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Chapter 1

General Introduction

This thesis consists of three self-contained chapters. Chapter two introduces a novel solu-

tion method for dynamic general equilibrium models. This solution method is tailor-made

for models where the optimization problem of agents involves inequality constraints (e.g.

borrowing or collateral constraints).

Chapter three explores the effect of collateral requirements on asset prices. We consider a

Lucas tree economy with heterogeneous agents that face collateral constraints. The meth-

ods used to compute equilibria for this model rely on the solution method developed in

Chapter two. We obtain our main results in a setting with two assets where we show that

changes in the collateral requirement for one asset have a strong impact on the volatility

of the other asset.

Finally, Chapter four develops a new theory about sovereign debt defaults. In a small

open economy setting we show that default on government debt can be optimal under full

commitment of the government because it allows for increased risk diversification.

A more detailed summary of each chapter is provided below.

1.1 Computing Equilibria in Models with Occasion-

ally Binding Constraints

In the second chapter a method is proposed to compute equilibria in dynamic models with

several continuous state variables and occasionally binding constraints, e.g. borrowing or

collateral constraints. These constraints induce non-differentiabilities in policy functions.

1



2 CHAPTER 1. GENERAL INTRODUCTION

We develop an interpolation technique that addresses this problem directly: It locates the

non-differentiabilities and adds interpolation nodes there. To handle this flexible grid, it

uses simplicial interpolation. Hence, we call this method Adaptive Simplicial Interpolation

(ASI). We embed ASI into a time iteration algorithm to compute recursive equilibria in

an infinite horizon endowment economy where heterogeneous agents trade in a bond and

a stock subject to various trading constraints. We show that this method computes equi-

libria accurately and outperforms other grid schemes by far.

This chapter is based on the paper ’Computing Equilibria in Dynamic Models with Oc-

casionally Binding Constraints’ which is joint work with Johannes Brumm. The paper is

available as Brumm and Grill (2010).

1.2 Collateral Requirements and Asset Prices

In the third chapter we examine the effect of collateral requirements on the prices of

longlived assets. We consider a Lucas-style infinite-horizon exchange economy with het-

erogeneous agents and collateral constraints. There are two trees in the economy which

can be used as collateral for short-term loans. For the first tree the collateral requirement

is determined endogenously while the collateral requirement for loans on the second tree

is exogenously regulated. We show that the presence of collateral constraints and the en-

dogenous margin requirements for the first tree lead to large excess price-volatility of the

second tree. Changes in the regulated margin requirements for the second tree have large

effects on the volatility of both trees. While tightening margins for loans on the second

tree always decreases the price volatility of the first tree, price volatility of the second tree

might very well increase with this change. In our calibration we allow for the possibility

of disaster states. This leads to very large quantitative effects of collateral requirements

and to realistic equity risk premia. We show that our qualitative results are robust to the

actual parametrization of the economy.

This chapter is based on the paper ’Collateral Requirements and Asset Prices’ which is joint

work with Johannes Brumm, Felix Kubler and Karl Schmedders. The paper is available

as Brumm, Kubler, Grill, and Schmedders (2011).
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1.3 Optimal Sovereign Debt Default

In the final chapter we determine optimal government default policies for a small open econ-

omy in which a domestic government can borrow internationally by issuing non-contingent

debt contracts. Unlike earlier work, we consider optimal default policies under full gov-

ernment commitment and treat repayment of international debt as a decision variable.

Default can be optimal under commitment because it allows for increased international

diversification of domestic output and consumption risk when government bond markets

are incomplete. In the absence of default costs, default optimally occurs very frequently

and independently of the country’s net foreign asset position. Optimal default policies,

however, change drastically when a government default entails small but positive dead

weight costs: default is then optimal only in response to disaster-like shocks to domestic

output, or when a small adverse shock pushes international debt levels sufficiently close

to the country’s borrowing limit. Optimal default policies increase welfare significantly

compared to a situation where default is ruled out by assumption, even for sizable default

costs. For sufficiently low levels of default costs the optimal default policies can approxi-

mately be replicated by issuing a simple equity-like government bond.

Chapter 4 is based on the paper ’Optimal Sovereign Debt Default’ which is joint work with

Klaus Adam. The paper is available as Adam and Grill (2011).



4 CHAPTER 1. GENERAL INTRODUCTION



Chapter 2

Computing Equilibria in Models with

Occasionally Binding Constraints

2.1 Introduction

In many applications of dynamic stochastic (general) equilibrium models, it is a natural

modeling choice to include constraints that are occasionally binding. Examples are models

with borrowing constraints, liquidity constraints, a zero bound on the nominal interest

rate, or irreversible investments. These constraints induce non-differentiabilities in the

policy functions, which make it challenging to compute equilibria. In particular, standard

interpolation techniques using non-adaptive grids perform poorly both in terms of accuracy

and shape of the computed policy function (see, e.g. Judd, Kubler, and Schmedders (2003),

pp.270-1). This paper proposes a method that overcomes these problems, even for models

with several continuous state variables. We call this method Adaptive Simplicial Interpo-

lation (ASI). Its working principle is to locate the non-differentiablilites that are induced

by occasionally binding constraints, and to put additional interpolation nodes there.

We present our algorithm in the setting of a dynamic endowment economy where three or

four (types of) agents face aggregate and idiosyncratic risk. To explain the main features

of ASI we first compute equilibria in a simple two period version where agents trade in

a bond subject to an ad-hoc borrowing constraint. Second, we embed ASI into a time

iteration algorithm to solve an infinite horizon version of the model. Finally, we add a Lu-

cas tree-type stock, which is subject to a short sale constraint, and we replace the ad-hoc

5



6 CHAPTER 2. COMPUTING EQUILIBRIA

borrowing constraint by a collateral constraint. Consequently, short positions in the bond

need to be collateralized by stock holdings, while the stock may not be shorted.

Compared to earlier papers using a similar setup, such as Heaton and Lucas (1996), den

Haan (2001) or Kubler and Schmedders (2003), the models we consider differ in two re-

spects, which both make it harder to compute equilibria: First, we solve models with more

agents, which results in a continuous state space of higher dimension. As the kinks1 natu-

rally form hypersurfaces in the state space, they are of higher dimension as well. Second, in

our extension, the trading constraints that agents face depend on tomorrow’s equilibrium

price of the stock, which is endogenously determined. Consequently, it is much harder to

locate the kink and ad hoc methods fail.

Figure 2.1 illustrates the working principle of ASI. The dashed line displays a simple one-

dimensional policy function with a kink. Suppose this function is approximated by linear

interpolation between equidistant grid points. The resulting interpolated policy is dis-

played as a solid line in the left hand side of Figure 1. Clearly, the approximation error

is comparatively large around the kink, and this is just because there is no interpolation

node near the kink. If we knew the location of the kink and put a node there, then the

approximation would be much better, as the right hand side of Figure 2.1 shows. This is

the motivation for ASI, which directly addresses the problem of kinks in policy functions

by placing additional grid points, called adapted points, at these non-differentiabilities.

Clearly, in higher dimensional state spaces and with complex constraints, this approach is

not as simple as Figure 2.1 suggests. Hence, we need a flexible interpolation technique and

a systematic adaptation procedure.

To be able to place grid points wherever needed, we use Delaunay interpolation, which

consists of two steps. First, the convex hull of the set of grid points is covered with sim-

plices, which results in a so-called tessellation. Then we linearly interpolate locally on each

simplex2.

We adapt the grid as follows: First, we solve the system of equilibrium conditions on an

1In our terminology, a kink associated with a certain constraint is the set of points at which the policy
function fails to be differentiable because the constraint is just binding, i.e. the constraint is binding and
the associated multiplier is zero.

2Clearly, linear simplicial interpolation is only C0 at the boundaries. For our purposes, this is desirable,
because it provides a better fit at the kinks, and it ensures stability of the time iteration algorithm.



2.1. INTRODUCTION 7

Interpolated Policy

Correct Policy

Interpolation Node

Adapted Node

Figure 2.1: Non-Adaptive (lhs) and Adaptive (rhs) Linear Interpolation in 1D

initial grid. Second, we use these solutions to determine which edges of the tessellation

cross kinks. Third, on each of these edges, we solve a modified system of equilibrium con-

ditions to determine the point of intersection with the kink. Finally, we place a new grid

point there. Using this procedure with state spaces of more than one dimension, we get

several adapted grid points for each kink. Delaunay tessellation connects these points by

edges, such that the kinks are matched very accurately.

To solve the above described infinite horizon models, we embed adaptive simplicial inter-

polation in a standard time iteration algorithm (see, e.g. Judd (1998)). To assess the

accuracy of the computed equilibria, we follow Judd (1992) in calculating relative errors in

Euler equations, subsequently called Euler errors. Concerning the measured Euler errors,

we find that our method accurately computes equilibria for the two economies considered,

both for reasonable and extreme calibrations of our model. Furthermore, we assess the rel-

ative performance of the adaptive grid scheme by comparing it to a standard equidistant

grid scheme using the same interpolation technique. We find that the adaptive grid scheme

dominates by far: One needs to increase the number of equidistant grid points, and thereby

CPU time, by more than two orders of magnitude in order to reach the high accuracy of

the adaptive grid scheme. Finally, we demonstrate that ad hoc update procedures that

place additional points near the kinks are much less efficient than ASI.

In the literature, many algorithms have been applied to dynamic models with occasion-

ally binding constraints. However, none of the existing algorithms addresses the problems

of non-differentiabilities directly. Christiano and Fisher (2000) compare how several algo-

rithms compute equilibria in a one sector growth model with irreversible investment, which

has only one continuous state variable. None of the applied algorithms uses an adaptive
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grid scheme. A grid structure which is not adaptive, but endogenous, is proposed by Car-

rol (2006) and extended by Barillas and Fernández-Villaverde (2007), Rendahl (2007), and

Hintermaier and Koeniger (2010). This so called endogenous grid method defines a grid on

tomorrow’s variables, resulting in an endogenous grid on today’s variables. Its major ad-

vantage is that it avoids the root finding step. However, as it exploits the specific mapping

from next period’s variables to today’s variables, the applicability as well as the concrete

implementation of this method depends very much on details of the model. Maybe most

related to our paper, Gruene and Semmler (2004) propose an adaptive grid scheme for solv-

ing dynamic programming problems. However, this method is designed for value function

iteration, it interpolates on rectangular elements, and uses estimated local errors of the

value function to update the grid. Along all these dimensions their method is orthogonal

to our algorithm. The sparse grid Smolyak (1963) algorithm is a well known approach to

high-dimensional interpolation in economics. Krueger and Kubler (2004) use it to compute

equilibria in OLG models with state spaces that have up to 30 dimensions. Certainly, this

cannot be achieved in feasible time with our algorithm. However, the Smolyak algorithm

requires policy functions to be smooth, which is not the case in models with occasionally

binding constraints.

Section 2.2 presents adaptive simplicial interpolation, which consists of two components:

Delaunay interpolation and an adaptive grid scheme. The example used to explain ASI is

a two period exchange economy where several types of agents trade in a bond subject to

ad-hoc borrowing constraints. Section 2.3 shows how the infinite horizon version of this

economy is solved by embedding ASI in a time iteration setup. In Section 2.4, ASI is

applied to a model where trade in a bond and a stock is subject to collateral constraints

and short-selling constraints. Sections 2.3 and 2.4 examine carefully the computational

performance of ASI as to the respective models. Section 2.5 concludes.
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2.2 Adaptive Simplicial Interpolation

The main innovation of this paper is ASI, which is tailor-made for interpolating policy

functions in models with occasionally binding constraints. Section 2.2.1 gives a simple

example of such a model: An exchange economy where heterogeneous agents trade in a

one-period bond subject to ad-hoc borrowing constraints. Section 2.2.2 provides a formal

characterization of the problems we are considering. Section 2.2.3 outlines the adaptive

simplicial interpolation algorithm we propose, while Sections 2.2.4 and 2.2.5 describe the

two essential ingredients of the method: a simplicial interpolation technique based on

Delaunay tessellation, and an adaptive grid scheme. Finally, Section 2.2.6 illustrates the

workings of ASI with the help of the simple example from Section 2.2.1.

2.2.1 Simple Example: Borrowing Constraints

The Bond Economy

The economy is populated by H types of agents h ∈ H = {1, . . . , H} living for T periods.

Agents have identical preferences3, but differ with respect to endowment realizations. They

maximize expected time-separable lifetime utility

E

[
T∑

t=1

βt c
1−γ
t

1 − γ

]
,

where ct denotes consumption at t, β is the time discount factor, and γ is the coefficient

of relative risk aversion.

Uncertainty is captured by a first-order Markov process with domain X = {1, ..., K}.

Aggregate endowment of the single consumption good is given by a time invariant function

ē : X → R
++, which depends on the current shock only. Similarly, agent h’s individual

endowment is given by eh : X → R
++.

Each period, agents trade in a one-period bond, which is in zero net supply. Hence, agents

face the following budget constraints:

cht + bht pt ≤ eh
t + bht−1 ∀t = 1, . . . , T ∀h ∈ H,

3Allowing for heterogeneous preferences does not impede using ASI.
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where bht denotes the bond holding that agent h acquires at time t, and pt denotes the

respective price. Moreover, agents face an ad-hoc borrowing constraint:

bt ≥ b ∀t = 1, . . . , T,

where b ∈ R
−.

State Space

The state of the economy at the beginning of a period is characterized by the exogenous

shock and the asset distribution among agents. Because of bond market clearing, we may

use the bond holdings of H − 1 agents as the endogenous state variable:

yt =
(
b1t−1, . . . , b

H−1
t−1

)
.

Assuming that last period’s constraints of all agents were satisfied, agent h enters period

t with bond holding restricted by

bht−1 ∈ [b,−(H − 1)b] .

Hence, we take the endogenous state space to be

Y ≡

{
y ∈ [b,−(H − 1)b]H−1

∣∣∣∣∣

H−1∑

i=1

yi ∈ [b,−(H − 1)b]

}
.

The whole state space S is then given by the product of the exogenous part and the

endogenous part, i.e.

S = X × Y.

Equilibrium Conditions

The endogenous choices and prices in period t are:

zt ≡
({
cht , b

h
t

}
h∈H

, pt

)
.
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We call the collection of these endogenous variables policies, and denote the space of policies

by Z.

The definition of competitive equilibrium is standard and given in Appendix 2.A, where we

also derive the first order necessary conditions for equilibrium. Here, we just state these

conditions. Along an equilibrium path, policies satisfy market clearing in the bond market,

budget constraints, Euler equations, borrowing constraints and complementary slackness

conditions4:

∑

h∈H

bht = 0,

cht + bht pt − eh
t − bht−1 = 0 ∀h ∈ H,

−u′(cht )p+ µh
t + E

[
βu′(cht+1)

]
= 0 ∀h ∈ H,

0 ≤ bht − b ⊥ µh
t ≥ 0 ∀h ∈ H,

where µh denotes the Kuhn-Tucker multiplier on the borrowing constraint of agent h.

Two Period Version

Now consider the simplest dynamic setting: T = 2. In this case there is no trade in the

second period and agents simply consume all their funds:

ch2 = eh
2 + bh1 .

Consequently, in period one, equilibrium conditions for given initial bond holdings {bh0}h∈H

4The sign ⊥ denotes orthogonality of two vectors. Hence, for a, b ∈ R
n:

a⊥b :⇔

n∑

k=1

akbk = 0.

If a, b ≥ 0, then a⊥b implies that for each coordinate k = 1, . . . , n either ak = 0, bk = 0, or both. Hence,
0 ≤ a ⊥ b ≥ 0 is equivalent to

∀k = 1, . . . , n : 0 ≤ ak ∧ 0 ≤ bk ∧ ( ak = 0 ∨ bk = 0 ) .
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simplify to:

∑

h∈H

bh1 = 0,

ch1 + bh1p1 − eh
1 − bh0 = 0 ∀h ∈ H,

−u′(cht )p1 + µh
1 + E

[
βu′(eh

2 + bh1)
]

= 0 ∀h ∈ H,

0 ≤ bh1 − b ⊥ µh
1 ≥ 0 ∀h ∈ H.

2.2.2 The General Problem

The above problem of finding an equilibrium policy for the two period bond economy with

given initial bond holdings has the following structure:

Equilibrium Problem:

Given a state s ∈ S , and functions

φ : S × R
m+n → R

m, ψ : S × R
m → R

n,

find policies and multipliers (z, µ) ∈ R
m × R

n,

s.t. φ(s, z, µ) = 0, 0 ≤ ψ(s, z) ⊥ µ ≥ 0.

In the case of our example, the equations φ = 0 contain market clearing, budget con-

straints, and Euler equations. The inequalities 0 ≤ ψ contain the borrowing constrains,

and µ contains the respective Kuhn-Tucker multipliers. To solve such a problem for a

given state s, there are many well established procedures. Either one applies solvers that

accept complementarity conditions, or one transforms these conditions into equations—as

explained in Appendix 2.C—and applies standard non-linear equation solvers.

However, things get more involved, if one is interested in the mapping from the state of

the economy, s, into choices and prices, f(s). Then, one faces a parametric problem, with
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the state of the economy, s, being the parameter.

Parametric Equilibrium Problem:

Given φ : S × R
m+n → R

m, ψ : S × R
m → R

n,

find f : S → R
m, µ : S → R

n,

s.t. ∀s ∈ S: φ(s, f(s), µ(s)) = 0, 0 ≤ ψ(s, f(s)) ⊥ µ(s) ≥ 0.

One way to compute functions (f, µ) that approximately satisfy these conditions is collo-

cation (see, e.g. Judd (1998)): choose a finite grid G ⊂ S, on which the above conditions

have to be satisfied precisely, i.e. require

∀g ∈ G: φ(g, f(g), µ(g)) = 0, 0 ≤ ψ(g, f(g)) ⊥ µ(g) ≥ 0.

For each point on the grid, g ∈ G, the solution f(g) is determined by solving a com-

plementarity problem. Aside from the grid G, collocation determines f by interpolating

the solutions {f(g)}g∈G found on the grid. Clearly, this does not result in a perfect fit,

and more importantly, the quality of the fit depends crucially on the location of the grid

points g ∈ G. In particular, if there are kinks in the function f , it is desirable to put grid

points there, because any method that interpolates over the kink has no chance to match

it exactly.

In general, f is non-differentiable at the points k where for some j both ψj(k, f(k)) and

µj(k) are equal to zero. The reason is as follows: ψj(k, f(k)) = 0 means that this constraint

is binding, and µj(k) = 0 means that the associated multiplier is zero though. Loosely

speaking, the constraint is binding at one side and non-binding at the other side of the

point. In general, this implies that the optimal solution is determined by different sets of

equations on the two sides of the point, resulting in different slopes of the policy function.

All in all, the above reasoning suggests that we should put interpolation nodes at points

where constraints are just binding. We achieve this using the algorithm presented in Sec-

tions 2.2.3 to 2.2.5.



14 CHAPTER 2. COMPUTING EQUILIBRIA

2.2.3 The Algorithm

To solve the parametric equilibrium problem presented above, we propose Adaptive Sim-

plicial Interpolation. An overview of this procedure is given below. Steps two and three

are black boxes for now. Sections 2.2.4 and 2.2.5 explain these steps in detail. We will

explain Delaunay interpolation first, as it includes the concept of tessellation, which we

use in the grid adaptation procedure.

Adaptive Simplicial Interpolation:

1. Initialization:

Start with an initial grid Ginit and solve for the solutions {f(g)}g∈Ginit
using standard

numerical procedures.

2. Grid Adaptation:

Use the solutions {f(g)}g∈Ginit
, as explained in Section 2.2.5, to solve jointly for

adapted grid points Gadapt that lie directly on the kinks and for the solutions

{f(k)}k∈Gadapt
at these points.

3. Simplicial Interpolation:

Interpolate f on G = Ginit ∪Gadapt. To interpolate on a grid with such an irregular

shape, use simplicial interpolation, namely Delaunay interpolation, which is explained

in Section 2.2.4.

2.2.4 Delaunay Interpolation

To get as much flexibility as possible in adapting the collocation grid, we need to have

a method that is able to interpolate between points from any arbitrary set of scattered

points. In addition, we require the method to work in arbitrary dimensions. Delaunay

interpolation fulfills both criteria. This interpolation technique consists of two main steps:

First, the state space is divided into simplices, which is done by Delaunay tessellation.

Second, simplicial interpolation interpolates locally on these simplices.
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Figure 2.2: Set of Grid Points (lhs) and its Delaunay Triangulation (rhs)

Delaunay Tessellation5

In computational geometry, Delaunay tessellation is a well established method to cover

the convex hull of an arbitrary set of points with simplices. For the sake of simplicity,

we explain Delaunay tessellation for the two dimensional case. In this case, the simplices

are just triangles and the method is called triangulation. In Figure 2.2, the left hand

side picture shows a set of scattered grid points. The right hand side picture shows the

Delaunay triangulation of this set of grid points. Delaunay triangulation is just one possible

way to triangulate a set of grid points. However, it imposes discipline on the triangulation

by satisfying the following property: inside the circumcircle of any triangle there is no

point from the set of points. To make sense of this requirement, note that: by definition,

the vertices of a triangle lie on its circumcircle, and in a Delaunay triangulation other

points might as well lie on this circumcircle but not inside. Simpson (1978) shows that this

procedure maximizes the minimum angle among all angles within the triangulation. Hence,

it avoids pointed triangles. From a numerical perspective, this is a convenient property,

since it implies that the information used to interpolate at a particular point stems from

points that are relatively nearby. For a more extensive discussion of Delaunay Tessellation,

see de Berg, Cheong, van Kreveld, and Overmars (2008).

Simplicial Interpolation

Having the tessellation of a set of points at hand, linear simplicial interpolation is straight-

forward: For any arbitrary point, find the simplex it is contained in. Then calculate its

barycentric coordinates within this simplex. Finally, the interpolation value is just a linear

5Delaunay tessellation was introduced by Delaunay (1934) and is well known in engineering. However,
up to our knowledge, it has never been used to compute equilibria in dynamic models.
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combination of the values at the corners of the simplex. The weights are given by the

barycentric coordinates of the corners.

2.2.5 An Adaptive Grid Scheme

Let us now turn to the process of adapting the grid. Our aim is to detect kinks and place

points on these kinks in order to match them precisely. In terms of the notation of Section

2.2.2, we want to determine points that lie on

K = {s| ∃j ψj(s, f(s)) = 0 and µj(s) = 0}.

Hence, we are looking for points where a constraint holds with equality but the respective

multiplier is zero, i.e. where the constraint is just binding. To determine such points we

proceed as follows.

How to Determine Which Edges Cross Kinks

To determine the location of kinks, we use the solutions {f(g)} computed on the initial grid

Ginit. Clearly, if ψj(g, f(g)) = 0, we know that this constraint, which we call constraint j,

is binding at g. Otherwise it is not binding. Furthermore, we make use of the tessellation

of the initial grid. We consider each edge of the tessellation and check whether constraint

j is binding at one corner and non-binding at the other corner of this edge. If this is the

case, we conclude that the associated kink, which we call kink j, crosses this edge. In this

way, we find sets of edges {Ej} crossing the kinks j = 1, . . . ,m.

How to Put Points Exactly on the Kink

Given the sets of edges {Ej} crossing the kinks j = 1, . . . ,m, we need to determine where

exactly to put points on these edges. For each individual edge E ∈ Ej this is done by

solving a modified version of the equation system that characterizes equilibrium. The key

conceptional difference is that we let the state variable vary on the edge and do not solve

the equation system at a given point in the state space. To pin down the one point that lies

on the kink, we force that both ψj and µj are equal to zero. Hence, we solve jointly for the

equilibrium solution and for a point in the state space on which the equilibrium solution

fulfills a certain requirement, namely that the considered constraint is just binding. More
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formally, we solve for the point k, policies z, and multipliers µ such that:

φ(k, z, µ) = 0, 0 ≤ ψ−j(k, z) ⊥ µ−j ≥ 0,

ψj(k, z) = 0, µj = 0,

k ∈ E.

