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AbstratWe onsider in this thesis the seurity goals on�dentiality of messages andauthentiity of entities in eletroni ommuniation with speial fous on appli-ations in environments with restrited omputational power, e.g., RFID-tagsor mobile phones. We introdue the onept of stream iphers, desribe andanalyze their most important building bloks, analyze their seurity features,and indiate ways to improve their resistane against ertain types of attaks.In the ontext of entity authentiation, we desribe speial protools based onrandomly hoosing elements from a seret set of linear vetor spaes and relatethe seurity of these protools to the hardness of a ertain learning problem.
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ZusammenfassungWir betrahten in dieser Arbeit die Siherheitsziele Vertraulihkeit von Nah-rihten und Authentizität von Kommunikationspartnern im Umfeld elektro-nisher Kommunikation mit besonderem Shwerpunkt auf Anwendungen aufressourenbeshränkten Endgeräten wie RFID-Tags oder Mobiltelefonen. Wirbetrahten insbesondere Stromhi�ren, beshreiben und analysieren ihre wih-tigsten Bestandteile, untersuhen ihre Siherheitseigenshaften und zeigen Mög-lihkeiten auf, wie sih ihre Resistenz gegenüber bestimmten Angri�stehnikenverbessern lässt. Im Zusammenhang mit der Authenti�kation von Kommuni-kationspartnern beshreiben wir spezielle Authenti�kationsprotokolle, die aufder zufälligen Auswahl von Elementen aus einer geheimen Menge von linea-ren Vektorräumen beruhen, und führen die Siherheit dieser Protokolle auf dieKomplexität eines bestimmten Lernproblems zurük.
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Chapter 1Introdution1.1 What this Thesis is aboutIn this thesis, we onsider two important seurity goals in eletroni ommuni-ation: on�dentiality of messages and authentiity of entities.While many algorithms and systems have been proposed for a variety ofappliation senarios, we fous our attention on methods that are partiularlyuseful for devies with rather little omputational power. This haraterizationis not entirely sharp � for example, it is arguable whether a modern smartphoneis rather a partiularly omplex mobile phone or a small omputer equippedwith a telephone funtion � but will serve as a guideline to distinguish RFIDtags and Bluetooth devies from personal omputers and grids.By on�dentiality of messages, we mean that messages whih are exhangedover a publily observable hannel should only be meaningful to legitimate om-muniation partners. This is probably the most prominent servie that ryp-tographi systems are expeted to provide, ommonly by enrypting (or eni-phering) messages. In the �rst part of this thesis, we therefore introdue theonepts of blok iphers and stream iphers and devote our main attention tohardware-oriented stream ipher onstrutions. We desribe and analyze theirmost important building bloks, onsider generi attak strategies � partiularlythe BDD-based attak orrelation attaks and algebrai attaks � and indiatedesign priniples that provide a ertain resistane against these attaks. Further-more, we review the design and seurity features of pratially used algorithmssuh as the A5/1 algorithm used in the GSM standard and the E0 ipher usedin Bluetooth. In the ase of E0, we indiate possible design improvements inthe light of the presented attaks.In human fae-to-fae ommuniation, authentiation is impliitly and with-out further ado performed through fae (and sometimes additionally voie)reognition. In eletroni ommuniation, e.g. on the internet, it is often notso easy to verify that a ommuniation partner is in fat who she laims tobe. Authentiation of entities is therefore another important task of modernryptographi systems. We address this seurity goal in the seond part of thisthesis by investigating lightweight authentiation protools that are based onrandomly hoosing elements from a set of L linear subspaes of GF(2)n+k, re-late their seurity to the hardness of a ertain learning problem and indiate



2 1.2 Publiationspossible improvements and further researh diretions.1.2 PubliationsThis thesis is based on the following publiations.Fully reviewed Publiations1. Design Priniples for Combiners with Memory, Proeedings of the 6th In-ternational Conferene on Cryptology in India (INDOCRYPT 2005), vol-ume 3739 of LNCS, pages 104�117, Springer, 2005, with Frederik Armknehtand Matthias KrauseLower bounds on the omplexities of algebrai attaks and orrelationattaks, appliation to E0 and proposal of a more seure E0 variant2. Reduing The Spae Complexity of BDD-based Attaks on Keystream Gen-erators, Proeedings of Fast Software Enrpytion, 13th InternationalWork-shop (FSE 2006), volume 4047 of LNCS, pages 163�178, Springer, 2006,with Matthias KrauseDivide-and-onquer strategies for reduing the memory requirements ofBDD-attaks, appliation to E0, A5/1 and the Self Shrinking Generator3. Extended BDD-based Cryptanalysis of Keystream Generators, Proeedingsof the 14th International Workshop on Seleted Areas in Cryptography(SAC 2007), volume 4876 of LNCS, pages 17�35, Springer, 2007Extension of the BDD-attak to NFSRs and arbitrary ompression fun-tions, appliation to Trivium, Grain and F-FCSR4. More on the Seurity of Linear RFID Authentiation Protools, Proeed-ings of the 16th International Workshop on Seleted Areas in Cryptogra-phy (SAC 2009), volume 5867 of LNCS, pages 182�196, Springer, 2009,with Matthias KrauseGeneralization of the CKK-protool, seurity analysis in the ative attaksenario, de�nition of linear (n, k, L) protools and the LULS problem5. Some Remarks on FCSRs and Impliations for FCSR-based Stream Ci-phers, Journal of Mathematial Cryptology, volume 3, pages 227�236,2009, with Simon Fisher and Willi MeierSimpli�ed desription of the sequenes produed by a single ell of a GaloisFCSR given that the register's initial state is periodi, mappings betweenperiodi states of the Fibonai and the Galois representation of an FCSR,expliit determination of the autoorrelation of an l-sequeneWorkshop Reords and Tehnial Reports1. Equivalent Representations of the F-FCSR Keystream Generator, Work-shop Reord of the State of the Art of Stream Ciphers (SASC 2008), withSimon Fisher and Willi Meier2. Building Stream Ciphers from FCSRs, Workshop Reord of the 2nd GI-Kryptowohenende, 2008



1.2 Publiations 33. Some Remarks on FCSRs and Impliations for FCSR-based Stream Ci-phers, Workshop Reord of the Seond Workshop on Mathematial Cryp-tology (WMC '08), 2008, with Simon Fisher and Willi Meier4. Algebrai Attaks against Linear RFID Authentiation Protools, DagstuhlSeminar on Symmetri Cryptography, Workshop Reord, 2009, with Matt-hias KrauseDuring my time as PhD student, I also ontributed to a few other publiationsthat are not mentioned in this thesis.
• Seurity Challenges of Loation-aware Mobile Business, Proeedings ofthe 2nd IEEE International Workshop on Mobile Commere and Servies,pages 84�93, IEEE Computer Soiety, with Emin Islam Tatl� and StefanLuks
• Dynami Anonymity, The 4th World Enformatika Conferenes, Interna-tional Conferene on Information Seurity (ICIS '05), 2005, with EminIslam Tatl� and Stefan Luks
• Dynami Mobile Anonymity with Mixing, Tehnial Report, University ofMannheim, 2006, with Emin Islam Tatl� and Stefan Luks
• Workshop Reord of the 2nd GI-Kryptowohenende (editor), 2006, withFrederik Armkneht
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Chapter 2Algorithms for Con�dentialCommuniation2.1 Seurity De�nitions and Attaker ModelsOften people want systems to be seure without having a preise idea of whatthey mean by seurity.In a ommuniation senario in whih two parties (usually alled Alie andBob), ommuniate over an inseure hannel (e.g., a telephone land line ora TCP/IP onnetion), most people would agree that seurity means (possi-bly among other things) that an eavesdropper on the ommuniation hannel(wiretapping the telephone line or observing the messages when passing a router)should not be able to understand what Alie and Bob are talking about, or moreformally, that the exhanged messages should remain on�dential.Many people have ome aross this problem already at some point in theirhildhood and most probably tried to solve it by eniphering the messages inone way or another, i.e., by transforming the plaintext messages into somemeaningless-looking strings and having the reeiver reverse the transformationin order to reover the plaintext.This idea is probably almost as old as mankind, and the �rst doumentedideas for eniphering methods date bak to anient times. Sine then, iphersystems have been built and used for ritial governmental and military appli-ations with varying suess, thereby in�uening the ourse of history at quitea few points (Kahn, 1996).Surprisingly enough, it was not until World War Two that a formal modeland analysis of ipher systems was developed in a famous seminal paper byShannon (1949), whih is now onsidered one of the foundations of modernryptography.Sine then, we typially assume a ommuniation model onsisting of a reli-able but publily observable ommuniation hannel, a sender who is equippedwith an enryption algorithm E, a reeiver running a deryption algorithm D,and a key soure that provides enryption keys ke and deryption keys kd (seeFig. 2.1).A ipher system is alled symmetri if ke = kd and asymmetri if ke 6= kd.We usually relate the seurity of a ommuniation system to an attaker



8 2.1 Seurity De�nitions and Attaker Models
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p p
Public Channel

c c

Key Source
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ke kdFigure 2.1: The Shannon ommuniation modelthat is de�ned by
• his goal
• his omputational power
• the information available to himand haraterize the attaker by his suess probability and his resoure on-sumption in terms of time, memory and amount of utilized information. Themost ommon goal is to obtain the seret key (leading to key reovery attaks),but also weaker goals suh as deduing partial information about the exhangedinformation are often onsidered.Depending on whether the attaker has unlimited or limited omputationalpower (i.e., time and memory resoures at his disposal), we talk about an in-formation theoreti or a omplexity theoreti seurity setting.Conerning the amount of available information, we typially distinguish thefollowing lasses.
• iphertext-only : The attaker has only aess to the publi hannel.
• known plaintext : The attaker additionally knows a number of plaintextsand their enryptions under the unknown key.
• hosen plaintext : The attaker may have a number of plaintexts of hishoie enrypted under the unknown key and obtain the orrespondingiphertexts.
• hosen iphertext : The attaker may have a number of iphertexts de-rypted under the unknown key and obtain the orresponding plaintexts.Note that we always assume the attaker to be able to eavesdrop on thepubli hannel and, following Kerkho�s' priniple (Kerkho�s, 1883), to knowthe omplete spei�ation of the ipher system. The only information about thesystem that he does not have is the seret key in use.Performing a seurity analysis in this setting means to investigate how muhe�ort it takes the attaker to reah his goal. Consequently, the more e�ort isrequired, the more seure we onsider the system. Or put another way, the morepowerful the attakers that a system is able to resist (i.e., whom the system isable to prevent from reahing their goal), the better.



2.2 Blok Ciphers 9One of Shannon's most important observations is the fat that the one-timepad (enrypting by XOR-synthesis of a binary message with an equally longrandom bit string) is information-theoretially seure, i.e., an attaker annotreover the plaintext from the iphertext even with unlimited omputationalpower.While this system is used to the present day by intelligene agenies forhighly ritial information, the requirement that the seret information (thathas to be exhanged on�dentially between sender and reeiver in advane)has to be as long as the message makes it impratial for many importantappliations.The way out is to trade o� seurity and usability (in fat, a very ommonstrategy in pratial IT seurity), i.e., to relax the requirements of the systemwhile hoping not to lose too many of its seurity properties.In the ase of ipher systems, the relaxation onsists in limiting the seretinformation (most ommonly alled the key) to a size that is small enough to bee�iently exhanged between sender and reeiver, and at the same time largeenough for the system to resist attakers equipped with a realisti amount ofresoures.Symmetri-key ipher implementations that are based on this idea an belassi�ed into two ategories, blok iphers and stream iphers, whih we de-sribe in more detail in the following.2.2 Blok CiphersSuppose for the moment that we want to enrypt a plaintext blok-wise (orword-wise) with a �xed blok length l. In order to be able to derypt, we use abijetive mapping (i.e., a permutation) E : {0, 1}l → {0, 1}l for enryption andits inverse D = E−1 for deryption.Ideally, we would like to hoose E from all 2l! possible permutations for a�xed blok length l prior to the ommuniation. However, only with very lowprobability, our hoie will have a representation that is more e�ient than alist of input-output pairs with 2l entries, whih is learly too ine�ient to beexhanged between sender and reeiver for reasonable blok sizes.The ompromise between seurity and usability in this ase is to pik a setof 2n permutations that an be e�iently implemented using a devie that isparametrized with an n-bit string (the key) to determine whih permutation itatually realizes. Suh a devie is ommonly alled a blok ipher.De�nition 2.1. A blok ipher onsists of two mappings
E : {0, 1}l × {0, 1}n → {0, 1}l

(x, k) 7→ yand
D : {0, 1}l × {0, 1}n → {0, 1}l

(y, k) 7→ xthat satisfy D(E(x, k), k) = x for all x ∈ {0, 1}l and all k ∈ {0, 1}n. We all
E the enryption funtion, D the deryption funtion, l the blok length, and nthe key length of the blok ipher.



10 2.3 Dediated Stream CiphersNote that for a �xed k ∈ {0, 1}n, E(·, k) and D(·, k) are permutations (i.e.,bijetive mappings) and inverse to eah other, and we may view the key as anidenti�er of a partiular permutation. In this sense, piking a key means to �xa partiular permutation, and hoosing a partiular blok ipher of blok length
l means hoosing 2n out of the 2l! possible permutations of {0, 1}l.On the seurity side, we demand that an attaker annot distinguish theblok ipher setting from the ideal ase, more preisely that the permutationsprovided by the blok ipher be indistinguishable from a permutation that wasrandomly hosen from all possible permutations.We note that an attaker who an distinguish a blok ipher based permuta-tion from a randomly hosen permutation may not neessarily be able to dedueinformation about the enrypted messages nor the key. But onversely, we anbe sure that an attaker who annot tell whether a random permutation or ablok ipher is used annot dedue any nontrivial information.Blok iphers are among the most widely used ryptographi primitives, withthe Data Enryption Standard (DES) and the Advaned Enryption Standard(AES) being partiularly prominent examples (see Menezes et al. (2001) fordetailed desriptions and seurity onsiderations).Care has to be taken when a sequene of bloks b1, b2, . . . , bm ∈ {0, 1}l hasto be enrypted. For ommon blok lenghts of 128 bits or more, this is thease in virtually any pratial appliation. The most straightforward proe-dure, the Eletroni Codebook (ECB) mode, whih omputes the iphertextsas ci := E(bi, k), implies that oiniding plaintext bloks will have oinidingorresponding iphertext bloks and is therefore not reommended.A more suitable mode is the Cipher Blok Chaining (CBC) mode (Ehrsamet al., 1976), whih is de�ned by ECBC((b1, . . . , bm), k, IV) := (c1, . . . , cm) with

ci :=

{
E(IV ⊕ b1, k) for i = 1
E(ci−1 ⊕ bi, k) for 1 < i ≤ m

. (2.1)and a (usually publily known) initialization vetor IV ∈ {0, 1}l.Many more blok ipher modes of operation for di�erent purposes exist, seeMenezes et al. (2001) for an introdution and overview.2.3 Dediated Stream CiphersBesides blok iphers, dediated onstrutions exist for (immediately, i.e., notwaiting for the next blok to be �lled) enrypting data streams. These on-strutions are typially alled stream iphers.In this thesis, we want to fous on onstrutions that try to approximate theone-time pad by produing from a short, �xed-length seret information a longrandom-looking sequene that is XOR-ombined with the plaintext in order toobtain the iphertext.Consequently, the heart of most suh stream iphers is a keystream genera-tor, whih is initialized at the beginning of the onversation with a seret key K.Many modern onstrutions aept an additional initialization vetor IV thatan be seen as a pointer into the keystream produed for K. Cipher designs nor-mally assume the IV to be publi, suh that it an be easily exhanged betweensender and reeiver.



2.3 Dediated Stream Ciphers 11Hene, the keystream generator produes keystream bits (zt)t≥0 that areadded to the plaintext stream (pt)t≥0 on the sender's side in order to obtainthe iphertext stream (ct)t≥0 as ct := pt ⊕ zt for all t ≥ 0. The reeiver usesthe same ipher and the same initialization data K and IV as the sender inorder to ompute the keystream (zt)t≥0 himself and to reover the plaintext as
pt = ct ⊕ zt for all t ≥ 0 (see Fig. 2.2).
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Sender ReceiverFigure 2.2: Stream ipher ommuniation senarioThe keystream generator itself is often split into two omponents, a key/IVsetup proedure and a �nite state mahine (FSM). The key/IV setup (or ratherinitial state setup) transforms the key and the IV into the initial state of theFSM. The FSM usually operates in a loking-based manner, outputting a pieeof keystream and updating its state in eah lok yle, hene produing thekeystream sequene (zt)t≥0 (f. Fig. 2.3).More formally, the FSM is de�ned by a state update funtion δ : {0, 1}n →
{0, 1}n and a keystream funtion g : {0, 1}n → {0, 1}∗. In eah lok t,keystream bits are produed aording to g(ω(t)) from the urrent state ω(t),and the internal state is updated to ω(t + 1) = δ(ω(t)). Hene, the output ofthe generator is ompletely determined by the starting state ω(0).

key/IV setup
key

IV

initial state
FSM z0, z1, z2, . . .

Keystream Generator

Figure 2.3: Common onstrution of the keystream generatorDe�nition 2.2. We all an FSM-state periodi if, when running, the FSM willreturn to the same state after a �nite number of steps.



12 2.3 Dediated Stream CiphersWe will later need the notion of equivalent FSMs, whih we de�ne as follows.De�nition 2.3. The FSMs M1 and M2 are alled equivalent if for eah possiblestarting state of M1 there exists a orresponding starting state of M2 and vieversa suh that, when running, M1 and M2 produe the same output.De�nition 2.4. We all a sequene u = (ui)i≥0 stritly periodi (or simplyperiodi) with period T if ui+T = ui for all i ≥ 0. We all a sequene ueventually periodi if there exists a t ≥ 0 suh that u′ = (ui)i≥t is periodi.De�nition 2.5. For a (deterministi) �nite state mahine we an de�ne a (di-reted) state transition graph as follows. The vertex set onsists of the set ofpossible states, and there exists an edge from state u to state v if and only if vis the image of u under the state transition funtion.In order to approximate the one-time pad and its seurity features, theoutput of the keystream generator should look random, or more formally, theoutput should not be e�iently distinguishable from a truely random sequene.Therefore, the sequene should share as many properties with truely randomsequenes as possible.The National Institute of Standards and Tehnology (NIST) maintains aolletion of suh properties and provides infrastruture for heking pseudo-random number generators against these properties (Rukhin et al., 2010).We will exemplarily onsider as properties the period length of the sequene,the number of ourrenes of a partiular blok in one period of the sequene,and its autoorrelation.De�nition 2.6. The autoorrelation θτ (u) of a binary sequene u = (ui)i≥0with shift τ is the orrelation of the sequenes (ui)i≥0 and (ui+τ )i≥0, i.e.,
θτ (u) :=

∑

i≥0

(−1)ui⊕ui+τ

= |{i : ui ⊕ ui+τ = 0}| − |{i : ui ⊕ ui+τ = 1}|

= |{i : ui = ui+τ}| − |{i : ui 6= ui+τ}| .

(2.2)Observation 2.7. A truely random sequene is aperiodi, the probability of a τ-bit blok's ourrene at position i in the sequene is 2−τ , and its autoorrelationis zero-valued for all shifts τ .Consequently, we require that a keystream generator's output bitstream usatisfy the following postulates.Pseudorandomness Postulate 1. A keystream sequene should have a largeperiod T (for many appliations at least T ≥ 250).Pseudorandomness Postulate 2. A keystream seqeune should ontain a given
τ-bit blok around T · 2−τ times.Pseudorandomness Postulate 3. For a keystream sequene u, |θτ(u)|

T shouldbe small for any shift τ < T .



2.4 Asymmetri Ciphers 132.4 Asymmetri CiphersIt was assumed for a long time that a reasonable ipher system ould only besymmetri, i.e., the enryption key ke and the dereption key kd had to beequal. Only in the 1970s, the �rst pratial asymmetri ipher systems basedon di�erent keys for enryption and deryption were proposed, with the RSAryptosystem being one of the most prominent examples (see, e.g., Vaudenay(2006) for an introdution).In systems in whih deduing the deryption key from the enryption key isinfeasible (whih is the ase for pratial asymmetri iphers), there no need tokeep the enryption key seret any more. Therefore, the enryption key ke isoften alled the publi key and the deryption key kd is alled the private key,and ipher systems that allow for publishing the enryption key are also alledpubli key (ipher) systems. The reeiver an publish his publi key, and anypotential sender an enrypt messages using this publi key without the needfor establishing a ommon key as in symmetri ipher systems.However, asymmetri ipher systems usually require muh more omputa-tional e�ort for enryption and deryption than symmetri ipher systems foromparable seurity levels, whih limits their suitability for low-end devies.
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Chapter 3Stream Cipher BuildingBloksWe now present the most important building bloks for stream iphers, with aspeial fous on omponents that are partiularly useful for hardware-orientediphers.3.1 Boolean FuntionsDe�nition 3.1. We all a funtion
f : {0, 1}n → {0, 1}m

(x1, . . . , xn) 7→ (y1, . . . , ym)an m-output Boolean funtion in n variables. We say that f depends on theinput xi if
f(x1, . . . , xi−1, xi, xi+1, . . . , xn) 6= f(x1, . . . , xi−1, xi ⊕ 1, xi+1, . . . , xn) .De�nition 3.2. We all a Boolean funtion f : {0, 1}n → {0, 1} balaned if

|f−1(0)| = |f−1(1)|.Observation 3.3. Eah Boolean funtion f : {0, 1}n → {0, 1} an be equiva-lently represented in algebrai normal form, i.e., as a polynomial
F (w1, . . . , wn) =

⊕

j∈M

mj with monomials mj =
∧

l∈Mj

wl and M j(f) ⊆ {1, . . . , n} .

|M j(f)| is alled the degree of the monomial mj . The degree of the polynomial
F (abbreviated by deg(F )) is de�ned to be the maximum over the degrees of themonomials ouring in F .We all a Boolean funtion F with deg(F ) = 1 a linear funtion.De�nition 3.4. For a binary vetor x = (x1, . . . , xn) ∈ {0, 1}n, we denoteby the Hamming weight of x (abbreviated by wt(x)) the number of non-zeroomponents in x, i.e.,

wt(x) := |{i ∈ {1, . . . , n}|xi 6= 0}| .



