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Introduction

A wide range of financial and economic time series are likely to be nonstationary.

Examples are return and volatility series as well as macroeconomic data such

as GDP and interest rates. Moreover, it is often very restrictive to stipulate a

parametric structure on the time series data at hand. Thus, in many financial

and economic applications, we are faced with a non- or semiparametric estimation

problem in a nonstationary time series setting.

To model the nonstationary behaviour of financial and economic time series,

so-called locally stationary models have been proposed in recent years (see e.g.

Dahlhaus & Subba Rao [8], Fryzlewicz et al. [15] or Linton & Hafner [28]). Local

stationarity is a special kind of nonstationarity which was introduced in a series of

papers by Dahlhaus (cf. [4], [5], and [6]). Intuitively speaking, a process is locally

stationary if over short time spans, i.e. locally in time, it behaves approximately

stationary. This intuitive concept can be turned into a rigorous definition in

various different but related ways: A locally stationary process may be defined in

terms of a time-varying spectral representation (cf. Dahlhaus [6]) or in terms of

an MA(∞)-representation with time-varying coefficients (cf. Dahlhaus & Polonik

[9]). Yet another way is to require that locally around each time point, the

process can be approximated by a stationary process in a stochastic sense (cf.

Dahlhaus & Subba Rao [8]).

Most of the locally stationary models suggested so far in the literature are of a

parametric nature. Usually, parametric models are analyzed in which the coeffi-

cients are allowed to vary smoothly over time. The parametric form stipulated in

these models is often ad hoc and not justified at all by a structural economic theory

in the background. To avoid misleading conclusions under misspecification and to

select an appropriate parametric model, non- and semiparametric approaches are

required.



2 Introduction

In this thesis, we study various non- and semiparametric estimation problems in a

locally stationary time series setting. In particular, we provide asymptotic theory

for a collection of non- and semiparametric models which have not been analyzed

yet in the literature. The thesis consists of three chapters that are self-contained

and can be read separately. Each chapter ends with an appendix that collects the

proofs and technical details.

In Chapter 1, we introduce a nonparametric framework which is a natural extension

of time series models with time-varying coefficients. Letting Yt,T and Xt,T be

random variables of dimension 1 and d, respectively, the model is given by

Yt,T = m
( t
T
,Xt,T

)
+ εt,T for t = 1, . . . , T (1)

with E[εt,T |Xt,T ] = 0. Here, the model variables are locally stationary and the

regression function is allowed to change smoothly over time. As usual in the

literature on locally stationary processes, the function m depends on rescaled time
t
T

rather than on real time t and the model variables form a triangular array

rather than a sequence.1 We introduce a kernel-based method to estimate the

time-varying function and provide asymptotic theory for our estimates. Moreover,

we show that the main conditions of the theory are satisfied for a large class of

nonlinear autoregressive processes with a time-varying regression function. Finally,

we examine structured models where the regression function splits up into time-

varying additive components. As will be seen, estimation in these models does not

suffer from the curse of dimensionality. The technical analysis is complemented

by an application to index return data.

Chapter 2 studies a testing problem within the general framework (1). We are

interested in the question whether the time-varying regression function m has the

same shape at two different time points. This testing issue is not only interesting

from a theoretical perspective but also from an applied point of view. In many

applications, we want to find out whether the relationship between two variables is

the same in two different economic situations, e.g. at a time point before a crisis and

one during it. To tackle this kind of question, we propose a kernel-based L2-test

statistic. We derive the asymptotic distribution of the statistic both under the null

and under local and fixed alternatives. To improve the small sample behaviour of

the test, we set up a wild bootstrap procedure and derive the asymptotic properties

thereof.

1Some remarks on the concept of rescaled time can be found in Section 3.2 of Chapter 3. A

detailed discussion of the concept is given in Dahlhaus [5].
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In Chapter 3, which is based on a joint paper with Christopher Walsh, we analyze

a semiparametric multiplicative volatility model which splits up into a nonpara-

metric part and a parametric GARCH component. The model is given by the

equation

Yt,T = τ
( t
T
,Xt

)
εt for t = 1, . . . , T. (2)

Here, Yt,T are financial log-returns, Xt = (X1
t , . . . , X

d
t ) is a vector of strictly sta-

tionary covariates, and τ is a nonparametric function of rescaled time and the

variables Xt. Moreover, {εt} is a strictly stationary GARCH process. Model (2)

generalizes the simpler model

Yt,T = τ
( t
T

)
εt,

where the function τ only depends on rescaled time. This simpler framework has

for example been considered in Feng [13], a multivariate version has been analyzed

in Linton & Hafner [28]. To avoid the curse of dimensionality, we impose some

structural constraints on the nonparametric function τ in (2). In particular, the

function is assumed to split up into multiplicative components according to

τ
( t
T
,Xt

)
= τ0

( t
T

) d∏
j=1

τj(X
j
t ).

We propose a two-step procedure to estimate the model. To estimate the multi-

plicative components of the τ -function, we extend the standard smooth backfitting

procedure of Mammen et al. [29]. The GARCH parameters are estimated in a sec-

ond step via a quasi-maximum likelihood based approach. Finally, the model is

applied to S&P 500 return data using various interest rate spreads as covariates.





Chapter 1

Nonparametric Regression For

Locally Stationary Time Series

1.1 Introduction

Classical time series analysis is based on the assumption of stationarity. However,

many time series exhibit a nonstationary behaviour. Examples come from fields

as diverse as finance, sound analysis and neuroscience.

One way to model nonstationary behaviour is provided by the theory of locally

stationary processes developed in a series of papers by Dahlhaus (cf. [4], [5], and

[6]). Intuitively speaking, a process is locally stationary if over short periods of

time (i.e. locally in time) it behaves approximately stationary. So far, locally sta-

tionary models have been mainly considered within a parametric context. Usually,

generalizations of classical parametric time series models are analyzed that allow

the parameters to change smoothly over time.

There is a large amount of papers that deal with time series models with time-

varying parameters. Dahlhaus et al. [7], for example, study wavelet estimation

in autoregressive models with time-dependent coefficients. Chandler & Polonik

[2] consider autoregressive processes with a time-varying variance and test for

unimodality of the variance function. Dahlhaus & Subba Rao [8] analyze a class of

ARCH models with time-varying parameters. They propose a kernel-based quasi-

maximum likelihood method to estimate the parameter functions; a kernel-based

normalized-least-squares method is suggested by Fryzlewicz et al. [15]. Linton

& Hafner [28] provide estimation theory for a multivariate GARCH model with

a time-varying unconditional variance. Finally, a diffusion process with a time-

dependent drift and diffusion function is investigated in Koo & Linton [21].
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In this chapter, we introduce a nonparametric framework which can be regarded

as a natural extension of time series models with time-varying coefficients. In its

most general form, the model is given by

Yt,T = m
( t
T
,Xt,T

)
+ εt,T for t = 1, . . . , T (1.1)

with E[εt,T |Xt,T ] = 0, where Yt,T and Xt,T are random variables of dimension 1

and d, respectively. The model variables are assumed to be locally stationary and

the regression function as a whole is allowed to change smoothly over time. As

usual in the literature on locally stationary processes, the function m does not

depend on real time t but rather on rescaled time t
T

. This goes along with the

model variables forming a triangular array instead of a sequence. Throughout the

introduction, we stick to an intuitive concept of local stationarity. A technically

rigorous definition is given in Section 1.2.

There is a wide range of interesting nonlinear time series models that fit into the

general framework (1.1). An important example are nonparametric autoregressive

models of the form

Xt,T = m
( t
T
,Xt−1,T , . . . , Xt−d,T

)
+ εt,T for t = 1, . . . , T (1.2)

with E[εt,T |Xt−1,T , . . . , Xt−d,T ] = 0, which are analyzed in Section 1.3. As will be

seen there, under certain conditions on the function m and the error terms εt,T , the

process defined in (1.2) is locally stationary and strongly mixing. Independently to

the present work, Kristensen [24] has developed results on local stationarity of the

process given in (1.2) when the residuals εt,T are i.i.d. In contrast to Kristensen,

we do not restrict the residual process to be i.i.d. and also provide results on the

mixing behaviour of the process.

In Section 1.4, we develop estimation theory for the nonparametric regression func-

tion in the general framework (1.1). As described there, the regression function is

estimated by nonparametric kernel methods. We provide a complete asymptotic

theory for our estimates. In particular, we derive uniform convergence rates and

an asymptotic normality result. To do so, we split up the estimates into a vari-

ance part and a bias part. In order to control the variance part, we generalize

results of Hansen [17] on uniform convergence rates for kernel estimates to our

locally stationary setting. The locally stationary behaviour of the model variables

also changes the asymptotic analysis of the bias part. In particular, it produces

an additional bias term which can be regarded as measuring the deviation from

stationarity.
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Even though model (1.1) is theoretically interesting, it has an important drawback.

Estimating the time-varying regression function in (1.1) suffers from an even more

severe curse of dimensionality problem than in the standard strictly stationary

setting with a time-invariant regression function. The reason is that in model

(1.1), we fit a fully nonparametric function m(u, ·) locally around each rescaled

time point u. Compared to the standard case, this means that we additionally

smooth in time direction and thus increase the dimensionality of the estimation

problem by one. This makes the procedure even more data consuming than in the

standard setting and thus infeasible in many applications.

In order to countervail this severe curse of dimensionality, we impose some struc-

tural constraints on the regression function in (1.1). In particular, we consider

additive models of the form

Yt,T =
d∑
j=1

mj

( t
T
,Xj

t,T

)
+ εt,T for t = 1, . . . , T (1.3)

with E[εt,T |Xt,T ] = 0. In Section 1.5, we will show that the components of this

model can be estimated with two-dimensional nonparametric convergence rates,

no matter how large the dimension d. In order to do so, we extend the smooth

backfitting approach of Mammen et al. [29] to our locally stationary setting.

To show the practical usefulness of our theory, we apply an additive volatility

model with time-varying component functions to a sample of financial data in

Section 1.6. The analysis makes visible how the component functions estimated

at time points before and during the recent financial crisis differ from each other.

1.2 Local Stationarity

Heuristically speaking, the process {Xt,T : t = 1, . . . , T}∞T=1 is locally stationary if

it behaves approximately stationary locally in time. The next definition ensures

this behaviour by requiring that for each rescaled time point u, there is a stationary

process {Xt(u) : t ∈ Z} which approximates {Xt,T} locally around u. This means

that if t
T

is close to u, then Xt,T is close to Xt(u) at least in a stochastic sense.

Definition 1.1. The process {Xt,T} is locally stationary if for each time point u ∈
[0, 1] there exists an associated process {Xt(u)} with the following two properties:

(i) {Xt(u)} is strictly stationary with density fXt(u),
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(ii) it holds that ∥∥Xt,T −Xt(u)
∥∥ ≤ (∣∣∣ t

T
− u
∣∣∣+

1

T

)
Ut,T (u) a.s.,

where {Ut,T (u)} is a process of positive variables satisfying E[(Ut,T (u))ρ] < C

for some ρ > 0 and C < ∞ independent of u, t, and T . ‖ · ‖ denotes an

arbitrary norm on Rd.

Since the ρ-th moments of the variables Ut,T (u) are uniformly bounded by some

C <∞, it holds that Ut,T (u) = Op(1). As a consequence,∥∥Xt,T −Xt(u)
∥∥ = Op

(∣∣∣ t
T
− u
∣∣∣+

1

T

)
.

The constant ρ can be regarded as a measure of how well Xt,T is approximated by

Xt(u): The larger ρ can be chosen, the less mass is contained in the tails of the

distribution of Ut,T (u). Thus, if ρ is large, then the bound (| t
T
− u| + 1

T
)Ut,T (u)

will take rather moderate values for most of the time. In this sense, the bound

and thus the approximation of Xt,T by Xt(u) is getting better for larger ρ.

1.3 Locally Stationary Nonlinear AR Processes

In this section, we examine a large class of nonlinear autoregressive processes with

a time-varying regression function that fit into the general framework (1.1). We

show that these processes are locally stationary and strongly mixing under suitable

conditions on the model components.

1.3.1 The tvNAR Process

We call an array {Xt,T : t ∈ Z}∞T=1 a time-varying nonlinear autoregressive (tv-

NAR) process if Xt,T behaves according to

Xt,T = m
( t
T
,Xt−1,T , . . . , Xt−d,T

)
+ σ
( t
T
,Xt−1,T , . . . , Xt−d,T

)
εt. (1.4)

A tvNAR process is thus an autoregressive process of the form (1.2) with errors

εt,T = σ( t
T
, Xt−1,T , . . . , Xt−d,T )εt. In the above definition, m(u, x) and σ(u, x) are

smooth functions of rescaled time u and x ∈ Rd. We stipulate that for u ≤ 0,

m(u, x) = m(0, x) and σ(u, x) = σ(0, x). Analogously, we set m(u, x) = m(1, x)

and σ(u, x) = σ(1, x) for u ≥ 1. Furthermore, the variables εt are assumed to
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be i.i.d. with mean zero. For each u ∈ R, we additionally define the associated

process {Xt(u) : t ∈ Z} by

Xt(u) = m
(
u,Xt−1(u), . . . , Xt−d(u)

)
+ σ
(
u,Xt−1(u), . . . , Xt−d(u)

)
εt, (1.5)

where the rescaled time argument of the functions m and σ is fixed at u.

As stipulated above, the conditional mean function m and the volatility function

σ do not change over time for t ≤ 0. Put differently,

Xt,T = m
(
0, Xt−1,T , . . . , Xt−d,T

)
+ σ
(
0, Xt−1,T , . . . , Xt−d,T

)
εt for all t ≤ 0.

We can thus assume that Xt,T = Xt(0) for t ≤ 0. Consequently, if there exists a

process {Xt(0)} that satisfies the system of difference equations (1.5) for u = 0,

then this immediately implies the existence of a tvNAR process {Xt,T} satisfying

(1.4). As will turn out, under appropriate conditions there exists a strictly station-

ary solution {Xt(u)} to the system of equations (1.5) for each u ∈ R, in particular

for u = 0. We can thus take for granted that the tvNAR process {Xt,T} defined

by (1.4) exists.

1.3.2 Assumptions

We now list some conditions under which the tvNAR process is locally stationary

and strongly mixing. To start with, the function m is supposed to satisfy the

following conditions.

(M1) m is absolutely bounded by some constant M <∞.

(M2) m is Lipschitz continuous with respect to rescaled time u, i.e. there exists a

constant L <∞ such that |m(u, x)−m(u′, x)| ≤ L|u− u′| for all x ∈ Rd.

(M3) m is continuously differentiable with respect to x. The partial derivatives

∂jm(u, x) := ∂
∂xj
m(u, x) have the property that for some K1 <∞,

sup
u∈R,‖x‖∞>K1

|∂jm(u, x)| ≤ δ < 1.

An exact formula for the bound δ is given in (1.37) in Appendix A.

The function σ is required to fulfill analogous assumptions.

(Σ1) σ is bounded by some constant Σ <∞ from above and it is bounded away

from zero by some constant Σ > 0, i.e. 0 < Σ ≤ σ(u, x) ≤ Σ < ∞ for all

u ∈ R and x ∈ Rd.
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(Σ2) σ is Lipschitz continuous with respect to rescaled time u, i.e. |σ(u, x) −
σ(u′, x)| ≤ L|u− u′| for some L <∞ and all x ∈ Rd.

(Σ3) σ is continuously differentiable with respect to x. The partial derivatives

∂jσ(u, x) := ∂
∂xj
σ(u, x) have the property that for some K1 <∞,

sup
u∈R,‖x‖∞>K1

|∂jσ(u, x)| ≤ δ < 1.

Finally, the error terms are required to have the following properties.

(E1) The variables εt are i.i.d. with E[εt] = 0 and E|εt|1+η < ∞ for some η > 0.

Moreover, they have an everywhere positive and continuous density fε.

(E2) The density fε is bounded and Lipschitz.

To show that the tvNAR process is strongly mixing, we additionally need the

following condition on the densities of the error terms:

(E3) Let d0, d1 be any constants with 0 ≤ d0 ≤ D0 < ∞ and |d1| ≤ D1 < ∞.

The density fε fulfills the condition∫
R
|fε([1 + d0]x+ d1)− fε(x)|dx ≤ CD0,D1

(
d0 + |d1|

)
with CD0,D1 <∞ depending on the bounds D0 and D1.

We shortly give some remarks on the above assumptions:

• Conditions (M1) and (M3) together with (Σ1) and (Σ3) restrict the tvNAR

process above all outside a large bounded set {x : ‖x‖ ≤ K1}. There, the

functions m and σ are required to remain bounded and to be sufficiently flat.

In a wide range of cases, the approximating processes {Xt(u)} will exhibit a

stable behaviour and will remain within a large bounded set for most of the

time. The same will then also hold true for the process {Xt,T}. Therefore, the

above conditions are not very severe. They only restrict the dynamics of the

tvNAR process in a region to which it wanders very rarely.

• Our set of assumptions can be regarded as a strengthening of the assumptions

needed to show geometric ergodicity of autoregressive processes of the form

Xt = m(Xt−1, . . . . . . , Xt−d) + σ(Xt−1, . . . , Xt−d)εt. In particular, (M3) and

(Σ3) are very close in spirit to assumptions from this context which require

the mean and volatility functions m and σ not to grow too fast outside a large

bounded set.
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• Condition (M3) implies that the derivatives ∂jm(u, x) are absolutely bounded.

Hence, there exists a constant ∆ < ∞ such that |∂jm(u, x)| ≤ ∆ for all u ∈ R
and x ∈ Rd. Similarly, (Σ3) implies that the derivatives ∂jσ(u, x) are absolutely

bounded by some constant ∆ <∞.

• As already noted, (E3) is only needed to prove that the tvNAR process is

strongly mixing. It is for example fulfilled for the class of bounded densities fε

whose first derivative f ′ε is bounded, satisfies
∫
|xf ′ε(x)|dx < ∞, and declines

monotonically to zero for values |x| > C for some constant C > 0. A proof

for this can be found in the first subsection of Appendix A. (See also Section 3

in Fryzlewicz & Subba Rao [25] who work with assumptions closely related to

(E3).)

1.3.3 Properties of the tvNAR Process

We now show that the tvNAR process is locally stationary and strongly mixing

under the assumptions listed above. In addition, we show that the auxiliary pro-

cesses {Xt(u)} have densities that vary smoothly over rescaled time u. As will

turn out, these three properties are central for the estimation theory developed

in Sections 1.4 and 1.5. To formulate and prove the results, we repeatedly make

use of the following notation: For any sequence of processes {Yt,T , t ∈ Z} with

T = 1, 2, . . . ,

Y t−k
t,T := (Yt−k,T , . . . , Yt,T ) for k > 0.

In particular, we let X t−k
t,T = (Xt−k,T , . . . , Xt,T ) and X t−k

t (u) = (Xt−k(u), . . .

. . . , Xt(u)) for u ∈ R. The first theorem shows that the auxiliary process {Xt(u)}
is strictly stationary for each rescaled time point u.

Theorem 1.1. Assume that (M1)–(M3), (Σ1)–(Σ3), and (E1) are fulfilled. Then

(i) for each u ∈ R, the process {Xt(u), t ∈ Z} has a strictly stationary solution

with εt independent of Xt−k(u) for k < 0,

(ii) the variables X t−d
t−1 (u) have a density fXt−d

t−1 (u) w.r.t. Lebesgue measure,

(iii) the variables X t−d
t−1,T have densities fXt−d

t−1,T
w.r.t. Lebesgue measure.

The second result states that {Xt(u)} locally approximates {Xt,T} in the sense of

Definition 1.1.
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Theorem 1.2. Assume that (M1)–(M3), (Σ1)–(Σ3), and (E1) are fulfilled. Then

|Xt,T −Xt(u)| ≤
(∣∣∣ t
T
− u
∣∣∣+

1

T

)
Ut,T (u), (1.6)

where the variables Ut,T (u) satisfy the condition that E[(Ut,T (u))ρ] < C for some

ρ > 0 and C <∞ independent of u, t, and T .

Taken together, Theorems 1.1 and 1.2 show that the tvNAR process {Xt,T} is

locally stationary in the sense of Definition 1.1. As can be seen from the next

result, the densities fXt−d
t−1 (u) change smoothly over time.

Theorem 1.3. Let f(u, x) := fXt−d
t−1 (u)(x) be the density of X t−d

t−1 (u) at x ∈ R. If

(M1)–(M3), (Σ1)–(Σ3), and (E1)–(E2) are fulfilled, then

|f(u, x)− f(v, x)| ≤ Cx|u− v|p

with some constant 0 < p < 1 and Cx <∞ continuously depending on x.

We finally characterize the mixing behaviour of the tvNAR process. We first give a

quick reminder of the definitions of an α-mixing and β-mixing array. Let (Ω,A,P)

be a probability space and let B and C be subfields of A. Define

α(B,C) = sup
B∈B,C∈C

|P(B ∩ C)− P(B)P(C)|

β(B,C) = E sup
C∈C
|P(C)− P(C|B)|.

Moreover, for an array {Yt,T : 1 ≤ t ≤ T}, define the coefficients

α(k) = sup
t,T :1≤t≤T−k

α
(
σ(Ys,T , 1 ≤ s ≤ t), σ(Ys,T , t+ k ≤ s ≤ T )

)
β(k) = sup

t,T :1≤t≤T−k
β
(
σ(Ys,T , 1 ≤ s ≤ t), σ(Ys,T , t+ k ≤ s ≤ T )

)
,

where σ(Z) is the σ-field generated by Z. The array {Yt,T} is said to be α-

mixing (or strongly mixing) if α(k) → 0 as k → ∞. Similarly, it is called β-

mixing if β(k)→ 0. Note that β-mixing implies α-mixing. The final result of this

section shows that the tvNAR process is β-mixing with coefficients that converge

exponentially fast to zero.

Theorem 1.4. If (M1)–(M3), (Σ1)–(Σ3), and (E1)–(E3) are fulfilled, then the

tvNAR process {Xt,T} is geometrically β-mixing, i.e. there exists a positive constant

γ < 1 such that β(k) ≤ γk.

The proofs of the above theorems can be found in Appendix A.
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1.3.4 The Additive tvNAR Process

An interesting special case of the tvNAR process arises, when the functions m and

σ split up into additive components. In this case, the process is defined by the

difference equation

Xt,T =
d∑
j=1

mj

( t
T
,Xt−j,T

)
+
( d∑
j=1

σj

( t
T
,Xt−j,T

))1/2

εt. (1.7)

In this setting, we can replace the conditions (M1)–(M3) and (Σ1)–(Σ3) on the

functions m and σ by analogous conditions on the additive component functions.

Most importantly, (M3) (and analogously (Σ3)) can be replaced by

(Madd3) m1, . . . ,md are continuously differentiable with respect to x. The partial

derivatives ∂mj(u, xj) := ∂
∂xj
mj(u, xj) have the property that for some

K1 <∞,

sup
u∈R,|xj |>K1

|∂mj(u, xj)| ≤ δadd < 1.

Here, δadd is given by a similar expression as δ in (M3).

Inspecting the proofs of Theorems 1.1–1.4, it is straightforward to see that the

theorems still hold true under these modified conditions.

1.4 Kernel Estimation in Locally Stationary

Nonparametric Models

In this section, we consider kernel estimation in the general model (1.1),

Yt,T = m
( t
T
,Xt,T

)
+ εt,T for t = 1, . . . , T,

where E[εt,T |Xt,T ] = 0 and the covariates Xt,T = (X1
t,T , . . . , X

d
t,T ) are locally sta-

tionary. The next subsection introduces kernel estimates for the function m. In

the subsequent subsections we provide asymptotic theory for these estimates. In

particular, we derive results on uniform convergence rates in Subsections 1.4.3–

1.4.5. The last subsection is devoted to results on asymptotic normality. The

proofs are given in Appendix B.
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1.4.1 Estimation Procedure

We restrict attention to local constant estimation. It is straightforward to extend

the theory to local linear (or more generally local polynomial) estimation. The

Nadaraya-Watson (NW) estimator for model (1.1) is given by

m̂(u, x) =

∑T
t=1Kh

(
u− t

T

)∏d
j=1 Kh

(
xj −Xj

t,T

)
Yt,T∑T

t=1Kh

(
u− t

T

)∏d
j=1Kh

(
xj −Xj

t,T

) . (1.8)

Here, K denotes a one-dimensional kernel function and we use the no-

tation Kh(v) = K( v
h
). For convenience, we work with a product kernel

K×(u, x) = K(u)
∏d

j=1K(xj) and assume that the bandwidth h is the same

in each direction. Our results can be easily modified to allow for non-product

kernels and different bandwidths. Note that the above estimate differs from the

NW estimator in the standard strictly stationary setting only in that there is an

additional kernel in time direction.

1.4.2 Assumptions

The following three assumptions are central for our results:

(C1) The process {Xt,T} is locally stationary in the sense of Definition 1.1. Thus,

for each time point u ∈ [0, 1], there exists a strictly stationary process

{Xt(u)} with density f(u, x) := fXt(u)(x) such that ‖Xt,T −Xt(u)‖ ≤ (| t
T
−

u|+ 1
T

)Ut,T (u) with E[(Ut,T (u))ρ] ≤ C for some ρ > 0.

(C2) The densities fXt(u) are smooth in u, i.e. f(u, x) = fXt(u)(x) is a smooth

function of u for each x ∈ Rd. In particular, f(u, x) is differentiable w.r.t. u

for each x ∈ Rd and the derivative ∂0f(u, x) := ∂
∂u
f(u, x) is continuous.

(C3) The array {Xt,T , εt,T} is α-mixing.

In Section 1.3, we have seen that these three conditions are essentially fulfilled for

the tvNAR process. Note that we do not necessarily need the densities fXt(u) to

be differentiable in time direction as assumed in (C2). We could also do with a

lower degree of smoothness, e.g. continuity as shown for the tvNAR process, at

the cost of having slower convergence rates for the bias part of the NW estimate.

Furthermore, for the tvNAR process, (C3) is equivalent to {X t−d
t,T } being α-mixing.

The latter condition is clearly fulfilled, as it is a direct consequence of Theorem

1.4.
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In addition to the above three assumptions, we impose the following technical

conditions on the model components:

(C4) f(u, x) is partially differentiable w.r.t. x for each u ∈ [0, 1]. The derivatives

∂jf(u, x) := ∂
∂xj
f(u, x) are continuous for j = 1, . . . , d.

(C5) m(u, x) is twice continuously partially differentiable with first derivatives

∂jm(u, x) and second derivatives ∂2
ijm(u, x) for i, j = 0, . . . , d.

The kernel K is assumed to satisfy the following condition:

(C6) K is symmetric about zero, bounded and has compact support, i.e. K(v) = 0

for all |v| > C1 with some C1 < ∞. Further, K is Lipschitz, i.e. |K(v) −
K(v′)| ≤ L|v − v′| for some L <∞ and all v, v′ ∈ R.

Finally, note that throughout the chapter the bandwidth h is assumed to converge

to zero at least at polynomial rate, i.e. there exists a small ξ > 0 such that

h ≤ CT−ξ for some constant C > 0.

1.4.3 Uniform Convergence Rates for Kernel Averages

As a first step in the asymptotic analysis of the NW estimate in model (1.1), we

examine kernel averages of the general form

ψ̂(u, x) =
1

Thd+1

T∑
t=1

Kh

(
u− t

T

) d∏
j=1

Kh(x
j −Xj

t,T )Wt,T (1.9)

and derive the uniform convergence rate of ψ̂(u, x) − Eψ̂(u, x). Later on we will

make use of this result with Wt,T = 1 and Wt,T = εt,T to calculate the uniform

rate of the NW estimate.

We make the following assumptions on the components in (1.9):

(KA1) The array {Xt,T ,Wt,T} is α-mixing with mixing coefficients α that satisfy

α(k) ≤ Ak−β

with A <∞, where for some s > 2,

E|Wt,T |s ≤ C and β >
2s− 2

s− 2
.
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(KA2) The variables Xt,T have densities fXt,T with the following properties: For

any compact set S ⊆ Rd, there exist constants B0 = B0(S), B1 = B1(S),

and B2 = B2(S) such that

sup
t,T

sup
x∈S

fXt,T (x) ≤ B0 <∞

sup
t,T

sup
x∈S

E
[
|Wt,T |s

∣∣Xt,T = x
]
fXt,T (x) ≤ B1 <∞.

In addition,

sup
t,T

sup
l≥1

sup
x,x′∈S

E
[
|Wt,T ||Wt+l,T |

∣∣Xt,T = x,Xt+l,T = x′
]

×fXt,T ,Xt+l,T (x, x′) ≤ B2 <∞,

where fXt,T ,Xt+l,T is the joint density of (Xt,T , Xt+l,T ).

The following theorem generalizes results of Hansen [17] for the strictly stationary

case to our locally stationary setting. For related results, see Kristensen [23].

Theorem 1.5. Let (KA1) and (KA2) be fulfilled and let the kernel K satisfy (C6).

Assume that

β >
2 + s(1 + (d+ 1))

s− 2
(1.10)

θ =
β(1− 2

s
)− 2

s
− 1− (d+ 1)

β + 3− (d+ 1)
. (1.11)

In addition, suppose that the bandwidth satisfies

φT log T

T θhd+1
= o(1) (1.12)

with φT slowly diverging to infinity (e.g. φT = log log T ). Then it holds that

sup
u∈[0,1],x∈S

∣∣ψ̂(u, x)− Eψ̂(u, x)
∣∣ = Op

(√ log T

Thd+1

)
.

The convergence rate in the above theorem is identical to the rate obtained for

a (d + 1)-dimensional nonparametric problem in the standard strictly stationary

setting. This reflects the fact that additionally smoothing in time direction, we

essentially have a (d+ 1)-dimensional estimation problem in our case.
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1.4.4 Uniform Convergence Rates for Density Estimates

Before we consider the NW estimates of model (1), we examine the asymptotic

behaviour of density estimates in this model. Define

f̂(u, x) =
1

Thd+1

T∑
t=1

Kh

(
u− t

T

) d∏
j=1

Kh(x
j −Xj

t,T ).

The following result shows that f̂(u, x) converges uniformly in (u, x) to the density

f(u, x) of Xt(u).

Theorem 1.6. Assume that (C1), (C2), (C4) and (C6) hold and that (KA1)–

(KA2) are fulfilled for Wt,T = 1. Let β > 1 + (d + 1) and suppose that the

bandwidth h satisfies

φT log T

T θhd+1
= o(1) and

1

T rhd+r
= o(1)

with θ = β−1−(d+1)
β+3−(d+1)

, φT = log log T , and r = min{ρ, 1}, where ρ has been introduced

in (C1). Defining Ih = [C1h, 1− C1h], it then holds that

sup
u∈Ih,x∈S

∣∣f̂(u, x)− f(u, x)
∣∣ = Op

(√ log T

Thd+1

)
+O

( 1

T rhd+r

)
+ o(h). (1.13)

To derive the above result, we split up the difference f̂(u, x)−f(u, x) into a stochas-

tic part and a bias part. The stochastic part is of the order Op(
√

log T/Thd+1). As

already noted in the previous subsection, this mirrors the fact that we essentially

have to solve a (d+1)-dimensional estimation problem. The bias part converges at

the rate O(T−rh−(d+r)) + o(h). Thus, in contrast to the standard strictly station-

ary case, an additional bias component of order T−rh−(d+r) shows up. As can be

seen from the proof, this additional component results from replacing the variables

Xt,T by Xt(
t
T

) in the bias expression. It thus captures how far the variables Xt,T

are from their stationary approximation Xt(
t
T

). Put differently, it measures the

deviation from stationarity.

Note that the additional bias term converges faster to zero for larger r = min{ρ, 1}.
This makes perfect sense if we recall from Section 1.2 that r measures how well

Xt,T is locally approximated by Xt(
t
T

): The larger r, the smaller the deviation

of Xt,T from its stationary approximation and thus the smaller the additional

nonstationarity bias.
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1.4.5 Uniform Convergence Rates for NW Estimates

Using the results from the previous subsections, we can derive the following theo-

rem on the uniform convergence behaviour of the NW estimator in model (1).

Theorem 1.7. Assume that (C1)–(C6) hold and that (KA1)–(KA2) are fulfilled

for both Wt,T = 1 and Wt,T = εt,T . Let β and θ satisfy equations (1.10) and (1.11),

and suppose that infu∈[0,1],x∈S f(u, x) > 0. Moreover, assume that the bandwidth h

satisfies
φT log T

T θhd+1
= o(1) and

1

T rhd+r
= o(1)

with φT = log log T and r = min{ρ, 1}. Defining Ih = [C1h, 1−C1h], it then holds

that

sup
u∈Ih,x∈S

∣∣m̂(u, x)−m(u, x)
∣∣ = Op

(√ log T

Thd+1
+

1

T rhd
+ h2

)
. (1.14)

The convergence rate in (1.14) is composed of analogous terms as the rate of

the kernel density estimator in Theorem 1.6. Note however that the additional

nonstationarity bias is of the slightly different order T−rh−d. The reason is as

follows: As already noted, the additional bias component results from replacing

the variables Xt,T by Xt(
t
T

) in the bias expression. Its order partly depends on the

smoothness of the terms that show up in the bias. As will be seen in the proofs,

this accounts for the slightly different order.

1.4.6 Asymptotic Normality

We conclude the asymptotic analysis of the NW estimator in model (1) with a

result on asymptotic normality.

Theorem 1.8. Assume that (C1)–(C6) hold and that (KA1)–(KA2) are fulfilled

for both Wt,T = 1 and Wt,T = εt,T . Let β ≥ 4 and T rhd+2 → ∞ with r =

min{ρ, 1}. Moreover, suppose that f(u, x) > 0 and that σ2( t
T
, x) := E[ε2

t,T |Xt,T =

x] is continuous. Finally, let r > d+2
d+5

to ensure that the bandwidth h can be chosen

to satisfy Thd+5 → 0. Then

√
Thd+1

(
m̂(u, x)−m(u, x)

) d−→ N(0, Vu,x).

Here, Vu,x = κd+1
0 σ2(u, x)/f(u, x) with κ0 =

∫
K2(ϕ)dϕ.

The above theorem parallels the asymptotic normality result for the standard

strictly stationary setting. In particular, the variance expression Vu,x is very similar
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to that for the standard case. By requiring that T rhd+2 → ∞, we make sure

that the additional bias term which results from the nonstationarity of the model

variables is asymptotically negligible.

1.5 Locally Stationary Additive Models

In this section, we put some structural constraints on the regression function m in

the model

Yt,T = m
( t
T
,Xt,T

)
+ εt,T with E[εt,T |Xt,T ] = 0.

In particular, we assume that for all rescaled time points u ∈ [0, 1] and all points x

in a compact subset of Rd, say [0, 1]d, the regression function can be split up into

additive components according to

m(u, x) = m0(u) +
d∑
j=1

mj(u, x
j).

This means that for x ∈ [0, 1]d, we have the additive regression model

E[Yt,T |Xt,T = x] = m0

( t
T

)
+

d∑
j=1

mj

( t
T
, xj
)
. (1.15)

To identify the component functions in model (1.15), we introduce the density

function

p(u, x) =
I(x ∈ [0, 1]d)f(u, x)

P(X0(u) ∈ [0, 1]d)

together with the marginals pj(u, x
j) =

∫
p(u, x)dx−j, where as before f(u, ·) is

the density of the strictly stationary process {Xt(u)}. With these definitions at

hand, we can impose the condition that∫
mj(u, x

j)pj(u, x
j)dxj = 0 (1.16)

for all j = 1, . . . , d and all rescaled time points u ∈ [0, 1]d. Note that this normal-

ization of the component functions varies over time in the sense that for each time

point u, we integrate with respect to a different density.

For each rescaled time point u, the additive regression function m(u, ·) = m0(u) +∑d
j=1mj(u, ·) can be characterized as the solution to an L2-projection problem.

To see this, let u be a fixed point in rescaled time and define Gadd(p(u, ·)) to be the

class of functions g : Rd → R that are square integrable with respect to p(u, ·) and



20 1. Locally Stationary Nonparametric Regression

that have an additive structure g(x) = g0 + g1(x1) + . . .+ gd(x
d) for all x ∈ [0, 1]d

with
∫
gj(w

j)pj(u,w
j)dwj = 0 for j = 1, . . . , d. The regression function m(u, ·) at

time point u can (p(u, ·) almost surely) be characterized by the projection equation

m(u, ·) = min
g∈Gadd(p(u,·))

∫ (
m(u,w)− g(w)

)2
p(u,w)dw. (1.17)

Note that m(u, ·) trivially minimizes (1.17) as under the usual smoothness condi-

tions, it belongs itself to Gadd(p(u, ·)).
We now define the smooth backfitting estimate

m̃(u, ·) = m̃0(u) +
d∑
j=1

m̃j(u, ·)

for some fixed u ∈ [0, 1] as the solution to an empirical version of the projection

problem (1.17) with m and p replaced by kernel estimates m̂ and p̂. Choosing m̂ as

a (d+ 1)-dimensional NW estimate and p̂ as a (d+ 1)-dimensional kernel density,

the backfitting estimator m̃(u, ·) of m(u, ·) at time point u is given as

m̃(u, ·) = min
g∈Gadd(p̂(u,·))

∫ (
m̂(u,w)− g(w)

)2
p̂(u,w)dw, (1.18)

where the minimization is done under the constraints∫
m̃j(u,w

j)p̂j(u,w
j)dwj = 0 (1.19)

for all j = 1, . . . , d. Note that (1.18) is a d-dimensional projection problem. In

particular, rescaled time does not enter as an additional dimension. The projection

is rather done separately for each time point u ∈ [0, 1]. This means that we fit a

smooth backfitting estimate to the data separately around each time point u.

By differentiation, we can show that the minimizer of (1.18) is characterized by

the system of integral equations

m̃j(u, x
j) = m̂j(u, x

j)−
∑
k 6=j

∫
m̃k(u, x

k)
p̂j,k(u, x

j, xk)

p̂j(u, xj)
dxk − m̃0(u) (1.20)

together with
∫
m̃j(u,w

j)p̂j(u,w
j)dwj = 0 for j = 1 . . . , d. Here, p̂j and p̂j,k are

kernel density estimates given by

p̂j(u, x
j) =

1

T[0,1]d

T∑
t=1

I(Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

)
Kh(x

j, Xj
t,T ) (1.21)
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p̂j,k(u, x
j, xk) =

1

T[0,1]d

T∑
t=1

I(Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

)
×Kh(x

j, Xj
t,T )Kh(x

k, Xk
t,T ). (1.22)

In these formulas,

T[0,1]d =
T∑
t=1

Kh

(
u,

t

T

)
I(Xt,T ∈ [0, 1]d)

is the number of observations in the unit cube [0, 1]d, where only time points close

to u are taken into account, and

Kh(v, w) =
Kh(v − w)∫ 1

0
Kh(s− w)ds

is a modified kernel weight. These weights have the property that
∫ 1

0
Kh(v, w)dv =

1 for all v, which is needed to derive the asymptotic properties of the smooth

backfitting estimators. Moreover, m̂j is a Nadaraya-Watson smoother defined as

m̂j(u, x
j) =

1

T[0,1]d

T∑
t=1

I(Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

)
×Kh(x

j, Xj
t,T )Yt,T

/
p̂j(u, x

j) (1.23)

and the estimate m̃0(u) of the model constant at time point u is given by

m̃0(u) =
1

T[0,1]d

T∑
t=1

I(Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

)
Yt,T . (1.24)

We now summarize the assumptions needed to derive the asymptotic properties of

the smooth backfitting estimates. First of all, the conditions of Section 1.4 must

be satisfied for the kernel estimates (1.21)–(1.24). This is ensured by the following

assumption.