By demanding ψj(k, z) = 0, µj = 0 instead of 0 ≤ ψj(k, z) ⊥ µj ≥ 0, we reduce the

degrees of freedom by one. But letting the state variable k vary on the one-dimensional

object E, in contrast to fixing a point in the state space, increases the degrees of freedom

by one. Hence, the modified equation system has a (locally unique) solution (k, z, µ), if

(z, µ) is a (locally unique) solution to the original equation system at k. This solution does

not only provide the point k that lies on the kink, but at the same time it provides the

optimal policy at this point, namely f(k) = z.

In this way—for all edges E in all sets Ej—we compute points k and policies f(k). We

call these points adaptive, and denote the set containing them by Gadapt. Finally, we add

them to the initial points to generate the adapted grid: G = Ginit ∪Gadapt.
6

2.2.6 ASI at Work

Figure 2.3 visualizes the working principle of ASI. The left hand side displays an initial

grid for a given exogenous state of the 2-period bond economy. On the x-axis we have

wealth of agent 1, on the y-axis wealth of agent 2—remember that the wealth of agent 3

is given by market clearing. We place 15 equidistant grid points on this state space, and

we solve the equilibrium problem on this initial grid.

Knowing the optimal policies at these points, we now consider each constraint at a time.

We start with the borrowing constraint of agent 1. In the left picture, black dots indicate

that the constraint of agent 1 is binding, while white dots indicate that it is not binding.

Hence, we know on which edges of the triangulation the constraint change from binding

to non-binding. On these edges, we apply the second part of our adaptation scheme: we

solve the modified equation system that allows us to find the particular point on the edge

6Instead of this fine tuned adaptation procedure, one could also use a rather mechanical update of the
grid. Instead of locating the kink exactly, one could just add arbitrary points into the triangles of interest,
e.g. the center point of the triangle or say 5 randomly distributed points. This is easier to program, but
comes at the cost of a less accurate result.
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Figure 2.3: Initial Grid (lhs) and Adapted Grid (rhs) Using ASI in 2D

where the constraint is just binding (e.g. where the kink crosses the edge). Doing this for

all relevant edges, we end up with 8 adapted points in this example, which are displayed

in the right picture in Figure 2.3. Finally, a new triangulation is computed for the set of

all grid points, initial and adapted. After this, we consider the next constraint. However,

all other constraints are always non binding in this simple example. Hence, there are no

further points to be added. Note that the new triangulation connects the adapted points

by edges, thus kinks are matched very accurately. This can also be seen in Figure 2.4,

where the left graph shows the equilibrium bond demand function of agent 1. The range

where agent 1 is constrained by the borrowing limit is displayed by the dark shaded area.

The kink induced by the inequality constraint is well approximated by the adapted points.

The solid line in the right graph displays a slice of the bond demand function of agent 1.

The dashed line represents the policy one gets if an equidistant grid is used. Clearly, this

policy is quite inaccurate at the kink.
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2.3 Time Iteration with ASI

We now consider the infinite horizon version of the bond economy from section 2.2.1.

Section 2.3.1 characterizes recursive equilibrium policies for this model. Section 2.3.2 shows

how such policies may be computed by embedding ASI into a standard time iteration setup.

Details of how we implement this algorithm are given in Section 2.3.3. Finally, Section

2.3.4 analyzes the computational performance of time iteration with ASI.

2.3.1 The Infinite Horizon Bond Economy

Consider the bond economy of Section 2.2.1 with T = ∞. We want to describe equilibrium

in terms of policy functions that map the current state into current policies:

ft : S → Z, ft :
(
xt,
(
b1t−1, . . . , b

H−1
t−1

))
7→
({
cht , b

h
t

}
h∈H

, pt

)
.

For the components of the policy function, we use the same notation as for their values,

hence

ft =
({
cht , b

h
t

}
h∈H

, pt

)
.

For all states, these functions {ft} have to satisfy the period-to-period first order equilib-

rium conditions (see Appendix 2.A):

∀s :
∑

h∈H

bh(s) = 0,

cht (s) + bht (s)pt(s) − eh
t (s) − bht−1(s) = 0, ∀h ∈ H,

−u′(cht (s))pt(s) + µh
t (s) + E

[
βu′
(
cht+1 (st+1)

)]
= 0, ∀h ∈ H,

0 ≤ bht (s) − b ⊥ µh
t (s) ≥ 0, ∀h ∈ H,

where st+1 =
(
xt+1,

(
b1t , . . . , b

H−1
t

))
.

A recursive equilibrium policy function of this economy is a time invariant policy function

f that satisfies these conditions, i.e. the sequence {ft} with ft = f ∀t satisfies the above

conditions.
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2.3.2 The Algorithm

The above period-to-period equilibrium conditions have the following structure:

∀s : φ[fnext] (s, f(s), µ(s)) = 0, 0 ≤ ψ (s, f(s)) ⊥ µ(s) ≥ 0,

where time t variables have no index, and the policy in t + 1 is denoted by fnext. The

equations φ[fnext] = 0, which depend on fnext, contain market clearing, budget constraints

and Euler equations. Only the latter depend on fnext—in this case on the consumption

policies only. The inequalities 0 ≤ ψ contain the borrowing constraints, and µ contains the

respective Kuhn-Tucker multipliers. A recursive equilibrium policy function f satisfies:

∀s : φ[f ] (s, f(s), µ(s)) = 0, 0 ≤ ψ (s, f(s)) ⊥ µ(s) ≥ 0.

The problem of finding a policy function that (approximately) satisfies this condition is very

hard to address directly. In a time iteration procedure, the recursive equilibrium policy

function is approximated iteratively: in each step, a simpler problem is solved, where

next period’s policy, fnext, is taken as given. This brings us back to the period-to-period

equilibrium conditions:

∀s : φ[fnext] (s, f(s), µ(s)) = 0, 0 ≤ ψ (s, f(s)) ⊥ µ(s) ≥ 0.

This problem takes exactly the form of the parametric equilibrium problem discussed in

Section 2.2.2. Hence, we may use adaptive simplicial interpolation for this essential step

in the time iteration algorithm. The formal structure of the full algorithm is given below.

We deviate from a standard time iteration procedure only with regard to the interpolation

procedure, which is contained in the inner box.
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Time Iteration with Adaptive Simplicial Interpolation:

1. Select a grid Ginit, an initial policy function f init, and an error tolerance ǫ.

Set fnext ≡ f init.

2. Make one time iteration step: For all g ∈ Ginit, find f(g) that solves

φ[fnext] (s, f(s), µ(s)) = 0, 0 ≤ ψ (s, f(s)) ⊥ µ(s) ≥ 0.

Interpolate f by adaptive simplicial interpolation:

First, use the solutions {f(g)}g∈Ginit
to solve jointly for adapted points Gadapt

that lie directly on kinks and for the optimal policy {f(g)}g∈Gadapt
at these

points.

Second, use solutions at all grid points G = Ginit ∪ Gadapt to interpolate f by

simplicial interpolation.

If ‖f − fnext‖∞ < ǫ, go to step 3.

Else set fnext ≡ f and repeat step 2.

3. Set the numerical solution to the infinite horizon optimization problem: f̃ = f .

2.3.3 Implementation of the Algorithm

To demonstrate that our algorithm works well with standard equipment, we use Matlab

on an Intel Core 2 Duo 2.40 GHz computer to implement our algorithm.

Solving the System of Equilibrium Conditions

To solve the complementarity problem at each grid point, one could use a solver that

directly applies to complementarity problems. However, we prefer to transform the com-

plementarity problem into a system of equations (see Appendix 2.C) and then apply a

standard non-linear equation solver, e.g. Matlab’s fsolve or Ziena’s Knitro. We are able to

solve our models with both solvers. However, we find that the more equations the equlib-

rium system involves the better the performance of Knitro compared to fsolve.
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Adaptive Simplicial Interpolation

Our method of choice for interpolation is Delaunay interpolation as described in Section

2.2.4. Delaunay Interpolation is widely used in many areas, and hence code in several

languages like C++ or Fortran is available on the web. In Matlab, routines for computing

Delaunay tessellations and simplicial interpolation come with the standard version.

Time Iteration

For the computation exercise presented below we set the error tolerance ǫ = 10−5. We set

the initial policy function f init such that agents consume all their wealth and the price of all

assets is equal to zero. Hence, f init corresponds to the policy function in the final period of

a finite horizon economy. This is not an efficient starting guess, but it makes the computing

times of our examples comparable. As a starting guess for solving the equilibrium problem

at a given point, we use the solution from the previous iteration. In case the solver cannot

find a root we use the solution from neighboring points as new starting guesses. In this

way we always find solutions that satisfy the error tolerance.

To decrease CPU time, we start the time iteration procedure with a relatively coarse

equidistant grid, and increase the density of the grid as the error in ‖f − fnext‖∞ falls

below ǫ · 10. We repeat this several times until we reach a grid of certain predefined size.

In the comparison studies below, this refinement of the equidistant grid is done in exactly

the same way for the adaptive grid method and the equidistant benchmark.

To further decrease CPU time, we do not use adaptive simplicial interpolation at each

iteration step. The first step is not done until all refinements of the equidistant grid are

carried out and the error in ‖f − fnext‖∞ falls below ǫ · 10 again. Note that kinks in policy

functions change their location along the time iteration procedure. Hence, it is important

to use a sufficient number of adaptation steps. Furthermore, note that at each adaptation

step, we compute new adapted nodes and do not use the adapted nodes from the last step

any more.
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2.3.4 Computational Performance

To evaluate the computational performance of time iteration with adaptive simplicial in-

terpolation, we first report the accuracy of the computed equilibria for various examples.

Second, we compare time iteration with ASI to two other grid structures: an equidistant

grid, and an ad hoc update scheme that places additional grid points randomly into sim-

plices that are cut by kinks.

Measuring Accuracy

Following Judd (1992) we evaluate the accuracy of a computed equilibrium by calculating

relative errors in Euler equations (EEs). An EE measures the error that an agent would

make in terms of his period-to-period consumption decision, if he used the computed pol-

icy function. The unit of measure is the relative deviation of computed (i.e. interpolated)

consumption, cint
t , from the one that is optimal, copt

t , given next periods interpolated con-

sumption, cint
t+1. To derive copt

t from cint
t+1 one uses an Euler equation. For instance, in the

Bond economy of Section 2.2.1 the Euler error EEh(·) for agent h at a particular point s

in the state space is given by

EEh(s) =

∣∣∣∣
copt
t

cint
t

− 1

∣∣∣∣ =

∣∣∣∣∣∣

u′−1
(
βEt

[
u′(cint

t+1
)

pint

])

cint
t (s)

− 1

∣∣∣∣∣∣
,

where pint is the interpolated price of the bond today. However, it is possible to back out

copt
t from cint

t+1 only if the Kuhn-Tucker multiplier entering the Euler equation is zero, i.e.

if the respective constraint is non-binding. If it is binding, we set the Euler error equal to

zero. Because of this problem with computing Euler errors when constraints are occasion-

ally binding we also report an alternative error measure in Appendix 2.D.

To evaluate the accuracy of computed equilibria, we calculate the Euler errors of all agents

at many points in the state space. Concerning the choice of points, we make two alter-

native choices. First, we draw 10.000 random points from a uniform distribution over the

whole state space (EE state space), and compute Euler errors for all agents at these points.

Second, we take the points reached along the equilibrium path, when the economy is simu-

lated for 5.000 periods (EE equilibrium path). In both cases, we report both the maximum

over all agents and points (max EE) as well as the average across points of the maximum
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across agents (∅ EE). This results in four different statistics, which we all report in log10

scale.

The examples that we consider have three or four agents and a borrowing limit of b = 0.1

or 1.0, i.e. borrowing is restricted to 10% or 100% of average individual yearly income.

Concerning all other parameters, we choose values that are considered standard in the lit-

erature, which we report in Appendix 2.E. Tables 2.1 and 2.2 report the accuracy measures

for the three and four agent examples respectively. Maximal Euler errors over the state

space range from −3 (for three agents and b = 0.1) to −1.7 (for four agents and b = 1.0).

All errors are reasonably low, but could be improved much further by increasing the num-

ber of initial grid points, which would in turn also increase the number of adapted points.

Generally speaking, a looser borrowing limit b and/or a greater number of agents—which

both enlarge the state space—result in higher Euler errors. In the case of four agents,

we are dealing with a three-dimensional state space, and kinks become two dimensional

objects. This is illustrated in Figure 2.5, which displays a three dimensional grid that is

adapted to a kink that lies approximately orthogonal to the horizontal axis.

Bond Economy with Three Agents

EE state space EE equilibrium path
b points time(min) max EE ∅ EE max EE ∅ EE

0.1 40(45) 0.5(0.4) -3.0(−1.2) -3.8(−2.1) -2.4(−1.2) -4.4(−2.1)
0.1 113(120) 1.1(1.0) -3.2(−1.6) -4.2(−2.8) -3.2(−1.6) -4.8(−3, 4)
1.0 185(190) 6.5(4.5) -2.1(−1.1) -3.1(−2.6) -2.2(−1.1) -3.1(−1.8)
1.0 941(946) 13(11) -3.2(−1.2) -4.2(−2.9) -3.2(−1.6) -4.8(−3.4)

Table 2.1: Accuracy of Adaptive Grid (Equidistant Grid in Brackets)

Bond Economy with Four Agents

EE state space EE equilibrium path
b points time(min) max EE ∅ EE max EE ∅ EE

0.1 112(120) 4.5(4) -2.7(−1.3) -3.3(−2.0) -2.7(−1.3) -3.9(−1.7)
1.0 914(969) 60(51) -1.7(−1.1) -2.6(−2.4) -1.8(−1.1) -2.6(−3.9)

Table 2.2: Accuracy of Adaptive Grid (Equidistant Grid in Brackets)

Comparison to Equidistant Grid

In order to assess the relative performance of ASI, we also compute equilibria on a standard
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Figure 2.5: Adapted Grid with Three Continuous State Variables

equidistant grid, but still use Delaunay interpolation. To assess the gains from using an

adaptive grid scheme, we ask the following questions: First, how do solutions on equidistant

grids compare to solutions on adaptive grids, if the same number of grid points is used?

Second, how many equidistant grid points are needed to match the accuracy of ASI?

When using the same number or slightly more points, the equidistant grid scheme is slightly

faster. However, the difference is quite small, reinforcing our claim that adapting the grid

takes very little time compared to overall computing time. More importantly, in all ex-

amples our algorithm outperforms the standard grid scheme between one and two orders

of magnitude in terms of maximum Euler errors. This holds both for Euler errors drawn

over the whole state space and along the equilibrium path. In the first example of Table

2.1, where we compare our results to an equidistant grid with about the same number of

points, the adaptive grid yields maximum Euler errors that are about 70 times lower both

on the state space and along the equilibrium path. Regarding the average Euler error,

these factors are slightly lower but still substantial. We get these lower factors for average

Euler errors, because the adaptive grid scheme rather targets the maximum Euler error

by placing grid points on kinks, and not elsewhere in the state space. However, for two

reasons the impact on average errors is also quite substantial. First, errors at the kinks
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Bond Economy with Three Agents: Match Accuracy

EE state space EE equilibrium path
b points time(min) max EE ∅ EE max EE ∅ EE

0.1 40(20301) 0.5(79) -3.0(−2.8) -4.1(−5.3) -3.0(−3.1) -4.4(−6.2)
1.0 185(21945) 6.5(300) -2.1(−1.9) -3.1(−4.4) -2.2(−1.9) -3.1(−4, 6)

Table 2.3: Accuracy of Adaptive Grid (Equidistant Grid in Brackets)

are lowered dramatically, having a sizable effect on the average error. And second, even at

a point located elsewhere, kinks may still play a role, because agents potentially end up

near a kink tomorrow. 7

As a second exercise, we ask how many equidistant grid points are needed to get the same

maximum Euler error as with a given adapted grid. Instead of targeting the number of grid

points as above, we therefore target the maximum Euler error over the state space. For the

first example with b = 0.1, we increase the grid size by a factor of 500. Interestingly, adap-

tive simplicial interpolation still outperforms the equidistant grid in terms of maximum

Euler as reported in Table 2.3. Obviously, in terms of average Euler errors, taking 500

times more points makes a big difference, resulting in a lower error for the equidistant grid.

For b = 1.0, due to memory constraints, we cannot multiply the number of grid points by

500. We therefore increase the grid size by a factor of 120, which yields maximum errors

that are still higher than with adaptive simplicial interpolation.

When it comes to four agents, we also find that ASI outperforms equidistant grid points

by far, as the results in Table 2.4 suggest. Trying to match the maximum Euler Error from

the ASI example, we increase the amount of grid points by a factor of 200 for b = 0.1 and

20 for b = 1.0. For both cases we find that the maximum Euler Error on the equidistant

grid is still far higher.

Comparison to ad hoc Update

Finally we compare the accuracy of equilibria computed with ASI to the accuracy of

equilibria computed with an ad hoc update scheme. Using the solution from the initial

grid this scheme detects which simplices are cut by a kink. Instead of adding points exactly

on the kink as done by ASI, the ad hoc update randomly places additional grid points into

7At these points, the equilibrium policy functions also exhibit non-differentiabilities. These are induced
by the kinks in next period’s policy. An extension of ASI could identify these non-differentiablities as well.
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Bond Economy with Four Agents: Match Accuracy

EE state space EE equilibrium path
b points time(min) max EE ∅ EE max EE ∅ EE

0.1 112(20825) 4.5(895) -2.7(−2.0) -3.3(−3.6) -2.7(−2.1) -3.9(−4.0)
1.0 914(20825) 90(3655) -1.7(−1.1) -2.6(−3.0) -1.8(−1.1) -2.6(−1.9)

Table 2.4: Accuracy of Adaptive Grid (Equidistant Grid in Brackets)

these simplices. To compare this ad hoc update scheme with ASI we now compute equilibria

for the examples considered above using the same initial grid as with ASI. As the results

in Table 2.5 and 2.6 suggest ASI outperforms such an ad hoc update, even if we use up to

200 times more grid points.

Bond Economy with Three Agents: Comparison to ad hoc Update

EE state space EE equilibrium path
b points time(min) max EE ∅ EE max EE ∅ EE

0.1 40(8000) 0.5(40) -3.0(−1.3) -4.1(−2.7) -3.0(−2.7) -4.4(−4.5)
1.0 185(8000) 6.5(122) -2.1(−2.0) -3.1(−3, 1) -2.2(−1.9) -3.1(−4, 6)

Table 2.5: Accuracy of Adaptive grid (Grid with ad hoc Update in Brackets)

Bond Economy with Four Agents: Comparison to ad hoc Update

EE state space EE equilibrium path
b points time(min) max EE ∅ EE max EE ∅ EE

0.1 112(8000) 4.5(333) -2.7(−2.3) -3.3(−3.9) -2.7(−2.4) -3.9(−4.3)
1.0 914(20825) 90(3655) -1.7(−1.3) -2.6(−3.0) -1.8(−1.1) -2.6(−1.9)

Table 2.6: Accuracy of Adaptive Grid (Grid with ad hoc Update in Brackets)
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2.4 Extension: Endogenous Collateral Constraints

2.4.1 The Bond and Stock Economy

Setup

We extend the bond economy of Section 2.2.1 by introducing a Lucas tree-type stock which

is in unit net supply. It pays out a fixed fraction δ of aggregate endowment each period,

i.e. stock holders receive dividends d(x) = δ · ē(x) per unit of the stock. Hence, aggregate

endowment is given by the sum of individual endowments and dividends, i.e.

ē(x) =
∑

h∈H

eh(x) + d(x) ∀x ∈ X.

The Lucas tree is traded each period after dividends are paid. Each agent h buys lh shares

of the stock at a price q. Hence, agents face the following budget constraints:

cht + bht pt + lht qt ≤ eh
t + bht−1 + lht−1 (qt + dt) ∀t = 1, . . . , T ∀h ∈ H.

Moreover, trade in the bond and the stock is subject to constraints. First, we impose a

short-selling constraint on the stock, i.e.

lht ≥ 0 ∀t = 1, . . . , T ∀h ∈ H.

In contrast to the stock, the bond may be shorted. However, only if the stock is used

as collateral. More precisely, the short position in the bond may not exceed the minimal

value—in terms of resale value plus dividends—that the stock has next period:

−bht ≤ min
xt+1∈X

{
lht (q(st+1) + d(xt+1))

}
,∀t = 1, . . . , T ∀h ∈ H,

where tomorrow’s state is st+1 = (xt+1, yt+1). The endogenous part of the state, yt+1, will

be specified below. This constraint is motivated by a bankruptcy law which makes it pos-

sible to seize an agents’ stock holding, but not his income. To put it differently, all future

income is exempted. As there is no further punishment for default, an agent will default

on his asset position, if and only if his portfolio has a negative value. As this behavior

is anticipated—and we assume that default premia may not be charged—no agent will be
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allowed to acquire such a portfolio, which imposes the above constraint.

State Space

With the above collateral constraint, financial wealth,

wh
t ≡ lht−1 (q(st) + d(xt)) + bht−1,

cannot go below zero. Hence, the fraction of total financial wealth that an agent holds,

yh =
wh

∑
j∈H

wj
,

is bounded between zero and one. By market clearing, we may use the fractions of financial

wealth of the first H − 1 agents as the endogenous state space:

y =
(
y1, . . . , yH−1

)
∈ Y ≡

{
y ∈ R

H−1
+

∣∣∣∣∣

H−1∑

i=1

yi ≤ 1

}
⊂ R

H−1
+ .

Finally, we define the whole state space S as the product of the exogenous part and the

endogenous part, i.e.

S = X × Y.

With this definition of the state space, reconsider the collateral constraint above, and note

that: Todays choice of any agent, through its impact on tomorrows state, influences tomor-

rows price of the stock, and hence today’s collateral constraint of agent h. In this sense,

the collateral constraint is endogenous, which complicates the model considerably.

Equilibrium Conditions

The endogenous choices and prices in period t are

zt ≡
((
cht , b

h
t , l

h
t

)
h∈H

, pt, qt

)
.

In Appendix 2.B we define competitive equilibrium and derive the first-order equilibrium

conditions of this model. Along an equilibrium path, policies have to satisfy market clearing



2.4. EXTENSION: ENDOGENOUS COLLATERAL CONSTRAINTS 31

on both asset markets, budget constraints, Euler equations for both assets, and comple-

mentary slackness conditions for both kinds of multipliers:

∑

h∈H

bht = 0,
∑

h∈H

lht = 1,

cht + bht pt + lht qt − eh
t − bht−1 − lht−1 (qt + dt) = 0, ∀h ∈ H,

−u′(cht )pt + µh + E
[
βu′(cht+1)

]
= 0, ∀h ∈ H,

−u′(cht )qt + µh min
xt+1∈X

{q(st+1) + d(xt+1)} + νh
t + E

[
βu′(cht+1) (qt+1 + dt+1)

]
= 0, ∀h ∈ H,

0 ≤ min
xt+1∈X

{
lht (q(st+1) + d(xt+1)) + bht

}
⊥ µh

t ≥ 0, ∀h ∈ H,

0 ≤ lht ⊥ νh
t ≥ 0, ∀h ∈ H,

where µh and νh denote the Kuhn-Tucker multipliers on the collateral and the short-selling

constraint of agent h.

2.4.2 Computational Performance

Before we look at errors in Euler equations, we first discuss how the kinks induced by the

short selling and collateral constraints are located within the state space. Figure 2.6 shows

the adapted grid for an exogenous state where the first agent is hit by a bad idiosyncratic

shock. To clearly visualize the kinks, we highlight the edges that connect adapted points.

