently, observing a subject that does not follow the

optimal stopping rule derived under risk neutrality does not necessarily imply that his or

her search is not rational.

As a more general case, we therefore consider a searcher with an arbitrary, monotone

utility function u(·). If the searcher ignores sunk cost and takes her decisions based on a

one-step forward-looking strategy, the equation that determines her reservation price m∗

then has the following form, which is an immediate extension of equation (11)12:

u(500−m + 8) = (1−F (m))u(500−m− c + 8) +

∫ m

460

u(500− x− c + 8)dF (x)(15)

12 Note that this equation does not characterize the optimal solution to the search problem. It gives,
however, the optimal strategy for a searcher with arbitrary risk-attitude who ignores sunk costs and
who uses a one-step forward induction strategy.
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Equation (15) can be solved numerically for the reservation price m∗(η), given a specific

price distribution, the search costs and a utility function on gains that is characterized

entirely by a parameter η. The problem has the constant reservation price property,

which is reported as a search heuristic that is consistent with the behavior of a reasonable

number of subjects in other studies (e. g., Hey (1987)). Figure 1 shows the constant

reservation price as a function of the risk-parameter γ in the exponential utility function

(5). Note that the reservation price m∗(η) is invariant to changes of scale of the utility

function. Henceforth, we will refer to rules of this type as forward optimal rules, keeping

in mind that this rule is only optimal conditional on the individual utility function and

on the assumption of a one-step forward strategy that ignores sunk costs.

Analogous to our derivation of the optimal search rule in the risk-neutral case, we now

consider that subjects do not treat search costs as sunk costs. Again, we have a finite-

horizon problem that is solved using backward induction. After the agent has stopped

searching, she will buy the item and receives a total payoff of:

Πu(St) = max{0, u(500−m− t · c + 8)}. (16)

The agent stops searching only if the utility of continuing the search is lower than the

utility from stopping. The recursive formulation of the decision problem is:

Ju
t = max{Πu(St), E[Ju

t+1(St+1)|St]}. (17)

Again, this problem has, at every t, the reservation price property. The monotonically

falling reservation price for all arbitrary values of γ implies that the agent should not

exercise recall. Figure 2 plots the path of reservation prices, calculated by solving the

dynamic discrete choice problem implied by equation (17) for various risk attitudes γ of

the individual. Henceforth, we will refer to rules of this type as backward optimal rules,

which are optimal conditional on the individual utility function. From our theoretical

deliberations so far we can conclude that – regardless of what type of optimal rule subjects

use, forward or backward optimal rules – risk averse subjects should stop their search

earlier, i. e., they have higher reservation prices on average, and risk-seeking subjects

should stop their search later, that is they use lower reservation prices.
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Alternative Search Rules

As has been pointed out in the search literature before, and as should have become

clear in the previous sections, computation of the optimal search rule (either under risk

neutrality or without restrictions on the risk attitude) is a demanding task, and it is

unlikely that subjects can perform this task during a search experiment (or in real-life

search situations, for that matter). Most papers in search literature therefore argue that

subjects use heuristics rather than the optimal stopping rule, and there is some evidence

that those heuristics get subjects close to the pay-offs they could have obtained using the

optimal rule.

We now specify our set of candidate search rules that are used in this paper to characterize

behavior in experimental search tasks. In addition to the search rules that have been

derived in the section above, we specify a set of heuristics that have been used in the

search literature to characterize behavior in experimental search tasks. These heuristics

are based on experimental work by Hey (1982) and Moon and Martin (1990).

The first class of these decision rules comprises several “sophisticated” heuristics. These

heuristics share the constant reservation price property. Each rule says that the subject

uses an arbitrary, but constant reservation value r ∈ {480, .., 500}. Subjects behaving

according to this heuristic search until a price quote lower than or equal to the reservation

price is found. We refer to this constant reservation type of heuristic as type 1 heuristics.