(Add1) (C1)–(C6) are fulfilled together with (KA1)–(KA2) for Wt,T = 1 and

Wt,T = εt,T . The parameters β and θ are such that

β > max
{

4,
2 + 3s

s− 2

}
and θ = min

{β − 4

β
,
β(1− 2

s
)− 2

s
− 3

β + 1

}
and infu∈[0,1],x∈[0,1]d f(u, x) > 0.
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In addition, we need some restrictions on the admissible bandwidth. For conve-

nience, we stipulate somewhat stronger conditions than in Section 1.4 to get rid

of the additional nonstationarity bias from the very beginning.

(Add2) Let φT = log log T and r = min{ρ, 1} with ρ given in (C1). The bandwidth

h satisfies Th5 →∞. Moreover,

φT log T

T θh2
= o(1) together with T rh3 →∞ and T

r
r+1h2 →∞.

The condition φT log T
T θh2 = o(1) is already known from Section 1.4. The latter two

restrictions ensure that T−
r
r+1 = o(h2) and T−rh−1 = o(h2). As will be seen in

Appendix C, this implies that the additional nonstationarity bias is of smaller

order than O(h2) and can thus be asymptotically neglected.

Under these assumptions, we can establish the following asymptotic results.

Firstly, the smooth backfitting estimates uniformly converge to the true

component functions at the two-dimensional rates no matter how large the

dimension d of the full regression function.

Theorem 1.9. Under (Add1) and (Add2), it holds that

sup
u,xj∈Ih

∣∣m̃j(u, x
j)−mj(u, x

j)
∣∣ = Op

(√ log T

Th2
+ h2

)
(1.25)

with Ih = [2C1h, 1− 2C1h].

Secondly, the estimates are asymptotically normal if rescaled appropriately.

Theorem 1.10. Suppose that (Add1) and (Add2) hold. In addition, let θ > 1
3

and

r > 1
2
, which allows us to choose the bandwidth h such that T[0,1]dh

6 → 0. Then

for any u, x1, . . . , xd ∈ (0, 1),

√
T[0,1]dh2

 m̃1(u, x1)−m1(u, x1)
...

m̃d(u, x
d)−md(u, x

d)

 d−→ N(0, Vu,x),

where Vu,x = diag(v1(u, x1), . . . , vd(u, x
d)) is a diagonal matrix with entries

vj(u, x
j) = κ2

0σ
2
j (u, x

j)/pj(u, x
j) and κ0 =

∫
K2(ϕ)dϕ.

The proof of Theorems 1.9 and 1.10 can be found in Appendix C.
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1.6 Application

To illustrate our estimation theory, we apply it to a sample of NASDAQ Composite

index data from the beginning of 2000 to the middle of 2011. For each day, our

sample contains the return and the so-called high-low range. The latter is defined

as the difference between the highest and lowest logarithmic price of a day. The

range is a measure of daily volatility and has a long history in finance. It has been

employed for example in the studies of Rogers & Satchell [38], Yang & Zhang [41],

Alizadeh et al. [1], and Martens & van Dijk [31].
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Figure 1.1: High-low range and returns of the NASDAQ Composite series.

In what follows, yt,T denotes the logarithm of the high-low range and rt,T is the

daily return. With this notation, we define the model

yt,T = m0

( t
T

)
+m1

( t
T
, yt−1,T

)
+m2

( t
T
, rt−1,T

)
+ εt,T , (1.26)

where E[εt,T |yt−1,T , rt−1,T ] = 0 and the functions m1 and m2 are normalized ac-

cording to (1.16). Here, volatility is treated as an observed variable. We thus

neglect the fact that the range only approximates the underlying true volatility.

(1.26) can be regarded as a localized version of the model studied in Wu & Xiao

[40].1 It is very similar in structure to the volatility equation of a time-varying

EGARCH(1,1) model. Clearly the conditional volatility in an EGARCH model is

not identical with the daily range. However, following the argumentation in Wu &

Xiao [40], if there is a relationship between daily range and conditional volatility,

then the nonparametric fits of m1 and m2 may help in appropriately specifying

the parametric form of time-varying EGARCH models.

1Wu & Xiao consider a model in which the component functions m1 and m2 do not depend on

time and the first component m1 is restricted to be linear. Moreover, implied volatility instead

of the range is used as a daily volatility measure.



24 1. Locally Stationary Nonparametric Regression

We fit model (1.26) locally around three different time points in our sample, choos-

ing the bandwidth in time direction to span approximately one year and a half.

As a result, we estimate the model for three different time periods, each spanning

roughly three years. We include the period from 03/2000 to 03/2003 which cor-

responds to the aftermath of the technology bubble and the events of 9/11, the

period from 11/2007 to 11/2010 which spans a great deal of the recent financial

crisis, and an intermediate non-crisis period from 11/2003 to 11/2006.

The estimation results are shown in Figure 1.2. The solid, dashed and dotted lines

are the nonparametric fits for the three different periods and the grey shaded areas

are 95% pointwise confidence bands. The fits are normalized according to (1.19).
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Figure 1.2: Estimation results for the additive model (1.26).

We have made several robustness checks. The first one concerns the choice of band-

widths. The bandwidth in time direction is handpicked rather than automatically

selected. Given this, the bandwidths with respect to the two covariates are selected

via a mean-squared error criterion. To check whether the estimation results are

robust against different choices of bandwidth in time direction, we have gradually

reduced the bandwidth to span only one year. This has virtually no effect on the

fits. Moreover, we have smoothly varied the time points around which the model

is estimated. As expected, this results in smooth changes of the nonparametric

fits. In particular, shifting the time points only by a couple of months does not

have major effects on the fits and preserves their qualitative form.

We now have a closer look at the estimation results in Figure 1.2.

• The estimates of m1 are fairly linear. Interestingly, the fit for the financial

crisis period (and presumably also the one for the period from 2000 to 2003)

is much steeper than that for the intermediate non-crisis period from 2003 to
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2006. This suggests that in more tense economic situations or crisis periods,

today’s volatility reacts more strongly to changes in yesterday’s volatility. Put

differently, the market is more sensitive to changes in volatility.

• The m2-component is the news impact curve of the model. It captures how

return shocks influence volatility. The estimates suggest that the overall form

of the news impact curve is rather robust over time. Moreover, one can clearly

see the asymmetric form of the curve which has been reported in numerous

other studies before.

In the next step of our empirical analysis, we use the nonparametric fits of (1.26)

as a guideline to set up a parametric model. We choose a specification with a linear

m1-component and a quadratic m2-component that is flexible enough to allow for

asymmetries. The model is given by

yt,T = m0,par

( t
T

)
+m1,par

( t
T
, yt−1,T

)
+m2,par

( t
T
, rt−1,T

)
+ εt,T (1.27)

with

m1,par

( t
T
, yt−1,T

)
= a1

( t
T

)
yt−1,T

m2,par

( t
T
, rt−1,T

)
= a2

( t
T

)
r2
t−1,T I(rt−1,T < 0) + a3

( t
T

)
r2
t−1,T I(rt−1,T ≥ 0),

where a1, a2 and a3 are time-varying parameters. We estimate (1.27) locally around

the same time points as the additive model (1.26) using the same bandwidth in time

direction. The estimation is done by minimizing a least-squares criterion localized

in time. Rather than reporting the estimates of the time-varying parameters in a

table, we plot the fits of m1,par and m2,par in Figure 1.3.
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Figure 1.3: Estimation results for the parametric model (1.27).
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The fits of m1,par give a very similar picture as their nonparametric counterparts.

The estimates of m2,par, however, do not. In particular, they suggest that the news

impact curve in the intermediate non-crisis period from 2003 to 2006 substantially

differs from the curves in the two crisis periods. Figure 1.4 makes visible the

differences between the parametric and nonparametric fits of the news impact

curve.
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Figure 1.4: Comparison of the parametric functionm2,par (dashed) and its nonparametric

counterpart m2 (solid).

As can be seen from Figure 1.4, the parametric estimates roughly capture the

overall form of their nonparametric counterparts. However, they are not flexible

enough to reproduce all important characteristics. In particular, the parametric

estimate for the intermediate non-crisis period strongly exaggerates the slightly

concave form of the corresponding nonparametric fit. This gives the impression

that the news impact curve in the non-crisis period drastically differs from that in

the two crisis periods.

The above considerations make visible an important shortcoming of the parametric

analysis: If the parametric model is not flexible enough, then the fits may spuri-

ously generate time-varying effects. Thus, the news impact curve may after all be

much more robust over time than suggested by many parametric specifications.

1.7 Concluding Remarks

We have studied nonparametric regression models which are a natural extension of

parametric time series models with time-varying coefficients. In these models, the

regression function is allowed to vary smoothly over time and the model variables

are locally stationary. We have developed a complete asymptotic theory for this

framework. Moreover, we have shown that the main assumptions of the theory are
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satisfied for a large class of nonlinear autoregressive processes with time-varying

regression function. Finally, we have introduced structured models where the

regression function splits up into time-varying additive components. Importantly,

estimation in these models does not suffer from the curse of dimensionality. This

makes additive models a flexible option in many applications in which the fully

nonparametric model is infeasible.

Appendix A

In this appendix, we prove the results on the tvNAR process from Section 1.3.

Throughout the appendix, we use the symbol C to denote a universal real constant

which may take a different value on each occurrence.

Preliminaries

Before we come to the proofs of the theorems, we state some auxiliary results

needed for the arguments later on.

Linearization of the functions m and σ

Consider the function m. By the mean value theorem, it holds that

m(u, x)−m(u, x′) =
d∑
j=1

∆m
j (u, x, x′)(x′j − xj)

with

∆m
j (u, x, x′) =

∫ 1

0

∂jm(u, x+ s(x′ − x))ds.

This allows us to write∣∣∣m( t
T
,X t−d

t−1,T

)
−m

(
u,X t−d

t−1 (u)
)∣∣∣

≤ L
∣∣∣ t
T
− u
∣∣∣+
∣∣m(u,X t−d

t−1,T

)
−m

(
u,X t−d

t−1 (u)
)∣∣

≤ L
∣∣∣ t
T
− u
∣∣∣+

d∑
j=1

∣∣∆m
j (u,X t−d

t−1 (u), X t−d
t−1,T )

∣∣∣∣Xt−j,T −Xt−j(u)
∣∣. (1.28)

The term ∆m
j (u,X t−d

t−1 (u), X t−d
t−1,T ) has the property that

∣∣∆m
j (u,X t−d

t−1 (u), X t−d
t−1,T )

∣∣ ≤
∆ for ‖εt−dt−1‖∞ ≤ K2

δ for ‖εt−dt−1‖∞ > K2

(1.29)
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with K2 = (K1 + M)/Σ and ∆ ≥ supu,x |∂jm(u, x)|. This can be seen as follows:

Using the abbreviations mu,k = m(u,X t−k−d
t−k−1 (u)) and mt,T,k = m( t−k

T
, X t−k−d

t−k−1,T )

together with σu,k = σ(u,X t−k−d
t−k−1 (u)) and σt,T,k = σ( t−k

T
, X t−k−d

t−k−1,T ), we obtain

‖X t−d
t−1 (u) + s(X t−d

t−1,T −X
t−d
t−1 (u))‖∞

= max
k=1,...,d

|Xt−k(u) + s(Xt−k,T −Xt−k(u))|

= max
k=1,...,d

|mu,k + s(mt,T,k −mu,k) + εt−k(σu,k + s(σt,T,k − σu,k))|

≥ max
k=1,...,d

Σ|εt−k| −M, (1.30)

as |mu,k + s(mt,T,k − mu,k)| ≤ M and |σu,k + s(σt,T,k − σu,k)| ≥ Σ > 0. Now as-

sume that ‖εt−dt−1‖∞ > K2. In this case, (1.30) implies that ‖X t−d
t−1 (u) + s(X t−d

t−1,T −
X t−d
t−1 (u))‖∞ > K1 for all s ∈ [0, 1]. Hence, the region over which the integral in

∆m
j (u,X t−d

t−1 (u), X t−d
t−1,T ) runs completely lies outside the area [−K1, K1]d. There-

fore, the integrand ∂jm is always smaller than δ in absolute value, which imme-

diately implies that |∆m
j (u,X t−d

t−1 (u), X t−d
t−1,T )| ≤ δ. Now let ‖εt−dt−1‖∞ ≤ K2. As

supu,x |∂jm(u, x)| ≤ ∆ <∞, the term |∆m
j (u,X t−d

t−1 (u), X t−d
t−1,T )| is always bounded

by ∆, in particular for ‖εt−dt−1‖∞ ≤ K2.

From (1.29), it immediately follows that ∆m
j (u,X t−d

t−1 (u), X t−d
t−1,T ) is absolutely

bounded by

∆(εt−dt−1) := ∆I(‖εt−dt−1‖∞ ≤ K2) + δI(‖εt−dt−1‖∞ > K2). (1.31)

As will turn out later on, this bound is particularly useful, as its stochastic be-

haviour is solely determined by the vector of residuals (εt−1, . . . , εt−d).

Finally, using analogous arguments for the function σ, we arrive at

σ(u, x)− σ(u, x′) =
d∑
j=1

∆σ
j (u, x, x′)(x′j − xj)

with ∆σ
j (u, x, x′) =

∫ 1

0
∂jσ(u, x + s(x′ − x))ds. As before, we can bound the term

|∆σ
j (u,X t−d

t−1 (u), X t−d
t−1,T )| by ∆(εt−dt−1).

Recursive formulas for Xt,T and Xt(u)

For the proof of Theorem 1.4, we rewrite Xt,T in a recursive fashion: Letting

xt−k2
t−k1

and et−k2
t−k1

be values of X t−k2
t−k1

and εt−k2
t−k1

, respectively, we recursively define the
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functions m
(i)
t,T and σ

(i)
t,T by

m
(0)
t,T

(
xt−dt−1

)
= m

( t
T
, xt−dt−1

)
σ

(0)
t,T

(
xt−dt−1

)
= σ

( t
T
, xt−dt−1

)
and for i ≥ 1 by

m
(i+1)
t,T

(
et−i−1
t−1 , xt−i−1−d

t−i−2

)
= m

(i)
t,T

(
et−it−1,m

(0)
t−i−1,T (xt−i−1−d

t−i−2 )

+ σ
(0)
t−i−1,T (xt−i−1−d

t−i−2 )et−i−1, x
t−i−d
t−i−2

)
σ

(i+1)
t,T

(
et−i−1
t−1 , xt−i−1−d

t−i−2

)
= σ

(i)
t,T

(
et−it−1,m

(0)
t−i−1,T (xt−i−1−d

t−i−2 )

+ σ
(0)
t−i−1,T (xt−i−1−d

t−i−2 )et−i−1, x
t−i−d
t−i−2

)
.

With this definition, we can represent Xt,T as

Xt,T = m
(i)
t,T

(
εt−it−1, X

t−i−d
t−i−1,T

)
+ σ

(i)
t,T

(
εt−it−1, X

t−i−d
t−i−1,T

)
εt.

Moreover, for i ≥ d we can write

m
(i)
t,T

(
et−it−1, x

t−i−d
t−i−1

)
= m

( t
T
,m

(i−1)
t−1,T (et−it−2, x

t−i−d
t−i−1) + σ

(i−1)
t−1,T (et−it−2, x

t−i−d
t−i−1)et−1, . . .

. . . ,m
(i−d)
t−d,T (et−it−d−1, x

t−i−d
t−i−1) + σ

(i−d)
t−d,T (et−it−d−1, x

t−i−d
t−i−1)et−d

)
σ

(i)
t,T

(
et−it−1, x

t−i−d
t−i−1

)
= σ

( t
T
,m

(i−1)
t−1,T (et−it−2, x

t−i−d
t−i−1) + σ

(i−1)
t−1,T (et−it−2, x

t−i−d
t−i−1)et−1, . . .

. . . ,m
(i−d)
t−d,T (et−it−d−1, x

t−i−d
t−i−1) + σ

(i−d)
t−d,T (et−it−d−1, x

t−i−d
t−i−1)et−d

)
.

Formulas for conditional densities

Throughout the appendix, the symbol fV |W is used to denote the density of V

conditional on W . In particular, fXt,T |Xt−r+1
t−1,T ,ε

−s
t−r,X

−s−d
−s−1,T

is the density of Xt,T con-

ditional on the variables X t−r+1
t−1,T , ε−st−r, and X−s−d−s−1,T with 1 ≤ r ≤ d and s > 0. If

the residuals εt have a density fε, then it can be shown that

fXt,T |Xt−r+1
t−1,T ,ε

−s
t−r,X

−s−d
−s−1,T

(xt|xt−r+1
t−1 , e−st−r, w) =

1

σt,T
fε

(xt −mt,T

σt,T

)
(1.32)
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with xt, x
t−r+1
t−1 , e−st−r, and w being values of Xt,T , X t−r+1

t−1,T , ε−st−r, and X−s−d−s−1,T ,

respectively, and

mt,T = m
( t
T
, xt−r+1

t−1 ,m
(t−r+s)
t−r,T (e−st−r−1, w) + σ

(t−r+s)
t−r,T (e−st−r−1, w)et−r, . . .

. . . ,m
(t−d+s)
t−d,T (e−st−d−1, w) + σ

(t−d+s)
t−d,T (e−st−d−1, w)et−d

)
σt,T = σ

( t
T
, xt−r+1

t−1 ,m
(t−r+s)
t−r,T (e−st−r−1, w) + σ

(t−r+s)
t−r,T (e−st−r−1, w)et−r, . . .

. . . ,m
(t−d+s)
t−d,T (e−st−d−1, w) + σ

(t−d+s)
t−d,T (e−st−d−1, w)et−d

)
.

Comments on assumption (E3)

We now show that (E3) is fulfilled for the class of bounded densities fε whose first

derivative f ′ε is bounded, satisfies
∫
|xf ′ε(x)|dx <∞ and declines monotonically to

zero for values |x| > R for some constant R.

Proof. W.l.o.g. assume that R� D0, D1 and let d1 ≥ 0. We write

I :=

∫ ∞
−∞

∣∣fε([1 + d0]x+ d1)− fε(x)
∣∣dx

=

∫ −(R+d1)

−∞
. . . +

∫ −R
−(R+d1)

. . . +

∫ R

−R
. . . +

∫ ∞
R

. . .

=: I1 + I2 + I3 + I4

and consider the terms I1, . . . , I4 one after the other. First,

I1 =

∫ −(R+d1)

−∞

∣∣f ′ε(x̄)(d0x+ d1)
∣∣dx,

where x̄ is some intermediate point between x and (1 + d0)x + d1. Note that for

all x ∈ (−∞,−(R + d1)), it holds that x̄ ≤ −R and x̄ ≤ x+ d1. Therefore,

I1 ≤
∫ −(R+d1)

−∞
|f ′ε(x+ d1)|(d0|x|+ d1)dx

= d0

∫ −(R+d1)

−∞
|xf ′ε(x+ d1)|dx+ d1

∫ −(R+d1)

−∞
|f ′ε(x+ d1)|dx

with∫ −(R+d1)

−∞
|xf ′ε(x+ d1)|dx ≤

∫ −R
−∞
|(y − d1)f ′ε(y)|dy

≤
∫ −R
−∞
|yf ′ε(y)|dy + d1

∫ −R
−∞
|f ′ε(y)|dy ≤ C(1 + d1)
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and ∫ −(R+d1)

−∞
|f ′ε(x+ d1)|dx ≤

∫ −R
−∞
|f ′ε(y)|dy ≤ C.

From this, it is straightforward to see that I1 ≤ CD0,D1(d0 +d1) with some constant

CD0,D1 only depending on D0 and D1. Analogous arguments yield that I4 ≤
CD0,D1(d0 + d1) as well. Furthermore, it trivially holds that I2 ≤ Cd1 and I3 ≤
CD0,D1(d0 + d1). This completes the proof.

In the proof of Theorem 1.4, we will apply assumption (E3) to the following situa-

tion. Let σ, σ′,m,m′ be constants such that −M ≤ m,m′ ≤M and Σ ≤ σ, σ′ ≤ Σ

and assume w.l.o.g. that σ ≤ σ′. Then∫ ∞
−∞

∣∣∣fε(x+m

σ

)
− fε

(x+m′

σ′

)∣∣∣dx
=

∫ ∞
−∞

∣∣∣fε(σ′
σ
y +

m−m′

σ

)
− fε(y)

∣∣∣dy
=

∫ ∞
−∞

∣∣∣fε([1 +
σ′ − σ
σ

]
y +

m−m′

σ

)
− fε(y)

∣∣∣dy.
We can now apply (E3) with d0 = σ′−σ

σ
and d1 = m−m′

σ
.

Proof of Theorem 1.1

(i) follows by standard arguments to be found for example in Chen & Chen [3]. (ii)

immediately follows with the help of (1.32). For (iii), recall that X t−d
t−1,T = X t−d

t−1 (0)

for t ≤ 1. This allows us to write the density of X t−d
t−1,T as

fXt−d
t−1,T

(x) =

∫
fXt−d

t−1,T |ε
1
t−d−1,X

−d+1
0 (0)(x|e, w)

t−d−1∏
i=1

fε(ei)fX−d+1
0 (0)(w) dedw,

where e = e1
t−d−1 and the conditional density fXt−d

t−1,T |ε
1
t−d−1,X

−d+1
0 (0) can be expressed

in terms of the error density fε with the help of (1.32).

Proof of Theorem 1.2

We use the triangle inequality to get∣∣Xt,T −Xt(u)
∣∣ ≤ ∣∣∣Xt,T −Xt

( t
T

)∣∣∣+
∣∣∣Xt

( t
T

)
−Xt(u)

∣∣∣
and bound the terms |Xt,T − Xt(

t
T

)| and |Xt(
t
T

) − Xt(u)| separately. In what

follows, we give a detailed exposition for the term |Xt(
t
T

)−Xt(u)|. The arguments
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for |Xt,T −Xt(
t
T

)| are very similar and shortly summarized at the end of the proof.

To keep notation simple, we use the shorthandsX t,T = X t−d+1
t,T , X t(u) = X t−d+1

t (u)

and εt = εt−d+1
t . We proceed in several steps.

Backward Iteration

Using the smoothness conditions on m and σ, we can write∣∣∣Xt

( t
T

)
−Xt(u)

∣∣∣ ≤ C
∣∣∣ t
T
− u
∣∣∣(1 + |εt|

)
+

d∑
j=1

(
∆m
j + ∆σ

j |εt|
)∣∣∣Xt−j

( t
T

)
−Xt−j(u)

∣∣∣ (1.33)

with ∆m
j = |∆m

j (u,X t−1(u), X t−1( t
T

))| and ∆σ
j = |∆σ

j (u,X t−1(u), X t−1( t
T

))| as

introduced in (1.28). Iterating (1.33) yields∣∣∣Xt

( t
T

)
−Xt(u)

∣∣∣ ≤ ∣∣∣ t
T
− u
∣∣∣Vt,T,n(u) +Rt,T,n(u)

with

Vt,T,n(u) = C
n−1∑
r=0

d∑
j1,...,jr=1

r∏
l=1

(
∆m
jl

+ ∆σ
jl
|εt−∑l−1

k=0 jk
|
)(

1 + |εt−∑r
k=0 jk
|
)

Rt,T,n(u) =
d∑

j1,...,jn=1

n∏
l=1

(
∆m
jl

+ ∆σ
jl
|εt−∑l−1

k=0 jk
|
)∣∣∣Xt−

∑n
k=0 jk

( t
T

)
−Xt−

∑n
k=0 jk

(u)
∣∣∣,

where j0 = 0, ∆m
jl

= |∆m
jl

(u,X t−
∑l−1
k=0 jk−1(u), X t−

∑l−1
k=0 jk−1( t

T
))| and ∆σ

jl
is defined

analogously. In what follows, we show that

(R) Rt,T,n(u)
a.s.−→ 0 as n→∞

(V) Vt,T,n(u) ≤ Vt,T (u) with E[Vt,T (u)ρ] ≤ C for some ρ > 0.

These two claims imply that∣∣∣Xt

( t
T

)
−Xt(u)

∣∣∣ ≤ ∣∣∣ t
T
− u
∣∣∣Vt,T (u) a.s.

with variables Vt,T (u) whose ρ-th moment is uniformly bounded by some constant

C. Deriving an analogous result for the term |Xt,T −Xt(
t
T

)| completes the proof.

Proof of (R)

Define ∆jl := ∆(εt−∑l−1
k=0 jk−1) with ∆(εt−s) = ∆I(‖εt−s‖∞ ≤ K2) + δI(‖εt−s‖∞ >

K2) as introduced in (1.31). As shown in the preliminaries section of the appendix,
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∆m
jl
≤ ∆jl and analogously ∆σ

jl
≤ ∆jl . Using the boundedness of m and σ, this

allows us to write

Rt,T,n(u) ≤ Rt,n := C

d∑
j1,...,jn=1

n∏
l=1

∆jl

(
1 + |εt−∑l−1

k=0 jk
|
)(

1 + |εt−∑n
k=0 jk
|
)
.

If the terms ∆jl were bounded by a sufficiently small constant, then it would be

easy to show that Rt,n is contracting and converges almost surely to zero as n→∞.

In our case, however, the terms ∆jl may become rather large, depending on which

values the variables εt−∑l−1
k=0 jk−1 take. If too many of the terms ∆j1 , . . . ,∆jn are

large, then Rt,n will explode rather than converge to zero.

In what follows, we show that this problematic case is asymptotically negligible

in the sense that it almost surely does not occur. To do so, we exploit the fact

that ∆jl ≤ δ, whenever ‖εt−∑l−1
k=0 jk−1‖∞ > K2. Thus, the problematic case that

too many terms ∆j1 , . . . ,∆jn are large can only arise if ‖εt−∑l−1
k=0 jk−1‖∞ ≤ K2 for

too many indices l = 1, . . . , n.

We now introduce indicator functions which allow us to distinguish formally be-

tween the problematic case with ‖εt−∑l−1
k=0 jk−1‖∞ ≤ K2 for too many indices and

the complementary unproblematic case. This is done as follows: The term Rt,n

depends on the residuals εt−1, . . . , εt−nd. These can be split up into n blocks of d

successive variables, i.e. into random vectors εt−(l−1)d = εt−ldt−(l−1)d−1 for l = 1, . . . , n.

For each block l = 1, . . . , n, we define the indicator functions

Il,≤ = I
(
|εt−(l−1)d−i| ≤ K2 for some i = 1, . . . , d

)
Icl,≤ = I

(
|εt−(l−1)d−i| > K2 for all i = 1, . . . , d

)
,

where evidently Il,≤ + Icl,≤ = 1. Additionally, let nd = dn
d
e and define

In = I
( nd∑
l=1

Il,≤ > κnd

)
and Icn = I

( nd∑
l=1

Icl,≤ ≥ (1− κ)nd

)
,

where κ is a constant with 0 < κ < 1 to be specified later on. Note that again

In + Icn = 1 holds.

The two indicator functions In and Icn allow us to discriminate between the prob-

lematic and the unproblematic case. In particular, In = 1 represents the case in

which ‖εt−∑l−1
k=0 jk−1‖∞ ≤ K2 for too many indices, whereas Icn = 1 indicates the

unproblematic case. More specifically, if Icn = 1, then at least d(1− κ)nde among

the n terms εt−∑l−1
k=0 jk−1 have a supremum norm larger than K2. This can be seen

as follows:
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(1) If Icn equals one, then among the first nd blocks of residuals there are at least

d(1− κ)nde blocks in which all elements are larger than K2 in absolute value.

(2) Regardless of whether Icn equals zero or one, each vector εt−∑l−1
k=1 jk−1 either

coincides with a block of residuals or it covers part of two successive blocks.

Moreover, for any tuple (j1, . . . , jn) of indices, at least nd among the n vectors

εt−
∑l−1
k=1 jk−1 have an element in common with one of the first nd blocks of

residuals. These vectors can be chosen such that a different block corresponds

to each vector.

(3) Combining (1) and (2) yields that for any tuple (j1, . . . , jn) of indices, there

are at least d(1−κ)nde among the n terms εt−∑l−1
k=1 jk−1 that have a supremum

norm larger than K2 if Icn = 1. Hence, at least d(1 − κ)nde terms among

∆j1 , . . . ,∆jn are bounded by δ if Icn = 1.

We now use the indicators In and Icn to decompose the variables Rt,n into two

parts:

Rt,n = CIn

d∑
j1,...,jn=1

n∏
l=1

∆jl

(
1 + |εt−∑l−1

k=0 jk
|
)(

1 + |εt−∑n
k=0 jk
|
)

+ CIcn

d∑
j1,...,jn=1

n∏
l=1

∆jl

(
1 + |εt−∑l−1

k=0 jk
|
)(

1 + |εt−∑n
k=0 jk
|
)

=: R
(1)
t,n +R

(2)
t,n.

In order to handle the term R
(1)
t,n, we show that

∞∑
n=0

P
(
R

(1)
t,n > φn

)
<∞, (1.34)

where {φn} is any null sequence with φn > 0 for all n. By the Borel-Cantelli

lemma, this implies that R
(1)
t,n

a.s.−→ 0 as n→∞. To prove (1.34), we write

P
(
R

(1)
t,n > φn

)
≤ P

(
In > 0

)
= P

( nd∑
l=1

Il,≤ > κnd

)
= P

( nd∑
l=1

(Il,≤ − E[Il,≤]) > (κ− E[Il,≤])nd

)
= P

( nd∑
l=1

(Il,≤ − E[Il,≤]) > κ0nd

)
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with κ0 := κ − E[Il,≤]. As the variables εt have an everywhere positive density

by assumption, the expectation E[Il,≤] is strictly smaller than one. We can thus

choose 0 < κ < 1 slightly larger than E[Il,≤] to get that 0 < κ0 < 1. As the

variables Il,≤ − E[Il,≤] are independent for l = 1, . . . , n, we can apply Hoeffding’s

inequality to get

P
( nd∑
l=1

(Il,≤ − E[Il,≤]) > κ0nd

)
≤ 2 exp

(
− κ2

0nd
2

)
.

Putting everything together, we obtain

P
(
R

(1)
t,n > φn

)
≤ 2 exp

(
− κ2

0nd
2

)
≤ Cγn (1.35)

with some constant γ < 1. This shows (1.34).

The term R
(2)
t,n is easier to handle. It is unequal to zero only if Icn = 1. Recalling

(1)–(3) from above, we thus have the following: Whenever R
(2)
t,n 6= 0, for any tuple

(j1, . . . , jn) at least d(1−κ)nde of the n terms ∆j1 , . . . ,∆jn are bounded by δ. Note

that there are
(

n
d(1−κ)nde

)
possibilities to pick d(1−κ)nde out of n terms. Moreover,

by Stirling’s formula, it holds that(
n

d(1− κ)nde

)
≤
(
n

n/2

)
≤ 2n.

These considerations yield that

E[R
(2)
t,n] = C

d∑
j1,...,jn=1

E
[
Icn

d∑
j1,...,jn=1

n∏
l=1

∆jl

(
1 + |εt−∑l−1

k=0 jk
|
)(

1 + |εt−∑n
k=0 jk
|
)]

≤ C

d∑
j1,...,jn=1

2n
(
δ(1 + E|ε0|)

)d(1−κ)nde(∆(1 + E|ε0|)
)n−d(1−κ)nde

≤ C
[
2d δ

1−κ
d ∆1− 1−κ

d (1 + E|ε0|)
]n ≤ γn, (1.36)

where the constant γ can be chosen strictly smaller than one if

δ <
(

2d∆1− 1−κ
d (1 + E|ε0|)

)− d
1−κ

. (1.37)

Choosing φn = n−p with some p > 0, this implies that

P(R
(2)
t,n > φn) ≤

E[R
(2)
t,n]

φn
≤ npγn
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with some constant γ < 1. Thus,
∑∞

n=1 P(R
(2)
t,n > φn) <∞ and the Borel Cantelli

lemma yields R
(2)
t,n

a.s.−→ 0 as n→∞. This completes the proof of (R).

Note that under our assumptions, an even stronger result than (R) holds. In

particular, there exists ρ > 0 with

E[(Rt,T,n(u))ρ] ≤ Cγn (1.38)

for some fixed γ < 1 and C < ∞. We show (1.38) for some 0 < ρ < 1. For the

proof, we again use the bound Rt,T,n(u) ≤ Rt,n and show that E[(Rt,n)ρ] ≤ Cγn.

In (1.36), we have already seen that E[R
(2)
t,n] ≤ Cγn with γ < 1. It thus remains to

show that E[(R
(1)
t,n)ρ] ≤ Cγn for some 0 < ρ < 1. Letting φn = (dδ)n, we can write

E[(R
(1)
t,n)ρ] = E

[
(R

(1)
t,n)ρI(R

(1)
t,n < φn)

]
+ E

[
(R

(1)
t,n)ρI(R

(1)
t,n ≥ φn)

]
.

First note that E
[
(R

(1)
t,n)ρI(R

(1)
t,n < φn)

]
= 0, as R

(1)
t,n can become strictly smaller

than φn only if In = 0. Furthermore, applying the Cauchy-Schwarz inequality

together with (1.35) yields

E
[
(R

(1)
t,n)ρI(R

(1)
t,n ≥ φn)

]
≤ C

(
d∆(1 + E|ε0|)

)ρn√P(R
(1)
t,n ≥ φn)

≤ C
(
d∆(1 + E|ε0|)

)ρn√
Cγn ≤ Cγ̃n

with some constant γ̃ < 1 if ρ > 0 is chosen sufficiently small. This shows (1.38).

Proof of (V)

We next turn to the variables Vt,T,n(u). First note that Vt,T,n(u) ≤ Vt,T (u) with

Vt,T (u) = C

∞∑
r=0

d∑
j1,...,jr=1

r∏
l=1

(
∆m
jl

+ ∆σ
jl
|εt−∑l−1

k=0 jk
|
)(

1 + |εt−∑r
k=0 jk
|
)
.

Similar to before, we have that Vt,T (u) ≤ Vt with

Vt = C

∞∑
r=0

d∑
j1,...,jr=1

r∏
l=1

∆jl

(
1 + |εt−∑l−1

k=0 jk
|
)(

1 + |εt−∑r
k=0 jk
|
)

=
∞∑
r=0

Rt,r.

Letting ρ < 1 and using the fact that E[(Rt,r)
ρ] ≤ Cγr, we obtain that

E[V ρ
t ] ≤

∞∑
r=0

E[(Rt,n)ρ] ≤ C

∞∑
r=0

γr <∞.

As a result, E[V ρ
t,T (u)] ≤ E[V ρ

t ] < C.
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Outline of the arguments for |Xt,T −Xt(
t
T

)|

Similary to before, we can derive the expansion∣∣∣Xt,T −Xt

( t
T

)∣∣∣ ≤ C

T
Wt,T,n +Rt,T,n

with

Wt,T,n =
n−1∑
r=1

d∑
j1,...,jr=1

[ r∑
l=1

jl

r∏
l=1

(
∆m
jl

+ ∆σ
jl
|εt−∑l−1

k=0 jk
|
)](

1 + |εt−∑r
k=0 jk
|
)

Rt,T,n =
d∑

j1,...,jn=1

n∏
l=1

(
∆m
jl

+ ∆σ
jl
|εt−∑l−1

k=0 jk
|
)∣∣∣Xt−

∑n
k=1 jk,T

−Xt−
∑n
k=1 jk

( t
T

)∣∣∣,
where now ∆m

jl
= ∆m

jl
( t
T
, X t−

∑l−1
k=0 jk−1( t

T
), X t−

∑l−1
k=0 jk−1,T ) and ∆σ

jl
is defined anal-

ogously. By the same arguments as above, we can show that∣∣∣Xt,T −Xt

( t
T

)∣∣∣ ≤ C

T
Wt,T a.s.

with variables

Wt,T =
∞∑
r=1

d∑
j1,...,jr=1

[ r∑
l=1

jl

r∏
l=1

(
∆m
jl

+ ∆σ
jl
|εt−∑l−1

k=0 jk
|
)](

1 + |εt−∑r
k=0 jk
|
)
,

whose ρ-th moments are uniformly bounded for some ρ > 0.

Proof of Theorem 1.3

Throughout the proof, we use the following notation: xj and yj are values of

the variables Xt−j(u) and Xt−d−j(u) for j = 1, . . . , d. Moreover, we write x =

(x1, . . . , xd) together with y = (y1, . . . , yd) and define

Fu : distribution function of X t−2d
t−d−1(u)

Fu,v : joint distribution function of X t−2d
t−d−1(u) and X t−2d

t−d−1(v)

fu(x) : density of X t−d
t−1 (u) at x

fu(x|y) : density of X t−d
t−1 (u) at x conditional on X t−2d

t−d−1(u) = y.

In addition, we let fu,j = fu(xj|xj+1, . . . , xd, y1, . . . , yj) denote the conditional

density of Xt−j(u) given X t−j−d
t−j−1 (u). Note that

fu(x|y) =
d∏
j=1

fu(xj|xj+1, . . . , xd, y1, . . . , yj).
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Moreover, the conditional densities fu,j can be expressed in terms of the error

density according to

fu,j =
1

σu,j
fε

(xj −mu,j

σu,j

)
, (1.39)

where we have used the shorthands mu,j = m(u, (xj+1, . . . , xd, y1, . . . , yj)) and

σu,j = σ(u, (xj+1, . . . , xd, y1, . . . , yj)).

With this notation at hand, we can now analyze the term |fu(x) − fv(x)|. Let-

ting z = (z1, . . . , zd) be some value taken by the random vector (Xt−d−1(v), . . .

