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1. Traditional and Behavioral Finance 

Behavioral finance as a subdiscipline of behavioral economics is finance incorporating 

findings from psychology and sociology into its theories. Behavioral finance models are 

usually developed to explain investor behavior or market anomalies when rational models 

provide no sufficient explanations. To understand the research agenda, methodology, and 

contributions, it is necessary to review traditional finance theory first. Then, we will show 

how modifications (e.g. incorporating market frictions) can rationally explain observed 

individual or market behavior. In the second section, we will explain the behavioral finance 

research methodology −how biases are modeled, incorporated into traditional finance 

theories, and tested empirically and experimentally− using one specific subset of the 

behavioral finance literature, the overconfidence literature. 

1.1. Traditional Finance and Empirical Evidence 

Traditional finance theory assumes that agents are rational and the law of one price holds. 

Important aspects of agents' rationality are maximization of expected utility and Bayesian 

learning (see chapter 2). This implies, for example, that choices are time-consistent (see 

chapter 21). From a market perspective, traditional finance theory rests on the law of one 

price which states that securities with the same payoff have the same price. Arbitrageurs 

eliminate instantaneously any violations of the law of one price by simultaneously buying and 

selling these securities at advantageously different prices. Consider, for example, the shares of 

DaimlerChrysler AG. They are traded simultaneously on the New York Stock Exchange 

(NYSE) and in Frankfurt (Xetra) between 1:30 p.m. and 6:00 p.m. UTC. During these 4.5 

hours, shares should trade for the same prices on both exchanges adjusted for the current 

EUR-USD exchange rate. If these adjusted prices are different from each other, an arbitrageur 

would sell shares at the higher price at one exchange and would buy the same number of 

shares at the other exchange and would thus realize a risk-less profit (see Shleifer and Vishny 

(1997) for another example of arbitrage). 

The key question is whether agents’ irrationalities affect market outcomes – otherwise, 

finance researchers would not care. Even if some or even all market participants are irrational, 

it may be possible that the market absorbs (at least to some degree) these individual 

irrationalities and thus prevent their impact on prices and allocation. Whether the market can 
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average out irrationalities depends on the structure of the observed behavior: unsystematic 

irrationalities can be absorbed more easily than systematic deviations from rational behavior. 

1.1.1. Market Efficiency and Security Return Patterns  

If agents are rational and the law of one price holds, market efficiency may exist. Fama 

(1970) defines an efficient market as a “market in which prices always ‘fully reflect’ available 

information” (Fama (1970), p. 83). Different forms of market efficiency exist due to the 

amount of information which is assumed to be “available”. If the current price contains only 

the information consisting of past prices, the market is “weak-form” efficient. If prices reflect 

all publicly available information (historical prices and, for example, earnings 

announcements), the market is “semi-strong form” efficient. Finally, if prices reflect all 

private information (i.e. including all insider information), the market is “strong-form” 

efficient. 

It is unlikely that market prices contain all private information. One explanation for this 

inefficiency is the existence of noise traders who trade randomly and not based on 

information. For example, they trade to match their own liquidity requirements because of 

inherited money (=buy stocks) or because they want to buy a new car or house (=sell stocks). 

As a consequence, it is no longer possible to identify private information completely based on 

buying or selling activity by observing market prices because noise traders' orders jam the 

trading signal generated by insiders. 

But even the original “weak-form” efficiency did not survive empirical tests. “Weak-form” 

market efficiency in connection with the assumption of constant expected returns had long 

been successful in explaining security return patterns. Studies as discussed in Fama (1970) 

show that stock returns are typically unpredictable based on past returns. However, empirical 

studies over the last 25 years demonstrated that future returns are predictable to some extent. 

Several studies document positive autocorrelation of short-term stock returns, as well as and 

negative autocorrelation of short-term returns separated by long lags. In addition, the current 

dividend yield predicts subsequent returns. Fama (1991) surveys studies on the above 

mentioned time-series predictability of returns. 

Furthermore, trading strategies exist, which are based on past returns and which earn 

statistically significant profits. One specific example is the momentum strategy in which 

stocks with high returns over the last three to 12 months (“winner”) are bought and stocks 
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with low returns over the same period (“loser”) are sold. The short-selling of “losers” finances 

the buying of “winners”, i.e. there is no need to invest your own money. After a holding 

period of up to 12 months, the “losers” are bought back and the “winners” are sold. Jegadeesh 

and Titman (1993, 2001) showed for U.S. stocks that this strategy results in significant 

positive profits. This strategy has been successful in other stock markets as well (see 

Rouwenhorst (1998, 1999) as well as Glaser and Weber (2003a) for international evidence on 

the profitability of momentum strategies). 

Closely related are the following cross-sectional return patterns. Returns of stocks with low 

market capitalization have been on average higher than returns of stocks with high market 

capitalization (=size effect; see, for example, Banz (1981) and Dimson and Marsh (2000)). 

Returns of value stocks, i.e. stocks with a high dividend yield, a low price/earnings ratio 

and/or a high book-to-market ratio have been on average higher than returns of growth stocks, 

i.e. stocks with a low dividend yield, a high price/earnings ratio and/or a low book-to-market 

ratio (see, for example, Fama and French (1992) and Lakonishok, Shleifer, and Vishny 

(1994)). Moreover, specific events may predict subsequent security returns (event-based 

return predictability). Such events are, for example, earnings announcements or stock splits 

(see Daniel, Hirshleifer, and Subrahmanyam (1998) and Fama (1991, 1998)). 

