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Abstract

This thesis proposes a control scheme for a new holonomic wheeled mobile robot.
The platform, which is called C3P (Caster 3 wheels Platform), is designed and
built by the Automation Lab., University of Heidelberg. The platform has three
driven caster wheels, which are used because of their simple construction and easy
maintenance.

The C3P has modular actuators and sensors configurations. The robot’s actua-
tion scheme produces singularity difficulties for some wheel steering configuration,
described as the following: When all wheels yield the same steering angle value,
the C3P cannot be actuated in the direction perpendicular to the wheel velocity
vector. The C3P has a modular sensing scheme defined by sensing the steering
angle and the wheel angular velocity of each caster wheel. This work has four main
contributions

1- developing a controller based on an inverse kinematics solution to handle
motion commands in the singular configurations;

2- modeling the C3P’s forward dynamics of the C3P for the simulation purpose;

3- developing a motion controller based on an inverse dynamics solution; and

4- comparing the C3P with other standard holonomic WMRs.

In order to escape singularity condition, the actuated inverse kinematics solu-
tion is developed based on the idea of coupling any two wheel velocities to virtually
actuate the steering angular velocity of the third wheel. The solution is termed
as the Wheel Coupling Equation (WCE). The C3P velocity controller consists of
two parts: a) the WCE regulator to avoid singularities and adjust the steering
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angles to the desired value, and b) the regular PID controller to maintain the ref-
erence robot velocities with respect to the floor frame of coordinates. The solution
reaches acceptable performance in the simulation examples and in the practical
experiments. However, it generates relatively large displacement errors only dur-
ing the steering angles adjustment period.

The Euler-Lagrangian method is used for obtaining the forward dynamic and
the inverse dynamic models. The forward dynamic model consists of two equations
of motion: the WTD (Wheel Torque Dynamics) to calculate the wheel angular
velocities with respect to the actuated wheels’ torques, and the DSE (Dynamic
Steering Estimator) for calculating the steering angles and steering angular veloc-
ities corresponding to the angular wheels’ velocities and accelerations.

The inverse dynamics solution defines the forces and torques acting on each ac-
tuator and joint. The solution is used in the development of the C3P velocity and
position controllers. In comparison to the proposed inverse kinematics solution,
the inverse dynamics solution yields less displacement errors. Lyapunov stability
analysis is carried out to investigate the system stability for different steering an-
gles’ combinations. The steering angles’ values are considered as the disturbances
affecting the platform.

Finally, a comparison is made between the C3P and three other holonomic
wheeled mobile robots configurations. The comparison is based on the simulation
results in relation to the following aspects: a) mobility, b) total energy consumed
by each robot in a finite interval of time and c) hardware complexity. The C3P
platform shows its advantage in the aspects “b” and “c”.
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Chapter 1
Introduction

1.1 Overview

Mobile robots are widely integrated in our present society in many public places

such as shopping centers [1] and airports [2]. Therefore, over the last decades the

field of mobile robots has encountered several challenges in a considerable number

of researches. Mobile robot is a collection of algorithms for sensing, reasoning, and

moving about space, in addition to the physical embodiments of these algorithms

and ideas that must cope with all the vagaries of the real world [3]. The mobile

platforms can be divided into two main categories: legged and wheeled platforms.

Our work in this thesis concentrates on the development of the wheeled mobile

robot. The Wheeled Mobile Robot (WMR) is a robot capable of mobility on a

surface solely through the actuation of wheel assemblies mounted on the robot

and in contact with the surface [4]. Wheel assembly is a device that provides or

allows relative motion between its mount and a surface on which it is intended to

have a single point of rolling contact.

Wheeled mobile robots are found in a host of applications such as guiding

disabled people in museums [5][6][7] and hospitals [8], transporting goods in ware-

houses, manoeuvring army explosives (Fig.1.1) [9], or securing important facilities

[10][11].

Wheeled mobile robots are categorized in two main types: holonomic and non-

holonomic, which are the mobility constraints of the mobile robot platform [12]. A

holonomic configuration implies that the numbers of robot velocity DOF (Degrees
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Figure 1.1. Using WMR as explosives transporter [9]

Of Freedom) are equal to the number of position DOF. For example, a rigid body

has six degrees of freedoms, which are the position on the three dimension axes X,

Y and Z and the rotational angles around each axis (Fig.1.2) .

Figure 1.2. Rigid body degrees of freedoms

The WMR normally moves on a planner surface with three position coordinates:

X, Y and rotational angle around Z which is θz. Therefore, the holonomic WMR is

the robot that can drive in three degrees of freedom (3DOF), and the nonholonomic

WMR is the robot that can not perform 3DOF mobility. The nonholonomic WMR

can not move sideways, as shown in Figure 1.3.

1.2 Motivation

Over the last decades, wheeled mobile robots (WMR) have attracted the attention

of many researchers. WMRs are developing rapidly, along with their hardware

and software structures to achieve their main goals [16][17][18][19]. One of the
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Figure 1.3. Nonholonomic wheeled mobile robot

important goals is to solve problems affecting the robot mobility behaviour. As a

result, many complex platforms were developed to achieve 3DOF mobility (i.e to

avoid nonholonomic characteristics). Such platforms are usually equipped with a

complex wheel set-up (e.g: two sided roller wheels, complex special geared castor

wheels or ball wheels). The main disadvantages of the mentioned design variants

are the high energy consumed by the actuators and the required frequent mainte-

nance. That is why WMRs became one of the complex engineering systems to be

designed [20][21]. So far, reducing such complexity has not received much atten-

tion because some robots are experimental prototypes which are not exposed to

the rigorous demands of commercial products. Thus, the main goal of this work

is to deliver a WMR platform with the minimum possible number of components

without alerting the holonomic features of the platform.

A simple configuration for holonomic WMR platform in [13] is achieved by

reducing the number of actuators and choosing a suitable 3DOF wheel set-up to

maintain the holonomic characteristics. Such a configuration resulted in singularity

issues that affects the robot mobility behaviour. The main theoretical challenge is

using both kinematics and dynamics modeling to obtain a singularity free solution,

along with its motion controller. Due to the reduction of actuators, the system

non-linearities will increase and investigating the system stability will become more

challengable.

To show the advantages of such a platform configuration, it will be compared

with other holonomic WMRs using a special noval criteria for evaluating WMRs.

So far, no basic quantitative method has been found in literature for evaluating dif-

ferent WMRs. Few researches have tackled this problem from a single aspect point
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of view [20][21]. On the other hand, there are many aspects affecting the WMR

evaluation, for example: mobility behaviour, platform construction, hardware set-

up, electrical set-up, software design, and energy consumption. The challenge is

to obtain a cost evaluation method, which delivers a measured quantity for the

WMR with respect to its main affective aspects.

1.3 State of the Art

In the last two decades, a number of considerable research efforts addressing the

mobility of holonomic wheeled mobile robots have been carried out [22][23][24].

The mobility behavior of the WMR depends mainly on the type of its wheels and

their actuated velocities. There are four main types of wheels used in the WMR:

a) caster wheel (Fig. 1.4a), b) conventional wheel (Fig. 1.4b), c) omnidirectional

wheel (Fig. 1.4c) [22], and d) ball wheel (Fig. 1.4d) .

Figure 1.4. a) Caster wheel, b) Conventional wheel, c)Omnidirectional wheel [22] and
d) Ball wheel [22]

The Omnidirectional Wheel construction consists of rollers mounted around the

main wheel. The wheel motion depends on the angle between the roller axis and

the wheel rotating axes as shown in Figure (1.4d) [25][26]. The conventional wheel

is the only wheel that has 2DOFs mobility and is the simplest in construction.

The conventional wheel is used mainly for the non-holonomic WMRs, along with



5

the caster wheel to support the platform balance. The Omnidirectional Wheel

has 3DOF’s mobility [15], therefore it is normally used in the holonomic WMRs

configurations, as shown in Figure (1.5).

In this section holonomic WMR platforms are briefly discussed to give an

overview of the state of the art in the holonomic WMRs. Some WMRs use ball

wheels to achieve holonomic mobility, such as the robot Cobot [27]. The Cobot has

three ball wheels with powerful actuation control and synchronization. A roller

drive system is mounted above each wheel. The system consists of a sphere actu-

ated by 6 rollers, where by each pair of rollers is used for one degree of freedom

actuation. This kind of actuation requires a very complex mechanical structure

and high energy consumption in addition to regular intensive maintenance.

Figure 1.5. A mecanum wheel mobile robot platform [28]

The Omnidirectional Wheels show their efficient performance with different

WMR platforms. For example, in [28] a design of a holonomic mobile robot with

omnidirectional wheeled designed by Mecanum AB’ Bengt Ilon, shown in Figure

(1.5). The mecanum wheel developed consists of nine rollers made from delrin.

Typical mecanum wheel mobile robot platforms are square or rectangular, at-

tached with a wheel with a +45 roller and a wheel with -45 roller on each side.

The omnidirectional capabilities of the platform depend on each wheel contact

having firm contact with the surface, where some of the mecanum wheel mobile

robots are equipped with a suspension system (Fig.1.5). The main disadvantage of

the omnidirectional wheel is its complex construction and its difficult complicated

maintenance.

The caster wheel has proved its efficient performance in 3DOF mobility appli-
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cations. It has different configurations which are used in normal life applications

[29][30]. Therefore the caster wheel is widely used in the WMR’s platform config-

urations. The caster wheel can be used as a passive wheel (as in 2DOF platforms

[31]) or an active wheel as in [32]. Many WMRs with Powered Caster Wheels

(PCWs, also known as offset steerable wheels) have been developed [33][34][35]

and even commercialized. One major benefit of using PCWs is that WMRs with

PCWs can generate 3DOF mobility.

Figure 1.6. Using PCW in different WMR configurations: a) 4-wheeled platform con-
figuration [32], b) Stanford University PCW [38] c) 3-wheeled platform configuration[36]

In [32] the platform has four PCWs and configured in the following manner;

PCWs have steering and rolling angular velocities actuation (Fig.1.6-a). Similar

actuation configuration is also presented in [36], but with three PCWs (Fig.1.6-c).

The actuation of the steering and the rolling axes depends mainly on the me-

chanical structure of the PCW. The robotics team at Stanford University (USA)

developed a powered caster wheel system configuration [38] (Fig.1.6-b), which as-

signs a complex mechanical gear unit for each wheel to actuate the steering of the

wheels. Such a mechanism requires high energy and power consumption, complex

dynamic control, and large wheel radius. In [39] the authors used a simplified PCW
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configuration to actuate the driven angular velocity of two caster wheels and the

steering axes of the third wheel. This showed interesting simulation results, but for

a practical application the steering actuation still requires high energy to produce

enough torque to adjust the wheels’ steering angles in the desired direction.

1.3.1 Kinematics Modeling

The WMR is a multibody system, which is defined as an assembly of two or more

rigid bodies (also called elements) imperfectly joined together, having the possibil-

ity to relative movement between each other. This imperfect joining of two rigid

bodies that makes up a multibody system in called a Kinematic pair or joint [40].

Kinematic problems are those in which the position or motion of the multibody

system are studied. The kinematic modeling has pure geometrical nature with no

repect to the dynamic parameters such as mass, inertia and friction. Usually,

kinematic modeling is used in the field of WMRs to obtain stable motion control

laws for trajectory following or goal reaching [41] [42]. The kinematic modeling

method and analysis of mobile robots equipped with the previously mentioned

types of wheels were proposed [43] [44]. In [4] the kinematic modeling of the robots

is directly performed in the motion space. Untill now, the methods suggested in [4]

have been widely used in kinematic modeling of various types of wheeled mobile

robots. Due to the relative simplicity and high effectiveness of the kinematic

model, it is the first step in building a wheeled mobile robot under the following

basic assumptions: the floor is stationary and planar, no wheel-slip in the direction

of translation, a rotational slip is necessary around the steering axis, there is no

elasticity in any part, maximum one steering link per wheel, and the steering-axis

perpendicular to floor. The violation of any of these assumptions will lead to the

modelling of the slip and compliance, which is out of the scope of the work.

1.3.2 Dynamic Modeling

The Dynamic model is more difficult to derive than the kinematic model. The

kinematic modeling is required for deriving the dynamic model. Hence, it is to

be assumed that the velocity and acceleration solutions can be easily obtained.

Generally, the main property of the dynamic model is that it involves the forces
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that act on the multibody system and its inertial parameters, such as : mass,

inertia, and the center of gravity.

the Dynamic modeling consists of two main solutions: the forward dynamic

solution and the inverse dynamic solution. The forward dynamic solution yields

the motion of a multibody system over a the given time interval, as a consequence

of the applied forces and given initial conditions. The importance of the direct

dynamic model lies in the fact that it allows the simulation and prediction of the

system’s actual behavior; motion is always the result of the forces that produce it.

The inverse dynamic solution aims at determining the motor or the driving forces

that produce a specific motion, as well as the reactions that appear at each joint

of the multibody system [45].

In this work we will be primarily interested in robots consisting of a collection

of rigid links connected through joints that constrain the relative motion between

the links. The dynamic modeling has been studied by several researches for many

mobile robot platforms [46] [47] [48] [49].

Two main methods exist for deriving the dynamic equations for such mechan-

ical systems: a) Euler-Lagrange and b) Newton-Euler formulations[50] [51] [52].

The main difference between the two approaches is how they deal with the system

constraints. Newton-Euler equations are directly based on Newton’s laws, which

treat each rigid body separately and explicitly, and model the constraints through

the forces required to enforce them. Newton-Euler approaches use Cartesian vari-

ables as configuration-space variables, they admit recursive formulations by first

developing the equation of motion for each single body; these equations are then

assembled to obtain the model of the entire system [53][54]. Euler-Lagrange formu-

lations use joint-based relative coordinates as configuration-space variables; these

formulations are generally not well suited for recursive formulation. Lagrange and

d’Alembert provided systematic procedures for eliminating the constraints from

the dynamic equations, typically yielding a simpler system of equations. Con-

straints imposed by joints and by other mechanical components are one of the

defining features of robots so it is not surprising the Lagrange’s formalism is often

the method of choice in robotics literature [55] [56] [57] [58] [59] [60]..
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1.3.3 Wheeled Mobile Robot Control Structure

The WMR is capable of an autonomous motion (without an external human driver)

because it is equipped for its motion with drivers that are controlled by an em-

barked computer [61]. An individual autonomous mobile robot requires a reliable

control structure, which achieves the following requirements [63]: a) treats conflicts

in reaching multiple goals ; b) maintaind robustness, in performance in general and

stability in practicality, against ornamental uncertainties, sensor noise and actua-

tor inaccuracy; c) allows recursive realization to provide natural extendability of

the behavior from coarse and reflexive to fine and deliberative; d) posses learning

capabilities preferably distributed and tailored to the knowledge representation; e)

accommodates sensor and actuator hierarchy.

In [64][65] a so-called ”Recursive Nested-Based Control” (Fig. 1.7) (RNBC)

structure has been successfully employed for individual autonomous mobile robots.

The main properties of the RNBC structure are:

• It can be viewed as a generalization of the cascaded control.

• The behavior levels are nested, which provides an inherent robustness against

loop failure.

• It is recursive, where the interactions are done between the ith and (i+ 1)th

levels as well as between the ith and (i − 1)th levels if exists, however there

is no interactions between the (i+ 1)th and (i− 1)th levels.

• It is a bottom-up approach, providing a gradual increase in the control struc-

ture.

• No explicit sensor-fusion is necessary where the sensors provide their data to

the level they are first needed and then they are fed to each other forward

or backwards with consequent delay.

• Different behavior levels are used according to the level of abstraction where

behavior fusion is performed using networks of analogical gates [65].

The RNBC structure is shown in Figure (1.7) with 8 levels of control, based on

the dynamic and kinematic models of the WMR. The axis-level control is the clas-

sical control loop of each actuator that produces its torque actuated signal. The
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robot control is established in level two for controlling the WMR as a whole. After

controlling the WMR velocities a controller is used in level three to avoid colliding

with obstacles in the way of the robot. Homing is basically the position control

loop that drives the WMR from one point to another without any trajectory plan-

ning. Level five contains the method that is used in updating the robot position

for its local navigation in level six. The local navigation builds a line of sight

between the robot goal and its current position, if the goal is invisible sub-goals

Figure 1.7. RNBC control structure
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are created to track such a line. The level of path planning and model building

requires the robot to define an optimal path to reach a certain goal, such a path

is defined based on a map model built by the robot depending on the surrounding

environment. Each level has its own local monitor to prevent reaching some forbid-

den conditions for its states. The monitoring and reasoning level incorporates the

monitors of the whole robot. The last level is the human command, which enables

the operator to command the robot according to its last implemented level, for

example a joy-stick is used if the robot control is the last level. In this thesis, the

work mainly concentrates on just a few levels, such as Kinematic and Dynamic

Modeling, Robot Level Control, Position Update and Trajectory control. Gener-

ally, modeling and motion control problems are tackled in this work. There are

two main motion control tasks for WMRs, stabilizing to an equilibrium point (such

as parking) and stabilizing to an equilibrium manifold (such as trajectory tracking

or path following) [31]. The first control task is considered challenging because

WMR’s with different configurations cannot be stabilized to an equilibrium point

[66] [67]. The second problem is the stabilization to an equilibrium manifold or

the trajectory control. The trajectory controller or tracker depends on the inverse

dynamic solution, which helps by providing smooth and successful maneuvering.

1.4 Problem Formulation

The work of this thesis is inspired by the main objective of ‘Building a holonomic

wheeled mobile robot that is simple, modular and efficient in its performance’.

This objective is reached by three main points. Firstly, the WMR should be

assembled of the simplest constructed 3DOFs wheel type with low maintenance

requirements. Secondly, the WMR’s actuated velocities should be modular, easily

actuated and minimum in their numbers. Thirdly, the kinematic and dynamic

analyzing and modeling should be obtained to employ effective robot velocity,

position and trajectory controllers.

As a conclusion to Section 1.1, the caster wheel is the simplest 3DOF con-

structed wheel with minimum requirements for maintenance as well. Using three

wheels for a WMR has the advantage that wheel-to-ground contact can be main-

tained on all wheels without a suspension system [68]. Therefore, three caster



12

wheels are used in the construction of the holonomic WMR proposed in this the-

sis. Figure 1.8 shows the proposed platform, which is called ‘C3P’ (Caster 3

Wheeled Platform).

Figure 1.8. C3P platform construction

The platform configuration was proposed and discussed in [13]. The actuated

velocities are modular for the following reasons: a) similar axis level controllers

are used, b) the energy consumed is redistributed to the actuators and c) in the

event an actuator has failure blocking, neither the used backup model nor its con-

troller will change. Therefore, each caster wheel is actuated by its driven velocity

(actuated angular velocity θ̇x). The value of each caster wheel steering angle (θs)

is needed in the kinematic and dynamic modeling;, therefore it is the main sensed

element, along with the driven velocity (θ̇x).

The C3P has a singularity problem for some wheel steering configurations,

described as the following: when all wheels yield the same steering angle value the

C3P can be actuated in any direction parallel to the wheel angular velocity axis.

With the given C3P platform and its actuated/sensed elements, it is required

in this thesis to deliver the following:

1. Actuation and sensing analysis.
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2. Forward and inverse kinematic model.

3. A dynamic model for the simulation process.

4. Overcome the actuating and sensing problems, if they exist..

5. Designing velocity and position controllers for the kinematic solution.

6. An inverse dynamic model based on velocity and position control.

7. Studying the system stability and analyzing its non-linearities.

8. Applying the proposed solutions and controllers on a C3P practical proto-

type.

9. Comparing the robot performance and construction with other holonomic

mobile robots.

1.5 Main Contributions

This thesis investigates the performance of the new actuation configuration of three

caster wheeled mobile robots. The contribution of this thesis consists of:

1. The C3P configuration is kinematicaly modeled using the methods in [4].

The Wheel Coupling Equation (WCE) is proposed to overcome the singularity

problem by virtualy actuating the steering angular velocities [69]. A special struc-

ture velocity control structure is proposed, which consists of WCE regulator and

robot PID velocity controller [70].

2. The C3P forward dynamic model is obtained using the Euler Lagrangian

equation. The model consists of two main dynamic equations; the WTD (Wheel

Torques Dynamics), and the DSE (Dynamic Steering Estimator) [71].

3. An inverse dynamic solution is developed to create a more accurate and

feasible solution to avoid the assumptions and approximations used in the inverse

kinematic solution [72] [73]. The solution is used in the development of the C3P

velocity and position controllers.

4. The C3P platform is built by the Automation Laboratory. The first proto-

type platform is used for the practical experiments to illustrate the performance

of the proposed models, solutions and control structures [74].
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5. A comparison is done between the C3P and three holonomic mobile robots;

Holonomic Caster Wheeled Robot (HCWR), Omni Directional Wheeled Robot

(ODWR), and RAMSIS II. The comparison is done with respect to the energy

consumed by the robot to drive in a specific direction during a finite interval of

time, the trajectory error of the robot, and the robot output velocities [75].

1.6 Outline

The thesis consists of eight chapters devoted to delivering the main objective men-

tioned in Section 1.4. Chapter 1 states the state of the art, along with the problem

formulation, and the rest of the chapters are organized as the following:

Chapter 2 shows the kinematic and the dynamic modeling of the C3P. Firstly,

the kinematic inverse and forward solution is obtained. Secondly, the constraints

of the platform are proven to be holonomic and integrable. Thirdly, by using the

Euler Lagrangian principle, a forward dynamic model for the C3P is obtained for

the simulation processes that are done under the Matlab environment.

Chapter 3 illustrates the C3P singularity problem, which has been found for

some wheel configuration. The coupling wheel approach (WCE)is proposed to solve

such a problem kinematically, which depends on the coupling action between each

of the two wheel’s angular velocities to actuate the third wheel steering angular

velocity. A special structural velocity controller is developed for regulating the

WCE and controlling the C3P velocities. Moreover, the position controller is also

proposed, in addition to several simulation examples illustrating the performance

on the dynamic model and inverse/forward kinematic solutions.

Chapter 4 yields an inverse dynamic solution based on the Euler Lagrangian

principle. It is based on employing the C3P inverse kinematic solution for actuat-

ing the steering and the contact angular velocities with in the solution to overcome

the singularity problem. Velocity and position controllers are developed with the

inverse kinematic model. The simulation results demonstrate the controllers’ per-

formances.

Chapter 5 shows the system model stability analysis using the Lyapunov

Direct method. The Lyapunov function is developed based on the robot energy

equation, which resulted in a quadratic equation as a function of the robot position
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coordinates. The robot position variables are the three main states, while the

steering angles values are considered as the system disturbances.

Chapter 6 illustrates the hardware equipment used for building the C3P prac-

tical prototype. The experimental results for each solution and its controller

demonstrate the performance on the C3P practical prototype. Moreover, the

prototype problems are pointed out; for example, the platform misconstruction

parameters, the slippage, friction, and sensor problems.

Chapter 7 verifies the importance of the C3P configuration among other holo-

nomic WMRs. A comparison between four holonomic WMRs is established. The

robots are the C3P, HCWR (Holonomic Caster Wheeled Robot), The Omnidi-

rectional Wheeled Mobile Robot and Ramsis II. The comparison is done on the

simulation level to demonstrate the differences between each robot performance.

The simulation shows the mobility and energy consumptions performance, in ad-

dition to hardware complexity. Cost function is obtained using the weighted sum

method to evaluate the cheapest platform. The cost function is based on equal

weighting of three main aspects; mobility error, energy consumption, and hardware

complexity.

Chapter 8 illustrates the conclusion of the work in this thesis , in addition to

suggested solutions for the first practical C3P prototype platform.



Chapter 2
The C3P Kinematic and Dynamic

Modeling

2.1 Introduction

The kinematic model is the first step for WMR mobility analysis and control.

The position, velocity, and acceleration constraints are determined according to

the WMR wheel’s configuration. Typical types of wheels used for WMRs can be

classified as conventional, omnidirectional, ball, and caster wheels [43]. The last

two kinds of wheels are kinematically modeled as a 3DOF serial chain, while the

conventional wheel is modeled as a 2DOF serial chain. Untill the writing of this

thesis, the method suggested in [4] has been used in kinematic modeling for dif-

ferent WMR configurations. The work develops a formalism that is used first to

model the kinematics of each wheel, and second to amalgamate the information

about individual wheels to describe the kinematics of WMR regarded as a whole.

Generally, this method does not incorporate the friction model, such as sliding and

skidding velocities into its kinematic model.

The structure of a WMR is a parallel kinematic structure which consists of se-

rial sub-chains (the wheels). The WMR kinematic model will be obtained under a

few assumptions. First, the dynamics of the WMR flexible suspension mechanisms

and tyres are negligible. Second, all steering axes are perpendicular to the surface
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of travel. Third, the WMR drives on a horizontal planar surface.

