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Non-technical summary

In a market in which firms have market power, the impact of a change in wages on
labour demand is not easily determined. Indeed, if after a decrease in wages one firm
chooses to increase labour demand for producing more, this reduces the output price;
this in turn may lead other firms to decrease their production and their demand for
labour. We show that this ambiguity at the firm level is likely to be resolved at the
aggregate level of the industry: under some empirically testable restrictions an increase
in wages is likely to trigger a decrease in labour demand.
The Le Chatelier principle states that the sensitivity of input demands with respect

to own price variations is smaller when the output level is held constant than when it
is adjusted. It holds whether competition on the output market is perfect or imperfect,
provided the production level of competitors is held constant. A first aim of this pa-
per is to extend the Le Chatelier principle to the case where the production levels of
competitors are allowed to vary.
For a given level of production, a cost minimizing firm has an incentive to use more

intensively the factors of production whose price decreases and to substitute the other
factors by the cheaper one (substitution effect). When the firm is able to set its produc-
tion level in order to maximize profit, it benefits from the factor price reduction even
further (expansion effect). With a competitive output market this expansion effect leads
to a further increase in the demand for the factor that becomes cheaper. With imper-
fect competitive output markets the direction of the effect is less clear: if all competing
firms increase production to exploit the reduction in factor price, the output price must
fall, and this reduces each firm’s incentives to expand its level of production and factor
demand.
We study whether aggregate factor demands are decreasing in markets with a particu-

lar type of imperfect competition, termed Cournot competition. Despite the ambiguous
result at the firm level, we show that under some conditions the aggregate expansion
effect is likely to be negative. We complete this paper with an empirical investigation
of its theoretical results. In order to identify the Le Chatelier principle with aggregate
data, and for decomposing the impact of input price changes on input demands into a
substitution and an expansion effect, it is necessary to propose an adequate empirical
specification compatible with heterogeneous firms. Instead of relying on a representative
firm setup which implies estimation biases when firms are too heterogeneous, we define
the aggregate cost function as the conditional expectation of the microeconomic cost
function, given the available aggregate information. In this context, we show that it is
possible to identify the conditional expectation of the substitution and expansion effects
using aggregate data only. We propose a simple test for the validity of the representative
firm model.
The empirical application relies on a panel for 18 two-digit US manufacturing in-

dustries over the period 1949 to 2001. We obtain several results relative to the rate
of returns to scale, the price-cost margin, the short and long run adjustment of input
demand to input price change, and the impact of input price changes on output ad-
justment and inflation. The empirical findings confirm the validity of the Le Chatelier
principle. We also find evidence for both increasing and constant returns to scale.



Das Wichtigste in Kürze (German summary)

In einem Markt, wo Unternehmen Marktmacht besitzen, lässt sich der Einfluss einer
Veränderung der Löhne auf die Arbeitsnachfrage nicht leicht bestimmen. Falls infolge
einer Reduzierung der Löhne ein Unternehmen seine Arbeitsnachfrage erhöht, um mehr
zu produzieren, so nimmt der Preis des Produkts ab; dieses wiederum kann Wettbe-
werber dazu führen, ihre Produktion und somit auch ihre Arbeitsnachfrage zu senken.
Wir zeigen, dass diese Ambiguität auf Firmenebene im Aggregat auf Industrieebene
verschwinden kann: unter Restriktionen, die empirisch widerlegbar sind, führt eine Zu-
nahme der Löhne zu einer Abnahme der Beschäftigung.
Das Le Chatelier Prinzip besagt, dass die Sensitivität der Nachfrage nach einem Pro-

duktionsfaktor zu Veränderungen in seinem eigenen Preis kleiner ist, wenn die Produk-
tion konstant gehalten wird, als wenn sie angepasst wird. Diese Aussage ist gültig bei
perfektem sowie imperfektem Wettbewerb, solange das Produktionsniveau der anderen
Wettbewerber konstant bleibt. Ein erstes Ziel dieses Papiers ist die Erweiterung des Le
Chatelier Prinzips auf den Fall, wo das Produktionsniveau der anderen Wettbewerber
variieren darf.
Bei einem festen Produktionsniveau wird ein Unternehmen den Faktor, dessen Preis

sinkt, intensiver benutzen, zuungunsten der anderen Faktoren (Substitutionseffekt).
Kann die Produktion angepasst werden, um den Profit zu maximieren, wird das Un-
ternehmen weiter von der Preissenkung profitieren können (Expansionseffekt). Unter
perfektem Wettbewerb führt dieser Expansionseffekt zu einer weiteren Zunahme der
Nachfrage nach diesem Faktor. Bei imperfektem Wettbewerb ist die Richtung des Ef-
fekts weniger klar: falls alle Wettbewerber ihre Produktion erhöhen, sinkt der Preis des
Produkts und somit auch der Anreiz Produktion und Faktornachfrage zu erhöhen.
Wir untersuchen die aggregierten Nachfragenreaktionen in Märkten, die durch einen

spezifischen Typ des unvollständigesWettbewerb, nämlich CournotWettbewerb, gekennze-
ichnet sind. Wir zeigen dass, trotz der Unklarheit der Reaktion der Unternehmen, der
aggregierte Expansionseffekt negativ sein dürfte.
Diese Implikation aus der Modellanalyse wird auf ihre empirische Validität untersucht.

Die Zerlegung der Auswirkungen von Faktorpreisveränderungen in Substitutions- und
Expansionseffekte erfordert die Verwendung unternehmensspezifischer Kostenfunktio-
nen als Ausdruck der Heterogenität der Unternehmen. Wir definieren die aggregierte
Kostenfunktion als den bedingten Erwartungswert der mikroökonomischen Kostenfunk-
tion, gegeben die verfügbare Information. Wir zeigen, dass es in diesem Rahmen möglich
ist, den bedingten Erwartungswert des Substitutions- und des Expansionseffekts anhand
von aggregierten Daten zu ermitteln.
Die empirische Anwendung beruht auf einem Panel für 18 verarbeitende Industrien

der USA für den Zeitraum 1949-2001. Für diese Industrien ermitteln wir die Höhe
der Skalenerträge, den Umfang der aus Marktmacht resultierenden Gewinne sowie die
kurze und die langfristige Reaktion der Faktornachfragen auf Preisveränderungen und
die Auswirkungen von Kostenveränderungen auf die Wertschöpfung. Die empirischen
Ergebnisse bestätigen die Gültigkeit des Le Chatelier Prinzips.
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1. Introduction
This paper investigates the consequences of input price changes on input demands when
the output market is imperfectly competitive. The impact of input price changes on
input adjustment is described by the Le Chatelier principle, introduced in economics
by Samuelson (1947). This principle states that the sensitivity of input demands with
respect to own price variations is smaller when the output level is held constant than
when it is adjusted. It is apparently not widely known, that in the context of imperfect
competition, however, that Samuelson (1947, p.45-46) in fact showed that Le Chatelier
principle is satisfied whether competition on the output market is perfect or imperfect,
provided the production level of competitors is held constant. At the firm level, the
Le Chatelier principle focused the attention of many researchers who derived it by
weakening or changing underlying assumptions: see Eichhorn and Oettli (1972), Diewert
(1981) and Milgrom and Roberts (1996) to name just a few. However, these authors
have not considered whether the principle is still satisfied when negative externalities
between firms affect their behaviour.
A first aim of this paper is to extend the Le Chatelier-Samuelson (LCS) principle

to the case of endogenous levels of competitors’ output. For a given level of output,
a cost minimizing firm has an incentive to use more intensively the input whose price
decreased and to substitute the other inputs by the cheaper one (the substitution effect).
When the firm is less constrained and becomes able to set its output level in order to
maximize its profit, it will choose the optimal output level in order to benefit from
the input price reduction even further. This adjustment corresponds to an expansion
effect. With a competitive output market this expansion effect is always negative.
With imperfect competitive output markets à la Cournot, things are not that clear,
because the externality provides incentives to reduce input demand: if all competing
firms increase their output level in order to exploit the reduction in input price, the
output price must fall, and this reduces each firm’s incentives to expand its level of
output supply and input demand. So firm level comparative statics is undetermined,
only further restrictive assumptions on firm technologies or inverse demand, as these
discussed by Roy and Sabarwal (2008, 2009), allow to obtain well determined results.
In the context of perfect competitive markets, Heiner (1982) and Braulke (1984) have

shown that aggregation can be helpful for resolving ambiguity at the firm level. Even if
it is not necessarily true at the firm level, we study whether aggregate input demands
are decreasing in markets with Cournot competition. Despite the ambiguous result at
the firm level, we show that under Novshek’s (1985) type of conditions, which ensure
the existence of a Cournot equilibrium, the aggregate expansion effect is likely to be
negative, and the LCS principle is likely to be valid in the aggregate Cournot model.
We complete this paper with an empirical investigation of its theoretical results.

In order to identify the LCS principle with aggregate data, and for decomposing the
impact of input price changes on input demands into a substitution and an expansion
effect, it is necessary to propose an adequate empirical specification compatible with
heterogeneous firms. Instead of relying on a representative firm setup which implies
estimation biases when firms are too heterogeneous, we proceed to aggregation using
the stochastic aggregation theory developed by Lewbel (1996) and Koebel (2002). The
aggregate cost function is defined as the conditional expectation of the microeconomic
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cost function, given the available aggregate information. In this context, the aggregate
cost function does not generally inherit the properties of microeconomic cost functions.
However, we show that it is possible to derive the conditional expectation of the input
demand system from the cost function by amending Shephard’s lemma, and to identify
the conditional expectation of the substitution and expansion effects using aggregate
data only. We propose a simple test for the validity of the representative firm model.
There is a further methodological focus in this paper: we present a method for dealing

with empirical issues raised by the adjustment of inputs in the long run, in the context of
increasing or decreasing returns to scale. When the rate of returns and the type of com-
petition on the output market are a priori unknown, empirical contributions (reviewed
by Bresnahan, 1989) have often appended a pricing rule — compatible with both perfect
and imperfect competition — to the cost and input demand system. However, most of
these studies do not derive the optimal output level, nor do they report unrestricted
elasticities. This shortcoming is surprising because, when output is endogenous, that is
to say, optimally chosen by the production unit, output-restricted elasticities are only of
limited interest for deriving policy implications. A further objective of this paper is thus
to estimate elasticities that are not restricted by an output level artificially held con-
stant. Since a closed form solution for the optimal output level can seldom be obtained
from the price-margin equation, we rely on the implicit function theorem for deriving
these elasticities empirically. This method has been developed and applied by Kulati-
laka (1987) to model the adjustment of capital to its optimal long run level. We extend
this method by deriving moment conditions which are consistent with the theoretical
model and identify the substitution and expansion effects of input price changes. This
method allows us to derive consistent estimates of the substitution and the expansion
matrices and to test the validity of the LCS principle in the aggregate.
The empirical application relies on a panel for 18 two-digit US manufacturing in-

dustries over the period 1949 to 2001. We obtain several results relative to the rate of
returns to scale, the markup, the short and long run adjustment of input demand to
input price change, and the impact of input price changes on output adjustment and
inflation. The empirical findings confirm the validity of the LCS principle. Whether re-
turns to scale are increasing or not in U.S. manufacturing industries is an important but
controversial empirical issue. Whereas many researchers have argued for the increasing
returns to scale hypothesis (Hall, 1988, Shapiro, 1988, Diewert and Fox, 2008), just as
many researchers have found evidence for the contrary (Burnside, 1996, Bartelsmann,
1995, Basu and Fernald, 1997). We find evidence for both the increasing and constant
return to scale assumptions.
The next section outlines the microeconomic model and derives the LCS principle at

the firm level, when the output market is imperfectly competitive. Section 3 exposes
Novshek’s (1985) and Amir’s (1996) sufficient conditions for the existence of a Cournot
equilibrium. Section 4 extends the LCS principle to the case of Cournot competition at
the aggregate level, it also describes the aggregate consequences of Cournot competition
in terms of input adjustment. Section 5 presents the aggregate statistical model compat-
ible with available aggregate data. Section 6 sets up the empirical model specification
and highlights how it departs from usual models of producer behavior. The empirical
results are described in Section 7, and Section 8 concludes.
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2. Input demands and the type of competition
The model is developed at the microeconomic level of the production unit. Vector x ∈ RJ

+

denotes inputs and w the corresponding price vector. The production unit’s output
level is denoted by y ∈ R+. Under suitable regularity conditions the technology of a cost
minimizing production unit is fully described by a twice continuously differentiable cost
function c. By definition, c (w, y) = w|x∗ (w, y) , where x∗ denotes the cost minimizing
input vector. The aim of this section is to describe how input demands react to input
prices, at the level of the firm.
In an imperfectly competitive product market, the production unit knows the inverse

product demand function p : (y, v) 7→ p (y, v) it faces, where the vector v comprises
explanatory variables shifting output demand and which the production unit considers
to be out of its control (as the production level of competitors, aggregate variables
including the population, the unemployment rate, the level of value added tax and so
on). In this subsection, we assume a representative production unit, which simplifies
the notations, but this assumption is relaxed later.
The profit function π is given by

π (w, v) = max
y
{p (y, v) y − c (w, y)} (1)

= p (yo, v) yo − c (w, yo) , (2)

where yo (w, v) denotes the optimal solution to (1) and represents the output supply
correspondence: one difficulty with yo is that it is not necessarily a function; for some
values of (w, v) there might be several profit maximizing output supplies. In the following
we assume that the solution yo is locally unique. The first order condition for an interior
optimum is given by

p (yo, v) +
∂p (yo, v)

∂y
yo =

∂c (w, yo)

∂y
. (3)

