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1 Introduction

This paper studies the relation between multi-period discrete-time and continuous-time

principal-agent models in the seminal paper by Holmstr�om and Milgrom (1987). The

purpose is to obtain a better understanding of the structural elements underlying the

linearity of optimal incentive schemes in some continuous-time models. We share the

view of Holmstr�om and Milgrom that the nonlinearities or even discontinuities of optimal

incentive schemes that are typical for static principal-agent models are unlikely to be

robust to changes in the models, in particular, to changes that allow for manipulation

of the information required to implement them. However, the argument presented by

Holmstr�om and Milgrom does not make the underlying structure entirely clear, at least

to us.

The Holmstr�om-Milgrom paper involves three di�erent models:

1. A static model, in which the agent chooses a (�nite) vector of probabilities over

possible states of the world. This model is used to show that if the action space of

the agent is su�ciently rich (of \full dimensionality" in the underlying probability

space), then for any action in the interior of the action set, there exists at most one

incentive scheme implementing this action.

2. A multi-period model, which is a T -fold repetition of the static model. It is shown

that if the technology controlled by the agent is stationary and if the principal

and the agent have utility functions with constant absolute risk aversion, then the

optimal incentive scheme in the T -period model is a simple T -fold repetition of the

optimal incentive scheme in the one-period model, with no attention paid to the

order in which the di�erent outcomes arise.

3. A continuous-time model in which the agent controls the drift rate vector (but not

the variance) of a multi-dimensional Brownian motion. It is suggested that this

model can be obtained as a limit of a sequence of multi-period discrete-time models

speci�ed in such a way that the overall duration of the principal-agent relation is

�xed and, along the sequence of models, periods become shorter as well as more

numerous. The di�erent dimensions of the multi-dimensional Brownian motion
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correspond to the di�erent states of the world or outcomes in the static model and

the di�erent \accounts" showing how often a given outcome arises in a multi-period

model. As in the multi-period discrete-time models, the assumptions of constant

absolute risk aversion and stationarity in the technology ensure that the optimal

incentive scheme in the continuous-time model depends only on the cumulative

change in this vector of \accounts", with no attention paid to the details of the

underlying time paths.

As reported so far, the results of Holmst�om and Milgrom provide for \linearity" of

optimal incentives in \accounts" listing the frequencies of incidence of di�erent outcomes,

but not necessarily for linearity in outcome variables such as total revenues and costs,

or pro�ts. This reects the fact that \outcomes" in the Holmstr�om-Milgrom analysis

correspond to \states of the world" in the static model which are de�ned without any

reference to variables such as revenues, costs, or pro�ts that would permit aggregation

across states or - in the intertemporal models - across accounts. Even if such outcome

variables are introduced, it is not clear that incentives should rely on linear aggregates

that treat, e.g., two pro�t realizations of one as equivalent to one pro�t realization of two

and one pro�t realization of zero. This is obviously not an issue if the static model involves

only two possible outcomes. In this case, aggregate pro�ts can be written as a constant

plus the number of times the high-pro�t outcome occurred times the di�erence between

pro�t levels across outcomes, so trivially linearity in accounts and linearity in pro�ts are

equivalent. However with more than two outcomes, linearity in accounts and linearity in

pro�ts are no longer equivalent, and one needs additional assumptions to justify the use

of incentive schemes that are linear in pro�ts or in some other outcome aggregate.

Within their continuous-time model, Holmstr�om and Milgrom give two assumptions

which yield the linearity with respect to outcome variables that they are really after. One

of these is the assumption that the agent's e�ort cost depends only on a linear aggregate

of the drift rate vector that he controls. The other is the assumption that the principal

observes only a linear aggregate of the di�erent \accounts", i.e., the di�erent dimensions

of the Brownian motion whose drift rate vector the agent controls. Either assumption

ensures that an optimal incentive scheme involves only the corresponding linear aggregate

of the vector of cumulative changes in \accounts". If the weighting used in these linear
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aggregates reects some underlying outcome variable so that e.g. an outcome involving

the pro�t realization \two" twice as much weight as an outcome involving the pro�t

realization \one", the incentive scheme is actually linear in this outcome variable.

Unfortunately, both these routes to obtaining linearity of optimal incentive schemes

in outcome variables are given only for the continuous-time models. In either case it is not

clear what analogues these results have in the multi-period discrete-time models that serve

to approximate the Brownian motion model. In consequence it is di�cult to disentangle

the respective roles of intertemporal aggregation in the Brownian motion model and the

additional assumptions in providing for the linearity of optimal incentive schemes.

The di�culty is partly due to the fact that Holmstr�om and Milgrom are very sketchy

about the relation between discrete-time and continuous-time models. To see that this

is a nontrivial matter, note that in a discrete-time model the process indicating how

many times each outcome has been observed up to time t is nondecreasing in t, negative

instances of observation being out of the question. To get such a process to converge to a

Brownian motion, one must be looking at the \accounts" process relative to some norm

so that a negative change can be interpreted as shortfalls of the actual frequency of a

given outcome from the norm. The question then is where this norm comes from and

how it is speci�ed. Holmstr�om and Milgrom do not say anything about this. Nor do they

say anything about the speci�cation of outcome variables and their dependence upon the

periodization.

Our paper �lls this gap. We link the one-period, the multi-period, and the continuous-

time models of Holmstr�om and Milgrom in a uni�ed framework and explicitly derive the

continuous-time model as a limit of discrete-time models with ever shorter periods. We

will indicate the class of Brownian models that can be approximated this way.

Given our account of the precise relation between the multi-period discrete-time

and the continuous-time models of Holmstr�om and Milgrom, we look for discrete-time

analogues of their linearity results for the continuous-time model. Two sets of results are

obtained. First we show that there is no discrete-time analogue for the linearity result

that is based on e�ort cost being a function of a linear aggregate of the drift vector

that the agent controls. For this speci�cation of e�ort costs, the corresponding discrete-
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time models involve isoquants that are straight lines in the space of vectors assigning

probabilities to the di�erent possible outcomes. Therefore, these models typically have

boundary solutions assigning probability zero to all but very few outcomes. Indeed,

in the absence of any further restrictions the discrete-time models will have solutions

concentrating all probability mass on the two outcomes closest to the target value for

mean returns. Thus, except for a gap left by the discretization of outcomes, all risk and

hence all agency costs of an ine�cient allocation of risk will disappear. If one looks at a

sequence of such discrete-time models with ever shorter periods these boundary solutions

do not converge to anything resembling the solution that Holmstr�om and Milgrom derive

for the Brownian motion model with this speci�cation of e�ort costs.

Our second major result shows that there is a discrete-time analogue for the Holm-

str�om-Milgrom result that in the Brownian motion model a linear incentive scheme is

optimal if the principal observes only a linear aggregate of the di�erent dimensions of

the Brownian motion whose drift vector the agent controls. To obtain this analogue, we

assume that in discrete-time, the principal does not observe the time path of the outcome

process at all. He only observes a �nal aggregate. Moreover, by the time he observes

the aggregate, the agent may have manipulated it by destroying some returns that had

actually been realized. With this assumption about asymmetric information concerning

outcomes, we prove that the linear incentive scheme that is optimal in the continuous

model is approximately optimal in the discrete-time models if the period length is su�-

ciently short. The argument relies on the continuity of certain features of the model in the

transition between discrete and continuous time. Stationarity of solutions to discrete-time

models, which is central for Holmstr�om and Milgrom, plays no role here because under

the given information assumption such stationarity typically is not obtained.

Our results link up with the basic intuition that Holmstr�om and Milgrom had pro-

vided for their analysis. In motivating their paper they had argued that nonlinearities -

and even more so, discontinuities - in incentive schemes are vulnerable to manipulation

by the agent. However much of their actual analysis does not involve this notion of ma-

nipulation at all. Manipulation enters their analysis only in the case where the principal

observes only a linear aggregate of the di�erent dimensions of the Brownian-motion pro-

cess; it plays no role in their multi-period discrete-time analysis or in the other results
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they have for the Brownian motion model. Our results show that for their speci�cation of

multi-period discrete-time and continuous-time models, the linearity result that is based

on asymmetric output observation and the scope for manipulation that this introduces

is the only one that has a discrete-time analogue. Within the context of their analysis,

concerns about manipulation must be the underlying force behind linearity.

This being said, we must however point to the companion paper by Hellwig (1998a),

which does develop a linearity result based on the speci�cation of the cost function,

without any concern about manipulation. However, this result involves a speci�cation in

which variances and di�usion parameters are endogenous and e�ort cost depends on both,

drift rates and di�usion parameters. This speci�cation cannot be accommodated within

the framework of Holmstr�om and Milgrom which presumes exogenously given di�usion

terms.

The Holmstr�om-Milgrom paper has given rise to a large literature, but only a few

papers are concerned with the methodological and mathematical underpinnings of the

analysis. Most papers in the literature just appeal to their results to justify the use

of linear incentive schemes in applications; for an example see Holmstr�om and Milgrom

(1991). Among the more method-oriented papers, Sch�attler and Sung (1993) develop

a general mathematical framework for the study of agency problems when the agent

controls the drift of a Brownian motion in continuous time; their results strengthen and

greatly extend the continuous-time results of Holmstr�om andMilgrom (1987). Sung (1995)

further extends the analysis by allowing for moral hazard with respect to risk choices, more

precisely, choices concerning the di�usion parameters of a Brownian motion. Sung (1997)

develops the corresponding analysis for continuous-time agency problems concerning jump

processes. Bolton and Harris (1997) also consider continuous-time problems concerning

jump processes as well as di�usions. However they are concerned with �rst-best rather

than second-best problems, considering optimal risk sharing and optimal actions without

concern for incentive compatibility and showing that for arbitrary preference speci�cations

risk-sharing considerations will typically call for nonlinear contracts in a �rst-best setting.

The above-mentioned papers all work directly in continuous time and do not dis-

cuss the relation between static or multi-period discrete-time and continuous-time agency

models. Multi-period discrete-time agency models and their relation to continuous-time
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models are studied by Sch�attler and Sung (1997) and by M�uller (1997). Unlike Holmstr�om

and Milgrom (1987) these papers consider multi-period models as T -fold repetitions of a

static model in which the agent 's e�ort choice determines the mean of a normally distri-

buted random variable. M�uller (1997) shows that, as in Mirrlees (1974), in a model of this

type, the principal's problem typically does not have a solution because a �rst-best allo-

cation can be approximated (but not reached) by a sequence of incentive schemes using

penalties for low outcome realizations to discourage shirking, the incidence of penalties

becoming ever rarer and the penalties themselves becoming ever more severe as one goes

along the sequence.1 The conclusion is independent of the number of periods T or the

\length of one period" 1=T in the multi-period model, but when T becomes large and 1=T

goes to zero, the requisite penalties become large and their incidence becomes ever rarer

even if the shortfall of payo� expectations from �rst-best is kept �xed. In Sch�attler and

Sung (1997) , existence of a solution to the principal's problem in discrete time is also a

problem. To get around it the authors impose a prior restriction on the class of incentive

schemes they admit; with this restriction, they �nd that conditions for implementing a gi-

ven strategy of the agent are similar in a T -period discrete-time and in a continuous-time

Brownian-motion model. Neither paper asks how a continuous-time Brownian-motion

model would be approximated by discrete-time models with �nitely many possible outco-

mes in any one period or what is the relation between linearity of incentive payments in

\accounts" and linearity of incentive payments in outcome aggregates, e.g. in pro�ts.

The plan of the paper is as follows. The next section develops the framework for the

analysis by introducing one-period and multi-period models and specifying the role of the

\length of the period" as a parameter of these models. Section 3 considers a sequence of

control paths in the discrete models and shows that if this sequence converges to a well

de�ned control path in the continuous model, then the incentive schemes that implement

the control paths in the discrete models converge to an incentive scheme that implements

the limit path in the continuous model. Whereas this result takes the convergence beha-

vior of control paths as given, Section 4 shows that this convergence behaviour is actually

obtained for suitable subsequences of optimal control paths and incentive schemes. Secti-

on 5 deals with the case where the agent's cost function depends on expected pro�ts only.

1In Holmstr�om and Milgrom (1987), this di�culty was avoided by the assumption that the set of
states of the world in the static model is �nite.
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Section 6 considers the case where the principal observes an accounting aggregate, such

as total pro�ts, but not the time paths of individual accounts. There we show that Holm-

str�om and Milgrom's main result on linearity in aggregates can indeed be approximated

by a series of appropriately designed discrete models. All formal proofs are relegated to

the appendix. In particular, Appendix A gives the formal proofs of all results in the text.

Certain supplementary are given in Appendices B and C.

2 A Discrete Multi-Period Model

We start with the static model. Suppose that there is one period of length 1. At the be-

ginning of the period the agent chooses an action which gives rise to a stochastic outcome

~� 2 f�0; : : : ; �Ng. The outcome �i 2 IR is interpreted as a pro�t level. Following Holm-

str�om and Milgrom (1987) we assume that the agent chooses the probability distribution

p over possible pro�t levels directly at personal cost c(p) � 0. Thus, the agent's action

is p = (p0; : : : ; p1) 2 P where P is the N -dimensional simplex. Throughout the paper we

assume the following:

Assumption 1 The e�ort cost c(p) of an action p 2 P is given by a function

c(�) on IRN+1 which is strictly convex as well as continuously di�erentiable on

some open set that contains the interior of P .

The agent is assumed to have a constant coe�cient of absolute risk aversion r > 0.

Given an incentive scheme associating the payment si to the outcome �i, he chooses action

p 2 P so as to maximize his expected utility

�
NX
i=0

pie
�r(si�c(p)) : (1)

From the �rst-order conditions for this maximization problem, one easily �nds that to

implement an action p 2 P such that the certainty equivalent of the agent's utility is 0,

an incentive scheme s = (s0; : : : ; sN) must satisfy:

si � c(p)�
1

r
ln

0
@1� rci + r

NX
j=0

pjcj

1
A (2)
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for i = 0; : : : ; N , with equality if pi > 0, where, as usual, ci refers to the partial derivative

of the e�ort cost function with respect to pi. The argument is a straightforward adaptation

of Theorem 3 in Holmstr�om and Milgrom to allow for the possibility of boundary solutions,

i.e., of actions p involving pi = 0 for some i. As indicated by (2), if pi = 0 for some i, the

corresponding incentive payment si is not uniquely determined by incentive compatibility

considerations. However, we assume that for actions p involving pi = 0 for some i, we

may set the corresponding incentive payment si so as to satisfy (2) with equality.2

The principal is assumed to be risk neutral. His payo� from implementing an action

p by an incentive scheme s = fs0; : : : ; sNg is given by:

NX
i=0

pi(�i � si) : (3)

Consider now a multi-period version of this model in which the agent can change his

action at discrete points in time. We want to keep the total length of the time interval

(which is normalized to 1) �xed, however, and increase the number of periods within this

interval. Suppose that there are 1

�
periods, each of length � 2 f1; 1

2
; 1
3
; : : :g, which are

indexed by � = f1; : : : ; 1

�
g. In order to make the one-period problem and the 1

�
-period

problem comparable we have to reformulate the model:

In each period there are N + 1 pro�t levels ��i , i 2 f0; : : : ; Ng, which are given by3

��i = �i�
1

2 8 i 2 f0; : : : ; Ng : (4)

The agent's action p� in each period and the cost of his action will be evaluated as a

function of the deviation of p� from some standard p̂, where p̂ 2 P , p̂ � 0, is an action

involving zero expected pro�ts, i.e.

