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Tag der mündlichen Prüfung: 9. Dezember 2009
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Summary

It is often necessary to restore digital images which are affected by noise (denoising), blur
(deblurring), or missing data (inpainting). We focus here on variational methods, i.e., the
restored image is the minimizer of an energy functional.

The first part of this thesis deals with the algorithmic framework of how to compute
such a minimizer. It turns out that operator splitting methods are very useful in image
processing to derive fast algorithms. The idea is that, in general, the functional we want to
minimize has an additive structure and we treat its summands separately in each iteration
of the algorithm which yields subproblems that are easier to solve. In our applications, these
are typically projections onto simple sets, fast shrinkage operations, and linear systems of
equations with a nice structure.

The two operator splitting methods we focus on here are the forward-backward split-
ting algorithm and the Douglas-Rachford splitting algorithm. We show based on older
results that the recently proposed alternating split Bregman algorithm is equivalent to the
Douglas-Rachford splitting method applied to the dual problem, or, equivalently, to the
alternating direction method of multipliers. Moreover, it is illustrated how this algorithm
allows us to decouple functionals which are sums of more than two terms.

In the second part, we apply the above techniques to existing and new image restora-
tion models. For the Rudin-Osher-Fatemi model, which is well suited to remove Gaussian
noise, the following topics are considered: we avoid the staircasing effect by using an ad-
ditional gradient fitting term or by combining first- and second-order derivatives via an
infimal-convolution functional. For a special setting based on Parseval frames, a strong
connection between the forward-backward splitting algorithm, the alternating split Breg-
man method and iterated frame shrinkage is shown. Furthermore, the good performance
of the alternating split Bregman algorithm compared to the popular multistep methods
is illustrated. A special emphasis lies here on the choice of the step-length parameter.
Turning to a corresponding model for removing Poisson noise, we show the advantages of
the alternating split Bregman algorithm in the decoupling of more complicated functionals.
For the inpainting problem, we improve an existing wavelet-based method by incorporat-
ing anisotropic regularization techniques to better restore boundaries in an image. The
resulting algorithm is characterized as a forward-backward splitting method. Finally, we
consider the denoising of a more general form of images, namely, tensor-valued images
where a matrix is assigned to each pixel. This type of data arises in many important
applications such as diffusion-tensor MRI.
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Zusammenfassung

In vielen Anwendungen der Bildverarbeitung ist es notwendig, Rauschen und Blur aus
digitalen Bildern zu entfernen (Entrauschen und Deblurren), sowie unbekannte Regionen
in Bildern wiederherzustellen (Inpainting). Wir betrachten hier sogenannte Variations-
methoden, d.h. das restaurierte Bild ist ein Minimierer eines Energiefunktionals.

Im ersten Teil dieser Arbeit werden Algorithmen zur Berechnung eines solchen Mini-
mierers betrachtet. Dabei stellt sich heraus, dass sogenannte Operator-Splitting-Verfahren
in der Bildverarbeitung besonders nützlich sind, denn das zu minimierende Funktional hat
im Allgemeinen eine additive Struktur. Diese ermöglicht es, die Summanden in jeder Itera-
tion separat zu betrachten, was zu einfacheren Teilproblem führt. In unseren Anwendungen
sind das zum Beispiel Projektionen auf einfache Mengen, schnelle Shrinkage-Operationen
und das Lösen linearer Gleichungssysteme von einfacher Struktur. Zwei Operator-Splitting-
Methoden sind in dieser Arbeit von besonderem Interesse, nämlich der Forward-Backward-
Splitting-Algorithmus und der Douglas-Rachford-Splitting-Algorithmus. Wir zeigen, ba-
sierend auf älteren Resultaten, dass der kürzlich vorgestelle Alternating-Split-Bregman-
Algorithmus äquivalent zum Douglas-Rachford-Splitting-Algorithmus für das duale Prob-
lem und zur Alternating direction method of multipliers ist. Desweiteren wird untersucht,
wie dieses Verfahren verwendet werden kann, um Zielfunktionen mit mehr als zwei Sum-
manden zu entkoppeln.

Im zweiten Teil dieser Arbeit wenden wir die obigen Verfahren auf bestehende und neue
Modelle zur Bildrestauration an. Zunächst betrachten wir das Rudin-Osher-Fatemi-Model
zum Entrauschen von Bildern unter der Annahme von Gaußschem Rauschen: Zur Vermei-
dung des sogannten Staircasing-Effekts verwenden wir einen zusätzlichen Ähnlichkeitsterm
bezüglich des Gradienten oder einen Infimal-Convolution-Term mit ersten und zweiten
Ableitungen. Für einen Spezialfall basierend auf Parseval-Frames beleuchten wir die enge
Verbindung zwischen dem Forward-Backward-Splitting-Algorithmus, dem Alternating-Split-
Bregman-Algorithmus und dem iteriertem Frame-Shrinkage. Außerdem zeigen wir die gute
Leistung des Alternating-Split-Bregman-Algorithmus im Vergleich zu populären Multistep-
Methoden. Hierbei untersuchen wir insbesondere den Einfluss des Schrittweitenparame-
ters. Die Vorteile des Alternating-Split-Bregman-Algorithmus werden besonders deutlich,
wenn wir ein verwandtes aber schwieriger zu minimierendes Model zum Entfernen von
Poisson-Rauschen betrachten. Zum Lösen des Inpainting-Problems erweitern wir einen
Wavelet-basierten Ansatz durch Techniken der anisotropen Regularisierung. Dies trägt
dazu bei, dass Kanten im Bild besser wiederhergestellt werden. Auf diese Weise erhalten
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wieder einen Forward-Backward-Splitting-Algorithmus. Abschließend behandeln wir das
Entrauschen einer allgemeineren Form von digitalen Bildern, nämlich tensorwertige Bilder.
Dabei ist jedem Pixel eine Matrix zugeordnet. Diese Daten treten in vielen wichtigen An-
wendungen auf, z.B. in der Diffusionstensor-MRT.
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CHAPTER 1

Introduction

Images are a main source of human information about the world. Hence, a lot of research is
conducted in medicine, psychology, mathematics and computer science, on the one hand,
to understand the human visual system and, on the other hand, to implement image
processing tasks on computers. For the first approach we refer, e.g., to [105, 112] and note
that the human visual system might even be the key to unlocking the mysteries of the
highest brain functions, see, e.g., [137].

We focus in this paper on the second approach, more precisely, on the following classical
topics of image restoration: denoising, deblurring and inpainting. In the noise-free case, the
latter is a special form of interpolation. Among others, we also deal with current problems
of denoising in the presence of non-Gaussian noise and the restoration of tensor-valued
data.

To tackle these image processing problems one must answer the following two classes
of questions which are clearly intertwined:

i) Modeling of the image processing problem: What features in an image are we
interested in? What are general assumption on a restored image? Can we specify
this probabilistically? Is it possible to model the process which corrupts our data,
e.g., the statistical properties of the noise?

ii) Numerical solution of the problem: Which methods can be used to compute
the restored image according to the chosen model? Are the corresponding problems
solvable in a reasonable amount of time?

In this paper, we model our image processing tasks as minimization problems. The re-
stored image is then given as a minimizer of the corresponding problem. Often, the term
variational methods is used for this approach. Other approaches include for example PDE-
based methods. The energy functionals we use in our minimization problems constitute
our answers to the class i) of questions above. In our applications, the functional to mini-
mize is the sum of two terms, a data-fitting term, which relates our minimizer to the given
corrupted data and a so-called regularization term which incorporates the method’s ”view
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1. Introduction

of the world”: It might assign smaller energies to certain features like smooth areas or it
might prefer texture or sharp object boundaries.

As for the second set of question ii), we note that the success of many variational
methods is related to the fact that the corresponding objective functions contain terms
which are convex but not differentiable or they may include constraints. This is the case,
e.g., for the Rudin-Osher-Fatemi (ROF) model of [187] and the corresponding dual problem,
respectively. Bearing in mind the success of interior point methods, cf. [121], one idea might
be to use them for our image processing problems. One would then use the primal and
the dual problem together, avoid constraints and non-differentiable terms via differentiable
barrier functions and find a solution by means of Newton steps.

However, for our examples, we only need a modest accuracy and, more importantly,
our minimization problems are structured in ways that encourage us to use algorithms that
decompose the problem into easier parts. For example, the constraints we encounter are
often very simple sets and the projection onto them is cheap. Hence, splitting methods have
become very popular to solve variational problems in image processing and they are the
main topic of this paper. One of the first such splitting method used in image processing was
a simple gradient descent algorithm for the dual problem of the ROF model. The constraint
which appears in this model was incorporated by projecting onto the corresponding set
after each gradient descent step. This algorithms can be characterized as a special forward-
backward splitting method. Recently, the alternating split Bregman algorithm was proposed
by Goldstein and Osher in [120] for the ROF denoising and deblurring problem. This
method was originally derived as a special case of a Bregman proximal point algorithm.
The main idea of the Bregman proximal point algorithms is to transform the problem into
easier subproblems by adding a so-called cost-to-move term. However, in the derivation of
the alternating split Bregman algorithm a variable splitting idea of [217] was used. This
encouraged us to interpret this algorithm also as a splitting method: It is a Douglas-
Rachford splitting algorithm applied to the dual problem. In this way, we were able to
proof convergence of the alternating split Bregman method. Apart from characterizing
the alternating split Bregman algorithm as a Bregman method and a splitting method, we
can also, as underlined by Esser in [101], take a third point of view and interpret it as a
primal-dual Lagrangian algorithm, namely, the alternating direction method of multipliers
of [109, 110, 117] which updates alternatingly the primal and dual variable in a special
way.

To summarize, we have three possibilities to derive the alternating split Bregman al-
gorithm: It is an operator splitting, a special Bregman and a primal-dual Lagrangian
method.

Alternating Split
Bregman Algorithm

=
Douglas-Rachford Splitting

Algorithm for the Dual Problem
=

Alternating Direction
Method of Multipliers

It should be mentioned here that Combettes deserves credit for drawing attention in recent
years to splitting methods like the forward-backward splitting and the Douglas-Rachford
splitting method and their applications in image processing.

2



1. Introduction

The primal-dual Lagrangian point of view was recently used to derive the primal-dual
hybrid gradient algorithm of [235]. After this thesis was completed, it was also shown that
the primal-dual hybrid gradient algorithm, like the alternating split Bregman algorithm,
has a relation to well-known methods in optimization theory, cf. [102]. This very recent
result indicates that there is still a lot of potential for new efficient image processing
algorithms which use splitting, Bregman and primal-dual ideas, especially as models with
more complicated objective functions arise. Impulses are likely to come from adaptive
step size strategies, see [234] and Subsection 3.5.2, as well as from multistep methods, cf.
Section 3.5.

Contributions

Foundations of the alternating split Bregman algorithm. We show based on older
results that the alternating split Bregman algorithm is equivalent to applying an operator
splitting, namely the Douglas-Rachford splitting, to the dual problem of our given mini-
mization problem. This allows us to conclude convergence of the alternating split Bregman
algorithm.

For two special models used for Gaussian noise removal, we can establish a relation of
the alternating split Bregman method to the forward-backward splitting algorithm and to
wavelet shrinkage. More precisely, we have for a Besov norm model using a Parseval frame
discretization and a special step length the following relation:

Alternating Split Bregman
Algorithm

=
Forward-Backward
Splitting Algorithm

=
Iterated

Frame Shrinkage

For the ROF model we can also apply a Parseval frame-based gradient discretization and
a special step length to obtain:

Alternating Split Bregman
Algorithm

≈ Forward-Backward
Splitting Algorithm

=
Iterated

Frame Shrinkage

Furthermore, we provide for the ROF denoising problem numerical comparisons of the
Douglas-Rachford splitting/alternating split Bregman method with first-order multistep
methods. In particular, we investigate the role of the step length parameter in the alter-
nating split Bregman algorithm. The good performance of this algorithm is illustrated by
interpreting it as a special Newton method, i.e., a second-order method.

Multiple splittings with the alternating split Bregman algorithm. The advan-
tages of the Douglas-Rachford splitting/alternating split Bregman algorithm become es-
pecially apparent when we apply it to more complicated functionals. As an example, we
show how multiple splittings of functionals for Poissonian noise removal can be used to
decompose the original problem into explicitly solvable subproblems.

3



1. Introduction

Higher-order methods in image denoising. There exist various methods to general-
ize and improve the ROF model. We consider two ways to use both first and second-order
derivatives which has the advantage that the staircasing effect of ROF denoising is avoided.
First, we introduce an additional gradient fitting term which does not complicate the re-
sulting minimization problem too much but allows us to include second-oder derivatives.
Second, we propose to use first- and second-order derivatives in an infimal convolution
functional.

Novel wavelet-based inpainting algorithm. Motivated by [51], we develop an in-
painting algorithm that performs in each iteration a denoising step which consists in a fast
”anisotropic” frame shrinkage and a subsequent step in which we reset the known data.
Our contribution is to introduce an anisotropic regularization technique into the inpainting
model. The idea is that the process which fills in the unknown parts of a given image should
be anisotropic in that it detects object boundaries and thus restores them more efficiently.
Numerical experiments demonstrate the advantages of our anisotropic algorithm especially
at sharp edges.

Operator-based method for the denoising of matrix-valued images. In many
application, for example in medical imaging, a matrix is assigned to each pixel instead of
just a gray value. We want to transfer successful techniques from the denoising of scalar-
valued images to this setting. Clearly, we could simply denoise the gray value images
obtained by considering single components of the matrix-valued data. However, this is not
a good strategy since, typically, the information is spread over all components. We propose
a new model which we call the operator-based method. The main idea is that it couples the
matrix channels by viewing the matrices as operators which can be concatenated with other
useful nonlinear operators. Furthermore, we transfer the infimal convolution approach to
the matrix-valued setting in order to improve existing methods by using both first- and
second-order derivatives.

Outline

Chapter 2 includes the theoretical foundations of the algorithms used in this paper. We
examine in Section 2.3 the convergence properties of iterations of so-called averaged op-
erators. This is then applied to prove the convergence of operator splitting methods, in
particular, the forward-backward splitting algorithm and the Douglas-Rachford splitting
algorithm. Another way to split a minimization problem into easier parts is via Bregman
methods which are studied in Section 2.4. First, we present the Bregman proximal point
algorithm which adds an appropriate cost-to-move term to the given objective function and
is thus a generalization of the classical proximal point method. Then, a special application
of this Bregman method, the split Bregman algorithm, is considered. Based on this we can
define the alternating split Bregman algorithm in Subsection 2.4.3 which we characterize

4



1. Introduction

as a Douglas-Rachford splitting method applied to the dual problem. The alternating split
Bregman algorithm allows multiple splittings as shown in Subsection 2.4.4.

The first application of the methods of Chapter 2 is to image denoising in Chapter
3. After motivating continuous denoising models with Besov norm and total variation
regularizers for both Gaussian and Poisson noise in Section 3.2, we study discrete Gaussian
noise removal in more detail in Section 3.3. In Section 3.4, we apply the forward-backward
splitting and the Douglas-Rachford splitting/alternating split Bregman method to the ROF
model and give a geometrical interpretation of both algorithms. Moreover, the relation
between these methods for a special Parseval frame setting is explored which also gives
insight into the connection to wavelet shrinkage. In Section 3.5, we compare the forward-
backward splitting algorithm and the alternating split Bregman algorithm numerically to
two multistep methods, namely Nesterov’s algorithm and FISTA. We also draw attention
to the role of the step length parameter in the alternating split Bregman algorithm. In
Section 3.6, we briefly show two extensions of the ROF method: a gradient-fitting scheme
and an infimal convolution regularization term. Finally, we turn to Poisson noise removal
in Section 3.7. We show that here the multiple decoupling obtained by using the Douglas-
Rachford splitting/alternating split Bregman algorithm is especially useful.

In Chapter 4, we present novel wavelet-based inpainting algorithms. As we explain
in Section 4.2 and Section 4.3, these algorithms make use of anisotropic regularization
and diffusion techniques. We can guarantee convergence by characterizing the proposed
inpainting methods as forward-backward splitting algorithms, cf., Section 4.4. Numerical
results can be found in Section 4.5.

Finally, we present an application of our methods to the denoising of tensor-valued
images in Chapter 5. This kind of data is important, e.g., in medical imaging, see Section
5.1. We consider a component-based approach in Section 5.3 which we generalize via
an infimal convolution regularizer. The advantage of our new operator-based approach,
presented in Section 5.4, is that it makes use of the operator structure of matrices. We
give numerical examples in Section 5.5.
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CHAPTER 2

Variational methods

2.1 Introduction

Many image processing problems can be solved via variational methods and the restored
image is a minimizer of an appropriate energy functional. After introducing in Section 2.2
the general type of energy functionals we want to deal with in this paper, we consider two
main classes of methods to find a minimizer:

First, we consider operator splitting algorithms in Section 2.3 which decompose our
original problem into subproblems which are easier to solve. This is possible since we
assume that the functionals to minimize have an additive structure. The resulting al-
gorithms are in our case iterations of averaged operators which allows us to conclude
convergence. There exist many operator splitting techniques. A special focus lies here
on the forward-backward splitting algorithm (Subsection 2.3.2) and the Douglas-Rachford
splitting algorithm (Subsection 2.3.3).

Second, we consider Bregman methods in Section 2.4. We recall the basic Bregman
proximal point algorithm, a generalization of the classical proximal point algorithm, which
yields easier subproblems by adding a term that penalizes the distance to the preceding
iterate, see Subsection 2.4.1. Applying the Bregman proximal point algorithm in a special
way yields the split Bregman algorithm (Section 2.4.2) and finally the alternating split
Bregman method (Section 2.4.3). Both split Bregman methods turn out to be equivalent
to classical algorithms, in particular, we show that the latter coincides with a Douglas-
Rachford splitting algorithm. In Subsection 2.4.4, we illustrate the advantages of using the
alternating split Bregman method to decouple complicated functionals which can be the
sum of more than two terms.

2.2 Optimization problems, duality and proximation

As stated in the introduction we are interested in the minimization of nonsmooth func-
tionals. We start by considering basic notations and a simple operator, the proximity

7



2. Variational methods

operator, which will prove to be useful in many places. Let H be an infinite-dimensional
real Hilbert space. In this paper we try to keep our analysis as long as possible in the
infinite-dimensional setting. It should be stressed though that the straightforward way of
discretizing before performing the minimization process yields satisfactory results for our
examples. So, for all our practical examples we will work in R

n. In this paper we will use
the notation R := R ∪ {+∞} for the extended reals. Let Φ : H → R be a function with
the following properties

• Φ is proper, i.e., it is not +∞ everywhere,

• Φ is convex,

• Φ is lower semi-continuous (l.s.c.) at each point u ∈ H , i.e., Φ(u) ≤ limv→u inf Φ(v) =
supǫ>0 infv∈B(u,ǫ) Φ(v).

A functional which is l.s.c. on the whole domain is also called closed since its epigraph is
closed. For a function Φ satisfying the above three properties it is often useful to consider
for some parameter η > 0 the Moreau envelope ηΦ : H → R, see [160]. It is defined as
follows:

ηΦ(u) := min
v∈H

{1
2
‖v − u‖22 + ηΦ(v)

}
. (2.1)

Clearly, the objective function in (2.1) is coercive and strictly convex and thus for every
u ∈ H , there exists a unique minimizer, compare [97, Proposition 1.2]. This minimizer is
called the proximum and the mapping which assigns to each u ∈ H the proximum is called
the proximity operator proxηΦ of ηΦ, i.e., we have

proxηΦ(u) := argmin
v∈H

{1
2
‖v − u‖2 + ηΦ(v)}. (2.2)

The existence and uniqueness of the proximum means that the Moreau envelope is well-
defined and proper. Moreover, it is convex and differentiable and its gradient is given
by

∇ (ηΦ) (u) =
1

η

(
u− proxηΦ(u)

)
, (2.3)

see, e.g., [6, Theorem 5.2].
Let us now generalize the proximation problem (2.2). The main element we want to

keep is the property that the functional to be minimized can be written as the sum of two
operators with useful properties. So, most of the problems in this paper are of the form

(P ) min
u∈H1

{
g(u) + Φ(Du)︸ ︷︷ ︸

:=FP (u)

}
,

where both functions g : H1 → R and Φ : H2 → R are proper, convex and l.s.c., H1 and
H2 are Hilbert spaces and D : H1 → H2 is a bounded linear operator. We denote by I

8



2. Variational methods

the identity operator or the identity matrix in the finite-dimensional case. For D = I and
g(u) := 1

2η
‖u− f‖2 in (P ) we recover problem (2.1).

Observe that the objective function of (P ) is neither strictly convex nor coercive in
general so that without further assumptions a solution might not even exist or it might
not be unique.

As we will see throughout this paper it is often useful to consider the dual problem of
(P ) or a combination of both. In the following, we will give, based on [29], a very brief
motivation for duality in optimization theory. Let us first introduce the Legendre conjugate
h∗ of a proper, convex and l.s.c. functional h : H → R on a Hilbert space:

h∗(φ) := sup
u∈H

{〈φ, u〉 − h(u)}.

Note that h∗ itself is proper, convex and l.s.c. and it holds for the biconjugate function
that h = h∗∗. Now consider for some Hilbert space H the perturbation ϕ : H1 ×H → R of
FP which means that

ϕ(·, 0) = FP .

Furthermore, let us introduce the corresponding value function

v(b) = inf
u∈H1

ϕ(u, b).

Note that v(0) gives us the optimal value of (P ). A short calculation shows that we get
for the conjugate and the biconjugate of v the equalities

v∗(b) = ϕ∗(0, b),

v∗∗(b) = sup
b̃∈H

{〈b, b̃〉 − ϕ∗(0, b̃)}.

Motivated by the relation v∗∗ = v for v proper, convex and l.s.c. and the fact that
v(0) = infu∈H1 FP (u) we define the dual problem as

v∗∗(0) = sup
b̃∈H

{−ϕ∗(0, b̃)}. (2.4)

We can also define a dual problem via a Lagrangian approach. Let us define the duality
Lagrangian L : H1 ×H ×H → R as

L(u, b̃, b) := 〈b̃, b〉 − ϕ∗
b(u, b̃),

where ϕ∗
b denotes the conjugate function with respect to the second variable, i.e.,

ϕ∗
b(u, b̃) := sup

b′∈H
{〈b̃, b′〉 − ϕ(u, b′)}.

There is a direct connection between the duality Lagrangian L and the dual problem (D).
Considering

inf
u∈H1

L(u, b̃, b) = 〈b̃, b〉 − sup
u∈H1,b′∈H

{〈0, u〉+ 〈b̃, b′〉 − ϕ(u, b′)}

= 〈b̃, x〉 − ϕ∗(0, b̃)

9



2. Variational methods

and consequently,
v∗∗(b) = sup

b̃∈H
inf
u∈H1

L(u, b̃, b),

we recover the dual problem as

v∗∗(0) = sup
b̃∈H

inf
u∈H1

L(u, b̃, 0). (2.5)

The primal problem is obtained from the duality Lagrangian as follows: First, note that
by definition

sup
b̃∈H

L(u, b̃, b) = ϕ∗∗
b (u, b).

So, assuming that ϕ(u, ·) is proper, convex and l.s.c. we have

sup
b̃∈H

L(u, b̃, b) = ϕ(u, b)

and thus, the primal problem is given by

v(0) = inf
u∈H1

sup
b̃∈H

L(u, b̃, 0). (2.6)

So, in the Lagrangian formulation the primal and the dual problem (2.6) and (2.5), re-
spectively, only differ in the order in which we optimize with respect to the two variables.
Furthermore, observe that a tuple of solutions (û, b̂) of the primal and the dual problem,
respectively, can be characterized as a saddle point of the duality Lagrangian L(·, ·, 0).

A useful perturbation of FP is given by

ϕ(u, b) = g(u) + Φ(Du+ b).

It is straightforward to see that the corresponding dual problem of (P ) is

(D) − min
b∈H2

{
g∗(−D∗b) + Φ∗(b)︸ ︷︷ ︸

:=FD(b)

}
.

For example, observing that (1
2
‖ ·−f‖2)∗(φ) = 1

2
‖φ+ f‖2− 1

2
‖f‖2, the dual problem of the

proximation problem
min
u∈H

{
1
2
‖u− f‖22 + ηΦ(u)

}
,

cf. (2.2), has the simple form

−min
b∈H

{
1
2
‖b− f‖2 − 1

2
‖f‖2 + ηΦ∗( 1

η
b
)}

(2.7)

and the unique solutions û and b̂ of the primal and dual problem, respectively, are connected
by û = f − b̂. Unless stated otherwise, we always assume in this paper that the primal
and the dual solution û and b̂, respectively, exist and that the duality gap is zero, i.e., the

10



2. Variational methods

extremal values v(0) and v∗∗(0) of (P ) and (D) are the same. To put it another way, we
suppose that there is a pair (û, d̂) which satisfies the Karush-Kuhn-Tucker conditions

0 ∈ ∂g(û) +D∗b̂, (2.8)

0 ∈ −Dû+ ∂Φ∗(b̂). (2.9)

Recall that for a proper, convex function g : H → R the set-valued function ∂g : H → 2H

which is called the subdifferential of g is given by

∂g(ũ) = {v ∈ H : 〈v, u− ũ〉 ≤ g(u)− g(ũ), ∀u ∈ H}. (2.10)

An element of ∂g(ũ) is called a subgradient of g at the point ũ. Let us define the core
of a subset C of a vector space as the set of points u ∈ C with the property that for
any direction v, u + tv lies in C for all 0 ≤ t < tv where the positive value tv is allowed
to depend on v. Observe that the interior of a set is always contained in its core. We
further assume in this paper that the following two inclusion which are often referred to
as regularity conditions hold true:

0 ∈ core(D dom g − domΦ), (2.11)

0 ∈ core(dom g∗ +D∗ domΦ∗). (2.12)

The regularity conditions (2.11)-(2.12) imply via the Fenchel duality theorem, cf., e.g.,
[32, 183], that solutions of (P ) and (D) exist and that the duality gap is zero. The
converse, however, is not true in general. Observe that for every closed and convex set in a
Banach space the core is equal to the interior of this set, cf., [31, 139]. Since we assume that
g and Φ are proper, convex and l.s.c. the domains in (2.11)-(2.12) are closed and convex
sets it follows that we could write (2.11)-(2.12) equivalently in terms of the interior of the
two sets. The relative interior of a subset C of a vector space, denoted by riC, is defined
as its interior within the affine hull, i.e., the smallest affine set containing C. In finite-
dimensional spaces, (2.11)-(2.12) can be replaced by the following weaker assumptions,
compare [181, Theorem 31.1]

ri(D dom g) ∩ ri(domΦ) 6= ∅,
ri(dom g∗) ∩ ri(D∗ domΦ∗) 6= ∅.

Note that even in finite-dimensional spaces we cannot conclude from (2.11)-(2.12) that
solutions of (P ) and (D) exist and that the duality gap is zero.

Assuming that the conditions (2.11)-(2.12) are satisfied we have

∂FP = ∂g + ∂(Φ ◦D),

∂FD = ∂(g∗ ◦ (−D∗)) + ∂Φ∗.

Using the definition (2.10) of the subdifferential, we immediately see that û is a solution
of (P ) if and only if 0 ∈ ∂FP (û) and analogously for the dual problem. This inclusion is
often referred to as Fermat’s rule. So, we get

û = argminu∈H1

{
g(u) + Φ(Du)

}
⇔ 0 ∈ ∂g(û) + ∂(Φ ◦D)(û) (2.13)

11



2. Variational methods

b̂ = argminb∈H2

{
g∗(−D∗b) + Φ∗(b)

} ⇔ 0 ∈ ∂(g∗ ◦ (−D∗))(b̂) + ∂Φ∗(b̂) (2.14)

Thus, both the primal and the dual problem can be written in the form of a common zero
inclusion problem

0 ∈ A(p̂) +B(p̂), (2.15)

where both A and B are set-valued operators.

The notions of convexity and lower semi-continuity are connected to set-valued operators
via the concepts of monotonicity and maximal monotonicity. A set-valued operator A :
H → 2H is called monotone if

〈u1 − u2, v1 − v2〉 ≥ 0, ∀ v1 ∈ A(u1), v2 ∈ A(u2).

It is maximal monotone if in addition to being monotone the following property is satisfied:
Let u1, v1 ∈ H be fixed. It holds that v1 ∈ A(u1) if for all pairs (u2, v2) ∈ H × H with
v2 ∈ A(u2) we have

〈u1 − u2, v1 − v2〉 ≥ 0.

Lemma 2.2.1 If a function g : H → R is proper and convex, then the subdifferential ∂g
is monotone. If g is also l.s.c., then ∂g is maximal monotone.

Proof: [35, Chapter II]

Note that not all maximal monotone operators can be written as subdifferentials, see [87,
p. 133] for a counterexample.

Theorem 2.2.2 Let A : H → 2H be a maximal monotone operator. Furthermore, let
(u(k))k∈N and (v(k))k∈N be two sequences in H which converge weakly to û and v̂, respectively.
If limsupk→∞〈uk, vk〉 ≤ 〈û, v̂〉 and v(k) ∈ A(u(k)) for all k ∈ N, then it holds that v̂ ∈ A(û).

Proof: (See also [35, p. 27] in French.) Let u, v ∈ H be any pair of elements such that
v ∈ A(u). Since A is monotone, we have for all k ∈ N that 〈u− u(k), v − v(k)〉 ≥ 0. So, we
obtain

0 ≤ limsup
k→∞

〈u− u(k), v − v(k)〉

= 〈u, v〉 − 〈û, v〉 − 〈u, v̂〉+ limsup
k→∞

〈u(k), v(k)〉

≤ 〈u, v〉 − 〈û, v〉 − 〈u, v̂〉+ 〈û, v̂〉 = 〈u− û, v − v̂〉.

Since A is maximal monotone it follows that v̂ ∈ A(û). �

It is clear that if in the above Theorem 2.2.2 either (u(k))k∈N or (v(k))k∈N converges strongly,
then it holds that

lim
k→∞

〈uk, vk〉 = 〈û, v̂〉

12



2. Variational methods

and v̂ ∈ Aû is true.

Let us now return to the proximation problem (2.2) and its dual (2.7). In terms of (2.13)
and (2.14) this can be written as

f ∈ (I + η∂Φ)(û), f ∈ (I + η∂Φ∗( 1
η
·))(b̂). (2.16)

Recall that û and b̂ exist and are uniquely determined because Φ is proper and convex. This
implies that the so-called resolvent Jη∂Φ := (I + η∂Φ)−1 of Φ is a single-valued operator
on H . The same holds true for the resolvent Jη∂Φ∗( 1

η
·). So, we can write (2.16) in the form

û = Jη∂Φ(f), b̂ = Jη∂Φ∗( 1
η
·)(f).

The resolvents of more general operators will play a crucial role in the algorithms we
present in Sections 2.3.2 and 2.3.3.

In the following two sections, we will describe methods to solve problems of the form (2.15),
in particular the problems (P ) and (D). We will start by studying operator splitting
methods and then consider Bregman techniques.

2.3 Operator splittings

Operator splitting methods make use of the additive structure of the problem in the sense
that they decompose the problem into subproblems corresponding to only one of the sum-
mands. Moreover, in these subproblems the specific structure of the individual terms can
be taken into account.

2.3.1 Weak convergence of Picard iterations of averaged opera-
tors

In the this subsection, we present important definitions and general results on the conver-
gence of fixed point iterations which will form the basis of our algorithms. In the conver-
gence proofs of the various operator splittings methods presented in the next subsections
we will apply convergence results on Picard iterations of so-called averaged operators. In
connection with the common zero problem (2.15), for example, averaged operators of the
form T = JηA(I − ηB) or T = JηA(2JηB − I)− JηB + I will appear.

Let T : H → H be an operator with fixed point set Fix(T ). Then, we can try to find
iteratively a fixed point by means of Picard iterations:

Algorithm (Picard Iterations)
Initialization: u(0) ∈ H
For k = 0, 1, . . . repeat until a stopping criterion is reached

u(k+1) = T (u(k)). (2.17)
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2. Variational methods

Since we will eventually discretize the given problem we will focus on weak convergence of
(2.17) in most parts of this chapter. We use the notation

w→ for the weak limit.
A first idea is that convergence of (2.17) cannot arise if the operator increases the distance
between two points. This idea motivates the following classical concept in optimization
and fixed point theory. An operator T is nonexpansive if

‖T (u)− T (v)‖ ≤ ‖u− v‖, ∀u, v ∈ H.

However, this property alone does not yield convergence of an iterative method, e.g., trans-
lations and rotations in R2 are nonexpansive but the corresponding Picard iterations do
not converge in general. In fact, in these examples T is isometric, i.e., one has

‖T (u)− T (v)‖ = ‖u− v‖, ∀u, v ∈ H.

Hence, the only way for a sequence (u(k))k∈N generated by (2.17) with such an isometric
operator T to converge is if T (u(0)) = u(0) or in other words if we start at a fixed point. The
following more restrictive concept avoids these problems in an obvious way. An operator T
is contractive (also called a contraction) if it is Lipschitz continuous with Lipschitz constant
L ∈ (0, 1), i.e., if there exists an L ∈ (0, 1) such that

‖T (u)− T (v)‖ ≤ L‖u− v‖, ∀u, v ∈ H.

The Banach fixed point theorem guarantees that a contraction has a unique fixed point
and that the Picard sequence (2.17) converges strongly to this fixed point for every initial
element, see [131, Chapter 7] for more details and historical references.

However, in many applications the operators have useful properties but are not con-
tractions. The main reason for this is that contractility is too restrictive in the sense that
we often do not have a unique fixed point. Indeed, it is quite natural in many cases that
the fixed point depends on the starting value u(0). Another reason to broaden the class
of operators we want to study is that we often do not need strong convergence. So, we
introduce the concept of averaged operators. A mapping T : H → H is called averaged if
there exists a nonexpansive mapping R and a constant α ∈ (0, 1) such that

T = αI + (1− α)R.

Historically, the concept of averaged mappings can be traced back to [138, 153, 189], where
the name ”averaged” was not used yet. The basic results on averaged operators collected
in this sections can also be found, e.g., in [47, 76].

Example 2.3.1 In R2 we consider the reflection operator

R =

(
1 0
0 −1

)
.

Obviously, R is nonexpansive and not averaged and we only have convergence of u(k+1) =
Ru(k) if u(0) ∈ Fix(R) = span{(1, 0)}. Now, for any α ∈ (0, 1) the averaged operator

T := αI + (1 − α)R has the same set of fixed points and for every u(0) = (u
(0)
1 , u

(0)
2 ) ∈ R2

the sequence (T ku(0))k∈N converges to (u
(0)
1 , 0).
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Clearly, an averaged operator is nonexpansive and in addition we have the following result.

Lemma 2.3.2 A contractive operator T : H → H with Lipschitz constant L < 1 is
averaged with respect to all parameters α ∈ (0, (1− L)/2].

Proof: We define the operator R := 1
1−α(T − αI). It holds for all u, v ∈ H that

‖Ru− Rv‖ =
1

1− α
‖(T − αI)u− (T − αI)v‖,

≤ 1

1− α
‖Tu− Tv‖+ α

1− α
‖u− v‖,

≤ L

1− α
‖u− v‖+ α

1− α
‖u− v‖.

So, the operator R is nonexpansive if

L

1− α
+

α

1− α
≤ 1,

which is equivalent to α ≤ (1− L)/2. �

Note that from Example 2.3.1 it can be seen that the converse is not true.

Lemma 2.3.3 Suppose that T is averaged with respect to the parameter α ∈ (0, 1). Then,
it is also averaged with respect to any other parameter α̃ ∈ (0, α].

Proof: By assumption, T = αI + (1− α)R with R nonexpansive. We have

T = α̃I +
(
(α− α̃)I + (1− α)R

)
︸ ︷︷ ︸

:=R̃

and for all u, v ∈ H it holds that

‖R̃(u)− R̃(v)‖ ≤ (α− α̃)‖u− v‖+ (1− α)‖R(u)− R(v)‖ ≤ (1− α̃)‖u− v‖.
So, R̃ is nonexpansive (even a contraction). This concludes the proof. �

As we will see later in the context of the forward-backward splitting algorithm, the special
case where the operator is averaged with respect to the parameter α = 1

2
is important.