. . . , Xt−2d(v)), it holds that

∣∣fu(x)− fv(x)
∣∣ =

∣∣∣ ∫
Rd
fu(x|y)dFu(y)−

∫
Rd
fv(x|z)dFv(z)

∣∣∣
=
∣∣∣ ∫

R2d

[
fu(x|y)− fv(x|z)

]
dFu,v(y, z)

∣∣∣
=
∣∣∣ ∫

R2d

[ d∑
k=1

k−1∏
j=1

fv,j
[
fu,k − fv,k

] d∏
j=k+1

fu,j

]
dFu,v(y, z)

∣∣∣
≤

d∑
k=1

∫
R2d

∣∣fu,k − fv,k∣∣dFu,v(y, z) =:
d∑

k=1

Qk
u,v(x),

where the third line is by a telescoping argument and the fourth line follows from

the boundedness of fε. Furthermore, using the boundedness of m, σ, and fε yields

Qk
u,v(x) =

∫
R2d

∣∣∣ 1

σu,k
fε

(xk −mu,k

σu,k

)
− 1

σv,k
fε

(xk −mv,k

σv,k

)∣∣∣dFu,v(y, z)
≤ C

∫
R2d

∣∣∣fε(xk −mu,k

σu,k

)
− fε

(xk −mv,k

σv,k

)∣∣∣dFu,v(y, z)
+ C

∫
R2d

∣∣σu,k − σv,k∣∣dFu,v(y, z)
=: Qk,1

u,v(x) +Qk,2
u,v(x).

Exploiting the Lipschitz continuity of fε together with the smoothness conditions

on m and σ, we obtain

Qk,1
u,v(x) ≤ C(1 + |xk|)

∫ (
|u− v|+ |y1 − z1|+ . . .+ |yk − zk|

)
dFu,v(y, z)

= C(1 + |xk|)
(
|u− v|+

k∑
j=1

E
∣∣Xt−d−j(u)−Xt−d−j(v)

∣∣)
and analogously
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Qk,2
u,v(x) ≤ C

(
|u− v|+

k∑
j=1

E
∣∣Xt−d−j(u)−Xt−d−j(v)

∣∣).
As an intermediate result, we have thus shown that

∣∣fu(x)− fv(x)
∣∣ ≤ C(1 + ‖x‖1)

(
|u− v|+ E

∣∣Xt(u)−Xt(v)
∣∣), (1.40)

where C < ∞ is some sufficiently large constant and ‖ · ‖1 denotes the usual

l1-norm for Rd-valued vectors.

In the remainder of the proof, we derive a bound for the expression E|Xt(u) −
Xt(v)|. As shown in the proof of Theorem 1.2,

∣∣Xt(u)−Xt(v)
∣∣ ≤ |u− v|Ut(u, v)

with random variables Ut(u, v) having the property that E[Ut(u, v)ρ] < C for some

ρ > 0. Letting q be a constant with 0 < q < ρ, we arrive at

E
∣∣Xt(u)−Xt(v)

∣∣ = E
[∣∣Xt(u)−Xt(v)

∣∣I(Ut(u, v) ≤ C

|u− v|q
)]

+ E
[∣∣Xt(u)−Xt(v)

∣∣I(Ut(u, v) >
C

|u− v|q
)]

=: E1(u, v) + E2(u, v)

with

E1(u, v) ≤ |u− v| E
[
Ut(u, v)I

(
Ut(u, v) ≤ C

|u− v|q
)]
≤ C|u− v|1−q. (1.41)

Moreover, since |Xt(u)−Xt(v)| ≤ C(1 + |εt|) and

E
[
I
(
Ut(u, v) >

C

|u− v|q
)]
≤ E

[( Ut(u, v)

C|u− v|−q
)ρ
I
(
Ut(u, v) >

C

|u− v|q
)]

≤ C|u− v|qρ,

we can apply Hölder’s inequality to get

E2(u, v) ≤ C|u− v|r (1.42)

for some r > 0. Plugging (1.41) and (1.42) into (1.40) completes the proof.
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Proof of Theorem 1.4

To start with, note that the process {Xt,T} is d-Markovian. This implies that

β(k) = sup
T∈Z

sup
t∈Z

β
(
σ(X t−k−d+1

t−k,T ), σ(X t
t+d−1,T )

)
with

β
(
σ(X t−k−d+1

t−k,T ), σ(X t
t+d−1,T )

)
= E sup

C∈σ(Xt
t+d−1,T )

∣∣P(C)− P(C|σ(X t−k−d+1
t−k,T )

∣∣.
In the following, we bound the expression |P(C)−P(C|σ(X t−k−d+1

t−k,T )| for arbitrary

sets C ∈ σ(X t
t+d−1,T ). As will be seen, this provides us with a bound for the mixing

coefficients β(k) of the process {Xt,T}.
We use the following notation: Throughout the proof, we let xt+j, x

t
t+j−1, e, and

z be values of Xt+j,T , X t
t+j−1,T , εt−k+1

t−1 and X t−k−d+1
t−k,T , respectively. Moreover, we

use the shorthand

f cond
Xt+j,T

(z) := fXt+j,T |Xt
t+j−1,T ,ε

t−k+1
t−1 ,Xt−k−d+1

t−k,T
(xt+j|xtt+j−1, e, z).

Finally, note that by (1.32), the above conditional density can be expressed in

terms of the error density fε according to

f cond
Xt+j,T

(z) =
1

σt,T,j(z)
fε

(xt+j −mt,T,j(z)

σt,T,j(z)

)
(1.43)

with

mt,T,j(z) = m
(t+ j

T
, xtt+j−1,m

(k−2)
t−1,T (et−k+1

t−2 , z) + σ
(k−2)
t−1,T (et−k+1

t−2 , z)et−1, . . .

. . . ,m
(k−j+d−1)
t+j−d,T (et−k+1

t+j−d−1, z) + σ
(k−j+d−1)
t+j−d,T (et−k+1

t+j−d−1, z)et+j−d

)
σt,T,j(z) = σ

(t+ j

T
, xtt+j−1,m

(k−2)
t−1,T (et−k+1

t−2 , z) + σ
(k−2)
t−1,T (et−k+1

t−2 , z)et−1, . . .

. . . ,m
(k−j+d−1)
t+j−d,T (et−k+1

t+j−d−1, z) + σ
(k−j+d−1)
t+j−d,T (et−k+1

t+j−d−1, z)et+j−d

)
.

The recursively defined functions m
(k−2)
t−1,T , σ

(k−2)
t−1,T , . . . were introduced in the prelim-

inaries section of the appendix. With this notation at hand, we can write

P(C) =

∫
I(x ∈ C)fXt

t+d−1,T
(x)dx

=

∫
I(x ∈ C)fXt

t+d−1,T |ε
t−k+1
t−1 ,Xt−k−d+1

t−k,T
(x|e, z)

k−1∏
l=1

fε(et−l)fXt−k−d+1
t−k,T

(z)dedzdx

=

∫
I(x ∈ C)

d−1∏
j=0

f cond
Xt+j,T

(z)
k−1∏
l=1

fε(et−l)fXt−k−d+1
t−k,T

(z)dedzdx
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and similarly

P(C|σ(X t−k−d+1
t−k,T ))

= E
[
I(X t

t+d−1,T ∈ C)|X t−k−d+1
t−k,T

]
= E

[
E
[
I(X t

t+d−1,T ∈ C)|εt−k+1
t−1 , X t−k−d+1

t−k,T
]∣∣X t−k−d+1

t−k,T

]
=

∫
I(x ∈ C)fXt

t+d−1,T |ε
t−k+1
t−1 ,Xt−k−d+1

t−k,T
(x|e,X t−k−d+1

t−k,T )
k−1∏
l=1

fε(et−l)dedx

=

∫
I(x ∈ C)

d−1∏
j=0

f cond
Xt+j,T

(X t−k−d+1
t−k,T )

k−1∏
l=1

fε(et−l)dedx.

Using the shorthand X = X t−k−d+1
t−k,T , we thus obtain∣∣P(C)− P(C|σ(X))

∣∣
=
∣∣∣ ∫ I(x ∈ C)

[ d−1∏
j=0

f cond
Xt+j,T

(z)−
d−1∏
j=0

f cond
Xt+j,T

(X)
] k−1∏
l=1

fε(et−l)fX(z)dedzdx
∣∣∣

≤
∫ [ ∫ ∣∣∣ d−1∏

j=0

f cond
Xt+j,T

(z)−
d−1∏
j=0

f cond
Xt+j,T

(X)
∣∣∣dx]︸ ︷︷ ︸

=:(∗)

k−1∏
l=1

fε(et−l)fX(z)dedz.

We next consider (∗) more closely. First note that by a telescoping argument

d−1∏
j=0

f cond
Xt+j,T

(z)−
d−1∏
j=0

f cond
Xt+j,T

(X)

=
d−1∑
i=0

i−1∏
j=0

f cond
Xt+j,T

(X)
[
f cond
Xt+i,T

(z)− f cond
Xt+i,T

(X)
] d−1∏
j=i+1

f cond
Xt+j,T

(z).

Using this together with Fubini’s theorem, we obtain that

(∗) ≤
d−1∑
i=0

∫ [ i−1∏
j=0

f cond
Xt+j,T

(X)
∣∣f cond
Xt+i,T

(z)− f cond
Xt+i,T

(X)
∣∣ d−1∏
j=i+1

f cond
Xt+j,T

(z)
]
dx

=
d−1∑
i=0

∫ [ ∫ [ ∫ d−1∏
j=i+1

f cond
Xt+j,T

(z)dxt+d−1 . . . dt+i+1

]
×
∣∣f cond
Xt+i,T

(z)− f cond
Xt+i,T

(X)
∣∣dxt+i] i−1∏

j=0

f cond
Xt+j,T

(X)dxt+i−1 . . . dxt
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≤
d−1∑
i=0

∫ [ ∫ ∣∣f cond
Xt+i,T

(z)− f cond
Xt+i,T

(X)
∣∣dxt+i]︸ ︷︷ ︸

=:(∗∗)

i−1∏
j=0

f cond
Xt+j,T

(X)dxt+i−1 . . . dxt,

(1.44)

where the last inequality uses the fact that
∫ ∏d−1

j=i+1 f
cond
Xt+j,T

(z)dxt+d−1 . . . dt+i+1 is

a conditional probability and thus almost surely bounded by one. Applying (1.43)

together with (E3), it is straightforward to see that

(∗∗) =

∫ ∣∣∣ 1

σt,T,i(z)
fε

(xt+i −mt,T,i(z)

σt,T,i(z)

)
− 1

σt,T,i(X)
fε

(xt+i −mt,T,i(X)

σt,T,i(X)

)∣∣∣dxt+i
≤ C

(∣∣mt,T,i(z)−mt,T,i(X)
∣∣+
∣∣σt,T,i(z)− σt,T,i(X)

∣∣)
≤ C(2M + 2Σ)

(∣∣mt,T,i(z)−mt,T,i(X)
∣∣+
∣∣σt,T,i(z)− σt,T,i(X)

∣∣)p, (1.45)

where p is some constant with 0 < p < 1. Iterating backwards n < bk
d
c times in

the same way as in Theorem 1.2, we can further show that∣∣mt,T,i(z)−mt,T,i(X)
∣∣+
∣∣σt,T,i(z)− σt,T,i(X)

∣∣
≤ C

d−i∑
j1=1

d∑
j2,...,jn=1

n∏
m=1

∆jm(1 + |et−∑m−1
l=1 jl

|)(1 + |et−∑n
l=1 jl
|), (1.46)

where ∆jm = ∆(et−∑m−1
l=1 jl−1) as defined in (1.31). In particular, note that ∆jm

only depends on the residual values et−∑m−1
l=1 jl−1, . . . , et−

∑m−1
l=1 jl−d. Plugging (1.46)

into the bound (1.45) for (∗∗) and inserting this into the bound (1.44) for (∗), we

arrive at

(∗) ≤ C
( d∑
j1,...,jn=1

n∏
m=1

∆jm(1 + |et−∑m−1
l=1 jl

|)(1 + |et−∑n
l=1 jl
|)
)p
.

As a consequence,∣∣P(C)− P(C|σ(X))
∣∣

≤ C

∫ ( d∑
j1,...,jn=1

n∏
m=1

∆jm(1 + |et−∑m−1
l=1 jl

|)(1 + |et−∑n
l=1 jl
|)
)p k−1∏

l=1

fε(et−l)de

= CE
[( d∑

j1,...,jn=1

n∏
m=1

∆jm(1 + |εt−∑m−1
l=1 jl

|)(1 + |εt−∑n
l=1 jl
|)
)p]

.
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Using the arguments from Theorem 1.2, we can show that for p > 0 sufficiently

small,

E
[( d∑

j1,...,jn=1

n∏
m=1

∆jm(1 + |εt−∑m−1
l=1 jl

|)(1 + |εt−∑n
l=1 jl
|)
)ρ]
≤ γn

with some positive constant γ < 1. Choosing n = b k
2d
c for instance, we thus obtain

that ∣∣P(C)− P(C|B)
∣∣ ≤ Cγb

k
2d
c ≤ γ̃k

for some constant γ̃ < 1. This immediately implies that β(k) ≤ γ̃k.

Appendix B

In this appendix, we prove the results of Section 1.4. As in Appendix A, C denotes

a universal real constant which may take a different value on each occurrence.

Auxiliary Results

Before we come to the proofs of the main theorems, we state some auxiliary results

that are needed later on. The first two lemmas describe the asymptotic behaviour

of Riemann sums that frequently show up throughout the appendix. The proofs

are straightforward and thus omitted.

Lemma B1. Suppose the kernel K satisfies (C6) and let Ih = [C1h, 1 − C1h].

Then for k = 0, 1, 2,

sup
u∈Ih

∣∣∣ 1

Th

T∑
t=1

Kh

(
u− t

T

)(u− t
T

h

)k
−
∫ 1

0

1

h
Kh(u− ϕ)

(u− ϕ
h

)k
dϕ
∣∣∣ = O

( 1

Th2

)
.

Lemma B2. Suppose K satisfies (C6) and let g : [0, 1]×Rd → R, (u, x) 7→ g(u, x)

be continuously differentiable w.r.t. u. Then for any compact subset S ⊆ Rd,

sup
u∈Ih,x∈S

∣∣∣ 1

Th

T∑
t=1

Kh

(
u− t

T

)
g
( t
T
, x
)
− g(u, x)

∣∣∣ = O
( 1

Th2

)
+ o(h).

The next lemma is needed for the proof of Theorem 1.5.
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Lemma B3. Assume that (KA1) and (KA2) hold and that the kernel satisfies

(C6). Then for any compact set S ⊆ Rd, there exists a constant Θ = Θ(S) < ∞
such that for T sufficiently large,

Var(ψ̂(u, x)) ≤ Θ

Thd+1

uniformly for u ∈ [0, 1] and x ∈ S.

Proof. Throughout the proof, let u ∈ [0, 1] and x ∈ S. Moreover, define S• =

{x ∈ Rd : ‖x− S‖∞ ≤ C1} with ‖x− S‖∞ := miny∈S ‖x− y‖∞ and write

ψ̂(u, x)− E[ψ̂(u, x)] =
1

Thd+1

T∑
t=1

(
Zt,T (u, x)− E[Zt,T (u, x)]

)
with

Zt,T = Zt,T (u, x) = Kh

(
u− t

T

) d∏
j=1

Kh(x
j −Xj

t,T )Wt,T .

With this notation,

Thd+1Var(ψ̂(u, x)) =
1

Thd+1

T∑
t=1

Var(Zt,T ) +
2

Thd+1

T−1∑
l=1

T−l∑
t=1

Cov(Zt,T , Zt+l,T )

=: V1(u, x) + V2(u, x).

Following the arguments in Hansen [17], we first derive some preliminary bounds

using (KA2):

(∗1) For 1 ≤ r ≤ s,

E[|Wt,T |r|Xt,T = x]fXt,T (x) ≤
(
E[|Wt,T |s|Xt,T = x]

) r
s fXt,T (x)

≤
(
E[|Wt,T |s|Xt,T = x]fXt,T (x)

) r
s fXt,T (x)

s−r
s

≤ B1(S)B0(S).

(∗2) For 1 ≤ r ≤ s,

E[|Zt,T |r] = Kr
h

(
u− t

T

)
E
[ d∏
j=1

Kr
h(x

j −Xj
t,T )E[|Wt,T |r|Xt,T ]

]
= Kr

h

(
u− t

T

)∫
Rd

d∏
j=1

Kr
h(x

j − wj)E[|Wt,T |r|Xt,T = w]fXt,T (w)dw

= hdKr
h

(
u− t

T

)∫
Rd
Kr(ϕ)E[|Wt,T |r|Xt,T = x− hϕ]fXt,T (x− hϕ)︸ ︷︷ ︸

≤B1(S•)B0(S•) by (∗1) for T sufficiently large

dϕ

≤ ChdKr
h

(
u− t

T

)
.
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(∗3) For l ≥ 1,

E[Zt,TZt+l,T ]

= Kh

(
u− t

T

)
Kh

(
u− t+ l

T

)
E
[ d∏
j=1

Kh(x
j −Xj

t,T )
d∏
j=1

Kh(x
j −Xj

t+l,T )

× E
[
|Wt,T ||Wt+l,T |

∣∣Xt,T , Xt+l,T

]]
= Kh

(
u− t

T

)
Kh

(
u− t+ l

T

)∫
Rd

∫
Rd

d∏
j=1

Kh(x
j − vj)

d∏
j=1

Kh(x
j − wj)

× E
[
|Wt,T ||Wt+l,T |

∣∣Xt,T = v,Xt+l,T = w
]
fXt,T ,Xt+l,T (v, w)︸ ︷︷ ︸

≤B2(S•) for T sufficiently large

dvdw

≤ CKh

(
u− t

T

)
Kh

(
u− t+ l

T

)
h2d.

We now bound the covariances Cov(Zt,T , Zt+l,T ): Let τT = d(log T )−1h−de and

distinguish between two cases:

(∗4) Let l ≤ τT . Then by (∗2) and (∗3),∣∣Cov(Zt,T , Zt+l,T )
∣∣ =

∣∣E[(Zt,T − E[Zt,T ])(Zt+l,T − E[Zt+l,T ])
]∣∣

≤ E|Zt,TZt+l,T |+ E|Zt,T |E|Zt+l,T |

≤ CKh

(
u− t

T

)
Kh

(
u− t+ l

T

)
h2d.

(∗5) Let l ≥ τT + 1. Then by Davydov’s inequality and (∗2),∣∣Cov(Zt,T , Zt+l,T )
∣∣ ≤ Cα(l)1− 2

s

(
E|Zt,T |sE|Zt+l,T |s

) 1
s

≤ Cα(l)1− 2
sKh

(
u− t

T

)
Kh

(
u− t+ l

T

)
h

2d
s

≤ Cl−[(2− 2
s

)+δ(1− 2
s

)]Kh

(
u− t

T

)
Kh

(
u− t+ l

T

)
h

2d
s

with some constant δ > 0. The last inequality follows from the assumption

that β > 2s−2
s−2

. This means that there exists δ > 0 with β = 2s−2
s−2

+ δ. Thus,

α(l)1− 2
s ≤ l−β(1− 2

s
) ≤ l−[(2− 2

s
)+δ(1− 2

s
)].

We are now in a position to bound V1 and V2. Using (∗2), we obtain

V1(u, x) ≤ 1

Thd+1

T∑
t=1

E[Z2
t,T ] ≤ C

Th

T∑
t=1

K2
h

(
u− t

T

)
≤ C
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uniformly in u and x. Further, applying (∗4) and (∗5) yields

V2(u, x) =
2

Thd+1

T−1∑
l=1

T−l∑
t=1

Cov(Zt,T , Zt+l,T )

=
2

Thd+1

( τT∑
l=1

T−l∑
t=1

Cov(Zt,T , Zt+l,T ) +
T−1∑

l=τT+1

T−l∑
t=1

Cov(Zt,T , Zt+l,T )
)

≤ C

Thd+1

τT∑
l=1

T−l∑
t=1

Kh

(
u− t

T

)
Kh

(
u− t+ l

T

)
h2d

+
C

Thd+1

T−1∑
l=τT+1

T−l∑
t=1

Kh

(
u− t

T

)
Kh

(
u− t+ l

T

)
h

2d
s l−[(2− 2

s
)+δ(1− 2

s
)]

=: V2,1(u, x) + V2,2(u, x),

where

|V2,1(u, x)| ≤ C
h2d

hd

τT∑
l=1

1

Th

T∑
t=1

Kh

(
u− t

T

)
Kh

(
u− t+ l

T

)
︸ ︷︷ ︸

≤C uniformly in u and l

≤ CτTh
d = (log T )−1 → 0.

In order to bound V2,2(u, x), we make use of the fact that for η > 1 and k ≥ 1,∑∞
j=k+1 j

−η ≤
∫∞
k
x−ηdx = k1−η

η−1
. This implies that

T−1∑
l=τT+1

l−[(2− 2
s

)+δ(1− 2
s

)] ≤ τ
1−[(2− 2

s
)+δ(1− 2

s
)]

T

[(2− 2
s
) + δ(1− 2

s
)]− 1

≤ Chd−
2d
s (log T )−(1−[(2− 2

s
)+δ(1− 2

s
)])hδd(1− 2

s
)︸ ︷︷ ︸

=:qT→0

.

Using this, we obtain

|V2,2(u, x)| ≤ C
h

2d
s

hd

T−1∑
l=τT+1

l−[(2− 2
s

)+δ(1− 2
s

)] 1

Th

T∑
t=1

Kh

(
u− t

T

)
Kh

(
u− t+ l

T

)
︸ ︷︷ ︸

≤C uniformly in u and l

≤ CqT → 0.
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Proof of Theorem 1.5

The proof extends Theorem 2 of Hansen [17]. Define

B = {(u, x) ∈ Rd+1 : u ∈ [0, 1], x ∈ S} and τT = ρTT
1
s

with ρT slowly diverging to infinity as T → ∞. To simplify the calculations in

later parts of the proof, we choose ρT = (log T )
1

1+βφ
(1+β−d

2
) 1

1+β

T with φT = log log T .

Defining

ψ̂1(u, x) =
1

Thd+1

T∑
t=1

Kh

(
u− t

T

) d∏
j=1

Kh(x
j −Xj

t,T )Wt,T I(|Wt,T | ≤ τT )

ψ̂2(u, x) =
1

Thd+1

T∑
t=1

Kh

(
u− t

T

) d∏
j=1

Kh(x
j −Xj

t,T )Wt,T I(|Wt,T | > τT ),

we can write

ψ̂(u, x)− E[ψ̂(u, x)] =
(
ψ̂1(u, x)− E[ψ̂1(u, x)]

)
+
(
ψ̂2(u, x)− E[ψ̂2(u, x)]

)
.

In what follows, we analyze the two terms on the right-hand side. We proceed in

several steps.

Step 1: Truncation

With B = [0, 1]× S and aT =
√

log T
Thd+1 , it holds that

P
(

sup
(u,x)∈B

|ψ̂2(u, x)| > CaT

)
≤ P

(
|Wt,T | > τT for some 1 ≤ t ≤ T

)
≤

T∑
t=1

P(|Wt,T | > τT ) ≤
T∑
t=1

E
[ |Wt,T |s

τ sT
I(|Wt,T | > τT )

]
≤ τ−sT

T∑
t=1

E|Wt,T |s ≤ CTτ−sT = ρ−sT → 0

and

E
∣∣ψ̂2(u, x)

∣∣ ≤ 1

Thd+1

T∑
t=1

Kh

(
u− t

T

)∫
Rd

d∏
j=1

Kh(x
j − wj)

× E
[
|Wt,T |I(|Wt,T | > τT )

∣∣Xt,T = w
]
fXt,T (w)dw

=
1

Th

T∑
t=1

Kh

(
u− t

T

)∫
Rd

d∏
j=1

K(ϕj)
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× E
[
|Wt,T |I(|Wt,T | > τT )

∣∣Xt,T = x− hϕ
]
fXt,T (x− hϕ)dϕ

≤ 1

Th

T∑
t=1

Kh

(
u− t

T

) 1

τ s−1
T

∫
Rd

d∏
j=1

K(ϕj)

× E
[
|Wt,T |sI(|Wt,T | > τT )

∣∣Xt,T = x− hϕ
]
fXt,T (x− hϕ)︸ ︷︷ ︸

≤B1

dϕ

≤ C

τ s−1
T

1

Th

T∑
t=1

Kh

(
u− t

T

)
︸ ︷︷ ︸
≤C uniformly in u

≤ C

τ s−1
T

= Cρ
−(s−1)
T T−

s−1
s ≤ CaT

with a constant C that does not depend on (u, x). Hence,

sup
(u,x)∈B

∣∣ψ̂2(u, x)− Eψ̂2(u, x)
∣∣ = Op(aT ).2

Step 2: Discretization

We cover the region B with N ≤ Ch−(d+1)a
−(d+1)
T balls Bn = {(u, x) ∈ Rd+1 :

‖(u, x)− (un, xn)‖∞ ≤ aTh} and use (un, xn) to denote the midpoint of Bn. Now

let K∗(v) = C
∏d

j=0 I(|vj| ≤ 2C1) for v ∈ Rd+1 and note that for (u, x) ∈ Bn,

∣∣Kh

(
u− t

T

) d∏
j=1

Kh(x
j −Xj

t,T )−Kh

(
un −

t

T

) d∏
j=1

Kh(x
j
n −X

j
t,T )
∣∣

≤ aTK
∗
h

(
un −

t

T
, xn −Xt,T

)
with K∗h(v) = K∗( v

h
). Defining

ψ̃1(u, x) =
1

Thd+1

T∑
t=1

K∗h

(
u− t

T
, x−Xt,T

)
|Wt,T |I(|Wt,T | ≤ τT )

and noting that E|ψ̃1(u, x)| ≤ C <∞, we thus obtain

sup
(u,x)∈Bn

∣∣ψ̂1(u, x)− Eψ̂1(u, x)
∣∣

≤
∣∣ψ̂1(un, xn)− Eψ̂1(un, xn)

∣∣+ aT
(∣∣ψ̃1(un, xn)

∣∣+ E
∣∣ψ̃1(un, xn)

∣∣)
≤
∣∣ψ̂1(un, xn)− Eψ̂1(un, xn)

∣∣+
∣∣ψ̃1(un, xn)− Eψ̃1(un, xn)

∣∣+ 2aTM

2Hansen [17] uses the more slowly diverging truncation sequence τT = a
−1/(s−1)
T . He shows that

with this choice of τT , it holds that |ψ̂2(u, x)− Eψ̂2(u, x)| = Op(aT ). It is however not clear at

all whether supu,x |ψ̂2(u, x) − Eψ̂2(u, x)| = Op(aT ) in his case, which is needed for the proof.

To ensure uniform convergence, we have set τT = ρTT
1/s.
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for any M > E|ψ̃1(un, xn)|. As a consequence,

P
(

sup
(u,x)∈B

∣∣ψ̂1(u, x)− Eψ̂1(u, x)
∣∣ > 4MaT

)
≤ N max

1≤n≤N
P
(

sup
(u,x)∈Bn

∣∣ψ̂1(u, x)− Eψ̂1(u, x)
∣∣ > 4MaT

)
≤ N max

1≤n≤N
P
(∣∣ψ̂1(un, xn)− Eψ̂1(un, xn)

∣∣ > MaT

)
(A)

+N max
1≤n≤N

P
(∣∣ψ̃1(un, xn)− Eψ̃1(un, xn)

∣∣ > MaT

)
. (B)

As the terms (A) and (B) can be bounded in the same way, we restrict attention

to (A) in what follows. We use the notation

ψ̂1(u, x)− Eψ̂1(u, x) =
1

Thd+1

T∑
t=1

Zt,T (u, x)

with Zt,T (u, x) = Kh(u− t
T

){
∏d

j=1Kh(x
j−Xj

t,T )Wt,T I(|Wt,T | ≤ τT )−E[
∏d

j=1Kh(x
j

−Xj
t,T )Wt,T I(|Wt,T | ≤ τT )]}. Note that for each fixed (u, x), the array {Zt,T (u, x)}

is α-mixing with mixing coefficients αZT satisfying αZT (k) ≤ α(k).

Step 3: Bounding (A)

We now bound (A) with the help of an exponential inequality by Liebscher (see

Theorem 2.1 in [27]).

Lemma (Liebscher). Let Zt,T be a zero-mean triangular array such that |Zt,T | ≤
bT with strong mixing coefficients α(k). Then for any ε > 0 and ST ≤ T with

ε > 4ST bT ,

P
(∣∣∣ T∑

t=1

Zt,T

∣∣∣ > ε
)
≤ 4 exp

(
− ε2

64σ2
ST ,T

T
ST

+ 8
3
εbTST

)
+ 4

T

ST
α(ST ),

where σ2
ST ,T

= sup0≤j≤T−1 E[(
∑min{j+ST ,T}

t=j+1 Zt,T )2].

We apply this exponential inequality as follows to our situation:

• As we are interested in bounding the term

P
(∣∣ψ̂1(u, x)− Eψ̂1(u, x)

∣∣ > MaT
)

= P
(∣∣∣ 1

Thd+1

T∑
t=1

Zt,T (u, x)
∣∣∣ > MaT

)
= P

(∣∣∣ T∑
t=1

Zt,T (u, x)
∣∣∣ > MaTTh

d+1
)
,

we choose ε = MaTTh
d+1.
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• As |Wt,T |I(|Wt,T | ≤ τT ) ≤ τT and Kh(u− t
T

)
∏d

j=1Kh(x
j −Xj

t,T ) ≤ C̄, we have

that

|Zt,T (u, x)| ≤ 2τT C̄ =: bT .

• By Lemma B3, σ2
ST ,T
≤ ΘSTh

d+1 with a constant Θ independent of (u, x).

• It remains to choose ST in a suitable way. The exponential inequality of Lieb-

scher reads

P
(∣∣∣ T∑

t=1

Zt,T (u, x)
∣∣∣ > ε

)
≤ 4 exp

(
− ε2

64σ2
ST ,T

T
ST

+ 8
3
εbTST

)
︸ ︷︷ ︸

=:(∗)

+4
T

ST
α(ST )

with

(∗) = exp
(
− M2a2

TT
2h2(d+1)

64ΘSThd+1 T
ST

+ 16C̄
3
ετTST

)
= exp

(
− M2Thd+1 log T

64ΘThd+1 + 16C̄
3
ετTST

)
.

If we choose ST = a−1
T τ−1

T , then the second term in the denominator becomes

16C̄

3
ετTST =

16C̄

3
MaTTh

d+1τTST =
16C̄

3
MThd+1

and therefore

(∗) = exp
(
− M2 log T

64θ + 16
3
MC̄

)
= T

− M2

64θ+ 16
3 MC̄ .

Hence, we choose ST = a−1
T τ−1

T .

It is straightforward to see that with these choices, the conditions needed to apply

the exponential inequality of Liebscher are fulfilled. For any fixed (u, x) and T

sufficiently large, we now get

P
(∣∣ψ̂1(u, x)− Eψ̂1(u, x)

∣∣ > MaT

)
≤ 4 exp

(
− ε2

64ΘSThd+1 T
ST

+ 8
3
εST bT

)
+ 4

T

ST
α(ST )

≤ 4 exp
(
− M2 log T

64Θ + 16
3
MC̄

)
+ 4

T

ST
AS−βT

≤ 4 exp
(
− M log T

64 + 6C̄

)
+ 4ATS−1−β

T

= 4T−
M

64+6C̄ + 4ATS−1−β
T ,
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where we have chosen M > Θ to get the last inequality. Recalling that N ≤
Ch−(d+1)a

−(d+1)
T , it follows that

P
(

sup
(u,x)∈B

∣∣ψ̂1(u, x)− Eψ̂1(u, x)
∣∣ > 4MaT

)
≤ O(R1T ) +O(R2T )

with

R1T = h−(d+1)a
−(d+1)
T T−

M
64+6C̄

R2T = h−(d+1)a
−(d+1)
T TS−1−β

T .

As φT log T
T θhd+1 = o(1) by assumption, we obtain

R1T = h−(d+1)a
−(d+1)
T T−

M
64+6C̄ = o

( T θ

φT log T

)(Thd+1

log T

) d+1
2
T−

M
64+6C̄ ≤ T−η

for some small η > 0, if we choose M large enough. Furthermore,

R2T = h−(d+1)a
−(d+1)
T T (aT τT )1+β

=
(φT log T

hd+1

)1+β−d
2
T 1−β−d

2
+ 1+β

s

= o
(
T θ(1+β−d

2
)+1−β−d

2
+ 1+β

s

)
By our assumptions on θ and β, it holds that R2T = o(1). This shows the result.

Proof of Theorem 1.6

We split up the term f̂(u, x)− f(u, x) into a variance part f̂(u, x)− Ef̂(u, x) and

a bias part Ef̂(u, x)− f(u, x). For the variance part, we immediately obtain

sup
u∈[0,1],x∈S

∣∣f̂(u, x)− Ef̂(u, x)
∣∣ = Op

(√ log T

Thd+1

)
by Theorem 1.5. The rate of the bias part can be derived as follows: As the kernel

K is bounded, we can use a telescoping argument to get that∣∣∣ d∏
j=1

Kh(x
j −Xj

t,T )−
d∏
j=1

Kh

(
xj −Xj

t (
t
T

)
)∣∣∣

=
∣∣∣ d∑
k=1

k−1∏
j=1

Kh

(
xj −Xj

t (
t
T

)
)[
Kh(x

k −Xk
t,T )−Kh

(
xk −Xk

t ( t
T

)
)] d∏
j=k+1

Kh(x
j −Xj

t,T )
∣∣∣

≤ C

d∑
k=1

∣∣Kh(x
k −Xk

t,T )−Kh

(
xk −Xk

t ( t
T

)
)∣∣.
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Moreover, exploiting again the boundedness of K, there exists a constant C <∞
with |Kh(x

k −Xk
t,T ) −Kh

(
xk −Xk

t ( t
T

))| ≤ C|Kh(x
k −Xk

t,T ) −Kh(x
k −Xk

t ( t
T

))|r

for r = min{ρ, 1}. Hence,

∣∣∣ d∏
j=1

Kh(x
j −Xj

t,T )−
d∏
j=1

Kh

(
xj −Xj

t (
t
T

)
)∣∣∣

≤ C

d∑
k=1

∣∣Kh(x
k −Xk

t,T )−Kh

(
xk −Xk

t ( t
T

)
)∣∣r. (1.47)

Using (1.47), we obtain∣∣Ef̂(u, x)− f(u, x)
∣∣

≤
∣∣∣ 1

Thd+1

T∑
t=1

Kh

(
u− t

T

)
E
[ d∏
j=1

Kh(x
j −Xj

t,T )−
d∏
j=1

Kh

(
xj −Xj

t (
t
T

)
)]∣∣∣

+
∣∣∣ 1

Thd+1

T∑
t=1

Kh

(
u− t

T

)
E
[ d∏
j=1

Kh

(
xj −Xj

t (
t
T

)
)]
− f(u, x)

∣∣∣
≤ C

Thd+1

T∑
t=1

Kh

(
u− t

T

) d∑
k=1

E
∣∣Kh(x

k −Xk
t,T )−Kh

(
xk −Xk

t ( t
T

)
)∣∣r

+
∣∣∣ 1

Thd+1

T∑
t=1

Kh

(
u− t

T

)∫ d∏
j=1

Kh(x
j − wj)f

( t
T
, w
)
dw − f(u, x)

∣∣∣
=: B1(u, x) +B2(u, x).

Since K is Lipschitz, |Xk
t,T − Xk

t ( t
T

)| ≤ C
T
Ut,T ( t

T
), and Ut,T ( t

T
) has finite r-th

moment, it holds that

B1(u, x) ≤ C

Thd+1

T∑
t=1

Kh

(
u− t

T

) d∑
k=1

E
∣∣∣ 1

Th
Ut,T ( t

T
)
∣∣∣r ≤ C

T rhd+r

uniformly for u and x. By the smoothness conditions on f ,

B2(u, x) =
∣∣∣ 1

Th

T∑
t=1

Kh

(
u− t

T

)
f
( t
T
, x
)
− f(u, x)

∣∣∣+ o(h)

uniformly in u and x. Moreover,

∣∣∣ 1

Th

T∑
t=1

Kh

(
u− t

T

)
f
( t
T
, x
)
− f(u, x)

∣∣∣ = O
( 1

Th2

)
+ o(h)
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uniformly in u and x by Lemma B2. Hence,

sup
u∈Ih,x∈S

∣∣Ef̂(u, x)− f(u, x)
∣∣ = o(h) +O

( 1

T rhd+r

)
.

Proof of Theorem 1.7

We write

m̂(u, x)−m(u, x) =
ĝV (u, x)

f̂(u, x)
+
ĝB(u, x)

f̂(u, x)
−m(u, x)

=
1

f̂(u, x)

(
ĝV (u, x) + ĝB(u, x)−m(u, x)f̂(u, x)

)
with

ĝV (u, x) =
1

Thd+1

T∑
t=1

Kh

(
u− t

T

) d∏
j=1

Kh(x
j −Xj

t,T )εt,T

ĝB(u, x) =
1

Thd+1

T∑
t=1

Kh

(
u− t

T

) d∏
j=1

Kh(x
j −Xj

t,T )m
( t
T
,Xt,T

)
.

(a) By Theorem 1.5 with Wt,T = εt,T ,

sup
u∈[0,1],x∈S

∣∣ĝV (u, x)
∣∣ = Op

(√ log T

Thd+1

)
.

(b) It holds that

sup
u∈[0,1],x∈S

∣∣ĝB(u, x)−m(u, x)f̂(u, x)

− E[ĝB(u, x)−m(u, x)f̂(u, x)]
∣∣ = Op

(√ log T

Thd+1

)
.

This follows by applying Theorem 1.5 to the term ĝB(u, x)−m(u, x)f̂(u, x) =
1

Thd+1

∑T
t=1Kh(u− t

T
)
∏d

j=1Kh(x
j −Xj

t,T ){m( t
T
, Xt,T )−m(u, x)}.

(c) It holds that

sup
u∈Ih,x∈S

∣∣E[ĝB(u, x)−m(u, x)f̂(u, x)]
∣∣

= h2κ2

2

d∑
i=0

(
2∂im(u, x)∂if(u, x) + ∂2

i,im(u, x)f(u, x)
)

+O
( 1

T rhd

)
+ o(h2)
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with r = min{ρ, 1}. To show this, let K̄ : R → R be a Lipschitz continuous

function with support [−2C1, 2C1] (or more generally with support [−qC1, qC1]

for some q > 1). Assume that K̄(x) = 1 for all x ∈ [−C1, C1] and write

K̄h(x) = K̄(x
h
). Then

E[ĝB(u, x)−m(u, x)f̂(u, x)] =
1

Thd+1

T∑
t=1

Kh

(
u− t

T

)
E
[ d∏
j=1

K̄h(xj −Xj
t,T )

×
d∏
j=1

Kh(xj −Xj
t,T )
{
m
( t
T
,Xt,T

)
−m(u, x)

}]
=: Q1(u, x) +Q2(u, x) +Q3(u, x) +Q4(u, x)

with

Qi(u, x) =
1

Thd+1

T∑
t=1

Kh

(
u− t

T

)
qi(u, x)

and

q1(u, x) = E
[ d∏
j=1

K̄h(xj −Xj
t,T )
{ d∏
j=1

Kh(x
j −Xj

t,T )

−
d∏
j=1

Kh

(
xj −Xj

t (
t
T

)
)}{

m
( t
T
,Xt,T

)
−m(u, x)

}]
q2(u, x) = E

[ d∏
j=1

K̄h(xj −Xj
t,T )

d∏
j=1

Kh

(
xj −Xj

t (
t
T

)
)

×
{
m
( t
T
,Xt,T

)
−m

( t
T
,Xt(

t
T

)
)}]

q3(u, x) = E
[{ d∏

j=1

K̄h(x
j −Xj

t,T )−
d∏
j=1

K̄h

(
xj −Xj

t (
t
T

)
)}

×
d∏
j=1

Kh

(
xj −Xj

t (
t
T

)
){
m
( t
T
,Xt(

t
T

)
)
−m(u, x)

}
q4(u, x) = E

[ d∏
j=1

Kh

(
xj −Xj

t (
t
T

)
){
m
( t
T
,Xt(

t
T

)
)
−m(u, x)

}]
.