Output supply changes when the demand function shifts (variation in v) or when the
cost parameters w change.
Some authors reviewed by Appelbaum (1982) and Bresnahan (1989) consider that

this simple framework encompasses a variety of non-competitive pricing behaviors. The
case of an oligopoly with H firms producing heterogeneous products is obtained when
the inverse demand function p is specified as:

p (yh, v) = P (y∗1 (yh) , . . . yh, . . . , y
∗
H (yh) , v) ,

where y∗j denotes firm j’s reaction function to the production choice yh of the firm h
under consideration. When products are homogenous, the inverse demand function
simplifies into

p (yh, v) = P

⎛⎝yh +
HX
j 6=h

y∗j (yh) , v

⎞⎠ ,

which is compatible with Cournot-Nash, Stackelberg or competitive fringe types of com-
petition. There is a vast literature using the concept of conjectural variation (see Bres-
nahan, 1989, for a survey), which splits ∂p/∂yh into a product of price sensitivity to
aggregate output ∂P/∂Y and a conjectural variation term 1 +

PH
j 6=h ∂y

∗
j/∂yh. We do not

try to separately identify these terms, as we are just interested into the total impact
∂p/∂yh, aggregated at the level of an industry. In this section, we follow the Cournot-
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Nash conjecture and consider the production level of competitors as fixed while firm h is
choosing its optimal production level. In our situation, vh is specific to firm h, because
it comprises the exogenous aggregate production level Y−h of all other firms, beside the
macroeconomic variables z which are identical for all firms: we write vh = (Y−h, z) .
A sufficient condition for an interior maximum is that, in addition to (3),

ao (w, v) < 0 (4)

with

ao (w, v) ≡
∙
2
∂p

∂y
(yo, v) +

∂2p

∂y2
(yo, v) yo − ∂2c

∂y2
(w, yo)

¸−1
. (5)

This requirement can be fulfilled even in the case of decreasing marginal costs (∂2c/∂y2 <
0), provided that the inverse demand function has the adequate shape and curvature.
By Hotelling’s Lemma the input demand functions are given by:

xo (w, v) = − ∂π

∂w
(w, v) =

∂c

∂w
(w, yo (w, v)) = x∗ (w, yo (w, v)) ,

where the second equality follows from (3). Thus, just as in the perfect competitive
case, the constant-output and the unrestricted input demand functions coincide at the
optimal output level. Concerning comparative statics,

∂xo

∂w|
(w, v) =

∂x∗

∂w|
(w, yo) +

∂x∗

∂y
(w, yo (w, v))

∂yo

∂w|
(w, v)

=
∂x∗

∂w|
(w, yo) + ao (w, v)

∂x∗

∂y
(w, yo)

∂x∗|

∂y
(w, yo) , (6)

where the second equality follows from the differentiation of (3) with respect to w,
yielding:

∂yo

∂w
(w, v) = ao (w, v)

∂x∗

∂y
(w, yo) . (7)

This allows to obtain the LCS principle in imperfect competition.

Result 1. Assuming ao (w, v) < 0,
(i) the LCS result is satisfied:

∂xoj
∂wj

(w, v) ≤
∂x∗j
∂wj

(w, yo) < 0, (8)

(ii) an increase in input price wj decreases the output level iff input demand x∗j is
normal:

∂yo/∂wj < 0⇔ ∂x∗j/∂y > 0, (9)
(iii) an increase in input price wj increases the output price po (w, v) ≡ p (yo (w, v) , v) if
output demand is decreasing and x∗j is normal:©

∂p/∂y < 0 ∧ ∂x∗j/∂y > 0
ª
⇒ ∂po/∂wj > 0. (10)

Statement (i) directly follows from (6), (ii) from (7) and (iii) from the inverse demand
function and (7). This result shows how increases in input prices reduce input demand,
which in turn decreases production and creates inflation. The normality requirement of
input demand x∗j is in fact equivalent to the statement that marginal cost is increasing
in wj. The conditions (ao (w, v) < 0, ∂x∗j/∂y > 0 and ∂p/∂y < 0) necessary for obtaining
the different statements of Result 1 can be investigated empirically. In Section 5 we

4



study whether they are satisfied in the aggregate. It is useful to notice that in terms of
elasticities (8) becomes

ε
¡
xoj ;wj

¢
≤ ε

¡
x∗j ;wj

¢
< 0, (11)

where

ε
¡
xoj ;wj

¢
≡

∂xoj (w, v)

∂wj

wj

xoj (w, v)
.

The own-price elasticities of profit maximizing input demands are smaller than those
derived from cost minimizing input demands. The economic intuition behind this result
is that when the output level can be adjusted after a decrease in input price wj, this
change in scale is made in such a way to fully benefit from the input price reduction
which is achieved by increasing xj (and y if xj is normal). Notice that input demands
are not required to be normal (that is, increasing in the level of output) for obtaining
the LCS principle.
Samuelson (1947, p.45-46) derived this principle using a revenue function noted R (x) ,

which is compatible with a perfectly competitive output market, when R (x) = pf (x) ,
but also with imperfect competition for R (x) = p (f (x) , v) f (x) . A more general formu-
lation of the Le Chatelier principle, yielding Result 1(i) as a special case, was provided
by Eichhorn and Oettli (1972). In comparison to Samuelson’s result, the above deriva-
tion of the LCS principle has the advantage of relying on the dual: it yields thereby
equation (6) which resembles the Slutsky decomposition in consumer theory.

xjxj
*(w,yo(w,v))

xk yo(w,v)

A

B

yo(w’,v)

xj
*(w’,yo(w,v)) xj

*(w’,yo(w’,v))

xk
*(w,yo(w,v))

C

xjxj
*(w,yo(w,v))

xk yo(w,v)

A

B

yo(w’,v)

xj
*(w’,yo(w,v)) xj

*(w’,yo(w’,v))

xk
*(w,yo(w,v))

C

(a) Input j normal (b) Input j inferior

Figure 1: Substitution and expansion effects and input adjustment

Figure 1 illustrates the optimal adjustment of output and its implication for the
inputs. This figure, presented by Sakai (1973) in the competitive setup, is also valid
when production functions are not concave and production units have market power as
long as v is constant. The shift from point A to point B along the isoquant corresponding
to production level yo (w, v) represents input substitution caused by a decrease in the
price of input j from wj to w0j. The shift from B to C arises when the production unit
chooses the profit maximizing output level, and it depicts the expansion (or scale) effect.
For normal inputs, this expansion effect is positive and by (7) it turns out that in this
case the production unit increases output to its optimal level yo (w0, v). When input
j is inferior the converse applies (see Figure 1b): profit is maximized when the firm
decreases output after the decrease of wj (see 9). Figure 1 illustrates that in both cases
unrestricted input demand xoj (w, v) = x∗j (w, y

o (w, v)) reacts more strongly to changes
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in wj than restricted demand x∗j (w, y
o) . The LCS principle differs from the Slutsky

decomposition, because production units do not want to reach the highest possible
isoquant: in the situation of Figure 1b, profits are maximized by reducing the level of
production.
There exist alternative sets of (weaker) assumptions which yield the conclusions of

Result 1 (see Milgrom and Roberts, 1996). However, as our objective is to identify both
substitution and scale effects of (6) we rely mainly on duality theory.

3. Existence of a Cournot-Nash equilibrium
Changes in input prices affect in general all firms simultaneously which in turn affects
the inverse output demand function through changes in v. So, the result of former
section (derived for constant v) only partly describe the consequences of changes in
input prices. We consider an industry that can be relatively well described as a market
with competition à la Cournot. Firms produce a similar product and are heterogeneous
with respect to their cost function, their market power and their market share measured
by yh/Y. In contrast to the contestable market literature, we do not require that all
(potential) firms have access to the same technology.
When products within an industry are perfectly substituable, all active firms charge

or face the same price at equilibrium. The number of incumbent firms H is exogenous.
In this setup, some firms make positive profits because they are able to produce cheaper
than others; their technology is more efficient. The (inverse) market demand is given
by

p (yh, vh) = P

⎛⎝yh +
HX
j 6=h

yj, z

⎞⎠ , (12)

where vh =
³PH

j 6=h yj , z
´
. Let us use the same notations as before and denote the optimal

input and output levels by xoh (w, vh) and yoh (w, vh) and the price by po (w, vh) .
In this section we consider strategic interactions between firms and describe their

influence on input demand adjustments. A look at the reaction functions yoh (w, Y−h, z) ,
xoh (w, Y−h, z) suffices to see that strategic interactions have an important impact on the
output and input demand choices. It can be verified (using (3) and (5)), that the sign of
∂yoh/∂Y−h is the same as the sign of ∂P/∂y+ yh∂

2P/∂y2 and for this reason, the Cournot
game can either be a game with strategic substitutes (∂yoh/∂Y−h ≤ 0) or complements
(∂yoh/∂Y−h ≥ 0).
For simplicity, we restrict our analysis to interior points. A Cournot equilibrium is

any H-tuple yNh (w, z) and xNh (w, z) such that for any active firm, (3), (5) and (12) are
satisfied at yNh (w, z) for each h = 1, . . . , H. So, at a Cournot equilibrium,

yNh (w, z) = yoh

³
w, Y N

−h (w, z) , z
´
, xNh (w, z) = xoh

³
w, Y N

−h (w, z) , z
´
. (13)

If we assume that yoh is a continuous function in Y−h for every w, z, then Brouwer’s fixed
point theorem can usually be applied to show that Cournot’s equilibrium exists. How-
ever, in Cournot oligopolistic markets, it is restrictive to assume that yoh is a continuous
function, because Pyh−ch is not necessarily concave in yh for all values of (yh, Y−h, z, w) .
Several economists have tried to go around the assumption of concave profits for ob-
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taining the existence of a Cournot equilibrium.
Novshek (1985) has shown that a H-firms Cournot equilibrium exists provided that

a “firm’s marginal revenue be everywhere a declining function of the aggregate output
of others” that is:

∂P

∂Y
(yh + Y−h, z) + yh

∂2P

∂Y 2
(yh + Y−h, z) ≤ 0. (14)

This condition also implies that firms’ reaction functions yoh (w, Y−h, z) are nonincreasing
in Y−h. Inequality (14) is satisfied if the (nonincreasing) inverse demand function is linear
or concave in y, in which case the existence of a Cournot equilibrium is guaranteed. Since
this condition has to be satisfied for any value of yh, Y−h and z, it can equivalently be
written as

∂P

∂Y
(Y, z) + Y

∂2P

∂Y 2
(Y, z) ≤ 0, (15)

for any Y. This formulation depends on aggregate data only and implies that condition
(14) is fulfilled for any firm.
Amir (1996) provided a different sufficient condition ensuring the existence of a

Cournot equilibrium. He showed that (Theorem 3.1) log-concavity of P w.r.t. Y , that
is,

P (Y, z)
∂2P

∂Y 2
(Y, z)−

∙
∂P

∂Y
(Y, z)

¸2
≤ 0 (16)

for any Y , ensures that each firm’s reaction correspondence is nonincreasing in Y−h
and that a Cournot equilibrium exists. Amir (2005) compares his requirement with
Novshek’s and shows that both conditions are not nested: (16) does not imply (15), nor
is it implied by (15).
There are two difficulties with these aggregate conditions. On the one side, (16) is

sufficient for the existence of a Cournot equilibrium, but not necessary, and so it is
not the weakest possible condition for achieving existence. On the other side, the fact
that (14) has to be satisfied for any value of yh, Y−h and z, is very demanding. It must
even be satisfied for the case in which one firm produces the total output, which could
reasonably be excluded if there is a competition law enforcing an upper bound for the
market share, or alternatively, if the firms’ cost functions lead them to always choose an
output level smaller than Y. So we try to derive a weaker condition which ensures the
existence of a Cournot equilibrium.

Result 2. Assume that for any firm, there is a maximal capacity y, so that no firm
chooses yh > y for any Y and z. If

∂P

∂Y
+

∂2P

∂Y 2
yh ≤ 0, (17)

for any z and 0 ≤ yh ≤ y then Cournot’s equilibrium exists.

Instead of a maximum capacity, y can also be interpreted as firm’s maximum output
level that a competition commission is tolerating in this oligopoly market. The proof of
this result follows from the fact that the output space [0, y]H is a complete lattice, and
imposing yh to be included in the interval [0, y] still yields a reaction correspondence
that is nonincreasing in Y−h just as in Novshek’s case. Condition (17) is implied by the
aggregate condition

∂P

∂Y
+

∂2P

∂Y 2
Y
√
λ ≤ 0, (18)

for any aggregate and elementary output levels Y and yh ≤ y compatible with the
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Hirschman-Herfindahl index of concentration λ.1 Provided the restriction on the distri-
bution of output is valid (yh ≤ y), condition (18) is weaker than (15). These conditions
will be tested in Section 5.

4. Aggregate comparative statics
Firm level comparative statics has been studied by Roy and Sabarwal (2008, 2009)
who derive conditions ensuring monotone comparative statics at the firm level in games
with strategic substitutes. In Section 2 (Result 1) it was shown that the LCS principle
is satisfied for given level of aggregate production of all competitors. At a Cournot
equilibrium, the total impact of a change in input prices follows from (13):

∂yNh
∂w

(w, z) =
∂yoh
∂w

³
w, Y N

−h (w, z) , z
´
+

∂yoh
∂Y−h

∂Y N
−h

∂w
(w, z)

∂xNh
∂w

(w, z) =
∂x∗h
∂w

³
w, yNh (w, z) , z

´
+

∂x∗h
∂yh

∂yoh
∂w

³
w, Y N

−h (w, z) , z
´
+

∂x∗h
∂yh

∂yoh
∂Y−h

∂Y N
−h

∂w
(w, z) .

As ∂yoh/∂w ≤ 0, it follows that ∂yNh /∂w ≤ 0 if the last term, corresponding to a change
in firm h’s output triggered by the strategic interaction with all other firms, does not
outweigh the direct impact of an increase in w. As this last term can be positive or
negative, the overall sign of ∂yNh /∂w is undetermined. The same remark applies to
∂xNh /∂w : a further and indeterminate “externality induced input adjustment” is added
to the substitution and expansion effects of (6) and which explains why the LCS principle
is not necessarily satisfied at the firm level. It is now interesting to analyze whether the
LCS principle holds for the aggregate industry.

