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Abstract

Dominance-solvable games possess the desirable property that all strategic so-
lution concepts - equilibrium solution concepts as well as iterative solution concepts

- determine the same unique solution. The theoretical part of this paper derives

su¢cient and necessary conditions for dominance-solvability of so-called lattice
games whose strategy sets have a lattice structure while they simultaneously be-

long to some metric space. As conceptual main contribution, two - hitherto -

di¤erent strands in the literature about dominance-solvability of strategic games,
namely Moulin’s (1984) approach for nice games and Milgrom and Roberts’ (1990)

approach for supermodular games, are combined and considerably extended. For

example, in addition to Milgrom and Roberts (1990) my …ndings also apply to
games where players’ actions are strategic substitutes or only partial strategic com-

plementarities. This is further elaborated in the applicational part of this paper

where I establish dominance-solvability of several non-supermodular games such as
n-…rm Cournot oligopolies, auctions with bidders who are optimistic - respectively

pessimistic - with respect to an imperfectly known allocation rule, and Two-player

Bayesian models of bank runs.
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1 Introduction

In the literature there exist several game theoretic solution concepts which, in general,

determine di¤erent solutions of strategic games. Di¤erent equilibrium concepts arise

from di¤erent proposals for re…ning Nash’s (1950a,b) de…nition of equilibrium points

(see, e.g., Selten, 1975; Myerson, 1978; for an overview see van Damme, 1991). Di¤erent

iterative solution concepts - presuming successive elimination of unreasonable strategies

- apply di¤erent de…nitions of an unreasonable strategy (Bernheim, 1984; Moulin, 1984;

Pearce, 1984; Börgers, 1993). However, if a game is dominance-solvable - in the sense

that only a unique strategy survives iterated elimination of strictly dominated strategies -

all these di¤erent strategic solution concepts determine the same unique solution. Thus,

dominance-solvable games describe the class of games for which most game theorists

agree in their predictions of how strategically sophisticated individuals will act in a

decision situation of strategic interdependency.

This paper extends existing results about dominance-solvability of strategic games

by providing su¢cient and necessary conditions for dominance-solvability of so-called

lattice games. On the one hand, strategy sets of lattice games exhibit a lattice structure,

that is, strategies are partially ordered and there exists for every pair of strategies an

in…mum and a supremum in the strategy set (Topkis, 1979; Milgrom and Roberts, 1990;

Vives, 1990; Milgrom and Shannon, 1994). On the other hand, strategy sets of lattice

games are assumed to be simultaneously subsets of some metric space such that the

distance between the smallest and the largest element - in lattice order - of some subset

is greater than the distance between the remaining elements of this subset. Due to this

dual property of strategy sets of lattice games, I am able to combine and generalize two

di¤erent strands in the literature about dominance-solvability of strategic games, namely

Moulin’s (1984) approach for nice games and Milgrom and Roberts’ (1990) approach for

supermodular games.

The most prominent results about strategic solutions of games - where strategy sets

have a lattice structure - concern existence and structure of Nash equilibria of super-

modular games (see, e.g., Topkis, 1978, Milgrom and Roberts, 1990; Vives, 1990) and

of games with a single-crossing property (Milgrom and Shannon, 1994; Athey, 2001).

Supermodular games are characterized by players whose actions are strategic comple-

mentarities (Bulow, Geneakoplos, and Klemperer, 1985), that is, a player’s incentive of

choosing a larger strategy - with respect to the lattice order - increases if her opponents

also choose larger strategies. Milgrom and Roberts (1990) now derive the remarkable

result that supermodular games are dominance-solvable if and only if they exhibit a

unique Nash equilibrium.

This paper’s …ndings extend Milgrom and Roberts’ (1990) result along two dimen-
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sions. First, if a supermodular game is also a lattice game - which is the case for standard

strategy sets - I can characterize uniqueness of the Nash equilibrium by a rather sim-

ple necessary and su¢cient mathematical condition. Thus, in addition to Milgrom and

Roberts (1990), this paper provides a speci…c technical criterion for uniqueness of the

Nash equilibrium in supermodular games which might be easier to verify (or to falsify,

for that matter) than standard theorems establishing existence of a unique …xed point.

Second, and more importantly, the results of this paper also establish dominance-

solvability of games that are not supermodular, and that therefore do not necessarily

exhibit increasing best response functions (as implied by supermodular games or by

games with the single-crossing property). Many relevant economic situations can not

be described as supermodular games since players actions are either strategic substitutes

(Bulow, Geneakoplos, and Klemperer, 1985) or only partial strategic complementarities.

In the applicational part of this paper I further elaborate on this point by applying

this paper’s theoretical …ndings to demonstrate dominance-solvability of games that are

not supermodular. In particular, I consider n-…rm Cournot oligopolies, auctions with

bidders who are optimistic - respectively pessimistic - with respect to an imperfectly

known allocation rule, and a simple Two-player Bayesian model of bank runs.

In the remainder of this introduction I explain in deeper detail this paper’s technical

contributions and the economic examples presented in the applicational part.

1.1 Technical Contributions

Exploiting the lattice structure of strategy sets I derive equivalence conditions - referring

to players’ utility functions - which imply that a game is dominance-solvable if and only

if it admits a unique point-rationalizable strategy. Point-rationalizability (Bernheim,

1984; Moulin, 1984; Pearce, 1984) is an iterative solution concept where strategies are

eliminated as unreasonable if and only if they are not a best response to some pure

strategy pro…le (or equivalently: to some degenerated point-belief about pure strategy

pro…les). Since, in general, point-rationalizability is a signi…cantly stronger solution

concept than iterated elimination of dominated strategies such equivalence conditions

are not trivial.

Exploiting the metric-space property of strategy sets I derive uniqueness conditions

for point-rationalizable strategies that refer to properties of players’ best response func-

tions. Moreover, the lattice structure of strategy sets allows for a particularly convenient

characterization of unique point-rationalizable strategies if best response functions are

either increasing for all players or decreasing for all players. Roughly speaking, a com-

bination of these equivalence- and uniqueness conditions then establishes dominance-

solvability of lattice games.
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1.1.1 Equivalence Results

This paper derives two di¤erent equivalence results that identify conditions so that a

game, satisfying these conditions, is dominance-solvable if and only if it has a unique

point-rationalizable strategy. Both equivalence results generalize similar …ndings ap-

pearing in Moulin (1984) and in Milgrom and Roberts (1990), respectively.

First consider strategy sets with an arbitrary lattice structure. Under the assump-

tion that players’ utility functions are supermodular with respect to their own strategies,

proposition 1 of this paper then derives equivalence between dominance-solvability and

uniqueness of point-rationalizable strategies if di¤erences in players’ utility functions ei-

ther increase or decrease with an increase in the opponents’ strategy choice. Increasing

utility di¤erences formally de…ne strategic complementarities whereas decreasing utility

di¤erences de…ne strategic complementarities. Thus, proposition 1 extends an equiva-

lence result due to Milgrom and Roberts (1990), which is restricted to supermodular

games where all players have increasing utility di¤erences only, to games where players

may have arbitrary monotonic - increasing or decreasing - utility di¤erences. As a conse-

quence, proposition 1 may therefore establish equivalence between dominance-solvability

and uniqueness of point-rationalizable strategies for games where, e.g., one or all players

have decreasing best response functions.

Now consider the degenerated case of a lattice structure where strategy sets are totally

ordered. Proposition 2 of this paper then demonstrates equivalence between dominance-

solvability and uniqueness of point-rationalizable strategies if players’ utility functions

satisfy a condition I call order-quasiconcavity (which is a straightforward generalization

of the de…nition of quasiconcavity on convex sets to arbitrary sets that are partially

ordered). As a consequence, proposition 2 generalizes an equivalence result due to Moulin

(1984) - who shows equivalence under the assumptions of strictly quasiconcave utility

functions and real-valued convex strategy sets - to games with general totally ordered

strategy sets that are not necessarily convex. Moreover, in contrast to the equivalence

result of proposition 1, proposition 2 establishes equivalence without entailing monotonic

best response functions. However, whereas proposition 1 applies to games where strategy

sets exhibit an arbitrary lattice structure, the equivalence result of proposition 2 requires

the rather strong assumption of totally ordered strategy sets.

1.1.2 Dominance-solvability Results

The concept of lattice games serves two technical purposes. First, since for lattice games

the diameter (de…ned as the least upper-bound of all distances between the elements of

a given set) of some order-complete set of strategies coincides with the distance between
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the set’s smallest and largest - in lattice order - element, a non-empty set of point-

rationalizable strategies contains a unique strategy if and only if the diameter of the set

of strategies, which survive iterated elimination by the point-rationalizability criterion,

converges towards zero when the number of iteration steps approaches in…nity. Second,

by the lattice structure of the strategy sets of lattice games, the equivalence conditions,

derived in proposition 1 and proposition 2, ensure that a lattice game is dominance-

solvable if and only if it admits a unique point-rationalizable strategy.

Proposition 3 of this paper derives a necessary and su¢cient mathematical condi-

tion establishing dominance-solvability of lattice games. In particular, it is shown that

convergence properties of a k–fold application of the best response function to itself

are necessary and su¢cient to guaranteeing for lattice games that the set of point-

rationalizable strategies is non-empty while the diameter of the set of strategies, which

survive iterated elimination by the point-rationalizability criterion, converges towards

zero. The proof idea parallels an approach due to Zimper (2003a) who generalizes …nd-

ings of Bernheim (1984) and of Moulin (1984). However, while the proofs in Zimper

(2003a) rely on the assumption of compact, respectively bounded and complete, subsets

of some metric space, the proof of proposition 3 exclusively refers to lattice properties

of strategy sets.

For lattice games with real-valued strategy sets, a corollary to proposition 3 estab-

lishes dominance-solvability if the …rst-order partial derivatives of functions - resulting

from a k-fold application of the best response function to itself - have su¢ciently small

values. Moulin’s (1984) su¢ciency condition for dominance-solvability of nice games

obtains as special case of the corollary when only 1-fold applications of the best re-

sponse function to itself are considered and when only the distance, induced by the

supremum-norm, is considered.