NX
i=0

p̂i�
�
i =

NX
i=0

p̂i�i = 0 (5)

2If the �rst-order conditions for the agent's maximization problem are su�cient as well as necessary,
this is without loss of generality. Otherwise, having a payment si strictly below the right hand side of
(2) may serve to discourage the agent from some \far away" action p0 involving p0i > 0.

3In their discussion of the relation between multi-period discrete-time and continuous-time models,
Holmstr�om and Milgrom do not indicate that the possible outcome values in any one period must depend
on the length of the period (1987, p. 318). Such a normalization is, however, implicit in their analysis
as it underlies their subsequent appeal to the central limit theorem. For a more systematic discussion
of the role played by the dependence of the potential values of period pro�ts on period length, see the
companion paper by Hellwig (1998a).
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for all �. The e�ort cost in a period of length � if the agent chooses p� is denoted by

c�(p�) which is de�ned by

c�(p�) � � � c

 
p̂0 +

p�0 � p̂0

�
1

2

; : : : ; p̂N +
p�N � p̂N

�
1

2

!
: (6)

What is the point of this speci�cation? There are 1

�
periods each of length �. In order to

keep total pro�ts over the 1

�
periods comparable to expected pro�ts in the static model

we have to keep expected pro�ts per period to an order of magnitude �. Consider an

action p� that shifts probability mass from some low-pro�t outcome to some high-pro�t

outcome as compared to the action p̂. With pro�t levels proportional to �
1

2 this raises

expected pro�ts by an order of magnitude �
1

2 . However, the agent's cost of this shift in

probability mass is made to depend on � in such a way that the agent will keep the order

of magnitude of such shifts ordinarily to �
1

2 . That is, if the isoquants of the cost function

c(�) exhibit nonzero curvature, then the deviation of the action p� that is actually chosen

from the zero-expected-pro�ts action p̂ will be on the order of �
1

2 , and expected pro�ts

per period will be on the order of �.

To make these ideas more precise, de�ne

��i = ki
p�i � p̂i

�
1

2

(7)

for i = 1; : : : ; N , with ki = �i��0. Note that if the agent chooses p
� in each period, then

total expected pro�ts in the period of length 1 are given by

1

�

NX
i=0

p�i �
�
i =

1

�

NX
i=0

(p�i � p̂i)(�i � �0)�
1

2 =
NX
i=0

(�i � �0)
p�i � p̂i

�
1

2

=
NX
i=1

��i : (8)

For any i, the quantity ��i in (7) and (8) can be interpreted as the contribution to expected

pro�ts per unit of \real time" that stems from the agent shifting probability mass from

state of the world zero to state of the world i, relative to the standard set be the zero-

expected-pro�ts action p̂.

It will be useful to think of the agent choosing the vector �� = (��1 ; : : : ; �
�
N) in each

period, which then determines an associated action p�(��) where for i = 1; : : : ; N ,

p�i (�
�) = p̂i + ��i

�
1

2

ki
8 i 2 f1; : : : ; Ng ; (9)

p�0 (�
�) = 1�

NX
i=1

p�i = p̂0 �
NX
i=1

��i
�

1

2

ki
: (10)
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Since p� is a probability vector we have to restrict the agent's choice of �� by

�
kip̂i

�
1

2

� ��i �
ki(1� p̂i)

�
1

2

(11)

for all i 2 f1; : : : ; Ng and

�
1� p̂0

�
1

2

�
NX
i=1

��i
ki

�
p̂0

�
1

2

(12)

Note that the set of �� satisfying (11) and (12) increases and goes to the entire set IRN

as �! 0.

The agent's cost from the choice �� in a time period with length � is given by:

�ĉ(��) = c�(p�(��)) ; (13)

where by (6)

c�(p�(��)) = �c

 
p̂+

p�(��)� p̂

�
1

2

!
= �c

 
p̂0 �

NX
i=1

��i
ki
; p̂1 +

��1
k1
; : : : ; p̂N +

��N
kN

!
: (14)

Note that for any given vector � that is independent of � the argument of c(�) in (14) is also

independent of �. The tradeo� between the vector �� = (��1 ; : : : ; �
�
N) of contributions

to expected pro�ts per unit of \real time" that stem from shifting probability mass to

outcomes 1; : : : ; N and the associated e�ort cost per unit of \real time" ĉ(��) is thus

independent of �.

We are now ready to prove our �rst result, which shows that given our speci�cation of

pro�ts, costs, actions and probabilities it is indeed possible to compare the discrete-time

models with di�erent period lengths �.

Proposition 1 Consider the discrete problem with 1

�
subintervals where pro-

�t levels are given by (4) and where the agent's e�ort cost as a function of

�� is given by (14) each period. If for � = 1; : : : ; 1

�
the agent chooses ��;� =

(��;�
1 ; : : : ; �

�;�
N ), then expected gross pro�ts are equal to �

P1=�
�=1

PN
i=1 �

�;�
i , and

e�ort costs are equal to �
P1=�

�=1 ĉ(�
�;�), where ĉ(�) is given by (13). In par-

ticular, if ��;� = � regardless of � and of the period length �, then expected

gross pro�ts and total e�ort costs of the agent are independent of �.
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The proposition shows that if the agent chooses a constant �, then expected pro�ts

and e�ort costs of the agent are independent of �. In particular, the trade-o� between

expected pro�ts and e�ort costs is not a�ected by the length of the period. To be sure,

the implementation problem as seen by the principal will also depend on the variance

and the other higher moments of the distribution of pro�ts, all of which depend on �.

However, as will be shown in the next section, when � is small and the agent's action is

close to the standard p̂, these higher moments are close to being independent of �, and the

incentive payments that are required to implement p�(�) admit a simple approximation.

3 Approximation of the Brownian Model

So far we assumed that the agent can change his action only at discrete points in time.

Now we are interested in the case where the agent can change his action continuously at

any point in time. In the following we will derive the continuous case as the limit of the

discrete model when � goes to 0.

The following de�nitions will be useful. Let ~A�;�
i 2 f0; 1g be a random variable such

that ~A�;�
i = 1 , ~��;� = ��i , i 2 f0; : : :Ng, � 2 f 1

m
gm=1;:::, � 2 f1; : : : ;

1

�
g. Clearly,

Prob( ~A�;�
i = 1) = p

�;�
i , and ~A�;�

i = 1 implies ~A�;�
j = 0 for all j 6= i. Thus, each ~A�;�

i has

a Bernoulli distribution, but ~A�;�
i and ~A�;�

j are not stochastically independent.

Let s�i be the incentive payment for outcome i corresponding to (2) when the period

length is �, the e�ort cost function is given by (6), and the certainty equivalent of the

agent's utility is 0. Using (13) and (14) one can write s�i in terms of the vector �� rather

than the action p�(��) that corresponds to it. This yields:

s�i = �ĉ(��)�
1

r
ln

0
@1� rĉiki�

1

2 + r
NX
j=0

p�j ĉjkj�
1

2

1
A ; (15)

where ĉi =
ci�c0
ki

is the partial derivative of ĉ with respect to ��i , ĉ0 = 0, and use has been

made of the fact that by (6) c�i = �
1

2 ci for all i. (Clearly the convexity and di�erentiability

assumption on c(�) imply that ĉ(�) is strictly convex and continuously di�erentiable on

the set of all vectors � = (�1; : : : ; �N) for which p̂0 >
PN

i=1 �i=ki and p̂i > ��i=ki for

i = 1; : : : ; N .)
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Using a Taylor series expansion of the logarithmic term in (15), the requisite incentive

payment s�i is now approximated by:

s�i = �ĉ(��) +

2
4ĉiki �

NX
j=0

p�j (�
�)ĉjkj

3
5� 1

2 +
r

2

2
4ĉiki �

NX
j=0

p�j (�
�)ĉjkj

3
5
2

�+O
�
�

3

2

�
(16)

Suppose that the principal wants to implement the time path of actions f��;�g�=1;:::; 1
�

.

Then, still assuming that the certainty equivalent of the agent's utility has to be 0, the

total renumeration that has to be o�ered is given by

~s� = �
1=�X
�=1

ĉ(��;�) +
1=�X
�=1

NX
i=0

~A�;�
i �

1

2

2
4ĉiki �

NX
j=0

p�j (�
�)ĉjkj

3
5

+
r

2

1=�X
�=1

NX
i=0

~A�;�
i �

2
4ĉiki � NX

j=0

p�j (�
�)ĉjkj

3
5
2

+
1=�X
�=1

O
�
�

3

2

�

= �
1=�X
�=1

ĉ(��;�) +
1=�X
�=1

NX
i=0

ĉi(�
�;�)

�
~A�;�
i � p�i (�

�;�)
�
ki�

1

2

+
r

2

1=�X
�=1

NX
i=0

~A�;�
i

2
4ĉi(��;�)ki �

NX
j=0

p�j (�
�;� )ĉj(�

�;�)kj

3
5
2

�+O(�
1

2 ) (17)

where we made use of the fact that
PN

i=0
~A�;�
i = 1 for all � 2 f1; : : : ; 1=�g. If we substitute

p�j (�
�;�) in the squared term by (9) and (10), use ĉ0 = 0, and rearrange by putting the

appropriate terms into O(�
1

2 ) we get

~s� = �
1=�X
�=1

ĉ(��;�) +
1=�X
�=1

NX
i=0

ĉi(�
�;�)

�
~A�;�
i � p�i (�

�;�)
�
ki�

1

2

+
r

2

1=�X
�=1

NX
i=0

~A�;�
i

2
4ĉi(��;�)ki �

NX
j=0

p̂j ĉj(�
�;�)kj

3
5
2

�+O(�
1

2 ) (18)

Equation (18) admits a simple interpretation:4 The �rst term reects the total e�ort cost

of the agent from choosing f��;�g, � = 1; : : : ; 1

�
. The second term gives the appropriate

incentives to the agent to actually choose this time path of actions. If outcome i is realized

in period � , this raises the agent's overall incentive payment by an amount ĉi(�
�;�)ki�

1

2 ,

reecting the marginal cost of shifting probability mass towards outcome i. The expected

value of this payment, p�i (�
�;�)c�i (�

�;�)ki�
1

2 , is subtracted again because in expected-

value terms the principal's payments to the agent depend only on individual-rationality

4See also Sch�attler and Sung (1993, p. 337).
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considerations. Thus the second term in (18) is proportional to the di�erence between

the actual realization of this pro�t level and the expected realization given that the agent

chooses p�i (�
�;�). It is useful to simplify this term by de�ning

~X�;�
i = ki�

1

2

�
~A�;�
i � p�i (�

�;�)
�

(19)

The third term is the risk premium that has to be paid to the agent to compensate him

for the randomness of the second term. The last term reects the approximation we are

using; it vanishes as � goes to zero.

Given the way the per-period deviations ~X�;�
i of realized from expected pro�ts depend

on the length of the period, we �nd it more convenient to work with the cumulative

deviations

~X�
i (�) = ki�

1

2

�X
� 0=1

[ ~A�;� 0

i � p�i (�
�;� 0)] (20)

from period one to period � . For i = 1; : : : ; N , ~X�
i (�) can be thought of as the cumulative

deviation (up to �) of realized pro�ts under outcome i from the expected value of these

pro�ts under the given policy of the agent. ~X�
i (�) will be called the \stochastic process

of cumulative deviations from the mean".

To embed the discrete-time model in continuous time, we use a linear interpolation to

represent the process ~X�
i (�) by a continuous-time process X�

i (t) such that for t 2 [0; 1]:

X�
i (t) =

�
1�

t

�
+

�
t

�

��
~X�
i

��
t

�

��
+

�
t

�
�

�
t

�

��
~X�
i

��
t

�

�
+ 1

�
(21)

where [ t
�
] denotes the greatest integer less than or equal to t

�
. Note that X�

i (t) is a

random function taking values in C = C[0; 1], the space of continuous functions on [0; 1].

For any deterministic time path of actions5 f��;�g�=1;:::; 1
�

in the discrete-time model

we use a continuous-time representation ��(�) where

��(t) = ��;[t=�] : (22)

We can now state our �rst main result:

5We restrict attention to deterministic time paths of actions. Since Holmstr�om and Milgrom have
shown that the agent will be induced by the optimal contract to take a constant deterministic action
there is no need to consider stochastic controls explicitly at this stage.
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Theorem 1 Consider a sequence of discrete models with period length �,

� = 1; 1
2
; 1
3
; : : :. Suppose that, as � ! 0, the time path of actions ��(t)

converges uniformly to some continuous function �(t), t 2 [0; 1] such that

p̂0 >
P

i �i(t)=ki and p̂i > ��i(t)=ki for all t and i = 1; : : : ; N . Then, as

�! 0,

(a) the stochastic process of cumulative deviations from the mean X�(t) =

(X�
1 (t); : : : ; X

�
N (t)) converges in distribution to a process X(�) which is

a driftless N-dimensional Brownian motion with covariance matrix

� =

0
BBBB@
k21 p̂1(1� p̂1) �k1k2p̂1p̂2 � � � �k1kN p̂1p̂N
�k2k1p̂2p̂1 k22p̂2(1� p̂2) � � � �k2kN p̂2p̂N

...
...

. . .
...

�kNk1p̂N p̂1 �kNk2p̂N p̂2 � � � k2N p̂N(1� p̂N)

1
CCCCA (23)

and starting point X(0) = 0;

(b) the total cost to the agent converges to
R 1
0 ĉ(�(t))dt;

(c) the incentive payments that serve to implement ��(t) with certainty equi-

valent w converge in distribution to

~s = w+
Z 1

0
ĉ(�(t))dt+

Z 1

0
ĉ0(�(t))dX+

r

2

Z 1

0
ĉ0(�(t))�[ĉ0(�(t))]Tdt (24)

where ĉ0(�) = (ĉ1(�); : : : ; ĉN(�)).