Such an operator is called firmly nonexpansive. Two equivalent definition of this property
are given by

‖T (u)− T (v)‖2 ≤ 〈u− v, T (u)− T (v)〉, ∀u, v ∈ H. (2.18)

and

‖T (u)− T (v)‖2 ≤ ‖u− v‖2 − ‖(I − T )(u)− (I − T )(v)‖2, ∀u, v ∈ H, (2.19)

cf., e.g., [185]. We immediately see that T being firmly nonexpansive implies that it is
single-valued and nonexpansive. It will be very useful in the following sections that the
resolvents we are dealing with in this paper are indeed firmly nonexpansive.
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Lemma 2.3.4 Let A : H → 2H be monotone. Then, the resolvent JA is single-valued and
nonexpansive. Moreover, A is maximal monotone if and only if JA is firmly nonexpansive.

Proof: See [158] and [7, pp. 107].

To summarize, it holds that

contractive ⇒ averaged ⇒ nonexpansive

⇑
firmly

nonexpansive

We will show now that the property of being averaged guarantees (weak) convergence of
the sequence (T k(u(0)))k∈N. First, we prove the following lemma which we will often use in
this paper.

Lemma 2.3.5 Let T1 : H → H and T2 : H → H be two averaged operators. Then, the
product T2 ◦ T1 is also averaged.

Proof: By assumption there exist nonexpansive operators S1, S2 and α1, α2 ∈ (0, 1) such
that for all u ∈ H

T2(T1(u)) = (α2I + (1− α2)S2)(α1I + (1− α1)S1)(u)

= α2α1u+ α2(1− α1)S1(u) + (1− α2)α1S2(u) + (1− α2)(1− α1)S2(S1(u))

= α2α1u

+(1− α1α2)
(

1
1−α1α2

(
α1(1− α2)T2(u) + α2(1− α1)T1(u) + (1− α1)(1− α2)T2(T1(u))

))

︸ ︷︷ ︸
:=R

.

The product of two nonexpansive operators is clearly nonexpansive, so T2 ◦ T1 is nonex-
pansive. Furthermore, the convex combination of nonexpansive operators is nonexpansive.
The second summand on the right-hand side is indeed a convex combination of T1, T2 and
T2 ◦T1 because α1(1−α2)+α2(1−α1)+(1−α1)(1−α2) = 1−α1α2. So, R is nonexpansive
and thus T2 ◦ T1 is averaged. �

For m averaged operators with parameters α1, . . . , αm, the above Lemma 2.3.5 yields the
parameter α = Πm

i=1αi for the product mapping. This result can be sharpened in the sense
of Lemma 2.3.3, see [76, Lemma 2.2], to the larger constant

α =
m

m− 1 + 1
max1≤i≤m αi

.

A mapping T : H → H is called asymptotically regular if it holds for all u ∈ H that

T k+1(u)− T k(u) → 0, for k → +∞.

Observe that this property does not imply weak convergence, even boundedness cannot be
guaranteed. In [37, Theorem 5], the following theorem is shown.
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Theorem 2.3.6 Let X be a uniformly convex Banach space and let T : X → X be an
averaged mapping with respect to the nonexpansive mapping R and the parameter α ∈ (0, 1).
Assume that Fix(T ) 6= ∅. Then, T is asymptotically regular and Fix(T ) = Fix(R).

Proof: The second part is clear: T (u) = u ⇔ αu + (1 − α)R(u) = u ⇔ (1 − α)R(u) =
(1− α)u.
To prove the first part, we fix û ∈ Fix(T ) and write u(k) = T k(u(0)) for some starting
element u(0) ∈ X . Since T is nonexpansive, i.e., ‖u(k+1) − û‖ ≤ ‖u(k) − û‖ we obtain

lim
k→∞

‖u(k) − û‖ = d ≥ 0.

We have to consider the case where d > 0. Let us introduce the variables v(k) = 1
d
(u(k)− û)

and w(k) = 1
d
(R(u(k)) − û) = 1

d
(R(u(k)) − R(û)). Clearly, it holds that limk→∞ ‖v(k)‖ = 1

and ‖w(k)‖ ≤ ‖v(k)‖. Since
1

d
(u(k+1) − û) = αv(k) + (1− α)w(k),

we get
1

d
‖u(k+1) − û‖ ≤ α‖v(k)‖+ (1− α)‖w(k)‖ ≤ ‖v(k)‖.

The fact that ‖1
d
(u(k+1) − û)‖ → 1 thus implies that also ‖w(k)‖ → 1 as k → ∞. In

summary, we have
lim
k→∞

‖v(k)‖ = lim
k→∞

‖w(k)‖ = 1

and

lim
k→∞

‖αv(k) + (1− α)w(k)‖ = lim
k→∞

‖1
d
(u(k+1) − û)‖ = 1.

So, by the uniform convexity of X we obtain

lim
k→∞

‖v(k) − w(k)‖ = 0.

It follows that ‖u(k) − R(u(k))‖ → 0 and since

‖u(k) − u(k+1)‖ = ‖u(k) − αu(k) − (1− α)R(u(k))‖ = (1− α)‖u(k) − R(u(k))‖

it follows that ‖u(k) − u(k+1)‖ → 0 as k → ∞. �

Clearly, if H is a Hilbert space, then the above theorem can be applied because every
Hilbert space is uniformly convex.

In order to show convergence of the iteration (2.17) we also need the following important
result.

Theorem 2.3.7 Let H be a Hilbert space , V ⊂ H and let T : V → V be an asymptotically
regular and nonexpansive operator with Fix(T ) 6= ∅. Then, for every u(0) ∈ V , the sequence
of Picard iterates (u(k))k∈N generated by (2.17) converges weakly to an element of Fix(T ).
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This theorem was first proved by Opial [170, Theorem 1] based on results in [37]. In the
appendix of [83] a shorter proof (following the lines of [170]) is given. Note that in [170] we
find a remark concerning the generalization of this theorem to uniformly convex Banach
spaces. It turns out that in this case one needs an additional condition on the structure
of the space, cf., [170, p. 593]. In this paper, the proof follows from the proof of Theorem
2.3.11 as a special case, where m = 1 and e(k) = 0 for all k ∈ N.

Remark 2.3.8 If we assume that the Hilbert space is finite-dimensional, the proof of The-
orem 2.3.7 is very simple (we follow here [37, Theorem 1, Theorem 2]). First note that
for any û ∈ Fix(T ) and any u(0) ∈ H we have ‖T k+1(u(0))− û‖ = ‖T (T k(u(0)))− T (û)‖ ≤
‖T k(u(0))− û‖. So, (T k(u(0)))k∈N is bounded. Now if H is finite-dimensional it follows that
there exists a subsequence (u(kl))l∈N which converges to some y ∈ H.
If we can show that y ∈ Fix(T ) we are done because then ‖T k(u(0))− y‖ ≤ ‖T kl(u(0))− y‖
for all k ≥ kl and thus the whole sequence converges to y. Observe that since T is asymptot-
ically regular it follows that T kl+1(u(0))− T kl(u(0)) → 0. We have T kl+1(u(0))− T kl(u(0)) =
(T − I)(T kl(u(0))) and since (T kl(u(0)))l∈N converges to y and T is continuous we get that
(T − I)(y) = 0, i.e., y ∈ Fix(T ).

If we combine the above Theorems 2.3.6 and 2.3.7 we obtain the following result.

Theorem 2.3.9 Let H be a Hilbert space, V ⊂ H and let T : V → V be an averaged
mapping such that Fix(T ) 6= ∅. Then, for every u(0) ∈ V , the sequence (T k(u(0)))k∈N
converges weakly to a fixed point of T .

Remark 2.3.10 Observe that the existence of fixed points is not guaranteed for an averaged
mapping even in finite dimensions as the following example shows. Consider the translation
Tx := x + 1 in R. This mapping does not have any fixed points. However, it is averaged
because it can be written as Tx = 1

2
x + 1

2
x + 1 and x 7→ x + 2 is nonexpansive. For an

overview of theorems concerning the existence of fixed points, see, e.g., [131, Chapters 4-6].

Since we want to split our original problem into subproblems that are easier to handle
the averaged mapping T will in our examples are the sum of finitely many averaged map-
pings T1, . . . , Tm. In practice, we often cannot compute the application of the functionals
Tj : H → H exactly. So, let

(
e
(k)
j

)m
j=1

∈ Hm denote the tuple of errors which arise in each

iteration k ∈ N. This gives rise to the following inexact version of Picard iterations, see
also [76]:

Algorithm (Inexact Picard Iterations)
Initialization: u(0) ∈ H
For k = 0, 1, . . . repeat until a stopping criterion is reached

u(k+1) := Tm(. . . (T1(u
(k)) + e

(k)
1 ) . . . ) + e(k)m . (2.20)

18



2. Variational methods

Theorem 2.3.11 Let V ⊂ H and let Tj : V → V , j = 1, . . . , m, be nonexpansive opera-
tors. Assume that the right-hand side of (2.20) is well-defined and that the errors satisfy∑∞

k=1 ‖e
(k)
j ‖ < ∞ for all j = 1, . . . , m. If for an initial element u(0) ∈ V it holds that

limk→∞ ‖u(k+1) − u(k)‖ = 0 and if Fix(T1 · · ·Tm) 6= ∅ then (2.20) converges weakly to an
element of Fix(T1 · · ·Tm).
It is important here that not only the normed errors have to go to zero but also that they
have to be summable.

We will skip the short proof of Theorem 2.3.11 for the finite-dimensional case which is
similar to the one given in Remark 2.3.8 for the exact version of this algorithm. Instead,
we will now provide a proof for the infinite-dimensional setting based on Opial’s proof, cf.,
[83, 170]. An inexact algorithm can also be found in [76] for an even more general setting,
where the operators Tj themselves change to a certain degree in each iteration.

We want to borrow from [76] the notion of a quasi-Féjer monotone sequence. This is a
sequence (u(k))k∈N in a Hilbert space with the property that

‖u(k+1) − û‖ ≤ ‖u(k) − û‖+ ǫk+1, ∀ k ∈ N, ∀ û ∈ C, (2.21)

where C is called the target set and ǫk ≥ 0 satisfies
∑∞

k=1 ǫk < ∞, compare [75]. In
order to proof the main Lemma 2.3.14 about quasi-Féjer monotone sequences, we need the
following two results. The first one generalizes Lemma B.5 in [83].

Lemma 2.3.12 Let (u(k))k∈N be a quasi-Féjer monotone sequence with target set C. For
each û ∈ C it holds that (‖u(k) − û‖)k∈N converges.

Proof: By definition, we have ‖u(k+1) − û‖ ≤ ‖u(k) − û‖ + ǫk+1. Let us write d(k) :=
‖u(k)− û‖. Since∑∞

k=1 ǫk <∞ it follows that (d(k))k∈N is bounded. Now let (d(nk))k∈N and
(d(lk))k∈N be two subsequences which converge to d1 and d2, respectively. Without loss of
generality, assume that d1 > d2, so for every τ > 0 small enough there exists a kτ such
that

d(nk1
) − d(lk2 ) > τ, ∀k1, k2 ≥ kτ . (2.22)

Fix k2 in (2.22) so that
∑∞

j=lk2
ǫj < τ and k2 ≥ kτ . Then, for all k1 > kτ with nk1 ≥ lk2 we

have

d(nk1
) ≤ d(lk2 ) +

nk1
−lk2∑

j=lk2

ǫk ≤ d(lk2 ) + τ.

This yields a contradiction to (2.22) and we obtain d1 = d2. Thus, it follows that (d
(k))k∈N

converges. �

The second auxiliary lemma is Lemma B.2 of [83]:

Lemma 2.3.13 Suppose that a sequence (v(k))k∈N in H converges weakly to v̂. Then, for
each ṽ with v̂ 6= ṽ we have

liminf
k→∞

‖v(k) − ṽ‖ > liminf
k→∞

‖v(k) − v̂‖.
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Proof: We conclude that

liminf
k→∞

‖v(k) − ṽ‖2 = liminf
k→∞

(
‖v(k) − v̂‖2 + 2〈v(k) − v̂︸ ︷︷ ︸

w→0

, v̂ − ṽ〉+ ‖ṽ − v̂‖2
)
.

�

We are now in the position to prove the following lemma about quasi-Féjer monotone
sequences.

Lemma 2.3.14 Let C ⊂ H be a nonempty set in the Hilbert space H. If the sequence
(u(k))k∈N is quasi-Féjer monotone with respect to C then it holds that W((u(k))k∈N), the set
of all weak cluster points of (u(k))k∈N, is nonempty and if W((u(k))k∈N) ⊂ C then (u(k))k∈N
converges weakly to a point in C.

Proof: We can adapt [83, Theorem B.1] to our setting. First, we have to show that
W((u(k))k∈N) 6= ∅. By Lemma 2.3.12, we have for any û ∈ C that

limsup
k→∞

‖u(k)‖ ≤ lim
k→∞

‖u(k) − û‖+ ‖û‖ <∞.

So, the sequence (u(k))k∈N is bounded and by the Banach-Alaoglu theorem it has a weak
cluster point.
Now suppose u1, u2 ∈ W((u(k))k∈N) ⊂ C, i.e.,

u(nk) w→ u1, u(lk)
w→ u2.

Suppose that u1 6= u2. It holds by Lemma 2.3.13 and Lemma 2.3.12 that

lim
k→∞

‖u(nk) − u2‖ > lim
k→∞

‖u(nk) − u1‖,

lim
k→∞

‖u(lk) − u1‖ > lim
k→∞

‖u(lk) − u2‖.

This yields a contradiction because

lim
k→∞

‖u(nk) − u2‖ = lim
k→∞

‖u(lk) − u2‖ = lim
k→∞

‖u(k) − u2‖

and similarly

lim
k→∞

‖u(lk) − u1‖ = lim
k→∞

‖u(nk) − u1‖ = lim
k→∞

‖u(k) − u1‖.

Consequently, we have u1 = u2 and thus (u(k))k∈N converges weakly the unique cluster
point of this sequence. �

Applying Lemma 2.3.14 and Lemma 2.3.13 we can finally prove Theorem 2.3.11.
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Proof of Theorem 2.3.11: Since (u(k))k∈N is by assumption quasi-Féjer monotone with
respect to the nonempty target set Fix(Tm · · ·T1) it remains to show that W((u(k))k∈N) ⊂
Fix(Tm · · ·T1) in order to apply Lemma 2.3.14. So, let u(nk) w→ û and consider

liminf
k→∞

‖u(nk) − Tm · · ·T1(û)‖ ≤ liminf
k→∞

‖u(nk) − Tm · · ·T1(u(nk))‖+ liminf
k→∞

‖u(nk) − û‖,(2.23)

where we have used the triangle inequality and for the last term the fact that the operators
T1, . . . , Tm are nonexpansive. Note that by the definition of the sequence (u(nk))k∈N and by
the nonexpansivity of T1, . . . , Tm it holds that

‖u(nk) − Tm · · ·T1(u(nk))‖
= ‖Tm(. . . (T1(u(nk−1)) + e

(nk−1)
1 ) . . . ) + e(nk−1)

m − Tm · · ·T1(u(nk))‖

≤ ‖u(nk−1) − u(nk)‖+
m∑

i=1

‖e(nk−1)
i ‖.

Since we assume that ‖u(k+1) − u(k)‖ → 0 as k → ∞ and that limk→∞
∑m

i=1 ‖e
(k)
i ‖ = 0 we

obtain

lim
k→∞

‖u(nk) − Tm · · ·T1(u(nk))‖ = 0. (2.24)

So, the inequality (2.23) yields

liminf
k→∞

‖u(nk) − Tm · · ·T1(û)‖ ≤ liminf
k→∞

‖u(nk) − û‖

which means that by Lemma 2.3.13 we have Tm · · ·T1(û) = û. Thus we have shown that
W((u(k))k∈N) ⊂ Fix(Tm · · ·T1) and the weak convergence follows from Lemma 2.3.14. �

So far we have assumed that limk→∞ ‖u(k+1) − u(k)‖ = 0. The next result generalizes
Theorem 2.3.6 and shows that this condition is fulfilled for averaged operators.

Theorem 2.3.15 Let X be a uniformly convex Banach space and consider a subset
V ⊂ X as well as the averaged mappings Ti : V → V , i = 1, . . . , m, with Fix(Tm · · ·T1) 6=
∅. Assume that the right-hand side of (2.20) is well-defined and that the errors satisfy∑∞

k=1 ‖e
(k)
j ‖ < ∞ for j = 1, . . . , m. Then, for each initial element u(0) ∈ V the sequence

(u(k))k∈N generated by (2.20) has the property that ‖u(k+1) − u(k)‖ → 0 as k → ∞.

Proof: Consider an element û ∈ Fix(Tm · · ·T1). We know by Lemma 2.3.12 that

lim
k→∞

‖u(k) − û‖ = d ≥ 0.

Suppose that d > 0. Let R be a nonexpansive mapping such that Tm · · ·T1 can be written
as

Tm · · ·T1 = αI + (1− α)R,
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for some α ∈ (0, 1). Define v(k) = 1
d
(u(k) − û) and w(k) = 1

d
(Ru(k) − û). The operator R is

nonexpansive and by Theorem 2.3.6 the element û is also a fixed point of R. So, we have
‖v(k)‖ → 1 as k → ∞ and ‖w(k)‖ ≤ ‖v(k)‖. It holds that

1
d
(Tm · · ·T1u(k) − û) = αv(k) + (1− α)w(k), (2.25)

so that we get

1
d
‖Tm · · ·T1(u(k))− û‖ ≤ α‖v(k)‖+ (1− α)‖w(k)‖ ≤ ‖v(k)‖. (2.26)

Using (2.24) and the triangle inequality to get

1
d
‖Tm · · ·T1(u(k))− û‖ ≤ 1

d
‖Tm · · ·T1(u(k))− u(k+1)‖︸ ︷︷ ︸

→0

+ 1
d
‖u(k+1) − û‖︸ ︷︷ ︸

→1

, (2.27)

1
d
‖u(k+1) − û︸ ︷︷ ︸

→1

‖ ≤ 1
d
‖Tm · · ·T1(u(k))− u(k+1)‖︸ ︷︷ ︸

→0

+1
d
‖Tm · · ·T1(u(k))− û‖, (2.28)

we obtain

lim
k→∞

1
d
‖Tm · · ·T1(u(k))− û‖ = 1.

By (2.25) and (2.26) it follows that

lim
k→∞

‖αv(k) + (1− α)w(k)‖ = 1 and lim
k→∞

‖w(k)‖ = 1.

So, by the uniform convexity of our space X we get

lim
k→∞

‖v(k) − w(k)‖ = 0.

It follows that ‖u(k) − R(u(k))‖ → 0 and from ‖u(k) − αu(k) − (1 − α)R(u(k))‖ = (1 −
α)‖u(k) − R(u(k))‖ we immediately conclude that ‖u(k) − Tm · · ·T1(u(k))‖ → 0 as k → ∞.
Since

‖u(k+1) − u(k)‖ ≤ ‖u(k+1) − Tm · · ·T1(u(k))‖+ ‖Tm · · ·T1(u(k))− u(k)‖
it follows that ‖u(k+1) − u(k)‖ → 0 as k → ∞. �

Hence, analogously to Theorem 2.3.9 we obtain the following result.

Theorem 2.3.16 Let H be a Hilbert space, V ⊂ H and let Tj : V → V , j = 1, . . . , m,
be averaged operators such that Fix(Tm · · ·T1) 6= ∅. Then, for every u(0) ∈ V the sequence
(u(k))k∈N generated by (2.20) converges weakly to a fixed point of the operators Tm · · ·T1 if∑∞

k=1 ‖e
(k)
j ‖ <∞ for j = 1, . . . , m.

Generalization of (2.17) and (2.20) to the case where the averaged operators change in
each iteration can be found in [126, 217, 227, 229, 233].
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2.3.2 Forward–backward splitting

In this subsection we want to apply the convergence results of the preceding section to a
first splitting algorithm for solving (2.15), the forward-backward splitting method which
can be traced back to [144, 171]. The idea of the forward-backward splitting algorithm is
that for any constant η > 0 we have

0 ∈ A(û) +B(û) ⇔ û− ηB(û) ∈ û+ ηA(û)

⇔ û ∈ JηA(I − ηB)(û), (2.29)

where û − ηB(û) ∈ û + ηA(û) means that there exists an element y ∈ B(û) such that
û− ηy ∈ û+ ηA(û). This leads to the following result:

Theorem 2.3.17 (Forward-backward splitting algorithm (FBS)) Let H be a Hilbert
space. Suppose that A : H → 2H is maximal monotone and B : H → H is a monotone
operator such that βB is firmly nonexpansive for some β > 0. Furthermore, assume that
a solution of (2.15) exists. Then, for every starting element u(0) and η ∈ (0, 2β) the
forward-backward splitting algorithm

u(k+1) = JηA(I − ηB)(u(k)), (2.30)

converges weakly to an element of the set of solutions (A+B)−1({0}).
Proof: Since A is maximal monotone it follows by Lemma 2.3.4 that for all η > 0 the
resolvent JηA is single-valued and firmly nonexpansive. Furthermore, it holds that if βB is
firmly nonexpansive, then I − ηB is averaged with parameter η

2β
for η ∈ (0, 2β) which can

be seen as follows: Assume that βB is firmly nonexpansive, then by definition there is a
nonexpansive operator R s.t.

B = 1
2β
(I +R).

It follows that
I − ηB = I − η

2β
(I +R) = (1− η

2β
)I + η

2β
(−R).

So, both JηA and I − ηB are averaged if η ∈ (0, 2β) and, consequently, the product
JηA(I − ηB) is averaged. Assuming that Fix(JηA(I − ηB)) 6= ∅ we can apply Theorem
2.3.9 to conclude that for each starting point u(0) the iteration (2.30) converges weakly to
a point û ∈ Fix(JηA(I − ηB)) . Clearly, by (2.29), û ∈ Fix(JηA(I − ηB)) is equivalent to
0 ∈ A(û) +B(û) and we are done. �

For a different proof, see, e.g., [211]. Various applications of the forward-backward splitting
algorithm are reported in [80]. The name forward-backward splitting is due to the fact
that in every iteration of (2.30) we perform a forward (explicit) step with respect to the
operator B and a backward (implicit) step on A. Intuitively speaking, the conditions on
the operator B allow us to do a simple forward step whereas A is a more general operator
and we have to perform a backward step. The constant η can be interpreted as the step
length.
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Remark 2.3.18 Clearly, based on Theorem 2.3.16 a similar result as Theorem 2.3.17 can
be derived for the inexact case, i.e., when the application of the two averaged operators JηA
and I − ηB introduces errors in each iteration.

Recall that in Theorem 2.3.17 the operator B must be firmly nonexpansive. In many cases,
the following result can be used to verify this property.

Theorem 2.3.19 Let H be a Hilbert space and let the function F on H be real-valued,
convex and Fréchet differentiable. If ∇F is Lipschitz continuous with Lipschitz constant
α > 0, then 1

α
∇F is firmly nonexpansive.

This result goes back to [10, Corollaire 10] and a shorter proof was recently provided in
[16]. Note that if 1

α
∇F is firmly nonexpansive then ∇F is also called 1

α
-cocoercive.

2.3.3 Douglas–Rachford splitting

Note that in the foward-backward splitting algorithm the operatorB has to be single-valued
and we do not make use of the resolvent of B. This is different for the Douglas-Rachford
splitting algorithm, cf., [92, 144], which is based on another fixed point equation. To
introduce it, we first note that if B is single-valued we can rewrite the fixed point relation
(2.29) as follows

0 ∈ A(û) +B(û) ⇔ û ∈ JηA(I − ηB)(û)

⇔ û+ ηB(û) ∈ JηA(I − ηB)(û) + ηB(û) (2.31)

⇔ û ∈ JηB
(
JηA(I − ηB)(û) + ηB(û)

)
. (2.32)

If B is set-valued the Picard iterations

u(k+1) ∈ JηB
(
JηA(I − ηB)(u(k)) + ηB(u(k))

)
(2.33)

corresponding to (2.32) are called the ”loose” Douglas-Rachford splitting algorithm, cf.
[94]. In general, the algorithm (2.33) does not converge to a solution of (2.15). In particular,
we cannot guarantee that (2.31) follows from (2.32). However, one can choose the element
of ηB(u(k)) in a special way to obtain a convergent algorithm. To this end, consider a fixed
point t̂ = Q(t̂) of the operator Q : H → H defined by

Q = JηA(2JηB − I)− JηB + I.

For such a fixed point t̂ we define û := JηB(t̂) and thus ξ̂ := t̂ − û lies in ηB(û). With

this choice ξ̂ ∈ ηB(û) the element û is indeed a solution of (2.15). To see this, observe
that with the above definition of t̂, û and ξ̂ the inner part of the right-hand side of (2.32)
is equivalent to Q(t̂) since

Q(t̂) = JηA(2JηB(t̂)− t̂)− JηB(t̂) + t̂

= JηA(û− ξ̂) + ξ̂. (2.34)
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By using t̂ = Q(t̂) together with (2.34), we now recover the relation (2.31):

t̂ = Q(t̂) ⇔ û+ ξ̂ = JηA(û− ξ̂) + ξ̂

and we can finally conclude that

û ∈ JηA(I − ηB)(û) ⇔ 0 ∈ A(û) +B(û).

We thus have to find a way to compute a fixed point of Q. As Lemma 2.3.20 below shows,
the operator Q is firmly nonexpansive, i.e., it is averaged. Hence, we can conclude from
Theorem 2.3.9 that for any starting element t(0) ∈ H and any step length η > 0 the Picard
iterations

t(k+1) = Q(t(k)) = JηA(2JηB(t
(k))− t(k))− JηB(t

(k)) + t(k) (2.35)

converge weakly to an element t̂ if a fixed points of Q exists.
Let us define the reflection operator RηA := 2JηA−I, where A is any maximal monotone

operator and η > 0. We have:

Lemma 2.3.20 Let A,B be two maximal monotone operators and η > 0 a fixed parameter.
Then, it holds that the operator Q := JηA(2JηB − I)− JηB + I is firmly nonexpansive with
respect to the nonexpansive mapping RηARηB.

Proof: (Compare [144, Lemma 1] and [76, Lemma 2.6].) We know by Lemma 2.3.4
that the resolvent JηA is firmly nonexpansive which means by definition that 2JηA − I is
nonexpansive. The same holds true for JηB . So, RηARηB is nonexpansive and we have

I +RηARηB = 2JηA(2JηB − I)− (2JηB − I) + I = 2(JηA(2JηB − I)− JηB + I).

This implies that

JηA(2JηB − I)− JηB + I = 1
2
(I +RηARηB), (2.36)

which concludes the proof. �

In summary, we have proved the following theorem, compare [76, 144].

Theorem 2.3.21 (Douglas-Rachford splitting algorithm (DRS)) Let A,B : H →
2H be maximal monotone operators and assume that a solution of (2.15) exists. Then, for
any initial elements t(0) and u(0) and any η > 0, the following (tight) Douglas-Rachford
splitting algorithm converges weakly to an element t̂:

t(k+1) = JηA(2u
(k) − t(k)) + t(k) − u(k),

u(k+1) = JηB(t
(k+1)).

Furthermore, it holds that û := JηB(t̂) satisfies 0 ∈ A(û)+B(û). If H is finite-dimensional,
then the sequence

(
u(k)
)
k∈N converges to û.
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Note that JηB being nonexpansive implies that it is continuous. Hence, if (t(k))k∈N is
strongly convergent, then so is (u(k))k∈N. In particular, we have convergence in finite-
dimensional spaces.
Observe that for the above Douglas-Rachford algorithm we apply both the resolvents of A
and of B. In contrast to that, the forward-backward splitting algorithm uses the resolvent
of A, but the operator B is applied directly.
Generally, the convergence of the sequence (u(k))k∈N is not guaranteed in the infinite-
dimensional setting. However, two properties of (u(k))k∈N can easily be established, com-
pare [144, Proposition 2].

• limk→∞ ‖u(k+1) − u(k)‖ = 0

• The sequence (u(k))k∈N is bounded.

To see the first part, recall that we know by Lemma 2.3.20 that the operator JηA(2JηB −
I)− JηB + I is averaged. By (2.35) and Theorem 2.3.6 we thus have t(k+1) − t(k) → 0 for
k → ∞. Furthermore, the operator JηB is nonexpansive which yields

‖u(k+1) − u(k)‖ ≤ ‖JηB(t(k+1))− JηB(t
(k))‖ ≤ ‖t(k+1) − t(k)‖ → 0.

For the second property, we can use that every weakly convergent sequence in a Banach
space is bounded, so that (t(k))k∈N is bounded. Using again the nonexpansivity of JηB, we
obtain for some constant K that

‖u(k) − û‖ ≤ ‖t(k) − t̂‖ ≤ ‖t(k)‖+ ‖t̂‖ ≤ K, ∀k ∈ N.

For more general results on the convergence properties of (u(k))k∈N, see [144, pp. 969–970].

Remark 2.3.22 In the original paper [92], the Douglas-Rachford splitting method was
proposed for the numerical solution partial differential equation, i.e., for solving systems of
linear equations. More on this application can also be found in [213].

Remark 2.3.23 For splitting algorithms to minimize a functional which is the sum of
more than two functions, see Section 2.4.3 as well as, e.g. [77, 79].

2.3.4 Other operator splittings

Backward-backward splitting We want to mention this method only briefly here since
it does not yield fast algorithms for the minimization problems we consider in the following
chapters. The backward-backward splitting algorithm [1, 17, 76, 144] has the form

u(k+1) = JηAJηB(u
(k)), (2.37)

where A and B are two maximal monotone operators and η is a positive constant. Clearly,
the composition of two resolvents yields an averaged operator, so that by Theorem 2.3.9
for each starting element u(0), the algorithm (2.37) converges weakly to a fixed point of the
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operator JηAJηB if such a fixed point exists. However, the set Fix(JηAJηB) does in general
not coincide with the set (A+B)−1({0}) we are interested in. Instead, we have

û = JηAJηB(û) ⇔ (I + ηA)(û) = JηB(û)

⇔ 0 ∈ A(û) +
1

η
(I − JηB)
︸ ︷︷ ︸

=:ηB

(û). (2.38)

The mapping ηB = 1
η
(I−JηB) is called the Yosida approximant with respect to B and the

parameter η.
In the case where A and B are the subdifferentials of proper, convex and l.s.c. func-

tionals ηg1 and g2, the problem (2.38) which is solved by the backward-backward splitting
algorithm (2.37)

u(k+1) = proxη2g1proxηg2u
(k), (2.39)

can be interpreted in a straightforward way. Recalling the definition of the gradient of the
Moreau envelope given in (2.3), we see that the gradient of the Moreau envelope coincides
with the Yosida approximant of the corresponding subdifferential, i.e., we have

η∂g2 = ∇(ηg2). (2.40)

It thus follows that the sequence (u(k))k∈N generated by (2.39) converges weakly to a
solution û of

0 ∈ η∂g1(û) +∇(ηg2)(û)

⇔ û = argmin
u∈H

{ηg1(u) + min
v∈H

{1
2
‖v − u‖2 + ηg2(v)}}

⇔ û = argmin
u∈H

{min
v∈H

{1
2
‖v − u‖2 + ηg1(u) + ηg2(v)}} (2.41)

So, the backward-backward method does not yield an exact solution of the problem
argminu{g1(u) + g2(u)} but of a ”regularized” version this problem which involves the
penalty or coupling term 1

2
‖u−v‖22. Clearly, we can use the parameter η to steer how close

we get to the original solution. Observe that in (2.41) the minimum with respect to v is
attained, too. This can be seen already from (2.38) noting the fact that u(k) converges JηB
is continuous. We thus have in (2.41) that

v̂ = argmin
v∈H

{1
2
‖v − û‖2 + ηg2(v)}

⇔ v̂ = proxηg2 û.

Peaceman-Rachford splitting The loose version of the Peaceman-Rachford splitting
algorithm to find an element of (A+B)−1({0}) can be written as

u(k+1) ∈ JηB(I − ηA)JηA(I − ηB)(u(k)),
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see [76, 94, 144, 172]. Again, A and B are maximal monotone operators. This can roughly
be interpreted as the composition of two forward-backward splitting steps in each iteration,
where the roles of the operators A and B change. A tight variant of this algorithm was
proposed in [144] in terms of the reflection operator

t(k+1) = RηARηB(t
(k)). (2.42)

If the iteration (2.42) converges to a fixed point t̂ of RηARηB , then JηB(t̂) is a solution of
(2.15). This can be seen as follows. It holds that

t̂ = RηARηB(t̂) ⇔ t̂ = 1
2
(I +RηARηB)(t̂)

and by (2.36) we conclude that the fixed points of RηARηB coincide with those of the op-
erator JηA(2JηB− I)−JηB + I used in the Douglas-Rachford algorithm. In contrast to the
Douglas-Rachford splitting method, we cannot conclude the convergence of the Peaceman-
Rachford splitting algorithm from the results of Section 2.3.3. We know from Lemma
2.3.20 that RηARηB is nonexpansive. In general, however, it is not averaged so that further
assumptions on the operators A and B are necessary to guarantee convergence. Unfortu-
nately, the conditions given in [76, 144] to guarantee convergence of the sequence (t(k))k∈N
do not hold for the applications we consider in Chapters 3 and 4. This is confirmed ex-
perimentally for the Rudin-Osher-Fatemi model, i.e., cases did arise where in a reasonable
timespan convergence could not be observed. Even when convergence occurred the algo-
rithm was much slower than the corresponding forward-backward and Douglas-Rachford
splitting algorithms.

2.4 Bregman methods

Recall that the idea behind the operator splitting methods considered in the preceding
section is to decompose an original problem

min
u∈H

F(u)

into easier parts, e.g., we compute the resolvent of just one summand of the problem at a
time. The price we have to pay is that we obtain an iterative algorithm, i.e., we have to
repeat these steps possibly many times. Bregman methods, too, are iterative algorithms
which solve in each step a ”nicer” problem.

2.4.1 Bregman proximal point method

We start by considering the general Bregman proximal point method and then deal with the
special case of the classical proximal point algorithm for (P ) and (D). The new problems
we consider in Bregman iterative methods are constructed in the following way. We add to
the original objective functional F a so-called ”cost-to-move” term. This term penalizes
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in some sense the distance between two iterates. The distance functions we use here are
defined by means of Bregman functions ϕ : H → R, cf. [34, 53]. We make the following
assumptions on the space H and the functions ϕ:

A1: H is finite-dimensional,

A2: domϕ = H ,

A3: ϕ is l.s.c. and strictly convex.

The corresponding Bregman distance D
(p)
ϕ : H ×H → R is then given by

D(p)
ϕ (u, v) = ϕ(u)− ϕ(v)− 〈p, u− v〉,

with p ∈ ∂ϕ(v). Notice that if ϕ is smooth, then the Bregman distance can be interpreted
as subtracting the first-order Taylor expansion of ϕ from the function ϕ itself. Based on
these definitions we can follow [55] and define the Bregman proximal point (BPP) algo-
rithm applied to a proper, convex and l.s.c. function F : H → R as follows:

Algorithm (Bregman proximal point algorithm (BPP))
Initialization: u(0), p(0)

For k = 0, 1, . . . repeat until a stopping criterion is reached

u(k+1) = argmin
u∈H

{ 1
γ
D(p(k))
ϕ (u, u(k)) + F(u)},

p(k+1) ∈ ∂ϕ(u(k+1)). (2.43)

We will often use the notation D
(k)
ϕ := D

(p(k))
ϕ . Clearly, we have to make assumptions on ϕ

and D
(p)
ϕ for this algorithm to converge to a minimizer of F . There are different approaches

to do this. In contrast to the classical setting [55, 54, 69, 95, 103, 132, 136], we do not need
that ϕ is differentiable. However, we restrict our attention to the case where the so-called
zone of the Bregman function ϕ, i.e., its domain domϕ, consists of the whole space H . For
a more general setting, see [136]. We define the following functions

D
′

ϕ(u, v) = ϕ(u)− ϕ(v)− σ∂ϕ(v)(u− v), (2.44)

D♯
ϕ(u, v) = ϕ(u)− ϕ(v) + σ∂ϕ(v)(v − u), (2.45)

where σ∂ϕ(v) denotes the support function of the set ∂ϕ(v), i.e.,

σ∂ϕ(v)(d) = sup{〈w, d〉 : w ∈ ∂ϕ(v)}.

By [181, Theorem 23.4] it holds that

D′
ϕ(u, v) = ϕ(u)− ϕ(v)−Dϕ(v)(u− v),
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where Dϕ(v)(d) denotes the (right) directional derivative of ϕ at v with respect to the
direction d ∈ H , i.e.,

Dϕ(v)(d) = lim
α→0+

ϕ(v + αd)− ϕ(v)

α
.

Observe that for any u, v ∈ H and any subgradient p ∈ ∂ϕ(v) we have

0 ≤ D′
ϕ(u, v) ≤ D(p)

ϕ (u, v) ≤ D♯
ϕ(u, v). (2.46)

All these functionals can be interpreted as generalized distance functions in the sense that
they are nonnegative and attain, due to the strict convexity of ϕ, the value zero if and only
if u = v. In general, however, they are not symmetric and the triangle inequality does not
hold true. In Fig. 2.1 we show an example of a nonsmooth Bregman function ϕ and the
corresponding distances D′

ϕ and D♯
ϕ.