In order to verify a proposed robot axis, velocity or position control structure,

it is necessary to have an accurate model for the WMR. The dynamic model has

both geometrical and physical characteristics [76][77], which makes it more accu-

rate than the kinematic model. A number of methods to formulate the equation

of motion, were developed [78] [55]. The Lagrangian formulation is used to model

mobile robot dynamics, considering the robot as a multibody closed-chain system

with constraints.

The kinematic modeling methods used in this chapter are obtained in [4]. Such

methods are widely used by the wheeled mobile robots community [79][80][81] and

[82] .

2.2 Kinematic Modeling

Robot mechanisms are modeled as a chain of several rigid bodies (links) connected

by either revolute or prismatic joints driven by actuators. This chain can be an

open loop system (fixed at one end and free at the other), for example, a robot arm

manipulator or a closed loop system ( fixed at both ends ), for example, the wheeled

mobile robot. The wheeled mobile robot kinematics deals with the analytical study

of robot geometrical motion with respect to a fixed reference coordinate system

as a function of time without regarding the torque/forces. Thus, it deals with the

analytical description of the spatial displacement of the WMR as a function of

time, in particular the relations between the joint-variable space and position and

orientation of the WMR center of gravity.

As an overview, this section will represent a refreshment for the basic methods

of kinemtic modeling for rigid body. Since we will be concerned with robots con-

sisting of rigid links, we start by describing rigid body motion. Formally, a rigid

body O is a subset of R3 where each element in O corresponds to a point on the

rigid body. The defining property of a rigid body is that the distance between two

arbitrary points on the rigid body remains unchanged as the rigid body moves. If

a body-fixed coordinate frame B is attached to O, an arbitrary point p ∈ O can
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be described by a fixed vector Bp. As a result, the position of any point on O is

uniquely determined by the location of the frame B. To describe the location of B

in space we choose a global coordinate frame A. The position and orientation of

the frame B in the frame A is called the configuration of O and can be described

by a 4x4 homogeneous matrix AHB.

Ap = AHB
Bp (2.1)

The homogeneous matrix AHB (4x4) contains two characteristics, the rotational

relation AΦB (3x3) and the translation relation AdB (3x1) as shown

AHB =

[

AΦB
AdB

0 1

]

, AΦB ∈ R3X3, AdB ∈ R3, AΦT
B

AΦB = I3 (2.2)

The kinematic modeling coordinate system is assigned with the z-axes perpendic-

ular to the planar surface, therefore all rotations between coordinate systems are

about the z-axis. The homogeneous matrix in the WMR kinematic model is a ro-

tation of AθB about the z-axis of coordinate system of point A and the translation
AdBx

, AdBy
and AdBz

along the respective coordinate axes:

AHB =













cos(AθB) − sin(AθB) 0 AdBx

sin(AθB) cos(AθB) 0 AdBy

0 0 1 AdBz

0 0 0 1













(2.3)

The variables of the homogeneous matrix AHB are defined below

AθB : the angle between frame B and A.

AdBi
: the distance between frame B and A where, along the axes i = x, y, and z.

2.3 The C3P Kinematic Modeling

The C3P is a holonomic mobile robot with three caster wheels as shown in Figure

2.1. Each caster wheel is attached to each corner of the platform with a distance
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of a = 0.5 m away from each other. The wheel’s radius is r = 0.04 m and the

caster wheel offset distance is d = 0.04 m. The origin of coordinates frame of the

platform are located at its geometric center, the wheels are located away from the

origin with distance h = 0.343 and α1 = 30o, α2 = 150o, and α3 = 270o shifting

angles. The angle θ̇si
is the steering anglular velocity for wheels 1, 2 and 3.

Figure 2.1. C3P Configuration

The main objective of this work is to deliver a WMR with holonomic mobility

in 3DOFs. In order to achieve such mobility all the wheels attached to the platform

should have 3DOFs mobility. In [4] a method was developed to obtain the robot

velocities solution described by the Jacobian for the generalized wheel in Appendix

A. This Jacobian is presented as follows:









B̄ẋB

B̄ ẏB

B̄φ̇B









=









cos(BθC) − sin(BθC) BdCy −BdHy

sin(BθC) cos(BθC) −BdCx
BdHx

0 0 1 −1





















C̄ ẋC

C̄ ẏC

C̄ θ̇C

H θ̇S













(2.4)

where

F Floor : The stationary reference coordinate system, where the z-axis is orthogonal to
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the planar surface.

B Body : The WMR body coordinate system.

H Hip : The coordinate system, which moves with the body for the steering joint.

S Steering : The steering coordinate system which moves with the steering link with

z-axis coincident with the z-axis of the Hip.

C Contact Point : The contact point coordinate system .

B Instantaneously Coincident Body : The coordinate system Coincident with the B

coordinate system relative to the stationary F coordinate system.

C Instantaneously Coincident Contact Point : The coordinate system Coincident with

the C coordinate system relative to the stationary F coordinate system.

Figure 2.2 illustrates the coordinate frame used for the C3P mobile robot. The

robot is given a body of refrence frame. This frame is usually at the geometric

center of the robot. Each wheel is aslo given a frame.

Figure 2.2. C3P Coordinates Conventions

For the C3P platform the caster wheel is used to achive such mobility for the

reasons mentioned in Section (1.1). This section presents the kinematic model of

the caster wheel, which is used in the platform construction. The wheel 3DOFs

are provided by the steering joint angular velocity θ̇si
= H θ̇S, the wheel angular
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velocity θ̇xi
=

C̄ ẏC

r
, and the contact angular velocity θ̇ci

= C̄ θ̇C as shown in Figure

2.2. The kinematic relation between the robot velocities ṗ and the ith wheel angular

velocities vector ṗ
i
is the Jacobian matrix J

i

ṗ = J
i
q̇

i








ẋ

ẏ

φ̇









=









−r sin(θsi
) d

yi
−dsyi

r cos(θsi
) −d

xi
dsxi

0 1 −1

















θ̇xi

θ̇ci

θ̇si









(2.5)

where

dsx
: The distance between the robot center of gravity and the steering Z axis in

X direction.

dsy
: The distance between the robot center of gravity and the steering Z axis in

Y direction.

d
y

: The distance between the robot center of gravity and the contact point Z axis

in X direction.

d
x

: The distance between the robot center of gravity and the contact point Y

axis in X direction.

d : The length of the offset link.

r : The radius of the wheel.

h : The distance between the robot and the hip coordinate systems.

θsi
: The angular distance between the robot and the hip coordinate systems.

For the C3P configuration the offset distance in equation (2.5) are

dsyi
= h cos(α

i
)

dsxi
= h sin(α

i
)

d
yi

= dsyi
+ d sin(θsi

)

d
xi

= dsxi
+ d cos(θsi

)

(2.6)
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The kinematic acceleration relation can be easily concluded from Appendix A

by using the Jacobian proposed in [4] to obtain the robot acceleration solution.

p̈ = J
i
q̈

i
+ Jri

q̈ri








ẍ

ÿ

φ̈









=









−r sin(θsi
) d

yi
−dsyi

r cos(θsi
) −d

xi
dsxi

0 1 −1

















θ̈xi

θ̈ci

θ̈si









+









d
xi

dsxi
dsxi

d
yi

dsyi
dsyi

0 0 0

















θ̇
2

ci

−2 θ̇
2

ci
θ̇

2

si

θ̇
2

si









(2.7)

The first part of equation (2.7) is the acceleration component (q̈
i
), the centripetal

velocities are (θ̇
2

ci
,θ̇

2

si
), and (−2 θ̇

2

ci
θ̇

2

si
) are the Coriolis velocities where i ∈ {1, 2, 3}.

2.3.1 Inverse and Forward Kinematic Solutions

This section presents the kinematic solutions for the C3P. The methods are pro-

posed by [4] and described in Appendix A. The main idea is to distinguish between

the actuated and non actuated wheel’s velocites. Furthermore, to distinguish be-

tween the sensed and nonsensed wheels velocities corresponding to the C3P config-

uration describtion in Section 2.3. The C3P has the wheels angular velocities θ̇xi

(i ∈ {1, 2, 3}) as the actuated robot elements. As a result the following actuated

(q̇a) and non actuated (q̇n) wheel velocities vectors

q̇a = q̇x =









θ̇x1

θ̇x2

θ̇x3









, q̇n =

[

q̇c

q̇s

]

=























θ̇c1

θ̇c2

θ̇c3

θ̇s1

θ̇s2

θ̇s3























, (2.8)
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correspondingly, the actuated (Jai
) and non actuated (Jni

) wheel Jacobians are

Jai
=









−r sin(θsi
)

r cos(θsi
)

0









, Jni
=









h cos(α
i
) + d sin(θsi

) −h cos(α
i
)

−h sin(α
i
) + d cos(θsi

) h sin(α
i
)

1 −1









. (2.9)

After using the method in [4], which is descibed in Appendix A the actuated

inverse solution for actuating the wheel angular velocities qx will be described

through the following equation

q̇x = Jinx
ṗ









θ̇x1

θ̇x2

θ̇x3









= 1
r









− sin(θs1) cos(θs1) h cos(α1 − θs1)

− sin(θs2) cos(θs2) h cos(α2 − θs2)

− sin(θs3) cos(θs3) h cos(α3 − θs3)

















ẋ

ẏ

φ̇









.
(2.10)

Furthermore, the inverse kinematic solution for actuating the steering angular

velocities q̇s is

q̇s = Jinsṗ








θ̇s1

θ̇s2

θ̇s3









= −1
d









cos(θs1) sin(θs1) −h sin(α1 − θs1) + d

cos(θs2) sin(θs2) −h sin(α2 − θs2) + d

cos(θs3) sin(θs3) −h sin(α3 − θs3) + d

















ẋ

ẏ

φ̇









(2.11)

and the inverse solution for q̇c is

q̇c = Jincṗ








θ̇c1

θ̇c2

θ̇c3









= −1
d









− sin(θs1) cos(θs1) −h cos(α1 − θs1)

− sin(θs2) cos(θs2) −h cos(α2 − θs2)

− sin(θs3) cos(θs3) −h cos(α3 − θs3)

















ẋ

ẏ

φ̇









(2.12)

Equation (2.11) and (2.12) are used for further modeling equations.

The sensed velocities of wheel i ∈ (1, 2, 3) are the wheel angular velocity

θ̇xi
and the steering angular velocity θ̇si

, which gives the following sensed (q̇s)and
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nonsensed (q̇u) velocity vectors

q̇u = q̇c, q̇s =

[

q̇x

q̇s

]

, (2.13)

and the sensed (Jsi
) and nonsensed (Jui

) wheel Jacobians are

Jsi
=









−r sin(θsi
) −h cos(α

i
)

r cos(θsi
) h sin(α

i
)

0 −1









, Jui
=









h cos(α
i
) + d sin(θsi

)

−h sin(α
i
) + d cos(θsi

)

1









(2.14)

where, (i ∈ {1, 2, 3}). The sensed forward solution can be easily found from

the solution of equation (A.8), where the sensed and nonsensed wheel velocities

gives a robust sensing environment with possibility of slip detection. The forward

kinematics is described as the following

ṗ = Jfx
q̇x + Jfs

q̇s, (2.15)

where Jfx
and Jfs

are the sensed forward solutions for the wheel angular and

steering angular velocities.

Jfx
=

1

3









−r sin(θs1) −r sin(θs2) −r sin(θs3)

r cos(θs1) r cos(θs2) r cos(θs3)

0 0 0









(2.16)

and

Jfs
=

1

3









−h cos(α1) −h cos(α2) −h cos(α3)

h sin(α1) h sin(α2) h sin(α3)

−1 −1 −1









(2.17)

The derivative of equation (2.15) yields the robot accelerations,

p̈ = Jfx
q̈x + Jfs

q̈s + g(qs, q̇x, q̇s), (2.18)

where

p̈ =
dṗ

dt
, q̈x =

dq̇x

dt
, q̈s =

dq̇s

dt
, q̈c =

dq̇c

dt
. (2.19)
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2.4 Robot Dynamics Modeling

The dynamic model is considered as a complex problem to solve, which can be

separated into two main problems: the inverse and forward dynamic problem.

The inverse dynamic problem aims at determining the driven forces that produce

specific motions, as well as the reactions which appear at each part of the multibody

system’s joints. The forward dynamic problem yields the motion of a multibody

system over a given time interval, as a consequence of the applied forces and given

initial conditions. The direct dynamic problem allows one to simulate and predict

the system’s actual behavior; motion is always the result of the forces that produce

it.

In order to solve these two problems, the mobile robot is split in an open chain

multibody system. The equation of motion for each part is obtained separately

using Euler-Lagrangian method; then the platform constraints incorporate them

into closed chain system with respect to the actuated variables.

The dynamic system can be classified as constrained and nonconstrained. Con-

straints imposed on a dynamic system may be holonomic, nonholonomic or both.

This section shows whether the C3P wheeled mobile robot has holonomic con-

straints or not. There are several methods proposed in the literature mainly on

the Frobenius Theorem [83]. Some reserchers, like those [12], used such a theorem

to develop a method for determining any robotics system constraints. The method

used is concrete and has been adopted in other literature [85] [86].

2.4.1 Nonholonomically Constrained System

We consider mechanical systems that are subject to the m velocity level equality

type of nonholonomic constraints characterized by

Bn(qg)q̇g = 0 (2.20)

where qg is the n-dimensional generalized coordinate, Bn(qg) is an mxn di-

mensional matrix. Since the constraints are assumed to be nonholonomic, (2.20)

then these constraints are independent. In another words, Bn(qg) has rank m. It

is noted that most nonholonomic constraints encountered in mechanical systems,
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including rolling constraints, are in the form of (2.20).

Using the Lagrange multiplier rule, the equations of motion of nonholonomically

constrained systems are governed by

M(qg)q̈g +G(qg, q̇g) + C(qg) = τ +B
T

n (qg)λn (2.21)

where M(qg) is the nxn dimensional positive definite inertia matrix, G(qg, q̇g)

is the n-dimensional velocity-dependent force vector, C(qg) is the the gravitational

force vector, τ is the ar-dimensional vector of actuator force/torque.

2.4.2 Holonomically Constrained System

We now assume that mechanical systems are subject to k holonomic constraints

characterized by

Bh(qg) =



















bh1(qg)

bh2(qg)

.

.

bhk
(qg)



















= 0 (2.22)

The equations of motion of the holonomically constrained system can also be

obtained by using the Lagrange multiplier rule. They are given by

M(qg)q̈g +G(qg, q̇g) + C(qg) = τ +B
T

J (qg)λh (2.23)

where λh is a k dimensional vector of Lagrange multipliers, and BJ(qg) is the

Jacobian of the holonomic constraints that is,

BJ(qg) =
∂Bh(qg)

∂qg

(2.24)

We assumed that nonholonomic constraints are given by velocity-level equation

(2.20) and holonomic constraints are described by position-level equation (2.22).

The holonomic constraint is differentiated once and is represented at velocity level

in the form of
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dBh(qg)

dt
⇒ BJ(qg)q̇g = 0 (2.25)

The velocity-level constraints in (2.25) are equivalent to the position constraint in

(2.22), provided that the initial condition of the system qgo
= qg(to) is a valid one,

termed Bh(qgo
)

In practical problems, both types of constraints may be described at velocity

level. If both types of constraints are represented in the form of (2.20), the num-

ber of holonomic and nonholonomic constraints can be determined by using the

Frobenius Theorem [84]. Briefly, let ∆r be the distribution spanned by the null

space of Bn(qg), and ∆∗
r be the smallest involutive distribution containing ∆r. It

is clear that n−m = dim(∆r) ≤ dim(∆∗
r). There are three possibilities.

1. If ∆r itself is involutive, i.e., dim(∆r) = dim(∆∗
r), all m constraints are in

fact holonomic.

2. If dim(∆∗
r) = n, i.e., ∆∗

r spans the entire space, all m constraints are non-

holonomic.

3. If dim(∆∗
r) = n− k; k out of m constraints are holonomic and the remaining

ones are nonholonomic.

If holonomic constraints are initially forced to be represented at velocity-level

equations, then these constraints can be treated in the same way as nonholonomic

constraints.

2.4.3 The C3P Platform Constrained System

This section will define whether the C3P has holonomic constraints. There are

three variables describing the position and orientation of the platform (x, y, φ)

and three angles specifying the angular position of the driving wheels (θx1 , θx2 , θx3)

in addition to three steering angles specifing the steering position of each caster

wheel (θs1 , θs2 , θs3). Therefore the generalized coordinates are

qg =
[

x y φ θx1 θx2 θx3 θs1 θs2 θs3

]T

(2.26)
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where n = 9. Assuming the driving wheels roll (and do not slip), there are three

constraints concluded from geometrical relation between each wheel varibales and

the robot variables. The geometric relation of each wheel is presented by a contraint

equation concluded from the caster wheel Jachobian (2.5). The constaints are

−ẋ− 1
3

∑3
i=1(r sin(θsi

)θ̇xi
) − 1

3

∑3
i=1(h cos(α

i
)θ̇si

) = 0

−ẏ + 1
3

∑3
i=1(r cos(θsi

)θ̇xi
) + 1

3

∑3
i=1(h sin(α

i
)θ̇si

) = 0

−φ̇− 1
3

∑3
i=1(θ̇si

) = 0

(2.27)

where k = 3. The three constraints (k = 3) can be written in the form of:

BJ(qg)q̇g = 0 (2.28)

where

BJ(qg)q̇g = 1
3









−3 0 0 −rS(θs1) −rS(θs2) −rS(θs3) −hC(α1) −hC(α2) −hC(α3)

0 −3 0 rC(θs1) rC(θs2) rC(θs3) hS(α1) hS(α2) hS(α3)

0 0 −3 0 0 0 −1 −1 −1

















































ẋ

ẏ

φ̇

θ̇x1

θ̇x2

θ̇x3

θ̇s1

θ̇s2

θ̇s3









































(2.29)

The matrix BJ(qg) ∈ RkXn(R3X9). The matrix span S(qg) ∈ RnX(n−k)(R9X6)

spans the null space of BJ(qg) and a full-rank matrix formed by a set of smooth

and linearly independent vector fields, υ ∈ Rn−k(R6), where q̇g = S(qg)υ and

υ = [θ̇x1 θ̇x2 θ̇x3 θ̇s1 θ̇s2 θ̇s3 ]
T . The matrix span can be concluded directly from the

constraint equations (2.27)
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S(qg) = 1
3







































−rS(θs1) −rS(θs2) −rS(θs3) −hC(α1) −hC(α2) −hC(α3)

rC(θs1) rC(θs2) rC(θs3) hS(α1) hS(α2) hS(α3)

0 0 0 −1 −1 −1

3 . . . . .

. 3 . . . .

. . 3 . 0 .

. . . 3 . .

. 0 . . 3 .

. . . . . 3







































(2.30)

S(qg) =
[

s(qg)1 s(qg)2 s(qg)3 s(qg)4 s(qg)5 s(qg)6

]

Let ∆r be the distribution spanned by the vectors s(qg)1 , s(qg)2 , s(qg)3, s(qg)4

,s(qg)5 and s(qg)6

∆r = span
{

s(qg)1, s(qg)2, s(qg)3,qg)4, s(qg)5, s(qg)6

}

(2.31)

Taking the Lie Bracket for any pair of the vectors from the distribution ∆r, if each

resultant vector field is still contained in ∆r, then the distribution is involutive,

where the Lie Bracket rule is

[s(qg)i, s(qg)j] =
s(∂qg)i

∂qg

s(qg)j −
s(∂qg)j

∂qg

s(qg)i (2.32)

The result of the Lie Bracket rule is

[s(qg)i, s(qg)j] =
[

0 0 0 0 0 0 0 0 0
]T (2.33)

where {i, j} ∈ (1 − 6) and i 6= j. It is noticable that all the resultant vectors are

lineary dependent on ∆r, since the zero vector belongs to any vector distribution.

Where [s(qg)i, s(qg)j] ∈ ∆r and i, j ∈ (1 − 6), i 6= j. As a result, the distribution

∆r is involutive and dim (∆∗
r)=dim(∆r)=n − k=6. Therefore, all the constraints

are holonomic, which is the first possibility of the criterion mentioned in Section



30

(2.4.2). As a conclusion, the C3P has holonomic constraints and the Lagrangian

quation will be
d

dt

(

∂L

∂q̇g

)

− ∂L

∂qg

= τ +B
T

J (qg)λh (2.34)

The constriant equations describe the relation between platform variables p =

p(x, y, z) and the wheel’s angular velocities qx = qx(θx1 , θx2 , θx3). If the generalized

coordinates vector qg = qx, then the Lagrangian equation will be

d

dt

(

∂L

∂q̇x

)

− ∂L

∂qx

= τ (2.35)

2.4.4 Euler-Lagrange Method

This section presents the forced Euler-Lagrange [78] equations of motion which are

used in deriving the C3P motion equation. Simple mechanical systems described

by the Lagrangian form is the difference between a kinetic energy (K) and potential

energy (P )

L(q, q̇) = K − P =
1

2
q̇

T

M(q)q̇ − V (q) (2.36)

where q is the particle position vector which belongs to the generalized robot co-

ordinate, M(q) is the inertia matrix which is a positive definite symmetric matrix,

and V (q) is the potential energy of the system. Since many wheel mobile robots

are assumed to move on a horizontal planar surface, P is zero and the Lagrangian

function of the WMR is the sum of the robot parts and joints K.

L =
N

∑

i=1

Ki, (2.37)

where N is the number of parts in the robot. The Lagrangian function is used to

obtain the Lagrangian dynamic formulation which is described as

τ =
d

dt

(

∂L

∂q̇

)

− ∂L

∂q
(2.38)

The generalized coordinates q vector contains the actuated displacements vari-

ables and q̇ vecotr contains the actuated velocities, while τ contains the external

torque/force vector. The overall dynamics of the robot can be formulated as a
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system of ordinary differential equations whose solutions are required to satisfy

the WMR constraints as the following

τ = M(q)q̈ +G (q, q̇) + C(q) (2.39)

where, M(q) is the inertia matrix, G (q, q̇) is the centripetal and Coriolis ve-

locity terms, and C(q) is the vector containing gravity terms.

2.4.5 Kinetic Energy Equations

The kinetic energy of the rigid body depends on its mass, inertia, linear and angular

velocities as described in the following equation

K =
1

2
m VT V +

1

2
ΩT I Ω (2.40)

where,

m, I : mass and inertia of the rigid body.

V, Ω : linear and angular velocity at the center of gravity of the rigid body.

The Kinetic Energy of a rigid body is equal to the kinetic energy of a point

mass m located at the center mass. The linear and angular velocity vectors of each

part are obtained from the forward kinematic relation depending on their center of

gravity. The platform velocity constraints are used to incorporate the open chain

dynamics into a closed chain dynamics to deliver the Lagrangian equation.

2.5 Dynamic Modeling

The Lagrangian formulation is used to obtain the C3P forward dynamics consid-

ering the robot as a multibody closed-chain system with mobility constraints. The

robot structure consists of seven main parts: three wheels, three links and one plat-

form (Fig. 2.3). The motor and steering mechanisms along with the wheel slippage

and the friction (contact point and bearing of the steering axes) are ignored in the

proposed dynamic model.
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Figure 2.3. The C3P parts structure

In this work, wheels and links mass and inertia have negligible value in compar-

ison to the mass and inertia of the C3P platform. Therefore, their kinetic energy

will not be included in the Largangian equation.

The C3P dynamic model consists of two main equations of motion: The Wheels

Torque Dynamics (WTD) and the Dynamic Steering Estimator (DSE). The wheel

angular velocities q̇x are calculated using the (WTD) equation of motion with

respect to the actuated wheels torques τx. The steering angles are not controlled

and their behaviour is affected by wheel angular velocities q̇x values. Therefore the

steering angles and the steering angular wheel velocities are recursively calculated

by the (DSE) corresponding to the angular wheels velocities and accelerations.

2.5.1 The Wheels Torque Dynamics (WTD)

The Wheels Torque Dynamic model is the relation between the applied torques on

the wheels τx and the output wheel velocities q̇x. The dynamics equation depends

mainly on the platform mobility constraints, which appears in the robot velocities

equation. The translational and angular velocities are obtained from the forward

kinematics equation (2.16), with respect to the wheel angular velocities (q̇x) as the
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actuated variables. The velocities are obtained symbolically by the aids of Maple

and are described as the following

Vp(WTD) =

[

3
∑

i=1

−r sin(θsi
) θ̇xi

,
3

∑

i=1

r cos(θsi
) θ̇xi

]T

/3 (2.41)

and

Ωp(WTD) =
[

0 θ̇xi

]

(2.42)

To be substituted in the kinetic engery equation (2.40)and the platform kinetic

energy will be

Kp(WTD) =
1

2
mp VT

p(WTD) Vp(WTD) +
1

2
ΩT

p(WTD) Ip Ωp(WTD) (2.43)

where mp is the wheel mass and Ip is the wheel inertia located at the platform

center of gravity, which is assumed to be located at the robot geometric coordinates.

