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1 Introduction 

 

The present contribution is intended to serve as a survey of techniques of risk based capital 

allocation. Before going into technical detail, however, some words have to be lost on the 

conceptions of risk based capital and capital allocation. 

 

As opposed to e.g. equity capital, regulatory capital or capital invested, the conception of risk 

based capital or risk adjusted capital1 RAC is usually understood to be a purely internal capi-

tal conception. Culp [3, p. 16] defines risk based capital as the smallest amount of capital a 

company must set aside to prevent the net asset value or earnings of a business unit from fal-

ling below some “catastrophic loss” level. Because this capital is never actually invested, 

RAC is an imputed buffer against unexpected and intolerable losses. As well the allocation of 

risk based capital is usually understood as a notional or pro forma allocation of capital.2 

 

Both the determination and allocation of risk based capital are elements of risk-adjusted per-

formance management (RAPM), which is typically based on a performance measure of the 

RORAC (return on risk-adjusted capital)-type3 

 

 
RAC

RORAC
incomenet= . (1) 

 

The RORAC performance measure can be determined for the entire company or the overall 

financial position respectively on the one hand and as well for business segments or segments 

of financial positions respectively on the other. A segment-RORAC requires the determina-

tion of a segment-RAC. This segment-RAC can be the stand-alone-RAC of the segment or an 

(pro forma) allocated portion of the overall-RAC. Using the stand-alone-RAC ignores the 
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consequences of stochastic dependencies between the segments of the overall position. These 

stochastic dependencies can only be taken into consideration on the basis of allocating the 

overall-RAC to the respective segments. The remainder of this paper concentrates on tech-

niques of capital allocation of this kind.4 For the applications of capital allocation to risk-

adjusted performance management we refer to the literature.5 

 

 

 

2 Determination of Risk Based Capital and the Capital Allocation Process 

 

2.1  Risk Exposure and Loss Variables 

 

In the present contribution we use a unified approach, quantifying the risk exposure of a posi-

tion by means of a (random) loss variable L. To illustrate this unified approach, we first con-

sider a number of standard examples. 

 

Example 1: (Insurance Liabilities: General Case) 

For the liabilities of a certain collective of insureds, we consider the accumulated claim 0≥S  

of the collective over a specified period of time (e.g. one year). The corresponding loss vari-

able in this situation is defined as6 

 

 )(E: SSL −= . (2) 
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In the case of several segments (sub-collectives) i = 1, …, n with corresponding accumulated 

claims 0≥iS  the segment loss variables are )(E: iii SSL −=  and the overall loss variable is 

given by (2) with ....: 1 nSSS ++=  

 

Example 2: (Homogeneous Collectives of Insurance Liabilities) 

Continuing example 1 we now assume that the accumulated claim of the segment i consisting 

of ik  insureds is of the form 

 

 ∑
=

=
ik

j
iji XS

1

, (3) 

 

where the ijX  are independent and identically distributed random variables, which are related 

to the accumulated claim of the j-th insured in segment i. The corresponding segment loss 

variable is as before defined by )(E: iii SSL −= . 

 

Example 3: (Investment Portfolios) 

We first consider a single financial position (stock or bond investment, short- or long-position 

of an option) and the corresponding change of the market value over a (typically short) time 

interval. The corresponding loss variable is given by 

 

 htt VvL +−=: , (4) 

 

where tv  is the (known) market value of the position at time t and htV +  is the (random) mar-

ket value at time .ht +  
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Considering now a portfolio of financial positions, we have  

 

 ∑ ∑
= =

==
n

i

n

i
iii LFxLL

1 1

, (5) 

 

where iLF  corresponds to the periodic loss according to (4) for a unit of the i-th financial po-

sition (e.g. one share, one bond) and ix  denotes the absolute number of (short or long) units 

of the i-th position in the portfolio. iii LFxL =:  is the periodic overall loss related to the i-th 

financial position. 