ϕ(u)

u
v

D♯
ϕ(u, v)

D
′

ϕ(u, v)

Figure 2.1: Example of a Bregman function ϕ on R and the corresponding distance func-
tions D♯

ϕ(u, v) (distance between ϕ and solid lines) and D
′

ϕ(u, v) (distance between ϕ and
dashed lines) for some fixed point v.

In order to prove the convergence of the Bregman proximal point algorithm we need
the following lemmas.

Lemma 2.4.1 Let H be an infinite-dimensional Hilbert space and let f : H → R be a
proper, convex and l.s.c. function which is continuous on its domain. Assume (u(k))k∈N
and (d(k))k∈N are strongly convergent sequences with limits û and d̂, respectively, so that
u(k), u(k) + d(k) ∈ domf , for all k ∈ N and û, û+ d̂ ∈ domf . Then, it holds that

limsup
k→∞

Df(u(k))(d(k)) ≤ Df(û)(d̂).
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The proof of this lemma can be found in [212, p. 468].

Lemma 2.4.2 It holds for every sequence (u(k))k∈N generated by (2.43) and for all u ∈ H
that

D(k+1)
ϕ (u, u(k+1)) ≤ D(k)

ϕ (u, u(k))−D(k)
ϕ (u(k+1), u(k)), if F(u) ≤ F(u(k+1)),(2.47)

F(u(k+1))−F(u) ≤ 1

kγ
D(1)
ϕ (u, u(1)). (2.48)

Proof: The following proof can also be found in [136, pp. 1148-1150]. A short calculation

shows that by definition of D
(k)
ϕ we have

D(k+1)
ϕ (u, u(k+1))−D(k)

ϕ (u, u(k)) +D(k)
ϕ (u(k+1), u(k)) = 〈p(k) − p(k+1), u− u(k+1)〉. (2.49)

Since both functions ϕ and F are proper, convex and l.s.c. we have domD
(k)
ϕ (·, u(k)) = H

and 0 ∈ int(domF − domD
(k)
ϕ (·, u(k))). Hence, it holds for u(k+1) and p(k+1) that

0 ∈ 1

γ
∂uD

(k)
ϕ (u(k+1), u(k)) + ∂F(u(k+1)) =

1

γ
(∂ϕ(u(k+1))− p(k)) + ∂F(u(k+1)).

This yields together with p(k+1) ∈ ∂ϕ(u(k+1)) that

p(k) − p(k+1) ∈ γ∂F(u(k+1)).

So, it follows from (2.49) and the definition of the subdifferential that

D(k+1)
ϕ (u, u(k+1))−D(k)

ϕ (u, u(k)) +D(k)
ϕ (u(k+1), u(k)) ≤ γ(F(u)−F(u(k+1))) (2.50)

and for all u ∈ H with F(u) ≤ F(u(k+1)) we have shown (2.47).
To prove the second statement we first observe that by the definition of u(k+1) in (2.43) we
have

F(u(k+1)) +
1

γ
D(k)
ϕ (u(k+1), u(k)) ≤ F(u(k)) +

1

γ
D(k)
ϕ (u(k), u(k))︸ ︷︷ ︸

=0

.

If we multiply both sides by (k − 1)γ and sum from one to l we obtain

l∑

k=1

(k − 1)γ

γ
D(k)
ϕ (u(k+1), u(k)) ≤ γ

l∑

k=1

(k − 1)(F(u(k))− F(u(k+1))),

or equivalently

l∑

k=1

(k − 1)D(k)
ϕ (u(k+1), u(k)) ≤ −lγF(u(l+1)) + γ

l∑

k=1

F(u(k+1)). (2.51)

31



2. Variational methods

If we sum up (2.50) from one to l we get

D(l+1)
ϕ (u, u(l+1)) +

l∑

k=1

D(k)
ϕ (u(k+1), u(k))−D(1)

ϕ (u, u(1)) ≤ lγF(u)− γ
l∑

k=1

F(u(k+1)). (2.52)

Adding (2.51) and (2.52) yields

D(l+1)
ϕ (u, u(l+1))−D(1)

ϕ (u, u(1)) + lγ(F(u(l+1))−F(u)) ≤ −
l∑

k=1

kD(k)
ϕ (u(k+1), u(k)).

Since D
(k)
ϕ (·, u(k)) ≥ 0, ∀k ∈ N we can drop the right-hand side and the first term on the

left-hand side which gives us (2.48). �

Using the preceding lemmas we can prove the following convergence result.

Theorem 2.4.3 Let F be a proper, convex and l.s.c. function which attains its minimum.
Suppose an arbitrary initial value u(0), a parameter γ > 0 and a Bregman function which
satisfies A1-A3 are given. Then, the sequence (u(k))k∈N generated by the corresponding
Bregman proximal point algorithm (2.43) converges to a minimizer of F .

Proof: This proof is adapted from [136] and [135] for our special setting, in particular,
assumption A1. Since γ > 0 we obtain form (2.48) that

lim
k→∞

F(u(k)) = min
u∈H

F(u)

which means that F(u(k)) is a minimizing sequence. Now let û be a minimizer of F . Using

again that D
(k)
ϕ (·, u(k)) ≥ 0 for all k we can conclude from (2.47) that D

(k)
ϕ (û, u(k)) ≤

D
(1)
ϕ (û, u(1)). We know by (2.46) that D

′

ϕ(·, u(k)) ≤ D
(k)
ϕ (·, u(k)) and thus it follows that

D
′

ϕ(û, u
(k)) ≤ α

with α := D
(1)
ϕ (û, u(1)). In other words, we have

u(k) ∈ levαD
′

ϕ(û, ·), ∀k ∈ N,

where levα denotes the level set with respect to the parameter α. The facts that we are
working in a finite-dimensional Hilbert space and that ϕ is strictly convex imply that the
level sets levαD

′

ϕ(û, ·) are bounded and thus (u(k))k∈N is bounded. Hence, there exists a

subsequence (u(kl))l∈N which converges to a minimizer ũ. We now show that

D♯
ϕ(ũ, u

(kl)) = ϕ(ũ)− ϕ(u(kl)) + sup{〈w, u(kl) − ũ〉 : w ∈ ∂ϕ(u(kl))} → 0.

Because of assumptions A1-A3, the function ϕ is continuous on H , see [181, Theorem 10.2],
and thus ϕ(u(kl)) → ϕ(ũ). It remains to show that

sup{〈w, u(kl) − ũ〉 : w ∈ ∂ϕ(u(kl))} → 0. (2.53)
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Suppose (2.53) does not hold true. Then, there must be an unbounded sequence w(l) ∈
∂ϕ(u(kl)). Since (u(kl))l∈N is bounded, we can thus construct a bounded sequence (y(l))l∈N
such that 〈w(l), y(l) − u(kl)〉 → +∞ by setting

y(l) := u(kl) +
w(l)

‖w(l)‖ .

This yields a contradiction in the following way: Since w(l) ∈ ∂ϕ(u(kl)) we have

〈w(l), y − u(kl)〉 ≤ ϕ(y)− ϕ(u(kl)), ∀y ∈ H.

For y := y(l) we thus have

〈w(l), y(l) − u(kl)〉 ≤ ϕ(y(l))− ϕ(u(kl)), ∀l ∈ N. (2.54)

By assumption, H is finite-dimensional (A1) so that it is a locally compact space. Hence,
ϕ being continuous implies that ϕ is locally bounded. It follows from the boundedness of
(y(l))l∈N and (u(kl))l∈N that the right-hand side of (2.54) is bounded. The left-hand side,
however, goes to infinity which yields the contradiction.

So, we have that (2.53) holds true and thus D♯
ϕ(ũ, u

(kl)) → 0. Consequently, by (2.46)
we have

D(kl)
ϕ (ũ, u(kl)) → 0.

If we apply (2.47) and the fact that D
(k)
ϕ (·, u(k)) ≥ 0 we obtain

D(k)
ϕ (ũ, u(k)) ≤ D(kl)

ϕ (ũ, u(kl)), ∀k > kl

and so we get D
(k)
ϕ (ũ, u(k)) → 0. By (2.46) this gives

D′
ϕ(ũ, u

(k)) → 0. (2.55)

We now prove that (2.55) yields u(k) → ũ. Assume that u(k) does not converge to ũ. Since
the sequence (u(k))k∈N is bounded there exists a convergent subsequence (u(km))m∈N with
limit ũ+ z, z 6= 0. Recall that

D′
ϕ(ũ, u

(km)) = ϕ(ũ)− ϕ(u(km))−Dϕ(u(km))(ũ− u(km)).

By the continuity of ϕ, it follows that ϕ(u(km)) → ϕ(ũ+ z) and Lemma 2.4.1 implies that

limsup
k→∞

Dϕ(u(km))(ũ− u(km)) ≤ Dϕ(ũ+ z)(−z).

Consequently,
ϕ(ũ)− ϕ(ũ+ z)−Dϕ(ũ+ z)(−z) ≤ 0.

However, by assumption A3, the function ϕ is strictly convex so that (compare [181, p.
214])

Dϕ(ũ+ z)(−z) < ϕ(ũ)− ϕ(ũ+ z)

33



2. Variational methods

which yields a contradiction. It follows that z = 0 or, in other words, u(k) → ũ. �

Let us return to our initial problems (P ) and (D) defined in Section 2.2. The classical
example of a Bregman function satisfying the properties A1-A3 is ϕ := 1

2
‖ · ‖2. The

corresponding Bregman distance is given by

D
(k)
1
2
‖·‖2(u, u

(k)) =
1

2
‖u− u(k)‖2. (2.56)

This Bregman distance is symmetric which is not true for general Bregman distances.
However, the triangle inequality does not hold true for this example either. Applying the
BPP method (2.43) with (2.56), we recover the classical proximal point (PP) algorithm for
(P ) dating back to [155] which can be written as follows, compare [184],

u(k+1) = proxγFP
(u(k)) = argmin

u∈H1

{ 1

2γ
‖u− u(k)‖2 + FP (u)

}
= Jγ∂FP

(u(k)). (2.57)

So, this proximal point algorithm is simply the iterated application of the resolvent of the
full mapping γ∂FP . Clearly, by Lemma 2.3.4 the resolvent is firmly nonexpansive for our
choice of g,Φ and D, so that as an alternative to Theorem 2.4.3 we can conclude from
Theorem 2.3.9 that the PP algorithm is guaranteed to converge for any initial point u(0)

(weakly in general Hilbert spaces). Recall that the aim of the preceding sections was to
develop splitting methods which allow us to compute a minimizer without having to eval-
uate the full resolvent of the subdifferential of FP which in general cannot be done by a
fast algorithm.

In the same way as in (2.57), we can define the proximal point algorithm for (D)

b(k+1) = proxγ∂FD
(b(k)) = argmin

b∈H2

{ 1

2γ
‖b− b(k)‖2 + FD(b)

}
= Jγ∂FD

(b(k)) (2.58)

and the same convergence result holds true.

2.4.2 Split Bregman and augmented Lagrangian method

We will now apply the BPP algorithm to the following equivalent constrained version of
the primal problem (P ):

(PSplit) min
u∈H1,d∈H2

E(u, d) s.t. Du = d,

where
E(u, d) := g(u) + Φ(d).

Note that in the context of total variation regularization this splitting idea was first used in
[217] where the authors introduce a quadratic penalty term to incorporate the constraint.
In the second part of this Section, we will show the relation of the resulting algorithm to
the augmented Lagrangian and the PP method (2.58) applied to (D).
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The split Bregman method. Following [120], we consider the BPP algorithm for the
objective function F(u) := 1

2γ
‖Du− d‖2 with the Bregman distance

D
(p(k))
E (u, d, u(k), d(k)) = E(u, d)−E(u(k), d(k))− 〈p(k)u , u− u(k)〉 − 〈p(k)d , d− d(k)〉,

with
(
p
(k)
u , p

(k)
d

)
∈ ∂E(u(k), d(k)). This results in the algorithm

(u(k+1), d(k+1)) = argmin
u∈H1,d∈H2

{
D

(p(k))
E (u, d, u(k), d(k)) +

1

2γ
‖Du− d‖2

}
, (2.59)

p(k+1)
u = p(k)u − 1

γ
D∗(Du(k+1) − d(k+1)),

p
(k+1)
d = p

(k)
d +

1

γ
(Du(k+1) − d(k+1)),

where we have used that (2.59) implies

0 ∈ ∂E(u(k+1), d(k+1))−
(
p(k)u , p

(k)
d

)
+
(1
γ
D∗(Du(k+1) − d(k+1)),−1

γ
(Du(k+1) − d(k+1))

)
,

= ∂E(u(k+1), d(k+1))−
(
p(k+1)
u , p

(k+1)
d

)
,

so that
(
p
(k)
u , p

(k)
d

)
∈ ∂E(u(k), d(k)). Setting p

(k)
u = − 1

γ
D∗b(k) and p

(k)
d = 1

γ
b(k) for all k ≥ 0

and regarding that for a bounded linear operator D

D
(p(k))
E (u, d, u(k), d(k)) +

1

2γ
‖Du− d‖2

= E(u, d)− E(u(k), d(k)) +
1

γ
〈b(k), Du−Du(k)〉 − 1

γ
〈b(k), d− d(k)〉+ 1

2γ
‖Du− d‖2,

Goldstein and Osher obtained the split Bregman method in [120]:

Algorithm (Split Bregman algorithm)
Initialization: u(0), p(0)

For k = 0, 1, . . . repeat until a stopping criterion is reached

(u(k+1), d(k+1)) = argmin
u∈H1,d∈H2

{
E(u, d) +

1

2γ
‖b(k) +Du− d‖2

}
,

b(k+1) = b(k) +Du(k+1) − d(k+1). (2.60)

Unfortunately, Theorem 2.4.3 which establishes convergence for Bregman iterations can
not be applied directly here since even if we restrict ourselves to the finite-dimensional
setting the function Φ in E does not satisfy A3. However, we can show convergence of
(b(k))k∈N by deriving the split Bregman algorithm in another way, namely as an augmented
Lagrangian method described in the next paragraph. Moreover, we will see that the scaled
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sequence ( 1
γ
b(k))k∈N of the split Bregman algorithm converges to a solution of (D).

If the convergence of (b(k))k∈N is clear, it remains to examine the convergence properties of
the sequence (u(k))k∈N generated by (2.60). To this end, we assume now that H1 and H2

are finite-dimensional and that the sequence ( 1
γ
b(k))k∈N converges to a solution of the dual

problem. We obtain the following results.

Proposition 2.4.4 Assume that H1 and H2 are finite-dimensional Hilbert spaces. Then,
every cluster point of (u(k))k∈N generated by the split Bregman algorithm (2.60) is a solution
of the primal problem (P ).

Proof: The split Bregman algorithm (2.60) can be written as

0 ∈ ∂g(u(k+1)) +
1

γ
D∗(Du(k+1) − d(k+1) + b(k)), (2.61)

0 ∈ ∂Φ(d(k+1))− 1

γ
(Du(k+1) − d(k+1) + b(k)), (2.62)

b(k+1) = b(k) +Du(k+1) − d(k+1). (2.63)

Let b̂ and d̂ denote the limits of the sequences (b(k))k∈N and (d(k))k∈N, respectively. Fur-
thermore, let û be a cluster point of (u(k))k∈N with respect to a convergent subsequence
(u(kl))l∈N. Because the subdifferential of the functions g and Φ are maximal monotone we
can pass to the limits with respect to the indices kl in (2.61) and (2.62), see Theorem 2.2.2.
This gives the Karush-Kuhn-Tucker conditions

0 ∈ ∂g(û) + 1
γ
D∗b̂,

0 ∈ ∂Φ(d̂)− 1
γ
b̂,

(2.64)

or equivalently,
0 ∈ ∂g(û) +D∗( 1

γ
b̂),

0 ∈ ∂Φ∗( 1
γ
b̂)−Dû

(2.65)

of problems (P ) and (D), compare (2.8)-(2.9). Hence, û and 1
γ
b̂ solve the primal problem

and the dual problem, respectively. �

Theorem 2.4.5 Suppose that H1 and H2 are finite-dimensional Hilbert spaces and that
the primal problem (P ) has a unique solution. Then, the sequence (u(k))k∈N, generated by
the split Bregman algorithm, converges to the solution of (P ).

Proof: The proof of this theorem employs the concept of coercivity of the objective func-
tion in the first step of (2.60). For detail, we refer to the proof of Corollary 2.4.10 in
Section 2.4.3.

We will now characterize the split Bregman algorithm as an augmented Lagrangian algo-
rithm. This fact was already noticed in [120, 206, 230].
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The augmented Lagrangian method. We start by considering the convex, equality-
constrained minimization problem of the form

argmin
u∈H1

h(u) s.t. Θ(u) = 0, (2.66)

where h : H1 → R is a proper, convex and l.s.c. functions on a Hilbert space H1 and

0 ∈ int(domh− dom ιΘ−1({0})).

Later we will specialize to the problem (PSplit). For the functional Θ : H1 → H2, we
consider two scenarios:

i) First, Θ is a bounded linear operator and H1 and H2 are general Hilbert spaces.

ii) In a second scenario, H2 is a separable Hilbert space and we assume that for some
fixed countable orthonormal basis the mapping

Θ(u) = (. . . ,Θ−1(u),Θ0(u),Θ1(u), . . . ) , ∀u ∈ H1,

has the property that the functions Θi : H → R are proper, convex and l.s.c.

For a discussion of the augmented Lagrangian method in more general spaces the reader
is referred to [108]. In terms of the Lagrangian

L(u, p) = h(u) + 〈p,Θ(u)〉,

the primal problem (2.66) can be written as

argmin
u∈H1

{ sup
p∈H2

L(u, p)}

and the corresponding dual problem has the form

argmax
p∈H2

{ inf
u∈H1

L(u, p)}. (2.67)

The augmented Lagrangian algorithm (AL) which goes back to [128, 179, 182], applied to
the primal problem (2.66), is defined as follows:

Algorithm (Augmented Lagrangian algorithm (AL))
Initialization: u(0), p(0)

For k = 0, 1, . . . repeat until a stopping criterion is reached

u(k+1) = argmin
u∈H1

{L(u, p(k)) + γ

2
‖Θ(u)‖2}, (2.68)

p(k+1) = p(k) + γΘ(u(k+1)). (2.69)
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Note that the AL algorithm is also called the method of multipliers. The term augmented
Lagrangian is motivated by the Lagrangian being augmented by the quadratic penalty term
in (2.68), compare [169]. It is important here that the parameter γ is fixed in the augmented
Lagrangian algorithm. If we enforce the equality constraint by a simple quadratic penalty
algorithm

u(k+1) = argmin
u∈H1

{h(u) + γk
2
‖Θ(u)‖2},

the parameter γk has to go to infinity which can cause numerical instability.

It is well-known that the AL algorithm is equivalent to the PP algorithm applied to the
dual problem (D) which is given by

p(k+1) = argmin
p∈H2

{ 1

2γ
‖p− p(k)‖2 − inf

u∈H1

L(u, p)}. (2.70)

The following theorem shows that the sequence (p(k))k∈N generated by the PP algorithm
(2.70) coincides with the one produced by the AL algorithm (2.68)-(2.69). Thus, by the
results of Section 2.4.2 we can conclude that the sequence (p(k))k∈N of the AL algorithm
converges weakly.

Theorem 2.4.6 The sequence (p(k))k∈N generated by (2.70) coincides with the one com-
puted by (2.68)-(2.69) for the same starting point p(0).

Proof: For this proof we follow the lines of [46, Theorem 3.4.7]. Let (p̃(k))k∈N denote the
sequence generated by (2.70) and let (u(k), p(k))k∈N be the solutions of (2.68)-(2.69) in each
iteration. We start with p̃(0) = p(0) and assume that p̃(k) = p(k) for some k ∈ N. If we
can show that p(k+1) also solves (2.70) then we are done because the objective function of
(2.70) is strictly convex and coercive so that the solution exists and is unique. Hence, we
have to prove that

0 ∈ ∂
( 1

2γ
‖ · −p̃(k)‖2− inf

u∈H1

L(u, ·)
︸ ︷︷ ︸

:=φ(·)

)
(p(k+1)). (2.71)

To this end, we first show that for a pair (ū, p̄) with the property that ū minimizes L(·, p̄)
we have

−Θ(ū) ∈ ∂φ(p̄). (2.72)

Using the definition of the subdifferential we can write (2.72) in the equivalent form

〈−Θ(ū), p− p̄〉 ≤ φ(p)− φ(p̄), ∀p ∈ H2. (2.73)

To show (2.73), we use the definition of L and obtain

φ(p) + L(ū, p̄)− 〈−Θ(ū), p− p̄〉
= φ(p) + h(ū) + 〈Θ(ū), p〉
= φ(p)︸︷︷︸

− infu L(u,p)

+L(ū, p) ≥ 0, ∀p ∈ H2,
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which is the same as (2.73) since φ(p̄) = −L(ū, p̄).
In our situation, it indeed holds true that u(k+1) minimizes L(·, p(k+1)): In the first

scenario, where Θ is a bounded linear operator, we have for (2.68)

u(k+1) = argmin
u∈H1

{L(u, p(k)) + γ

2
‖Θ(u)‖2}

⇔ 0 ∈ ∂h(u(k+1)) + Θ∗(p(k)) + γΘ∗Θu(k+1).

Using (2.69), we thus obtain

0 ∈ ∂h(u(k+1)) + Θ∗(p(k+1) − γΘu(k+1)) + γΘ∗Θu(k+1)

⇔ 0 ∈ ∂h(u(k+1)) + Θ∗p(k+1)

⇔ u(k+1) = argmin
u∈H1

L(u, p(k+1)).

For the second scenario, where H2 is separable, it holds that

u(k+1) = argmin
u∈H1

{L(u, p(k)) + γ

2
‖Θ(u)‖2}

⇔ 0 ∈ ∂h(u(k+1)) +
∞∑

i=−∞
p
(k)
i ∂Θi(u

(k+1)) + γ
∞∑

i=−∞
Θi(u

(k+1))∂Θi(u
(k+1))

and again we get from (2.69) that

0 ∈ ∂h(u(k+1)) +

∞∑

i=−∞
(p

(k+1)
i − γΘiu

(k+1))∂Θi(u
(k+1)) + γ

∞∑

i=−∞
Θi(u

(k+1))∂Θi(u
(k+1))

⇔ u(k+1) = argmin
u∈H1

L(u, p(k+1)).

Now we can apply
−Θ(u(k+1)) ∈ ∂φ(p(k+1))

to (2.71). Note that the domain of the quadratic term is the whole space H2 so that we
can subdifferentiate the two terms in (2.71) separately. Hence, we obtain

1

γ
(p(k+1) − p̃(k))−Θ(u(k+1)) ∈ ∂

( 1

2γ
‖ · −p̃(k)‖2 − inf

u∈H
L(u, ·)

)
(p(k+1)). (2.74)

Using (2.69) and the induction hypothesis p̃(k) = p(k), we see that the left-hand side of
(2.74) is indeed the zero element. So, (2.71) is satisfied, i.e., p(k+1) is also the minimizer of
(2.70) which concludes the proof. �

It is not surprising that the augmented Lagrangian method can also be applied to inequal-
ity constraint problems since in this case, too, it coincides with the PP method applied to
the corresponding dual problem compare, e.g., [27, 132, 169, 184].
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Observe that our problem (PSplit) is of the form (2.66) and thus we can apply the corre-
sponding AL algorithm which is given by

(u(k+1), d(k+1)) = argmin
u∈H1,d∈H2

{
E(u, d) + 〈b(k), Du− d〉+ 1

2γ
‖Du− d‖2

}
,

b(k+1) = b(k) +
1

γ
(Du(k+1) − d(k+1)). (2.75)

We see that after rescaling b(k) by the factor 1
γ
in (2.75), we obtain the split Bregman

algorithm (2.60). By the identification of the AL algorithm with the PP algorithm for the
dual problem via Theorem 2.4.6, we can immediately conclude that ( 1

γ
b(k))k∈N generated

by the split Bregman algorithm (2.75) converges to the solution of the dual problem (D).

Interestingly, we have seen three different points of view on the above split Bregman
algorithm: an operator splitting, a Bregman and primal-dual Lagrangian approach. Let
us summarize this in the following diagram:

PP for (D) = Split Bregman Algorithm = AL for (P )

2.4.3 Alternating split Bregman algorithm

In the first step of the split Bregman algorithm (2.60) we have to minimize over u and d
simultaneously which is too hard to compute in many applications. Goldstein and Osher
therefore proposed in [120], see also [119], to minimize with respect to these two variables
alternatingly. This gives rise to the following alternating split Bregman algorithm to solve
(P ), resp. (PSplit):

Algorithm (Alternating split Bregman algorithm)
Initialization: b(0), d(0)

For k = 0, 1, . . . repeat until a stopping criterion is reached

u(k+1) = argmin
u∈H1

{
g(u) +

1

2γ
‖b(k) +Du− d(k)‖2

}
, (2.76)

d(k+1) = argmin
d∈H2

{
Φ(d) +

1

2γ
‖b(k) +Du(k+1) − d‖2

}
, (2.77)

b(k+1) = b(k) +Du(k+1) − d(k+1). (2.78)

Interestingly, the alternating split Bregman algorithm turns out to be equivalent to the
Douglas-Rachford splitting algorithm studied in Section 2.3.3. Based on [94, 96, 109] and
[116, pp. 95] we have the following important result, cf., [193, 192].

Theorem 2.4.7 For any starting values b(0) ∈ H2 and d(0) ∈ H2 the alternating split
Bregman algorithm is equal to the Douglas-Rachford splitting algorithm

t(k+1) = JηA(2p
(k) − t(k)) + t(k) − p(k),

p(k+1) = JηB(t
(k+1))
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applied to (D) with A := ∂(g∗ ◦ (−D∗)), B := ∂Φ∗, step length η = 1/γ and initial values
t(0) = η(b(0) + d(0)) and p(0) = ηb(0) in the sense that

t(k) = η(b(k) + d(k)),

p(k) = ηb(k), (2.79)

for all k > 0.

Proof: 1. First, we show that for a proper, convex and l.s.c. function h : H1 → R∪{+∞}
and a bounded linear operator K : H1 → H2 the following relation holds true:

p̂ = argmin
p∈H1

{η
2
‖Kp− q‖22 + h(p)

}
⇒ η(Kp̂− q) = Jη ∂(h∗◦(−K∗))(−ηq). (2.80)

The left-hand side of (2.80) is equivalent to

0 ∈ ηK∗(Kp̂− q) + ∂h(p̂) ⇔ p̂ ∈ ∂h∗
(
− ηK∗(Kp̂− q)

)
.

Applying −ηK on both sides and adding −ηq implies using the chain rule that

−ηKp̂ ∈ −ηK∂h∗
(
− ηK∗(Kp̂− q)

)
= η ∂

(
h∗ ◦ (−K∗)

)(
η(Kp̂− q)

)

and thus we have

−ηq ∈
(
I + η ∂(h∗ ◦ (−K∗))

)(
η(Kp̂− q)

)
,

which is by the definition of the resolvent equivalent to the right-hand side of (2.80).
2. Applying (2.80) to (2.76) with h := g, K := D and q := d(k) − b(k) yields

η(b(k) +Du(k+1) − d(k)) = JηA(η(b
(k) − d(k))).

Assume that the alternating split Bregman iterates and the DRS iterates coincide with the
identification (2.79) up to some k ∈ N. Using this induction hypothesis it follows that

η(b(k) +Du(k+1)) = JηA(η(b
(k) − d(k))︸ ︷︷ ︸
2p(k)−t(k)

) + ηd(k)︸︷︷︸
t(k)−p(k)

= t(k+1). (2.81)

By definition of b(k+1) in (2.78) we see that η(b(k+1)+d(k+1)) = t(k+1). Next we apply (2.80)
to (2.77) with h := Φ, K := −I and q := −b(k) −Du(k+1). Together with (2.81) this gives

η(−d(k+1) + b(k) +Du(k+1)) = Jη(∂Φ∗)(η(b
(k) +Du(k+1))︸ ︷︷ ︸

t(k+1)

) = p(k+1). (2.82)

Applying (2.78) to the right-hand side of (2.82) we obtain ηb(k+1) = 1
γ
b(k+1) = p(k+1) which

completes the proof. �
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Recently, a different proof of convergence of the alternating split Bregman algorithm was
proposed in [52]. Since in our case D is always a bounded linear operator, it was noted in
[101] that the alternating split Bregman algorithm, in a slightly different form based on the
AL algorithm, was already known in optimization theory under the name of alternating
direction method of multipliers . The term alternating direction method of multipliers was
coined by [109] but the algorithm itself can be traced back to [110, 117]. We will not
explain this algorithm in more detail in this paper.

In the following diagram, we summarize the important equivalences discussed in this
section.

Alternating Split
Bregman Algorithm

=
Douglas-Rachford Splitting

Algorithm for (D)
=

Alternating Direction
Method of Multipliers

We again notice the three different points of view on this algorithm: We can derive it via
an operator splitting, a Bregman method or a special primal-dual Lagrangian method.

It must be noted here that recently there is great interest in advanced methods for
optimization problems in image processing. The alternating split Bregman/alternating
direction method of multipliers is just one example of techniques which make use of the
Lagrangian of the problem, i.e., both dual and primal variable, splitting ideas and the
proximal point operations. We can only briefly mention here the primal-dual hybrid gradi-
ent descent method of [234, 235], the algorithm of Chen and Teboulle [70] and, as pointed
out in [101], the alternating minimization method of [211].

It remains to consider the convergence properties of the primal sequence (u(k))k∈N of the
alternating split Bregman algorithm. Let us now suppose that H1 and H2 are finite-
dimensional. So, Theorem 2.4.7 provides us with a convergence result for the sequence
(b(k))k∈N of the alternating split Bregman algorithm. More specifically, let b̂ the limit of
this sequence then 1

γ
b̂ is a solution of (D). The following results hold true for the sequence

(u(k))k∈N.

Proposition 2.4.8 Assume that H1 and H2 are finite-dimensional Hilbert spaces. Then,
every cluster point of (u(k))k∈N generated by the alternating split Bregman algorithm is a
solution of the primal problem (P ).

Proof: We rewrite (2.76)-(2.78) in the equivalent form

0 ∈ ∂g(u(k+1)) +
1

γ
D∗b(k) +

1

γ
D∗(Du(k+1) − d(k)), (2.83)

0 ∈ ∂Φ(d(k+1))− 1

γ
b(k) − 1

γ
(Du(k+1) − d(k+1)), (2.84)

b(k+1) = b(k) +Du(k+1) − d(k+1). (2.85)

Let b̂ and d̂ denote the limits of the sequences (b(k))k∈N and (d(k))k∈N, respectively. Further-
more, let û be a cluster point of (u(k))k∈N with convergent subsequence (u(kl))l∈N. Because
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the subdifferential of the functions g and Φ are maximal monotone we can use Theorem
2.2.2 and pass to the limits with respect to the indices kl in (2.83) and (2.84). This gives
the Karush-Kuhn-Tucker conditions of problems (P ) and (D)

0 ∈ ∂g(û) + 1
γ
D∗b̂,

0 ∈ ∂Φ(d̂)− 1
γ
b̂,

(2.86)

or equivalently,

0 ∈ ∂g(û) +D∗( 1
γ
b̂),

0 ∈ ∂Φ∗( 1
γ
b̂)−Dû.

(2.87)

Thus, û and b̂ solve the primal problem and the dual problem, respectively. �

Theorem 2.4.9 Assume that H1 and H2 are finite-dimensional Hilbert spaces and let b̂
and d̂ be the limit points arising from the alternating split Bregman algorithm (2.76)-(2.78).
Then, a sufficient condition for (u(k))k∈N to converge to a solution of (P ) is that

argmin
u∈H1

{
g(u) +

1

2γ
‖b̂+Du− d̂‖2

}
(2.88)

has a unique solution.

Proof: Let us rewrite (2.83) as

u(k+1) ∈ (D∗D + γ∂g)−1(D∗(d(k) − b(k))).

The mapping (D∗D+ γ∂g)−1 is maximal monotone because D∗D+ γ∂g is maximal mono-
tone as a subdifferential of a proper, l.s.c. and convex function and the inverse operator
of every maximal monotone operator is maximal monotone. Hence, (D∗D + γ∂g)−1 being
single-valued at the point D∗(d̂ − b̂) implies in our finite-dimensional setting that it is
continuous at this point, see, [185, Theorem 12.63 (c)]. Since D∗(d(k) − b(k)) → D∗(d̂− b̂)
as k → ∞, it follows from the definition of continuity of set-valued mappings, cf. [185,
Chapter 4], that the sequence (u(k))k∈N converges to the unique solution of (2.88). By
Proposition 2.4.8, this element must be a solution of (P ). �

In many examples the following special case of Theorem 2.4.9 can be used.

Corollary 2.4.10 If H1 and H2 are finite-dimensional Hilbert spaces and if the primal
problem (P ) has a unique solution then (u(k))k∈N, defined by the alternating split Bregman
algorithm (2.76)-(2.78), converges to the solution of (P ).

To prove the above corollary we will make use of the following lemma.

Lemma 2.4.11 Let F be a l.s.c. and convex function on a finite-dimensional Hilbert space
H. Assume that F has a unique minimizer, then it is coercive.
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Proof: Suppose that F is not coercive, i.e., there exists a sequence (u(k))k∈N with ‖u(k)‖ →
∞ as k → ∞ and |F (u(k))| ≤ C < +∞ for all k ∈ N and a constant C. Without loss of
generality, assume that û = 0 is the unique minimizer of F and that F (0) = 0 (otherwise
use similar arguments as in the proof of Corollary 2.4.10 below). We consider the sequence
defined by

v(k) =
u(k)

‖u(k)‖ ,

which is clearly bounded and thus has a cluster point v̂. The convexity of F yields for k
large enough that

F (v(k)) ≤ 1

‖u(k)‖F (u
(k)) → 0 for k → ∞

Since F is l.s.c. we obtain F (v̂) ≤ 0 and thus F (v̂) = 0. This contradicts the uniqueness
of the minimizer because by construction ‖v̂‖ = 1. �

Proof of Corollary 2.4.10: It is sufficient to show that (u(k))k∈N is bounded because we
know from Proposition 2.4.8 that every cluster point is equivalent to the unique solution
of (P ). Taking (2.76) into account, we see that boundedness holds true if the functional
F : H1 → R ∪ {+∞} defined by

F (u) = g(u) + 1
2
‖Du‖2 (2.89)

is coercive. From Lemma 2.4.11 we know that g + Φ ◦D is coercive. It remains to show
that this implies the coercivity of F . Note that each element u ∈ H1 has an orthogonal
decomposition u = u1 + u2 with u1 ∈ N (D), where N (D) is the null space of D. If
N (D) = {0} we are done since g is convex and thus F is coercive. So, let N (D) 6= {0}.
If for a sequence (u(k))k∈N it holds that ‖u(k)2 ‖ → +∞ as k → +∞ then (‖u(k)‖)k∈N is
unbounded. By convexity of g, we have to show that there cannot be an unbounded
sequence (u(k))k∈N with

‖u(k)2 ‖ ≤ C1 < +∞, ∀ k ∈ N (2.90)

and |g(u(k))| ≤ C2 < +∞. Assume that such a sequence exists. For v0 ∈ H1 with
F (v0) < +∞, we define for any m ∈ N

v(k)m = v0 +m
u(k) − v0

‖u(k) − v0‖
.