Then the Lagrangian function will be L = Kp(WTD) = f(qs, q̇x, q̇s). The subjected

torques are applied to the wheel angular velocities qx. Therefore the generalized

velocities will be qg = qx and the Lagrangian formulation is

τx =
d

dt

(

∂L

∂q̇x

)

− ∂L

∂qx

(2.44)

and the forward dynamic equation can be represented in the following equation

τx = M(qs)q̈x, (2.45)

where τx = [τx1 τx2 τx3 ]
T

vector is a function of angular wheel accelerations q̈x

and the steering angles qs.

τx = M q̈x = mpr
2









1 cos(θs1 − θs2) cos(θs1 − θs3)

cos(θs1 − θs2) 1 cos(θs2 − θs3)

cos(θs1 − θs3) cos(θs2 − θs3) 1

















θ̈x1

θ̈x2

θ̈x3









(2.46)
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2.5.2 The Dynamic Steering Estimator (DSE)

The dynamic steering estimator (DSE) predicts the values of the steering angular

accelerations, velocities, and angles. Therefore, the steering angluar velocities q̇s

will be considered as the actuated velocites.The translational and angular robot

velocities obtained from the forward kinematic solution (2.17) is represented as the

following

Vp(DSE) =

[

−
3

∑

i=1

(r sin(θsi
)θ̇xi

+ h cos(α
i
)θ̇si

),
3

∑

i=1

(r cos(θsi
)θ̇xi

+ h sin(α
i
)θ̇si

)

]T

/3

(2.47)

Ωp(DSE) =

[

−
3

∑

i=1

θ̇si

]

/3 (2.48)

Equation (2.47) and (2.48) are used along with the kinetic engery equation

(2.40) to abtain the following platform kinetic energy

Kp(DSE) =
1

2
mp VT

p(DSE) Vp(DSE) +
1

2
ΩT

p(DSE) Ip Ωp(DSE) (2.49)

Corresponding to the Lagrangian function L = Kp(DSE) = f(qs, q̇s, q̇x) and

generalized velocities are qg = qs, the Lagrangian formulation will be

τs =
d

dt

(

∂L

∂q̇s

)

− ∂L

∂qs

(2.50)

which results the torque equation

τs = Msxq̈sx +Gsx(q̇x, q̇s,qs) (2.51)

The inertia matrix Msx can be decomposed into two matrices; Mx contains the

mass and inertia parameters related to wheels angular accelerations q̈x, the matrix

Ms contains the parameters related to the steering angular accelerations q̈s

τs =
[

Mx Ms

]

[

q̈x

q̈s

]

+Gsx(q̇x, q̇s,qs) (2.52)

where,

τs(3x1)
= Mx(3x3)

q̈x(3x1)
+Ms(3x3)

q̈s(3x1)
+Gsx(3x1)

(q̇x, q̇s,qs) (2.53)
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The matrixes Mx, Ms and the vector Gsx are described in Appendix (B). Using

the virtual work principle, the Jacobian of actuating the steering angluar velocity,

described by equation(2.11), will project the platform main forces/torques vector

τpl to the steering angular torques vector τs

τs = Jins
τpl
, (2.54)

where

τpl = Mpl
p̈, (2.55)

and

Jins
=









− cos(θ1) − sin(θ1) h sin(α1 − θ1) − d

− cos(θ2) − sin(θ2) h sin(α2 − θ2) − d

− cos(θ3) − sin(θ3) h sin(α3 − θ3) − d









/d (2.56)

τpl
=









Fx

Fy

τφ









, Mpl
=









mp 0 0

0 mp 0

0 0 Ip









. (2.57)

The sensing forward acceleration solution for the C3P is

p̈ = Jfx
q̈x + Jfs

q̈s + g(qs, q̇x, q̇s) (2.58)

by substituting (2.58) and (2.55) in (2.54)

τs = Jins
Mpl

Jfs
q̈s + Jins

Mpl
Jfx

q̈x+

Jins
Mpl

g(qs, q̇s, q̇x). (2.59)

From (2.59) and (2.52)

q̈s = M−1
ss Mxxq̈x +M−1

ss Gssx(qs, q̇s, q̇x) (2.60)

with

Mss = Jins
Mpl

Jfs
−Ms (2.61)

Mxx = Mx − Jins
Mpl

Jfx
(2.62)
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Gssx(qs, q̇s, q̇x) = Gsx − Jins
Mpl

g(qs, q̇s, q̇x). (2.63)

Figure 2.4. C3P Dynamic model

After deriving the dynamic equations of the C3P, it is revealed that the dynamic

steering estimator calculates the steering angle and the steering angular velocity,

which are affected by the wheel angular acceleration resulted from the forward

dynamic equation. Such a structure is represented in Figure 2.4.

The C3P dynamic model has the actuated wheel torques τx as an input while

the outputs are the sensed wheel velocities q̇x, the steering angular velocities q̇s,

and the steering angles qs. Since the steering angular velocities are actuated by

the angular wheel velocities, the angular wheel velocities q̇x and accelerations q̈x

are the main inputs of the steering dynamic estimator. The steering angles qs

and steering angular velocities q̇s are delayed by unity time interval because the

steering dynamic model is calculated recursively corresponding to (2.60).



Chapter 3
Kinematics Based Motion Control

The C3P modular configuration for the actuators can be easily built in the lab-

oratory. On the other hand, a problem is found during the kinematics modeling.

This problem is identified as kinematics singularities, which is formulated in Sec-

tion (3.1). A modified inverse kinematics solution is proposed in Section (3.2)

under the name of Wheel Coupling Equation (WCE) to solve the singularity prob-

lem. The solution depends on using the coupling action between each two wheel

angular velocities to virtually actuate the steering angular velocity of the third

wheel. Simulation examples are used in section (3.2.1) to show the feasibility of

the approach. A regulator for the WCE is developed in Section (3.3). A velocity

control structure is proposed in Section (3.4) and the simulation results are used

to illustrate its performance.

3.1 C3P Singularities

The C3P has the wheel angular velocities θ̇xi
(i ∈ {1, 2, 3}) as the actuated

robot wheels velocites. Corresponding to the actuated inverse solution obtained in

Chapter (2), it is pretty noticable that the Jachobian matix Jinx
can be singular

for some steering angles configurations.
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q̇x = Jinx
ṗ









θ̇x1

θ̇x2

θ̇x3









= 1
r









− sin(θs1) cos(θs1) h cos(α1 − θs1)

− sin(θs2) cos(θs2) h cos(α2 − θs2)

− sin(θs3) cos(θs3) h cos(α3 − θs3)

















ẋ

ẏ

φ̇









.
(3.1)

The singularity effect appears only when the steering angles yield the same

value. For example, when the steering angles are equal to −90o, the robot is not ac-

tuated in the Y direction and the velocity ẏ is zero (Fig. 3.1a), and when the angles

are equal to 0o the velocity ẋ is zero (Fig. 3.1c). The steering configuration in Fig-

ure (3.1b) gives a singular determinant for the matrix Jinx
with −45o steering angles

although all the robot DOFs are actuated except the direction of (-X,Y). For ex-

ample, the robot cannot move in the direction of ṗ = [−1(m/s) 1(m/s) 0(r/min)]
T

is not actuated. This concludes the following: if all steering angles yield the same

value, then the robot cannot be actuated in the direction perpendicular to the

wheel angular velocity vector. Figure (3.1d) represents a non-singular steering

wheels configuration condition.

Figure 3.1. Different steering configurations
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3.2 Coupling Approach

It is mentioned in [4] that if at least one variable of the wheel variables is not

actuated, then the required mobility is not totally guaranteed. In the C3P, the

steering angular velocity θ̇s of each castor wheel is not actuated, and as a result,

singularitites are found in the in the Jacobian Jinx
. Therefore, the steering angu-

lar velocities q̇s should be virtually actuated by the effect of the wheels angular

velocities q̇x one way or another.

In order to develop a singularity-free solution, the inverse kinematics solution

for actuating the steering angular velocities (3.2) will be used within the actuated

inverse solution (3.1).

q̇s = Jinsṗ








θ̇s1

θ̇s2

θ̇s3









= −1
d









cos(θs1) sin(θs1) −h sin(α1 − θs1) + d

cos(θs2) sin(θs2) −h sin(α2 − θs2) + d

cos(θs3) sin(θs3) −h sin(α3 − θs3) + d

















ẋ

ẏ

φ̇









. (3.2)

As basic a idea, the coupling between the angular velocities of any two wheels

virtually actuates the steering angular velocity of the third wheel (Fig.3.2). For

example, the coupling between θ̇x1 and θ̇x2 actuates θ̇s3

Figure 3.2. Coupling between θ̇x1 and θ̇x2
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The Jacobian solution Jinx
(3.2) and Jins

(3.1) are used to deliver a non-singular

inverse kinematics Jacobian to virtually actuate each steering angle. This can be

achieved by the following steps:

• Step 1: from equation (2.5) (caster wheel Jacobian) a relation between ṗ and

θ̇si
will be obtained as a link between equation (3.1)and equation (3.2).

• Step 2: decompose the wheels angular velocities actuation solution for wheels

1 and 2 (θ̇x1 and θ̇x2) from equation (3.1).

• Step 3: decompose the steering angular velocity solution for actuating wheel

number 3 (θ̇s3) from equation (3.2).

• Step 4: combine steps (1), (2) and (3) to obtain a solution for actuating the

steering angular velocity.

• Step 5: applying previous steps for all the wheels.

• Step 6: adding the obtained solution to (3.1).

Step 1, the actuated Jacobian for the ith caster wheel is

ṗ =









ẋ

ẏ

φ̇









=









−dsyi

dsxi

−1









θ̇si
, (3.3)

under two main assumptions: 1) θ̇xi
has zero relative velocity to the robot velocity

and 2) θ̇ci
has zero initial value because it is fixed on the floor for the first instant.

Step 2, for actuation θ̇s3 the inverse actuation solutions for θ̇x1 and θ̇x2 are used,

which is decomposed from (3.1)

[

θ̇x1

θ̇x2

]

=
1

r

[

− sin(θs1) cos(θs1) h cos(α1 − θs1)

− sin(θs2) cos(θs2) h cos(α2 − θs2)

]









ẋ

ẏ

φ̇









. (3.4)

Step 3, the steering angular velocity value θ̇s3 is the function of θs3 and the

reference robot velocities ṗ. Such a relation is found in the inverse solution (3.2)
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and θ̇s3 is concluded as shown below

θ̇s3 =
−1

d

[

cos(θs3) sin(θs3) −h sin(α3 + θs3) − d
]









ẋ

ẏ

φ̇









(3.5)

Step 4, from equations (3.3), (3.4) and (3.5), the following solution is obtained

[

θ̇x1

θ̇x2

]

= JA3









ẋ

ẏ

φ̇









(3.6)

where, JA3 ∈ R2X3

JA3(1, 1) = −h
r d

(cos(θs1 − φ3) − cos(θs1 − φ1)) ∗ cos(θs3)

JA3(2, 1) = −h
r d

(cos(θs2 − φ3) − cos(θs2 − φ2)) ∗ cos(θs3)
(3.7)

JA3(1, 2) = −h
r d

(cos(θs1 − φ3) − cos(θs1 − φ1)) ∗ sin(θs3)

JA3(2, 2) = −h
r d

(cos(θs2 − φ3) − cos(θs2 − φ2)) ∗ sin(θs3)
(3.8)

JA3(1, 3) = h
r d

(cos(θs1 − φ3) − cos(θs1 − φ1)) ∗ sin(θs3 + φ3)

JA3(2, 3) = h
r d

(cos(θs2 − φ3) − cos(θs2 − φ2)) ∗ sin(θs3 + φ3)
(3.9)

Step 5, the same procedures are used for virtually actuating steering angular

velocity θ̇s2 to obtain

[

θ̇x1

θ̇x3

]

= JA2









ẋ

ẏ

φ̇









(3.10)

where, JA2 ∈ R2X3

JA2(1, 1) = −h
r d

(cos(θs1 − φ2) − cos(θs1 − φ1)) ∗ cos(θs2)

JA2(2, 1) = −h
r d

(cos(θs3 − φ2) − cos(θs3 − φ2)) ∗ cos(θs2)
(3.11)

JA2(1, 2) = −h
r d

(cos(θs1 − φ2) − cos(θs1 − φ1)) ∗ sin(θs2)

JA2(2, 2) = −h
r d

(cos(θs3 − φ2) − cos(θs3 − φ3)) ∗ sin(θs2)
(3.12)
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JA2(1, 3) = h
r d

(cos(θs1 − φ2) − cos(θs1 − φ1)) ∗ sin(θs2 + φ2)

JA2(2, 3) = h
r d

(cos(θs3 − φ2) − cos(θs3 − φ3)) ∗ sin(θs2 + φ2)
(3.13)

and also used for the steering angular velocity θ̇s1 to deliver

[

θ̇x2

θ̇x3

]

= JA1









ẋ

ẏ

φ̇









(3.14)

where, JA1 ∈ R2X3

JA1(1, 1) = −h
r d

(cos(θs2 − φ1) − cos(θs2 − φ2)) ∗ cos(θs1)

JA1(2, 1) = −h
r d

(cos(θs3 − φ1) − cos(θs3 − φ2)) ∗ cos(θs1)
(3.15)

JA1(1, 2) = −h
r d

(cos(θs2 − φ1) − cos(θs2 − φ2)) ∗ sin(θs1)

JA1(2, 2) = −h
r d

(cos(θs3 − φ1) − cos(θs3 − φ3)) ∗ sin(θs1)
(3.16)

JA1(1, 3) = h
r d

(cos(θs2 − φ1) − cos(θs2 − φ2)) ∗ sin(θs1 + φ1)

JA1(2, 3) = h
r d

(cos(θs3 − φ1) − cos(θs3 − φ3)) ∗ sin(θs1 + φ1)
(3.17)

Step 6 combines the solution (3.7), (3.11) and (3.15) with the Jinx
Jacobian

found in equation (3.1) as the following

JS1 =









Jinx(1, 1) Jinx(1, 2) Jinx(1, 3)

JA1(1, 1) m JA1(1, 2) m JA1(1, 3) m

JA1(2, 1) m JA1(2, 2) m JA1(2, 3) m









(3.18)

JS2 =









JA2(1, 1) m JA2(1, 2) m JA2(1, 3) m

Jinx(2, 1) Jinx(2, 2) Jinx(2, 3)

JA2(2, 1) m JA2(2, 2) m JA2(2, 3) m









(3.19)

JS3 =









JA3(1, 1) m JA3(1, 2) m JA3(1, 3) m

JA3(2, 1) m JA3(2, 2) m JA3(2, 3) m

Jinx(3, 1) Jinx(3, 2) Jinx(3, 3)









, (3.20)

Where the variable ’m’ is a weighting value to regulate the wheel coupling effect,

the Jacobian matrices JS1 , JS2 and JS3 virtually actuate the wheel steering angular

velocities θ̇s1 , θ̇s2 and θ̇s3 respectively. The three Jacobian matrices are added to
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each other in the following solution









θ̇x1

θ̇x2

θ̇x3









= J
WCE









ẋ

ẏ

φ̇









= [JS1 + JS2 + JS3 ]









ẋ

ẏ

φ̇









, (3.21)

Each wheel virtually actuates the steering angular velocity of the other two

wheels at the same time, thus the selected value of m is 0.5 or 1
2

corresponding

to the average value resulted for actuating two steering angular velocities simul-

taneously. For the WCE (Wheel Coupling Equation) (3.21) the wheel coupling

produces distortions of the exact solution in the proximity of singularities. If the

wheel configuration is far from singular condition, the solution in equation (3.21)

reaches asymptotically the inverse kinematics Jinx
solution in equation (3.2).

3.2.1 Simulation Examples

For the simulation examples in this section, the open loop control structure shown

in Figure (3.3) is concerned. The axes level loop controls the wheel angular ve-

locities q̇x with respect to its reference value q̇xr. The Wheel Coupling Equation

represented by the block ‘WCE’ is the non-singular kinematics explained in Section

(3.2).

Figure 3.3. Open loop structure using C3P dynamic model

The parameters of the robot, used in this chapter, are described in Table. 3.1.

These parameters are used for all the examples presented in this chapter.

The first example represents a singular initial condition, which means the fol-

lowing: a) the steering angles are parallel to each other, b) the desired direction of

motion is perperndicular on the wheels axes as shown in Figure(3.4). The initial
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Table 3.1. The C3P parameters

C3P Parameters Value Units

h 0.343 m
d 0.04 m
r 0.04 m

Mp (Pl mass) 30 Kg
Ip (Pl inertia) 3.51 Kg m2

value of the steering angles is 45o (Fig .(3.4-a)) and the desired direction of mo-

tion is ṗ = [0.12(m/s) 0.12(m/s) 0(r/min)]
T

. For such input, the steering angles

should yield the value of −45o as shown in Figure(3.4-b).

Figure 3.4. C3P wheel configuration considering the results in Figure (3.5)

Figure (3.5) presents the performance of the platforms main variables; 1) steer-

ing angles values q̇s, wheel angular velocites q̇x (ω), the robot velocities (ẋ, ẏ, φ̇),

and the robot trajectory. The WCE virtually actuates the steering angular veloc-

ities to reach the value −45o, as shown in Figure (3.5-a). Such actuation should

occur with at the beginning of the robot motion. Afterwards, the virtual steering

actuation will have a negligable effect on the soution and the WCE will yield the

Jinx
Jacobian (3.2). The effect of this process appears in the translational and

rotational velocities as shown in Figure (3.5-c), Figure(3.5-d) and Figure (3.5-e),

where they are represented in two frames of coordinates, the C3P frame and the

floor frame. As the WCE solution yields to the Jacobian Jinx
the oscillations settle

to the steady state phase.

Such a result is due to the following: since the WCE is an approximate solution
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Figure 3.5. The C3P simulation results from example (1); driving in ṗ =

[0.12(m/s) 0.12(m/s) 0(r/min)]
T

it generates distortion errors in the robot orientation angle, which result in steady

state errors between the C3P and the floor frame velocities. Such errors drive the

robot in the wrong direction with respect to the floor coordinates Fig. (3.5-f).

These distortion errors are unpredictable with other initial steering angle values

as shown in example 2 Figure(3.6). If the steering angles are all zeros, Figure(3.6-a)
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Figure 3.6. C3P wheels configuration considering the results in Figure (3.7)

and the robot is required to drive in a negative y direction with reference velocities

ṗ = [0(m/s) − 0.12(m/s) 0(r/min)]; the steering angles should all rotate to

reach the value of −180o or 180o (Fig.3.6-b). Such rotation of the steering angles

(Fig. (3.7-a)) occurs because of the caster wheel dynamics, which tend to push

the robot instead of pulling it. Therefore, the caster wheels will always rotate in

the direction of pushing, so that the wheel angular velocities always have positive

values. Despite the negative value of the robot desired velocity (Fig. (3.7-c)), the

wheel angular velocities in Figure (3.7-b) yield to a positive value.

During the period of the steering angles rotation, the C3P may reach singu-

larity condition or near singularity condition. As a result, the WCE generates

wheel velocities’ oscillations that settle at t=4 sec when the WCE yields the Ja-

cobian Jinx
. The wheel angular velocities also oscillate (Fig.3.7-b), which produce

oscillations in the robot velocities (Fig.3.7-c, d & e).

The reason for such behavior is due to the following, the WCE additional

term is an approximate solution, which may generate non-unique solutions (the

operating points are far from the singularity condition). Therefore the effect of

the additional term in the WCE solution should be eliminated as soon as the C3P

leaves its singularity condition. A controller that regulates the effect of the WCE

additional term must be obtained. Therefore, a method should be developed to

measure the singular condition during any experiment.
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Figure 3.7. The C3P simulation results from example (2); driving in ṗ = [0(m/s) −
0.12(m/s) 0(r/min)]

T

3.2.2 Singularity Indicator

This section proposes a geometric method to measure the ability of the C3P to

drive in a certain direction. It is clear that the knowledge of the steering angles

and the reference robot velocities values are sufficient to detect the singularity of

the C3P. For example, if θsi
= 0o and the reference robot velocity is ṗ = [0 0.12 0],

then the velocity in y direction is actuated; on the other hand , if ṗ = [0.12 0 0],

the velocity in x direction is non-actuated, which is a singular condition.

The singularity indicator |Ψ| will detect the robot singularity conditions. The
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angle Ψ = δ − β, where δ = arctan(−ẏa, ẋa) and β = arctan(−ẏr, ẋr).

Figure 3.8. The geometric representation for achieving Ψ

ẋa, ẏa : The measured robot Linear velocities in x and y directions

ẋr, ẏr : The reference robot Linear velocities in x and y directions

The indicator |Ψ| works as a sensor for the C3P singularity condition. The

condition of |Ψ| = 90o indicates un-actuation in the desired linear velocity direction

(ẋ, ẏ). This condition requires full influence from the coupling approach (WCE).

And the condition of |Ψ| = 0o or |Ψ| = 180o stands for full ability of motion in the

desired direction where the coupling approach is not needed.

3.3 Wheel Coupling Equation Adaptation

Equation (3.21) shows that ‘m’ is the main parameter which has the capability

of adapting the effect of the WCE. A mathematical solution for ‘m’ as a function

of the singularity indicator must be found. This function should act as the WCE

regulator, which gives the following results. The variable ‘m’ varies between the

values = [0.5, 0]; when |Ψ| = 90o then ‘m’ takes its maximum value ‘0.5’. When

|Ψ| = 0o or |Ψ| = 180o , ‘m’ will be zero to illuminate the influence of the coupling

solution. These constraints can be generated from the following equation

m = 0.5 sinλ(|Ψ|) (3.22)
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The parameter λ is tuned to regulate the WCE effect on the solution during certain

values for Ψ. The WCE regulator is used in the first example shown earlier in this

section, where the desired robot velocity is ṗ = [0 − 0.12 0]. Figure (3.9) shows

the differences in the simulation results with and without using the WCE adapter.
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Figure 3.9. C3P simulation results with and without WCE regulator

It is clear from Figure (3.9b) that the oscillations are nearly dampened with
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the WCE regulator. The robot velocities are then generated Respectively with

almost no oscillations, as shown in Figure (3.9c, d, & e), and if they existed it is

only during the steering angles rotation phase. The singularity indicator response

shown in Figure (3.9-g) shows that it oscillates rapidly in the case of no adaptation

for the WCE.

When the WCE adapter is introduced in the solution, the parameter ‘m’ takes

zero value instead of 0.5 to reduce the influence of the additional coupling term

in the WCE. Figure(3.9-h) shows that during the wheels steering rotation, the

parameter ‘m’ oscillates to give the coupling term the opportunity to maintain

reference velocities. The C3P trajectories (Fig. 3.9f) shows that by using the

WCE adapter, the robot drives in a direction close to the desired direction (-y),

but with small errors. The next step is to obtain a controller to control the robot

velocities after the adjusting steering angles phase.

3.4 Velocity Controller

In this section, a velocity controller with the following specifications must be de-

signed a) adjust the steering angles to the desired value, b) adjust the robot coor-

dinates to match the floor coordinates without influencing the steering angles, c)

the output robot velocities follows the input signals corresssponding to the floor

frame of coordinates. For a holonomic WMR, a regular PID controller is suitable

for controlling the robot velocities.

For the C3P actuators configuration however, the PID controller alone cannot

manage the three tasks. The PID controller can manage the second and third

specifications and the WCE regulator manage the first specification. If both con-

trollers are used in parallel, the PID controller conflicts with the coupling approach

solution. Such a conflict will cause unstable behaviour of the robot. Therefore the

PID controller should occur after the adjustment of the steering angles.

The controller’s structure is shown in Figure (3.10), where switching is used

between the WCE regulator and the PID controller. The switching conditions are

shown in Table (3.2), where ǫ is a tolerance value of the singularity indicator |Ψ|.
The PID controller is described with the following equations:
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Table 3.2. The controller xondition

Indication |ψ| Condition 1 Condition 2

|ψ| < ǫ True False
|ψ| > ǫ False True

PIDx = KPx
+KIx

/s+KDx
s

PIDy = KPy
+KIy

/s+KDy
s

PIDφ = KPφ
+KIφ

/s+KDφ
s

(3.23)

Figure 3.10. C3P velocity controller structure

Figure 3.11. C3P velocity controller structure

To show the difference between using the PID controller alone and combining it

with the WCE adapter, the same previous example is carried out with the control

structure shown in Figure (3.10) and again with the structure in Figure (3.11).