We first consider Q1(u, x). Using (1.47), we obtain

|Q1(u, x)| ≤ C

Thd+1

T∑
t=1

Kh

(
u− t

T

)
E
[ d∑
k=1

∣∣Kh(x
k −Xk

t,T )−Kh

(
xk −Xk

t ( t
T

)
)∣∣r
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×
d∏
j=1

K̄h(xj −Xj
t,T )
{
m
( t
T
,Xt,T

)
−m(u, x)

}]
with r = min{ρ, 1}. The term

∏d
j=1 K̄h(xj − Xj

t,T ){m( t
T
, Xt,T ) −m(u, x)} in

the above expression can be bounded by Ch. Since K is Lipschitz, |Xk
t,T −

Xk
t ( t

T
)| ≤ C

T
Ut,T ( t

T
), and the variables Ut,T ( t

T
) have finite r-th moment, we

can infer that

|Q1(u, x)| ≤ C

Thd

T∑
t=1

Kh

(
u− t

T

)
E
[ d∑
k=1

∣∣Kh(x
k −Xk

t,T )−Kh

(
xk −Xk

t ( t
T

)
)∣∣r]

≤ C

Thd

T∑
t=1

Kh

(
u− t

T

)
E
[ d∑
k=1

∣∣∣ 1

Th
Ut,T ( t

T
)
∣∣∣r] ≤ C

T rhd−1+r

uniformly in u and x. We next turn to Q2(u, x). Note that the expression in

the expectation of q2(u, x) is non-zero only if Xt,T ∈ [xj − 2C1h, x
j + 2C1h]dj=1

and Xt(
t
T

) ∈ [xj − C1h, x
j + C1h]dj=1. As m is continuous, this implies that

|m( t
T
, Xt,T ) − m( t

T
, Xt(

t
T

))| ≤ C for some constant C < ∞, whenever the

expression in the expectation is non-zero. This allows us to use the bound∣∣∣m( t
T
,Xt,T

)
−m

( t
T
,Xt(

t
T

)
)∣∣∣ ≤ C

∣∣∣m( t
T
,Xt,T

)
−m

( t
T
,Xt(

t
T

)
)∣∣∣r

with r = min{ρ, 1} and some constant C <∞. We thus arrive at

|q2(u, x)| ≤ CE
[ d∏
j=1

K̄h(xj −Xj
t,T )

d∏
j=1

Kh

(
xj −Xj

t (
t
T

)
)

×
∣∣∣m( t

T
,Xt,T

)
−m

( t
T
,Xt(

t
T

)
)∣∣∣r]

≤ CE
[( d∑

j=1

|Xj
t,T −X

j
t (

t
T

)|
)r]

≤ CE
[( 1

T
Ut,T ( t

T
)
)r]
≤ C

T r

uniformly in u and x. As a result, supu,x |Q2(u, x)| ≤ C
T rhd

. Using analogous ar-

guments as for Q1(u, x), we can further show that supu,x |Q3(u, x)| ≤ C
T rhd−1+r .

Finally, applying Lemmas B1 and B2 and exploiting the smoothness conditions

on m and f , we obtain that

Q4(u, x) = h2κ2

2

d∑
i=0

(
2∂im(u, x)∂if(u, x) + ∂2

i,im(u, x)f(u, x)
)

+ o(h2)
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uniformly in u and x. Combining the results on Q1(u, x), . . . , Q4(u, x) com-

pletes the proof.

Using the intermediate results (a)–(c), we now obtain that

sup
u∈Ih,x∈S

∣∣m̂(u, x)−m(u, x)
∣∣

≤ sup
1

|f̂(u, x)|
(

sup
∣∣ĝV (u, x)

∣∣+ sup
∣∣ĝB(u, x)−m(u, x)f̂(u, x)

∣∣)
= sup

1

f̂(u, x)
Op

(√ log T

Thd+1
+

1

T rhd
+ h2

)
.

with r = min{ρ, 1}. Moreover, since sup f̂(u, x)−1 = Op(1) (which immediately

follows from Theorem 1.6 and the assumption that f(u, x) > 0), we finally arrive

at

sup
u∈Ih,x∈S

∣∣m̂(u, x)−m(u, x)
∣∣ = Op

(√ log T

Thd+1
+

1

T rhd
+ h2

)
.

Proof of Theorem 1.8

With ĝV (u, x) and ĝB(u, x) as in the proof of Theorem 1.7, we let

√
Thd+1

(
m̂(u, x)−m(u, x)

)
=
√
Thd+1

( ĝV (u, x)

f̂(u, x)
+
ĝB(u, x)

f̂(u, x)
−m(u, x)

)
=

√
Thd+1

f̂(u, x)

(
ĝV (u, x) + ĝB(u, x)−m(u, x)f̂(u, x)

)
and use the shorthands

B(u, x) =
√
Thd+1

(
ĝB(u, x)−m(u, x)f̂(u, x)

)
V (u, x) =

√
Thd+1ĝV (u, x).

In what follows, we refer to B(u, x) as the bias part and to V (u, x) as the stochastic

part.

The bias part vanishes asymptotically, i.e. B(u, x) = op(1). This follows from (c)

of Theorem 1.7 and the fact that B(u, x) − E[B(u, x)] = op(1). In order to prove

the latter, it suffices to show that Var(B(u, x)) = o(1), which can be achieved by

arguments similar to those for Lemma B3.
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The stochastic part is asymptotically normal. In particular,

V (u, x)
d−→ N(0, κd+1

0 σ2(u, x)f(u, x)) (1.48)

with κ0 =
∫
K2(ϕ)dϕ. The proof proceeds by the usual blocking argument. De-

composing V (u, x) alternately into big blocks and small blocks, we can neglect the

small blocks and exploit the mixing conditions to replace the big blocks by inde-

pendent random variables. This allows us to apply a Lindeberg theorem to get the

result. We omit the details, as the proof is very similar to that for the standard

strictly stationary setting. We however shortly comment on how to calculate the

variance of V (u, x). First, by the same steps as in Lemma B3,

Var(V (u, x)) = Var
( 1√

Thd+1

T∑
t=1

Kh

(
u− t

T

) d∏
j=1

Kh(x
j −Xj

t,T )εt,T

)
=

1

Thd+1

T∑
t=1

K2
h

(
u− t

T

)
E
[ d∏
j=1

K2
h(xj −Xj

t,T )ε2
t,T

]
+ o(1).

Moreover, by similar steps as for (d) in Theorem 1.7,

1

Thd+1

T∑
t=1

K2
h

(
u− t

T

)
E
[ d∏
j=1

K2
h(xj −Xj

t,T )ε2
t,T

]
= κd+1

0 σ2(u, x)f(u, x) + o(1)

with κ0 =
∫
K2(ϕ)dϕ. Hence,

Var
(
V (u, x)

)
= κd+1

0 σ2(u, x)f(u, x) + o(1).

As f̂(u, x) − f(u, x) = op(1) and 1

f̂(u,x)
= Op(1), we can now combine (1.48) with

the fact that B(u, x) = op(1) to arrive at

√
Thd+1

(
m̂(u, x)−m(u, x)

)
=

1

f̂(u, x)

(
B(u, x) + V (u, x)

)
=
V (u, x)

f(u, x)
+ op(1)

d−→ N(0, Vu,x).

This completes the proof.

Appendix C

In this appendix, we prove the results concerning the smooth backfitting estimates

of Section 1.5. Throughout the appendix, conditions (Add1) and (Add2) are as-

sumed to be satisfied. Moreover, C is used to denote a universal real constant

which may take a different value on each occurrence.
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Auxiliary Results

Before we come to the proof of Theorems 1.9 and 1.10, we provide results on

uniform convergence rates for the kernel smoothers that are used as pilot estimates

in the smooth backfitting procedure. We start with an auxiliary lemma which is

needed to derive the various rates.

Lemma C1. Define T0 = E[T[0,1]d ]. Then uniformly for u ∈ Ih,

T0

T
= P(X0(u) ∈ [0, 1]d) +O(T−

ρ
1+ρ ) + o(h) (1.49)

with ρ defined in assumption (C1) and

T[0,1]d − T0

T0

= Op

(√ log T

Th

)
. (1.50)

Proof. We first show (1.49). Let Ut,T := Ut,T ( t
T

) for short and recall that ‖Xt,T −
Xt(

t
T

)‖ ≤ 1
T
Ut,T almost surely with E[Uρ

t,T ] ≤ C for some ρ > 0. It holds that

E
[
I(Xt,T ∈ [0, 1]d)

]
= E

[
I
(
Xt,T ∈ [0, 1]d, ‖Xt,T −Xt(

t
T

)‖ ≤ 1
T
Ut,T

)]≥ E
[
I
(
Xt(

t
T

) ∈
[
C
T
Ut,T , 1− C

T
Ut,T

]d)]
≤ E

[
I
(
Xt(

t
T

) ∈
[
− C

T
Ut,T , 1 + C

T
Ut,T

]d)]
for some sufficiently large C <∞. Hence, with

BL =
1

T

T∑
t=1

Kh

(
u,

t

T

)
E
[
I
(
Xt(

t
T

) ∈
[
C
T
Ut,T , 1− C

T
Ut,T

]d)]
BU =

1

T

T∑
t=1

Kh

(
u,

t

T

)
E
[
I
(
Xt(

t
T

) ∈
[
− C

T
Ut,T , 1 + C

T
Ut,T

]d)]
,

we obtain

BL ≤
T0

T
≤ BU .

Now letting q < 1, it holds that

BU =
1

T

T∑
t=1

Kh

(
u,

t

T

)
E
[
I
(
Xt(

t
T

) ∈
[
− C

T
Ut,T , 1 + C

T
Ut,T

]d
, Ut,T ≤ T q

)]
+

1

T

T∑
t=1

Kh

(
u,

t

T

)
E
[
I
(
Xt(

t
T

) ∈
[
− C

T
Ut,T , 1 + C

T
Ut,T

]d
, Ut,T > T q

)]
=: B

(1)
U +B

(2)
U ,
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where

B
(1)
U ≤

1

T

T∑
t=1

Kh

(
u,

t

T

)
E
[
I
(
Xt(

t
T

) ∈
[
− C

T 1−q , 1 + C
T 1−q

]d)]
=

∫
I
(
x ∈

[
− C

T 1−q , 1 + C
T 1−q

]d) 1

T

T∑
t=1

Kh

(
u,

t

T

)
f
( t
T
, x
)

︸ ︷︷ ︸
=f(u,x)+o(h) by Lemma B2

dx

=

∫
I
(
x ∈

[
− C

T 1−q , 1 + C
T 1−q

]d)
f(u, x)dx+ o(h)

=

∫
I
(
x ∈ [0, 1]d

)
f(u, x)dx+O

( 1

T 1−q

)
+ o(h)

and

B
(2)
U ≤

1

T

T∑
t=1

Kh

(
u,

t

T

)
E
[
I(Ut,T > T q)

]
≤ 1

T

T∑
t=1

Kh

(
u,

t

T

)
E
[(Ut,T

T q

)ρ]
≤ C

T qρ

uniformly for u ∈ Ih. Setting q = 1
1+ρ

, we arrive at

BU ≤
∫
I(x ∈ [0, 1]d)f(u, x)dx+O(T−

ρ
1+ρ ) + o(h) (1.51)

uniformly in u. By similar arguments, we can show that

BL ≥
∫
I(x ∈ [0, 1]d)f(u, x)dx+O(T−

ρ
1+ρ ) + o(h). (1.52)

Combining (1.51) and (1.52) yields (1.49), since
∫
I(x ∈ [0, 1]d)f(u, x)dx =

P(X0(u) ∈ [0, 1]d). Equation (1.50) now follows immediately:

T[0,1]d − T0

T0

=
T

T0

· 1

T
(T[0,1]d − T0) = Op

(√ log T

Th

)
uniformly in u, as

1

T
(T[0,1]d − T0) =

1

T

T∑
t=1

Kh

(
u,

t

T

)(
I(Xt,T ∈ [0, 1]d)− E[I(Xt,T ∈ [0, 1]d)]

)
= Op

(√ log T

Th

)
uniformly for u ∈ Ih by Theorem 1.5 and T0

T
= Op(1) uniformly in u by (1.49).
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We now examine the convergence behaviour of the pilot estimates of the smooth

backfitting procedure. We first consider the kernel density estimates defined in

(1.21) and (1.22).

Lemma C2. It holds that

sup
u,xj∈Ih

∣∣p̂j(u, xj)− pj(u, xj)∣∣ = Op

(√ log T

Th2
+

1

T rhd+r

)
+ o(h) (1.53)

sup
u∈Ih, xj∈[0,1]

∣∣p̂j(u, xj)− κ0(xj)pj(u, x
j)
∣∣ = Op

(√ log T

Th2
+

1

T rhd+r
+ h
)

(1.54)

sup
u,xj ,xk∈Ih

∣∣p̂j,k(u, xj, xk)− pj,k(u, xj, xk)∣∣ = Op

(√ log T

Th3
+

1

T rhd+r

)
+ o(h) (1.55)

and

sup
u∈Ih, xj ,xk∈[0,1]

∣∣p̂j,k(u, xj, xk)− κ0(xj)κ0(xk)pj,k(u, x
j, xk)

∣∣
= Op

(√ log T

Th3
+

1

T rhd+r
+ h
)

(1.56)

with r = min{ρ, 1} and κ0(w) =
∫
Kh(w, v)dv.

Proof. We only consider the term p̂j, the proof for p̂j,k being analogous. Defining

T0 = E[T[0,1]d ] and

p̌j(u, x
j) =

1

T0

T∑
t=1

I(Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

)
Kh(x

j, Xj
t,T ),

we obtain that

p̂j(u, x
j) =

T0

T[0,1]d − T0 + T0

p̌j(u, x
j)

=
[
1 +

T[0,1]d − T0

T0

]−1

p̌j(u, x
j)

=
[
1−

T[0,1]d − T0

T0

+Op

(T[0,1]d − T0

T0

)2]
p̌j(u, x

j).

Using (1.50) from Lemma C1, this implies that

p̂j(u, x
j) = p̌j(u, x

j) +Op

(√ log T

Th

)
uniformly for u ∈ Ih and xj ∈ [0, 1]. Applying the proving strategy of Theorem

1.6 to p̌j(u, x
j) completes the proof of (1.53) and (1.54).
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We next examine the Nadaraya-Watson smoother m̂j. To this purpose, we decom-

pose it into a variance part m̂A
j and a bias part m̂B

j . The decomposition is given

by m̂j(u, x
j) = m̂A

j (u, xj) + m̂B
j (u, xj) with

m̂A
j (u, xj) =

1

T[0,1]d

T∑
t=1

I(Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

)
Kh(x

j, Xj
t,T )εt,T

/
p̂j(u, x

j)

(1.57)

m̂B
j (u, xj) =

1

T[0,1]d

T∑
t=1

I(Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

)
Kh(x

j, Xj
t,T )

×
(
m0

( t
T

)
+

d∑
k=1

mk

( t
T
,Xk

t,T

))/
p̂j(u, x

j). (1.58)

For the variance part m̂A
j , we have

Lemma C3. It holds that

sup
u,xj∈[0,1]

∣∣m̂A
j (u, xj)

∣∣ = Op

(√ log T

Th2

)
. (1.59)

Proof. Replacing the occurrences of T[0,1]d in (1.57) by T0 = E[T[0,1]d ] and then

applying Theorem 1.5 gives the result.

For the bias part, we have the following expansion:

Lemma C4. It holds that

sup
u,xj∈Ih

∣∣m̂B
j (u, xj)− µ̂T,j(u, xj)

∣∣ = op(h
2) (1.60)

sup
u∈Ih, xj∈Ich

∣∣m̂B
j (u, xj)− µ̂T,j(u, xj)

∣∣ = Op(h
2) (1.61)

with Ich = [0, 1] \ Ih and

µ̂T,j(u, x
j) = αT,0(u) + αT,j(u, x

j) +
∑
k 6=j

∫
αT,k(u, x

k)
p̂j,k(u, x

j, xk)

p̂j(u, xj)
dxk

+ h2

∫
β(u, x)

p(u, x)

pj(u, xj)
dx−j.
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Here,

αT,0(u) = m0(u) + hκ1(u)∂um0(u) +
h2

2
κ2(u)∂2

uum0(u)

αT,k(u, x
k) = mk(u, x

k) + h
[
κ1(u)∂umk(u, x

k) +
κ0(u)κ1(xk)

κ0(xk)
∂xkmk(u, x

k)
]

β(u, x) = κ2∂um0(u)∂u log p(u, x) + κ2

d∑
k=1

{
∂umk(u, x

k)∂u log p(u, x)

+
1

2
∂2
uumk(u, x

k) + ∂xkmk(u, x
k)∂xk log p(u, x) +

1

2
∂2
xkxkmk(u, x

k)
}

with κ2 =
∫
w2K(w)dw and κl(v) =

∫
wlKh(v, w)dw for l = 0, 1, 2.

Proof. By definition

m̂B
j (u, xj) = m̂B,0

j (u, xj) +
d∑

k=1

m̂B,k
j (u, xj)

with

m̂B,0
j (u, xj) =

1

T[0,1]d

T∑
t=1

I(Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

)
Kh(x

j, Xj
t,T )m0

( t
T

)/
p̂j(u, x

j)

m̂B,k
j (u, xj) =

1

T[0,1]d

T∑
t=1

I(Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

)
Kh(x

j, Xj
t,T )mk

( t
T
,Xk

t,T

)/
p̂j(u, x

j)

for k = 1, . . . , d. We show that

m̂B,0
j (u, xj) = m0(u) + hκ1(u)∂um0(u) + h2

[
κ2(u)∂um0(u)

∂upj(u, x
j)

pj(u, xj)

+
1

2
κ2(u)∂2

uum0(u)
]

+R0
T (u, xj) (1.62)

with supu,xj∈Ih |R
0
T (u, xj)| = op(h

2) and supu∈Ih, xj∈Ich |R
0
T (u, xj)| = Op(h

2),

m̂B,j
j (u, xj) = mj(u, x

j)

+ h
[
κ1(u)∂umj(u, x

j) +
κ0(u)κ1(xj)

κ0(xj)
∂xjmj(u, x

j)
]

+ h2
[
κ2(u)∂umj(u, x

j)
∂upj(u, x

j)

pj(u, xj)
+

1

2
κ2(u)∂2

uumj(u, x
j)

+
κ0(u)κ2(xj)

κ0(xj)
∂xjmj(u, x

j)
∂xjpj(u, x

j)

pj(u, xj)

+
1

2

κ0(u)κ2(xj)

κ0(xj)
∂2
xjxjmj(u, x

j)
]

+Rj
T (u, xj), (1.63)
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where Rj
T is of the same uniform order as R0

T , and for k 6= j,

m̂B,k
j (u, xj) =

∫
mk(u, x

k)
p̂j,k(u, x

j, xk)

p̂j(u, xj)
dxk + h

∫ [
κ1(u)∂umk(u, x

k)

+
κ0(u)κ1(xk)

κ0(xk)
∂xkmk(u, x

k)
] p̂j,k(u, xj, xk)

p̂j(u, xj)
dxk

+ h2
[
κ2(u)

∫
κ0(xk)∂umk(u, x

k)
∂upj,k(u, x

j, xk)

pj(u, xj)
dxk

+ κ0(u)

∫
κ2(xk)∂xkmk(u, x

k)
∂xkpj,k(u, x

j, xk)

pj(u, xj)
dxk

+ κ2(u)

∫
κ0(xk)

1

2
∂2
uumk(u, x

k)
pj,k(u, x

j, xk)

pj(u, xj)
dxk

+ κ0(u)

∫
κ2(xk)

1

2
∂2
xkxkmk(u, x

k)
pj,k(u, x

j, xk)

pj(u, xj)
dxk
]

+Rk
T (u, xj), (1.64)

where again Rk
T is of the same uniform order as R0

T . Combining (1.62)–(1.64)

completes the proof.

We only give the proof of (1.64), as this is the most complicated term: Recall-

ing that
∫
Kh(x

k, Xk
t,T )dxk = 1, a second-order Taylor expansion of mk(

t
T
, Xk

t,T )

around (u, xk) yields

m̂B,k
j (u, xj) =

∫
p̂j,k(u, x

j, xk)

p̂j(u, xj)
mk(u, x

k)dxk

+
1

T[0,1]d

T∑
t=1

(
V k
t,T (u, xj) +W k

t,T (u, xj)
)/
p̂j(u, x

j) + op(h
2)

uniformly for u ∈ Ih and xj ∈ [0, 1] with

V k
t,T (u, xj) = I(Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

)
Kh(x

j, Xj
t,T )

∫
Kh(x

k, Xk
t,T )

×
[
∂umk(u, x

k)
( t
T
− u
)

+ ∂xkmk(u, x
k)(Xk

t,T − xk)
]
dxk

W k
t,T (u, xj) = I(Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

)
Kh(x

j, Xj
t,T )

∫
Kh(x

k, Xk
t,T )

×
[1

2
∂2
uumk(u, x

k)
( t
T
− u
)2

+ ∂2
uxkmk(u, x

k)
( t
T
− u
)

(Xk
t,T − xk)

+
1

2
∂2
xkxkmk(u, x

k)(Xk
t,T − xk)2

]
dxk.
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We now have a closer look at the expectations of V k
t,T (u, xj) and W k

t,T (u, xj). First,

note that

E[V k
t,T (u, xj)] = E

[
I
(
Xt(

t
T

) ∈ [0, 1]d
)
Kh

(
u,

t

T

)
Kh

(
xj, Xj

t (
t
T

)
)∫

Kh

(
xk, Xk

t ( t
T

)
)

×
{
∂umk(u, x

k)
( t
T
− u
)

+ ∂xkmk(u, x
k)
(
Xk
t ( t

T
)− xk

)}
dxk
]

+O
( 1

T
r
r+1

+
1

T rh

)
(1.65)

with r = min{ρ, 1} uniformly for u ∈ Ih and xj ∈ [0, 1]. This is shown by

successively replacing the occurrences of Xt,T in E[V k
t,T (u, xj)] by Xt(

t
T

). In order to

replace the occurrence in the indicator function I(Xt,T ∈ [0, 1]d), similar arguments

as in Lemma C1 can be used. For replacing the occurrences in Kh(x
j, Xj

t,T ) and

Kh(x
k, Xk

t,T ), we exploit the Lipschitz continuity of K and use arguments similar

to those in part (c) of the proof of Theorem 1.7. With (1.65), we can now write

1

T[0,1]d

T∑
t=1

E[V k
t,T (u, xj)] =

1

T[0,1]d

T∑
t=1

Kh

(
u,

t

T

)∫
Kh(x

j, wj)Kh(x
k, wk)

×
[
∂umk(u, x

k)
( t
T
− u
)

+ ∂xkmk(u, x
k)(wk − xk)

]
×
(∫

I(w ∈ [0, 1]d)f
( t
T
, w
)
dw−j,k

)
dwjdwkdxk

+O
( 1

T
r
r+1

+
1

T rh

)
uniformly for u ∈ Ih and xj ∈ [0, 1], where w−j,k denotes all but the j-th and k-th

component of the vector w. Noting that O(T−
r
r+1 + 1

T rh
) = o(h2) by (Add2), using

a first-order Taylor expansion of f( t
T
, w) and recalling the definition of the density

p, we can infer that

1

T[0,1]d

T∑
t=1

E[V k
t,T (u, xj)]

=
T

T[0,1]d
P (X0(u) ∈ [0, 1]d)

×
{ 1

T

T∑
t=1

Kh

(
u,

t

T

)( t
T
− u
)∫

κ0(xj)κ0(xk)∂umk(u, x
k)pj,k(u, x

j, xk)dxk

+
1

T

T∑
t=1

Kh

(
u,

t

T

)∫
hκ0(xj)κ1(xk)∂xkmk(u, x

k)pj,k(u, x
j, xk)dxk

+
1

T

T∑
t=1

Kh

(
u,

t

T

)( t
T
− u
)2
∫
κ0(xj)κ0(xk)∂umk(u, x

k)∂upj,k(u, x
j, xk)dxk
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+
1

T

T∑
t=1

Kh

(
u,

t

T

)∫
h2κ0(xj)κ2(xk)∂xkmk(u, x

k)∂xkpj,k(u, x
j, xk)dxk

}
+ op(h

2)

uniformly for u ∈ Ih and xj ∈ [0, 1]. Combining the two claims of Lemma C1, it

holds that

T

T[0,1]d
P (X0(u) ∈ [0, 1]d) = 1 +O

(√ log T

Th

)
+O(T−

ρ
1+ρ ) + o(h)

uniformly in u. We can thus use Lemmas B1 and B2 from Appendix B to get

1

T[0,1]d

T∑
t=1

E[V k
t,T (u, xj)]

= h
[
κ1(u)κ0(xj)

∫
κ0(xk)∂umk(u, x

k)pj,k(u, x
j, xk)dxk

+ κ0(u)κ0(xj)

∫
κ1(xk)∂xkmk(u, x

k)pj,k(u, x
j, xk)dxk

]
+ h2

[
κ2(u)κ0(xj)

∫
κ0(xk)∂umk(u, x

k)∂upj,k(u, x
j, xk)dxk

+ κ0(u)κ0(xj)

∫
κ2(xk)∂xkmk(u, x

k)∂xkpj,k(u, x
j, xk)dxk

]
+RV

T (u, xj) (1.66)

with supu,xj∈Ih |R
V
T (u, xj)| = o(h2) and supu∈Ih,xj∈Ich |R

V
T (u, xj)| = O(h2). Exploit-

ing the fact that κ1(u) = 0 for all u ∈ Ih and that∫
∂xkmk(u, x

k)
[ 1

κ0(xk)
p̂j,k(u, x

j, xk)− κ0(xj)pj,k(u, x
j, xk)

]
hκ1(xk)dxk = Op(h

2)

uniformly for u ∈ Ih and xj ∈ [0, 1], we can rewrite (1.66) as

1

T[0,1]d

T∑
t=1

E[V k
t,T (u, xj)]

= h
[
κ1(u)

∫
∂umk(u, x

k)p̂j,k(u, x
j, xk)dxk

+ κ0(u)

∫
κ1(xk)

κ0(xk)
∂xkmk(u, x

k)p̂j,k(u, x
j, xk)dxk

]
+ h2

[
κ2(u)κ0(xj)

∫
κ0(xk)∂umk(u, x

k)∂upj,k(u, x
j, xk)dxk

+ κ0(u)κ0(xj)

∫
κ2(xk)∂xkmk(u, x

k)∂xkpj,k(u, x
j, xk)dxk

]
+ R̃V

T (u, xj), (1.67)
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where R̃V
T (u, xj) is of the same uniform order as RV

T (u, xj). Using analogous argu-

ments as above, we can further show that

1

T[0,1]d

T∑
t=1

E[W k
t,T (u, xj)]

=
h2

2

[
κ2(u)κ0(xj)

∫
κ0(xk)∂2

uumk(u, x
k)pj,k(u, x

j, xk)dxk

+ κ0(u)κ0(xj)

∫
κ2(xk)∂2

xkxkmk(u, x
k)pj,k(u, x

j, xk)dxk
]

+RW
T (u, xj) (1.68)

with supu,xj∈Ih |R
W
T (u, xj)| = o(h2) and supu∈Ih,xj∈Ich |R

W
T (u, xj)| = O(h2). Finally,

applying the same proving strategy as in Theorem 1.5, one can show that

sup
u∈Ih, xj∈[0,1]

∣∣∣ 1

T[0,1]d

T∑
t=1

(
V k
t,T (u, xj)− E[V k

t,T (u, xj)]
)∣∣∣ = op(h

2)

sup
u∈Ih, xj∈[0,1]

∣∣∣ 1

T[0,1]d

T∑
t=1

(
W k
t,T (u, xj)− E[W k

t,T (u, xj)]
)∣∣∣ = op(h

2).

Therefore,

m̂B,k
j (u, xj) =

∫
mk(u, x

k)
p̂j,k(u, x

j, xk)

p̂j(u, xj)
dxk

+
1

T[0,1]d

T∑
t=1

(
E[V k

t,T (u, xj)] + E[W k
t,T (u, xj)]

)/
p̂j(u, x

j) + op(h
2)

uniformly for u ∈ Ih and xj ∈ [0, 1]. Plugging (1.67) and (1.68) into the above

expression and using the fact that p̂j(u, x
j) converges uniformly to κ0(xj)pj(u, x

j)

yields (1.64).

We finally state a result on the convergence behaviour of the term m̃0(u).

Lemma C5. It holds that

sup
u∈Ih

∣∣m̃0(u)−m0(u)
∣∣ = Op

(√ log T

Th
+ h2

)
. (1.69)

Proof. The claim can be shown by replacing the term T[0,1]d by T0 = E[T[0,1]d ] in

the expression for m̃0(u) and then using arguments from Theorem 1.7.
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Proof of Theorems 1.9 and 1.10

To prove Theorems 1.9 and 1.10, it suffices to show that the high-level conditions

(A1)–(A6), (A8), and (A9) of Mammen et al. [29] are satisfied. This allows us to

apply their Theorems 1–3, which imply the result. As will be seen, the high-level

conditions are satisfied uniformly for u ∈ Ih rather than only pointwise. For this

reason, we can infer that the convergence rates in (1.25) hold uniformly over u ∈ Ih
rather than only pointwise. In what follows, we formulate the high-level conditions

and show that they are fulfilled in our setting.

(A1) For all j 6= k, it holds that∫
p2
j,k(u, x

j, xk)

pk(u, xk)pj(u, xj)
dxjdxk <∞

uniformly for u ∈ Ih.

This condition follows immediately from the assumptions on the density f(u, x).

These imply that pj(u, x
j) ≥ c > 0 and pj,k(u, x

j, xk) ≤ C < ∞ for all u ∈ [0, 1]

and xj, xk ∈ [0, 1] with some appropriately chosen constants c and C.

(A2) For all j 6= k, it holds that ∫ [ p̂j(u, xj)− pj(u, xj)
pj(u, xj)

]2

pj(u, x
j)dxj = op(1)∫ [ p̂j,k(u, x

j, xk)

pk(u, xk)pj(u, xj)
− pj,k(u, x

j, xk)

pk(u, xk)pj(u, xj)

]2

pk(u, x
k)pj(u, x

j)dxjdxk = op(1)∫ [ p̂j,k(u, x
j, xk)

pk(u, xk)p̂j(u, xj)
− pj,k(u, x

j, xk)

pk(u, xk)pj(u, xj)

]2

pk(u, x
k)pj(u, x

j)dxjdxk = op(1)

uniformly for u ∈ Ih. Furthermore, for each u ∈ Ih, p̂j(u, ·) and p̂j,k(u, ·)
vanish outside the support of pj(u, ·) and pj,k(u, ·), respectively.

This condition as well as (A4) and (A8) can easily be proven by using the uniform

convergence results for the kernel densities derived in Lemma C2.

(A3) There exists a finite constant C such that with probability tending to 1,∫
m̂2
j(u, x

j)pj(u, x
j)dxj <∞

uniformly for u ∈ Ih.
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Both this condition and (A5) directly follow from Lemmas C3 and C4, which

describe the asymptotic behaviour of the variance part m̂A
j and the bias part m̂B

j

of the Nadaraya-Watson estimate m̂j.

(A4) There exists a finite constant C such that with probability tending to 1,

sup
xk∈Ih

∫
p̂2
j,k(u, x

j, xk)

p̂2
k(u, x

k)pj(u, xj)
dxj ≤ C

for all j 6= k uniformly for u ∈ Ih.

(A5) There exists a finite constant C such that with probability tending to 1,∫
m̂A
j (u, xj)2pj(u, x

j)dxj ≤ C∫
m̂B
j (u, xj)2pj(u, x

j)dxj ≤ C

uniformly for u ∈ Ih.

(A6) For j 6= k, it holds that

sup
xj∈Ih

∣∣∣ ∫ p̂j,k(u, x
j, xk)

p̂j(u, xj)
m̂A
k (u, xk)dxk

∣∣∣ = op(h
2)∥∥∥∫ p̂j,k(u, x

j, xk)

p̂j(u, xj)
m̂A
k (u, xk)dxk

∥∥∥
2

= op(h
2)

uniformly for u ∈ Ih, where ‖ · ‖2 denotes the norm in the space L2(pj(u, ·)).

To prove (A6), it suffices to show that

sup
u∈Ih, xj∈[0,1]

∣∣∣ ∫ p̂j,k(u, x
j, xk)

p̂j(u, xj)
m̂A
k (u, xk)dxk

∣∣∣ = Op

(√ log T

Th

)
. (1.70)

For the proof of (1.70), we write

Sk,j(u, x
j) =

∫
p̂j,k(u, x

j, xk)

p̂j(u, xj)
m̂A
k (u, xk)dxk

=

∫
p̂j,k(u, x

j, xk)

p̂j(u, xj)p̂k(u, xk)
ψ̂k(u, x

k)dxk,

where m̂A
k (u, xk) = ψ̂k(u, x

k)/p̂k(u, x
k) with

ψ̂k(u, x
k) =

1

T[0,1]d

T∑
t=1

I(Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

)
Kh(x

k, Xk
t,T )εt,T .
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In a first step, we replace Sk,j(u, x
j) by the term

S∗k,j(u, x
j) =

∫
pj,k(u, x

j, xk)

pj(u, xj)pk(u, xk)
ψ̂k(u, x

k)dxk

and show that the resulting error is asymptotically negligible. This is done as

follows:

sup
u∈Ih,xj∈[0,1]

∣∣Sk,j(u, xj)− S∗k,j(u, xj)∣∣
= sup

u,xj

∣∣∣ ∫ { p̂j,k(u, x
j, xk)

p̂j(u, xj)p̂k(u, xk)
− κ0(xj)κ0(xk)pj,k(u, x

j, xk)

κ0(xj)pj(u, xj)κ0(xk)pk(u, xk)

}
ψ̂k(u, x

k)dxk
∣∣∣

= Op

(√ log T

Th3
+ h
)
Op

(√ log T

Th2

)
= Op

( log T

Th5/2
+

√
log T

T

)
,

as ψ̂k(u, x
k) = Op(

√
log T/Th2) and the term in curly brackets is of the order

Op(
√

log T/Th3 + h) uniformly in u, xj, and xk. In a second step, we show that

sup
u∈Ih,xj∈[0,1]

∣∣S∗k,j(u, xj)∣∣ = Op

(√ log T

Th

)
.

To prove this, we write

S∗k,j(u, x
j) =

1

T[0,1]d

T∑
t=1

wk,j(u, x
j, Xk

t,T )εt,T (1.71)

with

wk,j(u, x
j, Xk

t,T ) = I(Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

)
×
(∫ pj,k(u, x

j, xk)

pj(u, xj)pk(u, xk)
Kh(x

k, Xk
t,T )dxk

)
.

Applying the techniques from the proof of Theorem 1.5 to (1.71) completes the

proof of (1.70), which in turn yields (A6).

(A8) It holds that

sup
xj∈Ih

∫ ∣∣∣ pj,k(u, x
j, xk)

pj(u, xj)pk(u, xk)
− p̂j,k(u, x

j, xk)

p̂j(u, xj)p̂k(u, xk)

∣∣∣pk(u, xk)dxk = op(1)

uniformly for u ∈ Ih.
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(A9) There exist deterministic functions

αT,0(u), αT,1(u, x1), . . . , αT,d(u, x
d)

γT,1(u), . . . , γT,d(u)

and a function β(u, x) (not depending on T ) such that uniformly for u ∈ Ih∫
α2
T,j(u, x

j)pj(u, x
j)dxj <∞ (1.72)∫

β2(u, x)p(u, x)dx <∞ (1.73)

sup
x1∈Ih,...,xd∈Ih

|β(u, x)| <∞ (1.74)∫
αT,j(u, x

j)p̂j(u, x
j)dxj = γT,j(u) + op(h

2) (1.75)

with γT,j(u) = O(h2) and

sup
u,xj∈Ih

∣∣m̂B
j (u, xj)− µ̂T,0(u)− µ̂T,j(u, xj)

∣∣ = op(h
2) (1.76)

sup
u∈Ih

∫ ∣∣m̂B
j (u, xj)− µ̂T,0(u)− µ̂T,j(u, xj)

∣∣2pj(u, xj)dxj = op(h
4). (1.77)

Here, µ̂T,0(u) is some random function and

µ̂T,j(u, x
j) = αT,0(u) + αT,j(u, x

j) +
∑
k 6=j

∫
αT,k(u, x

k)
p̂j,k(u, x

j, xk)

p̂j(u, xj)
dxk

+ h2

∫
β(u, x)

p(u, x)

pj(u, xj)
dx−j.

We finally prove (A9). Equations (1.76) and (1.77) immediately follow from the

uniform expansion of the bias part m̂B
j proven in Lemma C4. Furthermore, it is

trivial to see that (1.72)–(1.74) are fulfilled for αT,j(u, x
j) and β(u, x) as defined

in Lemma C4. Finally, straightforward calculations yield a term γT,j(u) in (1.75)

which is of order h2 uniformly for u ∈ Ih.

This completes the proof of Theorems 1.9 and 1.10.



Chapter 2

Comparing Nonparametric Fits

In Locally Stationary Regression

Models

2.1 Introduction

Many economic and financial time series applications are marked by two main fea-

tures. Firstly, the relationship between the variables of interest may be nonlinear.

To model the relationship between a variable and its own lags, for example, a linear

autoregressive process is often inappropriate. Nonlinear autoregressive structures

such as threshold models are needed to get a satisfactory description of the data.

Secondly, the relationship of the variables may change over time. In many cases,

it is very plausible that two economic variables relate differently to each other in

different economic situations.

A flexible framework which is able to capture both nonlinearities and structural

change is given by the nonparametric regression model

Yt,T = m
( t
T
,Xt,T

)
+ εt,T for t = 1, . . . , T (2.1)

with E[εt,T |Xt,T ] = 0, where the function m may vary over time and the regressors

Xt,T = (X1
t,T , . . . , X

d
t,T ) are locally stationary. The concept of local stationarity

was introduced by Dahlhaus (cf. [4], [5], and [6]). Heuristically speaking, a process

is locally stationary if over short time spans, i.e. locally in time, it behaves ap-

proximately stationary. A detailed description of model (2.1) including a rigorous

definition of local stationarity can be found in Section 2.2.
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In this chapter, we are interested in the question whether the regression function m

in model (2.1) has the same shape at two different time points. Put differently, we

want to know whether the function m(u, ·) at some rescaled time point u ∈ [0, 1] is

identical to the function m(v, ·) at another time point v. To decide upon this issue,

we develop a kernel-based nonparametric testing procedure. The test statistic

measures a weighted L2-distance between kernel estimates of m(u, ·) and m(v, ·)
and is introduced in Section 2.3.