The short selling constraint of the first agent induces a kink which has two components,

the one which lies almost on the y-axis and the curved one to the very right. Furthermore,

each of the collateral constraints induces one kink, where the kink from the first agent’s

constraint runs approximately parallel to the y-axis at about 0.08 fraction of wealth of

agent 1. In Figure 2.7 one can see how these kinks shape equilibrium an equilibrium

policy function. The left hand picture displays the stock demand over the full state space,

whereas the picture on the right hand side displays a slice at 0.1 wealth fraction of agent

2. The distinct peak at 0.08 wealth fraction of agent 1 corresponds to the kink induced by

his collateral constraint. To the left, the collateral constraint is binding. At higher levels

of wealth his demand for the stock goes down until the short selling constraint becomes

binding again.
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Figure 2.6: Bond and Stock Economy: Adapted grid with Several Identified Kinks
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Figure 2.7: Bond and Stock Economy: 2D Stock Demand (lhs) and 1D Slice (rhs)
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As in Section 2.3.4, we evaluate the performance of our algorithm by computing relative

errors in Euler equations. In Table 2.7, we show results for equilbria computed with ASI

using two different values for the dividend parameter δ. For all other parameters, we use

the same calibration as for the Bond economy (see Appendix 2.E). Obviously, as the fig-

ures above suggest, more points are needed than in the bond model to bring Euler errors

down to reasonable values. Comparing the results from ASI with results on equidistant

grids, we find that for the same number of grid points, ASI outperforms equidistant grids

by approximately one order of magnitude in terms of maximum Euler Error. Again, we

ask how many points are needed to match the accuracy of ASI. Increasing the number of

points up to a factor of 20 yields almost the same maximum Euler Error, as the results

in Table 2.8 show. This factor is still substantial, however, not as high as for the Bond

model. The reason are non-linearities away from the kink, as can be seen in Figure 2.7.

We have developed an adaptation scheme that adapts the grid to non-linearities, which

further improves the relative performance of our algorithm. However, as this is not the

focus of this paper, we do not elaborate more on this.

Bond and Stock Economy

EE state space EE equilibrium path
δ points time(min) max EE ∅ EE max EE ∅ EE

0.10 1235(1250) 310(260) -2.5(−1.4) -3.8(−3.2) -3.1(−1.6) -4.1(−3.5)
0.25 1160(1225) 302(251) -2.2(−1.4) -3.3(−2.9) -2.2(−1.4) -3.4(−2.7)

Table 2.7: Accuracy of Adaptive grid (Equidistant Grid in Brackets)

Bond and Stock Economy: Match Accuracy

EE state space EE equilibrium path
δ points time(min) max EE ∅ EE max EE ∅ EE

0.10 1235(25425) 310(4500) -2.5(−2.4) -3.8(−4.0) -3.1(−2.6) -4.1(−4.2)
0.25 1160(25425) 302(4812) -2.2(−2.1) -3.3(−4.2) -2.2(−2.3) -3.4(−4.4)

Table 2.8: Accuracy of Adaptive Grid (Equidistant Grid in Brackets)
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2.5 Conclusion

This paper presents an algorithm that is tailor-made for computing equilibria in dynamic

models with occasionally binding constraints. To directly address the problem of kinks in

such models, we develop a new interpolation technique based on adaptive grids and sim-

plicial interpolation. We show that Adaptive Simplicial Interpolation accurately computes

equilibria in dynamic models with several continuous state variables and various inequality

constraints. Comparison studies show that our method outperforms standard grid tech-

niques by up to two orders of magnitude in terms of maximum errors in Euler equations.

Clearly, occasionally binding constraints become more and more important in quantita-

tive economics, e.g. in modeling financial frictions. Hence, we hope that ASI will help

economists in solving such models.
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Appendix

2.A Details Bond Economy

In this appendix, we define competitive equilibrium and derive first-order equilibrium con-

ditions for the bond economy presented in Section 2.2.1. For this purpose, some additional

notation is needed. We denote the shock at time t by xt, but the history of shocks that

occurred up to period t by xt. The set of histories up to period t is denoted by X t, and

the set of all possible histories by X ≡
⋃T

t=1X
t. For xt+1 being a possible successor of

xt we write xt+1 ≥ xt. Finally, the probability of history xt is denoted by π(xt) and the

conditional transition probability by π(xt+1 |xt)

Competitive Equilibrium

A competitive equilibrium for an economy with agents’ initial bond holdings

(
bh0
)

h∈H

is a collection

{z(xt)}xt∈X ≡
{(
ch(xt), bh(xt)

)
h∈H

, p(xt)
}

xt∈X

of consumption allocations, bond holdings, and bond prices that satisfy the following con-

ditions:

1. Markets clear8:

∑

h∈H

bh(xt) = 0 ∀xt ∈ X.

2. Given prices (p(xt))xt∈X
, each agent chooses

(
ch(xt), bh(xt))

)
xt∈X

8By Walras’ Law market clearing in the asset market(s) implies market clearing in the consumption
goods market.
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to maximize lifetime utility such that ∀xt ∈ X the following constraints hold:

budget constraint ch(xt) + bh(xt)p(xt) ≤ eh(xt) + bh(xt−1),

borrowing constraint bh(xt) ≥ b.

First-Order Equilibrium Conditions

Each individual agent faces the following optimization problem:

max
(c(xt),b(xt))xt∈X

E

[
T∑

t=1

βtu(c(xt))

]

s.t. ∀xt ∈ X :

budget constraint ch(xt) + bh(xt)p(xt) ≤ eh(xt) + bh(xt−1),

borrowing constraint bh(xt) ≥ b.

Denote the multiplier associated with these constraints by λ(xt) and µ(xt). Differentiating

the Lagrangian with respect to the different choice variables gives

c(xt) : π(xt)βtu′(c(xt)) − λ(xt) = 0

c(xt+1) : π(xt+1)βt+1u′(c(xt+1)) − λ(xt+1) = 0

b(xt) : −λ(xt)p(xt) + µ(xt) +
∑

xt+1≥xt

(
λ(xt+1)

)
= 0

Substituting the first two FOCs into the last one, we get the following Euler equation for

the bond:

−u′(c(xt))p(xt) + µ(xt) +
∑

xt+1≥xt

βπ(xt+1|xt)u′(c(xt+1)) = 0.

In addition, the Kuhn-Tucker FOCs include the following complementarity condition:

0 ≤ b(xt) − b ⊥ µ(xt) ≥ 0.

Combined with market clearing conditions and budget constraints, these are the equilib-

rium conditions stated in Section 2.2.1.
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2.B Details Bond and Stock Economy

In this appendix, we define competitive equilibrium and derive first-order equilibrium con-

ditions for the economy presented in Section 2.4. The notation is as introduced in the

beginning of Appendix 2.A.

Competitive Equilibrium

A competitive equilibrium for an economy with agents’ initial portfolios

(
bh0 , l

h
0

)
h∈H

is a collection

{z(xt)}xt∈X ≡
{(
ch(xt), bh(xt), lh(xt)

)
h∈H

, p(xt), q(xt)
}

xt∈X

of consumption allocations, bond and stock holdings, and prices that satisfy the following

conditions:

1. Markets clear:

∑

h∈H

bh(xt) = 0,
∑

h∈H

lh(xt) = 1 ∀xt ∈ X.

2. Given prices (p(xt), q(xt))xt∈X
, each agent chooses

(
ch(xt), bh(xt), lh(xt))

)
xt∈X

to maximize lifetime utility such that ∀xt ∈ X the following constraints hold:

budget constraint ch(xt) + bh(xt)p(xt) + lh(xt)q(xt) ≤

eh(xt) + bh(xt−1) + lh(xt−1)
(
qt(x

t) + dt(x
t)
)
,

short selling constraint lh(xt) ≥ 0 and

collateral constraints min
xt+1≥xt

{
lh(xt)

(
q(xt+1) + d(xt+1)

)
+ bh(xt)

}
≥ 0.
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First-Order Equilibrium Conditions

Each individual agent faces the following optimization problem:

max
(c(xt),b(xt),l(xt))xt∈X

E

[
T∑

t=1

βtu(c(xt))

]

s.t. ∀xt ∈ X :

budget constraint ch(xt) + bh(xt)p(xt) + lh(xt)q(xt) ≤

eh(xt) + bh(xt−1) + lh(xt−1)
(
qt(x

t) + dt(x
t)
)
,

short selling constraint lh(xt) ≥ 0 and

collateral constraints min
xt+1≥xt

{
lh(xt)

(
q(xt+1) + d(xt+1)

)
+ bh(xt)

}
≥ 0.

Denote the multipliers associated with these constraints by λ(xt), ν(xt), and µ(xt). Differ-

entiating the Lagrangian gives

c(xt) : π(xt)βtu′(c(xt)) − λ(xt) = 0

c(xt+1) : π(xt+1)βt+1u′(c(xt+1)) − λ(xt+1) = 0

b(xt) : −λ(xt)p(xt) + µ(xt) +
∑

xt+1≥xt

(
λ(xt+1)

)
= 0

l(xt) : ν(xt) − λ(xt)q(xt) + µ(xt) min
xt+1≥xt

{
q(xt+1) + d(xt+1)

}

+
∑

xt+1≥xt

(
λ(xt+1)

) (
q(xt+1) + d(xt+1)

)
= 0.

Substituting the first two FOCs into the last two, we get the following Euler equations for

the bond and the stock:

−u′(c(xt))p(xt) + µ(xt) +
∑

xt+≥xt

(
βπ(xt+1|xt)u′(c(xt+1))

)
= 0,

ν(xt) − u′(c(xt))q(xt) + µ(xt) min
xt+1≥xt

{
q(xt+1) + d(xt+1)

}

+
∑

xt+1≥xt

(
βπ(xt+1|xt)u′(c(xt+1))

) (
q(xt+1) + d(xt+1)

)
= 0.
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In addition, the Kuhn-Tucker FOCs include the following complementarity conditions:

0 ≤ min
xt+1≥xt

{
lh(xt)

(
q(xt+1) + d(xt+1)

)
+ bh(xt)

}
⊥ µ(xt) ≥ 0

0 ≤ l(xt) ⊥ ν(xt) ≥ 0.

Combined with market clearing conditions and budget constraints, these are the equilib-

rium conditions stated in Section 2.4.

2.C Transforming Complementarities into Equations

At the initial gridpoints, ASI solves the follwing complementarity problem:

Given a state s ∈ S , and functions

φ : S × R
m+n → R

m, ψ : S × R
m → R

n,

find policies and multipliers (z, µ) ∈ R
m × R

n,

s.t. φ(s, z, µ) = 0, 0 ≤ ψ(s, z) ⊥ µ ≥ 0.

Following Garcia and Zangwill (1981), we transform this complementarity problem into a

system of equations, to be able to apply a standard non-linear equation solver. Key to the

transformation are the following definitions:

α ≡




µ for µ ≥ 0, ψ(s, z) = 0

−ψ(s, z) for µ = 0, ψ(s, z) > 0

and

α+ = (max(0, α))k

α− = (max(0,−α))k,
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where k ∈ N
+. Using these definitions, the problem reads:

Given a state s ∈ S , and functions

φ : S × R
m+n → R

m, ψ : R
m → S × R

n,

find policies and alphas (z, α) ∈ R
m × R

n,

s.t. φ(s, z, α+) = 0, ψ(s, z) − α− = 0.

2.D Alternative Error Measure

As explained in Section 2.3.4, measuring accuracy in models with occasionally binding con-

straints using EEs is not unproblematic. We therefore suggest an alternative error measure.

To apply this measure we need to solve the equilibrium system (given the solution from

the time iteration algorithm as tomorrow’s policies) at the point in the state space where

we want to measure accuracy. From that solution, we get consumption values copt for all

agents. Then, we compare these values to the interpolated consumption values cint. In

spirit of the Euler Error we compute the relative deviation of the interpolated policy from

the optimal solution. Hence, the error is given by E =
∣∣∣ cint

copt
− 1
∣∣∣. In the tables below we

report the maximum and average errors over the state space and along the equilibrium path

for the same examples as in Section 2.3.4. With respect to the alternative error measure,

ASI still outperforms standard equidistant grid schemes by far. However, the difference in

accuracy is not as extreme as with EEs.

Bond Economy with Three Agents

E state space E equilibrium path
b points time(min) max E ∅ E max E ∅ E

0.1 40(45) 0.5(0.4) -3.2(−2.6) -4.1(−3.5) -3.2(−2.6) -4.7(−4.0)
0.1 113(120) 1.1(1.0) -3.3(−2.5) -4.5(−3.6) -3.3(−2.5) -5.1(−4.2)
1.0 185(190) 6.5(4.5) -2.3(−1.7) -3.2(−3.0) -2.5(−1.7) -3.2(−2.7)
1.0 941(946) 13(11) -3.3(−2.3) -4.5(−3.6) -3.3(−2.5) -5.1(−3.3)

Table 2.9: Accuracy of Adaptive Grid (Equidistant Grid in Brackets)
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Bond Economy with Four Agents

E state space E equilibrium path
b points time(min) max E ∅ E max E ∅ E

0.1 112(120) 4.5(4) -2.9(−1.9) -3.5(−2.7) -2.9(−2.0) -4.0(−3.0)
1.0 914(969) 60(51) -1.9(−1.5) -2.7(−2.6) -1.9(−1.5) -2.8(−3.4)

Table 2.10: Accuracy of Adaptive Grid (Equidistant Grid in Brackets)

Bond and Stock Economy

E state space E equilibrium path
δ points time(min) max E ∅ E max E ∅ E

0.10 1235(1250) 310(260) -2.1(−1.8) -3.5(−3.4) -2.1(−1.8) -3.6(−3.4)
0.25 1160(1225) 302(251) -2.2(−1.8) -3.3(−2.2) -2.2(−1.9) -3.4(−3.2)

Table 2.11: Accuracy of Adaptive Grid (Equidistant Grid in Brackets)

2.E Parameterization

We set the discount factor β = 0.95 and the risk aversion parameter γ = 1.5 for all agents.

Concerning the exogenous shock process, we make the following choices: We assume that

agents may either receive a good or a bad idiosyncratic shock. One agent always gets the

bad shock and all others get the good one. This results in three or four states per aggregate

shock, depending on the number of agents. Allowing for two aggregate shocks the exoge-

nous part of the state space comprises six or eight states respectively. We denote the ratios

of good to bad idiosyncratic and aggregate shocks by νidio and νagg. We finally denote the

persistence of idiosyncratic and aggregate shocks by ρidio and ρagg. We compute equilibria

for two values of the borrowing limit b, namely b = 0.1 and 1, i.e. borrowing up to 10% or

100% of average individual yearly income. All parameter values can be found in Table 2.12.

γ νidio νagg ρidio ρagg β b

1.5 1.6 1.06 0.9 0.65 0.95 0.1/1.0

Table 2.12: Parameter Values



42 CHAPTER 2. COMPUTING EQUILIBRIA



Chapter 3

Collateral Requirements and Asset

Prices

3.1 Introduction

The vast majority of debt, especially if it extends over a long period of time, is guaranteed

by tangible assets called collateral. For example, residential homes serve as collateral for

short- and long-term loans to households, and investors can borrow money to establish a

position in stocks, using these as collateral. The margin requirement dictates how much

collateral one has to hold in order to borrow one dollar. Clearly these margin requirements

will have important implications for the price of collateral. In the recent financial crisis it

was argued that excessively low margin requirements were part of the cause of the crisis.

In this paper, we conduct a quantitative study on the effect of margins requirements on

asset prices.

Many previous papers have formalized the idea that borrowing on collateral might give rise

to cyclical fluctuations in real activity and enhance volatility of prices (see e.g. Geanakoplos

(1997), Kiyotaki and Moore (1997) and Aiyagari and Gertler (1999)). In these models, it

is possible to have substantial departures of the market price from the corresponding price

under frictionless markets. These results have led researchers to suggest that by managing

leverage (or the amount of collateralized borrowing), a central bank can reduce aggregate

fluctuations (see e.g. Ashcraft, Gârleanu, and Pedersen (2010) or Geanakoplos (2009)).

However, establishing the quantitative importance of collateral requirements as a source of

43
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excess volatility has been a challenge in the literature (see Kocherlakota (2000) or Cordoba

and Ripoll (2004)). Moreover, so far, there have been few quantitative studies that take into

account that a household can use several different assets as collateral, and that regulated

margin requirements for loans on one asset might have important effects on the volatility

of other assets in the economy.

In this paper we consider a Lucas (1978) style exchange economy with heterogeneous agents

and collateral constraints. We assume that agents can only take short positions if they hold

an infinitely-lived asset (a Lucas tree) as a long position. This model was first analyzed

by Kubler and Schmedders (2003) and subsequently used by Cao (2010) and Brumm and

Grill (2010). As in Kubler and Schmedders (2003) we assume that agents can default on

a negative bond position at any time without any utility penalties or loss of reputation.

Financial securities are therefore only traded if the promises associated with these securi-

ties are backed by collateral. Our main focus is on an economy with two trees which can

be used as collateral for short-term loans. For the first tree the collateral requirement is

determined endogenously while the collateral requirement for loans on the second tree is

exogenously regulated. We show that the presence of collateral constraints and the en-

dogenous margin requirements for the first tree lead to large excess price-volatility of the

second tree. Changes in the regulated margin requirements for the second tree have large

effects on the volatility of both trees. While tightening margins for loans on the second

tree always decreases the price volatility of the first tree, price volatility of the second tree

might very well increase with this change. In our calibration we allow for the possibility of

disaster states. This leads to very large quantitative effects of collateral requirements and

to realistic equity risk premia.

Margin requirements are a crucial feature of our model. They determine with how much

leverage agents can invest in risky assets. Following Geanakoplos (1997) and Geanakoplos

and Zame (2002), we endogenize the margin requirements by introducing a menu of finan-

cial securities. All securities promise the same payoff, but they distinguish themselves by

their respective margin requirement. In equilibrium only some of them are traded, thereby

determining an endogenous margin requirement. This implies, of course, that for many

bonds and many next period’s shocks, the face value of the debt falls below the value of

the collateral. As a result there is default in equilibrium. However, in an extension of the
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model we allow for costly default by introducing a real cost to the lender. We examine the

impact of such default costs on equilibrium trading volume and prices. As an alternative

to endogenous margin requirements, we also consider regulated margin requirements. In

particular, our two-tree economy allows us to compare a tree with endogenous margins to

a tree with regulated margins.1

In our calibration of the model there are two heterogeneous agents with Epstein-Zin utility.

They have identical elasticities of substitution (IES) but distinguish themselves by their

risk-aversion (RA). The agent with the low risk aversion is the natural buyer of risky assets

and takes on leverage to finance these investments. The agent with the high risk aversion

has a strong insurance motive against bad shocks and, therefore, is a natural buyer of

safe bonds and a natural seller of risky assets. The idea behind this model setup is as

follows. When the economy is hit with a negative shock, the collateral constraint forces

the leveraged agent to reduce consumption or to even sell risky assets to the risk-averse

agent, thereby resulting in substantial changes in the wealth distribution which in turn

affect agents’ portfolios and asset prices.

We start our analysis with an economy with a single Lucas tree that can be used as col-

lateral. In this baseline model we exogenously assume that collateral requirements are set

to the lowest possible level that still ensures that there is never default in equilibrium. To

obtain a sizable market price of risk, we follow the specification in Barro and Jin (2011)

and introduce the possibility of ‘disaster shocks’ into the otherwise standard calibration.

In this model, the effect of scarce collateral on the volatility of the tree is quantitatively

large. We then allow agents to choose from a menu of bonds with different margin require-

ments which are determined in equilibrium. Agents do trade bonds that have a positive

probability of default. However, as soon as we introduce moderate default cost, trade in

these default bonds is shut down.

The main contribution of the paper is the analysis of an economy with two trees which

have identical cash-flows but distinguish themselves by their ‘collateralizability’. We first

1Depending on the asset that is used as collateral, market forces might play an important role in
establishing margin requirements. For stocks the situation is not obvious: The Federal Reserve Board
sets minimum margin requirements for broker-dealer loans, using what is called Regulation T. In fact,
until 1974, the Fed considered initial margin percentages as an active component of monetary policy and
changed them fairly often (see Willen and Kubler (2006)). In the US housing market, there are no such
regulations and margins can be arbitrarily small.
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analyze a specification of the model in which only the first tree can be used as collateral.

In this specification, the return volatility of the collateralizable tree is significantly smaller

than that of the single tree in the baseline model. However, the volatility of the second

tree, which cannot be used as collateral, is comparable. A possible interpretation of these

findings is to identify the collateralizable tree with housing and the non-collateralizable tree

with the aggregate stock market. Using stocks as collateral is subject to many regulations

and often very costly, while individuals can easily use houses. Volatility and excess returns

for houses is much smaller than for stocks, which is in line with our findings.

We then relax the assumption of the non-collaterizability of the second tree. We assume

that a regulating agency sets an exogenous margin requirement for this tree. We find that

regulation of the second tree has a strong impact on the volatility of the first tree. In

particular, a tightening of margin requirements for the regulated tree uniformly decreases

volatility of the unregulated tree. For the regulated tree, tighter margins initially increase

the price volatility but then decrease it once margins become very large. We further show

how the regulation of margin requirements only in times when the economy exhibits strong

growth can substantially decrease volatility compared to the case of uniform regulation of

margin requirements. This result holds true both for the baseline model with a single

tree as well as the two-tree economy and suggests a strong policy recommendation for

counter-cyclical margin requirements.

Finally, we conduct a thorough sensitivity analysis and show that our qualitative results

are robust to the actual parametrization of the economy. In particular, we document that

the key effects for the two-tree economy are robust to changes in the magnitude of the

disaster shocks.

The remainder of this paper is organized as follows. We introduce the model in Section 3.2.

In Section 3.3 we discuss results for economies with a single tree. Section 3.4 focuses on

economies with two trees. In Section 3.5 we consider extensions and sensitivity analysis.

Section 3.6 concludes.
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3.2 The Economic Model

We examine a model of an exchange economy that extends over an infinite time horizon

and is populated by infinitely-lived heterogeneous agents.

3.2.1 Infinite-Horizon Economy

This section describes the details of the infinite-horizon economy.

The Physical Economy

Time is indexed by t = 0, 1, 2, . . .. A time-homogeneous Markov chain of exogenous shocks

(st) takes values in the finite set S = {1, . . . , S}. The S × S Markov transition matrix

is denoted by π. We represent the evolution of time and shocks in the economy by a

countably infinite event tree Σ. The root node of the tree represents the initial shock s0.

Each node of the tree, σ ∈ Σ, describes a finite history of shocks σ = st = (s0, s1, . . . , st)

and is also called date-event. We use the symbols σ and st interchangeably. To indicate

that st′ is a successor of st (or st itself) we write st′ � st. We use the notation s−1 to refer

to the initial conditions of the economy prior to t = 0.

At each date-event σ ∈ Σ there is a single perishable consumption good. The economy is

populated by H agents, h ∈ H = {1, 2, . . . , H}. Agent h receives an individual endowment

in the consumption good, eh(σ) > 0, at each node. In addition, at t = 0 the agent owns

shares in Lucas trees. We interpret these Lucas trees to be physical assets such as firms,

machines, land or houses. There are A different such assets, a ∈ A = {1, 2, . . . , A}. At

the beginning of period 0, each agent h owns initial holdings θh
a(s−1) ≥ 0 of tree a. We

normalize aggregate holdings in each Lucas tree, that is,
∑

h∈H θ
h
a(s−1) = 1 for all a ∈ A.

At date-event σ, we denote agent h’s (end-of-period) holding of Lucas tree a by θh
a(σ).

The Lucas trees pay positive dividends da(σ) in units of the consumption good at all

date-events. We denote aggregate endowments in the economy by

ē(σ) =
∑

h∈H

eh(σ) +
∑

a∈A

da(σ).

The agents have preferences over consumption streams representable by the following re-
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cursive utility function, see Epstein and Zin (1989),

Uh(c, st) =




[
ch(st)

]ρh

+ β

[
∑

st+1

π(st+1|st)
(
Uh(c, st+1)

)αh

] ρh

αh





1

ρh

,

where 1
1−ρh is the intertemporal elasticity of substitution (IES) and 1 − αh is the relative

risk aversion of the agent.