Note that this heuristic is identical to the forward optimal search rule, see above. Based

on this rule, we attribute to every individual the constant reservation price value that

explains most of her observed search decisions.13

The second class of decision rules that we consider are based on the finite horizon search

model, i. e., the backward optimal search rules, as specified above. According to these

search rules, subjects use a reservation price that is a function of the search step t and of

the individual risk attitude γ that characterizes the utility function for which the search

rule has been derived. Here, we consider that γ ∈ {−1.0,−0.95,−0.9, ..., +0.95, +1.0}.
13 As is clear from the solution to equation (15), each constant reservation price used in the price search

problem is consistent with a certain (interval of) value(s) of the individual utility risk coefficient γ in
the gain domain. Instead of attributing a constant reservation price to the people, we could as well
attribute the value of γ that corresponds to this constant reservation price.
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We refer to this class of decision rules as type 2 rules. Based on this rule, we attribute

to every individual a value γsearch
i , the risk-attitude coefficient that explains best the

observed search behavior.

A third class of heuristics is also based on reservation prices that vary over the search

time. Subjects using one of these heuristics stop searching as soon as their payment

exceeds a certain individual threshold (or satisfaction-) level t ∈ {1, .., 20}. Given our

parametrization of the problem, this results in a reservation price that is linearly falling

over time. For obvious reasons, this heuristic is sometimes called the “satisficer heuristic”

and we refer to it as type 3 heuristics.

As type 4 heuristics , we consider the so-called “bounce rules”, suggested by Moon and

Martin (1990) based on earlier work by Hey (1982). Subjects following the “one-bounce

rule” (heuristic 4a) have at least 2 searches and they stop if a price quote is received

larger than the previous quote. The “modified one-bounce rule” (heuristic 4b) is similar

to the one-bounce rule, however, one only stops if a price quote is received larger than

the previous quote less the search cost.

Finally we consider rules that are based on winning streaks (type 5 heuristics). Subjects

who follow this type of heuristics stop searching if they receive two (heuristic 5a) or

three (heuristic 5b) consecutive price draws that are below some fixed threshold level p ∈
{485, .., 500}. That subjects might use these streak-based rules in search situations can be

motivated by results from psychological research on behavior in uncertain environments,

see Rabin (2002).

We should note that the type 4 and 5 heuristics have also been used to describe behavior in

search environments in which the distribution of prices is not known. In our environment,

where subjects know the expected value and variance of the price distribution, using these

rules makes less sense. A priori , we would therefore not expect that these heuristics are

used frequently by our subjects. Table 1 presents a summary of the 116 candidate decision

rules (optimal stopping rule and heuristics) that we specify for the subsequent analysis.
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Classification Procedure

Our approach to drawing inferences about search behavior is to determine, for each sub-

ject, the proportion of choices consistent with each decision rule and then to maximize

this proportion over the set of all candidate decision rules. We assume that each subject

follows exactly one of the decision rules in our universe of candidate rules and that he or

she uses the same heuristic in each of the 10 or 11 pay-off tasks. This latter assumption

seems reasonable in view of the fact that all subjects are experienced when they begin

the pay-off tasks.

Formally, our classification procedure can be described as follows.14 Each heuristic ci ∈ C,

where C is the set of all search rules described above, is a unique map from subject i’s

information set Sit to her continuation decision dit ∈ {0, 1} : dci
it (Sit) → {0, 1}. Now, let

d∗it denote the observed decision of subject i in period t. Then, we can define the indicator

function:

Xci
it (Sit) = 1(d∗it = dci

it (Sit)) (18)

Let Ti be the number of decisions that we observe for subject i. We attribute to each

subject the heuristic that maximizes the likelihood of being used by that subject:

ĉi = arg max
ci∈C

Ti∑
t=1

Xci
it (Sit) (19)

As we have motivated by reference to the existing literature, all relevant search heuristics

should be included in our universe of 116 candidate decision rules. Based on our classi-

fication procedure, we attribute a decision rule to each subject, i. e., we can classify the

subjects by the decision rules that they use. We can then investigate for each subgroup

and for the whole sample the relationship between the observed search behavior and the

risk preferences of the individuals.