Under the additional assumption that players have monotonic best response func-

tions, which move in the same direction1, proposition 4 presents a signi…cantly simpler

characterization of dominance-solvability than proposition 3. The result of proposition

4 refers to convergence-properties of the k-fold application of the best response function

to itself only evaluated at the smallest and at the largest strategy of the strategy set.

On the one hand, proposition 4 therefore provides a simple characterization of unique

Nash equilibria of supermodular games that are also lattice games. On the other hand,

the …nding of proposition 4 will prove very useful for establishing dominance-solvability

in the applicational part of this paper where non-supermodular games with decreasing

best response functions are considered.

1That is, if the best response functions are either increasing for all players or decreasing for all

players.
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1.2 Examples and Applications

1.2.1 n-Firm Cournot Oligopolies

Strategic solutions of n-…rm Cournot oligopolies have been extensively studied in the

literature (see, e.g., Bernheim, 1984; Moulin, 1984; Novshek, 1984 and 1985; Bamon

and Fraysse, 1985; Vives, 1990; Basu, 1992; Amir, 1996). Two issues emerging from this

literature are of particular relevance to this paper’s topic. First, applied to classical mod-

els of n-…rm Cournot oligopolies, iterative solution concepts perform rather poorly since

they blow up the set of possible solutions when there are more than two …rms involved

(Bernheim, 1984; Basu, 1992). Second, the application of lattice-theory to character-

izing strategic solutions is typically restricted to Cournot duopolies only (Milgrom and

Roberts, 1990; Vives, 1990) since only Cournot duopolies can be transformed into su-

permodular games whereas actions in general n-…rm Cournot oligopolies are strategic

substitutes (but see Amir, 1996, who describes non-standard n-…rm Cournot oligopolies

where players have increasing best response functions).

Proposition 5 and proposition 6 of this paper apply this paper’s theoretical …ndings

to identify conditions which assure dominance-solvability of n-…rm Cournot oligopolies.

For the classical model of an n-…rm Cournot oligopoly - exhibiting a linear inverse

demand function and constant marginal costs - proposition 5 establishes dominance-

solvability if the di¤erent …rms’ products are not perceived as perfect substitutes by the

customers. If there are three …rms in the oligopoly then dominance-solvability already

obtains in case …rms’ products are arbitrarily close to being perfect substitutes, but

are not actually perfect substitutes. For more than three …rms a further weakening of

the perfect substitute assumption is required to assure dominance-solvability. Assuming

that …rms’ products are perfect substitutes, Bernheim (1984) shows for the classical

model of an n-…rm Cournot oligopoly that virtually any output decision can be justi…ed

by iterative solution concepts if the oligopoly consists of more than two …rms. Thus,

proposition 5 demonstrates that Bernheim’s (1984) negative result about the predictive

performance of iterative solution concepts strongly relies on the assumption that …rms

compete with products that customers perceive as perfect substitutes.

Proposition 6 of this paper derives conditions which imply dominance-solvability of

n-…rm Cournot oligopolies under the assumption that cost functions are quadratic and

that …rms compete on so-called large markets, as described by Börgers and Janssen

(1995), where an increase in the number of …rms is matched by an increase in market

demand. The …ndings of proposition 6 suggest, maybe somewhat contrary to intuition,

that an increase in the market-size rather increases than decreases the di¢culties for

establishing dominance-solvability.
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1.2.2 Auctions with Optimistic - respectively Pessimistic - Bidders

A second application concerns auctions where bidders are uncertain about the actual

allocation rule and exhibit optimistic, respectively pessimistic, attitudes with respect

to this rule. Such auctions are relevant whenever the organizer of the auction pays

attention to matters like bidder’s ”moral standing”, solvency, and so on2.

Auctions where one bidder is handicapped, in the sense that she has to o¤er a much

higher bid than a favored bidder in order to win the auction, have been studied by

Feess, Muehlheusser, and Walzl (2002). However, while in their model it is common-

knowledge among the bidders who is handicapped and who is favored, I describe a -

very simple - model of an auction where pessimistic bidders believe they are handicapped

by the allocation rule in the sense that they only expect to win with certainty if they

o¤er signi…cantly higher monetary bids than their competitors. Analogously, optimistic

bidders believe they are favored by the allocation rule so that they expect to win even

if they bid less money than their competitors.

Proposition 7 of this paper then shows that in auctions with pessimistic bidders all

bidders bid the highest amount allowed by their budget constraints, whereas in auctions

with optimistic bidders every bidder just o¤ers the reservation price demanded by the

auction’s organizer. Thus, the …ndings of proposition 7 imply that an auction-organizer,

who wants to gain high pro…ts while she does not know bidders’ evaluations or budget-

constraints, better lets the allocation rule imprecise if she expects pessimistic bidders,

whereas she should be very speci…c about the allocation rule’s details in the case of

optimistic bidders.

1.2.3 A Two-Player Model of Bank-Runs

Ever since the seminal contributions of Bryant (1980) and of Diamond and Dybvig

(1983) models of bank runs have been the subject of intensive study. At their core game-

theoretic models of bank runs presume a coordination problem where patient investors

achieve the good outcome when they simultaneously do not withdraw whereas they

only achieve the bad outcome when they simultaneously withdraw. While the early

models of Bryant (1980) and of Diamond and Dybvig (1983) describe this coordination

2Think, for example, of the Lottery Commission’s zigzagging when it had to decide, on behalf of the

British Goverment, whether the new seven-year operating licence for the British Lottery was granted

to Sir Richard Brenson’s People’s Lottery or to its competitor Camelot. At some point of time the

Commission said that it would neither grant the licence to the People’s Lottery nor to Camelot because

People’s Lottery had so-called ”technical problems over …nances” whereas Camelot was judged as ”not

to be a ”…t and proper” operator, largely because of its association with the American gaming software

company GTech” (quoted from a DAILY-TELEGRAPH internet article).
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problem as a coordination game exhibiting multiple equilibria, more recent approaches

(e.g., Postlewaite and Vives, 1987; Goldstein and Pauzner, 2002), try to deduce the

likelihood of bank-runs from a unique strategic solution.

As third application I present Two-Player Bayesian games of bank runs where players

choose between switching strategies that are characterized by a cuto¤-point so that the

player chooses to withdraw (not withdraw) for signals below (above) the cuto¤

point. Each player’s signal is independently drawn from a uniform distribution over

the unit interval where signals may be interpreted, e.g., as an investment project’s

success (as in Goldstein and Pauzner, 2002) or as investor’s preferences for intertemporal

consumption (as in Postlewaite and Vives, 1987).

Proposition 8 then establishes dominance-solvability of Two-Player Bayesian games

of bank runs and it derives the likelihood of bank runs from the unique strategic solution

of such games. Postlewaite and Vives (1987) also describe bank runs by a Two-player

Bayesian game. Their model admits only three di¤erent signals about players intertem-

poral consumption preferences and it exhibits, for a particular range of parameters,

dominant strategies for both players. In contrast to the model of Postlewaite and Vives

(1987), the dominance-solvable Two-Player Bayesian games of bank runs that I con-

sider exhibit a more complicated strategic structure since they do not possess solutions

in dominant strategies. In analogy to the global game approach of Carlsson and van

Damme (1993), Goldstein and Pauzner (2002) show existence of a unique equilibrium

for their model of bank runs. However, they do not establish dominance-solvability3.

The remainder of this paper is organized as follows. In section 2 notation and ba-

sic de…nitions are introduced. Section 3 derives conditions implying that a game is

dominance-solvable if and only if this game has a unique point-rationalizable strategy.

Lattice games are formally de…ned in section 4; examples for possible strategy sets of

lattice games are provided. Section 5 contains this paper’s technical main results con-

cerning dominance-solvability of lattice games. The theoretical …ndings of this paper

are applied to establishing dominance-solvability of n-…rm Cournot oligopolies (section

6), of auctions with bid- respectively optimistic - with respect to an imperfectly known

allocation rule (section 7), and of Two-player Bayesian games of bank runs (section 8).

All technical proofs are relegated to the appendix.

3The model of Goldstein and Pauzner (2002) is actually not a global game in the typical sense since it

does not satisfy the supermodularity assumptions required for global games (compare Morris and Shin,

2002; Frankel, Morris, and Pauzner, 2003). Thus, in contrast to global games, a unqiue equilibrium

does here not imply dominance-solvability.
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2 Preliminaries: Notation, Lattice Theory

For a …nite set of players I, let G = (Si; Ui)i2I denote a game in normal form where

Si denotes the individual strategy set of player i 2 I and where Ui : Si £ S¡i ! R+

represents player i’s preferences over strategies in S. Let fi : S¡i ! 2Si denote player

i’s individual best response correspondence such that, for all s¡i 2 S¡i,

fi (s¡i) = arg max
si2Si

Ui (si; s¡i)

For the sake of presentational simplicity, throughout this paper only games with indi-

vidual best response functions are considered, that is, for all i 2 I and all s¡i 2 S¡i,

fi (s¡i) is assumed to be single-valued4 . Function f : S ! S , with f (s) = £I
i=1fi (s¡i),

is then called the game’s best response function.

Recall the following notions of lattice theory (see, e.g., Topkis, 1979; Milgrom and

Roberts, 1990; Vives, 1990; Fudenberg and Tirole, 1996):

Given a re‡exive, transitive, and antisymmetric binary relation ·L on a set Si. If

there exists for all elements si; ti 2 Si a supremum si _ ti and an in…mum si ^ ti in Si
then (Si;·L) denotes a lattice.