16 3.2 Feedbak Shift RegistersFor ease of notation, we will often impliitly identify a vetor (u0, . . . , uk−1) ∈

{0, 1}k with the integer u =
∑k−1

i=0 ui2
i.3.2 Feedbak Shift RegistersFeedbak shift registers have turned out to be partiularly useful devies forproduing bitstreams with good pseudorandomness properties.De�nition 3.5. A Feedbak Shift Register (FSR) in Fibonai arhitetureonsists of an n-bit register a = (a0, . . . , an−1) and a state update funtion

f : {0, 1}n → {0, 1}. Starting from an initial on�guration a0, in eah lok a0 isprodued as output and the register is updated aording to a := (a1, . . . , an−2, f(a0, . . . , an−1)).Depending on whether f is a linear funtion, we all the register a Linear Feed-bak Shift Register (LFSR) or a Nonlinear Feedbak Shift Register (NFSR).The FSR-onstrution is illustrated in Fig. 3.1.The de�nition implies that the output bitstream (wt)t≥0 produed from aninitial on�guration a0 = (a0
0, . . . , a

0
n−1) an be expressed as

wt =

{
a0

t for t ∈ {0, . . . , n− 1}
f(wt−n, . . . , wt−1) for t ≥ n

,while the state of the FSR after t lokings orresponds to (wt, . . . , wt+n−1).Surprisingly, even after many deades of researh, the properties of generalFSRs and the sequenes they produe are hardly understood. We therefore fouson two speial ases, linear feedbak shift registers and feebak shift registerswith arry, whih are muh less resistant to analysis and have found their wayinto pratial appliations.3.2.1 Linear Feedbak Shift Registers (LFSRs)Fibonai and Galois representations of LFSRsDe�nition 3.6. An n-stage Linear Feedbak Shift Register (LFSR) in Fibonaiarhiteture (see Fig. 3.2) ontains a main register with n binary ells (y0, . . . , yn−1)and �xed binary feedbak taps (d0, . . . , dn−1). From an initial state y, the LFSRoutputs in eah lok t the value y0, omputes the sum σ =
∑n−1

i=0 yidn−i−1 overthe integers and updates the register aording to y = (y1, y2, . . . , yn−1, σ mod 2).
an−1 a0· · ·

F

a1

Figure 3.1: Feedbak shift register (FSR) of length n
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σ

mod2
yn−1 yn−2 · · · y0

dn−1d0 · · ·d1Figure 3.2: LFSR in Fibonai arhitetureBased on an initial on�guration y0, we an desribe the output bitstream
(wt)t≥0 of a Fibonai LFSR by

wt =

{
y0

t for t ∈ {0, . . . , n− 1}
σt mod 2 for t ≥ n

,where σt =
∑n

i=1 wt−idi−1 for t ≥ n.Note that for performane reasons, the feedbak bit (σ mod 2) is usuallyomputed as
σ mod 2 =

n−1⊕

i=0

yidn−i−1 .Additionally to the (most ommonly used) Fibonai arhiteture, there ex-ists a Galois arhiteture for LFSRs.De�nition 3.7. An n-stage LFSR in Galois arhiteture (see Fig. 3.3) on-tains n binary main register ells (x0, . . . , xn−1) with �xed binary feedbak taps
(d0, . . . , dn−1), dn−1 6= 0. Starting from an initial state x, the Galois LFSRoutputs in eah lok the value x0, omputes the sums σi = xi+1 + x0di for
0 ≤ i < n (with xn = 0) and updates xi to σi mod 2 for all 0 ≤ i < n− 1.

xn−1 σ

dn−2

· · · σ

d1

x1 σ

d0

x0

dn−1Figure 3.3: LFSR in Galois arhitetureAgain, we may equivalently ompute the update value for xi as xi+1⊕ x0di.Algebrai model: Formal Power Series and F2nWe denote the ring of formal power series α(X) =
∑∞

i=0 uiX
i with ui ∈ {0, 1}(i.e., with oe�ients in the integers modulo 2) by F2[[X ]], and the Galois �eldwith 2n elements by F2n .Theorem 3.8 (Golomb (1981)). There is a one-to-one orrespondene be-tween quotients of polynomials α(X) = h(X)

q(X) ∈ F2[[X ]] and eventually peri-odi binary sequenes u whih assoiates to eah suh quotient its oe�ientsequene u = (u0, u1, . . .). The sequene u is stritly periodi if and only if
deg(h(X)) < deg(q(X)).



18 3.2 Feedbak Shift RegistersFor both the Fibonai and the Galois arhiteture, we de�ne the onnetionpolynomial q(X) by
q(X) := dn−1X

n + dn−2X
n−1 + . . . + d0X − 1and assoiate a Fibonai state (y0, . . . , yn−1) with the polynomial

h(X) =
n−1∑

k=0

k∑

i=0

di−1yk−iX
k, where d−1 = 1 , (3.1)and a Galois state (x0, . . . , xn−1) with the polynomial

h(X) = −
(
x0 + x1X + . . . + xn−1X

n−1
)

. (3.2)Theorem 3.9 (Golomb (1981)). The output sequene of an LFSR with feed-bak tap vetor orresponding to the onnetion polynomial q(X) and an initialstate orresponding to h(X) is the oe�ient sequene of α(X) = h(X)
q(X) .Corollary 3.10. The LFSR's output sequene is stritly periodi for any initialstate.Proof. Sine by the de�nition of h(X), deg(h(X)) ≤ n − 1 < n = deg(q(X)),the laim follows from Theorem 3.8. 2The Fibonai and Galois arhitetures an be related in the following way.Suppose that deg(q) = n and q is irreduible, let α denote a root of q(X) in F2n ,express a p ∈ F2n as linear ombination of the elements in {1, α, α2, . . . , αn−1},and de�ne

T : F2n → {0, 1}
p0 + p1α + . . . + pn−1α

n−1 7→ p0 .
(3.3)For periodi Galois states x, we de�ne a mapping E by

E : {periodi Galois states} → F2n

(x0, . . . , xn−1) 7→ x0 + x1α + x2α
2 + . . . + xn−1α

n−1 ,(3.4)For an element p ∈ F2n , we de�ne a mapping S by
S : F2n → {periodi Fibonai states}

p 7→
(
T (α1−np), T (α2−np), . . . , T (α−1p), T (p)

)
,

(3.5)i.e., yi = T (α−ip).Theorem 3.11 (Goresky and Klapper (2002)). The mappings E and S areone-to-one, i.e., there exist inverse funtions E−1 and S−1 that map elementsof F2n to the set of periodi Galois states and periodi Fibonai states to F2n ,respetively.We note that sine {1, α−1, . . . , α1−n} is a basis for F2n over F2, E−1 and
S−1 may be e�iently omputed by solving systems of linear equations in
{x0, . . . , xn−1} and p, respetively.We an now desribe the evolution of the LFSR states (resp. their F2n-representations) in the following way.



3.2 Feedbak Shift Registers 19Theorem 3.12 (Golomb (1981), Goresky and Klapper (2002)). For aninitial LFSR state orresponding to p ∈ F2n , the sequene (pt)t≥0 of F2n-representations of the register state at time t is given by pt = α−tp ∈ F2n,and the t-th output bit of the register an be omputed as zt = T (α−tp) ∈ {0, 1}.The period of the sequene (pt)t≥0 equals the order of α in F2n .Corollary 3.13 (Golomb (1981), Goresky and Klapper (2002)). If q(X)is not only an irreduible but also a primitive polynomial, α has the maximumpossible order 2n − 1 and hene the period, too, reahes its maximum 2n − 1.Consequently, we all LFSRs with primitive onnetion polynomialsmaximum-lengh LFSRs and the sequenes they produe m-sequenes.Remark 3.14. There are ϕ(2n−1)
n primitive polynomials of degree n ≥ 1 over

F2, where for m ∈ N, ϕ(m) = {i ∈ {1, . . . , m}|gcd(i, m) = 1}.Sequenes produed by individual Register CellsWe now want to desribe the sequenes of values taken by a partiular LFSR reg-ister ell. In the ase of Fibonai LFSRs, the following observation is straight-forward to make.Theorem 3.15. For an n-stage Fibonai LFSR with onnetion polynomial
q(X) and initial state y0, the sequene of values (yt

i)t≥0 taken by the i-th registerell yi is the original sequene shifted by i positions, i.e., given by the FibonaiLFSR-sequene with onnetion polynomial q(X) produed from the initial state
S(α−iS−1(x)) with α a root of q(X).A similar orrespondene holds for Galois LFSRs.Theorem 3.16. For an n-stage Galois LFSR with onnetion polynomial q(X)and initial state polynomial h(X), the sequene of values taken by the i-th regis-ter ell xi is the sequene produed by a Galois LFSR with onnetion polynomial
q(X) and initial state polynomial

hi(X) = xi(0) · q(X) + X · (hi+1(X) + dih0(X)) with hn(X) ≡ 0.Proof. Obviously, h0(X) = h(X). Sine deg(q) = n, we have dn−1 = 1, whihimplies xn−1(t + 1) = x0(t). We obtain for i = n− 1

hn−1(X)

q(X)
=

∞∑

t=0

xn−1(t) ·X
t = xn−1(0) + X ·

∞∑

t=0

xn−1(t + 1)Xt

= xn−1(0) + X ·
∞∑

t=0

x0(t) ·X
t

= xn−1(0) + X ·
h0(X)

q(X)
,and therefore

hn−1(X) = xn−1(0) · q(X) + X · h0(X) .



20 3.2 Feedbak Shift RegistersFor 0 ≤ i < n− 1, we have
hi(X)

q(X)
=

∞∑

t=0

xi(t) ·X
t = xi(0) + X ·

∞∑

t=0

xi(t + 1) ·Xt

= xi(0) + X ·
∞∑

t=0

(xi+1(t) + dix0(t)) ·X
t

= xi(0) + X ·

(
hi+1(X)

q(X)
+ di

h0(X)

q(X)

)

,whih implies
hi(X) = xi(0) · q(X) + X · (hi+1(X) + dih0(X)) . 2We an write the relation for hi(X) in losed form as follows.Lemma 3.17. The reurrene relation

hi(X) = xi(0) · q(X) + X · (hi+1(X) + dih0(X)) with hn(X) ≡ 0an be expressed as hi(X) = Fi(x) · q(X) + Mi · h0(X) with
Mi = X ·

n−1∑

j=i

djX
j−i and Fi(x) =

n−1∑

j=i

xj(0)Xj−i .Proof. The laimed formula is straightforwardly obtained by indution. 2Mappings between periodi Galois and Fibonai statesProposition 3.18. There exists a bijetive mapping between periodi initialGalois LFSR states and periodi initial Fibonai LFSR states suh that theregisters produe the same output (see Fig. 3.4).Proof. Aording to Theorem 3.11, the mapping
Φ : {periodi Galois states} → {periodi Fibonai states}

x 7→ S(E(x))with E and S de�ned as in Eqs. (3.4) and (3.5) is one-to-one. 2

periodic
Galois

x

F2n

periodic
Fibonacci

y

∑

n−1

i=0
xiα

i

S−1

(

T (α1−np), T (α2−np), . . . , T (α−1p), T (p)
)

E−1Figure 3.4: Mapping between periodi Galois and Fibonai LFSR statesLemma 3.19. The value xi of the i-th ell in the main register of a GaloisLFSR an be omputed in polynomial time from the state y of the orrespondingFibonai LFSR as the i-th omponent of the vetor E−1(S−1(x)).Proof. The laim follows immediately from Theorem 3.11. 2



3.2 Feedbak Shift Registers 21Statistial Properties of m-Sequenes
m-sequenes are statistially very similar to truely random sequenes. Conern-ing the three properties that we seleted in Setion 2.3, their behaviour an beharaterized as follows.Observation 3.20 (Golomb (1981)). Consider an m-sequene u produed byan n-stage LFSR.
• The period of u is T = 2n − 1.
• Any τ-bit blok B ours in one period of u exatly 2n−τ times if B 6= 0and 2n−τ − 1 times if B = 0.
• The autoorrelation θτ (u) satis�es |θτ(u)|

T = 1
2n−1 .The de�nition of LFSRs suggests another pseudorandomness ritereon, thelinear omplexity.De�nition 3.21. The linear omplexity of a binary sequene u = (ui)i≥0 (ab-breviated by lc(u)) is the length of the shortest LFSR that generates the sequene.Lemma 3.22. A sequene u = (ui)i≥0 with period T satis�es lc(u) ≤ T .Proof. The T -stage Fibonai LFSR with feedbak taps (0, . . . , 0, 1) ∈ {0, 1}Twill obivously generate u from the initial state y = (u0, . . . , uT−1). 2Remark 3.23. There exists an algorithm that omputes for a given sequene

u with l = lc(u) in time O(l3) and from the �rst 2l bits of u the value l andthe feedbak tap vetor of an l-stage LFSR that generates u. This algorithmis known as the Berlekamp-Massey algorithm for register synthesis (see, e.g.,Menezes et al. (2001) for a desription).We onlude that the linear omplexity of a keystream sequene should belarge enough suh that a generating LFSR annot be determined with realistiresoures.Pseudorandomness Postulate 4. The linear omplexity lc(u) of a keystreamsequene u should be reasonably large.We note that although the period of an m-sequene is T = 2n− 1, its linearomplexity is only n, i.e. logarithmi in T , and therefore muh lower than theupper bound given by Lemma 3.22. Conversely, if an LFSR is to produe asequene with linear omplexity l∗, its required minimum size is exponential in
l∗, whih is impratial for most appliations. In fat, this is the main reasonwhy LFSRs � despite their many other desirable statistial properties � are notsuitable for diret use as keystream generators.3.2.2 Feedbak Shift Registers With Carry (FCSRs)Feedbak with arry shift registers (FCSRs) have been disussed sine the mid-1990s in the ontext of e�ient pseudorandom number generation, partiularlyas an alternative to LFSRs (Couture and L'Euyer, 1994, Klapper and Goresky,1997, Marsaglia and Zaman, 1992).



22 3.2 Feedbak Shift RegistersAnalogously to Setion 3.2.1, we desribe the struture of FCSRs and makesome observations on the properties of their output sequenes. All our resultshave been experimentally on�rmed with the omputer algebra systemMagma(Bosma et al., 1997).Fibonai and Galois representations of FCSRsDe�nition 3.24. An n-stage FCSR in Fibonai arhiteture (see Fig. 3.5)ontains a main register with n binary ells (y0, . . . , yn−1) and �xed binary feed-bak taps (d0, . . . , dn−1) as well as an additional memory b. From an initialstate (y, b), the FCSR outputs in eah lok t the value y0, omputes the sum
σ = b +

∑n−1
i=0 yidn−i−1 over the integers and updates the register and memoryaording to b = σ div 2 and y = (y1, y2, . . . , yn−1, σ mod 2).

b

σ

div 2 mod 2
yn−1 yn−2 · · · y0

dn−1d0 · · ·d1Figure 3.5: FCSR in Fibonai arhitetureBased on an initial on�guration (y0, b0), we an desribe the output bit-stream (wt)t≥0 of a Fibonai FCSR by
wt =

{
y0

t for t ∈ {0, . . . , n− 1}
σt mod 2 for t ≥ n

,where σt = bt−n+
∑n

i=1 wt−idi−1 and bt−n+1 = σt div 2 for t ≥ n, whih implies
σt = (σt−1 div 2) +

n∑

i=1

wt−idi−1 with σn−1 = 2b0 . (3.6)We note that in general, b may be an arbitrarily large value. However, if theregister's state is periodi, b may be bounded as follows.Proposition 3.25 (Klapper and Goresky (1997)). If the Fibonai FCSRis in a periodi state, the value of the memory b satis�es 0 ≤ b < wt(d + 1).Corollary 3.26. A Fibonai FCSR with a periodi initial state will not requiremore than ⌊log2(wt(d + 1)− 1)⌋+ 1 bits to store the value b at any time.Similarly to the Galois arhiteture for LFSRs, there exists a Galois arhite-ture for FCSRs, whih was �rst observed by Noras (1997) and further analyzedby Goresky and Klapper (2002).De�nition 3.27. An n-stage FCSR in Galois arhiteture (see Fig. 3.6) on-tains n binary main register ells (x0, . . . , xn−1) with �xed binary feedbak taps
(d0, . . . , dn−1), dn−1 6= 0, and n− 1 memory ells (a0, . . . , an−2). Starting froman initial state (x, a), the Galois FCSR outputs in eah lok the value x0, om-putes the sums σi = xi+1+aidi+x0di for 0 ≤ i < n (with xn = 0 and an−1 = 0)and updates xi to σi mod 2 and ai to σi div 2 for all 0 ≤ i < n− 1.



3.2 Feedbak Shift Registers 23We will assume that memory ells are only present at those positions withfeedbak taps, i.e., ai = 0 if di = 0 for all 0 ≤ i < n − 1, sine ai = 0 for all iwith di = 0 is a neessary ondition for periodi states (x, a).
xn−1 σ

dn−2

an−2

· · · σ

d1

a1

x1 σ

d0

a0

x0

dn−1Figure 3.6: FCSR in Galois arhitetureImplementors will often prefer the Galois arhiteture to the Fibonai ar-hiteture sine the size of the memory is intrinsially limited and the memorybits an be updated in parallel, with eah addition involving at most three bits.Algebrai model: 2-adi Numbers and Z2The algebrai struture that is assoiated with FCSRs is the ring of 2-adinumbers. A 2-adi integer is a formal power series α =
∑∞

i=0 ui2
i with ui ∈

{0, 1}. The olletion of all suh formal power series forms the ring of 2-adinumbers. This ring espeially ontains rational numbers p/q, where p and qare integers and q is odd. 2-adi numbers and eventually periodi sequenes arelinked by the following Theorem.Theorem 3.28 (Klapper and Goresky (1997)). There is a one-to-one or-respondene between rational numbers α = p/q (with odd q) and eventually pe-riodi binary sequenes u whih assoiates to eah suh rational number α thebit sequene u = (u0, u1, . . .) of its 2-adi expansion. The sequene u is stritlyperiodi if and only if α ≤ 0 and |α| ≤ 1.For both FCSR arhitetures, we de�ne the onnetion integer q as q =
1− 2d. We identify a Galois state (x, a) with the integer

p = x + 2a (3.7)and a Fibonai state (y, b) with the integer
p = b2n −

n−1∑

k=0

k∑

i=0

qiyk−i2
k . (3.8)Theorem 3.29 (Klapper and Goresky (1997)). The output sequene of anFCSR with feedbak tap vetor orresponding to the onnetion integer q and aninitial state orresponding to p is the 2-adi expansion of α = p

q .Corollary 3.30. The output sequene of an FCSR with feedbak tap vetor or-responding to q will be stritly periodi if and only if the integer p that orre-sponds to the initial state satis�es 0 ≤ p ≤ |q|.



24 3.2 Feedbak Shift RegistersProof. The laim is an immediate onsequene of Theorem 3.28. 2Theorem 3.29 justi�es the following de�nition.De�nition 3.31. We all two Galois states (x, a) and (x′, a′) equivalent if
x + 2a = x′ + 2a′ .Similarly, we all two Fibonai states (y, b), (y′, b′) equivalent if

b2n −
n−1∑

k=0

k∑

i=0

qiyk−i2
k = b′2n −

n−1∑

k=0

k∑

i=0

qiy
′
k−i2

k .Note that although equivalent states produe the same output, the sequeneof states ((x(t), a(t))t≥0 in the Fibonai ase and (y(t), b(t))t≥0 in the Galoisase) obtained by running the FCSR from equivalent starting states may bedi�erent.Similarly to the LFSR-ase, we an now desribe the evolution of the FCSRstates based on their representations in the set Z/(qZ) of integers modulo q,whih we denote for simpliity by Zq.Theorem 3.32 (Klapper and Goresky (1997)). For an initial state or-responding to p ∈ Z|q|, the sequene of integer representations of the states
(pt)t≥0 is given by pt = 2−tp mod q and the t-th output bit an be omputed as
zt = pt mod 2 = (2−tp mod q) mod 2. If 0 < p < |q|, q odd, and p and q areoprime, then the period of the sequene (pt)t≥0 equals the order of 2 modulo q .For p = 0 and p = |q|, the FCSR produes the 2-adi expansions of 0/q = 0 and
|q|/q = −1, respetively, whih both have period one. If 0 < p < |q|, q odd, and
p and q are oprime, then the period of the sequene (pt)t≥0 equals the order of
2 modulo q.Corollary 3.33. If q is a (negative) prime for whih 2 is a primitive root, theperiod reahes its maximum |q| − 1.Consequently, we all FCSRs with prime onnetion integers for whih wis a primitive root maximum-length FCSRs and the sequenes they produe
l-sequenes.In ontrast to the number of primitive polynomals in the LFSR-ase, thenumber of onnetion integers q produing l-sequenes is not known with er-tainty. However, there exists the following onjeture.Conjeture 3.34 (Hooley (1967), Klapper (2004)). The number of primes
q of bitlength n for whih the order of 2 modulo q is q−1 is asymptotially cn

log(n) ,where c ≈ 0.37 is a onstant.For a maximum-length Galois FCSR with onnetion integer q, the statetransition graph (see De�nition 2.5) has exatly three onneted omponents,i.e., the two �xed points (0, 0) and (2n−1, d−2n−1) (orresponding to p = 0 and
p = |q|) and a omponent ontaining all the remaining states. This omponentonsists of a main yle of length |q| − 1 and paths of lengths at most n + 4leading to it (Arnault et al., 2008). In other words:Observation 3.35. An n-stage maximum-length Galois FCSR will be in a pe-riodi state after at most n + 4 lokings.