3.3 Psychometric Measures

The questionnaire was constructed so that respondents evaluate their likelihood of en-

gaging in an activity of the gambling-domain on a five-point rating scale ranging from 1

14 Houser and Winter (2004) implement a similar classification procedure in a completely specified
maximum-likelihood framework.
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(“Extremely likely”) to 5 (“Extremely unlikely”). For each subject, we calculate a mea-

sure of risk attitude as the arithmetic mean score of the response to the four questions.

4 Results

This section starts with self-contained descriptions of both the results of the utility func-

tion elicitation (Part A) and the classification of the search behavior (Part B). We continue

with a comparative analysis of our results on preferences and behavior (also including the

psychometric measure of risk attitude).

In our experiment, 68 subjects participated in total. Of these 68 subjects, we delete four

subjects from the sample.15 These 4 subjects apparently did not take the utility elicitation

part of the experiment seriously.

The 64 subjects that we keep in the sample show a preference reversal rate of 21.9% on

gains and 23.4% on losses in the utility function elicitation part of the experiment.16

4.1 Part A: Preferences

In Table 2, we report the standard errors of the nonlinear least squares estimates for the

risk coefficients γ and δ. Furthermore, we report the sum of the squared residuals (SSR)

and the coefficient of determination R2. We see that the standard errors are reasonably

low and that the coefficients of determination are close to 1 for our nonlinear regressions.

The estimation results suggest that the risk coefficients are reliable measures that allow

for a rank-ordering of individuals according to their risk-attitude. Our results support

the hypothesis of diminishing sensitivity for gains and losses if we consider the whole

sample. Similar to Abdellaoui (2000), who uses a different measure for the classification

15 Two of these subjects are outliers in terms of the time needed for the completion of the lottery
questions: They needed less than 60 seconds for either the 32 lottery questions on gains or the 32
questions on losses – considerably less than the other participants in the experiment. The two other
subjects are outliers in terms of the standard error of the coefficient estimates of the utility function:
Their standard error of the coefficient estimate is more than one standard deviation larger than the
standard errors of coefficient estimates for all the other subjects.

16 This reversal rate is somewhat higher than the rate in Abdellaoui (2000), who finds an error rate
of 17.9% on gains and of 13.7% on losses. Abdellaoui’s overall error rate, including the probability
weighting function elicitation part of the experiment, is 19%. However, our reversal rate is lower than
that of Camerer (1989), who reports that 26.5% of the subjects reversed preferences.

17



of subjects’ risk attitudes, we see a preponderance of risk-averse subjects in the gain

domain, and a preponderance of risk-seeking subjects in the loss domain. Overall, our

results on individual preferences are consistent with the predictions of prospect theory

(Tversky and Kahneman, 1992) and subsequent experimental work based on prospect

theory.

4.2 Part B: Search Behavior

A natural starting point for the investigation of search behavior is to assume that all

subjects use a heuristic of the constant reservation price type, i. e., a type 1 heuristic.

The reservation value that has been attributed to each subject can be considered a proxy

for whether subjects tend to be early stoppers or late stoppers: The higher the attributed

reservation price, the earlier subjects stop.

Figure 3 shows the distribution of reservation prices in the sample of 64 subjects, obtained

under the assumption that each subject follows a constant reservation price decision rule.

We find that 55% of the subjects are classified as “early stoppers”, i. e., their attributed

reservation price is higher than the risk-neutral optimal reservation price of e490. 3% use

the risk-neutral optimal reservation value and 42% are “late stoppers” with a reservation

price lower than e490. Furthermore, note that if subjects use the risk-neutral optimal

reservation stopping rule with a reservation price of e490, they should stop, on average,

after having seen 5.85 prices. We find that the mean number of observed price draws per

round is 5.07. The preponderance of early stoppers relative to the risk neutral constant

reservation price stopping rule confirms results from earlier experimental studies of search

behavior (Hey, 1987; Cox and Oaxaca, 1989; Sonnemans, 1998).