 

Example 4: (Credit Risk) 

For a portfolio of n credit risks, we consider the corresponding aggregated loss CL (credit 

loss) with ∑
=

=
n

i
iCLCL

1

 over a specified period of time as the relevant loss variable. 

 

 

 

2.2  Risk Based Capital and Risk Measures 

 

Given the overall loss variable L or the segment loss variables ,...,,1 nLL  respectively, repre-

senting the risk exposure, the next step is to quantify the corresponding risk potential. For-

mally, this is accomplished by the specification of a risk measure. Albrecht [2, section 3] dis-

tinguishes two conceptions of risk measures. Risk measures IR  of the first kind are related to 

the magnitude of (one or two sided) deviations from a target variable. Risk measures IIR  of 

the second kind conceive risk as the (minimal) necessary capital to be added to a financial 
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position (in order to establish a riskless position or satisfy regulatory requirements). Obvi-

ously risk measures of the second kind7 can be used directly to define the risk based capital 

RAC. With IIRR =  we therefore define: 

 

 )(:)( LRLRAC = . (6) 

 

For illustrative purposes, we consider three standard measures of risk (of the second kind) 

throughout the present contribution. First, the standard deviation-based risk measure )0( >a  

 

 )()(E)( LaLLR σ+= , (7) 

 

where E(L) denotes the expected value and )(Lσ  the standard deviation of L. Second, the risk 

measure Value-at-Risk (VaR) at confidence level ,α  i.e. 

 

 )()( 1 LQLVaR αα −= , (8) 

 

where )(1 LQ α−  denotes the ( α−1 )-quantile of the loss distribution. Finally, the Conditional 

Value-at-Risk (CVaR) at confidence level ,α  given by 

 

 [ ])()( 1 LQLLELCVaR αα −>= . (9) 

 

In case L is normally distributed, Value-at-Risk and CVaR are only special cases of (7), with 

α−= 1Na  (denoting the ( α−1 )-quantile of the standard normal distribution) in case of the 
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VaR and with αϕ α )( 1−= Na  (where ϕ  denotes the density function of the standard normal 

distribution) in case of the CVaR. 

 

 

 

2.3 The Capital Allocation Process 

 

In general, the process of capital allocation consists of the following steps: 

1. Specification of a multivariate distribution8 for the vector of segment loss variables 

( nLL ...,,1 ). 

2. Selection of a risk measure (of the second kind) R. 

3. Calculation of the overall risk based capital )()( LRLRAC =  as well as the stand-alone 

risk based capital )( ii LRRAC =  of the segments. 

4. In case of a positive diversification effect, i.e. ∑< ),()( iLRLR  application of an allo-

cation rule to determine the risk based capital *
iRAC  assigned to segment i.  

 

 

 

3 Capital Allocation Procedures 

 

3.1 Absolute Capital Allocation 

 

Given the overall-RAC )(: LRRAC =  and the stand-alone-RAC ),(: ii LRRAC =  the following 

relation is valid for many important cases: 
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∑

∑ ∑

=

= =

≥−=











−=

n

i
i

n

i

n

i
iinR

RACRAC

LRLRLLD

1

1 1
1

,0

)(:)...,,(

 (10) 

 

where )...,,( 1 nR LLD  can be considered to be a measure of diversification. Relation (10) is 

valid for all sub-additive risk measures, for instance. The standard deviation-based risk meas-

ure (7), for instance, is globally sub-additive, the Value-at-Risk according to (8) is sub-

additive as long )...,,( 1 nLL  follows a multivariate elliptical distribution (and )5.0<α  and 

the CVaR according to (9) is sub-additive for instance when )...,,( 1 nLL  possesses a (multi-

variate) density function. 