Security Markets

At each date-event agents can engage in security trading. Agent h can buy θh
a(σ) ≥ 0

shares of tree a at node σ for a price qa(σ). Agents cannot assume short positions of the

Lucas trees. Therefore, the agents make no promises of future payments when they trade

shares of physical assets and thus there is no possibility of default.

In addition to the physical assets, there are J financial securities, j ∈ J = {1, 2, . . . , J},

available for trade. These assets are one-period securities in zero-net supply. Security j

traded at node st promises a payoff of one unit of the consumption good at each immediate

successor node st+1. We denote agent h’s (end-of-period) portfolio of financial securities

at date-event σ by φh(σ) ∈ R
J and denote the price of security j at this date-event by

pj(σ). Whenever an agent assumes a short position in a financial security j, φh
j (σ) < 0,

she promises a payment in the next period. In our economy such promises must be backed

up by collateral holdings.

Collateral and Default

At each node σ, we associate with each financial security j ∈ J a tree a(j) ∈ A and

a collateral requirement kj

a(j)(σ) > 0. If an agent sells one unit of security j, then she

is required to hold kj

a(j)(σ) units of tree a(j) as collateral. If an asset a can be used as

collateral for different financial securities, the agent is required to buy kj

a(j)(σ) shares for

each security j ∈ Ja, where Ja ⊂ J denotes the set of financial securities collateralized by

the same tree a. In the next period, the agent can default on her earlier promise. In this

case the agent loses the collateral she had to put up. In turn, the buyer of the financial

security receives this collateral associated with the initial promise.2

2Following Geanakoplos and Zame (2002) we make the strong assumption that an agent can default
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Since there are no penalties for default, a seller of security j at date-event st−1 defaults on

her promise at a successor node st whenever the initial promise exceeds the current value

of the collateral, that is, whenever

1 > kj

a(j)(s
t−1)

(
qa(j)(s

t) + da(j)(s
t)
)
.

The payment by a borrower of security j at node st is, therefore, always given by

fj(s
t) = min

{
1, kj

a(j)(s
t−1)

(
qa(j)(s

t) + da(j)(s
t)
)}

.

Our model includes the possibility of costly default. This feature of the model is meant to

capture default costs such as legal cost or the physical deterioration of the collateral asset.

For example, it is well known that housing properties in foreclosure deteriorate because of

moral hazard, destruction, or simple neglect. We model such costs by assuming that part

of the collateral value is lost and thus the payment received by the lender is smaller than

the value of the borrower’s collateral. Specifically, the loss is proportional to the difference

between the face value of the debt and the value of collateral, that is, the loss is

lj(s
t) = λ

(
1 − kj

a(j)(s
t−1)

(
qa(j)(s

t) + da(j)(s
t)
))

for some parameter λ ≥ 0. The resulting payment to the lender of the loan in security j

when fj(s
t) < 1 is thus given by

rj(s
t) = max

{
0, fj(s

t) − lj(s
t)
}

= max
{

0, (1 + λ)kj

a(j)(s
t−1)(qa(j)(s

t) + da(j)(s
t)) − λ

}
.

on individual promises without declaring personal bankruptcy and giving up all the assets he owns. There
are no penalties for default and a borrower always defaults once the value of the debt is above the value of
the collateral. Since this implies that the decision to default on a promise is independent of the debtor, we
do not need to consider pooling of contracts as in Dubey, Geanakoplos, and Shubik (2000), even though
there may be default in equilibrium. This treatment of default is somewhat unconvincing since default
does not affect a household’s ability to borrow in the future and it does not lead to any direct reduction in
consumption at the time of default. Moreover, declaring personal bankruptcy typically results in a loss of
all assets, and it is rarely possible to default on some loans while keeping the collateral for others. However,
there do exist laws for collateralizable borrowing where default is possible without declaring bankruptcy.
Examples include pawn shops and the housing market in many US states, in which households are allowed
to default on their mortgages without defaulting on other debt. It is certainly true that the recent 2008
housing crises makes this assumption look much better.
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If fj(s
t) = 1 then rj(s

t) = fj(s
t) = 1. This repayment function does not capture all costs

associated with default. For example, it does not allow for fixed costs which are independent

of how much the collateral value falls short of the repayment obligation. However, our

functional form offers the advantage that the resulting model remains tractable since the

repayment function is continuous in the value of the collateral.

The specification of the collateral requirements kj
a(s

t) for bond j, tree a and across date-

events st has important implications for equilibrium prices and allocations. The collateral

levels kj
a(s

t) are endogenously determined in equilibrium. In this paper we examine two

different rules for the endogenous determination of collateral levels. The first rule deter-

mines endogenous collateral requirements along the lines of Geanakoplos and Zame (2002).

The second rule assumes exogenously regulated capital-to-value ratios which in turn lead

to endogenous collateral requirements.

Default and Endogenous Collateral Requirements

One of the contributions of this paper is to endogenize collateral requirements in an infinite-

horizon dynamic general equilibrium model. For this purpose, our first collateral rule fol-

lows Geanakoplos (1997) and Geanakoplos and Zame (2002) who suggest a simple and

tractable way to endogenize collateral requirements. They assume that, in principle, fi-

nancial securities with any collateral requirement could be traded in equilibrium. Only the

scarcity of available collateral leads to equilibrium trade in only a small number of such

securities. Our first rule follows this approach.

Recall that the S direct successors of a node st are denoted (st, 1), . . . , (st, S) and that

Ja denotes the set of bonds collateralized by the same tree a. We define endogenous

margin requirements for bonds j ∈ Ja collateralized by the same tree a ∈ A as fol-

lows. For each shock next period, s′ ∈ S, there is at at least one bond which satisfies

kj

a(j)(s
t)
(
qa(j)(s

t, s′) + da(j)(s
t, s′)

)
= 1. For each bond in the set Ja the promised payoff is

equal to the collateral in (generically) exactly a single state. Generically the set Ja thus

contain exactly S bonds, however the bond with the lowest collateral requirement is re-

dundant in our model because its payoff vector is collinear with the tree’s dividend vector.

(Therefore, we consider only models with at most S − 1 bonds in our numerical analysis

of the model.) The arguments in Araújo, Kubler, and Schommer (2010) show that adding

additional bonds with other collateral requirements (also only using tree a as collateral) do
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not change the equilibrium allocation. In the presence of S bonds as specified above, any

bond with an intermediate collateral requirement can be replicated by holding a portfolio

of the existing bonds using the same amount of collateral.

We begin our model examinations always with economies with a single bond, J = 1,

on which agents cannot default. That is, the collateral requirements are endogenously

set to the lowest possible value which still ensures no default in the subsequent period

(this specification is similar to the collateral requirements in Kiyotaki and Moore (1997)).

Formally, the resulting condition for the collateral requirement k1
a(1)(s

t) of this bond is

k1
a(1)(s

t)

(
min

st+1≻st

(
qa(1)(s

t+1) + da(1)(s
t+1)

))
= 1.

We refer to this bond as the ‘risk-free’ or ‘no-default’ bond.

To simplify the discussion of models with several bonds, it is useful to refer to the different

bonds by the number of states in which they default, respectively. In our model specifica-

tions below, the set Ja always contains a no-default bond. In models with several bonds,

the second bond defaults in precisely one state, the third bond in precisely two states,

and so on. Hence we refer to these additional bonds as the 1-default bond, the 2-default

bond etc. In the absence of default costs, some of these bonds will typically be traded in

equilibrium. However, we see below that, in our calibration, rather moderate default costs

generally suffice to shut down trade in these bonds.

Financial Markets Equilibrium with Collateral

We are now in the position to formally define the notion of a financial markets equilib-

rium. To simplify the statement of the definition, we assume that for a set of trees Â ⊂ A

collateral requirements are endogenous, that is for each â ∈ Â, there exist a set Jâ of

S bonds for which this tree can be used as collateral. It is helpful to define the terms

[φh
j ]

+ = max(0, φh
j ) and [φh

j ]
− = min(0, φh

j ). We denote equilibrium values of a variable x

by x̄.

Definition 3.1. A financial markets equilibrium for an economy with initial tree holdings

(θh(s−1))h∈H and initial shock s0 is a collection of agents’ portfolio holdings and consump-
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tion allocations as well as security prices and collateral requirements for all trees â ∈ Â ⊂ A

((
θ̄h(σ), φ̄h(σ), c̄h(σ)

)
h∈H

; (q̄a(σ))a∈A , (p̄1(σ))j∈J ,
(
k̄j

â(σ)
)

j∈Jâ,â∈Â

)
σ∈Σ

satisfying the following conditions:

(1) Markets clear:

∑

h∈H

θ̄h(σ) = 1 and
∑

h∈H

φ̄h(σ) = 0 for all σ ∈ Σ.

(2) For each agent h, the choices
(
θ̄h(σ), φ̄h(σ), c̄h(σ)

)
solve the agent’s utility maximiza-

tion problem,

max
θ≥0,φ,c≥0

Uh(c) s.t. for all st ∈ Σ

c(st) = eh(st) +
∑

j∈J

(
[φj(s

t−1)]+rj(s
t) + [φj(s

t−1)]−fj(s
t)
)

+

θh(st−1) ·
(
q̄(st) + d(st)

)
− θh(st) · q̄(st) − φh(st) · p̄(st)

0 ≤ θh
â(st) +

∑

j∈Jâ

k̄j
â(s

t)[φh
j (s

t)]−, for all â ∈ Â.

(3) For all st and for each â ∈ Â, there exists for each state s′ ∈ S a financial security

j such that â = a(j) and

k̄j
â(s

t)
(
q̄â(s

t, s′) + dâ(s
t, s′)

)
= 1.

The approach in Kubler and Schmedders (2003) can be used to prove existence. The

only non-standard part—besides the assumption of recursive utility, which can be handled

easily—is the assumption of default costs. Note, however, that our specification of these

costs still leaves us with a convex problem and standard arguments for continuity of best

responses go through.

To approximate equilibrium numerically, we use the algorithm in Brumm and Grill (2010).

In Appendix 3.A, we describe the computations and the numerical error analysis in detail.

For the interpretation of the results to follow it is useful to understand the recursive
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formulation of the model. The natural endogenous state-space of this economy consists of

all agents’ beginning of period financial wealth as a fraction of total financial wealth (i.e.

value of the trees cum dividends) in the economy. That is, we keep track of the current

shock st and of

ωh(st) =

∑
j∈J

(
[φh

j (s
t−1)]+rj(s

t) + [φh
j (s

t−1)]−fj(s
t)
)

+ θh(st−1) · (q̄(st) + d(st))
∑

a∈A qa(s
t) + d(st)

,

across all agents h ∈ H. As in Kubler and Schmedders (2003) we assume that a recursive

equilibrium on this state space exists and compute prices, portfolios and individual con-

sumptions as a function of the exogenous shock and the distribution of financial wealth.

In our calibration we assume that shocks are iid and that these shocks only affect the

aggregate growth rate. In this case, policy- and pricing functions are independent of the

exogenous shock, thus depend on the wealth distribution only, and our results can be easily

interpreted in terms of these functions.

Regulated Collateral Requirements

The second rule for setting collateral requirements relies on regulated capital-to-value ra-

tios. An agent selling one unit of bond j with price pj(s
t) must hold collateral with a

value of at least kj

a(j)(s
t)qa(j)(s

t). We can interpret the difference between the value of the

collateral holding and the debt as the amount of capital an agent must put up to obtain

the loan in form of a short position in the financial security. A (not further modeled) regu-

lating agency now requires debtors to hold a certain minimal amount of capital relative to

the value of the collateral they hold. Put differently, the regulator imposes a lower bound

mj

a(j)(s
t) on this capital-to-value ratio,

mj

a(j)(s
t) =

kj

a(j)(s
t)qa(j)(s

t) − pj(s
t)

kj

a(j)(s
t)qa(j)(st)

.

Using language from financial markets we also call these bounds margin requirements. If

the margin requirement is regulated to be mj

a(j)(s) in shock s ∈ S and constant over time,



54 CHAPTER 3. COLLATERAL AND ASSET PRICES

then the collateral requirement at each node st is

kj

a(j)(s
t) =

pj(s
t)

qa(j)(st)(1 −mj

a(j)(st))
.

Note that, contrary to the exogenous margin requirement, the resulting collateral require-

ment is endogenous since it depends on equilibrium prices. For economies with regulated

margins, condition (3) of the definition of a financial markets equilibrium must be replaced

by the following condition.

(3’) For all st and for each â ∈ Â, the collateral requirement k̄j
â(s

t) of the unique bond j

with â = a(j) and the given margin requirement mj
â(st) satisfies

k̄j
â(s

t) =
p̄j(s

t)

q̄â(st)(1 −mj
â(st))

.

Sometimes people use the term margin requirement for the capital-to-loan ratio,

kj
aqa(s

t) − pj(s
t)

pj(st)
,

which does not have a natural normalization and can be larger than one. On the contrary,

the margin requirement mj

a(j)(st) as defined above has a natural normalization since it is

bounded above by one.

3.2.2 Calibration

This section discusses the calibration of the model’s exogenous parameters. We calibrate

our model to yearly data.

Growth Rates

We consider a growth economy with stochastic growth rates. The aggregate endowment

at date-event st grows at the stochastic rate g(st+1) which (if no default cost are incurred)

only depends on the new shock st+1 ∈ S, that is, if either λ = 0 or fj(st+1) = 1 for all
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j ∈ J , then
ē(st+1)

ē(st)
= g(st+1)

for all date-events st ∈ Σ. If there is default in st+1, then the endowment ē(st+1) is reduced

by the costs of default and the growth rate is reduced respectively.

There are S = 6 exogenous shocks. We declare the first three of them, s = 1, 2, 3, to

be “disasters”. We calibrate the disaster shocks to match the first three moments of the

distribution of disasters in Barro and Jin (2011). Also following Barro and Jin, we choose

transition probabilities such that the six exogenous shocks are i.i.d. The non-disaster

shocks, s = 4, 5, 6, are then calibrated such that their standard deviation matches “normal”

business cycle fluctuations with a standard deviation of 2 percent and an average growth

rate of 2.5 percent, which results in an overall average growth rate of about 2 percent. We

sometimes find it convenient to call shock s = 4 a “recession” since g(4) = 0.966 indicates

a moderate decrease in aggregate endowments. Table 3.1 provides the resulting growth

rates and probability distribution for the six exogenous shocks of the economy.

Shock s 1 2 3 4 5 6
g(s) 0.566 0.717 0.867 0.966 1.025 1.089
π(s) 0.005 0.005 0.024 0.065 0.836 0.065

Table 3.1: Growth Rates and Distribution of Exogenous Shocks

In our results sections below we report that collateral requirements have quantitatively

strong effects on equilibrium prices. Obviously, the question arises what portion of these

effects is due to the large magnitude of the disaster shocks. We address this issue in

the discussion of our results. In addition, Section 3.5 examines the equilibrium effects of

collateral requirements for an economy with less severe disaster shocks.

Endowments and Dividends

There are H = 2 types of agents in the economy, the first type, h = 1, being less risk-averse

than the second. Each agent h receives a fixed share of aggregate endowments as individual

endowments, that is, eh(st) = ηhē(st). We assume that η1 = 0.092, η2 = 0.828. Agent 1

receives 10 percent of all individual endowments, and agent 2 receives the remaining 90

percent of all individual endowments. The remaining part of aggregate endowments enters
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the economy as dividends of Lucas trees, that is, da(s
t) = δa(st)ē(s

t) and
∑

a δa(s) = 0.08

for all s ∈ S.

Several comments on the distribution of the aggregate endowment are in order. First, we

abstract from idiosyncratic income shocks because it is difficult to disentangle idiosyncratic

and aggregate shocks for a model with two types of agents. We conjecture that our effects

would likely be larger if we considered a model with a continuum of agents receiving i.i.d.

idiosyncratic shocks. Second, a dividend share of 8 percent may appear a little too low if

one interprets the tree as consisting of both the aggregate stock market as well as housing

wealth. However, this number is in line with Chien and Lustig (2010) who base their

calibration on NIPA data. We conduct some sensitivity analysis below and, in particular,

report results for the case
∑

a δa(s) = 0.15 and thus η1 = 0.085, η2 = 0.765. Third, for

simplicity we do not model trees’ and other assets’ dividends to have different stochastic

characteristics as aggregate consumption. Fourth, in Section 3.4 we examine an economy

with two Lucas trees. For such economies, we want to interpret the first tree as aggregate

housing and its dividends as housing services while we interpret the second tree as the

aggregate stock market. Following Cecchetti, Stephen, and Mark (1993), we calibrate

dividends to be 4 percent of aggregate consumption which leaves housing services to be of

the same size. In order to focus on the effects of collateral and margin requirements, we

assume that the two trees have the exact same dividend payments, that is, in the absence of

collateral constraints these two trees would be identical assets. Therefore, this calibration

allows for a careful examination of the impact of different collateral properties of the two

trees.

Utility Parameters

The choice of an appropriate value for the IES is rather difficult. On the one hand, several

studies that rely on micro-data find values of about 0.2 – 0.8, see, for example, Attanasio

and Weber (1993). On the other hand, Vissing-Jørgensen and Attanasio (2003) use data

on stock owners only and conclude that the IES for such investors is likely to be above one.

Barro (2009) finds that for a successful calibration of a representative-agent asset-pricing

model the IES needs to be larger than one.

In our benchmark calibration both agents have identical IES of 1.5, that is, ρ1 = ρ2 = 1/3.

In our sensitivity analysis we also consider the case of both agents having an IES of 0.5.
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For this specification the quantitative results slightly change compared to the benchmark

calibration, but the qualitative insights remain intact.

Agent 1 has a risk aversion of 0.5 and so α1 = 0.5 while agent 2’s risk aversion is 6

and thus α2 = −5. Recall the weights for the two agents in the benchmark calibration,

η1 = 0.092 and η2 = 0.828. The majority of the population is therefore very risk-averse,

while 10 percent of households have low risk aversion. This heterogeneity of the risk

aversion among the agents is the main driving force for volatility in the model. (Agent 1

wants to hold the risky assets in the economy and leverages to do so. In a bad shock, his

de-leveraging leads to excess volatility.) In the equilibria of our model, the risky assets are

mostly held by agent 1, but there are extended periods of time where also agent 2 holds

part of the asset. Loosely speaking, we therefore choose the fraction of very risk-averse

agents to match observed stock-market participation.

Finally, we set βh = 0.95 for both h = 1, 2, which turns out to give us a good match for

the annual risk-free rate.
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3.3 Economies with a Single Lucas Tree

We first consider economies with a single Lucas tree available as collateral. We show that

scarce collateral has a large effect on the price volatility of this tree and examine how the

magnitude of this effect depends on the specification of margin requirements. This section

sets the stage for our analysis of economies with two trees in Section 3.4.

3.3.1 Collateral and Volatility with a Single Risk-Free Bond

The starting point of our analysis is an economy with a single Lucas tree and a single

bond. We assume that the collateral requirements on the single bond ensure that there is

no default in equilibrium and so the bond is risk-free. We calibrate this baseline model

according to the parameters presented above.

For an evaluation of the quantitative effects of scarce collateral, we benchmark our results

against those for two much simpler models. The model B1: No bonds is an economy with

a single tree and no bond. Thus, agents in this economy cannot borrow. The model B2:

Unconstrained is an economy in which agents can use their entire endowment as collat-

eral. This model is equivalent to a model with natural borrowing constraints. Table 3.2

reports four statistics for each of the three economies. (See Appendix 3.A for a description

of the estimation procedure.) Throughout the paper we measure tree-price volatility by

the average standard deviation of tree returns over a long horizon. Another meaningful

measure is the average one-period-ahead conditional price volatility. These two measures

are closely correlated for our models. In Table 3.2 we report both measures but omit the

second one in the remainder of the paper. We also report average interest rates and equity

premia. While our paper does not focus on an analysis of these measures, we do check

them because we want to ensure that our calibration delivers reasonable values for these

measures.

Recall that in our calibration agents of type 1 are much less risk averse than type 2 agents.

And, therefore, in the long run agent 1 holds the entire Lucas tree in model B1 with no

borrowing and agent 2 effectively lives in autarchy. As a result the tree price is determined

entirely by the Euler equation of agent 1, and so the price volatility is as low as in the model

with a representative agent whose preferences exhibit very low risk aversion. The wealth
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Model Std returns 1-period price vol. Risk-free rate EP
B1: No bonds 5.33 4.98 n/a n/a
B2: Unconstrained 5.38 5.05 5.88 0.55

Scarce Collateral 8.14 7.54 1.10 3.86

Table 3.2: Three Economies with a Single Tree (all Figures in Percent)

distribution remains constant across all date-events. In the second benchmark model B2

the less risk-averse agent 1 holds the entire tree during the vast majority of time periods.

A bad shock to the economy leads to shifts in the wealth distribution and a decrease of

the tree price. However, since in our calibration shocks are iid, these shifts in the wealth

distribution have generally small effects on prices (except in the very low-probability case

of several consecutive disaster shocks). The resulting price volatility in model B2 is of

similar magnitude as the volatility in B1. Moreover, in the model B2 the risk-free rate

is high and the equity premium is very low. Despite the presence of disaster shocks, the

market price of risk is low because it is borne almost entirely by agent 1 who has very low

risk aversion.

Table 3.2 shows that both first and second moments show substantial differences when

we compare models without collateral requirements to a model with tight collateral con-

straints. The perhaps most striking result reported in Table 3.2 is that volatility in our

baseline economy is about 50 percent larger than in the two benchmark models without

borrowing (B1: No bonds) and with natural borrowing constraints (B2: Unconstrained),

respectively. The standard deviation of returns is 8.14 percent in the baseline economy but

only 5.33 percent and 5.38 percent for the benchmark models B1 and B2, respectively.3

Collateral constraints drastically increase the volatility in the standard incomplete markets

model. Figure 3.1 shows the typical behavior of four variables in the long run during a

3The stock return volatility in our baseline economy is considerably smaller than the volatility in U.S.
data. For comparison, Lettau and Uhlig (2002) report that the quarterly standard deviation of returns of
S&P-500 stocks in post-war US data is about 7.5 percent. Similarly, Fei, Ding, and Deng (2010) report an
annual volatility of about 14.8 percent for the period January 1987 to May 2008. However, it is important
to note that we want to interpret the aggregate tree as a mix of stocks and housing assets. The volatility
of housing prices is U.S. data is much lower. Fei, Ding, and Deng (2010) report an annual volatility of
the Case/Shiller housing price index of less than 3 percent (for January 1987 to May 2008). A similar
comment applies to the equity premium. While the average risk-free rate roughly matches U.S. data, the
equity premium is substantially lower than in the data. We discuss this point in more detail in Section 3.4
for an economy with two trees.
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Figure 3.1: Snapshot from a Simulation of the Baseline Model

simulation for a time window of 200 periods. The first graph displays agent 1’s holding of

the Lucas tree. The second graph shows the normalized tree price, that is, the equilibrium

price of the tree divided by aggregate consumption in the economy. The last two graphs

show the price and agent 1’s holding of the risk-free bond, respectively. In the sample

displayed in Figure 3.1, the disaster shock s = 3 (smallest disaster with a drop of aggregate

consumption of 13.3 percent) occurs in periods 71 and 155 while disaster shock 2 occurs

in period 168 and disaster shock 1 (worst disaster) hits the economy in period 50.

When a bad shock occurs, both the current dividend and the expected net present value of

all future dividends of the tree decrease. As a result the price of the tree drops, but in the

absence of further effects, the normalized price should remain the same since shocks are iid.

(That’s exactly what happens in the benchmark model B1.) In our baseline economy with

collateral constraints, however, additional effects occur in equilibrium. First, note that

agent 1 is typically leveraged, that is, when a bad shock occurs his beginning-of-period

financial wealth falls relative to the financial wealth of agent 2. This effect is the strongest

when the worst disaster shock 1 occurs. If agent 1 was fully leveraged in the previous
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period then her wealth decreases to zero because shock 1 always determines the collateral

requirement kj

a(j).