The asymptotic properties of the statistic are analyzed in Section 2.5. To improve

the finite sample behaviour of the test, we propose a wild bootstrap procedure in

Section 2.6 and derive the asymptotic properties thereof. The limit behaviour of

the test statistic will turn out to be mainly driven by a quadratic form. Not much

is known about the asymptotic behaviour of quadratic forms in a locally stationary

framework. To our knowledge, Lee & Subba Rao [25] are the only ones who have

tackled this issue so far. However, they analyze a type of quadratic form which

does not cover our case. The main theoretical challenge thus lies in the derivation

of a limit theory for the quadratic form which shows up in our setting.

There is a large literature on testing structural change in nonparametric time se-

ries regression. One strand of the literature deals with structural breaks in the

nonparametric regression function. There, the main issue is to localize and esti-

mate the size of the structural breaks (see e.g. Delgado & Hidalgo [10]). Another

strand of the literature is concerned with testing the hypothesis that the regression

function is time-invariant. Different types of statistics have been proposed to deal

with this testing problem: Hidalgo [19] for example has developed a conditional

moment test, Su & Xiao [39] have suggested a CUSUM type test.

Our testing problem is closely related but not identical to testing whether a non-

parametric regression function is time-invariant. Rather than testing whether the

function m(u, ·) is the same for all time points u ∈ [0, 1], we test whether it is

the same at two different time points u and v. From an applied point of view,

both testing issues are interesting and complement each other. In many economic

and financial applications, the question arises whether the regression function is

fully stable over time. Equally interestingly, one may want to know whether the

function is the same in two different situations, e.g. at a time point before a crisis

and one during it.
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2.2 The Model

Before we introduce the test statistic, we have a more detailed look at the under-

lying model (2.1),

Yt,T = m
( t
T
,Xt,T

)
+ εt,T with E[εt,T |Xt,T ] = 0.

The components of the model, namely the function m, the regressors Xt,T , and

the residuals εt,T , are required to have the following main properties:

(i) The function m is not allowed to vary over time in whatever way. In particu-

lar, we do not allow for sudden structural changes. Instead, we assume that

m varies smoothly over time. The exact smoothness conditions are listed in

Section 2.4.

(ii) As already noted in the introduction, we do not restrict the regressors to

be strictly stationary. Instead, we allow the triangular array {Xt,T : t =

1, . . . , T} to be locally stationary, which for our purpose is defined as follows:

Definition 2.1. The process {Xt,T} is locally stationary if for each time

point u ∈ [0, 1] there exists an associated process {Xt(u)} with the following

two properties:

(i) {Xt(u)} is strictly stationary with density fXt(u),

(ii) it holds that

∥∥Xt,T −Xt(u)
∥∥ ≤ (∣∣∣ t

T
− u
∣∣∣+

1

T

)
Ut,T (u) a.s.,

where {Ut,T (u)} is a process of positive variables satisfying

E[(Ut,T (u))ρ] < C for some ρ > 0 and C <∞ independent of u, t, and

T . ‖ · ‖ denotes an arbitrary norm on Rd.

(iii) We finally put some contraints on the residual process {εt,T : t = 1 . . . , T}.
To derive the asymptotic characteristics of the test statistic, we want to make

use of a central limit theorem for martingale difference arrays. To be able to

do so, we assume that

E[εt,T |Ft−1,T ] = 0 with Ft−1,T = σ(Xt,T , Xt−1,T , εt−1,T , . . . , X1,T , ε1,T ).
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This rules out autocorrelation in the error terms εt,T . However, it allows for

heteroskedasticity. In particular, it allows the residual process to be of the

form

εt,T = σ
( t
T
,Xt,T

)
εt (2.2)

with a time-varying volatility function σ and an i.i.d. process {εt} having the

property that εt is independent of Xs,T for s ≤ t. To keep the notation in

the proofs as simple as possible, we restrict attention to the residual process

(2.2) in what follows.

An important class of processes that fit into the framework (2.1) is given by the

nonlinear autoregressive model

Xt,T = m
( t
T
,X t−d

t−1,T

)
+ σ
( t
T
,X t−d

t−1,T

)
εt (2.3)

with X t−d
t−1,T = (Xt−1,T , . . . , Xt−d,T ) and i.i.d. variables εt. One can show that under

suitable low-level conditions onm, σ, and the residuals εt, the components of model

(2.3) have the properties (i)–(iii). In particular, the autoregressive process {Xt,T}
can be shown to be locally stationary and strongly mixing with mixing coefficients

that decay exponentially fast to zero. For a detailed analysis of model (2.3) and a

proof of these results see Chapter 1.

2.3 The Test Statistic

We want to test whether the regression function m(u, ·) at some time point u ∈
[0, 1] partly (or even fully) coincides with the function m(v, ·) at another time point

v. The null hypothesis is thus given by

H0 : m(u, ·) = m(v, ·) π-a.s.,

where π is some weight function and (u, v) ∈ (0, 1)2 is some fixed pair of rescaled

time points. The null hypothesis can equivalently be expressed as

H0 :

∫ [
m(u, x)−m(v, x)

]2
π(x)dx = 0.

A natural way to come up with a test statistic for this problem is to replace

the unknown functions m(u, ·) and m(v, ·) in the above L2-distance by estimates

m̂(u, ·) and m̂(v, ·) and to rescale appropriately. This yields the weighted L2-test

statistic

ST = Th1+d/2

∫ [
m̂(u, x)− m̂(v, x)

]2
π(x)dx,
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where m̂ is a Nadaraya-Watson estimate given by

m̂(u, x) =

∑T
t=1Kh(u− t

T
)
∏d

j=1 Kh(x
j −Xj

t,T )Yt,T∑T
t=1 Kh(u− t

T
)
∏d

j=1Kh(xj −Xj
t,T )

.

In this definition, K denotes a one-dimensional kernel function and we use the

notation Kh(x) = h−1K(x/h). For simplicity, we work with a product kernel and

assume that the bandwidth is the same in each direction. In addition, we assume

that the weight function π has bounded support.1

In what follows, we analyze the asymptotic behaviour of ST under the null hy-

pothesis as well as under fixed and local alternatives. The alternative hypothesis

is given by

H1 :

∫ [
m(u, x)−m(v, x)

]2
π(x)dx > 0.

This treats the fixed alternative case, where m(u, ·) and m(v, ·) are some fixed

pair of different functions. To get a rough impression of the power of the test,

we additionally examine local alternatives, i.e. alternatives that converge to H0 as

the sample size grows. To formulate these alternatives, we define the sequence of

functions

mT (w, z) = m(w, z) + cT∆(w, z),

where cT → 0, the function ∆ is continuous and equals zero in a neighbourhood

around u, and m satisfies the null hypothesis, i.e. m(u, ·) = m(v, ·) π-a.s. The

process {Yt,T} is thus given by

Yt,T = mT

( t
T
,Xt,T

)
+ εt,T = m

( t
T
,Xt,T

)
+ cT∆

( t
T
,Xt,T

)
+ εt,T . (2.4)

If the process {Yt,T} is generated according to (2.4), we move along the sequence

of local alternatives

H1,T :

∫ [
m(u, x)−mT (v, x)

]2
π(x)dx = c2

T

∫
∆2(v, x)π(x)dx.

In this case, the weighted L2-distance between the regression function at time

point u and that at time point v gets smaller as the sample size increases, i.e. the

hypothesis H1,T comes closer and closer to H0 as T tends to infinity.

1It is possible to allow for unbounded support by letting the limits of the integral in ST diverge

to infinity at an appropriate rate as the sample size increases.
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2.4 Assumptions

To derive the asymptotic properties of the test statistic ST , we make the following

assumptions.

(C1) The process {Xt,T} is locally stationary in the sense of Definition 2.1 with

some ρ ≥ 1. Thus, for each time point u ∈ [0, 1], there exists a strictly sta-

tionary process {Xt(u)} with density f(u, x) := fXt(u)(x) such that ‖Xt,T −
Xt(u)‖ ≤ (| t

T
− u|+ 1

T
)Ut,T (u) with E[(Ut,T (u))ρ] ≤ C.

(C2) The array {Xt,T , εt,T} is strongly mixing with mixing coefficients that con-

verge exponentially fast to zero, i.e. α(k) ≤ Cak for some a < 1.

(C3) The bandwidth h satisfies Th2d+1 →∞. Moreover, let r be a natural number

with r > d/2 such that Th4r+1 → 0 and Th2r+1+d/2 → 0.

(C4) The kernel K is bounded and has compact support, i.e. K(v) = 0 for all

|v| > C1 with some C1 <∞. Moreover, K is Lipschitz, i.e. |K(v)−K(v′)| ≤
L|v−v′| for some L <∞ and all v, v′ ∈ R. Finally, K satisfies the conditions∫

K(z)dz = 1,
∫
zjK(z)dz = 0 for j = 1, . . . , r − 1.

(C5) For each u ∈ [0, 1], let f(u, ·) be the density of Xt(u). The functions f and m

are r-times continuously differentiable. Moreover, infu∈[0,1],x∈S f(u, x) > 0,

where S is the closure of the set {x ∈ Rd | π(x) 6= 0}.

(C6) The residuals are of the form εt,T = σ( t
T
, Xt,T )εt. Here, σ is a Lipschitz

continuous function and {εt} is an i.i.d. process having the property that εt

is independent of Xs,T for s ≤ t. The variables εt satisfy E[ε6+δ
t ] < ∞ for

some small δ > 0 and are normalized such that E[ε2
t ] = 1.

(C7) Let fXt,T be the density of Xt,T and fXt,T ,Xt+l,T the joint density of

(Xt,T , Xt+l,T ). For any compact set S ⊆ Rd, there exists a constant

B = B(S) <∞ such that supt,T supx∈S fXt,T (x) ≤ B and

sup
t,T

sup
l>0

sup
x,x′∈S

E
[
|εt|
∣∣Xt,T = x,Xt+l,T = x′

]
fXt,T ,Xt+l,T (x, x′) ≤ B.

We quickly give some remarks on the above assumptions. First note that we

do not necessarily require exponential mixing rates as assumed in (C2). These

could be replaced by sufficiently large polynomial rates. We nevertheless make the
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stronger assumption (C2) to keep the notation in the proofs as simple as possible.

Assumptions (C3)–(C5) allow us to use higher-order kernels (r > 2) in the analysis

of the test statistic. Note however, that we only need them if the dimension of the

regressors d is larger than 3.

2.5 The Asymptotic Distribution of ST

In this section, we summarize the results on the asymptotic behaviour of the test

statistic ST . The first theorem states that under the null, ST weakly converges to

a Gaussian distribution if we subtract a bias term that diverges to infinity.

Theorem 2.1. Assume that (C1)–(C7) are fulfilled. Then under H0,

ST −BT (u, v)
d−→ N

(
0, V (u, v)

)
.

Here, BT (u, v) = BT (u) +BT (v) and V (u, v) = V (u) + V (v), where

BT (u) = h−d/2
∫∫

K2(w)
d∏
j=1

K2(zj)σ2(u− hw, x− hz)

× f(u− hw, x− hz)
π(x)

f 2(u, x)
dwdzdx

V (u) = 2κ2
2

∫
K2(z)dz

∫
[σ2(u, x)]2π2(x)

f 2(u, x)
dx

with κ2 =
∫
K2(w)dw and K(z) =

∫ ∏d
j=1K(wj)

∏d
j=1 K(wj +zj)dw. The expres-

sions BT (v) and V (v) are defined analogously.

We now turn to the behaviour of ST under fixed alternatives. The next theorem

shows that ST (corrected by the bias term BT (u, v)) diverges in probability to

infinity under H1. The test based on the statistic ST −BT (u, v) is thus consistent

against fixed alternatives.

Theorem 2.2. Assume that (C1)–(C7) are fulfilled. Then under H1,

(Th1+d/2)−1
(
ST −BT (u, v)

) P−→
∫ [

m(u, x)−m(v, x)
]2
π(x)dx > 0.

We finally examine the behaviour of ST under local alternatives to get an idea of

the quality of the test. According to the next theorem, the asymptotic power of

the test against alternatives of the form m + cT∆ with cT = (Th1+d/2)−1/2 and

m satisfying the null hypothesis is constant for all functions ∆ having the same

weighted L2-norm. This behaviour is well-known from other kernel-based L2-test

statistics (see e.g. Härdle & Mammen [18]).
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Theorem 2.3. Assume that (C1)–(C7) are fulfilled and let cT = (Th1+d/2)−1/2.

Then under H1,T ,

ST −BT (u, v)
d−→ N

(∫
∆2(v, x)π(x)dx, V (u, v)

)
with BT (u, v) and V (u, v) as defined in Theorem 2.1.

To prove Theorem 2.3, we need the process {Xt,T} to be locally stationary and

strongly mixing under local alternatives. This is guaranteed as long as the regres-

sors Xt,T do not contain lagged values of Yt,T . In the autoregressive case (2.3),

however, it is not clear at all whether the process {Xt,T} has these two properties.

In this short note, we do not explore this issue any further. Instead, we simply

exclude the autoregressive case when examining local alternatives.

2.6 Bootstrapping ST

Theorem 2.1 allows us to approximate the distribution of the test statistic ST by a

Gaussian distribution. It is however well-known that in nonparametric hypothesis

testing, the test statistic converges rather slowly to the asymptotic distribution

(see e.g. Härdle & Mammen [18] or Li & Wang [26]). The approximation in

finite samples is thus rather poor in many cases. Moreover, the bias and variance

expressions BT (u, v) and V (u, v) contain unknown functions. Replacing them by

consistent estimates results in further approximation errors.

A common way to improve the finite sample behaviour of a test is to use bootstrap

methods. In what follows, we set up a wild bootstrap procedure. As shown in the

proof of Theorem 2.1, under the null hypothesis, it holds that

ST = UT (u) + UT (v) + op(1)

with

UT (u) = Th1+d/2

∫ ( 1

T

T∑
t=1

Ku,t,TKx,t,T εt,T

)2 π(x)

f̂ 2(u, x)
dx

UT (v) = Th1+d/2

∫ ( 1

T

T∑
t=1

Kv,t,TKx,t,T εt,T

)2 π(x)

f̂ 2(v, x)
dx,

where Ku,t,T = Kh(u− t
T

) and Kx,t,T =
∏d

j=1Kh(x
j−Xj

t,T ) for short. Thus, under

the null, ST is asymptotically equivalent to the sum of two quadratic forms UT (u)
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and UT (v). This allows us to imitate the distribution of ST by bootstrapping the

two quadratic forms UT (u) and UT (v) rather than the whole statistic ST (cp. Kreiss

et al. [22]). Note that the distribution of UT (u)+UT (v) does not depend on whether

the null hypothesis is true or not. The bootstrap estimate of UT (u) + UT (v) thus

mimics the distribution of the statistic ST under the null hypothesis no matter

whether the null holds or not.

The bootstrap sample is generated as follows. To construct bootstrap residuals

ε∗t,T , denote the estimated residuals by

ε̂t,T = Yt,T − m̂
( t
T
,Xt,T

)
.

Letting {ηt} be some sequence of i.i.d. variables with zero mean and unit variance

that is independent of {Yt,T , Xt,T}Tt=1, we define

ε∗t,T = ε̂t,T · ηt.

The bootstrap residuals have the following properties: They are conditionally

independent given the sample {Yt,T , Xt,T}Tt=1. Moreover, they mimic the first two

moments of the errors εt,T . In particular, E∗[ε∗t,T ] = 0 and E∗[(ε∗t,T )2] = ε̂2
t,T , where

E∗[ · ] = E[ · |{Yt,T , Xt,T}Tt=1]. As we do not do any resampling for the regressors

Xt,T , we arrive at the bootstrap sample {Xt,T , ε
∗
t,T}Tt=1.

Replacing the residuals εt,T in the quadratic forms UT (u) and UT (v) by the boot-

strap residuals ε∗t,T , we obtain the bootstrap statistic

S∗T = U∗T (u) + U∗T (v)

with

U∗T (u) = Th1+d/2

∫ ( 1

T

T∑
t=1

Ku,t,TKx,t,T ε
∗
t,T

)2 π(x)

f̂ 2(u, x)
dx

U∗T (v) = Th1+d/2

∫ ( 1

T

T∑
t=1

Kv,t,TKx,t,T ε
∗
t,T

)2 π(x)

f̂ 2(v, x)
dx.

The next theorem shows that the above defined wild bootstrap is consistent. To

formulate the result, we let P∗( · ) := P( · |{Yt,T , Xt,T}Tt=1).

Theorem 2.4. Assume that (C1)–(C7) are fulfilled. Then

S∗T −BT (u, v)
d−→ N

(
0, V (u, v)

)
conditional on the sample {Yt,T , Xt,T}Tt=1 with probability tending to one. Put dif-

ferently, P ∗
(
S∗T − BT (u, v) ≤ x

) P−→ Φ(x), where Φ is a Gaussian distribution

function with mean zero and variance V (u, v).
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2.7 Concluding Remarks

In this chapter, we have developed a nonparametric procedure to test whether the

time-varying regression function in model (2.1) has the same form at two different

time points. We have proposed a kernel-based L2-statistic and have examined

its asymptotic properties. In particular, we have shown that after subtracting

a bias term that diverges to infinity, the statistic weakly converges to a normal

distribution (both under the null and under local alternatives). To improve the

small sample behaviour, we have additionally set up a wild bootstrap procedure

and have shown that it is consistent.

There are a couple of other interesting testing issues in the framework (2.1) which

may be approached quite similarly as the testing problem at hand:

• Rather than testing whether the time-varying regression function is the same

at two different time points, one may ask the question whether it is the same

over a whole time interval. Let I ⊂ [0, 1] be the (rescaled) time interval to be

tested. A possible test statistic is given by

S ′T = n′T

∫
I×I

(∫ [
m̂(u, x)− m̂(v, x)

]2
π(x)dx

)
dudv,

where n′T is an appropriately chosen scaling factor diverging to infinity. Alter-

natively, one could use the statistic

S ′′T = n′′T

∫
I

(∫ [
m̂(u, x)− m̃(x)

]2
π(x)dx

)
du,

which compares m̂ with an estimate m̃ that does not localize in time but is

based on all data points in the time interval I. Obviously, the statistics S ′T and

S ′′T are very similar to ST . We thus conjecture that the proving techniques of

this chapter can be used to derive the asymptotic distribution of these statistics

and to set up a wild bootstrap procedure.

• Another interesting testing issue is whether the nonparametric function m can

be replaced by a parametric specification with time-varying coefficients. One

way to approach this problem is to measure the L2-distance between a nonpara-

metric and a parametric fit of the regression function. Similarly as in Härdle &

Mammen [18], one may want to artificially smooth the parametric estimate to

get rid of certain bias terms. The resulting test statistic will again be similar in

structure to ST .
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Appendix

In what follows, we prove Theorems 2.1–2.3 and 2.4. Throughout the appendix,

we use the symbol C to denote a universal real constant which may take a different

value on each occurrence.

Auxiliary Results

To analyze the asymptotic behaviour of the test statistic ST , we need some results

on uniform convergence of the Nadaraya-Watson estimate m̂(u, x). To formulate

these results, we split up the expression m̂(u, x)−m(u, x) into different components

according to

m̂(u, x)−m(u, x) =
1

f̂(u, x)

(
ĝV (u, x) + ĝB(u, x)

)
with

f̂(u, x) =
1

T

T∑
t=1

Kh

(
u− t

T

) d∏
j=1

Kh(x
j −Xj

t,T )

ĝV (u, x) =
1

T

T∑
t=1

Kh

(
u− t

T

) d∏
j=1

Kh(x
j −Xj

t,T )εt,T

ĝB(u, x) =
1

T

T∑
t=1

Kh

(
u− t

T

) d∏
j=1

Kh(x
j −Xj

t,T )
[
m
( t
T
,Xt,T

)
−m(u, x)

]
.

The following two lemmas summarize the convergence behaviour of these three

components.

Lemma A1. Let (C1)–(C7) be fulfilled. Then for any compact subset S ⊂ Rd,

sup
u∈[0,1],x∈S

∣∣f̂(u, x)− E[f̂(u, x)]
∣∣ = Op

(√ log T

Thd+1

)
sup

u∈[0,1],x∈S

∣∣ĝB(u, x)− E
[
ĝB(u, x)

]∣∣ = Op

(√ log T

Thd+1

)
sup

u∈[0,1],x∈S

∣∣ĝV (u, x)
∣∣ = Op

(√ log T

Thd+1

)
.
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Lemma A2. Let (C1)–(C7) be fulfilled and let Ih = [C1h, 1−C1h]. Then for any

compact subset S ⊂ Rd,

sup
u∈Ih,x∈S

∣∣E[f̂(u, x)]− f(u, x)
∣∣ = O

(
hr +

1

Thd+1

)
sup

u∈Ih,x∈S

∣∣E[ĝB(u, x)]
∣∣ = O

(
hr +

1

Thd

)
.

Combining these two lemmas immediately yields the following result.

Lemma A3. Let (C1)–(C7) be fulfilled and let Ih = [C1h, 1−C1h]. Then for any

compact subset S ⊂ Rd,

sup
u∈Ih,x∈S

∣∣f̂(u, x)− f(u, x)
∣∣ = Op

(√ log T

Thd+1
+ hr

)
sup

u∈Ih,x∈S

∣∣m̂(u, x)−m(u, x)
∣∣ = Op

(√ log T

Thd+1
+ hr

)
.

Lemmas A1–A3 directly follow from the results of Chapter 1. Note that Lemmas

A1 and A3 can be shown to hold almost surely rather than only in probability.

This is easily seen when inspecting the proofs in Chapter 1 and keeping in mind

that the model variables are geometrically mixing.

Proof of Theorems 2.1–2.3

In what follows, we give the proof of Theorem 2.3. Theorem 2.1 is obtained by

setting the function ∆ equal to zero in the proof. Some straightforward additional

considerations yield Theorem 2.2.

Using the shorthands Ku,t,T = Kh(u − t
T

) and Kx,t,T =
∏d

j=1Kh(x
j − Xj

t,T ), we

can rewrite the statistic ST as

ST = Th1+d/2

∫ [
VT (u, v, x) +BT (u, v, x)

]2
π(x)dx

with

VT (u, v, x) =
1

T

T∑
t=1

Ku,t,TKx,t,T εt,T

/
f̂(u, x)

− 1

T

T∑
t=1

Kv,t,TKx,t,T εt,T

/
f̂(v, x)

BT (u, v, x) =
1

T

T∑
t=1

Ku,t,TKx,t,TmT

( t
T
,Xt,T

)/
f̂(u, x)
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− 1

T

T∑
t=1

Kv,t,TKx,t,TmT

( t
T
,Xt,T

)/
f̂(v, x).

Theorem 2.3 immediately follows from the following three lemmas.

Lemma A4. Under (C1)–(C7), it holds that

Th1+d/2

∫
V 2
T (u, v, x)π(x)dx−BT (u, v)

d−→ N
(
0, V (u, v)

)
.

Lemma A5. Under (C1)–(C7), it holds that

Th1+d/2

∫
BT (u, v, x)VT (u, v, x)π(x)dx = op(1).

Lemma A6. Under (C1)–(C7), it holds that

Th1+d/2

∫
B2
T (u, v, x)π(x)dx =

∫
∆2(v, x)π(x)dx+ op(1).

We now give the proofs of the above lemmas.

Proof of Lemma A4. We write

Th1+d/2

∫
V 2
T (u, v, x)π(x)dx = UT (u, v)

with UT (u, v) = UT (u) + UT (v) and

UT (u) = Th1+d/2

∫ ( 1

T

T∑
t=1

Ku,t,TKx,t,T εt,T

)2 π(x)

f̂ 2(u, x)
dx

UT (v) = Th1+d/2

∫ ( 1

T

T∑
t=1

Kv,t,TKx,t,T εt,T

)2 π(x)

f̂ 2(v, x)
dx.

In what follows, we show that

UT (u)−BT (u)
d−→ N(0, V (u)) (2.5)

UT (v)−BT (v)
d−→ N(0, V (v)). (2.6)

Combining the arguments for (2.5) and (2.6) with the fact that Ku,t,TKv,t,T = 0

for all t = 1, . . . , T (provided T is large enough), it is straightforward to see that

UT (u, v)− (BT (u) +BT (v))
d−→ N(0, V (u) + V (v)),

which yields the result.
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In the remainder of the proof, we give the arguments for (2.5), the ones for (2.6)

being exactly the same. To start with, we split up UT (u) into two parts according

to

UT (u) = UT,1(u) + UT,2(u) + op(1)

with

UT,1(u) =
h1+d/2

T

T∑
t=1

K2
u,t,T

(∫
K2
x,t,T

π(x)

f 2(u, x)
dx
)
ε2
t,T

UT,2(u) =
h1+d/2

T

T∑
t=1

∑
s 6=t

Ku,t,TKu,s,T

(∫
Kx,t,TKx,s,T

π(x)

f 2(u, x)
dx
)
εt,T εs,T ,

where we have used the uniform convergence results of Lemmas A1–A3 to replace

the kernel density f̂(u, x) by the true density f(u, x). We now show that

UT,1(u) = BT (u) + op(1) (2.7)

V (u)−1/2UT,2(u)
d−→ N(0, 1). (2.8)

This completes the proof of (2.5).

Proof of (2.7). It suffices to show that Var(UT,1(u)) = o(1) and E[UT,1(u)] =

BT (u) + o(1). The first claim easily follows from exploiting the mixing conditions

on the model variables. To prove the second claim, we proceed as follows: To start

with, we successively replace Xt,T with the approximating variables Xt(
t
T

), using

the fact that ‖Xt,T −Xt(u)‖ ≤ (| t
T
− u|+ 1

T
)Ut,T (u). Similar arguments as in the

proofs of Theorems 1.6 and 1.7 in Chapter 1 yield that

E[UT,1(u)] =
h1+d/2

T

T∑
t=1

K2
u,t,TE

[( ∫
K2
x,t,T

π(x)

f 2(u, x)
dx
)
σ2
( t
T
,Xt,T

)]
=
h1+d/2

T

T∑
t=1

K2
u,t,TE

[( ∫ d∏
j=1

K2
h

(
xj −Xj

t

( t
T

))
× π(x)

f 2(u, x)
dx
)
σ2
( t
T
,Xt

( t
T

))]
+ o(1)

=
h1+d/2

T

T∑
t=1

K2
u,t,T

∫ (∫ d∏
j=1

K2
h(xj − zj)

× σ2
( t
T
, z
)
f
( t
T
, z
)
dz
) π(x)

f 2(u, x)
dx+ o(1).
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Since

1

T

T∑
t=1

K2
u,t,Tσ

2
( t
T
, z
)
f
( t
T
, z
)

=

∫
K2
h(u− w)σ2(w, z)f(w, z)dw +O

( 1

Th3

)
uniformly in u and z, we further get that

E[UT,1(u)] = h1+d/2

∫ (∫∫
K2
h(u− w)

d∏
j=1

K2
h(xj − zj)

× σ2(w, z)f(w, z)dwdz
) π(x)

f 2(u, x)
dx+ o(1)

= BT (u) + o(1).

Proof of (2.8). We rewrite UT,2(u) as

UT,2(u) =
T∑
t=1

Zt,T (u)

with

Zt,T (u) = 2
h1+d/2

T

∑
s<t

Ku,t,TKu,s,T

(∫
Kx,t,TKx,s,T

π(x)

f 2(u, x)
dx
)
εt,T εs,T .

Note that under (C6), {Zt,T (u),Ft,T} with Ft,T = σ(Xt+1,T , Xt,T , εt,T , . . . , X1,T , ε1,T )

is a martingale difference array. We can thus use a central limit theorem for

martingale difference arrays (in particular Theorem 1 in Chapter 8 of Pollard

[37]) to show that
∑T

t=1 Zt,T (u) is asymptotically normal. It suffices to verify the

following conditions:

(CLT1)
∑T

t=1 E[Z4
t,T (u)]→ 0.

(CLT2)
∑T

t=1 E[Z2
t,T (u)|Ft−1,T ]

P−→ V (u).

This yields (2.8).

Proof of (CLT1). We can write

T∑
t=1

E[Z4
t,T (u)] =

16h2d+4

T 4

T∑
t=1

∑
s,s′,s′′,s′′′∈St

∫
. . .

∫
E
[
Wt,T (w, x, y, z)

×Ws,T (w)Ws′,T (x)Ws′′,T (y)Ws′′′,T (z)
] π(w) . . . π(z)

f 2(u,w) . . . f 2(u, z)
dw . . . dz,
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where St denotes the set of index combinations (s, s′, s′′, s′′′) with s, s′, s′′, s′′′ < t,

Wt,T (w, x, y, z) = K4
u,t,TKw,t,TKx,t,TKy,t,TKz,t,T ε

4
t,T ,

Ws,T (w) = Ku,s,TKw,s,T εs,T ,

and Ws′,T (x), Ws′′,T (y), Ws′′′,T (z) denote analogous expressions. We partition St

into the subsets

S
(1)
t =

{
(s, s′, s′′, s′′′) ∈ St | the indices s, s′, s′′, s′′′ are all different}

S
(2)
t =

{
(s, s′, s′′, s′′′) ∈ St | exactly two of the indices s, s′, s′′, s′′′ are the same}

S
(3)
t =

{
(s, s′, s′′, s′′′) ∈ St | exactly three of the indices s, s′, s′′, s′′′ are the same}

S
(4)
t =

{
(s, s′, s′′, s′′′) ∈ St | the indices s, s′, s′′, s′′′ are all the same}

S
(5)
t =

{
(s, s′, s′′, s′′′) ∈ St | the indices s, s′, s′′, s′′′ form two different pairs}

and write
T∑
t=1

E[Z4
t,T (u)] = Q

(1)
T + . . .+Q

(5)
T

with

Q
(i)
T =

16h2d+4

T 4

T∑
t=1

∑
s,s′,s′′,s′′′∈S(i)

t

∫
. . .

∫
E
[
Wt,T (w, x, y, z)

×Ws,T (w)Ws′,T (x)Ws′′,T (y)Ws′′′,T (z)
] π(w) . . . π(z)

f 2(u,w) . . . f 2(u, z)
dw . . . dz

for i = 1, . . . , 5. In the remainder of the proof, the terms Q
(1)
T , . . . , Q

(5)
T are consid-

ered one after the other.

We start with Q
(1)
T . An index k is said to be separated from another index k′, if the

two indices are further away from each other than C2 log T for some large constant

C2 < ∞ to be chosen later on, i.e. |k − k′| > C2 log T . Using this definition, we

split up the index set S
(1)
t into the two parts

S
(1,a)
t =

{
(s, s′, s′′, s′′′) ∈ S

(1)
t

∣∣ none of the indices s, s′, s′′, s′′′

are separated from the index t
}

S
(1,b)
t =

{
(s, s′, s′′, s′′′) ∈ S

(1)
t

∣∣ at least one of the indices s, s′, s′′, s′′′

is separated from the index t
}

and write Q
(1)
T = Q

(1,a)
T + Q

(1,b)
T , the sums in Q

(1,a)
T and Q

(1,b)
T running over S

(1,a)
t

and S
(1,b)
t , respectively. First consider Q

(1,b)
T and take a tuple (s, s′, s′′, s′′′) ∈ S

(1,b)
t .
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W.l.o.g. we can restrict attention to tuples with t > s > s′ > s′′ > s′′′ and

|s′′− s′′′| > C2 log T . (All other cases can be treated in exactly the same way.) As

the model variables are mixing (with exponential decay), we can use Davydov’s

inequality to get∣∣∣E[Wt,T (w, x, y, z)Ws,T (w)Ws′,T (x)Ws′′,T (y)Ws′′′,T (z)
]∣∣∣

=
∣∣∣Cov

(
Wt,T (w, x, y, z)Ws,T (w)Ws′,T (x)Ws′′,T (y),Ws′′′,T (z)

)∣∣∣
≤ Cα(C2 log T )δ/(2+δ)

(
E
∣∣Ws′′′,T (z)

∣∣2+δ
)1/(2+δ)

×
(
E
∣∣Wt,T (w, x, y, z)Ws,T (w)Ws′,T (x)Ws′′,T (y)

∣∣2+δ
)1/(2+δ)

≤ CT−C3 ,

where C3 is a large positive constant (which can be chosen as large as desired by

picking C2 large enough). This immediately yields that Q
(1,b)
T ≤ CT−C4 with some

arbitrarily large constant C4. As a result, the term Q
(1,b)
T can be asymptotically

neglected. We next turn to Q
(1,a)
T . As none of the indices s, s′, s′′, s′′′ are separated

from t, the number of elements contained in S
(1,a)
t is smaller than C(log T )4 for

each given t. As a consequence,

Q
(1,a)
T ≤ C

h2d+4

T 4

(log T )4

h4d+8

T∑
t=1

K4
u,t,T ≤ C

(log T )4

T 3h2d+3
→ 0.

Putting everything together, we arrive at Q
(1)
T → 0.

By analogous arguments, we obtain that Q
(i)
T → 0 for i = 2, . . . , 5. Consider for

example Q
(2)
T . Because of symmetry considerations, we can assume w.l.o.g. that

s ≥ s′ ≥ s′′ ≥ s′′′. Given this, the following cases are possible:

(a) t > s = s′ > s′′ > s′′′ (b) t > s > s′ = s′′ > s′′′ (c) t > s > s′ > s′′ = s′′′.

For each of these three cases, we can distinguish between different scenarios in

which some of the indices are separated from each other or not. Playing through all

these possibilities and exploiting the mixing conditions similarly as in the analysis

of Q
(1)
T , we get that Q

(2)
T → 0. By similar case distinctions, we can show that

Q
(i)
T → 0 for i = 3, 4, 5 as well.

Proof of (CLT2). To show (CLT2), it suffices to verify that∑T

t=1

(
E[Z2

t,T (u)|Ft−1,T ]− E[Z2
t,T (u)]

) P−→ 0 (2.9)∑T

t=1
E[Z2

t,T (u)]→ V (u). (2.10)
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We first prove (2.9). Using the shorthands

Wt,T (x, y) = K2
u,t,TKx,t,TKy,t,Tσ

2
( t
T
,Xt,T

)
Ws,T (x) = Ku,s,TKx,s,T εs,T ,

we have

E
( T∑
t=1

(
E[Z2

t,T (u)|Ft−1,T ]− E[Z2
t,T (u)]

))2

=
16h2d+4

T 4

T∑
t,t′=1

∑
s,s′<t

∑
s′′,s′′′<t′

∫
. . .

∫ (
E
[
Wt,T (w, x)Wt′,T (y, z)Ws,T (w)

×Ws′,T (x)Ws′′,T (y)Ws′′′,T (z)
]
− E

[
Wt,T (w, x)Ws,T (w)Ws′,T (x)

]
× E

[
Wt′,T (y, z)Ws′′,T (y)Ws′′′,T (z)

]) π(w) . . . π(z)

f 2(u,w) . . . f 2(u, z)
dw . . . dz.

We now apply the same strategy as in the proof of (CLT1): By symmetry con-

siderations, we can assume w.l.o.g. that t ≥ t′, s ≥ s′, and s′′ ≥ s′′′. Thus, the

following cases are possible:

(a) t ≥ t′ ≥ s, s′, s′′, s′′′ (b) t > s > t′ ≥ s′, s′′, s′′′ (c) t > s, s′ ≥ t′ > s′′, s′′′.

Each of these three cases can be further split up into subcases. For case (a), we

can for example distinguish between the following possibilities:

(a1) the indices s, s′, s′′, s′′′ are all different

(a2) exactly two of the indices s, s′, s′′, s′′′ are the same

(a3) exactly three of the indices s, s′, s′′, s′′′ are the same

(a4) the indices s, s′, s′′, s′′′ are all the same

(a5) the indices s, s′, s′′, s′′′ form two different pairs.

Repeating the arguments from the proof of (CLT1), we can play through all these

cases and proceed analogously for (b) and (c) to arrive at

E
( T∑
t=1

(
E[Z2

t,T (u)|Ft−1,T ]− E[Z2
t,T (u)]

))2

→ 0,

which immediately implies (2.9).

Using the mixing conditions on the model variables, successively replacing Xt,T by

the approximating variables Xt(
t
T

) and then exploiting the smoothness conditions
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on m, σ and the densities f , we further obtain (2.10), thus completing the proof.

Proof of Lemma A5. First recall that mT (w, z) = m(w, z) + cT∆(w, z) with m

satisfying the null hypothesis, i.e. m(u, ·) = m(v, ·) π-a.s. We thus have

1

T

T∑
t=1

Kv,t,TKx,t,TmT

( t
T
,Xt,T

)
= m(v, x)f̂(v, x) +

1

T

T∑
t=1

Kv,t,TKx,t,T∆t,T (v, x)

+
cT
T

T∑
t=1

Kv,t,TKx,t,T∆
( t
T
,Xt,T

)
(2.11)

with ∆t,T (v, x) = m( t
T
, Xt,T )−m(v, x). This allows us to write

Th1+d/2

∫
BT (u, v, x)VT (u, v, x)π(x)dx = QT (u) +QT (v) +RT (v) + op(1)

with

QT (u) =
h1+d/2

T

∫ T∑
t,s=1

Ku,t,TKu,s,TKx,t,T εt,TKx,s,T∆s,T (u, x)
π(x)

f 2(u, x)
dx

QT (v) =
h1+d/2

T

∫ T∑
t,s=1

Kv,t,TKv,s,TKx,t,T εt,TKx,s,T∆s,T (v, x)
π(x)

f 2(v, x)
dx

RT (v) =
h1+d/2cT

T

∫ T∑
t,s=1

Kv,t,TKv,s,TKx,t,T εt,TKx,s,T∆
( s
T
,Xs,T

) π(x)

f 2(v, x)
dx,

where we have used the uniform convergence results from Lemmas A1–A3 to re-

place the kernel density estimates f̂(u, x) and f̂(v, x) by the true densities f(u, x)

and f(v, x).