(Si;·L) is a complete lattice if, for every non-empty subset T ½ Si, inf T 2 Si and

supT 2 Si. In particular, completeness of Si implies existence of a smallest - the unique

minimal - element si 2 Si such that si <L s0i for all s0i 2 Si with s0i 6= si, and of a largest

- the unique maximal - element ti 2 Si such that s0i <L ti for all s0i 2 Si with s0i 6= ti.
(Si;·L) is totally ordered, i.e., a chain, if, for all si; ti 2 Si, si £L ti implies ti ·L si.

If (Si;·L) is a lattice for all i 2 I then (S;·L) denotes a lattice such that s ·L t if

and only if, for all i 2 I, si ·L ti.

Ui is supermodular on (Si;·L) if, for all si; ti 2 Si and all s¡i 2 S¡i,

Ui (si; s¡i) + Ui (ti; s¡i) · Ui (si ^ ti; s¡i) +Ui (si _ ti; s¡i)

Note that supermodularity of Ui on (Si;·L) is trivially satis…ed if (Si;·L) is a chain

since

si ^ ti = minfsi; tig
si _ ti = max fsi; tig

In particular, Ui is supermodular on (Si;·L) if Si ½ R and ·L denotes the standard

order · of the real numbers.

4This paper’s …ndings immediately generalize to games whose best response correspondences reduce

to best response functions after some arbitrary round of eliminating unreasonable strategies.
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Ui has increasing di¤erences on (S¡i;·L) if, for all ti ·L si, Ui (si; s¡i)¡ Ui (ti; s¡i)
is non-decreasing in s¡i. Conversely, Ui has decreasing di¤erences on (S¡i;·L) if, for all

ti ·L si, Ui (si; s¡i) ¡ Ui (ti; s¡i) is non-increasing in s¡i.

Furthermore, I call Ui order-quasiconcave on (Si;·L) if, for all chains (Ci;·L) ½
(Si;·L), and for all si; ti 2 Ci and all s¡i 2 S¡i,

Ui (si; s¡i) ¸ Ui (ti; s¡i)

implies Ui (s0i; s¡i) ¸ Ui (ti; s¡i) for all s0i 2 Ci such that si ·L s0i ·L ti or ti ·L s0i ·L si.

If f is order-continuous then its values converge on every chain, i.e., totally ordered

subset of S, in decreasing or in increasing direction. That is, for any chain (C;·L) ½
(S;·L),

lim
s2C;s#infC

f (s) = f (infC)

lim
s2C;s"supC

f (s) = f (supC)

fi is increasing on (S¡i;·L) if s¡i ·L t¡i implies fi (s¡i) ·L fi (t¡i); and fi is

decreasing on (S¡i;·L) if s¡i ·L t¡i implies fi (t¡i) ·L fi (s¡i). Note that an indi-

vidual best response function fi is increasing, respectively decreasing, on (S¡i;·L) if

Ui has increasing, respectively decreasing, di¤erences on (S¡i;·L) whereas the converse

statement is not necessarily true.

Remark. ByTopkis’ characterization theorem (Theorem 1.1 in Topkis, 1979), a real-

valued function is submodular (supermodular) on product space L = £m
k=1Lk with lattice

structure if and only if it has decreasing (increasing) di¤erences on all Lk, k 2 f1; :::;mg,

while keepingL¡k …xed. Notice that results of this paper may refer to utility functions Ui
that are supermodular on individual strategy sets (Si;·L) but not necessarily on (S;·L).

Moreover, the considered utility functions Ui may have increasing or decreasing utility

di¤erences on (S¡i;·L) but not necessarily on (S;·L). Thus, presuming utility functions

Ui that are supermodular on (Si;·L), while they simultaneously have decreasing utility

di¤erences on (S¡i;·L), does not contradict Topkis’ characterization theorem.

3 Equivalence Results

Iterative solution concepts can be justi…ed by the assumption that players involve in

an internal process of reasoning which succeedingly excludes unreasonable strategies

(see Pearce, 1984; Tan and Werlang, 1988; Guesnerie, 2002 for an epistemic foundation

of iterative solution concepts by the assumption that it is common-knowledge among
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players that players do not choose unreasonable strategies). Rationalizability concepts

(Bernheim, 1984; Moulin, 1984; Pearce, 1984; Börgers, 1993) treat any strategy as

unreasonable if it is not a best response to some belief. These beliefs are either de…ned

as non-additive probability measures (Ghirardato and Le Breton, 1997 and 2000), or as

additive probability measures which may be further restricted to independent- or even

to degenerated probability measures.

Dominance solution concepts (e.g., Moulin, 1984; Milgrom and Roberts, 1990; Börg-

ers 1993) treat a strategy as unreasonable if it is dominated - strongly versus weakly

- by another - mixed versus pure - strategy. Assume, for example, that players only

choose strategies such that no alternative strategy results in a strictly higher utility for

all possible strategies of the player’s opponents. This assumption may e¤ectively elim-

inate some strategies as strongly dominated. In a next step presume that players only

choose strategies such that no alternative strategy gives a strictly higher utility for all

opponents’ strategies surviving the …rst round of elimination. Repeating this argument

gives in the limit the dominance solution of a game, that is, the set of all strategies that

survive iterated elimination of strategies that are strongly dominated.

De…nition: The dominance solution of game G = (Si; Ui)i2I is de…ned as the set

D (G) =
1\

k=0

µk (S)

such that µ0 (S) = S and for all k ¸ 1: for every i 2 I , si 2 µki if and only if there does

not exist some ti 2 µk¡1i such that, for all s¡i 2 µk¡1¡i , Ui (ti; s¡i) > Ui (si; s¡i).

Moreover, game G = (Si; Ui)i2I is called dominance-solvable if and only if there

exists a unique strategy s 2 S such that s 2 D (G).

Point-rationalizability (Bernheim 1984, Moulin 1984, Pearce 1984) starts out with

the assumption that players only choose best responses to some strategy choice of their

opponents. This assumption may e¤ectively eliminate some strategies and in a next step

point-rationalizability requires the players to choose only best responses to the remaining

strategy choices of her opponents. Iteration of this argument gives in the limit the set

of point-rationalizable strategies.

De…nition: The set of point-rationalizable strategies of game G = (Si; Ui)i2I is

de…ned as

P (G) =
1\

k=0

¸k (S)
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such that ¸0 (S) = S and, for all k ¸ 1,

¸k (S) =
[

s2¸k¡1(S)
f (s)

Since point-rationalizability only considers best responses to strategies, i.e., to proba-

bility one beliefs, it is - from a decision theoretic point of view - less convincing than alter-

native rationalizability concepts. However, the great advantage of point-rationalizability

is its technical simplicity which will be later exploited for deriving mathematical con-

ditions guaranteeing dominance-solvability. In what follows, conditions are presented

implying equivalence between dominance solvability and a unique point-rationalizable

strategy.

3.1 Monotonic Utility Di¤erences

My …rst equivalence result generalizes …ndings of Milgrom and Roberts (lemma 1, propo-

sition 5; 1990) to games where some players’ utility functions may have decreasing dif-

ferences.

Lemma 1. Suppose that game G = (Si; Ui)i2I satis…es the following assumptions:

(A1) (Si;·L) is a complete lattice for all i 2 I.
(A2) There exists an order-continuous best response function f.

(A3) Ui is supermodular on (Si;·L) for all i 2 I.
(A4) Ui has either increasing or decreasing utility di¤erences on (S¡i;·L) for all

i 2 I.
Then the set of point-rationalizable strategies, P (G), and the dominance-solution,

D (G), are complete lattices such that the largest (smallest) elements of both sets coincide,

i.e.,

sup P (G) = supD (G) (1)

inf P (G) = infD (G) (2)

Since every point-rationalizable strategy belongs to the dominance solution, lemma

1 immediately implies:

Proposition 1. Suppose that game G = (Si; Ui)i2I satis…es assumptions (A1) -

(A4) of lemma 1. Then G = (Si; Ui)i2I is dominance-solvable if and only if there exists
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a unique point-rationalizable strategy of G = (Si; Ui)i2I, i.e., P (G) = fsg for some

s 2 S.

Remark. Although the assumptions of the lemma imply supP (G) = supD (G)

and inf P (G) = inf D (G) they are not su¢cient for guaranteeing that the set of point-

rationalizable strategies coincides with the dominance-solution, i.e., P (G) =D (G). To

see this, consider the following example of a symmetric two-player game with payo¤-

matrix given by

B

A

b1 b2 b3

a1 1 ² 1 ² 0 ²

a2 0:7 ² 0:7 ² 0:7 ²

a3 0 ² 1 ² 1 ²

Let a1 ·L a2 ·L a3 and b1 ·L b2 ·L b3, and observe that the assumptions of the

lemma are satis…ed. However, while the individual strategy a2 is not a best response to

any pure strategy it is not strictly dominated either. Thus,

supP (G) = supD (G) = (a3; b3)

inf P (G) = infD (G) = (a1; b1)

but, e.g., (a2; b2) is not a point-rationalizable strategy although it belongs to the dominance-

solution.

3.2 Order-quasiconcave Utility Functions

For the second equivalence result I utilize an idea already appearing in Moulin (lemma

2; 1984) who shows for so-called nice games, where individual strategy sets are compact

and convex subsets of the real numbers and utility functions are continuous and strictly

quasiconcave, equivalence between the iterative procedures of the dominance-solution5

and of point-rationalizability.

Lemma 2. Suppose that game G = (Si; Ui)i2I satis…es the following assumptions:

5Moulin (1984) actually considers successive elimination of weakly dominated strategies. However,

as shown in Zimper (2003b), a strategy is weakly dominated in a nice game if and only if it is also

strongly dominated.
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(B1) (Si;·L) is a complete lattice for all i 2 I.
(B2) (Si;·L) is totally ordered for all i 2 I.
(B3) There exists an order-continuous best response function f .