Remarks:

1. Theorem 1 is closely related to Theorem 6 of Holmstr�om and Milgrom (1987) and

Corollary 4.1 of Sch�attler and Sung (1993), who show that in the continuous model

a time path of actions �(�) is implemented by an incentive scheme satisfying

s = w +
Z 1

0
ĉ(�(t))dt+

Z 1

0
ĉ0(�(t))dZ �

Z 1

0
ĉ0(�(t))�(t)dt

+
r

2

Z 1

0

ĉ0(�(t))�[ĉ0(�(t))]Tdt (25)

where Z is a process given by the stochastic di�erential equation

dZ = �dt+ dB (26)
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with initial condition Z(0) = 0; here B is an N -dimensional Brownian motion with

covariance matrix � that is equivalent to the process X in Theorem 1.6

In contrast, our Theorem 1 deals with the discrete model and shows that the incenti-

ve schemes that serve to implement the exogenously given sequence of control paths

��(t), � = 1; 1
2
; : : :, converge to a continuous function (24). It does not show that in

the continuous model the limit control path �(t) is indeed implemented by the limit

incentive scheme (24). However, under the assumptions imposed by Sch�attler and

Sung (1993, Corollary 4.1), which we will impose and discuss in more detail in Sec-

tion 5, the limit of the incentive schemes s� does indeed implement the limit of the

control path ��(t). Theorem 1 thus shows that the implementation condition (25)

on incentive schemes and policies that Holmstr�om and Milgrom obtained in their

Brownian model can be interpreted as the limit of the corresponding conditions on

incentive schemes and policies in approximating discrete-time models.

2. Discrete-time approximations of the continuous-time process Z(�) in (25) can be

given by specifying

~Z�;�
i = ki�

1

2 [ ~A�;�
i � p̂i] (27)

as the contribution to total pro�ts stemming from outcome i in excess of some

\standard" that is given by the probability p̂i, and

~Z�
i (�) = ki�

1

2

"
�X

� 0=1

~A�;� 0

i � p̂i�

#
(28)

as the cumulative contribution. Using the linear interpolation as before to obtain a

continuous-time representation

Z�
i (t) =

�
1�

t

�
+

�
t

�

��
~Z�
i

��
t

�

��
+

�
t

�
�

�
t

�

��
~Z�
i

��
t

�

�
+ 1

�
(29)

of the process (28), we �nd that, by a simple corollary to Theorem 1(a), the processes

Z�
i (t) converge in distribution to the process Z(�) as � goes to zero.7

6Holmstr�om and Milgrom show that (25) is necessary to implement �(�). Sch�attler and Sung consider
a more general model and give conditions under which under which (25) is su�cient.

7Holmstr�om and Milgrom provide a sketch of the relation between discrete and continuous models
in terms of the processes Z�(�) and Z(�) (without indicating the dependence of period pro�t levels on
�). We have instead focussed on the processes X�(�) and X(�) because these processes are of central
importance in the application of Donsker's Theorem.
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To better understand the role of the \standard" p̂i in the speci�cation (27) and (28)

note that if � is small, and if the agent chooses a constant � in some small time

interval [t; t0], we have

E
�
Z�
i (t

0)� Z�
i (t)

�
� ki�

1

2 (p�i (�)� p̂i)
t0 � t

�
= �i(t� t0) : (30)

Thus, if the agent chooses �̂� = (0; : : : ; 0) for all � 2 [t; t0], then p�i (�) = p̂i in each

period and the agent allocates his probability mass according to the standard. If

�i > 0 (�i < 0) he puts more (less) weight on achieving state of the world i rather

than state of the world 0 (as compared to the standard set by p̂). This is reected

in the account process Z�
i (t) which in expectation measures how much weight the

agent puts on achieving state i. Furthermore, we know from the proof of Proposition

1 that if the agent chooses a constant �, expected pro�ts in time interval [t; t0] are

given by

[t0=�]X
�=[t=�]

NX
i=0

p�i �
�
i = ([t0=�]� [t=�]) �

NX
i=1

�i � (t0 � t)
NX
i=1

�i : (31)

Recall that
PN

i=0 p̂i�i = 0. Hence, �i is simply the expected contribution to total

pro�ts that stems from the realizations of state of the world i in excess of the

standard set by p̂, and the account Z�
i (t) measures the actual contribution over

time.

3. In the continuous-time limit the agent controls the drift rate but not the higher

moments of the cumulative output process. Note that he does control the entire

distribution of the cumulative-output process in the discrete-time models. Howe-

ver, when � is small, implementation of a given drift rate process involves actions

p�(�(�)) close to the constant action p̂, the di�erence in any period being of order

�
1

2 . Because of this convergence of the path of actions to the constant path with

value p̂, the second moments of the cumulative-returns process in the limit are fully

determined by p̂, and the higher moments vanish. The critical action vector p̂ thus

serves a dual function in our model: First, as an action vector with a zero pro�t

expectation it provides a base deviations from which measure the impact of beha-

viour on expected pro�ts (see equation (30)). Second, it determines the \noise" of

the agency problem in continuous time.
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Theorem 1 takes the discrete model as given and shows how to obtain a Brownian

model as the limit of a sequence of these discrete models. We could have proceeded the

other way round, asking whether it is possible to approximate a given Brownian model

with some sequence of discrete models. The following result, which is an immediate

corollary to Theorem 1, gives an answer to this question.

Corollary 1 Let B be a given N-dimensional Brownian motion with zero drift

and covariance matrix �. Suppose that if the agent chooses a control process

�(�), then the agent's cumulative costs are given by the di�erential equation

dc = ĉ(�(t))dt (32)

and the disturbance process is B. If there exist real numbers k1; : : : ; kN and

positive real numbers p̂1; : : : ; p̂N with
PN

i=1 p̂i � 1 such that � can be written as

in (23), then to this continuous time model there corresponds a discrete-time

model with period length � in which

- there are N + 1 possible pro�t levels in each period which are given by

��0 = ��
1

2

NX
i=1

p̂iki (33)

��i = �
1

2

 
ki �

NX
i=1

p̂iki

!
(34)

- the probability p�i (�
�) of pro�t level i is given by (9) and (10), with

��;[t=�] = �([t=�]),

- and the cost to the agent in each period is given by c�(p�(��)) = �ĉ(��),

such that the continuous model is the limit of this discrete model (in the sense

of Theorem 1) as � approaches 0.

Corollary 2 requires that the covariance matrix � of the N -dimensional Brownian

motion can be written as in (23). If N = 1, this is always possible. If N > 1, this

condition implies a restriction on the set of Brownian models that can be approximated

by a sequence of discrete models. This restriction stems from the fact that in the discrete

model only one state of the world can materialize in each period. This implies that the
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accounts ~A�;�
i and thus also the accounts ~X�;�

i have a special covariance structure. For

example, it is impossible that the ~X
�;�
i are stochastically independent. Therefore this

restriction is very natural.

In the entire analysis here, the dimension N of the Brownian motion has referred to

the number of di�erent pro�t levels that can be distinguished. Holmstr�om and Milgrom

(1987, p. 322) o�er a second interpretation according to which N refers to di�erent

activities of the agent. For example, if N = 2, account X1 could be a measure of revenues,

while X2 could be a measure of costs. Thus, �1 reects the agent's e�ort to increase

revenues, while �2 reects his e�ort to reduce costs. With this interpretation the Brownian

model could have any variance-covariance structure. It is possible to show that any N -

dimensional Brownian motion model (with an arbitrary covariance matrix �) can be

approximated by a discrete model, if we extend the dimension of the discrete model to

2N � 1. However, we do not want to go into the details of this approximation here.8

4 The Convergence of Optimal Control Paths and Incentive

Schemes

Theorem 1 is not quite satisfactory in that it takes the sequence of control paths ��(�)

and their convergence behaviour as given. However ��(�) is chosen endogenously by the

agent in response to the incentive scheme s�. Moreover s� and ��(�) together are chosen

endogenously, subject to incentive compatibility, by the principal and agent when they

initially agree on a contract. One may therefore wonder how relevant Theorem 1 still is

once the endogenity of s� and ��(�) is taken into account.

8To sketch the basic idea suppose that the Brownian model is two-dimensional and that �1 is the drift
rate of revenues while �2 is the drift rate of costs. To approximate this model by a sequence of discrete
models we need at least two di�erent levels of revenues R 2 fR1; R2g and two levels of costs C 2 fC1; C2g.
Thus, in each period there are four di�erent possible outcomes f(R1; C1); (R1; C2); (R2; C1); (R2; C2)g,
which means that there are 22 � 1 = 3 di�erent accounts. With this three-dimensional model we can
approximate any variance-covariance matrix in the two-dimensional continuous model by choosing the
correlation between the Bernoulli distributions over fR1; R2g and fC1; C2g appropriately. If we want
to allow for, say, Mr levels of revenues and Mc levels of costs, we need a model with Mr �Mc possible
outcomes and hence Mr �Mc � 1 di�erent accounts. The problem of getting from these Mr �Mc � 1
di�erent accounts to incentive schemes that are de�ned in terms of just revenue and cost aggregates is
then the same as the problem of aggregation accross accounts that is studied in Sections 5 and 6.
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Two issues arise. First, for some incentive schemes it will be optimal for the agent

to choose a control path that is not simply a continuous function of t, but that may

also depend on the realizations of the pro�t process up to time t. Second, even if ��(�)

is a history-independent constant, it is not clear that the sequence ��(�) should have a

convergent subsequence.

Of these two issues, the �rst one is unproblematic. History dependence of the control

strategies causes technical di�culties because the variables ~X�;�
i in (19) are no longer

independent, but in spite of these di�culties Theorem 1 can be extended to control

paths ��(�) that are predictable functions of t and the history up to t, for details see

Appendix B. More importantly, Holmstr�om and Milgrom (1987, Theorem 5) have shown

that in the repeated discrete model there always is an optimal solution to the principal's

problem in which he induces the agent to take the same action in each period, regardless

of prior history. If ��� is such a constant optimal control path in the discrete model with

period length �, and if the sequence f���g has a convergent subsequence, Theorem 1 can

automatically be applied to this subsequence.

However without additional assumptions, a sequence f���g of constant optimal con-

trol paths in the discrete models will not necessarily have a convergent subsequence.

Indeed in the following section we shall come across a fairly natural example in which ���

goes out of bounds, with some of its components ���i going to +1 and others going to

�1 as � goes to zero. Such a possibility can be ruled out by additional assumptions, but

then one must worry about the compatibility of such assumptions with the speci�cation

underlying Theorem 1.

To see the issue, suppose for example that the vector �� must always be chosen from

a product K =
QN

i=1[mi;Mi] of compact intervals. With this additional assumption a

sequence f���g of constant optimal control paths in the discrete models will obviously

have a subsequence that converges to a limit ��. Moreover the �rst two statements of

Theorem 1 will be satis�ed for this subsequence, i.e. the process X�(�) of cumulative

deviations from the mean converges in distributions to the driftless Brownian motion

X(�) with covariance matrix � and the agent's total cost converges to ĉ(��). However the

requirement that �� 2 K will modify the agent's incentive compatibility conditions and

hence the relation between desired actions and required incentive payments; this throws
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doubt on statement (c) of Theorem 1.

In choosing his action p 2 P , the agent now faces the additional constraints p�
i
�

pi � P�
i , where p

�

i
= p̂i+�

1

2 �minfmi=ki;Mi=kig and P
�
i = p̂i+�

1

2 �maxfmi=ki;Mi=kig,

i = 1; : : : ; N . Taking account of these constraints in the agent's �rst-order conditions,

one �nds that the incentive-compatibility condition (19) must be rewritten as

s�i = �ĉ(��)�
1

r
ln

"
1� (rĉiki�

1

2 � u�i + v�i ) +
NX
i=1

(rĉiki�
1

2 � u�i + v�i )

#
(35)

where u�i � 0 and v�i � 0 are the Kuhn-Tucker multipliers of the constraints p�
i
� pi

and pi � P�
i in the agent's problem, with complementary slackness requiring u�i (pi �

maxf0; p�
i
g) = 0 and v�i (P

�
i � pi) = 0 for i = 1; : : : ; N . Given the appearance of

the Kuhn-Tucker multipliers u�i and v�i in (35), it is not clear that the approximation

procedure of the preceding section can be used; for instance, a Taylor approximation of

the logarithmic term in (35) would make sense only if u�i and v�i were known to go to

zero as the continuous-time model is approached.

Holmstr�om and Milgrom try to avoid this di�culty by assuming that optimal actions

always lie in the interior of the admissible set. Presumably such an assumption is justi�ed

if the e�ort cost function satis�es suitable Inada conditions. Unfortunately such Inada

conditions are not compatible with the uniform boundedness of the derivatives of the

e�ort cost function ĉ(�) which has been used extensively in the proof of Theorem 1(c).

Therefore we prefer to tackle the problem posed by the Kuhn-Tucker multiplers in (35)

directly, without trying to rule boundary actions out. As it turns out, this can be done

without any substantive change in the model.

From the principal's perspective, the appearance of the Kuhn-Tucker multipliers u�i ,

v�i in (35) reects the fact that when the action p = p�(��) is at the boundary of

the admissible action set, there is more than one incentive scheme that will implement

this action, so he must consider which of these incentive schemes is cheapest for him. For

example suppose thatN = 1, �1 > �0, and consider the action p which assigns the smallest

possible mass to the outcome 1, i.e., let p = p�(m1). This action is implemented by any

incentive scheme (s�0 ; s
�
1 ) that satis�es s

�
1 �s

�
0 �

1

r
[ln(1+rp1ĉ1k1�

1

2 )�ln(1�rp0ĉ1k1�
1

2 )]

and that is individually rational for the agent, the point being that the principal does not

have to provide incentives for outcome 1 because the agent is unable to lower p1 below the
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stipulated level anyway. Among the di�erent schemes that implement the action p�(m1),

the scheme s�1 = s�0 = �ĉ(m1) is cheapest for the principal; it just compensates the agent

for his cost and involves no risk premium.

Di�erent incentive schemes that implement the same action will involve di�erent

values of the Kuhn-Tucker multipliers in (35). Using the two-outcome example one easily

veri�es that not all these Kuhn-Tucker multipliers will be small if � is small, so for some of

the incentive schemes implementing the action p�(m1), no analogue of Theorem 1(c) can

be given. However in the two-outcome example one also sees that the incentive scheme

which is cheapest for the principal, namely s�1 = s�0 = �ĉ(m1), involves Kuhn-Tucker

multipliers u�1 = rĉ1k1�
1

2 and v�1 = 0, which do become small as � goes to zero.

This last observation reects a general principle. Quite generally the principal's con-

cern for minimizing implementation costs leads to the use of incentive schemes involving

payments with a mean on the order of � and deviations from the mean on the order of

�
1

2 , so as � goes to zero an argument analogous to the one underlying Theorem 1 can

be given. This provides the key to the convergence behavior of optimal control paths and

incentive schemes, which we now discuss.