Next, we classify subjects according to the decision rule they use in the search tasks (see

Table 3). Figure 4 shows the number of subjects for whom a certain heuristic is a ’best’

heuristic, numbers in parentheses indicate the fraction of correctly explained choices for

the particular subjects. We find that for the 13% of the subjects, a constant reservation

price heuristic explains behavior better than all other heuristics, for 3% a type 2 rule (the

optimal finite horizon rule) is better than all others, and for 16% a satisficer rule (type

3) explains more observations than all other rules. For 84% of all subjects one of the
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conditionally optimal rules (type 1 or type 2) is a best decision rules, for 63% we find that

they use one of the optimal rules (type 1 or type 2) and do not use the satisficer-heuristic

(type 3); in contrast, 37% of the subjects can be termed satisficers – this result is similar

to Sonnemans (1998), who finds that about one third of the subjects’ behavior is most

consistent with a satisficer rule. However, for 47% of the subjects, we cannot distinguish

between the use of a forward or a backward optimal search rule (type 1 or type 2).17

Compared to these figures, it may be somewhat astonishing that the bounce-rules (the

type 4 heuristics) and the streak-heuristics (type 5 heuristics) perform rather poorly: In

total, only 35.9% of the observed decisions are consistent with the one-bounce rule, 33.6%

are consistent with the modified one-bounce rule; 38.5% of the decisions are consistent

with a type 5a heuristic, and 39.4% with a type 5b heuristic. However, Hey (1982), who

has proposed the one-bounce rules following individual tape recordings of the subjects,

finds equally low levels of consistency in a search environment where the price distribution

was unknown.

In summary, heuristics of type 1, type 2, and type 3 do reasonably well in describing

observed behavior. However, for a certain proportion of the subjects, our data do not

discriminate between the usage of type 1 or type 2 or type 3 decision rules.18 As a result

of these findings, we classify the 64 subjects into 4 categories C1, C2, C3 and C4:

C1 All subjects whose observed behavior is explained best by a type 1 heuristic (49

subjects).

C2 All subjects whose observed behavior is explained best by a type 2 heuristic (45

subjects).

17 Both, forward and backward optimal rules, have very similar reservation price paths that only differ
after a considerable number of search steps, see Figures 1 and 2. Therefore, the reported weak dis-
crimination between both types of rules does not come unexpectedly. Changes in the experimental
design will not improve the discrimination between these two types of rules: (i) A decrease in the
standard deviation of the price distribution decreases the number of search steps in which forward and
backward rules are identical (for identical parameter γ). However, a decrease in the price distribution
also leads to fewer search steps per individual (Hey, 1987), which then complicates discrimination. (ii)
An increase in the search costs per step decreases the number of search steps in which forward and
backward rules are identical (for identical parameter γ). However, an increase in the search costs also
leads to fewer search steps per individual (Hey, 1987), which, again, complicates discrimination.

18 Technically, the likelihood function is rather flat, although the different decision rules are asymptoti-
cally identified; see the discussion in Houser and Winter (2004).
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C3 All subjects whose observed behavior is explained best by a type 3 heuristic (24

subjects).

C4 Subjects whose observed behavior is explained best by a type 1 or a type 2 heuristic,

but not by a type 3 heuristic (40 subjects).

4.3 The Relationship Between Preference Parameters, Search Behavior, and

Risk Attitudes

The first question we investigate is whether there is a relationship between the observed

search behavior and the elicited individual preferences (i. e., the coefficient of risk atti-

tude). Our hypothesis is that (at least) for those subjects that are classified as users of

one of the conditionally optimal search rules (type 1 or type 2 rules), there exists the

theoretically motivated relationship between their risk attitude observed in the utility

function elicitation part of the experiment and their behavior in the search experiment.

We also extend this type of analysis to the whole sample. That is, we implicitly assume

that all subjects behave according to just one search rule, either a type 1, a type 2 or a

type 3 rule. We should find for all subjects in the sample that risk averse subjects gener-

ally use a higher reservation price or have a higher value of γsearch; subjects classified as

risk seeking, should be attributed a lower reservation price, or a lower value of γsearch.

