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1 Introduction

Trading volume appears high in financial markets. One quarter of the value of the annual

worldwide trade and investment flow is traded in the foreign exchange market (including

forwards, swaps, and spot transactions) each day.1 The February 2003 annualized turnover

on the New York Stock Exchange (NYSE) was about 96 % and the daily number of shares

traded on the NYSE in the year 2002 was about 1.44 billion. The total value of trading

on NYSE in the year 2002 was $ 10.3 trillion U.S..2 De Bondt and Thaler (1995) note

that the high trading volume observed in financial markets “is perhaps the single most

embarrassing fact to the standard finance paradigm”.3

Why do investors trade such enormous quantities? Rational investors must be heteroge-

neous for trade to be mutually advantageous for the buyer and the seller of an asset.

Differences in information alone cannot explain high levels of trading volume. This is

a result of various no trade theorems, among them, for example, Milgrom and Stokey

(1982).4

Introduction of noise traders or liquidity traders who trade for reasons exogenous to

models helps to circumvent no trade theorems.5 This noise or liquidity trading is not

necessarily irrational. For example, endowment shocks, such as bequests or accidents, can

be interpreted as liquidity trading motives.6 But common sense suggests that ascribing

the high levels of trading volume mentioned above solely to noise or liquidity trading is

unsatisfying.7

Two further strands of literature have emerged that are able to explain high levels of

trading volume. These strands of literature are labeled as the “differences of opinion”

1Dow and Gorton (1997), p. 1026.

2See www.nyse.com.

3De Bondt and Thaler (1995), p. 392.

4See, for example, Brunnermeier (2001), pp. 30-37, for a discussion of various no trade theorems.

5See Pagano and Röell (1992), p. 680, and Brunnermeier (2001), p. 31. Shleifer and Summers (1990) survey the noise

trader approach to finance.

6See, for example, Pagano and Röell (1992), p. 680.

7See also Hirshleifer (2001), p. 1564, and Wang (1998), p. 322.
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literature and the “overconfidence” literature.8 We now shortly discuss these two strands

of literature in turn. A more comprehensive discussion will follow in Subsection 3.2.

The “differences of opinion” literature was, among others, motivated by Varian (1985,

1989). Differences of opinion can arise due to differences in prior beliefs or due to dif-

ferences in the way investors interpret public information. Furthermore, it is assumed

that these differences in beliefs or models for interpreting signals are common knowledge.

Although everyone knows that others have different opinions, there is no adjustment of

beliefs, i.e. investors “agree to disagree”. Modeling differences of opinion is mainly mo-

tivated by mere plausibility: differences of opinion are present in every day life (see, for

example, Harris and Raviv (1993)). The models are usually silent about the reason why

there are differences of opinion in the first place. Varian (1989), Harris and Raviv (1993),

and Kandel and Person (1995) show that differences of opinion help explain high levels of

trading volume and that a higher degree of differences of opinion leads to a higher degree

of trading volume.

The “overconfidence” literature assumes that investors overestimate the precision of in-

formation. Overconfidence models thus incorporate findings of a large set of psycholog-

ical studies that are often referred to as the “calibration literature” (see, for example,

Lichtenstein, Fischhoff, and Phillips (1982)). However, overconfidence models are usually

motivated by a richer set of psychological results that are often summarized as overcon-

fidence.9 These theoretical models predict that overconfident investors trade more than

rational investors. De Bondt and Thaler (1995) argue that “the key behavioral factor

needed to understand the trading puzzle is overconfidence”.10

The discussion so far raises the following questions that our study will tackle empirically:

1. Is trading volume of an investor a function of the degree of miscalibration of the

respective investor as claimed by the “overconfidence” literature?

2. Is the trading volume of an investor a function of other overconfidence measures that

are often used as a motivation of overconfidence models?

8Morris (1994) shows that even in a “differences of opinion” setting no trade theorems can arise under certain conditions.

9We will discuss these further results in Subsection 3.1.

10De Bondt and Thaler (1995), p. 393.

4



3. Are the various overconfidence measures used to motivate overconfidence models

positively correlated?

4. Is there a psychological foundation of the “differences of opinion” explanation of high

levels of trading volume?

We analyze these questions by correlating various overconfidence measures with measures

of trading volume. A sample of approximately 3,000 individual investors with online bro-

ker accounts was asked to answer an online questionnaire which was designed to measure

various facets of overconfidence, among them their degree of miscalibration. For the sub-

group of 215 respondents we are able to correlate overconfidence measures and measures

of trading volume which are calculated by the trades over a 51 month period.

By correlating miscalibration scores with measures of trading volume we are able to

empirically test the hypothesis of overconfidence models that, the higher the degree of

miscalibration (modeled as the degree of the overestimation of the precision of informa-

tion), the higher the trading volume of the respective investor. In addition, we explore

whether other biases which are often summarized as overconfidence and are used to moti-

vate overconfidence models are related to trading volume. Such an analysis is necessary to

guide modeling. Psychologists have found several judgment biases but it remains unclear

which bias affects economic behavior or whether these biases affect economic behavior at

all. These points are often put forth as a major drawback of behavioral finance models.

In this vein, Fama (1998) argues that “given the demonstrated ingenuity of the theory

branch of finance, and given the long litany of apparent judgment biases unearthed by

cognitive psychologists, it is safe to predict that we will soon see a menu of behavioral

models that can be mixed and matched to explain specific anomalies.”11 This statement

shows the importance of analyzing the link or correlation between judgment biases and

economic variables such as trading volume as the only way to test which bias actually

influences economic behavior. Closely related is the question whether the various overcon-

fidence biases are related, i.e. whether the overconfidence scores are positively correlated.

This is important for modeling as well. Usually, only one bias is incorporated into a model.

Overconfidence models assume overestimation of the precision of information whereas this

assumption is, besides the calibration literature, motivated by several other findings as

11Fama (1998), p. 291.
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well. However, it is by no means clear that these biases are related. Furthermore, we are

able to test whether there is a psychological foundation of differences of opinion models by

explicitly asking investors whether they assess themselves as above average with regard to

investment skills or past performance. We argue that an investor who regards himself as

above average is more likely to maintain a specific opinion about the future performance

of an asset even though he knows that other investors or the market hold a different

opinion. Note, that this difference of opinion is the source of volume in the “differences of

opinion” literature. By correlating measures of trading volume with miscalibration scores

and better than average scores, we are able to empirically evaluate whether the “differ-

ences of opinion” literature or the “overconfidence” literature better explains high levels

of trading volume.

Our main findings can be summarized as follows. Investors who think that they are above

average trade more. Measures of miscalibration are, contrary to predictions of overconfi-

dence models, unrelated to measures of trading volume. This result is striking as theoret-

ical models that incorporate overconfident investors mainly motivate this assumption by

the calibration literature and model overconfidence as underestimation of the variance of

signals (or overestimation of their precision). These results hold even when we control for

several other explanatory variables in a cross-sectional regression analysis. In connection

with other recent findings, we conclude that the usual way of motivating and modeling

overconfidence which is based on the calibration literature has to be treated with caution.

We argue that the “differences of opinion” literature better explains high levels of trad-

ing volume when compared to the “overconfidence” literature. Furthermore, our findings

present a psychological foundation for the “differences of opinion” explanation of high

levels of trading volume. In addition, our way of empirically evaluating behavioral finance

models - the correlation of economic and psychological variables and the combination of

psychometric measures of judgment biases (such as overconfidence scores) and field data

- seems to be a promising way to better understand which psychological phenomena drive

economic behavior.

The rest of the paper is organized as follows. Section 2 surveys related research, espe-

cially other endeavors to test our main hypothesis and their drawbacks. Section 3 surveys

overconfidence in the psychological and finance literature. Section 4 describes the data
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set and the design of our study, especially our overconfidence measures. Section 5 shows

the results on the relation between measures of overconfidence and trading volume and

presents several robustness checks and alternative interpretations of our results. Section

6 discusses the results and the last section concludes.

2 Related Research

Our analysis is related to other studies which share the common feature of correlating

proxies or measures of overconfidence on the one hand and economic variables such as

trading volume on the other hand.

Statman, Thorley, and Vorkink (2004) use U.S. market level data to test the hypothe-

sis that overconfidence leads to high trading volume. They argue that after high returns

subsequent trading volume will be higher as investment success increases the degree of

overconfidence.12 They find an increase in trading activity after bull markets: stock trading

volume (turnover) is positively related to lagged stock returns. This finding is consistent

with the hypothesis that a higher degree of overconfidence leads to higher trading volume

as long as high past returns are a proxy for overconfidence. Kim and Nofsinger (2003)

confirm these findings using Japanese market level data. They identify stocks with vary-

ing degrees of individual ownership to test the hypothesis and discover higher monthly

turnover in stocks held by individual investors during the bull market in Japan.

The proxy for overconfidence in Barber and Odean (2001) is gender. In their paper,

they summarize psychological studies that find a higher degree of overconfidence among

men than among women. Consequently, they partition their data set, a sample of U.S.

online broker investors, on gender. They find that men trade more than women which is

consistent with overconfidence models.

All the above mentioned studies share the shortcoming that overconfidence is never di-

rectly observed. Only crude proxies for overconfidence are used (past returns, gender).

A direct test of the hypothesis that a higher degree of overconfidence leads to higher

trading volume is the correlation of measures of overconfidence and measures of trading

12See Subsection 5.3.3 for a further discussion of dynamic overconfidence models.
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volume. This can be done either empirically or experimentally. Our study uses the first ap-

proach and empirically tests the above mentioned hypothesis using field data. We directly

measure overconfidence via a psychological online questionnaire for a group of individual

investors with online broker accounts. So we are able to directly test the hypothesis that

overconfidence leads to higher trading volume by correlating measures of overconfidence

with the actual trading volume of the respective investor.