High leverage leads to large changes in the wealth distribution when bad shocks occur.

The fact that collateral is scarce in our economy now implies that these changes in the

wealth distribution strongly affect equilibrium portfolios and prices. Since agent 1 cannot

borrow against her future labor income, she can only afford to buy a small portion of the

tree if her financial wealth is low. In equilibrium, therefore, the price has to be sufficiently

low to induce the much more risk-averse agent 2 to buy a substantial portion of the tree.

On top of that within-period effect, there is a dynamic effect at work. As agent 1 is poorer

today, she will also be poorer tomorrow (at least in shocks 2-6) implying that the price

of the tree tomorrow is depressed as well. This further reduces the price that agent 2 is

willing to pay for the tree today. Clearly, this dynamic effect is active not only for one

but for several periods ahead, which is displayed in Figure 3.1 by the slow recovery of

the normalized price of the tree after bad shocks. Figure 3.1 shows that the total impact

of the above described effects is very strong for shock s = 1 but also large for shock 2.

Note that the prices are normalized prices, so the drop of the actual tree price is much

larger than displayed in the figure. In disaster shock 1, agent 1 is forced to sell almost the

entire tree and the normalized price drops by almost 30 percent (the actual price drops

by approximately 60 percent). In shock 2 she sells less than half of the tree but the price

effect is still substantial. In shock 3 the effect is still clearly visible, although the agent has

to sell only very little of her tree.

While the effects of collateral and leverage on volatility are very large, it is important to

note that in the baseline specification of our model with a single tree and a single bond

there is no financial accelerator. Kiyotaki and Moore (1997), Aiyagari and Gertler (1999)

and others highlight the idea that in the presence of collateral constraint the fact that

the price of collateral decreases might make it more difficult for the borrower to maintain

his debt position because collateral requirements increase in anticipation of a value of the

collateral in the next period which is now lower than if the shock had not happend. In the

baseline case, this effect is absent for two reasons. First, whenever agent 1 is constrained,

the collateral requirement kj

a(j) is independent of today’s price of the collateral, it is in fact

constant. This is because the collateral requirement is determined by tomorrow’s tree price

(plus dividend) in case of the worst shock. If this shock occurs and agent 1 is constrained
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today, he has to use his entire tree holding to repay his debt. Hence, no matter how large

agent 1’s tree holding is today, he ends up with zero financial wealth tomorrow. This

implies a specific price for the tree tomorrow in shock 1 which is independent of today’s

price (as long as agent 1 is constrained) and consequently a specific collateral requirement

today4. Second, an examination of the bond price in Figure 3.1 reveals an important general

equilibrium effect in our economy that counteracts an increase of the margin requirement.

When a bad shock occurs and the share of financial wealth of agent 1 decreases, then the

demand of the now relatively richer agent 2 for the risk-free asset increases the bond price

substantially. In fact, occasionally the interest rate even becomes negative. As a result

of the constant collateral requirement, the increase in the bond price and the decrease in

the tree price the equilibrium margin requirement actually decreases substantially in a bad

shock.

In sum, scarce collateral plays an important role for the volatility of the tree price because

it leads to large price drops in bad shocks since agent 1 cannot borrow against future labor

income. As we would expect, this effect depends on the amount of available collateral

in the economy. Figure 3.2 illustrates this point. The figure depicts the tree’s average

return volatility and the fraction of times the collateral constraint is binding for agent 1

(i.e. the probability of constraint being binding) as a function of the dividend share δ in

the economy.

For very small values of δ, there is only little collateral in the economy and so the collateral

constraint is almost always binding. However, the stock is so small that agent 1 does not

have to sell the stock even if the economy is hit by an extremely bad aggregate shock. The

resulting return volatility is relatively small. As δ increases the probability of the collateral

constraint being binding decreases rapidly but the effects of it being binding become larger.

There is an interior maximum for the stock-return volatility around δ = 0.07. Although the

constraint is much less often binding than for a smaller tree, the trade-off between agent

1 being forced to sell the tree and agent 1 getting into this situation leads to maximal

volatility. As δ increases further, the constraint becomes binding much less frequently and

eventually at δ = 1 the stock return volatility is very low, simply because the collateral

constraint never binds and so collateral plays no role. This situation is identical to the case

4If we assume that the tree’s dividends cannot be used as collateral, this argument is no longer correct.
However, for our calibration the effects of this assumption are quantitatively negligable.
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Figure 3.2: Volatility as a Function of the Dividend Share

of natural borrowing constraints where a binding constraint would imply zero consumption

for the borrower.

3.3.2 Collateral and Several Bonds

In the economy with a single tree and a single bond, equilibrium margin requirements are

sufficiently high to ensure that there is no default. The bond is risk-free and always pays

its face value. We now examine whether the observed results are just a consequence of this

restrictive assumption. In the enhanced model a menu of bonds is available for trade and

the accompanying collateral requirements are endogenously determined in equilibrium.

Full Set of Bonds without Costly Default

Our calibrated model with S = 6 exogenous states allows the analysis of economies with

five bonds. As explained above, these bonds are characterized by the number of shocks in

which they default and so we call them no-default bond, 1-default bond, 2-default bond,

etc. Figure 3.3 shows the portfolio holdings of agent 1 as well as the normalized tree price

along the same simulated series of shocks as in Figure 3.1 above.
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Figure 3.3: Snapshot from a Simulation of the Model with 1 Tree and 5 Bonds

During “normal times” (that is, if the last disaster shock occurred sufficiently long ago)

only the no-default bond is traded in equilibrium. (There is a tiny amount of trade in

the 1-default bond in recessions, shock 4, which is quantitatively negligible.) In normal

times the agents’ portfolios resemble those in an economy with a single risk-free bond. The

risk-averse agent 2 holds the risk-free bond while agent 1 holds the risky tree and is short

in the bond.

Disaster shocks are the only reason for equilibrium trade in default bonds. In our economy,

the risk-averse agent 2 always seeks to buy an asset that insures him against bad aggregate

shocks — only the risk-free bond can play this role. However, the risky default bonds play

an important role once a disaster shock occurs. Agent 1 no longer needs to sell the stock

but is now able to raise additional funds by selling default bonds to agent 2. Such a trade
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shifts some of the tree’s risk to agent 2 who demands a high interest rate for assuming

such risk. But the default bonds are still less risky than the tree and thus preferred by

the risk-averse agent. In fact, the presence of the default bonds enables agent 1 to always

hold the entire tree. Figure 3.3 shows that after an occurrence of the worst disaster shock

1, which happens in period 50, agent 1 is able to hold on to the entire tree and to sell the

4-default and the 3-default bond to agent 2. As the economy recovers, agent 1 sells the

1-default bond to agent 2 and holds a short-position in this bond for approximately 10

periods until her wealth has recovered sufficiently so that she is able to leverage exclusively

in the default free bond.

Despite the fact that the leveraged agent 1 no longer has to sell the tree after bad shocks,

such shocks continue to have a strong impact on asset prices. Figure 3.3 shows that the

normalized tree price decreases in all three disaster shocks as well as in recessions, just as

in an economy with a single risk-free bond, see Figure 3.1. By selling the default bonds to

the risk-averse agent 2, agent 1 shifts the tree’s (tail) risk to agent 2. This circumstance

must be reflected in the equilibrium price. This reasoning becomes clear if we considered

the case of identical dividends in shocks 5 and 6. Under this scenario, the tree and the

4-default bond have identical payoffs and hence it should be irrelevant for the price of the

tree who holds it, that is, whether agent 1 holds it financed by a short position in the

4-default bond or agent 2 holds it directly.

Moreover, unlike in the previous model with one bond, the financial accelerator now plays

a role. A lower tree holding of agent 1 in this period reduces the price of the tree in the

next period in shocks 2-6 and hence makes it more difficult for agent 1 to hold default

bonds.

Table 3.3 reports the tree-return volatility for economies with 1, 2, . . . , 5 bonds, respec-

tively. The presence of a bond that defaults only in shock 1 (when the economy shrinks

by 43.4 percent) leads to a decrease in the volatility of the tree price. A third bond that

defaults in shocks 1 and 2 leads to an additional small reduction of volatility. The impact

of additional bonds is negligible. This fact is not surprising since we observed that these

bonds are rarely traded.

Unfortunately, the fact that investors only trade bonds with a high probability of default

during bad times seems counterfactual. Several features of our model may lead to this
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One bond Two bonds Three bonds Four bonds All bonds
Std returns 8.14 7.87 7.84 7.84 7.84

Table 3.3: The Effect of Endogenous Margins on Return Volatility

result. Clearly bad times are often persistent and not iid as in our calibration. More im-

portantly, default is typically costly. We next show that fairly small default costs eliminate

trade in default bonds.

Costly Default

Until now our treatment of default is somewhat unsatisfactory since it neglects both private

and social costs of default. We now introduce default costs as described in Section 3.2.1

above. Table 3.4 shows how the trading volume of the default bonds changes as a function

of the cost parameter λ. The reported trading volume is the average absolute bond holding

of agent 1 (which is the same as that of agent 2) over the simulation path.

λ = 0 λ = 0.01 λ = 0.05 λ = 0.10 λ = 0.2 λ = 0.25
Std dev tree return 7.84 7.87 7.98 8.12 8.15 8.14

Total trading 1.260 1.236 1.183 1.161 1.126 1.123
No-default bond 1.110 1.099 1.076 1.076 1.099 1.123
1-default bond 0.084 0.080 0.075 0.085 0.027 0
2-default bond 0.034 0.034 0.032 0 0 0
3-default bond 0.026 0.023 0 0 0 0
4-default bond 0.006 0 0 0 0 0

Table 3.4: The Effect of Default Costs on Tree-Return Volatility and Bond Trading Volume

In the absence of default costs (λ = 0), the average trading volume of all bonds is nonzero.

As we observed in the previous section, it is substantial for the no-default and 1-default

bond and rather small for the remaining bonds. Proportional default cost of as low as 10

percent (λ = 0.1) result in zero trade for the bonds defaulting in two or more states. For

default costs of 25 percent, trade in any type of default bond ceases to exist. Only the

risk-free bond is traded and the resulting equilibrium prices and allocations are identical

to our baseline economy above.

Recall from the description in Section 3.2.1 that the cost is proportional to the difference
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of the face value of the bond and the value of the underlying collateral. Therefore, a

proportional cost of 25 percent means a much smaller cost as a fraction of the underlying

collateral. Campbell, Giglio, and Pathak (2011) find an average ‘foreclosure discount’ of 27

percent for foreclosures in Massachusetts from 1988 until 2008. This discount is measured

as a percentage of the total value of the house. As a percentage of the difference between

the house value and face value of the debt this figure would be substantially larger. A

value of λ = 0.25, therefore, seems certainly realistic and is, if anything, too small when

we compare it to figures from the U.S. housing market.

Table 3.4 also reveals that the trading volume of the 1-default bond remains stable up to

default costs of around 10 percent when other default bonds are no longer traded. The

1-default bond remains an attractive asset in this economy even for moderate default costs.

It is traded when agent 1 is poor. Compared to the no-default bond, it allows to take on

more debt for a given amount of collateral. Compared to bonds that default in more states,

the expected default costs are much lower. For these reasons, the 1-default bond is the

preferred choice in this situation.

Table 3.4 also shows that the volatility of the tree return increases as cost of default

increases, and for sufficiently high default cost the economy is the same as the baseline

economy with a single risk-free bond. It appears that an economy with default costs of

20 percent and trade in the 1-default bond exhibits slightly higher return volatility than

the baseline economy. This feature is due to the fact that default implies real losses in our

economy which make the economic impact of the worst disaster shock even worse since

default leads to a further drop in aggregate endowment.

3.3.3 Volatility with Regulated Margin Requirements

As a final step in the analysis of economies with a single collateralizable tree, we consider

the case of regulated collateral requirements as described in Section 3.2.1. We assume

that there is a regulatory agency setting minimal margin requirements (just as in stock

markets). We first consider margin requirements that are constant across all shocks, so

mj

a(j)(s
t) does not depend on the current date-event st. As margin requirements become

larger, we observe two opposing effects. On the one hand, the amount of leverage decreases

in equilibrium which leads to less de-leveraging in disaster shocks which in turn leads to

smaller price changes. On the other hand, the collateral constraint is more likely to become
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binding in equilibrium which increases the probability of de-leveraging episodes which in

turn should lead to a higher volatility of the tree return. The solid line in Figure 3.4

displays the resulting tree return volatility.
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Figure 3.4: Volatility as a Function of the Margin Requirement

Initially, volatility increases as margin requirements increase. At a margin level of about

70 percent, the volatility reaches its maximum. A further tightening of margins then de-

creases volatility substantially. Of course, as the margin level approaches one the economy

approaches the benchmark model (B1: No bonds) without borrowing and so volatility

becomes very small.

At a margin level of 60 percent, the implied collateral requirement uniformly exceeds the

corresponding varying levels for the no-default bond under the rule of endogenous collateral

requirements in our baseline economy analyzed above. Therefore, the regulated bond is

default-free for all possible values of mj

a(j) in Figure 3.4. Interestingly, for values of the

margin level between 60 and 80 percent, the regulated bond leads to higher tree return

volatility than the no-default bond under the rule of endogenous collateral requirements.

As a last exercise, we examine an economy in which margins are only regulated in booms

while in recessions and disasters they are left to the market. In particular, we assume that

in shocks 1 through 4 collateral requirements are endogenously determined at the level
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of the risk-free bond as in our baseline economy, while a regulating agency sets margin

requirements in the shocks with positive growth. We assume that the margin levels are set

to the same level in both shocks 5 and 6. The dashed line in Figure 3.4 shows the resulting

tree return volatility.

It is readily apparent that limiting the regulation of margin requirements to boom times

reduces the tree return volatility substantially if margin levels are sufficiently high. For

example, boom-time margin levels of 80 percent lead to a return volatility of 6.5 percent

as compared to values exceeding 8 percent when collateral requirements are determined

endogenously or margin regulation is state-independent.

Why is state-dependent regulation so much better in reducing volatility? As with state-

independent margins, agent 1 holds less leverage in good times, which leaves him with

more financial wealth if a bad shock hits. In addition, collateral constraints are now looser

in case of a bad shock and agent 1 may retain an even larger portion of the tree. In the

extreme, if margin requirements in booms are well above 80 percent, agent 1 even increases

its tree holding in case of a bad shock. This increases the relative price of the tree and

thus dampens the drop in the absolute price. All in all, setting conservative margins in

good times turns out to be a powerful tool to dampen the negative impact of bad shocks.
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3.4 Two Trees

Up to this point our analysis focused on an economy with a single tree representing aggre-

gate collateralizable wealth in the economy. However, households trade in various assets

and durable goods. Some of them, e.g. houses, can be used as collateral very easily and at

comparatively low interest rates, others assets, e.g. stocks, can only be used as collateral

for loans with high margin requirements and typically very high interest rates (see Willen

and Kubler (2006)), and still others, like works of art, cannot be used as collateral at all.

These observations motivate us to examine a model with two Lucas trees. For simplicity,

we assume that the two trees have identical cash-flows and distinguish themselves only by

the extent to which they can be used as collateral. This model feature allows for a clean

analysis of the effect of collateral. We consider two different cases. First, we assume that

tree 1 can be used as collateral with endogenous margin requirements, while tree 2 cannot

be used as collateral. We then allow the second tree to serve as collateral, but we assume

that the collateral requirements on loans backed by tree 2 are exogenously regulated. In

both cases we find that the two assets’ price dynamics are substantially different, despite

the fact that they have identical cash-flows. Furthermore, we show that tightening the

margin requirements on the regulated tree has a strong impact on the return volatility of

the non-regulated tree. This effect proves to be quantitatively important. Our analysis

suggests that this effect should be carefully considered in any policy discussion on the

regulation of margin requirements.

3.4.1 Only one Tree can be Used as Collateral

We first consider the case where the second tree cannot be used as collateral. As before in

an economy with a single tree, default costs of λ = 0.25 suffice to shut down all trade in

default bonds. We therefore restrict attention to an economy in which only the no-default

bond is traded. We conclude the analysis in this section below with a brief discussion of

an economy with costless default and argue that it produces similar quantitative results.

Table 3.5 reports moments of the two trees’ returns as well as the interest rate and aggregate

moments. Observe that the two trees exhibit substantially different returns despite the fact

that the two trees have identical cash-flows. The tree that can be used as collateral, tree 1,

now exhibits much lower return volatility and a slightly lower expected excess return than
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Std returns EP agg Std returns agg Risk-free rate Equity-premium
Tree 1 6.64 3.69

7.04 0.38 4.50
Tree 2 8.05 6.31

Table 3.5: Moments of Trees’ Returns (only Tree 1 Collateralizable)

the single tree in the baseline economy in Section 3.3. The standard deviation of returns

of the second tree is much higher than that of tree 1. In fact, it is comparable to the

corresponding value (8.14) of the single tree in the baseline economy. Turning to equity

premia, the excess return of tree 2 — the tree that cannot be used as collateral — is now

almost twice as large as it is for the single tree in the baseline economy and is similar to

figures observed in the data.

To understand the price dynamics of the two trees, we consider the analogue of Figure 3.1.

Figure 3.5 shows the time series of eight variables along ‘our’ sample path. The first two

graphs show the (normalized) price and the first agent’s holding of tree 1, respectively.

The next two graphs display the corresponding values for tree 2. The fifth and sixth graph

show the corresponding values for the no-default bond. The price and holding graphs

reveal three features of the equilibrium. First, the price volatility of tree 1 is much lower

than that of the single tree in the baseline economy. Secondly, the price volatility for tree

2 is larger than for tree 1 and its average price is much smaller. Lastly, agent 1 holds tree

1 the entire time (except for a tiny blip in disaster shock 1) but frequently sells tree 2. The

second-to-last graph in the figure shows the endogenous margin requirement and the last

graph depicts the collateral premium for tree 1. This quantity is the difference between

the actual price of the tree and next period’s payoff, normalized with agent 1’s marginal

utilities. Whenever agent 1 is unconstrained then this value is zero. However, when agent

1 becomes constrained, the collateral premium is significant.

Our observations lead us to a simple explanation of the first moments for the two tree

prices. Tree 1 is more valuable to agent 1 because of its collateral value — when agent 1 is

fully leveraged the value of the tree exceeds next period’s discounted (with agent 1’s state

prices) cash-flows since it provides value for agent 1 as collateral. Since both trees have

identical cash-flows, an agent can only be induced to hold tree 2 if it pays a higher average

return. The specific magnitude of the difference between the two tree prices is, of course,

a quantitative issue. In our calibration with a reasonable market price of risk, the effect
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Figure 3.5: Snapshot from a Simulation of the Model with 2 Trees and 5 Bonds

is indeed large — the average excess return of the second tree is now comparable to that

observed in U.S. stock market data.

There are several key factors that play a role for asset price volatility in the two-tree

economy. For a discussion of these factors it is helpful to consider the policy and price

functions in Figure 3.6. When faced with financial difficulties after a bad shock, agent 1

holds on to tree 1 for as long as possible, because this tree allows her to hold a short-

position in the bond. (In fact, as the bond-holding function of agent 1 in Figure 3.6 shows,

agent 2 never goes short in the bond. Therefore, the collateral value is one of the reasons

why tree 1 is much more valuable to agent 1.) So, after suffering a reduction in financial

wealth, agent 1 first sells tree 2. In fact, in our calibration agent 1 only sells a portion of

tree 1 after she sold off the entire tree 2. In our sample path this happens only after the
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Figure 3.6: Price and Policy Functions of the Model with 2 Trees and 5 Bonds

worst disaster shock in period 50. (Of course, the policy functions in Figure 3.6 show that

it would happen in a more pronounced way after two or more consecutive disaster shocks

but such a sequence has extremely low probability.) Whenever agent 1 sells a portion of a

risky tree to agent 2 its price must fall, just as in the single-tree baseline economy. And so

one key factor contributing to the different volatility levels of the two trees is that tree 2

is traded much more often and in larger quantities than tree 1.

Furthermore, since tree 2 is not collateralizable, only half of the aggregate tree can be used

as collateral. This constraint limits the ability of agent 1 to leverage and consequently

makes her less vulnerable to negative aggregate shocks. This factor reduces the return

volatility of both trees.

If agent 1 holds both trees and then becomes poorer after a bad shock, the prices of both

trees fall. But since the agent first sells tree 2, the price of tree 2 falls much faster than the

price of tree 1. In fact, the price drop for tree 1 is dampened by the onset of the collateral

premium. This effect also contributes to the difference in the return volatilities of the two

trees.
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Finally, there is another key effect that was not present in the one-tree baseline economy.

Now the financial accelerator plays an important role! In ‘normal times’ agent 1 holds both

trees but is fully leveraged. In a bad shock, agent 1 must sell part of tree 2 which makes

him poorer in the subsequent period. This in turn increases the collateral requirement this

period, leading to an increase in the margin requirement despite the fact that the interest

rate decreases. This effect is clearly visible in the second-to-last graph of Figure 3.5.

Whenever a bad shock occurs the margin requirement increases.

In sum, the fact that only 4 percent of aggregate output are collateralizable in this economy

leads to a decrease in leverage and to much smaller movements in the wealth distribution

than in the baseline economy. This effect reduces the return volatility of tree 1. For

tree 2 such a reduction effect is strongly counteracted through two channels. First, the

price of tree 2 is not stabilized by a collateral premium since this tree cannot be used as

collateral. Secondly, a decrease in the holdings of tree 2 leads to an increase in the margin

requirements for loans on tree 1 which in terms forces agent 1 to sell more of tree 2 (recall

that initially he does not sell tree 1, since only this tree can be used as collateral).

While we do not want to push the interpretation of our results too far, it is worthwhile to

note that a natural interpretation of the two trees is the aggregate stock market versus the

aggregate housing market. As Willen and Kubler (2006) report, it is much more difficult

to use stocks instead of a house as collateral. The data clearly shows that volatility in the

stock market is much higher than in the housing market, see Fei, Ding, and Deng (2010).

This interpretation clearly should be taken with some caution, since we do not really have a

good model of the housing market — such a model would need to include transaction costs,

non-divisibilities, and certainly different cash-flow dynamics. Nevertheless it is worthwhile

to point out that the equity premium for tree 2 is similar to what can be observed in the

data for stock returns. Moreover, volatility of “housing returns” (tree 1) is much smaller

than that of stock returns.

We complete our discussion of the economy in which the second tree cannot be used as

collateral with a robustness check and consider the case of costless default, λ = 0. Just as

in the economy with a single tree, the default bonds are traded if the economy experiences

a disaster shock. However, trade in these bonds is typically much smaller because agent 1’s

financial wealth remains larger, as we discussed above. Overall, zero default costs lead to

very small changes in the first and second moments. Without default costs, the standard
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deviation of tree 1’s return drops from 6.64% to 6.56% while the standard deviation of tree

2’s return drops from 8.05% to 7.98%.

3.4.2 One Tree is Regulated

Until now we have assumed that tree 2 cannot be used as collateral. This assumption is

rather restrictive if not unrealistic. Stocks can be used as collateral, however, margins are

regulated and large, and interest rates are much higher than mortgage rates. Therefore,

we assume now that margins for tree 2 are set exogenously while collateral requirements

for tree 1 are endogenous. Throughout this section, we assume default costs of λ = 0.25

which suffice to shut down all trade in default bonds.

State-Independent Regulation of Tree 2

As before, we first consider margin requirements that are constant across states. The effect

of an exogenous margin requirement is obvious in the limit as the requirement m2 for tree

2 approaches one. In this case the resulting collateral requirement k2 diverges to infinity

and so the model tends to the economy of Section 3.4.1 in which this tree cannot be used

as collateral. Figure 3.7 display the volatility of both trees’ returns as a function of the

margin m2 set for tree 2. Observe that as m2 tends to one, the return volatilities for the

two trees approach the values from Table 3.5, namely 6.64% and 8.05%, respectively.