Since the assumption of a normal distribution of the observed individual parameters γ, δ

and λ across subjects is clearly rejected, we base part of our analysis on Spearman rank

correlation coefficients. The significance of the Spearman correlations is tested using the

null hypothesis that both variables under question are independent.

We focus on the key parameters that characterize individual search behavior, the at-

tributed constant reservation price level (RP), the average number of search steps per

search round (AS) and the search coefficient γsearch. According to the basic search model

(15), we hypothesize that – at least for subgroup C1 – γ is positively correlated with RP

and negatively correlated with AS. We further hypothesize that at least for subgroup C2,

γ is positively correlated with γsearch and negatively correlated with AS. Furthermore,

due to being derived from the same underlying utility functional, the attributed con-

stant reservation price (RP) and the attributed γsearch are strongly positively correlated
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(Spearman-ρ: 0.946, p-value: 0.00); we should therefore expect the hypothesized correla-

tions also for the subgroup C4. Table 3 reports the corresponding Spearman correlation

coefficients for all subgroups C1 through C4 and the whole sample.

Our data do not reject the hypothesis of independence between γ and the search param-

eters RP, AS, and γsearch for all subgroups and the whole sample. The finding from our

correlation analysis in Table 3 is that the utility function based measures for risk attitude

on gains and losses, do not exhibit any significant relationship with individual behavior

in search problems. This holds true regardless of whether we impose the usage of one

specific type of search rule (e. g., the one-step forward-optimal search rule) to all subjects,

or whether we attribute to each subject the type of rule that describes best her behavior

and then, consequently, only consider the respective subgroups of the sample. To fur-

ther investigate this point, we classify the subjects according to their risk attitude γ as

measured in the utility function elicitation part. t-tests under the assumption of different

variances show that our hypothesis motivated above – that risk averse (γ > 0) subjects

generally use higher reservation price levels (RP) than risk-seeking (γ < 0) subjects –

cannot be confirmed: The null hypothesis of equal mean reservation price levels is clearly

not rejected across all subgroups considered. Even stronger: The mean reservation price

of risk seeking subjects is higher than the mean reservation price of risk-averse subjects

across all subgroups and the whole sample.

We now consider the correlation between the psychometric measure for risk attitude in

the gambling domain and search behavior. There is some evidence that people who dislike

taking risks in the gambling domain tend to search less: For C2-subjects, we have a

Spearman-ρ of 0.2578 (p-value 0.0873) and for C4-subjects a Spearman-ρ of 0.2863 (p-

value of 0.0733) for the correlation between the measure for risk on gambling and the

average number of search steps per round (AS).19

With respect to the relationship between the utility function based risk measures and the

psychometric risk measures, we find that apart from the subgroup C4, the loss aversion

parameter does correlate at least marginally with the psychometric measure for risk on

gambling. If we consider the complete sample, we find a Spearman ρ of -0.3235 and a

19 The corresponding Spearman-ρ and p-values for the C1- and C3-group and for the whole sample are
0.1401 (0.3371), 0.0615 (0.7754) and 0.1575 (0.2138).
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p-value of 0.0091 for the correlation between the loss aversion parameter and the psycho-

metric measure for risk on gambling.20

In summary, our data do not confirm our hypotheses on the relationship between utility

function based measures for risk aversion and search behavior. However, in Table 3 we

do find significant relationships between the attributed constant reservation price level

(RP) and the loss aversion index λ derived from the utility function, as well as between

the average number of search steps (AS) and the loss aversion index. These correlations

are significant or at least marginally significant across all subgroups considered. For the

whole sample, we find significant correlations between the loss aversion index and both,

RP and AS. Across all subgroups, subjects with a higher degree of loss aversion tend

to have a higher attributed reservation price and stop their search earlier. Additionally,

subjects’ reported attitude towards risky gambles is related to their loss aversion and to

the average number of search steps that they perform: People who avoid gambles tend to

have a higher degree of loss aversion and they tend to stop their search earlier.