3.2 Feedbak Shift Registers 25Sequenes produed by individual Register CellsAs for LFSRs, the sequenes produed by individual main register ells of anFCSR are again FCSR-sequenes.Theorem 3.36. For a Fibonai FCSR with onnetion integer q and an initialstate orresponding to the integer p, the sequene (yt
i)t≥0 of values taken by themain register ell yi is the FCSR sequene given by the 2-adi expansion of pi/qwith pi = 2−ip.Theorem 3.37 (Arnault and Berger (2005a), Theorem 4). For a GaloisFCSR with initial state (x, a) and p = x+2a, the sequene (xt

i)t≥0 of values takenby the main register ell i is again an FCSR-sequene, more preisely the 2-adiexpansion of pi/q with pi = Fi(x, a) · q + Mi · p, Fi(x, a) =
∑n−1

j=i (xj + 2aj)2
j−i,and with onstants Mi = 2

∑n−1
j=i dj2

j−i.It is interesting to note (and will prove useful in Setion 3.2.2) that if theinitial state (x, a) is periodi, this expression an be further simpli�ed as follows.Proposition 3.38. For a maximum-length Galois FCSR with onnetion inte-ger q, a periodi initial state (x0, a0), and pt = xt +2at, the sequene (xt
i)t≥0 ofvalues taken by a �xed main register ell i orresponds to (pt+si mod 2)t≥0 with

si = − log2(Mi) mod q and Mi = 2
∑n−1

j=i dj2
j−i.Proof. If (x0, a0) is periodi, the 2-adi expansions of pi/q have to be stritlyperiodi for all i. Theorem 3.28 implies that 0 ≤ pi < |q|, hene pi = pi mod q =

Mi · p0 mod q. In a maximum-length Galois FCSR, eah possible value of
pi mod q is passed after si iterations, hene pi = 2−sip0 mod q, and we have
Mi = 2−si mod q. 2Proposition 3.38 implies that the sequene (xt

i)t≥0 orresponds to the se-quene produed by the whole FCSR (i.e., (xt
0)t≥0) shifted by si positions.Note that the phase shifts si are independent of the initial state p and dependon i (and q) only.Example 3.39. Consider the toy example of Arnault and Berger (2005a) with

q = −347, hene n = 8 and d = 174. The output of the FCSR is stritly periodiwith period −q − 1 = 346. We �nd M0 = 1, M1 = 174, M2 = 86, M3 = 42,
M4 = 20, M5 = 10, M6 = 4, M7 = 2. The phase shifts are s0 = 0, s1 = 1,
s2 = 23, s3 = 250, s4 = 67, s5 = 68, s6 = 344, s7 = 345.Mappings between periodi Galois and Fibonai StatesThere is an onto funtion

E : {periodi Galois states}\{(1, . . . , 1; a0, . . . , an−2)} → Z|q|

(x, y) 7→ x + 2a mod q(3.9)that assigns to a Galois state an element of Z|q|.Moreover, there exists a one to one mapping S from Z|q| onto the set ofstritly periodi states of the Fibonai FCSR with onnetion integer q exept



26 3.2 Feedbak Shift Registersfor the state (1, . . . , 1; wt(q + 1)− 1), namely
S : Z|q| → {periodi Fibonai states}\{(1, . . . , 1; wt(q + 1)− 1)}

p 7→ (y, b) (3.10)with
yi = ((2−ip mod q) mod 2) for 0 ≤ i ≤ n− 1and

b =
1

2n



p +

n−1∑

k=0

k∑

j=0

dj−1yk−j2
k



 .Conversely, for a given periodi Fibonai state (y, b) the orresponding integer
p will satisfy 0 ≤ p < |q|.Hene, for an arbitrary initial state of a Galois FCSR with onnetion integer
q, we an ompute a periodi initial state of a Fibonai FCSR with onnetioninteger q and vie versa suh that the two registers will produe the same output(Goresky and Klapper, 2002).Obviously, the mapping E from the Galois states to Z|q| is not one to one,i.e., generally more than one state is mapped to the same p ∈ Z|q|. However,the following Proposition shows how to ompute for given p ∈ Z|q| the uniquelydetermined orresponding periodi state (x, a).Proposition 3.40. For all p ∈ Z|q|, the only stritly periodi state (x, a) with
x+2a = p of a maximum-length Galois FCSR of size n with onnetion integer
q is given by xi = Mi · p mod q mod 2 and a = (p− x)/2 with Mi de�ned as inProposition 3.38.Proof. We �rst observe that x + 2a = x + 2 p−x

2 = p, hene (x, a) orrespondsto p. If p = 0, we have (x, a) = (0, 0) at all times, so (x, a) is periodi. Similarlyfor p = |q|, the only possible state (x, a) is (2n − 1, d − 2n−1), and this stateis periodi (see Setion 3.2.2). If p 6= 0, the state transition graph representingthe evolution of the states onsists of a main yle of length |q| − 1 and pathsonverging to it. Hene, for eah initial state (x′, a′) with x′ + 2a′ = p, thereexists exatly one state (x̃, ã) with x̃ + 2ã = p that lies on the main yle.For this state (x̃, ã), the sequenes (x̃t
i)t≥0 have to be stritly periodi. Due toProposition 3.38, the �rst bit of the 2-adi expansion of pi/q and hene x̃i isequal to pi mod 2 with pi = Mi · p mod q. Moreover, ã is uniquely determinedby x̃ and p, whih implies (x̃, ã) = (x, a). 2Proposition 3.40 provides a possible answer to the open question raised byGoresky and Klapper (2002) how to intrinsially haraterize the periodi statesorresponding to a partiular p ∈ Z|q| and allows us to link periodi Fibonaiand periodi Galois states similarly to the LFSR-ase.Corollary 3.41. There exists a bijetive mapping between periodi initial Ga-lois FCSR states and periodi initial Fibonai FCSR states suh that registersprodue the same output (see Fig. 3.7).Proof. Proposition 3.40 implies a mapping Ẽ of periodi Galois states onto

Z|q|. With E and S de�ned by Eqs. (3.9) and (3.10), the laim follows. 2



3.2 Feedbak Shift Registers 27
periodic
Galois
(x, a)

Z|q|
periodic

Fibonacci
(y, b)p = x + 2a

p = b2n
−

∑n−1

k=0

∑k

j=0
qjyk−j2

k

yi = ((2−ip mod q) mod 2)

b = 1

2n

(

p +
∑n−1

k=0

∑k

j=0
qjyk−j2

k

)

Ẽ−1Figure 3.7: Mapping between periodi Galois and Fibonai FCSR statesExample 3.42. Continuing Example 3.39, let q = −347. For p = 100, weompute xi = Mi · p mod q mod 2, whih yields x = (01010000)2 = 64 + 16 =
80, and obtain a = (p − x)/2 = 10. Hene, the stritly periodi initial stateorresponding to p = 100 is (x, a) = (80, 10). Plugging the values of p and qinto Eq. (3.10) yields the orresponding periodi Fibonai state (y, b) = (148, 2).Finally, we may obtain the sequene produed by a Galois main register ellfrom a Fibonai FCSR as follows.Lemma 3.43. The value xi of the i-th ell in the main register of a GaloisFCSR an be omputed from the stritly periodi state (y, b) of the orrespondingFibonai FCSR by

xi = Mi



b2n −
n−1∑

k=0

k∑

j=0

dj−1yk−j2
k



 mod q mod 2 .Proof. The laimed formula is an immediate onsequene of Eq. (3.8) and Propo-sitions 3.38 and 3.40. 2Statistial properties of l-sequenesThe period T of an l-sequene produed by an n-stage FCSR with onnetioninteger q is |q| − 1 (Klapper and Goresky, 1997), i.e., 2n−1 − 1 < T < 2n − 1.The linear omplexity of l-sequenes is lose to |q|−1
2 (Tian and Qi, 2009).Theorem 3.44 (Blum et al. (1986), Goresky and Klapper (2006)). Let

u be an l-sequene with onnetion integer q. The number of ourrenes of anyblok e = (e0, e1, . . . , eτ−1) of size τ in u varies at most by 1 as the blok variesover all 2τ possibilities. That is, there is an integer w′ so that every blok oflength τ ours either w′ times or w′ + 1 times in u. The number of bloks oflength τ that our w′ + 1 times is (q − 1)mod 2τ , and the number of bloks oflength τ that our w′ times is 2τ − ((q − 1)mod 2τ ).We are espeially interested in the ourrenes of a partiular blok B =
(b0, . . . , bτ−1) in one period of a sequene u with period length m, i.e., in theindies i, 0 ≤ i < m, suh that

ui mod m = b0, u(i+1) mod m = b1, . . . , u(i+τ−1) mod m = bτ−1 .Theorem 3.45. Let u be an l-sequene with onnetion integer q. Then forall 0 < τ < q, the number of ourenes of any blok B = (b0, . . . , bτ−1) in aperiod of u is ⌊(q − 1− v)/2τ⌋+ 1 if v 6= 0 and ⌊(q− 1− v)/2τ⌋ if v = 0, where
v = (−q ·

∑τ−1
i=0 bi2

i)mod 2τ .



28 3.2 Feedbak Shift RegistersThis result was essentially observed by Klapper (2004). We provide an al-ternative proof illustrating some methods that will be useful in the remainderof this setion.Proof (Theorem 3.45). Identify the blok B with the integer β :=
∑τ−1

i=0 bi2
i,

0 ≤ β < 2τ . The number of ourrenes of B in a period of u equals the numberof shifts of u starting with B, whih in turn equals the number of integers uwith −u/q ≡ β mod 2τ and 0 < u < q. Sine q is invertible mod 2τ , we have
u ≡ −qβ mod 2τ . Set v = −qβ mod 2τ ∈ {0, . . . , 2τ − 1}. If v ≤ q − 1, the setof integers u ful�lling this ondition an be written as

{v, v + 2τ , . . . , v + ⌊ q−1−v
2τ ⌋ · 2τ} for v 6= 0

{v + 2τ , . . . , v + ⌊ q−1−v
2τ ⌋ · 2τ} for v = 0

.The size of this set is ⌊(q− 1− v)/2τ⌋+ 1 if v 6= 0 and ⌊(q− 1− v)/2τ⌋ if v = 0.If v > q − 1, the blok B will not appear in u. In this ase, we have
−2τ ≤ q − 1 − v < 0, whih means ⌊(q − 1 − v)/2τ⌋ = −1 and therefore
⌊(q − 1− v)/2τ⌋+ 1 = 0. 2The expeted autoorrelation of l-sequenes an be shown to be zero (Xuand Qi, 2006). For any given shift τ , the autoorrelation is in O(ln2 q) (Xu et al.,2009), but how to ompute its exat value is believed to be di�ult (Goreskyand Klapper, 1997) and is only known for q = pe, where p is prime and e ≥ 2,and τ of a speial form (Xu and Qi, 2006).We now desribe a method for omputing the exat value of the autoor-relation whih is based on ounting the number of ourrenes of partiular
(τ + 1)-bit bloks B = (bτ , bτ−1, . . . , b0) in the sequene. The main idea is to�x the �rst and the last bit in B and to ompute the orrelation based on howoften these restrited bloks our in the sequene. Hene, we de�ne

Bγ
ij := number of bloks B = (i, bτ−1, bτ−2, . . . , b1, j) that our γ timesfor (i, j) ∈ {0, 1}2 and ompute the orrelation as
θτ =

(
∑

γ

γ ·Bγ
00 +

∑

γ

γ · Bγ
11

)

−

(
∑

γ

γ ·Bγ
10 +

∑

γ

γ ·Bγ
01

)

. (3.11)Theorem 3.45 implies that a given (τ +1)-bit blok Bγ
ij ours either w timesor w + 1 times in a period of u, whih means that γ ∈ {w, w + 1} in Eq. (3.11).We now want to haraterize more preisely the sets of τ -bit bloks thatour equally often.Lemma 3.46. The blok B = (b0, b1, . . . , bτ−1) ours w + 1 times in a periodof u if β =

∑τ−1
i=0 bi2

i ful�lls 0 < −qβ mod 2τ ≤ q − 1 mod 2τ , and w timesotherwise, where w = ⌊2k−τ ⌋+ ((q mod 2k) div 2τ ) and k = ⌊log2(q)⌋Proof. Let v = −qβ mod 2τ , hene 0 ≤ v < 2τ . We �rst onsider the ase
τ ≤ k and de�ne e = q mod 2k, x = e div 2τ and y = e mod 2τ . Sine q is odd,we have y > 0 and (y − 1) mod 2τ = (y mod 2τ )− 1 and therefore

q − 1− v = 2k + x · 2τ + y − 1− v
︸ ︷︷ ︸

S

.



3.2 Feedbak Shift Registers 29Sine 0 ≤ y − 1 < 2τ , we have −2τ < S < 2τ , and S ≥ 0 if and only if
y − 1 ≥ v. Hene,

⌊
q − 1− v

2τ

⌋

=

{
2k−τ + x for S ≥ 0
2k−τ + x− 1 for S < 0

.We have v = 0 if and only if β = 0, and v = 0 implies S ≥ 0. We obtain theresult by applying Theorem 3.45.In ase τ > k, we have 0 ≤ q−1 < 2k+1 ≤ 2τ and therefore −2τ < q−v−1 <
2τ , whih implies ⌊(q − 1− v)/2τ⌋ ∈ {−1, 0}, i.e., the blok orresponding to vours either 0 = w or 1 = w + 1 times in u. It is q − 1 = q − 1 mod 2τ sine
τ > k, and we have ⌊(q − 1 − v)/2τ⌋ = 0 if and only if v ≤ q − 1. Hene, byTheorem 3.45, the blok orresponding to v ours w + 1 = 1 times in u if andonly if 0 < v ≤ q − 1 mod 2τ . 2Note that sine there are q−1 mod 2τ elements β ∈ Z2τ ful�lling 0 < −qβ ≤
q − 1 mod 2τ , Lemma 3.46 implies similarly to Theorem 3.44 that the numberof τ -bit bloks ouring w + 1 times in a period of u is q − 1 mod 2τ and thenumber of bloks ouring w times is 2τ − ((q − 1) mod 2τ ).Based on our observations, we an reformulate Eq. (3.11) as

θτ = (B00 + B11)− (B01 + B10) with Bij = w ·Bw
ij + (w + 1) ·Bw+1

ij .Before we derive an expliit formula for θτ , we state a preliminary Lemmathat is useful for speeding up the omputation.Lemma 3.47. For a blok B of length τ orresponding to β =
∑τ−1

i=0 bi2
i ∈ Z2τand v = −qβ mod 2τ , we have β ≡ v mod 2.Proof. We have

β mod 2 =
(
v · (−q)−1 mod 2τ

) mod 2 = v · (−q)−1 mod 2

=

{
0 v ≡ 0 mod 2
1 v ≡ 1 mod 2 ,sine q−1 mod 2τ is odd if and only if q is odd. 2Hene, in order to ompute Bw+1

00 , it su�es to ompute the number of bloksorresponding to even β ∈ Z2τ that our w + 1 times, whih, by Lemmas 3.46and 3.47, is equal to the number of β ∈ Z2τ−1 suh that 0 < 2β(−q) mod 2τ+1 ≤
q − 1 mod 2τ+1, whih is equivalent to

2βq mod 2τ+1 ≥ −q mod 2τ+1 .The bloks orresponding to the remaining β will our w times. By similararguments, we obtain Bw
ij + Bw+1

ij = 2τ−1 for all pairs (i, j) ∈ {0, 1}2.From the omplement property of l-sequenes we know that Bw+1
00 = Bw+1

11and Bw+1
01 = Bw+1

10 . Moreover, we have Bw+1
00 + Bw+1

01 + Bw+1
10 + Bw+1

11 =
q − 1 mod 2τ+1 due to Theorem 3.44. Hene,

B01 = w(2τ−1 −Bw+1
01 ) + (w + 1)Bw+1

01

= w2τ−1 + Bw+1
01

= w2τ−1 +
q − 1 mod 2τ+1

2
−Bw+1

00 ,



30 3.2 Feedbak Shift Registersand therefore
θτ = (B00 + B11)− (B01 + B10)

= 2(B00 −B01)

= 2

(

wBw
00 + wBw+1

00 − w2τ−1 −
q − 1 mod 2τ+1

2
+ 2Bw+1

00

)

= 2w(Bw
00 + Bw+1

00 − 2τ−1)− (q − 1 mod 2τ ) + 4Bw+1
00

= 4Bw+1
00 − (q − 1 mod 2τ+1) .Altogether, we obtain the following result.Proposition 3.48. Let u denote an l-sequene with onnetion integer q. Thenfor a given shift τ > 0 the autoorrelation θτ (u) is equal to 4B(τ, q) − (q −

1 mod 2τ+1), where B(τ, q) denotes the number of β ∈ Z2τ−1 suh that
2βq mod 2τ+1 > −q mod 2τ+1 .The e�ort required for omputing θτ (u) is dominated by the omputation of

B(τ, q). The straightforward approah to test all β ∈ {0, . . . , 2r−1 − 1} an beperformed by evaluating the funtion
f(β) = 2qβ mod 2τ+1 =

{
f(β − 1) + 2q mod 2τ+1 for β > 0
0 for β = 0for β ∈ {0, . . . , 2r−1−1}, whih needs little memory, butO ((2τ−1 − 1

)
log2 2τ

)
=

O (τ · 2τ ) operations. Hene, our method is only pratial for small shifts τ .Example 3.49. For q = −347 and the orresponding l-sequene u, we omputefor the shift τ = 6 the values B(τ, q) = 8 and q − 1 mod 2τ+1 = 26, whihimplies θτ (u) = 4 · 8− 26 = 6. Similarly for τ = 8, we obtain B(τ, q) = 24 and
q − 1 mod 2τ+1 = 90, hene θτ (u) = 6.Analogously to the de�nition of linear omplexity (De�nition 3.21), Klapperand Goresky (1997) have established the notion of 2-adi span.De�nition 3.50. The 2-adi span λ2(u) of a binary sequene u is the size (interms of number of ells) of the smallest FCSR that generates u.Lemma 3.51 (Klapper and Goresky (1997)). For a sequene u let α =
∑∞

i=0 ai2
i = p

q be the fration in lowest terms whose 2-adi expansion agreeswith u. Then
|(λ2(u)− 2)− ϕ2(u)| ≤ log2(ϕ2(u)) ,where ϕ2(u) = log2(max(|p|, |q|)).Remark 3.52. Let u be an eventually periodi sequene with 2-adi span λ2.Then it is possible to ompute integers p, q suh that the 2-adi expansion of p/qis u in time O((λ2)

2) while using only the �rst 2λ2 + 1 bits of u. This algorihmresembles the Berlekamp-Massey algorithm for LFSR synthesis and is desribedby Arnault et al. (2004), Klapper and Xu (2004).This suggests to add the 2-adi span to our list of pseudorandomness postu-lates.



3.2 Feedbak Shift Registers 31Pseudorandomness Postulate 5. The 2-adi span λ2(u) of a keystream se-quene u should be reasonably large.We onlude that similarly to the LFSR-ase, the output of maximum-lengthFCSRs is not diretly suitable as keystream due to its low 2-adi span. How-ever, their otherwise desirable statistial properties reommend both LFSRsand FCSRs, when ombined with other devies, as building bloks for streamiphers.
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Chapter 4Stream Ciphers based onFeedbak Shift Registers4.1 Generi ConstrutionsWe have seen in the previous hapter that both LFSRs and FCSRs may providesequenes with good pseudorandomness properties, but the LFSRs' low linearomplexity and the FCSRs' small 2-adi span prevent both devies from beingdiretly used as keystream generators. Nevertheless, many stream iphers tryto bene�t from the desirable properties of FSR-sequenes and ombine one ormore FSRs with other omponents in order to ompensate their weaknesses.We onsider in this hapter several generi strategies, namely running FSRsequenes through additional Boolean funtions before outputting keystream(ombination generators and �lter generators), adding a small number of mem-ory bits that are updated in a nonlinear way, and state-dependent loking ofthe FSRs.4.1.1 Combination Generators and Filter GeneratorsA ombination generator (more preisely, the FSM of a ombination genera-tor) onsists of a small number of feedbak shift registers R0, . . . , Rk−1 and aBoolean funtion C : {0, 1}k → {0, 1} that ombines the output sequenes of theinternal registers in order to produe the output keystream (Rueppel (1992), seeFig. 4.1). More preisely, in eah lok yle t, eah FSR Rj provides a bit xj
t andthe generator produes a keystream bit zt = C(xt), where xt = (x0

t , . . . , x
k−1
t ).A �lter generator (again, the FSM of a �lter generator to be preise) ontainsonly one feedbak shift register R of length n and a Boolean �lter funtion

C : {0, 1}n → {0, 1} that produes the output keystream from the urrentontents of ertain register ells (Rueppel (1992), see Fig. 4.2).Some ombination or �lter generators (e.g., the F-FCSR stream ipher familyto be disussed in Setion 4.2.6) produe more than one output bit per lokyle, i.e., the keystream funtion C maps into {0, 1}∗ instead of {0, 1}.Theorem 3.11 and Corollary 3.41 have shown that for both LFSRs and FC-SRs, there exist one-to-one mappings between periodi Fibonai states and pe-riodi Galois states suh that the output sequenes produed from these states
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Figure 4.2: FSR-based �lter generatoroinide. Moreover, the sequenes produed by individual main register ellsare again LFSR/FCSR-sequenes (Theorem 3.16 and Proposition 3.38).These observations imply that we an transform a Galois LFSR/FCSR-based�lter generator into a Galois LFSR/FCSR-based ombination generator thatontains as many registers (with appropriate starting states) as the �lter fun-tion has inputs. Furthermore, Galois registers in the ombination generator maybe arbitrarily replaed by Fibonai registers with equivalent starting states.Finally, we may even build an equivalent �lter generator based on a FibonaiLFSR/FCSR (with modi�ed �lter) based on Lemmas 3.19 and 3.43. Figure 4.3summarizes these equivalenes.Note that if all operations of the generator's FSM are linear, its initial statean be e�iently determined from a number of keystream bits by solving asystem of linear equations. Therefore, espeially in the ase that all FSRs areLFSRs, a non-linear funtion should be hosen as keystream funtion C.4.1.2 Additional MemoryIn order to improve resistane against orrelation attaks and algebrai attaks(to be disussed in Setions 6.1 and 6.2), the keystream generation omponentof a ombination generator is sometimes equipped with a few bits of additionalmemory, thereby beoming a keystream-FSM. The keystream-FSM takes k bitsas input from the FSRs and onsists of l memory bits, a keystream funtion
C : {0, 1}k × {0, 1}l → {0, 1}∗ ,
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Figure 4.3: Equivalent representations of ombination and �lter generatorsand a memory update funtion
δ : {0, 1}k × {0, 1}l → {0, 1}l .In eah lok t, it produes from the urrent input xt = (x0

t , . . . , x
k−1
t ) andthe urrent memory state qt = (q0

t , . . . , ql−1
t ) the keystream output C(xt, qt) andupdates the memory to qt+1 := δ(xt, qt).A regularly loked keystream generator with a keystream-FSM of the de-sribed form is ommonly alled regularly loked (k, l)-ombiner (with memory).Observe that in this notation, the memoryless ombination generator desribedin Setion 4.1.1 orresponds to a (k, 0)-ombiner.LFSR-based ombiners with memory were originally introdued by Rueppel(1986). Sine then, they have been widely examined in ryptography and havefound their way into pratial appliations. The perhaps best known exampleused in pratie is the E0 keystream generator, whih is in the set of exampleiphers that we are going to examine more losely in the remainder of this thesis.4.1.3 Irregular ClokingAnother way to introdue nonlinearity into a keystream generator is to lokthe FSRs in an irregular manner. This is often aomplished by a lok ontrolmehanism whih determines based on the urrent FSM state how often eahregister's update funtion is applied before the next keystream bits are produed.Examples for this desgin inlude the A5/1 generator (to be desribed inSetion 4.2.3) and the shrinking generator (Coppersmith et al., 1994).4.2 Example CiphersIn the ECRYPT stream ipher projet eStream (eStream), a number of newiphers have been proposed and analyzed in the past few years. Many of thesereent designs partly replae LFSRs by other feedbak shift registers suh asnonlinear feedbak shift registers (NFSRs) and feedbak shift registers witharry (FCSRs) in order to prevent standard ryptanalysis tehniques like alge-brai attaks and orrelation attaks. Moreover, ombinations of di�erent typesof feedbak shift registers permit alternative ompression funtions.