4.1 Cournot equilibrium

We show that under condition (18), the LCS principle is likely to be satisfied in the
aggregate. Let us define the aggregate input demand functions X∗ for fixed levels of
individual production as:

X∗
³
w, {yh}Hh=1

´
≡

HX
h=1

x∗h (w, yh) .

Similarly, the aggregate demands and supply obtained for given levels of competitors’
output are defined as:

Xo
³
w, {yh}Hh=1

´
≡

HX
h=1

xoh (w, Y−h, z) ,

Y o
³
w, {yh}Hh=1

´
≡

HX
h=1

yoh (w, Y−h, z) .

Presumptions 1. Under the assumption that (4) and (18) are satisfied, it is expected
that at the Cournot equilibrium:

1 That (18) implies (17) is obvious if ∂2P/∂Y 2 ≤ 0 since ∂P/∂Y ≤ 0. If ∂2P/∂Y 2 ≥ 0, notice that the highest

market share y/Y satisfies y/Y ≤ λ, and so, yh ≤ y ≤ Y λ.
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(i) the aggregate (reaction) functions Y o and Xo
j are nonincreasing in wj;

(ii) the aggregate Nash equilibrium quantities Y N and XN
j are nonincreasing in wj ;

(iii) the aggregate Nash equilibrium quantities Y N and XN
j are less own-price elastic

than Y o and Xo
j respectively; they satisfy the aggregate LCS principle:

ε (Y o;wj) ≤ ε
³
Y N ;wj

´
≤ 0, (19)

ε
¡
Xo
j ;wj

¢
≤ ε

³
XN
j ;wj

´
≤ ε

¡
X∗j ;wj

¢
≤ 0; (20)

(iv) the output price is less reactive to an exogenous change in input prices at Cournot-
equilibrium than at the firm optimal output level:

0 ≤ ∂PN

∂w
(w, z) ≤ ∂P o

∂w
(w, v) . (21)

Appendix A discusses why Presumption 1 is likely to be satisfied. Presumptions 1(i)
and (ii) mean that aggregate input j and output and are likely to decrease when price
of input j increases. A direct corollary of ∂Y N/∂w ≤ 0 is that the individual output
reactions to changes in input prices, ∂yNh /∂w, are negative in average. Presumption 1(iii)
states that the response to input price changes is less pronounced at a Nash equilibrium
(∂Y o/∂w ≤ ∂Y N/∂w) than in the case of the Cournot-Nash conjecture of constant output
level for all competitors. At a Nash equilibrium, indeed, ∂Y N/∂w incorporates the
reduction of output quantities of all competitors triggered by the increase in input prices.
The second series of inequalities (20) is an aggregate version of the LCS inequality. It
means that a rule analog to Result 1 is likely to be valid in the aggregate. When all
firms are able to choose their output optimally, aggregate input demand is more reactive
to input prices than for fixed levels of output. This result is not straightforward in an
imperfectly competitive context, because a firm has an incentive to increase its own
output and input levels in reaction to a decreases in its competitor’s output and input
levels consecutively to an increase in input prices: ∂yoh/∂Y−h ≤ 0 and ∂xoh/∂Y−h ≤ 0.
Claim (21) follows from the definition of the output price:

PN (w, z) = P
³
Y N (w, z) , z

´
= P

³
Y o
³
w, {yh}Hh=1 , z

´
, z
´
. (22)

There are two reasons why claims (19)-(21) can be violated at a Cournot equilib-
rium. First, a Cournot equilibrium can exist even if (14) or (18) is violated, in which
case ε

¡
Y N ;wj

¢
may become positive. However, the validity of (18) can be investigated

empirically. In the case where (18) cannot be rejected, this provides evidence both
for the existence of a Cournot equilibrium and for the validity of the aggregate LCS
principle (Presumption 1). The second source of violation of (19)-(21) is firm hetero-
geneity. As shown in Appendix A, the sign of ∂Y N/∂w depends upon the size and sign
of cov

³
∂2c
∂y2

yN

Y N ,
∂yN

∂w

´
. This term is identically zero when firms are identical (as in many

symmetric Cournot equilibria), or when they have constant returns to scale. All in all,
there are several reasons to believe that Presumption 1 is empirically satisfied. We con-
clude this section with an example which illustrates why the LCS can be valid in the
aggregate without being necessarily satisfied at the firm level.

Example 1. In a standard Cournot duopoly with linear inverse demand:
p = a (z)− b (z) (y1 + y2) ,

9



and cost function ch (w, yh) = dh (w) yh, the reaction functions are given by:

yoh (w, y−h, z) =
a (z)− b (z) y−h − dh (w)

2b (z)
,

and the Cournot equilibrium is:

yNh =
a (z)− 2dh (w) + d−h (w)

3b (z)
.

What happens when w increases? Whereas at the firm level the impact on yNh is unde-
termined, at the aggregate level, the impact is negative, because:

Y N (w, z) =
2a (z)− d1 (w)− d2 (w)

3b (z)
,

which decreases when w increases. The reaction curves and Nash equilibria are depicted
in Figure 2 below. This figure also includes the iso-output line y1 + y2 = Y going
through the aggregate Nash equilibrium Y N . Any point below this line corresponds to a
smaller aggregate output level than Y N .When w increases to w0, the reaction functions
are shifted downwards (dotted lines) because dh (w) increases in w. The new Cournot
equilibrium is reached at the intersection of the dotted reaction curves, somewhere in
one out of three areas A, B, C. In triangle A the output level of firm 2 increases and
the one of firm 1 decrease, in rectangle B the output levels of both firm decrease and in
triangle C the output level of firm 1 increase and this of firm 2 decreases. In all three
cases, however, the total output level yN1 + yN2 decreases after an increase in w to w0.2

y1

y1+ y2 = Y

yo
2(w,y1,z)

A

yo
1(w, y2,z)

B C
yN

1(w,z)

yN
2(w,z)

yN
1(w’,z)

yN
2(w’,z)

Figure 2: Comparative statics at the firm level and in the aggregate

Notice that the result depicted in Figure 2 does not decisively depend upon the slope
of the reaction function, such a figure can also be obtained for both yoh increasing in
Y−h or when one reaction function is increasing and the other decreasing in Y−h. The
important ingredient for obtaining the aggregate comparative statics result is that at
2 Figure 2 is also useful for illustrating claim (iv). On this figure, it can be seen that at the new input price w0 ≥ w,

the aggregate output level Y o = yo1 (w
0, y2, z) + yo2 (w

0, y1, z) is smaller than Y N (w0, z) .
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least one reaction function is shifted downwards after an increase in wj , which is ensured
if x∗j is normal (see Result 1(ii)).

3 Aggregate comparative statics, however, becomes
tricky when ∂2P/∂Y 2 6= 0 and ∂2ch/∂y

2
h 6= 0 (see the discussion of Presumption 1 in

Appendix A), and Figure 3 below illustrates that the claim of Presumption 1 can be
violated in these nonlinear cases. This counter-example works because both reaction
curves yo1 and yo2 cross the iso-aggregate output line y1 + y2 = Y after w increases to w0.
In this couterexample the market shares are drastically changed by a marginal change
in w, which is empirically not very likely.

y1

y1+ y2 = Y

y2

yo
2(w,y1,z)

yo
1(w, y2,z)

yN
1(w,z)

yN
2(w,z)

yN
1(w’,z)

yN
2(w’,z)

Figure 3. A counter-example to Presumption 1

4.2 Input demand reactivity and degree of competition

In order to better understand the role played by imperfect competition for obtaining
the results above, let us compare the Cournot outcome with the benchmark of a market
where all firms are in perfect competition. This case has been studied by Heiner (1982)
and Braulke (1984). Let Y d : (p, z) 7→ Y d (p, z) denote the aggregate output demand
function and define the competitive output price level pc (w, z) as the solution in p to
the market clearing equation:

HX
h=1

yh (p, w) = Y d (p, z) , (23)

where h denotes a production unit, and H is the (exogenous) number of active firms
in the market. The corresponding aggregate output level is denoted by Y c (w, z) =
Y d (pc (w, z) , z) .The aggregate input quantities are given byXc (w, z) ≡

PH
h xh (w, p

c (w, z)) .
Whereas at the microeconomic level it is not possible to say how xh (w, p

c (w, z)) or
yh (w, p

c (w, z)) vary with w, because the output-price response effect is indeterminate,
Heiner (1982) has shown that this effect is well determined in the aggregate. “This
reassuring effect (...) represents one of the few cases where an ambiguity at the micro

3 The result can still be satisfied if only one of the reaction curves is shifted upwards, but not when all reaction
functions shift upwards when wj increases. This example shows that the claim of Presumption 1 is satisfied in more
general contexts than those of supermodular or submodular games.
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level is resolved at the macro level by aggregation” (Braulke, 1984, p.75). From the
definition of aggregate input demand, it follows that

∂Xc (w, z)

∂w|
=

HX
h

∂xh
∂w|

(w, pc) +
HX
h

∂xh
∂p

(w, pc)
∂pc

∂w|
(w, z)

=
∂X

∂w|
(w, pc)−

HX
h

∂yh
∂w

(w, pc)
∂pc

∂w|
(w, z) , (24)

where the last equality is a consequence of the symmetry of individual demand responses.
In order to conclude, notice that (23) implies that

∂pc

∂w|
=

Ã
∂Y d

∂p
−

HX
h=1

∂yh
∂p

!−1 HX
h=1

∂yh
∂w|

,

with ∂Y d/∂p −
PH

h=1 ∂yh/∂p < 0. This proves the positive semidefiniteness of the last
term of (24) and shows that

∂X

∂w|
(w, pc)¿ ∂Xc

∂w|
(w, z)¿ ∂X∗

∂w|

³
w, {yh}Hh=1

´
¿ 0. (25)

See Heiner (1982) and Braulke (1984) for a detailed derivation of these inequalities.
Equation (25) means that in the aggregate, output price changes absorb the shock in
input prices, and the reactions in input quantities then become less important than for
constant output price.
How do the non-competitive aggregate equilibrium input quantities behave and com-

pare to (25)? Some authors, like Cahuc and Zylberberg (2004, p.186) rely on (6) in
order to argue that the extension effect "diminishes in absolute terms" when the market
power rises. This claim is true ceteris paribus, that is, when the technology is indepen-
dent from market power, but it is not necessarily satisfied otherwise. As a consequence
this conjecture will not necessarily be satisfied at the aggregate level of an industry,
where the link between the degree of competition and the size of the expansion ef-
fect, theoretically unravelled, becomes an empirical issue. For convenience we state our
conjecture as follow:

Presumption 2. At the aggregate level of a heterogeneous industry, when prices
adjust,
(i) the aggregate input demand functions satisfy:

ε
¡
Xj ;wj

¢
< ε

¡
Xc
j ;wj

¢
≶ ε

³
XN
j ;wj

´
< ε

¡
X∗j ;wj

¢
< 0;

(ii) the aggregate output supply function satisfies:

ε
¡
Y ;wj

¢
< ε (Y c;wj) ≶ ε

³
Y N ;wj

´
< 0;

(iii) the output price satisfies:

0 < ε (pc;wj) ≶ ε
³
pN ;wj

´
.

Part (i) states that the competitive p-constant input demand elasticities ε
¡
Xj ;wj

¢
are smaller than the p-adjusted input elasticities ε

³
Xc
j ;wj

´
and ε

³
XN
j ;wj

´
whose com-

parison is an empirical issue. The response of Xj following an increase in wj is greater
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than the response of Xc
j and XN

j because, in the former case, the output price p is held
constant, whereas in the latter cases, the output price decreases in order to clear the
output market, which calls for a smaller adjustment in input demands. However, it
seems difficult to say much about how ε

³
Xc
j ;wj

´
and ε

³
XN
j ;wj

´
compare using the-

oretical arguments only. This limitation also provides a motivation for the empirical
part of this paper. In summary, this subsection shows that competitive markets do not
necessarily exhibit more variability than less competitive markets.

5. Aggregation when the distribution of market
shares is unobserved

In this section we explicitly derive the aggregate relationships from the disaggregate
ones and show that they depend upon the distribution of market shares (and how it
changes with w, Y and t). We also discuss identification of the effect of unobserved
shifts in market shares on the aggregate cost and demand functions. We now include a
variable t denoting time as an argument of the cost and demand functions.