Our research is thus related to (the very few) studies in economics and finance that

correlate psychological data (such as measures of overconfidence) with economic variables

(such as trading volume).

Fenton-O’Creevy, Nicholson, Soane, and Willman (2003) analyze the link between psy-

chological and economic variables empirically using data on the behavior of professional

traders. They measure illusion of control, one manifestation of overconfidence that we will

discuss more deeply in Subsection 3.1, by a computer-based task. They find that their

measure of illusion of control is negatively associated with performance as measured by

traders’ self-ratings, total annual earnings, and the performance assessments of a senior

trader-manager.13

Biais, Hilton, Mazurier, and Pouget (2004) use the second of the above mentioned ap-

proaches and analyze experimentally whether psychological traits and cognitive biases

affect trading and performance. Based on the answers of 245 subjects (students) to a

psychological questionnaire they measured, among other psychological traits, the degree

of overconfidence via calibration tasks. The subjects also participated in an experimental

asset market. They find that overconfidence (miscalibration) reduces trading performance

in the experimental asset market. However, their overconfidence measure is unrelated to

trading volume. Contrary to predictions of overconfidence models, overconfident subjects

do not place more orders.

13There is another study (Dorn and Huberman (2002)) which analyzes, among other things, the link between psychological

variables (overconfidence) and economic variables (portfolio turnover) empirically using a transaction data set of online

broker investors which is similar to ours. They measure overconfidence via a questionnaire as the difference between perceived

and actual financial market knowledge and a self-attribution bias score. Their finding is that these overconfidence measures

fail to explain additional variation in trading volume (p. 33). The overconfidence measures in Dorn and Huberman (2002)

are, however, not based on the original psychological overconfidence studies, a point which they themselves acknowledge as

they conclude in their paper that one should “conduct experimental tests of overconfidence and compare the results with

actual trading behavior” (p. 34).
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3 Overconfidence in the Psychological Literature and in Finance

Models

3.1 Overconfidence in the Psychological Literature

In the psychological literature there is no precise definition of overconfidence. There are

several findings that are often summarized as overconfidence. Under this view, which is the

broadest possible that can be found in the literature, overconfidence can manifest itself in

the following forms: miscalibration, the better than average effect, illusion of control, and

unrealistic optimism.14 We will discuss these manifestations of overconfidence in turn.

Miscalibration Studies that analyze assessments of uncertain quantities using the frac-

tile method usually find that people’s probability distributions are too tight (Lichtenstein,

Fischhoff, and Phillips (1982)). For example, studies that ask people to state a 90 percent

confidence interval for several uncertain quantities find that the percentage of surprises, i.e.

the percentage of true values that fall outside the confidence interval, are higher than 10

percent, the percentage of surprises of a perfectly calibrated person. Other studies analyze

the calibration of probability judgments. People are asked to answer questions with two

answer alternatives. After that, they are asked to state the probability that their answer is

correct. The usual finding is that for all questions assigned a given probability the propor-

tion of correct answers is lower than the assigned probability (Lichtenstein, Fischhoff, and

Phillips (1982)). There is still a large debate in the psychological literature over whether

miscalibration is domain or task dependent or even a statistical illusion (see, for exam-

ple, Gigerenzer, Hoffrage, and Kleinbölting (1991), Klayman, Soll, Gonzáles-Vallejo, and

Barlas (1999), Juslin, Winman, and Olson (2000), Erev, Wallsten, and Budescu (1994)).

However, the result that people form probability distributions over uncertain quantities

that are too tight seems to be robust especially when people judge difficult items (see

Klayman, Soll, Gonzáles-Vallejo, and Barlas (1999) or Soll and Klayman (2003)).

14Griffin and Brenner (2004), for example, argue that these concepts are linked. They present theoretical perspectives

on (mis)calibration, among them the most influential perspective, optimistic overconfidence. According to the authors,

the optimistic overconfidence perspective builds, for example, on the better than average effect, unrealistic optimism, and

illusion of control.
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Better than average effect People think that they are above average. Taylor and Brown

(1988) document in their survey that people have unrealistically positive views of the self.

One important manifestation is that people judge themselves as better than others with

regard to skills or positive personality attributes. One of the most cited examples states

that 82 % of a group of students rank themselves among the 30 percent of drivers with

the highest driving safety (Svenson (1981)).

Illusion of control, and unrealistic optimism Langer (1975) defines illusion of control as

“an expectancy of a personal success probability inappropriately higher than the objective

probability would warrant”.15 Closely related is the phenomenon of unrealistic optimism

about future life events (Weinstein (1980)). Presson and Benassi (1996) note in their sur-

vey and meta-analysis that after Langer’s article was published, illusion of control “has

become a catch phrase in studies in which researchers manipulate conditions that lead

people to make nonveridical judgments of control, contingency, prediction ability, etc.”16

In other words, there is no precise definition of illusion of control in the psychological lit-

erature. Most of the illusion of control studies analyze how different manipulated variables

such as choice, outcome sequence, task familiarity, or active involvement are related to

illusion of control. Presson and Benassi (1996) stress that almost all studies do not mea-

sure the degree of control. Instead, most studies measure prediction ability or judgments

of contingency so that Presson and Benassi (1996) suggest that the phrase “illusionary

judgment” would better summarize the various operationalizations of illusion of control

in the literature although they admit that “there is some question as to whether illusion

of control researchers have examined a single underlying construct.”17

The question whether there are stable individual differences in the degree of overconfidence

has long been unexplored. Recent psychological research tries to find out whether there

are stable individual differences in reasoning or decision making competence (see Parker

and Fischhoff (2001), Stanovich and West (1998), and Stanovich and West (2000)).

Furthermore, the question whether the above mentioned concepts - miscalibration, the

15Langer (1975), p. 311.

16Presson and Benassi (1996), p. 494.

17Presson and Benassi (1996), p. 502.
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better than average effect, illusion of control, and unrealistic optimism - are related is

mainly unexplored. Some argue that these manifestations are related (see, for example,

Taylor and Brown (1988), p. 194, and Griffin and Brenner (2004)), others argue that this

need not to be the case (see, for example, Biais, Hilton, Mazurier, and Pouget (2004), p.

9), or even deny a logical link (see, for example, Hvide (2002), p. 19). Most of the studies

that analyze these various facets of overconfidence try to figure out which variables or

stimuli induce overconfidence and under which circumstances overconfidence is reduced.18

However, these studies do not analyze whether the above mentioned concepts are related.

3.2 Overconfidence in Finance Models

In this subsection, we will discuss the “differences of opinion” literature and the “overcon-

fidence‘” literature more comprehensively. Investors are willing to trade if their posterior

beliefs about the value of a risky asset are different. Theoretically, there are several ways

to “create” differing posterior beliefs.19

The “differences of opinion” literature was, among others, motivated by Varian (1985,

1989). Varian (1989) generalizes the mean-variance framework with diverse information

of Grossman (1976) to allow for different prior probabilities. Each investor has a sub-

jective prior distribution for the value of the risky asset. It is assumed that these prior

distributions are normal but have different means. Varian (1989) finds that trading vol-

ume is entirely driven by differences of opinion. The equilibrium net trading volume of an

investor only depends on the deviation of his opinion about the mean from the average

opinion: The larger the differences of opinion, the larger trading volume. Harris and Raviv

(1993) assume that investors have common prior beliefs and receive public information.

Differences of opinion are modeled by investors interpreting this information differently,

i.e. they have different likelihood functions when updating probabilities. Besides assuming

differing prior beliefs, Kandel and Person (1995) model differences of opinion as follows.

Investors receive a public signal which is the sum of two random variables: the liquidation

18See, for example, Presson and Benassi (1996), p. 505.

19Varian (1989), p. 6., stresses that different probability beliefs may be due to differences in information or differences in

opinion. The distinction between information and opinion depends on how people modify their views when they discover

that other people hold different views.
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value of the risky asset plus a random error term. Agents disagree about the mean of the

error term. Harris and Raviv (1993) and Kandel and Person (1995) show that their respec-

tive model assumptions help explain high trading volume. Most “differences of opinion”

models are silent about the reason why there are such differences of opinion. Morris (1995)

and van den Steen (2001)) argue that differing prior beliefs are in line with rationality.

Shiller (1999), Barberis and Thaler (2003), Hong and Stein (2003), and Diether, Malloy,

and Scherbina (2002) regard differences of opinion as a form of overconfidence: investors

think that their knowledge or their abilities to value stocks are better than those of other

investors.20

In the remainder of this subsection, we focus on overconfidence models that help explain

high levels of trading volume. Although motivated by all of its manifestations discussed

in Subsection 3.1, overconfidence is exclusively modeled as overestimation of the precision

of private information. Assume there is a risky asset with liquidation value v which is a

realization of ṽ ∼ N(0, σ2
ṽ). Investors receive private signals s̃ = ṽ+c · ẽ with ẽ ∼ N(0, σ2

ẽ).

It is assumed that ṽ and ẽ are independent such that s̃ ∼ N(0, σ2
ṽ + c2 · σ2

ẽ). If c = 1,

investors are rational, if 0 ≤ c < 1, investors are overconfident. Conditional expectation

and conditional variance of ṽ, given the realization s are (assuming that ṽ and ẽ are

independent)

E[ṽ | s̃ = s] = E[ṽ] +
Cov[ṽ, s̃]

V ar[s̃]
(s− E[s̃]) =

σ2
ṽ

σ2
ṽ + c2 · σ2

ẽ

· s (1)

V ar[ṽ | s̃ = s] = V ar(ṽ)− (Cov[ṽ, s̃])2

V ar[s̃]
= σ2

ṽ −
σ4
ṽ

σ2
ṽ + c2 · σ2

ẽ

(2)

Overconfident investors underestimate the variance of the risky asset or overestimate its

precision. Stated equivalently, their confidence intervals for the value of the risky asset are

too tight. In the extreme case (c = 0), an investor even believes that he knows the value of

the risky asset with certainty. Benos (1998), Caballé and Sákovics (2003), Kyle and Wang

20See also Odean (1998b), who argues that overconfidence in one’s information is not the only manifestation of overcon-

fidence one might expect to find in markets. He argues that traders could, instead, be overconfident about the way they

interpret public information rather than about the information itself. Furthermore, he emphasizes that each investor is

(over)confident in the way she interprets the information even though she “is aware of the beliefs, and perhaps even the

signals” of other investors (Odean (1998b), p. 1895).
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(1997), Odean (1998b), and Wang (1998) incorporate this way of modeling overconfidence

in different types of models such as those of Diamond and Verrecchia (1981), Hellwig

(1980), Grossman and Stiglitz (1980), Kyle (1985), and Kyle (1989).21 These models

differ in various dimensions. Some models assume that price takers are overconfident.

