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Abstract

In a seminal paper, Holmstrom and Milgrom (1987) examine a
principal-agent problem in which an agent controls the drift of a
Brownian motion. Given that the agent can revise his control contin-
uously, they show that the optimal sharing rule is linear in aggregated
output. In this paper, we examine the case where control revisions
take place in arbitrarily small discrete time intervals. We show that
the first-best outcome can be approached asymptotically by a random
spot check in conjunction with a step function. The central message
of this paper is therefore that in agency problems of the sort studied
by Holmstrém and Milgrom, linear sharing rules may not always be
optimal. Random spot checks are widely used in practice and play an
important role in the area of quality control.

*This is a revised version of an earlier paper entitled "Randomization in Dynamic
Principal-Agent Problems,” Working Papers in Economics E-96-5, Hoover Institution,
which was written while T was visiting Stanford University. Financial support from
Schweizerischer Nationalfonds and Deutsche Forschungsgemeinschaft, Sonderforschungs-
bereich 504 is gratefully acknowledged. An earlier version of this paper was presented at
the Econometric Society European Meeting ‘97 in Toulouse. I have benefited from com-
ments and suggestions by Martin Hellwig, Paul Milgrom, Heinz Miiller, Klaus Schmidt, Jae
Sung, Dimitri Vayanos, and participants in seminars at the Universities of Bonn, Copen-
hagen, Lund, Mannheim, Munich, Stockholm and the Stockholm School of Economics.



1 Introduction

Most real-world incentive schemes are simple, and yet they cannot be ex-
plained within the framework of the standard principal-agent model. As
was shown by Grossman and Hart (1983), even basic properties such as
monotonicity are hard to assure unless one is willing to accept assumptions
that are extremely restrictive. Based on this weakness of existing models,
Holmstrém and Milgrom (1987) have developed a principal-agent model in
which the optimal sharing rule is linear. In this model, an agent continuously
revises the drift of a Brownian motion during a fixed time interval in response
to observations of the history of the process. The agent’s technology is time-
and state-invariant. Moreover, principal and agent both have exponential
utility in order to abstract from wealth effects. In a stationary environment
like this, linear sharing rules provide uniform incentives since the marginal
reward for an additional unit of output is the same at any time.

The central message of this paper is that in agency problems of the sort
studied by Holmstréom and Milgrom, linear sharing rules may not always be
optimal. Unlike Holmstrém and Milgrom who assume that the agent can
revise his control continuously, we look at the case where control revisions
take place in arbitrarily small discrete time intervals. Incidentally, discrete-
time control revisions are consistent with the intention of Holmstrém and
Milgrom to "investigate a situation in which the agent takes actions very
frequently in time” (p. 316, see also p. 322). Our main idea is simple.
Suppose the relevant time interval is partitioned into n subintervals of equal
length and the agent can change his control only at the beginning of each
subinterval. In this setting, the principal can create uniform incentives by
randomly selecting a subinterval ex post and applying a step function to
the output produced in this subinterval. Since the agent does not know in
advance which of the subintervals will be selected, his n control problems
are identical and he will choose a constant control. This in turn implies that
we can replace the dynamic problem with a much simpler static problem in
which the agent selects the mean of a normally distributed random variable
and the principal is a priori restricted to step functions. As was first shown
by Mirrlees (1974) in a related context, the principal can then approach the
first-best outcome asymptotically by choosing the cutoff arbitrarily small.

As it turns out, randomization is sufficient, but not necessary for near
first-best optimality: the first-best solution can also be approximated by ap-
plying a step function to each subinterval separately. In practice, however,
measuring output is costly, which implies that detailed checks are Pareto-
dominated by random spot checks. This result is related to work by Mookher-
jee and Png (1989) who study a static principal-agent model in the spirit of



Grossman and Hart (1983) with costly state verification. They show that
if the agent’s output can only be observed at a cost, optimal audits by the
principal must be random. As in our model, randomization is efficient as
it achieves a reduction in audit costs without simultaneously distorting the
agent’s incentives.

Recently, the Holmstrém-Milgrom model has been extended by several
authors. Schéttler and Sung (1993) derive necessary and sufficient conditions
for the validity of the first-order approach in the continuous-time principal-
agent problem for a wide class of stochastic processes. As a special case, they
rederive Holmstrom and Milgrom’s linearity result. In a companion paper,
Schittler and Sung (1997) show that the minutest deviation from the Brown-
ian model such as the introduction of a time- or state-dependent technology
leads to solutions that are nonlinear. Based on the work by Schéttler and
Sung (1993), Sung (1995) shows that the linearity result continues to hold
if the agent is allowed to control both the drift and the diffusion rate of the
outcome process. Harris and Bolton (1997) generalize the Brownian model
in several directions and characterize properties of the first-best solution. Fi-
nally, Miiller (1997a) explicitly derives the first-best sharing rule and shows
that it is also linear in aggregated output.