The question is now whether these findings are real profit opportunities and thus a violation 

of market efficiency or just a proper reward for risk. Some researchers argue that the observed 

security return regularities are rational and can be explained by time-varying expected returns 

(Fama (1991)). Other researchers argue that securities are mispriced (see, for example, 

Lakonishok, Shleifer, and Vishny (1994)). Resolving this conflict is at least difficult if not 

impossible because market efficiency can only be tested using a specific asset pricing model, 

i.e. a test of market efficiency is always a joint test of market efficiency and the assumed 

correctness of the asset pricing model. Thus, a security market anomaly can either result from 

market inefficiency or from the wrong asset pricing model. As the above presented empirical 

evidence is still inconclusive due to this reason, we will show in the next subsection that some 

securities are obviously mispriced. 

1.1.2. Law of One Price 

Recently, some puzzles have been discovered proving that the law of one price is violated. 

This violation is so severe that prices are inconsistent with all valuation models. One example 

are security prices of “Siamese twin” shares, such as Royal Dutch Petroleum and Shell 
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Transport and Trading. Twin shares trade at different places or in different countries and the 

division of current and future cash flows is fixed to each twin. Shares of Royal Dutch are 

primarily traded in the U.S. and in the Netherlands whereas Shell is primarily traded in the 

UK. Future cash flows are split in the proportion of 60:40 in favor of Royal Dutch. Even if we 

do not know the correct fundamental value of Royal Dutch and Shell, we know that the 

market value of Royal Dutch has to be 1.5 times as large as the market value of Shell if prices 

reflect fundamental value. 

However, Froot and Dabora (1999) find that Royal Dutch is sometimes more than 40% 

underpriced and sometimes 10% overpriced relative to the share prices of Shell. Thus, market 

prices are clearly wrong and this mispricing persists for several years. Possible rational 

explanations such as exchange rate risks, different liquidity due to the market microstructure, 

and asynchronous trading as a result of different trading hours are not sufficient to account for 

the apparent mispricing. 

Another example of non-rational market prices which are not compatible with the law of one 

price is presented by Lamont and Thaler (2003). They study equity carve-outs by analyzing 

the spin-off of Palm which was owned by 3Com. In March 2000, 3Com sold 5% of its Palm 

shares in an initial public offering and kept the remaining 95% of the shares. 3Com 

announced that its shareholders would eventually receive 1.5 shares of Palm for every 3Com 

share they owned. Accordingly, the stock price of 3Com has to be at least 1.5 times as high as 

the stock price of Palm, as long as the value of the whole 3Com company is positive. 

However, the stock price of Palm was far above the stock price of 3Com implying a value of 

−22 billion U.S. dollars of 3Com's non-Palm business. 

Rational explanations of why arbitrage is not sufficient to avoid violations of the law of one 

price, are looked at in the next subsection. 

1.1.3. Limits of Arbitrage 

In addition to the evidence presented in the previous subsection, bubbles and crashes occur 

from time to time and seem to reject the notion of efficient markets and the positive effect of 

arbitrage, too. For example, the NASDAQ Index rose from about 1000 in late 1997 to more 

than 4500 in March 2000 before declining to 1000 in March 2003. In Germany, the New 

Market index (Nemax50) rose to more than 9000 (March 2000) and stands at about 310 (three 

hundred and ten !) by the end of March 2003. These huge changes of market indices are 
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difficult to explain using a standard finance model. Moreover, the question arises why 

arbitrage cannot dampen these swings which are, as common sense suggests, not only due to 

new information. 

Several models within the rational framework were developed to explain limits of arbitrage. If 

the investment horizon is shorter than the time until the fundamental value of an asset is 

reached with certainty, severe mispricing will not necessarily be eliminated by arbitrage (Dow 

and Gorton (1994)). 

Moreover, mispricing can occur because of noise traders who create additional risk by trading 

randomly. This additional risk is priced by the market. If these noise traders take this 

additional risk, they can earn higher returns than rational investors (DeLong, Shleifer, 

Summers, and Waldmann (1990b)). In other words, irrational investors are not necessarily 

eliminated from the market due to their losses. 

DeLong, Shleifer, Summers, and Waldmann (1990a) and Shleifer and Vishny (1997) show 

that noise trader risk can worsen the mispricing in the short run. If arbitrageurs have short 

investment horizons, noise trader risk will prevent them from exploiting this mispricing. 

Kogan, Ross, Wang, and Westerfield (2003) show that survival and price impact of irrational 

traders are two independent concepts: They find that the price impact of irrational traders does 

not rely on their survival in the long-run and that they can even influence prices when their 

wealth becomes negligible. 

Finally, other market frictions such as short-sale constraints or non-tradable future labor 

income may limit arbitrage, too. Summing up, limits of arbitrage exist and may lead to severe 

mispricing even with fully rational market participants and unsystematic irrational behavior of 

noise traders. 

1.1.4. Agents' Rationality 

So far, we have discussed theoretical and empirical issues concerning market outcomes. 

However, recently a wide range of studies deal with another central pillar of standard finance, 

i.e. agents' rationality. These studies try to examine how agents in financial markets 

−professional and individual investors− actually behave. This research usually demonstrates 

investor behavior that is difficult to reconcile with rationality or predictions of standard 

finance models. In this handbook, all kinds deviations from rationality of judgment and 
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decision making are surveyed. In this subsection we present a few examples from the finance 

literature which deal with some of these problems. 