Consider the principal's optimization problem in the discrete model with period

length �. By Theorem 5 of Holmstr�om and Milgrom, we can restrict attention to constant

controls. A constant control �� 2 K in each period, with associated incentive scheme ~s�,

will be optimal for the principal if it maximizes his expected payo�

UP� =
NX
i=1

��i � E(~s�) (36)

under the given incentive compatibility and participation constraints. In view of the

agent's �rst order condition (35), incentive schemes may be assumed to satisfy

~s� =
1=�X
�=1

NX
i=0

~A�;�
i (w + s�i ) (37)

where w is the agent's certainty equivalent and, for each i, s�i (�
�) satis�es (35) for a

suitable set of Kuhn-Tucker multipliers u�i , v
�
i . It is convenient to write the Kuhn-Tucker

multipliers in (35) in the form r�
1

2kiû
�
i , r�

1

2kiv̂
�
i , where for i = 1; : : : ; N , û�i � 0, v̂�i � 0,

and

û�i (�
�
i �mi) = v̂�i (Mi � ��i ) = 0 (38)
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With this change of notation (35) can be rewritten as:

s�i (�
�) = �ĉ(��) (39)

�
1

r
ln

2
41� r(ĉi � û�i + v̂�i )ki�

1

2 + r
NX
j=1

p�j (�
�)(ĉj � û�j + v̂�j )kj�

1

2

3
5

Upon substituting from (37) and (39) and using the fact that E ~A
�;�
i = p�i (�

�) we can

write the principal's objective as:

UP�(��; û�1 ; v̂
�
1 ; : : : ; û

�
N ; v̂

�
N) =

NX
i=1

��i � w � ĉ(��) (40)

+
1

r�

NX
i=1

p�i (�
�) ln

2
41� r(ĉi � û�i + v̂�i )ki�

1

2 + r
NX
j=1

p�j (�
�)(ĉj � û�j + v̂�j )kj�

1

2

3
5

In the discrete-time model with period length �, the principal's problem reduces to ma-

ximizing (40) with respect to �� 2 K and u�i 2 V , v�i 2 V , i = 1; : : : ; N , subject to the

complementary slackness condition (38) and the incentive compatibility condition:

�
NX
i=1

p�i (�
�)e�r(s

�

i
��ĉ(��)) � �

NX
i=1

p�i (�
0)e�r(s

�

i
��ĉ(�0)) (41)

which for incentive schemes satisfying (39) is equivalent to

�1 � �
NX
i=1

p�i (�
0)e�r�(ĉ(��)�ĉ(�0)) (42)

�

0
@1� r(ĉi � û�i + v̂�i )ki�

1

2 + r
NX
j=1

p�j (�
�)(ĉj � û�j + v̂�j )kj�

1

2

1
A

for all �0 2 K.

If the �rst-order condition (39) was su�cient as well as necessary for the implemen-

tation of �� through the incentive scheme ~s�, the incentive constraint (42) would be

redundant. However because of the convexity of the exponential function, (41) is typical-

ly stronger than the agent's �rst-order condition (39) so (42) is not redundant. Even so

it is instructive to consider what happens when the principal replaces the global incentive

compatibility constraint (41) by the �rst-order condition (39), i.e., when he maximizes

(40) subject to the complementary slackness conditions (38) without paying attention to

(41). For this \relaxed problem of the principal" we obtain:
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Proposition 2 Let �� 2 K be given and suppose that ��i � 0, v̂�i � 0,

i = 1; : : : ; N , maximize (40) subject to the complementary slackness condition

(38). Then û�i � (��)=ki and v̂
�
i � (��)=ki, i = 1; : : : ; N , where (��) :=

maxij(kiĉi(�
�)� kj ĉj(�

�)).

Proposition 2 suggests that the principal will optimally choose the incentive scheme

~s� so that the Kuhn-Tucker multipliers for the agent's maximization problem will be

commensurate to marginal costs and will have the order of magnitude �
1

2 . Unfortunately

we cannot immediately use this result because the global incentive constraint (41) is not

generally implied by the agent's �rst-order condition, and (42) is not in general redundant.

However, as � goes to zero, this concern becomes less and less important, the di�erence

between the incentive compatibility condition (41) and the �rst-order condition (38) di-

sappears, and the incentive constraint (42) ceases to impose any additional constraints.

Formally we have:

Proposition 3 For� = 1; 1
2
; : : : ; let IC(�) be the set of vectors (��; û�; v̂� 2

K�IRN
+ �IR

N
+ that satisfy the incentive constraint (42) as well as the comple-

mentary slackness conditions (40). As � converges to zero, IC(�) converges

(in the Hausdor� topology) to the set of vectors (�; û; v̂) 2 K�IRN
+ �IR

N
+ that

satisfy

ûi(�i �mi) = v̂i(Mi � �i) = 0 (43)

for i = 1; : : : ; N .

Given Propositions 2 and 3, another application of the maximum theorem yields:

Theorem 2 Let f���g be a sequence of constant optimal control paths that

the principal wants to implement in the discrete model with period length � =

1; 1
2
: : : when �� is constrained to the set K =

QN
i=1[mi;Mi]. Let û

��
i , v̂��i , i =

1; :::; N , be the normalized Kuhn-Tucker multipliers induced by the correspon-

ding optimal incentive schemes. The sequence f���; û��1 ; v̂��1 ; : : : ; û��N ; v̂��N g

has a subsequence which converges to a limit (��; û�1; v̂
�
1; : : : ; û

�
N ; v̂

�
N). Moreo-

ver, �� is a constant optimal control path and the incentive scheme s� is given
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by

s�(X) = w+ĉ(��)+
NX
i=1

(ĉi(�
�)�û�i+v̂

�
i )Xi(1)+

r

2

NX
i=1

NX
j=1

(ĉi�û
�
i+v̂

�
i )�ij(ĉi�û

�
i+v

�
i ) ;

(44)

with (�ij) = � given by (23), which is an optimal incentive scheme in the

continuous model.

Turning to the optimal incentive schemes, we note that (40) can be rewritten in the

linear form:

~s� = ��
0 +

NX
i=1

��
i X

�
i (1) ; (45)

where ��
0 = w + s�0 (�

�), and, for i = 1; : : : ; N , ��
i = [s�i (�

�) � s�0 (�
�)]=ki�

1

2 and X�
i

is the process of cumulative deviations from the mean that was de�ned in (20) and (21).

From Theorem 2 one immediately obtains:

Corollary 2 For � = 1; 1
2
; : : : ; let (��

0 ; �
�
1 ; : : : ; �

�
N) be the parameters of an

optimal incentive scheme implementing a constant optimal control ��� when

controls are restricted to the compact set K =
QN

i=1[mi;Mi]. The sequence

f��
0 ; �

�
1 ; : : : ; �

�
n g has a subsequence which converges to a limit (�0; �1; : : : ; �N).

The limit (�0; �1; : : : ; �N) de�nes an optimal incentive scheme

~s = �0 +
NX
i=1

�iXi(1) (46)

in the continuous model. The coe�cients �i, i = 1; : : : ; N , satisfy �i =

ĉi(�
�) � u�i + v�i where �� and u�i , v

�
i , i = 1; : : : ; N , are the corresponding

limits of ��� and u��i , v��i along the convergent subsequence.9

9In Corollary 1, as in Theorem 1, one can replace the processes X�

i (�) and Xi(�) by the processes
Z�

i (�) and Zi(�) that were used by Holmstr�om and Milgrom and that are de�ned in (26) - (29) . In terms

of these processes, (45) and (46) become ~s� = �̂�
0
+
PN

i=1 �̂
�

i Z
�

i (1), and ~s = �̂0 +
PN

i=1 �iZi(1), where,

for i = 1; : : : ; N , ��i and �i are the same as before and �̂�
0
= ��

0
�
PN

i=1 �
��

i , �̂0 = �0 �
PN

i=1 �
�

i .
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5 Linearity in Aggregates

So far the optimal incentive schemes in the discrete multi-period and in the correspon-

ding Brownian model are linear only in accounts, not in total pro�ts. Speci�cally, total

incentive payments in (45) are equal to a constant plus
PN

i=1 ĉi(�
�)Xi(1); unless ĉi(�

�)

is the same for all i = 1; : : : ; N , this is not representable as a function of
PN

i=1Xi(1),

the total contribution to pro�ts from having outcomes other than 0. In particular, if N

is large, i.e., if there are many di�erent possible pro�t levels in each period, the corre-

sponding Brownian motion is of high dimension and the optimal incentive scheme may

be very complex, much more complex than real world contracts that are often linear in

aggregates, such as total pro�ts.

As noted by Holmstr�om and Milgrom, the preceding remarks are moot if N = 1, and

the static model involves just two possible outcomes. In this case, the aggregate bonus

for outcomes other than 0 reduces to ĉ1X1(1) and the problem of aggregation across

outcomes other than 0 does not arise. Since any Brownian motion can be represented

as a limit of binomial processes, it is sometimes believed that this observation is enough

to support the linearity of incentive schemes in Brownian models. For a unidimensional

Brownian motion, this is of course correct. However, Theorem 1 and Corollary 2 show

that the unidimensional Brownian motion does not actually yield the appropriate limit for

multi-period problems with multinomial rather than binomial processes. The underlying

structure of the intertemporal agency problem - in continuous as well as discrete time - is

given by the function ĉ(�) which indicates the tradeo� between the vector of contributions

of the di�erent accounts to pro�ts per unit of \real time" and the agent's e�ort costs per

unit of \real time". The dimension N of the domain of this function is an essential feature

of the economic situation. This dimension corresponds to the cardinality of the outcome

set in the static model as well as the dimension of the Brownian motion in the continuous-

time model. For N > 1, the observation that unidimensional Brownian motions can be

represented as limits of binomial processes is therefore irrelevant.

As mentioned in the introduction, for the case N > 1 Holmstr�om and Milgrom

(1987) present two variants of the continuous-time model that actually do yield optimal

incentive schemes that are linear in aggregates, e.g., total pro�ts. One of these involves
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an assumption that the principal observes the time path of total pro�ts rather than the

time paths of all the accounts Xi(�). We will discuss this approach extensively in the next

section. The other one involves an assumption that the agent's e�ort cost depends only

on expected pro�ts rather than the vector of drift rates for the di�erent accounts. In the

remainder of this paper we ask what are the discrete-time analogues of these continuous-

time results.

In this section we begin with the second variant. The assumption that e�ort cost

depends only on expected pro�ts requires that the cost function in the continuous-time

model takes the form

ĉ(�) = g

 
NX
i=1

�i

!
; (47)

i.e, the agent's cost depends only on the expected pro�ts he is going to produce: the

higher expected pro�ts the more costly it is for the agent. This cost function seems to

be very natural, it is easy to deal with, and it has often been used in applications of

the Brownian model (see e.g. Holmstr�om and Milgrom (1991) or Itoh (1992)).10 It is

also close to the speci�cation of Mirrlees (1974), who considers a one-period model where

pro�ts are lognormally distributed and the agent chooses the mean of this distribution.

Mirrlees assumes that the agent's costs are an increasing and convex function of the mean,

i.e., of expected pro�ts.11

Using (13) and (7) it is straightforward to show that in the discrete one-period model

the cost function corresponding to (47) is given by12

c(p) = g(E(p)) = g

 
NX
i=0

pi�i

!
(48)

In the discrete multi-period model we get

c�(p�) = �c

 
p̂ +

p� � p̂

�
1

2

!
= �g

 
NX
i=0

 
p̂i +

p�i � p̂i

�
1

2

!
�i

!
= �g

 
E�(p�)

�

!
= �g(��)

(49)

10Furthermore, it admits the interpretation that the \tasks" �i are perfect substitutes in the agent's
cost function.

11Sch�attler and Sung (1997) use the same speci�cation in a discrete-time model that is used to appro-
ximate a continuous-time Brownian-motion model. They run into Mirrlees' problem that the discrete
principal-agent problem has no solution.

12This speci�cation of the cost function violates Assumption 1 which requires that c(p) is strictly

convex. So far, however, strict convexity of c(�) has been used in Proposition 3 only. All of the results of
this section hold if g(�) is strictly convex.
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where

E�(p�) =
NX
i=0

p�i �
�
i = �

NX
i=1

��i (50)

and

�� =
NX
i=1

��i : (51)

Finally, let

V �(p) =
NX
i=0

pi
�
��i � E�(p)

�2
= �

NX
i=0

pi (�i � E(p))
2

(52)

and de�ne

�2 � V 1(p̂) (53)

The following result, which is an immediate corollary of Theorem 1(c), shows that in

the limit, as �! 0, the incentive scheme that implements a given action � in the interior

of the admissible action space is indeed a linear function of total pro�ts.

Corollary 3 Suppose that in the discrete multi-period model the agent's cost

function is given by (49) and that the principal wants to implement a constant

action vector ��, satisfying 0 < p�i (�
�) < 1 for any su�ciently small �,

that gives rise to expected pro�ts ��. Let w denote the certainty equivalent

of the agent's utility if he does not work for the principal. Assume that as �

converges to zero, �� converges to �. Then also the incentive schemes that

implement �� converge to

s = w + g(�) + g0 � (total pro�ts� �) +
r

2
(g0)2�2 (54)

which coincides with the incentive scheme that implements � in the Brownian

model.

At �rst sight, Corollary 3 seems to provide for the discrete-time approximations

of continuous-time models involving the cost speci�cation (47) and the linear incentive

scheme (54). However, this interpretation is awed because in the discrete multi-period

models the principal never wants to implement a constant action vector �� such that

0 < pi(�
�) < 1 for all i. To see this, go back to the static model with cost speci�cation

(48). If the set P of admissible probability vectors is equal to the entire simplex, there
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is nothing to prevent a solution which eliminates practically all risk, and under (48) such

a solution will in fact be optimal. Since the e�ort cost of the agent depends on expected

pro�ts only and since total surplus increases when the riskiness of the outcome is reduced,

the principal will try to implement any target level of expected pro�ts with as little risk

as possible. For this purpose he induces the agent to put all probability mass on the two

pro�t levels just neighboring the target level. If the set (p1; : : : ; pN) of pro�t levels in

the static model has been speci�ed so that neighboring levels are close to each other, the

outcome is \almost" deterministic and the �rst best can \almost" be implemented. The

very core of the agency problem seems to have disappeared.

This result holds in any of the multi-period discrete-time models as well as in the

static model.13 In each case, the variance of cumulative pro�ts is bounded by the square

of the maximum of di�erences between neighboring pro�t levels in the static model. In

the Brownian motion model, however, the variance is given exogenously and the optimal

solution of the principal-agent problem is bounded away from the �rst-best. Theorem

1 and its Corollaries are not applicable because the sequence of optimal actions in the

discrete-time model does not have a well de�ned limit. For any i for which p�i = 0, by

(7) the corresponding ��i (p
�
i ) is negative and goes out of bounds as � ! 0, whereas for

the two indices i on which p�i is concentrated, the corresponding ��i (p
�
i ) is positive (and

also goes out of bounds). Not only does the discrete-time version of (48) eliminate the

core of the agency problem, but also it gives rise to a discontinuity in the transition from

multi-period discrete-time models to continuous time.