In their paper, Holmstrom and Milgrom examine three models: a static
model, a discrete-time model, and a continuous-time model ("the Brown-
ian model”). By the way, the discrete-time model analyzed by Holmstrém
and Milgrom differs from the one analyzed here. In the former model, the
agent controls a discrete-time multinomial process whereas here, he controls
the drift of a continuous-time process in discrete time intervals. Hellwig
and Schmidt (1997) link the discrete- and continuous-time models in a uni-
fied framework and explicitly derive the Brownian model as the limit of a
sequence of discrete-time models. Furthermore, they provide sufficient con-
ditions for a discrete-time analogue of the continuous-time linearity result.
In a companion paper, Hellwig (1997) derives a linearity result similar to the
one in Holmstréom and Milgrom (1987) in a mean-variance framework with
endogenous drift and diffusion rate.

The rest of the paper is organized as follows: section 2 presents the Brown-
ian model with continuous-time control revisions and the linearity result de-
rived by Holmstrom and Milgrom. In section 3, we turn to the Brownian
model with discrete-time control revisions and show that the first-best out-
come can be approached arbitrarily closely with a random spot check in
conjunction with a step function. Section 4 derives some comparative statics
results. In section 5, we show that a detailed check of the agent’s entire
output is also near first-best optimal and discuss the role of measurement
cost and unbounded penalties. Section 6 concludes.



2 The Continuous-Time Problem

In this section, we briefly review the Brownian model developed by Holm-
strom and Milgrom (1987, section 4) and state their main result. The no-
tation is primarily adopted from Schittler and Sung (1993). For ease of
exposition, we confine ourselves to the case of one-dimensional Brownian
motion. At time 0, principal and agent agree on a sharing rule which spec-
ifies a payment from the principal to the agent at time 1. The sharing rule
may depend on a stochastic outcome process X defined on the time inter-
val [0, 1] which satisfies Xy = 0 and is publicly observable. Formally, X is
governed by a stochastic differential equation of the form

dX; = [ (u;)dt + odB,. (1)

where f (u;) is the instantaneous mean, u; = u; (¢, X) is the agent’s control
at time ¢, o is the diffusion rate, and B is a standard Brownian motion. The
principal receives the end-of-period output X;. Besides, the principal can
observe the outcome process X, but not the agent’s control u. Let (Q,F, P)
denote the underlying probability space. The control u is an F;—predictable
process with values in some open bounded control set ' C R4. That is,
the agent’s control can be revised continuously during the time interval [0, 1]
and may depend on the history of X in [0,¢], but not on the future (¢,1].
Denote the class of all such processes by ¢. The "production function” f (-) is
bounded with derivatives f'(-) > 0 and f”(-) < 0, and the diffusion rate lies
in some bounded subset of R;4. The agent incurs effort cost ¢(u;), where
¢(-) is bounded with derivatives ¢/ (-) > 0 and ¢”(-) > 0. Finally, principal
and agent both have negative exponential von Neumann-Morgenstern utility
with coefficient of risk aversion R and r, respectively.

Denote by W4 the agent’s certainty equivalent at time 0. The principal’s
problem is to choose a sharing rule S and a control v that maximize her ex-
pected utility subject to the agent’s participation and incentive compatibility
constraint. She solves

max B [—exp {~R(Xi - 5)}] (2)
o dX; = f (us) dt + od By, (3)
E [— exp{—r (S — —/Olc(ut) dt) H > —exp{—rWu}, (4)

and

u €arg max I |—exp {—7" (S — /01 c(ty) dt> H (5)

ueU
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The solution derived by Holmstrém and Milgrom (1987) and Schéttler
and Sung (1993) consists of two parts: 1) The optimal control is time-
invariant, i.e. u; = u* for all ¢, and 2) the optimal sharing rule is a linear
function of aggregated output, i.e.

o, S

S =K + WXI: (6)
where K is a constant. Given the constancy of the optimal control, the so-
lution to the dynamic problem (2)-(5) corresponds to the solution of a static
principal-agent problem in which the agent selects the mean of a normally
distributed random variable and the principal is constrained to linear shar-
ing rules. This correspondence between the dynamic model and the much
simpler static model has been exploited in several papers (e.g. Holmstrém
and Milgrom (1990, 1991), Dixit et. al (1996)).

The linearity result is driven by a delicate balance of Brownian motion,
CARA utility, and a time- and state-invariant technology. Given the sta-
tionarity of the environment, linear sharing rules apply a uniform incentive
pressure: at any time, the marginal reward for an additional unit of output
is the same, regardless of the output that has been accumulated in the past.
Consequently, the agent will exert a constant level of effort.