5.1 Aggregate cost and input demand functions

Whereas it is natural to define total cost at the level of an industry by Cnt =
PHn

h=1w
>xht,

the total cost function is given by Cn (w, y1t, . . . , yHnt, t) =
PHn

h=1 ch (w, yh, t) and depends
upon the whole distribution of output within the nth industry, a piece of information
which is difficult to obtain and not always possible to consider explicitly. In order to set
up an aggregate model, we follow Lewbel (1996) and Koebel (2002) and reparameterize
(y1, . . . , yH) = βY with β = (y1/Y, . . . , yH/Y ) . Then, it is always possible to define the
aggregate cost and demand functions as the conditional expectations of the true but
unobserved functions:

C (w, Y, t) = Eβ [C (w, βY, t) |w, Y, t] (26)
X∗ (w, Y, t) = Eβ [X

∗ (w, βY, t) |w, Y, t] . (27)

The conditional expectation is taken with respect to the conditional density of market
shares f (β|w, Y, t).
The properties of the aggregate cost and input demand functions have been studied

by Lewbel (1993a) and Koebel (2002) who show that microeconomic properties are not
necessarily inherited in the aggregate. Indeed, comparative statics for the aggregate
demands depend on the way the distribution of market shares is shifted by changes in
(w, Y, t):

∂C

∂w
(w, Y, t) = Eβ

∙
∂C

∂w
(w, βY, t) |w, Y, t

¸
+

Z
C (w, βY, t)

∂f

∂w
(β|w, Y, t) dβ (28)

∂C

∂Y
(w, Y, t) = Eβ

∙
∂C

∂Y
(w, βY, t) |w, Y, t

¸
+

Z
C (w, βY, t)

∂f

∂Y
(β|w, Y, t) dβ (29)

∂C

∂t
(w, Y, t) = Eβ

∙
∂C

∂t
(w, βY, t) |w, Y, t

¸
+

Z
C (w, βY, t)

∂f

∂t
(β|w, Y, t) dβ. (30)

Whereas the first terms of the right hand side of the equalities denote the expected
microeconomic marginal cost, the last terms correspond to shifts in the distribution of
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market shares following changes in w, Y and t.4 These terms correspond to aggregation
biases and can be denoted respectively by BCw (w, Y ,t) , BCY (w, Y ,t) and BCt (w, Y ,t) .
Notice, however, that the adding up property is inherited in the aggregate in the sense
that C (w, Y, t) = w>X∗ (w, Y, t) .
Without disaggregate data on the distribution of market shares, it will be extremely

difficult to identify both the expected value of the derivatives of C w.r.t. w, Y and t and
the redistribution effect separately. Both terms of decomposition (28) are for instance
homogenous of degree one in w if f is homogeneous of degree zero in w. How is it possible
in this context to disentangle both terms without using data specific to the distribution
f and ∂f/∂w? Economic theory is actually useful for giving some identifying structure
to (28). Indeed, by Shephard’s lemma, the first term on the right hand side of equality
(28) corresponds to aggregate input demands:

Eβ

∙
∂C

∂w
(w, βY, t) |w, Y, t

¸
= Eβ [X

∗ (w, βY, t) |w, Y, t] = X∗ (w, Y, t) , (31)

a term which can be estimated when data on input demand quantities are available,
and so, it is possible to identify the aggregation biases residually, as the difference
∂C/∂w (w, Y, t) −X∗ (w, Y, t). Notice that identification is achieved in this way even in
the case where f is homogeneous of degree zero in w.

Result 2. Under the assumption that each firm is cost minimizing, and that the
aggregate conditional mean cost function C and all the partial derivatives ∂C/∂w are
observed, the aggregation biases BCw are identified.

Corollary 2. The aggregate cost function C
(i) is homogeneous of degree one in w iff for any (w, Y, t)

w>BCw (w, Y, t) = 0 (32)

(ii) satisfies Shephards’ lemma in the sense that ∂C/∂w = X∗ iff for any (w, Y, t)

BCw (w, Y, t) = 0. (33)

This corollary is a direct consequence of relationships (28) and (31). Function C is
homogeneous of degree one in w iff w>∂C/∂w = C (w, Y, t) = w>X

∗
(w, Y, t) and so the

claim of Corollary 2(i) directly follows from (28). Corollary 2(ii) follows from (28) and
(31). This corollary could be extended to second order derivatives of C.

5.2 Identification of the markup, marginal cost and aggregation
biases

We first derive the aggregate markup pricing relationship and discuss how it relates
to the exact aggregation literature. Then we study the conditions under which the
aggregation bias is identified. Let us remember that within an industry firms are facing
the inverse demand function p (yh, vh) , where yh denotes the hth firm’s output and v
are output demand shifters the production unit considers to be out of its influence. At
the industry level with H firms, aggregate output is given by Y =

PH
h=1 yh and satisfies

4 Notice that

C (w, βY, t)
∂f

∂w
(β|w,Y, t) dβ = cov

β
C,

∂ ln f

∂w
|w,Y, t .
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PY = p
PH

h=1 yh.
In this context, the first order condition for profit maximization for firm h is given

by:

p+
∂p

∂yh
yh =

∂ch
∂yh

(w, yh, t) . (34)

Aggregating (34) over firms yields:

p+
HX
h=1

∂P

∂Y
yh
yh
Y
=

HX
h=1

∂ch (w, yh, t)

∂yh

yh
Y
. (35)

Two approaches lead to a relationship that can be estimated with aggregate data.
The first one assumes that microeconomic relationships exhibit properties leading to
simplifications in equation (35). When all firms have the same inverse demand elasticity
and the same marginal cost function ∂ch (w, yh) /∂yh ≡ d (w), then (35) can be written in
terms of aggregate variables only. Such an assumption, however, is incompatible with
our purpose of estimating flexible returns to scale.
The second approximate aggregation approach developed by Lewbel (1996) explicitly

defines aggregate functions as conditional expectation of the disaggregate relationships,
thereby avoiding restrictions on individual technologies. Doing this, we obtain from
(35):

p+
∂P

∂Y
Y Eβ

"
HX
h=1

β2h|w, Y, t
#
= Eβ

"
HX
h=1

∂ch (w, yh, t)

∂yh

yh
Y
|w, Y, t

#
.

So, the conditional expectation of the marginal revenue depends upon

λa (w, Y, t) ≡ Eβ

"
HX
h=1

β2h|w, Y, t
#
,

which corresponds to the conditional expectation of the Hirschman-Herfindahl index of
industry concentration. Using (29), we can rewrite this equation as:

p+ λa (w, Y, t)Y
∂P

∂Y
=

∂C

∂Y
(w, Y, t)−

Z
C (w, βY, t)

∂f

∂Y
(β|w, Y, t) dβ, (36)

The main advantage of the aggregate specification (36) is that if yNh is the Cournot
equilibrium production level of firm h, then the aggregate solution bY N (w, z, t) to (36)
is compatible with (34), in the sense that it is as close as possible to

P
h y

N
h (w, z, t) in

L2 norm. Notice that specification (36) obtained by aggregating (34) looks similar to
the usual microeconomic specifications for which p + λaY ∂P/∂Y is interpreted as the
marginal revenue as perceived by the firm: λa = 1 corresponds to a cartel, λa = 1/H
to a (symmetric) Cournot oligopoly and λa = 0 to perfect competition. See Bresnahan
(1989) and Reiss and Wolak (2007) for a survey of this literature. All terms of (36) are
identified when data on the Herfindahl index is available: P and ∂P/∂Y are identified
from estimating an inverse demand function, λa is identified as the conditional expec-
tation of the Herfindahl index; and ∂C/∂Y is identified from the estimation of the cost
function, and so the aggregation bias BCY (w, Y ,t) can be computed residually. Without
such information, however, it seems difficult to identify λa separately from BCY . Bresna-
han (1982) and Lau (1982) discussed the conditions under which a constant parameter
λa can be uniquely identified under the assumption that a representative firm exists
(BCY ≡ 0). Lau’s result can be extended to our framework:
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Result 3. Under the above assumptions,
(i) the functions λa and BCY are nonparametrically identifiable iff the inverse demand
function P is not such that P (Y, z) = t (Y ) r (z)+ s (Y ) in the case where z is a scalar, or
P (Y, z) = P (Y, r (z)) in the case where z is a vector;
(ii) for parameterized shifts in the distribution of market shares, the model is identified
under broader circumstances than those mentioned in (i).

Result 3 (i) (proven in Appendix A for the sake of completeness) extends Lau’s
(1982) identification theorem in a context where λa is a function of (w, Y, t) . (There is
a subtlety due to the number of variables included in z.) This identifiability condition
can be relatively easily tested from the estimation of an inverse demand function. When
the null of separability in z cannot be rejected, Result 3(ii) recommends to specify a
functional form for BCY .
The main difference between Lau’s and our result is that in our case, information

on the cost function and on the marginal cost functions (C and ∂C/∂Y ) is available.
Supplementing cost data to the analysis allows us to overcome Lau’s identification prob-
lem of the marginal cost function and to extend his result to the problem of identifying
the aggregation bias. Indeed, aggregate cost and marginal cost depend upon the way
aggregate output is distributed over firms, and this information, which was missing in
the Bresnahan-Lau approach, could then provide the information we need for identi-
fying both the average market power of an industry and the aggregation bias. For
instance, when the firms’ market shares are constant, BCY = 0, and (36) allows to link
the unobserved marginal cost function ∂C/∂Y to the estimable marginal cost function
∂C/∂Y :

∂C

∂Y
(w, Y, t) = Eβ

∙
∂C

∂Y
(w, βY, t) |w, Y, t

¸
,

which can be treated as if it were observed. In this case, the estimation of the conditional
mean cost function C is informative about the otherwise unobserved aggregate marginal
cost C and this information allows to identify the average market power λa as the ratio
between ∂C/∂Y − P and Y ∂P/∂Y. In the case where BCY and λa are constant, (36) can
be rewritten as

P +
∂P

∂Y
Y λa +BCY =

∂C

∂Y
(w, Y, t) .

When ∂C/∂Y is observed, it is possible to identify BCY and λa iff the "regressors" P
and Y ∂P/∂Y are not proportional, which is the case iff P (Y, z) 6= r (z)Y θ. This example
illustrates that with more information on costs identification is achieved under broader
circumstances than those given in Result 3(i).

6. Empirical specification
In the empirical application, we shall use a panel data set of N industries indexed by
n = 1, . . . , N with observations on T time periods indexed by t = 1, . . . , T. In a first
subsection we present the model specification, in the second subsection we discuss the
empirical content of the aggregate LCS decomposition.

6.1 The empirical model

The whole model consists of a system with a price setting rule, an inverse output demand
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function, five input demand equations and a cost function:

pnt

µ
1 + λan (wnt, Ynt, t)

∂P

∂Y

Y

P

¶
=

∂Cn

∂Y
(wnt, Ynt, t)−BCY (wnt, Ynt, t) + uYnt, (37)

pnt = P (Ynt, znt) + uPnt, (38)
Xnt = X∗n (wnt, Ynt, t) + uXnt (39)
Cnt = Cn (wnt, Ynt, t) + uCnt (40)

Let unt ≡
¡
uYnt, u

P
nt, u

X
nt, u

C
nt

¢>
. We assume that E [unt|wnt, znt] = 0. Several assumptions

on E
£
unt, u

>
ms

¤
compatible with different forms of heteroskedasticity and correlation over

n and t are considered. In order to be able to identify the different parameters of (37),
notably the parameters of ∂Pn/∂Y and ∂Cn/∂Y, we append the inverse output demand
(38), the set of input demand functions (39) and the cost function (40) to the system
and estimate their parameters simultaneously. As Cnt = w>ntXnt, and uCnt = w>ntu

X
nt,

the cost function does not add any new information not already entailed in the input
demands when the whole system is estimated in levels. However, when estimation is
in first differences things are different, because for any given n and t, the error terms
uCnt − uCn,t−1 and uXnt − uXn,t−1 are linearly independent when wnt is not proportional to
wn,t−1.
The industry inverse output demand function is assumed to be given by:

P (Ynt, zt) = exp

µ
ηY lnYnt +

1

2
ηY Y (lnYnt)

2 + ηY t lnYntt+ fPn + fPt

¶
. (41)

Several variables are candidates for inclusion in the output demand shifting vector zt in
the expression of Pn. Most of them are macroeconomic variables like GDP, total popu-
lation, number of unemployed, government expenditures, exports and imports, interest
rate or GDP inflation rate. Specifying zt explicitly may yield a wrong specification of
the inverse demand function, so we prefer instead including unobserved time specific
variables fPt as well as a time trend t in (41) for representing omitted zt variables. It
is therefore not possible to explicitly test for whether Pnt is separable in zt or not (the
identification requirement of Result 3i). This is not such a drawback, as we believe
that identification is more likely to be achieved when some ad-hoc assumption on the
distributional shift functions BCY and λ are made, in the spirit of Result 3(ii). Though
being restrictive, such parametric specifications are still far more general than those
adopted in representative firms models. The specification also includes industry specific
parameters fPn . There are N + T + 2 free parameters in (38).
From the definition (26) it is clear that most microeconomic properties of c are lost

in the aggregate if the conditional distribution of market shares depends upon (w, Y, t).
How should we specify the aggregate model in this case? For answering this question,
let us write

C (w, Y, t) =

Z
C (w, βY, t) f (β|w, Y, t) dβ

=

Z
C (w, βY, t) g (β) dβ +

Z
C (w, βY, t) (f (β|w, Y, t)− g (β)) dβ

≡ C0 (w, Y, t) +C1 (w, Y, t) (42)

where g (β) denotes the marginal (joint) density of market shares. This decomposition
shows that the aggregate cost function can always be additively decomposed into a
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function C0 satisfying some microeconomic properties (especially linear homogeneity in
w) and a perturbation functionC1 which depends on the gap between the conditional and
marginal distribution of the market shares. This decomposition is useful for the empirical
specification of the cost function. Under Lewbel’s (1996) approximate proportionality
assumption, this last term is identically zero and only a well behaved aggregate cost
function C0 remains.
The microeconomic properties of C0 are actually helpful for identifying C1 : any

departure of C from linear homogeneity, Shephard’s lemma and concavity in prices can
be attributed to distributional shifts captured by C1. However, in most cases, only parts
of this function can be identified separately from C0.5 This is not really a problem, since
we are not interested in identifying C1 but in modelling of the aggregate cost function
and its partial derivatives.
According to Corollary 2(i), the input demand system X∗ cannot be obtained from

C by applying Shephard’s lemma. From (28), however, we know that:

X∗ (w, Y, t) =
∂C

∂w
(w, Y, t)−BCw (w, Y ,t) , (43)

which can be plugged into (39). Although the aggregate cost function loses most micro-
economic properties, the adding-up property is still satisfied by C, and this allows us to
relate the aggregation bias BCw on input demands to the function C1. Indeed,

C (w, Y, t) = w>X∗ (w, Y, t)

⇔ C0 (w, Y, t) +C1 (w, Y, t) = w>
∂C

∂w
(w, Y, t)− w>BCw (w, Y ,t)

⇔ w>BCw (w, Y ,t) = w>
∂C1
∂w

(w, Y, t)−C1 (w, Y, t) , (44)

where the last line follows from the definition of C and linear homogeneity of C0 in w.
We assume that BCwj is specified as:

BCwj (w, Y, t) ≡
1

wj

³
βj + β>wj lnw + βY j lnY + βtjt

´
, (45)

and thus J (J + 3) free β-parameters are involved in (45). We then impose the adding-up
conditions (44) in order to obtain:

C1 (w, Y, t) = γC + γ>lnw lnw + γY lnY + γtt+ h (w, Y, t) .