We start by analyzing QT (u). As a first step, the term is split up into two com-

ponents:

QT (u) = QT,1(u) +QT,2(u)

with

QT,1(u) =
h1+d/2

T

∫ T∑
t=1

K2
u,t,TK

2
x,t,T εt,T∆t,T (u, x)

π(x)

f 2(u, x)
dx

QT,2(u) =
h1+d/2

T

∫ T∑
t=1

∑
s 6=t

Ku,t,TKu,s,TKx,t,T εt,TKx,s,T∆s,T (u, x)
π(x)

f 2(u, x)
dx.
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It is easy to see that E[Q2
T,1(u)] ≤ C h2

Thd+1 → 0, which immediately implies that

QT,1(u) = op(1). To cope with the term QT,2(u), we further decompose it into two

parts:

QT,2(u) = QT,2,V (u) +QT,2,B(u)

with

QT,2,V (u) =
h1+d/2

T

∫ T∑
t=1

∑
s 6=t

Ku,t,TKu,s,TKx,t,T εt,T

×
(
Kx,s,T∆x,s,T (u)− E[Kx,s,T∆s,T (u, x)]

) π(x)

f 2(u, x)
dx

QT,2,B(u) =
h1+d/2

T

∫ T∑
t=1

∑
s 6=t

Ku,t,TKu,s,TKx,t,T εt,TE[Kx,s,T∆s,T (u, x)]
π(x)

f 2(u, x)
dx.

The second moment of QT,2,V (u) is given by the expression

E[Q2
T,2,V (u)] =

(h1+d/2

T

)2
∫∫ T∑

t,t′=1

∑
s6=t,s′ 6=t′

Ku,t,TKu,s,TKu,t′,TKu,s′,T

× E
[
Kx,t,T εt,TKy,t′,T εt′,T

(
Kx,s,T∆s,T (u, x)− E[Kx,s,T∆s,T (u, x)]

)
(
Ky,s′,T∆s′,T (u, y)− E[Ky,s′,T∆s′,T (u, y)]

)] π(x)π(y)

f 2(u, x)f 2(u, y)
dxdy.

Using similar techniques as in the proof of (CLT1), this expression can be shown

to converge to zero, which yields that QT,2,V (u) = op(1). Furthermore,

QT,2,B(u) = Th1+d/2

∫
WT,1(u, x)WT,2(u, x)

π(x)

f 2(u, x)
dx+ op(1) (2.12)

with

WT,1(u, x) =
1

T

T∑
t=1

Ku,t,TE[Kx,t,T∆t,T (u, x)]

WT,2(u, x) =
1

T

T∑
t=1

Ku,t,TXx,t,T εt,T .

Replacing the occurrences of Xt,T in WT,1(u, x) by the approximating variables

Xt(
t
T

) analogously as in the proof of (2.7) yields that

WT,1(u, x) =
1

T

T∑
t=1

Ku,t,T

∫ d∏
j=1

Kh(x
j − zj)

×
(
m
( t
T
, z
)
−m(u, x)

)
f
( t
T
, z
)
dz +O

( 1

Thd

)
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uniformly in u and x. Since

1

T

T∑
t=1

Ku,t,T

(
m
( t
T
, z
)
−m(u, x)

)
f
( t
T
, z
)

=

∫
Kh(u− w)

(
m(w, z)−m(u, x)

)
f(w, z)dw +O

( 1

Th2

)
uniformly in u, x and z, we further get that

WT,1(u, x) =

∫∫
Kh(u− w)

d∏
j=1

Kh(x
j − zj)

×
(
m(w, z)−m(u, x)

)
f(w, z)dwdz +O

( 1

Thd
+

1

Th2

)
.

Finally, exploiting the smoothness conditions on m and f together with the prop-

erties of the higher-order kernels, standard arguments yield that

WT,1(u, x) = O
(
hr +

1

Thd
+

1

Th2

)
(2.13)

uniformly in u and x. We thus obtain that

E
(
Th1+d/2

∫
WT,1(u, x)WT,2(u, x)

π(x)

f 2(u, x)
dx
)2

= T 2hd+2

∫∫
WT,1(u, x)WT,1(u, y)

×
( 1

T 2

T∑
t=1

K2
u,t,TE

[
Kx,t,TKy,t,T ε

2
t,T

]) π(x)π(y)

f 2(u, x)f 2(u, y)
dxdy

= O
(
T 2hd+2

(
hr +

1

Thd
+

1

Th2

)2 1

Th

)
= o(1).

Recalling (2.12), this implies that QT,2,B(u) = op(1). As a result,

QT (u) = op(1)

and analogously QT (v) = op(1). Similar arguments can be used to show that

RT (v) = op(1). This completes the proof.

Proof of Lemma A6. Using (2.11), recalling that cT = (Th1+d/2)−1/2 and ap-

plying the uniform convergence results of Lemmas A1–A3 to replace the kernel

densities f̂(u, x) and f̂(v, x) by the true densities f(u, x) and f(v, x), we obtain

Th1+d/2

∫
B2
T (u, v, x)π(x)dx = QT (v) +RT (u) +RT (v) +WT (v) + op(1)
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with

QT (v) =

∫ ( 1

T

T∑
t=1

Kv,t,TKx,t,T∆
( t
T
,Xt,T

))2 π(x)

f 2(v, x)
dx

RT (u) = Th1+d/2

∫ ( 1

T

T∑
t=1

Ku,t,TKx,t,T∆t,T (u, x)
)2 π(x)

f 2(u, x)
dx

RT (v) = Th1+d/2

∫ ( 1

T

T∑
t=1

Kv,t,TKx,t,T∆t,T (v, x)
)2 π(x)

f 2(v, x)
dx

WT (v) =
h1+d/2cT

T

∫ T∑
t,s=1

Kv,t,TKv,s,TKx,t,TKx,s,T∆t,T (v, x)∆
( s
T
,Xs,T

) π(x)

f 2(v, x)
dx,

where as in Lemma A5, we use the abbrevation ∆t,T (v, x) = m( t
T
, Xt,T )−m(v, x).

It is easy to see that

QT (v) =

∫
∆2(v, x)π(x)dx+ op(1).

To analyze the term RT (u), we decompose it according to

RT (u) = RT,1(u) +RT,2(u) +RT,3(u)

with

RT,1(u) =
h1+d/2

T

∫ T∑
t,s=1

Ku,t,TKu,s,t

(
Kx,t,T∆t,T (u, x)− E[Kx,t,T∆t,T (u, x)]

)
×
(
Kx,s,T∆s,T (u, x)− E[Kx,s,T∆s,T (u, x)]

) π(x)

f 2(u, x)
dx

RT,2(u) =
2h1+d/2

T

∫ T∑
t,s=1

Ku,t,TKu,s,tE[Kx,t,T∆t,T (u, x)]

×
(
Kx,s,T∆s,T (u, x)− E[Kx,s,T∆s,T (u, x)]

) π(x)

f 2(u, x)
dx

RT,3(u) =
h1+d/2

T

∫ T∑
t,s=1

Ku,t,TKu,s,tE[Kx,t,T∆t,T (u, x)]

× E[Kx,s,T∆s,T (u, x)]
π(x)

f 2(u, x)
dx.

In what follows, these three terms are considered separately. To handle the term

RT,1(u), we further split it up into two parts,

RT,1(u) = RT,1,a(u) +RT,1,b(u),
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where

RT,1,a(u) =
h1+d/2

T

∫ T∑
t=1

K2
u,t,T

(
Kx,t,T∆t,T (u, x)− E[Kx,t,T∆t,T (u, x)]

)2 π(x)

f 2(u, x)
dx

RT,1,b(u) =
h1+d/2

T

∫ T∑
t=1

∑
s 6=t

Ku,t,TKu,s,t

(
Kx,t,T∆t,T (u, x)− E[Kx,t,T∆t,T (u, x)]

)
×
(
Kx,s,T∆s,T (u, x)− E[Kx,s,T∆s,T (u, x)]

) π(x)

f 2(u, x)
dx.

Arguing analogously as in the proof of (2.13) yields E[RT,1,a(u)] = o(1), which in

turn gives that RT,1,a(u) = op(1). By similar arguments as in the proof of (CLT1),

we further obtain that RT,1,b(u) = op(1). As a result, RT,1(u) = op(1). Repeating

the arguments used to analyze the term QT,2,B(u) in Lemma A5, we obtain that

RT,2(u) = op(1). Finally, to prove that RT,3(u) = op(1), we again use arguments

similar to those for (2.13). These yield

RT,3(u) = Th1+d/2

∫ { 1

T

T∑
t=1

Ku,t,TE
[ d∏
j=1

Kh

(
xj −Xj

t

( t
T

))
×
(
m
( t
T
,Xt

( t
T

))
−m(u, x)

)]}2 π(x)

f 2(u, x)
dx+O(hd/2)

= O
(
Th1+d/2

(
hr +

1

Th2

)2)
+O(hd/2) = o(1).

Putting everything together, we arrive at

RT (u) = op(1)

and analogously at RT (v) = op(1). Slightly modifying the above arguments, we

get that WT (v) = op(1) as well.

Proof of Theorem 2.4

The proof mimics the arguments of Lemma A4 in the bootstrap world. We write

S∗T = U∗T (u) + U∗T (v)

with

U∗T (u) = Th1+d/2

∫ ( 1

T

T∑
t=1

Ku,t,TKx,t,T ε
∗
t,T

)2 π(x)

f̂ 2(u, x)
dx

U∗T (v) = Th1+d/2

∫ ( 1

T

T∑
t=1

Kv,t,TKx,t,T ε
∗
t,T

)2 π(x)

f̂ 2(v, x)
dx.
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As in Lemma A4, the two terms U∗T (u) and U∗T (v) can be analyzed separately.

We restrict attention to U∗T (u), the arguments for U∗T (v) being the same. Us-

ing the uniform convergence results from Lemmas A1–A3, one can show that
1
T

∑T
t=1Ku,t,TKx,t,T ε

∗
t,T = Op(

√
log T/Thd+1 + hr) uniformly in u and x. This

allows us to write

U∗T (u) = U∗T,1(u) + U∗T,2(u) + op(1)

with

U∗T,1(u) =
h1+d/2

T

T∑
t=1

K2
u,t,T

(∫
K2
x,t,T

π(x)

f 2(u, x)
dx
)

(ε∗t,T )2

U∗T,2(u) =
h1+d/2

T

T∑
t=1

∑
s 6=t

Ku,t,TKu,s,T

(∫
Kx,t,TKx,s,T

π(x)

f 2(u, x)
dx
)
ε∗t,T ε

∗
s,T .

In what follows, we show that

U∗T,1(u) = BT (u) + op(1) (2.14)

P∗(U∗T,2(u) ≤ x)
P−→ Φ0,V (u)(x), (2.15)

where Φ0,V (u) is a Gaussian distribution function with mean zero and variance

V (u). Combining (2.14) and (2.15) immediately yields that P∗(U∗T (u) − BT (u) ≤
x)

P−→ Φ0,V (u)(x). This completes the proof.

Proof of (2.14). Noting that

ε̂2
t,T = ε2

t,T + 2εt,T

[
m
( t
T
,Xt,T

)
− m̂

( t
T
,Xt,T

)]
+
[
m
( t
T
,Xt,T

)
− m̂

( t
T
,Xt,T

)]2

, (2.16)

we have that

E∗[U∗T,1(u)] =
h1+d/2

T

T∑
t=1

K2
u,t,T

(∫
K2
x,t,T

π(x)

f 2(u, x)
dx
)
ε̂2
t,T

=
h1+d/2

T

T∑
t=1

K2
u,t,T

(∫
K2
x,t,T

π(x)

f 2(u, x)
dx
)
ε2
t,T + op(1)

=
h1+d/2

T

T∑
t=1

K2
u,t,TE

[( ∫
K2
x,t,T

π(x)

f 2(u, x)
dx
)
ε2
t,T

]
+ op(1)

= E[UT,1(u)] + op(1).



Appendix 95

From Lemma A4 we already know that E[UT,1(u)] = BT (u) + o(1), leaving us with

E∗[U∗T,1(u)] = BT (u) + op(1).

Moreover, it is easy to see that U∗T,1(u)− E∗[U∗T,1(u)] = op(1).

Proof of (2.15). We rewrite U∗T,2(u) as

U∗T,2(u) =
T∑

t,s=1

w∗s,t,T

with

w∗s,t,T =


h1+d/2

T
Ku,t,TKu,s,T

( ∫
Kx,t,TKx,s,T

π(x)
f2(u,x)

dx
)
ε∗t,T ε

∗
s,T for t 6= s

0 otherwise.

As the bootstrap residuals are independent conditional on the sample {Yt,T , Xt,T},
we can directly use the results of de Jong [20] on quadratic forms to show (2.15).

In particular, it suffices to show that the following three conditions are satisfied

(see Theorem 2.1 in [20]):

(CLT1*) Var∗(U∗T,2(u))
P−→ V (u).

(CLT2*) Var∗(U∗T,2(u))−1 max1≤s≤T
∑T

t=1 Var∗(w∗s,t,T )
P−→ 0.

(CLT3*) Var∗(U∗T,2(u))−2 E∗[U∗T,2(u)4]
P−→ 3.

To show (CLT1*), we proceed similarly to the proof of (2.14). The details are

omitted. For the proof of (CLT2*), note that

max
1≤s≤T

T∑
t=1

Var∗(w∗s,t,T ) ≤ C

∫∫
max

1≤s≤T

(
hd+1K2

u,s,T |Kx,s,tKy,s,T |ε̂2
s,T

)
×
( h
T 2

T∑
t=1

K2
u,t,T |Kx,t,TKy,t,T |ε̂2

t,T

) π(x)π(y)

f 2(u, x)f 2(u, y)
dxdy.

Using (2.16) together with the fact that max1≤s≤T ε
2
s,T = Op(T

2/ν) for ν = 6 + δ,

we obtain that

max
1≤s≤T

(
hd+1K2

u,s,T |Kx,s,tKy,s,T |ε̂2
s,T

)
= Op

(T 2/ν

hd+1

)
. (2.17)
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Moreover, it is easily seen that

h

T 2

T∑
t=1

K2
u,t,T

(∫∫
|Kx,t,TKy,t,T |

π(x)π(y)

f 2(u, x)f 2(u, y)
dxdy

)
ε̂2
t,T = Op

( 1

T

)
. (2.18)

Combining (2.17) and (2.18), we arrive at

max
1≤s≤T

T∑
t=1

Var∗(w∗s,t,T ) = Op

( 1

T 1−2/νhd+1

)
= op(1),

the last equality following from the conditions on the bandwidth h listed in (C3).

This shows (CLT2*). For the proof of (CLT3*), we use that

E∗[U∗T,2(u)4] =
∑

t6=s,t′ 6=s′,t′′ 6=s′′,t′′′ 6=s′′′
E∗
[
w∗s,t,Tw

∗
s′,t′,Tw

∗
s′′,t′′,Tw

∗
s′′′,t′′′,T

]
= 12

∑
t1 6=t2 6=t3 6=t4

E∗
[
(w∗t1,t2,T )2(w∗t3,t4,T )2

]
+ 8

∑
t1 6=t2

E∗
[
(w∗t1,t2,T )4

]
+ 48

∑
t1 6=t2 6=t3 6=t4

E∗
[
w∗t1,t2,Tw

∗
t2,t3,T

w∗t3,t4,Tw
∗
t4,t1,T

]
+ 192

∑
t1 6=t2 6=t3

E∗
[
w∗t1,t2,T (w∗t1,t3,T )2w∗t2,t3,T

]
+ 48

∑
t1 6=t2 6=t3

E∗
[
(w∗t1,t2,T )2(w∗t2,t3,T )2

]
=: QT,1 +QT,2 +QT,3 +QT,4 +QT,5.

Exploiting the mixing conditions on the model variables yields that QT,i = op(1)

for i = 2, . . . , 5. Moreover, noting that Var∗(U∗T,2(u)) = 2
∑

t1 6=t2 E
∗(w∗t1,t2,T )2, it

is easily seen that QT,1 = 3Var∗(U∗T,2(u))2 + op(1). This completes the proof of

(CLT3*).



Chapter 3

Locally Stationary Multiplicative

Volatility Modelling

3.1 Introduction

Given the ever-changing economic and financial environment, it is quite plausible

that many financial time series behave in a nonstationary way. Especially over

longer horizons, structural changes may occur. Thus, the technical assumption of

stationarity is likely to be violated in many cases. This issue has been pointed out

by numerous authors in recent years. In particular, it has been claimed that many

interesting stylized facts of financial return and volatility series can be neatly

explained by employing nonstationary models (see e.g. Mikosch & Stărică [33],

[34], and [35]).

An attractive way to deal with nonstationarities in financial time series is the

theory on locally stationary processes introduced by Dahlhaus (cf. [4], [5], and

[6]). Intuitively speaking, a process is locally stationary if over short time spans

(i.e. locally in time) it behaves approximately stationary. In recent years, many

locally stationary models have been proposed in the financial time series context.

Usually, these models are extensions of parametric time series models where the

parameters are allowed to change smoothly over time. Within the family of ARCH

models, for example, Dahlhaus & Subba Rao [8] have introduced a class of ARCH

processes with time-varying parameters.

A closely related locally stationary model which has been explored in a number of

studies is given by the equation

Yt,T = τ
( t
T

)
εt for t = 1, . . . , T, (3.1)
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where Yt,T are log-returns, τ is a smooth deterministic function of time and {εt} is

a standard stationary GARCH process with E[ε2
t ] = 1. As usual in the literature

on locally stationary models, the time-varying parameter τ does not depend on

real time t, but on rescaled time t
T

. We comment on this feature in more detail

in Section 3.2. Model (3.1) has been considered for example in Feng [13], where

the τ -function is estimated nonparametrically. Engle & Rangel [12] work with

a closely related model, where the τ -component is modelled parametrically as a

flexible exponential spline function. A multivariate generalization of model (3.1)

is studied in Linton & Hafner [28].

Model (3.1) can be considered as a GARCH process with time-varying parameters,

with certain restrictions imposed on the parameter functions. In particular, the

unconditional volatility level E[Y 2
t,T ] is given by the time-dependent function τ 2( t

T
),

which is allowed to vary smoothly over time. In reality, the volatility level is

unlikely to change deterministically over time. Instead it reflects and varies with

changes in the economic and financial environment. Therefore, the τ -function

should depend on certain economic and financial variables. In model (3.1), these

dependencies are not modelled explicitly. Instead, rescaled time serves as a catch-

all for omitted explanatory variables.

These considerations show that in a more realistic version of model (3.1), the τ -

function should depend on economic and financial influences. However, there is

clearly no way to come up with a model that incorporates all relevant variables.

One way to deal with this is to use rescaled time as a proxy for the omitted

variables. To formalize these ideas, we propose the model

Yt,T = τ
( t
T
,Xt

)
εt, (3.2)

where Yt,T are log-returns, Xt is an Rd-valued random vector of economic or finan-

cial covariates and τ is a smooth function of time and the variables Xt. As before,

{εt} is a standard GARCH process. To countervail the curse of dimensionality, we

split up the τ -function into multiplicative components thus yielding the model

Yt,T = τ0

( t
T

) d∏
j=1

τj(X
j
t )εt, (3.3)

where τ0 and τj for j = 1, . . . , d are smooth functions of time and the regressors

Xj
t , respectively. As will be seen in Section 3.2, the multiplicative specification of

the τ -function in (3.3) not only avoids the curse of dimensionality but also allows

a direct interpretation of the various components.
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In the following sections, we give an in-depth theoretical treatment of model (3.3).

The complete formulation of the model together with its assumptions is given in

Section 3.2. In Section 3.3, we propose a two-step procedure to estimate both

the nonparametric and the parametric components of the model. To estimate the

nonparametric functions τj for j = 0, . . . , d, we extend the smooth backfitting pro-

cedure of Mammen et al. [29] to our locally stationary stetting. Having estimates

τ̃j of the functions τj, we can construct approximate expressions ε̃t of the GARCH

variables εt. This allows us to estimate the GARCH parameters of the model via

approximate quasi-maximum likelihood methods in a second step. Consistency

and asymptotic normality of our estimators are shown in Section 3.4.

The contribution of this chapter is twofold. From a technical point of view, we

extend the asymptotic results for model (3.1) to a more general framework in

which the τ -function depends both on rescaled time and stochastic regressors.

This vastly complicates both steps of the asymptotic analysis and as a result, we

cannot extend existing proving techniques as provided in Linton & Hafner [28] in

a straightforward manner. In terms of volatility modelling, we introduce a flexible

framework which allows to capture both nonstationarities and influences from the

economic and financial environment. As the component functions τj in our model

are completely nonparametric, we are able to explore the form of the relationship

between volatility and its potential sources. Therefore, our model allows us to

extend existing parametric studies on the sources of volatility as conducted e.g. in

Engle & Rangel [12] and Ghysels, Engle & Sohn [11].

To illustrate the usefulness of our model and to complement the technical analysis,

we present an empirical example in Section 3.5. There, the model is applied to

S&P 500 return data using various interest rate spreads as explanatory variables.

3.2 Model

In this section, we rigorously introduce our model. We observe a sample of log-

returns Yt,T and covariates Xt for t = 1, . . . , T , where Xt = (X1
t , . . . , X

d
t ) is an

Rd-valued random vector. The return series is assumed to follow the process

Yt,T = τ0

( t
T

) d∏
j=1

τj(X
j
t )εt for t = 1, . . . , T (3.4)

with

εt = σtηt and σ2
t = w0 + a0ε

2
t−1 + b0σ

2
t−1.
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Here, τ0 and τj (j = 1, . . . , d) are smooth nonparametric functions of time and

the stochastic regressors, respectively. Furthermore, {εt} is a strictly stationary

GARCH process with i.i.d. residuals ηt that satisfy E[ηt] = 0 and E[η2
t ] = 1. For

simplicity, we restrict attention to the GARCH(1,1) specification.

In order to conduct meaningful asymptotics, we let the function τ0 depend on

rescaled time t
T

rather than on real time t. Thus, τ0 is defined on (0, 1] rather

than on {1, . . . , T}. In what follows, we denote rescaled time by x0 ∈ (0, 1]. It

relates to observed time t ∈ {0, . . . , T} through the mapping t = [x0T ], where [x]

denotes the smallest integer weakly larger than x. If we defined the function τ0 in

terms of observed time, we would not get additional information on the structure

of τ0 around a particular time point t as the sample size T increases. Within

the framework of rescaled time, in contrast, the function τ0 is observed on a finer

and finer grid on the unit interval as T grows. Thus, we obtain more and more

information on the local structure of τ0 around each point x0 in rescaled time.

This is the reason why we can make meaningful asymptotic considerations within

this framework. A detailed discussion of the concept of rescaled time can be found

in Dahlhaus [5].

We make the following assumptions on the model components.

(C1) The process {Xt, εt, σt} is strictly stationary.

(C2) The functions τ0 and τj (j = 1, . . . , d) are twice (continuously) differentiable,

strictly positive, and bounded away from zero. The second derivatives are

Lipschitz continuous.

(C3) The variables Xt and εt satisfy the condition that E[ε2
t |Xt] = E[ε2

t ] almost

surely.

Further technical assumptions needed for deriving asymptotic results are given in

the relevant sections.

By assuming in (C1) that the covariates Xt and the errors εt are strictly stationary,

we restrict the potential sources of nonstationarity in our model. Nonstationarities

stem exclusively from the time-varying trend function τ0. If we pinned this function

down at a particular value, say τ̄0, the resulting model would be strictly stationary.

Thus, the function τ0 is supposed to catch all nonstationary fluctuations in the

model. Note that it is possible to weaken (C1) to allow for local stationarities in

the covariates Xt. We conjecture that we would obtain almost identical asymptotic

results in this case. We elaborate on this point in Section 3.6.
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Conditions (C1) and (C2) ensure that the process {Yt,T} is locally stationary.

Using the smoothness of τ0, we have∣∣Yt,T − Yt(x0)
∣∣ ≤ C

∣∣∣ t
T
− x0

∣∣∣Ut, (3.5)

where C is a constant independent of x0, t and T , Yt(x0) = τ0(x0)
∏d

j=1 τj(X
j
t )εt,

and Ut =
∏d

j=1 τj(X
j
t )εt. Note that both {Yt(x0)} and {Ut} are strictly stationary

processes. As Ut = Op(1), we obtain from (3.5) that∣∣Yt,T − Yt(x0)
∣∣ = Op

(∣∣∣ t
T
− x0

∣∣∣). (3.6)

Therefore, if t
T

is close to x0, then Yt,T is close to Yt(x0) at least in a stochastic

sense. Put differently, locally in time, the process {Yt,T} is close to the stationary

process {Yt(x0)}. In this sense, the process {Yt,T} is locally stationary.

We close this section with a remark on the interpretation of the nonparamet-

ric components of model (3.4). First, note that the functions τ0, . . . , τd and the

GARCH residual εt are only identified up to a multiplicative constant in model

(3.4). Thus we are free to rescale them in a suitable way. For instance, if we

normalize the components such that E[ε2
t ] = 1, then (C3) implies that

E[Y 2
t,T |Xt] = τ 2

0

( t
T

) d∏
j=1

τ 2
j (Xj

t ). (3.7)

Thus, the product of the τ -components gives the volatility at time t conditional on

the covariates Xt. If we additionally scale the model to satisfy E[
∏d

j=1 τ
2
j (Xj

t )] = 1,

we obtain that

E[Y 2
t,T ] = τ 2

0

( t
T

)
,

i.e. the deterministic function of time τ 2
0 ( t

T
) gives the time-varying unconditional

volatility. In (3.7), τ 2
0 ( t

T
) thus specifies the unconditional volatility level and the

product of the remaining components
∏d

j=1 τ
2
j (Xj

t ) is the multiplicative factor by

which the volatility conditional on Xt deviates from the unconditional level.

3.3 Estimation Procedure

We now turn to the two-step estimation procedure alluded to in the introduction.

In the first step, we provide estimates of the nonparametric functions τ0, . . . , τd.

In the second step, we use these nonparametric estimates to obtain estimators of

the GARCH parameters. The following assumptions ensure that the various steps

of our procedure are well-defined.
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(C4) The conditional volatility σ2
t is bounded away from zero and the GARCH

residuals ηt have a density with respect to Lebesgue measure which is

bounded in a neighbourhood of zero.

(C5) The variables Xt and εt are such that E[log ε2
t |Xt] = E[log ε2

t ] = 0.

(C6) The variables Xt have compact support, say [0, 1]d.

Assumptions (C4) and (C5) are needed for the first estimation step, as will become

clear in the next subsection. Note that (C4) ensures log ε2
t to be finite almost surely

and that it is thus required for (C5) to make sense. (C6) is only needed for the

second estimation step. For the first step, we could allow the support of Xt to be

unbounded and estimate the functions τ0, . . . , τd uniformly over compact subsets

of the support. However, for ease of notation, we assume (C6) throughout the

chapter.

3.3.1 Estimation of the Nonparametric Model Compo-

nents

In order to estimate the nonparametric functions τ0, . . . , τd, we do not consider

the multiplicative model (3.4) directly. Instead we transform (3.4) to obtain an

additive structure by squaring and taking the logarithm. This yields

Zt,T = m0

( t
T

)
+

d∑
j=1

mj(X
j
t ) + ut, (3.8)

where Zt,T := log Y 2
t,T , mj := log τ 2

j for j = 0, . . . , d, and ut := log ε2
t . The above

transformation is well-behaved under assumptions (C2) and (C4). The functions

m0, . . . ,md in (3.8) are only identified up to an additive constant. To identify

them, we assume that∫ 1

0

m0(x0)dx0 = 0 and

∫
R
mj(xj)pj(xj)dxj = 0 for j = 1, . . . , d,

where pj is the marginal density of Xj
t . With this normalization, we can rewrite

(3.8) as

Zt,T = mc +m0

( t
T

)
+

d∑
j=1

mj(X
j
t ) + ut, (3.9)

where mc is a constant and by assumption (C5), E[ut|Xt] = 0. By a slight abuse

of notation, the normalized functions are again labelled as m0, . . . ,md. In what



3.3 Estimation Procedure 103

follows, we will write x = (x0, x−0) with x0 denoting a point in rescaled time and

x−0 = (x1, . . . , xd) ∈ Rd.

Equation (3.9) has the form of an additive regression model with component func-

tions m0, . . . ,md and error term ut. It is nonstandard in the sense that it contains

the deterministic trend functionm0. As a consequence, the model dynamics are not

stationary any more. We obtain estimators m̃0, . . . , m̃d of the functions m0, . . . ,md

by extending the smooth backfitting approach introduced by Mammen et al. [29]

to allow for these nonstationarities. Estimators of the functions τ0, . . . , τd in (3.4)

are then obtained by setting

τ̃j =
√

exp(m̃j)

for j = 0, . . . , d. In the remainder of this subsection we introduce the smooth

backfitting estimators m̃0, . . . , m̃d. For simplicity, we restrict attention to smooth

backfitting based on Nadaraya-Watson estimators. Alternatively, the approach

could be based on local linear smoothers.

Before introducing the estimator in our setting, we reconsider the standard sta-

tionary case. To do this, we fix the time argument at some point x0 ∈ (0, 1], thus

leaving us with the additive regression model

Zt(x0) = mc +m0(x0) +
d∑
j=1

mj(X
j
t ) + ut, (3.10)

where the dependent variables Zt(x0) are strictly stationary and mc + m0(x0) is

the model constant. In order to define the smooth backfitting estimators for this

standard model, we introduce the function spaces

F(p) = {g : Rd → R |
∫
g2(x−0)p(x−0)dx−0 <∞}

Fadd(p) = {g ∈ F(p) | g(x−0) = g1(x1) + · · ·+ gd(xd) (p a.s.)},

where p is the joint density of the regressors Xt = (X1
t , . . . , X

d
t ), F(p) is the class

of L2(p)-functions and Fadd(p) is the subclass of functions that allow an additive

representation. Further, let Π(Zt(x0)|Xt) be the orthogonal projection of Zt(x0)

onto the space of additive functions Fadd(p) and define

m(x0, ·) := E[Zt(x0)|Xt] = arg min
g∈F(p)

E
(
Zt(x0)− g(Xt)

)2

madd(x0, ·) := Π(Zt(x0)|Xt) = arg min
g∈Fadd(p)

E
(
Zt(x0)− g(Xt)

)2
.
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Note that the additive regression function in model (3.10) is given by madd(x0, ·).
Using basic properties of orthogonal projections we obtain that

madd(x0, ·) = arg min
g∈Fadd(p)

E
(
Zt(x0)− g(Xt)

)2

= arg min
g∈Fadd(p)

E
(
m(x0, Xt)− g(Xt)

)2

= arg min
g∈Fadd(p)

∫
Rd

(
m(x0, x−0)− g(x−0)

)2
p(x−0)dx−0. (3.11)

Thus, madd(x0, ·) solves the projection problem as formulated in (3.11). The

smooth backfitting estimator of madd(x0, ·) is now defined as the solution to an

empirical version of (3.11), where the functions m(x0, ·) and p are replaced by

d-dimensional kernel estimators.

In order to extend the above approach to our framework, we proceed as follows:

We regard rescaled time as an additional regressor and let the L2-projection in

(3.11) cover the time dimension. With q(x) := I(x0 ∈ (0, 1])p(x−0), this leads to

the projection equation

madd = arg min
g∈Fadd(q)

∫ 1

0

∫
Rd

(
m(x0, x−0)− g(x0, x−0)

)2
p(x−0)dx−0 dx0 (3.12)

= arg min
g∈Fadd(q)

∫
Rd+1

(
m(x)− g(x)

)2
q(x)dx,

where similar to the standard case

F(q) = {g : Rd+1 → R |
∫
Rd+1

g2(x)q(x)dx <∞}

Fadd(q) = {g ∈ F(q) | g(x) = g0(x0) + g1(x1) + · · ·+ gd(xd) (q a.s.)}.

The L2-projection in (3.12) is with respect to the density function q(x) = I(x0 ∈
(0, 1])p(x−0) on Rd+1. Thus, rescaled time is treated in a similar way to an ad-

ditional stochastic regressor which is uniformly distributed over (0, 1] and inde-

pendent of the variables Xt. The intuition for this is the following: Firstly, as

the variables Xt are strictly stationary, their distribution is time-invariant. In this

sense their stochastic behaviour is independent of rescaled time t
T

. Thus rescaled

time behaves similarly to an additional stochastic variable that is independent of

Xt. Secondly, as the points t
T

are evenly spaced over the unit interval, a variable

with a uniform distribution closely replicates the pattern of rescaled time.

Just as for the standard stationary model without time trend component we define

the smooth backfitting estimator as the solution to an empirical counterpart of the
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projection problem (3.12) with m and q replaced by kernel estimators m̂ and q̂.

Hence, the smooth backfitting estimator m̃ of madd is given by

m̃ = arg min
g∈Fadd(q̂)

∫
Rd+1

(
m̂(x)− g(x)

)2
q̂(x)dx, (3.13)

where the minimization is done under the constraints∫
m̃j(xj)p̂j(xj)dxj = 0 for j = 0, . . . , d,

and the function class Fadd(q̂) is defined as before with q replaced by the estimate q̂.

In the above formulas, p̂j is a kernel estimator of pj for j = 0, . . . , d, where we define

p0(x0) = I(x0 ∈ (0, 1]). Explicit expressions for these estimators are given below

in (3.15) and (3.18). We further define q̂(x) = 1
T

∑T
t=1Kh(x0,

t
T

)
∏d

k=1 Kh(xk, X
k
t )

and let m̂(x) =
∑T

t=1 Kh

(
x0,

t
T

)∏d
k=1Kh(xk, X

k
t )Yt,T

/
q̂(x) be a (d+1)-dimensional

Nadaraya-Watson smoother. In these definitions,

Kh(v, w) =
Kh(v − w)∫ 1

0
Kh(s− w)ds

is a modified kernel weight, where Kh(v) = 1
h
K( v

h
) and the kernel function K(·)

integrates to one. These weights have the property that
∫ 1

0
Kh(v, w)dv = 1 for

all v, which is needed to derive the asymptotic results of the smooth backfitting

estimators.

By differentiation, we can show that the solution to the projection problem (3.13)

is characterized by the system of integral equations

m̃j(xj) = m̂j(xj)−
∑
k 6=j

∫
m̃k(xk)

p̂k,j(xk, xj)

p̂j(xj)
dxk − m̃c (3.14)

∫
m̃j(xj)p̂j(xj)dxj = 0

for j = 0, . . . , d with m̃c = 1
T

∑T
t=1 Zt,T . The kernel estimators which show up in

(3.14) are given by

p̂j(xj) =
1

T

T∑
t=1

Kh(xj, X
j
t ) (3.15)

p̂j,k(xj, xk) =
1

T

T∑
t=1

Kh(xj, X
j
t )Kh(xk, X

k
t ) (3.16)

m̂j(xj) =
1

T

T∑
t=1

Kh(xj, X
j
t )Zt,T/p̂j(xj). (3.17)
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for j, k = 1, . . . , d. Here, p̂j is the one-dimensional kernel density estimator of the

marginal density pj of Xj
t , p̂j,k is the two-dimensional kernel density estimate of

the joint density pj,k of (Xj
t , X

k
t ), and m̂j(xj) is a one-dimensional local constant

smoother. Further,

p̂0(x0) =
1

T

T∑
t=1

Kh

(
x0,

t

T

)
(3.18)

p̂0,k(x0, xk) =
1

T

T∑
t=1

Kh

(
x0,

t

T

)
Kh(xk, X

k
t ) (3.19)

m̂0(x0) =
1

T

T∑
t=1

Kh

(
x0,

t

T

)
Zt,T/p̂0(x0). (3.20)

Note that it would be more natural to define p̂0(x0) = I(x0 ∈ (0, 1]), as we already

know the “true density” of rescaled time. However, for technical reasons, we set

p̂0(x0) = 1
T

∑T
t=1 Kh(x0,

t
T

). This creates a behaviour of p̂0 at the boundary of the

support (0, 1] analogous to that of p̂j for j = 1, . . . , d.1

A solution to the set of equations (3.14) can be obtained by an iterative projection

algorithm, which converges for arbitrary starting values, see Mammen et al. [29],

who also establish the asymptotic properties of this solution under very general

high order conditions. To prove consistency and asymptotic normality of our

estimators, we show that these high order conditions are satisfied in our framework.

3.3.2 Estimation of the Parametric Model Components

To motivate the second step in our estimation procedure, we first consider an

infeasible estimator of the model parameters. Suppose that the nonparametric

components τ 2
0 , ..., τ

2
d were known. In this situation, the GARCH variables ε2

t

would be observable, since

ε2
t =

Y 2
t,T

τ 2
0 ( t

T
)
∏d

k=1 τ
2
k (X t

k)
. (3.21)

1Alternatively, we could define p̂0(x0) =
∫ 1

0
Kh(x0, v)dv. (Note that

∫ 1

0
Kh(x0, v)dv = 1 for

x0 ∈ [2C1h, 1− 2C1h], where [−C1, C1] is the support of the kernel function K.) Moreover, we

could set p̂0,k(x0, xk) = p̂0(x0)p̂k(xk), thereby exploiting the “independence” of rescaled time

and the other regressors.
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The GARCH parameters φ0 := (w0, a0, b0) could thus be estimated by standard

quasi maximum likelihood methods, where the quasi log-likelihood is given by

lT (φ) = −
T∑
t=1

(
log v2

t (φ) +
ε2
t

v2
t (φ)

)
. (3.22)

Here, φ = (w, a, b) and

v2
t (φ) =

 w
1−b for t = 1

w + aε2
t−1 + bv2

t−1(φ) for t = 2, . . . , T
(3.23)

is the conditional volatility of the GARCH process with starting value v2
0(φ) =

w/(1− b).
As the functions τ 2

0 , . . . , τ
2
d are not observed, we cannot apply this standard ap-

proach. However, given the estimates τ̃ 2
0 , . . . , τ̃

2
d from the first estimation step, we

can replace ε2
t by the standardized residuals

ε̃2
t =

Y 2
t,T

τ̃ 2
0 ( t

T
)
∏d

k=1 τ̃
2
k (X t

k)
(3.24)

and use these as approximations to ε2
t in the quasi maximum likelihood estimation.

The quasi log-likelihood then becomes

l̃T (φ) = −
T∑
t=1

(
log ṽ2

t (φ) +
ε̃2
t

ṽ2
t (φ)

)
, (3.25)

where analogously to (3.23),

ṽ2
t (φ) =

 w
1−b for t = 1

w + aε̃2
t−1 + bṽ2

t−1(φ) for t = 2, . . . , T
(3.26)

is the approximate conditional volatility. Our estimator φ̃ of the true parameter

values φ0 is now defined as

φ̃ = arg max
φ∈Φ

l̃T (φ), (3.27)

where the parameter space Φ is assumed to be compact. In comparison to this, the

standard maximum likelihood estimator for the case in which the τ -components

are known is defined as

φ̂ = arg max
φ∈Φ

lT (φ). (3.28)
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3.4 Asymptotics

In Subsection 3.4.1 we treat the nonparametric estimates τ̃0, . . . , τ̃d and in Subsec-

tion 3.4.2 we give results on the GARCH estimates φ̃.

In order to derive the asymptotic properties of the nonparametric estimators, we

need the following assumptions.

(C7) The kernel K is bounded, has compact support ([−C1, C1], say) and is

symmetric about zero. Moreover, it fulfills the Lipschitz condition that

there exists a positive constant L such that |K(u)−K(v)| ≤ L|u− v|.