3 The Discrete-Time Problem

In this section, we examine a variant of the Brownian model in which actions
are taken in arbitrarily small discrete time intervals. In the discrete-time
problem, the interval [0, 1] is partitioned into n subintervals of equal length

n=1l el it

Al = % The agent’s control can only be revised at ¢ € {0, %,
can only be revised at the beginning of a subinterval and remains constant
throughout the entire subinterval. Observe that the agent still controls a
continuous-time stochastic process. However, since the cumulative output
produced in a subinterval is normally distributed, the discrete-time model is
conceptionally equivalent to a model in which the agent repeatedly chooses
the mean of a normally distributed random variable.

Denote the increments of the processes X and B which are produced in
the subinterval [¢,¢ + At] by the forward differences AX; = X;1a; — X; and

AB; = Bipar — By, respectively. For convenience, let us also assume that the
principal is risk neutral. The principal’s discrete-time problem is

max F[X; — 9] (7)

S



s.t.
AXt = f (Ut> At -I‘ O'ABt7 (8)

n—1

E [— exp {—7“ (S — Zt:TO ¢ (uy) At) }] > —exp{—rWu}, (9)
and

u €arg max K [— exp {—7“ <S — ZS c(ty) At) H . (10)

aeu
In the remainder of this section, we will show that the principal can ap-
proach the first-best outcome, i.e. the solution to (7)-(9), arbitrarily closely.
Since the principal is risk-neutral, the first-best sharing rule is a constant
which compensates the agent for his cumulative effort and the opportunity
cost of participating. Using results from Miiller (1997a), we obtain

Proposition 3.1: The first-best sharing rule is
Ske = Wi+ c(upg). (11)

and the first-best control is constant, unique, and implicitly defined by the
equality of marginal productivity and marginal cost

[ (ukg) = ¢ (uip) . (12)

Proof: In the absence of incentive constraints, this problem is separable
and can be solved as a static risk-sharing problem. Define net compensation

n=1
as Z =S — 3,2 ¢(us) At. Summing up (8) and inserting the result in (7),
we can write the principal’s first-best problem as

max ) [JBl + Zt:TO [f (us) — c(w)| At — Z (13)
s.t.
Fl—exp{-rZ}] > —exp{—rWu}. (14)
Standard results show that Z must be non-random and that (14) must hold
with equality. This implies
[ (uipp) = ¢ (ujpp) (15)
for all ¢, and

Finally, from (15), f”(-) < 0 and ¢’ () > 0 it follows that u}, 5 = ujg for all
t. 1.e. the first-best control is constant and unique. B



If the agent could choose his control only once, aggregated output X,
would be normally distributed with mean f (u) and variance o*. The prin-
cipal could then approach the first-best outcome asymptotlcally by using a
step function or "Mirrlees scheme” (Mirrlees (1974), Miiller (1997b)). In
their survey article, Hart and Holmstrom (1987, p. 93) argue that this is
no longer true if the agent can adjust his control frequently in response to
observations of the history of the process and conclude that "the optimality
of step functions is highly sensitive to the assumption that the agent chooses
his labor input only once”. We will show later that this is not necessarily
correct. First, however, let us briefly sketch their argument.

Suppose the principal uses a step function based on aggregated output Xj.
At the beginning of the last subinterval, X; is normally distributed with mean
f (u e 1) At+ X -1 and variance o2 At. This implies that the agent’s choice of
Un—1 depends on the state of the process Xn.—1. Working backwards, it can be
shown that in each subinterval, the agent’s optlmal control is state-dependent
and therefore stochastic. Thus, step functions based on aggregated output
fail to provide constant intertemporal incentives. Instead, they allow agents
to act strategically in response to observations of past perfomance. This fact
is well known in the sales business where salesmen who have either already
reached their bonus target or are far from reaching it tend to expend less
effort than those who are close to their bonus target. We will now show that
the principal can counteract such strategic behavior on the part of the agent
by using a randomizing device. Randomization can occur in two ways: ex
ante (at time 0) or ex post (at time 1).

Definition 3.1: Ex ante-randomization. At time 0. the principal se-
cretly determines a subinterval with a symmetric randomizing device. Sub-
sequently, she secretly measures the output AX produced in this subinterval
and compensates the agent with a step function based on AX.

The problem with definition 3.1 is that both the randomization and the
output measurement must be secret and verifiable ex post. If the agent
knew the measurement interval in advance, he would work hard only in this
subinterval and shirk in the remaining time. In practice, one can conceive
of ex-ante randomization as a spot check by a supervisor who checks the
agent’s output through a one-sided mirror or at a later stage in the production
process where the agent is not present. The problem of secrecy can be avoided
if the principal randomizes ex post.

Definition 3.2: Ex post-randomization. The principal first observes
the entire output process and then determines a measurement interval at



time 1 with a symmetric randomizing device. Subsequently. the agent is
compensated with a step function based on the measured output AX.