36 4.2 Example CiphersAs examples for these reent proposals, we onsider the iphers Trivium,Grain and the F-FCSR family along with the more aged self-shrinking generator,the E0 generator, and the A5/1 generator.4.2.1 Self-Shrinking GeneratorThe self-shrinking generator was proposed by Meier and Sta�elbah (1994) andonsists of only one LFSR and no memory. Every two lok yles of the LFSR,the generator produes a keystream bit aording to the funtion
shrink : {0, 1}2 → {0, 1, ǫ}

(a, b) 7→

{
b if a = 1
ǫ otherwise ,where ǫ denotes the empty word. For an internal bitstream w = (w0, . . . , w2m−1),the self-shrinking generator produes the keystream z = (z0, . . . , zm−1) aord-ing to

shrinkstream : {0, 1}2m → {0, 1, ǫ}m

(w0, . . . , w2m−1) 7→ (shrink(w0, w1), . . . , shrink(w2m−2, w2m−1)),i.e., zt = shrink(w2t, w2t+1) for t ∈ {0, . . . , m− 1}.The designers proposed a short-keystream attak requiring about 20.75n op-erations, whih was improved to 20.694n by Zenner et al. (2001). The urrentlybest short-keystream attak is a guess-and-determine attak due to Hell andJohansson (2006) requiring around 20.65n operations and an amount of mem-ory that is polynomial in n. The BDD-Attak on the self-shrinking generator,whih we will desribe in Setion 5.5.1, needs roughly as many operations, butexponentially more memory.The long-keystream attak by Mihaljevi¢ (1996) needs at least 20.3n keystreambits in order to ompute the initial state in less than 20.6563n polynomial-timeoperations. Its asymptoti runtime was improved by Hell and Johansson (2006),Zhang and Feng (2006) for the ase that up to 20.5n keystream bits are available,while even an improved tradeo� is possible if the weight of the LFSR feedbakpolynomial is at most 5 (Debraize and Goubin, 2008).4.2.2 E0 GeneratorThe Bluetooth stream ipher has key length 128 bits and IV-length 128 bits.It onsists of a key/IV setup proedure and the keystream generator E0 (TheBluetooth SIG, 2001).
E0 is a regularly loked (k, l) = (4, 4) ombiner. It onsists of four LFSRs

R0, . . . , R3 of lenghts (n0, . . . , n3) = (25, 31, 33, 39) and a four-bit memory unit.We denote by xt = (x0
t , . . . , x

3
t ) ∈ {0, 1}4 the bits read from the LFSRs and by

qt = (q0
t , . . . , q3

t ) ∈ {0, 1}4 the memory state at time t.The keystream funtion g : {0, 1}4 × {0, 1}4 → {0, 1} is de�ned as
g(xt, qt) :=

3⊕

i=0

xi
t

3⊕

i=0

ciqi
t ,where (c3, . . . , c0) = (0, 1, 0, 0).



4.2 Example Ciphers 37The memory update funtion δ : {0, 1}4 × {0, 1}4 → {0, 1}4 is given by
δ(xt, qt) := (q3

t+1, q
2
t+1, q

1
t+1, q

0
t+1)where

(q1
t+1, q

0
t+1) := (q3

t , q2
t )

(q3
t+1, q

2
t+1) := st ⊕ T1(q

3
t , q2

t )⊕ T2(q
1
t , q0

t )

st :=
⌊x3

t + x2
t + x1

t + x0
t + 2 · q3

t + q2
t

2

⌋
∈ {0, 1}2

T1(q
3
t , q2

t ) := (q3
t , q2

t )

T2(q
3
t , q2

t ) := (q2
t , q3

t ⊕ q2
t ) .Figure 4.4 illustrates the design of E0.
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Figure 4.4: The E0 keystream generatorNote that we may write st as
st = ⌊

s′t + 2 · q3
t + q2

t

2
⌋ with s′t :=

3∑

i=0

xi
t . (4.1)Hene, the memory update funtion depends only on the sum s′t. Similarly, thekeystream funtion g depends only on the value ⊕3

i=0 xi
t = s′t mod 2, whihimplies

g(xt, qt) = (s′t mod 2)⊕
3⊕

i=0

ciqi
t . (4.2)Sine the Bluetooth tehnology so far is most often applied in wireless voietransmission and data exhange between personal information managers andother mobile devies, on�dentiality of the ommuniation is one of the mostimportant seurity requirements.



38 4.2 Example CiphersConsequently, the seurity of the Bluetooth enryption has been analyzedin several papers (Armkneht and Krause, 2003, Courtois, 2003, Ekdahl, 2003,Fluhrer and Luks, 2001, Goli¢ et al., 2002, Hermelin and Nyberg, 1999, Jakob-sson and Wetzel, 2001, Krause, 2002, Lu and Vaudenay, 2005, 2004, Saarinen,2000). Armkneht et al. (2004) showed that an e�ient attak on E0 impliesan e�ient attak on the whole ipher. Therefore, improving the seurity of E0is a natural demand.The best urrently known long-keystream attaks against E0 are algebraiattaks (Armkneht and Krause, 2003) and orrelation attaks (Lu and Vau-denay, 2004, Lu et al., 2005). However, all these attaks need a large amountof keystream (228 to 239 in the ase of orrelation attaks), and even in termsof time and memory requirements, the attak by Lu et al. (2005) is the onlyfeasible one among them.We note that, when applied to the Bluetooth setting, the orrelation attaksby Lu and Vaudenay (2004), Lu et al. (2005) depend on the linearity of thekey-shedule and other spei� properties of the Bluetooth enryption system.4.2.3 A5/1 GeneratorThe A5/1 keystream generator is used in the GSM standard for mobile tele-phones. The initialization proedure transforms a 64-bit seret key and a 22-bitpubli frame number into the 64-bit initial state of the generator. Aord-ing to Brieno et al. (1999), who obtained the A5/1 design by reverse en-gineering, the generator onsists of 3 LFSRs R0, R1, R2 of lengths n0, n1,
n2, respetively, and a lok ontrol ensuring that the keybits do not lin-early depend on the initial states of the LFSRs. For eah r ∈ {0, 1, 2}, aregister ell qNr , N r ∈ {⌈nr

2 ⌉ − 1, ⌈nr

2 ⌉}, is seleted in LFSR Rr as inputfor the lok ontrol. The GSM standard uses the parameters (n0, n1, n2) =
(19, 22, 23) and (N0, N1, N2) = (11, 12, 13).Let vi and v′i denote the bits at the ontrol and at the output positions inregister Ri for i ∈ {0, 1, 2}. In eah master lok of the generator, the keystreambit zi = f(v′0, v

′
1, v

′
2) := v′0 ⊕ v′1 ⊕ v′2 is produed, and register Ri is loked ifand only if vi = maj3(v0, v1, v2), wheremaj3 : {0, 1}3 → {0, 1}

(a, b, c) 7→

{
1 if a + b + c ≥ 2
0 otherwiseThe A5/1 onstrution is illustrated in Fig. 4.5.The �rst short-keystream attak on A5/1 was given by Goli¢ (1997) andneeds 242 polynomial time operations. Afterwards, several long-keystream at-taks on A5/1 were proposed. Biryukov et al. (2000) present an attak thatbreaks A5/1 from 215 known keystream bits within minutes after a preproess-ing step of 248 operations. Ekdahl and Johansson (2001), Maximov et al. (2005)exploit the linearity of the initialization proedure and manage to break the i-pher within minutes, requiring only a few seonds of onversation and littleomputational resoures. A reent e�ort by a researh group around Nohl andKriÿler (2010) has reeived muh attention for implementing a distributed, time-memory tradeo�-based brute-fore attak that produed a 2-terabyte rainbow
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· · · · · ·Figure 4.5: The A5/1 keystream generatortable for A5/1, suh that the session key of any onversation an be easily de-rived. A5/1 is supposed to be replaed by A5/3, but only reently, Dunkelmanet al. (2010) have published a pratial attak on its underlying blok ipher.4.2.4 TriviumTrivium (de Cannière and Preneel, 2005) is a regularly loked ombinationgenerator that onsists of three interonneted NFSRs R0, R1, R2 of lenghts93,84,111, respetively. The 288-bit initial state of the generator is derived froman 80-bit key and an 80-bit IV by 1152 initialization rounds. The keystreamfuntion omputes a keystream bit zt by linearly ombining six bits taken fromthe registers, with eah NFSR ontributing two bits.More preisely, from an initial state (s1, . . . , s288) the algorithm produeskeystream bits zt as follows.for t = 0 to N − 1 do

t1 ← s1 ⊕ s28

t2 ← s94 ⊕ s109

t3 ← s178 ⊕ s223

zt ← t1 ⊕ t2 ⊕ t3
u1 ← t1 ⊕ s2s3 ⊕ s100

u2 ← t2 ⊕ s95s96 ⊕ s202

u3 ← t3 ⊕ s179s180 ⊕ s25

(s1, . . . , s93)← (s2, . . . , s93, u3)
(s94, . . . , s177)← (s95, . . . , s177, u1)
(s178, . . . , s288)← (s179, . . . , s288, u2)end forDue to its simpliity, espeially its low non-linearity, Trivium has reeivedmuh ryptanalyti attention (see, e.g., Aumasson et al. (2009), Eibah (2008),eSTREAM Disussion Forum (2005), Maximov and Biryukov (2007)). Whilethe best key reovery attak, whih is due to Dinur and Shamir (2009), is ableto takle 767 out of 1152 initialization rounds with 245 to 236 operations, thefull ipher still remains unbroken.



40 4.2 Example Ciphers4.2.5 Grain-128The regularly loked ombination generator Grain-128 (Hell et al., 2005) sup-ports keys of size 128 bits and IVs of size 96 bits. The design is based on twointeronneted FSRs, an LFSR R0 and an NFSR R1, both of lenghts 128 bits,and a non-linear keystream funtion. We denote the ontent of the LFSR by
(st, st+1, . . . , st+127) and the ontent of the NFSR by (bt, bt+1, . . . , bt+127).In eah lok yle, the registers are updated aording to

st+128 = st ⊕ st+7 ⊕ st+38 ⊕ st+70 ⊕ st+81 ⊕ st+96

bt+128 = st ⊕ bt ⊕ bt+26 ⊕ bt+56 ⊕ bt+91 ⊕ bt+96 ⊕ bt+3bt+67 ⊕ bt+11bt+13

⊕ bt+17bt+18 ⊕ bt+27bt+59 ⊕ bt+40bt+48 ⊕ bt+61bt+65 ⊕ bt+68bt+84 ,and a keystream bit zt is derived as
zt =




⊕

j∈A

bt+j



⊕ bt+12st+8 ⊕ st+13st+20 ⊕ bt+95st+42

⊕ st+60st+79 ⊕ bt+12bt+95st+95with A = {2, 15, 36, 45, 64, 73, 89}.Besides a generi time-memory-data-tradeo� attak (Biryukov and Shamir,2000) that reovers the key with time and keystream around 2128, the related-key hosen-IV attak due to Lee et al. (2008) is able to reover the key with
226.59 hosen IVs, 231.39 keystream bits and 227 operations.4.2.6 Filtered FCSRsIn order for the initial state not to be reoverable from a number of observedkeystream bits by solving a system of linear equations, we have to demand thatkeystream generators ontain nonlinear operations to a ertain extent. Sine allLFSR-operations are linear by de�nition, nonlinearity must be introdued intoan LFSR-based ombination or �lter generator by a arefully hosen keystreamfuntion C.FCSRs, on the other hand, have a nonlinear update funtion, whih suggestshoosing a simple XOR operation (whih is F2-linear) as keystream funtion.This has been done in the ase of the F-FCSR stream ipher family.The F-FCSR Stream Cipher FamilyF-FCSR-H is an FCSR-based �lter generator that onsists of a single GaloisFCSR of length n = 160 with arry ells present at l = 82 positions. Theonnetion integer is hosen as

q = −1993524591318275015328041611344215036460140087963 ,whih implies
d =

(
1− q

2

)

= (ae985dff 26619fc5 8623dc8a af46d590 3dd4254e)16 .



4.2 Example Ciphers 41At eah lok, the generator uses the stati �lter d = F to extrat a pseu-dorandom byte. The �lter splits into 8 sub�lters (sub�lter j is obtained byseleting the bit j in eah byte of F )
F0 = (0011 0111 0100 1010 1010)2, F4 = (0111 0010 0010 0011 1100)2

F1 = (1001 1010 1101 1100 0001)2, F5 = (1001 1100 0100 1000 1010)2

F2 = (1011 1011 1010 1110 1111)2, F6 = (0011 0101 0010 0110 0101)2

F3 = (1111 0010 0011 1000 1001)2, F7 = (1101 0011 1011 1011 0100)2 .The bit bi (with 0 ≤ i ≤ 7) of eah extrated byte is expressed by
bi =

19⊕

j=0

f
(j)
i x8j+i where Fi =

19∑

j=0

f
(j)
i 2j ,and where the xk are the bits ontained in the main register.The ipher is initialized with an 80-bit key K and an IV of length 0 ≤ v ≤ 80aording to Algorithm 1. After the setup phase, the output stream is produedby Algorithm 2.Algorithm 1 F-FCSR-H-KeyIVSetup(K, IV)

x := K + 280 · IV = (080−v||IV||K)
a := 0 = (082)for i = 0 to 19 doClok the FCSR automatonExtrat a pseudorandom byte Si using the �lter Fend for
x :=

∑19
i=0 Si · 8i = (S15|| . . . ||S0)Clok the FCSR automaton 162 times (disard output in this step)Algorithm 2 F-FCSR-H-KeystreamGenerationwhile true doClok the FCSRExtrat a pseudorandom byte S using the �lter FOutput the value S as keystream byteend whileF-FCSR-16 works analogously to F-FCSR-H, only with larger parameters.It onsists of a Galois FCSR of length n = 256 with arry ells present at l = 130positions. The onnetion integer is hosen as

q = (1839714408456194711298691618093441316582
98317655923135753017128462155618715019)10 ,whih implies

d =
(

1−q
2

)
= (cb5e129f ad4f7e66 780caa2e c8c9cedb

2102f996 baf08f39 efb55a6e 390002c6)16 .



42 4.2 Example CiphersTo extrat two pseudorandom bytes, the stati �lter F = d is used. The�lter F is split into 16 sub�lters (sub�lter j is obtained by seleting the bit j ineah 16-bit word of F )
F0 = (0110 0011 0001 1000)2, F8 = (1010 0000 1101 1010)2

F1 = (1111 0101 1100 0101)2, F9 = (1101 0101 0011 1101)2

F2 = (1111 1100 0100 1101)2, F10 = (0011 0001 0001 1000)2

F3 = (1110 1111 0001 0100)2, F11 = (1011 1111 0111 1110)2

F4 = (1100 0001 0111 1000)2, F12 = (0101 1000 0110 0110)2

F5 = (0001 0100 0011 1100)2, F13 = (0011 1100 1110 1010)2

F6 = (1011 0011 0010 0101)2, F14 = (1001 1011 0100 1100)2

F7 = (0100 0011 0110 1001)2, F15 = (1010 0111 0111 1000)2The bit bi (with 0 ≤ i ≤ 15) of eah extrated word is expressed by
bi =

15⊕

j=0

f
(j)
i x16j+i where Fi =

15∑

j=0

f
(j)
i 2j ,and where the xk are the bits ontained in the main register.The ipher is initialized with a 128-bit key K and an IV of length 0 ≤ v ≤ 128aording to Algorithm 3. After the setup phase, the output stream is produedby Algorithm 4.Algorithm 3 F-FCSR-16-KeyIVSetup(K, IV)

x := K + 2128 · IV = (0128−v||IV||K)
a := 0 = (0130)for i = 0 to 15 doClok the FCSR automatonExtrat a pseudorandom word Si using the �lter F .end for
x :=

∑15
i=0 Si · 216i = (S15|| . . . ||S0)

a := 0 = (0130)Clok the FCSR automaton 258 times (disard output in this step)Algorithm 4 F-FCSR-16-KeystreamGenerationwhile true doClok the FCSR
S = x ∧ FSplit S into 16 words of length 16 bits eah, suh that S =

∑15
i=0 Si2

16iOutput the value⊕15
i=0 Si as keystream wordend whileSeurity ConsiderationsUsing FCSRs as building bloks for stream iphers had initially been suggestedby Klapper and Goresky (1997, 1994). A few years later Arnault and Berger



4.2 Example Ciphers 43(2005a) revisited the idea by proposing and analyzing a generi �lter genera-tor based on a Galois FCSR and the XOR operation as keystream funtion.Several onrete instantiations of this idea were proposed (Arnault and Berger,2005b) and improved in the light of ryptanalysis results (Jaulmes and Muller,2006, 2005), before the the two iphers F-FCSR-H and F-FCSR-16 in the formdesribed above were spei�ed by Arnault et al. (2006).In the absene of any apparent weaknesses in these versions, the ECRYPTstream ipher projet eStream suggested F-FCSR-H and F-FCSR-16 for pra-tial appliations (Babbage et al., 2008).Various analyses suggest that the produed keystream has good pseudoran-domness properties (Arnault and Berger, 2005a, Arnault et al., 2008). The �lterfuntion omputes the binary XOR of its inputs, and its initialization proedureensures that the initial state of the generator is periodi. Hene, by Proposi-tion 3.38, the keystream generation proedure is equivalent to taking the bitwiseXOR-sum of di�erent parts of the same l-sequene, while the starting positionis given by the initial state and the distanes between the parts are onstant.This design was motivated by the onjeture that linear and 2-adi operationsare unrelated and that the orrelation between two distant parts of the same
l-sequene is low (Arnault and Berger, 2005a). Our expliit omputation of thedistanes for F-FCSR-H based on Proposition 3.38 shows that the parts of thesequene are indeed almost evenly distributed over the period (see Fisher et al.(2008), Appendix A).However, while Arnault et al. (2008) had shown that the ells of the arryand the main register will not be zero for several onseutive lok yles, Helland Johansson (2008, 2009) observed that the sequene of main register states
(xt)t≥0 that are passed during the operation of the ipher are likely to ontainsu�iently long runs of the form (0, . . . , 0, 1, 0), whih turns the state updatefuntion into a linear funtion and allows for setting up a system of linearequations in order to reover the register state. With a few optimizations, Helland Johansson show how to reover the state of the register in F-FCSR-H fromaround 223.7 bytes of keystream in 10 seonds on average with standard PChardware. The same idea yields e�ient attaks on F-FCSR-16 and X-FCSR(Stankovski et al., 2009), a software-oriented stream ipher based on FCSRs(Arnault et al., 2007). Hene, it turns out that the update funtion of FCSRsdoes not introdue as muh nonlinearity as originally expeted. In the light ofthese attaks, F-FCSR-H and F-FCSR-16 were removed from the eStream listof reommended iphers.Finally, we want to note that replaing the Galois FCSR in an F-FCSR-H-like onstrution by a Fibonai FCSR while keeping the XOR �lter funtionyields an inseure keystream generator. This an be seen as follows.Consider the F-FCSR-H parameters, i.e., n = 160, l = 82 and with k = 8linear �lters, but applied to a Fibonai FCSR. Initially, there are 160 binaryvariables (ignoring the memory), and eah updated bit is represented by a newvariable (ignoring the details of the onstrution and assuming independene).Eah iteration gives another 8 linear equations in these (initial and newly intro-dued) state variables. The main register an be reovered by solving the systemof linear equations if the number of equations is at least as large as the numberof variables. This requires r iterations, where 8r ≥ 160 + r. Consequently,
r = 23 iterations are su�ient, or 184 bits of keystream. Gaussian eliminationof this system requires a omputational e�ort of about 1843, whih is about 223.



44 4.3 Abstration: Internal Bitstream GeneratorsAfter reovering the main register, one an reover the ontents of the memoryells. If the FCSR is in a periodi state (whih an be expeted already afterthe initialization phase), then the e�etive size of the memory redues to 7 bits.Consequently, the memory an be guessed or reovered by FCSR-synthesis, andthe whole state an be reovered in about 230 steps and with less than 200 bitsof keystream. A similar attak is possible for any other onstrution of this typewith k > 1.4.3 Abstration: Internal Bitstream GeneratorsThe keystream generators that we analyze in this thesis are FSR-based in thesense that their internal state is distributed over a small number of feedbakshift registers R0, . . . , Rk−1 that provide input for the keystream funtion C.For our subsequent analysis, it is onvenient to think of these FSRs as a singleentity, the internal bitstream generator, that produes an internal bitstream
(wt)t≥0 de�ned by

wt := w
r(t)
s(t) with r(t) = t mod k and s(t) = s div k ,i.e., the t-th internal bit orresponds to the s(t)-th bit in the bitstream pro-dued by Rr(t) (see Fig. 4.6). Again, the internal bitstream (and hene the
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Figure 4.6: Derivation of the keystream from the internal bitstreamoutput of the keystream generator) are entirely determined by the generator'sstarting state ω(0), and the �rst m bits an be omputed as (w0, . . . , wm−1) =
H≤m(ω(0)), where

H≤m : {0, 1}n → {0, 1}m .De�nition 4.1. We all an integer i an initial position in w, if wi orrespondsto a bit from the initial state of some FSR, and a ombined position otherwise.Correspondingly, we denote by IP(i) the set of initial positions and by CP(i)the set of ombined positions in {0, . . . , i− 1}. We let IB(w) denote the bits atthe initial positions in w, nmin the maximum i for whih all i′ ≤ i are initialpositions, and nmax the minimum i for whih all i′ > i are ombined positions.