The structure in Figure (3.10) has the following controller parameters: λ = 2,
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ǫ = 5o, KPx
= 0.1, KPy

= 0.1, KPφ
= 0.2 and KDφ

= 0.15. On the other hand, the

PID controller in Figure (3.11) has the following parameters: KPx
= KPy

= 0.1,

KIx
= KIy

= 0.05, KPφ
= 0.25 and KIφ

= 0.15. Figure (3.12) shows the deficiency

of using the only PID controller.
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Figure 3.12. C3P performance with and without the velocity controller

First, it should be taken in consideration that the robot velocity responses are

referred to the floor frame of coordinates. Figure (3.12-a & 3.12-b ) show that

using the PID controller alone was insufficient to settle the steering angles to the
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value of −90o, while the proposed structure in Figure (3.11) achieved the expected

steering angles values. This is noticed from the robot velocity responses (Fig. 3.12

c & d), where the WCE and its adapter adjust the steering angles to reach the

desired value −90o. Then the velocity controller succeeded to reach the desired

robot velocities with respect to the floor coordinates.

The WCE reduces the oscillations found in the angular robot velocity response

(Fig. 3.12 e). The robot trajectory in Figure (3.12 f) shows the efficient perfor-

mance of the controller platform to drive in the exact desired direction.

3.5 Position Controller

The position control problem of Wheeled Mobile Robots (WMRs) has been a heav-

ily researched area due to both the challenging theoretical nature of the problem

and its practical importance. Researchers have targeted the problems of: regulat-

ing the position/orientation of the WMR, and the tracking time-varying reference

trajectory .

The position control problem can be stated as follows: Given the position

goal coordinates vector ṗg =
[

xg yg φg

]T

and the initial position reference

coordinates vector ṗg =
[

xi yi φi

]T

. It is necessary to design a state feed back

controller if it exists, such that the control u = K.e =
[

Ux Uy Uφ

]T

makes

limt→∞e(t) = 0. The robot kinematics descriptions are given by the following:
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(3.24)

The state space form is written in the form of ṗ = Ap+Bu, where p = pg −pi =

[xe ye φe]
T

. Here we have three controlled states ẋ, ẏ and φ̇. There is a fourth

sensed state; it is an input sensed variable to control the angular robot velocity.

This sensed variable is δer = ϑ − δg where ϑ = arctan(−Yg

Xg
) and δg = arctan(−Ye

Xe
)

(Fig.3.13)

The velocity controller succeeded in driving the robot in the floor coordinates
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Figure 3.13. Robot Position representation

but aimed for the wrong goal point due to a distance error. The angle δer is

the difference angle between the direction of the robot and the error vector at

every instant. The controller will be a non linear static state-feedback, which is

represented below:

Ux = Kxxe (3.25)

Uy = Kyye (3.26)

Uφ = Kφφe +Kerδer (3.27)

Then the closed loop control system can be formulated as follows:

ẋ = (KφΦe)ye +Kxxe (3.28)

ẏ = −(KφΦe)xe +Kyye (3.29)

φ̇ = +Kφφe +Kerδer (3.30)

In order to verify the proposed controller, several simulation examples will

take place. The first example is a singular initial condition. The initial point

coordinates are pi = [0 0 0]
T

starting from singularity wheel configuration θsi
= 0

, i ∈ {1, 2, 3} and the goal point coordinates are pg = [4 0 0]
T

. The main effective
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control variables for smooth trajectory are Φe and δer. In Figure (3.14) the effect

of δer is shown, it is noticed that as the value of Ker increases, the robot trajectory

errors are aslo reduced from 0.4 m to 0.1 m.
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Figure 3.14. Robot trajectory for Kφ = 20 and different Ker

Figure (3.15) represents the different robot trajectories produced from different

Kφ values. When the robot starts moving from the singularity configuration,

the kinematics adjust the steering angles to the desired value. As a result, a

displacement error is generated, the main function of Kφ and Ker is to overcome

this error smoothly.
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Figure 3.15. Robot trajectory for δer = 5 and differentΦe

The following example requires the C3P to move from pi = [0 0 0]
T

towards

pg = [2.8m 0 0]
T

along the x axis from the zero initial angles. The position

controller has the parameters of Kφ = 50 and Ker = 5. Figure (3.16) shows

the robot position update trajectory visualized with the steering angles and robot

orientation, which illustrates the performance of the position controller.
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Figure 3.16. Robot Position update

The simulation results for the C3P steering angles and velocities are shown

clearly in Figure (3.17). The C3P starts from a singularity condition where θsi
= 0

, i ∈ {1, 2, 3} and is desired to reach the goal coordinate pg, which is driving in the x

direction. From the robot velocities Figures (3.17c & d), the WCE solution and its

regulator succeeded in adjusting the steering angles to the near desired value −90o

after two and half seconds; as a result the velocity controller is initiated to drive

the robot to the desired direction with respect to the floor frame of coordinates

(Fig. 3.17f). Figure (3.18) shows the robot trajectory for a different example,

where pi = [0 0 0]
T

towards pg = [3m 3m − 90o]
T

. The robot rotated nearly 900

in a clockwise direction and adjusted its steering angles in the same period of time

and in displacement of 15 cm; then the robot drove towards the goal coordinates

on the desired trajectory.

3.6 Summary

The ‘Wheel Coupling Equation’ (WCE) is proposed as an actuation inverse solu-

tion. The WCE actuates the steering angular velocities by producing distortions of

the exact solution in the proximity of singularities. This leads to an escape from the

singularity. If the wheel configuration is far from the singular condition, the pre-

vious solution is valid and the approximate solution influence will disappear. The
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Figure 3.17. Simulation result for driving from pi = [0 0 0o]T to pg = [3 3 − 90o]T

velocity controller structure consists of two main controllers: The WCE regulator

to eliminate the oscillations created by its approximation, and the PID controller

to maintain the C3P reference speed with respect to the floor coordinates.
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Figure 3.18. Position update and trajectory for pg = (3 3 − 90o)T



Chapter 4
Inverse Dynamics Based Motion

Control and Analysis

The kinematics based controller (KBC) proposed in the previous chapter succeeded

in solving the C3P singularity problem. However, the proposed solution is still an

approximate solution, which is developed under the assumptions mentioned in

Section 3.2. These assumptions can only be considered for the kinematic modeling

and cannot be ignored in the dynamic modeling. Therefore, the inverse dynamic

solution is needed to solve the singularity problem accurately.

The inverse dynamic solution determines the forces subjected by the system,

for both the dynamic and the kinematic models. The inverse dynamic solution

yields the driving forces necessary to control a system so that it follows a desired

trajectory [87] [88] and [89].

In this chapter an inverse dynamics solution is proposed in Section 4.1 using

the Lagrangian method. In Section 4.2 the velocity and position controllers are

presented, along with some simulation examples to illustrate their performance.

4.1 Inverse Dynamics Solution

The solution’s main objective is to create an inverse dynamic model based on the

sensed variables (q̇x and q̇s) with respect to the actuated variables (q̇x). Firstly,

the robot translational and rotational velocities are decomposed from equation

(2.15) to obtain the platform kinetic energy
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Kp =
1

2
mp VT

p(DSE) Vp(DSE) +
1

2
ΩT

p(DSE) Ip Ωp(DSE) (4.1)

where mp is the wheel mass and Ip is the wheel inertia located at the platform

center of gravity. Then the Lagrangian function L = Kp = f(qs, q̇x, q̇s) is used to

obtain the following Lagrangian formulation

τxa
=

d

dt

(

∂L

∂q̇x

)

− ∂L

∂qx

. (4.2)

where the generalized velocities are qg = qx. The Lagranigian fomulation will

yield the following torque equation

τxa
= Msxa

q̈sx +Gsxa
(q̇x, q̇s,qs) (4.3)

The matrix Msxa
is decomposed into Mxa

and Msa
, where Mxa

,Msa
∈ R3X3

Msxa
=

[

Mxa
Msa

]

, q̈sx =

[

q̈x

q̈s

]

(4.4)

where Mxa is a mass matrix corresponding to the wheel angular acceleration vector

q̈x and Msa corresponds to the steering angular acceleration vector q̈s, while the

centripetal and Coriolis torques are presented by the vector Gsxa
(Appendix C).

The dynamic torque equation (4.4) is a function of q̈x, q̈s, q̇x. On the other

hand, the required inverse dynamic solution should have the robot velocities ṗ and

accelerations p̈ as inputs.

Corresponding to the caster wheel, the forward kinematic solution for the wheel

accelerations is

p̈ = Jfi
q̈

i
+ Jri

q̇ri
(4.5)

where Jfi
is the forward direct solution for the wheel accelerations, and Jri

q̇ri
is

the Centripetal and Coriolis velocities.

Jfi
=









−r sin(θsi
) h cos(α

i
) + d sin(θsi

) −h cos(α
i
)

r cos(θsi
) −h sin(α

i
) + d cos(θsi

) h sin(α
i
)

0 1 −1









, q̇ri
=









θ̇
2

si

−2θ̇ci
θ̇si

θ̇
2

ci









(4.6)
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and

Jri
=









dsxi
dsxi

dxi

dsyi
dsyi

dyi

0 0 0









=









h sin(α
i
) h sin(α

i
) h sin(α

i
) − d cos(θsi

)

h sin(α
i
) h cos(α

i
) h sin(α

i
) + d cos(θsi

)

0 0 0









. (4.7)

The inverse actuated kinematic accelerations are

[

q̈x

q̈s

]

= Jinv
p̈ − gcs(qs, q̇s, q̇c) (4.8)

where

Jinv
=

[

Jinx

Jins

]

(4.9)

and the vector gcs is explained in detail in Appendix (C).

The inverse kinematic velocities solutions for Jinx
(2.10) and Jins

(2.12), along

with inverse acceleration kinematics solution in (4.6) and (4.8) are used to refor-

mulate the torque equation (4.4) to deliver the following torque equation

τxa
= Mx(qs)p̈ +Gx(qs, ṗ), (4.10)

which is function of the robot velocities ṗ and accelerations p̈, in addition to

Mx = Msxa
Jinv

, and Gx = Gsxa
(qs, ṗ) −Msxa

gcs(qs, ṗ). (4.11)

4.2 Dynamics Based Motion Control Structure

The Dynamic Based Controller (DBC) consists of two main loops the velocity

control loop [90] and the position control loop [91]. In this section, the inverse

dynamic solution is used within the velocity and position controller structure as

shown in Figure(4.1) and Figure (4.2). The Axes level control loop is applied to the

torque control of each wheel (T.Ctrl). The velocity controller (vel.Ctrl.) is used

to calculate the required error in the robot accelerations (ë), which are added to

the reference robot acceleration p̈r (Fig.4.1). The actuated wheels torques τxa are

generated from the inverse dynamic solution using the reference robot velocities
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ṗr and accelerations p̈r + ë as inputs. The position controller is used to calculate

the reference velocity vector ṗr needed to drive the robot to goal coordinates pg

(Fig4.2). The control structure presented in this section is illustrated by simulation

examples, which are carried out with respect to the floor frame of coordinates.

Figure 4.1. Dynamics Based Velocity Control Structure

Figure 4.2. Position Control Structure

4.2.1 Velocity Controller

The velocity controller of the inverse dynamic solution (Vel.Ctrl) controls the robot

accelerations vector p̈r, which is one of the main factors influencing the solution.

Its structure is described through the following equation
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p̈r = Γ
V.C

(S)ṗe








ẍ

ÿ

φ̈









=









Cx 0 0

0 Cy 0

0 0 Cφ

















ẋr − ẋo

ẏr − ẏo

φ̇r − φ̇o









(4.12)

where, Γ
V.C

is the velocity control matrix. It is a diagonal matrix with the PID

controller for linear acceleration in x direction

Cx = Kpx +KdxS +
Kix

S
, (4.13)

and in y direction

Cy = Kpy +KdyS +
Kiy

S
(4.14)

and for the angular robot velocity φ̈

Cφ = Kpφ +KdφS +
Kiφ

S
(4.15)

4.2.2 Dynamics Performace Examples

This section shows the performance of the inverse dynamics with the aid of some

examples. The parameters used throughout this section are represented in Table.

(4.1). The following simulation example is used to demonstrate the effect of the

wheel variables velocities and accelerations (θ̇s=ωs , θ̈s=αs, θ̇x=ωx and θ̈x=αx) on

the C3P behavior.

Table 4.1. The C3P Control parameters

C3P Parameters Value Units Ctrl.Par Value

h 0.343 m Kpx = Kpy 1.1
d 0.04 m Kix = Kiy 0.9
r 0.04 m Kdx = Kdy 0

Mp (Pl mass) 30 Kg Kpφ 1.1
Ip (Pl inertia) 3.51 Kg m2 Kdφ, Kiφ 1.2,0.2

The robot accelerations inputs are p̈r = [0.0035(m/s2) 0(m/s2) 0(r/min2)]T ,

which is a velociy input in the x direction. The initial steering angles values are
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zeros qs = [0o 0o 0o]T (Fig.4.3-a). Such an input yields the steering angles to reach

value of −90o (Fig.4.3-b).

Figure 4.3. The Steering angles orientation for driving in X direction from configuration
(a) to configuration (b)

Figure(4.4) shows the steering angle trajectories in addition to the robot and

wheel velocities and accelerations. The inverse dynamics solution produces the re-

quired torque needed to adjust the steering angles to the direction of motion. Such

torque values produced the wheel angular velocities and acceleration responces

shown in Figures (4.4d & e), which virtualy actuated the steering angular ve-

locities and acceleration shown in (Fig.4.4b & c). These signals are fed to the

C3P model for actuating the steering angles to reach the desired value −90o or

270o. The velocity controller succeeds in controlling the robot and accelerations,

as shown in Figure(4.5).

The robot will drive in x direction with a ramp input velocity (step input ac-

celeration) untill it reaches 0.12(m/s) and then it will maintain a constant speed

(zero acceleration). As shown in Figure(4.5a), the measured velocity in x direc-

tion oscillates around the reference slope before it settles to a steady state. The

measured acceleration in x direction oscillates for 6 seconds before it reaches sta-

bility, as shown in Figure (4.5b). Similar responses are noticed in the y direction

velocities and accelerations (Fig.4.5c & d).

The inverse kinematics and inverse dynamics based controller are used in the

next example to compare their performance. The example represents a singular

condition movement which was shown in Figure(4.3). Where the initial steering

angles values are θs1 = θs2 = θs3 = 0o and the reference robot velocity ṗr =

[0.12(m/s) 0(m/s) 0(r/min)]
T

. This input actuates the steering angles to reach

the value of −90o.
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Figure 4.4. The wheels velocities and acceleration for ramp input and driving from
singular condition

The steering angles were a result to the dynamic solutions shown in Figure(4.6-

b) have small differences in their trajectories during the transition phase. The

steering angles reach the desired value (−90o) almost during the same time inter-

val when time= 1 s. The inverse kinematic solution (WCE) is an approximate

solution, which generates non similar values for the steering angles values during

the transient period (Fig.4.6a). The angles reach the desired value in different

timing, for example: θs3 reaches −90o in one second while θs1 and θs2 settle at

the desired value after two seconds, with difference in values. The advantages of

the proposed dynamic solution are noticeable in the robot velocity responses. In

Figure (4.6-c), the linear velocity ẋ or Vx reaches the reference value faster and

smoother than the one resulted from the inverse kinematic solution. The linear
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Figure 4.5. The robot velocities and acceleration for ramp input and driving from
singular condition

velocity ẏ or Vy generated by the inverse kinematic solution has two high over-

shoots for more than two and half seconds before it reaches the reference value at

Time= 4 s (Fig.4.6-d). The Vy generated by the inverse dynamic solution carries a

single overshoot for less than one second. Then it reaches the reference value and

the steady state in only one second. Such vast differences in theas Vy responses

eliminate the expected robot displacement errors in the y direction.

The output φ̇ (Fig.4.6-e) of the inverse dynamic solution has only one overshoot

with one quarter of the magnitude of the positive overshoot resulted from the
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Figure 4.6. Comparing dynamic and kinematic inverse solutions for deriving in x
direction from initial singular condition

kinematic solution. Furthermore, the orientation velocity of the dynamic solution

settles after one and half seconds while the kinematic solution settles its orientation

velocity after almost three seconds. Figure (4.6-f) shows the integration of the

robot velocities, which shows the high effect of their errors on the robot trajectories.

The robot inverse dynamic solution trajectory takes smooth slope in x, y direction

during the transient phase untill the steering angles are adjusted to a −90o value,

while the trajectory resulted from the inverse kinematic solutions takes longer to

reach the desired direction. The displacement error found in the y direction exists
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for both solutions, however, the kinematics error is double the dynamics one.

The third example is also a comparison between the two solutions but it is

set to drive in the y direction using the same controller parameters. The initial

steering angles values are θs1 = θs2 = θs3 = −90o as shown in Fig. (4.7-a) and the

reference robot velocity ṗr = [0(m/s) 0.12(m/s) 0(r/min)]
T

. For such input the

steering angles should reach the value of 0o (Fig. 4.7-b)

Figure 4.7. The steering angles orientation for driving in y direction from configuration
(a) to configuration (b)

From Figure (4.8) the inverse dynamics solution generates a smooth trajectory

for the steering angles. On the other hand, oscillations are found in the transient

phase for the ones generated by the inverse kinematic solution.

Such differences in trajectories influence the robot linear and angular velocities

(Fig.4.8c,d & e). The velocities resulted from the dynamic based controller (DBC)

has a very small overshoot with a short settling time in comparison to the kine-

matics based controller (KBC). As shown in Figure (4.8f) the displacement errors

on x axis, generated by the DBC, are half the displacement errors generated from

the KBC. As a conclusion: the DBC perform much better than the KBC for the

following reasons: a) the wheel angular velocities results better trajectories for the

steering angles, b) the robot velocities overshoots are less oscillatory and reduced

in magnitude, c) the displacement errors does not exceed the half values resulted

from the inverse kinematics solutions.

The next step is to use the torques (τx) resulting from the inverse dynamics

solution as a feed forward signal parallel to the inverse kinmatics solution. This is

presented in the ‘Dynamics and Kinematics fusion’ block shown in Figure (4.9).



69

0 1 2 3 4 5
−135

−90

−45

0

Time (s)

θ 
(o

)
a) The steering angles for Inverse Kinematics

 

 

θ
s

1

θ
s

2

θ
s

3

0 1 2 3 4 5
−135

−90

−45

0

Time (s)

θ 
(o

)

b) The steering angles for Inverse Dynamics

 

 

θ
s

1

θ
s

2

θ
s

3

0 1 2 3 4 5
−0.05

0

0.05

0.1

0.15

0.2

Time (s)

V
x (

m
/s

)

c) Linear C3P velocity in X direction

 

 
Reference
Kinematic model
Dynamic model

0 1 2 3 4 5
−0.05

0

0.05

0.1

0.15

Time (s)

V
y (

m
/s

)

d) Linear C3P velocity in Y direction

 

 

Reference
Kinematic model
Dynamic model

0 1 2 3 4 5
−15

−10

−5

0

5

Time (s)

Φ
do

t (
r/

m
in

)

e) Angular C3P velocity around Z axis

 

 

Reference
Kinematic model
Dynamic model

0 0.02 0.04 0.06 0.08 0.1 0.12
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X (m)

Y
 (

m
)

f) The C3P trajectory 

 

 

Reference
Kinematic model
Dynamic model

Figure 4.8. Comparing dynamic and kinematic inverse solutions for mobility in y
direction from an initial singular condition

The ‘Dynamics and Kinematics fusion’ block has one main function, fusing

between the inverse kinematic (2.10) and the inverse dynamic solution (4.10). In

the case of using the inverse dynamic solution separately, the wheel torques found

in the vector τD are not symmetrically accumulated due to the friction and slippage

problem. These unsymmetrical accumulations results in unstable behaviors of the

C3P. Therefore the inverse kinematic solution is used to stabilize the behavior and

overcome the instabilities (Fig. 4.9). The fusion criterion depends mainly on the

effect of each solution, for example the inverse dynamic solution main function is
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Figure 4.9. Dynamics and Kinematics fusion block

solving the singularity problem. Therefore it is needed in the transient phase in

case of a singular condition. However, the inverse kinematic solution is sufficient

in the steady state phase in the case of the non-singular condition. As a result,

the fusion equation is a function of the singularity indicator Ψ, as described below

τxa = (1 − cos(|Ψ|))λ1τD + cos(|Ψ|)λ2τK , (4.16)

where τD is the wheel torque resulted from the inverse dynamic solution and

τK is the torque resulting from the wheel velocity axes control. The fusion pa-

rameters λ1 and λ2 are tuned manually. The initial condition used in Figure

(4.6) are used as well in the next example with the same input robot velocities.

The parameters λ1 and λ2 have the same value, which is ‘0’. The output results

in Figure(4.10) shows that the fusion between the inverse dynamics and the in-

verse kinematics solutions overcome the singularity problem. Where the initial

steering angles value is θs1 = θs2 = θs3 = 0o and the reference robot velocity

ṗr = [0.12(m/s) 0(m/s) 0(r/min)]
T

should result in steering for the wheel angles

to reach the value of −90o.

It is noticeable that the steering wheels are adjusted to the steady state value

−90o and the robot velocities follow their required value after almost two seconds.

The based control system starts by using the inverse dynamics model because the

singularity indicator |Ψ| indicates that the robot lies in singular configuration.

Then the system switches smoothly to the inverse kinematic solution after 0.75(s)
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Figure 4.10. Simulation results using Dynamics and Kinematics fusion

with respect to the values of λ1 and λ2. The switching is noticed in steering angles

Figure (4.10-a) and the wheel angular velocities Figure(4.10-f).

4.2.3 Position Controller

The position controller presented in this section is similar to the one in Sec-

tion (3.5), where it has three main controlled variables: ẋ, ẏ and φ̇. The po-
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sition control problem can be stated as follows: given position goal coordinates

vector pg =
[

xg yg φg

]T

and initial position reference coordinates vector

pi =
[

xi yi φi

]T

.

The robot is assumed to move in a straight line between the initial and the goal

points. Therefore, there is another variable that should be controlled, which is δer.

the variables δer = ϑ− δg, where ϑ = arctan(−yg

xg
) and δg = arctan(−ye

xe
) (Fig.4.11)

Figure 4.11. Robot Position representation.

From the previous section, the velocity controller succeeded in driving the robot

in the floor coordinates but aimed for the wrong goal point with a distance error.

The angle δer is the difference angle between the direction of the robot and the

error vector, with reference to the mass point of the robot at every instant. The

position controller should simply be the proportional of the distance error between

the initial and the goal points in x direction (xe) and y direction (ye), and the error

in the orientation angle φ (φe). The controller delivers robot reference velocities

value to the velocity controller, which vanishes by the time the robot reaches

the goal value. The position controller used in the practical implementation is

exponentially a function of the robot displacement error, shown as the following

ẋ = Kxxe(1 − e(−‖xe‖))µx , (4.17)



73

ẏ = Kyye(1 − e(−‖ye‖))µy , (4.18)

and

φ̇ = Kφφe +Kerδer (4.19)

where the angle δer is the difference angle between the direction of the robot and

the error vector with reference to the mass point of the robot at every instant.The

parameters µx and µy are tuned to increase the stability of the controller. The

noticeable effect of the controller parameters tuning appears mainly in the robot

trajectory. For example, Figure (4.12) is the simulation output for driving the C3P

from initial coordinates of pi = [0(m) 0(m) 0(o)]
T

to the goal point coordinates

of pg = [−4.5(m) − 4.5(m) 90(o)]
T

and the initial steering angles are θs1 = θs2 =

θs3 = 45o.

The control parameters are set to be as the following; Kx = 0.1, Ky = 0.1,

Kφ = 0.4, Ker = 0.1 and µx = 0 and µy = 0. The steering angles were adjusted

in the first couple of seconds to maintain the zero orientation angle error Φe, as

shown in Figure(4.12 a & e). After the rotation of the C3P 90o it starts driving in

a −x,−y direction to reach the zero linear displacement error as shown in Figure

(4.12d).

The periority of rotating the robot to the reference angular position (φ̇ = 90o)

is noticed by the parameter’s ratio 4:1 (Kφ:Kx or Ky). There are two main factors

that affect the C3P trajectory: a) the position control parameters, and b) the

initial steering angles values. The controller parameters Kφ and Ker are more

effective on the robot trajectory over the linear parametersKx andKy. Where good

adjustment for the parametersKer will yield to a fast and stable position trajectory,

bad adjustment to the parameter Kφ may yield to unexpected oscillations and

loops in the robot trajectory. The effect of these two parameter adjustments is

further demonstrated in Figure (4.13) where different values of the parameters are

assigned.

First the same example with the same parameters is tested four times with

different values for Kφ and Ker. The goal coordinates are pg = [−3.5(m) −
4(m) 90(o)]

T

. Figure (4.13b) resulted in Kφ =0.2 and Ker = 0.5, where the

high value of Ker tried to follow the reference trajectory (dashed arrow) as fast
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Figure 4.12. Position controller results for driving between pi = [0m, 0m, 0o]T to
pg = [−4.5m,−4.5m, 90o]T .

as possible. The robot ended in an almost 0.5m radius circle around the initial

point before driving in a sinusoidal shape towards the goal point. The trajectory

shown in Figure (4.13a) has the parametric values of Kφ =0.2 and Ker = 0.2.