Function h represents an arbitrary function which is homogeneous of degree one in w,
but remember (footnote 6) that it is not always possible to separately identify h from
C0, so for simplicity, we set h (w, Y, t) ≡ γ>ww. The parameters γ of C1 are linked to the
β-parameters of BCwj by

γC = −
JX

j=1

βj −
JX

j=1

ι>J βwj, γlnw = −
JX

j=1

βwj , γY = −
JX

j=1

βY j , γt = −
JX

j=1

βtj .

This restriction shows that only J free parameters γw enter C1 in addition of those
comprised in BCwj. According to Corollary 2, the representative firm assumption can

5 Consider for instance
C0 = α>ww +w> (Awyy +Awtt)

which is linearly homogeneous in w and
C1 = β0 + β>ww + βyy + βtt.

Then the parameters αw and βw cannot be separately identified in the expression of the aggregate cost function C0+C1.
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also be tested using the estimates of the BCwj and BCY .
The more traditional part of the cost function is specified as a translog functional

form. This specification is flexible in (w, Y, t), so that both increasing and decreasing
returns to scale are a priori possible:

C0n (w, Y, t) = exp
h
α0,n + α>w,n lnw + αY,n lnY + αt,nt (46)

+
1

2
(lnw)>Aww lnw + α>wY lnw lnY + α>wt (lnw) t

+
1

2
αY Y (lnY )

2 + αY t lnY t+
1

2
αttt

2

¸
.

By convention lnw = (lnw1, . . . , lnwJ)
> . The parameters α0n, αwn, αY n, αtn are indus-

try specific, hence the subscript n. We know from (42) that function C0n is linearly
homogenous in w, so the α-parameters satisfy the usual restrictions:

ι>J αwn = 1, ι>JAww = 0, ι>J αwY = ι>J αwt = 0, (47)

where ιJ denotes a J-vector of ones. Matrix Aww is symmetric. There are N (J + 2) +
J (J + 3) /2 + 1 free α-parameters involved in (46).
Departure of C from linear homogeneity in w can be measured by:

C− w>nt
∂C

∂w
= C1 − w>nt

∂C1
∂w

= γC + γ>lnw lnw + γY lnY + γtt− ι>J γlnw.

This term is identically zero iff

γlnw = 0, γC = γY = γt = 0. (48)

The aggregation bias affecting the aggregate marginal cost is specified as

BCY (w, Y, t) ≡ βY + β>wY lnw + βY Y lnY + βtY t, (49)

which includes J + 3 further parameters.
For simplicity, we specify the conditional mean of the Hirschman-Herfindahl index

as:
λan (wnt, Ynt, t) = λ0n + Λ>w lnwnt + λY lnYnt + λtt, (50)

which has the advantage of allowing industry specific markups through the inclusion
of fixed effects λ0n. For estimation, (49) and (50) are substituted into the regression
equation (37).

6.2 Empirical expansion and substitution matrices

Our purpose is to identify the terms of the aggregate LCS decomposition:

∂XN

∂w>
(w, z, t) =

∂X∗

∂w>

µ
w,
n
yNh

oH
h=1

, t

¶
+

HX
h=1

∂x∗h
∂yh

³
w, yNh , t

´ ∂yNh
∂w>

(w, z, t) , (51)

which was obtained from the theoretical relationship

XN (w, z, t) = X∗
µ
w,
n
yNh

oH
h=1

, t

¶
=

HX
h=1

x∗h

³
w, yNh , t

´
.

When output quantities are optimally allocated, they are driven by (w, z, t) , i.e.
yh = yNh (w, z, t) and Y = Y N (w, z, t), and the distribution of market shares becomes
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endogenous: β = βN (w, z, t) and we can write:

XN (w, z, t) = X∗
³
w, βN

³
w, Y N , t

´
Y N , t

´
= X∗

³
w, Y N , t

´
. (52)

This equation implies that:
∂XN

∂w>
(w, z, t) =

∂X∗

∂w>

³
w, Y N , t

´
+

∂X∗

∂Y

³
w, Y N , t

´ ∂Y N

∂w>
(w, z, t) . (53)

All the terms involved in this expression can be obtained from the estimation of X∗

and the aggregate first order condition (36). In general, there will be no one to one
correspondence between the substitution and expansion matrices of (51) and (53), but
this seems to be the best approximation we can think of. Applying the implicit function
theorem to (36) yields:

∂Y N

∂w>
(w, z, t) =

∂2C

∂Y ∂w
− ∂BCY

∂w
− ∂P

∂Y
Y
∂λa

∂w

(1 + λa)
∂P

∂Y
+

∂P

∂Y
Y
∂λa

∂Y
+ Y λa

∂2P

∂Y 2
− ∂2C

∂Y 2
+

∂BCY

∂Y

. (54)

This expression is then replaced into (53) in order to obtain matrix ∂XN/∂w>.

6.3 Econometric issues

The observed input quantities are related to the demand functions by:

Xnt = E [Xnt|wnt, znt, t] + uXnt
= XN

n (wnt, znt, t) + uXnt

= X∗n
³
wnt, Y

N
n (wnt, znt, t) , t

´
+ uXnt (55)

= X∗n
³
wnt, Ynt − uYnt, t

´
+ uXnt.

All equalities are equivalent representations of the relation of interest. The first equality
corresponds to the definition of the conditional mean. The second equality follows from
the hypothesis that the conditional mean of input quantities (given wnt, znt, t) correspond
to aggregate Nash equilibrium input demands XN . The third equality is a consequence
of (52), and the fourth is obtained because observed aggregate output is related to
the Nash equilibrium output by Ynt = Y N + uYnt. Unfortunately, these equations are
not useful as such for parameter estimation: the second equation does not allow to
disentangle substitution and expansion effects; the third equality is useless, because Y N

is not known; the fourth equality is not much more helpful because the error term uYnt
is not observed. Instead of that, we have to rely upon (39). However, as the regressor
Ynt of (39) is correlated with uXnt when both error terms uXnt and uYnt are correlated (see
(55)), the variable Ynt is not a valid instrument for estimating the parameters of the
system.
Imposing E

£
uXnt|wnt, znt, t

¤
= 0 on the idiosyncratic error term of (39) allows to obtain

consistent estimates for

E [Xnt|wnt, znt, t] = E
h
X∗n

³
wnt, Y − uYnt, t

´
|wnt, znt, t

i
≡ X∗n

³
wnt, bY (wnt, znt, t) , t

´
, (56)

which implicitly defines the function bY : the existence of the function bY is a conse-
quence of the mean value theorem for integration. In general, however, bY (wnt, znt, t) 6=
E [Ynt|wnt, znt, t]. The following result states that function bY coincides with the function
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Y N we are looking for:

Result 4. Under the above assumptions,bY (wnt, znt, t) = Y N (wnt, znt, t) . (57)

Indeed,

E [Xnt|wnt, znt, t] = X
∗
n

³
wnt, Y

N
n (wnt, znt, t) , t

´
= X∗n

³
wnt, bYn (wnt, znt, t) , t

´
.

The first equality follows from the definition of the conditional mean of Xnt and (55); the
second equality is a consequence of the definition (56) of bY . Result 4 then follows from
the (plausible) assumption that X∗n is locally monotone in Y (on an interval covering Y N

and bY ). Thus, the conditional mean function E [X∗n (wnt, Ynt, t) |wnt, znt, t] can be used
for identifying the substitution matrix ∂X∗/∂w>

¡
wnt, Y

N
nt , t

¢
and the vector of expan-

sion effects ∂X∗/∂Y
¡
wnt, Y

N
nt , t

¢
. The implicit function theorem can then be relied upon

for obtaining estimates for ∂Y N/∂w> (w, z, t) . Result 4 justifies the use of the moments
E
h
uXjntZnt

i
= 0 (contemporaneous exogeneity) with Znt = I (wnt, znt, t) a K-vector of in-

struments, and I denoting arbitrary square integrable functions of (wnt, znt, t). However,
Result 4 does not claim that the only valid instruments are provided by Znt, but only
that these instruments should be considered in order to obtain an implicit function bY
compatible with the theoretical model.

7. Empirical results
The data we use are described in Appendix B.6 We present the empirical results in
five stages; firstly those concerning the (inverse) output demand function; second, those
relative to the rate of return to scale and markups; third, all results describing shifts
along the isoquant (from point A to B on Figure 1), and fourth, results corresponding
to the total impact of input price changes on input demand and output supply (from
point A to C on Figure 1).
When the regressions are expressed in level as in (37)-(40), the Durbin Watson sta-

tistics for first order serial correlation of unt are found to be extremely low (near to 0.3
in average), suggesting that Cov [untun,t−1|Znt] 6= 0. In order to try to avoid spurious
regression problems, the parameters are estimated after expressing all regressions in
first differences. So, the NJ∗ observations for the first year are lost, where J∗ = J + 3
denotes the number of regressions. The vector of differenced error terms is denoted
by vnt ≡ unt − un,t−1 and the moment conditions are given by E

h
vntZ

>
n,t−1

i
= 0, where

Znt denotes the instruments, and comprises wnt, lnwnt, t lnwnt, (lnwj,nt)
2 as well as

N industry and T − 2 time dummies. The discussion leading to Result 4 suggests
E
h
un,t−1Z>n,t−1

i
= 0, and so the moment conditions E

h
vntZ

>
n,t−1

i
= 0 are likely to be

fulfilled if E
h
untZ

>
n,t−1

i
= 0.7 The same instruments are used for determining all GMM

6 The results are obtained using TSP 5.0.
7 We also experiment with the moment conditions E ∆unt∆Z>

n,t = 0, however, the overidentification test rejected the
validity of the instruments at the 1% threshold. Given the fact that E ∆un,tZ

>
n,t−1 = 0 was not rejected, the rejection

of E ∆unt∆Z>
nt = 0 implies that E ∆un,tZ

>
nt 6= 0, which may be due to violation of strict exogeneity.
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estimators, they generate 99× J∗ orthogonality conditions.

7.1 The inverse demand function

Table 1 reports estimates of the inverse output demand function (38), using different
estimations methods: the regression is either in levels as in (38), in first difference (FD)
or with AR1 residuals (AR1). There are N (T − 1) = 936 observations used in each single
equation regression for estimating 72 parameters (among which 69 dummy variables).
The AR1 regression assumes that uPnt = ρuPn,t−1 + nt with nt iid and comprises one
additional parameter ρ. The upper panel of Table 1 reports statistics obtained from
estimating the inverse output demand’s parameters from the single regression (38). The
lower panel reports these estimates when all J∗ regressions are simultaneously run.
The estimated values of the parameters exhibit some differences from one estimation

method to the other. The sensitivity of output price to output quantity is found to be
quite important: the inverse demand elasticity with respect to output, ε (P ;Y ) , ranges
between −0.20 and −0.86 and is significantly different from zero. We also tested for
industry specific heterogeneity in the elasticities by including heterogeneous parameters
ηY for each industry in the inverse demand specification (41). In all cases (FD, AR1),
the test could not reject the homogeneity hypothesis (ηY,n = ηY ).
There is relatively little difference between the regressions in levels: the nonlinear

least squares which neglects endogeneity of Y and GMM using Zn,t−1 as instruments
(Table 1 lines 2 and 4) yield quite similar results. In the GMM regression in levels, the
orthogonality between uPnt and Zn,t−1 is rejected, which casts doubts on the validity of
the identifying restrictions E

h
untZ

>
n,t−1

i
= 0.

The main difference is between the estimates in levels and in FD: both the estimates
of the parameters and of their t-value are different. In the nonlinear regression, the
estimated value of the inverse demand elasticity ε (P ;Y ) is divided by three when the
estimation is in FD (Table 1, line 2). This results has dramatic implications for the
estimated markup as discussed below.
The results for the inverse output demand obtained from the system SUR and GMM

regressions are reported in the lower panel of Table 1. These results are relatively similar
to the single equation results, but the t-values are often higher due to efficiency gains
of system regressions. The whole system comprises 291 parameters to be estimated
on the basis of N (T − 1)J∗ = 7488 observations. The same instruments are used for
all equations. So there are 99 × 8 = 792 orthogonality conditions imposed for parame-
ter identification. The convergence of the SUR estimator rests on the validity of the
exogeneity of the output level, an assumption which is theoretically dubious and em-
pirically rejected when it is tested using the GMM estimator. The regressions in levels,
both in the SUR and GMM case, yield implausibly high t -values. This suggests that
spurious regression contaminates the regressions in levels, leading to underestimated pa-
rameter variances, and also explaining the rejection in the overidentification tests in the
regressions in levels. All these remarks lead us to prefer GMM estimates of the model
expressed in first differences. With this estimator, the median value of the estimated
inverse output demand elasticity is about −0.85 in the system regressions, somewhat
below the single regression result of −0.70. There are also some differences between the
estimated value of Y ∂P 2/∂Y 2, which has some implications for testing the hypothesis of
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the existence of a Cournot equilibrium. This gap may be due to problems in identify-
ing an inverse output demand equation when only information on p and Y are used in
conjunction with industry specific dummies. Including information on the cost function
helps to identify what we are looking for. The overidentification test does not reject the
instruments’ validity in the FD and AR1 cases, which is conform to Result 4. We do
not find contradictions between the estimates in FD and AR1, which is not surprising
since bρ = 0.979 in the AR1 regression and since the FD specification is statistically not
rejected.