Figure 3.7 shows the return volatilities for values of m2 between 0.6 and 1. The lowest

value of 0.6 of the margin requirement exceeds the endogenously determined (unregulated)

margin requirement of tree 1 in all states. As a result, the return volatility of tree 2 is

higher that that of tree 1. If margin requirements on tree 2 are now increased, the volatility

of this tree’s return initially increases, while the volatility of the freely collateralizable tree

1 substantially decreases. The volatility of tree 2 is largest when its exogenous margin

requirement is quite high (about 75 percent). After this peak, the volatility of tree 2

decreases until the boundary value of one has been reached. At this point tree 2 can no

longer be used as collateral. The quantitatively most interesting case is a regulated margin

requirement of 75 percent. At this point, the volatility of tree 2 is above 8.6 percent while

the volatility of tree 2 is below 7.5 percent. Aggregated volatility is still high, but it is

readily apparent that the regulation of tree 2 has substantial effects on its own volatility
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as well as on the volatility of the other, unregulated, tree 1.

For an interpretation of the observed volatility variation, note that an increase of the margin

requirement m2 of tree 2 has two immediate effects. This tree becomes less attractive as

collateral and the agents’ (aggregated) ability to leverage decreases. These two effects

influence agent 1’s portfolio decisions after a bad shock occurs. First, when agent 1 must

de-leverage her position, then she first sells tree 2. In equilibrium, this effect occurs more

often as m2 increases. Initially this effect leads to an increase in the return volatility of

tree 2. The second effect, a reduced ability to leverage, decreases the return volatility of

tree 1. Similar to the effect we observed in the one-tree economy in Section 3.3, the return

volatility of tree 1 decreases as agent 1’s ability to leverage decreases. The reason for this

effect is the increased probability with which she can hold onto the tree after a bad shock.

Observe that the two described effects counteract each other for tree 2. For small increases

of m2 above 0.6, the first effect dominates the second and the tree’s return volatility in-

creases. As m2 increases further, the second effect eventually dominates and the return

volatility of tree 2 starts to decrease. Moreover, as the margin requirement on tree 2 be-

comes large, price effects as a result of agent 1 de-leveraging her positions become smaller.

Recall that whenever agent 1 is collateral constrained, then the price of the underlying

collateralized tree reflects a collateral premium. Since agent 2 never enters leveraged po-

sitions, this price impact is never present when agent 2 holds tree 2. As a result the

collateral premium affects the price volatility of tree 2. This effect is greatly diminished

as m2 becomes sufficiently large. Put differently, the impact of the collateral premium on

the return volatility fades as m2 gets large.

To support this interpretation of our results, it is interesting to consider the excess returns

of the two trees as a function of the margin requirement m2 on tree 2. Figure 3.8 shows

that the relation between excess return and m2 is monotone for tree 2. As its margin

requirement increases, the collateral premium and the price of the tree decrease and the

average return increases. For tree 1, average excess returns remain more or less constant.

They initially decrease slightly, then increase slightly. Aggregate excess returns increase,

but clearly the quantitatively most striking effect is on the returns of tree 2. Collateral

constraints and regulated margins clearly have a quantitatively significant impact on asset

prices in this economy.
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Figure 3.7: Volatility of Tree 1 and 2 as a Function of the Margin Requirement on Tree 2
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Figure 3.8: Excess Returns of Tree 1 and 2 as a Function of the Requirement on Tree 2
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State-Dependent Regulation of Tree 2

Our results so far have shown that, for moderate margin requirements between 0.6 and

0.75, it is impossible to reduce volatility for both trees by adjusting the regulated margin

of tree 2. A small change of the margin requirement always reduces volatility of one tree

at the expense of the other. We now analyze whether a state-dependent regulation of the

second tree can solve this dilemma.

We examine an economy in which the margins of tree 2 are only regulated for positive-

growth shocks 5 and 6 while they are endogenously determined for the remaining four

shocks. Figure 3.9 shows that the return volatilities of both trees are monotonically de-

creasing in the margin requirement imposed on the regulated tree 2 in good shocks. Not

only does increasing the regulated margin now reduce the volatilities of both assets, but, in

fact, it does reduce aggregate market volatility much more than in the economy with state-

independent regulation. For instance, an increase of state-dependent margin requirements

from 0.6 to 0.7 on tree 2 decreases aggregate volatility by about 4.5% (see Figure 3.9),

while such an increase would bring about a reduction of only 2% in the case of state-

independent regulation (see Figure 3.7). Therefore, concerning the regulation of margin

requirements, the result from the single-tree economy is strongly confirmed by the analysis

of the two-tree economy: regulation is much more efficient at reducing price volatility, if it

is state-dependent.
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Figure 3.9: Volatility as a Function of the Margin Requirement on Tree 2 in Booms
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3.5 Sensitivity Analysis and Extensions

As in any quantitative study, our results above hinge on the parametrization of the econ-

omy. In this section, we first discuss how our results change with other preference param-

eters. Then we highlight the important role of the disaster shocks for our quantitative

results. Finally, we present an example which has less severe disaster shocks but neverthe-

less exhibits strong quantitative effects of collateral constraints.

3.5.1 Different Preferences in the Baseline Model

As a robustness check for the results in our baseline model (with one tree and one bond)

from Section 3, we consider different specifications for the IES, the coefficients of risk

aversion, and the discount factor, β. Obviously, changes in the IES and the risk aversion

coefficients affect the risk-free rate. For these cases, we also examine specifications with

an adjusted β so that the risk-free rates remain comparable. Table 3.6 reports asset-

price moments for several different combinations of these parameters. For convenience, we

repeat the results for our baseline model, (IES,RA, β) = ((1.5, 1.5), (0.5, 6), (0.95, 0.95)),

and report them as the case (P1). For each model specification, we also report the standard

deviation of returns for the benchmark case B1: No bonds.

In case (P2), a model in which both agents have an IES of 0.5, the tree return volatility

is considerably lower than in the baseline case (P1). However, it is still much higher

than in an economy with the same preferences but without borrowing, see column B1 of

(P2). We checked this result for other values of the IES below 1.5 and always observed

(IES1, IES2), (RA1, RA2), (β1, β2) Std returns Risk-free rate EP Std in B1
(P1): (1.5,1.5),(0.5,6),(0.95,0.95) 8.14 1.10 3.86 5.33
(P2): (0.5,0.5),(0.5,6),(0.95,0.95) 7.20 1.75 4.18 5.33
(P3): (1.5,1.5),(0.5,6),(0.92,0.92) 7.70 4.07 3.77 5.51
(P4): (1.5,1.5),(0.5,6),(0.98,0.98) 8.57 -1.17 3.95 5.23
(P5): (1.5,1.5),(0.5,10),(0.95,0.95) 10.79 -8.58 12.55 5.34
(P6): (1.5,1.5),(0.5,10),(0.81,0.81) 8.50 1.25 13.36 6.24
(P7): (1.5,1.5),(0.5,4),(0.95,0.95) 6.58 1.59 4.22 5.34
(P8): (1.5,1.5),(0.5,4),(0.98,0.98) 6.97 1.18 1.73 5.22

Table 3.6: Sensitivity Analysis for Preferences (all Reported Figures in Percent)
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the same phenomenon: Volatility effects are qualitatively similar but quantitatively less

pronounced.5

Next we consider a change in the discount factor β. For the benchmark case B1, a higher

β decreases return volatility simply because it decreases levels of returns and we report

absolute volatility as opposed to the coefficient of variation. The effects in our model

with one tree and one bond are quite different. As β increases from 0.95 in our baseline

case (P1) to 0.98 in (P4), the return volatility increases from 8.14 to 8.47. The reason

for this increase is simple. As β increases and the stock becomes more expensive, it is

more difficult for agent 1 to buy a significant portion of the stock when he is in financial

difficulties. This fact depresses the price of the stock when agent 1 is poor. Changes in the

wealth distribution are large when agent 1 is fully leveraged and lead now to larger swings

in the tree price.

In light of the intuition that we developed for the baseline case in Section 3.3, we expect

an increase in the risk aversion of agent 2 to lead to both a higher price volatility and a

higher equity premium. This intuition is strongly confirmed by the comparison of (P1)

and (P5). However, the increase in the second agent’s risk aversion also leads to a large

reduction of the interest rate to unrealistically low levels. In (P6) we recalibrate the

model to obtain a positive interest rate and we find that the previously described effect

of a smaller β dampens the impact of a higher risk aversion. But still, overall volatility

increases substantially once the risk aversion and β are changed simultaneously: For risk

aversions of 4, 6, and 10, (cases (P8), (P1) and (P6)) the return volatility is 6.97, 8.14,

and 8.50 respectively.

3.5.2 Endowments

As we have seen repeatedly in our analysis, our model produces asset pricing moments

that are comparable to observed values in the data. Clearly, this nice feature of our model

depends on the magnitude of the disaster shocks. We now report results for models with

less severe disaster shocks and demonstrate that the results remain qualitatively the same.

We conduct two different types of sensitivity analysis for our shock process. First, in the

5For low values of the IES, there is an additional unwanted effect. As one agent holds most of the
wealth (that is, as the other agent becomes poor), asset prices increase because of the desire of the rich
agent to save. This effect on the boundary of the state space is absent when the IES is set to 1.5 which
we, therefore, do for the remainder of our analysis.
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case (E1) we hold the magnitude of the disaster shocks constant, but reduce the overall

probability of a disaster by 50 percent. Instead of setting the probabilities of shocks 1, 2,

and 3 to 0.005, 0.005, and 0.024, respectively, we set them at 0.0025, 0.0025, and 0.012,

respectively, and increase the probability of shock 5 accordingly. Secondly, in the case (E2)

we leave the probabilities of the shocks unchanged but shift their support. In particular,

we replace the growth rates in shocks 1, 2, and 3 of 0.566, 0.717, and 0.867, respectively,

by the new values of 0.783, 0.8585, and 0.9335, respectively. Table 3.7 shows the analogue

of Table 3.6 for these two cases.

Std returns Risk-free rate Equity-premium Std in B1
Case (E1) 5.95 3.44 2.17 4.15
Case (E2) 3.92 5.97 0.36 3.51

Table 3.7: Sensitivity Analysis for Endowments (all Figures are in Percent)

The table shows that a decrease in the probability of disaster has a relatively small effect

on volatility while a change in the support has quite a large effect. As we explained above,

the disaster states play two roles in our model. First, they lead to high excess returns of

the tree, in particular whenever the risk-averse agent 2 must hold the tree. Secondly, they

lead to endogenously high margin requirements. As we decrease the probability of disaster,

the second effect remains unchanged. In contrast, the change in the support of the disaster

shocks mitigates both effects above.

3.5.3 Large Effects with Smaller Shocks

The results for the case (E2) above show that the quantitative impact of collateral con-

straints depends heavily on the size of the disaster shocks. However, we now demonstrate

that even with halved disaster shocks as in (E2), there are still substantial effects. For this

purpose, we consider the model with two trees where tree 1 is collateralizable and tree 2 is

not, and assume that agent 1’s risk aversion is 10. We recalibrate the discount factor β to

be 0.98, which results in a risk-free rate of 1.94. Table 3.8 shows that aggregate volatility

with collateral constraints is now 48% higher than in the benchmark B1. This increase

is of similar magnitude as in the baseline model. The high aggregate volatility is mostly
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driven by the volatility of tree 2, which increases by 95% compared to this benchmark.

Std returns EP Std returns agg Risk-free rate EP agg Std in B1
Tree 1 4.41 0.77

5.05 1.94 1.02 3.42
Tree 2 6.68 1.65

Table 3.8: Moments of Trees’ Returns (Tree 1 Collateralizable, Tree 2 not)

3.6 Conclusion

In this paper we show that collateral and margin requirements play a quantitatively im-

portant role for prices of long-lived assets. This is true even for assets that cannot be

used as collateral. In fact, somewhat surprisingly, we show that the presence of collateral

constraints has a larger effect on the volatility of non-collateralizable assets than on the

underlying collateral.

The recent financial crisis has lead researchers to suggest that central banks should regu-

late collateral requirements, see, for example, Ashcraft, Gârleanu, and Pedersen (2010) or

Geanakoplos (2009). We show that tightening margins uniformly over the business cycle

can increase the price volatility of the underlying collateral but typically decreases price

volatility of other long-lived assets in the economy that are not directly affected by the

regulation. The only policy to achieve a decrease of the price volatility of all assets is to

tighten margins only in boom times but leave them to market forces in recessions or crises.

Our calibration assumes the presence of disaster shocks as in Barro (2009). We provide

alternative parameterizations of preferences and endowments under which our main qual-

itative results continue to hold.



84 CHAPTER 3. COLLATERAL AND ASSET PRICES

Appendix

3.A Details on Computations

The algorithm used to solve all versions of the model is based on Brumm and Grill (2010).

Equilibrium policy functions are computed by iterating on the per-period equilibrium con-

ditions, which are transformed into a system of equations. We use KNITRO to solve this

system of equations for each grid point. Policy functions are approximated by piecewise

linear functions. By using fractions of financial wealth as the endogenous state variables,

the dimension of the state space is equal to the number of agents minus one. Hence with

two agents, the model has an endogenous state space of one dimension only. This makes

computations much easier than in Brumm and Grill (2010), where two and three dimen-

sional problems are solved. In particular, in one dimension reasonable accuracy may be

achieved without adapting the grid to the kinks. For the reported results we used 320 or

640 grid points depending on the complexity of the version of the model, which results

in average (relative) Euler errors with order of magnitude 10−4, while maximal errors are

about ten times higher. If the number of gridpoints is increased to a few thousands, then

Euler errors fall about one order of magnitude. However, the considered moments only

change by about 0.1 percent. Hence, using 320 or 640 points provides a solution which is

precise enough for our purposes. Compared to other models the ratio of Euler errors to

the number of grid points used might seem large. However, note that due to the number

of assets and inequality constraints our model is numerically much harder to handle than

standard models. For example, in the version with one tree and five bonds, eleven assets

are needed (as long and short positions in bonds have to the treated as separate assets)

and we have to impose eleven inequality constraints per agent.

3.B Equilibrium Conditions

We state the equilibrium equations as we implemented them in Matlab for economies with

a single tree and a single bond. For our computation of financial markets equilibria we

normalized all variables by the aggregate endowment ē. To simplify the notation, we drop

the dependence on the date-event st and, in an abuse of notation, denote the normalized
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parameters and variables by et, dt and ct, qt, pt, rt, ft, respectively. Similarly, we normalize

both the objective function and the budget constraint of agents’ utility maximization

problem. The resulting maximization problem is then as follows (index h is dropped).

max ut(ct) =
{

(ct)
ρ + β [E (ut+1gt+1)

α]
ρ
α

} 1

ρ

s.t. 0 = ct + φtpt + θtqt − et − [φt−1]
+ rt

gt

+ [φt−1]
−ft

gt

− θt−1 (qt + dt)

0 ≤ θt + kt[φt]
−, 0 ≤ [φt]

+, [φt]
− ≤ 0,

The latter two inequalities are imposed because, for the computations, we treat the long and

short position in the bond, [φt]
+ and [φt]

−, as separate assets. Note that φt = [φt]
+ +[φt]

−.

Let λt denote the Lagrange multiplier on the budget constraint. The first-order condition

with respect to ct is as follows,

0 = (ut)
1−ρ(ct)

ρ−1 − λt.

Next we state the first-order condition with respect to ct+1.

0 = βu1−ρ
t [E (ut+1gt+1)

α]
ρ−α

α (ut+1gt+1)
α−1 gt+1(ut+1)

1−ρ(ct+1)
ρ−1 − λt+1.

Below we need the ratio of the Lagrange multipliers,

λt+1

λt

= β [E (ut+1gt+1)
α]

ρ−α
α (ut+1)

α−ρ(gt+1)
α

(
ct+1

ct

)ρ−1

Let µt denote the multiplier for the collateral constraint and let µ̂t = µt

λt
. We divide the

first-order condition with respect to θt,

0 = −λtqt + µt + E (λt+1 (qt+1 + dt+1))

by λt and obtain the equation

0 = −qt + µ̂t + β [E (ut+1gt+1)
α]

ρ−α
α E

(
(ut+1)

α−ρ(gt+1)
α

(
ct+1

ct

)ρ−1

(qt+1 + dt+1)

)
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Similarly, the first-order conditions for [φt]
+ and [φt]

− are as follows,

0 = −pt + ν+
t + β [E (ut+1gt+1)

α]
ρ−α

α E

(
(ut+1)

α−ρ(gt+1)
α

(
ct+1

ct

)ρ−1(
rt+1

gt+1

))

0 = −pt + µ̂tkt − ν−t + β [E (ut+1gt+1)
α]

ρ−α
α E

(
(ut+1)

α−ρ(gt+1)
α

(
ct+1

ct

)ρ−1(
ft+1

gt+1

))
,

where ν+
t and ν−t denote the multipliers on 0 ≤ [φt]

+ and [φt]
− ≤ 0, respectively.



Chapter 4

Optimal Sovereign Debt Default

4.1 Introduction

Sovereign debt crises are by no means rare events in history.1 These crises and the subse-

quent debt defaults are widely believed to occur because governments are simply unwilling

to honor initially promised payment streams and because there exist insufficient incentives

making repayment optimal ex-post from the country’s perspective. The weakness of ex-

post incentives is thereby routinely attributed to ‘sovereign immunity’ which presumably

protects governments from being sued in courts.2 Viewed through this lens, the option of

a sovereign to default is inefficient from an ex-ante welfare perspective, as anticipation of

a possible default constrains international borrowing to suboptimally low levels.

In this paper we propose to interpret sovereign default events in a fundamentally different

way. Instead of being the result of insufficient ex-post incentives in a situation without

commitment, we propose to interpret sovereign defaults as an opportunity for more efficient

international risk sharing in a situation where government debt is non-contingent. This

interpretation has previously been advanced in Grossman and Van Huyck (1988) who

distinguish between ‘excusable’ and ‘non-excusable’ default, with the first being part of

1Over the past decade governments in Argentina, Uruguay, Moldova and the Dominican Republic
partially defaulted on their debt, with the Argentinian default being in dollar terms the largest ever
recorded in history. The governments in Greece, Ireland and Portugal have recently been forced to apply
for foreign assistance.

2Following this view, the main economic puzzle is then to explain how government debt can exist at
all, if debt repudiation is an option available to sovereign debtors. An important literature, starting with
the classic paper by Eaton and Gersovitz (1981) and ranging all the way to recent contribution by Broner,
Martin, and Ventura (2010), has examined this view.

87



88 CHAPTER 4. OPTIMAL DEFAULT

an ex-ante anticipated risk-sharing arrangement between the borrower and the lender, and

the latter being the result of debt repudiation in the presence of weak ex-post incentives

for repayment. Unlike Grossmann and Van Huyck, however, we consider a situation where

the government possesses full commitment, thus discuss optimal borrowing and default

from a purely normative perspective. And as we show, it has profound implications for

the optimal default patterns. While in models with limited commitment the incentives to

default are strongest in good times3, the present model predicts default to be optimal in

low output states.

The assumption of committed sovereigns is more plausible than generally recognized in the

economics literature. First, as argued in Panizza, Sturzenegger, and Zettelmeyer (2009),

legal changes in a range of countries in the late 1970’s and early 1980’s eliminated the legal

principle of ‘sovereign immunity’ when it comes to sovereign borrowing. Specifically, in the

U.S. and the U.K. private parties can sue foreign governments in courts, if the complaint

relates to a commercial activity, amongst which courts regularly count the issuance of

sovereign bonds. Second, although there now exists a voluminous literature on potential

mechanisms supporting sovereign debt in the absence of commitment, these mechanisms

have received limited empirical support.4 In the light of these facts, it appears natural to

deduce that governments can issue debt simply because they can in fact credibly commit

to repay debt in some future states of the world, although they might actually choose not

to repay in some states in which repayment turns out to be excessively costly.

To analyze the role of sovereign debt default as a vehicle for international risk shifting in

a setting with a committed government, we construct a small open economy with produc-

tion in which a domestic government can internationally borrow by issuing non-contingent

bonds. The government can also accumulate international reserves by investing in (risk-

less) bonds issued by foreign lenders. The domestic economy is subject to shocks that

affect the productivity of the domestic capital stock and the government can smooth the

consumption implications of such shocks either via borrowing and lending in international

3Grossman and Van Huyck (1988), for example, state: ‘the incentive to repudiate is largest in the
good state’ (p.1095). Recent work by Mendoza and Yue (2008) overcomes this problem and generates
counterycyclical default by incorporating the effects of sovereign default on the default of domestic firms
and the availability of foreign imports as inputs into domestic production.

4In the words of Panizza, Sturzenegger, and Zettelmeyer (2009): ‘Almost three decades after Eaton
and Gersovitz’ pathbreaking contribution there still exists no fully satisfactory answer to how sovereign
debt can exist in the first place. None of the default punishments that the classic theory of sovereign debt
has focused on appears to enjoy much empirical backing’ (p. 692).
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capital markets or via defaulting on its debt. The paper is concerned with the question

of which channel the government should rely on to smooth domestic consumption, and

specifically with the question: when is it optimal to (partially) default on government debt

in a setting with a fully committed government?

In a first step, we analytically show that in the absence of default costs, optimal government

default decisions can implement the first best consumption allocation and achieve full

domestic consumption smoothing. The level of default is then generally decreasing with

aggregate productivity and (partial) debt default occurs frequently and for all but the best

productivity realization. In the absence of default costs, allowing the government to choose

whether or not to repay government debt is thus a way to achieve the same consumption

allocation as in a setting with a complete set of contingent government debt instruments.

In a second step, we introduce default costs. These costs feature prominently in political

discussions and we model them as a simple dead weight cost that is proportional to the

size of the government debt default. We show how low levels for the default costs make it

generally optimal for the government not to default following business cycle sized shocks.

Only when the country’s net foreign debt position approaches the maximum level implied

by the (marginally binding) natural borrowing limits, is a sovereign default still optimal

after an adverse shock. With positive default costs, the optimal default policy thus depends

on whether or not the country is close to its maximally sustainable net foreign debt position.

Given that small amounts of default costs largely eliminate government debt default, we

introduce economic ‘disaster’ risk into the aggregate productivity process, following Barro

and Jin (2011). Default then reemerges as part of optimal government policy, following

the occurrence of a disaster shock. This is the case even for sizable default costs and even

when the country’s net foreign asset position is far from its maximally sustainable level.

It continues to be optimal, however, not to default following business cycle sized shocks

to aggregate productivity, as long as the net foreign debt position is not too close to its

maximal level.

Finally, we evaluate the utility consequences of using the government default option as a

way to insure domestic consumption against aggregate productivity shocks, comparing it

to a situation where the government is assumed to repay debt unconditionally. In the latter

case the government can use international wealth adjustments only to smooth domestic

consumption. We show that the consumption equivalent welfare gain from considering
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default is in the order of one to two percentage points of consumption each period, even

when there are sizable dead weight cost associated with a government debt default. If the

default costs are sufficiently low, a large share of this welfare increase can be captured if

instead of defaulting, the government optimally issues a combination on non-defaultable

bonds and equity-like bonds that do not repay when one of the economic disaster states

materializes. We thereby assume that non-repayment on the equity bond generates the

same dead weight costs as an outright default. For higher levels of the dead weight costs,

we show that outright default dominates the issuance of a combination of non-defaultable

and equity bonds.

Sims (2001) discusses insurance in the context of whether or not Mexico should dollarize

its economy, showing that giving up the domestic currency allows for less insurance in the

presence of non-contingent nominal debt because the government is deprived of using the

price level as a shock absorber. Unlike in the work of Sims, who considers non-contingent

nominal bonds, the present paper considers a setting with non-contingent real bonds and

considers optimal outright default policies. In the light of Sims’ discussion, one could

interpret the setting analyzed in the present paper as one in which the government issues

(non-contingent) nominal bonds but has given up control over monetary policy and the

price level, e.g., via joining a monetary union. As we show, the default option then still

provides the country with a mechanism to make bond repayments contingent.