The reduction of Ker value succeeded in avoiding the C3P circle trajectory, yet

the trajectory oscillates near the reference dashed trajectory. The Ker parameter
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Figure 4.13. The effect of the parameters Kφ and Ker on the robot trajectory.

was reduced to the value of 0.1, which affected the trajectory as shown in Figure

(4.13c) maintaining smooth motion towards the goal. However, if the parameters

are adjusted to smaller values as in Figure (4.13d), where Kφ =0.1 and Ker = 0.01

, the robot drives in an ellipse away from the goal coordinates.

The steering angles’ initial values are the second factor affecting C3P trajectory.

In the transient phase, the C3P needs space and time to adjust its steering angles

from their initial values to the desired values. As a result, the behavior of the C3P

trajectory is not the same for different initial steering angles values. Therefore, the

first example is carried out for different initial angles with Kφ =0.4 and Ker = 0.1,

and their simulated output trajectories are shown in Figure (4.14a). By zooming

on the transient phase, the difference in trajectories will be more clear in Figure

(4.14b), such differences are important to be dampened in case of driving in narrow
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Figure 4.14. the effect of initial steering angles values on the C3P trajectories for two
different examples.

Another example with the goal coordinates pg = [4.5(m) 0(m) 90(o)]
T

and

the same controller parameters is tested. Figure (4.14c) shows the trajectories

generated from a singular condition θs1 = θs2 = θs3 = 0o and a non-singular

condition θs1 = −45o, θs2 = 45o and θs3 = 0o. The non singular condition yields

more displacement errors than the singular condition to reach the reference dashed

trajectory. Such trajectories lead to the conclusion that that the non singular

initial condition does not have to give better trajectories than the singular ones.

The main conclusion is that the behavior of the C3P during the steering angles

adjustment phase cannot be predicted due to the different initial steering values

and its actuated velocities.
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4.3 Summary

This chapter explained and demonstrated the derivation of the inverse dynamic

solution for the C3P using the Euler-Lagrangian method. The solution was used in

the velocity and position control loops in several simulation examples. The simula-

tion outputs showed the effective performance of the solution with the controllers

and also showed that the behavior of the C3P trajectory cannot be accurately pre-

dicted (during the steering wheel angles adjustment phase) due to the following

factors: the initial steering angles values and the initial wheel and steering angular

velocities values.



Chapter 5
The Lyapunov Stability Analysis

5.1 Introduction

The direct method of Lyapunov used in this chapter is the most general method

for determining the stability of nonlinear systems. By this method the stability of

the system can be determined without solving the state equations. This is quite

advantageous because solving nonlinear state equations is usually very difficult.

The main idea behind the direct method of Lyapunov is that the energy of a free

mechanical system is always dissipated (due to friction, etc) and never restored.

The system must eventually settle down to an equilibrium point [92],[93],[94] and

[95].

We shall primarily consider what is often called ‘Lyapunov’s Direct Method’.

It involves finding a ‘Lyapunov function’ for a system. If such a function exists,

then the system is stable. A related result shows that if a similar function exists,

it is possible to show that a system is unstable. The tricky part about Lyapunov’s

direct method is the search for an appropriate function.

5.2 The Lyapunov Function

Consider the C3P model described with the block signal flow presented in Fig.(5.1).

It is a closed loop system between the measured robot velocities ṗm = [ẋ ẏ φ̇]T

and the input goal coordinates pg = [xg yg φg]
T .
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Figure 5.1. The C3P open control structure

where the block (Pos.Ctrl) is the robot position controller, as seen from Figure

(5.1), the system contains the robot kinematics/dynamics models and the relation

between ṗm and ρc can be deducted in three steps. First the Forward Kinematics,

which was developed in Chapter (2) and represented by equation 2.15 as follows

ṗm = Jf (qs) q̇x, (5.1)

The second step is a relation between the reference and output wheel angu-

lar velocities, which is described by the dynamic model mentioned in Chapter 2

through the following equation

q̇x = M−1(qs) q̇xr
, (5.2)

where the matrix M(qs) is a non singular matrix containing the robot mass and

inertia parameters in addition to the axes level control parameters. The third

step is the inverse kinematic solution (2.10), which is described with the following

relation corresponding to the input control signal ρc

q̇xr
= Jinx

(qs) ρc. (5.3)

From equations (5.1), (5.2,) and (5.3) the relation between the measured robot

velocities and the control signal can be described as

ṗm = Jm ρc (5.4)

where the matrix Jm(qs) = Jf (qs) M
−1(qs) Jinx

(qs) is 3 × 3 matrix containing

the robot dynamics and geometrical mathematical representation. Such a model
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is a complex non-linear model, its behavior depends on the control signal resulting

from ρc, which is described as

ρc(t) =









Ucx

Ucy

Ucφ









=















Kx(xg − x(t))(1 − e(−‖xg−x(t)‖))

Ky(yg − y(t))(1 − e(−‖yg−y(t)‖))






Kφ(φg − φ(t))(1 − e(−‖(φg−φ(t))‖))

+Ker

[

tan−1
(

−yg

xg

)

− tan−1
(

−(yg−y(t))

(xg−x(t))

)]





















(5.5)

where Kx, KY , KΦ and Ker are the position control parameters and in these

analysis Ker will always be zero. The robot dynamics system discribed in (5.4)

and (5.5) satisfies the following

ṗm = F (pm(t)), pm(t) = p̄o (5.6)

where p̄o ∈ R3 is an equilibrium of (5.6) if F (p̄o) = 0, i.e if pm(t) = p̄o is a

solution of (5.6). In this system p̄o = pg is the stable equilibrium of (5.6) if for

every ǫl > 0 there sxists δl > 0 such that all maximal solutions pm = pm(t) of

(5.6) with |pm(0) − p̄o| ≤ δl are defined for all t ≥ 0, and satisfy |pm(t) − p̄o| < ǫl

and pm = [x y φ]T .

The energy equation is used and recommended as a Lyapunov function candi-

date by several mobile robot field researchers [95], because it is a square function

yielding to a zero value if the robot reaches its goal coordinates. Therefore the

energy equation is used under the assumption that the steering angles have the

same values, which represent the steady state phase

E =
1

2
mp

[

ẋ

ẏ

]T [

ẋ

ẏ

]

+
1

2

[

φ̇
]T

Ip

[

φ̇
]

, (5.7)

where [ẋ ẏ]T and [φ̇] are extracted from equation (5.4) with ṗm = [ẋ ẏ φ̇]T . By

using the aid of Maple, the energy equation or the candidate Lyapunov equation
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will be written in the follwoing form

V (t) = ρT
c (t) Av(qs) ρc(t) (5.8)

where

Av(qs) =









axx axy/2 bxφ/2

axy/2 ayy cxφ/2

bxφ/2 cxφ/2 aφφ









. (5.9)

Each matrix element is a function of the wheels steering angles qs and represented

in Appendix (D). As shown, equation (5.8) is a quadratic equation which is always

positive definite, hence

V (x, y, φ, t) ≥ 0 (5.10)

for all possible values of x, y, φ and qs. Thus, it is proven that the chosen function is

a Lyapunov candidate. The next step proves that the function is negative definite

or negative semi-definite. The Lyapunov function’s first derivative is the main

factor for such a test

V̇ (x, y, φ, t) = 2 ρT
c Av(qs) ρ̇c + ρT

c (t) Ȧv(qs, q̇s) ρc (5.11)

In the sense of Lyapunov, if the function V (x, y, φ, t) is locally positive definite

and its first derivative V̇ (x, y, φ, t) ≤ 0 locally in (x, y, φ) and for all t, then the

origin of the system is locally stable. From equation (5.5) it is apparent that

V̇ = 0 if pm = p̄o = pg (5.12)

for all possible values of pm, qs for all values of t. Condition (5.12) shows that the

Lyapunov function could be asymptotically stable if its derivative V̇ is negative

definite everywhere except at pm = pg. For the function to be Lyapunov candidate,

the inquality condition V̇ (x, y, φ, t) < 0 must be true. To illustrate such conditions

the candidate function will be modified. First, the control signals described in the

vector ρ̇c found in the function’s first term should be broken in the following

equation (ρ̇c = Bv ṗm). The matrix Bv(t) contains the instantaneous position

coordinates and the control parameters. The second step is to separate the steering
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angular velocity q̇s from Ȧv(qs, q̇s) matrix, as shown

V̇ (x, y, φ, t) = 2 ρT
c (t) Avb(qs) ṗm + ρT

c (t) Avd q̇sm ρc(t) (5.13)

where Avb(qs) = Av(qs) Bv. The matrix Ȧv is decomposed into two matrices

Ȧv(qs, q̇s) = Avd q̇sm, where the q̇sm contains a set of steering angular velocities

q̇s vectors

q̇sm =









q̇s q̇s q̇s

q̇s q̇s q̇s

q̇s q̇s q̇s









. (5.14)

The C3P motion behavior consists of two phases: a) steady state where the steer-

ing angles yield the same constant value, b) non-steady state (transient phase or

during steering angles disturbances), where the angles are not equal and and have

a variable value.

For the steady state phase the steering angular velocity vector q̇s will be zero,

due to the steering angles constant value. For the system to be stable, the following

condition must be true

V̇ (x, y, φ, t) = 2 ρT
c (t) Avb(qs) ṗm ≤ 0 q̇s = [0 0 0]T (5.15)

If the steering angular velocities have a non-zero value then the condition

ṗm ≤ −1
2
A−1

vb (qs) Ȧv(qs, q̇s) ρc(t) q̇s 6= [0 0 0]T (5.16)

is necessary for the system be stable. In this thesis, the system stability will

be discussed under the first condition represented in equation (5.15), where the

steering angles are assumed to be equal. Such a condition is considered because

it is important for the system to be stable when an initial singularity condition

exists, where the steering angles yield the same value and the steering angular

velocities are zero. Furthermore, it is important for the system to be stable during

the motion towards the goal point when all the angles are nearly equal and the

steering angular velocities q̇s are assumed to have a very small value or almost

zero. The second condition in equation (5.16) will be investigated further in future

work.
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5.3 Numerical Analysis

The steering angles are not controlled directly by the position controller. These

angles values operate the system model at different operating points since the

system is non-linear.

Since the steering angles are assumed to be equal, the steering angular velocities

q̇s are assumed to have a very small value or almost zero and the function will

be tested for all possible angle values. The effect of the steering angular velocities

q̇s appears during the disturbances phase or when the C3P changes it direction of

motion. An operation of this kind will be discussed in future researches.

Figure (5.2) shows that the values of the V̇ are always negative for all possible

values of θs. For a such representation the state variables and their derivatives are
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Figure 5.2. The values of V̇ for equal uniform values of steering angles

considered for several conditions. The conditions changes the states of the x(t)

and y(t), while the rest are φ(t) = π/5 rad, ẋ(t) = 0.5 m/s, ẏ(t) = 0.5 m/s,

φ̇(t) = 0.2 r/min, Kx = 0.5, Ky = 0.5 and KΦ = 0.2. The different position values

are
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cond1 : x(t) = 0.5 m and y(t) = 0.5 m

cond2 : x(t) = 1 m and y(t) = 1 m

cond3 : x(t) = 1.5 m and y(t) = 1.5 m

cond4 : x(t) = 2 m and y(t) = 2 m

From the figure, the following is concluded: the Lyapunov function exists for all

steering angle values and different state conditions (V̇ (t) ≤ 0), which is negative

semi-definite. The main questions is: what if the steering angles are not equal?

For example, if external disturbances are applied to the system during the steady

state condition, the steering angles values will be influenced and different values

will result.

The function represented in equation (5.7) may not be a Lyapunov function if

the steering angles have different values. Since the condition V > 0 is always true,

the same function is used in the stability determination. However, if V̇ > 0 is true,

then the system will be considered unstable, if V̇ < 0, then the system is stable.

First of all the system states are considered constant with the values of x(t) =

1 m, y(t) = 1 m, φ(t) = π/5 rad, ẋ(t) = 0.5 m/s, ẏ(t) = 0.5 m/s, and φ̇(t) =

0.2 r/min. The first example is to test the system with uniform steering angles

values, but shifted from each other with 90o, as shown in Figure(5.3-a). On the

other hand, Figure(5.3-b) represents the positive values of V̇ if they exist. It

is quite noticeable that the function has positive values for some steering angles

values combination.

These combinations are changed if at least one of the position control param-

eters (Kx, Ky,KΦ) changes its value as shown in Figure(5.3-b). The parameter

Kx value is set to five different values, while the other two parameters are kept

unchanged. The three steering angles combinations are changed and presented in

Table5.1. It is concluded from the table that as the value of Kx increases, the

set of steering angles values combinations elements decreases. For example, when

Kx = 0.3, the values set for each steering angle contained four different values

(θs1 = 16o − 20o,θs2 = 106o − 110o and θs3 = 196o − 200o ), while at Kx = 0.7

there were only two values for each steering angle(θs1 = 4o − 5o,θs2 = 94o − 95o

and θs3 = 184o − 185o ).
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Figure 5.3. The values of V̇ for non-equal uniform values of steering angles

Throughout the next examples the stability space will be searched for random

values of θs1 and θs3 . The steering angle θs2 value shows where and how it affects

the existence of the Lyapunov space (system stability) as shown in Figure (5.4-a).

The figure is a 3D space for 20,000 random values of θs1 and θs3 . The Z-axis is

the V̇ discreet value; if V̇ is smaller than zero, then the value is -1 and presented

in blue ‘*’. If V̇ is larger than zero, then the value is 1 and presented in red ‘*’.

In the presented example the steering angle θs2 is chosen to be 205o. As shown, V̇

is positive definite for some combinations of θs1 and θs3 , which is considered as a

possibly unstable region. These possibly unstable regions change with the variation

of θs2 value. Figure (5.4(b-c-d)) shows how the instability regions will change in

the Lyapunov space by the change of θs2=205o, 160o and 250o respectively. It is
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Table 5.1. The steering angles values combination

Kx θo
s1

θo
s2

θo
s3

Kx θo
s1

θo
s2

θo
s3

0.3 16-20 106-110 196-200 0.4 12-15 102-105 192-195
0.3 99-103 189-190 279-283 0.4 95-99 185-189 275-279
0.3 96-200 286-290 376-380 0.4 192-195 282-285 372-375

0.4 275-279 365-369 455-459
0.5 9-11 99-101 189-191 0.6 6-8 96-98 186-188
0.5 93-95 183-185 273-275 0.6 91-92 181-182 271-272
0.5 189-191 279-281 369-371 0.6 186-188 276-278 366-368
0.5 273-275 363-365 453-455 0.6 271-272 361-362 451-452
0.7 4-5 94-95 184-185
0.7 184-185 274-275 364-365

apparent that the unstable regions are different in shape, area, and position with

respect to the three values of θs2 .

The values of the controller parameters also affect the position and the areas

of the instability regions, which are depicted in Figure (5.5). By increasing Kx

the instability (red‘*’) region can be reduced, as shown in Figure(5.5-d). But such

change will differ from one steering angle value to another, or from one robot

velocity to another, since V̇ is a function of x(t), y(t),φ(t),ẋ,ẏ and φ̇. These state

values change instantaneously during every practical experiment for different initial

conditions. Their values cannot be directly changed. On the other hand the control

parameters can be reconfigured to change the unstable region position and area.

During each experiment, disturbances may affect the castor wheels, resulting in

changing their steering angles. Such disturbances may occur due to sudden external

force affecting the robot platform. The practical stability tests are presented in

chapter (6).

5.4 Conclusion

The C3P kinematics/dynamics model is a complex nonlinear system in comparison

to other existing wheeled mobile robots. It is affected by many disturbances like

friction, slippage, or actuation conflict. Such disturbances result in changing the

steering angles configuration. For studying the system stability, a Lyapunov direct

method is considered. The candidate Lyapunov function presented in this work is
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Figure 5.4. 3-D space V̇ representation for random values θs1 and θs3 , unstable: *,
stable: *

a quadratic one extracted from the robot kinetic energy equation.

The results discussed in this chapter show that the used Lyapunov function

leads to two different regions, where the first derivative can be negative semi-

definite or positive semi-definite. If the first derivative is negative semi-definite, a

Lyapunov function exists and the system is always stable. On the other hand, if

the first derivative is positive semi-definite, no statment on stability can be made

using the candidated function. Therefore, this function cannot be considered as a

Lyapunov function because its first derivative has positive values for some steering

angles configurations.

For better performance the non-defined stability regions should be avoided, for
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Figure 5.5. 2-D Lyapunov space with random θs1 and θs3 values for different Kx values
at θs2 = 205o values, a)Kx=0.5, b) Kx=0.9, c)Kx=1.1, d)Kx=1.5, unstable: *, stable: *

example, by predesigned trajectories that keep the system in the region where the

Lyapunov function always exists.



Chapter 6
Implementation and Practical

Results

6.1 Platform Hardware Configuration

The C3P platform is implemented in the Automation Laboratory. The practical

platform used in this work is the first prototype of the C3P configuration shown

in Figure(6.1).

Figure 6.1. The C3P practical prototype

The platform has three caster wheel units and each unit contains four main
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components: a) Brush-less DC motor for the wheel angular velocity actuation,

b) incremental encoders for sensing the angular velocity of the wheels, c) absolute

encoders for measuring the wheel steering angle, and d) slip rings for signal transfer

between the motors and the control cards. The caster wheel unit has two levels:

the upper level (attached to the platform) and the lower level (attached to the

wheel). The lower level is shown in Figure(6.2) with the DC servomotors, which

are mounted on the driven axis of each wheel along with the incremental encoders.

Figure 6.2. The lower level of the caster wheels units

The wiring of the each motor and each encoder is connected to a slip ring

mounted on the upper level of the caster wheel unit shown in Figure (6.3).

Figure 6.3. The slip rings

The slip rings have 12 rings with 16 Ampere and below the slip ring the absolute

encoder is mounted (Fig. 6.4).

The motors are controlled by velocity control cards (Fig.6.5) mounted on the

platform body. The controller is 4-Quadrant PWM Servo Amplifier, 24 V power
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Figure 6.4. The absolute encoder

supply with rated speed 40,000 r/min.

Figure 6.5. Velocity control cards

The sensed and control signals are transferred to an industrial computer 1 GHz

speed running under QNX operating system.

6.2 Kinematics Based Controller Experiments

The simulation results for the kinematic solution presented in Chapter (3) illus-

trated the C3P performance and behavior. This section presents the C3P perfor-

mance on a practical level, where the inverse kinematics solution along with its

controllers are implemented on the C3P prototype. The control structure is pre-

sented in Figure (6.6), where the axes level control is the hardware motors’ velocity

cards and the WCE block is the Wheel Coupling Approach, and the Vel.Crtl block

is the robot level velocity controller presented in Chapter (3)

The platform parameters are close to the simulation parameters and are pre-

sented in Table 6.1, which will be used in the experiments presented through-

out this chapter. The first experiment is the testing of the coupling approach

open loop structure (Fig. 6.6) with no Vel.Ctrl. The desired C3P velocity vector
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Figure 6.6. Kinematics Based Control Structure

ṗ = [0.12m/s 0m/s 0r/min]
T

. The initial steering angles values are then initial

steering angles θs1 = θs2 = −4o, θs3 = −7o, as shown in Figure(6.7-a). Such in-

put yields the steering angles to reach −90o (Fig.6.7-b). Figure (6.8) shows the

practical results of the C3P prototype.

Table 6.1. The C3P parameters

C3P Parameters Value Units

h 0.343 m
d 0.04 m
r 0.04 m

Figure 6.7. The Steering angles orientation for driving in X direction from configuration
(a) to configuration (b)

The figure shows the steering angles trajectories reach the desired value −90o

(Fig. 6.8a). Some oscillations appear in each steering angles plot, as a result



93

0 1 2 3 4 5
−150

−100

−50

0

50

100

150

200

ω
 (

r/
m

in
)

Time (s)

b) The Wheels angular Velocity

Time (s)

 

 ω
x

1

ω
x

2

ω
x

3

0 1 2 3 4 5

−180

−90

0

θ 
(o

)
a) The steering angles

 

 
θ

s
1

θ
s

2

θ
s

3

0 1 2 3 4 5
−0.05

0

0.05

0.1

0.15

0.2

V
x (

m
/s

)

c) Linear C3P velocity in X direction

 

 

Reference
Measured

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

V
y (

m
/s

)

d) Linear C3P velocity in Y direction

 

 

0 1 2 3 4 5
−15

−10

−5

0

5

10

15

20

Φ
do

t (
r/

m
in

)

e) Angular C3P velocity areound Z axis

 

 
Reference
Measured

Reference
Measured

0 1 2 3 4 5

−90

0

90

Time (s)

Ψ
 (

o
)

f) The singularity indeicator 

Time (s) Time (s)

Time (s)

 

 
Reference
Measured

Figure 6.8. C3P practical results for driving in x direction with open loop WCE

oscillations in the wheels angular velocities occur (Fig. 6.8b). These oscillations do

not exist in the simulation results for two main reasons: a) the friction and slippage

are not included in the C3P dynamic model, and b) the considered assumptions

in the WCE. The angular velocities of wheel one and two (ωx1 & ωx2) or (θ̇x1 &

θ̇x2) started with the same values but in the opposite direction to initiate coupling

action for the steering of the steering angular velocity of wheel number three (ωs3
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or θ̇s3).

In Figure 6.8c & d & e), it is normal for the velocity oscillations to appear during

the steering angles adjustment phase, since there is no direct actuation on the

wheels steering axes. The C3P velocity in the y direction has a noticeable steady

state error that can be reduced using the robot velocity control loop. The steady

state error also appears in the C3P angular velocity. The singularity indicator in

Figure (6.8f) shows the singularity condition at the initial state with value of −90o

degrees, and then the value oscillates with the steering angle oscillations to reach

0o.

The velocity control loop shown in Fig.(3.10)is used in the second experiment,

where the robot reference velocities are ˙pref = [0.18m/s 0m/s 0r/min]
T

as a de-

sired velocity . Figure (6.9) presents the output results of the C3P implementation

with the following robot velocity controller parameters λ = 5, ǫ = 8o, KPx
= 0.5,

KPy
= 0.5, KPφ

= 1.5 and KDφ
= 0.

As mentioned in Chapter 3, the C3P velocity controller must achieve three

main objectives: a) adjust the steering angles to the desired value, b) adjust the

robot coordinates to match the floor coordinates without influencing the steering

angles, c) the output robot velocity follows the input signals with respect to the

floor frame of coordinates.

The steering angles reach the desired value in two seconds (Fig. 6.9a) but it

started deviating again around the value of −90o as a result of switching to the

PID controller. The switching between the WCE regulator and the PID velocity

controller (Chapter 3) is noticed in Figures (6.9c, d, e & f). When the singularity

indicator indicates that the robot is out of singularity condition, the PID controller

is initiated and the WCE is disabled. This appears in the angular robot velocity

(6.9e), where its control signal is the main factor in adjusting the robot velocities in

x and y directions. After one second the control signal is initiated and it affects the

robot velocities performance (6.9c& d). The velocity in y direction with respect

to the floor frame of coordinates is adjusted to follow the reference value with

keeping the steering angles around their desired value. The same action appears

in the output results in the x direction.

The third experiment is driving the C3P in y direction from initial steering

angles of θs1 = θs2 = θs3 = −90o (Fig. 6.11-a) and reference robot velocity vector
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Figure 6.9. C3P results for driving in x direction with closed loop velocity control

ṗ = [0m/s −0.095m/s 0r/min]
T

with the following controller parameters: λ = 4o,

ǫ = 5o, KPx
= 0.5, KPy

= 0.5, KPφ
= 1.5 and KDφ

= 0

The WCE regulator virtually actuates the steering angles to reach the config-

uration described in Figure(6.11-b). The steering angles trajectories are plotted

in Figure(6.10a). From Figure(6.10b, c & d) it can be seen that the robot-frame
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Figure 6.10. C3P results for driving in y direction

velocities are not aligned to the floor-frame velocities. At this moment the PID

controller is activated and succeeds in settling the velocities responses with respect

to the Floor.

The C3P trajectory shown in Figure(6.10f) has displacement errors in the x

direction due to the wheel adjustment phase; however, the robot moves in the

desired direction. It is apparent that the oscillations are produced in the steering
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Figure 6.11. The Steering angles orientation for driving in -Y direction from configu-
ration (a) to configuration (b)

angles performance due to the PID controller action, but the controller succeeds

in dampening the oscillations and reaching the desired value −180o.

The fourth experiment illustrates the performance of the position controller.