The assumption regarding the observability of the output process can be
relaxed further since all the principal needs to know is the set of n increments
A Xy, ..., AX a1 but not the order in which they were generated. In practice,
ex post—rando?nization occurs in the form of quality control where a small
subset of the output is selected and the payment to the producer (e.g. a
worker or supplier) is based on the quality of the selected output. The intro-
duction of a randomizing device eliminates any strategic advantage on the
part of the agent from observing the history of the process. Since the agent’s
technology is time- and state-invariant and wealth effects do not perpetuate
in time, the agent faces the same control problem in each subinterval. This
in turn implies that his overall control problem can be expressed as a simple
multivariate optimization problem. For instance, if n = 2 and the principal
employs a step function with cutoff AX and payments s and 3, the agent’s
overall control problem is

max —§F(A)\‘UO> exp{ <§—C(?1,0)At—(‘< %) A?‘)}

( (H‘ u0>)exp{—r (E—c(uo)At—c(u%) At)} (17)
F(AX"UI)PXP{ (s—c(uo)At—c(uQ At)}
~3 (1—F(H‘u%)) exp{—r (E—c(uo)At—c(u%) At)}.

n (17), the first two rows represent the agent’s expected utility if the
first subinterval is the measurement interval, weighted with the probability
% that this subinterval is chosen. Analogously, the last two rows represent
the weighted expected utility if the second subinterval is the measurement
interval. Note that despite the symmetry of the problem, the agent may
choose a different control in each subinterval if at the optimum he is indiffer-

|»—‘[\D|P—‘[\D|'—‘

ent between two or more values of u;. It therefore remains to be shown that

the solution with respect to each u; is unique.!

Proposition 3.2: Suppose the principal randomizes either ex ante or ex
post. Then there exists a real number H such that for all step functions with
5> s and AX < H the agent’s optimal control is constant.

Proof: See appendix.

!We thank Martin Hellwig for pointing this out.



From a methodological viewpoint, the role of randomization is similar to
that of linear sharing rules. Given the constancy of the optimal control, the
dynamic problem with randomization is equivalent to a much simpler static
problem in which the agent selects the mean of a normally distributed random
variable AX and the principal is a priori restricted to step functions. Unlike
linear sharing rules, however, step functions optimally exploit the information
contained in the tails of the normal distribution, which is why the first-best
solution can be approached arbitrarily closely. We will now prove this claim
in several steps. The proof is adopted from Miiller (1997b) and is therefore
presented in a brief fashion.?

Consider the static problem in which the agent controls the random vari-
able AX. By proposition 3.2, the principal is a priori restricted to step
functions with payments 5 > s and cutoff AX < H. Thus, the principal’s
problem is to find the optimal parameters s, 5, and AX that satisfy 3 > s
and AX < H as well as the usual individual rationality and incentive com-
patibility constraints. Additionally, we assume that the principal wants to
implement the first-best control u}.5. The principal’s problem is then

max F[X|uyg] — sF (HW}}B) —5(1—F(H|U}B)) (18)
5,5AX
s.t.
—exp{=r(s= e (upp))} F (BX |uip) (19)
—exp{—r(s—c(uypp))} (1 - F (H |“}B>>
> exp {4},
upg € argmax —exp{—r(s—c(a))}F (U f,) (20)
aeU
—exp{—r(s—c(a))} (1 - F (H ﬁ)) ,
5> s, (21)
and
AX <11, (22)
where ¢(ulp) = nc(upg) At denotes the cumulative cost of exerting the

first-best control in every subinterval. Since U is infinite, we must use the

ZFor further comments, see Miiller (1997b). There, we develop an analogous proof for
the case of additively separable utility.



first-order approach and replace (20) with the agent’s first-order condition
0 = rd (upg)exp{—rs} F (H |u}B>
+rc (upg) exp{—rs} (1 - F (H|u}3)) (23)
+ (exp {—rs} — exp {=15}) F, (AX |ujy ) -

The substitution of (23) for (20) is invalid unless it can be ensured that
the agent’s problem is concave. As the following proposition shows, sufficient
conditions for the validity of the first-order approach are easy to find.

Proposition 3.3: There exists a real number .J such that for all step
functions with 3 > s and AX < J, the agent’s problem is strictly concave.

Proof: The agent’s problem is
max — exp {—=r(s—c(u))} F (W
—exp{—r(3—c(u))} (1 —F (H

u) (24)

v))

which can be rearranged as

max (exp {=rs} —exp{—rs})exp{rc(u)} F (H
—exp{—r(5—c(u))}.