Others assume that informed insiders are overconfident and act strategically because

they know that they may influence the market price. Some models are one-period models,

others study multiple trading rounds. However, all the above mentioned models predict

that overconfidence leads to high trading volume. At the individual level, overconfident

investors will trade more aggressively: The higher the degree of overconfidence of an

investor, the higher her or his trading volume. Odean (1998b) calls this finding “the most

robust effect of overconfidence”.

Throughout the paper, we maintain the two terms “differences of opinion” literature and

“overconfidence” literature. However, differences of opinion are sometimes interpreted

as a form of overconfidence, and overconfidence models assume overestimation of the

precision of information, which create heterogeneous (posterior) beliefs as well or make

the additional assumption of differing beliefs that are common knowledge. Nevertheless,

the two strands of literature are usually regarded as distinct: The “differences of opinion”

literature is usually not regarded as a part of the behavioral finance literature although

differences of opinion are sometimes regarded as a form of overconfidence, as described

above.22

21There are other overconfidence models that address questions like the dynamics of overconfidence, the survival of

overconfident investors in markets, and the cross-section of expected returns. Examples are Daniel, Hirshleifer, and Sub-

rahmanyam (1998), Daniel, Hirshleifer, and Subrahmanyam (2001), Hirshleifer and Luo (2001), Gervais and Odean (2001),

and Wang (2001).

22The following examples highlight this point. Odean (1998b) argues that his model which assumes miscalibrated investors

is, in contrast to Harris and Raviv (1993), grounded in psychological research (Odean (1998b), p. 1891). Varian (1989) admits

that “differences of opinion ... can be viewed as allowing for a certain kind of irrational behavior” but “remains agnostic on

this issue” as his results (trading volume is entirely driven by differences of opinion) do not hinge on “whether we want to

call this “rational” or “irrational” ” (Varian (1989), p. 7).
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4 Data Sets, Design of the Study, and Overconfidence Measures

The first two subsections of this section describe the various data sets we use and the

design of our study. Subsection 4.3 is concerned with a possible selection bias as only 215

of approximately 3,000 investors have responded to the questionnaire. The last subsection

describes the questionnaire and the various overconfidence scores we calculated using the

answers of the investors.

4.1 Data Sets

This study is based on the combination of several data sets. The main data set consists

of 563,104 buy and sell transactions of 3,079 individual investors from a German online

broker in the period from January 1997 to April 2001. We considered all investors who

trade via the internet, had opened their account prior to January 1997, had at least

one transaction in 1997, and have an e-mail-address.23 The second data set consists of

several demographic and other self-reported information (age, gender, income, investment

strategy, investment experience), that was collected by the online broker at the time each

investor opened her or his account.24 The third data set consists of the answers to an

online questionnaire that was designed to elicit several measures of overconfidence (see

Subsection 4.4). Data on the securities traded are obtained from Datastream, our fourth

data source.

4.2 Design of the Study

All 3,079 investors received an e-mail from the online broker on Thursday, August, 2nd,

2001 with a link to the online questionnaire. 129 investors answered around the following

week-end. The remaining group of investors received a second e-mail on Thursday, the

20th of September, 2001. 86 investors answered around the following weekend. So, we

23See Glaser (2003) for descriptive statistics and further details. Not necessarily all orders are placed online but all

investors traded via the internet at least once in our sample period. We consider all trades by these investors, i.e. we include

the trades that were placed by telephone, for example.

24See Glaser (2003) for descriptive statistics.
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have a response rate of 6.98 %, which is comparable to the response rates of similar

questionnaires.25 We received the questionnaire data at the end of September, 2001, from

the online broker.

In this study, we use the following measures of trading volume which are calculated

by the trades of the investors: the number of stock market transactions, the number of

stock market purchases, and the mean monthly stock portfolio turnover over the period

from January 1997 to April 2001. We focus on stock market transactions as the models

discussed in Section 3.2 make predictions about the link between overconfidence measures

and stock market trading volume. The motivation for the use of the number of stock

market purchases as a separate measure of trading volume is as follows. Buy and sell

transactions are driven by different factors.26 An investor who wants to buy a security

has the choice between thousands of stocks whereas a sell decision only requires an analysis

of the usually very few stocks in the investor’s own portfolio (assuming that investors do

not sell short). Furthermore, when investors buy a security they have to consider the

future performance of the stocks they want to buy whereas they consider future as well as

past performance when they choose a security to sell. The relevance of past performance

for the selling decision is the finding of some empirical and experimental studies on the

disposition effect, the tendency to sell winners too early and ride losers too long.27 These

studies suggest that there might be explanations for the sell decision, which are, for

example, based on prospect theory (see Kahneman and Tversky (1979)). To summarize,

overconfidence affects the expectations of future stock price performance. The fact that,

when selling a security the effect of overconfidence is mixed with reference point dependent

decision behavior of investors, justifies in our view a separate analysis of buy transactions.

We conjecture that the effect of overconfidence is stronger when only buying transactions

are considered.

25See, for example, Graham and Harvey (2001).

26See, for example, Odean (1999), p. 1294.

27See Shefrin and Statman (1985), Odean (1998a), and Weber and Camerer (1998) for empirical and experimental evidence

on the disposition effect.
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4.3 Descriptive Statistics of all Investors and the Subgroup of Respondents

to the Questionnaire

This subsection is concerned with the question of a possible sample selection bias. Table

1 compares descriptive statistics of the age, the number of transactions in all security

categories (sum over the period from January 1997 to April 2001), the number of stock

transactions (sum over the period from January 1997 to April 2001), the number of

warrant transactions (sum over the period from January 1997 to April 2001), the average

of the monthly stock portfolio value (in EUR), the average of the monthly stock portfolio

turnover from January 1997 to April 2001, and the monthly stock portfolio performance

(see Subsection 5.3.3 for details) for the 2,864 investors who did not answer and the 215

investors who answered the questionnaire. The table contains means and medians of these

variables as well as the number of observations of the respective variable (Obs.), and the

number of observations of the respective variable in percent of the number of accounts

in both groups (Obs. in % of no. of accounts). The last column presents the p-values of

a two-sample Wilcoxon rank-sum test (Mann-Whitney test). Null hypothesis is that the

two samples are from populations with the same distribution.

Table 1 shows that means and medians of all variables are similar in both groups. For

example, the median age of investors in the two groups are 39 and 38, respectively. Fur-

thermore, in both groups, about 95 % of investors are male (not shown in Table 1).

Non-parametric tests show that none of the differences in both groups is significant (see

last column of Table 1).28 Furthermore, even the number of observations of the respec-

tive variable in percentages of the number of accounts in both groups are similar in both

groups. For example, about 55 % of investors in both groups trade warrants. Thus, there

is no indication of a sample selection bias.

4.4 Measures of Overconfidence

We consider the following forms of overconfidence: miscalibration, the better than average

effect, illusion of control, and unrealistic optimism. In this subsection, we will present

the questions designed to measure overconfidence as well as the overconfidence measures

28See See Glaser (2003) for further descriptive statistics.
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obtained from the answers to these questions. In designing the questionnaire we tried

to be as close as possible to the concepts and experimental tasks in the psychological

literature reviewed in Subsection 3.1. Of course, we were aware of the fact that this may

lead to a lower response rate.

4.4.1 Miscalibration

General Knowledge Questions The investors were asked to state upper and lower bounds

of 90 % confidence intervals to five questions concerning general knowledge:

1) number of shares traded of Adidas-Salomon AG on Thursday, 5/10/2000, in Ger-

many.

2) number of cars sold by BMW AG in March 2001 (worldwide).

3) number of Shell-petrol stations in Germany (end of the year 2000).

4) number of private customers of Deutsche Bank AG in Europe (May 2001).

5) number of drugstores in Germany (May 2001)).

This way of measuring the degree of miscalibration is widely used.29 137 of 215 Investors

answered at least one question. 114 investors answered all questions.30

If the correct answer lies outside the 90 % confidence interval given by the investor we

call this a surprise. For the questions which were actually answered by the respondents

we calculate the percentage of surprises. Note, again, that the percentage of surprises

of well calibrated investors should be 10 %. Table 2 summarizes the results. We use

the abbreviation OC for the miscalibration scores as overconfidence models assume that

investors are miscalibrated. The mean percentage of surprises 75 %. The median is even

higher (80 %). These figures are much higher than 10 %, the expected proportion of

answers outside a well calibrated 90 % confidence interval. These findings are in line with

29See, for example, Klayman, Soll, Gonzáles-Vallejo, and Barlas (1999), Biais, Hilton, Mazurier, and Pouget (2004), Soll

and Klayman (2003), and Subsection 3.1.