The initial starting point had the coordinates of pi = [0m 0m 0o]
T

and the goal

point pg = [−3m − 3m 0o]
T

, with initial steering angles of value around −50o

and control parameters of Kx = 0.1, Ky = 0.1, Kφ = 0.3 and Ker = 0.6. The

goal coordinates require the robot to drive in the (−x,−y) direction and there-

fore the steering angles are adjusted to the reference value of −225o, as shown in

Figure(6.12d). The robot velocities in x and y directions started smoothly from

zero value due to an exponential function being added to the controller for a smooth

start (Fig.6.12b & c). The steering angles actuation phase generated oscillations

in the robot velocities which affected the robot trajectory in Figure(6.12a) which

is highlighted by the red circle. The errors in trajectory were compensated by the

controller and the robot reached the goal point in 30 sec.

Figure 6.13 presents the C3P trajectories for two different experiments. The

first experiment moves from the initial coordinates pi = [0m 0m 0o]
T

to the goal

co-ordinates pg = [0m − 3m 0o]
T

, with random initial steering angles values

(θs1 = 3600, θs2 = 25o, and θs3 = 270o). Such goal coordinates adjusted the

steering angles to the desired value −180o, as shown in Figure (6.13b(i)). The

trajectory errors observed in Figure (6.13a(i)), that are highlighted with the red

dotted circle, are the effect of the steering angles adjustment phase.

The second experiment is driving to the goal coordinates pg = [4.2m 0m 0o]
T

from initial coordinates pi = [0m 0m 0o]
T

from singular condition described by

the initial steering angles of θs1 = θs2 = θs3 = 0o (Fig. 6.13). The steering angles
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Figure 6.12. Position control experiment, driving from pi = [0m 0m 0o]
T

to pg =

[−3m − 3m 0o]
T

are adjusted to the desired value −90o after some oscillations around it. These

oscillations appear due to the action of the position controller to drive the robot to

the goal coordinates, in addition to maintaining the zero robot orientation degree.

The robot trajectory shown in Figure (6.13a(ii)) consumes time and displacement

errors in adjusting the robot steering angles (red circle). However, the position

control actions overcome these errors as far as possible and the robot reaches its

goal. The main problem with the C3P is that the steering angles are the main

factors affecting its mobility behavior and they cannot be predicted.
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Figure 6.13. C3P trajectories and steering angles values for two experiments; a) driving

to pg = [0m − 3m 0o]
T

and b) pg = [4.2m 0m 0o]
T

6.3 Dynamic Based Control Results

The inverse dynamics based controller (Chapter 4) showed its feasibility in the

simulation process. This section shows the robot behavior when the controller

is implemented on the C3P prototype platform. Due to the slippage and the

friction of the wheels, in addition to the errors between the C3P dynamic model

and the practical prototype, the inverse kinematic and dynamic solution are used
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in the solution. This solution is explained and discussed in Section 4.2.1, Figure

(4.9). The ‘Inverse Solution Dyn & Kin’ block will be used in the velocity control

structure shown in Figure (6.14)

Figure 6.14. The C3P practical velocity control loop structure

The PID controller block in Figure (4.9)is the velocity axes control for each DC

servomotor. The controller is implemented within the main program as a software

controller. However, the wheel torque controller (T.C) is practically implemented

in the motor control card BLD 5606. The BLD 5606 card has two built-in control

loops: current and velocity control loops. The velocity control loop was used on

the inverse kinematic motion control level. In this section the current control loop

is used in Figure (6.15).

Figure 6.15. The C3P hardware block

The gain Kc is the torque current gain, which is defined in the data sheets.

The caster wheel units sense two main variables; the wheel angular velocity vector

and the steering angle vector. From the steering angle value the steering angular

velocity vector is calculated; where q̇s = dqs/dt.
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Figure 6.16. The C3P practical results from the inverse dynamic and kinematic solu-
tions for driving in x direction

The first experiment is a comparison between the DBC and the KBC to il-

lustrate the efficiency of both systems. The initial steering angles are nearly zero

degrees and the desired robot velocity vector is ṗr = [0.095(r/s) 0(r/s) 0(r/min)]
T

.

Figure (6.16) shows the output results, where the steering angles should all switch

to −900 value.

The steering angles shown in Figure (6.16a & b) resulted from the inverse kine-
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matic and inverse dynamic solutions. It is clear from the figure that the steering

angles generated by the dynamic solution reach the desired value in almost two

and half seconds, while the ones generated by the kinematic solutions take from

seven to eight second to reach such a value. Such performance shows that the in-

verse dynamic solution is much more effective than the inverse kinematic solution

on the robot velocity control level. This is demonstrated from the robot velocities

in Figure (6.16c, d & e). The robot linear and angular velocities reach their ref-

erence values in almost two and half seconds (same as the steering angles), while

the kinematic solution robot velocities take from six to eight seconds to reach the

reference value. It is also apparent that the proposed solution generates velocities

with only one overshoot and minimum magnitude in comparison with the kine-

matic solution. The robot trajectory resulted from the inverse dynamic solution

drives in the desired direction with minimum displacement errors in comparison to

the kinematic solution trajectory. The dynamic trajectory errors are 20% of the

kinematic trajectory.

The steering angles have a smooth trajectory, which reaches the steady state

with no disturbances Figure (6.16-b). Such behavior is not common for the C3P,

where unexpected disturbances on the steering angles may result in oscillation in

the robot velocities. For example, in the second experiment, which shows such

disturbances during the motion in positive y direction (Fig. 6.17).

The initial steering angles values are around 180o and it is required to drive with

desired velocity of ṗr = [0(m/s) 0.5(m/s) 0(r/min)]
T

. The steering angles shown

in Figure (6.17a) show disturbances in steering angle number 3 (θs3) after reaching

steady state value. Such disturbances are expected to occur after or during the

switching from the inverse dynamics to the inverse kinematics solutions.

The disturbances influence the robot linear and angular velocities, as shown

in Figure (6.17c, d & e). Such velocity errors and oscillations are integrated to

obtain displacement errors in the robot trajectory (Fig. 6.17f). The robot drives

in y direction and oscillates around the y axis with a displacment of 0.8 cm value.

The oscillation errors are in the span of ±2cm till it reaches steady state.

The third experiment shows smooth mobility in a positive x and y direction.

The steering angles start from an initial value around 40o and switch to the value

of −45o in order to drive in ṗr = [0.5(m/s) 0.5(m/s) 0(r/min)]
T

. The based
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Figure 6.17. The C3P practical results from the dynamics based controller for driving
in y direction

velocity controller succeeds in reaching the required robot velocities (Fig.6.18c, d

& e). However, the positive oscillation in Figure (6.18-c) and the oscillations in

the robot angular velocity in Figure (6.18-e) exist as a result of the steering wheel

adjustment. Such velocity errors are integrated to influence the robot trajectory

resulting shifting from the reference direction Figure (6.18-f). The red circle is the

phase where the steering angles are adjusted. The black circle is the phase where

the angles reachs the reference value and oscillates around it till they reach the

steady state.

The next example shows the C3P performance while driving in infinity (∞)



104

0 2 4 6 8 10

−90

−45

0

45

90

Time (s)

θ 
(o

)
a) The steering angles

 

 
θ

s
1

θ
s

2

θ
s

3

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

Time (s)

V
x (

m
/s

)

c) Linear C3P velocity in X direction

 

 

Reference
Measured

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

Time (s)

V
y (

m
/s

)

d) Linear C3P velocity in Y direction

 

 

Reference
Measured

0 2 4 6 8 10
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time (s)

Φ
do

t (
r/

m
in

)

e) Angular C3P velocity around Z axis

 

 
Reference
Measured

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

X (m)

Y
 (

m
)

f) The C3P trajectory 

 

 
Reference
Measured

0 2 4 6 8 10
0

20

40

60

80

100

120

Time (s)

Ψ
 (

o
)

b)The singularity indicator Ψ

 

 
Reference
Measured

Figure 6.18. The C3P practical results from the dynamics based controller for driving
in (x,y) direction

shape (Fig. 6.19). For smooth behavior of the used prototype platform, the

robot will move in the y direction with respect to the robot frame of coordinates.

Therefore the robot frame velocities are ṗC3P = [0 0.3(m/s) 0.2(r/min)]
T

and

floor frame velocities are ṗFloor = [0.3 cos(φ)(m/s) 0.3 sin(φ)(m/s) 0.2(r/min)]
T

.

Such input robot velocities will drive the robot in a complete circle, when the

C3P finishes the circle the φ̇ will be −0.2(r/min) to drive in the other circle and

complete the ∞ shape as shown in Figure (6.19). There are steady state errors
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Figure 6.19. The C3P practical results for driving in ∞ shape

found in the floor frame robot velocities due to slippage and friction errors.

As previously explained, the C3P does not have direct actuation on the steer-

ing angles and the steering torques and the wheel friction and slippage are not

included in the inverse Kinematic or the inverse dynamics solutions. That is the

reason for the unexpected and unpredicted disturbances and oscillations found in

the steering angles trajectories. The position controller discussed in Chapter (4)

showed its effect and efficiency in the simulation process. The controller delivers

robot reference velocities value to the velocity controller. The parameters µx and

µy are set to the value ‘3’ for better stability.

The first experiment for the position controller implementation is to drive from
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Figure 6.20. The position controller behavior for driving from pi = [0 0 0]
T

to pg =

[4m 0m 0o]
T

the initial point pi = [0 0 0]
T

to the goal point coordinate of pg = [4m 0m 0o]
T

.

The initial steering angles are around the value of 0o and the controller parameters

are as follows: Kx = 0.4, Ky = 0, Kφ = 0.2 and Ker = −0.3. The robot results

are shown in Figure (6.20), where the steering angles took around two seconds to

adjust their values to drive in the desired direction (x) (Fig. 6.20 a).

During the same period of time, the robot linear velocities reach their desired

reference values. Figure (6.20d) shows the presence of a singular condition in the

initial states of the experiment. After the wheel adjustment the system condition
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became nonsingular. The goal point has a zero error area, since the practical

prototype is hard to reach the exact goal point. This zero area is a circle with

a radius of 5 mm, when the co-ordinates point of the robot reaches the robot

velocities will be zero. From Figure (6.20b) it is clear that target goal zone is

reached after 30 seconds. The robot trajectory is shown in Figure (6.20f), where

the robot drives around the reference trajectory with error of ±4 cm untill it

reaches the goal zone.

The steering angles disturbances, which were explained previously in this sec-

tion appear in the following example. The robot starts from almost −900 value

for the steering angles and required to reach pg = [0m 4m 0o]
T

goal co-ordinates

with the following parameters Kx = 0, Ky = 0.5, Kφ = 0.25 and Ker = −0.3.

As shown in Fig (6.21b) the ẋ or Vx velocity oscillates around its reference value

which causes the robot angular velocity to generate the control signal plotted in

(6.21c). Such control signal will generate disturbances in the steady state value of

the steering angle number 3 (θs3). The error signal coming from the variable δer is

the main factor for such a signal, where it sensed that the robot is moving away

from the goal zone. However, the signal succeeded in reaching the goal point in

spite of the existance of friction and steering torque.

The odometry calculations used in the position control loop is a combination

between the integration of the velocity errors (for the translational velocities ẋ and

ẏ) and an inertia sensor for the rotational angle value. In order to evaluate the

performance of the position control, the C3P position update will be measured

with more precise equipment. The device used for such measurement is Krypton

motion tracker with 6 DOFs with a resolution om 5µm and a single-point accuracy

of 50µm. The previous experiment is applied once more with the same settings but

for a goal point pg = [0m 2m 0o]
T

(due to the limitation of the Krypton range).

The robot starts with zero value for the steering angles. As shown in Figure (6.22)

the data measured by the odemetry reaches the goal point with error of 5 cm,

which is the zero zone. This trajectory is the one that the C3P reads and adjusts

its position controller accordingly.

On the other hand these are not the real data, because of two main factors:

a)the wheel slippages and b)incremental encoders errors accumulation. The Kryp-

ton trajectory shows the effect of such factors. This experiment was carried out six
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Figure 6.21. The position controller behavior for driving from from pi = [0 0 0]
T

to

pg = [0m 4m 0o]
T

times to use its data to check the performance of the controller. The figures only

represent the trajectories of one experiment to help demonstrate the calculations.

First, the error between the point pOdem (end point measured by the odomen-

try) and pKryp (end point measured by the Krepton)is calculated as follows:

Xer = XOdem −XKryp and Yer = YOdem − YKryp, then the resultant distance error

is Rer =
√

x2
er − y2

er. The ten experiments resulted ten errors, which are used to

calculate the percentage relative error (Reler), the mean (Mean), and the standard

of deviation (DIV )in the Table 6.2.

In the following experiment the Krepton and the Gyro sensors are also used

for the trajectory measurements. The Gyro was used in the position control loop,
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Figure 6.22. Comparing the Gyro & Odometry data to the Krypton data

while the Krepton was only used as a reference measurement. The C3P is set to

drive in 1.8 meters in x direction, as shown in Figure 6.23.

In Figure (6.23-a)it is apparent that both trajectories are almost the same. By

the zooming in Figure (6.23-b) the difference between the two measurements is

quite clear. The Gyro measurements show that the C3P reached its Zero Zone

(5 cm radius), while the Krepton shows that the C3P is out of the Zone with at

least 12 cm due to error displacement on the y axis. To define the reason for such

an error, the difference value between the Krepton and the Gyro measurements

are calculated by the resultant displacement error(Rer). Figure (6.23-c) shows

that the error is high at the beginning of the experiment. Such errors exist in

each experiment due to the high slippage of the wheels at the transient state of

the experiment. These errors decrease during the course of the experiment and

accumulate as a steady state error.

As previously mentioned, the behavior of the C3P depends on its initial pa-

rameters, such as the initial steering angle values, the initial angular velocities and

the initial steering angular velocities. Therefore, the robot should be tested with

a discrete trajectory, like a triangle shape, as shown in Figure (6.24e) The exper-
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Table 6.2. The position performance errors and evaluation

Exp # Rer %Reler Yer Xer

1 0.157 m 7.8% 0.155 m 0.024 m
2 0.051 m 2.5% 0.045 m -0.024 m
3 0.092 m 4.6% 0.091 m -0.0135 m
4 0.075 m 3.7% 0.06 m 0.045 m
5 0.122 m 6.1% 0.112 m 0.048 m
6 0.131 m 6.5% 0.13 m -0.016 m
7 0.0658 m 3.1% 0.06 m 0.027 m
8 0.1215 m 6.0% 0.121 m 0.011 m
9 0.0636 m 2.7% 0.055 m -0.032 m
10 0.0851 m 4.1% 0.083 m 0.019 m
Mean 0.0964 m 4.8 %
DIV 0.0347

iment is divided into three stages. Stage one is to drive from p1 = [0m 0m 0o]
T

with initial steering angles or zero degrees to p2 = [0m 3.5m 0o]
T

. Stage two is

driving from p2 to p3 = [3m 3.5m 0o]
T

, and the final stage is to drive back to

the starting point p1. This experiment illustrates the performance of the position

controller in 3DOFs.

From the steering angles values shown in Figure (6.24a), the direction of the

C3P can be easily observed: they are zero during the first stage (driving in y direc-

tion) then the values switch to −90o (driving in x direction) then their values were

around −220o which represents driving in a (-x,-y) direction. But the values of the

steering angles are sensed according to the C3P frame of coordinates. Therefore,

the response of the linear velocities Vx or ẋ and Vy or ẏ (Fig. 6.24b & c) are

sensed with respect to the floor coordinates. They show that the output velocities

follow the reference signal with a delay of 17.5 seconds to 19 seconds because of the

steering angle switching. Oscillations are noticed as well due to the floor friction,

steering torques, and slippage. These three factors exist in the practical imple-

mentation, while they are absent in the inverse solutions and simulations. For this

reason they often appear in a practical experiment. The C3P trajectory shown in

Figure (6.24e) illustrates that the robot achieves its goal in the three stages. First,

it reached point p2 with a final displacement error of 2 cm, and stage three with
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Figure 6.23. Comparing the C3P trajectory measured by the Krepton and the Gyro
sensors

an error of 4 or 5 cm, and finally it reached the starting point again with an error

of 10 cm.

6.4 Experiments on C3P Stability

It is quite important to study the stability of the position controller practically

implemented on the C3P platform. In this section two experiments are presented,

with both of them applying external disturbances on the steering wheel angles.

The first experiment is to drive the robot from the initial position pi = [0 0 0] to

the goal position pg = [4 0 0]. After the robot reaches its steady state condition (all

steering angles are nearly equal) and is driving towards its goal point, at time =10

seconds an external disturbance is applied to wheel number three. The disturbance

is defined by flipping the steering angle θs3 with 90 degrees, as shown in Figure

6.25-a.
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Figure 6.24. C3P behavior for driving in triangle shape

The controller managed to reduce the effect of these disturbances and brought

the robot to its steady state again and reached the goal point after 20 seconds. The

disturbance data was locked for all the states values and the Lyapunov function

derivative V̇ was calculated. The disturbance reached its peak value at a time of

almost 10.7 sec. At this precise instant the locked data are the following:

The steering angular velocities q̇s have a zero value because at the peak value

of the steering angles the first derivative of these angles is zero. Before and after

the peak values, the resulted values of the Lyapunov function will include the value

of the term ρT
c (t) Ȧv(qs, q̇s) ρc(t).
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Figure 6.25. The C3P behavior for sudden disturbances in single steering angle

For the given values, the first derivative of the Lyapunov function is V̇=-147,

which means that the disturbances operated the system in a stable condition and

the controller (with its parameter values) managed to bring the system to its steady

state.

The second experiment operates with the same initial conditions but the dis-

turbances are applied to the three steering angles at the same time, as shown in

Figure6.26.

The disturbances are described in flipping the three steering angles by 90o at
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Table 6.3. The states values at high disturbances for Figure 6.25

Kx=0.5 Ky=0 Kφ=0.5
x(t)=2.2 m y(t)=-0.1 m φ(t) = 20o

ẋ(t)=0.35 m/s ẏ(t)=0.02 m/s φ̇(t)=1.2 r/min
θs1 = −45o θs2 = 20o θs3 = 90o

the same time, which drove the robot to instability and its trajectory kept moving

in a circle, as shown in Figure 6.26-f. In this experiment the data are locked, as

in the first experiment, at the moment of disturbances when the time is nearly 25

seconds.

Table 6.4. The states values at high disturbances for Figure 6.26

Kx=0.5 Ky=0 Kφ=0.2
x(t)=4.7 m y(t)=0.2 m φ(t) = −1.5o

ẋ(t)=0.06 m/s ẏ(t)=0.0 m/s φ̇(t)=-1.5 r/min
θs1 = 1o θs2 = −2o θs3 = 20o

For the given parameters, the first derivative of the Lyapunov function is posi-

tive (V̇=66.2). The disturbances bring the robot to instability, while the controller

could not bring the system to its steady state again. What would happen if one of

the position control parameters value had been changed? For example, the param-

eter Kφ will be -0.2 instead of 0.2, then givenV̇=-19.5, which indicates that the

system can be controlled. On the other hand, the value -0.2 shows the posibillity

of instability for many steering angles combinations.

6.5 Summary

The practical prototype of the C3P was introduced in this chapter, along with

its practical results. The output results showed the efficiency of the kinematics

based controller with its velocity and position controllers. Differences between the

practical and the simulation outputs are found. This is due to the absence of

friction and slippage in the C3P forward dynamics model. The inverse dynamics
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Figure 6.26. The C3P behavior for sudden disturbances in the three steering angle

based controller results shows that it has a better performance level than the

kinematics one. The control structure used is simpler than the one used for the

kinematics, which is illustrated in the velocity and position results.



Chapter 7
Comparing Different Holonomic

WMRs

7.1 Introduction

The holonomic mobility of a WMR can be achieved by using wheels of 3DOFs

motion. The wheels types that provide this mobility are: caster wheels, omnidi-

rectional wheels, and ball wheels. Although the C3P carries the holonomic mobility

features, it cannot be actuated in the direction perpendicular to the wheel angular

velocity vector when the steering angles yield the same value. Thus, the actuation

elements play an important rule in the WMR mobility. The C3P singularity prob-

lem was solved in Chapter 3 by the means of the coupling approach and special

structural velocity controller.

In this chapter, a comparison between the C3P and three holonomic mobile

robots is illustrated. The first robot is the Holonomic Caster Wheeled Robot

(HCWR), which is the same construction as the C3P, but with different actuation

elements to insure its holonomic motion. The second WMR is an Omni Directional

Wheeled Robot (ODWR) [98] [99], with three omnidirectional wheels to give the

ability of free rotation in one direction, and powered rotation in an orthogonal

direction [100] [101]. The third was proposed by the Swiss Federal Institute of

Technology (ETH) under the name of RAMSIS II [102] and consists of two parts:

a driving platform with 2DOF mobility connected to the second part with an

actuated turret to provide the third DOF.
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To be able to evaluate different robot platforms with respect to certain criteria,

a performance criterion has to be set up for each robot platform [103]. Much work

has been done in this field by the Robotics Research Group at the University of

Texas (Austin); see for example [104], [103], [105], and [106]. In [103], several per-

formance criteria for different aspects are developed, such as joint level constraints,

transmissibility, kinetic energy, deformation, or energy distribution. However, a

detailed literature review showing a criterion for describing the structure or hard-

ware complexity of a robot configuration has not been found.

7.2 Description of Holonomic Mobile Robots

The kinematic model is commonly used as the primitive stage of WMR velocity

control due to the following: a) it contains most of the geometric constraints of the

platform including the wheels configuration [108], b) it is applicable to any type of

planner mobile robots [109], c) the mobility and actuation characteristics can be

easily concluded from the kinematic model of a WMR [4]. The forward and inverse

kinematics will be obtained from the equations discussed previously in Chapter 2.

The configuration of the Holonomic Caster Wheeled Robot (HCWR) platform

has the same geometric parameters of the C3P with three caster wheels. The co-

ordinate systems of the robot are assigned in Figure7.1, where the wheel radius r

is 0.03 m and the offset link d is 0.04 m. The distance between the robot geometric

center and each hip h is 0.343m. The main difference between the C3P and the

HCWR are the actuation elements; the HCWR has wheel angular velocities and

the steering angular velocities as the actuated elements, whereas the C3P only has

the wheel angular velocities actuated.

The omnidirectional wheels have become popular in the WMR field due to their

holonomic mobility features. The Omnidirectional Wheel is based on the following

concept: while the wheel drives in the direction normal to the motor axis, the

wheel can slide frictionless in the motor axis direction [110] [111].

The Omnidirectioanl Wheeled Robot (ODWR) used in this thesis is shown in

Figure 7.2, where the geometric parameters of the robot are set to be as close as

possible to the C3P geometric dimensions; r= 0.01 m (the radius of the roller),

R=0.08 m (the radius of the wheel), and h= 0.343 m (distance between the plat-
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Figure 7.1. HCWR Configuration Structure

Figure 7.2. Omni Configuration Structure

form co-ordinates of reference and each contact point). The angle shifted between

each wheel is symmetric to 120o. Hence, the value of θ1 = 90o, θ1 = 210o, and

θ3 = 300o while η
i
= 90o for i ∈ {1, 2, 3}.

Ramsis II is the name of the mobile robot developed at the Automatic Control

Laboratory of the Swiss Federal Institute of Technology (ETH) in Zurich [102]. The
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basic configuration of the mobile platform is shown in Figure 7.3. The platform

consists of two circular shaped plates mounted above each other with roller bearings

allowing for relative rotation on an axis perpendicular to their surfaces. The lower

part is a standard 2DOF mobile robot with two conventional 2DOF wheels apart

from each other with the distance 2a where a = 0.25 m. The 2DOF platform

drives in the y direction and rotates around its mass of center in the black color.

The upper part is the turret part which rotates around the z-axes of the main

robot coordinates located away from the wheels steering angles with the distance

b where b = 0.15 and r is the wheel radius.

Figure 7.3. RAMSIS-II Configuration Structure

The turret part is presented in the the color(Fig. 7.3) with offset b, which

provides the third DOF.

7.3 Comparing The C3P Vs Holonomic WMRs

The comparison illustrated in this section will be established with the simulation

package carried out under the Matlab environment. The dynamic models needed

for such a simulation are obtained in section (E.2) appendix (E) for holonomic

WMRs. The inverse and forward kinematic solutions are shown in detail in Section



120

(E.1) appendix (E). The obtained models will be used in the simulation structure

shown in Figure7.4.

Figure 7.4. Velocity control loop structure

The structure describes the WMR velocity and the axes level control loops.

The axes level loop are the actuators controllers which are regular PID controllers

for DC motors, since the DC motors are the only actuators used in the three

WMRs and the C3P. The WMR velocity controller can be different in structure

and configuration in the accordance with the mobility constraints. The WMRs

used in this section have holonomic actuation characteristics, hence a regular PID

controller will be used with a different parameter setting with regard toeach WMR.