Since ¢(+) is convex and exp{-} is an increasing convex transformation,
—exp{—r (s —c(u))} is concave. By assumption, 5 > s, which implies that
(25) is strictly concave if exp {rc(u)} F (H |u) is strictly convex. The rest
follows from the proof of proposition 3.2 (note that J # H unless At =1). B

u) (25)

By proposition 3.3, any step function that satisfies (23), 3> s and AX <
J is incentive compatible, i.e. it satisfies (20). Grossman and Hart (1983)
have shown that the individual rationality constraint (19) must be binding
in equilibrium. Hence, we can solve (19) (with equality) and (23) explicitly
for s and 3 as a function of the cutoff AX and obtain

(1 - F (HW}B))
F, (HW*FB) } 26)

1
s=Wi+c(upg)+ —In {1 —rcd (uyp)
—r

and

|

F(AX licn) } (27)

1
=Wi+ec(ubn)+ —Inl1+rd (us
A (uFp) — { (uFp) 7 (—AX U}B)

10



By Leibniz’s rule, F), (AX |u}B) is equal to

/H (AX — [ (up) AD) [' (ufp) {_ L(AX — [ (upp) A1)’

dAX.
—oc o3 AN 27 2 202 At } ‘

(28)
which is negative. Hence, (27) may not be defined for some AX. The

following proposition shows that this problem can be avoided by imposing
an additional restriction on the cutoff AX.

Proposition 3.4: There exists a real number K such that (27) is defined
for all AX < K.

Proof: By I'Hépital’s rule,

. F(AX|uis)
lim
SX-cc B, (BX |ufp )

0.2

AX — [ (upp) AL) f' (ufp)

(29)

= _lim
(

AX——cc

— 0,
which implies that (27) is defined for sufficiently small values of AX. B

An important consequence of proposition 3.4 is that the constraint 5 > s
can be replaced by AX < K.

Corollary 3.1: For all AX < K, (26)-(27) implies (19), (21), and (23).

Proof: By proposition 3.4, (27) is defined for all AX < K. Reversing
the steps that lead to (26)-(27) shows that (26)-(27) implies (23) and (19)
with equality and therefore (19). By (28), F, (U |u}‘;B) < 0. In conjunction
with (26)-(27), this implies (21). B

Together, proposition 3.3 and corollary 3.1 yield that any step function
which satisfies (26)-(27) and AX < min[J, K] also satisfies (19)-(21). Re-
placing (19)-(21) by (26)-(27) and AX < min[J, K] and inserting (26)-(27)

into the objective function (18), we can rewrite (18)-(22) as®

3Note that the set defined by (26)-(27) and AX < min[J, K] is a subset of (19)-
(21). Therefore, replacing (19)-(21) by (26)-(27) and AX < min[J, K] reduces the set of
admissible step functions. As is shown in theorem 3.1, however, this has no implications
for the optimal solution.

11



max B [X; [upg] — Wa — c(upp)
AX

—Lln {1 —rcd (uyppg)

—r

<1_F(iTU*FB))}F(H|u;;B) (30)
F, (AX |ujp )

1 . F HM* .
v P 1 (svs)

s.t.
AX <min[H, J, K], (31)

where H, J and K are implicitly defined by propositions 3.2-3.4.

We can now state our main theorem. As AX goes to —oc, the expres-
sions in the second and third row go to 0 and (30) converges to the first-best
utility £ [X; |ufg] — Wa — ¢(u}g) . Hence, the constraint (31) is not bind-
ing. For additively separable utility, similar results have been derived by
Mirrlees (1974) (for lognormally distributed output) and Miiller (1997h) (for
a wide class of probability distributions including the normal, lognormal, and
gamma distribution).

Theorem 3.1: The principal can approach the first-best solution arbi-
trarily closely by letting AX — —oc.

Proof: Let us begin with the third row. By (29), _lim F (H |u}2~B) =
AX——oc

0and lim F (HW}B)/ F, (H |u}%B) = 0, from which it follows that

AX ——oc
the expression in the third row converges to 0.

Next, consider the second row. Since lim F, (AX |u}B) = 0 and
AX——oc

F, (AX |u}B) < 0, the limit of the second row is indeterminate of the form
"oc0”. We can evaluate this limit by replacing In (-) with its tangent. Define

(1 F (5% uis)
F, (HW?B)

v=1-—rd (upp)

(32)

and denote by T the value of v at some fixed point AX = AX. Since In (+)
is strictly concave in v, the tangent of In(-) at v = ¥ lies strictly above the

graph of In(-) at all v # . Thus, if the product of F (HW}‘;B) with the
tangent of In () converges to 0 as AX — —oc, the product of F (y |u’,‘7B)

12



with In (-) must also converge to 0. The product of F (HM}B) with the

tangent of In(-) at v =T is

F (BX Jup ) <1n6—|— %(v - v)) , (33)
where
v—1=rc (uyp) <1_F§ U}B» - <1_F(_A—X|U}B>>] . (34)
F, (AX ) F, (AX Jujp)
As AX — —cc, (33) tends to
Jim F (AX [ujp) <1nv+ ]% (v — @)) (35)
) S 1 L 1 — F(AX |u}
= glim P (AX ks ) 5re! (vks) (Fu (A&' u};B))'
which is equal to 0 because
_lim F(ghﬁm) = _lim ' (ﬁw}B) (36)
AX—s—cc [, (AX |u}B) AX——cc hy, (AX |u}B)
— 0,

as was shown in (29). This implies that the second row also converges to 0
and that (30) converges to K [Xj [upg] — W4 —c(upp). R

The proof reveals that the near first-best result is driven by a likelihood
ratio property of the normal distribution: as AX — —oc. the likelihood ratio
hy (- |ug )/ B (- |ufp) goes to —oc, which implies that low values of AX are
very informative with respect to the agent’s action choice (Milgrom (1981))
(to avoid confusion with the drift rate f(-), we have denoted the density
function by A (+)). For further comments, see Miiller (1997b).