4.3 Abstration: Internal Bitstream Generators 45In an FSR-based bitstream generator, the FSRs may be interonneted inthe sense that the update funtion F i of Ri may also depend on the urrentontent of the other registers suh that F i : {0, 1}ni → {0, 1}, ni ≤ n, for all
i ∈ {0, . . . , k − 1}.The keystream funtion C : {0, 1}n → {0, 1}∗, whih derives keystream bitsfrom the urrent state, usually depends on one or more state bits from eahFSR. For |w| = m we denote the keystream pre�x that is produed from w by
Cm(w), where Cm : {0, 1}m → {0, 1}∗.Generally, we all a keystream generator regularly loked, if for all j ∈
{0, . . . , k − 1}, the register Rj is loked equally often in eah loking of thewhole generator. This de�nition translates into our notion of FSR-based internalbitstream generators as follows.De�nition 4.2. Let D(w, t) := {wi|zt depends on wi}. We all an FSR-basedkeystream generator regularly loked if |D(w, t)\D(w, t′)| is onstant for allinternal bitstreams w and all 0 ≤ t′ < t.Note that this de�nition orresponds to the notion of an oblivious keystreamgenerator that was established by Krause (2007).Two important parameters of FSR-based keystream generators are the best-ase ompression ratio and the information rate, whih we de�ne as follows.De�nition 4.3. If γm is the maximum number of keybits that the generatorprodues from internal bitstreams of length m, we all γ ∈ (0, 1] the best-aseompression ratio of the generator. Moreover, for a randomly hosen and uni-formly distributed internal bitstream W (m) ∈ {0, 1}m and a random keystream
Z, we de�ne as information rate α the average information that Z reveals about
W (m), i.e., α := 1

mI
(
W (m), Z

)
∈ (0, 1].1For a randomly hosen and uniformly distributed internal bitstream w ∈

{0, 1}m, the probability of the keybits' Cm(w) being a pre�x of a given keystream
z ∈ {0, 1}∗ an be expressed as

Pr
w∈{0,1}m

[Cm(w) is pre�x of z] =

⌈γm⌉
∑

i=0

Pr
w∈{0,1}m

[|Cm(w)| = i] · Pr
w ∈ {0, 1}m

|Cm(w)| = i

[Cm(w) = (z0, . . . , zi−1)] .
(4.3)Conerning this probability, we make the following assumption.Assumption 4.4 (Independene Assumption). For all m ≥ 1, a randomlyhosen, uniformly distributed internal bitstream w ∈ {0, 1}m, and all keystreams

z ∈ {0, 1}∗, we have Prw[Cm(w) is pre�x of z] = pC(m), i.e., the probability of
Cm(w) being a pre�x of z is independent of z.As shown by Krause (2002), the omputation of α an be simpli�ed as followsif the generator ful�lls the Independene Assumption.Lemma 4.5. If a keystream generator satis�es the Independene Assumption,we have α = − 1

m log2(pC(m)).1Reall that for two random variables A and B, the value I(A, B) = H(A) − H(A|B)de�nes the information that B reveals about A.



46 4.3 Abstration: Internal Bitstream GeneratorsProof. The de�nitions of information and entropy imply
α =

1

m
I
(

W (m), Z
)

=
1

m

(

H
(

W (m)
)

−H
(

W (m)|Z
))

=
1

m

(

m−H
(

W (m)|Z
))and

H
(

W (m)|Z
)

=

∑

z∈{0,1}∗

Pr [Z = z]



−
∑

w∈{0,1}m

Pr
[

W (m) = w|Z = z
]

· log2 Pr
[

W (m) = w|Z = z
]



 .Under the Independene Assumption (Assumption 4.4), all w ∈ {0, 1}m and
z ∈ {0, 1}∗ satisfy

Pr[W (m) = w|Z = z] =

{ 1
pC(m)·2m if C(w) is pre�x of z

0 otherwise .With W̃ := {w ∈ {0, 1}m|Cm(w) is pre�x of z}, we obatin
H
(

W (m)|Z
)

=
∑

z∈{0,1}∗

Pr [Z = z]



−
∑

w∈W̃

(pC(m)2m)−1 · log2((pC(m)2m)−1)





︸ ︷︷ ︸

log2(pC(m)2m)

= log2(pC(m)2m) ,and �nally
α = −

1

m
(m−log2 (pC(m)2m)) =

1

m
(m−log2 pC(m)−m) = −

1

m
log2 pC(m) 2Corollary 4.6. The information rate α of a regularly loked FSR-based key-stream generator ful�lling the Independene Assumption is given by α = β(m)

m .Proof. The Independene Assumption and De�nition 4.2 imply that the 2β(m)possible keystream bloks of length β(m) that an be produed from the m-bit internal bitstream all have probability pC(m). Hene pC(m) = 2−β(m) andtherefore α = − 1
m log2(2

−β(m)) = β(m)
m . 2Observation 4.7. For a regularly loked FSR-based keystream generator with

k FSRs that uses exatly one bit from eah register for omputing a keystreambit zt, we have α = 1
k .Finally, we assume the internal bitstream to behave pseudorandomly, whihwe formalize as follows.Assumption 4.8 (Pseudorandomness Assumption). For m ≤ ⌈α−1n⌉, let

w and ω(0) denote randomly hosen, uniformly distributed elements of {0, 1}mand {0, 1}|IP(m)|, respetively. Then, all keystreams z satisfy
Prw[Cm(w) is pre�x of z] ≈ Prω(0)[Cm(H≤m(ω(0))) is pre�x of z].We expet the Pseudorandomness Assumption to hold sine a signi�antviolation would imply the vulnerability of the generator to a orrelation attak.



Chapter 5The BDD-Attak5.1 Introdution and OverviewKrause (2002, 2007) proposed a Binary Deision Diagram (BDD) attak onLFSR-based ombination generators. The BDD-attak is a generi attak inthe sense that it does not depend on spei� design properties of the respetiveipher. It only relies on the assumptions that the generator's internal bitstreambehaves pseudorandomly and that the test whether a given internal bitstream
w produes a sample keystream an be represented in a Free Binary DeisionDiagram (FBDD) of size polynomial in the length of w.The attak reonstruts the seret initial state from the shortest informa-tion-theoretially possible pre�x of the keystream (usually a small multiple ofthe state size), whereas other generi attak tehniques in many ases requireamounts of known keystream that are unlikely to be available in pratie. Par-tiularly in the ase of E0 and A5/1, the �rst keystream frame already su�esto obtain all the information that is needed to ompute the initial state.As an extension of the original attak by Krause (2002), we show that theBDD-based approah remains appliable in the presene of (possibly interde-pendent) NFSRs and FCSRs ombined with arbitrary keystream funtions, aslong as not too many new internal bits are produed in eah lok yle of theipher. Consequently, we apply the attak to the NFSR-based proposals Triv-ium, Grain, and the F-FCSR family, whih were desribed in Setion 4.2. Inorder to avoid redundanies, we diretly outline this more general tehnique andtreat the original attak by Krause as a speial ase.One drawbak of the BDD-attak is its high memory onsumption. Weapproah this problem by presenting various e�iently parallelizable divide-and-onquer strategies (DCS) for E0 and A5/1 that substantially redue thememory requirements and allow us to takle muh larger key lengths with �xedomputational resoures. In the ase of E0, our DCS lowers the attak's memoryrequirements by a fator of 225 and additionally yields a slight improvement ofthe theoretial runtime.Finally, we present omprehensive experimental results for the BDD-attakon redued versions of the E0, A5/1 and the self-shrinking generator, whihshow that the attak performane in pratie does not seem to substantiallydeviate from the theoretial �gures.



48 5.2 Representing Boolean Funtions with Binary Deision Diagrams5.2 Representing Boolean Funtions with BinaryDeision DiagramsBoolean funtions an be represented in many ways, e.g., in truth tables orsymbolially as a formula in algebrai normal form (ANF). For our attak, yetanother representation will turn out to be partiularly useful, namely the graph-based representation in a Binary Deision Diagram (BDD).BDDs and their variants have reeived muh attention sine the publiationof the fundamental paper by Bryant (1986). We brie�y review the de�nitionof BDDs and their most important algorithmi properties and kindly refer thereader to Wegener (2000) for a more omprehensive overview.De�nition 5.1. A Binary Deision Diagram (BDD) G over a set of vari-ables Xn = {x1, . . . , xn} is a direted, ayli graph G = (V, E) with E ⊆
V × V × {0, 1}. Eah inner node v has exatly two outgoing edges, a 0-edge
(v, v0, 0) and a 1-edge (v, v1, 1) leading to the 0-suessor v0 and the 1-suessor
v1, respetively. G ontains exatly two nodes with outdegree 0, the sinks s0 and
s1. Eah inner node v is assigned a label v.label ∈ xn, whereas the two sinksare labeled s0.label = 0 and s1.label = 1. There is exaly one node with indegree
0, the root of G. We de�ne the size of G (denoted by |G|) to be the numberof nodes it ontains, i.e., |G| := |V |. Eah node v ∈ V represents a BooleanFuntion fv ∈ Bn = {f |f : {0, 1}n → {0, 1}} in the following manner. For aninput a = (a1, . . . , an) ∈ {0, 1}n, the omputation of fv(a) starts in v. In a nodewith label xi, the outgoing edge with label ai is hosen, until one of the sinks isreahed. The value fv(a) is then given by the label of this sink.De�nition 5.2. For a BDD G over xn, let G−1(1) ⊆ {0, 1}n denote the set ofinputs aepted by G, i.e., all inputs a ∈ {0, 1}n suh that froot(a) = 1.Note that we may delete all v ∈ V in G that are not reahable from the rootwithout hanging the funtion froot that G omputes.We an straightforwardly use BDDs as a data struture for subsets of {0, 1}n.In order to represent S ⊆ {0, 1}n, we onstrut a BDD GS that omputes theharateristi funtion fS of S given by fS(x) = 1 if x ∈ S and fS(x) = 0otherwise. Hene, GS will aept exatly the elements of S. Moreover, we anompute a BDD representing the intersetion S ∩ T of two sets S and T fromtheir BDD-representations GS and GT by an AND-synthesis of GS and GT .Remark 5.3. Sine general BDDs have many degrees of freedom for represent-ing a partiular Boolean funtion, many important operations and espeiallythose that are needed in our ontext are NP-hard (f. Wegener (2000) for de-tails).We therefore onentrate on the more restrited models of Free Binary De-ision Diagrams (FBDDs) and Ordered Binary Deision Diagrams (OBDDs).5.2.1 Free Binary Deision Diagrams (FBDDs)De�nition 5.4. An orale graph G0 = (V, E) over a set of variables Xn =
{x1, . . . , xn} is a modi�ed BDD that ontains only one sink s, labeled ∗, and forall xi ∈ Xn and all paths P from the root in G to the sink, there exists at mostone node in P that is labeled xi.



5.2 Representing Boolean Funtions with Binary Deision Diagrams 49De�nition 5.5. A Free Binary Deision Diagram G with respet to an oralegraph G0 (abbreviated by G0-FBDD) over a set of variables Xn = {x1, . . . , xn}is a BDD in whih all inputs a ∈ {0, 1}n satisfy the following ondition. Let thelist G0(a) ontain the variables from Xn in the order in whih they our on thepath de�ned by a in G0. Similarly, let the list G(a) ontain the variables from
Xn in the order in whih the omponents of a are read in G. If xi and xj areboth ontained in G(a), then they our in G(a) in the same order as in G0(a).We all a BDD G an FBDD, if there exists an orale graph G0 suh that Gis a G0-FBDD.Figure 5.1 shows examples for an orale graph G0 and a G0-FBDD.The de�nition of FBDDs implies their important read-one property, i.e., oneah path in an FBDD G, eah variable in Xn is tested at most one.

Figure 5.1: An orale graph G0 over {z0, . . . , z3} and a G0-FBDDFBDDs possess several algorithmi properties that will prove useful in ourontext. Let G0 denote an orale graph over Xn = {x1, . . . , xn} and let the G0-FBDDs Gf , Gg and Gh represent Boolean funtions f, g, h : {0, 1}n → {0, 1}.FBDD Property 1. There exists an algorithm MIN that omputes for Gf intime O(|Gf |) the (uniquely determined) minimal G0-FBDD G that represents
f . Every minimal G0-FBDD G over Xn satis�es |G| ≤ n · |G−1

f (1)|.FBDD Property 2. There exists an algorithm SYNTH that omputes for Gf ,
Gg and Gh in time O(|G0| · |Gf | · |Gg| · |Gh|) a G0-FBDD G of size |G| ≤
|G0| · |Gf | · |Gg| · |Gh| whih represents the funtion f ∧ g ∧ h.FBDD Property 3. There exists an algorithm SAT-ENUM that enumeratesfor a G0-FBDD Gf all elements in G−1

f (1) in time O(n · |G−1
f (1)|).De�nition 5.6. We all an algorithm A over the input spae {0, 1}n read-onealgorithm, if it reads eah input bit at most one.De�nition 5.7. Fix a read-one algorithm A over {0, 1}n, an input x ∈ {0, 1}nand an orale graph G0 over Xn. Let the list π(A, x) ontain the variables from

Xn in the order in whih they are read by A when proesing x, and let thelist π(G0, x) ontain the variables from Xn in the order in whih they our onthe path de�ned by x in G0. We say that the read-one algorithm A respetsthe orale graph G0 (A is G0-respeting) if for all inputs x ∈ {0, 1}n, any twovariables xi, xj from π(A, x) our in the same order in π(G0, x) as in π(A, x).



50 5.2 Representing Boolean Funtions with Binary Deision DiagramsRead-one algorithms orrespond to Eraser Turing Mahines (Eraser-TMs),whih only di�er from general Turing mahines in the property that eah inputbit is deleted immediately after being read (Ajtai et al., 1986, Krause et al.,1988). We onsider Eraser-TMs that have an assoiated orale graph whihdetermines the reading order of the input bits. During the omputation, themahine follows the path that the input de�nes in the orale graph in order todetermine the next bit to read.The following observation links read-one algorithms to FBDDs and is animmediate onsequene of the observations by Meinel (1989).Observation 5.8. Fix a subset F ⊆ {0, 1}n and an orale graph G0 over Xn =
{x1, . . . , xn}. Eah G0-respeting read-one algorithm A that deides for aninput x = (x1, . . . , xn) ∈ {0, 1}n whether x ∈ F while using at most p bits ofadditional memory an be e�iently transformed into a G0-FBDD of size atmost |G0| · 2p.Proof. Consider the Eraser-TM with p memory ells that orresponds to A.A on�guration of A is given by the tuple (vi, y1, . . . , yp), where vi denotesthe urrent vertex in G0 and (y1, . . . , yp) represents the urrent ontent of theadditional memory ells.We transform A into a G0-FBDD GA as follows. The verties in GA havethe form [vi, y] ∈ V (G0) × {0, 1}p, and a vertex [vi, y] is labled with vi.label.If (vi0 , y0) denotes the initial on�guration of A, we de�ne as root of GA thevertex [vi0 , y0]. For eah transition δ(vi, y, xvi.label) = (v′i, y

′) of A, we add to
GA a direted (xvi.label)-edge from vertex [vi, y] to vertex [v′i, y

′]. For a stopon�guration δ(vi, y, xvi.label) = (vi, y) of A with output b ∈ {0, 1}, we add adireted (xvi.label)-edge from vertex [vi, y] to the b-sink.We observe that sine A is G0-respeting, the reading order on eah pathfrom the root to a sink in GA is onsistent with G0, whih makes GA a G0-FBDD.For a �xed vi ∈ V (G0), A has at most 2p on�gurations (vi, y). Therefore,the maximum size of GA is |G0| · 2p. 2Many important Boolean funtions an even be e�iently represented ina more restrited BDD variant, so-alled Ordered Binary Deision Diagrams(OBDDs), whih we are going to desribe next.5.2.2 Ordered Binary Deision Diagrams (OBDDs)Ordered Binary Deision Diagrams were �rst desribed by Bryant (1986) andhave beome an important tool for iruit veri�ation, VLSI-design and manyother appliations.De�nition 5.9. A variable ordering π for a set of variables Xn = {x1, . . . , xn}is a permutation of the index set I = {1, . . . , n}, where π(i) denotes the positionof xi in the π-ordered variable list xπ−1(1), xπ−1(2), . . . , xπ−1(n).De�nition 5.10. A π-Ordered Binary Deision Diagram (π-OBDD) with re-spet to a variable ordering π is a BDD in whih the sequene of tests on a pathfrom the root to a sink is restrited by π, i.e., whenever an edge leads from an
xi-node to an xj-node, then π(i) < π(j). A BDD G is alled OBDD, if thereexists a variable ordering π suh that G is a π-OBDD.



5.2 Representing Boolean Funtions with Binary Deision Diagrams 51For an OBDD G we de�ne its width as
w(G) := max

i
{|{v ∈ G|v.label = xi}|} .Note that we may view any π-OBDD as a degenerated G0-FBDD in whihthe reading order on eah path from the root to one of the sinks is onsistentwith π, i.e., G0 is degenerated into a linear list that orresponds to π.Conversely, a π-OBDD may at the same time be a G0-FBDD in the followingsense.De�nition 5.11. A variable ordering π for Xn is said to be onsistent withan orale graph G0 over Xn if for any (i, j) ∈ {1, . . . , n}2 with π(i) < π(j), xiours before xj on all paths in G0.Observation 5.12. If a variable ordering π is onsistent with an orale graph

G0, then any π-OBDD is a G0-FBDD.Figure 5.2 shows a π-OBDD that omputes the funtion
f(z0, . . . , z3) = z0z2 ∨ z0z̄2z3 ∨ z̄0z1z3 .Similarly to FBDDs, OBDDs allow for e�ient implementations of the op-erations that we will be interested in. Let π denote a variable ordering for

Xn = {x1, . . . , xn} and let the π-OBDDs Gf , Gg and Gh represent Booleanfuntions f, g, h : {0, 1}n → {0, 1}.OBDD Property 1. The size of Gf is bounded by |Gf | ≤ m · w(Gf ).OBDD Property 2. There exists an algorithm MIN that omputes in time
O(|Gf |) the uniquely determined minimal π-OBDD G with w(G) ≤ |G−1

f (1)|that represents f .OBDD Property 3. There exists an algorithm SYNTH that omputes in time
O(|Gf | · |Gg| · |Gh|) a minimal π-OBDD G with w(G) ≤ w(Gf ) ·w(Gg) ·w(Gh).OBDD Property 4. There exists an algorithm SAT-ENUM that enumeratesall elements of G−1

f (1) in time O
(

n · |G−1
f (1)|

).

Figure 5.2: A π-OBDD over {z0, . . . , z3} with π(0) = 0, π(1) = 2, π(2) = 1 and
π(3) = 3.



52 5.3 BDD-based Initial State ReoveryDe�nition 5.13. We say that a read-one algorithm A respets a variable or-dering π (A is π-respeting) if A does not read xi after xj in ase π(i) < π(j)for all i, j ∈ {1, . . . .n}.Similarly to the orrespondene of read-one algorithms and FBDDs de-sribed by Observation 5.8, we an transform a π-respeting read-one algorithminto a π-OBDD.Observation 5.14. Fix a subset F ⊆ {0, 1}n and a variable ordering π for
Xn = {x1, . . . , xn}. Eah π-respeting read-one algorithm A that deides foran input x = (x1, . . . , xn) ∈ {0, 1}n whether x ∈ F while using at most p bitsof additional memory an be e�iently transformed into a π-OBDD of width atmost 2p.Proof. The proof is largely analogous to the proof of Observation 5.8, but weinlude it for ompleteness.Consider the eraser Turing mahine with p memory ells that orrespondsto A. We an assume w.l.o.g. that the input is π-ordered, i.e., it is given as
xπ(1), xπ(2), . . . , xπ(n). A on�guration of A is given by the tuple (i, y1, . . . , yp),where i denotes the urrent read position in the input and (y1, . . . , yp) representsthe ontent of the p additional memory ells.We transform A into a π-OBDD GA as follows. The verties in GA have theform [i, y] ∈ {1, . . . , n} × {0, 1}p, and a vertex [i, y] is labled with xi. If (i0, y0)denotes the initial on�guration of A, we de�ne as root of GA the vertex [i0, y0].For eah transition δ(i, y, xi) = (i′, y′) of A, we add to GA a direted xi-edgefrom vertex [i, y] to vertex [i′, y′]. For a stop on�guration δ(i, y, xi) = (i, y) of
A with output b ∈ {0, 1}, we add a direted xi-edge from vertex [i, y] to the
b-sink.We observe that sine A is π-respeting, the reading order on eah path fromthe root to a sink in GA is onsistent with π, whih makes GA a π-OBDD.For a �xed i ∈ {1, . . . , n}, A has at most 2p on�gurations (i, y). Therefore,the maximum width of GA is 2p. 25.3 BDD-based Initial State ReoveryThe BDD-based attak on keystream generators is a known-plaintext initialstate reovery attak, i.e., the attaker tries to reonstrut the unknown initialstate ω(0) of the keystream generator from a few known plaintext bits p0, p1, . . .and their enryptions c1, c2, . . .. In our senario in whih a iphertext bit ci isomputed from a plaintext bit pi and a keystream bit zi via ci = pi ⊕ zi, thekeystream bit zi an be reonstruted from (pi, ci) by omputing pi ⊕ ci = zi.We �rst observe that for any internal bitstream w ∈ {0, 1}m that yields apre�x of the observed keystream, the following two onditions must hold.Condition 1. w is an m-extension of the initial state bits in w, i.e., we have
H≤m(IB(w)) = w.Condition 2. Cm(w) is a pre�x of the observed keystream z.We all any w ∈ {0, 1}m that satis�es these onditions an m-andidate. Ourstrategy is now to start with m = nmin and to dynamially ompute the m-andidates for m > nmin until only one m-andidate is left. The �rst bits of