One example is naïve diversification or the 1/n heuristic. Benartzi and Thaler (2001) analyze 

401(k) retirement savings plans. Each savings plan offers a fixed number of investment 

options that varies across firms. Benartzi and Thaler (2001) find that some individuals spread 

their savings evenly across the investment alternatives and do not take into account the 

riskiness of the investment options. As a consequence, the asset allocation of individuals is 

influenced by the percentage of stock funds offered. The higher the number of stock funds, 

the higher the allocation to equities, a finding that is difficult to reconcile with agents' 

rationality. 

Another aspect of non-rational behavior is that market behavior of investors is influenced by 

framing. Depending on the framing of gains and losses, the behavior of market participants 

changes as Weber, Keppe, and Meyer-Delius (2000) have demonstrated in an experimental 

asset market. Traders are willing to pay more for assets if they have a short position at the 

beginning of a trading period compared to situations with a long position even though the 

expected value of both portfolios is the same. In the first case, trading is driven by loss 

aversion whereas in the second case diversification is the main reason for trading. 

Furthermore, agents' rationality requires that all available information is evaluated using 

Bayes' Law. However, if investors use specific heuristics which put too much weight on 

recent information, this systematic bias has an impact not only on the price reaction to new 

information but also on the price reaction afterwards when this error becomes obvious. 

Barberis, Shleifer, and Vishny (1998) model investors who make systematic errors when 

evaluating public information. Investors are prone to a conservatism bias, the underweighting 

of new evidence when updating probabilities, and to a particular manifestation of the 

representative heuristic, the tendency of people to expect even short sequences of realizations 

of a random variable to reflect the properties of the parent population from which the 

realizations are drawn.  

1.2. Behavioral Finance and Remaining Puzzles 

In principle, there are two different approaches towards behavioral finance. Both approaches 

have the same goal, i.e. to explain observed prices, market trading volume, and individual 

behavior better than traditional finance models. In the first approach, the starting points are 
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results from psychology describing human behavior in certain economic circumstances. These 

results are used to build new models to explain market observations. In the second approach, 

empirical deviations from predictions based on traditional finance theory are observed. Then, 

psychological results of individual behavior are screened to find an explanation for the 

observed market phenomena. Figure 26.1 shows the two approaches. 

>>>>>>>>> Insert figure 26.1 about here <<<<<<<<< 

 
One important puzzle is the high trading volume in all capital markets. Table 26.1 shows the 

absolute trading volume and the relative trading volume in percent of market capitalization 

(turnover) for some stock markets in 2002. 

>>>>>>>>> Insert table 26.1 about here <<<<<<<<< 

 

Given that a significant number of shares is owned by long-term oriented institutional 

investors like pension funds, large mutual funds, or index funds, a turnover of 100%, as 

observed in the U.S., implies that every available share is traded more than once per year. 

This trading volume appears to be high. Why do rational investors trade at all? Rational 

investors only trade when they are heterogeneous, i.e. when they differ with regard to tastes 

(such as the degree of risk aversion), endowments (such as liquidity shocks due to, for 

example, accidents or unexpected bequests), or information. But even differences in 

information do not necessarily lead to trading. Consider investors who have common prior 

beliefs about the value of an asset and the initial allocation of the risky asset is pareto-optimal, 

i.e. it is not possible to make an investor better off without making another investor worse off 

by changing the allocation (=trading). If these investors receive different pieces of private 

information about the uncertain value of the risky asset, there is heterogeneity between 

investors and thus a potential for trade. However, when an investor wants to sell us a security, 

we can conclude that he has received a bad signal about the value of this security. So why 

should we buy this security? Therefore, it is possible that even differences in private 

information do not lead to trading volume (no trade theorem; see Milgrom and Stokey 

(1982)). Pagano and Röell (1992) provide further details about rational motives for trading. 

Common sense suggests that these rational motives for trade are not sufficient to explain the 

high trading volume observed in financial markets. Recent theoretical work in finance 

suggests that different beliefs or different opinions across people (e.g. about the value of a 
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risky asset in the future or about how to interpret public news) may explain high levels of 

trading volume (see the next section and Glaser and Weber (2003b)). But why do people have 

differing beliefs or opinions? Are their expectations biased? Are differences of opinion a 

result of overconfidence? Insights from psychology may provide answers to these questions. 

The equity premium puzzle, i.e. stocks have a higher risk-adjusted return than bonds (see 

Mehra and Prescott (1985)), may be another problem requiring a behavioral explanation. Risk 

aversion is not sufficient to explain the empirical findings. Benartzi and Thaler (1995) provide 

a behavioral explanation based on (myopic) loss aversion: If an investor is loss averse and 

evaluates his portfolio at least every year, he faces a high probability of observing losses and 

thus requests a higher risk premium compared to the fully rational investor who is not 

influenced by short-term fluctuations. Barberis, Huang, and Santos (2001) provide a refined 

explanation for the equity premium puzzle. They study asset prices in an economy with 

investors deriving utility not only from consumption but also from the value of their financial 

wealth. Furthermore, they assume investors are loss averse over these changes. Barberis, 

Huang, and Santos (2001) thus incorporate central ideas of prospect theory (Kahneman and 

Tversky (1979)). Loss aversion is captured by a piecewise linear function that is steeper for 

losses than for gains relative to a reference point. Thus, the model does not capture the feature 

of the original version of prospect theory with risk aversion in the domain of gains and risk 

seeking in the domain of losses. In addition, it is assumed that prior outcomes affect the 

degree of loss aversion. Losses are less painful after gains whereas they are more painful after 

losses. This assumption is consistent with the house money effect (Thaler and Johnson 

(1990)), gamblers’ increased willingness to bet after gains. Barberis and Huang (2001) extend 

this model by additionally incorporating a further form of mental accounting (besides the 

house money effect): Investors either care about the value of their whole stock portfolio or 

about the value of each single security in their portfolio and thus ignore correlations. Note 

however that there is some doubt that the equity premium puzzle is (still) existing given the 

burst of the stock market bubble in recent years and the performance of stocks in Japan over 

the last 20 years. 