(C8) The density p of Xt and the densities p(0,l) of (Xt, Xt+l), l = 1, 2, . . . , are

uniformly bounded. Furthermore, p is bounded away from zero on [0, 1]d.

The first partial derivatives of p exist and are continuous.

(C9) Let Zt = Zt,T −m0( t
T

). For some θ > 8
3
, E[|Zt|θ] <∞.

(C10) The conditional densities fXt|Zt of Xt given Zt and fXt,Xt+l|Zt,Zt+l of

(Xt, Xt+l) given (Zt, Zt+l), l = 1, 2, . . . , exist and are bounded.

(C11) The process {Xt, εt, σt} is strongly mixing with mixing coefficients α satis-

fying α(k) ≤ ak for some 0 < a < 1.

(C12) The bandwidth h satisfies either of the following:

(a) T
1
5h→ ch for some constant ch.

(b) T
1
4

+δh→ ch for some constant ch and some small δ > 0.

Note that the above assumptions are very similar to the conditions that can be

found in Mammen et al. [29] for the strictly stationary case. It should also be

mentioned that we do not necessarily require exponentially decaying mixing rates

as assumed in (C11). These could alternatively be replaced by sufficiently high

polynomial rates. We nevertheless make the stronger assumption (C11) to keep

the notation and structure of the proofs as clear as possible.

Additionally to the above assumptions, we require the following conditions to hold

for the GARCH estimates to be consistent and asymptotically normal.

(C13) The parameter space Φ is a compact subset of {φ ∈ R3 |φ =

(w, a, b) with 0 < κ ≤ w, a ≤ κ < ∞ and 0 ≤ b < 1} with constants κ

and κ. The true parameter φ0 = (w0, a0, b0) is an interior point of Φ and

a0 + b0 < 1.
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(C14) E[ε8+δ
t ] <∞, for some δ > 0.

(C15) E[ε2
t−iε

2
t−k|X

j
t−k] ≤ C uniformly in i, j, and k.

(C13) is a standard assumption in the theory on GARCH models. (C14) and

(C15) are rather technical assumptions that are only needed to show asymptotic

normality of the GARCH estimates.

3.4.1 Asymptotics for the Nonparametric Model Compo-

nents

We now give asymptotic results for the estimators τ̃0, . . . , τ̃d in our multiplicative

model. First, we derive the asymptotic properties of the estimates m̃0, . . . , m̃d in

the additively transformed model. From these results, we can directly infer the

asymptotic behaviour of their multiplicative counterparts.

In view of the second estimation step, we require uniform as opposed to pointwise

convergence as well as a uniform expansion of the estimates. The latter is provided

in Appendix A. The former is given in the following theorem, which shows that

m̃0, . . . , m̃d converge uniformly to the true functions at the usual one-dimensional

nonparametric rates. The theorem also characterizes the asymptotic distribution

of the nonparametric estimates.

Theorem 3.1. Suppose that conditions (C1)–(C11) hold.

(a) Assume that the bandwidth h satisfies (C12a) or (C12b). Then, for Ih =

[2C1h, 1− 2C1h] and Ich = [0, 2C1h) ∪ (1− 2C1h, 1],

sup
xj∈Ih

∣∣m̃j(xj)−mj(xj)
∣∣ = Op

(√ log T

Th

)
(3.29)

sup
xj∈Ich

∣∣m̃j(xj)−mj(xj)
∣∣ = Op(h) (3.30)

for all j = 0, . . . , d.

(b) Assume that the bandwidth h satisfies (C12a). Then, for any x0, . . . , xd ∈
(0, 1),

T
2
5

 m̃0(x0)−m0(x0)
...

m̃d(xd)−md(xd)

 d−→ N(Bm(x), Vm(x))
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with the bias term Bm(x) = [c2
hβ0(x0), . . . , c2

hβd(xd)]
′ and the covariance ma-

trix Vm(x) = diag(v0(x0), . . . , vd(xd)). Here, v0(x0) = c−1
h cK

∑∞
l=−∞ γu(l)

and vj(xj) = c−1
h cKσ

2
j (xj)/pj(xj) for j = 1, . . . , d with cK =

∫
K2(u)du,

γu(l) = Cov(ut, ut+l) and σ2
j (xj) = Var(ut|Xj

t = xj). Furthermore, the func-

tions βj(xj) are the components of the L2(p)-projection of the function β de-

fined in Lemma C3 of Appendix C onto the space of additive functions.

The rates of convergence given in Theorem 3.1(a) differ for the interior and bound-

ary regions of the support of the covariates. In particular, the rate near the bound-

ary in (3.30) is slower than in the interior (3.29). However, the slow convergence

at the boundary does not pose a problem for the second estimation step as the

size of the boundary region shrinks sufficiently fast as T →∞.

The asymptotic results for m̃0, . . . , m̃d carry over to τ̃0, . . . , τ̃d and their squared

version. This is clear from the fact that τ̃j =
√

exp(m̃j) for j = 0, . . . , d. As

we are mainly interested in the squared version of the estimates, we report the

asymptotic results for these in the following corollary.

Corollary 3.1. Suppose that conditions (C1)–(C11) hold.

(a) Under the conditions of Theorem 3.1(a), it holds that

sup
xj∈Ih

∣∣τ̃ 2
j (xj)− τ 2

j (xj)
∣∣ = Op

(√ log T

Th

)
(3.31)

sup
xj∈Ich

∣∣τ̃ 2
j (xj)− τ 2

j (xj)
∣∣ = Op(h) (3.32)

for all j = 0, . . . , d.

(b) Under the conditions of Theorem 3.1(b), it holds that

T
2
5

 τ̃ 2
0 (x0)− τ 2

0 (x0)
...

τ̃ 2
d (xd)− τ 2

d (xd)

 d−→ N(Bτ (x), Vτ (x)),

where the bias Bτ (x) and the variance Vτ (x) are as in Theorem 3.1(b) with

c2
hβj(xj) replaced by τ 2

j (xj)c
2
hβj(xj) and vj(xj) replaced by τ 4

j (xj)vj(xj).

The main idea of the proofs is to exploit the fact that rescaled time behaves

similarly to a random variable which has a uniform distribution on (0, 1] and is

independent of the other covariates. The details are given in Appendix A.
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3.4.2 Asymptotics for the Parametric Model Components

Given the estimators for τ 2
0 , . . . , τ

2
d from the first step, the GARCH parameters

φ0 are estimated by φ̃ as outlined in Subsection 3.3.2. In this subsection, we look

at consistency and asymptotic normality of φ̃. The following theorem establishes

consistency.

Theorem 3.2. Suppose that the bandwidth h satisfies (C12a) or (C12b). In ad-

dition, let assumptions (C1)–(C11) and (C13) be fulfilled. Then φ̃ is a consistent

estimator of φ0, i.e.

φ̃
P−→ φ0.

We next give a result on the limiting distribution of the GARCH estimates which

shows that these are asymptotically normal.

Theorem 3.3. Suppose that the bandwidth h satifies (C12b) and let assumptions

(C1)–(C11) together with (C13)–(C15) be fulfilled. Then it holds that

√
T (φ̃− φ0)

d−→ N(0,Σ).

Details on the covariance matrix Σ can be found in Appendix B.

The proof of asymptotic normality is the theoretically most challenging part of

this chapter. The details are postponed to the appendices. For now we will be

content with providing an outline. By the usual Taylor expansion argument, we

arrive at
√
T (φ̃− φ0) = −

( 1

T

∂2l̃T (φ̄)

∂φ∂φT

)−1 1√
T

∂l̃T (φ0)

∂φ
,

where φ̄ is an intermediate point between φ̃ and φ0. As in the standard case, we

can show that the second derivative on the right-hand side converges in probability

to a deterministic matrix. The asymptotic distribution is thus determined by the

term 1√
T

∂l̃T (φ0)
∂φ

, which we rewrite as

1√
T

∂l̃T (φ0)

∂φi
=

1√
T

∂lT (φ0)

∂φi︸ ︷︷ ︸
=:A1

+
( 1√

T

∂l̃T (φ0)

∂φi
− 1√

T

∂lT (φ0)

∂φi

)
.︸ ︷︷ ︸

=:A2

We will show that this term is asymptotically normal. The main challenge to

do so is to derive a stochastic expansion of the term A2. This requires rather

involved and nonstandard arguments which are presented in detail in Appendix B.
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In particular, we cannot just extend the arguments presented in Linton & Hafner

[28] to fit our setting. Once we have provided the expansion of A2, we are in a

position to apply a central limit theorem to the sum A1 + A2, which completes

the proof. We will see that the term A2 is itself asymptotically normal and thus

contributes to the limit distribution of 1√
T

∂l̃T (φ0)
∂φ

. As a consequence, we obtain

a larger asymptotic variance than in the standard case (where only the term A1

occurs). This reflects the additional uncertainty that results from not knowing the

functions τ0, . . . , τd.

3.5 Application

To illustrate our model, we apply it to a sample of daily financial data spanning

the period from the beginning of 2001 until the middle of 2010. The estimated

model is given by

Yt,T = τ 2
0

( t
T

) 3∏
j=1

τ 2
j (Xj

t )ε
2
t , (3.33)

where Yt,T are S&P 500 log-returns and the covariates are various interest rate

spreads. Specifically, we include the default spread defined as the difference be-

tween the yield of Aaa and Baa bonds. This is commonly used as a measure for

credit default risk. We also include the term spread between 10-year and 3-month

treasuries in order to capture the slope of the yield curve. Finally we include the

LOIS, the difference between the LIBOR and the return on the overnight interest

swap, which is used as a measure for liquidity in the interbank market.2

The estimation results for the nonparametric model components are presented

in Figure 3.1. The solid lines represent the estimators τ̃ 2
j , the dashed lines are

the pointwise 5% confidence intervals. The bandwidths for the function fits are

chosen by a rule of thumb following the application in Yu, Mammen & Park [42].

For j = 1, 2, 3, the estimates τ̃ 2
j are normalized such that τ̃ 2

j (xmj ) = 1, where xmj
is the median of the j-th covariate Xj

t . This means that the effect of the j-th

covariate on volatility is normalized to 1 if it takes a “normal” (i.e. its median)

value. Note that due to this normalization, the estimate τ̃ 2
0 gives the time-varying

unconditional volatility only up to a multiplicative constant.

2All data are taken from the Federal Reserve Bank.
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Figure 3.1: Multiplicative function fits

The curves in Figure 3.1 are to be interpreted as follows. As already mentioned,

the estimate τ̃ 2
0 specifies the unconditional volatility level up to a multiplicative

factor. Furthermore, as

E[Y 2
t,T |Xt] = τ0

( t
T

) 3∏
j=1

τj(X
j
t ), (3.34)

the estimates τ̃ 2
j for j = 1, 2, 3 can be interpreted as the multiplicative effect of the

covariates Xj
t on S&P 500 volatility. To illustrate this, let us compare volatility

between two different settings. Hold the covariates X−jt fixed at some value x−j.

Change Xj
t from its median xmj to some value xj. From (3.34), one can then see

that volatility is changed by the factor τ 2
j (xj)/τ

2
j (xmj ) = τ 2

j (xj). Consequently,

the fits τ̃ 2
j (xj) estimate the factor by which volatility gets increased or dampened,

when the j-th covariate changes from a normal value (i.e. its median) to some

other more extreme value.
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We now look at the estimated component functions in Figure 3.1 one after the

other, starting with the functions that depend on the three spreads.

• The bottom left hand panel shows that the effect of the default spread on

volatility is an increasing monotonic function. Interestingly, it is highly non-

linear. In particular, for relatively low as well as for moderate values around

the median, the function is close to one. This means that there is next to

no effect on volatility in these areas. However, for large values of the de-

fault spread there is a sharp increase of the function. Thus, a large value of

the spread, i.e. high risk of credit default, dramatically increases S&P 500

volatility.

• The bottom right hand panel depicts the effect of the LOIS. The overall

shape is similar to the one for the default spread. The only real difference is

the range of the function and thus the size of the effect on volatility.

• In the top right hand panel, one can see the estimated effect of the term

spread. The function has an inverted U-shape. This means that both for

very large and very small values of the term spread volatility is dampened.

It is hard to give a clear intuition for this result. A possible explanation is

that the term spread is not only a risk premium but also an indicator for

the future state of the economy. The shape of the curve may reflect the

interaction of these two roles of the spread.

We next turn to the discussion of τ̃ 2
0 . A rescaled version of τ̃ 2

0 , which estimates the

unconditional volatility level, is given by the solid line in Figure 3.2. The dashed

line is the estimated unconditional volatility obtained from the simpler model (3.1)

without covariates.

Both curves in Figure 3.2 clearly show the volatility increase in the two recent

crises. The hump at the beginning of the sample corresponds to the aftermath of

the technology crisis and the events after 9/11, whereas the one at the end depicts

the recent financial crisis. Interestingly, the unconditional volatility level in our

model is much lower in the recent financial crisis than the level in the simpler model

without covariates. This suggests that our regressors explain a considerable part of

unconditional volatility in the recent crisis. During the earlier crisis, however, the

difference between the two curves is not so striking. Thus, the explanatory power

of our covariates in this period seems to be moderate (if it exists at all). This is
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quite plausible as these variables are from the financial sector and the turbulence

following 2001 was not primarily driven by events in this sector.
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Figure 3.2: Time-varying unconditional volatilities

We finally come to the estimation results for the parametric model components. In

Table 3.1, we compare the GARCH estimates of our model with the ones obtained

from the simpler model (3.1) and from a standard GARCH(1,1) model.

w̃ ã b̃ ã+ b̃

Standard GARCH(1,1) 0.012 0.082 0.911 0.992

Model with trend 0.034 0.075 0.891 0.966

Model with trend and covariates 0.057 0.064 0.878 0.942

Table 3.1: GARCH parameter estimates

The sum of the two estimated parameters ã+ b̃ reported in the last column of Table

3.1 measures the persistence of shocks to volatility. One can see that this persis-

tence measure decreases from 0.992 to 0.966 when accounting for time-varying

unconditional volatility. This is in line with previous findings in the literature

(compare e.g. Feng [13]). Including our covariates in the model further decreases

the estimated persistence to 0.942. Note that the reported decrease in persistence

is quite dramatic even though it may seem rather small at first sight (compare the

discussion in Mikosch & Stărică [33] on this issue).
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To sum up, our results suggest that we can explain a good deal of S&P 500

volatility by our model. However, for an in-depth analysis one would also need to

validate the model. Specifically, such a step would aid in the choice of covariates.

One possible model validation procedure is described in Nielsen & Sperlich [36].

Finally, from a practitioner’s perspective it would also be interesting to look at

the forecasting performance of the model.

3.6 Extensions

We use this section to discuss possible extensions and amendments to the model.

3.6.1 Estimation of the Covariance Matrix Σ

It is not at all trivial to construct a consistent estimate of the covariance matrix Σ

introduced in Theorem 3.3. This results from the very complicated structure of Σ.

In particular, the exact expression for Σ involves functions obtained from a higher

order expansion of the stochastic part of the backfitting estimates (see Theorem

A1 in Appendix A). It is very complicated to calculate the exact form of these

functions and even more challenging to give consistent estimates for them. The

construction of a consistent estimate of Σ is thus a difficult theoretical problem.

3.6.2 Efficiency Gains

We next discuss how to gain efficiency in the estimation of both the nonpara-

metric and parametric components of the model. For this purpose, we adapt the

procedure in Linton & Hafner [28].

First consider the nonparametric model components. If we knew the variables σt,

we could divide the multiplicative model (3.4) by them to obtain

Yt,T
σt

= τ0

( t
T

) d∏
j=1

τj(X
j
t )ηt. (3.35)

Squaring and taking the logarithm would then yield an additive regression model

with error terms vt := log η2
t −E[log η2

t ]. These terms have a smaller variance than

the errors ut = log ε2
t in the additive regression (3.9). In particular, Var(vt) =

Var(log η2
t ) ≤ Var(log σ2

t ) + Var(log η2
t ) = Var(ut). This suggests that at least

for j = 1, . . . , d, the infeasible smooth backfitting estimates based on equation
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(3.35) are more efficient in terms of asymptotic variance than our estimates.3 Not

knowing the variables σt, we could use our estimation procedure to get initial

estimates of them. Plugging these estimates into (3.35), it should be possible to

obtain feasible smooth backfitting estimates with smaller asymptotic variance.

We now come to the parametric model components. Again, it should be possible

to adapt the procedure described in Linton & Hafner [28] to our setting in order

to gain efficiency in the estimation of the parametric model parts. In the case of

normally distributed GARCH residuals ηt, we may even be able to obtain estimates

that reach the semiparametric efficiency bound. We omit the details and refer the

interested reader to the description of the procedure in Linton & Hafner [28].

3.6.3 Locally Stationary Covariates

Finally, one may want to allow for locally stationary regressors in model (3.4). In

this case,

Yt,T = τ0

( t
T

) d∏
j=1

τj(X
j
t,T )εt for t = 1, . . . , T,

where εt is a strictly stationary GARCH residual as before, but where the covari-

ates Xt,T now form a locally stationary process.

In this extended model, we face the following problem: If the regressors are locally

stationary, their stochastic behaviour may change over time. As a consequence,

rescaled time will not behave like an additional regressor any more that is indepen-

dent of the other covariates. This drastically complicates the asymptotic analysis.

In particular, it is not clear whether it is still possible to obtain one-dimensional

convergence rates for the backfitting estimates.

3.7 Conclusion

We have proposed a new semiparametric volatility model, which generalizes the

class of models Yt,T = τ( t
T

)εt, as for example considered in Feng [13] and Engle &

Rangel [12]. These models are able to account for nonstationarities in the volatility

process. In addition, we are able to include covariates in a nonparametric way,

hence allowing us to flexibly capture the effects of the financial and economic

environment.

3Whether the infeasible estimate for j = 0 is more efficient depends on the autocorrelations of the

errors ut. Specifically, there are efficiency gains if and only if
∑∞

k=−∞ Cov(u0, uk) > Var(vt).
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We have derived the asymptotic theory both for the nonparametric and the para-

metric part of the model. To estimate the nonparametric model components, we

have extended the smooth backfitting approach of Mammen et al. [29] to our non-

stationary setting. Given the backfitting estimators, we were able to construct

GARCH parameter estimates and to show that they are asymptotically normal.

In particular, they converge at the fast parametric rate even though the nonpara-

metric smoothers from the first step have slower nonparametric convergence rates.

We have finally illustrated the strengths of our model by applying it to financial

data. In particular, our semiparametric approach allows us to estimate the form of

the relationship between volatility and its potential sources. Therefore, we manage

to go beyond existing parametric approaches such as in Engle & Rangel [12] and

Ghysels, Engle & Sohn [11].

Appendix A

In this appendix, we prove Theorem 3.1, which describes the asymptotic behaviour

of our smooth backfitting estimates. For the proof, we split up the estimates into a

“stochastic” part and a “bias” part. In Theorem A1, we provide a uniform expan-

sion of the stochastic part. This result is an extension of a related expansion given

in Mammen & Park [30] in the context of bandwidth selection in additive models.

The bias part is treated in Theorem A2. The proof of both theorems requires

uniform convergence results for the kernel smoothers that enter the backfitting

procedure as pilot estimates. These results are summarized in Appendix C. As

will turn out, both theorems are not only needed for the first estimation step but

also for the derivation of the asymptotics of the GARCH estimates in the second

step. In what follows, we use the symbol C to denote a finite real constant which

may take a different value on each occurrence.

Proof of Theorem 3.1

We decompose the backfitting estimates m̃j into a stochastic part m̃A
j and a bias

part m̃B
j according to

m̃j(xj) = m̃A
j (xj) + m̃B

j (xj).

The two components are defined by

m̃S
j (xj) = m̂S

j (xj)−
∑
k 6=j

∫
m̃S
k (xk)

p̂k,j(xk, xj)

p̂j(xj)
dxk − m̃S

c (3.36)
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for S = A, B. Here, m̂A
k and m̂B

k denote the stochastic part and the bias part of

the Nadaraya-Watson pilote estimates defined as

m̂A
j (xj) =

1

T

T∑
t=1

Kh(xj, X
j
t )ut/p̂j(xj) (3.37)

m̂B
j (xj) =

1

T

T∑
t=1

Kh(xj, X
j
t )
[
mc +m0

( t
T

)
+

d∑
j=1

mj(X
j
t )
]
/p̂j(xj) (3.38)

for j = 0, . . . , d, where we set X0
t = t

T
to shorten the notation. Furthermore,

m̃A
c = 1

T

∑T
t=1 ut and m̃B

c = 1
T

∑T
t=1{mc+m0( t

T
)+
∑d

j=1 mj(X
j
t )}. We now analyse

the convergence behaviour of m̃A
j and m̃B

j separately.

We first provide a higher order expansion of the stochastic part m̃A
j . The following

result extends Theorem 6.1. in Mammen & Park [30] (in particular equation (6.3)

of this theorem) to our locally stationary setting.

Theorem A1. Suppose that assumptions (C1)–(C11) apply and that the bandwidth

h satisfies (C12a) or (C12b). Then uniformly for 0 ≤ xj ≤ 1,

m̃A
j (xj) = m̂A

j (xj) +
1

T

T∑
t=1

rj,t(xj)ut + op

( 1√
T

)
,

where rj,t(·) := rj(
t
T
, Xt, ·) are absolutely uniformly bounded functions with

|rj,t(x′j)− rj,t(xj)| ≤ C|x′j − xj|

for a constant C > 0.

Proof. We cannot apply Theorem 6.1. in Mammen & Park [30] directly, which

treats the i.i.d. case. In what follows, we outline the arguments needed to deal with

our locally stationary setting. For an additive function g(x) = g0(x0)+. . .+gd(xd),

let

ψ̂jg(x) = g0(x0) + . . .+ gj−1(xj−1) + g∗j (xj) + gj+1(xj+1) + . . .+ gd(xd)

with

g∗j (xj) = −
∑
k 6=j

∫
gk(xk)

p̂j,k(xj, xk)

p̂j(xj)
dxk +

d∑
k=0

∫
gk(xk)p̂k(xk)dxk.

Using the uniform convergence results from Appendix C and exploiting our model

assumptions, we can show that Lemma 3 in Mammen et al. [29] applies in our
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case. For m̃A(x) = m̃A
0 (x0) + . . .+ m̃A

d (xd), we therefore have the expansion

m̃A(x) =
∞∑
r=0

Ŝrτ̂(x),

where Ŝ = ψ̂d · · · ψ̂0 and τ̂(x) = ψ̂d · · · ψ̂1[m̂A
0 (x0)− m̂A

c,0] + . . . + ψ̂d[m̂
A
d−1(xd−1)−

m̂A
c,d−1] + [m̂A

d (xd)− m̂A
c,d] with m̂A

c,j =
∫
m̂A
j (xj)p̂j(xj)dxj. Now decompose m̃A(x)

according to

m̃A(x) = m̂A(x)− m̂A
c +

∞∑
r=0

Ŝr(τ̂(x)− (m̂A(x)− m̂A
c )) +

∞∑
r=1

Ŝr(m̂A(x)− m̂A
c )

with m̂A(x) = m̂A
0 (x0) + ... + m̂A

d (xd) and m̂A
c = m̂A

c,0 + . . . + m̂A
c,d. We show that

there exist absolutely bounded functions at(x) with |at(x)− at(y)| ≤ C‖x− y‖ for

a constant C s.t.

∞∑
r=1

Ŝr(m̂A(x)− m̂A
c ) =

1

T

T∑
t=1

at(x)ut + op

( 1√
T

)
(3.39)

uniformly in x. A similar claim holds for the term
∑∞

r=0 Ŝ
r(τ̂(x)− (m̂A(x)− m̂A

c )).

As m̂A
c = (d+ 1) 1

T

∑T
t=1 ut, this implies the result.

The idea behind the proof of (3.39) is as follows: From the definition of the oper-

ators ψ̂j, it can be seen that

Ŝ(m̂A(x)− m̂A
c ) =

d−1∑
j=0

ψ̂d · · · ψ̂j+1

( d∑
k=j+1

Sj,k(xj)
)

(3.40)

with

Sj,k(xj) = −
∫
p̂j,k(xj, xk)

p̂j(xj)
(m̂A

k (xk)− m̂A
c,k)dxk.

In what follows, we show that the terms Sj,k(xj) have the representation

Sj,k(xj) = − 1

T

T∑
t=1

( pj,k(xj, X
k
t )

pj(xj)pk(Xk
t )
− 1
)
ut + op

( 1√
T

)
(3.41)

uniformly in xj. Thus, they essentially have the desired form 1
T

∑
twt,k(xj)ut with

some weights wt,k. This allows us to infer that

Ŝ(m̂A(x)− m̂A
c ) =

1

T

T∑
t=1

bt(x)ut + op

( 1√
T

)
(3.42)
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uniformly in x with some absolutely bounded functions bt satisfying |bt(x)−bt(y)| ≤
C‖x− y‖ for some C > 0.

To show (3.41), we exploit the mixing behaviour of the variables Xt. Plugging the

definition of m̂A
k into the term Sj,k, we can write

Sj,k(xj) = − 1

T

T∑
t=1

(∫ p̂j,k(xj, xk)

p̂j(xj)p̂k(xk)
Kh(xk, X

k
t )dxk − 1

)
ut.

Then applying the uniform convergence results from Appendix C, we can replace

the density estimates in the above expression by the true densities. This yields

Sj,k(xj) = − 1

T

T∑
t=1

(∫ pj,k(xj, xk)

pj(xj)pk(xk)
Kh(xk, X

k
t )dxk − 1

)
ut + op

( 1√
T

)
=: S∗j,k(xj) + op

( 1√
T

)
uniformly for xj ∈ [0, 1]. In the final step, we show that

S∗j,k(xj) = − 1

T

T∑
t=1

( pj,k(xj, X
k
t )

pj(xj)pk(Xk
t )
− 1
)
ut + op

( 1√
T

)
again uniformly in xj. This is done by applying a covering argument together

with an exponential inequality for mixing variables. The employed techniques are

similar to those used to establish the uniform convergence results of Appendix C.

Finally, again using the results from Appendix C, it can be shown that

∞∑
r=0

Ŝr(m̂A(x)− m̂A
c ) =

∞∑
r=0

Sr−1Ŝ(m̂A(x)− m̂A
c ) + op

( 1√
T

)
(3.43)

uniformly in x, where S is defined analogously to Ŝ with the density estimates

replaced by the true densities. Combining (3.42) and (3.43) yields the result.

We now turn to the bias part m̃B
j .

Theorem A2. Suppose that (C1)–(C11) hold. If the bandwidth h satisfies (C12a),

then

sup
xj∈Ih

|m̃B
j (xj)−mj(xj)| = Op(h

2) (3.44)

sup
xj∈Ich

|m̃B
j (xj)−mj(xj)| = Op(h) (3.45)
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for j = 0, . . . , d. If the bandwidth satisfies (C12b), we have

sup
xj∈Ih

∣∣∣m̃B
j (xj) +

1

T

T∑
t=1

mj(X
j
t )−mj(xj)

∣∣∣ = Op(h
2) (3.46)

sup
xj∈Ich

∣∣∣m̃B
j (xj) +

1

T

T∑
t=1

mj(X
j
t )−mj(xj)

∣∣∣ = Op(h) (3.47)

for j = 0, . . . , d.

Proof. The result follows from Theorem 3 in Mammen et al. [29]. To make sure

that the latter theorem applies in our case, we have to show that the high-order

conditions (A1)–(A5), (A8), and (A9) from [29] are fulfilled in our setting.4 This

can be achieved by using the results from Appendix C, in particular the expansion

of m̂B
j given in Lemma C3, and by following the arguments for the proof of Theorem

4 in [29]. To see that (3.44) has to be replaced by (3.46) in the undersmoothing

case with h = O(T−( 1
4

+δ)), note that

∫
αT,k(xk)p̂k(xk)dxk =

1

T

T∑
t=1

mk(X
k
t ) +Op(h

2)

with 1
T

∑T
t=1mk(X

k
t ) = Op(

1√
T

). Using this in the proof of Theorem 3 instead of∫
αT,k(xk)p̂k(xk)dxk = γT,j + op(h

2) with γT,j = O(h2) gives (3.46).

By combining Theorems A1 and A2, it is now straightforward to complete the

proof of Theorem 3.1.

Appendix B

This appendix contains the proofs of Theorems 3.2 and 3.3, which show consistency

and asymptotic normality of the GARCH estimates. By far the most difficult part

is the proof of asymptotic normality, which is split up into different bits. We first

give the main steps of the argument, postponing the major technical issues to a

series of lemmas. As already pointed out in Subsection 3.4.2, the main challenge of

the proof is to derive a stochastic expansion of 1√
T

∂l̃T (φ0)
∂φ

. This expansion is given

in Lemmas B1–B3. Note that as in Appendix A, C denotes a finite real constant

which may take a different value on each occurrence.

4Note that (A6) is not needed for the proof of Theorem 3 as opposed to the statement in [29].
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Preliminary Remarks

To start with, we list some facts that are useful for the proof of Theorems 3.2 and

3.3. These facts concern the behaviour of the approximate GARCH variables ε̃t

and of the conditional volatilities ṽ2
t (φ), which were defined in Subsection 3.3.2.

For ease of notation, we use the shorthand τ(x) =
∏d

j=0 τj(xj) in what follows.

(G1) We can express ε̃2
t − ε2

t as

ε̃2
t − ε2

t = ε2
t

[τ 2( t
T
, Xt)− τ̃ 2( t

T
, Xt)

τ 2( t
T
, Xt)

+Rε

( t
T
,Xt

)]
with supx∈[0,1]d+1 |Rε(x)| = Op(h

2).

(G2) The conditional volatility v2
t (φ) has the expansion

v2
t (φ) = w

t−1∑
k=1

bk−1 + a
t−1∑
k=1

bk−1ε2
t−k + bt−1 w

1− b
,

which yields that

ṽ2
t (φ)− v2

t (φ) =
t−1∑
k=1

abk−1(ε̃2
t−k − ε2

t−k).

(G3) It holds that

max
1≤t≤T

sup
φ∈Φ

∣∣ṽ2
t (φ)− v2

t (φ)
∣∣ = Op(h).

(G4) It holds that
1

ṽ2
t (φ)

− 1

v2
t (φ)

=
v2
t (φ)− ṽ2

t (φ)

v2
t (φ)v2

t (φ)
+Rt(φ)

with max1≤t≤T supφ∈Φ |Rt(φ)| = Op(h
2).

(G5) The derivatives of v2
t (φ) with respect to the parameters w, a, and b are given

by

∂v2
t (φ)

∂w
=

t−1∑
k=1

bk−1 +
bt−1

1− b

∂v2
t (φ)

∂a
=

t−1∑
k=1

bk−1ε2
t−k

∂v2
t (φ)

∂b
= w

( t−1∑
k=1

(k − 1)bk−2 +
(t− 1)bt−2

1− b
+

bt−1

(1− b)2

)
+ a

t−1∑
k=1

(k − 1)bk−2ε2
t−k.

The above facts are straightforward to verify. We thus omit the details.



124 3. Locally Stationary Multiplicative Volatility Modelling

Proof of Theorem 3.2

Let lT (φ) and l̃T (φ) be the likelihood functions introduced in (3.22) and (3.25) and

define

l(φ) = E
[ 1

T
lT (φ)

]
.

By the triangle inequality,

sup
φ∈Φ

∣∣ 1

T
l̃T (φ)− l(φ)

∣∣ ≤ sup
φ∈Φ

∣∣ 1

T
l̃T (φ)− 1

T
lT (φ)

∣∣+ sup
φ∈Φ

∣∣ 1

T
lT (φ)− l(φ)

∣∣.
From standard theory we know that

sup
φ∈Φ

∣∣ 1

T
lT (φ)− l(φ)

∣∣ = op(1)

and that l(φ) is a continuous function of φ with a unique maximum at φ0. If we

can further show that

sup
φ∈Φ

∣∣ 1

T
l̃T (φ)− 1

T
lT (φ)

∣∣ = op(1), (3.48)

then standard theory on M-estimation implies φ̃
P−→ φ0.

In order to prove (3.48), we decompose the difference 1
T
l̃T (φ)− 1

T
lT (φ) into three

parts (A), (B), and (C) and show that each of these is uniformly op(1). We write

1

T
l̃T (φ)− 1

T
lT (φ)

= − 1

T

T∑
t=1

(
log ṽ2

t (φ) +
ε̃2
t

ṽ2
t (φ)

)
+

1

T

T∑
t=1

(
log v2

t (φ) +
ε2
t

v2
t (φ)

)
=

1

T

T∑
t=1

(
log v2

t (φ)− log ṽ2
t (φ)

)
+

1

T

T∑
t=1

ε2
t

( ṽ2
t (φ)− v2

t (φ)

ṽ2
t (φ)v2

t (φ)

)
+

1

T

T∑
t=1

ε2
t − ε̃2

t

ṽ2
t (φ)

=: (A) + (B) + (C).

In order to prove that (A), (B), and (C) are uniformly op(1), it suffices to show

that

max
1≤t≤T

sup
φ∈Φ

∣∣ṽ2
t (φ)− v2

t (φ)
∣∣ = op(1) (3.49)

1

T

T∑
t=1

∣∣ε̃2
t − ε2

t

∣∣ = op(1) (3.50)

v2
t (φ) ≥ vmin > 0 and ṽ2

t (φ) ≥ vmin > 0 for some constant vmin. (3.51)
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(3.49) is implied by (G3). Moreover, (3.51) is automatically satisfied, as by (C13)

v2
t (φ) = w

t−1∑
k=1

bk−1 + a
t−1∑
k=1

bk−1ε2
t−k + bt−1 w

1− b
≥ w ≥ κ > 0

and the same holds true for ṽ2
t (φ). For the proof of (3.50), we use (G1) together

with Corollary 3.1 to obtain

1

T

T∑
t=1

∣∣ε̃2
t − ε2

t

∣∣ ≤ 1

T

T∑
t=1

ε2
t

∣∣∣τ 2( t
T
, Xt)− τ̃ 2( t

T
, Xt)

τ 2( t
T
, Xt)

+Rε

( t
T
,Xt

)∣∣∣
= Op(h)

1

T

T∑
t=1

ε2
t = Op(h).

Proof of Theorem 3.3

By the usual Taylor expansion argument, we obtain

0 =
1

T

∂l̃T (φ̃)

∂φ
=

1

T

∂l̃T (φ0)

∂φ
+

1

T

∂2l̃T (φ̄)

∂φ∂φT
(φ̃− φ0)

with some intermediate point φ̄ between φ0 and φ̃. Rearranging and premultiplying

by
√
T yields

√
T (φ̃− φ0) = −

( 1

T

∂2l̃T (φ̄)

∂φ∂φT

)−1 1√
T

∂l̃T (φ0)

∂φ
.

In what follows, we show that

1√
T

∂l̃T (φ0)

∂φ

d−→ N(0, Q) (3.52)

1

T

∂2l̃T (φ̄)

∂φ∂φT
P−→ J, (3.53)

where Q is some covariance matrix to be specified later on and J is an invertible

deterministic matrix. This completes the proof.

Proof of (3.52). We write

1√
T

∂l̃T (φ0)

∂φi
=

1√
T

∂lT (φ0)

∂φi
+
( 1√

T

∂l̃T (φ0)

∂φi
− 1√

T

∂lT (φ0)

∂φi

)
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with

1√
T

∂l̃T (φ0)

∂φi
− 1√

T

∂lT (φ0)

∂φi
= − 1√

T

T∑
t=1

(
1− ε2

t

v2
t

)(∂ṽ2
t

∂φi
− ∂v2

t

∂φi

) 1

v2
t

(A)

+
1√
T

T∑
t=1

(
1− ε2

t

v2
t

)∂ṽ2
t

∂φi

( 1

v2
t

− 1

ṽ2
t

)
(B)

− 1√
T

T∑
t=1

(ε2
t

v2
t

− ε̃2
t

v2
t

)∂ṽ2
t

∂φi

1

ṽ2
t

(C)

+
1√
T

T∑
t=1

ε̃2
t

(v2
t − ṽ2

t

v2
t ṽ

2
t

)∂ṽ2
t

∂φi

1

ṽ2
t

, (D)

where we use the abbreviations v2
t = v2

t (φ0) and ṽ2
t = ṽ2

t (φ0). In what follows,

we show that (A) and (B) are asymptotically negligible, whereas (C) and (D)

contribute to the limiting distribution.

We start with (A) and (B):

(A) = − 1√
T

T∑
t=1

(
1− ε2

t

v2
t

)(∂ṽ2
t

∂φi
− ∂v2

t

∂φi

) 1

v2
t

= − 1√
T

T∑
t=1

(
1− ε2

t

σ2
t

)(∂ṽ2
t

∂φi
− ∂v2

t

∂φi

) 1

σ2
t

− 1√
T

T∑
t=1

[(∂ṽ2
t

∂φi
− ∂v2

t

∂φi

)( 1

v2
t

− 1

σ2
t

)
− ε2

t

(∂ṽ2
t

∂φi
− ∂v2

t

∂φi

)( 1

(v2
t )

2
− 1

(σ2
t )

2

)]
.

Using (G2), we can show that |σ2
t − v2

t | = bt−1|σ2
1 − w

1−b |. With this, it is easy to

see that

(A) =
1√
T

T∑
t=1

(
1− ε2

t

σ2
t

)
︸ ︷︷ ︸

=(1−η2
t )

(∂ṽ2
t

∂φi
− ∂v2

t

∂φi

) 1

σ2
t

+ op(1).

As (1 − η2
t ) is a martingale difference, we can use results from empirical process

theory to show that (A) = op(1). Analogously, we obtain that (B) = op(1).

Next we consider the terms (C) and (D). We restrict attention to (D), as this is

the more complicated term. (C) can be treated analogously. Successively replacing

the approximate expressions ε̃2
t and ṽ2

t in (D) by the exact terms and using (G1)

and (G3) to eliminate the resulting errors yields

(D) =
1√
T

T∑
t=1

ε2
t

(v2
t − ṽ2

t

v2
t v

2
t

)∂v2
t

∂φi

1

v2
t

+ op(1).
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By analogous arguments as for (A) and (B), we can further replace some of the

occurrences of v2
t by σ2

t to get

(D) =
1√
T

T∑
t=1

ε2
t

σ2
t

(v2
t − ṽ2

t

σ2
t σ

2
t

)∂v2
t

∂φi
+ op(1).

Exploiting again the martingale difference structure of (
ε2t
σ2
t
− 1) = (η2

t − 1) gives

(D) =
1√
T

T∑
t=1

(v2
t − ṽ2

t

σ2
t σ

2
t

)∂v2
t

∂φi
+

1√
T

T∑
t=1

(η2
t − 1)

(v2
t − ṽ2

t

σ2
t σ

2
t

)∂v2
t

∂φi
+ op(1)

=
1√
T

T∑
t=1

(v2
t − ṽ2

t

σ2
t σ

2
t

)∂v2
t

∂φi
+ op(1).