The discontinuity in the transition from discrete-time models to continuous time

would not be present if the controls �� were restricted to a compact set K, as in Theorem

2. In this case however the limiting incentive scheme would be given by (44) rather than

(54). The Kuhn-Tucker multipliers û�i and v̂�i in (44) would depend on i and would in

fact prevent the incentive scheme from being a linear function of the pro�t aggregate.14

13In (49) p̂ cancels out of g(�) for any � and the agent's isocost curves are still linear in p�i .
14In fact, the speci�cation (48) does not �t into the framework of Holmstr�om and Milgrom's discrete

time model. If c(p) depends only on the linear aggregate
PN

i=0 pi�i, then the corresponding isocost
curves in the probability simplex are linear and there is no natural impediment to the agent's substituting
between, say, pi and pj . In consequence the principal wants to implement a probability vector on the
boundary of the set of admissible vectors. This is incompatible with Assumption A(iv) of Holmstr�om
and Milgrom (1987, p. 310) whereby any p on the boundary of the set of admissible probability vectors
is prohibitively costly for the agent and hence for the principal.
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We conclude that the result that the optimal incentive scheme in the Brownian model is

linear in total pro�ts if the agent's cost function depends on expected pro�ts only cannot

be approximated by the multi-period discrete-time models.

6 Approximating Sharing Rules that Are Linear in Aggregates

In this section we develop a discrete-time analogue of the proposition of Holmstr�om and

Milgrom that optimal incentive schemes in the continuous-time model are linear in a given

aggregate if the principal observes the time path of this aggregate without observing its

individual components. In terms of formal modelling, the assumption is that the principal

observes the time path of the accounting aggregate z(t) =
PN

i=1 Zi(t) - and hence the time

path of total pro�ts - without observing the time paths of the individual accounts Zi(t),

i = 1; :::; N . With this assumption, Theorem 8 of Holmstr�om and Milgrom (1987) shows

that the optimal incentive scheme is a linear function of the value of this aggregate at

t = 1 (e.g. total pro�ts z(1) � z at the end of the period). This result reects the basic

intuition that nonlinear incentive schemes are vulnerable to manipulation.

Unfortunately, however, Theorem 8 has no immediate discrete-time analogue. To see

this, note that in any period � 2 f1; : : : ; 1

�
g the principal observes

P�
� 0=1 �

�;� 0. Since the

pro�t in period � is simply ��;� =
P�

� 0=1 �
�;� 0 �

P��1
� 0=1 �

�;� 0, the principal can compute

the individual accounts ~Z�;�
i even if he observes the time path of total pro�ts only. Since

this information can be used to improve the incentive scheme, the principal will use it in

the same way as before. Thus, for all � > 0 we get again linearity in accounts only. In the

limit, however, it is impossible to derive the individual accounts Zi(t) from the observation

of z(t). Thus, if we want to approximate this result in a discrete framework, we need a

stronger form of asymmetric information than is used in Theorem 8 of Holmstr�om and

Milgrom. As it turns out, this has a signi�cant impact on the analysis of the discrete-time

models themselves.

The discrete models considered in this section have the following structure. The

time interval [0; 1] is devided in 1

�
periods each of length �. At the beginning of each

period � , � 2 f1; : : : ; 1

�
g, the agent observes the past history of pro�ts and chooses his

action ��;� . As in Section 3, we embed the discrete model in a continuous model where
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t 2 [0; 1] and ��(t) = ��;[t=�]. In contrast to the model considered by Holmstr�om and

Milgrom, however, we assume that the principal does not observe the time path of pro�ts.

Furthermore, we assume that the agent has the possibility to destroy output before he

reports total pro�ts ẑ to the principal. Thus, the principal observes only the revealed pro�t

ẑ �
PN

i=0 Zi(1) � z at date 1. Both of these assumptions are required to make sure that

the principal cannot construct the accounts Zi(1) for each pro�t level i 2 f0; : : : ; Ng.15

In this model the principal has considerably less information than the agent. However,

the principal could ask the agent not only to report �nal pro�ts but also to report e.g. the

time path of pro�ts.16 Somewhat more generally, the principal could o�er an incentive

scheme S(m) which requires the agent to send a message m out of some message space

M(z). This message space will, in general, depend on total pro�ts available at date 1.

For example, M(z) could be the set of all possible pro�t paths with the property that

total pro�ts do not exceed z. Since the agent can destroy pro�ts unnoticed, it must be

the case that z0 < z impliesM(z0) �M(z). The following proposition shows that without

loss of generality we can restrict attention to incentive schemes that are non-decreasing

functions of reported total pro�ts.

Proposition 4 If the principal can implement a control path ��(t) with an

incentive scheme S�(m), then ��(t) can also be implemented with a non-

decreasing incentive scheme s�(z), which asks the agent to report total pro�ts

z =
PN

i=1 Zi(1) truthfully. Furthermore, this can be done so that the utilities

of the principal and of the agent are the same under S�(m) and under s�(z).

The proof is a standard application of the revelation principle and is relegated to

Appendix A.

Note that if an incentive scheme implements a control path �(�) under the informati-

on assumptions of Section 2 and if this incentive scheme can be written as a nondecreasing

15Note that if the agent cannot destroy output the principal may be able to construct these accounts
even if he does not observe the time path of pro�ts. To see this, suppose that there are three di�erent
pro�t levels, � 2 f�1; 1

e
; 1g, where e is Euler's number. In this case the total amount of pro�ts reveals

how often each of the three di�erent states occured for any number of periods 1

�
.

16Like Holmstr�om and Milgrom (1987) we rule out the possibility that the principal requires the agent
to report pro�ts at any points in time t 2 [0; 1]. The idea is that the principal cannot monitor the agent
continuously but only at exogenously given discrete points in time. Without this assumption the analysis
is considerably more complicated.
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function of cumulative pro�ts, then it also implements �(�) under the information assump-

tions in this section: First, the incentive scheme is feasible for the principal because it

depends only on total pro�ts. Second, by Proposition 4, the agent will report total pro�ts

truthfully since the incentive scheme is nondecreasing. Finally, when the agent chooses

the control path �(�), he faces exactly the same incentives under the information assump-

tions of Section 2 and of this section. Hence, if the incentive scheme ~s�(�) implements

�(�) under the information assumptions of Section 2, then the condition that ~s�(�) can

be written as a monotonic function of z is not only necessary, but also su�cient for the

implementability of �(�) under the information assumptions we impose in this section.

With the condition that �nal payments to the agent must be given by a nondecreasing

function of cumulative total pro�ts, the nature of the multi-period discrete-time agency

problem changes dramatically. As a result, the solutions to this problem will no longer

exhibit the stationarity properties that were so useful in Corollary 1. To see the issue,

note �rst that in the static agency problem, an incentive scheme involving a nonlinear

nondecreasing function of total pro�ts, e.g., a suitable step function, might enable the

principal to neutralize at least some of the e�ects of having to condition on total pro�ts

rather than each outcome separately. In a two-period agency problem - and even more

so in a general multi-period problem -, his scope for doing so is reduced as the e�ects of

intertemporal aggregation set in and he can, e.g., not distinguish whether a cumulative

total pro�t of two stems from two realizations of one or from one realization of two and

one of zero. Even so, his desire to use nonlinearities of the incentive scheme in order to

neutralize some of the e�ects of his inability to condition on individual accounts is not

likely to disappear altogether; after all there are limits to intertemporal aggregation, at

least as long as the number of periods as well as the set of possible outcomes in each

period is �nite.

Given an incentive scheme that is a nonlinear function of cumulative total pro�ts,

the agent's optimization problem will typically have nonstationary, time-dependent and

history-dependent solutions. To see why, suppose that the incentive scheme is a step

function. If the horizon is far away, the agent's e�ort choice will mainly depend on

considerations of \global steepness of the staircase", i.e., on the sort of \global" tradeo�

between e�ort and incentive payments that is relevant when he can envisage himself as

32



taking the same action repeatedly and wondering what is the impact of the corresponding

movement in cumulative total pro�ts on his own income. In contrast, if the agent is near

to the end of his horizon, he is more concerned about the local properties of the incentive

scheme, e.g., how far away he is from the nearest points of increase or decrease, i.e. the

\nearest steps of the staircase" - and also how large these steps are.

These considerations suggest that under the information assumptions made here the

multi-period agency problem is rather more di�cult to study than in the setting of Section

2 where the solution of the problem can be taken to be stationary. At the same time they

suggest that the additional di�culties may perhaps be relatively unimportant when there

are many periods and for \most" periods the horizon may be taken to be distant. In this

case considerations of intertemporal aggregation would seem to vitiate any attempt of the

principal to use nonlinearities of the incentive scheme in order to neutralize the e�ects of

his inability to condition on individual accounts.

The following analysis shows that this is indeed the case. In Theorem 3 below,

we show, roughly, that when incentive schemes are restricted to nondecreasing functions

of cumulative total pro�ts, a suitably chosen linear incentive scheme is approximately

optimal if the number of periods T = 1=� in the multi-period model is large. This

provides one analogue of the optimality of linear incentive schemes in continuous time

that is established in Theorem 8 of Holmstr�om and Milgrom. The stronger analogue that

optimal incentive schemes in the T -period problem are approximately linear when T is

large can also be established. However this requires considerably more mathematics and

is presented elsewhere (see Hellwig (1998b)).

In this section we assume again that for all � = 1; 1
2
; : : : ; the vector �� must be

chosen from a product K =
QN

i=1[mi;Mi] of compact intervals, where mi < 0 < Mi.

Combined with Assumption 1, this implies that ĉ(�) is continuously di�erentiable on the

interior of K with uniformly bounded �rst derivatives. Holmstr�om and Milgrom (1987)

and Sch�attler and Sung (1993) assume in addition that the control paths chosen by the

agent lie in the interior of a compact set. Note that the following theorem does not require

this assumption.
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Theorem 3 In addition to Assumption 1, suppose that controls are constrai-

ned to the compact set K =
QN

i=1[mi;Mi]. Consider a sequence of discrete

models with period length �, � = 1; 1
2
; : : :. There exists an incentive scheme

s�(z) which is linear in total pro�ts such that for any � > 0 there exists a � > 0

with the property that for all � < � the principal's utility loss from using the

linear contract s�(z) rather than the optimal contract s�;�(z) is smaller than

�. Furthermore, s�(z) is an optimal incentive scheme in the continuous model

in which the principal observes only the time path of aggregate pro�ts z(t).

Theorem 3 shows that there exists a discrete-time analoque to Holmstr�om and Mil-

grom's main result, which says that the optimal incentive scheme in the continuous-time

model is linear in aggregates if the principal observes the time path of these aggregates

only. In our discrete time model there is not only aggregation accross accounts, but also

aggregation over time, since the principal is assumed to only observe the sum of total pro-

�ts at the end of the last period. Note, however, that there is some implicit aggregation

over time in Holmstr�om and Milgrom as well. The principal observes the time path of

a Brownian motion. However, at any point in time the incremental change \dB" of this

stochastic process is only de�ned by the integral of the stochastic process between two

(arbitrarily close) points in time. But this means that the Holmstr�om-Milgrom assump-

tion whereby the principal observes only the aggregate process
PN

i=1 dBi involves some

implicit aggregation over time as well.

In the introduction of their paper, Holmstr�om and Milgrom argued that nonlinearities

in incentive schemes are vulnerable to manipulation by the agent. However, in most of

their actual analysis \manipulation" by the agent does not play any role. Manipulation

enters their analysis only in the Brownian model of Theorem 8. If the principal observes

the time path of total pro�ts only, then the agent cannot be prevented from choosing a

control path that yields a given time path of expected pro�ts at least cost to the agent.

This cost minimization leads to marginal costs of raising pro�ts being the same for all

accounts so that the term
PN

i=1 ĉiXi(1) in the expression for �nal incentive payments can

in fact be written as ĉ1
PN

i=1Xi(t), a constant times the deviation of cumulative total

pro�ts from their mean.
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Our discrete-time analysis shows that there has to be some aggregation over time

in addition to the aggregation accross accounts. Furthermore, in our model the agent

can destroy pro�ts unnoticed. Thus, the agent has a lot of discretion in how to allocate

his e�ort over time and what to report to the principal. The ability to destroy pro�ts

is important because it restricts the principal to nondecreasing incentive schemes. This

monotonicity of incentive schemes is important for the claim in the proof of Theorem 3

that as � goes to zero the set of incentive schemes satisfying (A.44) and (MS) shrinks to

the set of schemes satisfying (A.45) and (MS). Without monotonicity, one might not be

able to rule out sequences of incentive schemes satisfying (A.44), but uctuating ever more

wildly as the range of possible outcome becomes denser and denser and tends towards

�lling the whole space.

As discussed in the introduction to this section, as long as � is positive a linear

contract is unlikely to be optimal in the discrete-time model. However our result shows

that it is at least approximately optimal. A linear contract gives a constant incentive

pressure over time so that the agent will not exploit nonlinearities of the contract by

making his e�ort depend on past pro�t realizations. Moreover a linear contract is not

vulnerable to manipulation arising from the principal's inability to observe anything other

than the cumulative total pro�t that the agent has chosen not to destroy. These two

considerations put a bound on any advantage that a nonliner contract might have over

the optimal linear one; moreover this bound is close to zero whenever � is close to zero.
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Appendix A

Proof of Proposition 1: If the agent chooses ��;� = (�
�;�
1 ; : : : ; �

�;�
N ) in periods � = 1; : : : ; 1

�
,

expected gross pro�ts are

1=�X
�=1

NX
i=0

p�i (�
�;�)��i =

1=�X
�=1

2
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@p̂0 �

NX
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�;�
i

�
1

2

ki

1
A�0�

1

2 +
NX
i=1

0
@p̂i + �

�;�
i

�
1

2

ki

1
A�i�

1

2

3
5

=
1=�X
�=1

"
NX
i=0

p̂i�i�
1

2 �
NX
i=1

�
�;�
i

��0

ki
+

NX
i=1

�
�;�
i

��i

ki

#

=
1=�X
�=1

NX
i=1

�
�;�
i

�i � �0

ki
�

= �
1=�X
�=1

NX
i=1

�
�;�
i : (A.1)

Furthermore, we have

1=�X
�=1

c�(p�(��;�)) =
1=�X
�=1

�c

 
p̂+

p�(��;�)� p̂

�1

2

!
=

1=�X
�=1

�ĉ(��;�) : (A.2)

Obviously, if ��;� = � for all � = 1; : : : ; 1

�
and all � = 1; 1

2
; : : :, we have

1=�X
�=1

NX
i=0

p�i (�)�
�
i =

1

�

NX
i=1

�i� =
NX
i=1

�i (A.3)

and
1=�X
�=1

c�(p(�)) =
1

�
�ĉ(�) = ĉ(�) : (A.4)

Thus, in this case total expected pro�ts and total costs to the agent depend on � but are

independent of the length of each subperiod �. Q.E.D.