Before we concentrate on the overconfidence literature, it is important to stress that 

behavioral finance research is either focused on individual behavior (e.g. asset allocation 

within a 401(k) plan) or on the implications for financial market outcomes. In the first case it 

is obvious that psychological research has to be adapted to a different context. In the second 

case, psychological results are needed to explain interactions between investors.  
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1.3. Behavioral Finance Models 

In this subsection, we will briefly survey recent theoretical behavioral finance literature. The 

goal is not to discuss every model that has been published in recent years. Rather, the aim is 

to present a representative selection of recent behavioral finance  theories to show which and 

how findings of psychology research are incorporated into standard finance models. We 

restrict our focus on the theoretical behavioral finance literature as recent behavioral finance 

surveys offer an in-depth discussion of various empirical findings (see Daniel, Hirshleifer, 

and Teoh (2002) and Shiller (1999)). 

Table 26.2 presents a summary of recent behavioral finance models that have been published 

in some of the leading finance and economics journals (Journal of Finance, Review of 

Financial Studies, Journal of Financial Economics, Journal of Financial Markets, Quarterly 

Journal of Economics) and lists the psychological biases that are modeled. The last column 

contains empirical findings that are explained by the respective model. 

>>>>>>>>> Insert table 26.2. about here <<<<<<<<< 

 

Table 26.2 shows that the models can be classified in two ways: belief-based and preference-

based models. Belief-based models incorporate findings such as overconfidence, biased self-

attribution, conservatism, and representativeness. Preference-based models use prospect 

theory, house money effect, and other forms of mental accounting. 

Most of the models shown in Table 26.2 study how overconfident investors affect market 

outcomes. Overconfidence is modeled as overestimation of the precision of information or, 

stated equivalently, underestimation of the variance of information signals. Some dynamic 

models assume that the degree of overconfidence changes over time in the way that it 

increases as a function of past investment success due to biased self-attribution. As 

overconfidence is the most studied bias in the theoretical and empirical behavioral finance 

literature, we will focus on the overconfidence literature in finance to demonstrate the 

behavioral finance research methodology. Even though we focus on one particular research 

area within behavioral finance, research is not restricted to the aggregate stock market, asset 

pricing, or investor behavior. Other applications are, for example, corporate finance, financial 

contracting, or banking. 
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2. Overconfidence 

In this section, we will discuss recent behavioral finance theories more deeply that incorporate 

overconfident investors. In the first subsection, we describe the way overconfidence is 

modeled and motivated in finance, especially the implicit assumptions behind the particular 

way of modeling overconfidence. The discussion of the theoretical overconfidence literature 

in finance in the second subsection will point out the most important results of these models. 

In the last subsection, we present various endeavors to empirically and experimentally test 

these theories. 

We do not attempt to provide a comprehensive overview of the psychological overconfidence 

literature. Chapter 9 surveys psychological literature on subjective probability calibration. We 

only mention the main psychological findings that are discussed in the finance literature. 

2.1. Modeling and Motivating Overconfidence in Theoretical Finance 

Overconfidence is usually modeled as overestimation of the precision of private information. 

In finance models, the uncertain liquidation value of a risky asset is modeled as a realization 

of a random variable. Assume, the liquidation value v  is a realization of a normal distribution 

with mean 0 and variance 2
~vσ , i.e. ),0(~~ 2

~vNv σ . Some or all investors receive private 

information signals s . These signals contain information but the signals are noisy, i.e. they 

contain a random error ε  as well. Assuming that random variables (the distribution of the 

liquidation value, v~ , and the distribution of the error term, ),(~~ 2
~εσε oN  are independent, the 

signal s  is usually written as a realization of the random variable s~ , which is the sum of the 

random variables v~ and ε~ , i.e. ),0(~)~~(~ 2
~

22
~ εσσε ⋅+⋅+= kNkvs v . The parameter k  

captures the finding of overconfidence. Psychological studies show that people are 

miscalibrated in the way that their probability distributions or confidence intervals for 

uncertain quantities are too tight (Lichtenstein, Fischhoff, and Phillips (1982) and chapter 9). 

If the parameter k  is in the interval [0,1), an investor underestimates the variance of the 

signal s  (or, stated equivalently, underestimates the variance of the error term). If 0=k , an 

investor even believes that he knows the value of the risky asset with certainty. Thus, this way 

of modeling overconfidence captures the idea that people overestimate the precision of their 

knowledge, or stated equivalently, underestimate the variance of signals or the uncertain 

liquidation value of an asset, i.e. their confidence intervals are too tight. 
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Although other psychological research results concerning (mis)calibration (see chapter 9) are 

not ignored in the finance literature, as can be seen in several introductions of finance articles 

(see, for example, Odean (1998), p. 1892), the above way of modeling overconfidence is 

justified in the following way: “The foremost reason is that people usually are overconfident. 