Once more using (G1)–(G3) and writing m(x) = mc + m0(x0) + . . . + md(xd) for

short, we can infer that

(D) =
1√
T

T∑
t=1

∂v2
t

∂φi

1

σ2
t σ

2
t︸ ︷︷ ︸

=:Gt

t−1∑
k=1

abk−1(ε2
t−k − ε̃2

t−k) + op(1)

=
1√
T

T∑
t=1

Gt

t−1∑
k=1

abk−1ε2
t−k

[τ 2( t−k
T
, Xt−k)− τ̃ 2( t−k

T
, Xt−k)

τ 2( t−k
T
, Xt−k)

+Op(h
2)
]

+ op(1)

=
1√
T

T∑
t=1

Gt

t−1∑
k=1

abk−1ε2
t−k

[exp(ξt−k)[m( t−k
T
, Xt−k)− m̃( t−k

T
, Xt−k)]

exp(m( t−k
T
, Xt−k))

]
+ op(1)

=
1√
T

T∑
t=1

Gt

t−1∑
k=1

abk−1ε2
t−k

[
m
(t− k

T
,Xt−k

)
− m̃

(t− k
T

,Xt−k

)]
+ op(1),

where the third equality is by a first order Taylor expansion with an intermediate

point ξt−k between m( t−k
T
, Xt−k) and m̃( t−k

T
, Xt−k). We finally split up the differ-

ence m( t−k
T
, Xt−k)− m̃( t−k

T
, Xt−k) into its additive components and decompose the

various components into their bias and stochastic parts. This yields

(D) = (Dc)−
d∑
j=0

(DV,j) +
d∑
j=0

(DB,j) + op(1)

with

(Dc) =
1√
T

T∑
t=1

Gt

t−1∑
k=1

abk−1ε2
t−k

[
(mc − m̃c) +

d∑
j=0

1

T

T∑
s=1

mj(X
j
s )
]
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(DV,j) =
1√
T

T∑
t=1

Gt

t−1∑
k=1

abk−1ε2
t−km̃

A
j (Xj

t−k)

(DB,j) =
1√
T

T∑
t=1

Gt

t−1∑
k=1

abk−1ε2
t−k

[
mj(X

j
t−k)− m̃

B
j (Xj

t−k)−
1

T

T∑
s=1

mj(X
j
s )
]

for j = 0, . . . , d, where for ease of notation we have used the shorthand X0
t−k = t−k

T
.

As in Appendix A, m̃A
j denotes the stochastic part of the backfitting estimate m̃j

and m̃B
j denotes the bias part.

In Lemmas B1–B3, we will show that

(Dc) =
1√
T

T∑
t=1

gc,Dut + op(1) (3.54)

(DV,j) =
1√
T

T∑
t=1

gj,D

( t
T
,Xt

)
ut + op(1) (3.55)

(DB,j) = op(1) (3.56)

for all j = 0, . . . , d with ut = log(ε2
t ). Here, gc,D is a constant which is specified in

Lemma B2 and gj,D for j = 0, . . . , d are functions whose exact forms are given in

Lemma B1. Using (C15), these functions are easily seen to be absolutely bounded

by a constant independent of T . To summarize, we obtain that

(D) =
1√
T

T∑
t=1

[
gc,D +

d∑
j=0

gj,D

( t
T
,Xt

)]
ut + op(1).

Repeating the arguments from above, we can derive an analogous expression for

(C). We thus get that

(C) + (D) =
1√
T

T∑
t=1

g
( t
T
,Xt

)
ut + op(1)

with a function g( t
T
, Xt) = gc +

∑d
j=0 gj(

t
T
, Xt) whose additive components are

absolutely bounded. Recalling that (A) = op(1) and (B) = op(1), we finally obtain

that
1√
T

∂l̃T (φ0)

∂φi
− 1√

T

∂lT (φ0)

∂φi
=

1√
T

T∑
t=1

g
( t
T
,Xt

)
ut + op(1) (3.57)

with an absolutely bounded function g.

We next consider the term 1√
T

∂lT (φ0)
∂φi

more closely. W.l.o.g. we can take φi = a.

(The case φi = b runs analogously and the case φi = w is much easier to handle.)
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By similar arguments to before,

1√
T

∂lT (φ0)

∂φi
= − 1√

T

T∑
t=1

(
1− ε2

t

v2
t

)∂v2
t

∂φi

1

v2
t

= − 1√
T

T∑
t=1

(1− η2
t

σ2
t

) t−1∑
k=1

bk−1ε2
t−k + op(1).

Furthermore,

1√
T

T∑
t=1

(1− η2
t

σ2
t

) t−1∑
k=1

bk−1ε2
t−k =

T−1∑
k=1

bk−1 1√
T

T∑
t=k+1

(1− η2
t

σ2
t

)
ε2
t−k

=

C2 log T∑
k=1

bk−1 1√
T

T∑
t=k+1

(1− η2
t

σ2
t

)
ε2
t−k + op(1)

=
1√
T

T∑
t=1

(mint,T∑
k=1

bk−1ε2
t−k

)(1− η2
t

σ2
t

)
+ op(1),

where C2 > 0 is a sufficiently large constant and mint,T := min{t − 1, C2 log T}.
For the second equality, we have used the fact that the weights bk and bi converge

exponentially fast to zero as i, k → ∞. This implies that only the sums up to

C2 log T with some constant C2 are asymptotically relevant. Summing up, we

have that

1√
T

∂lT (φ0)

∂φi
= − 1√

T

T∑
t=1

(mint,T∑
k=1

bk−1ε2
t−k

)(1− η2
t

σ2
t

)
+ op(1). (3.58)

Combining (3.57) and (3.58) yields

1√
T

∂l̃T (φ0)

∂φi
=

1√
T

∂lT (φ0)

∂φi
+

1√
T

T∑
t=1

g
( t
T
,Xt

)
ut + op(1)

=
1√
T

T∑
t=1

{
g
( t
T
,Xt

)
ut −

(mint,T∑
k=1

bk−1ε2
t−k

)(1− η2
t

σ2
t

)}
+ op(1)

=:
1√
T

T∑
t=1

Zt,T + op(1),

i.e. the term of interest can be written as a normalized sum of random variables

Zt,T plus a term which is asymptotically negligible.

We now apply a central limit theorem for mixing arrays to the term 1√
T

∑T
t=1 Zt,T .

In particular, we employ the theorem of Francq & Zaköıan (2005), which allows the
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mixing coefficients of the array {Zt,T} to depend on the sample size T . Verifying

the conditions of this theorem, we can conclude that

1√
T

∂l̃T (φ0)

∂φi
→ N(0, σ2)

with

σ2 = E
[
λ2(X0)u0

]
− 2E

[
λ1(X0)u0

( ∞∑
k=1

bk−1ε2
−k

)(1− η2
0

σ2
0

)]
+ E

[( ∞∑
k=1

bk−1ε2
−k

)2(1− η2
0

σ2
0

)2]
+ 2E

[
λ1,1(X0, Xl)u0ul

]
− 2E

[
λ1(X0)u0

( ∞∑
k=1

bk−1ε2
l−k

)(1− η2
l

σ2
l

)]
− 2E

[
λ1(Xl)ul

( ∞∑
k=1

bk−1ε2
−k

)(1− η2
0

σ2
0

)]
,

where we use the shorthand λ1(x) =
∫ 1

0
g(w, x)dw, λ2(x) =

∫ 1

0
g2(w, x)dw, and

λ1,1(x, x′) =
∫ 1

0
g(w, x)g(w, x′)dw. Using the Cramer-Wold device, it is now easy

to show that
1√
T

∂l̃T (φ0)

∂φ
→ N(0, Q).

The entries of the matrix Q can be calculated similarly to the expression σ2. We

omit the details as the formulas are rather lengthy and complicated.

Proof of (3.53). By straightforward but tedious calculations it can be seen that

sup
φ∈Φ

∣∣∣ 1

T

∂2l̃T (φ)

∂φ∂φT
− 1

T

∂2lT (φ)

∂φ∂φT

∣∣∣ = op(1).

From standard theory for GARCH models, we further know that

1

T

∂2lT (φ̄)

∂φ∂φT
P−→ J

with some invertible deterministic matrix J . This yields (3.53).

In order to complete the proof of asymptotic normality of the GARCH estimates

we still need to show that equations (3.54)–(3.56) are fulfilled for the terms (Dc),

(DV,j), and (DB,j). We begin with the expansion of the variance components

(DV,j), as this is the technically most interesting part.
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Lemma B1. It holds that

(DV,j) =
1√
T

T∑
s=1

gj,D

( s
T
,Xs

)
us + op(1)

with

gj,D

( s
T
,Xs

)
= gNWj,D (Xj

s ) + gSBFj,D

( s
T
,Xs

)
for j = 0, . . . , d. The functions gNWj,D and gSBFj,D are absolutely bounded. Their exact

form is given in the proof (see (3.63) and (3.66)–(3.68)).

Proof. We start by giving a detailed exposition of the proof for j 6= 0. By

Theorem A1, the stochastic part m̃A
j of the smooth backfitting estimate m̃j has

the expansion

m̃A
j (xj) = m̂A

j (xj) +
1

T

T∑
s=1

rj,s(xj)us + op

( 1√
T

)
uniformly in xj, where m̂A

j is the stochastic part of the Nadaraya-Watson pilot

estimate and rj,s(·) = rj(
s
T
, Xs, ·) is Lipschitz continuous and absolutely bounded.

With this result, we can decompose (DV,j) as follows:

(DV,j) =
1√
T

T∑
t=1

∂v2
t

∂φi

1

σ2
t σ

2
t

t−1∑
k=1

abk−1ε2
t−km̃

A
j (Xj

t−k)

=
1√
T

T∑
t=1

t−1∑
k=1

abk−1ε2
t−k

∂v2
t

∂φi

1

σ2
t σ

2
t

m̂A
j (Xj

t−k)

+
1√
T

T∑
t=1

t−1∑
k=1

abk−1ε2
t−k

∂v2
t

∂φi

1

σ2
t σ

2
t

[ 1

T

T∑
s=1

rj,s(X
j
t−k)us

]
+ op(1)

=: (DNW
V,j ) + (DSBF

V,j ) + op(1).

In the following, we will give the exact arguments needed to treat (DNW
V,j ). The

line of argument for (DSBF
V,j ) is essentially identical although some of the steps are

easier due to the properties of the rj,s functions.

W.l.o.g set φi = a and let mi,k = max{k+ 1, i+ 1}. Using ∂v2
t /∂a =

∑t−1
i=1 b

i−1ε2
t−i

and m̂A
j (xj) = 1

T

∑T
s=1Kh(xj, X

j
s )us/

1
T

∑T
v=1Kh(xj, X

j
v), we get

(DNW
V,j ) =

T−1∑
k=1

abk−1

T−1∑
i=1

bi−1

×
[ 1√

T

T∑
s=1

1

T

T∑
t=mi,k

Kh(X
j
t−k, X

j
s )

1
T

∑T
v=1Kh(X

j
t−k, X

j
v)

1

σ2
t σ

2
t

ε2
t−kε

2
t−ius

]
. (3.59)
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In a first step, we replace the sum 1
T

∑T
v=1 Kh(X

j
t−k, X

j
v) in (3.59) by a term which

only depends onXj
t−k and show that the resulting error is asymptotically negligible.

Let qj(xj) =
∫ 1

0
Kh(xj, w)dw pj(xj). Furthermore define

Bj(xj) =
1

T

T∑
v=1

E[Kh(xj, X
j
v)]− qj(xj)

Vj(xj) =
1

T

T∑
v=1

(
Kh(xj, X

j
v)− E[Kh(xj, X

j
v)]
)
.

Notice that supxj∈[0,1] |Bj(xj)| = Op(h) and supxj∈[0,1] |Vj(xj)| = Op(
√

log T/Th).

From the identity 1
T

∑T
v=1 Kh(xj, X

j
v) = qj(xj) + Bj(xj) + Vj(xj) and a second

order Taylor expansion of (1 + x)−1 we arrive at

1
1
T

∑T
v=1Kh(xj, X

j
v)

=
1

qj(xj)

(
1 +

Bj(xj) + Vj(xj)

qj(xj)

)−1

=
1

qj(xj)

(
1− Bj(xj) + Vj(xj)

qj(xj)
+Op(h

2)
)

(3.60)

uniformly in xj. Plugging this decomposition into (3.59), we obtain

(DNW
V,j ) =

T−1∑
k=1

abk−1

T−1∑
i=1

bi−1
[ 1√

T

T∑
s=1

1

T

T∑
t=mi,k

Kh(X
j
t−k, X

j
s )

qj(X
j
t−k)

1

σ2
t σ

2
t

ε2
t−kε

2
t−ius

]
− (DNW,B

V,j )− (DNW,V
V,j ) + op(1)

with

(DNW,B
V,j ) =

T−1∑
k=1

abk−1

T−1∑
i=1

bi−1
[ 1√

T

T∑
s=1

1

T

T∑
t=mi,k

Kh(X
j
t−k, X

j
s )
Bj(X

j
t−k)

q2
j (X

j
t−k)

1

σ2
t σ

2
t

ε2
t−kε

2
t−ius

]

(DNW,V
V,j ) =

T−1∑
k=1

abk−1

T−1∑
i=1

bi−1
[ 1√

T

T∑
s=1

1

T

T∑
t=mi,k

Kh(X
j
t−k, X

j
s )
Vj(X

j
t−k)

q2
j (X

j
t−k)

1

σ2
t σ

2
t

ε2
t−kε

2
t−ius

]
.

As supxj∈Ih |Bj(xj)| = Op(h
2) and supxj∈Ich |Bj(xj)| = Op(h), we can proceed sim-

ilarly to the proof of Lemma B3 later on to show that (DNW,B
V,j ) = op(1). Next we

will show that (DNW,V
V,j ) = op(1). Let Ev[·] denote the expectation with respect to
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the variables indexed by v, then

∣∣(DNW,V
V,j )

∣∣ =
∣∣∣ T−1∑
k=1

abk−1

T−1∑
i=1

bi−1
[ 1√

T

T∑
s=1

1

T

T∑
t=mi,k

Kh(X
j
t−k, X

j
s )

q2
j (X

j
t−k)

1

σ2
t σ

2
t

ε2
t−kε

2
t−i

×
( 1

T

T∑
v=1

(Kh(X
j
t−k, X

j
v)− Ev[Kh(X

j
t−k, X

j
v)])
)
us

]∣∣∣
≤

T−1∑
k=1

abk−1

T−1∑
i=1

bi−1
( 1√

T

T∑
t=mi,k

∣∣∣ 1

q2
j (X

j
t−k)

1

σ2
t σ

2
t

ε2
t−kε

2
t−i

∣∣∣
× sup

xj∈[0,1]

∣∣∣ 1

T

T∑
v=1

(Kh(xj, X
j
v)− Ev[Kh(xj, X

j
v)])
∣∣∣

× sup
xj∈[0,1]

∣∣∣ 1

T

T∑
s=1

Kh(xj, X
j
s )us

∣∣∣)
= Op

( log T

Th

) T−1∑
k=1

abk−1

T−1∑
i=1

bi−1
( 1√

T

T∑
t=mi,k

∣∣∣ 1

q2
j (X

j
t−k)

1

σ2
t σ

2
t

ε2
t−kε

2
t−i

∣∣∣)︸ ︷︷ ︸
=Op(

√
T ) by Markov’s inequality

= Op

( log T

Th

√
T
)

= op(1).

Together with the fact that (DNW,B
V,j ) = op(1), this yields

(DNW
V,j ) =

T−1∑
k=1

abk−1

T−1∑
i=1

bi−1
[ 1√

T

T∑
s=1

1

T

T∑
t=mi,k

Kh(X
j
t−k, X

j
s )µ

i,k
t us

]
+ op(1), (3.61)

where we use the shorthand µi,kt = (qj(X
j
t−k)σ

2
t σ

2
t )
−1ε2

t−kε
2
t−i.

In the next step, we replace the inner sum over t in (3.61) by a term that only

depends on Xj
s and show that the resulting error can be asymptotically neglected.

Define

ξ(Xj
t−k, X

j
s ) := ξi,kt (Xj

t−k, X
j
s ) := Kh(X

j
t−k, X

j
s )µ

i,k
t − E−s[Kh(X

j
t−k, X

j
s )µ

i,k
t ],

where E−s[·] is the expectation with respect to all variables except for those de-

pending on the index s. With the above notation at hand, we can write

(DNW
V,j ) =

T−1∑
k=1

abk−1

T−1∑
i=1

bi−1
[ 1√

T

T∑
s=1

1

T

T∑
t=mi,k

E−s[Kh(X
j
t−k, X

j
s )µ

i,k
t ]us

]
+ (RNW

V,j ) + op(1),
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where

(RNW
V,j ) =

T−1∑
k=1

abk−1

T−1∑
i=1

bi−1
[ 1√

T

T∑
s=1

1

T

T∑
t=mi,k

ξ(Xj
t−k, X

j
s )us

]

=

C2 log T∑
k=1

abk−1

C2 log T∑
i=1

bi−1
[ 1√

T

T∑
s=1

1

T

T∑
t=mi,k

ξ(Xj
t−k, X

j
s )us

]
+ op(1) (3.62)

for some sufficiently large constant C2 > 0. Once we show that (RNW
V,j ) = op(1),

we are left with

(DNW
V,j ) =

T−1∑
k=1

abk−1

T−1∑
i=1

bi−1
[ 1√

T

T∑
s=1

1

T

T∑
t=mi,k

E−s[Kh(X
j
t−k, X

j
s )µ

i,k
t ]us

]
+ op(1)

=
1√
T

T∑
s=1

( T−1∑
k=1

abk−1

T−1∑
i=1

bi−1T −mi,k

T
E−s[Kh(X

j
−k, X

j
s )µ

i,k
0 ]
)
us + op(1).

As the terms with i, k ≥ C2 log T are asymptotically negligible, we can expand the

i and k sums to infinity, which yields

(DNW
V,j ) =

1√
T

T∑
s=1

( ∞∑
k=1

abk−1

∞∑
i=1

bi−1E−s[Kh(X
j
−k, X

j
s )µ

i,k
0 ]
)
us + op(1)

=:
1√
T

T∑
s=1

gNWj,D (Xj
s )us + op(1) (3.63)

with

µi,k0 =
1

qj(X
j
−k)

1

σ2
0σ

2
0

ε2
−kε

2
−i

qj(X
j
−k) =

∫ 1

0

Kh(X
j
−k, w)dw pj(X

j
−k).

Thus it remains to show that (RNW
V,j ) = op(1), which requires a lot of care. We

will prove that the term in square brackets in (3.62) is op(1) uniformly over i, k ≤
C2 log T , which yields the desired result. It is easily seen that

P := P
(

max
i,k≤C2 log T

∣∣∣ 1√
T

T∑
s=1

1

T

T∑
t=mi,k

ξ(Xj
t−k, X

j
s )us

∣∣∣ > δ
)

≤
C2 log T∑
k=1

C2 log T∑
i=1

P
(∣∣∣ 1√

T

T∑
s=1

1

T

T∑
t=mi,k

ξ(Xj
t−k, X

j
s )us

∣∣∣ > δ
)

︸ ︷︷ ︸
=:Pi,k
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for a fixed δ > 0. Then by Chebychev’s inequality

Pi,k ≤
1

T 3δ2

T∑
s,s′=1

T∑
t,t′=mi,k

E
[
ξ(Xj

t−k, X
j
s )usξ(X

j
t′−k, X

j
s′)us′

]
=

1

T 3δ2

∑
(s,s′,t,t′)/∈Γi,k

E
[
ξ(Xj

t−k, X
j
s )usξ(X

j
t′−k, X

j
s′)us′

]
+

1

T 3δ2

∑
(s,s′,t,t′)∈Γi,k

E
[
ξ(Xj

t−k, X
j
s )usξ(X

j
t′−k, X

j
s′)us′

]
=: P 1

i,k + P 2
i,k,

where Γi,k is the set of tuples (s, s′, t, t′) with 1 ≤ s, s′ ≤ T and mi,k ≤ t, t′ ≤ T such

that one index is separated from the others. We say that an index, for instance t,

is separated from the others if min{|t − t′|, |t − s|, |t − s′|} > C3 log T , i.e. if it is

further away from the other indices than C3 log T for a constant C3 to be chosen

later on. We now analyse P 1
i,k and P 2

i,k separately.

(a) First consider P 1
i,k. If a tuple (s, s′, t, t′) is not an element of Γi,k, then no index

can be separated from the others. Since the index t cannot be separated, there

exists an index, say t′, such that |t−t′| ≤ C3 log T . Now take an index different

from t and t′, for instance s. Then by the same argument, there exists an index,

say s′, such that |s − s′| ≤ C3 log T . As a consequence, the number of tuples

(s, s′, t, t′) /∈ Γi,k is smaller than CT 2(log T )2 for some constant C. Using

(C14), this suffices to infer that

∣∣P 1
i,k

∣∣ ≤ 1

T 3δ2

∑
(s,s′,t,t′)/∈Γi,k

C

h2
≤ C

δ2

(log T )2

Th2
.

Hence, |P 1
i,k| ≤ Cδ−2(log T )−3 uniformly in i and k.

(b) The term P 2
i,k is more difficult to handle. We start by taking a cover {Im}MT

m=1

of the compact support [0, 1] of Xj
t−k. The elements Im are intervals of length

1/MT given by Im = [m−1
MT

, m
MT

) for m = 1, . . . ,MT − 1 and IMT
= [1− 1

MT
, 1].

The midpoint of the interval Im is denoted by xm. With this, we can write

Kh(X
j
t−k, X

j
s ) =

MT∑
m=1

I(Xj
t−k ∈ Im)

×
[
Kh(xm, X

j
s ) + (Kh(X

j
t−k, X

j
s )−Kh(xm, X

j
s ))
]
. (3.64)
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Using (3.64), we can further write

ξ(Xj
t−k, X

j
s ) =

MT∑
m=1

{
I(Xj

t−k ∈ Im)Kh(xm, X
j
s )µ

i,k
t

− E−s[I(Xj
t−k ∈ Im)Kh(xm, X

j
s )µ

i,k
t ]
}

+

MT∑
m=1

{
I(Xj

t−k ∈ Im)(Kh(X
j
t−k, X

j
s )−Kh(xm, X

j
s ))µ

i,k
t

− E−s[I(Xj
t−k ∈ Im)(Kh(X

j
t−k, X

j
s )−Kh(xm, X

j
s ))µ

i,k
t ]
}

=: ξ1(Xj
t−k, X

j
s ) + ξ2(Xj

t−k, X
j
s )

and

P 2
i,k =

1

T 3δ2

∑
(s,s′,t,t′)∈Γi,k

E
[
ξ1(Xj

t−k, X
j
s )usξ(X

j
t′−k, X

j
s′)us′

]
+

1

T 3δ2

∑
(s,s′,t,t′)∈Γi,k

E
[
ξ2(Xj

t−k, X
j
s )usξ(X

j
t′−k, X

j
s′)us′

]
=: P 2,1

i,k + P 2,2
i,k .

We first consider P 2,2
i,k . Set MT = CT (log T )3h−3 and exploit the Lipschitz

continuity of the kernelK to get that |Kh(X
j
t−k, X

j
s )−Kh(xm, X

j
s )| ≤ C

h2 |Xj
t−k−

xm|. This gives us

∣∣ξ2(Xj
t−k, X

j
s )
∣∣ ≤ C

h2

MT∑
m=1

(
I(Xj

t−k ∈ Im)|Xj
t−k − xm|︸ ︷︷ ︸

≤I(Xj
t−k∈Im)M−1

T

µi,kt

+ E
[
I(Xj

t−k ∈ Im)|Xj
t−k − xm|︸ ︷︷ ︸

≤I(Xj
t−k∈Im)M−1

T

µi,kt
])

≤ C

MTh2

(
µi,kt + E[µi,kt ]

)
. (3.65)

Plugging (3.65) into the expression for P 2,2
i,k , we arrive at∣∣P 2,2

i,k

∣∣ ≤ 1

T 3δ2

∑
(s,s′,t,t′)∈Γi,k

E
[∣∣ξ2(Xj

t−k, X
j
s )
∣∣∣∣usξ(Xj

t′−k, X
j
s′)us′

∣∣]
≤ 1

T 3δ2

C

MTh2

∑
(s,s′,t,t′)∈Γi,k

E
[
(µi,kt + E[µi,kt ])|usξ(Xj

t′−k, X
j
s′)us′|︸ ︷︷ ︸

≤Ch−1

]
≤ C

δ2

1

(log T )3
.
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We next turn to P 2,1
i,k . Write

P 2,1
i,k =

1

T 3δ2

∑
(s,s′,t,t′)∈Γi,k

( MT∑
m=1

Sm

)
with

Sm = E
[{
I(Xj

t−k ∈ Im)Kh(xm, X
j
s )µ

i,k
t − E−s[I(Xj

t−k ∈ Im)Kh(xm, X
j
s )µ

i,k
t ]
}

× usξ(Xj
t′−k, X

j
s′)us′

]
and assume that an index, w.l.o.g. t, can be separated from the others. Choos-

ing C3 � C2, we get

Sm = Cov
(
I(Xj

t−k ∈ Im)µi,kt − E[I(Xj
t−k ∈ Im)µi,kt ],

Kh(xm, X
j
s )usξ(X

j
t′−k, X

j
s′)us′

)
≤ C

h2
(α([C3 − C2] log T ))1− 2

p ≤ C

h2
(a(C3−C2) log T )1− 2

p ≤ C

h2
T−C4

with some C4 > 0 by Davydov’s inequality, where p is chosen slightly larger

than 2. Note that the above bound is independent of i and k and that we

can make C4 arbitrarily large by choosing C3 large enough. This shows that

|P 2,1
i,k | ≤ Cδ−2(log T )−3 uniformly in i and k with some constant C.

Combining (a) and (b) yields that P → 0 for each fixed δ > 0. This implies that

(RNW,V
V,j ) = op(1),

which completes the proof for the term (DNW
V,j ).

As stated at the beginning of the proof, the term (DSBF
V,j ) can be treated in exactly

the same way. Following analogous arguments as above, one obtains

(DSBF
V,j ) =

T−1∑
k=1

abk−1

T−1∑
i=1

bi−1
[ 1√

T

T∑
s=1

1

T

T∑
t=mi,k

E−s[rj,s(Xj
t−k)ζ

i,k
t ] us

]
+ op(1)

=
1√
T

T∑
s=1

( ∞∑
k=1

abk−1

∞∑
i=1

bi−1E−s[rj,s(Xj
−k)ζ

i,k
0 ]
)
us + op(1)

=:
1√
T

T∑
s=1

gSBFj,D

( s
T
,Xs

)
us + op(1) (3.66)
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with ζ i,kt = (σ2
t σ

2
t )
−1ε2

t−kε
2
t−i.

Finally, the proofs for j = 0 are very similar but somewhat simpler and are thus

omitted here. For completeness we provide the functions gNW0,D and gSBF0,D :

gNW0,D

( s
T

)
=
( ∞∑
k=1

abk−1

∞∑
i=1

bi−1E
[ 1

σ2
0σ

2
0

ε2
−kε

2
−i
]) ∫ 1

0

Kh(
s
T
, v)∫ 1

0
Kh(v, w)dw

dv (3.67)

gSBF0,D

( s
T
,Xs

)
=
( ∞∑
k=1

abk−1

∞∑
i=1

bi−1E
[ 1

σ2
0σ

2
0

ε2
−kε

2
−i
]) ∫ 1

0

r0,s(w)dw. (3.68)

Lemma B2. It holds that

(Dc) =
1√
T

T∑
s=1

gc,Dus

with

gc,D =
∞∑
k=1

abk−1

∞∑
i=1

bi−1E
[ 1

σ2
0σ

2
0

ε2
−iε

2
−k

]
.

Proof. Using the fact that

m̃c =
1

T

T∑
s=1

Zs,T = mc +
1

T

T∑
s=1

m0

( s
T

)
+

d∑
j=1

1

T

T∑
s=1

mj(X
j
s ) +

1

T

T∑
s=1

us,

we arrive at

(Dc) = −
( 1

T

T∑
t=1

Gt

t−1∑
k=1

abk−1ε2
t−k

)( 1√
T

T∑
s=1

us

)
with Gt =

∂v2
t

∂φi
(σ2

t σ
2
t )
−1. Now let mi,k = max{k+ 1, i+ 1} and assume w.l.o.g. that

φi = a. Then

1

T

T∑
t=1

Gt

t−1∑
k=1

abk−1ε2
t−k =

1

T

T∑
t=1

( t−1∑
i=1

bi−1ε2
t−i

) 1

σ2
t σ

2
t

t−1∑
k=1

abk−1ε2
t−k

=

C2 log T∑
k=1

abk−1

C2 log T∑
i=1

bi−1 1

T

T∑
t=mi,k

1

σ2
t σ

2
t

ε2
t−iε

2
t−k + op(1)

with some sufficiently large constant C2. Using Chebychev’s inequality and ex-

ploiting the mixing properties of the variables involved, one can show that

max
i,k≤C2 log T

1

T

T∑
t=mi,k

( 1

σ2
t σ

2
t

ε2
t−iε

2
t−k − E

[ 1

σ2
t σ

2
t

ε2
t−iε

2
t−k

])
= op(1).
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This allows us to infer that

1

T

T∑
t=1

Gt

t−1∑
k=1

abk−1ε2
t−k =

C2 log T∑
k=1

abk−1

C2 log T∑
i=1

bi−1 1

T

T∑
t=mi,k

E
[ 1

σ2
t σ

2
t

ε2
t−iε

2
t−k

]
+ op(1)

=
∞∑
k=1

abk−1

∞∑
i=1

bi−1E
[ 1

σ2
0σ

2
0

ε2
−iε

2
−k

]
+ op(1),

which completes the proof.

Lemma B3. It holds that

(DB,j) = op(1)

for j = 0, . . . , d.

Proof. We start by considering the case j = 0: Define

Jh = {t ∈ {1, . . . , T} : C1h ≤
t

T
≤ 1− C1h}

Juh,c = {t ∈ {1, . . . , T} : 1− C1h <
t

T
}

J lh,c = {t ∈ {1, . . . , T} :
t

T
< C1h},

where [−C1, C1] is the support of K. Using the uniform convergence rates from

Theorem A2 and assuming w.l.o.g. that φi = a, we get

|(DB,0)| =
∣∣∣ 1√
T

T∑
t=1

∂v2
t

∂a

1

σ2
t σ

2
t

t−1∑
k=1

abk−1ε2
t−k

×
[
m0

(t− k
T

)
− m̃B

0

(t− k
T

)
− 1

T

T∑
s=1

m0

( s
T

)]∣∣∣
≤ Op(h)

1√
T

T∑
t=1

t−1∑
i=1

bi−1

t−1∑
k=1

abk−1ε2
t−iε

2
t−kI(t− k ∈ J lh,c)

+Op(h)
1√
T

T∑
t=1

t−1∑
i=1

bi−1

t−1∑
k=1

abk−1ε2
t−iε

2
t−kI(t− k ∈ Juh,c)

+Op(h
2)
C√
T

T∑
t=1

t−1∑
i=1

bi−1

t−1∑
k=1

abk−1ε2
t−iε

2
t−kI(t− k ∈ Jh)

=: (D
J lh,c
B,0 ) + (D

Juh,c
B,0 ) + (DJh

B,0).

By Markov’s inequality, (DJh
B,0) = Op(h

2
√
T ) = op(1). Recognizing that
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(i) I(t− k ∈ Juh,c) ≤ I(t ∈ Juh,c) for all k ∈ {0, . . . , t− 1}

(ii)
∑T

t=1 I(t ∈ Juh,c) ≤ C1Th,

we get (D
Juh,c
B,0 ) = Op(h

2
√
T ) = op(1) by another appeal to Markov’s inequality.

This just leaves (D
J lh,c
B,0 ), which is a bit more tedious. By a change of variable

j = t− k,

(D
J lh,c
B,0 ) ≤ Op(h)

1√
T

T∑
t=1

t−1∑
i=1

bi−1ε2
t−i

t−1∑
j=1

abt−j−1ε2
jI(j ∈ J lh,c)

= Op(h)
1√
T

T∑
t=1

t−1∑
i=1

bi−1ε2
t−iI

([ t
2

]
∈ J lh,c

) t−1∑
j=1

abt−j−1ε2
jI(j ∈ J lh,c)

+Op(h)
1√
T

T∑
t=1

t−1∑
i=1

bi−1ε2
t−iI

([ t
2

]
/∈ J lh,c

) t−1∑
j=1

abt−j−1ε2
jI(j ∈ J lh,c)

=: (A) + (B),

where [x] denotes the smallest integer larger than x. Realizing that [t/2] ∈ J lh,c only

if t < 2C1hT , we get (A) = Op(h
2
√
T ) = op(1) once again by Markov’s inequality.

In (B) we can truncate the summation over j at [t/2] − 1, as I(j ∈ J lh,c) = 0 for

j ≥ [t/2] if [t/2] /∈ J lh,c. We thus obtain

(B) ≤ Op(h)
1√
T

T∑
t=1

t−1∑
i=1

bi−1ε2
t−i

[t/2]−1∑
j=1

abt−j−1ε2
j

= Op(h)
1√
T

T∑
t=1

b[t/2]

t−1∑
i=1

bi−1

[t/2]−1∑
j=1

abt−j−1−[t/2]ε2
t−iε

2
j .

By a final appeal to Markov’s inequality we arrive at

(B) = Op(h)Op

( 1√
T

)
= op(1),

thus completing the proof for j = 0.

Next consider the case j 6= 0. Similarly to before, we have

|(DB,j)| ≤ Op(h
2)

1√
T

T∑
t=1

t−1∑
i=1

bi−1

t−1∑
k=1

abk−1ε2
t−iε

2
t−kI(Xj

t−k ∈ Ih)

+Op(h)
1√
T

T∑
t=1

t−1∑
i=1

bi−1

t−1∑
k=1

abk−1ε2
t−iε

2
t−kI(Xj

t−k /∈ Ih)
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= Op(h
2
√
T ) +Op

( h√
T

) T∑
t=1

t−1∑
i=1

bi−1

t−1∑
k=1

abk−1ε2
t−iε

2
t−kI(Xj

t−k /∈ Ih)︸ ︷︷ ︸
=:RT

with Ih = [2C1h, 1 − 2C1h] as defined in Theorem 3.1. Using (C15), it is easy to

see that RT = Op(h), which yields the result for j 6= 0.

Appendix C

For completeness, we collect some standard type uniform convergence results in

this appendix which are needed to prove Theorem 3.1. These can be shown by

small modifications of standard arguments as given for example in Masry [32] or

Hansen [17]. We start with the kernel density estimates p̂j and p̂j,k. Using the

notation p0(x0) = I(x0 ∈ (0, 1]), we have the following result.

Lemma C1. Suppose that (C1)–(C11) hold and that the bandwidth h satisfies

(C12a) or (C12b). Then

sup
xj∈Ih

∣∣p̂j(xj)− pj(xj)∣∣ = Op

(√ log T

Th

)
+ o(h) (3.69)

sup
0≤xj≤1

∣∣p̂j(xj)− κ0(xj)pj(xj)
∣∣ = Op

(√ log T

Th

)
+O(h) (3.70)

sup
xj ,xk∈Ih

∣∣p̂j,k(xj, xk)− pj,k(xj, xk)∣∣ = Op

(√ log T

Th2

)
+ o(h) (3.71)

sup
0≤xj ,xk≤1

∣∣p̂j,k(xj, xk)− κ0(xj)κ0(xk)pj,k(xj, xk)
∣∣ = Op

(√ log T

Th2

)
+O(h) (3.72)

for j, k = 0, . . . , d with j 6= k, where κ0(v) =
∫
Kh(v, w)dw and Ih = [2C1h, 1 −

2C1h].

Proof. We restrict attention to (3.72), the other results following by analogous

arguments. For j, k 6= 0, we are in the standard strictly stationary setting and can

immediately apply results from Masry [32] or Hansen [17]. The case j = 0 and

k 6= 0, where we simultaneously smooth in the direction of time and the regressor

Xk
t , can be handled by using similar arguments. In particular, we apply a covering

argument together with an exponential inequality for mixing variables. To do so,

we have to show that Th2Var(p̂0,k(x0, xk)) ≤ C uniformly in x0 and xk, which is
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achieved by exploiting that

sup
x0∈(0,1]

1

T

T∑
t=1

Kr
h

(
x0,

t

T

)
≤ C

hr−1

max
l=1,...,T−1

sup
x0∈(0,1]

1

T

T∑
t=1

Kh

(
x0,

t

T

)
Kh

(
x0,

t+ l

T

)
≤ C

h
.

We now examine the convergence behaviour of the one-dimensional Nadaraya-

Watson smoothers m̂j defined in (3.17) and (3.20). For the stochastic part m̂A
j ,

we have

Lemma C2. Under (C1)–(C11) together with (C12a) or (C12b),

sup
xj∈[0,1]

∣∣m̂A
j (xj)

∣∣ = Op

(√ log T

Th

)
(3.73)

for all j = 0, . . . , d.

Proof. The case j 6= 0 is standard. For the case j = 0, we have to modify the

arguments in a similar vein to Lemma C1.

For the bias part m̂B
j , we have the following expansion:

Lemma C3. Under (C1)–(C11) together with (C12a) or (C12b),

sup
xj∈Ih

∣∣m̂B
j (xj)− µ̂T,j(xj)

∣∣ = op(h
2) (3.74)

sup
xj∈Ich

∣∣m̂B
j (xj)− µ̂T,j(xj)

∣∣ = Op(h
2) (3.75)

for all j = 0, . . . , d, where

µ̂T,j(xj) = αT,0 + αT,j(xj) +
∑
k 6=j

∫
αT,k(xk)

p̂j,k(xj, xk)

p̂j(xj)
dxk + h2

∫
β(x)

p(x)

pj(xj)
dx−j.

Here, αT,0 = mc and

αT,k(xk) = mk(xk) +m′k(xk)
hκ1(xk)

κ0(xk)

β(x) =
d∑

k=0

∫
u2K(u)du

(∂ log p(x)

∂xk
m′k(xk) +

1

2
m′′k(xk)

)
with κ0(xk) =

∫
Kh(xk, w)dw and κ1(xk) =

∫
Kh(xk, w)(w−xk

h
)dw.
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Proof. The result can be proven by exploiting the smoothness conditions imposed

on the densities pj and pj,k as well as the functions mj and by using the fact that

for l = 0, 1, 2,

1

T

T∑
t=1

Kh

(
x0,

t

T

)( t
T
− x0

h

)l
=

∫
Kh(x0, w)

(w − x0

h

)l
dw +O

( 1

Thr

)
uniformly for x0 ∈ Ih with r = 1 and uniformly for x0 ∈ Ich with r = 2. We omit

the details. Compare also the relevant parts in the proof of Theorem 4 in Mammen

et al. [29].
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