Proof of Theorem 1:

(a) Consider any time interval [t; t0], t0 > t. Suppose that the agent takes action ��;�

in period � 2 f[t=�] + 1; [t=�] + 2; : : : ; [t0=�]g. Then, in each of these periods the

probability that ~A�;�
i = 1 equals p�i (�

�;�) which is de�ned by (9) and (10) above.

Furthermore, since the time path of actions f��;�g is deterministic, any ~A�;�1
i and

~A�;�2
i are stochastically independent for any �1; �2 2 f[t=�]+1; [t=�]+2; : : : ; [t0=�]g,
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�1 6= �2. The distribution of X�
i (t

0)�X�
i (t) is characterized by:

E
�
X�

i (t
0)�X�

i (t)
�

= E

 
~X�
i

 "
t0

�

#!
� ~X�

i

��
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Var
�
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= k2i�
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0
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= kikj�
t0=�X

�=t=�+1

0
@p̂ip̂j + p̂i�

�;�
j

�
1

2

kj
+ p̂j�

�;�
i

�
1

2

ki
+ �

�;�
i �

�;�
j

�

kikj

1
A

= �kikjp̂ip̂j(t
0 � t) +O(�) (A.9)

where O(�) contains all terms that vanish as � goes to 0. Thus, in the limit as

� goes to zero, the variances and covariances are independent of the time path of

actions f��;�g.

The stochastic process X�(t) satis�es the conditions of Prohorov's generalization of

Donsker's Theorem.17 In particular, note that the maximum of pro�ts that can be

17See Billingsley (1968), Theorem 10.1 in conjunction with Problem 10.1 (p. 77) and Problem 16.7 (p.
143).
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obtained in any period is given by ��N = �N�
1

2 and goes to zero as � goes to zero

which implies that the Lindeberg condition is satis�ed. Hence, as � ! 0, X�(t)

converges in distribution to a multidimensional Brownian motion with drift 0 and

covariance matrix �.

(b) Suppose the agent takes the time path of actions ��;� , � = 1; : : : ; 1

�
, where ��(t)

converges to �(t) uniformly in t as � goes to zero. Since �(t) is continuous, there

exists a compact set K � IRN such that for any su�ciently small � one has ��(t) 2

K for all t. Since ĉ(�) is continuous - and hence bounded on K - we �nd for the

agent's cost in the limit as � goes to 0:

lim
�!0

1=�X
�=1

�ĉ(��;�) = lim
�!0

Z 1

�
ĉ(��(t))dt =

Z 1

0
ĉ(�(t))dt : (A.10)

(c) Substituting (19) in (18) yields:

1=�X
�=1

~s�;� =
�X
�=1

�ĉ(��;�) +
1=�X
�=1

NX
i=1

ĉi(�
�;�) ~X�;�

i (A.11)

+
r

2

1=�X
�=1

NX
i=0

� ~A�;�
i

2
4ĉi(��;� )ki �

NX
j=1

p̂j ĉj(�
�;� )kj

3
5
2

+O(�
1

2 )

From (b), the �rst term in (A.11) converges to
R
ĉ(�(t))dt as � converges to zero.

As for the second term, the same argument as in (b) implies that for any su�ciently

small �, ��;� belongs to a compact set K for all � , and ĉi(�
�;�) is bounded, uni-

formly in � . From part (a) therefore, one �nds that for any su�ciently small �0,

the sums

1=�X
�=1

ĉi(�
�0;[��=�0]) ~X�;�

i =
1=�X
�=1

ĉi(�
�0;� )

h
X�

i (��
0)�X�

i (��
0 ��0)

i
(A.12)

converge in distribution to

1=�X
�=1

ĉi(�
�0;�)

h
X�

i (��
0)�X�

i (��
0 ��0)

i
=

Z 1

0

ĉi(�
�0

(t))dXi(t) ; (A.13)

as � goes to zero, uniformly in �0. One also has lim�0!0 ĉi(�
�0

(t)) = ĉi(�(t))

uniformly in t, and hence plim�0!0

R
ĉi(�

�0

(t))dXi(t) =
R
ĉi(�(t))dXi(t). Therefore

the sums
P

� ĉi(�
�;�)X�;�

i in the second term of (A.11) converge in distribution to

the stochastic integral
R
ĉi(�(t))dXi(t) as � goes to zero.
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Turning to the third term in (A.11), we rewrite this in the form

r

2
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�=1

NX
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�
�
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� 24ĉi(��;�)ki �

NX
j=1

p̂j ĉj(�
�;� )kj
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4ĉi(��;�)ki �
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�;�)kj

3
5
2

(A.14)

By the law of large numbers, the �rst of these terms converges to zero almost surely

as � goes to zero. The second term converges to the integral r
2

R 1
0 ĉ

0(�(t))�[c0(�(t))]Tdt.

Thus, if the principal wants to implement the time path of actions �(t), t 2 [0; 1],

such that the agent's certainty equivalent is w, then the incentive scheme that im-

plements �(t) converges to

s = w +
Z 1

0

ĉ(�(t))dt+
Z 1

0

ĉ0(�(t))dX +
r

2

Z 1

0

ĉ0(�(t))�[c0(�(t))]Tdt : (A.15)

Q.E.D.

Proof of Proposition 2: To simplify the notation write

a�i := 1� r(ĉi � û�i + v̂�i )ki�
1

2 +
NX
j=1

p�j (�
�)r(ĉj � û�j + v�j )kj�

1

2 (A.16)

and note that the �rst-order conditions for the maximization of (39) with respect to û�i

and v̂�i under the constraints (38) can be written as:

1

a�i
�

NX
j=1

p�j (�
�)

a�j
; with equality if û�i > 0, and v̂�i = 0, if ��i = mi; (A.17)

û�i = v̂�i = 0 ; if mi < ��i < Mi; (A.18)

1

a�i
�

NX
j=1

p�j (�
�)

a�j
; with equality if v̂�i > 0, and û�i = 0, if ��i = Mi; (A.19)

Suppose �rst that û�i > 0 and v̂�j > 0 for some i and j. Then (A.17) and (A.19)

imply a�i = a�j as well as v̂�i = û�j = 0, and one immediately obtains kiû
�
i + kjv̂

�
j =

kiĉi(�
�) � kj ĉj(�

�) � (��). Suppose next that û�i = 0 for all i and v̂�i > 0 for some

i. Let J be the set of indices j for which v̂�j = 0 and note that 0 2 J so J 6= �. Let

M :=
P

j2J

p�
j
(��)

a�
j

and note that (A.19) impliesM =
P

j2J

p�
j
(��)

a�
j

+
P

j 62J p
�
j (�

�)M , hence

M =

P
j2J

p�
j
(��)=a�

jP
j2J

p�
j
(��)

and 1

M
� minj2J a

�
j . For any i 62 J , (A.19) implies a�i = 1

M
, hence
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a�i � minj2J a
�
j . This in turn yields kiv

�
i � maxj2J kj ĉj(�

�)�kiĉi(�
�) � (��). Finally,

if v̂�i = 0 for all i and û�i > 0 for some i, a precisely symmetric argument shows that for

all i, kiû
�
i � maxj2J kj ĉj(�

�)� kiĉi(�
�) � (��), where J now is the set of indices j for

which û�j > 0. Q.E.D.

Proof of Proposition 3: Trivially, any limit (�; û; v̂) of a sequence f(��; û�; v̂�)g of vectors

in K � IRN
+ � IRN

+ that satisfy (42) as well as (38) for all � will itself belong to the set of

vectors in K � IRN
+ � IRN

+ that satisfy (43). To prove the proposition it therefore su�ces

to show that any vector (�; û; v̂) 2 K � IRN
+ � IRN

+ that satis�es (43) can in fact be

approximated by a sequence of vectors (��; û�; v̂�) 2 IC(�).

Given (�; û; v̂) 2 K � IRN
+ � IRN

+ satisfying (43), for any � > 0, let

s�i = �ĉ(�)�
1

r
ln

2
41� r(ĉi � ûi + v̂i)ki�

1

2 + r
NX
j=1

p�j (�)(ĉj � ûj + v̂j)kj�
1

2

3
5 ; (A.20)

and let �� be a solution to the problem of maximizing �
PN

i=1 p
�
i (�

�)e�r(s
�

i
��ĉ(��)) over

the set K. Moreover for i = 1; : : : ; N , let r�
1

2kiû
�
i , r�

1

2kiv̂
�
i be the Kuhn-Tucker multi-

pliers corresponding to the constraints ��i � mi and Mi � ��i in this maximization, and

write û� = (û�1 ; : : : ; û
�
N), v̂

� = (v̂�1 ; : : : ; v̂
�
N). Then clearly (��; û�; v̂�) 2 IC(�). We

also show that (��; û�; v̂�) converges to (�; û; v̂) as � converges to zero.

The argument is based on Berge's (1959) maximum theorem. For the given incentive

scheme, the maximization problem de�ning �� is equivalent to the problem of minimizing

e�r�(ĉ(�)�ĉ(��))

"
1� r

NX
i=1

(p�i (�
�)� p�i (�)(ĉi � ûi + v̂i)ki�

1

2

#
(A.21)

over the set K. Given the speci�cation of p�i (�), minimization of (A.21) with respect to

�� in turn is equivalent to the minimization of

e�r�(ĉ(�)�ĉ(��))

"
1� r�

NX
i=1

(��i � �i)(ĉi � ûi + v̂i)

#
(A.22)

with respect to ��. Upon subtracting the constant 1 and dividing by �, one �nds that

given the minimization of (A.22) is equivalent to the minimization of

e�r�(ĉ(�)�ĉ(��)) � 1

�
� r

NX
i=1

(��i � �i)(ĉi � ûi + v̂i)e
�r�(ĉ(�)�ĉ(��)) : (A.23)
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As � goes to zero and �� converges to say ��, the minimand in (A.23) converges to:

r(ĉ(��)� ĉ(�))� r
NX
i=1

(��i � �i)(ĉi(�)� ûi + v̂i) : (A.24)

By Berge's maximum theorem it follows that any limit of a subsequence of minimizers

of (A.23) must itself be a minimizer of (A.24). Since ĉ(�) is strictly concave, (A.24)

has a unique minimum at �� = �. Any convergent subsequence of minimizers of

(A.23) must therefore converge to �. Since K is compact and all convergent subsequences

have the same limit, it follows that the sequence f��g converges to �. Convergence of

the associated vectors of normalized Kuhn-Tucker mulitipliers û�, v̂� to û, v̂ follows by

taking limits in the Kuhn-Tucker conditions for ��. This shows that the given (�; û; v̂) 2

K � IRN
+ � IRN

+ satisfying (43) can in fact be approximated by a sequence of vectors

(��; û�; v̂�) 2 IC(�). Q.E.D.

Proof of Theorem 2: By Proposition C.1 and Remark C.1 in Appendix C, a constant con-

trol path � is implementable by an incentive scheme s(�) in the continuous-time model

if and only if there exist vectors û = (û1; : : : ; ûN), v̂ = (v̂1; : : : ; v̂N) such that � and û, v̂

satisfy the complementary slackness condition (38), and moreover s(�) has the represen-

tation:

s(X) = w+ ĉ(�)+
NX
i=1

(ĉi(�)� ûi+ v̂i)Xi(1)+
r

2

NX
i=1

NX
j=1

(ĉi� ûi+ v̂i)�ij(ĉi� ûi+vi) ; (A.25)

The principal's expected payo� from using the scheme s(�) to implement the constant

control path � is therefore computed as

UP (�; û; v̂) =
NX
i=1

�i � w � ĉ(�)�
r

2

NX
i=1

NX
j=1

(ĉi � ûi + v̂i)�ij(ĉi � ûi + vi) ; (A.26)

Therefore a constant control path � and incentive scheme s(�) implementing � are optimal

for the principal in the continuous-time model if and only if � and the associated vectors

û and v̂ maximize (A.26) subject to the complementary slackness conditions (43).

Now consider the transition from the multiperiod discrete-time models to the continuous-

time model. Expanding the logarithmic term in (40) in a Taylor series and taking limits

as � goes to zero we obtain

lim
�!0

UP�(��; û�; v̂�) (A.27)
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=
NX
i=1

�i � w � ĉ(�)�
r

2

NX
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p̂i

2
4(ĉi � ûi + v̂i)ki �

NX
j=1

p̂j(ĉj � ûj + vj)kj

3
5
2

= UP (�; û; v̂) (A.28)

for any sequence f��; û�; v̂�g that converges to a limit (�; û; v̂) 2 K � IRN
+ � IRN

+ as

� goes to zero. In view of (A.27) and Proposition 3, Berge's maximum theorem im-

plies that if the sequence f���; û��1 ; v̂��1 ; : : : ; û��N ; v̂��N g of constant optimal control paths

and associated Kuhn-Tucker multipliers in the discrete-time problems has a subsequence

which converges to a limit (��; û�1; v̂
�
1; : : : ; û

�
N ; v̂

�
N), then (��; û�1; v̂

�
1; : : : ; û

�
N ; v̂

�
N) maximizes

UP (�; û; v̂) subject to the constraint (43) so �� and the incentive scheme s�(�) given by

(44) are optimal for the principal in the continuous-time problem.

It remains to be shown that the sequence f���; û��1 ; v̂��1 ; : : : ; û��N ; v̂��N g actually has

a convergent subsequence. Since ��� 2 K for all �, certainly the sequence f���g has a

subsequence which converges to a limit ��. To economize on notation, we identify the

convergent subsequence with the original sequence. For each �, let û� = (û�1 ; : : : ; û
�
N),

v̂� = (v̂�1 ; : : : ; v̂
�
N) be the solution to the principal's \relaxed problem" of maximizing

UP�(��; û; v̂) with respect to û and v̂ subject only to the complementary slackness con-

ditions (38). By Proposition 2, we have û�i �
(���)

ki
and v̂�i �

(���)

ki
for all i and all

�, hence û�i �
̂
ki

and v̂�i � ̂
ki

for all i and all �. The sequence fû�; v̂�g must there-

fore have a convergent subsequence. Moreover another application of Berge's maximum

theorem shows that any limit (û�; v̂�) of a subsequence of fû�; v̂�g must be maximizing

UP (��; û; v̂) over the set of (û; v̂) satisfying (43). Given that the function UP (��; �; �) is

strictly concave, the latter maximizer is unique, so the limit (û�; v̂�) must be the same

for all convergent subsequences of fû�; v̂�g, and the sequence fû�; v̂�g itself must be

converging to (û�; v̂�).