Table 1: Estimates for the inverse output demand
Estimation method ηY ηY Y ηY t ε (P ;Y ) ∂P/∂Y Y ∂P 2/∂Y 2 OIT
Single level, NLSQ −0.293

(−2.2)
−0.103
(−2.7)

0.005
(3.7)

−0.620
(−16.3)

−0.004
(−16.3)

0.006
(12.6)

—

equation FD, NLSQ 0.031
(1.0)

0.003
(0.3)

−0.004
(−6.2)

−0.197
(−3.8)

−0.001
(−3.8)

0.001
(3.5)

—

level, GMM −1.019
(−6.9)

0.111
(2.4)

−0.002
(−1.1)

−0.590
(−14.8)

−0.004
(−14.8)

0.007
(12.5)

.00

FD, GMM −0.089
(−0.9)

−0.033
(−0.9)

−0.001
(−0.6)

−0.704
(−4.2)

−0.005
(−4.2)

0.005
(3.8)

.49

AR1, GMM −0.080
(−0.8)

−0.032
(0.7)

−0.005
(−1.9)

−0.749
(−5.4)

−0.005
(−5.4)

0.006
(4.7)

.58

System level, SUR −0.324
(−3.98)

−0.077
(−3.3)

0.003
(4.3)

−0.575
(−19.0)

−0.004
(−19.0)

0.006
(15.1)

—

FD, SUR −0.098
(−3.3)

0.003
(0.4)

−0.003
(−5.2)

−0.277
(−5.0)

−0.002
(−5.0)

0.002
(4.9)

—

level, GMM −0.740
(−11.9)

0.037
(1.6)

−0.000
(−0.6)

−0.595
(−22.7)

−0.004
(−22.7)

0.006
(21.1)

.00

FD, GMM −0.797
(−3.4)

−0.544
(−5.4)

0.021
(3.9)

−0.855
(−4.2)

−0.006
(−4.2)

0.020
(4.0)

.08

Columns 2 to 7 report the median value of the corresponding statistic over all observations as well as the
median Student statistic in parentheses.

The last column reports the p-value of the overidentification test.

Turning to the sufficient conditions for the existence of a Nash equilibrium satisfied,
in all cases, the inverse output demand is decreasing and ∂P 2/∂Y 2 is found to be sta-
tistically significant and positive, and so the inverse demand is not concave. Columns 6
and 7 of Table 1 suggest that ∂p/∂Y + Y ∂p2/∂Y 2 is slightly positive in most cases (un-
reported results show that it is significantly positive for the bulk of the observations).
The weaker aggregate condition (18), which also ensures existence of the Cournot equi-
librium, is numerically satisfied for values of the concentration index λa below 0.6 in the
single regression, and λa below 0.1 for the parameter values obtained for the system of
regressions. This finding confirms the plausibility of Presumption 1. With all specifica-
tions, the alternative sufficient condition for the existence of Cournot equilibrium, (16),
is statistically rejected for the bulk of the observations.

7.2 Rate of return to scale and markup

In order to avoid that misspecification of the pricing and output demand equations
(37), (38) contaminates the estimation of the rate of return to scale and the markup,
we first consider only the system of 5 input demands (39) and the cost function (40) for
parameter estimation. Then we consider the whole system (37)-(40). We also assess the
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sensitivity of the empirical results with respect to the regression method used, and pro-
vide results based on seemingly unrelated regressions (SUR) which neglects endogeneity
of the output level, and GMM estimates, where the choice of the instruments is guided
by Result 4 above.

Table 2a: SUR estimates of the rate of returns to scale, markup, and λa

Estimation C1 ≡ 0 C1 6= 0
method Quartile ε (C;Y ) p/ (∂C/∂Y ) λa ε (C;Y ) p/ (∂C/∂Y ) λa

SUR 0.25 0.36
(−3.9)

1.09
(0.2)

— 0.42
(−8.8)

1.15
(0.7)

—

(39)-(40) 0.50 0.66
(−0.8)

1.46
(0.8)

— 0.62
(−3.9)

1.66
(1.8)

—

level 0.75 0.89
(−0.9)

2.20
(2.1)

— 0.89
(−0.9)

2.45
(3.6)

—

SUR 0.25 0.42
(−7.0)

1.32
(1.5)

0.49
(3.5)

0.35
(−12.0)

1.58
(2.3)

0.42
(2.6)

(37)-(40) 0.50 0.56
(−4.8)

1.84
(2.1)

0.80
(4.8)

0.50
(−8.0)

2.12
(3.3)

0.83
(5.8)

level 0.75 0.74
(−2.7)

2.36
(3.6)

1.06
(6.8)

0.68
(−4.0)

2.98
(5.1)

0.99
(7.5)

SUR 0.25 0.61
(−5.4)

1.13
(0.8)

— 0.64
(−5.1)

1.14
(0.9)

—

(39)-(40) 0.50 0.79
(−2.5)

1.29
(1.9)

— 0.81
(−2.6)

1.28
(2.1)

—

FD 0.75 0.90
(−0.9)

1.64
(3.3)

— 0.90
(−0.9)

1.58
(3.4)

—

SUR 0.25 0.56
(−8.7)

1.32
(2.1)

1.84
(1.5)

0.62
(−8.7)

1.29
(2.1)

1.20
(1.9)

(37)-(40) 0.50 0.71
(−4.3)

1.46
(3.0)

1.42
(3.0)

0.75
(−3.9)

1.37
(3.0)

1.77
(3.1)

FD 0.75 0.78
(−2.9)

1.83
(4.7)

1.91
(4.8)

0.80
(−2.4)

1.69
(4.6)

2.44
(4.9)

The table reports the 0.25, 0.50 and 0.75 quantiles (over the N(T − 1) = 936 observations) of the
estimated values of ε (c, y), p/ (∂c/∂y) and λa. The t-statistics for the hypotheses ε (c, y) = 1 ,

p/ (∂c/∂y) = 1 and λa = 0 appear in parentheses.

The equation system is nonlinear and we find several parameter values corresponding
to local minimum of the SUR and GMM objective function, depending on which residual
variance matrix and which parameters’ starting values are chosen. In order to compare
the results from different regressions we use the same starting values in all regressions.
The residual variance matrix is obtained from the residuals of a first stage regression in
which the residual variance matrix was set to the identity.
Different quantiles (over years and industries) of the estimated values of the rate of

return to scale and markup are reported in Tables 2a and 2b. According to the SUR-
results there is strong evidence for high rates of return to scale, high markups and high
Hirschman-Herfindahl indices. The median value of bε (C;Y ) is comprised between 0.50
and 0.81 which correspond to high returns to scale. The median gap between price and
marginal cost is ranging between 28 and 66%, and the median HH-index of concentration
is comprised between 0.80 and 1.77! The very high estimates for bλa occur both in the
representative firm model (C1 ≡ 0) and the aggregate model. This is surprising in the
light of Result 3(ii), which states that λa is identified when C1 ≡ 0. This result is actually
due to the fact that λa and ε (P ;Y ) play a symmetric role in the nonlinear regression
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(37), and so, ceteris paribus, small estimates (in absolute value) of ε (P ;Y ) tend to be
compensated by large values of λa. For first difference, Table 1 reports that the NLSQ
estimates of ε (P ;Y ) is indeed quite small, which explains why bλa is quite large in Table
2a. There are some relatively small differences in the results obtained from estimated
the limited set of regressions (39)-(40) or the whole set of regressions (37)-(40). Both
representative firm (C1 ≡ 0) and aggregate model (C1 6= 0) yields relatively similar
results.
Result 4 suggests to use instrumental variables for the estimation, and so we turn

to the GMM estimates reported in Table 2b. The same specifications as in Table 2a
are now estimated using Zn,t−1 as instruments, and we minimize the length of either
E
h
untZ

>
n,t−1

i
or E

h
vntZ

>
n,t−1

i
in the appropriate metric.

In levels, the overidentification tests rejects the validity of the instruments Zn,t−1. The
t-statistics are quite high, and we find a strong evidence for increasing returns to scale
and markup pricing. In first differences, however, the overidentifying restrictions are not
rejected at the 1% threshold. The t-statistics become much smaller in absolute value.
When comparing the estimates based on the regression system (39)-(40) and those of
the whole system (37)-(40), we found relatively small differences and no contradictions.
Note however that the only specification which is not rejected at the 5% level by the
overidentification test is for C1 6= 0, first difference, and the complete system of equations.
The inclusion of additional observations through the consideration of the further re-

gressions (37)-(38), allows us to obtain somewhat higher t-values, without really affecting
the level of the estimates.
Although there is evidence for increasing returns to scale (IRS), since most estimates

of ε (C, Y ) are smaller than one, the IRS hypothesis is rejected for more than 50% of the
observations. The results also confirm the existence of markup pricing (the median value
of p/ (∂C/∂Y ) is 1.17), but the markup is significantly greater than one for only about
25% of the observations. These results are broadly compatible with those of Diewert
and Fox (2008), who work with the same dataset, and also found strong evidence for
increasing returns to scale. Our SUR estimates of the model specified in levels are quite
close to those of Diewert and Fox. Our GMM results for the model in FD are somewhat
more contrasted and suggest that many observations (about 50%) are not incompatible
with the assumption of constant returns to scale, but at the same time, there is also
evidence for increasing returns to scale for at least 25% of the observations.
Table 2b also reports the 0.25, 0.5 and 0.75 quantiles of the estimated HH-index

of concentration and its corresponding t-value. The median value of the estimated
HH-index is 0.17 and it is significantly different from zero for more than 50% of the
observations. These estimates of λa are more plausible than those reported in Table
2a, which is directly related to the fact that the estimate of the inverse output demand
elasticity ε (P ;Y ) obtained with GMM is more realistic. If we integrate this estimated
value of λa into our formulation (18) of the existence of the Cournot-Nash equilibrium,
we cannot reject the existence assumption. This empirical finding provides empirical
support for Result 2.
Table 3 reports the empirical correlation (over 18 industries) between the average

value (over time) of λa, ε (C, Y ) , p/ (∂C/∂Y ) , ε (P, Y ) , sπ, saπ. Few correlations are above
0.3. These correlations suggest that the higher the implicit HH-index λa, the higher
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Table 2b: GMM estimates of the rate of return to scale, markup, and λa

Estimation C1 ≡ 0 C1 6= 0
method Quartile ε (C;Y ) p/ (∂C/∂Y ) λa OIT ε (C;Y ) p/ (∂C/∂Y ) λa OIT

GMM 0.25 0.43
(−5.3)

0.95
(−0.5)

— 0.18
(−4.5)

0.48
(−1.5)

—

(39)-(40) 0.50 0.66
(−1.7)

1.51
(0.8)

— 0.00 0.67
(−2.6)

1.00
(0.0)

— 0.00

level 0.75 1.07
(0.8)

2.33
(2.6)

— 1.21
(0.7)

1.68
(2.1)

—

GMM 0.25 0.73
(−6.0)

0.97
(−0.3)

0.11
(1.2)

0.29
(−8.3)

0.81
(−1.8)

−0.22
(−1.6)

(37)-(40) 0.50 0.87
(−1.8)

1.17
(1.7)

0.20
(3.4)

0.00 0.74
(−2.7)

1.15
(0.8)

0.12
(0.9)

0.00

level 0.75 1.00
(0.0)

1.35
(4.9)

0.37
(8.1)

1.02
(0.3)

1.83
(2.7)

1.00
(5.1)

GMM 0.25 0.59
(−2.8)

0.91
(−0.3)

— 0.59
(−2.1)

0.91
(−0.2)

—

(39)-(40) 0.50 0.88
(−0.7)

1.19
(0.6)

— 0.03 0.92
(−0.5)

1.05
(0.3)

— 0.04

FD 0.75 1.13
(0.4)

1.78
(1.3)

— 1.11
(0.3)

1.68
(1.1)

—

GMM 0.25 0.64
(−5.6)

0.97
(−0.2)

0.05
(0.6)

0.64
(−3.5)

1.02
(0.1)

0.07
(0.7)

(37)-(40) 0.50 0.89
(−1.2)

1.14
(0.7)

0.11
(2.5)

0.03 0.87
(−1.1)

1.17
(0.8)

0.13
(2.5)

0.08

FD 0.75 1.03
(−0.2)

1.48
(2.1)

0.20
(4.1)

0.99
(0.0)

1.54
(1.9)

0.23
(5.1)

The table reports the 0.25, 0.50 and 0.75 quantiles (over the N(T − 1) = 936 observations) of the estimated

values of ε (c, y), p/ (∂c/∂y) and λa. The t-statistics for the hypotheses ε (c, y) = 1 , p/ (∂c/∂y) = 1 and λa = 0

appear in parentheses. The OIT column reports the p-value of the overidentification test.

Table 3: Correlation between different estimated measures of imperfect competition
λa ε (C, Y ) p/ (∂C/∂Y ) ε (P, Y ) sπ

ε (C, Y ) −0.77
p/ (∂C/∂Y ) −0.25 0.17
ε (P, Y ) 0.04 −0.28 −0.04

sπ 0.20 0.10 −0.26 −0.20
saπ 0.31 0.00 −0.22 −0.11 0.86

The entries correspond to the empirical correlation between the estimated
values of the variables of the respective column and line. In a first stage, the
variables are averaged over time, then the correlation is calculated over 18
industries, using only within industry variations of averages for calculating
the correlation.

The values used for sπ and saπ are those depicted in Figure B4.
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is the rate of return to scale 1/ε (C, Y ) and there is a strong statistical relationship
between these measures as corr (λa, ε (C, Y )) = −0.77. We find that industries with a
higher rate of return to scale have relatively low markups. This seems surprising at
first sight, just as the finding of no important correlation between the profit rate and
the rate of return to scale. Similarly, the correlation between the markup and the
rate of profit is found to be negative. There is, however, some rationale behind these
results: industries exhibiting IRS have to adopt markup pricing behavior in order to
avoid losses, but do not necessarily benefit from a high profit rate, notably because they
may not be able to capture the consumers of their product (which is consistent with
corr (ε (C, Y ) , ε (P, Y )) = −0.28).

7.3 Test of the representative firm assumption

As discussed in Sections 5 and 6, the representative firm model is obtained for C1 (w, Y, t)
homogeneous of degree one in w, which is the case iff (48) is satisfied, but this hypothesis
is statistically rejected at the 1% threshold.
The value of the different types of aggregation bias, expressed in percentage of the

corresponding input quantity (or marginal cost) are reported in Table 4 for FD-GMM.
The bias affecting capital, labour and material input demands is small and insignificant.
The biases related to energy and service input demand are important, but they are not
significant either. Shephards’ lemma (BCj = 0) and the hypothesis that C is homoge-
neous of degree zero in input prices (w>BCj = 0) are rejected for only about 20% of
the observations (but these hypotheses are rejected globally). Although there is some
statistical evidence for the existence of aggregation biases, neglecting them has almost
no consequences on the empirical results obtained: the left and right parts of Tables 2
are very similar.