(B4) Ui is order-quasiconcave on (Si;·L) for all i 2 I.
Then the set of point-rationalizable strategies, P (G), and the dominance-solution,

D (G), are complete lattices such that the largest (smallest) elements of both sets coincide,

i.e.,

sup P (G) = supD (G)

inf P (G) = infD (G)

Proposition 2. Suppose that game G = (Si; Ui)i2I satis…es assumptions (B1) -

(B4) of lemma 2. Then G = (Si; Ui)i2I is dominance-solvable if and only if there exists

a unique point-rationalizable strategy of G = (Si; Ui)i2I, i.e., P (G) = fsg for some

s 2 S.

Remark 1. As a relevant generalization of Moulin’s (1984) assumptions, proposition

2 admits totally ordered individual strategy sets that are not convex. However, Moulin’s

convexity-assumption is crucial for proving, by the intermediate value theorem, equiva-

lence in nice games between the dominance solution and the set of point-rationalizable

strategies regardless whether the point-rationalizable solution is unique or not. Note

therefore, that, by dropping Moulin’s (1984) convexity assumption, uniqueness of the

point-rationalizable solution is required to assure equivalence between both iterative

solution concepts in proposition 2.

Remark 2. One might wonder whether assumption (B2) of proposition 2 could be

generalized from totally ordered to just partially ordered individual strategy sets. The

following example shows that this is not the case. Presume players’ payo¤s given by

B

A

b1 b2

(1; 1) 1 ² 1 ²

(1; 2) 2 ² 0 ²

(2; 1) 0 ² 2 ²

(2; 2) 1 ² 1 ²

14



For (x1; x2) ; (y1; y2) 2 SA, let (x1; x2) ·L (y1; y2) i¤ x1 · y1 and x2 · y2, and observe

that A’s utility function is order-quasiconcave. Although all assumptions of lemma 2,

except for (B2), are satis…ed, its conclusion is violated since

supP (G) = (2; 1) 6= (2; 2) = supD (G)
inf P (G) = (1; 2) 6= (1; 1) = infD (G)

4 Lattice Games

A lattice game is a game whose strategy set is simultaneously described as a subset of

a metric space (X; d) and as a lattice (S;·L) such that the partial order ·L and the

distance function d : X £ X ! R+ satisfy a particular condition, implying that the

distance between the smallest and the largest element of a complete subset T ½ S is not

smaller than the distance between arbitrary elements in T .

De…nition. G = (Si; Ui)i2I is a lattice game if and only if S is a bounded, non-

empty subset of some metric space (X; d) as well as a complete lattice (S;·L) such that

for all s; s0; t0; t 2 S

s ·L s
0; t0 and s0; t0 ·L t implies d (s0; t0) · d (s; t) (3)

Recall that a normed Riesz space is an ordered vector space that is a lattice as

well as a metric space with norm-induced metric, (see, e.g., Aliprantis and Border,

1994). Consequently, whenever all Si are normed Riesz spaces the strategy set S can be

characterized as a lattice and as a subset of a metric space under the max-norm ksk =
maxi2I ksik. Consider the following examples to see that typical individual strategy sets

of economic interest are describable as normed Riesz spaces satisfying condition (3).

Example. Let Si be a subset of the Riesz space B (X ) of all bounded real functions

on X under the supremum-norm ksik1 = supfjsi (x)j j x 2 Xg. Impose the following

lattice structure on Si: si ·L ti if and only if si (x) · ti (x) for all x 2 X. Now suppose

that si ·L s
0
i; t

0
i and s0i; t

0
i ·L ti, and without restricting generality assume further that

kt0i ¡ s0ik1 = supft0i (x)¡ s0i (x) j x 2 Xg. Since ti (x) ¸ t0i (x) and s0i (x) ¸ si (x) for all

x 2 X, it obtains kti ¡ sik1 ¸ kt0i ¡ s0ik1.
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Example. Let Si be a subset of the Riesz space l1 of all continuous real functions

on N with compact support, i.e.,

l1 =
©
si 2 RN j ksik1 <1

ª

which is obviously a special case of the preceding example by letting X = N. Since l1 is

nothing else than the space of sequences with bounded entries, the individual strategy

sets Si can therefore be described for typical settings of dynamic games with in…nite

time-horizon as a lattice and as a subset of a metric space satisfying condition (3),

(compare the ”Arms race”-example of a supermodular game in Milgrom and Roberts,

1990).

Example. Let Si be a subset of the Riesz spaceB ([0; 1]) of all bounded real functions

on [0; 1] under the L1-norm, i.e. ksik =
R 1
0 jsi (x)j dx, such that si and ti are considered

as identical if
R 1
0

jsi (x)¡ ti (x)j dx = 0. Impose the following lattice structure on Si:

si ·L ti if and only if the set fx j si (x) > ti (x)g is of measure zero, (compare Theorem

3 in Milgrom and Roberts, 1990). Now suppose si ·L s0i; t
0
i and s0i; t0i ·L ti and note that

Z 1

0

ti (x) ¡ s0i (x) dx +
Z 1

0

ti (x) ¡ t0i (x) dx = d (s0i; ti) + d (ti; t
0
i) ¸ d (s0i; t

0
i)

Z 1

0

t0i (x) ¡ si (x) dx+
Z 1

0

s0i (x) ¡ si (x) dx = d (t0i; si) + d (si; s
0
i) ¸ d (t0i; s

0
i)

Summing up the l.h.s and the r.h.s of the above inequalities gives the desired result

2

Z 1

0

ti (x) ¡ si (x) dx ¸ d (s0i; t
0
i) + d (t

0
i; s

0
i)

d (si; ti) ¸ d (s0i; t
0
i)

Counter-example. Consider Si = [0; 1)[f1:5g with Euclidean metric. Let si ·L ti

if si · ti and observe that Si is a complete lattice satisfying condition (3). Now de…ne

·L by

1:5 · Lsi for all si 2 Si
si · Lti if and only if si · ti for all si; ti 2 [0; 1]

Again, Si is a complete lattice, however, condition (3) is not satis…ed.

5 Technical Main Results: Dominance-Solvability

This section presents the main …ndings of this paper which refer to contraction properties

of the game’s best response function. Let f 0 (s) = s and de…ne for a given best response
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function f : S ! S the function fk : S ! S such that, for all k 2 N, fk (s) =

f
¡
f k¡1 (s)

¢
.

Proposition 3: Consider a lattice game G= (Si; Ui)i2I satisfying assumptions (A1)

- (A4) of lemma 1 or assumptions (B1) - (B4) of lemma 2.

Then the following two statements are equivalent:

(i) G = (Si; Ui)i2I is dominance-solvable.

(ii) There exists for all s; t 2 S, with s 6= t, some k 2 N dependent on s; t, such that

d
¡
fk (s) ; fk (t)

¢
< d (s; t).

Call a best response function f T-contractive if and only if f T, with T 2 N, is a con-

tractive mapping, that is, for all s; t 2 S with s 6= t, d
¡
fT (s) ; fT (t)

¢
< d (s; t). For T-

contractive f statement (ii) in proposition 2 is trivially satis…ed since d
¡
f T (s) ; f T (t)

¢
<

d (s; t) for number T 2 N being the same for all s; t 2 S with s 6= t. For real valued and

continuously di¤erentiable individual best response functions T-contractivity of f can be

veri…ed by properties of the partial derivatives of f T whose values are easily computed,

for all s 2 S , via successive application of the chain-rule:

@f 1i
@sj

(s) =
@fi
@sj

(s)

@fTi
@sj

(s) =
X

k6=i

@fi
@sk

@f T¡1k

@sj
(s) for T ¸ 2

Corollary: Consider a game G = (Si; Ui)i2I such that, for all i 2 I,
(C1) Si is a non-empty, compact, and convex subset of R.

(C2) fi is continuously di¤erentiable.

(C3a) Ui has either increasing or decreasing utility di¤erences on (S¡i;·L) where

·L denotes the natural order · on R.

or (C3b) Ui is quasiconcave on (Si;·L) where ·L denotes the natural order · on

R.

Then G = (Si;Ui)i2I is dominance-solvable

if there exists a T ¸ 1 such that, for all i 2 I and all s 2 S ,

X

j2I

¯̄
¯̄@f

T
i

@sj
(s)

¯̄
¯̄ < 1 (4)

or if there exists a T ¸ 1 such that, for all j 2 I and all s 2 S ,

X

i2I

¯̄
¯̄@f

T
i

@sj
(s)

¯̄
¯̄ < 1 (5)
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For the special case T = 1, Moulin (Theorem 4, 1984) already proves that an equiv-

alent formulation of condition (4) - in terms of second-order partial derivatives of the

utility function - implies dominance-solvability of nice games (which satisfy assumptions

(C1), (C2), and (C3b) of the corollary).

If best response functions are monotonic and move, furthermore, for all players in

the same direction, a simple characterization of dominance-solvability can be obtained

which only refers to the smallest and largest strategy in strategy set S.

Proposition 4: Consider a lattice game G= (Si; Ui)i2I satisfying assumptions (A1)

- (A4) of lemma 1 or assumptions (B1) - (B4) of lemma 2. If either, for all i 2 I, the

individual best response function fi is increasing or, for all i 2 I, fi is decreasing, then

the following two statements are equivalent:

(i) G = (Si; Ui)i2I is dominance-solvable.

(ii) limk!1 d
¡
fk (s) ; fk (t)

¢
= 0, where s denotes the smallest and t denotes the

largest element in S .

The proof of proposition 4 immediately implies the following restatement of a …nding

of Milgrom and Roberts who characterize dominance-solvability of supermodular games

by uniqueness of the Nash equilibrium.

Observation 1 (Milgrom and Roberts, 1990): Consider a lattice game G= (Si; Ui)i2I
satisfying the assumptions (A1) - (A4) of lemma 1. If, for all i 2 I, the utility di¤er-

ences are increasing then there exists a smallest strategy s 2 D (G) and a largest strategy

t 2 D (G) such that f (s) = s and f (t) = t, i.e., s and t are Nash equilibria. Conse-

quently, G= (Si; Ui)i2I is dominance-solvable if and only if G= (Si; Ui)i2I has a unique

Nash equilibrium.