We claim that the \true" vectors of Kuhn-Tucker multipliers û�� and v̂�� must

also be converging to û� and v̂�, so (��; û�; v̂�) is indeed a limit point of the sequence

f���; û��1 ; v̂��1 ; : : : ; û��N ; v̂��N g. Let UP� be the maximum value of UP (�; �; �) subject to the

constraint (43). In view of (A.27) and the de�nition of (û� and v̂�, we have:

lim sup
�!0

UP�(��; û�; v̂�) � lim
�!0

UP�(���; �̂�; v̂�)

= UP (��; û��; v̂��) � UP� : (A.29)
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From Proposition 3 and (A.27), we also know that there exists a sequence f��; u�0; v�0g

such that for any �, ��; u�0; v�0) 2 IC(�) and moreover lim�!0 U
P�(��; u�0; v�0) =

UP�. Given the de�nition of f���; û��1 ; v̂��1 ; : : : ; û��N ; v̂��N g it follows that

lim inf
�!0

UP�(���; û��; v̂��) � UP� : (A.30)

Upon combining (A.29) and (A.30), we conclude that

lim
�!0

UP�(���; û��; v̂��) = lim
�!0

UP�(���; û�; v̂�) = UP (��; û��; v̂��) = UP� : (A.31)

For any �, let (u�00; v�00) be an arbitrary convex combination of (û��; v̂��) and (û�; v̂�).

Since UP�(���; �; �) is concave and, by the de�nition of (û�; v̂�), UP�(���; û��; v̂��) �

UP�(���; û�; v̂�) for all �, we have UP�(���; û��; v̂��) � UP�(���; u�00; v�00) � UP�(���; û�; v̂�)

for all �, so (A.31) implies:

lim
�!0

UP�(���; u�00; v�00) = UP (��; û�; v̂�) = UP� : (A.32)

Given that (û�; v̂�) maximizes the strictly concave function UP (��; �; �) under the cons-

traint (43) - and any limit point of the sequence fu�00; v�00g will also satisfy (43) -,

it follows that any convergent subsequence of convex combinations of (û��; v̂��) and

(û�; v̂�) must actually converge to (û�; v̂�). This in turn implies that the sequence

fû��; v̂��g itself converges to (û�; v̂�), so (��; û�; v̂�) is indeed a limit point of the se-

quence f���; û��1 ; v̂��1 ; : : : ; û��N ; v̂��N g. This completes the proof of Theorem 2. Q.E.D.

Proof of Proposition 4: Consider an incentive scheme S�(m) that implements ��(t). If

total pro�ts at t = 1 are given by z, the agent reports

m�(z) 2 arg max
m2M(z)

S�(m) (A.33)

Consider now a mechanism s�(z) which is de�ned by s�(z) = S�(m�(z)). If m�(z) is an

optimal announcement given z under S�(m), then z must be an optimal announcement

under s�(z). Suppose not. If total pro�ts are given by z, then the agent cannot report

ẑ > z. If he reports ẑ < z, his payo� is

s�(ẑ) � S�(m�(ẑ)) � S�(m�(z)) � s�(z) (A.34)
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sinceM(ẑ) � M(z). Hence, the mechanism s�(z) induces the agent to report total pro�ts

truthfully. Furthermore, it follows from (A.34) that s�(z) is non-decreasing.

We now have to show that s�(z) induces the agent to choose the same path of action

��(t) as S�(m). Since S�(m) implements ��(t) it must be the case that

EUA(S�(m�(z)) j ��(t)) � EUA(S�(m�(z)) j �̂�(t)) (A.35)

for all admissible paths of actions �̂�(t). However, since s�(z) induces the agent to report

total pro�ts truthfully, we have

EUA(s�(z) j ��(t)) = EUA(S�(m�(z)) j ��(t))

� EUA(S�(m�(z)) j �̂�(t)) = EUA(s�(z) j �̂�(t)) (A.36)

for all admissible paths of actions �̂�(t). Hence, s�(z) also implements ��(t).

Finally, since s�(z) implements the same time path of actions and yields the same

payments to the agent as the old contract S�(m), the expected utilities of the principal

and the agent must also be the same. Q.E.D.

Proof of Theorem 3: Note �rst that

Z�
i

�
1

�

�
= X�

i

�
1

�

�
+

1=�X
�=1

�
�;�
i (A.37)

Hence, we can write s�(�) as a function of x =
PN

i=1X
�
i

�
1

�

�
rather than z. Furthermore,

if s(�) is nondecreasing in x, it is also nondecreasing in z.

For any �, let ~��;� , � = 1; :::; 1

�
, and s�(�) be a control strategy and an incentive

scheme that solve the principal's problem in the discrete-time problem with period length

�. Formally, the control strategy ~��;� , � = 1; ::: 1
�
, and incentive scheme s�(�) maximize

the principal's expected payo�,

E

2
41=�X
�=1

NX
i=1

�~��;�
i � s�

 
NX
i=1

X�
i

�
1

�

�!35 (A.38)

subject to the constraints

(IR) If the agent chooses the control path ~��;� , � = 1; : : : ; 1

�
he gets at least his

reservation utility �e�rw.
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(IC) Given the incentive scheme s�(�) it is indeed optimal for the agent to choose

the control path ~��;� .

(MS) The sharing rule s�(x) is nondecreasing in x.

By Holmstr�om and Milgrom (1987, Theorem 4) we know that the control strategy �̂�;�

is implemented by sharing rule s� if and only if cumulative payments under this scheme

can be written as a sum of payments under incentive schemes s�;� that would implement

�̂�;� in the static problem, � = 1; : : : ; 1

�
. Furthermore, we have shown in Proposition 2

of Section 4 that the action ~��;� can be implemented by ~s�;� only if ~s�;� satis�es

~s�;�
i = �ĉ(��)�

1

r
ln
h
1� r(ĉi(�

�;�)� u
��;�
i + v

��;�
i )ki�

1

2 (A.39)

+r
NX
j=0

p�j (ĉj(�
�;� )� u

��;�
j + v

��;�
j )kj�

1

2

3
5

for some vectors û�;� = (û�;�
1 ; : : : ; û

�;�
N ), v̂�;� = (v̂�;�

1 ; : : : ; v̂
�;�
N ). It follows that the

principal's maximal expected payo� in problem (A.38) with the constraints (IR), (IC),

and (MS) is no larger than the payo� he would obtain if he chose a control strategy �̂�;� ,

an incentive scheme ŝ�, and vectors û�;� , v̂�;� to maximize the expression:

E

2
41=�X
�=1

NX
i=1

���;�
i

1=�X
�=1

�ĉ(��;�) +
1

r

1=�X
�=1

NX
i=1

 
~X�;�
i

ki�
1

2

+ p�i

!
(A.40)

� ln

0
@1� r(ĉi(�

�;�)� u
��;�
i + v

��;�
i )ki�

1

2 + r
NX
j=0

p�j (ĉj(�
�;�)� u

��;�
j + v

��;�
j )kj�

1

2

1
A� w

3
5

under the constraints that

s�
 

NX
i=1

~X�
i

�
1

�

�!
= w +

1=�X
�=1

�ĉ(��;�
i )�

1

r

1=�X
�=1

NX
i=1

 
~X�;�
i

ki�
1

2

+ p�i

!
(A.41)

� ln

0
@1� r(ĉi(�

�;�)� u
��;�
i + v

��;�
i )ki�

1

2 + r
NX
j=0

p�j (ĉj(�
�;�)� u

��;�
j + v

��;�
j )kj�

1

2

1
A

with probability one, and (MS) s�(�) is a nondecreasing function.

Let �̂�;� , ŝ�;� , û�;� , v̂�;� be a solution to this problem. By Proposition 2, û�;� and

v̂�;� belong to the compact set [0; G]N where G is the maximum of maxi
(�)

ki
over K.

Using a Taylor expansion for the logarithmic term, we therefore �nd that for any � > 0
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the value of (A.38) is no larger than

E

2
41=�X
�=1

NX
i=1

��̂�;�
i �

NX
i=1

�ĉ(�̂�;�)�
r

2

1=�X
�=1

NX
i=1

�p̂i

 
i(�̂

�;�)ki �
NX
i=1

p̂jj(�̂
�;�)kj

!2
3
5�w�� ;

(A.42)

where i(�
�;�) = ĉi(�

�;�) � u
��;�
i + v

��;�
i , if � is su�ciently close to zero. Here we have

made use of the fact that the expected value of the linear term of the Taylor expansion is

zero and the fact that for each � and i, conditional on �̂�;� , the coe�cient ( ~X�;�
i =ki�

1

2 +

p�i (�̂
�;�)) = ~A�;�

i of the logarithmic term has expected value p�i (�̂
�;�) = p̂i +O(�

1

2 ) and

variance p�i (�̂
�;�)(1�p�i (�̂

�;�)), so for the quadratic term of the Taylor expansion, which

is proportional to �, this coe�cient may be approximated by p̂i if � is su�ciently small.

At this point it is convenient to rewrite (A.42) and (A.38) using continuous-time no-

tation. In continuous-time notation, our preceding argument can be summarized as saying

that for any � > 0 and any su�ciently small �, in the 1

�
-period problem, the principal's

maximal expected payo� is no larger than � plus the maximum of the expression

E

2
64Z 1

0

NX
i=1

�̂�i (t)dt�
Z 1

0
ĉ(�̂�(t))dt�

r

2

Z 1

0

NX
i=1

p̂i

0
@i(�̂�(t))ki � NX

j=1

p̂jj(�̂
�(t))kj

1
A

2

dt

3
75�w

(A.43)

with respect to the control strategy ��(�) and an incentive scheme s�(�) satisfying

(PL) ��(�) is piecewise linear with ��(t) = ��;[t=�], and

s�
 

NX
i=1

X�
i (1)

!
= w +

Z 1

0

ĉ(��(t))dt (A.44)

�
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Z 1
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NX
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1

ki�
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0
@1� ri(�

�(t))ki�
1

2 + r
NX
j=0

p�j j(�
�(t))kj�

1

2

1
A dX�

i (t)

�
1

r

Z 1

0

NX
i=1

p�i (�
�(t)) ln

0
@1� ri(�

�(t))ki�
1

2 + r
NX
j=0

p�j j(�
�(t))kj�

1

2

1
A dt

with probability one, and (MS) s�(�) is a nondecreasing function.

By Proposition B.1 in Appendix B we know that as � goes to zero, the disturbance

process converges uniformly to a Brownian motion with initial value B(0) = 0, zero drift

and covariance matrix �. Given that the range of this Brownian motion can be identi�ed
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with the set of all continuous functions of [0; 1] into IRN , it follows that as � goes to zero

the set of pairs of control strategies ��(�) and incentive schemes s�(�) satisfying (A.44)

as well as (MS) shrinks to the set of pairs of control strategies �(�) and incentive schemes

s(�) satisfying

s�
 

NX
i=1

X�
i (1)

!
= w +

Z 1

0

ĉ(��(t))dt (A.45)

+
Z 1

0

NX
i=1

i(�(t))dXi(t)dt+
r

2

Z 1

0
0(�(t))�[0(�(t))]Tdt

with probability one and (MS) s(�) is a nondecreasing function. Hence, for all � > 0 and

any su�ciently small �, the maximum value of (A.43) under the constraints (PL), (A.44)

and (MS) is no less than � plus the maximum value of

Z 1

0

NX
i=1

�i(t)dt�
Z 1

0
ĉ(�(t))dt�

r

2

Z 1

0
0(�(t))�[0(�(t))]Tdt� w (A.46)

under the constraints (A.45) and (MS).

Now compare the problem of maximizing (A.46) under the constraints (A.45) and

(MS) to the continuous-time problem with controls �i(t) as discussed in Appendix C.

In this appendix, as well as in Holmst�om and Milgrom (1987, Theorem 8), the principal

maximizes the same payo� function but the incentive scheme can be a function of the entire

time path of the aggregate
PN

i=1Xi(�). Proposition C.2 shows that this problem is solved

by a constant control path �� and a linear sharing rule s�(z) = �0+�1z that depends only

on accumulated total pro�ts at time 1, z, with �1 = 1(�
�) = 2(�

�) = : : : = N(�
�) > 0

and �0 = ĉ(��)� ĉ0(��)T�� + r
2
0(��)�[0(��)]T . Clearly, a constant time path of actions

satis�es our restriction (PL). Furthermore, the incentive scheme also satis�es (MS') and

(IC). Hence, the optimal solution to Holmstr�om and Milgrom's optimization problem is

also the solution to the problem of maximizing (A.46) under the constraints (A.45) and

(MS).

If we substitute the maximizer �� on the right-hand side of (A.46), we �nd that for

any � > 0 and any su�ciently small �, the maximum value of the principal's expected

payo� (A.38) in the 1

�
-period discrete-time problem with the constraints (IR), (IC) and

(MS) is no larger than

NX
i=1

��i � ĉ(��)�
r

2
0(��)�[0(��)]T � w + 2� : (A.47)
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Using the entire approximation argument in reverse, we also �nd that for given � > 0 and

any su�ciently small �, (A.47) is no larger than

E

2
41=�X
�=1

NX
i=1

���i � s

 
NX
i=1

~X�
i

�
1

�

�!35+ 3� ; (A.48)

where for any �, ��� is the agent's (unique) optimal action when faced with the linear

scheme s(�). Upon setting � = �=3, we obtain the conclusion of Theorem 3. Q.E.D.

Appendix B

In this appendix we discuss the relationship between discrete-time and continous-time

strategies and outcome processes when the agent's choice at any one time may depend

on the history of the process up to this time. In the multi-period discrete-time model

with period length �, the agent chooses a sequence of possibly history-dependent controls

f~��;�g
1=�
�=1. This choice generates a sequence f~�

�;�g
1=�
�=1 of random pro�t levels. We assume

that for each � , the agent's control choice ~��;� is given by a - possibly degenerate - function

of pro�t realizations prior to � , i.e., that we can write

~��;� = �̂�;�(~��;1; :::; ~��;��1) (B.1)

for all � , and we identify the agent's strategy with the sequence of functions f�̂�;�g
1=�
�=1.