Then, (v
(k)
m )k∈N is a bounded sequence and thus has a cluster point vm. Assumption (2.90)

implies that vm ∈ v0 +N (D). The convexity of g yields for k large enough

g(v(k)m ) ≤
(
1− m

‖u(k)−v0‖
)
g(v0) +

m
‖u(k)−v0‖g(u

(k))

≤
(
1− m

‖u(k)−v0‖︸ ︷︷ ︸
→1

)
g(v0) +

m
‖u(k)−v0‖︸ ︷︷ ︸

→0

C2.
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Since g is l.s.c. we obtain g(vm) ≤ g(v0). The sequence (g(vm))m∈N must be bounded
from below because a solution of (P ) exists. Hence, we have constructed an unbounded
sequence (vm)m∈N for which the values of both g and Φ ◦ D are bounded. This yields a
contradiction since g + Φ ◦D is coercive. �

Observe that we get a similar result as in Theorem 2.4.7 if we change the roles of the
operators A and B in the Douglas-Rachford algorithm. To this end let us change the order
of the first two steps (2.76) and (2.77) in the alternating split Bregman algorithm. This
gives rise to the algorithm

d(k+1) = argmin
d∈H2

{
Φ(d) +

1

2γ
‖b(k) +Du(k) − d‖22

}
, (2.91)

u(k+1) = argmin
u∈H1

{
g(u) +

1

2γ
‖b(k) +Du− d(k+1)‖22

}
, (2.92)

b(k+1) = b(k) +Du(k+1) − d(k+1). (2.93)

Hence, we obtain the following result:

Corollary 2.4.12 For any starting values b(0) ∈ H2 and u(0) ∈ H1 the version (2.91)-
(2.93) of the alternating split Bregman algorithm coincides with the Douglas-Rachford split-
ting algorithm applied to (D) with A := ∂Φ∗, B := ∂(g∗ ◦ (−D∗)), step length η = 1/γ,
initial values t(0) := η(b(0) +Du(0)) and p(k) := ηb(k) we have

t(k) = η(b(k) +Du(k)),

p(k) = ηb(k),

for all k > 0.

Proof: See the proof of Theorem 2.4.7.

2.4.4 Multiple splittings

Next, we want to apply the splitting idea even further. Observe that in step (2.76) of the
alternating split Bregman algorithm the operator D appears in front of the variable u in
the quadratic term. This might lead to a rather complicated solution of the minimization
problem for which, e.g., a separate iterative algorithm may be needed in each iteration.
In this case, the problem of choosing an appropriate stopping criterion for the inner loops
arises. Furthermore, a convergence result for the alternating split Bregman algorithm with
inner loops only exists if these inner steps are computed to an increasingly high precision,
cf. [96]. Hence, the question is if the splitting idea can be applied also to decouple the
minimization problem in step (2.76). This is indeed possible by rewriting the constrained
version (PSplit) of the primal problem in the following form, cf. [101],

min
u,v∈H1,d∈H2

{〈0, u〉+ g(v) + Φ(d)} s.t.

(
I
D

)
u =

(
v
d

)
. (2.94)
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It is easy to see that the corresponding split Bregman (or augmented Lagrangian) algorithm
is exactly the same as (2.60). However, applying the alternating split Bregman algorithm
to (2.94) with respect to the functionals (u, v, d) 7→ 〈0, u〉 and (u, v, d) 7→ g(v)+Φ(d) yields

u(k+1) = argmin
u∈H1

{
〈0, u〉+ 1

2γ
‖
(
b
(k)
1

b
(k)
2

)
+

(
I
D

)
u−

(
v(k)

d(k)

)
‖2
}
, (2.95)

(
v(k+1)

d(k+1)

)
= argmin

v∈H1,d∈H2

{
g(v) + Φ(d) +

1

2γ
‖
(
b
(k)
1

b
(k)
2

)
+

(
I
D

)
u(k+1) −

(
v
d

)
‖2
}
, (2.96)

b(k+1) = b(k) +

(
I
D

)
u(k+1) −

(
v(k+1)

d(k+1)

)
. (2.97)

Observe that the minimization problem in the second step (2.96) decouples automatically
and we obtain

u(k+1) = argmin
u∈H1

{1
2
‖b(k)1 + u− v(k)‖2 + 1

2
‖b(k)2 +Du− d(k)‖2

}
, (2.98)

v(k+1) = argmin
v∈H1

{
g(v) +

1

2γ
‖b(k)1 + u(k+1) − v‖2

}
, (2.99)

d(k+1) = argmin
d∈H2

{
Φ(d) +

1

2γ
‖b(k)2 +Du(k+1) − d‖2

}
, (2.100)

b(k+1) = b(k) +

(
I
D

)
u(k+1) −

(
v(k+1)

d(k+1)

)
. (2.101)

In the first step (2.98) of the above algorithm, we have to invert the bounded linear operator
I +D∗D. For our applications, we will address this issue in Chapter 3. The construction
idea of algorithm (2.98)-(2.101) is also useful for more general problems with more than
two terms in the objective function. So, let us consider the primal problem

min
u∈H

m∑

i=1

gi(Diu), (2.102)

where Di : H → Hi, i = 1, . . . , m are bounded linear operators, H,H1, . . . , Hm are Hilbert
spaces and the functionals gi : Hi → R are assumed to be proper, convex and l.s.c. Setting
g := 〈0, ·〉, D = (D1, . . . , Dm) and Φ(v) :=

∑m
i=1 gi(vi), v ∈ H1 × · · · × Hm, we see that

(2.102) has the same structure as (P ). We again assume here that the regularity conditions
(2.11)-(2.12) are satisfied. In the same way as for (2.98)-(2.101) we obtain from

min
u∈H,v1∈H1,...,vm∈Hm

{〈0, u〉+
m∑

i=1

gi(Diu)} s.t.



D1
...
Dm


 u =



v1
...
vm
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the following alternating split Bregman algorithm, cf., [101]

u(k+1) = argmin
u∈H

{1
2

m∑

i=1

‖b(k)i +Diu− v
(k)
i ‖2

}
, (2.103)

v
(k+1)
1 = argmin

v1∈H1

{
g1(v1) +

1

2γ
‖b(k)1 +D1u

(k+1) − v1‖2
}
, (2.104)

...

v(k+1)
m = argmin

vm∈Hm

{
gm(vm) +

1

2γ
‖b(k)m +Dmu

(k+1) − vm‖2
}
, (2.105)

b(k+1) = b(k) +



D1
...
Dm


u(k+1) −



v
(k+1)
1
...

v
(k+1)
m


 . (2.106)

Note that again the minimization with respect to v1, . . . , vm is decoupled. In the first step,
we have to invert the operator

∑m
i=1D

∗
iDi.

We will now see that for the alternating split Bregman algorithm (2.103)-(2.106) we can es-
tablish a relation to the Douglas-Rachford splitting method as in the preceding subsection.
This will also clarify the convergence properties.

We can derive the following result analogously to Theorem 2.4.7.

Theorem 2.4.13 For any starting values b
(0)
i ∈ Hi, v

(0)
i ∈ Hi, i = 1, . . . , m, the alternat-

ing split Bregman algorithm (2.103)-(2.106) is equivalent to the Douglas-Rachford splitting
algorithm

t(k+1) = JηA(2p
(k) − t(k)) + t(k) − p(k),

p(k+1) = JηB(t
(k+1)),

with respect to A := ∂(〈0, ·〉 ◦ (−(D∗
1 · · · D∗

m))), B defined by
B(p) := (∂g∗1(p1), . . . , ∂g

∗
m(pm)), step length η = 1/γ and initial values t(0) = η(b(0) + v(0))

and p(0) = ηb(0). In particular, we have

t(k) = η(b(k) + v(k)),

p(k) = ηb(k),

for all k > 0.

Proof: If we compare the alternating split Bregman algorithms (2.76)-(2.78) and (2.103)-
(2.106) we see that the only difference is that the function g in the first algorithm now
corresponds to the mapping u 7→ 〈0, u〉, Φ corresponds to (v1, . . . , vm) 7→

∑m
i=1 gi(vi) and

the bounded linear operator D is now (D1, . . . , Dm). So, as shown in Theorem 2.4.7,
(2.103)-(2.106) is equivalent to the Douglas-Rachford splitting algorithm applied to the
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operators A and B defined as above. �

Let us now have a closer look at the common zero problem in the above Theorem 2.4.13 of
finding an element p ∈ H1 × · · · ×Hm such that 0 ∈ A(p) +B(p). It holds for x ∈ H that

〈0, ·〉∗(x) =
{

0 if x = 0,
+∞ if x 6= 0

and ∂(〈0, ·〉∗)(x) =
{
H if x = 0,
∅ if x 6= 0.

(2.107)

The operator A in Theorem 2.4.13 can thus be characterized as follows:

A(p) = −



D1
...
Dm


 ∂(〈0, ·〉∗)(−(D∗

1 · · · D∗
m)(p))

=





{
−



D1q
...

Dmq


 , q ∈ H

}
if
∑m

i=1D
∗
i pi = 0,

∅ if
∑m

i=1D
∗
i pi 6= 0.

Since the conjugate function of (v1, . . . , vm) 7→
∑m

i=1 gi(vi) is given by
p 7→ (g∗1(p1), . . . , g

∗
m(pm)) we get

0 ∈ A(p) +B(p) ⇔





∑m
i=1D

∗
i pi = 0

0 ∈ −



D1q
...

Dmq


+



∂g∗1(p1)

...
∂g∗m(pm)


 for some q ∈ H.

(2.108)

From the definition of A and B given above it is clear that finding an element p ∈ H1 ×
· · · × Hm such that 0 ∈ A(p) + B(p) is equivalent to solving the dual problem of (2.102)
using the same definition of the problem (D) as presented in the general setting of Section
2.2. In particular, if we apply the construction of Section 2.2 to the operators g = 〈0, ·〉,
Φ(p) =

∑m
i=1 gi(pi) and the linear mapping D = (D1, . . . , Dm), we obtain together with

(2.107) that

max
p1,...,pm

{−
m∑

i=1

g∗i (pi)} s.t.

m∑

i=1

D∗
i pi = 0 (2.109)

is an equivalent characterization of problem (2.108).

Remark 2.4.14 Let us briefly show the construction of the dual problem (2.109),or equiv-
alently of (2.108), using the perturbation theory presented in Section 2.2. We define the
perturbation functional ϕ as follows

ϕ(u, p1, . . . , pm) =

m∑

i=1

gi(Diu+ pi)
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and thus the corresponding dual problem is given by

max
p1,...,pm

{−ϕ∗(0, p1, . . . , pm)}.

We have

ϕ∗(u, p1, . . . , pm) = sup
u′

(
〈u, u′〉+

m∑

i=1

sup
p′i

{〈pi, p′i〉 − gi(Diu
′ + p′i)}

)

so that

ϕ∗(0, p1, . . . , pm) = sup
u′

( m∑

i=1

sup
p′i

{〈pi, p′i〉 − gi(Diu
′ + p′i)}

)
.

With a change of variables we obtain the dual problem

max
p1,...,pm

{−ϕ∗(0, p1, . . . , pm)} = max
p1,...,pm

{ inf
u′
{〈

m∑

i=1

D∗
i pi, u

′ 〉} −
m∑

i=1

g∗i (pi)},

which is clearly equivalent to (2.109).
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CHAPTER 3

Application to image denoising

3.1 Introduction

A classical problem in image processing is the denoising of images. In recent years, varia-
tional models were successfully applied in image denoising. The main objective of this
chapter is to apply the operator splitting and Bregman techniques of Chapter 2 to these
optimization problems.

This chapter is structured as follows: We start with continuous considerations in Section
3.2. Based on this, we introduce discrete models for Gaussian noise removal in Section 3.3.
The two main algorithms from Chapter 2 which are useful for the Besov norm model and
the Rudin-Osher-Fatemi (ROF) model, the alternating split Bregman method and the
forward-backward splitting method, are discussed in Section 3.4. Furthermore, we give a
geometrical intuition of both algorithms by characterizing the forward-backward splitting
method as a gradient descent reprojection technique and the alternating split Bregman
method as a projected version of a Newton method. It turns out that both algorithms can
be written in terms of shrinkage operations. In particular, we will see that in a special
setting based on Parseval frames the two algorithms are equivalent and that there exists a
connection to classical wavelet shrinkage. In Section 3.5, we compare the forward-backward
splitting algorithm and the alternating split Bregman algorithm numerically with multistep
methods for the minimization of the ROF model and examine the choice of the step length
in the alternating split Bregman algorithm. Section 3.6 shows two possible ways how the
ROF model can be improved to yield better denoising results. Finally, we show in Section
3.7 the advantages of the alternating split Bregman method with multiple splittings when
applied to more complicated problems, namely, the denoising and deblurring of images
corrupted by Poisson noise.
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3. Application to image denoising

3.2 Continuous denoising models

From a statistical point of view, solving a denoising problem means to find the image which
is the most likely one, given the noisy image f as well as

i) the noise statistics

ii) the probability distribution on the space of images.

The noise statistics can often be described or estimated but it is in most cases not clear what
the statistics of the space of images should be. In fact, it will depend heavily on the specific
application. Nevertheless, it is necessary to make assumptions about the probability of an
image because this prior information allows us to find our restored image via Bayesian
statistical inference, i.e, the MAP (maximum a posteriori) approach, cf., e.g., [66, Section
2.4] and the references therein. To illustrate this briefly, we skip the technical details and
simply write p(u) for the probability assigned to an image u. The noise statistics is given
by p(f |u) which gives the probability that the noise process leads to the noisy image f
given an original image u. So, using Bayes’ rule, the probability p(u|f) fulfills

p(u|f) = p(f |u)p(u)
p(f)

.

Hence, the MAP approach yields

û = argmax
u

{p(f |u)p(u)}

or equivalently
û = argmin

u
{− log(p(f |u))− log(p(u))}. (3.1)

In this paper, we are only interested in two important classes of noise, namely additive
white Gaussian and Poisson noise. Let us calculate the first term − log(p(f |u)) for these
kinds of noise.

Additive white Gaussian noise. The assumption of this noise model is that each
point of the original image is corrupted by adding a realization of white noise Gaussian
random variable with global standard deviation σ to the image. We assume for the sake
of simplicity that our image is defined on Ω = [0, 1] × [0, 1] ⊂ R2 and skip most of the
analytical details. Then, we have for each point u(x, y) and f(x, y) of the original image
and the noisy image, respectively, that

p(f(x, y)|u(x, y)) = 1

σ
√
2π
e−

(u(x,y)−f(x,y))2

2σ2 .

Our assumption of independence implies that

p(f |u) =

∫

Ω

1

σ
√
2π
e−

(u(x,y)−f(x,y))2

2σ2 dxdy
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3. Application to image denoising

and we obtain

− log(p(f |u)) = 1

2σ2

∫

Ω

(u(x, y)− f(x, y))2 dxdy + log(σ
√
2π).

After dropping the constant and after rescaling, we see that this essentially corresponds to
the squared L2-distance between f and u, i.e.,

− log(p(f |u)) ↔ 1

2
‖u− f‖2L2(Ω), (3.2)

cf., [26].

Poisson noise. The probability density function of the Poisson distribution is given by

p(k) =

{
βke−β

k!
k ∈ N ∪ {0},

0 otherwise

for some parameter β ≥ 0. So, this is a discrete distribution with support N ∪ {0}.
Degrading an original image u : Ω → R with Poisson noise means the following: The
probability that the noisy image f has the value k ∈ N ∪ {0} at the point (x, y) ∈ Ω is
given by

p(f(x, y) = k) =
βke−β

k!

with β := u(x, y). So, the probability that the pixel value f(x, y) ∈ N ∪ {0} originates
from u(x, y) ∈ R is given by

p(f(x, y)|u(x, y)) = (u(x, y))f(x,y)e−u(x,y)

f(x, y)!
.

Note that by definition we need u(x, y) ≥ 0 and f(x, y) ∈ N ∪ {0}. For the whole image,
we thus have

p(f |u) =
∫

Ω

(u(x, y))f(x,y)e−u(x,y)

f(x, y)!
dxdy

and

− log(p(f |u)) = −
∫

Ω

f(x, y) logu(x, y)− u(x, y)− log(f(x, y)!) dxdy.

Since the corrupted image f is given, we can drop the last term and obtain

− log(p(f |u)) ↔
∫

Ω

u(x, y)− f(x, y) logu(x, y) dxdy, (3.3)

cf., [5, 26]. Up to an additive constant, this term equals

I(f, u) :=

∫

Ω

f(x, y) log
f(x, y)

u(x, y)
− f(x, y) + u(x, y) dxdy
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which is known as Csizár’s I-divergence [81] or as the generalized Kullback-Leibler diver-
gence. Observe that the I-divergence is the Bregman distance of the function

F (u) =

∫

Ω

u(x, y) logu(x, y)− u(x, y) dxdy,

which means that

I(f, u) = F (f)− F (u)− 〈p, f − u〉, where p ∈ ∂F (u).

Therefore, it shares the useful properties of a Bregman distance, in particular, I(f, u) ≥ 0.

We assume now that the second term in (3.1) has the form − log(p(u)) = Φ(Du) for
a proper, convex and l.s.c. function Φ and a bounded linear mapping D. Then, our
variational denoising techniques will consist in solving a minimization problem of the form
(P ) defined in Section 2.2

û = argmin
u

{
g(u)︸︷︷︸

data-fitting term

+ Φ(Du)︸ ︷︷ ︸
regularization term

}
, (3.4)

where g will either be given by (3.2) or by (3.3). As illustrated above, the job of the
data-fitting term g is to keep the resulting image ”close” to the given noisy image f .
The regularization term Φ ◦D, on the other hand, represents our assumptions on typical
properties of the denoised image. These two terms are combined additively and the coupling
is steered by means of a so-called regularization parameter λ > 0, i.e., Φ has the form
Φ = λΦ̃.

From the various methods to choose the regularization term, we focus here on a Besov
norm regularization and the total-variation (TV) regularization. Other approaches are
outlined in Section 3.6. In the following, we restrict our attention to Gaussian noise.
Before turning to the discrete setting, let us first consider the case where images are real-
valued functions of some Banach space. For the sake of simplicity, we will assume that
these Banach spaces are defined on R2 but the same holds true for domains like [0, 1]×[0, 1],
for example.

Besov norm regularization

The Besov norm model we consider here, cf., [88], has the form

argmin
u∈B1

1,1(R
2)

{1
2
‖u− f‖2L2(R2) + λ‖u‖B1

1,1(R
2)}, (3.5)

where the Besov norm B1
1,1(R

2) can be defined in several ways. Let us first consider the
characterization via the smoothness modulus . The first-order L1 smoothness modulus of a
function u on R2 is given by

w1(u, t)1 = sup
0≤h≤t

‖u(·+ h)− u‖L1(R2),
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for some t ≥ 0. A function u belongs to the Besov space B1
1,1(R

2) if

‖u‖B1
1,1(R

2) := ‖u‖L1(R2) + ‖u‖b11,1(R2) < +∞, (3.6)

where

‖u‖b11,1(R2) :=

∫ ∞

0

w1(u, t)1
t2

dt. (3.7)

The importance of problem (3.5) for image processing stems from the fact that the Besov
norm can also be defined via the ℓ1-norm of wavelet coefficients. To this end, we assume
that for a wavelet function ψ, the set

{ψ(j,k) := 2−j/2ψ(2−j · −k) , j, k ∈ Z}

forms an orthonormal basis of L2(R
2) , cf., Appendix A. If, in addition, ψ is sufficiently

smooth and has more than one vanishing moment, then the ℓ1-norm of the wavelet coeffi-
cients is equivalent to the Besov norm B1

1,1(R
2) defined in (3.6), i.e.,

‖u‖B1
1,1(R

2) ∼ ‖(〈u, ψ(j,k)〉)j,k∈Z‖ℓ1 :=
∑

j,k∈Z
|〈u, ψ(j,k)〉|. (3.8)

For more details, we refer, e.g., to [58, 73, 89, 152].
It turns out, however, that many interesting images are not in B1

1,1(R
2), e.g., charac-

teristic functions of simple sets do not belong to this Besov space, see Fig. 3.1.

1−1

1

1
2

−1
2

1

Figure 3.1: The hat function (left) lies in B1
1,1(R). The characteristic function of the set

I = [−1
2
, 1
2
] (right) on the other hand does not since the integral in (3.7) behaves as

∫
1
t
dh.

One appropriate way to enlarge the space of images is to consider the TV semi-norm.
Note that, strictly speaking, this semi-norm does also not give rise to an appropriate space
for many images, cf., [122].

TV regularization

Let us consider the Banach space of functions of bounded variation, denoted by BV (R2).
These are functions which fulfill

‖u‖BV (R2) := ‖u‖L1(R2) + ‖u‖TV (R2) < +∞,
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where the total variation (TV) semi-norm ‖ · ‖TV (R2) is defined as

‖ · ‖TV (R2) = sup{
∫

R2

u divg dxdy : g ∈ C1
c (R

2,R2) and |g| ≤ 1}, (3.9)

with C1
c (R

2,R2) being the continuously differentiable functions with compact support map-
ping R2 onto R2, see, e.g., [115, 157]. Note that the functions shown in Fig. 3.1 lie in this
space. The total variation functional has a shorter form for functions u which are in the
Sobolev space W 1

1,1(R
2), i.e., for which the following norm exists

‖u‖W 1
1,1(R

2) = ‖u‖L1(R2) + ‖∂u
∂x

‖L1(R2) + ‖∂u
∂y

‖L1(R2),

where the partial derivatives are understood in the weak sense, cf., e.g., [2]. In this special
case we have that

‖u‖TV (R2) =

∫

R2

|∇u(x)| dxdy. (3.10)

The following embeddings between the above Banach spaces hold true:

B1
1,1(R

2) ⊂W 1
1,1(R

2) ⊂ BV (R2).

More details and related image spaces can be found in [9, 88, 157].

Based on (3.9), we consider the Rudin-Osher-Fatemi (ROF) model [187, 215]

argmin
u∈BV (R2)

1

2
‖u− f‖2L2(R2) + λ‖u‖TV (R2). (3.11)

This model is very popular and is used alongside with other techniques and with many
modifications in various algorithms, cf., Section 3.6. We will also apply it for the following
more advanced problems of inpainting and the denoising of tensor-valued data. The reason
for the success of the ROF model is that it is an edge-preserving image restoration method,
i.e., it does not ”smooth” edges away as methods with L2 regularization terms typically
do.

Finally, note that a certain relation between the ROF and the Besov norm model via
so-called near minimizers was studied in [18, 74].

3.3 Discrete models for Gaussian noise removal

In the following, we restrict our attention to a discrete setting. Basically, we consider
discretizations of continuous gray value images on a regular grid so that our digital images
are mappings {1, . . . , n} × {1, . . . , n} → R. We often reshape such an image/matrix F ∈
Rn,n columnwise into a vector f ∈ RN with length N = n2. The restriction to square
images is for notational convenience only and does not influence our results. If not stated
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otherwise the multiplication of vectors, their square root etc. are meant componentwise.
Furthermore, we denote by ‖ · ‖p, p = {1, 2, . . . ,∞}, the ℓp-norms in the Hilbert space RN .
The discrete problems corresponding to (3.5) and (3.11) will have the form

argmin
u∈RN

{1
2
‖u− f‖22 + Φ(Du)

}
(3.12)

with appropriate choices for the matrix D ∈ RM,N and the functional Φ : RM → R.
Note that many of the results we present for problem (3.12) also hold true for the

related deblurring problem

argmin
u∈RN

{1
2
‖Ku− f‖22 + Φ(Du)

}
(3.13)

with a blur matrix K ∈ RN,N , cf., e.g., [67, 80, 83, 101, 120].

Discrete Besov norm model

The basic idea is to make use of the characterization (3.8) of the Besov norm in terms of
the ℓ1-norm of wavelet coefficients. We have already stated in (3.8) that under appropriate
conditions on an orthogonal wavelet basis the Besov norm can be written as the ℓ1-norm of
the wavelet coefficients. In the discrete setting, consider the orthogonal matrix Q ∈ RN,N

having as rows the filters of orthogonal wavelets (and scaling functions) up to a certain
level. Then, problem (3.5) has the discrete counterpart

û = argmin
u∈RN

{1
2
‖u− f‖22 + λ‖Qu‖1

}

= argmin
u∈RN

{1
2
‖Qu−Qf‖22 + λ‖Qu‖1

}
. (3.14)

Setting c := Qf and using the orthogonality of Q, we can solve

d̂ = argmin
d∈RN

{1
2
‖d− c‖22 + λ‖d‖1

}
(3.15)

and obtain û = QTd̂. Problem (3.15) can be solved by the known soft shrinkage procedure
(3.22). We get û by a wavelet transform Q followed by soft shrinkage of the wavelet
coefficients and the inverse wavelet transform QT. The whole procedure is called wavelet
shrinkage.

However, for image processing tasks like denoising or segmentation, ordinary orthonor-
mal wavelets are not suited due to their lack of redundancy and translational invariance
which leads to visible artifacts. So, we choose for D1 :=W ∈ RM,N , M = pN , where W is
a matrix whose rows form a Parseval frame of RN . The matrix W being a Parseval frame
means that

W TW = I but in general WW T 6= I.
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Here, p is three times the wavelet decomposition level plus one for the rows belonging
to the scaling function filters on the coarsest scale. For a more detailed description, see
Appendix A.

Motivated by (3.8) we take the ℓ1-norm of the coefficient vector Wu, i.e., the functional
Φ1 : R

M → R is defined as follows

Φ1(d) := ‖Λd‖1 with Λ := diag(λj)
M
j=1, λj ≥ 0.

Discrete ROF model

Let us now discretize the TV functional. There are many methods to discretize the gradi-
ent operator. We will consider here a discretization based on simple forward differences.
Starting with the forward difference matrix

Df :=




−1 1 0 . . . 0 0 0
0 −1 1 . . . 0 0 0

. . .
. . .

. . .

0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1
0 0 0 . . . 0 0 0




∈ R
n,n, (3.16)

we approximate the partial derivative operators by

Dx := I ⊗Df ,

Dy := Df ⊗ I, (3.17)

where K1⊗K2 denotes the Kronecker product of the matrices K1 and K2. Hence, we define
the discrete gradient operator as

D2 :=

(
Dx

Dy

)
. (3.18)

This discretization was, e.g., used in Chambolle’s paper [56]. According to (3.10), we
have to compute the absolute value of the gradient, i.e., in our discrete setting ((Dxu)

2 +

(Dyu)
2)

1
2 , and to sum up over all points. Consequently, we define Φ2 as follows:

Φ2(d) := ‖Λ̃ |d| ‖1 (3.19)

with Λ̃ := diag(λ̃j)
N
j=1 and |d| :=

(
‖dj‖2

)N
j=1

for the tuples dj := (dj, dj+N).

Observe that other choices to discretize the gradient operator are possible: Substituting
the forward differences in (3.16) with central differences introduces checkerboard patterns.
However, in the context of discretizing derivatives for diffusion problems solved via partial
differential equations, the problem of checkerboard artifacts was dealt with successfully in
[190, 196, 207] by adding an additional filter.
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In [161, 224], the following consistent finite difference discretization of |∇u| was pro-
posed:

|∇u| ≈
((

(H0 ⊗H1) u
)2

+
(
(H1 ⊗H0) u

)2
+
(
(H1 ⊗H1) u

)2) 1
2
, (3.20)

where H0 and H1 are again the matrices of the Haar filters 1
2
[1 1] and 1

2
[1 −1], respectively.

We have given an intuitive numerical example for the performance of the ROF model
containing forward difference, central differences and the discretization (3.20) in [194]. We
mention further [205, 224, 226] for relations between the ROF and the Besov norm model
in the discrete setting.

Finally, we remark that there exist anisotropic ROF models which use |ux|+|uy| instead
of |∇u|, i.e., ‖D2u‖1 in the discrete setting. Based on [22], its modifications were used in
[100, 196, 203, 207] for images with a special directional structure, e.g., sharp corners.

Proximation with respect to Φi and Φ∗
i

When applying splitting algorithms to (3.12), we have to solve the proximation problem
with respect to Φi and Φ∗

i , i = 1, 2. This can be done in a straightforward way using fast
shrinkage operations. Indeed, one reason why splitting methods have become so popular
recently in image processing is that proxΦi

and proxΦ∗
i
, i = 1, 2, can be computed in a very

efficient way.
A short calculation shows that for any c ∈ RM we have

proxΦ1
(c) = TΛ(c), proxΦ2

(c) = T̃Λ̃(c). (3.21)

Here, TΛ denotes the soft shrinkage or soft thresholding function given componentwise by

Tλj (cj) :=
{

0 if |cj| ≤ λj,
cj − λj sgn(cj) if |cj| > λj,

(3.22)

or equivalently

Tλj (cj) =
1

2
((cj − λj) + |cj − λj |+ (cj + λj)− |cj + λj|) , j = 1, . . . ,M.

The mapping T̃Λ̃ denotes the coupled shrinkage or coupled thresholding function, compare
[57, 161, 224, 226], which is defined for each part cj = (cj+kN)

p−1
k=0 of a vector c ∈ R

pN as

T̃λ̃j (cj) :=
{

0 if ‖cj‖2 ≤ λ̃j ,

cj − λ̃jcj/‖cj‖2 if ‖cj‖2 > λ̃j.
(3.23)

The dual problem of (3.12) has the form

b̂ = argmin
b∈RM

{1
2
‖DTb− f‖22 + Φ∗(b)} (3.24)
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and the primal and dual solutions û and b̂, respectively, are connected via

û = f −DTb̂,

see also, [56, 200]. To calculate the conjugate functions of Φ∗
i , i = 1, 2, we need the notion

of an indicator function. For a set C ∈ R
M the indicator function ιC is given by

ιC(d) :=

{
0 if d ∈ C,
+∞ otherwise.

The functions Φi have the nice property of being positively homogeneous (or one-homo-
geneous), i.e., for all α ≥ 0 and d ∈ RM we have Φi(αd) = αΦi(d), i = 1, 2. It is a
classical result in convex analysis that finite positively homogeneous convex functions and
the indicator function of nonempty, closed, convex and bounded sets are conjugate to each
other, see [181, Theorem 13.2]. More precisely, we have that

Φ∗
i (d) = ιCi

, (3.25)

with Ci = {d ∈ RM : 〈d, x〉 ≤ Φi(x) , ∀x ∈ RM} for i = 1, 2. Using that the dual norm of
the ℓ1-norm is the ℓ∞-norm and the ℓ2-norm is self-dual, one can show, see, e.g., [90] that
for our setting

i) C1 = {d ∈ RM : |dj| ≤ λj , j = 1, . . . ,M},

ii) C2 = {d ∈ RM : ‖dj‖2 ≤ λ̃j, j = 1, . . . , N}.
In conclusion, the dual problem (3.24) has the form

b̂ = argmin
b∈RM

{1
2
‖DT

i b− f‖22} s.t. b ∈ Ci, i = 1, 2, (3.26)

see also [56, 90, 200]. Observe that the dual problem is a linear least squares problem with
relatively simple constraints. In the case i), we have, e.g., symmetric box constraints.

The proximity operator of Φ∗
i has the form

proxΦ∗
i
(c) = proxιCi

(c) = PCi
(c),

where PCi
(c) denotes the projection of a vector c ∈ R

M onto the set Ci for i = 1, 2. A
short calculation shows that this projection can also be expressed in terms of the soft and
coupled shrinkage operators defined in (3.22) and (3.23), respectively:

proxΦ∗(c) = c− T (c) (3.27)

for (Φ, T ) ∈ {(Φ1, TΛ), (Φ2, T̃Λ̃)} and all c ∈ R
M . As we will see in the next sections, it will

be crucial for the performance of most of the algorithms we deal with in this paper that
the projections onto C1 and C2 can be computed in this fast way.

Note that, in general, we will work with a single regularization parameter, i.e., Λ = λI
or Λ̃ = λI for some λ ≥ 0.

60



3. Application to image denoising

3.4 DRS and FBS for Gaussian noise removal

We will now apply the algorithms defined in Chapter 2 to the discrete denoising problem
(3.12). In particular, we consider the Douglas-Rachford splitting/alternating split Bregman
algorithm applied to the primal problem (3.12) as well as the forward-backward splitting
applied to the corresponding dual problem (3.24).

3.4.1 DRS algorithm

Consider the DRS/alternating split Bregman algorithm (2.76)-(2.78) with g(u) := 1
2
‖u −

f‖22 and the Besov norm or TV regularizer. It has the form

u(k+1) = argmin
u∈H1

{1
2
‖u− f‖22 +

1

2γ
‖b(k) +Du− d(k)‖22

}
, (3.28)

d(k+1) = argmin
d∈H2

{
Φ(d) +

1

2γ
‖b(k) +Du(k+1) − d‖22

}
, (3.29)

b(k+1) = b(k) +Du(k+1) − d(k+1), (3.30)

for (Φ, D) ∈ {(Φ1, D1), (Φ2, D2)}. Theorem 2.4.7 and Corollary 2.4.10 imply the conver-
gence of (b(k))k∈N and (u(k))k∈N, respectively. To minimize the quadratic functional in
(3.28), we have to solve the following linear system of equations

u(k+1) = (γI +DTD)−1
(
γf +DT(d(k) − b(k))

)
.

In the Besov norm case, this is easy to solve since DT
1D1 = I but for the matrix D = D2 this

is the hardest subproblem of the algorithm and various methods can be used to compute a
solution or an approximate solution. In [120], e.g., Osher and Goldstein use a Gauß-Seidel
step to approximate u(k+1) since the coefficient matrix resulting from the forward difference
matrix is strictly diagonally dominant. Another possibility is to diagonalize DT

2D2 via the
matrix of the cosine-II transform. This allows us to use fast cosine algorithms and the
complexity becomes O(n2 log n), cf., Appendix B. In step (3.29) we have to compute
proxγΦ(b

(k) +Du(k+1)). Here, we can use (3.21).

The following algorithm shows the alternating split Bregman algorithm (2.76)-(2.78)

for the case (T , D) ∈ {(TΛ, D1), (T̃Λ̃, D2)}. Observe that we have changed the order in
which we compute u(k+1). This is allowed because there are no restrictions on the choice
of the starting values. The reason for this different definition is that it allows us to better
compare this method to the forward-backward splitting algorithm in the following subsec-
tion.

Algorithm (DRS/Alternating split Bregman shrinkage for (3.12))
Initialization: u(0) := f , b(0) := 0
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For k = 0, 1, . . . repeat until a stopping criterion is reached

d(k+1) := T (b(k) +Du(k)),

b(k+1) := b(k) +Du(k) − d(k+1),

u(k+1) := (γI +DTD)−1
(
γf +DT(d(k+1) − b(k+1))

)
. (3.31)

Clearly, we can also define an alternating split Bregman algorithm according to the multiple
splitting algorithm (2.98)-(2.101). If we again compute u(k+1) in the end of each iteration,
we get the following algorithm:

v(k+1) :=
1

1 + γ
(γf + b

(k)
1 + u(k+1)),

d(k+1) := T (b
(k)
2 +Du(k+1)),

b(k+1) := b(k) +

(
I
D

)
u(k+1) −

(
v(k+1)

d(k+1)

)
,

u(k+1) := (I +DTD)−1
(
v(k+1) − b

(k+1)
1 +DT(d(k+1) − b

(k+1)
2 )

)
. (3.32)

Note that in contrast to (3.31) the parameter γ does not appear in the last step of (3.32)
which yields for small γ a better condition number of the corresponding matrix. Conver-
gence of the sequences (v(k))k∈N, (d

(k))k∈N and (b(k))k∈N generated by (3.32) is guaranteed
by Theorem 2.4.13. To prove the convergence of (u(k))k∈N we can either apply the same
argument as in Corollary 2.4.10 and the fact that the linear operator I +DTD is invertible
or we can use directly the coupling of the variables, i.e., u(k) − v(k) → 0 in (3.32). Further-
more, Theorem 2.4.13 and an argument very similar to the one used in Proposition 2.4.8
implies that û and 1

γ
b̂2 converge to solutions of the primal problem (3.12) and the dual

problem (3.26), respectively. Our numerical experiments show that for the ROF model or
the Besov norm model and for a fixed number of iterations, the above two alternating split
Bregman shrinkage algorithms yield very similar results.

Remark 3.4.1 Recall that in Section 2.4.3 we have shown the equivalence of the alter-
nating split Bregman algorithm and the Douglas-Rachford splitting algorithm for the dual
problem. It should be noted here that the Douglas-Rachford splitting method itself was first
applied to image processing problems in [78]. An application to multi-class image labeling
can be found in [141].

3.4.2 FBS algorithm

We will now see that we obtain an interesting algorithm by applying the forward-backward
splitting method (2.30) to the dual problem (3.24). Let us choose A := ∂Φ∗ and B :=
D(DT · −f). Then the corresponding forward-backward splitting algorithm is given by

b(k+1) = proxγΦ∗

(
b(k) + γD(f −DTb(k))

)
. (3.33)
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This algorithm converges for 0 < γ < 2/‖DTD‖2 which can be seen as follows: Clearly,
∂Φ∗ is maximal monotone. Moreover, B is single-valued and we have

‖D(DTb1 − f)−D(DTb2 − f)‖2 ≤ ‖DTD‖2 ‖b1 − b2‖2,

i.e., B is Lipschitz continuous with constant ‖DTD‖2. So, we get by Theorem 2.3.19 that
1

‖DTD‖2B is firmly nonexpansive and the convergence follows from Theorem 2.3.17.