5.3 BDD-based Initial State Reovery 53this m-andidate will ontain the initial state ω(0) that we are looking for. Wean expet to be left with only one m-andidate for m ≥ ⌈α−1n⌉, whih followsdiretly from the following Lemma.Lemma 5.15 (Krause (2002)). Under Assumption 4.8, all keystreams z andall m ≤ ⌈α−1n⌉ satisfy |{ω(0) ∈ {0, 1}n : Cm(H≤m(ω(0))) is pre�x of y}| ≈
2|IP(m)|−αm ≤ 2n−αm. Hene, there exist approximately 2n−αm m-andidates.The key problem that we have to solve is to ompute and represent the
m-andidates e�iently. Our solution is based on the following BDD-basedapproah. Let G0

m denote the orale graph over {w0, . . . , wm−1} that representsthe order in whih the keystream funtion Cm reads the bits from the internalbitstream. We represent the bitstreams w ful�lling onditions 1 and 2 in theminimal G0
m-FBDDs Rm and Qm, respetively. Starting from Pnmin := Qnmin ,we ompute for nmin < m ≤ ⌈α−1n⌉ the G0

m-FBDDs Pm := MIN(Pm−1 ∧
Qm ∧Sm), where the minimum G0

m-FBDD Sm tests whether wm−1 is in the m-extension of IB(w). Note that we have Pm = MIN(Qm∧Rm) with Rm =
∧m

i=1 Sifor allm, and Pm aepts exatly the m-andidates. This strategy is summarizedin Algorithm 5.Algorithm 5 ReoverInitialState
P = Qnminfor m = nmin + 1 to ⌈α−1n⌉ do

P = MIN(P ∧Qm ∧ Sm)end forreturn the initial state bits ontained in one of the w ∈ P−1(1)The e�ieny of Algorithm 5 essentially depends on the sizes of the inter-mediate results Pm, whih we are going to estimate in the following.Assumption 5.16 (BDD Assumption). For all m ≥ nmin we assume that
|G0

m|, |Sm|, |Qm| ∈ mO(1) and that there exists an integer p ≥ 1 suh that |Rm| ≤
|G0

m| · 2
p·|CP(m)|.Lemma 5.17. Let K denote an FSR-based keystream generator with k FSRs

R0, . . . , Rk−1 of lengths n(0), . . . , n(k−1), and let n =
∑k−1

i=0 n(i). If K ful�llsthe BDD Assumption and the Pseudorandomness Assumption, we have for all
nmin < m ≤ ⌈α−1n⌉

|Pm| ≤ max
1≤m≤⌈α−1n⌉

{

min
{

ǫ(m)|Qm| · 2
m−|IP(m)|, m · 2|IP(m)|−αm

}}

≤ ǫ(m)|Qm| · 2
p(1−α)

p+α
n ≤ nO(1)2

p(1−α)
p+α

nwith ǫ(m) = |G0
m|

2. If there exists a variable ordering πm suh that all G0
m-FBDDs are πm-OBDDs, ǫ(m) redues to the onstant 1.The proof borrows from the ideas presented by Krause (2002, 2007) andworks as follows.Proof. The de�nitions of Qm and Rm imply that Pm = Qm ∧ Rm for nmin <

m ≤ ⌈α−1n⌉, and therefore |Pm| ≤ |G0
m| · |Qm| · |Rm| (FBDD Property 2) in



54 5.4 Generi BDD Construtionsthe FBDD-ase and |Pm| ≤ |Qm| · |Rm| (OBDD Property 3) in the OBDD-ase.Under Assumption 5.16 we obtain
|Pm| ≤ ǫ(m)|Qm| · 2

p·|CP(m)| . (5.1)On the other hand, Lemma 5.15 implies that |Pm| ≤ m · |P−1
m (1)| ≈ m ·

2m∗−αm for m∗ = |IP(m)| and nmin < m ≤ ⌈α−1n⌉, whih means
|Pm| ≤ m · 2m∗−αm = m · 2(1−α)m∗−α·|CP(m)| . (5.2)Combining Eqs. (5.1) and (5.2), we obtain for nmin < m ≤ ⌈α−1⌉n

|Pm| ≤ min{ǫ(m)|Qm| · 2
p·|CP(m)|, m · 2(1−α)m∗−α·|CP(m)|}

≤ ǫ(m)|Qm| ·min{2p·|CP(m)|, 2(1−α)m∗−α·|CP(m)|}

= ǫ(m)|Qm| ·min{2p·r(m∗), 2(1−α)m∗−αr(m∗)} with r(m∗) = |CP(m)|

≤ ǫ(m)|Qm| · 2
p·r∗(m∗) ,where r∗(m∗) denotes the solution of p · r(m∗) = (1 − α)m∗ − αr(m∗). Weobtain r∗(m∗) = 1−α

p+αm∗ and hene |Pm| ≤ ǫ(m)|Qm| · 2
p(1−α)

p+α
m∗ . With nmin <

m ≤ ⌈α−1n⌉ and therefore ǫ(m)|Qm| ∈ mO(1) ⊆ nO(1) and m∗ = |IP(m)| ≤ n,we obtain
|Pm| ≤ ǫ(m)|Qm| · 2

p(1−α)
p+α

n ≤ nO(1)2
p(1−α)

p+α
n for all nmin < m ≤ ⌈α−1n⌉ . 2From this bound on |Pm|, we an straightforwardly derive the time, memoryand data requirements of the BDD-based attak.Theorem 5.18. Let K denote a regularly loked FSR-based keystream gen-erator with an unknown initial state ω(0) ∈ {0, 1}n, information rate α andbest-ase ompression ratio γ. If K ful�lls the Independene Assumption, thePseudorandomness Assumption and the BDD Assumption, an initial state s̃0that yields the same keystream as ω(0) an be omputed with time and mem-ory requirements in O (ǫ(n)|Qn|2

p(1−α)
p+α

n
) from the �rst ⌈γα−1n⌉ onseutivekeystream bits of K under ω(0).Note that by setting p = 1 in Theorem 5.18, we obtain the main Theoremof Krause (2002).5.4 Generi BDD Construtions5.4.1 Keystream Consisteny Chek QmIn most ases, a BDD Qm that heks Condition 2 an be straightforwardlyderived from the de�nition of the keystream funtion C. If the omputation ofa keystream bit zt depends on u(j) > 1 bits from an FSR Rj , a �xed bit inthe bitstream produed by Rj will generally appear and have to be read in theomputation of up to u(j) keystream bits. In this ase, we ompute a keystreambit zt from a number of new bits whih are being onsidered for the �rst time,



5.4 Generi BDD Construtions 55and several old bits that were already involved in the omputation of previouskeystream bits. This would imply (at least in a straightforward implementation)reading a �xed variable more than one on the same path in Qm, whih isprohibited by the FBDD-de�nition. The less restritive general BDDs wouldpermit this onstrution, but ould no longer guarantee the e�ieny of theoperations that our attak depends on (f. Remark 5.3).A similar problem has been onsidered by Krause (2002) in the ontext of theirregularly loked A5/1 generator (f. Setion 4.2.3), whih uses the bits of theinternal bitstream both for omputing keystream bits and as input for the lokontrol mehanism. His solution was to inrease the number of unknowns byworking with u(j) synhronized dupliates of the Rj-bitstream at the expenseof a redued information rate α.We now onsider the more general situation that the keystream funtiondepends on new bits and some funtion(s) g1, . . . , gr in the old bits. In order topreserve the read-one property, we introdue auxiliary variables for the valuesof these funtions suh that zt is omputed only from new bits. This onstrutionis illustrated in the following example.Example 5.19. Consider the keystream funtion zt = Cm(wt+5, wt+7, wt+9),where Cm is de�ned by Cm(x1, x2, x3) = x1 ⊕ x2 ⊕ x3. Assuming anonialreading order, wt+9 would be the new bit and wt+5 and wt+7 the old bits. Withthe auxiliary variable w̃t := g1(wt+5, wt+7) and g1(x1, x2) := x1 ⊕ x2, we anexpress zt as zt = w̃t ⊕ wt+9.In general, if we add for eah of the r auxiliary variables an FSR to the gen-erator that outputs at lok t the orresponding value of gj , we an equivalentlyompute zt without onsidering the bits from the internal bitstream more thanone. Obviously, we obtain a generator with a lowered information rate, sinemore bits of the internal bitstream have to be read in order to ompute thesame number of keystream bits.In the ase of regularly loked keystream generators, we de�ne the set ofvariable indies that the keystream funtion depends on as
I := {i|zt depends on wt+i} ⊆ {0, . . . , n− 1} .The bits ontributed by register Rj , j ∈ {1, . . . , k}, an be expressed as

Ij := {i ∈ I|i ≡ j mod k} .Then, the set of new bits is given as
I∗ := {i∗1, . . . , i

∗
k} with i∗j = argmaxi∈Ij

{πm(i)} for j ∈ {1, . . . , k} ,and the old bits are those in the set I ′ := I\I∗.Conerning the information rate of the modi�ed generator, Observation 4.7implies:Observation 5.20. Fix a regularly loked keystream generator and denote by
I the set of positions in the internal bitstream that its keystream funtion dependson. If the keystream funtion an be expressed as a funtion depending on the
k variables in {wt+i|i ∈ I∗} and the values of r subfuntions depending onthe variables in {wt+i|i ∈ I ′}, the keystream funtion an be transformed intoan equivalent read-one keystream generation algorithm suh that the resultinggenerator's information rate is α = 1

k+r .



56 5.4 Generi BDD Construtions5.4.2 FSR Consisteny Chek RmReall that eah bit wt of an internal bitstream w is either an initial state bit ofsome FSR or a ombination of other internal bits. In order to deide for a giveninternal bitstream whether it satis�es Condition 1, we need to hek whetherthe update relations imposed on the bits at the ombined positions are ful�lled.Hene, if a ombined bit wt is produed by an update relation f(s0, . . . , sn−1),we need to hek whether f(wi1 , . . . , wip
) = wt, whih is equivalent to testingwhether

f̃(wi1 , . . . , wip
, wt) := f(wi1 , . . . , wip

)⊕ wt = 0 .The OBDD Sm implements this test for the single ombined bit wm−1 andrepresents the onstant-one funtion if wm−1 is an initial bit. The OBDD Rm =
∧m

i=1 Si performs the onsisteny tests for the whole internal bitstream.We �rst onsider the ase of FSRs (without additional memory), for whihwe need the following de�nition.De�nition 5.21. For a polynomial f : {0, 1}n → {0, 1} with
f(w1, . . . , wn) =

⊕

j∈M

mj with monomials mj =
∧

l∈Mj

wl and M j(f) ⊆ {1, . . . , n}and a reading order π ∈ σn, we de�ne the set of ative monomials at time t as
AMπ(f, t) := {mj : 0 < |{π−1(1), . . . , π−1(t)} ∩M j(f)| < |M j(f)|} .Hene, AM(f, t) ontains all monomials in f for whih at least one, but not allfators are known after the �rst t inputs have been read.Lemma 5.22. For a polynomial f : {0, 1}n → {0, 1} with n > 1 and a readingorder π for the inputs, the set of inputs satisfying f(w1, . . . , wn) = 0 an berepresented in a π-OBDD of width 2max1≤t≤n{|AMπ(f,t)|}+1.Proof. Let p := max1≤t≤n{|AMπ(f, t)|}. In order to ompute f(w1, . . . , wn),we may proeed in the following way. We de�ne p auxiliary variables b1, . . . , bp,whih will store the intermediate values of partly evaluated monomials, andan additional variable b0 for the sum of evaluated monomials. We initialize

b0 := 0, bt := 1 for t > 0, and read the variables w1, . . . , wn in the order givenby π. For eah variable wt, we update all auxiliary variables that are assoiatedwith monomials ontaining wt. If a monomial beomes ative by reading wt,we alloate an auxiliary variable bj and de�ne bj := wt. If a monomial isentirely evaluated after reading wt, we add its value to b0 and free the assoiatedauxiliary variable. Sine there are at most p ative monomials at any time, nomore than p + 1 auxiliary variables will be needed simultaneously.Observation 5.14 implies that this strategy an be transformed into a π-OBDD of width 2p+1, whih imples the laim. 2From Lemma 5.22, we an diretly derive an upper bound for the width ofthe πm-OBDD Sm for an FSR.Corollary 5.23. For a given reading order πm, an integer m > 0, an FSR Rwith update relation f , and p := max0≤t<m{|AMπm
(f̃ , t)|}+1, we an onstruta πm-OBDD Sm of width at most 2p that tests for an internal bitstream w ∈

{0, 1}m if w ful�lls the update relation imposed on wm−1.



5.4 Generi BDD Construtions 57Remark 5.24. For the speial ase p = 1, we obtain the LFSR-bound that wasproved by Krause (2002).We now turn to the ase of Fibonai FCSRs. Eq. (3.6) implies that weneed aess to σt−1 in order to hek whether the update relation holds for
wt. Therefore, we work with a modi�ed FCSR that essentially outputs thesum σt instead of the bit wt = σt mod 2 in eah lok. For a Fibonai FCSRwith p bits of additional memory, we let the modi�ed FCSR output for aninitial memory state (b0

p−1, . . . , b
0
0) with b0 =

∑p−1
i=0 b0

i 2
i the values y0

t =: σ0
t for

t < n − 1, (bp−1
0 , . . . , b0

0, y
0
n−1) for t = n − 1, and (σp

t , σp−1
t , . . . , σ0

t ) for t ≥ nwith σt =
∑p

i=0 σi
t2

i and wt = σ0
t .Note that a bit wm in the output of the modi�ed FCSR, m ≥ 0, thenorresponds to the i-th omponent bit of some intermediate sum σt with

(i, t) = τ(m) :=







(0, m) if m < n− 1
(m− (n− 1) mod (p + 1), otherwise

(m− (n− 1) div (p + 1)) + (n− 1))
.Lemma 5.25. For a Fibonai FCSR R with p bits of additional memory, aninteger m > 0, and a reading order πm, we an onstrut a πm-OBDD Smof width at most 2p+1 that tests for the internal bitstream w ∈ {0, 1}m of themodi�ed FCSR with m = n − 1 + t(p + 1) whether the last p + 1 bits ful�ll theupdate relation.Proof. In order to hek whether σt = (σt−1 div 2) +

∑n
i=1 wt−i · di−1, we anequivalently test if

σt =

p
∑

i=1

σi
t−1 · 2

i +

n∑

i=1

σ0
t−i · di−1 ,sine wt = σt mod 2 = σ0

t .Algorithm 6 desribes a read-one algorithm that heks whether the last
p + 1 bits of a bitstream w ∈ {0, 1}m are onsistent with the values of theremaining bits in w. Sine the algorithm uses exatly p + 1 bits of additionalmemory, Observation 5.14 implies that it an be transformed into an OBDD ofwidth at most 2p+1, whih implies the laim. 2Note that aording to Corollary 3.26, we have p ≈ log(d) for a periodiinitial FCSR-state, where d denotes the FCSR's feedbak tap vetor.In the ase of Galois FCSRs with ai ≤ di at all times, we denote by xi(t)and ai(t) the value of the register ells xi and ai at time t. We think of themain register of the Galois FCSR as produing the bitstream

x0(0), x1(0), . . . , xn−1(0), . . . , xi1(t), . . . , xil
(t), . . . ,where ij ∈ {1 ≤ i < n|di = 1}, l = wt(d) − 1, ij < ij′ for j < j′, and

t > 0. Similarly, we view the bitstream produed by the arry register as
ai1(t), . . . , ail

(t), . . . for t ≥ 0.Lemma 5.26. For a Galois FCSR R with ai−1 ≤ di−1 for all i ∈ {1, . . . , n−1},an integer m > 0, and a reading order πm, we an onstrut a πm-OBDD Sm



58 5.4 Generi BDD ConstrutionsAlgorithm 6 FibonaiFCSR-Sm(πm, w)Let (i, t) := τ(m)if t < n− 1 thenreturn true// Nothing to hek for initial bitsend if
σ̃ := 0 // Initialize the (p + 1)-bit auxiliary variablefor j = 0 to m− 1 do

(i′, t′) := τ((πm)−1(j)) // Determine the σi′

t′ that orresponds to the ur-rently read variable wjif t′ ∈ {t− n, . . . , t− 1} and i′ = 0 then
σ̃ := σ̃ + wj · dt−t′−1end ifif t′ = t− 1 and i′ ∈ {1, . . . p} then
σ̃ := σ̃ + wj · 2i′end ifif t′ = t thenif σ̃i′ 6= σi′

t′ thenreturn falseend ifend ifend forreturn trueof width at most 2 that tests whether a bit in the bitstream produed by the mainregister ful�lls the orresponding update relations. For a bit in the bitstreamof the arry register, we an perform this onsisteny test in a πm-OBDD ofmaximum width 8.Proof. The de�nition of Galois FCSRs implies xn−1(t) = x0(t − 1) and for
i ∈ {n − 2, . . . , 0} that xi(t) = xi+1(t − 1) if di = 0 and xi(t) = xi+1(t − 1) ⊕
ai(t−1)⊕x0(t−1) if di = 1. Note that we have xij+1(t−1) = xij+1 (t−(ij+1−ij))and therefore

xij
(t) = xij+1(t− 1)⊕ aij

(t− 1)⊕ x0(t− 1)

= xij+1 (t− (ij+1 − ij))⊕ aij
(t− 1)⊕ x0(t− 1) .Aording to Corollary 5.23, we an test these linear onditions in a πm-OBDDof width at most 2.Similarly, Corollary 5.23 yields a maximum width of 23 = 8 in the ase ofthe arry register, sine bij

(t) an be omputed as
aij

(t) = xij+1(t− 1)aij
(t− 1)⊕ aij

(t− 1)x0(t− 1)⊕ x0(t− 1)xij
(t− 1)

= xij+1 (t− (ij+1 − ij))aij
(t− 1)⊕ aij

(t− 1)x0(t− 1)

⊕ x0(t− 1)xij+1(t− (ij+1 − ij)) ,whih implies the laim. 2From the bounds on w(Sm) for the di�erent types of FSRs, we an nowstraightforwardly derive a bound for w(Rm) for an FSR-based keystream gener-ator. Let K denote an FSR-based keystream generator onsisting of k FSRs



5.5 Appliations 59
R0, . . . , Rk−1 with πm-OBDDs S0

m, . . . , Sk−1
m and w(Si

m) ≤ 2pi for all i ∈
{0, . . . , k − 1}. Moreover, let si denote the fration of ombined bits that Riontributes to the internal bitstream.Corollary 5.27. There exists a πm-OBDD Rm of width at most 2|CP(m)|

Pk−1
i=0 pisithat tests for a potential internal bitstream w ∈ {0, 1}m of an FSR-based keystreamgenerator whether it is an m-extension of the initial bits.Proof. The laim follows diretly fromRm =

∧m
i=1 Si and the OBDD-propertiesdesribed in Setion 5.2. 25.5 Appliations5.5.1 Self-Shrinking GeneratorAs disussed in Setion 4.2.1, the self-shrinking generator onsists of only oneLFSR and no memory. It produes at most m keybits from an internal bitstream

w2m, i.e., γ · 2m = m and γ = 0.5.Lemma 5.28. For all keystreams z ∈ {0, 1}∗, there exist at most (m/2
|z|

)
2m/2−|z|internal bitstreams w ∈ {0, 1}m suh that Cm(w) = z.Proof. We �rst observe that due to γ = 0.5, we have |Cm(w)| ≤ 0.5m, i.e., nointernal bitstream of length m an produe more than m

2 keystreams bits. We�x a keystream z of length at most m
2 and let Zz = {w ∈ {0, 1}m : Cm(w) = z}.For eah w ∈ Zz, there exists a set I = {i1, . . . , i|z|} ⊆ {0, . . . , m

2 } suh that
(w2ij

, w2ij+1) = (1, zj) for j ∈ {1, . . . , |z|}.Moreover, w must satisfy w2ij
= 0 for all ij ∈ {0, . . . , m

2 }\I. There are
(m/2

|z|

) possible hoies for I and 2m/2−|z| possible assignments to the unrestritedvariables. Hene,
|Zz| =

(
m/2

|z|

)

2m/2−|z| .
2Corollary 5.29 (Krause (2002)). The information rate of the self-shrinkinggenerator is α = 1− log(3)

2 ≈ 0.2075.Proof. Lemma 5.28 implies that for a z ∈ {0, 1}∗,
|{w ∈ {0, 1}m : Cm(w) is pre�x of z}| =

m/2
∑

|z|=0

(
m/2

|z|

)

2m/2−|z|

=

m/2
∑

|z|=0

(
m/2

|z|

)

1|z|2m/2−|z|

=(1 + 2)m/2 = 3m/2 .Hene,
α = −

1

m
Pr
w

[Cm(w) is Pre�x of z]

= −
1

m

|{w ∈ {0, 1}m : Cm(w) is pre�x of z}|

2m

= 1−
log(3)

2
≈ 0.2075 ,



60 5.5 Appliationswhih onludes the proof. 2Algorithm 7 tests whether a given internal bitstream w is onsistent with akeystream pre�x z. Sine the algorithm is read-one and uses at most ⌊log(m)⌋+
1 bits of additional memory, Observation 5.14 implies that it an be transformedinto a πm-OBDD Qm with w(Qm) ≤ m and |Qm| ≤ m2, where πm denotes theanonial reading order.Algorithm 7 SelfShrinkingGenerator-Qm(w, z)

t := 0
u := 0 // auxiliary variable u, u ≤ ⌊m

2 ⌋while t < m− 1 doif wt = 1 thenif zu 6= wt+1 thenreturn falseend if
u := u + 1end if

t := t + 2end whilereturn trueAltogether, we obtain from Theorem 5.18, Corollary 5.23, and Remark 5.24:Corollary 5.30 (Krause (2002)). From a pre�x of length ⌈2.41n⌉ of a keystream
z = Cm(L(x)) produed by a self-shrinking generator of key length n, an ini-tial state x̃ with Cm(L(x̃)) = z an be omputed in time and with spae in
O(n2 · 20.6563n).Compared with the attaks mentioned in Setion 4.2.1, the BDD-Attak isalmost as fast as the urrently best short-keystream attak due to Hell andJohansson (2006), but onsumes exponentially more memory.5.5.2 Bluetooth Keystream Generator E0Reall from Setion 4.2.2 that the E0 keystream generator is a regularly loked
(4, 4)-ombiner with 4 LFSRs, a 4-bit memory unit and an internal state size of128 bits. Therefore, we have α = γ = 1

4 .Algorithm 8 tests whether a given internal bitstream w is onsistent with anobserved E0-keystream z, given that the initial memory state is q0. ExploitingEqs. (4.1) and (4.2), the algorithm relies on a lookup-table δ′ : {0, . . . , 4}×{0, 1}4that maps the sum s′t =
∑3

i=0 wi
t and the urrent memory state qt to the nextmemory state qt+1 = δ′(s′t, qt). Sine the algorithm uses a onstant amountof additional memory, it an be transformed into a πm-OBDD Qm of onstantmaximum width, as indiated by Observation 5.14. Similarly to the ase of theSelf-Shrinking Generator, πm denotes the anonial reading order.In summary, Theorem 5.18, Corollary 5.23, and Remark 5.24 imply thefollowing performane �gures for the BDD-based attak on E0.Corollary 5.31 (Krause (2002)). From a pre�x of length n of a keystream

z = Cm(L(x)) produed by an E0 keystream generator of key length n, an initial



5.5 Appliations 61Algorithm 8 E0-Qm(q0, w, z)// w is interpreted as w = w0
0 , . . . , w

3
0 , . . . , w

0
j , . . . , w3

j , . . . , w
m−1mod 4
m−1div 4

t := 0
s := 0 // auxiliary variable for the integer sum, s ∈ {0, . . . , 4}
q := q0 // auxiliary variable for the memory statefor t = 0 to ⌊m

4 ⌋ − 1 do
s := w0

t + w1
t + w2

t + w3
tif (s mod 2)⊕

⊕3
i=0 ciq 6= zt thenreturn falseend if

q := δ′(s, q)end forreturn truestate x̃ with Cm(L(x̃)) = z an be omputed in time and with spae in O(n·20.6n),i.e., with 276.8 polynomial-time operations for n = 128.The BDD-Attak slightly improves the attak by Fluhrer and Luks (2001),whih trades o� time and the number of required keystream bits. For the min-imum number of 132 available keystream bits the attak needs 284 polynomialtime operations.5.5.3 GSM Keystream Generator A5/1We note that a bit that serves as input for the keystream funtion f at a par-tiular time has been onsidered a few lokings earlier by the lok ontrolmehanism. Based on our observations in Setion 5.4.1, we therefore dupliatethe three registers of A5/1 suh that the keystream bits are omputed from the�rst three registers and the lok ontrol operates on the remaining registers.However, the keystream generation algorithm of the resulting generator is stillnot read-one, sine the bits of unloked registers are reonsidered in subse-quent iterations. The read-one Algorithm 9 �xes this problem by introdu-ing auxiliary variables for these unhanged values. It an be straightforwardlyheked that this algorithm is equivalent to the original A5/1 algorithm.Due to the irregular loking of the A5/1 algorithm, the information rate αis a little less straightforward to ompute, but an be determined as follows.Lemma 5.32 (Krause (2002), Stegemann (2004)). The information rateof the modi�ed A5/1 keystream generator is given by
α =

1

2
log u1 ≈ 0.2193 ,where u1 denotes the positive real root of the polynomial p(u) = u3 − 3u2 + 8.Proof. The Independene Assumption has been shown to hold for A5/1 byKrause (2002) and Stegemann (2004). For an arbitrary keystream z, m ≥ 1,and a randomly hosen internal bitstream w, |w| = m, let

p(m) := Pr
w

[Cm(w) is pre�x of z] .