(...)  Most of those who buy and sell financial assets try to choose assets that will have higher 

returns than similar assets. This is a difficult task and it is precisely in such difficult tasks that 

people exhibit the greatest overconfidence. (...) Learning is fastest when feedback is quick and 

clear, but in securities markets the feedback is often slow and noisy.” (Odean (1998), p. 

1896).  

Some models assume that the degree of overconfidence, i.e. the degree of the underestimation 

of the variance of signals, is a stable individual trait and is thus constant over time. However, 

other models assume that overconfidence dynamically changes over time. This assumption is 

motivated by psychological studies that find biased self-attribution (Wolosin, Sherman, and 

Till (1973), Langer and Roth (1975), Miller and Ross (1975), Schneider, Hastorf, and 

Ellsworth (1979)): People overestimate the degree to which they are responsible for their own 

success. In the finance literature, overconfidence and biased self-attribution are sometimes 

regarded as static and dynamic counterparts (Hirshleifer (2001)). In overconfidence models 

with biased self-attribution, the degree of overconfidence, i.e. the degree of overestimation of 

the precision of private information, is a function of past investment success. 

Although overconfidence is almost exclusively modeled as overestimation of the precision of 

private information, overconfidence models are usually motivated by a richer set of findings 

that are often summarized as overconfidence in the finance literature (although psychologists 

treat these as distinct concepts). Under this view, overconfidence can manifest itself, besides 

various findings subsumed as miscalibration, in the following forms: People believe that their 

abilities are above average (better than average effect; Svenson (1981), Taylor and Brown 

(1988)), they think that they can control random tasks, and they are excessively optimistic 

about the future (illusion of control and unrealistic optimism; Langer (1975), Langer and Roth 

(1975), and Weinstein (1980)). In a finance journal, Kahneman and Riepe (1998, p. 54), 

summarize this motivation of overconfidence as follows. “The combination of overconfidence 

and optimism is a potent brew, which causes people to overestimate their knowledge, 

underestimate risks, and exaggerate their ability to control events.” 

However, whether the above mentioned facets of overconfidence are related, is by no means 

clear. Some argue that these manifestations are related (see, for example, Taylor and Brown 
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(1988), p. 194), others argue that this need not to be the case (see, for example, Biais, Hilton, 

Mazurier, and Pouget (2002), p. 9), or even deny a logical link (see, for example, Hvide 

(2002), p. 19). Empirical evidence on this issue is still limited. Glaser and Weber (2003b) 

correlate scores that measure individual differences in the degree of miscalibration, the better 

than average effect, illusion of control, and unrealistic optimism for a group of individual 

investors. They find that most of the correlations are insignificant. Some correlation 

coefficients are even negative. The results of this study cast doubt on whether overconfidence, 

as it is used as a motivation in the finance literature, is a stable concept or a general valid 

phenomenon and that the above mentioned manifestations of overconfidence are related. But 

these are preliminary results that need further investigation. Evidence on this issue is 

important, as theoretical models often incorporate only one facet of overconfidence, 

miscalibration, whereas the motivation of this use is based on a variety of possibly unrelated 

findings and it is unclear which manifestation of overconfidence actually drives economic 

behavior.  

At this point of the survey, we want to stress the following explicit and implicit assumptions 

of the way overconfidence is modeled in theoretical finance. Static models or models with 

constant overconfidence over time assume that there are stable individual differences in the 

degree of overconfidence, i.e. miscalibration. In contrast to these explicit and implicit 

assumptions, there is a large debate in the psychological literature over whether 

miscalibration is domain or task dependent or even a statistical illusion (see, for example, 

Gigerenzer, Hoffrage, and Kleinbölting (1991), Klayman, Soll, Gonzáles-Vallejo, and Barlas 

(1999), Zuslin, Winman, and Olson (2000), Erev, Wallsten, and Budescu (1994)) or if there 

are stable individual differences in reasoning or decision making competence (see Parker and 

Fischhoff (2001), Stanovich and West (1998), and Stanovich and West (2000)). 

2.2. Important Results and Predictions of Overconfidence Models 

In this subsection, we discuss the most important results of models that incorporate 

overconfident market participants. Due to the page constraints in this survey, we omit a 

comprehensive presentation of the precise mechanism of how overconfidence affects the 

model predictions. Such a presentation would require a discussion of, for example, the 

following details: market environment, number of trading periods, or number of assets traded. 

Investors in a competitive market environment do not influence the price of assets whereas 

other investors in a strategic market environment take into account that their trading behavior 

might influence the market price. Moreover, some models are static in the way that there is 
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only one trading round whereas dynamic models analyze several periods. Furthermore, 

models have either one or multiple risky assets that are traded. The interested reader will find 

a presentation of various overconfidence models and other behavioral finance models in the 

survey of Hirshleifer (2001). 