307 investors answered 1 question, 3 investors answered 2 questions, 4 investors answered 3 questions, and 9 investors

answered 4 questions.
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prior research. Russo and Schoemaker (1992), for example, find percentage of surprises in

the range from 42 % to 64 %. Other studies find percentages of surprises that are even

closer to ours.31

Stock Market Forecasts The investors were asked to provide upper and lower bounds of

90 % confidence intervals to five questions concerning stock market forecasts (Deutscher

Aktienindex DAX, Nemax50 Performance Index, three German Stocks) for the end of

the year 2001.32 The use of confidence interval questions is widely used to elicit subjects’

probability distributions, perceptions of expected returns, and variance estimations of

stock returns.33

190 of 215 Investors answered at least one question. 165 investors answered all questions.34

If the correct answer lies outside the 90 % confidence interval given by the investor we

call this a surprise. For the questions which were actually answered by the respondents

we calculate the percentage of surprises. Again, Table 2 summarizes the results.35 The

results are similar to prior research that finds percentages of surprises on exchange rate

and stock price predictions from 71 % to 83 %.36.

4.4.2 Better than Average Effect

We try to measure the degree of the better than average effect using the following two

questions concerning skills and performance relative to others. Investors were asked to

answer the following two questions:

31See, for example, Hilton (2001), p. 42, and the references therein.

32The respondents to the first questionnaire had a forecast horizon of 21 weeks, respondents to the second questionnaire

had a 14 week horizon. We also asked for the median estimate. See Subsection 5.3.2 for details.

33See, for example, Graham and Harvey (2001) and Siebenmorgen and Weber (2004) for a discussion.

344 investors answered 1 question, 6 investors answered 2 questions, 5 investors answered 3 questions, and 10 investors

answered 4 questions.

35This overconfidence measure is the only one which could be reasonably affected by the different time horizons and

the terror attacks of September, 11th. Respondents to the second questionnaire have a lower percentage of surprises. This

difference is only marginally significant (p = 0.0947). See Glaser and Weber (2003) for further details.

36See Hilton (2001), p. 42. In Subsection 5.3.2, we further analyze investors’ variance estimation.
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1) What percentage of customers of your discount brokerage house have better skills

(e.g. in the way they interpret information; general knowledge) than you at identi-

fying stocks with above average performance in the future? (Please give a number

between 0 % and 100 %)

2) What percentage of customers of your discount brokerage house had higher returns

than you in the four-year period from January 1997 to December 2000? (Please give

a number between 0 % and 100 %)

Table 2 summarizes the results of the answers to these two questions. We find that about

half of the investors assess their skills and their abilities as above average. The median

investor assesses her or his investment skills and her or his past performance as average.

For both questions, we calculate better than average scores of investor i (BTA1i and

BTA2i) as 50−answeri
50

as well as the arithmetic average of these two scores (BTA3i).

These ratios yield 0 if respondents think they are average, 1 if they think they are better

than everybody else, and -1 if they think to be worse than everybody else. The mean

better than average scores are positive (0.12 and 0.06 for BTA1 and BTA2, respectively).

This result indicates a slight better than average effect. The high standard deviations are

signs of large individual differences.

4.4.3 Illusion of Control and Unrealistic Optimism

We consider the following aspects that are mainly summarized as illusion of control as

described in Subsection 3.1: control over (an almost) random task (such as investing

in the stock market), unrealistically high personal success probability, and unrealistic

optimism about the future. Nevertheless, we use the term illusion of control for all these

conceptualizations in the following.

We calculate three illusion of control scores. The first illusion of control score is based on

the level of agreement with the following four statements. Investors were asked to state

scores from 1 (I totally agree) to 5 (I completely disagree). For each question we calculate

an illusion of control score of investor i as described below the respective statement.

1) I never buy stocks that will underperform in the future.
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I1i = 5−Answeri
4

. If the investor thinks she or he will never buy stocks that will

underperform in the future, the score I1 is 100 %. If the investor completely disagrees,

the score is 0 %.

2) I am not able to identify stocks with above average performance in the future.

I2i = Answeri−1
4

. If the investor thinks she or he is not able to identify stocks with

above average performance in the future, the score I2 is 0 %.

3) Buying stocks is like buying lottery tickets. Above-average performance seems to me

to be more a matter of chance.

I3i = Answeri−1
4

. If the investor thinks buying stocks is like buying lottery tickets,

the score I3 is 0 %.

4) My forecasts of future stock prices are always true.

I4i = 5−Answeri
4

. If the respondent thinks her or his forecasts are always true, the

score I4 is 100 %.

IC1i is the arithmetic average of these four scores.

We also asked the investors to give an estimate of their portfolio performance in the past

(from January 1997 to December 2000). After that, the investors were asked to forecast

the return of their portfolio in the following four-year period (from January 2001 to

December 2004). The next illusion of control score is based on these estimations of the

past performance and the future performance. The score of investor i, i = 1, . . . , 215, is

calculated as follows: IC2i = Future Performancei−Past Performancei
max

i=1,...,215
|Future Performancei−Past Performancei|

.

The third illusion of control score IC3 is based on the comparison of the 2001 judgment

of the portfolio performance in the year 2001 and the judgment of the performance of

the Deutsche Aktienindex DAX in the same period. The score is calculated as follows:

IC3i = Portfolio Performancei−DAX Performancei
max

i=1,...,215
|Portfolio Performancei−DAX Performancei|

Table 2 presents summary statistics of these three scores. We find that the median person

has illusion of control scores at approximately the midpoint of the respective interval.

The median investor thinks her or his performance in the future will be lower than the

performance in the past (IC2) and that the performance of her or his portfolio in the
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year 2001 will be as high as the performance of the Deutsche Aktienindex DAX (IC3).

However, the high standard deviations indicate large individual differences.

4.4.4 Correlation of Overconfidence Measures

Table 3 presents correlation coefficients of seven overconfidence measures described in the

previous subsections as well as the significance level of each correlation coefficient and the

number of observations used in calculating the correlation coefficient.37 To conserve space

we skip the variables OC3 and BTA3 which are arithmetic averages of OC1 and OC2 or

BTA1 and BTA2, respectively.

The two miscalibration scores, OC1 and OC2, are significantly positively correlated

(p = 0.0568). The Spearman rank correlation coefficient (not reported in Table 3) is

0.2036. The hypothesis that OC1 and OC2 are independent can be rejected (p = 0.0170).

Although knowledge questions and stock market prediction questions are completely dif-

ferent tasks this result suggests internal validity of the two calibration concepts. We find

stable individual differences in the degree of miscalibration. This finding is in line with sev-

eral psychological studies (see, for example, Alba and Hutchinson (2000), Klayman, Soll,

Gonzáles-Vallejo, and Barlas (1999), Pallier, Wilkinson, Danthiir, Kleitman, Knezevic,

Stankov, and Roberts (2002), Soll (1996), Soll and Klayman (2003), and Stanovich and

West (1998)). Usually, individual differences are especially strong when subjects are asked

to state subjective confidence intervals (see, for example, Klayman, Soll, Gonzáles-Vallejo,

and Barlas (1999), p. 240). Furthermore, Biais, Hilton, Mazurier, and Pouget (2004) also

use ten confidence interval questions to rank people and show the psychometric validity

of their miscalibration measure using the Cronbach alpha.

The two better than average scores, BTA1 and BTA2, have a correlation coefficient of

0.6786 (p = 0.0000). Investors who rank themselves as above average with regard to

investment skills also assess their past portfolio performance as above average when com-

pared to other investors. This finding, again, points to psychometric internal validity of

this concept. The two illusion of control scores, IC2 and IC3, are positively correlated at

the 10 % level. This positive correlation seems plausible given that in these two tasks es-

37Using Spearman rank correlations (not reported in Table 3) yields similar results.
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timation of portfolio performance or stock market performance are involved. On average,

investors who think that their future four year performance will be higher than their past

four year performance do believe that their own portfolio performance in the year 2001

will be higher than the performance of the German blue chip index DAX. Surprisingly,

IC1 and IC3 are significantly negatively correlated. The higher the IC1 score the more

people believe that they can control or predict the market. The negative correlation of IC1

and IC3 indicates that people who believe that they can predict the market think that

their 2001 portfolio performance will be lower than the 2001 performance of the German

blue chip index. We do not have a plausible explanation for this negative correlation. To

summarize, miscalibration and the better than average effect seem to be stable individual

traits whereas our scores IC1, IC2, and IC3 question whether illusion of control is a single

underlying construct which is in line with Presson and Benassi (1996).

Most correlations between scores of the various facets of overconfidence are insignificant.

Some are even negative. The correlation between OC2 and IC3 is significantly positive at

the 1 % level. This might be explained by the the fact that in both tasks stock market

predictions are involved. The higher the percentage of surprises in stock market forecasts,

the more an investor believes that her or his portfolio performance will be higher than

the German market index DAX. The correlation coefficients between IC1 and both better

than average scores are significantly negative at the 1 % level. Investors who think that

they are above average in terms of investment skills or past performance have a greater

tendency to think that the stock market is unpredictable. We do not have an explanation

for this perhaps surprising result. The lack of correlation between our overconfidence

measures is consistent with findings of two recent studies that are similar to our study.

Deaves, Lüders, and Luo (2003) measure miscalibration, the better than average effect,

and illusion of control using our questions or a slightly changed version of our questions.

Their correlation matrix also shows no significant positive correlations. Oberlechner and

Osler (2003) find a negative (but statistically and economically insignificant) correlation

between miscalibration and the better than average effect using a questionnaire similar

to ours.

Furthermore, we find simultaneous over- and underconfidence. According to the calibra-

tion questions all investors are overconfident, whereas the median answer to the better
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than average questions is 50 %. Kirchler and Maciejovsky (2002) find similar results.

They investigate individual overconfidence in the context of an experimental asset market

with several periods. Before each period, overconfidence was measured. Participants were

asked to state subjective confidence intervals for the price of the single risky asset in the

next trading period as well as their subjective certainty. They also find simultaneous over-

and underconfidence. Depending on the method overconfidence was measured - subjective

confidence intervals on the one hand and the comparison of objective accuracy and sub-

jective certainty on the other - some participants can be classified as either overconfident

or underconfident.38

5 Overconfidence and Trading Volume: Empirical Results

This section presents the results on the correlation of our nine overconfidence measures

and three measures of trading volume. Subsection 5.1 presents correlation coefficients,

Subsection 5.2 presents cross-sectional regression results. Various robustness checks, the

relation between overconfidence and investors’ stock return volatility estimates, and the

relation between overconfidence and portfolio performance are discussed in Subsection

5.3.