 

As already put forward in section 1, in case of a positive diversification effect only a properly 

allocated risk capital  

 

 );(:* LLRRAC ii = , (11) 

 

where );( LLR i  denotes the (yet to be determined) contribution of the segment i to the overall 

risk ),(LR  can form the basis of reasonable risk-adjusted performance management, properly 

reflecting the stochastic dependency between the segments. The basic requirements for the 

(absolute) capital allocation to be determined are 

 

 )();(
1

LRLLR
n

i
i =∑

=
, (12) 

 

i.e. full allocation, and  
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 )();( ii LRLLR ≤ , (13) 

 

i.e. the allocated capital must not exceed the stand-alone-RAC. 

 

Denault [5] puts forward a general system of postulates for a reasonable absolute capital allo-

cation. Denault requires full allocation according to (12) and the following sharpened version 

of (13) 

 

 ∑ ∑
∈ ∈











≤

Mi Mi
ii LRLLR );(  for all subsets M of {1, …, n}. (14) 

 

This condition, which is called “no undercut”, basically requires (13) for all unions of seg-

ments. A third condition is symmetry, which basically requires that within any decomposition, 

substitution of one risk iL  with an otherwise identical risk jL  does not change the allocation. 

Finally, a fourth condition is imposed (riskless allocation), requiring .);( cLcR =  This means 

that for deterministic losses cLi =  the allocated capital corresponds to the (deterministic) 

amount of loss. An allocation principle satisfying all four postulates of full allocation, no un-

dercut, symmetry and riskless allocation is called a coherent allocation principle by Denault. 

 

In case of segments having a “volume” – as e.g. in examples 2 and 3 – we are not only inter-

ested in the determination of a risk capital );( LLR i  per segment but in addition in a risk capi-

tal per unit (per unit allocation), for example );( LXR i  per insured in segment i (example 2) 

or );( LLFR i  per investment unit (example 3) respectively, satisfying 
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 );();( LXRkLLR iii =  or (15a) 

 

  );();( LLFRxLLR iii =  (15b) 

 

respectively. In the latter case9, 10 this can be stated in the following alternative manner. Fix-

ing the loss variables ,...,,1 nLFLF  the function 

 

 









= ∑

=

n

i
iin LFxRxxR

1
1 :)...,,(  (16) 

 

induces a risk measure on .nℜ  We are now interested in a capital allocation (per unit alloca-

tion) )...,,( 1 ni xxR  per unit of the i-th basic financial position, especially satisfying the full 

allocation postulate, i.e. 

 

 ∑
=

=
n

i
nnii xxRxxRx

1
11 )...,,()...,,(  for all )...,,( 1 nxx . (17) 

 

 

 

3.2 Incremental Capital Allocation 

 

Incremental capital allocation considers the quantities  

 

 )()(:);( ii LLRLRLLR −−= , (18) 
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i.e. the risk contribution of segment i corresponds to the total risk minus the risk of the overall 

position without segment i. However, an incremental capital allocation violates the condition 

(12) of full allocation and therefore is not a reasonable capital allocation procedure. The same 

holds true for the variant, where one defines )();( 11 LRLLR =  and 

),...()...(:);( 111 −++−++= iii LLRLLRLLR  i.e. the difference in risk capital caused by the 

inclusion of segment i, for ....,,2 ni =  This variant is satisfying the full allocation require-

ment, but now the risk capital required depends on the order of including the segments. 

 

 

 

3.3 Marginal Capital Allocation 

 

Marginal capital allocation considers the impact of marginal changes of positions on the ne-

cessary risk capital. This approach is especially reasonable in a situation as e.g. in example 3, 

where a risk measure )...,,( 1 nxxR  according to (16) is defined on a subset of .nℜ  One then 

considers the marginal quantities (Deltas) 

 

 ni
x

xxR
xxD

i

n
ni ...,,1,

)...,,(
:)...,,( 1

1 =
∂

∂
= , (19) 