62 5.5 AppliationsAlgorithm 9 read-one-A5/1(w)// w is interpreted as w = w0
0 , . . . , w

5
0 , . . . , w

0
j , . . . , w

5
j , . . . , wm−1 mod 6

m−1 div 6

i := [0, 0, 0] // urrent read positions
u :=NIL // unhanged index ∈ {0, 1, 2, NIL}
v :=NIL // unhanged ontrol value ∈ {0, 1, NIL}
v′ :=NIL // unhanged output value ∈ {0, 1, NIL}
t := 0while (true) doif ∃r ∈ {0, 1, 2}\{u} : 6 · i[r] + r ≥ m thenstopend if

Read := {0, 1, 2}\{u}Let r0, . . . , r|Read|−1 the elements of Read in asending order, i.e. rm < rnfor m < n
out[r0] := wr0

i[r0]

out[r1] := wr1

i[r1]if u 6= NIL then // ∃ an unhanged index
out[u] := v′ // opy the unhanged output valueelse // all read positions inremented
out[r2] := wr2

i[r2] // read the third output valueend ifoutput zt = out[0]⊕ out[1]⊕ out[2]if ∃r ∈ {0, 1, 2}\{u} : 6 · i[r] + 3 + r ≥ m thenstopend if
c[r0] := w3+r0

i[r0]

c[r1] := w3+r1

i[r1]if u 6= NIL then // ∃ an unhanged index
c[u] := v // opy the unhanged ontrol valueelse // all read positions inremented
c[r2] := w3+r2

i[r2] // read the third ontrol valueend if
controlbit := maj3(c[0], c[1], c[2])if ∃r ∈ {0, 1, 2} : c[r] 6= controlbit then// By de�nition of maj3, ∃ at most one suh r

u := r // set unhanged index
v := controlbit⊕ 1 // set unhanged ontrol value
v′ := out[r] // set unhanged output valueelse // all read positions inremented
u := v := v′ := NILend iffor l ∈ {0, 1, 2}\{u} do
i[l] := i[l] + 1 // inrement read positionsend for

t := t + 1end while



5.5 Appliations 63Moreover, de�ne for m ≥ 0 and k ≤ m

p(m, k) := Pr
w∈u{0,1}m

[|Cm(w)| = k] .Sine a keystream bit is omputed either from 4 or 6 internal bits, we have
m
6 ≤ |Cm(w)| ≤ m

4 . Based on Equation (4.3) we an express p(m) as
p(m) = Pr

w
[Cm(w) is pre�x of z]

=

⌈γm⌉
∑

i=0

Pr
w

[|Cm(w)| = i] · Pr
|Cm(w)|=i

[Cm(w) = z0, . . . , zi−1]

=

m
4∑

k= m
6

p(m, k) · 2−k .Furthermore, Lemma 4.5 implies α = − 1
m log2(p(m)). Therefore, we nowderive a suitable reurrene relation for p(m) and use this expression to ompute

α. Let W denote the random variable that stores the number of internal bitsthat were used for the omputation of the �rst m
6 keystream bits. Moreover,let W ′ store the number of keystream bits that were omputed from 6 internalbits. These de�nitions imply

W = 6 ·W ′ + 4 · (
m

6
−W ′) .The number of internal bits that have not been read after the m

6 keystream bitshave been produed is given by
m−W = m− (6 ·W ′ + 4 · (

m

6
−W ′)) =

1

3
m− 2W ′ .We obtain the following reurrene relation for p(m).

p(m) =

m
6∑

i=0



2−
m
6 Pr[W ′ = i] ·

( 1
3m−2i)/6
∑

j=( 1
3m−2i)/6

2−jp

(
1

3
m− 2i, j

)




=

m
6∑

i=0

2−
m
6 Pr[W ′ = i] · p

(
1

3
m− 2i

)Sine W ′ is (m
6 , 1

4

)-binomially distributed (f. Stegemann (2004) for aproof), we an write Pr[W ′ = i] as
Pr[W ′ = i] =

(m
6

i

)(
1

4

)i (
3

4

)m
6 −i

,whih implies
p(m) =

m
6∑

i=0

2−
m
6

(m
6

i

)(
1

4

)i (
3

4

)m
6 −i

· p

(
1

3
m− 2i

)



64 5.5 AppliationsWith p(m) = 2−αm, we obtain a reurrene relation for α:
2−αm =

m
6∑

i=0

2−
m
6

(m
6

i

)(
1

4

)i (
3

4

)m
6 −i

· 2−α( 1
3m−2i)

= 2−( 1
6+ α

3 )m

m
6∑

i=0

(m
6

i

)(
1

4

)i (
3

4

)m
6 −i

· 22αiLemma 5.45 implies that this equation is equivalent to
2−αm = 2−( 1

6+ α
3 )m

(
1

4

)m
6

(3 + 22α)
m
6

⇐⇒ 2−6α = 2−(1+2α) 1

4
(3 + 22α)

⇐⇒ 21−4α =
1

4
(3 + 22α)

⇐⇒ 2(22α)−2 −
1

4
(22α)−

3

4
= 0By substituting u := 22α, i.e., α = 1

2 log u, we �nally obtain
u3 + 3u2 − 8 = 0 . 2The read-one Algorithm 10 tests for a given internal bitstream w and anobserved keystream z whether z ould have been produed by w. In order totransform Algorithm 10 into an FBDD, we proeed as follows. We �rst onvertthe funtion output-test into an output− FBDD(i, u, v, v′, t). Let out[rj ] denotethe value of the variable w

rj

i[rj ] for j ∈ {0, 1, 2} and let
v̂′ :=

{
out[r0]⊕ out[r1]⊕ out[r2] u = NIL
out[r0]⊕ out[r1]⊕ v′ u 6= NIL

.Then, output− FBDD(i, u, v, v′, t) is a omplete binary tree of depth 2 if u 6=
NIL and a omplete binary tree of depth 1 if u = NIL with

qj =

{
control− FBDD(i, u, v, v̂′, out, t) if v̂′ = wt

0− sink otherwise .If there exists an r ∈ {0, 1, 2}\{u} suh that 6 · i[r] + r ≥ m, then
output− FBDD(i, u, v, v′, t)is idential to the 1-sink. Similarly, in order to onvert the funtion control− testinto a

control− FBDD(i, u, v, v′, out, t) ,let c[rj ] denote the value of w
3+rj

i[rj ] , set
controlbit :=

{
maj3(c[r0], c[r1], c[r2]) if u = NIL
maj3(c[r0], c[r1], v) if u 6= NIL

,and de�ne î, û, v̂, and v̂′ as in the funtion control− test.
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control− FBDD(i, u, v, v′, t) is then a omplete binary tree of depth 2 if

u 6= NIL and a omplete binary tree of depth 1 if u = NIL with
qj = output− FBDD(̂i, û, v̂, v̂′, t + 1) .As above, if there exists an r ∈ {0, 1, 2}\{u} suh that 6 · i[r] + 3 + r ≥ m,then control− FBDD(i, u, v, v′, t) is idential to the 1-sink.Altogether, the FBDD Qm is given by

output− FBDD([0, 0, 0], NIL, NIL, NIL, 0) .Sine the sub-FBDDs output− FBDD and control− FBDD have onstantsizes and there are at most O(m4) di�erent sub-FBDDs, the size of Qm satis�es
|Qm| ∈ O(m4).Ignoring the urrent position t in the keystream and omitting the test whether
zt = v̂′ in the funtion output− test, we an straightforwardly derive from Qmthe orale graph G0

m that de�nes the order in whih the bits of the wj are readin Qm. It is easy to see that |G0
m| ∈ O(m3).Algorithm 10 A5/1-Qm(w, z)// w is interpreted as w = w0
0 , . . . , w

5
0 , . . . , w

0
j , . . . , w5

j , . . . , w
m−1 mod 6
m−1 div 6export w, m, z // global variablesreturn output-test([0,0,0℄,NIL,NIL,NIL,0)The de�nition of A5/1 implies that the keystream funtion reads the bitsprodued by a �xed LFSR Rj, j ∈ {0, . . . 5}, in anonial order. Hene, thereading order πj

m de�ned by πj
m(i) := i div k for i ≡ j mod 6 is onsistent with

G0
m in the sense of De�nition 5.11. Observation 5.12 then implies that the πj

m-OBDD Sm with j = (m − 1) mod 6 onstruted aording to Corollary 5.23and Remark 5.24 is a G0
m-FBDD.Obviously, at most m
4 keybits are produed from an internal bitstream oflength m, whih implies γ = 1

4 .In summary, we obtain by plugging the omputed values into the statementsof Theorem 5.18:Corollary 5.33 (Krause (2002)). From a pre�x of length ⌈1.14n⌉ of a keystream
y = Cm(L(x)) produed by an A5/1 keystream generator of key length n, an ini-tial state x̃ with Cm(L(x̃)) = y an be omputed in time and with spae in
O(n10 ·20.6403n), i.e, with 20.6403n = 241 polynomial-time operations for n = 64.We note that sine ⌈1.14n⌉ = 73 and the framelength in GSM is 114 Bits foreah diretion , we only need the �rst frame, i.e., the �rst around 4.6 millise-onds, of a onversation in order to reonstrut the initial state of the keystreamgenerator.5.5.4 TriviumTrivium (see Setion 4.2.4) is a regularly loked keystream generator onsistingof three interonneted NFSRs R0, R1, R2 of lengths n(0) = 93, n(1) = 84, and
n(2) = 111. The 288-bit initial state of the generator is derived from an 80 bit



66 5.5 Appliationsfuntion output-test(i, u, v, v′, t)// i=urrent read positions// u=unhanged index ∈ {0, 1, 2, NIL}// v=unhanged ontrol value ∈ {0, 1, NIL}// v′=unhanged output value ∈ {0, 1, NIL}// t=urrent position in the keystreamif ∃r ∈ {0, 1, 2}\{u} : 6 · i[r] + r ≥ m thenreturn trueend if
Read := {0, 1, 2}\{u}Let r0, . . . , r|Read|−1 the elements of Read in asending order, i.e. rm < rnfor m < n
out[r0] := wr0

i[r0]

out[r1] := wr1

i[r1]if u 6= NIL then // ∃ an unhanged index
out[u] := v′ // opy the unhanged output valueelse // all read positions inremented
out[r2] := wr2

i[r2] // read the third output valueend if
v̂′ := out[0]⊕ out[1]⊕ out[2]if zt 6= v̂′ thenreturn false // keystream inonsistentend ifreturn ontrol-test(i, u, v, v̂′, out, t)key and an 80 bit IV. The keystream funtion omputes a keystream bit zt bylinearly ombining six bits of the internal state, with eah NFSR ontributingtwo bits (f. Setion 4.2.4 for details). In order to mount the BDD-attak onTrivium, we write the keystream funtion as

zt = g1(s1, s94, s178)⊕ s28 ⊕ s109 ⊕ s223and proeed as desribed in Setion 5.4.1 by adding an LFSR R3 whih omputes
g1 to the generator. For πm equal to the anonial reading order, we have pi =
max1≤t≤288{|AMπm

(f̃ i, t)|}+1 = 2 and si = 1
4 for i ∈ {0, 1, 2} as well as p3 = 1and s3 = 1

4 , whih implies p =
∑3

i=0 pisi = 7
4 . Sine the modi�ed generatoromputes one keystream bit from four internal bits, we have β(m) = 1

4m and
α = γ = 1

4 . Based on Lemma 5.22, we an obviously onstrut a πm-OBDD Qmwith w(Qm) ≤ 2 that performs the onsisteny test for the observed keystream
z.Observation 5.34. For Trivium we have Prw[Cm(w)is pre�x of z] = pC(m) =
2−|Cm(w)|, i.e., the Independene Assumption holds.Proof. Let z̃ = (z̃1, . . . , z̃|z̃|) denote an arbitrary |z̃|-bit keystream. Sine w(m)is randomly hosen and uniformly distributed, we have

Pr
w

[z1 = w1 + w28 + w94 + w109 + w178 + w223 = z̃1] =
1

2
.
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funtion ontrol-test(i, u, v, v′, out, t)if ∃r ∈ {0, 1, 2}\{u} : 6 · i[r] + 3 + r ≥ m thenreturn trueend if
Read := {0, 1, 2}\{u}Let r0, . . . , r|Read|−1 the elements of Read in asending order, i.e. rm < rnfor m < n
c[r0] := w3+r0

i[r0]

c[r1] := w3+r1

i[r1]if u 6= NIL then // ∃ an unhanged index
c[u] := v // opy the unhanged ontrol valueelse // all read positions inremented
c[r2] := w3+r2

i[r2] // read the third ontrol valueend if
controlbit := maj3(c[0], c[1], c[2])if ∃r ∈ {0, 1, 2} : c[r] 6= controlbit then// By de�nition of maj3, ∃ at most one suh r

û := r // set unhanged index
v̂ := controlbit⊕ 1 // set unhanged ontrol value
v̂′ := out[r] // set unhanged output valueelse // all read positions inremented
û := v̂ := v̂′ := NILend iffor l ∈ {0, 1, 2} do
î[l] := i[l] +

{
1 l 6= u
0 l = uend forreturn output-test(̂i, û, v̂, v̂′, t + 1)



68 5.5 AppliationsThree of the six internal bits utilized in the omputation of a partiular key-bit will be reused in later steps, but eah step also involves three previouslyunonsidered bits. Hene, the laim follows by indution. 2By plugging α, γ and p into the statement of Theorem 5.18, we obtain:Theorem 5.35. The seret initial state of the Trivium automaton an be re-overed from the �rst n keystream bits in time and with spae in O (n · 20.65625n
)
≈

2189 for n = 288.Theorem 5.35 shows that the BDD-attak is appliable to Trivium, but itsperformane is not ompetitive with reently published attaks requiring only
245 operations as desribed in Setion 4.2.4.5.5.5 Grain-128The regularly loked stream ipher Grain-128 (see Setion 4.2.5) has a key sizeof 128 bits and an IV size of 96 bits. The design is based on two interonnetedshift registers, an LFSR R0 and an NFSR R1, both of lengths n(0) = n(1) = 128and a nonlinear keystream funtion. We denote the ontent of the LFSR by
st, st+1, . . . , st+127 and the ontent of the NFSR by bt, bt+1, . . . , bt+127. Theorresponding update funtions and the keystream funtion are given in Se-tion 4.2.5.We add to the keystream generator an NFSR R2 whih omputes the keystreambits zt and have the generator output the values produed by R2 in eah lok.More preisely, we an ompute zt as

zt = g1(bt+2, bt+15, bt+36, bt+45, bt+64, bt+73, bt+89, bt+12, st+8, st+13, st+20,

st+60, st+79)⊕ bt+95g2(st+42)⊕ g3(bt+12)bt+95st+95 ,where g2(st+42) = st+42 and g3(bt+12) = bt+12 and g1 ontains 3 monomials ofdegree 2.Hene, we an ompute one keystream bit from 3 internal bits, whih implies
β(m) = 1

3m and α = γ = 1
3 . For πm equal to the anonial reading order, itis p0 = 1, and we have p1 = max0≤i≤117{|AMπm

(f̃1, t + i)|} + 1 = 4, and
p2 = max0≤i≤95{|AMπm

(f̃2, t + i)|} + 1 = 4. Hene, p = 1
3 + 4

3 + 4
3 = 3.Obviously, the onsisteny test for an observed keystream an be performed bya πm-OBDDQm with w(Qm) ≤ 23 = 8 aording to Lemma 5.22. Sine new bitsare utilized in the omputation of eah keybit, we an expet the IndependeneAssumption to hold.Hene, the appliation of Theorem 5.18 yieldsTheorem 5.36. The seret initial state of the Grain automaton an be reov-ered from the �rst n keystream bits in time and with spae in O (n · 20.6n
)
≈ 2154for n = 256.Compared to the attaks listed in Setion 4.2.5, although far from the e�ortrequired by exhaustive key searh, Theorem 5.36 is to the best of our knowl-edge the �rst exploitable ryptanalyti result under realisti assumptions be-sides generi time-memory-data-tradeo� attaks as presented by Biryukov andShamir (2000).



5.5 Appliations 695.5.6 The F-FCSR Stream Cipher FamilyThe F-FCSR stream ipher family in its urrent version onsists of the variantsF-FCSR-H and F-FCSR-16 (see Setion 4.2.6).F-FCSR-H has key length 80 bits and onsists of a single Galois FCSR Mof length n = 160 and a feedbak tap vetor d of Hamming weight 83. Memoryells are only present at those 82 positions i ∈ {1, . . . , n− 1}, for whih di = 1.At eah lok, eight keystream bits bi are reated by taking the XOR-sum of upto 15 variables of the urrent internal state (f. Setion 4.2.6 for details).In order to mount the BDD-attak, we split the FCSR into the main register
R0 and the arry register R1. Sine eah keystream bit is omputed as thesum of up to 15 internal bits, we are in a similar situation as desribed inExample 5.19 and need additional LFSRs R2, . . . , R9 to ompute the keystreambits zi, 0 ≤ i < 8. The modi�ed keystream funtion simply returns thesebits in eah lok. With l := wt(d) − 1 we obtain eight keystream bits from
2l + 8 internal bits, hene β(m) = 8

2l+1m and α = γ = 8
2l+8 = 2

43 . We have
p0 = p1 = l, pi = 1 for i ∈ {2, . . . , 9}, s0 = s1 = l

2l+8 , and si = 1
2l+8 for

2 ≤ i ≤ 9, whih implies p = 2l2+1
2l+1 .Obviously, the onsisteny test for the observed keystream z an be per-formed by an OBDD Qm with w(Qm) ≤ 2. Sine the omputation of thekeybits involves new internal bits in every lok, we an expet the Indepen-dene Assumption to hold. Note that we have l additional unknowns from theinitial value of the arry register.Plugging the omputed values into the statement of Lemma 5.17 implies thefollowing theorem.Theorem 5.37. The seret initial state of the F-FCSR-H automaton an be re-overed from the �rst n+l keystream bits in time and with spae in O (n · 20.9925(n+l)

)
≈

2241 for n = 160 and l = 82.The F-FCSR-16 generator has the same struture as F-FCSR-H, but largerparameters. More preisely, we have key length 128 bits, n = 256 and thefeedbak tap vetor has Hamming weight 131 (i.e., l = 130), where memory ellsare only present at nonzero tap positions as before. Sine F-FCSR-16 produes
16 keystream bits per lok, we onstrut 16 additional LFSRs that produethese bits. Hene, we an ompute 16 keystream bits from 2l + 16 internal bits,whih implies β(m) = 16

2l+16m and α = γ = 16
2l+16 = 4

69 . Analogously to thease of F-FCSR-H, we obtain p = 2l2+16
2l+16 . The modi�ed generator satis�es theIndependene Assumption as before, and we have l = 130 additional unknowns.We obtain by applying Lemma 5.17:Theorem 5.38. The seret initial state of the F-FCSR-16 automaton an be re-overed from the �rst n+l keystream bits in time and with spae in O (n · 20.94(n+l)

)
≈

2363 for n = 256 and q′ = 8.Our analysis supports the seurity requirement that the Hamming weight of
c should not be too small, whih Arnault et al. (2006) motivated by ompletelydi�erent arguments. Although the BDD-attak is to the best of our knowledgethe �rst nontrivial attak on the urrent version of the F-FCSR family, itse�ieny is by no means lose to exhaustive key searh.