Since a supermodular game exhibits increasing best response functions, observation

1 implies that statement (ii) of proposition 4 characterizes a unique Nash equilibrium for

supermodular games that are also lattice games. In addition to supermodular games, as

considered by Milgrom and Roberts (1990), proposition 4 also applies to games where all

players have decreasing best response functions. The following observation 2, implied by

the proofs of lemma 1 and proposition 4, demonstrates that the conclusion of observation

1 is not valid for lattice games that are not supermodular. Moreover, observation 2

shows why - in contrast to supermodular games - uniqueness of the Nash equilibrium

does not necessarily imply dominance-solvability of games if players have decreasing
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utility di¤erences (as observed by Bernheim (1984) for n-…rm Cournot oligopolies).

Observation 2: Consider a lattice game G = (Si; Ui)i2I satisfying the assumptions

(A1) - (A4) of lemma 1. If, for all i 2 I , the utility di¤erences are decreasing then there

exists a smallest strategy s 2 D (G) and a largest strategy t 2 D (G) such that f (s) = t,

f2 (s) = s and f (t) = s, f 2 (t) = t, i.e., s and t are Nash equilibria of G = (Si; Ui)i2I
if and only if G= (Si; Ui)i2I is dominance-solvable.

Remark. In the light of the proof of proposition 4, statement (ii) of proposition 4

provides a su¢cient and necessary condition for a unique point-rationalizable strategy

in lattice games with monotonic best response functions. However, in contrast to the

stronger assumption of decreasing utility di¤erences, the assumption of monotonic best

response functions is not su¢cient to also guarantee dominance-solvability. To see this,

consider the following game with payo¤ matrix

B

A

b1 b2

a1 2; 0 2; 3

a2 0; 2 3; 0

a3 3; 3 0; 2

Let a1 ·L a2 ·L a3 and b1 ·L b2, and impose the discrete metric on SA and on SB,

to obtain a lattice game, which exhibits decreasing best response functions. Strategy

(a3; b1) is the unique point-rationalizable strategy of this lattice game (e.g., statement

(ii) of proposition 2 is satis…ed for k = 3), however, all strategies of this game belong

to the dominance solution. Note that there are neither monotonic utility di¤erences nor

order-quasiconcave utility functions.

6 Dominance-solvable n-Firm Cournot Oligopolies

For the classical n-…rm Cournot oligopoly - presuming a linear inverse demand function,

constant marginal costs, and products that are perfect substitutes - a unique Nash

equilibrium exists for any number n of …rms. However, Bernheim (1984) observes that

any output-decision of a …rm, ranging between zero and the monopoly-output, is a

point-rationalizable strategy if there belong more than two …rms to an n-…rm Cournot

oligopoly. In another line of research, the application of lattice theory to the analysis of
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strategic solutions of n-…rm Cournot oligopolies is restricted (for an exception see Amir,

1996) to Cournot duopolies only, because typical n-…rm Cournot oligopolies with more

than two …rms are not supermodular games (Milgrom and Roberts, 1990; Vives, 1990).

6.1 Relaxing the Perfect Substitute Assumption

This section introduces a simple model of an n-…rm Cournot oligopoly where the perfect

substitute assumption is weakened and, by an application of this paper’s theoretical

…ndings, conditions are identi…ed which guarantee dominance-solvability. Contrary to

Bernheim’s (1984) observation, iterative solution concepts therefore re-gain maximal

predictive power for n-…rm Cournot oligopolies if the according conditions are satis…ed.

Moreover, the application of lattice theory proves fruitful to n-…rm Cournot oligopolies

that are not supermodular games.

De…nition. Call a game G = (Si; Ui)i2I an n-…rm Cournot oligopoly with imperfect

substitutes if, for all i 2 I = f1; ::ng, Si = [0; 1] and

Ui (s) = Pi (s) ¢ si ¡ cisi

such that, for all i 2 I, ci 2 (0; 1) and, for all s 2 S,

Pi (s) = max

(
0;

Ã
1¡

X

j 6=i
¯ijsj ¡ si

!)

where, for all j 6= i, ¯ij 2 [0; 1].

The individual strategy set Si stands here for the possible output-decisions of …rm

i 2 I . Function Pi : S ! [0; 1] is interpreted as the inverse demand function for the

product of …rm i 2 I which determines, for a given market output, the maximal price

…rm i 2 I can charge pro-unit of its product. Furthermore, the number ci denotes the

constant pro-unit production costs of …rm i 2 I.
If ¯ij = 1, for all i 6= j , the above de…nition of an n-…rm Cournot oligopoly with

imperfect substitutes coincides with the classical n-…rm Cournot oligopoly as considered

by Bernheim (1984). However, if, for some i 6= j, ¯ij 6= 1 the product of …rm j is

not anylonger a perfect substitute for the product of …rm i since one-unit output of

…rm j in‡uences the residual demand for the product of …rm i di¤erently than one-

unit output of …rm i. Such an n-…rm Cournot oligopoly could be interpreted as a

model of oligopolistic competition on n di¤erent home-markets where each …rm i su¤ers

some negative externality - measured by ¯ij - on its home-market from …rm j’s output.
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Obviously, the smaller the externality weight ¯ij the greater …rm i’s market-power on

its home-market (in the extreme case ¯ij = 0 for all j 6= i, implying that …rm i has

a monopoly on its home-market). Since …rms rarely compete with products that are

perfect substitutes the introduction of externality-weights has, in my opinion, realistic

appeal.

Note that the n-…rm Cournot oligopoly, as de…ned above, is a lattice game that

satis…es all assumptions of proposition 2 if the lattice order ·Lis taken to be the standard

order · on R. To see that the utility di¤erences are decreasing verify that, for all i 2 I
and for all ti ·L si, Ui (si; s¡i) ¡ Ui (ti; s¡i) is non-increasing in s¡i if and only if

ÃX

j 6=i
¯ijsj

!
¢ (ti ¡ si)

is non-increasing in s¡i - which is obviously satis…ed since (ti ¡ si) is non-positive. Ba-

sically an application of the corollary shows then that a su¢ciently small impact of

competitors on …rms’ home-markets assures dominance-solvability of n-…rm Cournot

oligopolies.

Proposition 5: An n-…rm Cournot oligopoly with imperfect substitutes is dominance-

solvable if, for all i 2 I,
X

j 6=i
¯ij < 2 (6)

or if, for all j 6= i,
X

i2I
¯ij < 2 (7)

In the case of the classical n-…rm Cournot oligopoly, where products are perfect

substitutes, i.e., for all i; j 2 I , ¯ij = 1, conditions (6) and (7) are violated for more

than two …rms. However, in the case of three …rms condition (6) is already satis…ed if,

for all i; j 2 I, ¯ij < 1. Thus, Bernheim’s (1984) observation that in an n-…rm Cournot

oligopoly with three …rms every output-decision between zero and the monopoly output

belongs to the dominance-solution, is not any longer valid if a marginal deviation from

the perfect substitute assumption is considered.

6.2 Large Markets and Quadratic Cost Functions

Börgers and Janssen (1995) investigate dominance-solvability of an n-…rm Cournot

oligopoly under the assumption of large markets where an increase in the number of
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…rms is matched by an increase in market size. In particular, let n be the number of

…rms then Börgers and Janssen speak of an n-th Cournot game if the inverse demand

function is given by Pn (s) = P (s=n) where P is the inverse demand function of the

unreplicated game. Motivated by the fact that, with increasing n, an n-th Cournot

game converges towards a perfectly competitive market whose Walrasian equilibrium

may be approached by a so-called cobweb-process, Börgers and Janssen 1995 show that

if the cobweb process is strictly globally stable (cf. Börgers and Janssen, 1995) an n-th

Cournot game is dominance-solvable for su¢ciently great n.

The following model of a large market n-…rm Cournot oligopoly adopts Börgers

and Janssen’s (1995) de…nition of a large market to a n-…rm Cournot oligopoly with

linear inverse demand function where products are - as in the classical model - perfect

substitutes. Under the assumption of quadratic cost functions, conditions on the market

size, n, are identi…ed which guarantee dominance-solvability.

De…nition. Call a game G = (Si; Ui)i2I a large market n-…rm Cournot oligopoly

with quadratic cost function if, for all i 2 I = f1; ::ng, Si = [0; 1] and

Ui (s) = Pi (s) ¢ si ¡ c ¢ (si)2

such that, for all i 2 I, ci 2 (0; 1) and, for all s 2 S,

Pi (s) = max

(
0;

Ã
1 ¡ 1

n

nX

j=1

sj

!)

Presuming the standard order of the real numbers and, e.g., the metric induced by

the absolute-value norm, the large market n-…rm Cournot oligopoly with quadratic cost

function is a lattice game satisfying assumption (A1) - supermodularity - and assumption

(A2) - decreasing utility di¤erences - of proposition 1.

Proposition 6:
If c ¸ 1

2
then, for any n 2 N, a large market n-…rm Cournot oligopoly with quadratic

cost function is dominance-solvable .

If c < 1
2 then the large market n-…rm Cournot oligopoly with quadratic cost function

is dominance-solvable if the market size n 2 N satis…es

n <
1

0:5¡ c (8)

i.e., if n 2 N is su¢ciently small.
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As the second statement of proposition 6 shows, an increase in market size increases

the di¢culty for satisfying condition (8). Therefore, rather the assumption of convenient

cost functions than the large market assumption assures here for the n-…rm Cournot

oligopoly dominance-solvability.

7 Dominance-solvable Auctions with Optimistic - re-
spectively Pessimistic - Bidders

Imagine that pessimistic bidders consider themselves as handicapped by the - unknown

- allocation rule by believing that they have to make higher monetary bids than their

competitors in order to win the good. Analogously, optimistic bidders think they are

favored by the allocation rule so that they expect to win even if they bid less money

than their competitors. It will be assumed that bidders strongly prefer to obtain the

good with - subjectively believed - certainty whereas they strongly abhor to certainly

not obtaining the good. Moreover, if bidders can not a¤ord bids as high as to win the

auction with certainty they still o¤er the highest bid possible in order to have maximal

- as subjectively perceived - chances of winning. Instead of providing any axiomatic

foundation, which would give rise to such decision making under uncertainty, I simply

presume utility functions that are consistent with the described behavior.