Using the relation (3.27), we can rewrite (3.33) for (T , D) ∈ {(T1, D1), (T2, D2)} as

b(k+1) = b(k) + γD(f −DTb(k))− T
(
b(k) + γD(f −DTb(k))

)
. (3.34)

To see the relation to the alternating split Bregman shrinkage algorithm defined in (3.31),
we introduce the primal variable u(k) = f −DTb(k) and rewrite (3.34) in the following way:

Algorithm (Forward-backward splitting shrinkage for (3.26))
Initialization: u(0) := f , b(0) := 0
For k = 0, 1, . . . repeat until a stopping criterion is reached

d(k+1) := T
(
b(k) + γDu(k)

)
,

b(k+1) := b(k) + γDu(k) − d(k+1),

u(k+1) := f −DTb(k+1). (3.35)

This algorithm can also be deduced as a simple gradient descent reprojection algorithm as
it was done, e.g., by Chambolle [57]. Algorithm (3.35) is not Chambolle’s semi-implicit
gradient descent algorithm of [56] which we study in Appendix C.

A relation of the forward-backward splitting shrinkage method to the Bermúdez-Moreno
algorithm of [23], which also turns out to be the above forward-backward splitting algo-
rithm, was shown in [8].

Remark 3.4.2 Recently, there is a lot of interest in improvements of the gradient descent
reprojection algorithm by using adaptive step size strategies. This is mainly motivated by
the work of Barzilai and Borwein in [12]. For details and numerical comparisons we refer
to [146, 234, 236].

3.4.3 Relation between DRS and FBS algorithm

We illustrate in this section that for both Besov norm and ROF denoising a special choice
of the matrices D1, D2 and of the parameter γ gives rise to a close relation between the cor-
responding DRS/alternating split Bregman and the forward-backward splitting algorithms.
Furthermore, we show the connection to wavelet shrinkage.
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Besov norm regularization

The matrix D1 is again a Parseval frame matrix. Equality (3.14) is still true, but the
problem is no longer equivalent to (3.15). Instead of (3.15), we have to solve the constrained
problem

d̂ = argmin
d∈RM

{1
2
‖c− d‖22 + ‖Λd‖1

}
subject to d ∈ R(D1), (3.36)

where R(D1) denotes the range of D1. The solution in the image space is then again given
by û = D1d̂. The constraint in (3.36) is equivalent to (I −D1D

T
1 )d = 0, i.e., d is equal to

its orthogonal projection on R(D1). One could penalize this condition. In the context of
inpainting, this was suggested in [51].

We will show that the forward-backward splitting shrinkage algorithm and the alter-
nating split Bregman shrinkage algorithm with D = D1, γ = 1 and Φ = Φ1 are the same.
Moreover, we will see that they coincide with the following algorithm which underlines the
relation to the wavelet shrinkage algorithm for orthonormal transforms.

Algorithm (Iterated frame shrinkage)
Initialization: u(0) := f , b(0) := 0.

For k = 0, 1, . . . repeat until a stopping criterion is reached

d(k+1) := TΛ(b
(k) +D1u

(k)),

b(k+1) := b(k) +D1u
(k) − d(k+1),

u(k+1) := DT

1 d
(k+1). (3.37)

The first step of the algorithm, i.e., u(1) = DT
1TΛ(D1f) is an ordinary frame shrinkage

step which also appears if we skip the constraint in (3.36). In the following iterations, the
algorithm differs from the usual iterated frame shrinkage in the summand b(k) we have to
add before shrinking in d(k+1).

Note that in order to use the forward-backward splitting algorithm for problem (3.14),
γ has to fulfill 0 < γ < 2/‖DT

1D1‖2. Now DT
1D1 = IN , thus we have to choose γ in (0, 2)

and γ = 1 is an admissible choice.

Proposition 3.4.3 For D := D1 and γ := 1 the forward-backward splitting shrinkage
algorithm (3.35) and the alternating split Bregman shrinkage algorithm (3.31) coincide
with the iterated frame shrinkage algorithm.

Proof: We start with u(0) := f and b(0) := 0 in all three algorithms and in the way we
have written them, they only differ in the third step, where we have

u(k+1) = 1
2

(
f +DT

1 (d
(k+1) − b(k+1))

)
in algorithm (3.31),

u(k+1) = f −DT

1 b
(k+1) in algorithm (3.35),

u(k+1) = DT

1d
(k+1) in the iterated frame shrinkage algorithm (3.37).
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We now use induction on k. Assume that u(k) = f − DT
1 b

(k). Then, we obtain by the
definition of b(k+1) that

u(k+1) = f −DT

1 b
(k+1) = f −DT

1 b
(k) − u(k) +DT

1d
(k+1) = DT

1d
(k+1),

so that the elements u(k+1) are the same for the forward-backward splitting shrinkage and
the iterated frame shrinkage. Further, we see

1

2

(
f +DT

1 (d
(k+1) − b(k+1))

)
=

1

2

(
f +DT

1d
(k+1) −DT

1 b
(k) − u(k) +DT

1d
(k+1)

)

= DT

1d
(k+1) +

1

2

(
f −DT

1 b
(k) − u(k)

)
= DT

1d
(k+1),

which means that the alternating split Bregman shrinkage algorithm coincides with the
iterated frame shrinkage algorithm, too. �

Let us restate our result for D := D1 and γ := 1 in the following diagram:

Alternating Split Bregman
Shrinkage

=
Forward-Backward
Splitting Shrinkage

=
Iterated

Frame Shrinkage

ROF regularization

To show the relation between the alternating split Bregman algorithm and forward-backward
splitting for the ROF denoising model, we replace the forward difference discretization D2

by the Haar-filter based discretization of the absolute value of the gradient given by (3.20).
We will denote the corresponding matrix by H1, i.e.,

H1 =




H0 ⊗H1

H1 ⊗H0

H1 ⊗H1


 .

Observe that H1 itself is not a Parseval frame but it is part of a Parseval frame: Define

the corresponding ”low-pass” part as H0 = H0 ⊗ H0, then, W :=

(
H0

H1

)
is exactly the

Parseval frame in (A.13).
Using this gradient discretization, the discrete version of the ROF functional (3.11)

reads

argmin
u∈RN

{1
2
‖u− f‖22 + ‖Λ̃ |H1u| ‖1

}
, Λ̃ := λIN . (3.38)

Clearly, we can apply the forward-backward splitting shrinkage algorithm (3.35) to this
problem. It is readily seen that, using Parseval frames, we obtain equivalent versions
of this forward-backward splitting shrinkage algorithm by means of the alternating split
Bregman shrinkage algorithm (3.31) and the iterated frame shrinkage algorithm (3.37). To
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this end, let us define the proper, convex and l.s.c. functional Φ̃2 which differs from Φ2 in
that the first part of the input vector is neglected, i.e.,

Φ̃2(c) = ‖Λ̃ |c1| ‖1, for c = (c0, c1) ∈ R
N × R

3N .

Now, we can rewrite (3.38) in the form

argmin
u∈RN

{1
2
‖u− f‖22 + Φ̃2(Wu)

}
. (3.39)

Note that in order to use forward-backward splitting, γ has to fulfill 0 < γ < 2/‖W TW‖2.
Now W TW = IN , thus we have to choose γ in (0, 2) and γ = 1 is an admissible choice.
Setting γ = 1 means that algorithms (3.31) and (3.37) applied to (3.39) are equivalent to
(3.35) applied to (3.38), cf. Section 3.4.3. It is clear that for any c = (c0, c1) ∈ RN × R3N ,

we have proxΦ̃∗
2
(c) = (c0, c1 − T̃Λ̃(c1)). Hence, using the notation of the iterated frame

shrinkage algorithm (3.37), we obtain the following algorithm:

Initialization: u(0) := f , b(0) := 0
For k = 0, 1, . . . repeat until a stopping criterion is reached

d
(k+1)
0 := (Wu(k))0,

d
(k+1)
1 := T̃Λ̃

(
b(k) + (Wu(k))1

)
,

b(k+1) := b(k) + (Wu(k))1 − d
(k+1)
1 ,

u(k+1) := W T

(
d
(k+1)
0

d
(k+1)
1

)
, (3.40)

where (Wu)0 := H0u and (Wu)1 := H1u. Note that starting with b
(0)
0 := 0 all iterates b

(k)
0

remain zero vectors.
Another possibility is to apply the alternating split Bregman shrinkage algorithm (3.31)

with D := H1 which is not equivalent to the method described above. We now give a nu-
merical example for these two algorithms. The computations were performed in MATLAB.
In Fig. 3.2 we see the result of applying the two algorithms to a noisy image. Note that
we only show the resulting image for algorithm (3.40) here, since the difference to the
alternating split Bregman method with D = H1 is marginal. We also found that the two
algorithms need nearly the same number of iterations. For the above numerical experi-
ment, we used periodic boundary conditions in the Parseval frame, concerning Neumann
boundary conditions, see, e.g., [61].

3.4.4 Geometrical interpretation of DRS and FBS algorithm

The forward-backward splitting shrinkage algorithm (3.35) can easily be understood geo-
metrically. It is simply a gradient descent reprojection method with a fixed step length. In
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Figure 3.2: Comparison of algorithm (3.40) and algorithm (3.31) with D = H1. Stopping
criterion: ‖u(k+1) − u(k)‖∞ < 0.5. Top left: Original image. Top right: Noisy image (white
Gaussian noise with standard deviation 25). Bottom left: Algorithm (3.40), λ = 70, (53
iterations). Bottom right: Difference to algorithm (3.31) with D = H1, (53 iterations).

each iteration we first perform a gradient descent step with step length γ. Then, we repro-
ject onto the feasible set C1 or C2. Interpreting the alternating split Bregman shrinkage
(3.31) is not that straightforward. Let us consider as in (2.91) - (2.93) the slightly different
version where we change the order of the first and the third step in (3.31). We obtain the
algorithm

d(k+1) := T (b(k) +Du(k)),

u(k+1) := (γI +DTD)−1
(
γf +DT(d(k+1) − b(k))

)
,

b(k+1) := b(k) +Du(k) − d(k+1), (3.41)

where (T , D) ∈ {(T1, D1), (T2, D2)}. Recall that in Corollary 2.4.12 it was shown that
(2.91) - (2.93) is a Douglas-Rachford splitting algorithm with respect to the operators
A = ∂Φ∗ and B = ∂(g∗◦(−DT)) for Φ ∈ {Φ1,Φ2}. Hence, we can conclude that arguments
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similar to the ones in Theorem 2.4.7 and in Theorem 2.4.9 guarantee the convergence of all
the sequences generated by (3.41). As before, û and 1

γ
b̂ are solutions of the primal problem

(3.12) and the dual problem (3.26), respectively. Since the operator

B = ∂(g∗ ◦ (−DT)) = ∇(1
2
‖DT · −f‖22) = D(DT · −f)

is single-valued, we can equivalently consider the loose Douglas-Rachford splitting algo-
rithm (2.33). The resolvent

J 1
γ
A
= (I + 1

γ
D(DT · −f))−1

allows us to write J 1
γ
A
x = y equivalently as (I+ 1

γ
DDT)−1(x+ 1

γ
Df) = y. Thus, algorithm

(2.33) has the following form:

p(k+1) = (I + 1
γ
DDT)−1(prox 1

γ
Φ∗
(p(k) − 1

γ
D(DTp(k) − f)) + 1

γ
D(DTp(k) − f) + 1

γ
Df)

= (I + 1
γ
DDT)−1(prox 1

γ
Φ∗
(p(k) − 1

γ
D(DTp(k) − f)) + 1

γ
DDTp(k)).

This yields

p(k+1) + 1
γ
DDTp(k+1) = prox 1

γ
Φ∗
(p(k) − 1

γ
D(DTp(k) − f)) + 1

γ
DDTp(k)

⇔ p(k+1) − p(k) + 1
γ
DDT(p(k+1) − p(k)) = prox 1

γ
Φ∗
(p(k) − 1

γ
D(DTp(k) − f))− p(k)

⇔ p(k+1) − p(k) = (I + 1
γ
DDT)−1(prox 1

γ
Φ∗
(p(k) − 1

γ
D(DTp(k) − f))− p(k)),

and thus, we see that p(k+1) is computed in the following way:

p(k+1) = p(k) + (I + 1
γ
DDT)−1(prox 1

γ
Φ∗
(p(k) − 1

γ
D(DTp(k) − f))− p(k))

= p(k) + (I + 1
γ
DDT)−1(PC(p

(k) − 1
γ
D(DTp(k) − f))− p(k)), (3.42)

where C ∈ {C1, C2}. Note that by Corollary 2.4.12 the sequence (b(k))k∈N in (3.41) is
connected to (p(k))k∈N via p(k) = 1

γ
b(k). Algorithm (3.42) bears a strong resemblance to

a constrained version of the Newton method with Levenberg-Marquardt regularization,
which is often called the Levenberg-Marquardt method, see [142, 154]. Let us disregard the
constraint in the dual problem (3.26) for a moment, i.e, we consider the simple quadratic
problem

x̂ = argmin
x∈RM

{1
2
‖DTx− f‖22}. (3.43)

The Hessian matrix DDT of (3.43) is not invertible and hence, we cannot apply Newton’s
method directly. The idea of the Levenberg-Marquardt method is to regularize the Hessian
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with a unit matrix and an appropriate sequence of positive parameters (θk)k∈N to make it
invertible:

x(k+1) = x(k) + (θkI +DDT)−1(−D(DTx(k) − f)). (3.44)

Clearly, we can rewrite (3.44) as

x(k+1) = x(k) + (I + 1
θk
DDT)−1(− 1

θk
D(DTx(k) − f)). (3.45)

If we disregard the projection in (3.42), we see that the iteration has exactly the same
form as the Levenberg-Marquardt algorithm (3.45). Our algorithm (3.42) incorporates the
constraints of our dual minimization problem (3.26) by applying (I + 1

γ
DDT)−1 not to the

scaled negative gradient direction but to the direction

PC(p
(k) − 1

γ
D(DTp(k) − f))− p(k). (3.46)

Note that the new direction (3.46) is obtained by subtracting the last iterate p(k) from
the point we get after performing a step of the forward-backward splitting or gradient
descent reprojection algorithm. It has been reported in [120], see also Section 3.5, that the
alternating split Bregman method needs fewer iterations than, e.g., the forward-backward
splitting algorithm. This result can now be motivated since we have shown the close
relation of the alternating split Bregman algorithm to a special Newton method, i.e., a
second-order method.

Remark 3.4.4 A different way to use the Levenberg-Marquardt method for our problem
would be to first perform a Levenberg-Marquardt step with respect to a parameter θk and
then to project onto the feasible set, i.e.,

p(k+1) = PC
(
p(k) + (θkI +DDT)−1(D(DTp(k) − f))

)
. (3.47)

Algorithms of this form were studied in [133, 174].

3.5 Comparison of DRS and FBS with multistep

methods

In this section, we want to compare the FBS and DRS/alternating split Bregman methods
to multistep methods in terms of their speed of convergence. The multistep methods
we consider here are first-order methods which make use of the information gained in
preceding iterations to find a better descent direction. In Section 3.5.1 we describe two
multistep methods which were recently applied to image processing problems. We present
results concerning the convergence speed of these multistep methods compared to the
DRS/alternating split Bregman and the forward-backward splitting algorithm in Section
3.5.2.
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3.5.1 Multistep methods

One source of information that is not used by all the algorithm presented so far is the
history of the preceding iterations. We follow here [176] and call algorithms which exploit
this additional information multistep methods. For solving linear systems of equations, one
popular multistep technique is the conjugate gradient method. However, the multistep
idea has not been applied to image processing problems until recently.

As an introductory example, let us consider the simple heavy ball method, cf., [176,
pp. 65], which can improve the gradient descent algorithm for minimizing a sufficiently
smooth function F : RN → R without any constraints:

u(k+1) = u(k) − γ∇F(u(k)) + η(u(k) − u(k−1)), (3.48)

for parameters γ, η > 0 specified in [176, pp. 65]. In the same way as for the conjugate
gradient algorithm, the idea of the heavy ball method is to prevent the ”zigzag” motion
of (u(k))k∈N when approaching a minimizer. In other words, the additional term in (3.48)
acts as ”inertia” and produces a smoother trajectory as illustrated in [176, Fig. 6].

Based on an algorithm of Nesterov in [163], two interesting multistep methods for
constrained minimization problems were proposed recently: The generalized fast iterative
shrinkage thresholding algorithm (FISTA) of [19, 20] is a projected version of the algorithm
in [163]. The method which is now widely known as Nesterov’s algorithm, cf., [165], is a
modification of the algorithm in [163] including projections. These algorithms are suitable
for the following class of problems

û = argmin
u∈C

F(u) (3.49)

with the properties that

• F is Lipschitz continuously differentiable,

• C ⊂ RN is nonempty, bounded, closed and convex,

• a solution û of problem (3.49) exists.

Note that the boundedness of C is only necessary for Nesterov’s algorithm. To define
Nesterov’s algorithm more easily, we will further assume that C is centered around zero
although this condition is not necessary in general. In the following, we will denote the
corresponding Lipschitz constant by L. The above class of problems is of interest for many
problems in image processing. In particular, it covers the dual ROF problem (3.24). An-
other application of Nesterov’s algorithm, e.g., is to multi-class image labeling in [140]

We will now state Nesterov’s algorithm in the original form given in [165] but for com-
putations it is preferable to rewrite it as in [8, 223].
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Algorithm (Nesterov’s algorithm)
Initialization: v(0) = f
For k = 0, 1, . . . repeat until a stopping criterion is reached

u(k+1) := PC(v
(k) − 1

L
∇F(v(k))),

w(k+1) := PC(−
1

L

k∑

i=1

i+ 1

2
∇F(u(i))),

v(k+1) :=
2

k + 3
w(k+1) +

k + 1

k + 3
u(k+1). (3.50)

It is shown in [164] that for any solution û of (3.49) the sequence (u(k))k∈N generated by
the above algorithm satisfies the relation

F(u(k))− F(û) ≤ 4L‖û‖2
k(k + 1)

. (3.51)

This means that the approximation error measured in terms of the function value decreases
with rate O( 1

k2
). Observe that so far convergence of the sequence (u(k))k∈N generated by

Nesterov’s algorithm has not been proved. Clearly, it is guaranteed if F is coercive.
Now let us define FISTA:

Algorithm (FISTA)
Initialization: u(0) = v(0) = f , t0 = 1
For k = 0, 1, . . . repeat until a stopping criterion is reached

u(k+1) := PC(v
(k) − 1

L
∇F(v(k))),

tk+1 :=
1 +

√
1 + 4t2k
2

,

v(k+1) := u(k+1) +
tk − 1

tk+1
(u(k+1) − u(k)). (3.52)

The same convergence rate of O( 1
k2
) holds for the FISTA algorithm, see [19, 20]. More

specifically, we have

F(u(k))− F(û) ≤ 2L‖u(0) − û‖2
(k + 1)2

. (3.53)

Observe that the constants on the right-hand side of (3.51) and (3.53) increase only linearly
with the dimension of the space R

N . As stated before, the multistep algorithm in [163] is
already the unconstrained version of FISTA, i.e., it only lacks the projection in the first
step. It took 25 years until Beck and Teboulle picked up this idea and formulated and
proved the FISTA algorithm in 2008. The authors also proposed a modification of FISTA,
called monotone FISTA (MFISTA). This method updates u(k+1) in the first step of (3.52)
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only if this leads to a decrease in the value of F . However, for our denoising example of
Subsection 3.5.2 MFISTA did not yield an improvement over FISTA.

Comparing Nesterov’s algorithm and FISTA, we see that the first step of the two al-
gorithms is the same, a gradient descent step with step length 1/L and a subsequent
projection on C. Then, both algorithm seek a way to improve the gradient descent re-
projection step using the information of the preceding step(s). In Nesterov’s algorithm
the (projected) weighted sum of all the preceding gradient descent direction is considered.
FISTA, on the other hand, uses simply the difference u(k+1) − u(k). In both cases, this
improves the classical gradient descent reprojection or forward-backward splitting method.
If, e.g., the gradient descent direction is the same for a number of iterations than both
algorithm take larger steps into this direction. On the other hand, ”zig-zagging” behavior
near a minimizer is dampened since the new direction is a weighted average of preceding
ones. Note that the information of only one preceding step is used in FISTA. Nesterov’s
algorithm takes all of the preceding gradient direction into account but they are weighted
such that newer directions have a greater impact.

Another difference between the two algorithms is that for large k, the weighting factors
in the last step of Nesterov’s algorithm imply that we essentially perform gradient descent
reprojection steps with step length 1/L. For the FISTA algorithm, on the other hand
tk−1
tk+1

→ 1 and consequently for large k the algorithm approximately takes a gradient descent

reprojection step with step length 1/L to compute u(k+1) and then the next forward-
backward splitting step is calculated at the point 2u(k+1) − u(k).

These multistep algorithms turn out to be very efficient for our denoising problems, cf.,
[8, 223] and our numerical experiments below. Moreover, their convergence rate

F(u(k))− F(û) = O
( 1
k2
)

is analytically proved to be optimal for problems of the form (3.49) when we restrict
ourselves to first-order methods, see [162, 164]. We will see in the next Section 3.5.2
that for a given number of iterations the alternating split Bregman performs even better
numerically with respect to the error in the function value. This is not a contradiction
to the optimality of the multistep methods described above since in Section 3.4.4 we have
characterized the alternating split Bregman method as a special Newton method.

In our opinion, it is worthwhile to study the multistep methods in more detail in
the future. It is unclear if other implementations of the multistep idea can yield even
better results. Moreover, it seems promising to combine this idea with other minimization
algorithms, e.g., the alternating split Bregman method. Another question is the relation
between multistep methods and gradient descent techniques with adaptive step sizes, cf.,
[146, 234]. If, for example, an adaptive strategy will increase the step length in a ”good”
descent direction, then a multistep strategy might also, after a couple of iterations, do
longer steps in this direction since it gets the information from the preceding steps that
the current descent direction is a ”good” one.
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3.5.2 Numerical experiments

In this section, we compare for the ROF denoising problem (3.12) the numerical perfor-
mance of the forward-backward shrinkage algorithm (3.35), Nesterov’s algorithm (3.50),
FISTA (3.52) and the DRS/alternating split Bregman method (3.31). All the computa-
tions of this section were done on a dual core desktop (2.4 GHz processors, 3 GB memory)
using MATLAB 7.6.0.

For our numerical experiments, we consider the noisy 256 × 256 image shown in the
middle picture of Fig. 3.3 which was obtained by adding white Gaussian noise of standard
deviation 25 to the original image on the left of Fig. 3.3. We restrict our attention
to the forward difference discretization D := D2 of the gradient defined in (3.18). The
corresponding denoising result with regularization parameter λ = 25 is shown on the right-
hand side of Fig. 3.3. It is well-known that ‖D‖2 <

√
8 and this bound is the best possible

Figure 3.3: Left: Original image, values in [0, 255]. Middle: Noisy version with additive
white Gaussian noise of standard deviation 25. Right: Denoising result using the ROF
model with regularization parameter λ = 25.

if n → ∞, cf., [56] or Appendix B. Hence, we choose L = 1/
√
8 for an approximation

of the Lipschitz constant in Nesterov’s algorithm and FISTA. For the forward-backward
splitting shrinkage algorithm (3.35) we must choose 0 < γ < 2/‖D‖22 and it turns out
that the best results are generally obtained for γ close to the upper bound. So, we choose
γ = 0.249 for our experiments. For the first step (3.28) of the DRS/alternating split
Bregman algorithm, we invert the matrix by means of the cosine-II matrix, cf., Appendix
B. Note that we apply the cosine transform via matrix multiplication. A speed-up using
fast cosine transform algorithm might be possible.

In the MATLAB implementations of the above algorithms we always use matrices
instead of vectors to represent our images. This is possible since all our computations
are separable with respect to the Kronecker product, i.e., for an image U ∈ Rn,n with
corresponding vector u ∈ RN and any A ∈ Rr,n, B ∈ Rs,n the matrix BUAT coincides with
(A⊗ B)u after reshaping.
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3. Application to image denoising

Step length parameter for the alternating split Bregman algorithm. We have
shown in Section 3.4 that the alternating split Bregman algorithm converges for every step
length γ > 0. However, it turns out that the numerical results depend heavily on the
choice of the specific value.

In the following experiment whose outcomes are depicted in Fig. 3.4, we have optimized
the parameter γ numerically in two ways: For the number of iterations ranging from 1 to
1000 we have, first, computed the best γ such that the value of the objective function of
the dual problem (3.24) is the smallest for three regularization parameters λ = 15, 25 and
35, cf. the top left plot of Fig. 3.4. Second, we have repeated this experiment to minimize
the objective function of the primal problem (3.12). The results are shown in the top right
plot of Fig. 3.4. In both experiments we have optimized γ with respect to a resolution of
0.001.

We see that the optimal value of γ behaves roughly as the scaled reciprocal function
of the number of iterations. Furthermore, our experiments show that the parameter γ
is larger for higher values of the regularization parameter λ. There seems to be only a
slight difference when we compare the best values for γ optimized with respect to the
dual and the primal function value. This is illustrated in Fig. 3.4 (bottom), where the
solid and dotted curves show the result for the best γ regarding dual and primal function,
respectively. These experiments give rise to two question for further research:

• Is it possible to speed up the alternating split Bregman method by using an adaptive
step length strategy?

• Can the influence of the number of iterations and of the regularization parameter on
the optimal value of the step length be described analytically?

It should be noted here, that the results presented in this paragraph hold also true for
other images.

Algorithm comparison. Let us now compare the performance of the different algo-
rithms. Related experimental results can also be found in [8, 223]. We measure the quality
of the restoration as above in terms of the primal and dual function value. Moreover, we
separate between two cases here. First, we consider the function values for a fixed number
of iterations. Since the computational time for a single iteration will be different for the
algorithms we then study the case where the running time is fixed in advance.

In Fig. 3.5, we see the results for fixed iteration numbers. In all cases, the alternating
split Bregman algorithm performs best except for a relatively high number of iterations in
the dual case and λ = 15, where the FISTA algorithm is slightly better, cf., the top left plot
of Fig. 3.5. This underlines again the fact, that the alternating split Bregman algorithms
is essentially a second-order method. Furthermore, we see that Nesterov’s algorithm and
FISTA always outperform the classical gradient descent reprojection method with fixed
step size. It might be interesting to see in the future how the multistep methods perform
compared to the forward-backward splitting algorithm improved by adaptive step length
strategies. Comparing FISTA and Nesterov’s algorithm, we observe that the latter has
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Figure 3.4: Top: Optimal values for the parameter γ in the alternating split Bregman
algorithm optimized with respect to the dual objective function (left) and the primal
functional (right) for λ = 15, 25, 35. Bottom: The overlay of the six curves from the top
plots.
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advantages regarding the primal functional while FISTA performs much better in terms of
the value of the dual objective function. Note that these results hold true for other images
and different image sizes.

Second, we consider speed comparisons for fixed running times. We restrict our atten-
tion here to the case of λ = 25. In Table 3.1, we see the results in terms of the logarithmic
error in the dual objective function. Now, the FISTA algorithm outperforms the alter-
nating split Bregman method since a single iteration of FISTA is much faster than one of
the alternating split Bregman algorithm. The reason for this is that in the latter we have
to multiply non-sparse matrices. Nesterov’s algorithm is slightly slower in each iteration
than FISTA so that it is clear that it performs worse than FISTA but it is still better than
the alternating split Bregman algorithm. Although one iteration of the forward-backward
splitting algorithm is calculate faster than one iteration of all the other algorithms, its
poor results for a fixed numbers of iterations, cf., Fig. 3.5, carry over to this fixed-time
comparison.

In Table 3.2, we consider the same experiment for the logarithmic error in the primal
objective function. The differences to the preceding results are that now the alternating
split Bregman algorithm shows the best performance and Nesterov’s algorithm outperforms
FISTA. The reason for the first observation is that for a fixed number of iterations the ad-
vantages of the alternating split Bregman algorithms are much greater than in the case
of the dual functional, see Fig. 3.5. Second, Nesterov’s algorithm is better than FISTA
here, because it performs better for a fixed number of iterations which again outweighs the
increased computation time per iteration.

It should be remarked here, that the results for the alternating split Bregman al-

Time ASB FISTA Nesterov FBS
5 4.62 2.73 3.28 7.15
10 2.45 0.10 1.28 5.80
15 1.33 -1.01 0.09 5.04
20 0.24 -2.05 -0.71 4.52
30 -0.92 -3.35 -1.62 3.93
40 -1.69 -4.47 -2.32 3.49
60 -3.33 -5.56 -3.68 2.68

Table 3.1: Logarithmic error with respect to the dual objective function for λ = 25 and
different running times (in seconds).

gorithm can be improved if we do not invert the matrix in the second step but use an
approximation as done in [120].
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Figure 3.5: Logarithmic error in the dual function value (left) and the primal function value
(right) for different algorithms for the ROF denoising model with regularization parameter
λ = 15 (top), λ = 25 (middle) and λ = 35 (bottom).
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Time ASB FISTA Nesterov FBS
5 6.47 7.02 5.38 8.56
10 4.50 5.14 3.73 7.40
15 3.48 4.25 2.78 6.71
20 2.48 3.32 2.14 6.26
30 1.27 2.28 1.36 5.73
40 0.40 1.52 0.73 5.34
60 -1.92 0.79 -0.47 4.61

Table 3.2: Logarithmic error with respect to the primal objective function for λ = 25 and
different running times (in seconds).

3.6 Some generalizations of the ROF model

The ROF model (3.11) is well-known to preserve edges which is an important feature
since edges often define objects in an image. It is natural, however, that this model has
its limitations and must be adapted and generalized to yield good denoising results for a
broader class of images.

A typical problem of the ROF model is, e.g., that it tends to introduce ”staircases”, i.e.,
constant areas where the image should be smooth. This is visible in Fig. 3.6 (middle left).
One simple idea to prevent this is to use second-order derivatives. Let Df again denote the
forward difference matrix given by (3.16). We define the forward difference discretization
of the second-order partial derivatives as

D2 =

(
Dxx

Dyy

)
=

(
I ⊗DT

fDf

DT
fDf ⊗ I

)
, (3.54)

other choices for the second-order difference matrix can be found in [90]. To avoid confu-

sion, we denote the discrete gradient matrix D2 from Section 3.3 as D =

(
Dx

Dy

)
here.

A typical result of solving (3.12) with the second-order difference matrix (3.54) is shown
in the middle right picture of Fig. 3.6. The smooth areas are better restored and, in
particular, the staircasing artifacts have disappeared. On the other hand, as expected,
the edges are blurred now. In the following, we will briefly present two approaches to
tackle both of these problems. For a more sophisticated discrete treatment of higher-order
derivatives in ℓ1 functionals, in particular, relations to contact problems and to discrete
polynomial splines with higher defects, see [90] and also [201]. We also refer to [231] for a
different higher-order method.

Note that we will need the second part of this section in Chapter 5.
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Combined data and gradient fitting in conjunction with ℓ1 regularization. We
consider the model

argmin
u∈RN

1

2
‖u− f‖22 +

β

2
‖Du−Df‖22 + λ‖|D2u| ‖1, (3.55)

which adds to a standard data-fitting and a second-order regularization term a new gradient
fitting term. This term penalizes in the squared Euclidean norm the distance of the noisy
and the restored gradient. In this way, we improve the restoration of sharp edges, cf. Fig.
3.6 (bottom left). Observe that

1

2
‖u− f‖22 +

β

2
‖Du−Df‖22 =

1

2
〈(I + βDTD)(u− f), u− f〉

and since I + βDTD is positive definite there exists a matrix B ∈ RN,N such that

BTB = I + βDTD.

So, a solution û of problem (3.55) can be computed as

û = argmin
u∈RN

1

2
‖B(u− f)‖22 + λ‖|D2u| ‖1,

= B−1 argmin
v∈RN

1

2
‖v − Bf‖22 + λ‖|D2B

−1v| ‖1. (3.56)

In the same way as we derived the dual problem (3.26), we obtain the dual problem
corresponding to (3.55) which is given by

b̂ = argmin
b∈R2N

1

2
‖B−TDT

2 b−Bf‖22 s.t. ‖|b|‖∞ ≤ λ (3.57)

and the primal solution is recovered via û = f − B−1B−TDT
2 b̂. Clearly, both the primal

problem (3.56) and the dual problem (3.57) have the structure of problems (3.12) and
(3.26), respectively. Hence, we can apply all the minimization techniques of this chapter.
Observe that in order to compute the matrix B, we can use again the cosine transform
decomposition presented in Appendix B, i.e.,

B =
(
CT

II ⊗ CT

II

) (
I + βIn ⊗ diag(q) + βdiag(q)⊗ In

) 1
2
(
CII ⊗ CII

)

with diag(q) = (2 sin πj
2n
)2, j = 0, . . . , n−1. Clearly, the square root of the diagonal matrix

in the middle can be computed componentwise.

Infimal convolution regularization term. Let g1, · · · , gm be proper, convex and l.s.c.
functions on RN , then the infimal convolution of these functionals is defined as

g1� . . .�gm(u) = inf
u=u1+···+um

{g1(u1) + · · ·+ gm(um)}, ∀u ∈ R
N , (3.58)
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3. Application to image denoising

Figure 3.6: Top left: Original image (size 256× 256, values in [0, 255]). Top right: Image
with additive white Gaussian noise of standard deviation 20. Middle left: Denoised image
with ROF model and λ = 50. The staircasing effect is visible. Middle right: Denoised
image with second-order difference matrix (3.54) and λ = 50. The staircasing is reduced,
but the edges are blurred. Bottom left: Denoised image via (3.55), β = 0.8, λ = 50. Edges
become sharper. Bottom right: Denoised image via simplified inf-convolution model (3.62)
and λ1 = 50, λ2 = 180.
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cf., e.g., [181]. Observe that the envelope function (2.1) can be seen as the infimal con-
volution with the quadratic function 1

2
‖ · ‖22. In image processing an infimal convolution

regularization term was first used in [59]. We consider here

argmin
u∈RN

{1
2
||u− f‖22 + (J1�J2)(u)}, (3.59)

with
J1(u) := λ1‖|Du|‖1 and J2(u) := λ2‖|D2u|‖1,

cf. [62, 63, 90]. Clearly, problem (3.59) can be written as

argmin
u1,u2∈RN

{1
2
||u1 + u2 − f‖22 + λ1‖|Du1|‖1 + λ2‖|D2u2|‖1} (3.60)

and the solution û of (3.59) is given by û = û1 + û2. It is well-known, cf., e.g., [181,
Theorem 16.4] that the dual of the infimal convolution (3.58) is given by

(g1� . . .�g2)
∗ = g∗1 + · · ·+ g∗m.

The functionals g1, . . . , gm do not even have to be l.s.c. for this statement to be true.
Consequently, the dual problem to (3.59) has the form

argmin
b,b1,b2∈R2N

{1
2
‖b− f‖22} s.t. b = DTb1 = DT

2 b2, (3.61)

‖|b1|‖∞ ≤ λ1, ‖|b2|‖∞ ≤ λ2

and û = f − b̂. For our special choice of the second-order difference matrix (3.54) it holds
that

DT

2 = DT

(
Dx 0
0 Dy

)
,

with Dx = I ⊗Df and Dy = Df ⊗ I. Assuming that in (3.61) it holds that

b1 =

(
Dx 0
0 Dy

)
b2,

which is in general not true, we can modify (3.61) as follows:

b̂2 = argmin
b2∈R2N

{1
2
‖f −DT

2 b2‖22} s.t. ‖ |
(
Dx

Dy

)
b2 | ‖∞ ≤ λ1, (3.62)

‖ |b2| ‖∞ ≤ λ2.

So, an approximation to the primal solution û is then obtained by ũ = f−DT
2 b̂2. The solu-

tion of the primal problem (3.60) as well as the dual problem (3.61) and its approximation
(3.62) can be computed via second-order cone programming, cf., Chapter 5. The result of
the approximate solution ũ we get by solving (3.62) is very similar to the exact solution
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û and the corresponding second-order cone algorithm converges faster than those for the
two ”exact” problems (3.60) and (3.61).

Alternatively, we can use an alternating minimization algorithm, fixing, e.g., in the
primal problem alternatingly u1 and u2 and solving the corresponding ROF-like problems.
The convergence of this procedure becomes clear by using the convergence results of aver-
aged operators from Section 2.3.1.

However, this algorithm involves inner loops and one has to define corresponding stop-
ping criteria. Very recently, T. Teuber [208] suggested to solve (3.60) directly via an
alternating split Bregman method which does not contain inner loops. To this end, we
apply the general alternating split Bregman algorithm (2.103)-(2.106) to the constrained
problem

argmin
u1,u2,v1,v2∈RN ,v3,v4∈R2N

{1
2
||v1 + v2 − f‖22
︸ ︷︷ ︸

=:g1

+ λ1‖|v3|‖1︸ ︷︷ ︸
=:g2

+ λ2‖|v4|‖1︸ ︷︷ ︸
=:g3

}

s.t.