5 Discussion and Conclusions

This study combines elements from different literatures in experimental and behavioral

economics – a lottery-based experiment designed to elicit subjects’ utility function (in

particular, to estimate an index of risk attitude) and a search experiment designed to

reveal subjects’ decision rules in a search task. These experiments are augmented with a

psychometric survey instrument that generates domain-specific measures of risk attitudes.

We should first point out that the results of each of these components are broadly in line

with earlier results in the literature. In particular, the data from our search experiment

confirm that subjects tend to search less often than predicted by the optimal decision rule

derived under the assumption of risk neutrality. Also, relatively simple heuristics, such

as the constant reservation price heuristic and the satisficer heuristic, describe observed

search behavior very well.

20 The corresponding Spearman-ρ and p-values for the subgroups C1, C2, C3, and C4 are -0.3070 (0.0319),
-0.3746 (0.0112), -0.3784 (0.0682), and -0.2301 (0.1531), respectively.
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The key question raised in this paper is whether the decision rules we observe in our data

correspond to optimal behavior of risk-averse subjects (even though they are not optimal

in the standard search model under risk neutrality). We therefore relax the assumption

of risk neutrality made in the standard search models and allow for departures from risk

neutrality, and we develop optimal decision rules for such preferences. These decision rules

(type 1 and type 2 rules) classify the observed behavior of the largest part of our sample.

However, even the specifications of the generalized search models with risk aversion do not

seem to be able to describe search behavior observed in our experiment fully. Our analysis

rejects the hypothesized relationship between the individual preference parameter γ (the

measure for loss aversion) and various parameters that characterize the observed search

behavior over various subgroups under consideration.

This result may be disappointing – since the search problem formally corresponds to

a generalized lottery task, and since both the lottery-based utility elicitation tasks and

the search tasks were performed in one experimental session, we should expect some

correlation between the parameters of the lottery-based utility function elicitation task

and characteristics of behavior in search task at the subject level. However, while the

individual risk parameter γ does not correlate with individual search parameters, we find

that the loss aversion parameter λ does correlate with observed search behavior across

all subgroups considered. This latter parameter accounts for the fact that individuals

process losses differently than gains, and is related to the influential work on individual

preferences by Kahneman and Tversky that led to the development of prospect theory.

Conceptually, our results support other studies (e. g., Kahneman et al., 1991; Rabin and

Thaler, 2001) that have suggested that loss aversion might be a major factor in observed

risk aversion, at least for modest scales.

We conclude this section with a discussion of some restrictions of our experimental design

and of our analysis. First, a drawback of the procedure we used to elicit the shape of the

utility function is that it operates on a monetary range of gains and losses that is higher

than the range considered in the search experiment. While this separation is helpful for

experimental design and parameter identification purposes, it may be the case that that

individual risk attitudes are different for high and low monetary outcomes. To allow for
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this possibility, we analyzed our data under the relatively week assumption that the rank

order of individuals by the relevant measure of risk attitude is preserved between the

high-outcome range for which it is elicited and the low-outcome range that is relevant for

the analysis of behavior in the search game. A less restrictive, but also much more costly,

experimental design would implement both the utility function elicitation procedure and

the search game on the same (high) payment scale.

Second, the classification method used to assign decision rules to subjects is in itself rather

heuristic. For instance, depending on the set of candidate decision rules, this procedure

may result in over-fitting. In our data, over-fitting does not seem to be a major problem

– we end up assigning subjects only to three classes of decision rules, and the variation

within these classes (i. e., the constant reservation price assigned to each subject) is akin

to estimating other preference parameters from experimental data. A final open issue of

our analysis of search behavior is the role of errors – in general, allowing for errors would

tend to reduce the heterogeneity in preference parameters and decision rules. However,

more sophisticated statistical methods for the classification of decision rules that allow for

errors, as used by Houser and Winter (2004) and Houser et al. (2004), would go beyond

the scope of the paper.