In particular, each bidder i 2 I o¤ers a monetary amount si 2 [0; 1] - her bid - which

she has to pay if she wins the good, and each bidder’ utility - measured in monetary

units - of winning the good is given by Wi > 1. Each bidder presumes she has no

chance of winning if she bids less than the threshold amount b > 0 - believed to be

the auction-organizer’s reservation prize. A pessimistic bidder believes with certainty

that she obtains the good if her bid meets at least the maximal bid of her opponents,

denoted max s¡i, times some pessimism-factor ° > 1. Similarly, an optimistic bidder

believes with certainty that she obtains the good if her bid at least equals the maximal

bid of her opponents times some optimism-factor ° < 1.

De…nition. Consider a game G = (Si; Ui)i2I such that, for all i 2 I , Si = [0; 1] and

Ui (si; s¡i) = Wi ¡ si if max fb; ° ¢max s¡ig · si
Ui (si; s¡i) = Wi ¡ si if si = 1 and 1 < ° ¢max s¡i
Ui (si; s¡i) = 0 if si < 1 and 1 < ° ¢max s¡i
Ui (si; s¡i) = 0 if si < max fb; ° ¢max s¡ig

where b 2 (0; 1) and ° 2 R+.
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Call G = (Si; Ui)i2I a simple auction with optimistic bidders if ° < 1.

Call G = (Si; Ui)i2I a simple auction with pessimistic bidders if 1 < °.

For example, in a simple two-player auction a pessimistic bidder with pessimism-

factor ° = 1:2 wants to o¤er 20 percent more than her competitor if this bid exceeds b.

However, if, due to budget constraints, this pessimistic bidder can not a¤ord to o¤er 20

percent more than her competitor she bids the maximal amount allowed by her budget

constraints to maintain a ”maximal chance” of winning.

In general, the individual best response functions in simple auctions with optimistic

- respectively pessimistic - bidders are given as follows, for all i 2 I,

fi (s¡i) = 1 if 1 < ° ¢max s¡i
fi (s¡i) = ° ¢max s¡i if b · ° ¢max s¡i · 1

fi (s¡i) = b if ° ¢max s¡i < b

Presuming the standard order of the real numbers, these best response functions are

increasing and order-continuous. However, despite increasing best response functions,

simple auctions with optimistic - respectively pessimistic - bidders are not supermodular

games since utility di¤erences are not increasing. The intuition for bids being only partial

strategic complementarities is straightforward: A bidder gains utility by increasing her

bid as long as this bidding is decisive for winning the good, but if the high bid is not

anylonger decisive it diminishes utility since then high bidding increases the amount

to pay in the case of winning. Although the assumptions of lemma 1 are therefore

not satis…ed, simple auctions with optimistic - respectively pessimistic - bidders can be

described as lattice games satisfying the assumptions of lemma 2 since utility functions

are order-quasiconcave.

For the above auction environment, it is intuitively clear that pessimistic bidders

rather tend to higher bids than optimistic bidders. The contribution of proposition 7

is to show, that the strategic logic of dominance-solvability brings this tendency to the

extreme: whereas pessimistic bidders go to their budgetary limit for winning the good,

optimistic bidders just bid the reservation price.

Proposition 7:
A simple auction with pessimistic bidders is dominance-solvable and the dominance

solution, fs¤g =D (G), is given by

s¤ = (1; :::; 1)
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A simple auction with optimistic bidders is dominance-solvable and the dominance

solution, fs¤g =D (G), is given by

s¤ = (b; :::; b)

8 A Dominance-solvable Two-Player Model of Bank-
Runs

This section introduces a simple Two-player Bayesian model of bank runs. Both in-

vestors privately observe a signal - independently drawn from a uniform distribution

over [0; 1] - that determines their types before they either decide to withdraw or to

not withdraw money from the bank. Instead of o¤ering a particular interpretation

of these types - e.g., a measure of the investment project’s success (as in Goldstein and

Pauzner, 2002) or as the investor’s preferences for intertemporal consumption (e.g., the

investor’s life span in Postlewaite and Vives, 1987) - I simply presume, in accordance

with the literature, that for any given action of her opponent the utility of not with-

drawing increases with the investor’s type. Another stylized fact of bank run models

is captured by the assumption that the utility of not withdrawing is higher6 when

the opponent also chooses not withdrawing than when she chooses withdrawing.

Given some number r 2 (0; 1), consider a symmetric Two-player Bayesian game

where player A’s payo¤s, for realized type µA 2 £A = [0; 1], depend on opponent B’s

decision as follows:

B

A

not withdraw withdraw

not withdraw 2 ¢ µA µA

withdraw 1 r

Thus, whenever A receives signal µA >max f0:5; rg her strictly dominant action is to

not withdraw. Conversely, for signals µA <min f0:5; rg to withdraw strictly dom-

inates to not withdraw. For remaining signals, i.e., minf0:5; rg · µA · max f0:5; rg,

a coordination problem arises since then a player’s optimal action depends on the action

of her opponent. For example, if 0:5 · µA · r then A prefers to withdraw when B

6Here simply to be taken as twice as high.
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withdraws whereas A prefers not withdraw when B chooses to not withdraw.

If instead r · µA · 0:5 then A prefers to withdraw when B does not withdraw,

and she prefers to not withdraw when B withdraws.

For i 2 fA;Bg, de…ne a switching strategy si as a map

si : [0; 1] ! fwithdraw,not withdrawg

such that, for some cuto¤-point ¾i 2 [0; 1],

si (x) =

(
withdraw if x · ¾i
not withdraw if ¾i < x

Denote by Si the set of all switching strategies of player i, and observe that every

switching strategy si 2 Si is completely characterized by its cuto¤-point ¾i 2 [0; 1]. The

assumption of a uniform-distribution implies that if player A expects B to choose switch-

ing strategy sB with cuto¤-point ¾B, then A expects B to withdraw with probability

¾B.

Suppose that players are risk-neutral expected utility maximizers. Then the above

payo¤-speci…cation implies for A’s type-dependent utility function UA : £A£SA£SB !
R+ that

UA (µA; sA; sB) =

(
2 ¢ µA ¢ (1¡ ¾B) + µA ¢ ¾B if ¾A · µA
1 ¢ (1 ¡ ¾B) + r ¢ ¾B if µA < ¾A

(9)

where ¾A (¾B) denotes the cuto¤-point of strategy sA (sB). Moreover, the ex-ante

expected utility - before learning her type - of player A is given by

UA (sA; sB) =

Z 1

0

UA (µA; sA; sB) dµA (10)

=

Z ¾A

0

1 ¢ (1¡ ¾B) + r ¢ ¾BdµA

+

Z 1

¾A

2 ¢ µA ¢ (1¡ ¾B) + µA ¢ ¾BdµA
= 1 ¢ (1¡ ¾B) ¢ ¾A + r ¢ ¾B ¢ ¾A

+ (1¡ ¾B) ¢
¡
1 ¡ ¾2A

¢
+
1

2
¢ ¾B ¢

¡
1 ¡¾2A

¢

De…nition. Call a game G = (Si; Ui)i2I a Two-Player Bayesian model of bank runs

if, for all i 2 fA;Bg, Si is the set of switching strategies as de…ned by (9), and Ui is

the ex-ante expected utility of player i as de…ned by (10).
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For all i 2 fA;Bg, let ti ·L si if their cuto¤-points satisfy ¿ i · ¾i, and endow Si

with the metric d (si; ti) = j¾i ¡ ¿ ij, thereby describing any Two-Player Bayesian model

of bank runs as a lattice game with totally ordered individual strategy sets. Presume

tA ·L sA and calculate as utility di¤erences

UA (sA; sB) ¡UA (tA; sB) = [1¡ ¾B + r ¢ ¾B] ¢ (¾A ¡ ¿A)¡
µ
1 +

1

2
¢ ¾B

¶
¢
¡
¾2A¡ ¿ 2A

¢

implying

@

@¾B
[UA (sA; sB)¡ UA (tA; sB)] · 0,

r +
1

2
¢ (¾A+ ¿A) · 1

Thus, for every r 2 (0; 1), there exist, on the one hand, some large tA; sA 2 SA with

tA ·L sA such that A’s utility di¤erences are increasing in sB, while there also exist, on

the other hand, some small tA; sA 2 SA with tA ·L sA such that A’s utility di¤erences

are decreasing in sB. Switching strategies in any Two-Player Bayesian model of bank

runs are therefore only partial strategic complementarities; a situation that is typical

for bank-run models (compare, e.g., Goldstein and Pauzner, 2002).

While Two-Player Bayesian models of bank runs do not admit monotonic utility

di¤erences, they imply order-quasiconcave utility functions. To see this, note that

@UA (sA; sB)

@¾A
= (1 ¡ ¾B) + r ¢ ¾B ¡ 2¾A + ¾B ¢ ¾A · 0,

(1¡ ¾B) + r ¢ ¾B
2¡ ¾B

· ¾A

i.e., for given r 2 (0; 1) and ¾B 2 [0; 1], UA increases in lattice-order in sA until cuto¤-

point

¾¤A =
(1 ¡ ¾B) + r ¢ ¾B

2¡ ¾B
(11)

while it decreases afterwards.

Proposition 8: For any r 2 (0; 1), a Two-Player Bayesian model of bank runs is

dominance-solvable and the dominance solution, fs¤g = D (G), is characterized by the

cuto¤-points

¾¤i =
3

2
¡ 1

2
¢ r ¡ 1

2
¢
p
(5 ¡ 6 ¢ r + r2)
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for i 2 fA;Bg. As the likelihood of bank runs where both investors withdraw therefore

obtains

¾¤A ¢ ¾¤B =
1

4

h
¡3 + r +

p
(5 ¡ 6 ¢ r + r2)

i2

which is, of course, increasing in r.