Angeletos (2002) explores an alternative insurance channel in a closed economy setting,

showing that a government can use the maturity structure of domestic government bonds

to insure against domestic shocks. This is achieved by exploiting the fact that bond yields

of different maturities react differently to domestic shocks. This channel is unavailable,

however, in our small open economy setting: in the absence of domestic default, the do-

mestic yield curve is identical to the foreign yield curve for risk free assets and thus also

independent of domestic shocks.

Juessen, Linnemann, and Schabert (2010) also analyze government default and the behav-

ior of government bond premia. Considering a setting in which government behavior is

characterized by simple rules, they show that multiple equilibria with different risk premia

and default probabilities exist.

The present paper is structured as follows. Section 4.2 introduces the economic model and

derives the optimal policy problem. It also determines an equivalent formulation of the
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optimal policy problem that facilitates numerical solution of optimal policies. Section 4.3

derives an analytical result for the case with no default costs and section 4.4 evaluates the

effects of introducing default costs in a setting with business cycle sized shocks. We then

introduce economic disaster shocks in section 4.5 and discuss their quantitative implications

for optimal default policies. In section 4.6 we consider the welfare implications of using the

default option and show how optimal default policies can approximately be implemented

with a simple equity-like government bond instrument. In section 4.7 we discuss the effects

of introducing long maturity bonds. A conclusion briefly summarizes. Technical material

is contained in a series of appendices.

4.2 The Model

This section introduces a small open production economy and derives the government’s

optimal policy problem.

4.2.1 Private Sector: Households and Firms

The household side of the domestic economy is described by a representative consumer

with utility function

E0

∞∑

t=0

βtu(ct) (4.2.1)

where β ∈ (0, 1) denotes the discount factor and u(c) the period utility function. The latter

is assumed to be twice continuously differentiable, increasing in c and strictly concave, for

all values of c > c where c̄ ≥ 0 denotes the subsistence level for consumption. We shall

assume that u(c) = −∞ for all c ≤ c and that Inada conditions hold, i.e., limc→c+ u
′(c) =

+∞ and limc→∞ u′(c) = 0.

The production side of the economy is described by a representative firm which produces

consumption goods using the production function

yt = ztk
α
t−1,

where yt denotes output in period t, kt−1 the capital stock from the previous period,

α ∈ (0, 1) the capital share, and zt > 0 an exogenous stochastic productivity disturbance.
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Productivity shocks assume values from some finite set Z =
{
z1, ..., zN

}
with N ∈ N.

The transition probabilities for productivity across periods are described by some measure

π(z′|z) for z′, z ∈ Z. Firms are owned by households and must decide on the capital stock

one period in advance, i.e., before future productivity is known. For simplicity we assume

that capital depreciates fully after one period.

4.2.2 The Government

The government seeks to maximize the utility of the representative domestic household

(4.2.1) and is fully committed to its plans. It can invest in riskless international bonds

issued by foreign lenders, issue own non-contingent bonds, and decide on the repayment of

its maturing bonds. Unless otherwise stated, we assume that the risk free interest rate r

on international bonds satisfies 1
1+r

= β. Furthermore, we assume that all bonds are zero

coupon bonds and have a maturity of one period. The effects of introducing also longer

maturity domestic bonds are discussed in section 4.7.5

The government’s holdings of international bonds in period t (which mature in period t+1)

constitutes a long position and is denoted by GL
t ≥ 0. The own (potentially risky) bonds

issued by the government in period t represents a short position and is denoted by GS
t ≥ 0.

The government can use adjustments in the long and short positions to insure domestic

consumption against domestic productivity shocks. In addition, it can decide in period t

to (partially) default on the bonds maturing in period t + 1. More formally, the default

decision is described by a vector of default profiles

∆t = (δ1
t , ..., δ

N
t ) ∈ [0, 1]N ,

where δn
t ∈ [0, 1] denotes the fraction of outstanding domestic bonds issued in period t

that is not repaid in period t+ 1 when the bonds mature and when the productivity state

is zt+1 = zn. Default is thus state-contingent and an entry equal to zero indicates full

repayment. Full repayment is typically assumed in much of the previous literature dealing

with optimal fiscal policy under commitment with incomplete markets, e.g., Angeletos

(2002), Buera and Nicolini (2004) or Marcet and Scott (2009). In our setting repayment

5The fact that we consider only a single maturity for the international bond is without loss of generality.
Since foreign interest rates are independent of domestic conditions, the government cannot use the maturity
structure of foreign bonds to insure against domestic shocks.
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is treated as a choice variable.

Total repayment on maturing domestic bonds in period t + 1 when productivity is equal

to zt+1 is then given by

GS
t · (1 − (1 − λ)δ

I(zt+1)
t )

where I(zt+1) denotes the index of the productivity shock, i.e., I(zt+1) = n if and only if

zt+1 = zn. The parameter λ ≥ 0 captures the possibility that the government’s default

decision gives rise to dead weight costs. Our specification assumes that these dead weight

costs are proportional to the size of the absolute debt default chosen by the government. For

λ = 0 a default does not produce any additional costs: by defaulting the government then

gains resources equal to GS
t δ

I(zt+1)
t relative to the case without default and foreign lenders

loose the corresponding amount. A setting with λ > 0 indicates that the government’s

default produces additional costs for the government that are not accruing to lenders. This

is a short-cut to capture costs that are associated with having to defend legal positions

in foreign courts or with possible disruptions in the financial system following a sovereign

debt default.

We can now define the amount of resources available to the domestic government at the

beginning of the period, i.e., before issuing new debt and making investment decisions on

international bonds, but after (partial) repayment of maturing bonds.6 We refer to these

resources as beginning-of-period wealth and define them as

wt ≡ ztk
α
t−1 +GL

t−1 −GS
t−1 · (1 − (1 − λ)δ

I(zt)
t−1 )

Beginning-of-period wealth will serve as a useful state variable when computing optimal

government policies later on. The government can raise additional resources in period t by

issuing own government bonds. It can then use the resulting funds to invest in international

riskless bonds, to invest in the domestic capital stock, and to finance domestic consumption.

The economy’s budget constraint is thus given by

ct + kt +
1

1 + r
GL

t = wt +
1

1 +R(zt,∆t)
GS

t

6Below we do not distinguish between the government budget and the household budget, instead
consider the economy wide resources that are available. This implicitly assumes that the government can
costlessly transfer resources between these two budgets, e.g., via lump sum taxes.
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where 1
1+r

denotes the price of the risk-free international bond and 1
1+R(zt,∆t)

the price

of the domestic bond. The real interest rate R(zt,∆t) of the domestic bond depends on

the default profile ∆t chosen by the government and on the current productivity state,

as it may affect the likelihood of entering different states tomorrow. Due to the small

open economy assumption, the government takes the pricing function R(·, ·) as given in its

optimization problem. Assuming risk-neutral international lenders, no-arbitrage implies

that the pricing function for domestic bonds is given by

1

1 +R(zt,∆t)
=

1

1 + r

N∑

n=1

(1 − δn
t ) · π(zn|zt)

so that the expected return on the domestic bond is equal to the return on the riskless

international bond.

We are now in a position to formulate the government’s optimal policy problem (Ramsey

allocation problem):

max
{GL

t ≥0,GS
t ≥0,∆t∈[0,1]N ,kt≥0,ct≥c̄}

E0

∞∑

t=0

βtu(ct) (4.2.2a)

s.t. : ct = wt − kt +
GS

t

1 +R(zt,∆t)
−

GL
t

1 + r
(4.2.2b)

wt+1 ≥ NBL(zt+1) ∀zt+1 ∈ Z (4.2.2c)

w0, z0 : given

We have added the natural borrowing limits (4.2.2c) so as to prevent explosive debt dynam-

ics (Ponzi schemes). In our numerical application we will set the natural borrowing limits

(NBLs) to values such that they are just marginally binding, as this facilitates computa-

tion. Since these marginally binding limits may depend on the state of the productivity

shock, we make this dependence explicit here. Imposing laxer and possibly non-contingent

natural borrowing limits would have no implication for the optimal policies. We also as-

sume that initial conditions are such that there exists a solution with wt ≥ NBL(zt) for

all t and all possible realizations zt ∈ Z.

While intuitive, the formulation of the optimization problem (4.2.2) has a number of

unattractive features. First, the price of the domestic government bond depends on the cho-

sen default profile, so that constraint (4.2.2b) fails to be linear in the government’s choice
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variables. It is thus unclear whether problem (4.2.2) is concave. Second, the inequality

constraints for GL
t , GS

t and especially those for ∆t are difficult to handle computationally,

as they will be occasionally binding.7 Moreover, the optimal default policies ∆t turn out

to be discontinuous. For these reasons, we derive in the next section an equivalent formu-

lation of the problem that can be shown to be concave, that features fewer occasionally

binding inequality constraints, and gives rise to continuos optimal policy functions.

4.2.3 Equivalent Formulation of the Government Problem

We now formulate an alternative optimal policy problem with a different asset structure

than in problem (4.2.2) and thereafter show that it is equivalent to the original problem

(4.2.2).

Specifically, we assume that there exist N Arrow securities and a single riskless bond in

which the country can go either long or short. The vector of Arrow security holdings is

denoted by a ∈ R
N and the n-th Arrow security pays one unit of output tomorrow if

productivity state zn materializes. The associated price vector is denoted by p ∈ R
N .

Given the risk-neutrality of international lenders, the price of the n-th Arrow security in

period t is

pt(z
n) =

1

1 + r
π(zn|zt). (4.2.3)

Letting b denote the country’s holdings of riskless bonds, beginning-of-period wealth for

this asset structure is then given by

w̃t ≡ ztk̃
α
t−1 + bt−1 + (1 − λ)at−1(zt) (4.2.4)

where at−1(zt) denotes the amount of Arrow securities purchased for state zt, k̃t−1 capital

invested in the previous period, and λ ≥ 0 is the parameter capturing potential default

costs in the original problem (4.2.2).

Next, consider the following alternative optimization problem:

7The fact that marginal utility increases without bound as ct → c and that marginal productivity
of capital increases without bound as kt → 0 will insure interior solutions for these two choice variables,
allowing to ignore the inequality constraints for these variables when computing numerical solutions.
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max
{bt,at≥0,k̃t≥0,c̃t≥c̄}

E0

∞∑

t=0

βtu(c̃t) (4.2.5a)

s.t. ∀t : c̃t = w̃t − k̃t −
1

1 + r
bt − pt · at (4.2.5b)

w̃t+1 ≥ NBL(zt+1) ∀zt+1 ∈ Z

w̃0 = w0, z0 given.

Problem (4.2.5) has the same concave objective function as problem (4.2.2), but the con-

straint (4.2.5b) is now linear in the choices, so that first order conditions (FOCs) are

necessary and sufficient. The FOCs can be found in appendix 4.A. Furthermore, prob-

lem (4.2.5) reveals that the optimization problem has a recursive structure with the state

in period t being described by the vector (zt, w̃t), allowing us to express optimal policy

functions as a function of these two state variables only. Finally, the relevant inequality

constraints are given by at ≥ 0and the marginally binding natural borrowing limits.8

We now show that if a consumption path {ct}
∞

t=0 is feasible in problem (4.2.2), then is

it also feasible in problem (4.2.5), and vice versa, i.e., the two different asset structures

allow to implement the same set of consumption paths. One can thus use the solution

to problem (4.2.5), which is easier to compute, to derive the asset structure and default

profiles implementing the same consumption path in the original problem (4.2.2).

Consider some state contingent beginning-of-period wealth profile wt arising from some

combination of bond holdings, default decisions and capital investment (GL
t−1, G

S
t−1, ∆t−1,

kt−1) in problem (4.2.2). We now show that one can generate the same state contingent

beginning-of-period wealth profile w̃t = wt in problem (4.2.5) by choosing k̃t−1 = kt−1 and

by choosing an appropriate investment profile (at−1, bt−1). Moreover, the funds required

to purchase (at−1, bt−1) are the same as those required to purchase
(
GL

t−1, G
S
t−1

)
when the

default profile is ∆t−1. With the costs of financial investments being the same in both

problems, identical physical investments, and identical beginning of period wealth profiles,

it then follows from constraints (4.2.2b) and (4.2.5b) that the implied consumption paths

are also the same in both problems, establishing the equivalence between the two problems.

8As before, the Inada conditions on utility and the fact that marginal productivity of capital increases
without bound as kt → 0 will insure interior solutions for ct and kt, allowing to ignore the inequality
constraints for these variables when computing numerical solutions.
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To keep notation as simple as possible we establish the previous claim for the case with 2

productivity states only. The extension to N states is relatively straightforward. Consider

the following state contingent initial wealth profile

(
wt(z

1)

wt(z
2)

)
=

(
z1kα

t−1 +GL
t−1 −GS

t−1(1 − (1 − λ)δ1
t−1)

z2kα
t−1 +GL

t−1 −GS
t−1(1 − (1 − λ)δ2

t−1)

)
.

One can replicate this beginning-of-period wealth profile in problem (4.2.5) by choosing

k̃t−1 = kt−1 and by choosing the portfolio

bt−1 = GL
t−1 −GS

t−1, (4.2.6)

at−1 =

(
GS

t−1δ
1

GS
t−1δ

2

)
(4.2.7)

The previous equations show that b in problem (4.2.5) has an interpretation as the net

foreign asset position in problem (4.2.2) and that a in problem (4.2.5) can be interpreted

as the state contingent default on outstanding own bonds. We will make use of this

interpretation in the latter part of the paper. The funds ft−1 required for (GL
t−1, G

S
t−1)

under the default profile (δ1
t−1, δ

2
t−1) are given by

ft−1 =
1

1 + r
GL

t−1 −
1

1 +R(zt−1, (δ1
t−1, δ

2
t−1))

GS
t−1

where the interest rate satisfies

1

1 +R(zt−1, (δ1
t−1, δ

2
t−1))

=
1

1 + r

(
(1 − δ1

t−1)π(z1|zt−1) + (1 − δ2
t−1)π(z2|zt−1)

)
.

The funds f̃t−1 required to purchase (bt−1, at−1) are

f̃t−1 =
1

1 + r
(GL

t−1 −GS
t−1) +

1

1 + r

(
δ1
t−1π(z1 |zt−1) + δ2

t−1π(z2 |zt−1)
)
GS

t−1,

where we used the price of the Arrow security in (4.2.3). As is easy to see f̃t−1 = ft, as

claimed.

Finally, note that we need to impose the restriction a ≥ 0 on problem (4.2.5), as otherwise

it would follow from equation (4.2.7) that one could implement a consumption path in
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problem (4.2.5) that cannot be implemented in problem (4.2.2) with values of δi satisfying

δi ∈ [0, 1] for all i. This completes the equivalence proof.

4.3 Zero Default Costs

In the absence of default costs, the solution to problem (4.2.5) can be analytically deter-

mined. The following proposition summarizes the main finding. The proof can be found

in appendix 4.B.

Proposition 4.1. Without default costs (λ = 0) the solution to problem (4.2.5) involves

constant consumption equal to

c = (1 − β)(Π(z0) + w̃0) (4.3.8)

where Π(·) denotes the maximized expected profits from future production, defined as

Π(zt) ≡ Et

[
∞∑

j=0

βj (−k∗(zt+j) + βzt+j+1 (k∗(zt+j))
α)

]

with

k∗(zt) = (αβE(zt+1|zt))
1

1−α (4.3.9)

denoting the profit maximizing capital level. For any period t, the optimal default level

satisfies

at(zt) ∝ − (Π(zt) + zt (k∗(zt−1))
α) (4.3.10)

The proposition shows that in the absence of default costs, it is optimal to fully smooth

consumption. The option of partial repayment thus allows for complete insurance of domes-

tic production risk, as would be the case in a complete market setting. Equation (4.3.10)

thereby reveals that default must occur frequently and for virtually all productivity re-

alizations.9 Default thereby insures the country against two components: first, against

(adverse) news regarding the expected profitability of future investments, as captured by

Π(zt); and second, against low output due to a low realization of current productivity,

9Default is not required for states zt achieving the maximal value for Π(zt) + zt(k
∗(zt−1))

α across all
zt ∈ Z. For such states default can be set equal to zero, otherwise default levels are strictly positive.
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as captured by zt (k∗(zt−1))
α. If expected future profits commove positively with current

productivity, e.g. if zt is a persistent process, or in the special case with iid productivity

shocks, where expected future profits are independent of current productivity, it follows

from equation (4.3.10) that optimal default levels are inversely related to the current level

of productivity. Default is then optimal whenever zt falls short of its highest possible value

and the optimal size of default is increasing in the amount by which productivity falls short

if its highest possible level.

4.4 Optimal Default Policies with Default Costs

The previous section abstracted from potential dead weight costs associated with a gov-

ernment debt default decision. The trade-off between insuring consumption via default

or via (international) wealth accumulation/decumulation is then resolved fully in favor of

using the default option. As is clear from equation (4.2.4), however, it becomes optimal to

rely exclusively on self-insurance via international wealth adjustments, i.e., to set at ≡ 0,

if the dead weight costs from default become sufficiently high, e.g., if λ ≥ 1. To evaluate

how the trade-off between default and self-insurance is resolved for intermediate levels of

default costs, we now consider a quantitative setup with business cycle shocks to aggregate

productivity. As we show below, fairly low levels of default costs then make it optimal

to almost exclusive rely on self-insurance through international reserve adjustments. Only

when the country’s net foreign asset position is sufficiently close to the (marginally binding)

natural borrowing limits, will it be optimal to default on government debt.

4.4.1 Calibration

We now calibrate the model. A standard parameterization for quarterly productivity

is given by a first order autoregressive process with quarterly persistence of 0.9 and a

standard deviation of 0.5% for the quarterly innovation.10 Since we use a yearly model, we

annualize these values by choosing an annual persistence of technology equal to (0.9)4 and

use an annual standard deviation of the innovation of 1%. We then use Tauchen’s 1986

procedure to discretize the shock process into a process with a high and a low productivity

10The quantitative results reported below are not very sensitive to the precise numbers used. A similar
calibration is employed in Adam (2011).
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state. Normalizing average productivity to one, the resulting high productivity state is

zh = 1.0133 and the low productivity state z2 = 0.9868. The procedure also yields the

following transition matrix for the states

π =

(
0.8077 0.1923

0.1923 0.8077

)
.

We set the capital share parameter in the production function to α = 0.34. The annual

discount factor is β = 0.97 and we consider households with a flow utility function given

by

u(c) =
(c− c̄)1−σ

1 − σ

where c̄ ≥ 0 denotes the subsistence level of consumption and σ parameterizes risk aversion.

We choose σ = 2 and calibrate the subsistence level of consumption c such that in an

economy where the government is forced to repay debt always, the marginally binding

natural borrowing limit implies that the net foreign asset position of the country is not

below −100% of average GDP in any productivity state.11 We thereby seek to capture

the fact that industrialized countries do not appear to have net foreign asset positions

below −100% of GDP, see figure 10 in Lane and Milesi-Ferretti (2007). Moreover, three

out of the five industrialized countries approaching this boundary in the year 2004 later on

faced fiscal solvency problems (Greece, Portugal and Iceland). It thus appears plausible to

assume that countries cannot sustain higher external debt levels without running the risk

of a government default.

Positive default costs and the small open economy assumption imply that the equilibrium

outcomes are non-stationary, unless we choose 1+ r < 1/β. To insure that the equilibrium

process is ergodic, we set the annual international interest rate five basis points below

the rate implied by the inverse of the discount factor. Optimal default policies are rather

robust to the precise number chosen.12

11Appendix 4.D explains how one can compute the marginally binding NBL for each productivity
state. Average GDP is defined as the average output level associated with efficient investment, i.e., when
kt = k∗(zt) each period, and where we average over the ergodic distribution of the z process. For our
parameterization this yields an average output level of 0.5661. Furthermore, the net foreign asset position
of the country is independent of government policy at the marginally binding NBL, instead exlusivley
determined by the desire to prevent debt from exploding, so that this measure can be used to calibrate
the model. The resulting level for subsistence onsumption is c = 0.357.

12We also experimented with larger gaps of 50 basis points.
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Figure 4.1: Optimal Default Policies: The Effect of Default Costs

4.4.2 Evaluating the Effect of Default Costs

Figure 4.1 reports the optimal default policies for the next period as a function of the

current (end-of period) net foreign asset position and the current productivity state.13

Each row in the figure thereby corresponds to a different default cost parameterization

(λ). To simplify the interpretation of results, the default policies and the net foreign

asset positions are normalized by average GDP. The panels on the left thereby depicts the

optimal default policy in the high productivity state (zh) and the panels on the right policy

for the low productivity state (zl). Appendix 4.C explains how the optimal policies can be

13As explained in section 4.2.3, the net foreign asset position is given by the optimal value of b in the
corresponding period.
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determined numerically.

The graphs shown in the first row of Figure 4.1 report the outcome for the case when

default costs are zero.14 Specifically, they depict the optimal amount of default in the next

period, when the future productivity state happens to be low (zl). Note that there will

never be default if the productivity state zh realizes in the next period. Interestingly, the

optimal amount of default is independent of the country’s net foreign asset position and

almost independent of the current state of productivity.15 As is clear from proposition 4.1,

these default policies fully insure future consumption against fluctuations in productivity.

The middle and bottom rows in Figure 4.1 report the optimal default policies when default

costs equal 5% and 10% of the defaulted amount, respectively. For large parts of the state

space default then ceases to be optimal. Moreover, there is less default in the future if

the current productivity state is low already. This is optimal because insurance against a

future low state is more costly when current productivity state is low already, due to the

persistence of productivity. Default continues to be optimal, however, if the net foreign

asset position is sufficiently negative. Marginal utility of consumption is then very sensitive

to further consumption fluctuations, because consumption approaches its subsistence level

as the net foreign asset position approaches the limits implied by the (marginally binding)

naturally borrowing limits.

Overall, Figure 4.1 shows that moderate levels of default costs shift optimal policy strongly

towards using adjustments in international wealth to insure domestic consumption. Only

if the country’s net foreign asset position approaches the borrowing limit will a government

debt default still be optimal.

4.5 Optimal Default and Economic Disasters

The previous section showed that with moderate levels of default costs it becomes subop-

timal to default on government debt, provided the country is not too close to its borrowing

limit. In this section we evaluate whether this conclusion continues to be true for a setting

with much larger economic shocks. This is motivated by the observation that countries

14Since there exists a multiplicity of optimal default policies when λ = 0, the first row shows the
outcome in the limiting case λ → 0

15From equation (4.3.10) follows that the default in the next period does depend on the current state
because the optimal investment k∗(zt) depends on the current productivity.
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occasionally experience very large negative shocks, as previously argued by Rietz (1988)

and Barro (2006), and that such shocks tend to be associated with a government default.16

To capture the possibility of large shocks, we augment the model by including disaster like

shocks to aggregate productivity and then explore the quantitative implications of disaster

risk on optimal government debt default decisions.

4.5.1 Calibrating Economic Disasters

To capture economic disasters we introduce two disaster sized productivity levels to our

aggregate productivity process. We add two disaster states rather than a single one to

capture the idea that the size of economic disasters is uncertain ex-ante. This will be-

come important in section 4.6, when we discuss how well simple financial instruments can

approximate optimal default policies.