Table 4: Estimates of the aggregation biases (FD GMM)
Bias wk w we wm ws Y

BCj −0.00
(−0.3)

−0.07
(−1.4)

0.60
(1.6)

−0.03
(−1.3)

0.69
(1.7)

−0.03
(−0.2)

The table reports the median value of the estimated aggregation bi-

ases, expressed in percentage of the corresponding input quantity. The

aggregation bias on marginal costs, BCY , is expressed in percentage

of marginal cost. The t-statistic for the null that BCj = 0 appears in

parentheses.

The bias affecting marginal costs represents about 3% of marginal cost (and about 4%
of the measure of the return to scale) and is also statistically insignificant. The negative
estimate of BCY means that market share reallocations (changes in the distribution of
output shares) following an increase in aggregate output Y only contributes marginally
to reduce aggregate cost. If we rewrite, the conditional expectation of (37) as

∂C

∂Y

Y

C
=

PY

C
+

PY

C
λaε (P ;Y ) +

Y

C
BCY ,

and replace the different terms of this last relationship with the median value of their
corresponding estimates, we obtain

0.87 ' 1.06− 0.13− 0.04.
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So, an alternative measure of the rate of return to scale, which excludes the cost reduc-
tion through the shift in the distribution of market shares, is given byd∂C

∂Y

Y

C
− Y

C
bBCY = 0.91

which is now closer to constant returns to scale for most observations. Thus, this
framework provides a partial explanation for a well-documented empirical contradiction
between results obtained frommicroeconomic andmore aggregated data (see for instance
Basu and Fernald (1997), Morrison-Paul and Siegel (1999)).

7.4 Substitution effect

Table 5 reports the median value of the input demand elasticities over the 18 industries
and over all years. These elasticities are calculated for a given aggregate output level,
and correspond to the aggregate substitution effect. They give the sensitivity of the
aggregate input demand ε

³
X∗j ;wi

´
and differ somewhat from ε

³
X∗
j ;wi

´
which exclude

shifts in the distribution of market shares.

Table 5: Elasticities for the aggregate substitution effect

ε
³
X∗j ;wi

´
Xk X Xe Xm Xs

wk −0.21
(−1.1)

0.00
(0.4)

0.14
(4.1)

0.00
(0.2)

0.08
(2.9)

w 0.23
(2.5)

−0.27
(−4.4)

−0.15
(−0.6)

0.09
(1.3)

−0.12
(−0.7)

we −0.12
(−3.1)

−0.00
(−0.2)

−0.36
(−1.2)

0.06
(4.3)

0.03
(0.7)

wm 0.21
(2.5)

0.14
(2.3)

0.24
(1.2)

−0.28
(−6.7)

0.47
(3.4)

ws −0.08
(−1.0)

0.12
(1.8)

−0.06
(−0.5)

0.17
(2.7)

−0.76
(−2.3)

Y 0.40
(1.9)

0.76
(4.6)

0.49
(1.2)

0.92
(5.8)

0.70
(2.2)

t −0.005
(−0.5)

−0.014
(−2.4)

0.012
(1.4)

−0.008
(−1.7)

0.014
(1.2)

The table reports the median value of the elasticities over all

observations and the corresponding t-statistic in parentheses.

The upper panel of Table 5 gives the input price elasticities with the own-price elastic-
ities on the main diagonal. It can be seen that the own-price elasticities are nonpositive,
which is consistent with ε

³
X∗
j ;wi

´
≤ 0.

Most of the inputs are found to be substitutes, but substitution is rather limited as
all cross price elasticities are below 0.25 in absolute value. Only two inputs are found
to be significantly complements: capital and energy for a change in the energy price.
Notice however, that this result is not symmetric: energy and capital are substitutes
for changes in the capital price. These findings, however, are not contradictory: our
aggregate model does not imply that matrix ∂X∗/∂w> is symmetric, because increases in
energy and capital input prices may have different impacts on the distribution of market
shares f (β|w, Y, t) . So, according to (43), input demands can react asymmetrically to
cross price variations. This empirical finding could explain why the literature reports
a variety of contradictory results on the sign of this elasticity (see for instance Frondel

28



and Schmidt, 2002). The lower panel of Table 5 reports the impact of a marginal change
in output ε

³
X∗j ;Y

´
and of time ε

³
X∗j ; t

´
.8 All conditional input demands are found to

be nondecreasing in the output level. Technological change is not neutral, but labour
saving and energy intensive.

7.5 Expansion effect

The amended Novshek type of assumption (18) is not rejected for the bulk of the obser-
vations. So, we expect that the Cournot equilibrium exists and that the LCS principle
is satisfied at the aggregate level of the industry, in accordance with Presumption 1.
Table 6 comprises the median value of the estimates for the total impact of input prices

on equilibrium output quantity Y N and price pN and input demands XN . The first row
of Table 6 shows that the median values of ε

¡
Y N , wh

¢
are all negative, which confirms

Presumption 1(ii), but they are not significantly different from zero. There is also some
weak evidence for the inflationary impact of rising input prices as all ε

¡
pN , wh

¢
are

found to be nonnegative (but not significantly). This lack of precision is rather common
in applications using GMM. Here it is due to the fact that the denominator of (54),
which was never found to be significantly positive, is not always significantly negative.
The median value of the denominator is estimated at −0.002 with an asymptotic t-
value of −1.4. A careful inspection of the different terms of the denominator shows that
∂2C/∂Y 2 is estimated to be significantly negative, and so the marginal cost is found to
be decreasing. This lack of precision also contaminates the estimates of ε

³
XN

j ;wi

´
.

For the median values reported in Table 5, the LCS principle is satisfied: we can
approximate the unrestricted demand elasticities by

ε
³
XN ;w

´
' ε (X∗;w ) + ε (X∗;Y ) ε

³
Y N , w

´
.

As the median values of ε
¡
X∗;Y

¢
and ε

¡
Y N , w

¢
are positive and nonpositive, respec-

tively (Table 6), it turns out that ε
¡
XN ;w

¢
≤ ε

¡
X∗;w

¢
. However, the median values

of the unrestricted elasticities reported in Table 6 do not always satisfy the LCS prin-
ciple due to sampling variation. Notice that the input demand functions XN

j are not

homogeneous of degree zero in w and that most cross price elasticities ε
³
XN

j ;wi

´
are

found to be negative, due to the fact that the expansion effect (which is negative) is
important in absolute value. So, expansion, or price induced change in the output level,
matters for explaining changes in aggregate input demand.
How can the mostly negative elasticities of Table 6 be reconciled with the upward

trending quantities reported on Figure 2? Table 5 showed that most of the growth in
input demands is due to output growth, output growth in turn is hampered by input
price increases, and rises with shifts in output demand.
What about the empirical validity of Presumption 2? According to this statement

there is no systematic link between the degree of market power and the strength of
aggregate input demand adjustment. Table 7 reports the empirical correlation (over
sectors) between the mean (over time) of the estimated input demand elasticities and
some indicators of imperfect competition. For all inputs except energy, there is some

8 In fact, ε X∗j ; t is a growth rate or a semi-elasticity defined as ε X∗j ; t ≡ ∂ lnX∗j/∂t.
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Table 6: Elasticities for total aggregate impact of input price changes

ε
³
XN

j ;wi

´
Y p Xk X Xe Xm Xs

wk −0.01
(−0.3)

0.01
(0.3)

−0.18
(−0.7)

−0.02
(−0.9)

0.11
(2.2)

−0.02
(−0.8)

0.04
(1.4)

w −0.22
(−0.8)

0.19
(0.9)

0.12
(0.6)

−0.37
(−1.8)

−0.35
(−0.7)

−0.09
(−0.3)

−0.26
(−0.6)

we −0.04
(−0.7)

0.05
(0.8)

−0.12
(−1.8)

−0.03
(−0.9)

−0.44
(−1.0)

0.02
(0.7)

−0.04
(−0.5)

wm −0.37
(−1.5)

0.45
(1.7)

−0.01
(−0.9)

−0.20
(−0.9)

−0.06
(−0.1)

−0.68
(−1.9)

0.03
(0.7)

ws −0.06
(−0.6)

0.07
(0.6)

−0.12
(−0.9)

0.01
(0.1)

−0.13
(−0.5)

0.04
(0.4)

−0.67
(−1.4)

The table reports the median value of the elasticities over all observations and

the corresponding Student statistic in parentheses.

Table 7: Correlation between expansion effects and indicators of imperfect competition

Xk X Xe Xm Xs

λa 0.22 0.31 −0.03 0.20 0.14
ε (C, Y ) −0.18 −0.42 −0.00 −0.07 0.04

p/ (∂C/∂Y ) 0.09 −0.05 0.19 −0.00 −0.07
ε (P, Y ) 0.15 0.08 −0.12 0.11 0.13

sπ −0.19 −0.07 −0.05 −0.17 0.04
The entries correspond to the empirical correlation between the es-

timated values of the expansion effects ε
¡
X∗j ;Y

¢
ε
¡
Y N , wj

¢
and

some indicators of imperfect competition. In a first stage, the

variables are averaged over time, then the correlation is calcu-

lated over 18 industries, using only within industry variations of

averages for calculating the correlation.
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positive statistical correlation between ε
³
X∗j ;Y

´
ε
¡
Y N , wj

¢
and ε (P, Y ) , which means

that on average, industries with a lower ε (P, Y ) < 0 react more intensively to own price
changes. This result is somewhat surprising, as the converse result was expected to hold
at the firm level (see the quotation of Cahuc and Zylberberg in Section 4.2). We also
find that expansion effects are somewhat smaller (in absolute value) in industries with
high profit rates.

8. Conclusion
Output adjustments have important consequences on input demands. This impact, how-
ever, is rarely quantified in economic contributions, because with imperfect competitive
output markets, increasing returns to scale and externalities disturb the usual represen-
tative firm’s comparative statics. This paper makes three contributions to the literature:
(i) it derives the circumstances under which the LCS principle holds in an aggregate
Cournot economy with heterogeneous firms; (ii) it provides a framework amending the
representative firm model for the specification of aggregate input demand and output
supply functions; (iii) it shows that empirically the LCS principle is inherited at the
level of two-digit US manufacturing industries.
Empirical results show that, in US manufacturing, input substitution is rather limited

for a given output level. Output adjustments imply further important changes in the
input mix. We find empirical support for increasing returns to scale and markup pricing
of moderate size. This is important for understanding aggregate growth, investment
and employment. There is, however, much heterogeneity over industries and time, and
about 50% of the observations are compatible with a rate of returns to scale near to
one, and a markup close to zero.
Aggregation effects arise through shifts of market shares over firms within an industry.

These shifts seem to play a rather small but significant role for explaining the evolution
of aggregate input demands. With only aggregate data at hand, however, these effects
are difficult to identify with precision. Despite theoretical and empirical support in
favor of identification, the empirical results turn out to be sensitive to the choice of
specification and instruments.

9. Appendix A: Proof of the Results
Discussion of Presumption 1. Claim (i) is a direct consequence of Result 1.
Claim (ii): differentiating

P
³
Y N , z

´
+

∂P
¡
Y N , z

¢
∂y

yNh =
∂ch

¡
w, yNh

¢
∂y

with respect to w, we obtain
∂P

∂y

³
Y N , z

´ ∂Y N

∂w
+

∂2P

∂y2
∂Y N

∂w
yNh +

∂P

∂y

∂yNh
∂w

=
∂x∗h
∂y

+
∂2ch
∂y2

∂yNh
∂w

.

Taking market-shares as weights, the weighted sum of this relationship over the firms
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yields

∂P

∂Y

³
Y N , z

´ ∂Y N

∂w
+

∂2P

∂Y 2
∂Y N

∂w
Y N

HX
h=1

Ã
yNh
Y N

!2
+

∂P

∂Y

HX
h=1

∂yNh
∂w

yNh
Y N

(58)

=
HX
h=1

∂x∗h
∂yh

yNh
Y N

+
HX
h=1

∂2ch
∂y2

∂yNh
∂w

yNh
Y N

(59)

Let us denote the Hirschman-Herfindahl index of concentration (at Cournot equilibrium)
by

λ ≡
HX
h=1

Ã
yNh
Y N

!2
.

Notice that
HX
h=1

∂yNh
∂w

yNh
Y N

= Y N 1

2

∂λ

∂w
+ λ

∂Y N

∂w
.

Moreover,

cov

µ
∂2ch
∂y2

yN

Y N
,
∂yN

∂w

¶
=
1

H

HX
h=1

∂2ch
∂y2

∂yNh
∂w

yNh
Y N
− 1

H

∂Y N

∂w

1

H

HX
h=1

∂2ch
∂y2h

yNh
Y N

.

These expressions can be substituted into (58) for obtaining:

∂Y N

∂w
=

PH
h=1

∂x∗h
∂yh

yNh
Y N
− ∂P

∂Y

Y N

2

∂λ

∂w
+Hcov

µ
∂2c

∂y2
yN

Y N
,
∂yN

∂w

¶
(1 + λ)

∂P

∂Y
+ Y Nλ

∂2P

∂Y 2
− 1

H

PH
h=1

∂2ch
∂y2

yNh
Y N

. (60)

The numerator is likely to be positive, because (i) most firms have normal input
demands (∂x∗h/∂yh ≥ 0 for most h), (ii) the inverse output demand function is likely
to decrease in Y and the Hirschman-Herfindahl index to increase in w, and (iii) the
covariance term is likely to be positive by (5) and (7). Notice that this covariance term
is identically zero when firms are identical, or when they have constant returns to scale
(as in Example 1). In order to show that the denominator is negative, let us aggregate
the inverse of (5) to obtain:

−
HX
h=1

∂2ch
∂y2h

yNh
Y N

< −2∂P
∂Y
− ∂2P

∂Y 2
Y Nλ.