9 Appendix
Proof of the lemma:

Step 1. I start by proving, for all k ¸ 0,

sup¸k (S) = sup µk (S) (12)

inf ¸k (S) = inf µk (S) (13)

At …rst verify that sup ¸k (S) and inf ¸k (S) exist for all k ¸ 0 since, by completeness of (S; ·L),

there must exist a largest and a smallest element of S, i.e., sup ¸0 (S) and inf ¸0 (S). Presume that

sup ¸k¡1 (S) and inf ¸k¡1 (S) exist and observe that

sup ¸k
i (S) = fi

³
inf ¸k¡1

¡i (S)
´

inf ¸k
i (S) = fi

³
sup ¸k¡1

¡i (S)
´

if Ui has decreasing di¤erences; and

sup¸k
i (S) = fi

³
sup¸k¡1

¡i (S)
´

(14)

inf ¸k
i (S) = fi

³
inf ¸k¡1

¡i (S)
´

(15)

if Ui has increasing di¤erences. Thus, by induction, monotonic individual best response functions imply

existence of sup ¸k (S) and inf ¸k (S) for all k ¸ 1.

Now suppose player i 2 I has decreasing utility di¤erences on (S¡i; ·L), (for players with in-

creasing utility di¤erences compare the proof of lemma 1 in Milgrom and Roberts, 1990). Given an

interval [s¡i; t¡i ] such that s¡i ·L t¡i , let µi [s¡i; t¡i ] denote the set of undominated strategies and let

¸i [s¡i ; t¡i] denote the set of best responses to elements in [s¡i; t¡i]. Simply write ŝi for sup fi (s¡i)

and ·si for inf fi (t¡i) where existence of sup fi (s¡i) and inf fi (t¡i) is assured by (14) and (15). Observe

that any ri with ri £L ŝi is strongly dominated by the strategy ŝi ^ ri since, for all x¡i 2 [s¡i; t¡i ],

Ui (ri; x¡i) ¡ Ui (ŝi ^ ri ; x¡i) · Ui (ri; s¡i) ¡ Ui (ŝi ^ ri; s¡i) by (A2)

· Ui (ŝi _ ri ; s¡i) ¡ Ui (ŝi ;s¡i) by (A1)

< 0

where the last inequality results from ŝi 2 fi (s¡i) and ŝi <L ŝi _ ri , i.e., ŝi _ ri =2 fi (s¡i). This

proves ri ·L ŝi for any ri 2 µi [s¡i ; t¡i]. Accordingly, it can be shown that any strategy ri with

·si £L ri is dominated by a strategy ·si _ ri. Consequently, ·si ·L ri for any ri 2 µi [s¡i ; t¡i]. The set-

inclusion ¸i [s¡i; t¡i] ½ µi [s¡i ; t¡i] then implies sup¸i [s¡i; t¡i ] = supµi [s¡i; t¡i ] and inf ¸i [s¡i ; t¡i] =

inf µi [s¡i; t¡i] for any interval [s¡i ; t¡i] with s¡i ·L t¡i .
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Step 2. It remains to prove that the equations (12) and (13) indeed entail (1) and (2).

By set-inclusion, the sequences
n

inf µk (S)
o

k¸0
,
n

supµk (S)
o

k¸0
are monotonically increasing, re-

spectively decreasing. Completeness of S implies then existence of order-limits such that

lim
k!1

inf µk (S) = lim
k!1

inf ¸k (S) = ·s

lim
k!1

supµk (S) = lim
k!1

sup¸k (S) = ŝ

by (13) and (12). Moreover, by de…nition of P (G) and D (G)

P (G) ½ D (G) ½ [·s; ŝ]

and, therefore, ·s; ŝ 2 P (G) would prove the claim. I proceed by showing that all ŝi are either best

responses to ŝ¡i or to ·s¡i and that all ·si are either best responses to ŝ¡i or to ·s¡i, thereby implying

·s; ŝ 2 P (G).

By order-continuity of f

lim
k!1

f
³
inf ¸k (S)

´
= f (·s) , lim

k!1
f

³
sup¸k (S)

´
= f (ŝ)

i.e., for all i 2 I ,

lim
k!1

fi

³
inf ¸k

¡i (S)
´

= fi (·s¡i) , lim
k!1

fi

³
sup¸k

¡i (S)
´

= fi (ŝ¡i)

Moreover, if player i 2 I has decreasing utility di¤erences

lim
k!1

fi

³
inf ¸k

¡i (S)
´

= lim
k!1

sup¸k+1
i (S) = ŝi

lim
k!1

fi

³
sup¸k

¡i (S)
´

= lim
k!1

inf ¸k+1
i (S) = ·si

implying fi (·s¡i) = ŝi and fi (ŝ¡i) = ·si , i.e., ŝi (·si) is a best response to ·s¡i ( ŝ¡i).

Similarly, if player i 2 I has increasing utility di¤erences

lim
k!1

fi

³
inf ¸k

¡i (S)
´

= lim
k!1

inf ¸k+1
i (S) = ·si

lim
k!1

fi

³
sup ¸k

¡i (S)
´

= lim
k!1

sup ¸k+1
i (S) = ŝi

That is, ŝi (·si) is a best response to ŝ¡i (·s¡i).¤

Proof of proposition 2:
Proceed as in the proof of lemma 1 to see that sup ¸k (S) and inf ¸k (S) exist for all k ¸ 0. Moreover,

since

sup ¸0 (S) = sup µ0 (S)

inf ¸0 (S) = inf µ0 (S)

presume

sup ¸k¡1 (S) = sup µk¡1 (S)

inf ¸k¡1 (S) = inf µk¡1 (S)
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and proceed by proving, for an arbitrary i 2 I ,

sup¸k
i (S) = sup µk

i (S) (16)

inf ¸k
i (S) = inf µk

i (S) (17)

Abbreviate ŝi = sup ¸k
i (S) and ·si = inf ¸k

i (S). Since any ri 2 Si, satisfying ri <L ·si or ŝi <L ri, is, by

assumption, no best response to any strategy s¡i 2 ¸k¡1
¡i (S) there exists for every s¡i 2 ¸k¡1

¡i (S) some

s0
i 2 ¸k

i (S) such that

Ui (s0
i ;s¡i) > Ui (ri ;s¡i)

By assumption, Si , and therefore ¸k
i (S), is a chain, i.e., ·si ·L s0

i ·L ŝi for all s0
i 2 ¸k

i (S). Order-

quasiconcavity then implies, for all s¡i 2 ¸k¡1
¡i (S),

Ui (ŝi ;s¡i) > Ui (ri ;s¡i)

if ŝi <L ri , and

Ui (·si ;s¡i) > Ui (ri ;s¡i)

if ri <L ·si. Thus, any ri 2 Si , satisfying ri <L ·si ( ŝi <L ri) is strongly dominated by ·si (ŝi), which

proves (16) and (17).

By set-inclusion, the sequences
n

inf µk (S)
o

k¸0
,
n

supµk (S)
o

k¸0
are monotonically increasing, re-

spectively decreasing. Completeness of S implies existence of order-limits such that

lim
k!1

inf µk (S) = lim
k!1

inf ¸k (S) = ·s

lim
k!1

supµk (S) = lim
k!1

sup¸k (S) = ŝ

Since, by assumption, ·s = ŝ

P (G) ½ D (G) ½ f·sg

Finally, observe that P (G) is non-empty, i.e., P (G) = D (G) = f·sg, because order-continuity of f

implies f (·s) = ·s.¤

Proof of proposition 3: First I demonstrate that statement (ii) characterizes uniqueness of

point-rationalizable strategies for lattice games with order-continuous best response function.

(ii) implies (i). By lattice-completeness of S and order-continuity of f there exist for all k ¸ 1

strategies sk; tk 2 ¸k (S) such that, for all s0 2 ¸k (S), sk ·L s0 ·L tk . Thus, by condition (3),

for all k ¸ 0, diam
³
¸k (S)

´
= d

¡
sk ; tk

¢
. Observe that, by set-inclusion,

¡
tk

¢
k¸1

is a monotonically

decreasing sequence bounded from below, and
¡
sk

¢
k¸1

is a monotonically increasing sequence bounded

from above. Since S is order-complete the order-limits t¤ = inf tk and s¤ = sup sk exist and, by

condition (3), diam (P (G)) = d (s¤; t¤) . However, since, for all k ¸ 1, fk is order-continuous it is also

true that diam (P (G)) = d
¡
fk (s¤ ) ; fk (t¤ )

¢
for any k ¸ 1. Consequently, P (G) must be single-valued

if there exists for every pair of strategies s 6= t some …nite k such that d
¡
fk (s) ; fk (t)

¢
< d (s; t).

(i) implies (ii). Suppose, on the contrary, that statement (ii) is violated such that there exist some

s0; t0 2 S, with s0 6= t0, and limk!1 d
¡
s 0k; t0k¢

> 0. But then, by set-inclusion,

diam (P (G)) = d (s¤; t¤) ¸ lim
k!1

d
¡
s 0k; t0k¢

> 0

30



implying s¤ 6= t¤. Thus, P (G) is not single-valued.