In summary, this study was motivated by the desire to understand search behavior and

its relation to individual preferences, in particular risk attitudes. We have been able

to replicate results from various previous studies on individual preferences and search

behavior. Our main methodological contribution is to combine experiments on preferences

and search so that correlations at the subject level could be analyzed. We find that there is

considerable difference in the strategies that subjects use to solve the search task, however,

the differences do not seem to be systematically related to individuals’ risk attitude elicited

in lottery experiments. In contrast, we do find a systematic relationship between the

degree of loss aversion revealed in the lottery tasks and search behavior. Additionally,

our results suggest that the psychometrically estimated attitude towards risky gambles is

also related to individual loss aversion and – with marginal significance – to the observed

behavior in the experimental search task: The individual fear of realizing losses plays a role

when subjects perform search tasks. According to Kahneman’s and Tversky’s prospect
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theory, the finding of a correlation between individual loss aversion and search behavior

suggests that reference point effects play a role when solving the search tasks; subjects

apparently do not solve the search task only on the gain domain, as suggested by search

theory. Schunk (2004) constructs and experimentally tests a descriptive model of search

behavior that accounts for the observed reference points effects. This model potentially

provides a better empirical fit than the standard model derived under risk neutrality or the

extensions considered in the present paper. Testing such models experimentally as well

as combining psychometric and decision-theoretic instruments for predicting behavior in

sequential gambles should be the focus of future research on search behavior. Furthermore,

our findings are of interest for work in applied search theory, such as consumer search:

Here, results on individual search behavior and preferences might be helpful as a guide to

theoretical and structural econometric specifications that explicitly allow for individual

heterogeneity, for example with respect to individual search duration.
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FIGURES AND TABLES 
 
 
FIGURE 1 
Optimal constant reservation price level depending on the individual risk coefficient γ 
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FIGURE 2 
Optimal reservation price path depending on individual risk coefficient γ 
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FIGURE 3 
Distribution of the constant reservation prices observed in the experiment. 
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FIGURE 4 
 
Number of subjects for whom a certain heuristic type is a best heuristic and fractions of 
correctly explained choices by the particular heuristic. 
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TABLE 1 
Decision rules for the search problem 
 
 
Number Description Parameter Values 

1 Constant reservation price heuristic 
Stop searching as soon as a price below x € is 
found. 
 

x e {480,…, 500} 

2 Finite horizon optimal search 
Stop searching in search step t as soon as a price 
below the reservation price xt,γ €, as specified by 
the finite horizon search model, is found. 
 

γ e {-1.0, -0.95,…, 
+0.95, +1.0} 

3 Satisficer heuristic 
Stop searching as soon as the payoff from stopping 
exceeds a certain threshold level of x € 
 

x e {1,…, 20} 

4a One-bounce rule 
Have at least 2 searches and stop if a price quote is 
received larger than the previous quote. 
 

 

4b Modified one-bounce rule 
Have at least 2 searches and stop if a price quote is 
received larger than the previous quote less the 
search cost. 
 

 

5a Streak-based rule 
Stop searching as soon as 2 consecutive price draws 
that are below some fixed threshold level x € are 
received. 
 

x e {485,…, 500} 

5b Streak-based rule 
Stop searching as soon as 3 consecutive price draws 
that are below some fixed threshold level x € are 
received. 
 

x e {485,…, 500} 

 
 
 
 
 
 



TABLE 2 
Utility function estimation results and risk classification of the individuals. 
 
 
 Utility function 
 Gains (g) Losses (d) 
Median estimate 2.0030E-04 2.0445E-04
Mean R² 0.99488 0.99483
Risk averse 
subjects 63% 23%

Risk neutral 
subjects 13% 18%

Risk seeking 
subjects 22% 59%

 
 
 



TABLE 3 
Correlations between the search parameters (reservation price, average number of 
searches, search coefficient gsearch) and the preference parameters (g, d, l) by subgroup. 
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Programs Ño A Comparison of China and the
United States



SONDERFORSCHUNGSBereich 504 WORKING PAPER SERIES

Nr. Author Title 2

04-12 Alexander Ludwig
Torsten Sløk

The relationship between stock prices, house prices
and consumption in OECD countries
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