The two main items used in such a comparison are: the robot physical construc-

tion and simulation results. The physical construction will show the complexity in

construction and actuators elements compared to the C3P. The simulation results

focus on three main results: a) the robot error trajectories, b) the robot velocity

response, and c) the energy consumed to drive the robot in a certain direction

between the time interval t1 and t2 , which can be calculated first from the power

equation

p
i
(t) = τ

i
(t)q̇

i
(t), (7.1)

where τi(t) and q̇i(t) are the torque and angular velocity of actuator i. Second,

the robot total energy is the sum of the actuator’s calculated powers

PT (t) =
N

∑

i=1

P
i
(t), (7.2)

where n is the number of actuators. Finally, the total energy consumed by the
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robot during finite time interval is described as follows

ET =

∫ t2

t1

PT (t) dt, (7.3)

In this chapter the four robots have the same mass, similar dimensions, and

shape. Therefore, the energy calculations are considered to be per unit mass. The

energy consumption depends mainly on the dynamics of the model, which are the

robot velocities and accelerations. There are two examples with this comparison:

a) driving in 3DOF with a step velocities input, and b) driving in infinity shape

(∞), which provides continuous velocities and accelerations.

7.3.1 Driving in 3 Degrees of Freedom

Driving in 3DOFs is sufficient to illustrate the robot performance while driving

with constant velocities and zero accelerations. This section presents the behav-

ior of the four holonomic robots when driving in 3 DOFs with the input velocity

vector ṗref = [0.12(m/s) 0.12(m/s) 1.9(r/min)]
T

, starting from an initial zero

velocity. Figure(7.5) represents the simulation outputs resulting from the men-

tioned example, where the omnidirection wheeled robot (ODWR) consumes the

highest amount of energy (Fig.(7.5a)) because the omnidirectional wheel requires

high energy to role in incline direction to its angular velocity axis. In addition to

the motor’s high current needed to overcome the wheels and the robot torques to

drive in 3DOF, which is less in case of driving in 2DOFs or 1DOF. The HCWR in

second place due to the energy consumed by the steering angular velocities actu-

ators, which do not exist in the C3P. Ramsis II comes in third place, due to the

energy consumption in the turret steering actuator. To conclude, the C3P has the

best energy performance of the four platforms.

The linear velocities ẋ and ẏ (Vx and Vy) (Fig.7.5b& c) show that the C3P

velocities oscillate before reaching the desired value. The resulted oscillations have

a high magnitude in comparison to the other robots. The omnidirectional wheeled

robot reaches the reference value smoothly in one second. The angular velocity

shown in Figure (7.5d) also demonstrates the oscillations resulted in the C3P re-

sponse. The robot velocities behavior affects its position performance; therefore
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Figure 7.5. Energies and Velocities for Driving in 3DOF

the integration of the velocity error is presented in Figure (7.6) as the robot tra-

jectories with respect to the floor frame of coordinates.

The C3P transient phase appears within the dashed circle, where the C3P

controller succeeds in driving the robot in the desired direction but not on the

reference trajectory like the HCWR and the ODWR robots. A similar trajectory

error appears in the Ramsis II trajectory behavior.

7.3.2 Driving in the Infinity Shape(∞)

This section presents the four robot’s performances while driving with variable

and continuous velocities and accelerations. For this example, the shape of infinity

(∞) is used as a trajectory with the following equations:
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ẋ = d/dt

(

R∞ cos(θ∞)

1 + sin2(θ∞)

)

, (7.4)

ẏ = d/dt

(

R∞ cos(θ∞) sin(θ∞)

1 + sin2(θ∞)

)

. (7.5)

Figure(7.7) represents the simulation outputs resulting from the mentioned ex-

ample, where the omnidirection wheeled robot (ODWR) consumes the highest

amount of energ (Fig.(7.5a)) but varying with the shape of the curve depending

on which wheel is actuated. The HCWR comes in second to the energy consumed

by the steering angular velocities actuators, which do not exist in the C3P. Ramsis

II comes in third place, where its energy is mostly consumed by the wheels motors

beside the turret motor to keep zero angle orientation all through the trajectory.

The C3P comes in fourth place, since the trajectory is continuous, in some inter-

vales the system reaches singularities and the C3P requires high energy to get out

of singularities and maintain the reference velocities. Examples for such periods

are at Time=1.75 seconds. As a conclusion, C3P has the best energy performance

of the four platforms.

The linear velocities ẋ and ẏ (Vx and Vy) (Fig.7.7b& c) show that the effect
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Figure 7.7. Energies and Velocities for Driving in (∞) Shape

of singularities conditions on the C3P responses. The same figures also show the

shifting of the omnidirectional robot velocities from the reference value, yet it

maintains similar trajectory. The angular velocity shown in Figure (7.7d) also

demonstrates the oscillations resulted in the C3P response, where the C3P is the

only robot with noticeable oscillations in the angular velocity. This is due to

the absence of dynamic parameters (mass, inertia, friction, etc.) in the inverse

kinematics solution. The robot velocities behavior affects its position performance,

therefore the integration of the velocities error is presented in Figure (7.8) as the

robots trajectories with respect to the floor frame of coordinates.

The most noticeable trajectories are the C3P and Ramsis II. Their trajectories

are shifted away from the reference one with about 20 cm. This is due to the

velocities errors found mainly in the x direction. The Ramsis II robot as transient
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Figure 7.8. Robots Trajectories for Driving in (∞) Shape

oscillation in the angular velocity (Fig. 7.7d) which shifted it from the reference

trajectory all through the rest of the example. The best robot for maintaining

almost zero errors all over the trajectory is the omnidirectional wheeled robot.

The trajectory errors are to be expected due to the absence of a tracking controller

(combined velocity and position control).
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7.4 Performance Function Comparison

This section illustrates the second part of the comparison, which is calculating an

overall cost for each robot. The overall cost functional Jr for every robot is based

on three main aspects: mobility, energy consumption, and hardware complexity.

These three aspects are combined in the cost functional Jr using the weighted

sum method [107][104]. The weighted sum method is a quantitative method for

handling cost functionals with more than one functional [116] [117].

7.4.1 Mobility Aspect

For the calculation of the mobility cost functional Cm, the integration of the ve-

locity errors in a finite interval of time T is used in this comparison. The mobility

cost functional is split in two, cost functional (Cml
)for linear velocities and cost

functional (Cmr
) for the rotational velocity described by the following equation:

Cml
=

∫ T

0

∣

∣

∣

∣

√

ẋ2

er(t) + ẏ2

er(t)

∣

∣

∣

∣

dt, (7.6)

Cmr
=

∫ T

0

∣

∣

∣
φ̇er(t)

∣

∣

∣
dt. (7.7)

The total value of the mobility cost is the sum of their linear velocities Cm =

Cml
+ hCmr

, where h is the platform radius.

7.4.2 Energy Consumption Aspect

To set up the cost functional for the energy Ce, the total energy consumed instan-

taneously from driving the robot in a certain direction between the time interval

t1 and t2 specified in equation (7.2), is considered [104]. The integration of the

absolute value of equation (7.2) yields to the energy cost functional Ce, formulated

as follows:

Ce =

∫ T

0

|ET (t)| dt. (7.8)
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7.4.3 Hardware Complexity Aspect

The hardware complexity has a special cost function evaluation, since there is

no specific known functional calculating method for its cost value. The mobile

robot complexity can be determined according to the types and number of sensors,

actuators, and wheels included in the robot construction. Generally, the active

elements, parts, and joints are considered. These elements are classified as the

following:

Electrical Elements : DC motors, Sensors.

Active Parts : Body, Links and Joints.

Wheel Unit : Caster, Conventional and Omnidirectional wheels

The robot platforms used in this chapter only have rotational actuation, which

requires a DC motor for actuation and incremental encoders for velocity sensing

or absolute encoders for absolute angle measuring. The active parts are classified

into four parts: a) robot body, which has all the wheels and joints connected, b)

joint, which is the connection between a rotatory element and another body, c)

link, which connect two different joints. Three wheel units are used: a) the caster

wheel, which has two joints, one link and one wheel, b) the conventional wheel has

only one joint and one wheel, c) the omnidirectional wheel is the most complex

wheel among them, which has one joint, one wheel, and six rollers mounted around

the main wheel.

Each element of the above mentioned is considered as one complex unit pre-

sented with the letter ‘x’. Also according to its number of DOFs; for example the

joint has 1DOF (rotation), the motor has 1DOF but the body has 3DOF. Table

7.1 shows the complexity evaluation of each robot.

According to the table, each robot complexity value is described as the follow-

ing: C3P has three incremental encoders on the axes of each DC motor to sense

the wheel angular velocity, and three absolute gray encoders to sense the steer-

ing angles. There are three DC motors used in the C3P for the wheels angular

velocities actuation, three caster wheels, and three bearing units.

The ODWR has three incremental encoders, three DC motors, no bearing units,

and three omnidirectional wheels with the following distribution: each wheel is
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Table 7.1. Robots Hardware Complexity Value

Elements P
la

tf
or

m

C
3P

H
C

W
R

O
D

W
R

R
A

M
S
IS

-I
I

Motor 3x 6x 3x 4x
Sensor 6x 6x 3x 5x

Link 3x 3x 0x 1x
Joint 6x 6x 3x 7x
Wheel 3x 3x 3x 3x
Roller 0x 0x 3*6x 0x
Body 1x 1x 1x 2x
Sum 21x 25x 31x 22x

assumed to have six rollers on its surface as the ones used in [118]. The HCWR is

more complex than the C3P platform becuase of its three steering actuation units

on each caster wheel, which means extra 3 DC motors.

The Ramsis II is considered a special case for its unique configuration. It con-

sists of two bodies; upper and lower. The lower body is the fixed base and the

upper body is actuated by a turret, which requires one bearing unit and two mo-

tors acting from both sides to apply coupling actuation [102] to maintain efficient

steering. In addition to this it also requires two incremental encoders, two DC

motors, two conventional wheels, and one caster wheel.

7.4.4 Cost Functional Calculation

Considering the different cost functionals in one functional using the weighted sum

method (WS), the cost functional values have to be of same unity or without units.

In this paper, each aspect cost value will be normalized depending on the maximum

value among the four platforms [104].

The WMR cost functional has three weights, w1 for the mobility, w2 for hard-

ware complexity, and w3 for energy consumption. The weights are designed ac-

cording to the importance of each aspect to the platform purpose. The sum of the

three weights is always one. The proposed WMR cost function is:
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Jr = w1
Cm

Maxm

+ w2
Ck

Maxk

+ w3
Ce

Maxe

, (7.9)

where Maxm
, Maxk

, and Maxe
are the maximum cost values for the linear velocities

errors, hardware complexity, and energy consumption.

The simulation results of the previous examples are used to calculate the robots

cost independently of each other. The following steps are uesd for each example.

The first step is to study the cost functional performance if one of the aspects has

less importance among the others as shown. The weight of the lowest important

aspect is assigned with the value of 0.1, and the remaining aspects will have weights

varying from (0 − 0.9) taking into consideration that the sum of the two weights

are always 0.9. The second step is to demonstrate the robots cost functionals with

respect to one important aspect representing the overall cost values for different

weightings w = (w1, w2, w3).

7.4.4.1 Driving in 3DOFs

For the 3DOFs example, the results of the first step are shown in Figure (7.9) The

C3P gives the minimum cost value if the mobility aspect weight is reduced to the

value of w1 = 0.1 (Fig.7.9a), because it has the simplest hardware construction and

consumes the least energy in comparison to the other robots. The importance of

energy consumption appears in Figure(7.9b), with constant w2 = 0.1 the C3P gives

minimum cost value as long as the mobility weighting is w1 ≤ 0.5 and w3 ≥ 0.35,

otherwise HCWR is the cheapest and then the C3P takes second.

By assigning the lowest importance to the energy consumption aspect, the

C3P has the minimum cost, as long as the mobility weighting does not exceed 0.33

(Fig.7.9c).

The second step demonstrates the cost values in Table 7.2. If the hardware

is the main important aspect in this comparison the weights is w = (0.1, 0.8, 0.1)

(as an example), then the minimum cost is found in Rasmis II and the C3P is the

second cheapest robot. This is logical since the C3P has the largest velocity error

and the simplest construction.

If the mobility complexity (for example w = (0.8, 0.1, 0.1)) is the most impor-

tant aspect, then the HCWR platform is the cheapest one, while the C3P comes
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Figure 7.9. Evaluating the robots cost values for different weights for 3DOF

in third place. On the other hand , if the energy consumptions (for example

w = (0.1, 0.1, 0.8)) is the most important aspect, then C3P has the minimum cost

functional values and Ramsis II comes in second place.

The main point is that the weighting should be chosen according to the pro-

ducer. In this work, the C3P hardware construction is chosen for its simplicity and

its minimal consumption of energy; therefore the hardware complexity and energy

consumption share the same importance as the mobility. As a result, the following

weights are chosen: w = (0.33, 0.33, 0.34) and corresponding to Table 7.3. The

platform Ramsis II is found to be the cheapest robot, while the C3P comes in

second place.
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Table 7.2. Robots Cost Values for Driving in 3DOF

(W1,W2,W3)

R
ob

ot
T

y
p
e

C
3P

H
C

W
R

O
D

W
R

R
am

si
s

II

(0.1, 0.8, 0.1) 0.63 0.7 1.00 0.62
(0.8, 0.1, 0.1) 0.56 0.23 1.00 0.40
(0.1, 0.1, 0.8) 0.16 0.45 1.00 0.28

(0.33, 0.33, 0.34) 0.44 0.46 1.00 0.43

7.4.4.2 Driving in (∞) Shape

The second example (driving in (∞) shape) will have different results and evalua-

tions. The results illustrating the first step are presented in Figure (7.10).

The C3P gives the minimum cost value if the mobility aspect weight is re-

duced to the value of w1 = 0.1 (Fig.7.10a), because it has the simplest hardware

construction and consumes the least energy in comparison to the other robots.

The importance of energy consumption appears in Figure(7.10b), with constant

w2 = 0.1 the C3P gives minimum cost value as long as the mobility weighting is

w1 ≤ 0.59 and w3 ≥ 0.31, otherwise Ramsis II is the cheapest. The C3P takes

second place as the cheapest robot, till it reaches w1 = 0.75 and w3 = 0.15, then

the HCWR is the cheapest.

By assigning the lowest importance to the energy consumption aspect, the

C3P has the lowest cost as long as the mobility weighting does not exceed 0.1

(Fig.7.10c).

Table. 7.3 represents the overall cost values for different weightings w =

(w1, w2, w3).

If the hardware is the main important aspect in this comparison the weights

will be w = (0.1, 0.8, 0.1) (as an example), then the lowest cost will be found

in the C3P. If the mobility complexity (for example w = (0.8, 0.1, 0.1)) is the

most important aspect, then the HCWR platform is the cheapest one, while the

C3P comes in third place. On the other hand, if the energy consumption (for

example w = (0.1, 0.1, 0.8)) is the important aspect, then C3P has the minimum



132

(0,0.9) (0.2,0.7) (0.4,0.5) (0.6,0.3) (0.8,0.1)
0

0.2

0.4

0.6

0.8

1

(W
2
,W

3
)

C
os

t F
un

ct
io

na
l (

un
ity

)

a) Cost Functionals for W
1
=0.1

 

 

C3P
HCWR
Ramsis 2
Omni

(0,0.9) (0.2,0.7) (0.4,0.5) (0.6,0.3) (0.8,0.1)
0

0.2

0.4

0.6

0.8

1

(W
1
,W

3
)

C
os

t F
un

ct
io

na
l (

un
ity

)

b) Cost functionals for W
2
=0.1

 

 

(0,0.9) (0,0.9) (0.4,0.5) (0.6,0.3) (0.8,0.1)
0

0.2

0.4

0.6

0.8

1

(W
1
,W

2
)

C
os

t F
un

ct
io

na
l (

un
ity

)

c) Cost Functionals for W
3
=0.1

 

 

Figure 7.10. Evaluating the robots cost values for different weights for (∞) Shape

cost functional values and Ramsis II comes in second place. While by dividing

the weights equally as chosen w = (0.33, 0.33, 0.34),the C3P is the cheapest cost

among the four platforms.

7.5 Summary

This chapter presented a comparison between four different holonomic mobile

robots platforms: the C3P, the HCWR (Holonomic Caster Wheel Robot), the

omnidirectional wheeled mobile robot, and Ramsis II. The comparison was done

according to three main aspects: a) the mobility, b)the total energy consumed by

each robot in a finite interval of time, and c) the hardware complexity. Inverse

kinematic and forward dynamic models were presented for each robot for the sim-

ulation process. The simulation results illustrated the performance of each robot

in comparison to the others. A cost functional was obtained to demonstrate the

comparison, and a criteria was developed to measure the hardware complexity of
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Table 7.3. Robots Cost Values for Driving in (∞) Shape

(W1,W2,W3)

R
ob

ot
T

y
p
e

C
3P

H
C

W
R

O
D

W
R

R
am

si
s

II

(0.1, 0.8, 0.1) 0.63 0.75 0.92 0.65
(0.8, 0.1, 0.1) 0.62 0.25 0.92 0.49
(0.1, 0.1, 0.8) 0.18 0.98 0.42 0.33

(0.33, 0.33, 0.34) 0.47 0.63 0.75 0.49

each robot. The criteria was developed corresponding to the number and complex-

ity of each actuator, sensor, wheel, and bearing unit. The electrical complexity

was ignored due to its simple construction. The weighted sum method was used

to find the cost value for each robot in respect of the importance of each aspect.

In our work the simplicity of construction and lower energy consumption share

the same importance as mobility. Based on that, the cost functional weights were

assigned and the C3P was shown to have the most advantageous cost compared

to the other holonomic mobile robots.



Chapter 8
Conclusions and Future Work

The main objective of this work is to deliver a holonomic wheeled mobile robot,

which is simple in construction and efficient in performance. Therefore, a control

scheme for a new holonomic wheeled mobile robot (C3P) is proposed in this thesis.

The C3P has three caster wheels with wheel angular actuation, and sensed by the

wheel angular velocities and steering angle values.

The C3P platform constraints were used to prove its holonomic characteristics

based on the Frobenius Theorem. However, the actuation analysis revealed that

the C3P has a singularity problem for some steering angles values. The problem

is defined as the following: when all the wheel yield the same steering angle value

the C3P cannot be actuated in the direction perpendicular to the wheel velocity

vector. Therefore, a new actuated inverse kinematic solution was obtained to

escape the singularity conditions. As a basic idea the coupling between any two

wheel velocities is used to virtually actuate the steering angular velocity of the third

wheel. The solution is termed the Wheel Coupling Equation (WCE). The C3P’s

forward dynamic model using the Euler-Lagrangian method was obtained. The

forward dynamic model has two equations of motion: the WTD (Wheel Torques

Dynamics) to calculate the wheel angular velocities with respect to the actuated

wheels torques, and the DSE (Dynamic Steering Estimator) for the calculation

of the steering angles and steering angular velocities corresponding to the angular

wheel velocities and accelerations.

The kinematic motion control structure consists of two parts; a) the WCE reg-

ulator to overcome the singularity problem and adjust the steering angles to the
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desired value, and b) regular PID controller to maintain the reference robot veloc-

ities with respect to the floor frame of coordinates. The simulation and practical

outputs illustrated the acceptable performance of the velocity controller.

The inverse dynamic solution is developed using the Euler-Lagrangian method

and using the inverse kinematic solution for actuating the steering and contact

angular velocities within the solution. The solution is used in the development of

the C3P velocity and position controllers (Chapter 4). The simulation and prac-

tical results yield less displacment errors in comparison to the inverse kinematics

solution.

Finally, a comparison is made between the C3P and the other three holonomic

mobile robots, which are defined as the following: Holonomic Caster Wheeled

Robot (HCWR), Omni Directional Wheeled Robot (ODWR), and RAMSIS II.

The comparison is made in two steps: first, simulation comparison with respect

to; the energy consumed by the robot to drive in a specific direction during a finite

interval of time, the trajectory error of the robot, and the robot output velocities.

Second, a cost function is assigned by using the weight sum method corresponding

to three main aspects: a) the mobility, b)the total energy consumed by each robot

in a finite interval of time, and c) the hardware complexity. Based on the simplicity

of construction and lower energy consumption sharing the same importance as the

mobility, the cost functional weights were assigned and the C3P was shown to have

the most advantageous cost compared to the other holonomic mobile robots.

The C3P existing prototype has few disadvantages affecting its mobility perfor-

mance. Due to the slippage and the friction, errors in the odometry calculations

exist, leading to errors in trajectory and position update results. These factors

generate disturbances that result in changing the steering angle configuration,

which may lead to instabilities. For studying the system stability, a Lyapunov

direct method is considered. The candidate Lyapunov function presented in this

work is a quadratic one extracted from the robot kinetic energy equation. How-

ever, this function cannot be considered as a Lyapunov function because its first

derivative has positive values for some steering angles configurations. The used

Lyapunov function leads to two different regions, where the first derivative can be

negative semi-definite or positive semi-definite. If the first derivative is negative

semi-definite, a Lyapunov function exists and the system is always stable. On the



136

other hand, if the first derivative is positive semi-definite, no statement on stability

can be made using the candidate function. To overcome these problems, the wheel

should have a powerful torque controller and sensor for slippage detection, along

with a mathematical algorithm for slippage modeling. The trajectory controller

should be developed to use predesigned trajectories that keep the system in the

negative semi-definite region of the used quadratic equation.

The future work can be defined in the following points: a) modeling the plat-

form friction and wheel slippage, then integrating them within the dynamics prob-

lem, b) analysing the system non-linearities in more detail, c) developing a predic-

tion algorithm to define the stability of the system according to the instantaneous

states, d) developing a trajectory generating algorithm so the robot will avoid the

non-defined stability regions using a predesigned trajectory.



Appendix A
Kinematics Modeling

A.1 The Velocity Generalized Wheel Jacobian

In [4] a method is developed to obtain the robot velocities solution described by

the Jacobian for the generalized wheel. This jacobian is presented as follows






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B̄ẋB

B̄ ẏB

B̄φ̇B


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
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






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sin(BθC) cos(BθC) −BdCx
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
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C̄ ẏC

C̄ θ̇C

H θ̇S
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









(A.1)

where

F Floor : The stationary reference co-ordinate system, where the z-axis is orthogonal to

the planar surface.

B Body : The WMR body co-ordinate system.

H Hip : The co-ordinate system which moves with the body for the steering joint.

S Steering : The steering co-ordinate system which moves with the steering link with

z-axis coincident with the z-axis of the Hip.

C Contact Point : The contact point co-ordinate system.

B Instantaneously Coincident Body : The co-ordinate system Coincident with the B

co-ordinate system relative to the stationary F co-ordinate system.
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C Instantaneously Coincident Contact Point : The co-ordinate system Coincident with

the C co-ordinate system relative to the stationary F co-ordinate system.

The parameter iθj is the angle between co-ordinates i and j, idjk
is the distance

between co-ordinates i and j along k axes and īk̇j is the linear velocity between co-

ordinates i and j along k axes. Where (i, j) ∈ (F,B,H, S, C,B,C) and k ∈ (x, y).

Equation (A.1) is the pseudo-Jacobian matrix for the generalized wheel

B̄

ṗ
B

= Ĵ ˆ̇q (A.2)

The wheel velocity vectors q̇ contains all the possible velocities which maybe

actuated or sensed by the wheel, but a typical velocity vector contains fewer than

four wheel variables. Since all the velocities of the wheel are rotational, the velocity

vector should contain angular velocities of the wheel. As a result, ˆ̇q = W q̇ where,

W is the relation between the angular wheel velocities vector and the linear/angular

wheel velocities vector, and

B̄

ṗ
B

= Ĵ W q̇ = J q̇ (A.3)

The rank of the wheel Jacobian matrix J indicates the number of DOFs of the

wheel, where the wheel with fewer DOFs than the wheel variables is a redundant

wheel.

A.1.1 The Acceleration Wheel Jacobian

The wheeled mobile robot accelerations are normally calculated by differentiating

the robot velocities equation relation (A.1).
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+






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0 0 0
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
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C̄ θ̇
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C
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H θ̇S
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(A.4)

The robot accelerations vector
B̄

p̈
B

is composed of three components: the self

acceleration (C̄ẌC , C̄ ŸC , C̄ θ̈C and H θ̈S); the Centripetal accelerations (C̄ θ̇
2

C and
H θ̇

2

S); and the Coriolis accelerations (C̄ θ̇C
H θ̇S).

A.1.2 Actuated Inverse and Sensed Forward Kinematics

The kinematic equations of motion for the wheels on the WMR will be combined

in the composite robot equation, which is used in interpreting the WMR mobility,

actuation and sensing properties.

Ao ṗ = Bo q̇ (A.5)

The composite robot equation combines the Jacobian kinematic robot velocities

for the ”k” numbers of wheels in one Jacobian matrix Bo(n x n). The Matrix Ao

is an identity matrix I with dimensions (n X 3), and they are used in the following

composit equation.
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(A.6)

Investigating the actuation characteristics requires the distinction between the

actuated and the non actuated variables, where q̇a and q̇n are the actuated and

non actuated wheels velocities respectively, furthermore, Jai
and Jni

are the ac-

tuated and non-actuated Jacobians for wheel i. The actuated inverse solution is

a relation between the robot velocities ṗ (as an input) and the actuated wheels

velocities q̇a(as and output). Its main function is to calculate a reference value

fed to the actuated wheels velocities (motors) with respect to the desired robot

input velocities. In order to control the robot velocities, a sensed forward solution



140

should be obtained and its main function to give the actual robot velocities with

respect to the wheels sensed velocities q̇sen.