I 0
0 I

D 0
0 D2



(
u1

u2

)
=



v1

v2

v3

v4


.

The hardest subproblems in the corresponding algorithm are the solution of linear systems
with coefficient matrices (I +DTD) and (I +DT

2D2) which can be again computed via the
cosine-II transform or approximately via iterative methods for solving systems of linear
equations.

A numerical result using the infimal convolution approach (3.59) is shown in Fig. 3.6
(bottom right). We see the remarkable performance of the infimal convolution method:
the staircasing effect has disappeared without blurring the edges. The reason for this
is that the infimal convolution model computes the restored image û as the sum of two
components û1 and û2 which adapt themselves to the different regularization terms, cf.,
[203].

Remark 3.6.1 Let us finally mention that many other useful regularization functionals
are applied in the literature. Two popular choices are nonlocal and dictionary-based regu-
larization terms. The idea of these relatively new classes of methods is to let the restoration
algorithm itself compute the prior information about the space of images. For example, we
can use the statistics of the given (noisy) image. This idea originated in [41] and the cor-
responding algorithms are often referred to as nonlocal methods. In a variational setting
nonlocal methods were studied, e.g., in [113, 114, 134] and in connection with non-additive
noise in [203].

One can also use an appropriate dictionary to gain information about the image statis-
tics. More on these dictionary-based approaches can be found, e.g., in [98, 149, 150].
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3.7 Poisson noise removal

We can transfer the denoising model (3.12) to the case where the image is corrupted with
Poisson noise by replacing the data-fitting term in (3.12) with a discrete version of (3.3).
This leads to the following problem

û = argmin
u∈RN

{
N∑

i=1

(
ui − fi log(ui)

)
+ Φ(Du)}, (3.63)

where the noisy image f ∈ RN is assumed to be positive. Let us focus here on the total
variation regularization term, i.e., Φ := Φ2 and the gradient discretization D := D2. This
yields the problem

û = argmin
u∈RN

{
N∑

i=1

(
ui − fi log(ui)

)
+ λ‖|Du|‖1}. (3.64)

It should be noted here, that a similar functional was proposed for denoising in the pres-
ence of multiplicative Gamma noise in [199, 204]. We have also considered multiplicative
methods in approximation theory in [198].

It turns out that gradient descent methods applied to the dual problem of (3.64) do not
perform very well. Let us thus consider the DRS/alternating split Bregman algorithms.
Applying the simplest alternating split Bregman algorithm (2.76)-(2.78) yields

u(k+1) = argmin
u∈RN

{ N∑

i=1

(
ui − fi log(ui)

)
+

1

2γ
‖b(k) +Du− d(k)‖2

}
, (3.65)

d(k+1) = argmin
d∈R2N

{
Φ(d) +

1

2γ
‖b(k) +Du(k+1) − d‖2

}
, (3.66)

b(k+1) = b(k) +Du(k+1) − d(k+1). (3.67)

In the first step (3.65), we have to find the vector u(k+1) > 0 which satisfies

0 =
N∑

i=1

(
1− fi

u
(k+1)
i

)
+

1

γ
DTDu(k+1) +

1

γ
DTb(k) − 1

γ
DTd(k).

This problem has to be solved iteratively, see [204].
However, it is possible to use the multiple splitting idea presented in Section 2.4.4

to further decompose problem (3.64). We consider the following constrained problem
equivalent to (3.64):

argmin
u,v∈RN ,d∈R2N

{〈0, u〉+
N∑

i=1

(
vi − fi log(vi)

)
+ λ‖|d|‖1}, s.t.

(
I
D

)
u =

(
v
d

)
. (3.68)
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According to (2.95)-(2.97) the corresponding alternating split Bregman algorithm has the
form

u(k+1) = argmin
u∈RN

{1
2
‖b(k)1 + u− v(k)‖2 + 1

2
‖b(k)2 +Du− d(k)‖2

}
, (3.69)

v(k+1) = argmin
v∈R2N

{ N∑

i=1

(
vi − fi log(vi)

)
+

1

2γ
‖b(k)1 + u(k+1) − v‖2

}
, (3.70)

d(k+1) = argmin
d∈R2N

{
λ‖|d|‖1 +

1

2γ
‖b(k)2 +Du(k+1) − d‖2

}
, (3.71)

(
b
(k+1)
1

b
(k+1)
2

)
=

(
b
(k)
1

b
(k)
2

)
+

(
I
D

)
u(k+1) −

(
v(k+1)

d(k+1)

)
. (3.72)

Now all of these subproblems can be solved explicitly: In the first step (3.69), we have
to invert the matrix I + DTD as in the Gaussian case and we can, e.g., again apply the
diagonalization via the cosine-II matrix. In contrast to algorithm (3.65)-(3.67), we can
now solve step (3.70) explicitly since the components of v are decoupled:

v(k+1) =
1

2

(
b
(k)
1 + u(k+1) − γ +

√(
b
(k)
1 + u(k+1) − γ

)2
+ 4γf

)
,

cf., [106]. The third step (3.71) can simply be solved via coupled shrinkage, i.e.,

d(k+1) = T̃γλI(b(k)2 +Du(k+1)).

A different algorithm to solve (3.64) is the EM-TV algorithm considered in [39, 40, 188].
In [197], references to other known algorithms can be found.

The advantages of multiple splittings become even more apparent if the image is blurred
prior the corruption by Poisson noise. Then, our minimization problem has the form

û = argmin
u∈RN ,u≥0

{
N∑

i=1

(
(Ku)i − fi log((Ku)i)

)
+ λ‖|Du|‖1}, (3.73)

whereK ∈ RN,N is a blur matrix. Note that now we have to ensure explicitly that u ≥ 0. In
[106], the alternating split Bregman algorithm (2.103)-(2.106) was applied to the following
constrained version of problem (3.73)

argmin
x,u,v∈RN ,

{〈0, x〉+
N∑

i=1

(
vi − fi log(vi)

)
+ λ‖|Du|‖1}, s.t.

(
K
I

)
x =

(
v
u

)
.

The resulting PIDAL algorithm of [106], however, has two drawbacks. First, the nonneg-
ativity constraint on u is not included and, second, the minimization with respect to u
requires us to solve an ROF denoising problem in each step. So, we are confronted with
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the problem of choosing an appropriate stopping criterion. In [197], on the other hand, we
avoid both of these problems by applying (2.103)-(2.106) to the constrained problem

argmin
x,u,v∈RN ,d∈RM

{〈0, x〉+
N∑

i=1

(
vi − fi log(vi)

)
+ λ‖|d|‖1 + ι≥0(u)}, s.t.



K
D
I


 x =



v
d
u


 ,

which results in the so-called PIDSplit+ algorithm.
Another important form of non-Gaussian noise is impulse or salt-and-pepper noise. It

is well-known that L1 data-fitting terms are useful for this kind of noise, cf., e.g., [60, 166,
167, 168, 177]. Again, the alternating split Bregman approach allows us to decompose these
problems into subproblems which can be solved explicitly via soft and coupled shrinkage,
cf., [101].
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CHAPTER 4

Application to image inpainting

4.1 Introduction

In the preceding chapters, the focus of our discussion was on finding fast algorithms for
general minimization problems in image processing (Chapter 2) and denoising problems
(Chapter 3). In this chapter, which is based on [61], we describe a contribution to the
modeling side of image processing by proposing novel wavelet-based inpainting algorithms.
Applying ideas from anisotropic regularization and diffusion, our model can better handle
degraded pixels at edges. We interpret the resulting algorithms as applications of the
forward-backward splitting method which also ensures that convergence is guaranteed.
Numerical examples illustrate the good performance of our algorithms.

First, let us give a brief description of the inpainting problem. It occurs when part
of the data in an image is missing. The task then is to recover the missing regions from
the observed (sometimes noisy) incomplete data. The mathematical model for the image
inpainting problem reads as follows: We will again work in the discrete setting described in
Section 3.3, i.e., two-dimensional images defined on {1, . . . , n}×{1, . . . , n} will be reshaped
columnwise into a vectors u ∈ RN with N = n2. Let the nonempty set Υ ⊂ {1, . . . , N} be
the region of the given pixels. Then the observed incomplete image f is

fj =

{
uj + εj if j ∈ Υ,
arbitrary otherwise,

where ε(j) denotes the noise. In the following, we denote by PΥ the diagonal matrix with
diagonal entries 1 for indices in Υ and 0 otherwise.

Initiated by [24], many useful techniques have been proposed to address this problem. In
this chapter, we are mainly interested in wavelet-based inpainting methods. Such methods
were, e.g., proposed in [51, 104]. However, these methods often let degraded pixels survive
at sharp edges. A typical example is shown in Fig. 4.1. Here both the cubic spline
interpolation and the wavelet-based method from [51] produce visible artifacts, in particular
at the horizontal line. This was our motivation for considering more flexible wavelet-based
methods.
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Figure 4.1: Top left: original image. Top right: degraded image. Bottom left: cubic
interpolation by the MATLAB routine ”griddata” (Peak signal-to-noise ratio (PSNR) =
29.39, err2 = 8.64, err1 = 0.79, cf., Section 4.5). Bottom right: interpolation by the
algorithm in [51] with c = 1 and two levels (PSNR=33.27, err2 = 5.53, err1 = 0.46). The
interpolated images have artifacts, e.g., at the horizontal line.

We focus on the following general types of inpainting algorithms.

Algorithm (Inpainting algorithm I - exact data)
Initialization: u(0) := f
For k = 0, 1, . . . repeat until a stopping criterion is reached

i) Solve a restoration problem for the current image u(k) to obtain û(k+1).
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4. Application to image inpainting

ii) Set

u
(k+1)
j :=

{
fj if j ∈ Υ,

û
(k+1)
j otherwise.

Output: u∗

Algorithm (Inpainting algorithm II - noisy data)
Same as the general inpainting algorithm I except that we have to apply step i) to the final
iterate u∗ again.
Output: u⋄ = û∗

Indeed, depending on the restoration method used in step i), many known inpainting
algorithms are of this general type. In [51], the following framelet based denoising method
was proposed for step i) of the general inpainting algorithm I: Let W ∈ RM,N , M ≥ N ,
denote a Parseval frame matrix, i.e., any u ∈ RN can be written as u =W Td andW TW = I.
Further, let Λ := diag(λ) be a diagonal matrix containing the components of the vector
λ := (λj)

M
j=1 as diagonal entries. Then the authors suggest solving the Besov-norm problem

d(k+1) = argmin
d∈RM

{1
2
‖Wu(k) − d‖22 + ‖Λ d‖1

}
(4.1)

via the fast soft shrinkage operation defined in (3.22). The solution TΛ(Wu(k)) is then
transformed back to the image domain, i.e., we in total we get the following restoration
step i)

û(k+1) = W TTΛ(Wu(k)). (4.2)

In [51], it was proved that for noisy input data the iterates of the general inpainting
algorithm II with restoration step (4.2) converge to u⋄ =W Td̂, where d̂ is the solution of

d̂ = argmin
d∈RM

{1
2
‖PΥW

Td− PΥf‖22 + ‖Λ d‖1 +
1

2
‖(I −WW T)d‖22

}
. (4.3)

Indeed this algorithm is very similar to a method proposed in [104], where the authors
solve

d̂ = argmin
d∈RM

{1
2
‖PΥW

Td− PΥf‖22 + ‖Λ d‖1
}

(4.4)

by

d(k+1) = TΛ

(
d(k) +W (PΥf − PΥW

Td(k))
)

and set u⋄ = W Td̂. Obviously, for an orthogonal matrix W the wavelet-based algorithms
(4.3) and (4.4) coincide. However, for various nonorthogonal frame analysis matrices W ,
the numerical experiments in [51] indicate that the algorithm (4.3) performs better. This
can be explained by the fact that in (4.3) we not only focus on the sparsity of d̂ but also
introduce an additional regularity term.
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In [99], the method (4.4) was generalized in order to recover both the texture and the
cartoon part of an image, see also [25]. To this end, the authors solve

argmin
dt,dc

{1
2
‖PΥ(W

T

t dt +W T

c dc − f)‖22 + λ(‖dt‖1 + ‖dc‖1) + γ‖ |(W T

c dc)| ‖1
}
,

whereWc denotes the discrete curvelet transform,Wt denotes the discrete cosine transform,
and dt and dn are the texture and cartoon components, respectively.

Beyond regularization techniques, PDE-based approaches can be applied in the restora-
tion step. In [111, 225], it was demonstrated that inpainting methods based on edge enhanc-
ing anisotropic diffusion appear to be superior to linear methods, e.g., spline interpolation
methods, and nonlinear isotropic diffusion methods. Indeed, these ideas were, together
with wavelet techniques, the second ingredient for our algorithms. For other PDE-based
methods, we refer only to [65] and the references therein.

In this chapter, we focus on inpainting by combining anisotropic regularization and dif-
fusion methods with multilevel Haar-wavelet filters. Our new methods increase, compared
to [51], the PSNR of various restored images significantly, e.g., by 3 dB for the image in
Fig. 4.1, and avoid highly visible artifacts. Following the lines of [51], we prove the con-
vergence of our method by embedding it into the framework of forward-backward splitting
algorithms.

This chapter is organized as follows: In Section 4.2, we briefly review anisotropic reg-
ularization and diffusion methods. Ideas from this section, in particular the application
of a diffusion tensor, carry over to our wavelet setting. In Section 4.3, we present new
anisotropic Haar-wavelet methods for the inpainting problem. The convergence proof of
our algorithms is given in Section 4.4. Finally, Section 4.5 contains numerical examples
which demonstrate the excellent performance of our algorithms.

4.2 Anisotropic regularization and diffusion

In this section, we sketch the basic ideas from anisotropic diffusion and regularization
methods that carry over to our wavelet setting. We prefer the more common continuous
point of view in this section, while the rest of the chapter deals with a discrete setting
obtained by discretizing gradients with the help of wavelet filters. Anisotropic diffusion
methods such as edge enhancing or coherence enhancing diffusion have been used for the
directed denoising of images for a long time, see [220] and the references therein. Recently,
anisotropic regularization methods have become popular, e.g., for the restoration of poly-
gonal shapes [22, 100, 196] with sharp edges and corners.

Let us consider a single restoration step r of our inpainting method which computes for
a given continuous image f̃ := u(k) on a quadratic domain Ω the image û(k+1). By ◦, we
denote the Hadamard product (componentwise product) of matrices. From the variational
point of view, one could restore the image by solving for an appropriate proper, convex
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and l.s.c. function Φ and an invertible matrix V ∈ R2,2 the problem

argmin
u

{1
2
‖ũ− f‖2L2

+ λ

∫

Ω

Φ((V T∇u) ◦ (V T∇u)) dxdy
}
, (4.5)

where the function space of u depends on the choice of Φ. For Φ(x2, y2) :=
√
x2 + y2 and

V := I, the functional in (4.5) is the again the ROF functional defined on the space BV of
functions of bounded variations, cf. (3.11). For Φ(x2, y2) := |x| + |y| and special rotation
matrices V , the functional (4.5) was used for corner preserving denoising in [22, 196, 203].
For V = I, minimization algorithms for this functional were considered, e.g., in [129]. If Φ
is differentiable, then the Euler–Lagrange equation of (4.5) reads

0 = f̃ − u+ λ∇ · (D∇u) (4.6)

with

D := V

(
2∂1Φ

(
(V T∇u) ◦ (V T∇u)

)
0

0 2∂2Φ
(
(V T∇u) ◦ (V T∇u)

)
)
V T. (4.7)

Here, ∂ν denotes the derivative with respect to the ν-th variable. For example, we have
for the mapping Φ(x2, y2) :=

√
x2 + y2 + ε2 that

∂1Φ(x
2, y2) = ∂2Φ(x

2, y2) = 1/(2
√
x2 + y2 + ε2)

and for Φ(x2, y2) :=
√
x2 + ε2 +

√
y2 + ε2 that

∂1Φ(x
2, y2) = 1/(2

√
x2 + ε2)

and
∂2Φ(x

2, y2) = 1/(2
√
y2 + ε2).

On the other hand, the so-called anisotropic edge enhancing diffusion (EED) acts via

∂tu = ∇ · (D∇u), (4.8)

u(x, 0) = f̃(x),

with appropriate boundary conditions, mostly Neumann boundary conditions, to prevent
the loss of energy and with the diffusion tensor

D := V

(
g(|∇uσ|) 0

0 1

)
V T, V := (v v⊥), v :=

∇uσ
|∇uσ|

. (4.9)

Here uσ = u ∗Kσ denotes the convolution of u with the Gaussian of standard deviation σ
and g is a decreasing nonnegative function. In applications, the function

g(|s|) =
{

1− e
− 3.31488

(s/α)8 s > 0,
1 s = 0,
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introduced by Weickert in [220], has shown a good performance.
A relation to regularization methods can be seen as follows: If we use instead of (4.9)

matrices of the form (4.7), then (4.6) can be considered as a semidiscretization of (4.8) via
an implicit Euler step of time step size λ using these matrices. The following wavelet meth-
ods are related to explicit time discretizations so that we can achieve only approximations
of the corresponding regularization method. For further investigations in this direction,
see [191]. Note that according to [220], we will call a method anisotropic if the diagonal
matrix in the diffusion tensor contains different nonzero diagonal entries. In this sense, the
ROF method is an isotropic one.

4.3 Anisotropic Haar-wavelet shrinkage

In this section, we return to our discrete setting. We show how the ideas of anisotropic
regularization and diffusion presented in (4.5) and (4.8), respectively, can be used to re-
place problem (4.1) in the first step in the general inpainting algorithms I and II by more
appropriate minimization problems without adding too much computational complexity to
solve them.

First, let us consider the following discretization of the EED algorithm. Recall the
Parseval frame 



H0 ⊗H0

H0 ⊗H1

H1 ⊗H0

H1 ⊗H1


 (4.10)

defined in (A.13) with respect to the filters of the Haar-wavelet h0 := 1
2
[1 1] and h1 :=

1
2
[1−1]. Note that for convenience of notation, H0 ∈ Rn,n andH1 ∈ Rn,n are again circulant

matrices with respect to h0 and h1, i.e., we use periodic boundary conditions. A remark
concerning Neumann boundary conditions can be found at the end of this section. Based
on the frame (4.10), an ℓ2-stable, conditionally consistent, so-called locally semianalytic
scheme (LSAS), cf., [224], was developed for the numerical solution of the EED equation
(4.8). It involves a sophisticated spatial discretization and an explicit Euler scheme as
temporal discretization. For some starting image u(0) and a time step size τ the LSAS
scheme computes at every time step the new image u((j+1)τ) based on the preceding iterate
u(jτ) by the following steps:

1.




c00
c01
c10
c11


 :=




H0 ⊗H0

H0 ⊗H1

H1 ⊗H0

H1 ⊗H1


 u(jτ),

2.

(
d01
d10

)
:= V

(
e−4τ g(|∇u(jτ)σ |) 0

0 e−4τ

)
V T

(
c01
c10

)
,

d00 := c00,

d11 := e−4τ (g(|∇u(jτ)σ |)+1)c11,
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3. u((j+1)τ) :=




H0 ⊗H0

H0 ⊗H1

H1 ⊗H0

H1 ⊗H1




T

(dT
00, d

T
01, d

T
10, d

T
11)

T ,

where

∇u(jτ)σ := 2

(
H0 ⊗H1

H1 ⊗H0

)
(u(jτ)σ ∗Kσ)

and V is chosen in accordance with (4.9) as V :=

(
c −s
s c

)
with

c := diag
(
((H0 ⊗H1)u

(jτ)
σ )/w

)
,

s := diag
(
((H1 ⊗H0)u

(jτ)
σ )/w

)
,

w :=

√(
(H0 ⊗H1)u

(jτ)
σ

)2
+
(
(H1 ⊗H0)u

(jτ)
σ

)2

and componentwise quotients ((H0⊗H1)u
(jτ)
σ )/w and squares

(
(H0⊗H1)u

(jτ)
σ

)2
of vectors.

We consider now the Haar Parseval frame with L decomposition levels which generalizes
(4.10). For l = 1, . . . , L, let H

(l)
ν ∈ Rn,n, ν ∈ {0, 1}, be the circulant matrix corresponding

to the filter h
(l)
ν = 1

2
(1, 0, . . . , 0︸ ︷︷ ︸

2l−1−1

, (−1)ν) with 2l−1 − 1 inserted zeros between the filter

coefficients. Further, we set




H
(l)
00

H(l)

H
(l)
11


 :=




H
(l)
00

H
(l)
10

H
(l)
01

H
(l)
11


 =




H
(l)
0 ⊗H

(l)
0

H
(l)
0 ⊗H

(l)
1

H
(l)
1 ⊗H

(l)
0

H
(l)
1 ⊗H

(l)
1




l−1∏

i=1

(H
(l−i)
0 ⊗H

(l−i)
0 ).

Then the matrix

W :=




H
(L)
00

H(1)

...
H(L)

H
(1)
11
...

H
(L)
11




∈ R
(3L+1)N,N (4.11)

satisfies W TW = I while WW T 6= I. Let V (k) be orthogonal matrices and let

Λ(k) := diag
(
λ
(k)
j

)2N
j=1

, Λ
(k)
11 := diag

(
λ
(k)
11,j

)N
j=1

, k = 1, . . . , L,
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be diagonal matrices with nonnegative entries. For p ∈ [1, 2], we consider the minimization
problem

argmin
u∈RN

{1
2
‖u− f‖22 +

1

p

L∑

k=1

‖Λ(k)
(
V (k)

)T
H(k)u‖pp +

1

p

L∑

k=1

‖Λ(k)
11 H

(k)
11 u‖pp

}
.

In our numerical examples, we will use only p = 1 and p = 2. Since W TW = I, this is
equivalent to

argmin
u∈RN

{1
2
‖Wu−Wf‖22 +

1

p

L∑

k=1

‖Λ(k)
(
V (k)

)T
H(k)u‖pp +

1

p

L∑

k=1

‖Λ(k)
11 H

(k)
11 u‖pp

}
.

Using the notation

c := Wf =
(
c
(L)
00 , c

(1), . . . , c(L), c
(1)
11 , . . . , c

(L)
11

)T

, d :=Wu,

this can be rewritten as

argmin
d∈R(3L+1)N

{1
2
‖d− c‖22 +

1

p

L∑

k=1

‖Λ(k)
(
V (k)

)T
d(k)‖pp +

1

p

L∑

k=1

‖Λ(k)
11 d

(k)
11 ‖pp

}
s.t. d ∈ R(W ).

Note that d ∈ R(W ) is equivalent to (I −WW T)d = 0, i.e., the orthogonal projection of
d onto the kernel of W T has to be 0. In other words, if d̂ is a solution of this problem,
then WW Td̂ is just the orthogonal projection of d̂ onto R(W ). We will not solve this
minimization problem in step i) of our inpainting algorithm, but rather the following
problem which is obtained by neglecting the constraint:

argmin
d∈R(3L+1)N

{1
2
‖d− c‖22 + JΛ,p(d)

}
,

where

JΛ,p(d) :=
1

p

L∑

k=1

‖Λ(k)
(
V (k)

)T
d(k)‖pp +

1

p

L∑

k=1

‖Λ(k)
11 d

(k)
11 ‖pp. (4.12)

This functional can be decoupled as

1

2
‖d(L)00 − c

(L)
00 ‖22 +

L∑

k=1

(
1

2
‖d(k) − c(k)‖22 +

1

p
‖Λ(k)

(
V (k)

)T
d(k)‖pp

)

+

L∑

k=1

(
1

2
‖d(k)11 − c

(k)
11 ‖22 +

1

p
‖Λ(k)

11 d
(k)
11 ‖pp

)
. (4.13)

Now the three parts of the functional can be minimized separately, which leads to the
following solution.
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Lemma 4.3.1 The minimizer d̂ of the functional (4.13) is given by

d̂
(L)
00 = c

(L)
00 ,

d̂(k) = V (k) TΛ(k),p

(
(V (k))Tc(k)

)
, k = 1, . . . , L, (4.14)

d̂
(k)
11 = T

Λ
(k)
11 ,p

(c
(k)
11 ), k = 1, . . . , L,

with the following shrinkage procedures T·,· :

i) the soft shrinkage TΛ,1 := TΛ for p = 1,

ii) TΛ,p(y) = F−1
Λ,p(y), where FΛ,p is the injective mapping

FΛ,p(x) = x+ Λp(sgn(x) ◦ |x|p−1)

for p ∈ (1, 2),

iii) TΛ,2(y) := (I + Λ2)−1y for p = 2.

Moreover, we have for p ∈ (1, 2] that

|TΛ,p(y)|p ≥ (I + Λp)−p|y|p − 1. (4.15)

Proof: Since the matrices V (k) are orthogonal, we immediately obtain assertion i).

In the following, we restrict our attention to the central functional, i.e., to d̂(k). For
p ∈ (1, 2], the functional is differentiable, and the minimizer has to fulfill

0 = d̂(k) − c(k) + V (k)Λ(k)
(
sgn(Λ(k)(V (k))Td̂(k)) ◦

∣∣∣Λ(k)(V (k))Td̂(k)
∣∣∣
p−1 )

(V (k))Tc(k), = (V (k))Td̂(k) +
(
Λ(k)

)p
sgn((V (k))Td̂(k)) ◦ |(V (k))Td̂(k)|p−1.

Then x = (V (k))Td̂(k) is the solution of (V (k))Tc(k) = FΛ(k),p(x) and d̂(k) = V (k)x. In

particular, we have for p = 2 that x = (I + Λ2)−1(V (k))Tc(k).

We prove the last assertion (4.15) componentwise. For x, y ∈ R and λ ∈ R≥0 the equation
y = x+ λpsgn(x)|x|p−1 implies that

|y| = |x|+ λp|x|p−1.

Then, we see for |x| ≥ 1 and p ∈ (1, 2] that |y| ≤ |x|+ λp|x| and, consequently, |x| ≥ (1 +
λp)−1|y|. For |x| < 1, we have that |y| ≤ |x|p−1+λp|x|p−1 so that 1 > |x|p−1 ≥ (1+λp)−1|y|.
Thus, 1 > (1 + λp)−p|y|p and |x|p ≥ 0 > (1 + λp)−p|y|p − 1. �

Let us denote the whole shrinkage procedure by d̂ = TΛ,p c. Finally, we can compute

the denoised image u of f by u = W Td̂. With this denoising procedure our inpainting
algorithm reads as follows.

95



4. Application to image inpainting

Algorithm (Proposed inpainting algorithm I)
Initialization: u(0) := f
For k = 0, 1, . . . repeat until a stopping criterion is reached

i) Compute û(k+1) =W TTΛ,p(Wu(k)) with TΛ,p defined by Lemma 4.3.1.
ii) Set

u
(k+1)
j =

{
fj if j ∈ Υ,

û
(k+1)
j otherwise.

Output: u∗

Algorithm (Proposed inpainting algorithm II)
Same as the proposed inpainting algorithm I except that we have to apply step i) to the
final iterate u∗ again.
Output: u⋄ = û∗

The set

C := {g ∈ R
N : g(j) = f(j), ∀j ∈ Υ}.

is nonempty, closed, and convex so that its indicator function ιC is a proper l.s.c. convex
function. Thus, step ii) of the inpainting procedure also reads

u(k+1) = argmin
u∈RN

{1
2
‖u− û(k+1)‖22 + ιC(u)

}
.

Thus, the whole algorithm can be rewritten in the form

d(k+1) = argmin
d∈R(3L+1)N

{1
2
‖d−Wu(k)‖22 + JΛ,p(d)

}
, (4.16)

u(k+1) = argmin
u∈RN

{1
2
‖u−W Td(k+1)‖22 + ιC(u)

}
, (4.17)

where JΛ,p(d) is defined in (4.12).

Remark 4.3.2 (Neumann boundary conditions)
If we assume mirrored boundary conditions, we have to replace the circulant matrices by
Toeplitz matrices. We consider again the Haar filters hi, i = 1, 2. Instead of circulant
matrices, we use these now to construct Toeplitz matrices Hi ∈ Rn+1,n+2, i = 0, 1. For the
sake of simplicity, let us restrict our attention to a single decomposition level. Using the
Toeplitz matrices H1 and H2, we again form the matrix

W =




H0 ⊗H0

H0 ⊗H1

H1 ⊗H0

H1 ⊗H1


 . (4.18)
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For more than one decomposition level we would obtain a (3L+1)(n+1)2× (n+2)2 matrix
according to (4.11). The matrix W of (4.18) is not a Parseval frame but using the fact
that the Kronecker product is bilinear we obtain

W TW =
(
HT

0H0 +HT

1H1

)
⊗
(
HT

0H0 +HT

1H1

)
. (4.19)

and since

HT

0H0 +HT

1H1 =




1
2

I
1
2


 (4.20)

the Parseval frame property W TW = I is almost fulfilled, except at boundary pixels.
Let f̃ denote the image obtained from f by mirroring the boundaries by one pixel. Then,

it follows from (4.20) and (4.19) that, after removing the auxiliary one-pixel boundary, the
image W TW f̃ corresponds to f again.

This procedure can be facilitated in the following way. Let H̃i ∈ Rn,n+1 denote the
matrices obtained from the Toeplitz matrices HT

i by canceling their first and last rows.
Then, we have that

H̃0H0 + H̃1H1 =




0 1 0
...

. . .
...

0 1 0


 .

So, let us define W̃ as described above for these matrices H̃i, i = 1, 2. Since

W̃W =
(
H̃0H0 + H̃1H1

)
⊗
(
H̃0H0 + H̃1H1

)

it follows that W̃Wf̃ = f . Hence, applying Neumann boundary condition means that
instead of (4.16) we solve in each iteration the minimization problem

d(k+1) = argmin
d∈R4(n+1)2

{
1

2
‖d−Wũ(k)‖22 +

1

p
‖Λ V T d‖pp +

1

p
‖Λ11 d11‖pp

}

with W as defined in (4.18) and set û(k+1) = W̃d(k+1).

4.4 Convergence considerations

Following [51], we show the convergence of our inpainting algorithm by identifying it as a
forward-backward splitting algorithm to minimize the sum of two operators.

Theorem 4.4.1 For every starting image u(0) and any p ∈ [1, 2] the proposed inpainting
algorithm I converges to a solution of the problem

argmin
u∈RN

F(u) (4.21)

97



4. Application to image inpainting

with

F(u) = min
d∈R(3L+1)N

{1
2
‖d−Wu‖22 + JΛ,p(d)}+ ιC(u).

Furthermore, the proposed inpainting algorithm I can be identified as a forward-backward
splitting method applied to this problem.

For the proof of Theorem 4.4.1 we will need the following lemmas.

Lemma 4.4.2 The function F in (4.21) is coercive.

Proof: Recall that in view of Lemma 4.3.1 we denote the unique minimizer of the first
term of F by TΛ,p(Wu) so that we have

F(u) =
1

2
‖Wu− TΛ,p(Wu)‖22 + JΛ,p(TΛ,p(Wu)) + ιC(u)

≥ JΛ,p(TΛ,p(Wu)).

LetWu :=
(
(Wu)

(L)
00 , (Wu)(1), . . . , (Wu)(L), (Wu)

(1)
11 , . . . , (Wu)

(L)
11

)T

. Then we see by (4.13)

and (4.14) that

JΛ,p(TΛ,p(Wu)) =
1

p

L∑

k=1

‖Λ(k)TΛ(k),p

(
(V (k))T(Wu)(k)

)
‖pp

+
1

p

L∑

k=1

‖Λ(k)
11 TΛ

(k)
11 ,p

((Wu)
(k)
11 )‖pp. (4.22)

Now we have by (4.15) and by definition of the soft shrinkage function that

1

p

(
λ
(k)
j

)p ∣∣T
λ
(k)
j ,p

(y)
∣∣p ≥





λ
(k)
j |y| −

(
λ
(k)
j

)2
for p = 1,

1
p

(
λ
(k)
j

1+
(

λ
(k)
j

)p

)p
|y|p − 1

p

(
λ
(k)
j

)p
for p ∈ (1, 2].

Thus, setting

κ1 :=
1

p
min

j=1,...,2N

i=1,...,N

k=1,...,L

{( λ
(k)
j

1 +
(
λ
(k)
j

)p
)p
,
( λ

(k)
11,i

1 +
(
λ
(k)
11,i

)p
)p}

and

κ2 :=





∑L
k=1

(∑2N
j=1

(
λ
(k)
j

)2
+
∑N

i=1

(
λ
(k)
11,j

)2)
for p = 1,

1
p

∑L
k=1

(∑2N
j=1

(
λ
(k)
j

)p
+
∑N

i=1

(
λ
(k)
11,j

)p)
for p ∈ (1, 2]
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and applying that ‖x‖p ≥ ‖x‖2 for p ∈ [1, 2], we get

JΛ,p(TΛ,p(Wu)) ≥ κ1

( L∑

k=1

‖(V (k))T(Wu)(k)‖pp +
L∑

k=1

‖(Wu)
(k)
11 ‖pp

)
− κ2

≥ κ1

( L∑

k=1

‖(Wu)(k)‖p2 +
L∑

k=1

‖(Wu)
(k)
11 ‖p2

)
− κ2.

Using the notation W0 := H
(L)
00 and

W1 :=
(
(H(1))T, . . . , (H(L))T, (H(1))T11, . . . , (H

(L))T11
)T
,

this can be rewritten as

JΛ,p(TΛ,p(Wu)) ≥ κ1‖W1u‖p2 − κ2. (4.23)

By Lemma 4.4.3 below, the matrix W T
0 W0 has the simple eigenvalue 1 with a correspond-

ing normed eigenvector ũ = 1√
N
1N . Since W TW = I, it follows that W T

1 W1 has the

simple eigenvalue 0 and that the kernel of W T
1 W1 is spanned by ũ. Now we obtain for the

orthogonal decomposition u = v + aũ that |a| ≥ ‖u‖2 − ‖v‖2 and

‖W1u‖22 = ‖W1v‖22 ≥ η2‖v‖22, (4.24)

where η2 > 0 is the second smallest eigenvalue of W T
1 W1. Now we fix a constant c ∈

( 1√
N+1

, 1) and consider two cases:

1. For ‖v‖2 ≥ c ‖u‖2, we conclude by (4.23) and (4.24) that

F(u) ≥ κ1‖W1u‖p2 − κ2 ≥ κ1
√
η2
p ‖v‖p2 − κ2 ≥ κ1

√
η2
p cp ‖u‖p2 − κ2.

2. For ‖v‖2 < c‖u‖2 it holds that |a| > (1− c)‖u‖2. Hence, we have for any i0 ∈ Υ that

|ui0| = |vi0 + aũi0| ≥ |a||ũi0| − |vi0| > (1− c)‖u‖2|ũi0| − c‖u‖2 = ‖u‖2
1− c(1 +

√
N)√

N
.

Thus, we see for ‖u‖2 large enough that |ui0| > |fi0| and, consequently, F(u) ≥ ιC(u) =
+∞. �

Lemma 4.4.3 The matrix W T

0 W0 has 1 as a simple eigenvalue with corresponding eigen-
vector ũ = 1√

N
1N .

Proof: Using multiplication rules for tensor products, we obtain that

W T

0 W0 = BTB ⊗ BTB, B :=

L∏

l=1

H
(l)
0 =

1

2L
circ ([1 . . . 1︸ ︷︷ ︸

2L

0 . . . 0]).
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By [86], the circulant matrix B has eigenvectors 1√
n
(e−

2πijk
n )nj=0 and eigenvalues β0 = 1 and

|βk| = | 1
2L

2L−1∑

j=0

e−
2πijk

n | =
1

2L
|1− e−

2πij2L

n |
|1− e−

2πij
n |

=
1

2L

L∏

p=1

|1 + e−
2πij2L−p

n | < 1,

k = 1, . . . , n−1. The last inequality holds true because |1+e− 2πij2L−p

n | ≤ 2 for p = 1, . . . , L
with strict inequality for p = L. �

Proof of Theorem 4.4.1: Observe that the first term in (4.21) can be written in terms
of an envelope as

(
1JΛ,p ◦W

)
(u) = min

d∈R(3L+1)N

{1
2
‖d−Wu‖22 + JΛ,p(d)}.