Finally note, that the assumptions of proposition 3 assure, by proposition 1, that G = (Si; Ui)i2I

is dominance-solvable if and only if G = (Si ; Ui)i2I has a unique point-rationalizable strategy. ¤

Proof of the corollary:

Part A. Let gi (¸) = fT
i (¸ (s ¡ t) + t), and observe that gi (¸) is continuously di¤erentiable on

[0; 1]. The mean-value inequality for real-valued functions with a real-valued domain implies

jgi (1) ¡ gi (0)j ·
¯̄
¯̄@gi

@¸
(¸¤ )

¯̄
¯̄ ¢ j1 ¡ 0j (18)

for some ¸¤ such that ¸¤ = arg max[0;1]

¯̄
¯ @gi

@¸
(¸)

¯̄
¯. By an application of the chain-rule:

@gi

@¸
(¸¤) =

X

j2I

@fT
i

@sj
(¸¤ (sj ¡ tj ) + tj) ¢ (sj ¡ tj )

¯̄
¯̄@gi

@¸
(¸¤)

¯̄
¯̄ ·

¯̄
¯̄
¯̄
X

j2I

@fT
i

@sj
(¸¤ (sj ¡ tj ) + tj )

¯̄
¯̄
¯̄ ¢ ks ¡ tk1

Substituting for the terms in inequality (18):

¯̄
fT

i (s) ¡ fT
i (t)

¯̄
·

¯̄
¯̄
¯̄
X

j2I

@fT
i

@sj
(r)

¯̄
¯̄
¯̄ ¢ ks ¡ tk1

with r = ¸¤ (s ¡ t) + t. Since this is true by assumption for all i 2 I we obtain for the supremum norm

°°fT (s) ¡ fT (t)
°°

1 ·

¯̄
¯̄
¯̄
X

j2I

@fT
i

@sj
(r)

¯̄
¯̄
¯̄ ¢ ks ¡ tk1

Consequently, condition (4) of the corollary implies T-contraction of f in the supremum norm.

Note that T-contraction, and not just T-contractivity, is satis…ed because
P

j2I

¯̄
¯ @fT

i

@ sj
(s)

¯̄
¯ is a con-

tinuous function obtaining a maximum on the compact set S. Consequently, if
P

j2I

¯̄
¯ @fT

i
@sj

(s)
¯̄
¯ < 1 for

all i and all s 2 S then there exists some c < 1 such that
P

j2I

¯̄
¯ @f T

i

@sj
(s)

¯̄
¯ · c for all i.

Part B. Let again gi (¸) = fT
i (¸ (s ¡ t) + t), and observe that the mean-value inequality implies

jgi (1) ¡ gi (0)j ·
¯̄
¯̄@gi

@¸

¡
¸i

¢¯̄¯̄ ¢ j1 ¡ 0j

for some ¸i = arg max[0;1]

¯̄
¯ @gi

@¸ (¸)
¯̄
¯. By the chain-rule and substitution

¯̄
fT

i (s) ¡ fT
i (t)

¯̄
·

¯̄
¯̄
¯̄
X

j2I

@fT
i

@sj

¡
ri

¢
¢ (sj ¡ tj )

¯̄
¯̄
¯̄

with ri = ¸is +
¡
1 ¡ ¸i

¢
t. Summing up over all i and rearranging

X

i2I

¯̄
fT

i (s) ¡ fT
i (t)

¯̄
·

X

i2I

¯̄
¯̄
¯̄
X

j2I

µ
@fT

i

@sj

¡
r i

¢¶
¢ (sj ¡ tj )

¯̄
¯̄
¯̄

X

i2I

¯̄
fT

i (s) ¡ fT
i (t)

¯̄
· max

j2I

(¯̄
¯̄
¯
X

i2I

µ
@fT

i

@sj

¡
r i

¢¶
¯̄
¯̄
¯

)
¢
X

j2I

jsj ¡ tjj
°°fT (s) ¡ fT (t)

°°
1

< ks ¡ tk1
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Where the last step follows from the assumption, for all j and all ri 2 f¸s + (1 ¡ ¸) t j ¸ 2 [0; 1]g,

X

i2I

µ
@fT

i

@sj

¡
r i

¢¶
< 1

Consequently, d
¡
fT (s) ; fT (t)

¢
< d (s; t) with d induced by the absolute value norm. Thus, condition

(5) of the corollary implies T-contraction in the absolute value norm.¤

Proof of proposition 4: By the proof of proposition 3 the point-rationalizable strategy of G =

(Si ;Ui)i2I is unique if and only if limk!1 d
¡
sk; tk

¢
= 0 where, for all k ¸ 1, sk ; tk 2 ¸k (S) such that,

for all s0 2 ¸k (S), sk ·L s0 ·L tk .

If all players best response functions are increasing then, for all k ¸ 1, sk = f
¡
sk¡1

¢
and tk =

f
¡
tk¡1

¢
. Consequently, limk!1 d

¡
sk ; tk

¢
= 0 if and only if limk!1 d

¡
fk (s) ; fk (t)

¢
= 0, where s

denotes the smallest and t denotes the largest element in S.

Analogously, if all players have decreasing best response functions then, for all k ¸ 1, sk = f
¡
tk¡1

¢

and tk = f
¡
sk¡1

¢
. Thus, for k0 = 1; 3;5; :::, limk0!1 d

³
sk0

; tk0
´

= 0 if and only if

lim
k0!1

d
³
fk0

(s) ; fk0
(t)

´
= 0

which is, by set-inclusion, equivalent to limk!1 d
¡
sk ; tk

¢
= 0.¤

Proof of proposition 5: The individual best response functions of the n-…rm Cournot oligopoly

are given, for all i 2 I , by

fi (s¡i) = max

½
0;

1 ¡ P
j 6=i ¯ ijsj ¡ ci

2

¾

Since the individual best response functions fi are not di¤erentiable everywhere - they have a kink at

strategies s¡i where the interior and the boundary solutions of the utility maximization problem coincide

- the corollary is not immediately applicable to f . Consider therefore the functions hi : Rn¡1 ! R such

that, for all i 2 I ,

hi (s¡i) =
1 ¡ P

j 6=i ¯ ijsj ¡ ci

2

Thus, while the values of fi must not be smaller than zero, hi is not restricted to non-negative values.

Since T-contractivity of the maximizers h = £i2Ihi with domain R entails T-contractivity of the

maximizers f with domain R+, dominance-solvability of G = (Si; Ui)i2I is proved by showing that h

satis…es condition (4) or condition (5) of the corollary. Note that this is, already for T = 1, the case if

condition (6) or condition (7) of proposition 5 are satis…ed.¤

Proof of proposition 6: As individual best response functions obtain, for all i 2 I ,

fi (s¡i) = max

8
<
:0;

0
@1 ¡ 1

n

X

j 6=i

sj

1
A ¢ n

2(n ¢ c + 1)

9
=
;

Proceeding as in the proof of proposition 4 yields, for all j 6= i,

@hi (s¡i)

@sj
=

¯̄
¯̄ ¡1

2 (n ¢ c + 1)

¯̄
¯̄
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Thus, condition (4) is satis…ed if
¯̄
¯̄ ¡1

2 (n ¢ c + 1)

¯̄
¯̄ <

1

n

Rearrangement gives the two statements of proposition 6.¤

Proof of proposition 7:

Since the individual best response functions are increasing it su¢ces, by proposition 4, to show

lim
k!1

fk (0; :::; 0) = lim
k!1

fk (1; :::; 1)

Part A. Pessimistic bidders, i.e., ° > 1

Obviously, f (1; :::; 1) = (1; :::; 1) implying the desired result

lim
k!1

fk (1; :::; 1) = (1; :::; 1)

Turn to s = (0; :::; 0) and observe that

lim
k!1

°k ¢ (b; :::; b) = lim
k!1

fk+1 (0; :::; 0) if lim
k!1

°k ¢ (b; :::; b) · (1; :::; 1)

lim
k!1

fk+1 (0; :::; 0) = (1; :::; 1) else

Since, by assumption, 0 < b and 1 < ° , the desired result obtains:

lim
k!1

fk (0; ::; 0) = (1; :::; 1)

Part B. Optimistic bidders, i.e., ° < 1

First consider s = (0; :::; 0). Then f (0; :::; 0) = (b; :::; b) and f (b; :::; b) = (b; :::;b) imply

lim
k!1

fk (0; :::; 0) = (b; :::; b)

. Turn to s = (1; :::; 1) and observe that, by ° < 1, there exist some …nite number M 2 N such that

fM (1; :::; 1) = °M ¢ (1; :::; 1) < (b; :::; b)

Thus,

fM+1 (1; :::; 1) = (b; :::; b)

implying

lim
k!1

fk (1; :::; 1) = (b; :::; b)

which proves the proposition.¤

Proof of proposition 8:

By equation (11), the best response function with respect to cuto¤-points is given by

fA (sB) =
(1 ¡ ¾B) + r ¢ ¾B

2 ¡ ¾B
(19)
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which could have been alternatively obtained from rearranging for the indi¤erent - the cuto¤-point -

type µ¤
A :

fA (sB) = µ¤
A such that

¾B ¢ r + (1 ¡ ¾B) ¢ 1 = ¾B ¢ µ¤
A + (1 ¡ ¾B ) ¢ µ¤

A ¢ 2

In the light of the corollary, uniqueness of the point-rationalizable strategies is guaranteed if the …rst

order derivative of A’s best response function with respect to B ’s cuto¤-points, i.e.,

dfA

d¾B
(sB) =

2r ¡ 1

(sB ¡ 2)2

is smaller than one. That is, for all ¾B 2 [0; 1],

j2r ¡ 1j < (¾B ¡ 2)
2

j2r ¡ 1j < 1 < ¾2
B ¡ 4¾B + 4

whereby the second inequality is satis…ed for all r 2 (0; 1). Since the assumptions of proposition 2 are

ful…lled, the unique dominance-solvable strategy is given by the …xed point of (19) in [0; 1].¤
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04-14 Volker Stocké The Interdependence of Determinants for the
Strength and Direction of Social Desirability Bias
in Racial Attitude Surveys



SONDERFORSCHUNGSBereich 504 WORKING PAPER SERIES

Nr. Author Title

04-13 Mei Wang
Paul Fischbeck

Evaluating Lotteries, Risks, and Risk-mitigation
Programs

04-12 Alexander Ludwig
Torsten Sløk

The relationship between stock prices, house prices
and consumption in OECD
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Bettina Langfeldt

Umfrageeinstellung und Umfrageerfahrung. Die
relative Bedeutung unterschiedlicher Aspekte der
Interviewerfahrung für die generalisierte
Umfrageeinstellung
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