4 Comparative Statics

In this section, we examine the behavior of the penalty s as the interval
length At goes to 0 (or equivalently, as the number of control revisions goes
to oc). As At — 0, the probability that a particular interval is chosen as
the measurement interval goes to 0. One is therefore inclined to believe that

13



the penalty s must simultaneously go to —oc in order to preserve incentive
compatibility. While it is true that s — —oc as At — 0, proposition 4.1
below shows that the above intuition is false.

im F(HW}B) = 0 and

Lemma 4.1: For negative values of AX, |
At—0

lim F, (X Jujp) = 0.

At—0

Proof: F(-|ujg) is the CDF of a normally distributed random variable
AX with mean f (u}5) At and variance o?At. As At — 0, the density func-
tion h (- |ufp) converges pointwise to 0 for all AX < 0, which implies that

F (vht}};) = [2X h(AX lujp ) dAX converges to 0 for AX < 0.
Define z = AX — [ (ujp) At/ ov/Al and 7 = AX — [ (ufp) AL/ ov/AL

Using these definitions we can write F, (AX |u}B) as

AX (AX — [ (upg) Al) f' (usg) 1(AX — f(u3 )At)2

/_oc NN eXp{_§ AL }dAX
Ty 1

_ / / ( FB) (—Z) exp{—522}dz (37)

- 023\27

lim EM(—Z)GXP{—EZQ}dZ.

a——oc J, o2/ 27 2

Integrating and taking limits, we obtain

- ot * 1
Fu (AX |u;—vB) = al_i}r_noc ;L;TB) exp {__ 2}
_ — /" (urB) exp{—lEQ}.

o221

(38)

As At — 0, Z goes to —oc, which implies that F, (H |u}‘;B) converges to 0
from below. H

Proposition 4.1: For negative values of AX < 0, s goes to —oc as
At — 0.

Proof: Observe that proposition 3.2 holds for any value of At. The result
follows then immediately from (26) and lemma 4.1. B

The probability that a particular subinterval is selected is 1/n = At.
As At — 0. this probability goes to 0. However, since the randomization
device is symmetric, the decrease is uniform in all subintervals and the agent

14



continues to face constant incentives. In other words, the agent will not shirk
in one or more subintervals even though the probability that this results in
a punishment goes to 0. Consequently, proposition 3.2 continues to hold and
we can replace the dynamic problem with a static problem in which the agent
controls a normally distributed random variable with mean f (u}.5) At and
variance o?At. The intuition for proposition 4.1 is now obvious. As At — 0,
mean and variance of AX both go to 0, and the density function converges
pointwise to 0 for all AX < 0. Therefore, for negative values of AX, the
probability that the agent is penalized goes to 0, which implies that s must
go to —oc in order to preserve incentive compatibility.

5 Discussion and Extensions

5.1 Randomization vs. Detailed Checks

The fact that random spot checks are near first-best optimal is a neat result
because such mechanisms can be frequently found in practice. Note, however,
that randomization is not necessary to obtain near first-best optimality. As
long as measuring output is costless, the principal can also approach the
first-best outcome by a detailed check of the agent’s entire output. Suppose
the agent receives the same step function in each subinterval, i.e. he gets
s for each subinterval where AX < AX and 3 for each subinterval where
AX > AX. Since the environment is stationary and wealth effects play no
role, the agent’s n control problems are identical. As in proposition 3.2, it
can then be shown that the optimal control is constant if the solution with
respect to each wu; is unique.

Let us illustrate this point for the case n = 2. Since the control problem
in the second subinterval is independent of the state and control variables in
the first subinterval, the agent’s overall control problem can be expressed as
a simple multivariate optimization problem. The agent solves

1 1
max — H;o a (H‘ ut) exp {—r <2§ — Z;o ¢ (uy) At)}

U U1
2

—F (H‘ uo) (] - F (H‘ u%)) exp{—T <§+§—Zioc(u¢) A?‘)}
—-F (H‘u%) (1 — F(v‘ uo)) exp{—r <§+§—Zf:0c(ut) At>}