Both functionals 1JΛ,p ◦ W and ιC are proper, convex and l.s.c. The first one is also
differentiable so that we can apply the forward-backward splitting algorithm (2.30) with
B = ∇ (1JΛ,p ◦W ) and A = ∂ιC . As we will see below, we want to use the step length
γ = 1 in the forward-backward splitting algorithm. This is an admissible parameter since
the gradient

∇
(
1JΛ,p ◦W

)
(u) =W T

(
Wu− proxJΛ,p

(Wu)
)

is Lipschitz continuous with Lipschitz constant one which can be shown as follows, cf.
[51]: First, observe that W being a Parseval frame implies ‖W‖2 = 1. So, using that the
proximal operator is firmly nonexpansive we can apply (2.19) to get for any u, v ∈ RN

‖∇
(
1JΛ,p ◦W

)
(u)−∇

(
1JΛ,p ◦W

)
(v)‖2

= ‖W T

(
Wu− proxJΛ,p

(Wu)
)
−W T

(
Wv − proxJΛ,p

(Wv)
)
‖2

≤ ‖W‖2 ‖Wu− proxJΛ,p
(u)−

(
Wv − proxJΛ,p

(v)
)
‖2

≤ ‖W (u− v)‖2 ≤ ‖u− v‖2.
We have thus shown that∇ (1JΛ,p ◦W ) is Lipschitz continuous with parameter one. Hence,
the forward-backward splitting algorithm with γ = 1 is given by

u(k+1) = proxιC
(
u(k) −∇

(
1JΛ,p ◦W

)
(u(k))

)

= argmin
u∈RN

{
1

2
‖u(k) −∇

(
1JΛ,p ◦W

)
(u(k))− u‖22 + ιC(u)

}

= argmin
u∈RN

{
1

2
‖u(k) −W T

(
Wu(k) − proxJΛ,p

(Wu(k))
)
− u‖22 + ιC(u)

}

= argmin
u∈RN

{
1

2
‖W TproxJΛ,p

(Wu(k))− u‖22 + ιC(u)

}
. (4.25)

By (4.16) and (4.17) this coincides with the sequence produced by our proposed inpainting
algorithm I. We conclude convergence of our algorithm since by Lemma (4.4.2) a solution
of problem (4.21) exists. �
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Remark 4.4.4 Numerical experiments indicate that the proposed inpainting algorithm I
converges linearly. However, we have not proved this so far. In [211, Proposition 1(d)],
Tseng gives a sufficient condition for linear convergence. Unfortunately, it cannot be ap-
plied here since neither ∇ (1JΛ,p ◦W ) nor ∂ιC is strongly monotone.

Remark 4.4.5 Clearly, we can also use Nesterov’s algorithm or FISTA instead of the
above forward-backward splitting algorithm and make use of the information of the preceding
iterations, cf., Subsection 3.5.1.

4.5 Numerical examples

Finally, we present some numerical examples, in particular, we compare our algorithms
with the algorithm in [51] without thresholding of the smoothest coefficients. Since the
results for noisy data with a small amount of noise are similar as those for exact data, we
restrict our attention to exact input data.

All programs were written in MATLAB. We have always assumed Neumann boundary
conditions and we have used the following stopping criterion for the iterations: ‖u(k+1) −
u(k)‖2/‖u(k+1)‖2 ≤ 5 · 10−5. We compare the weighted ℓ1-error err1 := ‖u − f‖1/N , the
weighted ℓ2-error err2 := ‖u− f‖2/

√
N , and the PSNR := 20 · log10(255/err2). The param-

eters were chosen with respect to the “best” PSNR.

We compare the following algorithms:

(A) The framelet-based algorithm in [51] which uses the multi-level undecimated linear B-
spline framelets defined in Section A.2 and soft shrinkage of the high-pass coefficients
at level k with the thresholds c/

√
2k. Note that, originally, Neumann boundary

condition were used in [51] but the difference to periodic boundary conditions is
neglectable.

(B) Proposed inpainting algorithm I with our Haar-wavelet filters, p = 1, V (k) = I, and

soft shrinkage with respect to the thresholds λ
(k)
j := λ/

√
2k and λ

(k)
11,j := λ11/

√
2k at

level k.

(C) The same algorithm as in (B) except that we use matrices V (k) inspired by the LSAS
discussed in Section 4.3: We convolve an appropriate guess f̃ of the original function
with the Gaussian of standard derivation σ to obtain f̃σ. Then, at level k, we set

V (k) :=

(
c(k) −s(k)
s(k) c(k)

)

with c(k) := diag
(
H

(k)
01 f̃σ/w

)
, s(k) := diag

(
H

(k)
10 f̃σ/w

)
, and

w(k) :=

√
(H

(k)
01 f̃σ)

2 + (H
(k)
10 f̃σ)

2, i.e., we use the same matrices V (k) in each iteration.
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(D) Proposed inpainting algorithm I with p = 2 and the following setting inspired by the
LSAS for EED defined in Section 4.3: We define V (k) as in (C). In the shrinkage step
we use

(
I + (Λ(k))2

)−1
:=

(
diag

(
e−4τ g(w(k))

)
0

0 diag
(
e−4τ 1N

)
)
,

(
I + (Λ

(k)
11 )

2
)−1

:= diag
(
e−4τ (g(w(k))+1)

)

with the vector 1N of N ones. We still use the same matrices V (k),Λ(k), and Λ
(k)
11 in

each iteration.

(E) The same algorithm as in (D) except that we do not freeze V (k) and the shrinkage
matrices at the beginning of the algorithm with respect to f̃σ but compute them in
each iteration step k with respect to the preceding iterate u(k−1). Note that we have
not proved the convergence for this algorithm. If we would work only with one level
of Haar-wavelet decomposition L = 1, then the restoration step can be considered as
one time step of an iterative EED scheme discretized by LSAS.

In our first example we start with the image at the top right of Fig. 4.1 which we
also use as initial guess u(0). Alternatively, one could use the bottom left image in Fig. 4.1
generated by the MATLAB cubic interpolation procedure ”griddata” as initial guess. This
leads to qualitatively similar results but with a smaller number of iterations. We have used
this cubic interpolation in algorithms (D) and (E) for f̃ . Detailed results are given in the
tables below. Here ”iter” denotes the number of iterations. The corresponding images for
the decomposition level 2 are depicted in Fig. 4.2 (algorithms (B)–(E)) and at the bottom
right of Fig. 4.1 (algorithm (A)). The algorithms (B)–(E) perform much better than the
algorithm (A). The PSNR improves by approximately 3 dB if we use algorithms (B)–(D)
and by approximately 5 dB for algorithm (E), compare Table 4.1. The Algorithms (B)–(E)
considerably reduce the artifacts at the horizontal line. However, the methods (B) and (C)
introduce some errors at the boundary of the circle. These artifacts do not appear if we
apply the algorithms (D) and (E). Note that, in general, the PSNR cannot be substantially
improved by choosing a higher decomposition level than L = 2.

In our second example we interpolate the image on the right-hand side of Fig. 4.3.
The cubic interpolation is depicted at the top left of Fig. 4.4 and contains artifacts at
the windows on the left-hand side. The results for our algorithms with two decomposition
levels are as follows:

• Algorithm (A) with c = 1.0: PSNR = 31.61, err2 = 6.69, err1 = 1.36,

• Algorithm (B) with λ = 0.5 and λ11 = 8: PSNR = 34.08, err2 = 5.03,
err1 = 0.93,

• Algorithm (C) with σ = 0.5, λ = 0.5 and λ11 = 8: PSNR = 33.98, err2 = 5.09,
err1 = 0.97,
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Table 4.1: Top to bottom: Results of the inpainting algorithm (A)-(E) for the first example.

Level c PSNR err2 err1 iter
4 1.0 32.93 5.49 0.54 307
3 1.0 33.29 5.51 0.48 307
2 1.0 33.27 5.53 0.46 358
1 1.6 32.50 6.04 0.50 461

Level λ λ11 PSNR err2 err1 iter
4 1 8 34.84 4.61 0.36 272
3 1 10 35.52 4.27 0.29 235
2 1 100 36.42 3.84 0.27 278
1 1 100 35.89 4.09 0.28 814

Level σ λ λ11 PSNR err2 err1 iter
4 4 1 8 35.43 4.31 0.36 244
3 4 1 10 35.97 4.05 0.30 223
2 4 1 100 36.60 3.76 0.26 269
1 4 1 100 36.03 4.02 0.26 811

Level σ τ α PSNR err2 err1 iter
4 4 1 2 35.19 4.43 0.47 73
3 4 1 2 36.08 4.00 0.36 79
2 4 1 2 36.79 3.68 0.29 106
1 4 1 2 36.83 3.83 0.28 208

Level σ τ α PSNR err2 err1 iter
4 4 1 2 35.91 4.07 0.44 78
3 4 1 2 37.47 3.40 0.29 88
2 4 1 2 38.58 2.99 0.23 123
1 4 1 2 37.99 3.21 0.24 215
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• Algorithm (D) with σ = 1, τ = 1 and α = 2: PSNR = 31.56, err2 = 6.73, err1 = 1.27,

• Algorithm (E) with σ = 1, τ = 1 and α = 2: PSNR = 31.36, err2 = 6.89, err1 = 1.26.

Algorithms (B) and (C) perform best since the edges in the original image are mostly
horizontal or vertical. The PSNR is approximately 2 dB higher than in the other three
algorithms. While the algorithms (A), (D) and (E) produce similar artifacts especially at
the windows, these errors do not appear if we apply the algorithms (B) and (C). This is
illustrated in Fig. 4.4 and in the zoomed images in Fig. 4.5.

In our third example, we consider the image at the top left of Fig. 4.6. For this
image cubic interpolation yields very good results (PSNR = 33.62), see top right of Fig.
4.6. Starting with this image as an initial guess and using small parameters (c = λ =
λ11 = 0.05), we can achieve a PSNRs of around 33.8 by applying algorithms (A)–(C).
Visual differences to the image obtained by cubic interpolation are hard to find. For
algorithms (D) and (E) with the original image as initial guess, two decomposition levels
and parameters σ = 1, τ = 1, and α = 10, we obtain the PSNR = 34.25, err2 = 4.93,
err1 = 0.98 after 86 iterations and the PSNR = 34.21, err2 = 4.96, err1 = 1.00 after 249
iterations, respectively. As shown at the bottom of Fig. 4.6, there are visual differences at
long edges.

Remark 4.5.1 Finally, let us note that inpainting in both the image domain and the
domain of the wavelet coefficients as well as applications to superresolution were considered
in [50, 49].
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Figure 4.2: Applications of the algorithms (B)–(E) with decomposition level 2. Top left:
Algorithm (B) (PSNR=36.42, err2 = 3.84, err1 = 0.27). Top right: Algorithm (C)
(PSNR=36.60, err2 = 3.36, err1 = 0.26). Bottom left: Algorithm (D) (PSNR=36.79,
err2 = 3.68, err1 = 0.29). Bottom right: Algorithm (E) (PSNR=38.58, err2 = 2.99,
err1 = 0.23). All algorithms reduce the artifacts at the straight lines. However, the images
at the top contain similar errors at the boundary of the circle. The images at the bottom
have the best quality.
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Figure 4.3: Original image of the second example and its degraded version.
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Figure 4.4: Interpolation of the image in Fig. 4.3. Top left: cubic interpolation by the
MATLAB procedure ”griddata” (PSNR=30.18, err2 = 7.89, err1 = 1.51). Top right:
Algorithm (A), (PSNR=31.61, err2 = 6.69, err1 = 1.36). Bottom left: Algorithm (B),
(PSNR=34.08, err2 = 5.03, err1 = 0.93). Bottom right: Algorithm (C), (PSNR=33.98,
err2 = 5.09, err1 = 0.97). The images at the top contain artifacts, in particular at the
left window side. The algorithms at the bottom show a better performance and do not
introduce these artifacts.
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Figure 4.5: Details of the interpolated images of Fig. 4.4. Top left: original image. Top
right: Algorithm (A), (PSNR=31.61, err2 = 6.69, err1 = 1.36). Bottom left: Algorithm
(B), (PSNR=34.08, err2 = 5.03, err1 = 0.93). Bottom right: Algorithm (C), (PSNR=33.98,
err2 = 5.09, err1 = 0.97). In contrast to the top right image, the images at the bottom
have less errors at the horizontal and vertical window lines.
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Figure 4.6: Interpolation results for the “peppers” image. Top left: degraded image. Top
right: cubic interpolation. Bottom left: Algorithm (D). Bottom right: Algorithm (E).
Algorithms (D) and (E) improve the quality at long edges.
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CHAPTER 5

Application to the denoising of matrix fields

5.1 Introduction

In Chapter 3, we have studied the denoising of gray value images, i.e., scalar-valued func-
tions. We have seen the good performance of the ROF model in edge-preserving restoration
and the improvements achieved by using the related infimal convolution approach. Clearly,
the question arises how we can transfer these methods to vector-valued and matrix-valued
images. The classical example of vector-valued images are simply color images. We will
not study them here, see, e.g., [66, Section 4.8] and the references therein, but proceed
directly to matrix-valued images .

Matrix-valued data have gained significant importance in recent years. Some of their
application are the following:

• First, diffusion tensor magnetic resonance imaging (DT-MRI) [14] is a modern but
commonly used medical imaging technique that measures a 3× 3 (or larger) positive
semidefinite matrix-field: A so-called diffusion tensor is assigned to each voxel. This
diffusion tensor describes the diffusive property of water molecules. Since water
diffuses preferably along ordered tissue such as nerve fibers this matrix gives valuable
information about the geometry and organization of the tissue under examination.
Hence, the resulting matrix field plays a very important role in the diagnosis of
multiple sclerosis and strokes. For detailed information about the acquisition of this
type of data, the reader is referred to [3, 13] and the literature cited therein.

• Second, in many fields of technical science such as civil engineering, solid mechanics
and geology, anisotropic behavior is often described satisfactorily by inertia, diffusion,
stress, and permittivity tensors.

• Third, matrices/tensors have been recognized as a useful concept in image analysis
itself [123]: The structure tensor [107], for instance, (also called Förstner interest
operator, or scatter matrix) has been employed not only for corner detection [127],
but also for texture analysis [180] and motion estimation [28]. Tensor voting, an
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interesting recent tool for segmentation and grouping, also makes use of the tensor
concept, see, e.g., [147, 156].

This variety of applications make it worthwhile to develop appropriate tools for the restora-
tion and processing of tensor-valued, respectively matrix-valued data. Thus, we will trans-
fer the successful techniques presented in Chapter 3 such as the ROF and the infimal
convolution model to the matrix-valued setting. Clearly, the first approach would be to
simply denoise the individual channels of the matrix-valued image independently. This
is not a good strategy, however, since an object in a matrix-valued image will generally
show characteristic features in more than one component. So, the main idea is that our
functionals couple the different matrix channels. Moreover, unlike vectors, matrices can be
multiplied providing matrix-valued polynomials and also functions of matrices. These use-
ful notions rely decisively on the strong interplay between the different matrix entries and
will give rise to a new operator-based regularization term. This is motivated by filtering
methods for matrix fields based on matrix-valued nonlinear partial differential equations
(PDEs) proposed in [44] for singular and in [45] for Perona-Malik-type diffusivity functions.
Our method is the first variational approach for denoising tensor-valued data that takes
the operator structure of matrices, in particular the operation of matrix multiplication,
into account. Furthermore, they are also applicable to indefinite matrix fields.

Approaches to positive definite matrix field filtering with a differential geometric back-
ground have been suggested in [68, 124, 173, 210, 232]. In their setting the set of positive
definite matrices is endowed with a structure of a manifold, and the methodology is geared
towards application to DT-MRI data. For other smoothing techniques for DT-MRI data
we refer, e.g., to [218, 228]. Comprehensive survey articles on the analysis of matrix fields
utilizing a wide range of different techniques can be found in [222] and the literature cited
therein.

This chapter, which is based on [194, 202, 195], is organized as follows: After giving the
necessary preliminaries on matrix-valued data in Section 5.2, we consider component-based
regularization terms related to the ROF model and its improvement via the infimal convo-
lution in Section 5.3. These functionals couple the different matrix channels as originally
proposed by [210]. In Section 5.4, we introduce a new operator-based functional and derive
the corresponding Euler-Lagrange equation which contains the Jordan product of matrices.
In contrast to the ordinary matrix product, the Jordan product of two symmetric matrices
is again a symmetric matrix. Finally, in Section 5.5, we present numerical examples com-
paring the component-based and the operator-based approach as well as first-order and
infimal convolution methods.

It should be remarked here that we do not study the noise statistics of a specific
application here but assume white Gaussian noise. Note that our models perform well on
real-world DT-MRI data, cf., Section 5.5. For noise models in the case of DT-MRI, we
refer to [3, 15].
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5.2 Preliminaries

Let Symm(R) be the vector space of symmetric m × m matrices. As before, we often
reorder a matrix A ∈ Rm,m columnwise into a vector of length m2 which we will denote
in this chapter by vecA. The space Symm(R) can be treated as a Euclidean vector space
with respect to the trace inner product

〈A,B〉 := trAB = 〈vecA, vecB〉, (5.1)

where 〈·, ·〉 on the right-hand side denotes the Euclidean inner product in Rm2
. Then,

〈A,A〉 = trA2 = ‖A‖2F = ‖vecA‖22
is the squared Frobenius norm of A. In Symm(R), the positive semi-definite matrices
Sym+

m(R) form a closed, convex set, whose interior consists of the positive definite matrices.
More precisely, Sym+

m(R) is a cone with base B, see [11, 42, 43], i.e.,

Sym+
m(R) = R≥0 B

and
B := {B ∈ Sym+

m(R) : trB = 1}.
Since B is a convex compact set in a finite-dimensional space it is, by the Krein-Milman
theorem, the convex hull of its extreme points which are given by the rank 1 matrices vvT

with ‖v‖2 = 1. Thus, we have

B = conv{vvT : v ∈ Sn−1}, (5.2)

where conv means that we consider the convex hull of the set on the right-hand side of
(5.2). For m = 2, the above relations can be illustrated as follows: we embed Sym2(R)
into R3 by

A 7→ a :=
1√
2

(
2A(1, 2), A(1, 1)− A(2, 2), A(1, 1) + A(2, 2)

)T
. (5.3)

This mapping is an isometry from Sym2(R) equipped with the Frobenius norm onto R3

endowed with the Euclidean norm. For A ∈ Sym+
2 (R) with eigenvalues λ1, λ2 ≥ 0, we have

that

λ1 + λ2 = trA = A(1, 1) + A(2, 2) =
√
2 a3 ≥ 0,

λ1λ2 = detA =
1

4

(
(A(1, 1) + A(2, 2))2 − (A(1, 1)−A(2, 2))2 − 4A(1, 2)2

)
≥ 0.

Hence, A ∈ Sym+
2 (R) if and only if a3 ≥ 0 and ‖(a1, a2)T‖2 ≤ a3, i.e., the symmetric

positive semi-definite matrices form the cone C3 := {a ∈ R3 : ‖(a1, a2)T‖2 ≤ a3} depicted
in Fig. 5.1. Its base B is just the closed disc at the height 1/

√
2 and the extreme points
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Figure 5.1: Cone of symmetric, positive semi-definite matrices via (5.3).

form the boundary of this disc. For our numerical examples we will further use that the
positive definite matrices A ∈ Sym+

2 (R) can be visualized as ellipses

{x ∈ R
2 : xTA−2x = 1}

whose axes have just the length of the eigenvalues of A. Similarly, we can use ellipsoids to
visualize the positive definite matrices in the case m = 3.

Matrices are can also be interpreted as (realizations of) linear operators and carry the
corresponding features. In particular, they can be applied successively. Unfortunately,
the original matrix multiplication does not preserve the symmetry of the matrices. The
Jordan-product of matrices A,B ∈ Symm(R) defined by

A •B =
1

2
(AB +BA) (5.4)

preserves the symmetry of the matrices but not the positive semi-definiteness.

In the subsequent sections, we want to transfer the denoising methods from Chapter 3,
in particular the ROF model, to matrix-valued images. While it seem straightforward to
replace the squares in the data-fitting of the scalar-valued ROF functional (3.11) by the
squared Frobenius norm, the regularization term may be chosen in different ways. In the
following, let F : R2 ⊃ Ω → Symm(R) be a matrix field.
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5.3 Component-based regularization

In this section, we transfer the ROF model (3.11) to matrix-valued images in a way that
emphasizes the individual matrix components. Assume that for each channel the scalar-
valued function Fi,j, i, j = 1, . . . , m, corresponding to F lies in the Sobolev space W 1

1,1(Ω).
Instead of (3.11) we can then deal with

argmin
U

∫

Ω

1

2
‖U − F‖2F + λ ϕ

(
tr (U2

x + U2
y )
)

︸ ︷︷ ︸
=:J(U)

dxdy, (5.5)

where the partial derivatives are taken componentwise and ϕ is, e.g., given by ϕ(s2) =
√
s2.

The penalizing term J(U) in (5.5) was first used by Deriche and Tschumperlé [210]. Note
that λJ then plays the role of Φ ◦D in (3.4). Rewriting J as

J(U) =

∫

Ω

ϕ
(
‖Ux‖2F + ‖Uy‖2F

)
dxdy =

∫

Ω

ϕ
( n∑

j,k=1

∇uT

jk∇ujk
)
dxdy, (5.6)

we see its component-based structure implied by the Frobenius norm. However, due to the
sum on the right–hand side, ϕ is applied to the coupled matrix coefficients. By [38], the
Euler–Lagrange equation of (5.6) is given by

0 = U − F + λ
(
∂x(ϕ

′(tr(U2
x + U2

y ))Ux + ∂y(ϕ
′(tr(U2

x + U2
y ))Uy

)
. (5.7)

For the ROF functional we can choose the approximation ϕ(s2) =
√
s2 + ε2 for a small

parameter ε.
For computations we consider the discrete counterpart of (5.5) and we use here the

forward difference discretization (3.18) of the gradient. We thus minimize the following
problem

argmin
U

n−1∑

i,j=0

1

2
‖U(i, j)− F (i, j)‖2F + λ J(U), (5.8)

J(U) :=
n−1∑

i,j=0

(
‖U(i, j)− U(i− 1, j)‖2F + ‖U(i, j)− U(i, j − 1)‖2F

)1/2

over the set of all discrete matrix fields U : Z2
n → Sym+

m(R) where Z
2
n = {1, . . . , n} ×

{1, . . . , n}. We again assume mirrored boundary condition in (5.8), i.e., we set U(−1, j) =
U(0, j) and U(i,−1) = U(i, 0) for all i, j = 0, . . . , n− 1 . The functional in (5.8) is strictly
convex and thus has a unique minimizer.

We say that the discrete matrix field F : Z2
n → Sym+

m(R) has all eigenvalues in an
interval I if all the eigenvalues of every matrix F (i, j) of the field lie in I. By the following
proposition, the minimizer of (5.8) preserves positive definiteness.
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Proposition 5.3.1 Let all eigenvalues of F : Z2
n → Sym+

m(R) be contained in the interval
[λmin, λmax]. Then the minimizer Û of (5.8) has all eigenvalues in [λmin, λmax].

Proof: Using that the minimal and maximal eigenvalues λmin(A), λmax(A) of a symmetric
matrix A fulfill

λmin(A) = min
‖v‖=1

vTAv, λmax(A) = max
‖v‖=1

vTAv,

it is easy to check that the set C of matrices having all eigenvalues in [λmin, λmax] is convex
and closed. Let J be the whole functional in (5.8). Assume that some matrices Û(i, j) are
not contained in C. Let PÛ(i, j) denote the orthogonal projection (w.r.t. the Frobenius
norm) of Û(i, j) onto C. Then we obtain by the projection theorem [72, p. 269] that

‖F (i, j)− PÛ(i, j)‖F ≤ ‖F (i, j)− Û(i, j)‖F ,
‖PÛ(i, j)− PÛ(k, l)‖F ≤ ‖Û(i, j)− Û(k, l)‖F .

Consequently, J (PÛ) ≤ J (Û) which contradicts our assumption since the minimizer is
unique. This completes the proof. �

To better see the connection to scalar-valued denoising we rewrite (5.8) in matrix-vector
form. To this end, let N = n2 and M := m(m + 1)/2. We reshape F : Z2

n → Symm(R)
into the vector

f :=




ε1,1 vec (F1,1)
...
ε1,m vec (F1,m)
ε2,2 vec (F2,2)
...
ε2,m vec (F2,m)
...
εm,m vec (Fm,m)




∈ R
MN ,

where Fk,l := (Fk,l(i, j))
n−1
i,j=0 and εk,l :=

{ √
2 for k 6= l

1 otherwise
.

Then (5.8) becomes

argmin
u∈RMN

{1
2
‖f − u‖22 + λ‖| (IM ⊗D)u|‖1}, (5.9)

where D := D2 is the forward difference discretization of the gradient defined in (3.18). We
immediately see that problem (5.9) has just the structure of (3.12) with the larger matrix
IM ⊗D ∈ R2MN,MN . Thus we can apply all the methods presented in Chapter 3 to solve
(5.9) or its dual problem.

Similarly, we can transfer the infimal convolution approach to the matrix-valued setting
and use the algorithms described in Section 3.6. Obviously, we have to find

argmin
u1,u2∈RMN

1

2
‖u1 + u2 − f‖22 + λ1‖| (IM ⊗D)u1|‖1 + λ2‖| (IM ⊗D2)u1|‖1,
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where D and D2 are defined as in Section 3.6. In the same way, we can rewrite the modified
dual problem (3.62) as follows

‖f − (IM ⊗DT

2 ) V ‖22 → min s.t. ‖ |
(
IM ⊗

(
Dx 0
0 Dy

))
b| ‖∞ ≤ λ1,

‖ |b| ‖∞ ≤ λ2. (5.10)

5.4 Operator-based regularization

In this section, we introduce a regularization term that emphasizes the operator structure
of matrices. For A ∈ Symm(R) with eigenvalue decomposition A = QΣQT, let ϕ(A) =
Qϕ(Σ)QT, where Σ := diag (σ1, . . . , σn) and ϕ(Σ) := diag (ϕ(σ1), . . . , ϕ(σn)). We consider
the following minimization problem

argmin
U

∫

Ω

1

2
‖U − F‖2F + λ tr

(
ϕ(U2

x + U2
y )
)
dxdy. (5.11)

In contrast to (5.5), the trace is taken after applying ϕ to the matrix U2
x + U2

y .

We want to show now that the functional in (5.11) with ϕ :=
√· is strictly convex. Since

ϕ operates on the eigenvalues of the corresponding matrix it is useful to recall the following
classical result which shows the correspondence between matrix norms and functions on
the singular values: A matrix norm ‖ · ‖ on the space of complex r × s matrices is called
unitarily invariant if ‖UAV ‖ = ‖A‖, for all A ∈ C

r,s and all unitary matrices U ∈ C
r,r

and V ∈ Cs,s. Furthermore, we need the notion of a symmetric gauge function on Ct. It
is defined as a vector norm on Cr with the following two additional properties: First, it is
invariant to permutation of components of the input vector and, second, it is unchanged
when we take the absolute value of the components of the input vector.

We have the following theorem which can be traced back to [216]. Note that there exist
many related results, e.g., for symmetric matrices [85]. For an overview of this topic, we
refer to [143].

Theorem 5.4.1 Consider the space of complex r × s matrices. Let t := min{r, s} and
assume that the function f on Ct is a symmetric gauge function. For any A ∈ Cr,s, define
‖A‖ = f(σ), where σ = (σ1, . . . , σt) are the singular values of A. Then, ‖ · ‖ is a unitarily
invariant matrix norm. The converse is also true.

Proof: Compare, e.g., [130, p. 439].

A classical example of a matrix norm defined by Theorem 5.4.1 is the trace norm ‖ · ‖tr,
also called the nuclear norm. It is defined as the sum of the singular values of a matrix
or, equivalently, as

‖A‖tr = tr(
√
A∗A), for A ∈ C

s,t.
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Remark 5.4.2 Recently, there is a lot of interest in matrix completion problems for which
the trace norm and its subdifferential is important, cf., [48, 209]. For details about the
subdifferential of unitarily invariant matrix norms, see also [219].

Proposition 5.4.3 For given F : R2 ⊃ Ω → Symm(R) and ϕ(s2) =
√
s2, the functional

in (5.11) is strictly convex.

Proof: Since ‖U − F‖2F is strictly convex, it remains to show that the functional

J(U) := tr
(√

U2
x + U2

y

)

is convex. Moreover, since J is positively homogeneous we only have to prove that J is
subadditive, cf. [30, p. 34], i.e.,

J(Ũ + U) ≤ J(Ũ) + J(U).

This can be written as

tr

(√
(Ũx + Ux)2 + (Ũy + Uy)2

)
≤ tr

(√
Ũ2
x + Ũ2

y

)
+ tr

(√
U2
x + U2

y

)
.

By definition of the trace norm, we have for the symmetric matrices Ũx, Ũy, Ux, Uy that

‖
(
Ũx + Ux
Ũy + Uy

)
‖tr = tr

(√
(Ũx + Ux)2 + (Ũy + Uy)2

)

Since ‖ · ‖tr is a norm it follows that

‖
(
Ũx + Ux
Ũy + Uy

)
‖tr ≤ ‖

(
Ũx
Ũy

)
‖tr + ‖

(
Ux
Uy

)
‖tr

= tr(
√
Ũ2
x + Ũ2

y ) + tr(
√
U2
x + U2

y )

and we are done. �

Remark 5.4.4 The solution of (5.11) does in general not preserve positive definiteness.
For an example, see [202].

Let us assume now that ϕ is differentiable, e.g., ϕ =
√
·+ ε2. The next proposition shows

that the functional (5.11) has an interesting Gâteaux derivative.

Proposition 5.4.5 Let ϕ be a differentiable function. Then, the Euler-Lagrange equations
for minimizing the functional in (5.11) are given by

0 = U − F + λ
(
∂x
(
ϕ′(U2

x + U2
y ) • Ux

)
+ ∂y

(
ϕ′(U2

x + U2
y ) • Uy

))
, (5.12)

where • is the Jordan product defined in (5.4).
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Proof: Let h(Ux, Uy) := tr
(
ϕ(U2

x + U2
y )
)
. The Euler-Lagrange equations of (5.11) are

given, for i, j = 1, ..., n and i ≥ j, by

0 =
∂

∂uij
‖U − F‖2F − λ

(
∂

∂x

(
∂h

∂uijx

)
+

∂

∂y

(
∂h

∂uijy

))
.

For a scalar-valued function f and an n×n matrix X , we set ∂f(X)
∂X

:=
(
∂f(X)
∂xij

)n
i,j=1

. Then,

by symmetry of F and U , the Euler-Lagrange equations can be rewritten in matrix-vector
form as

Wn ◦
U − F

λ
=

1

2

(
∂

∂x

(
∂h

∂Ux

)
+

∂

∂y

(
∂h

∂Uy

))
, (5.13)

where Wn denotes the n × n matrix with diagonal entries 1 and other coefficients 2, and
A ◦B stands for the Hadamard product (componentwise product) of A and B.

We consider f(X) := trϕ(X2). Then we obtain by [148, p. 178] and tr (ATB) =
(vecA)TvecB that

vec
∂f(X)

∂X
= vec

(
tr (ϕ′(X2)

∂(X2)

∂xij
)

)n

i,j=1

= vec

(
(vecψ)Tvec

∂(X2)

∂xij

)n

i,j=1

where ψ := ϕ′(X2). By [148, p. 182] and since ψ is symmetric, this can be rewritten as

vec
∂f(X)

∂X
= vec Wn ◦ ((In ⊗X) + (X ⊗ In)) vec ψ.

Using that vec(ABC) = (CT ⊗A)vecB we infer that

vec
∂f(X)

∂X
= vecWn ◦ vec(Xψ + ψX).

This implies that
∂f(X)

∂X
= 2Wn ◦ (ψ •X). (5.14)

Applying (5.14) with f(Ux) := h(Ux, Uy) and f(Uy) := h(Ux, Uy), respectively, in (5.13) we
obtain the assertion. �

We apply Proposition 5.4.5 to compute a minimizer of (5.11) by using a difference method
to solve the corresponding reaction–diffusion equation for t→ ∞

Ut = U − F + λ
(
∂x
(
ϕ′(U2

x + U2
y ) • Ux

)
+ ∂y

(
ϕ′(U2

x + U2
y ) • Uy

))
(5.15)
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with ϕ defined as ϕ(s2) =
√
s2 = ε2, homogeneous Neumann (mirrored) boundary condi-

tions and initial value F . More precisely, we use the iterative scheme

U (k+1) = (1− τ)U (k) + τF + τλ
(
∂x
(
G(k) • U (k)

x

)
+ ∂y

(
G(k) • U (k)

y

))
(5.16)

with sufficiently small time step size τ and G(k) := ϕ′((U
(k)
x )2 + (U

(k)
y )2). The inner deriva-

tives including those in G are approximated by forward differences and the outer derivatives
by backward differences so that the penalizing term becomes

1

h1

(
G(i, j) • U(i+ 1, j)− U(i, j)

h1
−G(i− 1, j) • U(i, j)− U(i− 1, j)

h1

)

+
1

h2

(
G(i, j) • U(i, j + 1)− U(i, j)

h2
−G(i, j − 1) • U(i, j)− U(i, j − 1)

h2

)
,

where hi, i = 1, 2 denote the pixel distances in x– and y–direction. Alternatively, we have
also worked with symmetric differences for the derivatives. In this case we have to replace
e.g. G(i, j) in the first summand by G̃(i+ 1, j) + G̃(i, j))/2 and G̃ is now computed with
symmetric differences.

Finally, we mention that a diffusion equation related to (5.15) was examined in [44].
Moreover, in [221] an anisotropic diffusion concept for matrix fields was presented where
the function ϕ was also applied to a matrix.

5.5 Numerical results

Finally, we present numerical results demonstrating the performance of the different meth-
ods. The problems in Section 5.3 can again be solved via the iterative algorithms proposed
in Chapter 3 since they have essentially the same structure. Another possibility is to find
a solution via second-order cone programming (SOCP), see, e.g., [202] where we use the
software package MOSEK.

SOCP [4, 118, 145] amounts to minimize a linear objective function subject to the
constraints that several affine functions of the variables have to lie in a second-order cone
Cn+1 ⊂ Rn+1 defined by the convex set

Cn+1 =

{(
x

x̄n+1

)
= (x1, . . . , xn, x̄n+1)

T : ‖x‖2 ≤ x̄n+1

}
.

With this notation, the general form of a SOCP is given by

inf
x∈Rn

fTx s.t.

(
Aix+ bi
cTi x+ di

)
∈ Cn+1 , i = 1, . . . , r. (5.17)

Alternatively, one can also use the rotated version of the standard cone:

Kn+2 :=
{(
x, x̄n+1, x̄n+2

)T ∈ R
n+2 : ‖x‖22 ≤ 2 x̄n+1x̄n+2

}
.
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This allows us to incorporate quadratic constraints. Problem (5.17) is a convex program
for which efficient, large scale solvers are available [159]. Note that the ROF problem
discussed in Chapter 3 can also be solved via SOCP, cf., [118]. Second-order cone programs
are generally solved by applying Newton steps to a primal-dual formulation of the given
problem. The connection between SOCP for ROF and the special Newton method of [64]
was recently analyzed in [234]. For rewriting our minimization problems as a SOCP, see
[202].

We start by comparing the component-based regularization with the operator-based
regularization. First we are interested in the 1D matrix–valued function F : Z16 →
Sym+

2 (R) in Fig. 5.2. We added white Gaussian noise with standard deviation 0.1 to
all components of the original data in [0, 1]. Then we computed the minimizer of the
component-based functional (5.8) (left) and of the operator-based functional (5.11) (right).
The latter was calculated using the fact that the operator-based functional can be rewritten
for tensor-valued 1D signals as

argmin
U

∫

Ω

‖U − F‖2F + λ tr|Ux| dx

with
tr |U | = max{

(
4u212 + (u11 − u22)

2
)1/2

, |u11 + u22|}
for U ∈ Sym+

2 (R), cf. [202]. The middle of the figure shows the Frobenius norm of
the difference between the original and the denoised signal (

∑N
i=1 ‖Û(i) − F (i)‖2F )1/2 in

dependence on the regularization parameter λ. We remark that the shape of the curve
and its minimal point do not change if we use the error measure

∑N
i=1 ‖Û(i) − F (i)‖F

instead. The actual minima with respect to the Frobenius norm are given by min = 0.2665
at λ = 0.8 for (5.8) and by min = 0.2276 at λ = 0.8 for (5.11). The denoised signals
corresponding to the smallest error in the Frobenius–norm are shown at the bottom of Fig.
5.2. It appears that the operator-based method performs slightly better with respect to
these error norms. The visual results confirm this impression. The larger ellipses obtained
by the first method (5.8) slightly overlap while there are gaps between the smaller ones.
We do not have this effect for the minimizer of (5.11) on the right-hand side.