We calibrate the disaster shocks to match the mean and variance of GDP disasters, as

documented in Barro and Jin (2011). Using a sample of 157 GDP disasters, they report a

mean reduction in GDP of 20.4% and a standard deviation of 12.64%. Assuming that it is

equally likely to enter both disaster states, this yields the productivity states zd = 0.9224

and zdd = 0.6696. Our vector of possible productivity realizations thus takes the form

Z =
{
zh, zl, zd, zdd

}
where the parameterization of the business cycle states

(
zh, zl

)
is the

same as in the previous section. The state transition matrix for the shock process is given

by

π =




0.7770 0.1850 0.019 0.019

0.1850 0.7770 0.019 0.019

0.1429 0.1429 0.3571 0.3571

0.1429 0.1429 0.3571 0.3571



,

The transition probability from the business cycle states into the disaster states is chosen

so as to match the unconditional disaster probability of 0.038, as reported in Barro and

Jin (2011). We thereby assume that it is equally likely to reach both disaster states. The

persistence of the disaster states is set to match the average duration of GDP disasters,

which equals 3.5 years, see Barro and Jin. Finally, the transition probabilities of the

business cycle states are adjusted to reflect the presence of disaster risk.

16Barro (2006) and Gourio (2010) also allow for default on government bonds in disaster states. Since
the focus of their analysis is different, they use exogenous probabilities and default rates.
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Figure 4.2: Optimal Default Policies with Disaster States

Since the presence of disaster risk strongly affects the marginally binding NBLs (they

become much tighter and potentially require even positive net foreign asset positions in all

states), we recalibrate the subsistence level for consumption c̄. As in section 4.4 before, we

choose c such that in an economy where bonds must be repaid always, the economy can

sustain a maximum net foreign asset of -100% of average GDP in the business cycle states

(zh, zl).17 Choosing tighter limits does not affect the shape of the optimal default policies

but only shifts the policies reported in the next subsection ‘further to the right’.

17This yields an adjusted value of c̄ = 0.198.
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4.5.2 Optimal Default with Disasters: Quantitative Analysis

Figure 4.2 reports the optimal default policies for the economy with disaster shocks. Each

panel in the figure corresponds to a different productivity state today and reports the in-

tended amount of default in tomorrow’s states zl, zd and zdd as a function of the country’s

net foreign asset position today.18 We thereby assume that the dead weight costs of de-

fault equal 10% of the defaulted amount, corresponding to the default cost value used for

computing the lowest row in Figure 4.1.

Figure 4.2 shows that it is virtually never optimal to default in the low business cycle

state (zl), unless the net foreign debt position is very close to its maximally sustainable

level, similar to section 4.4 where we considered business cycle shocks only. Furthermore,

for a wide range of net foreign asset positions, it is optimal to default if the economy

makes a transition from a business cycle state to a disaster state, see the top panels in

the figure. Default is optimal for a transition to the severe disaster state (zdd), even when

the country’s net foreign asset position is positive before the disaster. Overall, the optimal

amount of default is increasing as the country’s net foreign asset position worsens. Yet,

once the economy is in a disaster state, a further default in the event that the economy

remains in the disaster state is optimal only if the net foreign asset position is very low,

see the bottom panels of Figure 4.2. Since the likelihood of staying in a disaster state is

quite high, choosing not to repay if the disaster persists would have very high effects on

interest rate costs ex-ante. As a result, serial default in case of a persistent disaster will

not necessarily be part of the optimal default policy.

The overall shape of the optimal default policies is fairly robust to assuming different values

for the default costs λ. Larger costs shift the default policies towards the left, i.e., default

occurs only for more negative net foreign asset positions. However, higher costs also tighten

the maximally sustainable net foreign asset positions, thereby reducing the range of net

foreign asset positions over which default occurs. Lower cost have the opposite effect, i.e.,

they induce a rightward shift and allow to sustain more negative net foreign asset positions.

Figure 4.3 reports a typical sample path for the net foreign asset position and the amount

of default implied by optimal policy for λ = 0.1. We start the path at a zero net foreign

asset position and each model period corresponds to one year. The figure shows that it

is optimal to improve the net foreign asset position when the economy is in the business

18Recall that default is never optimal if zh realizes in the next period.
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Figure 4.3: The Evolution of Net Foreign Assets and Default under Optimal
Policy (λ = 0.1)

cycle states, with faster improvements in the high state. This is the case even though

the international risk free rate is 5 basis points below the inverse of the domestic discount

factor. A transition to a disaster state leads to a default provided the economy’s net foreign

asset position is not too high (unlike in year 16). Also, following a disaster, the net foreign

asset position deteriorates whenever the disaster persists for more than one period (see for

example year 40), otherwise the net foreign asset position is largely unaffected or improves

even slightly (see year 85). Overall, the net foreign asset dynamics are characterized by

rapid deteriorations during persistent disaster periods and gradual improvements during

normal times.
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Figure 4.4: Welfare Gains from Using the Default Option

4.6 Welfare Analysis and Approximate Implementa-

tion

This section determines the welfare effects of letting the government choose whether or

not to repay its debt compared to a situation where repayment is simply forced upon the

government (or assumed) in each state. Furthermore, we study the approximate implemen-

tation of optimal default policies via a combination of equity-like bonds and non-defaultable

bonds.

4.6.1 Welfare Comparison

We now compare the welfare gains associated with optimal default policies to a setting in

which repayment of bonds is required to occur in all states. We base our welfare comparison

on the model with disaster states from section 4.5 and consider a broad range of default
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costs. We evaluate the utility consequences in terms of welfare equivalent consumption

changes over the first 500 years. Specifically, letting c1t denote the optimal state contin-

gent consumption path in the no-default economy and c2t the corresponding consumption

path with (costly) default, we report for each level of default costs the welfare equivalent

consumption change ω solving

E0

[
500∑

t=0

βt ((c
1
t (1 + ω) − c̄))1−γ

1 − γ

]
= E0

[
500∑

t=0

βt (c
2
t − c̄)1−γ

1 − γ

]

where the expectations are evaluated by averaging over 10000 sample paths. To highlight

the effects of the country’s initial international wealth position, we consider two scenarios,

one where the initial net foreign asset position is zero and one where it equals -50% of

average GDP.19 The outcome of this procedure is reported in Figure 4.4. It shows that

the welfare gains amount to 1-2% of consumption each period for a broad range of default

costs. The welfare gains are surprisingly robust to the level of the default costs, instead

are more sensitive to the initial net foreign asset position. Yet, for default costs λ ≥ 0.5

the welfare gains from default decrease steeply. This has to do with the fact that for such

high levels of the default costs it becomes suboptimal to insure against a future disaster

state when the economy is already in a disaster, independently of the country’s net foreign

asset position. This is shown in the lower panel of Figure 4.5 which reports the optimal

default policies when λ = 0.7.

With these default costs, the government receives only 0.3 units of consumption for each

unit of default. Since the likelihood of a specific disaster state (either zd or zdd) to re-occur

is 0.3571, the cost of using the default option for any of these states is 0.3571/(1+r) > 0.3.

Therefore, use of the default option is dominated by using the unconditional bond to

transfer resources into a future disaster state. Repayment therefore optimally occurs in

all future states, once the economy has hit a disaster state. As a result, the borrowing

constraints tighten significantly20 in the disaster states at this level of default costs and

the required amount of insurance in the business cycle state (zl, zh) increases strongly as

the net foreign asset position deteriorates.

19More precisely, we set the initial value of (1 − λ)a−1 + b−1 equal to these values and set period zero
output equal to (k∗(1))

α
in both economies and choose z1 = zh.

20They reach the levels applying in the economy with non-defaultable bonds.
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Figure 4.5: Optimal Default Policy with Disaster States and High Default Cost (λ = 0.7)

4.6.2 Approximate Implementation

We now consider a setting where the government issues two kinds of financial instruments:

a simple non-contingent bond that repays in all future contingencies, as well as an equity-

like bond that repays one unit of consumption in normal times (zh, zl), but zero when a

the disaster occurs (either zd or zdd). The fact that there is only one instrument but two

disaster states implies that the government bond market is still far from complete, so that

it is unclear to what extent the welfare gains from outright default could approximately be

captured by this simple contingent bond structure. To make the setting with a contingent

bond comparable to the setting with outright default analyzed in the previous section, we
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Figure 4.6: Optimal Equity Bond Issuance (λ = 0.1)

assume that the government must pay a cost λ per unit of equity bond issued in case a

disaster state actually materializes. And to facilitate comparison to the results reported in

section 4.5, we set λ = 0.1.

The optimal issuance of equity bonds is reported in Figure 4.6. The figure shows that

the equity bond policies are approximately a convex combination of the (negative of the)

default policies for states zd and zdd shown in Figure 4.2. The figure reveals that the

government optimally issues the equity bond before an economic disaster actually happens

and continues to issue such bonds while being in a disaster only if the net foreign asset

position is sufficiently negative.

Figure 4.7 reports how well the two available financial instruments allow to capture the
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Figure 4.7: Welfare Implications of Approximate Implementation

welfare gains induced by optimal default policies, as reported in Figure 4.4. Specifically,

the figure depicts the share of the welfare increase that can be realized with the considered

simple asset structure. It shows that for default cost up to about λ = 0.25 there is virtually

no difference between relying on optimal default policies or using the considered simple

assets. This holds independently of the initial net foreign asset position. Yet, for sufficiently

high levels of λ the simple asset structure cannot capture the achievable welfare gains from

optimal default. Whenever 1 − λ exceeds the combined persistence of the disaster states

(zd and zdd), it becomes suboptimal to issue the equity bond if the economy is already in

a disaster. As discussed in section 4.6.1, it is then optimal to issue non-defaultable bonds

only. This tightens the (marginally binding) borrowing limits significantly in the disaster

states and decreases the opportunities for risk sharing, when compared to a setting with

optimal default policies, where one can insure against disaster states individually.
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4.7 Long Maturities and Optimal Bond Repurchase

Programs

We now discuss the effects of introducing domestic bonds with longer maturity.21 Long

bonds can offer an advantage over one period bonds, as considered in the previous part

of the paper, if the market value of long bonds reacts to domestic conditions in a way

that allows the government to insure against domestic shocks. It would be desirable, for

example, if the market value of outstanding long bonds decreases following a disaster shock.

This allows the government to repurchase the outstanding stock of debt at a lower price,

thereby realizing a capital gain that lowers the overall debt burden. Unlike in Angeletos

(2002), capital gains will not materialize unless the government plans not to repay fully the

long bonds in (at least some contingency) in the future. The depreciation of the market

value, thus, can only be induced via the anticipation of default in the future when long

bonds mature.

Issuing long bonds will offer an advantage against outright default on maturing bonds,

whenever the dead-weight costs associated with repurchasing bonds at a devaluated market

price is lower than the dead weight costs of an outright default on maturing bonds today.

If both costs are identical, i.e., if the capital gains on long bonds resulting from default

in the future induce the same costs as a default on maturing bonds, then there will be

of no additional value associated with issuing long bonds. Yet, if the repurchase of long

bonds at low prices fails to produce dead-weight costs, then the government could fully

insure domestic consumption, i.e., achieve the first best allocation, independently of the

costs associated with an outright default on maturing bonds. The optimal bond issuance

strategy will then have the feature that the government issues each period long bonds that

(partially) default at maturity, depending on the productivity realization tomorrow. The

default at maturity needs to be calibrated such that the capital gains realized tomorrow

fully insure domestic consumption against domestic productivity shocks, i.e., satisfies the

proportionality restriction (4.3.10). Tomorrow, the government could then repurchase the

existing stock of long bonds and issue a new long bonds with a new contingent repayment

profile. In this way outright default on maturing bonds never occurs.

21Introducing also longer maturities for the risk-free foreign debt has no consequences for the outcomes.
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4.8 Conclusions

In a setting with incomplete government bond markets, debt default is part of the optimal

government policy under commitment. The choice whether or not to repay maturing

debt allows for increased international risk sharing and significantly relaxes the net foreign

debt positions that a country can sustain. Moreover, it considerably increases welfare,

even when default costs are sizable. Default in low productivity states can be part of a

country’s optimal policy in a setting with full commitment, especially if the net foreign

asset position is close to the level implied by the country’s (marginally binding) natural

borrowing limits.
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Appendix

4.A First Order Equilibrium Conditions

This appendix derives the first order conditions for problem (4.2.5). We first rewrite the

problem replacing beginning-of-period wealth by components (see definition (4.2.4)):

max
{bt,at≥0,k̃t≥0,c̃t≥c̄}

E0

∞∑

t=0

βtu(c̃t)

s.t. ∀t : c̃t = ztk̃
α
t−1 + bt−1 + (1 − λ)at−1(zt)

−k̃t −
1

1 + r
bt − pt · at

zt+1k̃
α
t + bt + (1 − λ)at(zt+1) ≥ NBL(zt+1) ∀zt+1 ∈ Z

w̃0 = w0, z0 given,

Next, we formulate the Lagrangian and let ηt denote the multiplier on the budget constraint

in period t, νzn

t the multiplier for the short-selling constraint on the Arrow security that

pays off in state zn in t+ 1, and ωt+1 the multiplier associated with the natural borrowing

limits. We drop the inequality constraints for k̃t and c̃t, as the Inada conditions guarantee

an interior solution for these variables. Differentiating the Lagrangian with respect to the

choice variables one obtains

c̃t : u′(c̃t) − ηt = 0

bt : −ηt

1

1 + r
+ βEtηt+1 + βEtωt+1 = 0

at(z
n) : −ηtpt(z

n) + βπ(zn|zt)ηt+1(z
n)(1 − λ)

+νzn

t + βπ(zn|zt)ωt+1(z
n)(1 − λ) = 0 ∀n ∈ N

k̃t : −ηt + αk̃α−1
t βEtηt+1zt+1 + αk̃α−1

t βEtωt+1zt+1 = 0



4.B. PROOF OF PROPOSITION ?? 115

Using the FOC for consumption to replace ηt in the last three FOCs, one obtains Euler

equations for the bond holdings, the Arrow securities and capital investment:

Bond : −u′(c̃t)
1

1 + r
+ βEtu

′(c̃t+1) + βEtωt+1 = 0 (4.A.11a)

Arrow : −u′(c̃t)pt(z
n) + βπ(zn|zt)u

′(c̃t+1(z
n))(1 − λ)

+νzn

t + βπ(zn|zt)ωt+1(z
n)(1 − λ) = 0 ∀n ∈ N (4.A.11b)

Capital : −u′(c̃t) + αk̃α−1
t βEtu

′(c̃t+1)zt+1 + αk̃α−1
t βEtωt+1zt+1 = 0 (4.A.11c)

In addition, the Kuhn-Tucker FOCs include the following complementarity conditions:

0 ≤ at(z
n) ⊥ νzn

t ≥ 0 ∀n ∈ N (4.A.11d)

0 ≤ znk̃α
t + bt + (1 − λ)azn

t −NBL(zn) ⊥ ωt+1(z
n)) ≥ 0 ∀n ∈ N. (4.A.11e)

Combined with the budget constraint, the Euler equations and the complementarity con-

ditions constitute the optimality conditions for problem (4.2.5).

4.B Proof of Proposition 4.1

We first show that the proposed consumption solution (4.3.8) satisfies the budget con-

straint, that the inequality constraints a ≥ 0 are not binding, and that the NBLs are also

not binding. Thereafter, we show that the remaining first order conditions of problem

(4.2.5), as derived in appendix 4.A, also hold.

We start by showing that the portfolio implementing (4.3.8) in period t = 1 is consistent

with the flow budget constraint and a ≥ 0. The result for subsequent periods follows by

induction. In period t = 1 with productivity state zn, beginning-of-period wealth under

the optimal capital investment strategy (4.3.9) is

w̃n
1 ≡ zn (k∗(z0))

α + b0 + a0(z
n) (4.B.12)

To insure that consumption can stay constant from t = 1 onwards we need again

c = (1 − β)(Π(zn) + w̃n
1 ) (4.B.13)
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for all possible productivity realizations n = 1, ..N . This provides N conditions that can

be used to determine the N + 1 variables b0 and a0(z
n) for n = 1, ..., N . We also have the

condition a0(z
n) ≥ 0 for all n and by choosing minn a0(z

n) = 0, we get one more condition

that allows to pin down a unique portfolio (b0, a0). Note that the inequality constraints on

a do not bind for the portfolio choice, as we have one degree of freedom, implying that the

multipliers vzn

1 in appendix 4.A are all zero. It remains to show that the portfolio achieving

(4.B.13) is feasible given the initial wealth w̃0. Using (4.B.12) to substitute w̃n
1 in equation

(4.B.13) we get

c = (1 − β)(Π(zn) + zn (k∗(z0))
α + b0 + a0(z

n))∀n = 1, ...N.

Combining with (4.3.8) we get

Π(zn) + zn (k∗(z0))
α + b0 + a0(z

n) = Π(z0) + w̃0

Multiplying the previous equation with π(zn|z0) and summing over all n one obtains

E0 [Π(z1) + z1 (k∗(z0))
α] + b0 +

N∑

n=1

π(zn|z0)a0(z
n) = Π(z0) + w̃0.

Using Π(z0) = −k∗(z0)+βE0 [z1 (k∗(zt+j))
α]+βE0 [Π(z1)] and (4.2.3) the previous equation

delivers

(1 − β)E0 [Π(z1) + z1 (k∗(z0))
α] + b0 + (1 + r)p0a0 = −k∗(z0) + w̃0

Using β = 1/(1 + r) this can be written as

(1 − β)E0 [Π(z1) + z1 (k∗(z0))
α]

+
1 − β

β
p0a0 + (1 − β)b0 +

1

1 + r
b0 + p0a0 = −k∗(z0) + w̃0 (4.B.14)

From (4.B.13) follows that the first terms in the previous equation are equal to

(1 − β)E0 [Π(z1) + z1 (k∗(z0))
α] +

1 − β

β
p0a0 + (1 − β)b0 = c
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so that (4.B.14) is just the budget equation for period zero. The portfolio giving rise to

(4.B.13) in t = 1 thus satisfies the budget constraint of period zero. The results for t ≥ 1

follow by induction.

It then follows from equation (4.B.13) that w̃t is bounded, as Π(zt) is bounded, so that

the process for beginning-of-period wealth does not involve explosive debt. The NBLs are

thus not binding so that the multipliers ωt+1 = 0 for all t and all contingencies.

Using vzn
t ≡ 0, ωt+1 ≡ 0, the fact that capital investment is given by (4.3.9) and that the

Arrow security price is (4.2.3), the Euler conditions (4.A.11a) - (4.A.11c) then all hold

when consumption is given by (4.3.8). This completes the proof.

4.C Numerical Solution Approach

To compute recursive equilibria for Problem 4.2.5 we apply a global solution method as to

account for the non-linear default policies in our model. As endogenous state variable we

use beginning-of-period wealth, defined as above. Combined with exogenous productivity

shocks we define our state space S to be

S =
{
z1 ×

[
NBL(z1), wmax

]
, ..., zN ×

[
NBL(zN), wmax

]}

where we set wmax such that in equilibrium optimal policies never imply wealth values

above this threshold. The NBLs are set such they are marginally binding. How these

values are derived is shown in Appendix 4.D.

We want to describe equilibrium in terms of time-invariant policy functions that map the

current state into current policies. Hence, we want to compute policies

f̃ : (zt, wt) → ({ct, kt, bt, at}) ,

where their values (approximately) satisfy the equilibrium conditions derived above. We

use a time iteration algorithm where equilibrium policy functions are approximated iter-

atively. In a time iteration procedure, one takes tomorrow’s policy (denoted by fnext) as

given and solves for the optimal policy today (denoted by f) which in turn is used to

update the guess for tomorrow’s policy. Convergence is achieved once ||f − fnext|| < ǫ

and we set f̃ = f . In each time iteration step we solve for optimal policies on a sufficient
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number of grid points distributed over the continuous part of the state space. Between

grid points we use linear splines to interpolate tomorrow’s consumption policy. Following

Garcia and Zangwill (1981), we can transform the complementarity conditions of our first

order equilibrium conditions into equations. To solve for a root of the resulting non-linear

equation system at a particular grid point we use Ziena’s Knitro, an optimization software

that can be called from Matlab. For more details on the time iteration procedure and how

one transforms complementarity conditions into equations, see for example, Brumm and

Grill (2010). To come up with a starting guess for the consumption policy we use the fact

that at the NBLs optimal consumption equals the subsistence level. We therefore guess a

convex, monotonically increasing function g which satisfies g(zi, NBL(zi)) = c̄ ∀i and use

a reasonable value for g(zi, wmax).

4.D Natural Borrowing Limits (NBLs)

In this section we derive the NBLs that we use as lower bounds of the state space in our

numerical application. For each state we define the NBL as the maximum level of indebt-

edness that is still consistent with non-explosive debt. To put it differently, we determine

the minimum level of beginning-of-period wealth that is necessary to finance the capital

stock and portfolio (assuming consumption equal to the subsistence level) such that in all

possible states tomorrow beginning-of-period wealth is at or above the respective limit. To

compute these bounds we use Problem 4.2.5, simplifying the exhibition substantially and

yielding the same solution as for Problem 4.2.2. To derive these state dependent borrowing

limits we proceed as follows: we first postulate potential solutions. Then we set up the

problem that yields the minimum level of wealth today that can finance a portfolio such

that in all possible states tomorrow wealth is above the postulated solution. We use this

problem formulation to derive the capital and portfolio decisions requiring the lowest level

of wealth today and at the same time satisfy the wealth constraints in all states tomorrow.

Using these optimal choices we can then set up the linear equation system to back out the

minimum levels of wealth that can just be financed. To simplify exhibition we consider just

two possible TFP shocks (N=2), denoted by z1 and z2. However, it is straightforward to

extend our analysis to the general case of N TFP shocks, as we argue below. Note that we

use only one Arrow security, the one for state 2. This choice is without loss of generality
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as with positive default cost costs will be minimized and therefore the government will not

acquire Arrow securities for the state where the least funds are needed. Without default

costs, we can as well omit the Arrow security for the best productivity state as we have

more assets than states available for trade. Finally note that we omit the short selling

constraint on the Arrow security to simplify the exhibition22.

Step 1:

We denote potential solution by w1 and w2.

Step 2:

For a given state s ∈ {1, 2}, we now want to determine the minimum level of wealth

necessary to ensure that wealth tomorrow (w(s)tom)is above the postulated bounds:

min w(s)

s.t. w(1)tom ≥ w1

w(2)tom ≥ w2

We can now use the budget constraint that is implied by consumption equal to the sub-

sistence level c̄: c̄ = w(s) − k − q · b − pzs · a, and use it to substitute w(s)in the above

minimization problem:

min
k,b,a

c̄+ k + q · b+ pzs · a,

s.t. z1kα + b ≥ w1

z2kα + b+ (1 − λ)a ≥ w2

using w(1)tom = z1kα + b and w(2)tom = z2kα + b+ (1 − λ)a.

The Lagrangian for this optimization problem has the following form:

L = c̄+ k + q · b+ ps · a+ λ1(z
1kα + b− w1) + λ2(z

2kα + b+ (1 − λ)a− w2),

22When computing the NBLs in our numerical applications, it is important to take the short-selling
constraints into account as with positive default costs they may actually be binding at the NBL
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We can now derive first order conditions for all states. Solving these conditions for optimal

choices in state 1 (state 2 is analogous) we get

k1opt
=

(
1

α(z2p1 − z1(p1 − q))

) 1

α−1

,

b1opt
= w1 − z1(k1

opt)
α,

a1opt
=

w2 − z2(k1
opt)

α − b1opt

(1 − λ)
.

Step 3:

We now come back to the original fixed point problem: we want to determine the minimum

values of wealth necessary to ensure that we are not below these values tomorrow. By

setting the optimal choices derived above (which are a function of wealth) equal to the

postulated wealth levels, the original fixed point problem translates into a linear equation

system that yields in general a unique solution:

w1 = c̄+ k1
opt + q · b1opt + p1 · a1

opt

w2 = c̄+ k2
opt + q · b2opt + p2 · a2

opt

Plugging in the optimal capital and portfolio choices derived above, we are left with an

linear equation system containing only the wealth levels and exogenous parameters. The

solution of the equation system yields the NBLs that we need for our numerical applications.

For the general case of N TFP shocks, the analysis is conceptually equivalent, as the

structure of the Lagrangian is preserved.
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