Denote by T = {O, %} the set of times at which the agent can revise his
control and consider an arbitrary element s € T'. The agent’s problem with
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respect to ug is

max —F(/ X‘us) exp {re(ug) At} [M — N+ P — Q)]

exp {re(u) AN + Q. (10)
where
M=F (H u#s) exp {—r(2s — c(uzs) At)}, (41)
N = (1 —F H‘ u#s)) exp {—7 (25 — ¢ (uszs) Al)}, (42)
P = (1 - F (AX u#s)) exp{—r(s+ 73— c(uzs) Al)}, (43)
and
Q=F (E‘ u#s) exp{—r(s+3 — c(uws) At)}. (44)

By symmetry, the optimal control is constant if (40) is strictly concave in
us, Since ¢ (+) is convex and exp {-} is an increasing convex transformation,
exp {rc(us) At} is convex. In conjunction with N 4+ @ > 0, this implies that
the expression in the second row is concave. In the appendix it is shown that
F (H us) exp {rc(us) At} is strictly convex for all AX below some critical
level. Moreover, P — N > 0 since 25 > s+ 35and M — () > 0 since s +35 >
2s. Thus, the expression in the first row is also strictly concave in u, and the
agent’s optimal control is constant.

Analogous to section 3. constancy of the optimal control implies that we
can replace the dynamic problem with a static problem in which the agent
simultaneously determines the (identical) mean of n normally distributed
random variables AXj. ..., AX»-1. It is now a straightforward exercise to
derive the analogues of proposijtlions 3.3-3.4 and theorem 3.1 and to show
that the first-best solution can be approached arbitrarily closely by applying
a step function to each subinterval separately.

5.2 Measurement Cost

The problem with detailed checks is that they require a great deal of infor-
mation. For instance, bosses need to check the work of their subordinates
continuously and buyers need to check the quality of every single delivered
item. In practice, such detailed checks are rare since measuring output is
typically costly. If we introduce measurement cost into the Brownian model,
detailed checks become prohibitively costly and are Pareto-dominated by
random spot checks. To see this, suppose the principal incurs fixed cost of §
for each measured increment AX. While detailed checks entail measurement
cost of nd, random spot checks entail measurement cost of only 4. Hence,
randomization shifts the upper bound on the principal’s expected utility up-
wards by nd — ¢, which implies that randomization is strictly optimal.
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5.3 Unbounded Penalties

Theorem 3.1 relies heavily on the existence of infinitely large penalties and
breaks down if the agent’s wealth is bounded from below. Incidentally. the
same goes for the linearity result derived by Holmstrém and Milgrom (1987).
There, the second-best sharing rule takes the form 5* = K + X, where
aggregated output X is normally distributed with mean f («*) and variance
o*. Consequently, the agent’s payment S* is also normally distributed and
thus unbounded from below.

6 Conclusion

In this paper, we have shown that in dynamic agency problems of the sort
studied by Holmstréom and Milgrom (1987) linear sharing rules are not op-
timal if the agent takes actions in small but discrete time intervals. The
principal can then approach the first-best solution arbitrarily closely by us-
ing a step function in conjunction with a random spot check. Our result is
driven by two fundamental principles:

1. Randomizalion creates uniform incentives: Since the agent does not
know in advance which of the subintervals is the relevant one, he faces
uniform incentives and selects a constant control. One implication of
this is that we can replace the dynamic problem with a mathematically
much simpler static problem in which the agent chooses the mean of
a normally distributed random variable and the principal is a priori
restricted to step functions.

2. Step functions and normally distributed oulput yield near first-best op-
timality: An important property of the normal distribution is that low
outcomes are a reliable signal that the agent has shirked. Step func-
tions make optimal use of this property by punishing the agent only
for output values that indicate with probability close to 1 that he has
shirked. Hence, the risk of erroneous punishment (and therefore also
the risk premium that must be paid to the agent) becomes negligible
and the first-best outcome can be approached arbitrarily closely.

Moreover, we have shown that randomization is sufficient, but not nec-
essary for near first-best optimality: the principal can also approach the
first-best solution by applying a step function to each subinterval separately.
However, such detailed checks are rare in practice since measuring output is
typically costly. By contrast, random spot checks are widely used as they

17



limit measurement cost to a single observation. For instance, in firms, bosses
check the work of their subordinates only randomly. In buyer-seller rela-
tionships, buyers typically check the quality of a delivery by means of a few
randomly selected samples. Additionally, random inspections occur in the
military. in traffic checks, and ticket checks in public transport.

7 Appendix: Proof of Proposition 3.2

The agent’s problem is
1 qan=t n=1
uo.,r.{l.%; - th"o F (A)& ‘ ut) exp {—r <§ — tho ¢ (uy) At)}

—%i;%ol (1 - F (H‘ ut)) exp{—r <§— Zt:Toc(ut) At)}. (A.1)

By symmetry, the optimal control is constant if the solution with respect
to each u; 1s unique. We will now show that there exists a real number H
such that for all £ and step functions with 5 > s and AX < H, the agent’s
problem is strictly concave in u;. Define by T = {0, 1 %} the set of

times at which the agent can revise his control and consider an arbitrary
element s € T. The agent’s problem with respect to us is

max —%exp {rc(us) At} F (ﬂ‘ us) (U-V) (A.2)

—]Eexp {re(us) At} [nV + ZT\{S} F ( X‘ Ut) (U - V)] ;

where U and V are defined as U = exp{—r (g— sy € () At)} and
V =exp {—r (3 — 2 T\{s} c("ut) At)} .