 

which requires the existence of the respective partial derivatives. However, in general the 

marginal quantities iD  are in general primarily relevant for a sensitivity analysis and not for 

capital allocation purposes. However, there is a close link to absolute capital allocation in case 

of a risk measure R, which is positively homogeneous, i.e. )()( xRcxcR =  for all 0>c  and 
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,nx ℜ∈  and which, in addition, is totally differentiable. In this case the following fundamen-

tal relation is valid due to the theorem of Euler: 

 

 ∑
=

=
n

i
niin xxDxxxR

1
11 )...,,()...,,( . (20) 

 

Defining ),...,,(:)...,,( 11 nini xxDxxR =  we therefore obtain a per unit capital allocation, 

which satisfies the full allocation condition (17). In this context we can subsume marginal 

capital allocation under absolute capital allocation. We will pursue this approach in section 

4.5. 

 

 

 

4 Allocation Principles 

 

4.1 Proportional Allocation 

 

A first (naïve) allocation rule is given by 

 

 )(

)(

)(
:);(

1

LR

LR

LR
LLR

n

j
j

i
i

∑
=

= , (21) 

 

where the diversification effect is distributed proportionally to the segments. This approach 

guarantees the full allocation condition (12). Because allocation is only oriented at the stand-
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alone-quantities ),( ii LRRAC =  it, however, ignores the stochastic dependencies between the 

segments, when allocating capital. 

 

 

 

4.2 Covariance-Principle  

 

Here we consider the risk contributions 

 

 
[ ]

[ ] ,)(E)()(E

)(E)(
)(

),(
)(E:);(

LLRL

LLR
LVar

LLCov
LLLR

ii

i
ii

−+=

−+=

β
 (22) 

 

where the beta factor );( LLii ββ =  is defined as ).(),( LVarLLCov ii =β  Due to 

∑ = )(E)(E LLi  and ∑ = ,1iβ  the condition (12) of full allocation is satisfied. Obviously 

the allocation rule is independent of the underlying risk measure used to determine the over-

all-RAC. The allocation factors iβ  intuitively result from the following decomposition of the 

variance 

 

 ∑∑ ∑∑
== ==

=











=




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=
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n

i

n
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n

i
i LLCovLLCovLVarLVar

11 11

),(),()(  (23) 

 

and a subsequent normalization of the risk contributions ),( LLCov i  by dividing by the over-

all-risk ).(LVar  The covariance-principle therefore allocates (independent of the risk meas-
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ure) the diversification effect with respect to )(E)( LLR −  on the basis of the covariance-

structure of the ....,,1 nLL  

 

The covariance-principle possesses the advantage of being generally applicable as long as 

).(E)( LLR >  In principle, however, the allocation is performed as if )(E)( LLR −  and 

)(LVar  were identical. The allocation of the diversification effect with respect to 

)(E)( LLR −  on the basis of the covariance structure can be considered to be reasonable pri-

marily in the multivariate elliptical case. 

 

In the case –as e.g. in examples 2 and 3 –, where the segments have a “volume”, the covari-

ance-principle can be applied as well. In the insurance case (example 2) we have ∑
=

=
ik

j
iji XL

1

,  

where the ijX  are independent and identically distributed according to .iX  Defining 

),(),(:);( LVarLXCovLX ii =β  we have  

 

 ∑∑
==

==













=

ii k

j
iiij

k

j
iji LVarLXCovkLVarLXCovLVarLXCovLL

11

)(),()(),()(,);(β  

 

and therefore ).;();( LXkLL iii ββ =  Defining [ ],)(E)();()(E);( LLRLXXLXR iii −+= β  

we then have a per unit capital allocation satisfying );();( LXRkLLR iii =  according to (15). 

In the investment case (example 3) we similarly define )(),(:);( LVarLLFCovLLF ii =β  and 

[ ].)(E)();()(E);( LLRLLFLFLLFR iii −+= β  It has to be pointed out that the Var(L)-terms 

of the two examples are different and so are the beta factors. In the insurance case we have 
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∑ ∑
= ≠

+=
n

i ij
jijiii XXCovkkXVarkLVar

1

),()()(  and in the investment case we have 

∑ ∑
= ≠

+=
n

i ij
jijiii LFLFCovxxLFVarxLVar

1

2 ).,()()(  The difference (linear respective quad-

ratic contributions to the first term) results from the fact, that there is a diversification effect 

within the segment in the insurance case, while in the investment case there is none. 