5.1 Overconfidence and Trading Volume: Correlation Coefficients

Table 4 presents correlation coefficients of three measures of trading volume (logarithm

of the number of stock market transactions, logarithm of the number of stock market

purchases, logarithm of mean monthly turnover) and the nine overconfidence measures

described in Section 4.4 as well as the significance level of each correlation coefficient (in

parentheses) and the number of observations used in calculating the correlation coeffi-

cient.39 The first half of the table presents correlation coefficients for all investors who

38To test the hypothesis that, the higher overconfidence the higher trading volume, not the amount or level of overconfi-

dence but the ranking of investors is important. People often show different levels of overconfidence depending on the task

or domain but the same rank-order over tasks or domains. See Jonsson and Allwood (2003), p. 561.

39We use the natural logarithm of the stock portfolio value, and the three trading volume measures as these variables

are positively skewed. Tests show, that we thus avoid problems like non-normality, non-linearity, and heteroskedasticity in

the cross-sectional regression analysis in Subsection 5.2. See Spanos (1986), chapter 21, especially, pp. 455-456, Davidson
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have responded to the questionnaire. In the second half, investors in the highest turnover

quintile are excluded.

Focusing on the first half of Table 4 shows, that overconfidence as measured by calibration

questions is, contrary to theory, negatively correlated with the logarithm of the number

of stock market transactions and the logarithm of the number of stock market purchases.

However, these correlations are insignificant. The better than average scores are signifi-

cantly positively correlated with the number of stock market transactions and the number

of stock purchases. The illusion of control scores are not significantly correlated with the

three measures of trading volume.

Glaser (2003) shows that the stock portfolio value in the highest turnover quintile is very

low. The median value is about 10,000 Euro. The fact that the median of the average

stock portfolio value across months is very low in the highest turnover quintile (median

of monthly turnover is 166 %) is important. Thus, we cannot dismiss the argument that

these accounts are entertainment accounts that are characterized by low portfolio values

and high turnover ratios so that the effect of overconfidence is swamped.40 Therefore, the

second half of Table 4 shows the results when investors in the highest turnover quintile

are excluded. As hypothesized, the effect of overconfidence as measured by the better

than average scores BTA1, BTA2, and BTA3 are stronger. Eight out of nine correlation

coefficients are positive at least at the 5 % level. Three correlation coefficients are signif-

icantly positive at the 1 % level. Most of the correlations between miscalibration scores

and measures of trading volume remain insignificant with two exceptions. OC1 and the

number of stock market purchases are now negatively correlated and OC3 and turnover

are positive correlated at the 10 % level.

As overconfidence models do not predict that overconfidence is the single determinant of

trading volume and as overconfidence measures might be correlated with other determi-

nants of trading volume we analyze the explanatory power of our overconfidence measures

and McKinnon (1993), chapter 14, and Atkinson (1985), pp. 80-81. We therefore use the natural logarithm of the above

mentioned variables when calculating correlation coefficients. We also performed a Box-Cox transformation of variables. See

Subsection 5.3.1 for details.

40Glaser (2003), Table 11, presents further characteristics of investors in the highest turnover quintile which strengthen

this conjecture. For example, about 70 % of investors in the highest turnover quintile actively trade warrants and only 1.39

% of these investors use their account for retirement savings.
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in multiple regressions in the next subsection.

5.2 Overconfidence and Trading Volume: Cross-Sectional Regressions

Table 6 presents regression results on the relation between the logarithm of the number of

stock market transactions and several explanatory variables that are known to affect fi-

nancial decision making (a gender dummy variable, age, a warrant trader dummy variable,

a high risk investment strategy dummy, the logarithm of mean monthly stock portfolio

value, and information in hours per week). Table 5 once again summarizes and defines de-

pendent and independent variables of the cross-sectional regression analysis and presents

their respective data source. The information variable is included to control for the level

of commitment or involvement. The intuition behind this is the finding of some studies

that overconfidence or illusion of control increase with the level of active involvement in

a task.41 We regard the information variable as a proxy for the level of involvement in

the task of investing or trading. The first regression reports the results for the subgroup

of investors that has responded to the questionnaire without an overconfidence measure

as explanatory variable. In each of the nine following regressions we include one overcon-

fidence variable (Overconfidence).42 Only two overconfidence measures are significantly

positively related to the number of stock market transactions at the 5 % level and the 10

% level, BTA1 and BTA3. Investors who assess their skills as above average trade more

stocks. However, miscalibrated investors and investors prone to the illusion of control do

not exhibit a higher trading volume. Other variables that significantly affect the number

of stock market transactions are the warrant trader dummy variable (positive sign) and

the mean monthly stock portfolio value (positive sign). Investors who trade warrants do

trade more stocks and the higher the value of the stock portfolio the higher the number

of transactions.43

41See, for example, Presson and Benassi (1996), p. 496.

42Note, that we assume that overconfidence is a stable individual trait and thus constant over time. This assumption is

consistent with static overconfidence models presented Subsection 3.2. Psychological studies indeed show stability over time

for the concept of miscalibration (see, for example, Jonsson and Allwood (2003)). We analyze the implications of dynamic

overconfidence models with a time-varying degree of overconfidence in Subsection 5.3.3. Furthermore, the standard deviations

in Table 2 show that the degree of overconfidence varies markedly across individuals which makes it possible to include the

overconfidence variable as explanatory variable in our regressions.

43See Glaser (2003) for further results on the general determinants of trading volume in the whole data set.
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Buy and sell transactions are driven by different factors. As hypothesized in Section

4.2, the effect of overconfidence is stronger when only buy transactions are considered.

Therefore, we analyze the number of purchases separately. The results show that our

conjecture is confirmed. Table 7 presents regression results on the relation between the

logarithm of the number of stock market purchases and several explanatory variables. Both

BTA1 and BTA3 are significant at the 5 % level with the expected sign. The t-values are,

as hypothesized, higher than in Table 6.

Table 8 presents regression results on the relation between the logarithm of mean monthly

turnover and several explanatory variables. None of the nine overconfidence measures are

significantly related to turnover. The main determinants of turnover are the warrant

trader dummy (positive sign) and the mean monthly stock portfolio value (negative sign).

The last observation is consistent with the finding that the median of the average stock

portfolio value across months is very low in the highest turnover quintile.

As in Section 5.1, we now exclude investors in the highest turnover quintile and run the

regressions just presented for the remaining investors. Table 9, Table 10, and Table 11

show the results. As predicted, the effect of overconfidence is much stronger. The better

than average scores are significantly positive at least at the 5 % level (the only exception

is regression (5) in Table 11). The miscalibration and illusion of control scores have no

significant impact and the signs of the coefficients are, contrary to theory, mainly negative.

Furthermore, the adjusted R-squared values in Table 9, Table 10, and Table 11 are higher

than in the respective table when all respondents to the questionnaire are analyzed. This

stresses our previous conjecture that the level of trading volume in the highest turnover

quintile are driven by factors that are unobserved. In addition, the adjusted R-squared

values in Table 9, Table 10, and Table 11 are higher when the better than average scores

are included when compared to the respective regression (1) in each table without an

overconfidence measure as explanatory variable. Thus, the better than average scores

explain additional variation of the trading volume measures. This increase in the adjusted

R-squared values is higher than in the three tables that analyze all respondents to the

questionnaire suggesting, again, that the accounts with the highest turnover values might

be entertainment accounts.

All the results in this subsection are robust as unreported regression results show. The bet-
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ter than average scores remain significant for different sets of explanatory variables. Mis-

calibration scores are never significantly positive. Furthermore, most of the nine overconfi-

dence measures are not significantly correlated with other explanatory variables. Only the

better than average scores are significantly positively related to the information variable.

In addition, the overconfidence measures are not significantly different for men/women,

warrant-trader/non-warrant-trader, and investors that describe their investment strategy

as high-risk/not high-risk. Thus, our overconfidence measures seem to capture investor

characteristics that differ from other determinants of trading volume.

5.3 Further Robustness Checks and Alternative Interpretation of the Results

5.3.1 Further Robustness Checks

We also included a dummy variable that controls for the September 11 effect. This dummy

variable takes the value 0 if the respondent has answered the questionnaire before Septem-

ber 11 and the value 1 otherwise. The coefficient of this variable is not significant and the

inclusion of this variable does not alter the results.

We also interpreted the number of stock transactions and the number of stock purchases as

(overdispersed) count data (see, for example, Wooldridge (2002) and Winkelmann (2003)).

Overdispersion means that the variance of the number of stock transactions is larger than

the mean of the number of stock transactions. In our data set, the variance of the number

of stock transactions is 32,533 whereas the mean of the number of stock transactions is

105 (see Glaser (2003)). When we use appropriate regression models (Poisson regression

model, negative binomial regression model), the results and conclusions are similar to the

results of the ordinary least squares regressions presented in Subsection 5.2.

We used a logarithmic transformation of some regression variables in Subsection 5.2 (see

footnote 39 on page 23). An applied-econometricians’ rule-of-thumb to avoid problems like

non-normality, non-linearity, and heteroskedasticity is to use the logarithmic transforma-

tion of positively skewed variables (see Spanos (1986)). The transformed variables are

approximately normally distributed. A more formal way to transform variables is to use

the Box-Cox transformation z∗ of each variable z (which includes the natural logarithm
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as a special case):

z∗ =
zλ − 1

λ
. (3)

In regressions using the Box-Cox transformation of dependent and independent variables,

our basic results are even stronger.