The inverse solution is normally derived from the composite equation (A.6),

where the actuated and non-actuated velocities are separated. The kinematic

algorithms in [4] developed the following actuated inverse solution

q̇a =
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

ṗ = Ja ṗ (A.7)

The sensing characteristics is similar to the actuation characteristics, but the

actuation inverse solution may not be the inversion of the sensed forward solution,

because the sensed wheel velocities may not be the same actuated wheel velocities.

The wheel velocities will be separated into q̇sen and q̇u sensed and non sensed

wheels velocities, furthermore, Jsi
and Jui

are the sensed and non-sensed Jacobian

matrices for wheel i. The sensed forward solution is derived from the sensed

composite robot equation to give the following solution

ṗ = [∆ (Ju1) + ∆ (Ju2) + ... + ∆ (Juk
)]

−1

[∆ (Ju1) Js1 ∆ (Ju2)Js2 . . . ∆ (Juk
)Jsk

] q̇sen

(A.8)

where the criterion ∆(U) , which is used in equation A.7 and A.8, is described

as

∆(U) = { −I for U = 0

U(U
T

U)
−1
U

T − I otherwise
(A.9)



Appendix B
The Dynamic Steering Estimator

(DSE)

The Dynamic Steering Estimator torque equation is

τs = Msxq̈sx +Gsx(q̇x, q̇s,qs) (B.1)

The inertia matrix Msx can be divided into two matrices, Mx contains the mass

and inertia parameters related to the wheels angular accelerations q̈x, the other

matrix Ms contains the parameters related to the steering angular accelerations q̈s

τs =
[

Mx Ms

]

[

q̈x

q̈s

]

+Gsx(q̇x, q̇s,qs) (B.2)

where,

τs(3x1)
= Mx(3x3)

q̈x(3x1)
+Ms(3x3)

q̈s(3x1)
+Gsx(3x1)

(q̇x, q̇s,qs) (B.3)

Furthermore,

Mx =
mp h r
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(B.4)
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and

Ms =
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(B.5)

The Centripetal and Coriolis forces are

Gsx(1) =
3

∑

i=1

sin(α
i
− θs1)θ̇x1 θ̇s1 + h

3
∑

i=1

sin(α1 − θsi
)θ̇xi

θ̇si

+r
3

∑

i=2

sin(θs1 − θsi
)θ̇x1 θ̇xi

(B.6)

Gsx(2) =
3

∑

i=1

sin(α
i
− θs2)θ̇x2 θ̇s1 + h

3
∑

i=1

sin(α2 − θsi
)θ̇xi

θ̇si

+r
∑

i=1,3

sin(θs1 − θsi
)θ̇x2 θ̇xi

(B.7)

Gsx(3) =
3

∑

i=1

sin(α
i
− θs3)θ̇x3 θ̇s1 + h

3
∑

i=1

sin(α3 − θsi
)θ̇xi

θ̇si

+r
2

∑

i=1

sin(θsi
− θs3)θ̇x3 θ̇xi

(B.8)



Appendix C
Inverse Dynamics Equations

C.1 The Inverse Dynamics Solution

By using Maple software the following torque equation is concluded

τxa
= Msxa

q̈sx +Gsxa
(q̇x, q̇s,qs) (C.1)

The matrix Msxa
is separated in two (3X3) matrices shown below

Msxa
=

[

Mxa
Msa

]

, q̈sx =

[

q̈x

q̈s

]

(C.2)

where Mxa is a mass matrix constrained by the wheel angular acceleration
vector q̈x
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(C.3)

and Msa is constrained by the steering angular acceleration vector q̈s

Msa
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, (C.4)

where C stands for cos and S stands for sin. The Centripetal and Coriolis torques

are presented by the vector Gsxa
, which has the following elements
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Gsxa(1) =
mprh

9
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2

s1
+
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9
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and
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and
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C.2 The Inverse Kinematics for Castor Wheel

Acceleration Variables

Corresponding to the caster wheel closed chain described in chapter 2, the forward

kinematic solution for the wheel i accelerations is

p̈ = Jfi
q̈

i
+ Jri

q̈ri
(C.8)

where Jfi
is the forward direct solution for the wheel accelerations, and Jri

q̇ri
is

the Centripetal and Coriolis forces.
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and
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. (C.10)

In order to obtain the inverse kinematic solution for the C3P accelerations actuated

variables, the procedure proposed in [4]. First the forward solution for the three

caster wheels is combined in the following equation

Ap̈ = Bq̈ +Dq̈r (C.11)

where A is an identity matrix, B is the description of the forward solution for the

three wheels together, and D is the Centripetal and Coriolis forces.
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. (C.12)

Second, the wheel angular accelerations q̈x and the steering angular accelera-

tions q̈s, they are considered as the actuated variables and the non-actuated ac-

celerations are q̈c. Therefore the matrix B will be separated into actuated vectors
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(Jai
) and un-actuated vectors (Jni

)
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After rearranging the Centripetal and Coriolis variables described by the following

D matrix
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(C.14)

The accelerations inverse solution is obtained from (C.11)

Bq̈ = Ap̈ −Dq̇r (C.15)

as the following

q̈ = B
T
Ap̈ −B

T
Dq̇r, where B

T
= (BTB)−1BT (C.16)

then the actuated accelerations are concluded from the equation (C.16) as de-

scribed
[

q̈x

q̈s

]

(6x1)

= B
TA(6x9)

A
(9x3)

p̈
(3x1)

−B
TA(6x9)

D
(9x9)

q̇r(9x1)
(C.17)

The matrix B
TA

is a part of the matrix B
T
, where B

TA
contains the effective parts

to actuate the accelerations q̈x and q̈s. The matrix B
TA

is a diagonalized matrix
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with the dimensions of (6x9)

B
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0 0 b3









, (C.18)

where,

b
i
= Xri

JT
ai

+ Λ
i
JT

ni
(C.19)

and,

Xri
= −

[

JT
ai

∆
(

JT
ni

)

Jai

]−1
(C.20)

Λ
i
= −Xri

JT
ai
Jni

(

JT
ni
Jni

)−1
(C.21)

∆
(

JT
ni

)

= Jni

(

JT
ni
Jni

)−1
JT

ni
− I. (C.22)

Finally, the inverse actuated kinematic accelerations are

[

q̈x

q̈s

]

= Jinv
p̈ − gcs(qs, q̇s, q̇c) (C.23)

where

Jinv
=

[

Jinx

Jins

]

(C.24)

By the aid of Maple, the vector gcs is

gcs(1) =
1

rd
(−cos(θs1)

2

ẋ
2 − ẏ

2

+ ẏ
2

cos(θs1)
2 − 2 cos(θs1)sin(θs1)ẋẏ

−2cos(θs1)sin(θs1 − α1)ẋφ̇− 2sin(θs1)sin(θs1 − α1)ẏφ̇− φ̇
2

h
2

+φ̇
2

h
2

cos(θs1 − α1) − φ̇
2

d sin(θs1 − α1)) (C.25)

gcs(2) =
−1

d
(φ̇

2

h sin(θs1 − α1)) (C.26)



148

gcs(3) =
1

rd
(−cos(θs2)

2

ẋ
2 − ẏ

2

+ ẏ
2

cos(θs2)
2 − 2 cos(θs2)sin(θs2)ẋẏ

−2cos(θs2)sin(θs2 − α2)ẋφ̇− 2sin(θs2)sin(θs2 − α2)ẏφ̇− φ̇
2

h
2

+φ̇
2

h
2

cos(θs2 − α2) − φ̇
2

d sin(θs2 − α2)) (C.27)

gcs(4) =
−1

d
(φ̇

2

h sin(θs2 − α2)) (C.28)

gcs(5) =
1

rd
(−cos(θs3)

2

ẋ
2 − ẏ

2

+ ẏ
2

cos(θs3)
2 − 2 cos(θs3)sin(θs3)ẋẏ

−2cos(θs3)sin(θs3 − α3)ẋφ̇− 2sin(θs3)sin(θs3 − α3)ẏφ̇− φ̇
2

h
2

+φ̇
2

h
2

cos(θs3 − α3) − φ̇
2

d sin(θs3 − α3)) (C.29)

gcs(6) =
−1

d
(φ̇

2

h sin(θs3 − α3)) (C.30)
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Appendix E
The Kinematics and Dynamics

Modeling of Different Holonomic

Wheeled Mobile Robot

E.1 Kinematics Modeling of Holonomic Mobile

Robots

In this section, the method proposed in [4] to obtain the inverse and the forward

kinemaitcs models will be used. The method is explained in detailes in Appendix

A

E.1.1 Holonomic Caster Wheeled Robot (HCWR)

Corresponding to the HCWR configuration descriped in chapter 7 with Fig. (7.1),

the actuated (q̇a) and un-actuated wheels (q̇n) velocities vectors are

q̇a =

[

q̇x

q̇s

]

=























θ̇x1

θ̇x2

θ̇x3

θ̇s1

θ̇s2

θ̇s3























, q̇n = q̇c =









θ̇c1

θ̇c2

θ̇c3









, (E.1)
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as a result the actuated (Jai
) and non actuated wheel (Jni

) Jacobians for the ith

wheel are

Jai
=









−r sin(θsi
) −h cos(α

i
)

r cos(θsi
) h sin(α

i
)

0 −1









, Jni
=









h cos(α
i
) + d sin(θsi

)

−h sin(α
i
) + d cos(θsi

)

1









. (E.2)

The substitution of the actuated and un-actuated Jacobian (E.2) in the inverse

kinematics genralized solution in equation (A.7) the actuated inverse will be

q̇a = Jinv ṗ, (E.3)






















θ̇x1

θ̇x2

θ̇x3

θ̇s1

θ̇s2

θ̇s3























=























− sin(θs1 )

r

cos(θs1 )

r

h cos(α1−θs1 )

r
− sin(θs2 )

r

cos(θs2 )

r

h cos(α2−θs2 )

r
− sin(θs3 )

r

cos(θs3 )

r

h cos(α3−θs3 )

r
− cos(θs1 )

d

− sin(θs1 )

d

h sin(α1−θs1 )−d

d
− cos(θs2 )

d

− sin(θs2 )

d

h sin(α2−θs2 )−d

d
− cos(θs3 )

d

− sin(θs3 )

d

h sin(α3−θs3 )−d

d































ẋ

ẏ

φ̇









, (E.4)

which provides non singular matrix (Jinv) for any steering angles configuration.

The sensing forward solution of the HCWR is exactly the same as the solution

obtained for the C3P, since they have the same sensing elements.

E.1.2 Omni Directional Wheeled Robot (ODWR)

The omni-directional wheels have become popular in WMRs field due to their

holonomic mobility features. The Omni-directional wheel is based on the following

concept; while the wheel drive in the direction normal to the motor axis, the wheel

can slide frictionless in the motor axis direction [110] [111] . The omni-directional

wheel jachobian is









ẋ

ẏ

φ̇









=









−R sin(θ
i
) ro sin(θ

i
+ η

i
) dyi

R cos(θ
i
) −ro cos(θ

i
+ η

i
) −dxi

0 0 1

















θ̇xi

θ̇pi

θ̇ci









for i ∈ {1, 2, 3} (E.5)
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where θ̇xi
is the wheel angular velocity, θ̇pi

is the roller angular velocity around the

z axis, and θ̇ci
the contact point angular velocity.

The Omni-directioanl Wheeled Robot (ODWR) used in this thesis is shown in

Fig. 7.2, where the geometric parameters of the robot are set to be as close as

possible to the C3P geometric dimensions; r= 0.01 m (the radius of the roller),

R=0.08 m (the radius of the wheel), and h= 0.343 m (distance between platform

co-ordinates of reference and each contact point). The angle shifted between each

wheel is symmetric to 120o as shown in the figure. Hence, the value of θ1 = 90o,

θ1 = 210o, and θ3 = 300o while η
i
= 90o for i ∈ {1, 2, 3}. As a result, the Jacobian

of each wheel with respect to the robot instantaneous frame of co-ordinates are

ṗ =









−R 0 h

0 ro 0

0 0 1

















θ̇x1

θ̇p1

θ̇c1









, (E.6)

ṗ =









−R/2
√

3ro/2 −h/2√
3R/2 −ro/2 −

√
3h/2

0 0 1

















θ̇x2

θ̇p2

θ̇c2









, (E.7)

ṗ =









R/2 −
√

3ro/2 −h/2
−
√

3R/2 −ro/2
√

3h/2

0 0 1

















θ̇x3

θ̇p3

θ̇c3









. (E.8)

The angular wheel velocities θ̇xi
for i ∈ {1, 2, 3} are the actuated elements. Hence,

the actuated (q̇a) and un-actuated (q̇n) wheels velocities vectors are

q̇a = q̇x =









θ̇x1

θ̇x2

θ̇x3









, q̇n =

[

q̇p

q̇c

]

=























θ̇p1

θ̇p2

θ̇p3

θ̇c1

θ̇c2

θ̇c3























(E.9)
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which result the following actuated and non actuated ith wheel Jacobians

J̇a =









−R sin(θi)

−R cos(θi)

0









, J̇n =









r sin(θi + ηi) dyi

r cos(θi + ηi) −dxi

0 1









(E.10)

After substituting equation (E.10) in the inverse kinematics genralized solution

in equation (A.7) the inverse kinematic solution will be









θ̇x1

θ̇x2

θ̇x3









=
1

R









−1 0 h

1/2
√

3/2 h

1/2 −
√

3/2 h

















ẋ

ẏ

φ̇









, (E.11)

which yields non-singular matrix and gives actuated 3DOF’s. The sensing elements

are the angular wheeled velocities as well. Thus the forward kinematic solution

will deliver a robust values for the robot velocities through the following relation









ẋ

ẏ

φ̇









= R









−2/3 1/3 1/3

0 1/
√

3 −1/
√

3

1/(3h) 1/(3h) 1/(3h)

















θ̇x1

θ̇x2

θ̇x3









. (E.12)

E.1.3 Ramsis II

Ramsis II is the name of the mobile robot developed at the Automatic Control

Laboratory of the Swiss Federal institute of Technology (ETH) in Zurich [102].

The basic configuration of the mobile platform is shown in Fig. 7.3. The turret

part is presented in red color (Fig. 7.3) with offset b, which provides the third

DOF, and the composite equation of the robot is

Ao ṗ = Bop q̇ (E.13)

Aoṗ =























−rS(θs) −bC(θs) + aS(θs) 0 0 0

rC(θs) −bS(θs) − aC(θs) 0 0 0

0 1 −1 0 0

0 0 0 −rS(θs) −bC(θs) − aS(θs)

0 0 0 rC(θs) −bS(θs) + aC(θs)

0 0 −1 0 1







































θ̇xr1

θ̇zr1

θ̇s

θ̇xr2

θ̇zr2

















(E.14)
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where θ̇xri
is the wheel angular velocity and θ̇zri

is the contact angular velocity

i ∈ {1, 2}, while θ̇s is the turret angular velocity. The actuated velocities (q̇a) and

non actuated velocities (q̇n) of the platforms are

q̇a =









θ̇xr1

θ̇s

θ̇xr2









, q̇n =

[

θ̇zr1

θ̇zr2

]

(E.15)

and the actuated and non actuated jacobians are

[

q̇a

q̇n

]

=

[

Jina

Jinn

]









ẋ

ẏ

φ̇









, (E.16)

By substituting in the inverse kinematics genralized solution in equation (A.7) the

inverse kinematic solution will be where the actuated inverse kinematic solution is

described as

q̇a = Jina
ṗ









θ̇xr1

θ̇s

θ̇xr2









=









−bS(θs)−aC(θs)
rb

bC(θs)−aS(θs)
rb

0
−C(θs)

b

−S(θs)
b

−1
−bS(θs)+aC(θs)

rb

bC(θs)+aS(θs)
rb

0

















ẋ

ẏ

φ̇









(E.17)

While the following sensed forward kinematic solution

ṗ = Jfors
q̇s,









ẋ

ẏ

φ̇









=









−rbC(θs)−raS(θs)
2a

0 rbC(θs)−raS(θs)
2a

−rbS(θs)+raC(θs)
2a

0 rbS(θs)+raC(θs)
2a

r
2a

−1 −r
2a

















θ̇xr1

θ̇s

θ̇xr2









.
(E.18)

E.2 The Robots Dynamics Equations

The simulation process used in chapter (7) requires a dynamic model for each robot.

The dynamic model should at least contain the main parameters of the robot for

example: the mass (mp) , inertia (Ip), and the robot mobility constraints. In
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this chapter the Euler Lagrange principle is used in deriving the robots dynamic

models corresponding to the C3P dynamic model. Since; 1) the wheels parameters

have small in comparison the platform parameters, and 2) the platform mobility

constraints are more significant than the wheels constrains, the wheels parameter

are neglected and the Lagrangian function will be

L = Kp, (E.19)

where the robot kinetic energy Kp is

Kp =
1

2
mp VT

p Vp +
1

2
ΩT

p Ip Ωp. (E.20)

The robot linear velocities

Vp =

[

Vpx

Vpy

]

, (E.21)

and rotational velocity

Ωw =
[

φ̇
]

, (E.22)

are the forward kinematic solutions which carries the mobility constraints that

describes the main mobility behavior of the robot. The main function of the

dynamic model is to reach a dynamic relation between the WMR actuated torques

vector τ and the sensed angular velocities vector q̇.

E.2.1 Holonomic Caster Wheeled Robot

The HCWR actuated and sensed angular velocities of the HCWR are the same,

therefore thedynamic model of the robot can be described one equation. Where

the linear velocities of the HCWR platform are

Vp(HCWR) =
1

3

[

−
3

∑

i=1

(r sin(θsi
)θ̇xi

+ h cos(α
i
)θ̇si

),
3

∑

i=1

(r cos(θsi
)θ̇xi

+ h sin(α
i
)θ̇si

)

]T

(E.23)
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and the angular velocity is

Ωp(HCWR) =

[

−
3

∑

i=1

θ̇si

]

/3. (E.24)

Hence, the Lagrangian function contains the wheel angular velocities q̇x, steer-

ing angular velocities q̇s, and the steering angles qs

L = f(qs, q̇s, q̇x). (E.25)

By substituting the Lagrangian functions in the Lagrangian formulation

τ =
d

dt

(

∂L

∂q̇a

)

− ∂L

∂qa

(E.26)

the following dynamic equation is obtained

τ
(6x1)

= MH(q)
(6x6)

q̈
(6x1)

+Gsx(6x1)
(q̇x, q̇s,qs), (E.27)

which can be simplified in the form of

[

τx

τs

]

=

[

MxxH
MxsH

MsxH
MssH

] [

q̈x

q̈s

]

+ GSH(6x1)
(q̇x, q̇s,qs), (E.28)

to separate the torques acting on the wheel velocities from the the torques acting

on the angular velocities. The mass matrix MH(q) is divided in 4 (3x3) matrices

MxxH
=

1

9









mpr
2 mpr

2C(θs1 − θs2) mpr
2C(θs1 − θs3)

mpr
2C(θs2 − θs1) mpr

2 mpr
2C(θs2 − θs3)

mpr
2C(θs2 − θs1) mpr

2C(θs3 − θs2) mpr
2









, (E.29)

MxsH
=

1

9









mprhC(α1 − θs1) mprhC(α2 − θs1) mprhC(α3 − θs1)

mprhC(α1 − θs2) mprhC(α2 − θs2) mprhC(α3 − θs2)

mprhC(α1 − θs3) mprhC(α2 − θs3) mprhC(α3 − θs3)









, (E.30)
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MsxH
=

1

9









mprhC(α1 − θs1) mprhC(α1 − θs2) mprhC(α1 − θs3)

mprhC(α2 − θs1) mprhC(α2 − θs2) mprhC(α2 − θs3)

mprhC(α3 − θs1) mprhC(α3 − θs2) mprhC(α3 − θs3)









, (E.31)

and

MssH
=

1

9









mph
2 + Ip mph

2C(α1 − α2) + Ip mph
2C(α1 − α3) + Ip

mph
2C(α1 − α2) + Ip mph

2 + Ip mph
2C(α2 − α3) + Ip

mph
2C(α1 − α3) + Ip mph

2C(α2 − α3) + Ip mph
2 + Ip









.

(E.32)

The Centripetal and Coriolis velocities GSH(q̇x, q̇s,qs) is a vector of 6 elements,

GSH(1) = 0, GSH(2) = 0, GSH(3) = 0,

GSH(4) = −1
9 (mprh sin(α1 − θx1)θ̇x1 θ̇s1 + mprh sin(α2 − θx1)θ̇x1 θ̇s2

+mprh sin(α3 − θx1)θ̇x1 θ̇s3 − mpr
2 sin(θx1 − θx2)θ̇x1 θ̇x2

−mpr
2 sin(θx1 − θx3)θ̇x1 θ̇x3),

(E.33)

GSH(5) = −1
9 (mprh sin(α1 − θx2)θ̇x2 θ̇s1 + mprh sin(α2 − θx2)θ̇x2 θ̇s3

+mprh sin(α3 − θx2)θ̇x2 θ̇s3 + mpr
2 sin(θx1 − θx2)θ̇x1 θ̇x2

−mpr
2 sin(θx2 − θx3)θ̇x2 θ̇x3),

(E.34)

and

GSH(6) = −1
9 (mprh sin(α1 − θx3)θ̇x3 θ̇s1 + mprh sin(α2 − θx3)θ̇x3 θ̇s2

+mprh sin(α3 − θx3)θ̇x3 θ̇s3 + mpr
2 sin(θx1 − θx3)θ̇x1 θ̇x3

+mpr
2 sin(θx2 − θx3)θ̇x2 θ̇x3).

(E.35)

E.2.2 Omni Directional Wheeled robot

It is noticed from the previous section that the HCWR platform has nonlinear

sensed forward solution which delivered nonlinear complex dynamic equation. The

ODWR dynamic equation is much more simple because its sensed forward solution

is linear as the following

Vp(ODWR) = R

[

−2
3
θ̇x1 + 1

3
θ̇x2 + 1

3
θ̇x3

1√
3
θ̇x2 − 1√

3
θ̇x3

]

, (E.36)
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and it rotational velocity is

Ωp(ODWR) =
R

3h

[

−
3

∑

i=1

θ̇xi

]

. (E.37)

Since the Lagrangian function is a function of the actuated wheels velocities q̇x as

shown

L = f(q̇x), (E.38)

the dynamic equation of the robot platform is

τo(3x1)
= Mo(3x3)

q̈a(3x1)
, (E.39)

which can be detailed in the following equation

Mo(3x3)
=

R2

9h2









4mp h
2 + Ip −2mp h

2 + Ip −2mp h
2 + Ip

−2mp h
2 + Ip mp h

2 + 3mp
h2

R2 + Ip mp h
2 − 3mp

h2

R2 + Ip

−2mp h
2 + Ip mp h

2 − 3mp
h2

R2 + Ip mp h
2 + 3mp

h2

R2 + Ip









(E.40)

E.2.3 Ramsis II

The mobile robot Ramsis II had been not model dynamically before. In this section

a dynamic model is proposed using the forward kinematic solution for the robot

velocities

Vp(RII) =

[

−rbC(θs)−raS(θs)
2a

θ̇xr1 + rbC(θs)−raS(θs)
2a

θ̇xr2

−rbC(θs)−raS(θs)
2a

θ̇xr1 + rbC(θs)−raS(θs)
2a

θ̇xr2

]

, (E.41)

and

Ωp(RII) =
[

r
2a
θ̇x1 − θ̇s + −r

2a
θ̇x2

]

. (E.42)

The robot velocities are substituted in the kinetic energy equation (E.20) to obtain

the Lagrangian function which is function of

L = f(θ̇x1 , θ̇xs
, θ̇s). (E.43)

which is used to derive the dynamic equation with the Lagrangian formulation
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of equation (E.27). As a result the following dynamic relation is obtained

τ
(3x1)

= M
(3x3)

q̈a(3x1)
, (E.44)

where the Centripetal and Coriolis velocities are zeros because the mass and inertia

of the actuators were neglected due to their very small values compared to platform

mass and inertia. The dynamic relation (E.44) can be written in more details as

the following









τxr1

τs

τxr2









=









mpr2(a2+b2)+Ipr2

4a2 − rIp

2a

mpr2(a2−b2)−Ipr2

4a2

− rIp

2a
Ip

rIp

2a
mpr2(a2−b2)−Ipr2

4a2

rIp

2a

mpr2(a2+b2)+Ipr2

4a2

















θ̈x1

θ̈s

θ̈x2









(E.45)
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