Next we consider the 2D matrix–valued function F : Z2
32 → Sym+

2 (R) in Fig. 5.3. To
all components of the original data in [0,2] we added white Gaussian noise with standard
deviation 0.6. As in the previous example, we compare the minimizer of the component-
based approach (5.5), resp. (5.8), with those of the operator-based approach (5.11). To
compute the minimizer of the latter, we used the time step size τ = 0.00025 in the reaction–
diffusion equation (5.16). The iterations were stopped when the relative error in the ℓ2-
norm between two consecutive iterations became smaller than 10−8 (approximately 20000
iterations) although the result becomes visually static much earlier. The middle row of the
figure contains the error plots for both methods. The actual minima w.r.t. the Frobenius
norm are given by min = 12.19 at λ = 1.75 for (5.8) and by min = 10.79 at λ = 1.2 for
(5.11). Hence, with respect to the computed errors the operator-based method outperforms
the component-based one. The corresponding denoised images are shown in the bottom
row of the figure.
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Figure 5.2: Denoising of a matrix–valued signal. Top: Original signal (left), noisy sig-
nal (right). Middle: Error of the Frobenius norm in dependence on the regularization
parameter λ for the minimizers of the component-based functional (5.8) (left) and the
operator-based functional (5.11) (right). Bottom: Denoised image for λ corresponding to
the smallest error in the Frobenius norm for the component-based functional (left) and the
operator-based functional (right).
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Figure 5.3: Denoising of a Sym2(R)–valued image. Top: Original image (left), noisy
image (right). Middle: Error of the Frobenius norm in dependence on the regularization
parameter λ for the minimizers of the component-based functional (5.8) (left) and the
operator-based functional (5.11) (right). Bottom: Denoised image for λ corresponding to
the smallest error in the Frobenius norm for the component-based functional (left) and the
operator-based functional (right).
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5. Application to the denoising of matrix fields

In the following two examples, we consider bivariate matrix-valued functions which map
to Sym3(R). We use ellipsoids to visualize this kind of data as described in Section 5.2.
Furthermore, the color of the ellipsoid associated with a matrix A is chosen with respect
to the normalized eigenvector corresponding to the largest eigenvalue of A. Fig. 5.4 (top)
shows a function F : Z2

32 → Sym3(R). As before, we added white Gaussian noise to all
components. The matrix components of the original data lie in the interval [0, 1.2] and
the standard deviation of the Gaussian noise is 0.23. The denoising results are displayed
in the last two rows of Fig. 5.4. The smallest error for the component-based method
(5.8), measured in the Frobenius-norm, is 7.037 and was obtained for the regularization
parameter λ = 0.60. In addition, we considered the minimizer of the infimal convolution
approach (5.10). The optimal regularization parameters were found to be λ1 = 0.54 and
λ2 = 1.51 for this method. As in the scalar-valued case, the staircasing artifacts are now
reduced and the corresponding Frobenius-norm error is only 6.087. So, we see that the
infimal convolution approach is also suited for matrix-valued data.

In our final experiment, we applied the two component-based methods (5.8) and (5.10)
to a larger data set. Fig. 5.5 shows the original data and the minimizers of (5.8) and (5.10).
The components of the original data lie in [−4000, 7000] and we used the regularization
parameters λ = 600 for (5.8) and λ1 = 500, λ2 = 600 for (5.10), respectively.
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5. Application to the denoising of matrix fields

Figure 5.4: Denoising of a Sym3(R)-valued image. Top to Bottom: Original image,
noisy image, minimizer of the component-based method (5.8) for λ = 0.60, minimizer of
the component-based infimal convolution approach (5.10) with parameters λ1 = 0.54, λ2 =
1.51. Visualization: ellipsoids (left), components of the matrix-valued data (right).
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5. Application to the denoising of matrix fields

Figure 5.5: Denoising of a real-world DT-MRI matrix field with values in Sym3(R). Top:
Original image. Middle: Minimizer of the component-based method (5.8), λ = 600.
Bottom: Minimizer of the infimal convolution approach (5.10) for λ1 = 500, λ2 = 600.
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APPENDIX A

Wavelet-frames

At different places in this paper we consider representations of an image in terms of its frame
coefficients and especially wavelet-frame coefficients. Disregarding the low-pass coefficients
of such an expansion also gives rise to interesting discretizations of derivatives.

A.1 Frames

The notion of frames was introduced in [93]. For details and proofs of the results below we
refer, e.g., to [71, 82]. Let us first work in a general Hilbert space setting. The sequence
(uk)k∈N in a Hilbert space H is called a frame of H if there exist so-called frame bounds
a, b > 0 with

a‖u‖2 ≤
∞∑

k=1

|〈u, uk〉|2 ≤ b‖u‖2, ∀u ∈ H. (A.1)

A frame is called a tight frame if a = b and a Parseval frame if we have the normalization
a = b = 1. The analysis operator W of a frame returns the frame coefficients, i.e.,

W (u) = (〈u, uk〉)k∈N.

For a given sequence (ck)k∈N in ℓ2(N) the adjoint operator W ∗ of W , called the synthesis
operator, is defined as

W ∗((ck)k∈N) =

∞∑

k=1

ckuk.

Hence, we can write (A.1) in the equivalent form

aI ≤W ∗W ≤ bI, (A.2)

whereW ∗W is called the frame operator. Since the frame operator is continuously invertible
we can define the canonical dual frame (ũk)k∈N := ((W ∗W )−1uk)k∈N corresponding to
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A. Wavelet-frames

(u(k))k∈N whose frame bounds are given by 1
b
and 1

a
. The frame operator of the canonical

dual frame is then given by W̃ = W (W ∗W )−1 and a short calculation shows that

W̃ ∗W = W ∗W̃ = I. (A.3)

From (A.3) we deduce two important ways to make use of frames. First, we have for each
element u ∈ H that

u =W ∗W̃ (u) =

∞∑

i=1

〈u, ũk〉uk,

i.e., the frame spans the space H and the coefficients of this expansion can be given in
terms of the dual frame. Second, it holds that

u = W̃ ∗W (u) =

∞∑

i=1

〈u, uk〉ũk,

which shows that we can reconstruct the element u for the given frame coefficients W (u)
via the dual frame. Obviously, for a Parseval frame we have that

W ∗W = I and u =

∞∑

i=1

〈u, uk〉uk.

It is important to note that an orthonormal basis of H is a Parseval frame but not con-
versely. If all elements of a Parseval frame have norm one then they constitute an or-
thonormal basis of H , see [82, Proposition 3.2.1]. In fact, the redundancy makes frames
more useful than orthonormal bases for many image processing tasks.

In the discrete setting, where our images are represented as vectors in RN , we can write
the analysis operator simply as a matrix W ∈ RM,N with M ≥ N , i.e., for a vector u ∈ RN

we have (〈u, uk〉)k = Wu. The corresponding synthesis operator is then given by W ∗.
Clearly, the rows of W are the frame vectors. For Parseval frames we have W ∗W = I but
in general it does not hold that WW ∗ = I.

A.2 Framelets

A popular way to construct frames is by means of wavelets. Roughly speaking, the key idea
of wavelet theory is to work with an orthogonal basis of L2(R

2) (or some other Hilbert space
of functions) consisting of translated and dilated versions of a so-called wavelet function ψ.
The dilations allow us to analyse and manipulate different ”scales” of the given function. In
the following, we will restrict our attention to functions in L2(R). The simplest extension
to L2(R

2) is given by the tensor product approach.
Let us start with the Haar wavelet function ψ in L2(R) which can be traced back to

[125] and is defined as follows

ψ(x) =





1 if x ∈ [0, 1
2
),

−1 if x ∈ [1
2
, 1),

0 otherwise,
(A.4)
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A. Wavelet-frames

see also Fig. A.1 (right). The set of dyadic dilations and translations of ψ given by

{ψ(j,k) := 2−j/2ψ(2−j · −k) : j, k ∈ Z},

constitutes an orthonormal basis of L2(R). In the following, we want to consider Parseval
frames which are built upon wavelet functions. We will refer to them as framelets . Based
on the ideas of [186], we will now show how framelets can be constructed by refinable
functions. A function ϕ ∈ L2(R) is called a refinable function or a scaling function, if there
exists a periodic function Hϕ ∈ L∞([−1

2
, 1
2
]) such that it holds for the Fourier transform ϕ̂

of ϕ that
ϕ̂(2ω) = Hϕ(ω)ϕ̂(ω). (A.5)

We refer to (A.5) as the refinement equation or the two-scale relation for ϕ. The function
Hϕ is called the (refinement) mask of ϕ. Since we assume that Hϕ is 1-periodic, we can
consider the following expansion of Hϕ

Hϕ(w) =
1

2

∑

k∈Z
hϕ[k]e

−2πikω,

so that (A.5) has the form

ϕ̂(2ω) =
1

2

∑

k∈Z
hϕ[k]e

−2πikωϕ̂(ω) (A.6)

for the coefficient sequence hϕ = (hϕ[k])k∈Z. From this coefficient sequence we immediately
obtain the relation between two scales of ϕ in the image domain since it follows from (A.6)
that

ϕ(x) =
∑

k∈Z
hϕ[k]ϕ(2x− k). (A.7)

Orthonormal scaling functions define a so-called multiresolution analysis (MRA) of L2(R)
which dates back to [151]. It consists of a sequence (Vj)j∈Z of closed subspaces of L2(R)
with the properties that

i) . . . V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 . . . ,

ii)
⋃
j∈Z Vj = L2(R),

⋂
j∈Z Vj = {0},

iii) u ∈ Vj ⇔ u(· − 2jk) ∈ Vj , ∀u ∈ L2(R), ∀j, k ∈ Z,

iv) u ∈ Vj ⇔ u(2j·) ∈ V0,

v) {ϕ(· − k) , k ∈ Z} is an orthonormal basis of V0.

In view of i), let us define the sequence of spaces (Wj)j∈Z by means of Wj ⊕ Vj = Vj−1. It
can be shown that

L2(R) =
⊕

j∈Z
Wj
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A. Wavelet-frames

and that there exists a wavelet function ψ ∈ W0 whose integer translates form an orthonor-
mal basis of W0. Hence, it follows that {ψ(j,k) , j, k ∈ Z} is an orthonormal basis of L2(R).
More details can be found, e.g., in [71, 82, 152].

Since we are interested in Parseval frames and not orthonormal bases, we can work in
a more general setting. We will now state the so-called unitary extension principle which
was first proved in [186].

Theorem A.1 Let ϕ ∈ L2(R) be a refinable function in the sense of (A.5) with respect
to Hϕ and suppose ϕ̂ satisfies limω→0 ϕ̂(ω) = 1. Assume that Hψ1 , . . . , Hψn are periodic
functions in L∞([−1

2
, 1
2
]) which satisfy

H(ω)∗H(ω) = I, for a.e. ω ∈ [−1
2
, 1
2
] ,

where

H(ω) :=




Hϕ(ω) Hϕ(ω + π)
Hψ1(ω) Hψ1(ω + π)
...

...
Hψn(ω) Hψn(ω + π)


 .

Let the wavelet functions ψl, l = 1, . . . , n, be given by

ψ̂i(ω) = Hψi
(ω)ϕ̂(ω). (A.8)

Then, the set of dilations and translations of the wavelet functions

{ψ(j,k)
l := 2−j/2ψl(2

−j · −k) , l = 1, . . . , n, j, k ∈ Z}

is a Parseval frame of L2(R).

For more details on this result, we refer to [21, 33, 71, 84, 91, 186]. Clearly, we could have
also formulated the unitary extension principle in terms the refinement masks and (A.6).
A further generalization of the unitary extension principle which yields higher vanishing
moments for the functions ψl, l = 1, . . . , n, is the oblique extension principle, see [71, 84].

The easiest example of a pair of functions ϕ and ψ which fulfills the unitary extension
principle is the Haar scaling function

ϕ(x) =

{
1 if x ∈ [0, 1),
0 otherwise

and the Haar wavelet (A.4) which are depicted in Fig A.1. A short calculation shows that

Hϕ(ω) =
1

2

(
1 + e−2πiw

)
, Hψ(ω) =

1

2

(
1− e−2πiw

)

and we have the following coefficient sequences of the refinement mask

hϕ = [ hϕ[0] hϕ[1] ] = [1 1], hψ = [hψ[0] hψ[1]] = [1 − 1],
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10
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10 1
2
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Figure A.1: The Haar scaling function ϕ (left) and the corresponding Haar wavelet function
ψ on the right.

which are geometrically obvious regarding (A.7). Observe that if we translate the Haar
scaling function by −1/2 we obtain the centered cardinal B-spline B1 = χ[−1/2,1/2). Its
integer translates form a basis of the spline space of piecewise constant functions on R

with knots at Z + 1
2
. Higher-order spline subspaces of Ck−1(R) of piecewise polynomial

functions of degree k at most are spanned by integer translates of the B-splines Bk+1. It
holds that these B-splines are convolutions of the B-spline B1, i.e., Bk+1 = Bk ∗ B1 for
k > 1. Choosing these B-splines as scaling functions yields a classical example of the
application of the unitary extension principle. The elements of the corresponding Parseval
frame are called B-spline framelets . Let us restrict our attention to even-order B-splines.
It holds for ϕ = B2m that

ϕ̂(ω) =

(
sin(πω)

πω

)2m

and
Hϕ(ω) = cos2m(πω).

Together with 2m wavelet functions ψl, l = 1, . . . , 2m, which are characterized by

Hψl
(ω) = il

√(
2m
l

)
sinl(πω) cos2m−l(πω), l = 1, . . . , 2m, (A.9)

the unitary extension principle is fulfilled, cf. [71]. For m = 1 the scaling function ϕ = B2

and the two wavelet functions ψ1 and ψ2 are depicted in Fig. A.2. As we can also see
geometrically from Fig. A.2, the corresponding coefficient sequences are given by

hϕ = [ hϕ[−1] hϕ[0] hϕ[1] ] =
1

2
[1 2 1],

hψ1 = [ hψ1 [−1] hψ1 [0] hψ1 [1] ] =
1√
2
[1 0 − 1],

hψ2 = [ hψ2 [−1] hψ2 [0] hψ2 [1] ] =
1

2
[1 − 2 1].
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Observe that the integer translates of the functions ϕ, ψ1 and ψ2 are not orthogonal to
each other. Consequently, the Parseval frame

{ψ(j,k)
1 : j, k ∈ Z} ∪ {ψ(j,k)

2 : j, k ∈ Z}

which we obtain from the unitary extension principle of Theorem A.1 is, in contrast to the
Haar case, not an orthonormal basis.

1−1

1

1−1

- 1√
2

1√
2

−1 1−1
2

1
2

1
2

−1

Figure A.2: Linear B-spline B2 as scaling function (top) and the corresponding two wavelet
functions ψ1 and ψ2 (bottom) which are characterized via (A.9) and (A.8). Note that the
same results hold true if we use as wavelets the functions which result from reflecting ψ1

and ψ2 in the origin, cf. [51, 186].

We focus on the discrete setting now, i.e., instead of functions of L2(R) we consider
vectors of Rn. For the sake of simplicity, we assume that d is even. Clearly, corresponding
framelet transformations can only by defined up to the one-pixel level which means that
the discrete counterpart of our framelets must always contain part of the scaling function.
Furthermore, the discrete setting means that we can simply build a Parseval frame matrix
by using the refinement masks in the rows of the frame matrix as we will see below.

We consider now the Haar scaling function with coefficient sequence [1 1] and the linear
B-spline scaling function with coefficient sequence 1

2
[1 2 1]. Let us restrict our attention

to a single decomposition level and let us use periodic boundary conditions. Then, the
unitary extension principle and in the Haar case already the classical MRA yields Parseval
frames of the form

W =

(
H0

H1

)
, (A.10)

132



A. Wavelet-frames

where the submatrix H0 ∈ Rn,n originates from the scaled coefficient sequence of the scaling
function and H1 ∈ Rn,n from the corresponding scaled coefficient sequence for the wavelet
functions, i.e.,

H0 =
1√
2




1 1
1 1

. . .
. . .

1 1


 , H1 =

1√
2




1 −1
1 −1

. . .
. . .

1 −1


 .

Observe that the matrix W obtained by (A.10) is orthogonal since the scaling function
themselves are orthonormal and there is no redundancy. In contrast to that, the translated
scaling functions of the linear B-spline overlap. We thus get a genuine Parseval frame of
the form (A.10) with

H0 =
1√
8




1 2 1
1 2 1

. . .
. . .

. . .

1 2 1
1 1 2




and H1 =

(
H1a

H1b

)
where

H1a =
1

2




1 0 −1
1 0 −1

. . .
. . .

. . .

1 0 −1
−1 1 0



,

H1b =
1√
8




1 −2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2



.

For both the Haar and the B-spline case there is a straightforward way to increase the
redundancy by a factor of two by omitting the downsampling operation. This is a well-
known technique in the context of filter banks, see, e.g., [214] and for applications, e.g.,
[175].

In our case, the framelets we obtain without downsampling are sometimes referred to
as undecimated Haar or B-spline framelets. The corresponding components of the Parseval
frame matrix are simply the n× n circulant matrices of the scaled coefficient sequences of
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the above masks. In the Haar case, we get

H0 =
1

2




1 1
1 1

. . .
. . .

1 1
1 1



, H1 =

1

2




1 −1
1 −1

. . .
. . .

1 −1
−1 1



. (A.11)

The matrix

W =

(
H0

H1

)
(A.12)

is a Parseval frame matrix but not an orthogonal matrix anymore. Similarly, we can

construct for the linear B-spline the Parseval frame matrix W =



H0

H1a

H1b


 by

H0 =
1

4




1 2 1
1 2 1

. . .
. . .

. . .

1 2 1
1 1 2
2 1 1




and

H1a =
1√
8




1 0 −1
1 0 −1

. . .
. . .

. . .

1 0 −1
−1 1 0
0 −1 1



, H1b =

1

4




1 −2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2

−2 1 1



.

We can get similar Parseval frames for higher order B-spline wavelets and other bound-
ary condition, e.g., mirrored/Neumann boundary conditions are possible, cf. [51]. Recall
that, so far, we have considered just the finest level on which we can, in the discrete case,
define our scaling and wavelet functions. Coarser levels, on the other hand, are possible.
To simplify the notation, we focus on the case of undecimated Haar framelets. The con-
struction for multi-level B-spline framelets works analogously. Let us fix a decomposition
level L (L < n in the Haar case). Again, we do not downsample so that we consider for

l = 0, . . . , L− 1 the circulant n× n matrices H
(l)
0 and H

(l)
1 with respect to the filters

1

2
[ 1 0 . . . 0︸ ︷︷ ︸

2l−1−1

(−1)i ], i = 1, 2.

134



A. Wavelet-frames

Then, the undecimated Haar framelet matrix up to level L is given by

W =




ΠL−1
l=0 H

(L−l)
0

H
(1)
1

H
(2)
1 H

(1)
0

...

H
(L−1)
1 ΠL−1

l=2 H
(L−l)
0

H
(L)
1 ΠL−1

l=1 H
(L−l)
0




.

So far, we have focused on the one-dimensional case. Parseval frames for digital 2D images
can be obtained by a simple tensor product construction. For example, we get for one level
of the Haar Parseval frame (A.12) the following frame for digital n × n images reshaped
into a vector of length N = n2:

W =




H0 ⊗H0

H0 ⊗H1

H1 ⊗H0

H1 ⊗H1


 . (A.13)

The rows of W form again a Parseval frame, i.e, W fulfills W TW = IN but W TW 6= I4N .
In the same way, we can construct the corresponding Haar and B-spline framelets in the
multi-level setting for images.
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APPENDIX B

Matrix diagonalization via cosine transform

Let us consider matrices A ∈ Rn,n of the form

A = stoep(a0, . . . , an−1) + pshank(a1, . . . , an−2, 0), (B.1)

where stoep(a0, . . . , an−1) is a symmetric Toeplitz matrix and pshank(a1, . . . , an−2, 0) is a
persymmetric Hankel matrix, i.e.,

stoep(a0, . . . , an−1) :=




a0 a1 . . . an−2 an−1

a1 a0 . . . an−3 an−2
...

...
. . .

...
...

an−2 an−3 . . . a0 a1

an−1 an−2 . . . a1 a0



,

pshank(a1, . . . , an−1, 0) :=




a1 a2 . . . an−2 0
a2 a3 . . . 0 an−2
...

...
. . .

...
...

an−2 0 . . . a3 a3

0 an−2 . . . a2 a1



.

The following result shows that matrices with the structure (B.1) can be diagonalized via
the matrix of the cosine-II transform given by

CII :=

(
2

n

)1/2 (
εj cos

j(2k + 1)π

2n

)n−1

j,k=0

∈ R
n,n

with ε0 := 1/
√
2 and εj := 1 for j 6= 0.

Proposition B.1 Let A ∈ Rn,n be a matrix of the form (B.1). Then, it holds that

A = CT

II diag(q)CII ,

where

qj = 2

n−1∑

k=0

ε2kak cos
jkπ

n
, j = 0, . . . , n− 1.
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Proof: See, e.g., [178].

For the forward difference matrixDf the matrixDT
fDf is of the form (B.1) with (a0, . . . , an−1) =

(2,−1, 0, . . . , 0). Hence, we can apply Proposition B.1 and a short calculation shows that
the vector q ∈ R

n is in this case given by

qj =
(
2 sin

πj

2n

)2
, j = 0, . . . , n− 1.

It follows for the matrix D2 defined in (3.18) that

DT

2D2 = In ⊗DT

fDf +DT

fDf ⊗ In

= (CT

II ⊗ CT

II)(In ⊗ diag(q) + diag(q)⊗ In)(CII ⊗ CII). (B.2)

We can use (B.2), e.g., to apply the inverse matrix (γI + DT
2D2)

−1 in O(n2 logn) steps
since the multiplications of an n× n matrix by the cosine transform matrices CII can be
implemented using fast cosine or FFT algorithms.
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APPENDIX C

Chambolle’s semi-implicit gradient descent

algorithm

In [56], Chambolle proposed the following algorithm to solve the dual of the discrete ROF
denoising problem, i.e., problem (3.26) with Φ = Φ2 and D = D2:

Algorithm (Semi-implicit gradient descent algorithm)
Initialization: b(0)

For k = 0, 1, . . . repeat until a stopping criterion is reached

w(k+1) := D(DTb(k) − f),

b(k+1) :=

(
1 +

γ

λ

(
|w(k+1)|
|w(k+1)|

))−1

◦ (b(k) + γw(k)), (C.1)

where |w(k+1)| is defined as in (3.19).

Recall that the solution of the primal problem (3.12) is then given by û = f −DTb̂. The
inversion and multiplication in the second step of (C.1) is again meant componentwise.
Clearly, algorithm (C.1) can also be used to solve the Besov-norm denoising problem. In
this case, we have to use the componentwise absolute value of w(k+1) in the second step

of the above algorithm instead of

(
|w(k+1)|
|w(k+1)|

)
. The algorithm (C.1) can be motivated by

using a semi-implicit scheme on the corresponding Karush-Kuhn-Tucker conditions, see
also [200]. So far, convergence was only proved for the case γ < 1

‖DTD‖2 and b(0) with the

property that |b(0)| ≤ λ. However, in all numerical experiments this algorithm converged
for step sizes γ < 2

‖DTD‖2 . Recall that the related forward-backward splitting algorithm is

guaranteed to converge for step lengths γ < 2
‖DTD‖2 and all initial values.

In the following, we want to examine the ”cumbersome” behavior of Chambolle’s algo-
rithm in one variable. Here, problem (3.26) is given by

argmin
b∈R

1

2
(db− f)2 s.t. |b| ≤ λ, (C.2)
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where we assume that d > 0 is a real number. The solution b̂ of (C.2) is given by

b̂ =





f
d

if | f
d
| ≤ λ,

λ if f
d
> λ,

−λ if f
d
< −λ,

= f
d
− Tλ(fd ). (C.3)

The corresponding forward-backward splitting algorithm, cf., (3.33) has the form

b(k+1) =
b(k) − γd(db(k) − f)

max{1, 1
λ
(b(k) − γd(db(k) − f))} . (C.4)

Let us view this as a dynamical system, i.e., we define the fixed point operator TFBS : R →
R by

TFBS(b) =
b− γd(db− f)

max{1, 1
λ
(b(k) − γd(db(k) − f))}

and consider Picard iterations b(k+1) = TFBS(b
(k)).

For the semi-implicit gradient descent algorithm (C.1) we obtain

b(k+1) =
b(k) − γd(db(k) − f)

1 + γ
λ
|d(db(k) − f)| (C.5)

and we define as above the fixed point operator TCh : R → R by

TCh(b) =
b− γd(db− f)

1 + γ
λ
|d(db− f)| . (C.6)

To analyse the corresponding sequences we borrow a tool from the theory of dynamical
systems, namely, the visualization techniques of cobweb diagrams, see, e.g., [36]. We already
know that the forward-backward splitting algorithm (C.4) converges for every γ < 2

d2
and

every starting value b(0) to the solution b̂ which thus must be the unique fixed point of
TFBS, cf., Fig C.1. In the case of (C.6), a fixed point b̃ is characterized by

b̃ = TCh(b̃) ⇔ b̃

λ
|db̃− f | = −(db̃− f).

Hence, the fixed points of TCh are given by

b̃1 =
f

d
and

b̃2 = λ if λ < f
d
,

b̃2 = −λ if λ < −f
d
.

(C.7)

The function TCh is differentiable everywhere except at b̃1 = f
d
where the left and right

derivatives are given by
T ′
Ch

(
(f
d
)+
)
= 1− γ

(
df
λ
+ d2

)
(C.8)

and
T ′
Ch

(
(f
d
)−
)
= 1 + γ

(
df
λ
− d2

)
. (C.9)

Without loss of generality, let us study the case f ≥ 0 in more detail. By (C.7), we have
to distinguish between the following two situations.
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Figure C.1: Cobweb diagrams of the function TFBS for d = 2, f = 2, γ = 0.49. On the
left-hand side, λ = 0.5 and the constraint is active, i.e., b̂ = 0.5, whereas on the right-hand
side λ = 2 which means that b̂ = 1.

i) λ < f
d

According to (C.7), we have two distinct fixed points, b̃1 =
f
d
and b̃2 = b̂ = λ. Clearly,

it holds that T ′
Ch

(
(f
d
)−
)
> 1 for all γ > 0. The right derivative, in contrast, vanishes

for

γ∗ =
1

df
λ
+ d2

.

If γ > γ∗, we have that T ′
Ch

(
(f
d
)+
)
< 0 and thus the corresponding cobweb has the

form shown on the left-hand side of Fig. C.2. We see that b̃1 = f
d
is a repelling

fixed point. In contrast, b̂2 = λ is an attracting fixed point since its derivative lies in
(0, 1). We have shown the three possible scenarios for different starting values in this
diagram: b(0) ≤ b̃2 (green), b̃2 ≤ b(0) < b̃1 (red) and b(0) > b̃1 (blue). The sequence
generated by (C.5) converges to b̃2 = b̂, i.e., to the solution of problem (C.2), for each
initial value b(0) except for the case where b(0) = b̃1.

The diagram for the case γ ≤ γ∗ has the structure shown on the right-hand side of
Fig. C.2: (b(k))k∈N converges to b̃2 = λ if b(0) < f

d
. In the case b(0) ≥ f

d
we have

convergence to b̃1 which is not the solution of (C.2).

ii) λ ≥ f
d

By (C.3), we have only one fixed point b̃1 = b̂ = f
d
. It follows from the definition of

the right and left derivatives, cf., (C.8) and (C.9), that |T ′
Ch

(
(f
d
)+
)
| < 1 if and only

if γ < 2

d2+ df
λ

and |T ′
Ch

(
(f
d
)−
)
| < 1 if and only if γ < 2

d2− df
λ

. So, for γ < 2

d2+ df
λ

we have

that b̃1 =
f
d
is an attracting fixed point, see the diagram on the left-hand side of Fig.
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Figure C.2: Cobweb diagrams of the function TCh for the case d = 2, f = 2, λ = 0.5. The
fixed points are b̃1 = 1 and b̃2 = 0.5 and we have γ∗ = 0.083̄. Left: γ = 0.5 > γ∗. Left:
γ = 0.5. Right: γ = 0.05 < γ∗.
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Figure C.3: The function TCh and the identity mapping in the case d = 2, f = 2, λ = 2
and γ = 0.3 (left) and γ = 0.64 (right). Note that 2

d2+ df
λ

≈ 0.3387 and 2

d2− f2

λ2

≈ 0.6466.
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C.3. However, we will show below that this condition can be weakened, in particular,
we can guarantee convergence for

γ <
2

d2 − f2

λ2

.

Let us assume from now on that γ ≥ 2

d2+ df
λ

which implies that T ′
Ch

(
(f
d
)+
)
< −1.

First, we consider the case where 1

d2− df
λ

≤ 2

d2+ df
λ

, or equivalently, λ ≥ 3f
d
. In this

situation, T ′
Ch

(
(f
d
)−
)
≤ 0 and b̃1 is an attracting fixed point if and only if

T ′
Ch

(
(f
d
)+
)
T ′
Ch

(
( b
d
)−
)
< 1.

We have

T ′
Ch

(
(f
d
)+
)
T ′
Ch

(
(f
d
)−
)

=
(
1− γ

(
df
λ
+ d2

)) (
1 + γ

(
df
λ
− d2

))

= 1− γd2
(
2− γ

(
d2 − f2

λ2

))

and obtain

T ′
Ch

(
(f
d
)+
)
T ′
Ch

(
(f
d
)−
)
< 1 ⇔ γ <

2

d2 − f2

λ2

.

Second, we consider the case 1

d2− df
λ

> 2

d2+ df
λ

, i.e., 3f
d
> λ ≥ f

d
. We apply the

same argument as above to conclude convergence for γ ∈ [ 1

d2− df
λ

, 2

d2− f2

λ2

) since here

T ′
Ch

(
(f
d
)−
)
≤ 0. For the remaining case γ ∈ [ 2

d2+ df
λ

, 1

d2− df
λ

) convergence can be verified

using that T ′
Ch

(
( b
d
)−
)
∈ (0, 1) and T ′

Ch

(
( b
d
)+
)
< 0.

The following Table C.1 summarizes the cases where we have convergence to the minimizer
of (C.2). Note that here we still assume that d > 0 and f ≥ 0. We obtain the corresponding
result for f ≤ 0 if we replace f by −f in the second and the third column and flipping the
inequality sign in the fourth column.

Case λ γ b(0)

1 λ < f
d

γ > 1
df
λ
+d2

b(0) 6= f
d

2 λ < f
d

γ ≤ 1
df
λ
+d2

b(0) < f
d

3 λ ≥ f
d

γ < 2

d2− f2

λ2

b(0) ∈ R

4 λ ≥ f
d

γ ∈ R b(0) = f
d

Table C.1: Conditions on λ, γ and b(0) which guarantee convergence of the sequence gen-
erated by (C.5) to b̂ for the case where f ≥ 0 and d > 0.

Recall that in the 2D case, convergence is assumed to be true but not proven yet for
the case γ < 2

‖D‖2 and b(0) fulfilling |b(0)| ≤ λ. We see from Table C.1 that at least in this
simple case of one variable, we have shown convergence under even weaker conditions.
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[75] P. L. Combettes. Quasi-Fejérian analysis of some optimization algorithms. In Y. C.
D. Butnariu and S. Reich, editors, Inherently Parallel Algorithms in Feasibility and
Optimization and Their Applications, pages 115–152, Elsevier, New York, 2001.

[76] P. L. Combettes. Solving monotone inclusions via compositions of nonexpansive
averaged operators. Optimization, 53(5–6):475–504, 2004.

[77] P. L. Combettes. Iterative construction of the resolvent of a sum of maximal mono-
tone operators. Journal of Convex Analysis, 16(4), 2009.

[78] P. L. Combettes and J.-C. Pesquet. A Douglas-Rachford splitting approach to nons-
mooth convex variational signal recovery. IEEE Journal of Selected Topics in Signal
Processing, 1(4):564–574, 2007.

150



BIBLIOGRAPHY

[79] P. L. Combettes and J.-C. Pesquet. A proximal decomposition method for solving
convex variational inverse problems. Inverse Problems, 24(6), 2008.

[80] P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward
splitting. Multiscale Modelling & Simulation, 4:1168–1200, 2005.

[81] I. Csiszár. Why least squares and maximum entropy? An automatic approach to
inference for linear inverse problems. The Annals of Statistics, 19(4):2032–2066, 1991.

[82] I. Daubechies. Ten Lectures on Wavelets. SIAM, Philadelphia, 1992.

[83] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint. Communications on Pure and
Applied Mathematics, 51:1413–1541, 2004.

[84] I. Daubechies, B. Han, A. Ron, and Z. Shen. Framelets: MRA-based construction of
wavelet frames. Applied and Computational Harmonic Analysis, 14:1–46, 2003.

[85] C. Davis. All convex invariant functions of Hermitian matrices. Archiv der Mathe-
matik, 8(4):276–278, 1957.

[86] P. Davis. Circulant Matrices. John Wiley and Sons, New York, 1979.
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[111] I. Galić, J. Weickert, M. Welk, A. Bruhn, A. Belyaev, and H.-P. Seidel. Towards PDE-
based image compression. In B. M. ter Haar Romeny, L. Florack, J. Koenderink, and
M. Viergever, editors, Variational, Geometric, and Level Set Methods in Computer
Vision, volume 3752 of Lecture Notes in Computer Science, pages 37–48. Springer,
Berlin, 2005.

[112] M. S. Gazzaniga, editor. The cognitive neurosciences III. MIT Press, Cambridge,
MA, USA, 2004.

[113] G. Gilboa, J. Darbon, S. Osher, and T. F. Chan. Nonlocal convex functionals for
image regularization. UCLA CAM Report, 06-57, 2006.

[114] G. Gilboa and S. Osher. Nonlocal operators with applications to image processing.
Multiscale Modelling & Simulation, 7(3):1005–1028, 2008.

[115] E. Giusti. Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Basel,
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see algorithm

anisotropy, 91
asymptotically regular, see operator
augmented Lagrangian algorithm, see algo-

rithm
averaged, see operator

backward-backward splitting algorithm, see
algorithm

Banach fixed point theorem, 14
Besov norm, 54
Besov space, 55
bounded variation, 55
Bregman distance, 29
Bregman function, 28

Bregman proximal point algorithm, see al-
gorithm

classical proximal point algorithm, see algo-
rithm

cocoercive, see operator
contractive, see operator
core, 11
coupled shrinkage, see shrinkage
coupled thresholding, see thresholding

diffusion tensor, 91
diffusion tensor magnetic resonance imaging,

111
Douglas-Rachford splitting algorithm, see al-

gorithm
dual frame, 127

edge enhancing diffusion, 91

Fermat’s rule, 11
firmly nonexpansive, see operator
FISTA, see algorithm
forward-backward splitting algorithm, see al-

gorithm
frame, 127
framelets, 129
Frobenius norm, 113

I-divergence, 54
indicator function, 60
inpainting problem, 87
isometric, see operator

Jordan-product, 114
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Karush-Kuhn-Tucker conditions, 11
Kullback-Leibler divergence, 54

Legendre conjugate, 9
level set, 32
Lipschitz continuous, see operator
locally semianalytic scheme, 92
lower semi-continuous, see operator

mask, 129
matrix-valued images, 111
maximal monotone, 12
MFISTA, see algorithm
monotone, 12
Moreau envelope, 8
multiresolution analysis, 129

Nesterov’s algorithm, see algorithm
nonexpansive, see operator
nuclear norm, 117

oblique extension principle, 130
operator

asymptotically regular, 16
contractive, 14
firmly nonexpansive, 15
averaged, 14
cocoercive, 24
isometric, 14
Lipschitz continuous, 14
lower semi-continuous, 8
nonexpansive, 14
proximity, 8

Parseval frame, 127
Peaceman-Rachford splitting algorithm, see

algorithm
PIDSplit+ algorithm, see algorithm
Poisson distribution, 53
positively homogeneous function, 60
proximity, see operator
proximum, 8

quadratic penalty algorithm, see algorithm
quasi-Féjer monotone sequence, 19

refinable function, 129
reflection operator, 25
relative interior, 11
resolvent, 13
Rudin-Osher-Fatemi model, 56

scaling function, 129
second-order cone programming, 120
shrinkage

coupled, 59
soft, 59

smoothness modulus, 54
Sobolev space, 56
soft shrinkage, see shrinkage
soft thresholding, see thresholding
subdifferential, 11
superresolution, 104
support function, 29
symmetric gauge function, 117

thresholding
coupled, 59
soft, 59

tight frame, 127
total variation semi-norm, 56
trace norm, 117

unitarily invariant matrix, 117
unitary extension principle, 130

wavelet function, 128

Yosida approximant, 27
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