We also calculated the percentage of surprises of investors who answered all confidence

interval questions. This, of course, reduces the number of observations. When we include

these overconfidence measures (instead of OC1, OC2, or OC3), the results presented in

Subsections 4.4, 5.1, and 5.2 are similar.

Regressions with overconfidence measures as left-hand (dependent) variables show that it

is difficult to explain the degree of overconfidence as a function of demographic variables

or investor characteristics. The adjusted R-square of these regressions is about 0.

Parametric and non-parametric tests show, that investors who think that they are above

average in terms of investment skills or past performance trade significantly more when

compared to investors who think that they are below average. When we partition investors

in two groups based on the answers to the two BTA questions, i.e. in a group of investors

who think that they are above average and in a group of investors who think that they are

below average (these two groups contain approximately the same number of investors), we

find that the group of investors who think that they are above average trade significantly

more (p < 0.05).

5.3.2 Overconfidence and Investors’ Variance Estimation

In Subsection 4.4 we presented the percentage of surprises in overconfidence questions con-

cerning stock market forecasts of five time series (Deutscher Aktienindex DAX, Nemax50

Performance Index, three German Stocks). If the correct answer was outside the 90 %

confidence interval given by the investor we called this a surprise. For the questions which

were actually answered by the respondents we calculated the percentage of surprises as an

overconfidence measure based on stock market predictions. Note, however, that the five

time series are correlated. Another and perhaps better way to analyze investors’ answers
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is to calculate the variance estimation implied by their subjective confidence intervals.

This is the clearest and most natural test of overconfidence models and their modeling as-

sumption of investors underestimating the variance of stock returns. To analyze investors’

volatility forecasts, we first transform these price or index value forecasts of individual k

into returns44:

r(p)ki =
x(p)ki
value

tj
i

−1, p ∈ {0.05, 0.5, 0.95}, i ∈ {1, 2, 3, 4, 5}, j ∈ {1, 2}, k ∈ {1, . . . , 215}.
(4)

t1 indicates August 2nd, t2 September 20th.45 x(p) denotes the p fractile of the stock price

or index value forecast, r(p) denotes the p fractile of the respective return forecast with

p ∈ {0.05, 0.5, 0.95}. The five time series are denoted by i, i ∈ {1, 2, 3, 4, 5}.

The return volatility estimate of individual k, k ∈ {1, . . . , 215}, for time series i, i ∈
{1, 2, 3, 4, 5}, is calculated as follows (see Keefer and Bodily (1983)):46

stddevki =
√

0.185 · (r(0.05)ki )
2 + 0.63 · (r(0.50)ki )

2 + 0.185 · (r(0.95)ki )
2 − (meanki )

2, (5)

with meanki as given by

meanki = 0.185 · r(0.05)ki + 0.63 · r(0.50)ki + 0.185 · r(0.95)ki . (6)

Keefer and Bodily (1983) show numerically that equation (5) serves as a good three-point

approximation of the standard deviation of a continuous random variable.

Glaser and Weber (2003) show that investors in the first group underestimate the volatil-

ity of stock returns (as measured by the standard deviation of historical returns). How-

44Some studies ask directly for returns, others ask for prices. Our method of elicitation was, among others, used by Kilka

and Weber (2000).

45The exact time of response is not available. Furthermore, we do not know whether investors answered Thursday night,

or on Friday, Saturday, or Sunday. Thus, we use the Thursday closing price in both groups to calculate expected returns.

46For further details, see Glaser and Weber (2003).
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ever, after the terror attacks of September 11, volatility forecasts are higher than before

September 11. In two out of five cases, historical volatilities are overestimated.

The terror attacks of September 11 make it impossible to include the degree of the under-

estimation of the variance of stock returns as an overconfidence measure in our regression

analysis. As an alternative, we calculate the standardized deviation from the mean volatil-

ity estimate per investor to rank investors according to their volatility estimates. For each

investor group and for each time series we calculate the mean and the standard deviation

of the volatility forecasts. For each investor we then calculate the standardized deviation

from the mean volatility estimate by subtracting the mean volatility estimate from an

investor’s volatility estimate and by dividing this difference by the standard deviation

of the volatility forecast. For each investor, we then calculate the average across these

measures.

We find that the higher the standardized volatility forecast of an investor, the lower

the percentage of surprises in stock market forecasts (OC2), i.e. the wider the confidence

interval, the lower the percentage of correct answers outside the intervals. This relation is,

not surprisingly, highly significant (p = 0.0000).47 The standardized volatility forecast is

not significantly correlated with our trading volume measures. Including the standardized

volatility forecast in our regression results yields results similar to the regressions including

OC2 as an overconfidence measure. To summarize, we find no evidence that investors who

make lower volatility forecasts trade more.

5.3.3 Portfolio Performance and Overconfidence

Up to this point in the paper we maintained the assumption that overconfidence is a stable

individual trait and thus constant over time. This assumption is consistent with overconfi-

dence models presented in Subsection 3.2. Note, that this assumption is necessary to argue

that a high overconfidence score, measured at the end of the sample period, leads to high

trading volume during the sample period, as overconfidence is constant through time and

it does not matter when overconfidence is measured. However, there are other models as-

47The standardized volatility forecast is even significantly correlated with OC1 (p = 0.0001). The higher the standardized

volatility forecast, the lower the percentage of surprises in knowledge questions (OC1).
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suming that overconfidence dynamically changes over time (see, e.g., Gervais and Odean

(2001)). This modeling assumption is usually motivated by psychological studies that find

biased self-attribution (see Wolosin, Sherman, and Till (1973), Langer and Roth (1975),

Miller and Ross (1975), Schneider, Hastorf, and Ellsworth (1979)): People overestimate the

degree to which they are responsible for their own success. In these overconfidence models,

the degree of overconfidence is a function of past investment success, i.e. the higher the

performance in the past the higher the degree of overconfidence at the end of the period

(learning-to-be-overconfident hypothesis; Gervais and Odean (2001)).48 There is another

story that involves a time-varying degree of overconfidence. Assume that (some) investors

are overconfident at the start of the sample period. As a consequence, they trade more.

If high trading volume is associated with low returns, the most overconfident investors at

the beginning of the sample period might end up with the lowest overconfidence measures

at the end of the period as a consequence of high trading volume (and low returns) during

the sample period.

To empirically test these two stories, we correlate overconfidence scores with the perfor-

mance of the investors in the past. Moreover, we are able to analyze whether investors

who assess their investment skills or performance as above average compared to others

really had above average performance in the past. Furthermore, we analyze the relation

between portfolio performance and portfolio turnover.

We calculate the monthly gross portfolio performance of each investor making the follow-

ing simplifying assumptions:

- We assume that all stocks are bought and sold at the end of the month.

- We ignore intra-month trading.

Barber and Odean (2000) show that these simplifying assumptions do not bias the mea-

surement of portfolio performance.

The gross portfolio return Rgr
ht of investor h in month t is calculated as follows:

48See Glaser, Nöth, and Weber (2004) for a further discussion of these models.
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Rgr
ht =

Sht∑

i=1

wihtRit with wiht =
Pitniht

Sht∑
i=1

Pitniht

(7)

Rit is the return of stock i in month t, Sht is the number of stocks held by individual h

in month t, Pit is the price of stock i at the beginning of month t, and niht is the number

of stocks of company i held by investor h in month t. wiht is the beginning-of-month-t

market value of the holding of stock i of investor h divided by the beginning-of-month-t

market value of the whole stock portfolio of investor h.

Table 12 shows the results. The cross-sectional distribution of the monthly gross returns

is similar to the results in Barber and Odean (2000), Table IV, p. 791. We observe a large

cross-sectional variation in the performance across investors. When we exclude investors

with stock positions in 12 or fewer months, we find gross returns between −16% and

+24% per month. On average, investors underperform relevant benchmarks (not reported

in Table 12). For example, the arithmetic average monthly return of the German blue chip

index DAX from January 1997 to March 2001 is 2.02% whereas the mean gross monthly

return of investors in our data set is 0.54%.

We find that investors who trade more do not have higher monthly gross returns (see

Figure 1). We cannot reject the hypothesis that monthly gross returns are equal in turnover

quintiles (as shown in Figure 1) using a non-parametric Kruskal-Wallis test.

Furthermore, we do not find significant correlations between the monthly gross return in

our 51 month period and our overconfidence measures. High returns in the past do not

lead to high overconfidence measures in our questionnaire at the end of the sample period.

Thus, we do not find support for the learning-to-be-overconfident hypothesis, i.e. a high

degree of overconfidence as a result of past investment success. Furthermore we do not

find support for the second story presented at the beginning of this subsection as we do

not find a significant correlation between overconfidence and (gross) performance.

The results of this subsection might be explained by the following findings. Investors are

not able to give a correct assessment of their own past realized portfolio performance. We

asked the investors to give an estimate of the past realized stock portfolio performance

of their account at the online broker (see also the IC2 measure in Subsection 4.4.3). The
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correlation between the assessment of past (absolute) portfolio performance and realized

portfolio performance is negative (but insignificant). This finding is consistent with a result

of Statman, Thorley, and Vorkink (2004) who state that “not only does that impact of

past market returns on a typical security’s trading activity survive the inclusion of lagged

security returns in the same regression, it appears that the lagged market return impact is

actually larger” (Statman, Thorley, and Vorkink (2004), p. 22). This finding is no surprise

when investors have a better knowledge of market returns compared to the returns of the

stocks in their own portfolio.

Moreover, investors are not able to give a correct assessment of their performance relative

to others. We grouped all investors in percentiles based on their past realized stock port-

folio performance. The correlation between the assessment of past portfolio performance

compared to others (via percentiles; see the BTA2 measure in Subsection 4.4.2) and actual

percentile is negative (but insignificant). Furthermore, the difference between the actual

return percentile of the respective investor and the self-assessed percentile is positive on

average (this difference is positive if an investor thinks, for example, that only 25% of the

other investors had higher portfolio returns in the past even though 30 % of the investors

in the sample actually had higher returns). Thus, investors overestimate their relative

position in terms of return percentiles.