This expression can then be used for majoring the denominator of (60):

(1 + λ)
∂P

∂Y
+ Y Nλ

∂2P

∂Y 2
− 1

H

HX
h=1

∂2ch
∂y2

yNh
Y N

<

µ
1 + λ− 2

H

¶
∂P

∂Y
+

µ
1− 1

H

¶
Y Nλ

∂2P

∂Y 2

≤
µ
1− 1

H

¶µ
∂P

∂Y
+

∂2P

∂Y 2
Y Nλ

¶
. (61)

where the last inequality follows from λ ≥ 1/H ≥ 0 and ∂P/∂Y ≤ 0. Then, (17) implies
that (61) and the denominator in (60) are negative and so ∂Y N/∂w ≤ 0.
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From the definition of XN ,

XN (w, z) ≡
HX
h=1

xNh (w, z) =
HX
h=1

x∗h

³
w, yNh (w, z)

´
=

HX
h=1

xoh

³
w, Y N

−h (w, z) , z
´
,

it follows that

∂XN

∂w>
(w, z) =

HX
h=1

∂x∗h
¡
w, yNh

¢
∂w>

+
HX
h=1

∂x∗h
¡
w, yNh

¢
∂y

∂yNh (w, z)

∂w>
(62)

=
∂X∗

∂w>

µ
w,
n
yNh

oH
h=1

¶
+

Ã
1

H

HX
h=1

∂x∗h
¡
w, yNh

¢
∂y

!
∂Y N (w, z)

∂w>
+Hcov

Ã
∂x∗h

¡
w, yNh

¢
∂y

,
∂yNh (w, z)

∂w>

!
where the last equality comes from the definition of the covariance:

cov

Ã
∂x∗h
∂y

,
∂yNh
∂w>

!
=
1

H

HX
h=1

∂x∗h
∂y

∂yNh
∂w>

−
Ã
1

H

HX
h=1

∂x∗h
∂y

!Ã
1

H

HX
h=1

∂yNh
∂w>

!
.

The first matrix ∂X∗/∂w> of the decomposition (62) is negative semidefinite, direct
consequence of the negative semidefinitness of ∂x∗h/∂w

>. The vector ∂Y N/∂w is likely
to be nonpositive by (ii) and when most firms have normal input demands, the matrix³
H−1

PH
h=1 ∂x

∗
h/∂y

´
∂Y N (w, z) /∂w> will also comprise nonpositive components. The

covariance matrix in (62) is likely to have negative entries on its main diagonal by (7).
This shows that it is plausible that ε

³
XN
j ;wj

´
< ε

³
X∗
j ;wj

´
≤ 0. Notice that ∂XN/∂w>

is not symmetric in general.
Claim (iii): let us show that ∂Y o/∂w ≤ ∂Y N/∂w. This inequality follows from the

definition of Y N =
PH

h=1 y
N
h (w, z) =

PH
h=1 y

o
h

¡
w, Y N

−h, z
¢
, which yields

∂Y N

∂w>
=

HX
h=1

∂yoh
∂w>

+
HX
h=1

∂yoh
∂Y−h

∂Y N
−h

∂w>
.

Under condition (18) we have ∂yoh/∂Y−h ≤ 0 for each h, so there exists a number N ≤ 0
such that

∂Y N

∂w>
=

HX
h=1

∂yoh
∂w>

+N
HX
h=1

∂Y N
−h

∂w>
.

This is equivalent to
∂Y N

∂w>
(1−N (H − 1)) = ∂Y o

∂w>
,

with 1 − N (H − 1) ≥ 1 and so it follows that ∂Y o/∂w ≤ ∂Y N/∂w ≤ 0. The statement
(19) in terms of elasticities then directly follows (all these inequalities hold at yNh = yoh
for h = 1, . . . , H). Similarly, the last term

∂XN

∂w>
=

HX
h=1

∂xoh
∂w>

+
HX
h=1

∂xoh
∂Y−h

∂Y N
−h

∂w>
,

is likely to be a matrix with positive entries, hence the claim ε
³
Xo
j ;wj

´
< ε

³
XN
j ;wj

´
≤ 0.

Claim (iv) about output price reactiveness directly follows from the definition (22) of
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PN and claim (iii):

0 <
∂PN

∂w
(w, z) =

∂P

∂Y

³
Y N , z

´ ∂Y N

∂w
(w, z) ≤ ∂P

∂Y

³
Y N , z

´ ∂Y o

∂w

³
w, {yh}Hh=1 , z

´
.

¤
Proof of Result 3. Rewrite (36) as:µ

∂C

∂Y
(w, Y, t)

¶−1µ
P (Y, z) + Y

∂P

∂Y
(Y, z)λa (w, Y, t)

¶
= g (w, Y, t) , (63)

with
g (w, Y, t) ≡ 1− BCY

∂C/∂Y
(w, Y, t) .

Nonidentification means that there exist g∗ 6= g and λ∗ 6= λa such that for any (w, z, t)µ
∂C

∂Y
(w, Y, t)

¶−1µ
P (Y, z) + Y

∂P

∂Y
(Y, z)λ∗ (w, Y, t)

¶
= g∗ (w, Y, t) . (64)

Notice that in the case where the model is not identified, there exists a continuum of
functions λ and g compatible with (63): any λ∗∗ = κλa+(1− κ)λ∗ and g∗∗ = κg+(1− κ) g∗

satisfy (63). (For κ = −λ∗/ (λa − λ∗) we obtain that λ∗∗ = 0 which corresponds to perfect
competition.)
The proof studies the conditions under which g and λa are unique. We follows Lau’s

(1982) demonstration (which considered the case where λa was a constant parameter)
and we include it for the sake of completeness. For any (w, Y, t) , we can write

g∗ (w, Y, t) = F (g (w, Y, t) , Y ) , (65)

for some F. The model is not identified iff F is not the identity. By (63)-(65) we also
have: µ

∂C

∂Y
(w, Y, t)

¶−1µ
P (Y, z) + λ∗ (w, Y, t)

∂P

∂Y
(Y, z)Y

¶
= F

"µ
∂C

∂Y
(w, Y, t)

¶−1µ
P (Y, z) + λa (w, Y, t)

∂P

∂Y
(Y, z)Y

¶
, Y

#
.

Differentiating this equation w.r.t. z yields
∂P

∂z
+ λ∗ (w, Y, t)

∂2P

∂Y ∂z
(Y, z)Y = F1 ·

µ
∂P

∂z
+ λa (w, Y, t)

∂2P

∂Y ∂z
(Y, z)Y

¶
⇔ (1− F1)

∂P

∂z
=

∂2P

∂Y ∂z
(Y, z)Y [λa (w, Y, t)F1 − λ∗ (w, Y, t)] . (66)

In the case where λa and g are not identified, the function F is not the identity and so
F1 6= 1 and λa 6= λ∗.
If z is a scalar, (66) is satisfied for any (w, Y, t, z) iff φ ≡ (1− F1) / (λ

aF1 − λ∗) depends
only upon Y, in which case:

∂2P/∂Y ∂z

∂P/∂z
(Y, z) = φ (Y )

⇔ ∂

∂Y
ln

µ
∂P

∂z
(Y, z)

¶
= φ (Y )

⇔ ∂P

∂z
(Y, z) = t (Y ) r (z)

⇔ P (Y, z) = t (Y ) r (z) + s (Y ) .
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If z is not a scalar, then (66) implies that
∂P/∂zi
∂P/∂zj

(Y, z) =
∂2P/∂zi∂Y

∂2P/∂zj∂Y
(Y, z) .

By Leontief’s (1947) theorem, there exists a real valued function r such that P (Y, z) =
P (Y, r (z)). Sufficiency is shown by Lau (1982, p.97). ¤

10. Appendix B: Data description
This study relies on data provided by the Bureau of Labor Statistics (BLS) for 18
two-digit U.S. manufacturing industries over the period 1949-2001. Unfortunately, this
dataset based on the Standard Industrial Classification (SIC) has been superseded after
the introduction of the North American Industry Classification in 2006. These SIC data
series are not longer updated by the BLS.9

Although it would certainly be better to use data at more disaggregated level, there
exist only few datasets comprising quantities and price indices at such level. This data
set comprises information on the price and quantity of output (p, Y ) and of five inputs
(hence J = 5): capital (wk, Xk), labour (w ,X ), energy (we,Xe), intermediate material
input (wm,Xm), and services (ws, Xs). The evolution of these quantities over time is
depicted in Figure B1 at the aggregate level over all 18 industries. From Figure B1, it
seems clear that these variables (except perhaps the labour input) are nonstationary. In
addition to the endogenous variables, several exogenous variables are also nonstationary.
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Figure B1: The evolution of input quantities. Basis 100 in 1949

The profit rate sπ defined as the ratio of (gross) profit to sales, is an important variable
for assessing the relevance of imperfectly competitive behavior. Computing this variable
is not an easy task because profits depend on the user costs of capital which are not
observed and whose definition is not consensual. Diewert (2003) and Diewert, Harrison
and Schreyer (2004) are useful references on this point. In this paper, we follow Diewert

9 Data are available upon request.
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(2003) and retain the user cost of capital formula,

wk,nt ≡ wi,nt (1 + rt)− Et [(1− δnt)wi,n,t+1] . (67)

This equation shows that the user cost of capital wk is increasing in the discounting
rate rt and decreasing in the expectation errors on investment goods inflation (given by
Et [wi,n,t+1]−wi,n,t+1). According to Diewert (2003), we set rt to 0.05 plus the consumer
price inflation rate and assume no expectation errors on wi,n,t+1. The few values of the
user costs found to be slightly negative (5 out of 954 cases) were replaced with 0.0001.
The time series of the profit rate sπ averaged over all 18 industries is depicted in

Figure B2. In U.S. manufacturing industries, the profit rate is about 5.3 percent on
average over time and industries. This figure is somewhat different from that of Basu
and Fernald (1997) who report an average profit rate of 3 percent. This contradiction
is related to differences in the time period and the industries covered, but certainly also
to the high sensitivity of the user costs of capital with respect to a priori assumptions
upon (i) the expected price change of investment goods and (ii) the discounting rate of
future income streams.
Given the sensitivity of the economic definition of the profit rate with respect to a

priori choices, it appears helpful to complete the picture with the more robust accounting
definition of the gross profit rate, which does not rely on the user cost of capital and
the capital stock, but uses instead investment and investment price:

saπ =
pntYnt −

¡
wi,ntXi,nt + w ,ntX ,nt + we,ntXe,nt + wm,ntXm,nt + ws,ntXs,nt

¢
pntYnt

.

Notation Xi,nt denotes gross investment and wi,nt its price. On average over time and
industries saπ is equal to 8.7 percent, which seems to confirm the rather high level of
profits in US manufacturing.
Average profitability over time and over industries is depicted in Figures B2 and

B3, respectively. The evolution of average profitability (Figure B2) broadly reflects the
business cycle, but there is also a downward trend or a break in this picture: whereas
the average (economic) profit rate was about 7.8 percent over the 1949-1975 period, it
declined to 2.8 percent for the post 1975 period. Such a pattern is actually observed
for many industries (not reported). Figure B3 reports the average level of profitability
over the period 1949-2001 for each industry and shows that profitability varies a lot
across industries. Two industries exhibit a negative average rate of profit: Textile
Mills Products and Primary Metal Industry (SIC numbers 22 and 33). For two other
industries, average profitability exceeds 10 percent: Chemistry & Allied Products and
Petroleum Refining (SIC 28 and 29). See Table B1 for the list of industry names with
their corresponding SIC number.
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Figure B2: Profit rate over time
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Figure B3: Profit rate over industries

Let us now compare the accounting and economic profit rates. In general both con-
cepts diverge mainly because the accounting definition neglects the opportunity cost
of the investment in capital goods and reduces an investment decision with uncertain
returns to a static accounting exercise. From Figure B2, it can be seen that both con-
cepts are quantitatively very close for the 1949-75 period, but the accounting profit rate
becomes much larger than the economic profit rate after 1976. Similarly, Figure B3
shows that on average over the industries, the accounting profit rate is greater than
the economic profit rate. There is a simple relationship between saπ and sπ explaining
these facts. Gross investment is given by Xi,nt = Xk,nt − (1− δnt)Xk,n,t−1. In the steady
state, rt = δt and wi,nt = wi,n,t+1 (the user cost becomes wk,nt = 2δtwi,nt) and the sole
purpose of investment is replacement: Xi,nt = δtXk,nt. It follows that in the steady state
wk,ntXk,nt = 2wi,ntXi,nt and that saπ − sπ = wi,ntXi,nt/ (pntYnt) . In the steady state, the
difference between the accounting and economic profit is given by the investment share
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in turn-over. So saπ provides an easily calculable upper bound for (steady-state) eco-
nomic profits, which helps to understand why saπ > sπ in Figures B2 and B3. The fact
that for the 1949-1975 period, we observed that saπ ' sπ is mainly due to a moderate
nominal interest rate combined with high inflation for the investment goods (so that
wi,nt < wi,n,t+1 in (67)).10

Table B1. The Standard Industrial Classification for U.S. manufacturing industries

SIC No Industry name SIC No Industry name

20 Food & kindred products 30 Rubber and misc. plastics products

21 Tobacco products industry 31 Leather and leather products

22 Textile mill products industry 32 Stone, clay, glass & concrete products

23 Apparel and other textile products 33 Primary metal industries

24 Lumber and wood products 34 Fabricated metal products

25 Furniture and fixtures 35 Industrial machinery and equipment

26 Paper and allied products 36 Electronic & other electric equipment

27 Printing and publishing 37 Transportation equipment

28 Chemical and allied products industry 38 Instruments, clocks, optical goods

29 Petroleum and coal products 39 Other manufacturing industries
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