Table 26.2 shows that most of the overconfidence models predict high trading volume in the 

market in the presence of overconfident traders. Moreover, at the individual level, 

overconfident investors will trade more aggressively: The higher the degree of overconfidence 

of an investor, the higher her or his trading volume. Odean (1998) calls this finding “the most 

robust effect of overconfidence”. DeBondt and Thaler (1995) note that the high trading 

volume observed in financial markets “is perhaps the single most embarrassing fact to the 

standard finance paradigm” and that “the key behavioral factor needed to understand the 

trading puzzle is overconfidence”. Apart from the ability to explain high levels of trading 

volume, the models of Benos (1998), Caballé and Sákovics (2003), Kyle and Wang (1997), 

Odean (1998), and Wang (1998) make further predictions as well. Odean (1998) finds that 

overconfident traders have lower expected utility than rational traders and hold 

underdiversified portfolios. In contrast, Kyle and Wang (1997) find that overconfident traders 

might earn higher expected profits or have higher expected utility than rational traders as 

overconfidence works like a commitment device to aggressive trading. Benos (1998) finds 

similar results. However, higher profits of overconfident investors are a result of a first mover 

advantage in his model. Benos (1998), Caballé and Sákovics (2003), and Odean (1998) show 

that the presence of overconfident traders helps explain excess volatility of asset prices, i.e. 

the fluctuation of asset prices is higher than the fluctuation of the fundamental value. This 

presentation shows that some predictions are common results of all models (the effect of 

overconfidence on trading volume) whereas other predictions depend on further assumptions 

(e.g. the effect of overconfidence on expected utility). 

Hirshleifer and Luo (2001), Kyle and Wang (1997), Wang (2001) show that overconfident 

traders may survive in security markets. Daniel, Hirshleifer, and Subrahmanyam (1998) show 

that overconfidence might present an explanation for the momentum effect and for long-run 

reversals of returns whereas the model of Daniel, Hirshleifer, and Subrahmanyam (2001) is 

able to generate the value/growth effect and the size effect. Gervais and Odean (2001) analyze 

how overconfidence dynamically changes through time as a function of past investment 

success due to a self-attribution bias.  
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2.3. Empirical and Experimental Tests of Overconfidence Models 

There are two points of departure to test the empirical validity of an overconfidence model: 

model assumptions and model predictions. In the following two subsections we will discuss 

empirical and experimental tests of model assumptions and model predictions in turn. 

2.3.1. Empirical and Experimental Tests of Model Assumptions  

Model assumptions can be evaluated by experiments and questionnaire studies which analyze 

whether individual and institutional investors do underestimate the variance of stock returns, 

overestimate the precision of their knowledge, or how they react to releases of private or 

public information. In this subsection we present a few studies which show that investors are 

miscalibrated in the context of financial markets. 

Kirchler and Maciejovsky (2002) is an example of an experiment which analyzes whether 

investors overestimate the precision of their knowledge or give too tight confidence intervals 

in a market environment. They experimentally investigate individual overconfidence in the 

context of an experimental asset market with several trading periods. Before each period, 

overconfidence was measured via subjective confidence intervals and via the comparison of 

objective accuracy and subjective certainty. Subjects' confidence intervals were too tight 

indicating overconfidence whereas according to the comparison of objective accuracy and 

subjective certainty the same people can sometimes even be classified as underconfident. 

Hilton (2001) surveys questionnaire studies which analyze exchange rate and stock price 

predictions. These studies find too narrow confidence intervals. Another example of a 

questionnaire study that analyzes whether financial markets participants or financial 

professionals underestimate the variance of stock returns is by Graham and Harvey (2002). 

They study expectations of stock market risk premium as well as their volatility estimates in a 

panel survey. On a quarterly basis, Chief Financial Officers of U.S. corporations are asked to 

provide their estimates of the market risk premium as well as upper and lower bounds of 90 

percent confidence intervals of this premium. Graham and Harvey (2002) find that, compared 

to historical standard deviations of one-year stock returns, Chief Financial Officers 

underestimate the variance of stock returns and are thus very confident in their assessments. 

Summing up, the above mentioned studies show that it is a reasonable modeling assumption 

that investors are miscalibrated by underestimating stock variances or equivalently by 
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overestimating the precision of their knowledge. Note that this is the way how overconfidence 

is modeled in the finance literature.  

2.3.2. Empirical and Experimental Tests of Model Predictions 

Model predictions can be tested in several ways. We structure these various endeavors as 

follows:  

1 Predictions concerning trading behavior and investment performance of (individual 

and institutional) investors. 

2 Predictions concerning market outcomes. 

Predictions Concerning Behavior and Performance of Investors  

The most important prediction in category 1 is that trading volume increases with an 

increasing degree of overconfidence. The above mentioned predictions can be tested by 

analyzing the following data from the field or from experiments: 

a) Analysis of market level data, such as returns and trading volume. 

b) Analysis of trading behavior of investors. 

c) Correlation of proxies or measures of overconfidence on the one hand and economic 

variables such as trading volume on the other hand. 

We will discuss these three possibilities in turn while focusing on the above mentioned 

hypothesis concerning overconfidence and trading volume. 

Statman, Thorley, and Vorkink (2003) and Kim and Nofsinger (2002) are examples of group 

a). Statman, Thorley, and Vorkink (2003) use U.S. market data to test the hypothesis that 

overconfidence leads to high trading volume. They test dynamic models predicting that after 

high returns subsequent trading volume will be higher as investment success increases the 

degree of overconfidence. They find that high current stock trading volume is associated with 

high stock returns in the previous weeks. Statman, Thorley, and Vorkink (2003) argue that 

this finding supports the hypothesis as high returns make investors overconfident and they 

will, as a consequence, trade more subsequently. Kim and Nofsinger (2002) confirm these 

findings using Japanese market level data. They identify stocks with varying degrees of 

individual ownership to test the hypothesis and discover higher monthly turnover in stocks 
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held by individual investors during the bull market in Japan. Moreover, high past returns in 

both studies might be interpreted as a proxy of overconfidence as stated in group c).  

Odean (1999) is an example of group b). He analyzes the trades of 10,000 individuals with 

discount brokerage accounts. He finds that these investors reduce their returns by trading and 

thus concludes that trading volume is excessive – a finding which is consistent with 

overconfidence models and thus indirect evidence in favor of the above mentioned 

hypothesis.  