The results of this subsection can be summarized as follows:

- Investors who trade more have, on average, the same gross monthly returns as in-

vestors who trade less.

- Investment success in the past does not lead to high overconfidence scores at the end

of the sample period.

- Investors have difficulties in estimating their own past realized stock portfolio per-

formance.

- Investors who think that they had above average performance actually did not have

above average performance in the past.
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6 Discussion

Table 13 summarizes our main findings. We show that overconfidence as measured by

calibration questions is negatively related to the number of trades. This result is incon-

sistent with theory but consistent with findings of Biais, Hilton, Mazurier, and Pouget

(2004). Thus, the finding seems to be robust. Note, again, that overconfidence models

almost exclusively model overconfidence via miscalibrated investors. Why is miscalibra-

tion not positively related to trading volume, as predicted by overconfidence models? One

important point to remember is that the link between miscalibration and trading vol-

ume has never been shown or even analyzed empirically or experimentally. Biais, Hilton,

Mazurier, and Pouget (2004) and our study are the only exceptions that analyze this link.

Overconfidence models are motivated by psychological studies which show that people are

generally miscalibrated or by empirical findings that are consistent with miscalibrated in-

vestors, such as high trading volume. However, there might be other biases that are able

to explain the same empirical findings when implemented in a theoretical model. But the-

oretical models often incorporate only one behavioral bias. We are able to test whether

different forms of overconfidence have different effects on trading volume. Information on

this issue is essential for modeling purposes because we are able to rule out some forms

of overconfidence as the main driving forces of trading volume which are therefore inap-

propriate as assumptions in theoretical models. This shows the importance of analyzing

the link or correlation between judgment biases and economic variables such as trading

volume as the only way to test which bias actually influences economic behavior. Scores

of miscalibration obviously fail to explain trading volume.

Furthermore, there are other reasons that might explain this failure of miscalibration

scores in explaining volume. In the psychological literature, there is a large debate over

whether miscalibration is domain or task dependent or even a statistical illusion (see, for

example, Gigerenzer, Hoffrage, and Kleinbölting (1991), Klayman, Soll, Gonzáles-Vallejo,

and Barlas (1999), Juslin, Winman, and Olson (2000), Erev, Wallsten, and Budescu

(1994)). In other words: The way investors are asked to state, say, the future performance

of a stock, might influence the result of whether confidence intervals are too narrow or,

perhaps, well calibrated. If miscalibration is not a stable individual trait or if the degree

of miscalibration depends on a specific task then it is no surprise that we are unable to
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empirically confirm the hypothesis that a higher degree of miscalibration leads to higher

trading volume.

Moreover, according to the usual interpretation of overconfidence measures based on cal-

ibration questions all investors are overconfident. Section 4.3 shows that investors in our

sample trade a lot when compared to similar studies.49 It may be possible that all in-

vestors in our data set are overconfident and thus, all traders trade more than “normal”

investors (which are not included in our data set). This interpretation is consistent with

Barber and Odean (2002) who argue that online investors are generally overconfident and

active traders. They analyze trading volume and performance of a group of 1,600 investors

who switched from phone-based to online trading during the sample period. They find

that trading volume increases and performance decreases after going online. They thus

conclude that “overconfident investors were more likely to go online and once online the

illusion of control and the illusion of knowledge further increased their overconfidence.

Overconfidence led them to trade actively...”.50 Note that we only consider investors in

our sample who trade online. The Barber and Odean (2002) argument is, however, not in

line with the large variation across individuals of the number of trades in our data set. It

is not true that all investors in our sample trade a lot.

Our results concerning overconfidence as measured by the better than average effect are

very promising. We find that investors who think that they are above average do trade

more. Deaves, Lüders, and Luo (2003) measure miscalibration and the better than average

effect using questions similar to ours and correlate these overconfidence scores with trading

activity in an experimental asset market. They also find that people who think that they

are above average trade more.51 Oberlechner and Osler (2003), p. 27, also argue and find

49Odean (1999), for example, analyzes trades of 10,000 accounts from January 1987 to December 1993. The trades file

has 162,948 records in this seven year period (0.2 trades per investor per month). Our data set consists of 563,104 trades

of 3079 over a period of only 51 months (3.5 trades per investor per month). Note, however, the different time periods.

50Barber and Odean (2002), p. 479.

51Furthermore, Deaves, Lüders, and Luo (2003) find that the degree of miscalibration is related to trading activity which

is consistent with overconfidence models. However, experimental subjects were told that those who had exhibited higher

general knowledge in the questionnaire would receive more accurate private noisy signals in the experimental asset market.

Deaves, Lüders, and Luo (2003) even admit that “overconfident people will tend to think that their answers are more

accurate, implying that their signals are more revealing and trade accordingly” (Deaves, Lüders, and Luo (2003), p. 8).

Thus, their “miscalibration score” just captures another facet of the better than average effect.
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that the better than average effect, not miscalibration, explains excess trading volume

using survey data from U.S. currency market professionals.

The finding that investors who think that they are above average do trade more is in line

with the differences of opinion literature. Although this strand of literature is, as discussed

in Subsection 3.2, usually not regarded as a part of the behavioral finance literature and

although differences of opinion can be motivated rationally we propose a psychological

motivation of the differences in opinions assumption. This conjecture is not completely

new (see Shiller (1999), Barberis and Thaler (2003), Hong and Stein (2003), and Diether,

Malloy, and Scherbina (2002)). In their model of trading in speculative markets based

on differences of opinion among traders, Harris and Raviv (1993) state that, “we assume

that each speculator is absolutely convinced that his or her model is correct. Indeed,

each group believes the other group is basing its decision on an incorrect model (i.e. is

irrational in this sense)”.52 Although Harris and Raviv (1993) stress that they “maintain

the assumption of rational agents”, this assumption is in line with the finding that people

think that they are above average in terms of investment skills. Shiller (1999), for example,

argues that “if we connect the phenomenon of overconfidence with the phenomenon of

anchoring, we see the origins of differences of opinion among investors, and some of the

source of the high volume of trade among investors. ... Apparently, many investors do feel

that they do have speculative reasons to trade often, and apparently this must have to do

with some tendency for each individual to have beliefs that he or she perceives as better

than others’ beliefs. It is as if most people think they are above average.”53.

Why do “overconfidence” models break down when they are confronted with studies that

link miscalibration scores and the number of trades? Why are “differences of opinion”

perhaps a better way of explaining high levels of trading volume? In both types of mod-

els, investors often receive noisy signals which are the sum of two random variables: the

value of the risky asset and a random error term. Loosely speaking, “differences of opinion”

models assume that investors disagree about means of random variables whereas investors

in “overconfidence” models underestimate variances. Thus, both types of models are able

to generate differing posterior beliefs. Perhaps, modeling disagreement about mean re-

52Harris and Raviv (1993), p. 480.

53Shiller (1999), pp. 1322-1323.
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turns or differing interpretation of public signals have a better foundation in documented

investor behavior and investor expectations than disagreement about the variance of re-

turns or differing posterior beliefs as a result of overestimation of the precision of private

information.54 Glaser and Weber (2003) find evidence that is consistent with this con-

jecture. Disagreement with regard to return forecasts is higher than disagreement with

regard to volatility forecasts for this group of individual investors. One conclusion of these

findings is that theoretical models should create differing posteriors by assuming traders

who are overconfident about the way they interpret public information or by different

prior beliefs which do not converge as a result of the better than average effect rather

than modeling overconfidence by overestimation of the precision of private information.

Future theoretical work should further analyze the implications of differing (mean) beliefs

on the one hand and underestimation of the variance of signals on the other hand.

Besides mentioning the strengths of our approach - the ability to directly test the hy-

pothesis that a higher degree of overconfidence leads to higher trading volume - we want

to discuss some possible weaknesses as well. We assume that the overconfidence scores

are stable individual traits and are constant over time. This is in line with most over-

confidence models mentioned in Subsection 3.2. However, psychological evidence on this

issue is not unequivocal, as discussed above. Unfortunately, we were not able to verify

whether our overconfidence scores are constant over time. A closely related point is that

our overconfidence measures were obtained after the 51 months time period that was

used to calculate the measures of trading volume of the respective investors. Another

possible weakness might be the fact that we conduct the questionnaire part of our study

via the internet. Internet experiments increase the variance of responses when compared

to experiments in a controlled laboratory environment (Anderhub, Müller, and Schmidt

(2001)). Thus, too much noise might be a possible reason why we are unable to prove a

link between miscalibration scores and measures of trading volume. We note, however,

that Biais, Hilton, Mazurier, and Pouget (2004) find results similar to ours in a controlled

environment. Furthermore, if we find a significant effect despite the noise inherent in in-

ternet questionnaires, such as in the case of the better than average scores, we can be

54Note that underestimation of the variance of signals also creates heterogeneity of conditional means (differing posterior

beliefs; see equation (1)) that are driven by information (signal realizations), not by differing opinions concerning the mean

of the prior (such as, for example, in Varian (1989)).
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very confident about the presence of this link in reality.

7 Conclusion

The contribution of this paper is to measure overconfidence of a group of online broker

investors in various dimensions (miscalibration, the better than average effect, illusion of

control, unrealistic optimism) and to analyze whether these overconfidence measures are

significantly related with trading volume of individual investors.

One implication of our study is that one has to be careful when deriving theoretical as-

sumptions from psychological experiments unrelated to financial tasks. It is important to

specify what kind of overconfidence - miscalibration, the better than average effect, or

illusion of control - may be influencing trading behavior. Hirshleifer (2001), for example,

argues that “it is often not obvious how to translate preexisting evidence from psycho-

logical experiments into assumptions about investors in real financial settings. Routine

experimental testing of the assumptions and conclusions of asset-pricing theories is needed

to guide modeling.”55. We are able to contribute to this endeavor.