The range of each function �̂�;� is taken to be the compact set K =
QN

i=1[mi;Mi]. Given

the control strategy f�̂�;�g
1=�
�=1 the pro�t sequence f~��;�g

1=�
�=1 is assumed to satisfy the

condition that for each � 2 f1; :::; 1=�g, ~��;� takes values in f�0�
1

2 ; :::; �N�
1

2g and, for

given ��;1; :::; ��;��1

Prob(f~��;� = �i�
1

2g j ~��;1 = ��;1; :::; ~��;��1 = ��;��1) (B.2)

= p�i (�̂
�;�(��;1; :::; ��;��1))

As in the text, a given control strategy f�̂�;�g
1=�
�=1 and associated pro�t sequence f~�

�;�g
1=�
�=1

are used to de�ne counting variables ~A�;�
i ; i = 0; 1; :::; N; � = 1; :::; 1

�
;� = 1; 1

2
; ::: such

that ~A�;�
i = 1 , ~��;� = �i�

1

2 and ~A�;�
i = 0 , ~��;� 6= �i�

1

2 : From (B.2) one obviously

has:

E[ ~A�;�
i j~��;1 = ��;1; :::; ~��;��1 = ��;��1] � p�i (�̂

�;� (��;1; :::; ��;��1)) (B.3)
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It follows that if we de�ne

~X�;�
i = ki�

1

2 ( ~A�;�
i � p�i (�̂

�;�(��;1; :::; ��;��1)) (B.4)

we have

E[ ~X�;�
i j~��;1 = ��;1; :::; ~��;��1 = ��;��1] � 0 (B.5)

i.e., for any � the process f( ~X�
1 (�); :::;

~X�
N (�))g

1=�
�=1 is a martingale. Again using a li-

near interpolation to embed the processes f( ~X�
1 (�); :::;

~X�
N (�))g

1=�
�=1 in a continuous-time

formulation, we write for any i and any t 2 [0; 1]:

X�
i (t) =

�
1�

t

�
+

�
t

�

��
~X�
i

��
t

�

��
+

�
t

�
�

�
t

�

��
~X�
i

��
t

�

�
+ 1

�
(B.6)

where again [ t
�
] denotes the greatest integer less than or equal to t

�
. For any �;

(X�
1 (�); :::; X

�
N (�)) is a random function taking values in the space CN [0; 1] of continuous

functions from [0; 1] into IRN . The distribution of (X�
1 (�); :::; X

�
N (�)) depends on the

chosen control strategy of the agent.

Proposition B.1 For � = 1; 1
2
; 1
3
; : : : ; let f�̂�;�g

1=�
�=1 be a control strategy ta-

king values in the compact set K =
QN

i=1[mi;Mi], and consider the induced pro-

cess (X�
1 (�); :::; X

�
N (�)). As � converges to zero, the processes (X�

1 (�); :::; X
�
N (�))

converge in distribution to the Gaussian process B(�) with initial value B(0) =

0, zero drift, and covariance matrix �.

Proof: For any �, let f~��;�g
1=�
�=1 be the random pro�t sequence that is induced by the

control strategy f�̂�;�g
1=�
�=1. For any � and any t 2 [0; 1], let F�

t be the �-algebra on the

underlying probability space that is generated by the random variables ~��;1; :::; ~��;[t=�]:

Fix some vector q 2 IRN ; and consider the stochastic process X�
q (�) on [0; 1] such that

for any t 2 [0; 1],

X�
q (t) =

NX
i=1

qiX
�
i (t) (B.7)

For any t and �, (B.5) and (B.6) yield:

E[X�
q ([t=�]� +�)�X�

q ([t=�]�)jF
�
t ] = E[

NX
i=1

qi ~X
�;[t=�]+�

i jF�
t ] = 0 (B.8)
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For any two vectors q1; q2 2 IRN , one also has:

E[(X�
q1([t=�]� +�) � X�

q1([t=�]�)(X
�
q2([t=�]� +�)�X�

q2([t=�]�)jF
�
t ]

= E[
NX
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NX
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q1i
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i q2j
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�;[t=�]+�

j jF�
t ]

= E[
NX
i=1

q1i q
2
i k

2
i � (1� p�i (~�

�;[t=�])) p�i (~�
�;[t=�])jF�

t ]

�E[
NX
i=1

X
j 6=i

q1i q
2
j kikj � p�i (~�

�;[t=�]) p�j (~�
�;[t=�])jF�

t ]

=
NX
i=1

q1i q
2
i k

2
i � p̂i �

NX
i=1

NX
j=1

q1i q
2
j kikj � p̂i p̂j +�O(�)

=
NX
i=1

NX
j=1

q1i q
2
j �ij � +�O(�) (B.9)

where �ij is the ij-th element of the matrix � (see (23) in the text) and O(�) is a term

that goes to zero when � goes to zero, uniformly in strategies and histories.

Now consider the vector process

X�
Q = (X�

q1 ; :::; X
�
qN )

where q1; :::; qN are eigenvectors of the matrix �; normed so that qr 0qr = ��1r where �r

is the eigenvalue of � that corresponds to qr. Given that � is a symmetric, positive

de�nite matrix, the eigenvectors qr; qs; r 6= s; are mutually orthogonal. For this choice of

q1; :::; qN , (B.9) yields:

E[(X�
qr([t=�]� +�) � X�

qr([t=�]�)(X
�
qs([t=�]� +�)�X�

qs([t=�]�)jF
�
t ]

=
NX
i=1

NX
j=1

qri q
s
j �ij � +�O(�)

=
NX
i=1

qri �sq
s
i �+�O(�)

= �rs �+�O(�) (B.10)

where �ij = 1 if i = j and �ij = 0 if i 6= j.

Finally we also have, for any " > 0; any t and any i,

ProbfjX�
qi ([t=�]� +�)�X�

qi ([t=�]�j � "jF�
t g = 0 (B.11)
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for any � < ["=max jkjj]
2:

From (B.8), (B.10), and (B.11), one easily sees that the processes X�
Q ;� = 1; 1

2
; 1
2
; :::

satisfy the assumptions of Theorems 6 and 7 of Gihman and Skorohod (1979, p.195). It fol-

lows that for any t, as � converges to zero, the conditional distributions of fX�
Q (t

0)gt02[t;1]

given F�
t converge to the conditional distribution of a standard N -dimensional Brownian

motionW (:) on [t; 1] given the \initial" valueW (t). In particular the overall distributions

of the processes X�
Q on [0; 1] converge to the distribution of a standard Browninan motion

on [0; 1] with ininital value W (0) = 0:

Given this convergence result, the proposition follows from Theorem 5.1 of Billingsley

(1968, p.30) in conjunction with the observation that for any �; one has (X�
1 (:); :::; X

�
N (:)) =

(Q0)�1X�
Q . Q.E.D.

Appendix C

In this appendix we analyse the continuous-time agency problem with controls restricted

to a product of compact intervals. In the continuous-time model, the principal's problem

is to choose a functional s(�) on the space of continuous functions from [0; 1] into IRN and

an admissible control process �(�), taking values in
QN

i=1[mi;Mi] , so as to maximize the

expectation of
R 1
0

PN
i=1 �i(t)dt�s(X) subject to the constraint (i) that given the incentive

scheme s(�), the agent is willing to choose the control process �(�), and (ii) that the

resulting expected utility of the agent be at least as large as � exp(�rw), his expected

utility elsewhere. If an incentive scheme s(�) and a control process �(�) satisfy both these

constraints, we say that s(�) implements �(�). For a precise de�nition of admissibility of a

control process, as well as other details of the formulation of the principal's problem and

its analysis, we refer the reader to Sch�attler and Sung (1993). Under our assumptions,

their results are easily adapted to yield:

Proposition C.1 An admissible control process ��(�) is implementable by so-

me incentive scheme s�(�) if and only if there exist nonnegative-valued adapted

processes ui(�), vi(�), i = 1; : : : ; N , such that for (almost) every t 2 [0; 1], with

probability one, the (possibly history dependent) control ��(t) minimizes the
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expresssion

ĉ(�(t))�
NX
i=1

[ĉi(�(t))� ui(t) + vi(t)]�i(t) (C.1)

under the constraints (i) �(t) 2
QN

i=1[mi;Mi], and (ii) the incentive scheme

s�(�) has the representation:

s�(X) = w +
Z 1

0
ĉ(��(t))dt+

Z 1

0

NX
i=1

[ĉi(�
�(t))� ui(t) + vi(t)]dX(t) (C.2)

+
r

2

Z 1

0

NX
i=1

NX
j=1

[ĉi(�
�(t))� ui(t) + vi(t)]�ij[ĉj(�

�(t))� uj(t) + vj(t)]dt

where � = (�ij) is the covariance matrix of the N-dimensional Brownian

motion that is speci�ed in Theorem 1.

Remark C.1: Given the assumption that ĉ(�) is convex, the condition that �� minimi-

ze (C.1) over the set K =
QN

i=1[mi;Mi] is equivalent to the complementary slackness

condition that

ui(t)[�
�
i (t)�mi] = vi(t)[Mi � ��i (t)] (C.3)

for all i.

Proof of Proposition C.1: The argument involves a straightforward modi�cation of the

proof of Theorem 4.2 of Sch�attler and Sung (1993, pp. 352f) to take account of the

possibility of boundary values of the controls. If s�(�) implements the control process ��(�),

then by Theorem 4.1, p. 348, of Sch�attler and Sung, there exist adapted processes V (�)

and rV (�), taking values in IR� and in IRN
+ such that for almost every t, with probability

one, ��(t) maximizes
PN

i=1rVi(t)�i(t) + rV (t)ĉ(�(t)) over the set
QN

i=1[mi;Mi].
18 The

�rst-order condition for this problem implies the existence of nonnegative ui(t), vi(t) such

that for any i,
rVi(t)

rV (t)
= �[ĉi(�

�(t))� ui(t) + vi(t)] ; (C.4)

with ui(t)(�i(t) � mi) = vi(t)(Mi � �i(t)) = 0. For this speci�cation of ui(t) and vi(t),

it is then easy to see that ��(t) indeed minimizes the expresssion (C.1) over the setQN
i=1[mi;Mi]. The representation (C.2) for the incentive scheme s�(�) is obtained by

using (C.4) to substitute in the incentive scheme representation given in Theorem 4.1 of

Sch�attler and Sung (1993).

18The symbol r is only natational and does not stand for a derivative.
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Conversely if there exist adapted processes ui(�), vi(�) such that for (almost) every

t, with probability one, ��(t) minimizes the expresssion (C.1) over the set
QN

i=1[mi;Mi],

then formula (C.2) de�nes an incentive scheme s�(�), and the argument given in the proof

of Theorem 4.2 of Sch�attler and Sung shows that this incentive scheme implements the

control process ��(�). Q.E.D.

Proposition C.1 has the following immediate corollary:

Corollary C.1 An admissible control process ��(�) is implementable by an

incentive scheme s�(�) taking the form s�(X(�)) = s��(
PN

i=1Xi(�)) if and only

if there exist nonnegative-valued adapted processes ui(�), vi(�), i = 1; : : : ; N ,

such that for (almost) every t 2 [0; 1], with probability one, the (possibly hi-

story dependent) control ��(t) minimizes (C.1) over the set
QN

i=1[mi;Mi] and

moreover ĉi(�
�(t))� ui(t) + vi(t) is the same for all i.

Lemma C.1 For any E 2 [
PN

i=1mi;
PN

i=1Mi], let (E) be the minimum of

ĉ(�) over the set
QN

i=1[mi;Mi] under the constraint that
PN

i=1 �i = E, and

let �(E) be the corresponding minimizer. The control process ��(�) satisfying

��(t) = �(E) for all t is implementable by an incentive scheme s�(�) taking

the form s�(X(�)) = s��(
PN

i=1Xi(�)). Indeed s
�(�) has the form

s�(X) = w + (E) + 0(E)

 
NX
i=1

Xi(1)

!
+
r

2
0(E)2�2 (C.5)

where �2 =
PN

i=1

PN
j=1 �ij.

Proof: The �rst-order conditions for �(E) can be written as:

ĉi(�(E))� ui + vi = �; i = 1; : : : ; N; (C.6)

where ui, vi, i = 1; : : : ; N , are nonnegative, with ui(�i �mi) = vi(Mi � �i) = 0, and �

is the Lagrange multiplier of the constraint
PN

i=1 �i = E. By the envelope theorem, one

also has

0(E) = � : (C.7)

The lemma now follows directly from Proposition C.1, Remark C.1, and Corollary C.1.

Q.E.D.
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Proposition C.2 Suppose that E� maximizes the expression

E � (E)�
r

2
0(E)2

2
4 NX
i=1

p̂ik
2
i �

NX
i=1

NX
j=1

p̂ip̂jkikj

3
5 (C.8)

over the interval [
PN

i=1mi;
PN

i=1Mi]. If the principal observes the aggregate

process Y (�) :=
PN

i=1Xi(�), but not its individual components, then a soluti-

on to the principal's problem is given by the control process ���(�) satisfying

���(t) = �(E�) for all t, implemented by the incentive scheme s�(�) given as

s�(X) = w + (E�) + 0(E�)

 
NX
i=1

Xi(1)

!
+
r

2
0(E�)2�2 : (C.9)

Proof: If the principal observes only the aggregate outcome process, any incentive scheme

s�(�) that he uses must take the form s�(X(�)) = s��(
PN

i=1Xi(�)). With such an incentive

scheme, by Corollary C.1, he can implement a control process ��(�) if and only if there

exist adapted processes ui(�); vi(�); i = 1; : : : ; N , and �(�), such that for all i, ui(�) and vi(�)

take nonnegative values, and for almost all t, with probability one, ��(t) minimizes (C.1)

over the set
QN

i=1[mi;Mi], and moreover ĉi(�
�(t))� ui(t) + vi(t) = �(t) for i = 1; : : : ; N .

Since ��(t) minimizes (C.1) over the set
QN

i=1[mi;Mi], one also has ui(t)(�
�
i (t) � mi) =

vi(t)(Mi � ��i (t)) = 0. Thus ��(t) satis�es the �rst-order conditions for the problem of

minimizing ĉ(�) over the set
QN

i=1[mi;Mi] under the constraint that
PN

i=1 �i(t) = E(t),

where E(t) :=
PN

i=1 �
�
i (t). Given that ĉ(�) is convex, it follows that for almost all t,

with probability one, ��(t) = �(E(t)), ĉ(��(t)) = (E(t)), and ĉi(�
�(t))� ui(t) + vi(t) =

0(E(t)). Upon using these equation to substitute in (C.2), we �nd that the function

s��(�) has the representation

s��(Y ) = w +
Z 1

0

(E(t))dt+
Z 1

0

0(E(t))dY (t) +
r

2

Z 1

0

0(E(t))2dt�2 : (C.10)

Conditional on the process E(�), the principal's net expected payo� is then almost surely

equal to Z 1

0
E(t)dt� w � (E(t))dt�

r

2

Z 1

0
0(E(t))2dt�2 : (C.11)

The de�nition of E� implies that with probability one this is no larger than

E� � w � (E�)�
r

2
0(E�)2�2 : (C.12)
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Upon taking expectations with respect to the process E(t), one immediately sees that

the principal's net expected payo� from any control process ��(�) which is implementable

by an incentive scheme of the form s�(X(�)) = s��(
PN

i=1Xi(�)) cannot exceed his net

expected payo� from the control process ���(�) satisfying ���(t) = �(E�) for all t. Under

the given information assumption the control process ���(�) is therefore indeed optimal

for the principal. The representation (C.9) of the incentive scheme that implements ���(�)

is obtained by substituting for E(t) = E� in (C.10) and using the fact that
R 1
0 dY (t) =

Y (1)� Y (0) =
PN

i=1Xi(1)�
PN

i=1Xi(0) =
PN

i=1Xi(1). Q.E.D.
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