The Barber and Odean (2001) study is a further example of group c). Their proxy for 

overconfidence is gender. In the paper, they summarize psychological studies that find a 

higher degree of overconfidence among men than among women. Consequently, they 

partition their data set which consist of 35,000 households from a large discount brokerage 

house on gender and find that men trade more than women which is consistent with 

overconfidence models. 

All the above mentioned studies share the shortcoming that overconfidence is never directly 

observed. The evidence in favor of overconfidence models is either indirect, as in Odean 

(1999), or uses only crude proxies for overconfidence (past returns, gender). A direct test of 

the hypothesis that a higher degree of overconfidence leads to higher trading volume is the 

correlation of measures of overconfidence and measures of trading volume as mentioned in 

c). In the following, we will discuss two recent studies that use this approach  

Glaser and Weber (2003b) directly test the hypothesis that overconfidence leads to high 

trading volume by analyzing trades of individual investors who have online broker accounts. 

These investors were asked to answer an internet questionnaire which was designed to 

measure various facets of overconfidence (miscalibration, the better-than-average effect, 

illusion of control, unrealistic optimism). They test the hypothesis by correlating individual 

overconfidence scores with several measures of trading volume of these individual investors 

(number of trades, turnover). The measures of trading volume were calculated by the trades of 

215 individual investors who answered the questionnaire. Glaser and Weber (2003b) find that 

investors trade more if they believe that they are above average in terms of investment skills 

or past performance. When realized returns are used as a proxy for investment skills, investors 

overestimate their relative position within the group of investors. Measures of miscalibration 

are, contrary to theory, unrelated to measures of trading volume. This result is striking as 

theoretical models that incorporate overconfident investors model overconfidence as 
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underestimation of the variance of signals, i.e. miscalibration. The results hold even when 

several other determinants of trading volume are controlled for in a cross-sectional regression 

analysis.  

Biais, Hilton, Mazurier, and Pouget (2002) analyze experimentally if psychological traits and 

cognitive biases affect trading. Based on the answers of 184 subjects (students) to a 

psychological questionnaire they measured, among other psychological traits, the degree of 

overconfidence via calibration tasks. The subjects also participated in an experimental asset 

market afterwards. Biais, Hilton, Mazurier, and Pouget (2002) find that overconfident 

subjects have a greater tendency to place unprofitable orders. However, their overconfidence 

measure –the degree of miscalibration− is unrelated to trading volume. Contrary to 

predictions of overconfidence models, overconfident subjects do not place more orders. 

Why is miscalibration not positively related to trading volume, as predicted by 

overconfidence models? One important point to remember is that the link between 

miscalibration and trading volume has never been shown or even analyzed empirically or 

experimentally. Overconfidence models are motivated by psychological studies which show 

that people are generally miscalibrated or by empirical findings that are consistent with 

miscalibrated investors, such as high trading volume. But there might be other biases that are 

able to explain the same empirical findings when implemented in a theoretical model. This 

shows the importance of analyzing the link or correlation between judgment biases and 

economic variables such as trading volume as the only way to test which bias actually 

influences economic behavior. Furthermore, there are other reasons that might explain the 

failure of miscalibration scores in explaining volume. In the psychological literature, there is a 

debate over whether miscalibration is domain or task dependent or even a statistical illusion 

(see chapter 9). If miscalibration is not a stable individual trait or if the degree of 

miscalibration depends on a specific task then it is no surprise that the above mentioned 

studies are unable to empirically confirm the hypothesis that a higher degree of miscalibration 

leads to higher trading volume. Glaser and Weber (2003b) contains an enlarged discussion of 

these points and further possible explanations and interpretations of the result that 

miscalibration scores are unrelated to measures of trading volume. 

Predictions Concerning Market Outcomes 

In the remainder of this section, we discuss how predictions of overconfidence models in 

group 2 can be tested. For example, in the model of Daniel, Hirshleifer, and Subrahmanyam 
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(1998) the momentum effect is a result of the trading activity of overconfident traders. One 

implication of their model is that momentum is strongest among stocks that are difficult to 

evaluate by investors. One example for such stocks are growth stocks with hard-to-value 

growth options in the future. Daniel and Titman (1999) confirm this implication. They find 

that momentum is stronger for growth stocks. If disagreement of investors about the future 

performance is stronger among hard-to-value stocks and if trading volume is a measure of this 

disagreement then a further implication of the Daniel, Hirshleifer, and Subrahmanyam (1998) 

model is a stronger momentum effect among high-volume stocks. This finding is confirmed 

by Lee and Swaminathan (2000) and Glaser and Weber (2003a) using turnover, the number of 

shares traded divided by the number of shares outstanding, as a measure of trading volume: 

momentum is stronger among high-turnover stocks. 

3. Summary and Open Questions 

Behavioral finance has become widely accepted among finance academics. It is neither a 

minor subdiscipline nor a new paradigm of finance. Behavioral finance tries to improve 

existing models via more realistic assumptions. Thus, behavioral finance follows the 

traditional way of financial modeling that incorporates real world imperfections such as 

transaction costs, taxes, or asymmetric information on the one hand or observed traits of 

individuals such as risk aversion on the other hand into finance models. 