 

 

 

4.3 Conditional Expectation-Principle 

 

Considering conditional expectation, the relations [ ] [ ]∑
=

==
n

i
i LLLLL

1

EE  and 

[ ] )()(E LRLRLL ==  are valid, which results in  

 

 [ ] [ ]∑
=

====
n

i
i LRLLLRLLLR

1

)(E)(E)( . (24) 

 

This suggests the following definition of the segment risk capital 

 

 [ ])(E);( LRLLLLR ii == , (25) 

 

which satisfies the condition (12) of full allocation. 

 

In the case of a multivariate elliptical distribution we have11 
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 [ ] [ ])(E
)(

),(
)(EE LL

LVar

LLCov
LLL i

ii −+= , (26) 

 

which results in 

 

 [ ])(E)()(E);( LLRLLLR iii −+= β , (27) 

 

where the beta factor iβ  is defined as in section 4.2. In the considered case the conditional 

expectation-principle is identical to the covariance-principle. Considering the standard devia-

tion-based risk measure (7) we obtain (still for the elliptical case) 

 

 )()(E);( LaLLLR iii σβ+= . (28) 

 

In addition, in the (multivariate) normal case (28) is valid for the Value-at-Risk and the 

CVaR, with α−= 1Na  and αϕ α )( 1−= Na  respectively. 

 

In the case of segments with volume (e.g. examples 2 and 3) the per unit risk capital can simi-

larly defined by [ ])(E:);( LRLXLXR ii ==  and [ ])(E:);( LRLLFLLFR ii ==  respec-

tively, thus guaranteeing (15). 
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4.4 Conditional Value-at-Risk-Principle 

 

Because of [ ] [ ]∑
=

−− >=>
n

i
i LQLLLQLL

1
11 )(E)(E αα  a direct linear composition of the 

CVaR exists, which suggests the segment allocation capital  

 

 [ ])(E);( 1 LQLLLLR ii α−>= . (29) 

 

In the (multivariate) elliptical case we can again use (26) to obtain 

 

 [ ])(E)()(E);( LLCVaRLLLR iii −+= αβ . (30) 

 

This again is a special case the covariance-principle (22) for ).()( LCVaRLR α=  

 

 

 

4.5 Euler-Principle 

 

The Euler-principle12 unfolds its importance in the context of segments with a portfolio struc-

ture as in example 3. The allocation itself is then based on relation (20), the theorem of Euler. 

The interesting fact about this principle of capital allocation now is, that there are certain op-

timality results to be found in the literature. 

 

So, for instance, Denault [5] shows on the basis of the theory of cooperative (convex) games 

with frictional players that for a positive homogeneous, convex and totally differentiable risk 
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measure, the gradient )...,,( 1 nDD  according to (10) corresponds to the Aumann-Shapley-

value, which in addition is a unique solution. Therefore, in this context the gradient 

)...,,( 1 nDD  can be considered to be the unique fair capital allocation per unit. In case of a 

coherent and differentiable risk measure, Denault in addition shows, that this allocation prin-

ciple satisfies the postulates to be satisfied by a coherent allocation principle as outlined in 

section 3.1. 

 

If the risk measure is only positive homogeneous and differentiable, Tasche [26] and Fischer 

[8] show that only the Euler-principle satisfies certain conditions for a “reasonable” perform-

ance management based on the RORAC-quantity (1). 