We find that investors who think that they are above average trade more. One of the most

striking results of our study is that overconfidence, as measured by calibration questions, is

unrelated to trading volume. This result seems to be robust as Biais, Hilton, Mazurier, and

Pouget (2004) report similar findings. These results are even more important as theoretical

models that incorporate overconfident investors mainly motivate this assumption by the

calibration literature and model overconfidence as underestimation of the variance of

signals (or overestimation of their precision), i.e. by too tight confidence intervals. In

connection with other recent findings, we conclude that the usual way of motivating and

modeling overconfidence which is mainly based on the calibration literature has to be

treated with caution.

There are several suggestions for future research. We measure various facets of overcon-

fidence: miscalibration, the better than average effect, illusion of control, and unrealistic

optimism. Numerous studies suggest or argue, at least implicitly, that these manifesta-

55Hirshleifer (2001), p. 1577.
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tions of overconfidence are related. In other words: answers to experimental tasks should

be positively correlated. Our study is a hint that this need not be the case. Future research

should further analyze whether overconfidence is a robust phenomenon across several tasks

that are often assumed to be related. Furthermore, our way of empirically evaluating be-

havioral finance models - the correlation of economic and psychological variables and the

combination of psychometric measures of judgment biases (such as overconfidence scores)

and field data - seems to be a promising way to better understand which psychologi-

cal phenomena drive economic behavior. This empirical methodology should be routinely

used to guide modeling.
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Table 1: Descriptive Statistics: Investors who Answered versus Investors who did not Answer
the Questionnaire

This table compares descriptive statistics of the age, the number of transactions in all security categories
(sum over the period from January 1997 to April 2001), the number of stock transactions (sum over the
period from January 1997 to April 2001), the number of warrant transactions (sum over the period from
January 1997 to April 2001), the average of the monthly stock portfolio value (in EUR), the average of
the monthly stock portfolio turnover from January 1997 to April 2001, and the monthly stock portfolio
performance (see Subsection 5.3.3 for details) for the 2,864 investors who did not answer and the 215
investors who answered the questionnaire. The table contains means and medians of these variables as
well as the number of observations of the respective variable (Obs.), and the number of observations of
the respective variable in percent of the number of accounts in both groups (Obs. in % of no. of accounts).
The last column presents the p-values of a two-sample Wilcoxon rank-sum test (Mann-Whitney test).
Null hypothesis is that the two samples are from populations with the same distribution.

Investors who Investors who p-value
did not answer answered (Mann-Whitney test)
questionnaire questionnaire

No. of accounts 2,864 215

Age Mean 40.92 40.02 0.2942
Median 39 38
Obs. 2,369 183
Obs. in % of no. of accounts 82.72 85.12

Transactions Mean 184.89 156.17 0.5621
Median 103 105
Obs. 2,864 215
Obs. in % of no. of accounts 100.00 100.00

Stock transactions Mean 106.37 92.87 0.9422
Median 54 52
Obs. 2,793 205
Obs. in % of no. of accounts 97.52 95.35

Warrant transactions Mean 88.99 69.81 0.8194
Median 27 29
Obs. 1530 120
Obs. in % of no. of accounts 53.42 55.81

Stock portfolio Mean 36590.83 37061.01 0.5614
value Median 15629.70 15887.10

Obs. 2,762 202
Obs. in % of no. of accounts 96.44 93.95

Stock portfolio Mean 1.37 1.21 0.9692
turnover Median 0.33 0.33

Obs. 2,675 199
Obs. in % of no. of accounts 93.40 92.56

Stock portfolio Mean 0.0056 0.0030 0.4538
performance Median 0.0057 0.0053

Obs. 2,598 195
Obs. in % of no. of accounts 90.71 90.70
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Table 2: Overconfidence Variables: Descriptive Statistics

This table presents descriptive statistics of the overconfidence measures defined in Subsection 4.4 as well as the intervals that
contain the respective measures. For all overconfidence measures a higher value indicates a higher degree of overconfidence.
The table presents mean, median, standard deviation (std.dev.), and the number of investors who responded to the respective
question (no. Obs.).

Mean of Median of std.dev of No.Obs.
% of % of % of

Miscalibration Interval surprises surprises surprises

General Knowledge ∈ [0 %,100 %] 75 % 80 % 24 % 137
Questions (OC1)

Stock Market ∈ [0 %,100 %] 61 % 60 % 32 % 190
Forecasts (OC2)

All Questions (OC3) ∈ [0 %,100 %] 67 % 70 % 21 % 137

Better than average
effect Mean Median std.dev No.Obs

Question 1 ∈ [0,100] 43.82 50 18.42 212

Question 2 ∈ [0,100] 46.99 50 19.33 212

BTA1 ∈ [-1,1] 0.12 0 0.37 212

BTA2 ∈ [-1,1] 0.06 0 0.39 212

BTA3 ∈ [-1,1] 0.09 0 0.35 212

Illusion of control
and unrealistic optimism Mean Median std.dev No.Obs

IC1 ∈ [0,1] 0.46 0.50 0.16 215

IC2 ∈ [-1,1] -0.02 -0.02 0.14 206

IC3 ∈ [-1,1] -0.11 0.00 0.25 188
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Table 3: Correlation of Overconfidence Variables

This table presents pairwise correlations between seven of our overconfidence measures described in
Subsection 4.4 as well as the significance level of each correlation coefficient (in parentheses) and the
number of observations used in calculating the correlation coefficient. To conserve space we skip the
variables OC3 and BTA3 which are arithmetic averages of OC1 and OC2 or BTA1 and BTA2, respectively.
* indicates significance at 10%; *** indicates significance at 1%.

OC1 OC2 BTA1 BTA2 IC1 IC2 IC3

OC1 1

137

OC2 0.1631 1
(0.0568)*

137 190

BTA1 -0.0402 -0.0867 1
(0.6411) (0.2345)

137 190 212

BTA2 0.1487 -0.0058 0.6785 1
(0.0828)* (0.9363) (0.0000)***

137 190 212 212

IC1 -0.0513 -0.0234 -0.2241 -0.1865 1
(0.5516) (0.7491) (0.0010)*** (0.0065)***

137 190 212 212 215

IC2 -0.0454 0.0828 -0.0902 -0.2024 0.0604 1
(0.6021) (0.2612 ) (0.1994) (0.0037)*** (0.3883)

134 186 204 204 206 206

IC3 -0.0153 0.2342 0.0485 0.1134 -0.1915 0.1385 1
(0.8602) (0.0013)*** (0.5082) (0.1212) (0.0085)*** (0.0594)*

135 186 188 188 188 186 188
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Table 12: Cross-Sectional Distribution of Percentage Monthly Gross Portfolio Returns

This table shows the cross-sectional distribution of the monthly gross returns of our investor sample.
Gross monthly portfolio performance of each investor was calculated making the following simplifying
assumptions: We assume that all stocks are bought and sold at the end of the month and we ignore
intra-month trading. The gross portfolio return Rgrht of investor h in month t is calculated as follows:

Rgrht =
Sht∑

i=1

wihtRit with wiht =
Pitniht

Sht∑
i=1

Pitniht

Rit is the return of stock i in month t, Sht is the number of stocks held by individual h in month t,
Pit is the price of stock i at the beginning of month t, and niht is the number of stocks of company i
held by investor h in month t. wiht is the beginning-of-month-t market value of the holding of stock i of
investor h divided by the beginning-of-month-t market value of the whole stock portfolio of investor h.
Time period is January 1997 to March 2001. Investors with 12 or less portfolio return observations are
excluded from the sample. The table also shows the arithmetic monthly return of the German blue chip
index DAX from January 1997 to March 2001 and the number of investors with more than 12 portfolio
return observations in our 51 month sample period.

Mean 0.54%

Minimum −16.02%
1st percentile −5.83%
5th percentile −2.99%
10th percentile −1.90%
25th percentile −0.49%
Median 0.57%
75th percentile 1.50%
90th percentile 2.75%
95th percentile 3.92%
99th percentile 7.80%
Maximum 23.81%

DAX (arithmetic monthly return) 2.02%

Number of households 2,793 (91% of 3,079)
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Table 13: Summary of Findings

This table summarizes our findings on the correlation coefficients of our nine overconfidence measures and three measures
of trading volume and the results of the cross-sectional regression analysis presented in the previous tables. * indicates
significance at 10%; ** indicates significance at 5%; *** indicates significance at 1%.

All respondents to the questionnaire Highest turnover quintile excluded

ln(Number of ln(Number of ln(Turnover) ln(Number of ln(Number of ln(Turnover)
stock market stock market stock market stock market
transactions) purchases) transactions) purchases)

Correlation OC1 negative negative positive negative negative* positive
coefficients

OC2 negative negative positive negative negative positive

OC3 negative negative positive negative negative positive*

BTA1 positive** positive* positive positive*** positive** positive

BTA2 positive* positive* positive positive** positive** positive***

BTA3 positive** positive* positive positive*** positive** positive**

IC1 negative negative positive negative negative negative

IC2 negative positive negative negative positive negative

IC3 positive positive positive positive positive positive

Cross-sectional OC1 negative negative positive negative negative positive
regressions

OC2 positive positive positive negative negative positive

OC3 negative negative positive negative negative positive

BTA1 positive** positive** positive positive*** positive*** positive

BTA2 positive positive positive positive** positive** positive**

BTA3 positive* positive** positive positive*** positive*** positive**

IC1 positive positive positive negative negative negative

IC2 negative negative negative negative negative negative

IC3 positive positive positive positive positive positive*
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Figure 1: Monthly Gross Returns and Turnover

This figure presents the average gross monthly portfolio returns across investors for turnover quintiles. 1
indicates investors in the lowest turnover quintile, 5 indicates investors in the highest turnover quintile.
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