Naturally, behavioral finance has drawn some criticism: “My view is that any new model 

should be judged (…) on how it explains the big picture. The question should be: Does the 

new model produce rejectable predictions that capture the menu of anomalies better than 

market efficiency? For existing behavioral models, my answer to this question (perhaps 

predictably) is an emphatic no.” (Fama (1998), p. 291). In other words, behavioral finance 

models are currently not able to replace traditional finance theory. One reason for this 

conclusion is given by Frankfurter and McGoun (2002, pp. 375-376): “Even the supposed 

proponents of behavioral finance, however, are marginalizing themselves by clinging to the 

underlying tenets, forms, and methods of the dominant paradigm. (...) Although ‘behavioral 

finance’ sounds as if it would be a new methodology or even a significant new paradigm for 

research in financial economics, behavioral finance has never been, and looks as if it may 

never be, either.”  

Thaler (1999, p. 16) predicts the end of behavioral finance as all financial theorists will 

sooner or later incorporate realistic assumptions: “I predict that in the not-too-distant future, 
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the term ‘behavioral finance’ will be correctly viewed as a redundant phrase. What other kind 

of finance is there? In their enlightenment, economists will routinely incorporate as much 

‘behavior’ into their models as they observe in the real world. After all, to do otherwise would 

be irrational.” 

Behavioral finance as a field is a rather young enterprise which has proved its usefulness by 

first results but which still has some way to go. On the level of individual decision making in 

markets, e.g. individual or professional investors' behavior, we have quite a large amount of 

knowledge. A large part of this knowledge stems from psychological research which tries to 

answer similar questions. On the level of aggregate variables, like market prices or trading 

volume, we know less. As these variables are central for research in finance, ultimately, 

behavioral finance will have to prove its usefulness here as well. To make further progress, it 

will be necessary to develop financial models which are based on alternative, behavioral 

assumptions of decision making. The challenge will be to show that these new models come 

up with predictions different from standard financial models and that these alternative 

predictions win over predictions from standard theory. 

We conclude with some thoughts on how research in behavioral finance might become even 

more successful. From the perspective of psychology, it would be helpful to extend the 

research program beyond individual decision making by investigating problems or open 

questions which are central to a financial (or economic) context. Examples are, strategic and 

dynamic interaction of economic agents in markets, decision making in organizations or 

principle-agents situations.  

For research in finance, it would be helpful to read more carefully what psychologist have 

found. As we demonstrated in the case of overconfidence, researchers in finance want truths 

from psychologists which are as simple as possible. The truths have to be simple, because 

otherwise financial models get too complex. By studying the psychological literature, 

researchers in finance have to extract those findings which are robust as well as useful for 

modeling purposes. Clearly, it would be best to join forces from both disciplines to further 

enhance behavioral finance which after all is an interdisciplinary field of research. 
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Figure 26.1: Two approaches of Behavioral Finance 

This figure shows the two approaches of behavioral finance. In the first approach, the starting 
points are results from psychology describing human behavior in certain economic 
circumstances. These results are used to build new models to explain market observations. In 
the second approach, empirical deviations from predictions based on traditional finance 
theory are observed. Then, psychological results of individual behavior are screened to find 
an explanation for the observed market phenomena. 

 

 

 

 

 

 

Table 26.1: Relative and absolute trading volume in major stock markets (2002) 
 

This table contains the absolute trading volume (in US$ trillions) and the relative trading 
volume in percent of market capitalization (turnover) for five stock markets in 2002. 

 

 US UK Japan Germany France 

trading volume in US$ trn 10.31 4.00 1.57 1.21 1.10 
% market capitalization 100 215 70 180 115 

psychology:
individual behavior

market prices and
transaction volume

incorporate
into model

rational (frictions) or
from psychology

market:
detect anomalies and
individual behavior

find
explanations
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Table 26.2: Behavioral Finance Models 
 

 
 
 

Year Authors  Journal Evidence from psychology Important findings and model predictions 
     

2001 Barberis/Huang JF Mental accounting (individual stock 
vs. portfolio accounting), prospect 
theory 

Equity premium, excess volatility, 
value/growth effect 

2001 Barberis/Huang/Santos QJE Prospect theory, house money effect Equity premium, excess volatility, time-series 
predictability of stock returns 

2001 Daniel/Hirshleifer/Subrahmanyam JF Overconfidence Cross-sectional return predictability 
2001 Gervais/Odean RFS Overconfidence, biased self-attribution High trading volume, higher trading volume 

after investment successes 

2001 Hirshleifer/Luo JFM Overconfidence Survival of overconfident investors in 
competitive security markets 

1998 Barberis/Shleifer/Vishney JFE Conservatism, representativeness 
heuristic 

Positive short-lag autocorrelation, negative 
long-lag autocorrelation, value/growth effect, 
event-based return predictability 

1998 Benos JFM Overconfidence High trading volume, excess volatility 
1998 Daniel/Hirshleifer/Subrahmanyam JF Overconfidence, biased self-attribution Positive short-lag autocorrelation, negative 

long-lag autocorrelation, excess volatility, 
event based return predictability 

1998 Odean JF Overconfidence High trading volume 
1998 Wang JFM Overconfidence High trading volume 

This table presents a survey of behavioral finance models that have been published in the five years from 1998 until 2002 in some 
leading journals that regularly contain behavioral finance research (Journal of Finance (JF), Journal of Financial Economics 
(JFE), Review of Financial Studies (RFS), Journal of Financial Markets (JFM), Quarterly Journal of Economics (QJE)). The table 
shows the psychological finding that is incorporated into the model (column four) as well as the empirical findings that these 
models are able to explain (column five). 