 

For the application of the Euler-principle differentiability of the risk measure is a key prop-

erty. This property is globally valid for the standard deviation-based risk measure (7), but not 

for the VaR and the CVaR. For the latter two, one, for instance, has to assume the existence of 

a multivariate probability density.13 

 

We now consider a standard application to the investment case, concentrating on the multi-

variate normal case and the risk measure ).()( LLR σ=  The induced risk measure is 

.),()...,,(

21
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where .)(),(:);( LVarLLFCovLLF iii == ββ  Therefore )()...,,( 1 LxxR ini σβ=  is the 

capital allocation per investment unit demanded. Obviously, this is the variant of the covari-

ance-principle for the investment case considered at the end of section 4.2. 

 

Considering the risk measure (7) we obtain  

 

 )()(E)...,,( 1 LaLxxR iini σβ+= , (32) 

 

subsuming the risk measures VaR and CVaR in the multivariate normal case. In the Value-at-

Risk literature the quantities )(Li σβ  are called component-VaR or marginal-VaR. 

 

We close with two results for the VaR and the CVaR assuming the existence of a (multivari-

ate) probability density. In case of the VaR we obtain14 

 

 [ ])(E LVaRLLF
x

R
i

i
α==

∂
∂

, (34) 

 

which is a variant of the conditional expectation-principle for the portfolio case. In the case of 

the CVaR we obtain15 

 

 [ ] ,)(E 1 LQLLF
x

R
i

i
α−>=

∂
∂

 (35) 
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which is a special case of the CVaR-principle. The conditional expectations involved can be 

determined on the basis of a Monte Carlo-simulation or by statistical estimation, e.g. using 

kernel estimators.  

 

 

 

5 Additional Approaches 

 

5.1 Firm Value-Based Approaches 

 

The approaches considered so far are based on a purely internal modeling of the relevant loss 

variables. In the literature a number of approaches are discussed, which rely on an explicit 

model of the firm value, typically in a capital market context. Respective results on capital 

allocation exist in the context of the capital asset pricing model16 (CAPM), option pricing 

theory17 and special models of the firm value.18 

 

 

 

5.2 Game Theoretic Approaches 

 

Beyond the results of Denault [5] reported in this contribution the results from the game theo-

retic approach to cost allocation19 can easily be applied to the situation of the allocation of 

risk costs20 (in the sense of necessary risk capital). 
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Endnotes 

 

1  In the literature a number of related notions are used, e.g. capital at risk or economic capital. 

2  For the question of why risk based capital is scarce and for the necessity of apportioning RAC cf. [3, p. 
17] and [18]. 

3  Cf. e.g. [1, p. 65] or [3, p. 10]. 

4  For a critical assessment of capital allocation, cf. [29]. 

5  For various applications, cf. e.g. [3], [6], [17], [20], [21] and [23]. 

6  The subtraction of the expected value E(S) pays attention to the fact that the insurance company re-
ceives a (risk) premium, which is at disposal to cover claims in addition to the (risk based) capital. For 
details of this argument cf. [1, pp. 63-64]. 

7  However, risk measures of the first kind, which satisfy a one-to-one correspondence with risk measures 
of the second kind as explained in [2, section 5.4] can be used, too, and RAC then is defined by 

).()(E I LRLRAC +=  

8  For illustrative purposes we typically consider the multivariate normal distribution. 

9  Cf. [5], [8], [26] and [27] for this approach. 

10  A similar definition is possible for the insurance case (example 2). But this will – because of the diversi-
fication effect within the collective – not result in a positive homogeneous risk measure, which would 
be essential for the validity of the results in section 4.5 regarding (16). 

11  Cf. [7] and [12, p. 12]. 

12  Cf. [21, p. 65] for this terminology. 

13  For generalizations cf. [26] and [27]. 

14  Cf. e.g. [11, p. 229]. 

15  Cf. [24]. 

16  Cf. e.g. [1, section 4.3]. 

17  Cf. e.g. [4], [18] and [19]. 

18  Cf. e.g. [9], [22] and [25]. 

19  Cf. for a survey [28] and for insurance applications [13] and [14]. 

20  Cf. e.g. [16]. 
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