In the second row, 5 > s implies that the term in brackets is strictly posi-
tive. Since ¢(-) is convex and exp {-} is an increasing convex transformation,
exp {rec(us) At} is also convex and the expression in the second row is con-
cave. The difficult part of the proof consists in showing that the expression
in the first row is strictly concave in us. Since U > V', this is the case if and
only if exp {rc(us) At} F (W‘ us) is strictly convex. By Leibniz’s rule, the

second derivative of exp {rc(u,) At} F (AX‘ us) with respect to us is

/Hexp {re(us) At} g (AX)h (AX)dAX, (A.3)

—0oC

where

(A.4)

o o (AX = () AL [ (u,) AL
g(AX) = (rc (us) At + TN )
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ooy ng o AX = F(ug) A [ (ug) AL ([ (us) AL)
tre (us) A+ g At a2 At ’

and where

h(AX) =

1
L expl_
oV A2 p{ 2 oAt

is the density function of a normally distributed random variable with mean
[ (us) At and variance o*At.

It remains to be shown that there exists a real number H such that for
all cutoff values AX < H, (A.3) is strictly positive. The improper integral
(A.3) is defined as

AX
/ exp {re(us) At g (AX)h(AX)dAX (A.6)
AX

= lim exp {re(us) Aty g (AX)h(AX)dAX

a——0C Jq
provided that the limit exists and is finite. Define

AX — f(u,) At

z = N (A7)

AX — f(u) A
zZ = U\J/ii_t ) t, (A.8)

a— f(ug) At
z= Jf(—\/A_Z (A.9)

B 1
A = W: (AA.lO)
B = exp {rc(us) At} oVAL, (A.11)
C = (rc (uy) At)’ +rc” (uy) At — % (A.12)
2rc’ (ug) Atf (ug) A
D= ( l\/%( ) t. (A.13)
") A
E = fg(i\/g_tt’ (A.14)
and

G = % (A.15)
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Multiplying out and using (A.7)-(A.15) yields
AX
21}1 exp {re(us) Aty g (AX)h(AX)dAX (A.16)
1
= hm AB (C—I—[D—I—F]z—l—Gz )exp{—522}dz.
We will now break up (A.16) into three integrals and evaluate the limit
of each integral separately. Consider first the limit

L,
ngov ABC exp{—gz }dz. (A.17)

While exp {—%22} cannot be integrated, the limit (A.17) is well known and
defined as

]_ir_nn ABC /Z exp {—%22} dz = Cexp {re(us) At} F (HWS) . (A18)

where F (- |uy) is the CDF of a normally distributed random variable. Next,
consider the limit

1
lim AB[D + E] / z exp {—522} dz. (A.19)

Z2——0C

Integrating (A.19), we obtain

Zz2——0C

lim AB[D+E]/ zexp{—%zQ}dz

1 z
= gm —ABI[D + E] exp {—522} (A.20)
X z
= —AB[D + Elexp {—552} .
Finally. consider the limit
1,
nga ABG 2 exp{—§z }dz. (A.21)

Integration by parts gives

1,
Zgn(l)v ABG z exp{—§z }dz
= lim ABG { 12}E+/E { 12}d (A.22)
= g—}r—r}x; z exp 22 . iexp 22 z A.

= —ABGZexp {—322} + Gexp{rc(us) At} F (H|us) \
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since by I'Hépital’s rule

lim gexp{—%f} = lim v (A.23)

z——oc z——cc zexp {%éQ}

= 0.

Adding up (A.18), (A.20) and (A.22), we can write (A.16) as

: 1
lim AB [ (C+[D+ E]z+G=) exp {—522}d2

zZ——0C

1
= —AB[D+ E + Gz]exp {—522} (A.24)

+[C + Glexp {re(us) At} F (A—X|us> .

We are now in the position to evaluate the sign of (A.24). Recall that a
strictly positive sign implies that exp {re (us) At} F (W |u9) is strictly con-
vex and that the agent’s problem is strictly concave. From ¢”(-) > 0 it fol-
lows that [C + G]exp {re(us) At} F (Hms) is strictly positive. The sign
of D+ E 4 GZ is ambiguous because F 4 Gz < 0 (for negative z) but D > 0.
However, as AX — —oc, 7 tends to —oc, which implies that Z can take
arbitrarily large negative values. Hence, there exists a negative real number

H such that D+ E + Gz < 0 for all AX < H. Since AB > 0, it follows that
the sign of (A.24) is strictly positive for all AX < H. R
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