70 5.6 Divide-and-Conquer Strategies (DCS)5.6 Divide-and-Conquer Strategies (DCS)One obvious disadvantage of BDD-based attaks is their high memory onsump-tion, whih is essentially determined by the size of the intermediate BDDs Pm.One possible approah are divide-and-onquer strategies (DCS) that divide thesearh spae, i.e., the set {0, 1}m of internal bitstreams of length m, into seg-ments and to apply BDD-based attaks to the segments individually.We represent a segmentation of {0, 1}m by a funtion θm : {0, 1}m → {0, 1}∗assigning a segment to eah internal bitstream. The number of di�erent seg-ments is then given by |im(θm)|. We denote by θς
m the harateristi funtionof segment ς ∈ im(θm), i.e.,

θς
m : {0, 1}m → {0, 1}

w 7→

{
1 if θm(w) = ς
0 otherwise .Consequently, we denote by Θς

m the G0
m-FBDD representing θς

m, i.e., the G0
m-FBDD that aepts exatly those w ∈ {0, 1}m that satisfy θς

m(w) = 1. Basedon a segmentation θm, we an perform the BDD-based attak as outlined inAlgorithm 11.Algorithm 11 ReoverInitialState-DCSfor all ς ∈ im(θm) do
P ς = Qnmin

∧Θς
nminfor m = nmin + 1 to ⌈α−1n⌉ do

P ς = MIN(P ς ∧Qm ∧ Sm ∧Θς
m)end forif (P ς)−1 (1) 6= {} thenreturn the initial state bits ontained in one of the w ∈ (P ς)

−1
(1)end ifend forIn the same way as the original attak desribed in Algorithm 5, the per-formane of the DCS-based attak fundamentally depends on the size of theintermediate FBDDs P ς

m. Compared to the FBDDs Pm in the original attak,
P ς

m satis�es |(P ς
m)−1(1)| ≤ | (Pm)

−1
(1)| due to its onstrution. Hene,

m · | (P ς
m)−1 (1)| ≤ m · | (Pm)−1 (1)| .On the other hand, the onstrution of P ς

m implies
|G0

m| · |Qm| · |Rm| · |Θ
ς
m| ≥ |G

0
m| · |Qm| · |Rm| ,i.e., one of the two bounds that we have used to estimate |Pm| in the proofof Lemma 5.17 dereases and the other one inreases. We onlude that ingeneral, we will only bene�t from a divide-and-onquer strategy if |Θς

m| is small(preferrably polynomial in m) and |im(θm)|, the number of segments, is nottoo large, as we have to apply the attak to eah segment instead of only one.However, sine a partiular internal bitstream belongs to exatly one segment,the sets of internal bitstreams mapped to the same segment are disjoint, andthe attaks on the individual segments an be e�iently parallelized.



5.6 Divide-and-Conquer Strategies (DCS) 71We now onsider the speial ase of setting onstant the bits at ertain initialpositions in the internal bitstream. If V ⊆ IP(m), |V | ≤ n, denotes the set ofinitial positions to be set onstant, we de�ne the restrition of w ∈ {0, 1}m tothe bits at the positions in V as w|V := (wi1 , . . . , wi|V |
) with ij ∈ V , ij < ik for

j < k, and the orresponding segmentation funtion as
θm,V : {0, 1}m → {0, 1}|V |

w 7→ w|V
.We all a position j ≥ 1 a V-determined position in w = (w0, . . . , wm−1) if

j ∈ V ∪ {0, . . . , m− 1} or if the value of wj is determined by the bits wl, l ∈ V .We note that |im(θm,V )| = 2|V | and that the onstrution of the G0
m-FBDD

Θς
m,V is trivial, while its size is bounded by |Θς

m,V | ∈ O(|V |). The attak onan individual segment ς ∈ {0, 1}|V | only needs to regard the bits at the n− |V |non-onstant initial positions as unknowns, and in the worst ase, there areno V -determined positions exept for those in V . The DCS-based attak on asingle segment therefore orresponds (in the worst ase) to the original attakwith redued key length. Following the lines of the proof of Lemma 5.17 westraightforwardly obtainTheorem 5.39. For an FSR-based keystream generator ful�lling the require-ments of Lemma 5.17 and a divide-and-onquer strategy based on setting on-stant the bits at initial positions j ∈ V , |V | ≤ n, the divide-and-onquer algo-rithm (Algorithm 11) will onsume time in the order of O (2|V |ǫ(n)|Qn||V |2r∗)and memory in the order of O (ǫ(n)|Qn||V |2
r∗), with r∗ := p(1−α)

p+α (n− |V |).5.6.1 DCS for regularly loked (k, l)-CombinersBased on Theorem 5.39, we analyze two partiular hoies for V that are appli-able to regularly loked (k, l)-ombiners, e.g., the E0 keystream generator.First, we de�ne V to ontain exatly the positions of the �rst s initial bitsof eah FSR. In the worst ase, there are no V -determined positions besides thepositions in V .For a segment ς ∈ im(θm,V ), a BDD-based searh of the orrespondingsegment requires as muh e�ort as the original BDD-attak on a (k, l)-ombinerof key length (n−ks). We therefore obtain r∗ = k−1
k+1 (n−ks) and the exponentialpart of the overall runtime beomes

2ks+ k−1
k+1 (n−ks) = 2

k−1
k+1 n+ 2k

k+1 s ,whih is by a fator of 2
2k

k+1 s worse than in the original attak. On the otherhand, the required memory is redued by a fator of 2
k−1
k+1 ks.We note that we only need to onsider the assignments to the positionsin V that are onsistent with z. If the ombination of the �rst s initial bitsin eah register determines the values of the �rst s keystream bits (E0 hasthis property, for instane), Lemma 5.15 implies that it is su�ient to onsideraround |{0, 1}(1−α)ks| = 2(k−1)s of the |im(θm,V )| = 2ks possible segments,whih makes the runtime derease by a fator of 2s to

2
k−1
k+1 n+ k−1

k+1 s .



72 5.6 Divide-and-Conquer Strategies (DCS)Lemma 5.40. For a regularly loked (k, l)-ombiner ful�lling the requirementsof Lemma 5.17 and the divide-and-onquer strategy of setting onstant the �rst
s bits produed by eah FSR, the divide-and-onquer algorithm (Algorithm 11)will onsume time in the order of O (ǫ(n)|Qn| · ks · 2

k−1
k+1 (n+s)+s

) and memoryin the order of O (ǫ(n)|Qn| · ks · 2
k−1
k+1 (n−ks)

). If the ombiner always produes
s keystream bits from the registers' �rst s initial bits, the runtime dereases bya fator of 2s.The E0 keystream generator is a regularly loked (4, 4)-ombiner, whihimpliesCorollary 5.41. For the E0 keystream generator with key length n = 128,hoosing V to ontain the positions of the �rst s initial bits of eah LFSR yieldsa runtime of the DCS-based attak of 20.6(128+s) polynomial time operations anda memory onsumption in the order of 20.6(128−4s).As a seond example, we hoose as V the set of all initial positions thatbelong to the shortest FSR, w.l.o.g. the FSR R0. If we denote by n0 ≤

n
kthe length of R0, {0, 1}n0 is the set of all possible initial states of R0. Sineevery k-th position of an internal bitstream w is V -determined, the attak on apartiular segment orresponds to the performane of the original BDD-attakon a (k− 1, l)-ombiner of key length n−n0, hene r∗ = k−2

k (n−n0). It is easyto see that for n0 ≤
n

k+1 , we have
|V |+ r∗ = n0 +

k − 2

k
(n− n0) ≤

k − 1

k + 1
n ,whih means that for su�iently small n0, we even obtain a runtime improve-ment in addition to the signi�antly redued spae onsumption.Lemma 5.42. For a regularly loked (k, l)-ombiner ful�lling the requirementsof Lemma 5.17, n0 the length of the shortest FSR, and the divide-and-onquerstrategy of setting onstant the shortest FSR, the divide-and-onquer algorithm(Algorithm 11) will onsume time in the order of O (ǫ(n)|Qn| · n0 · 2n0+

k−2
k

(n−n0)
)and memory in the order of O (ǫ(n)|Qn| · n0 · 2

k−2
k

(n−n0)
).In the ase of the E0 keystream generator, we have n0 = 25 ≤ 25.6 = 128

4+1and obtainCorollary 5.43. For the E0 keystream generator with key length n = 128,hoosing V to be the set of all initial positions that belong to the LFSR oflength n0 = 25 (the shortest LFSR) yields a runtime of the DCS-based attak of
225+ 1

2103 = 276.5 polynomial-time operations and a memory onsumption in theorder of 251.5.Compared to the original BDD-attak, we have improved the memory on-sumption by a fator of about 225 and the runtime by a fator of 20.3.Shaked and Wool (2006) set onstant the last parts of the LFSRs in E0(60 bits in total) and thereby lowered the memory requirements to 223 whileinreasing the runtime to the order of 283.



5.6 Divide-and-Conquer Strategies (DCS) 735.6.2 DCS for the A5/1 GeneratorIn the following, we ompute the information rate of the A5/1 generator withrespet to a family of hoies for the set V , partiularly those de�ned by settingonstant the initial states of one or more LFSRs. As stated in Setion 5.5.3,in the unmodi�ed de�nition of the A5/1 generator, eah of the three LFSRsis divided into two, approximately equally long halfs, a value-half onsisting ofthe output ell and the ells between output and lok-ontrol ell and a ontrolhalf onsisting of the lok-ontrol ell and the rest of the register. Sine thevalue-LFSRs and the ontrol-LFSRs in the modi�ed setting orrespond to thevalue-halfs and the ontrol-halfs in the unmodi�ed ase, setting onstant theinitial states of LFSRs or half-LFSRs in the original de�nition is equivalent to�xing the orresponding LFSRs in the modi�ed ase.For all natural numbers i ≥ 1, we denote by Zi and Wi the random vari-ables orresponding to the i-th keystream bit and the number of internal bitsproessed for the prodution of the i-th keystream bit, respetively, taken overthe probability spae of all random internal bitstreams. In all ases, Zi and Wiwill ful�ll the following onditions.
• For all i > 1, Wi is independent of W1, . . . , Wi−1, and Zi is independentof Z1, . . . , Zi−1.
• Pr[Zi = 0] = Pr[Zi = 1] = 1

2 .
• There are natural numbers a > b > c and probabilities p, q and r = 1−p−qsuh that Pr[Wi = a] = p, Pr[Wi = b] = q, and Pr[Wi = c] = r.We denote the situation that Zi and Wi ful�ll the above onditions as ase

[(p, a), (q, b), (r, c)]. It an be easily heked that the unrestrited A5/1 gen-erator orresponds to ase [(1/4, 6), (3/4, 4), (0, 0)]. We will see below that allgenerators derived from the A5/1 generator by setting onstant one or more ofthe six LFSRs orrespond to [(p, a), (q, b), (r, c)] for some p, q, r, a, b, c. We maythen ompute the information rate α with the help of the following Theorem.Theorem 5.44. In the ase [(p, a), (q, b), (r, c)], the information rate equals α,where t = 2α is the unique positive real solution of pta + qtb + rtc − 2 = 0.Note that for the speial ase [(1, k), 0, 0] the information rate is 1/k.In order to prove Theorem 5.44, we need the following tehnial result.Lemma 5.45 (Krause (2002)). All natural numbers N ≥ 1, probabilities p ∈

(0, 1) and real numbers β > 0 satisfy∑N
i=0

(
N
i

)
pi(1−p)N−i2βi =

(
1− p + p2β

)N
.Proof (Theorem 5.44). Sine we an obtain the information rate α from

α = − 1
m log2 pC(m) following Assumption 4.4, we now ompute the proba-bility pC(m) = Prw[Cm(w) is pre�x of z] for the ases that parts of the LFSRsare set onstant.Case [(p, a), (q, b), (r, c)] implies that from all random internal bitstreams oflength m, m divisible by a, at least m/a keystream bits are produed. Thenumber of internal bits remaining from m internal bits after the prodution of

m/a keystream bits an be omputed as
m− aU − bV − c

(m

a
− U − V

)

=
a− c

a
m− (a− c)U − (b− c)V ,



74 5.6 Divide-and-Conquer Strategies (DCS)where U and V denote the number of keystream bits among the �rst m/akeystream bits for whih a and b internal bits are proessed, respetively. Notethat U is (p, m/a)-binomially distributed and that V , under the ondition that
U = i, is (q/(q + r), m/a− i)-binomially distributed. We obtain the followingrelation for pC(m).
pC(m) = 2−

m
a

m
a∑

i=0

m
a
−i
∑

j=0

Pr[U = i, V = j]p

(
a− c

a
m− (a− c)i− (b − c)j

) , i.e.,
2−αm = 2−

m
a

m
a∑

i=0

(m
a

i

)

pi(1− p)
m
a
−i

·

m
a
−i
∑

j=0

(m
a − i

j

)(
q

q + r

)j (
r

q + r

)m
a
−i−j

· 2−α( a−c
a

m−(a−c)i−(b−c)j) ,whih is equivalent to
2(1−aα+(a−c)α) m

a =

m
a∑

i=0

(m
a

i

)

pi(1 − p)
m
a
−i · 2(a−c)αi

·

m
a
−i
∑

j=0

(m
a − i

j

)(
q

1− p

)j (
r

1− p

)m
a
−i−j

· 2(b−c)αj .Now, we apply Lemma 5.45 to the inner sum and obtain
2(1−nα) m

a =

m
a∑

i=0

(m
a

i

)

pi(1− p)
m
a
−i · 2(a−c)αi ·

(
r

1− p
+

q

1− p
2(b−c)α

)m
a
−i

.Setting s := r
1−p + q

1−p2(b−c)α, we get
(

2

s2cα

)m
a

=

m
a∑

i=0

(m
a

i

)

pi(1− p)
m
a
−i · 2((a−c)α−log(s))i

=
(

1− p + p2(a−c)α−log(s)
)m

a

.Consequently, we obtain by setting t := 2α

2

stc
= 1− p + p

ta−c

s
⇔ 2 = (1− p)stc + pta .

s = r
1−p + q

1−p tb−c implies 2 = rtc + qtb +pta, whih in turn implies the laim.2We now ompute the information rates for restritions of type (v1v2v3|c1c2c3) ∈
{0, 1}6, whih means that those output LFSRs i in the modi�ed version of thegenerator for whih vi = 1 and the ontrol LFSRs j for whih cj = 1 are setonstant. Note that the unrestrited ase orresponds to (000|000). We do not



5.6 Divide-and-Conquer Strategies (DCS) 75onsider the ase of 5 onstant LFSRs, sine the initial state of the remainingunknown LFSR from a given keystream an be omputed in linear time.For symmetry reasons, ertain hoies for (v1v2v3|c1c2c3) are equivalent.First, it is easy to see that for all permutations πm of {1, 2, 3}, restrition
(v1v2v3|c1c2c3) is equivalent to restition (vπm(1), vπm(2)vπm(3)|cπm(1)cπm(2)cπm(3)).Furthermore, we observe that with respet to restrition (v|c), v, c ∈ {0, 1}3,the number of internal bits W (u, V, C) proessed for the prodution of the nextkeystream bit assuming the urrent values in the ontrol LFSRs are u ∈ {0, 1}3equals

W (u, v, c) =
∑

i,ci=0

fi(u) +
∑

i,vi=0

fi(u) , (5.3)where for i ∈ {1, 2, 3} the Boolean funtion fi : {0, 1}3 → {0, 1} is de�ned tooutput 1 on u i� the i-th LFSR will be loked w.r.t. u, more preisely
fi(u) = (ui ⊕ u((i+1) mod 3) ⊕ 1) ∨ (ui ⊕ u((i+2) mod 3) ⊕ 1) .Equation (5.3) implies that for all v, c, u ∈ {0, 1}3 and i ∈ {1, 2, 3}, W (u, v, c) =

W (u, v′, c′), where v′, c′ are obtained from v, c by exhanging the i-th ompo-nent. Hene, restrition (v|c) is equivalent to restrition (v′|c′). It is thereforesu�ient to analyze the restritions (000|100), (100|100), (100|010), (100|110),
(000|111), (100|111), and (110|110).We �rst onsider the restrition (100|100). If the atual ontent of the outputells of the two non-onstant ontrol LFSRs is 00 or 11, then four internal bitswill be proessed, otherwise two internal bits will be proessed. Hene, theorresponding ase is [(1/2, 4), (1/2, 2), 0] and therefore α ≈ 0.3215.Under restrition (100|010), four internal bits will be proessed if the atualontent of the output ell of the onstant ontrol LFSR is b ∈ {0, 1} and theatual ontent of the two non-onstant ontrol LFSR is bb. If we have bb̄ thentwo, and in all remaining ases 3 internal bits will be proessed. Therefore, weare in the ase [(1/4, 4), (1/2, 3), (1/4, 2)] and obtain α ≈ 0.3271.Under restrition (110|110), two internal bits will be proessed if the assign-ment to the output ells of the onstant ontrol LFSRs is 01 or 10 or if all threeoutput ells of the ontrol LFSRs oinide. If the assignment to the output ellsof the onstant ontrol LFSRs is bb for some b ∈ {0, 1} and the random assign-ment to the remaining ontrol ell is b̄, then the next keystream bit dependsonly on the onstant assignments, and no internal bit will be proessed. Hene,in ontrast to the above ases, pC(m) and α are not independent of the onstantLFSRs and the given keystream. Therefore, we ompute only the average in-formation rate over all possible assignments to the onstant ontrol and outputLFSRs. Aording to the above observation, the probability that two internalbits are proessed for the next keystream bit is 3/4, and the probability that0 internal bits are proessed for the next ouput bit is 1/4. In total, we obtain
[(3/4, 4), (1/4, 0), 0] and therefore α ≈ 0.6113.We an handle the remaining ases with similar arguments.The information rates for the disussed ases are summarized in Table 5.1.Lemma 5.46. For the A5/1 keystream generator and the devide-and-onquerstrategy of setting onstant partiular sub-LFSRs as indiated in Table 5.1, thedivide-and-onquer algorithm (Algorithm 11) will onsume time in the order of
O
(
2|V | · n11 · 2r∗) and memory in the order of O (n11 · 2r∗) with r∗ = 1−α

1+αn.



76 5.7 Simulations and Experimental ResultsTable 5.1: Information rates α for the restrited A5/1
|V | restrition α r∗ |V |+ r∗
2
3n (100|111) 0.6430 0.2173n 0.8840n

(110|110) 0.6113 0.2412n 0.9079n
1
2n (000|111) 0.4386 0.3902n 0.8902n

(100|110) 0.4261 0.4024n 0.9024n
1
3n (000|110) 0.3271 0.5070n 0.8403n

(100|100) 0.3215 0.5134n 0.8467n
1
6n (000|100) 0.2622 0.5840n 0.7507n

0 (000|000) 0.2193 0.6403n 0.6403n5.7 Simulations and Experimental ResultsIn order to provide a fast implementation of the FBDD algorithms, the FBDD-library developed by Stegemann (2004) based on the publily available OBDDpakage CUDD (Somenzi, 2001) was extended to support divide-and-onquerstrategies. We used this library for our experiments on a standard Linux PCwith a 2.7 GHz Intel Xeon proessor and 4 GB of RAM. All implementationswere done in C using the g-ompiler.Sine the runtime of the ryptanalysis fundamentally depends on the maxi-mum size of the intermediate FBDDs Pm, we investigate how muh experimen-tally obtained values of |Pm| deviate from the theoretial �gures.We �rst onsider the basi BDD-based attak. For the self-shrinking gener-ator, the E0 generator and the A5/1 generator, we analyzed several thousandsof redued instanes with random primitive feedbak polynomials and randominitial states for various key lengths. For eah onsidered random generator, weomputed the atual maximum BDD-size of the intermediate results
Pmax(n) = max

1≤m≤⌈α−1n⌉
{|Pm|} ,the theoretial upper bound

P t
max(n) = max

1≤m≤⌈α−1n⌉

{

ǫ(m) · |Qm| · 2
p(1−α)

p+α
n
}that was obtained in Lemma 5.17, as well as the quotient q(n) = log(Pmax(n))

log(P t
max(n)) .Similarly, we tested for E0 and A5/1 the divide-and-onquer strategy ofsetting onstant the shortest LFSR (denoted by strategy s1), and we onsidered�xing the �rst s = ⌊n0

2 ⌋ ≤
n
8 bits of eah of the four LFSRs in E0 (denoted bystrategy s2), with n0 the length of the shortest LFSR. Note that (s1) orrespondsto the ase (100|100) for the A5/1 generator. Sine the q(n)-values did notnotieably derease with inreasing n in all our simulations, we estimate theattak's performane in dependene of n by multiplying the theoretial �guresby 2q(n). Partiularly, we an obtain onjetures about the attak's performaneon real-life instanes of E0 and A5/1 by replaing n with the atual key lengths.Tables 5.2 and 5.3 shows the results of these omputations along with detailsabout our experiments. We observe that our results are onsistent with an



5.8 Disussion of the BDD-Attak 77earlier analysis of the basi BDD-based attak on E0 and the self-shrinkinggenerator whih was onduted by Shleer (2002).On average, the attak based on DCS (s1) took 87 minutes for E0 with
n = 37 and 54 minutes for A5/1 with n = 30. The longest key lengths that wewere able to takle with the resoures desribed at the beginning of this setionwere n = 46 for E0 and n = 37 for A5/1. These attaks used up almost all ofthe available memory and took 60.5 and 25.1 hours to omplete on average.5.8 Disussion of the BDD-AttakWe observe that when onsidering only the keystream generator (without thekey/IV setup proedure), the BDD-Attak is an e�ient generi initial statereovery attak that is faster than exhaustive searh for a broad lass of streamiphers. This leads straightforwardly to an e�ient attak for older designs like
E0 and A5/1, whose key length is roughly equal to the internal state size.From the extended BDD-Attak, e.g. on Trivium, we observe that the BDDapproah may still be applied to reover the initial internal state of a keystreamgenerator under the following generalizations.1. Instead of LFSRs, feedbak shift registers with nonlinear update funtionsare used. This is in ontrast to algebrai attaks (to be disussed in thenext hapter), whih fundamentally depend on the linearity of the updatefuntion. The only requirement that we have is that the update relationbe balaned.2. The shift registers in�uene eah other via exhanging update bits.However, sine the adaption of time/memory/data tradeo�s to stream i-phers by Biryukov and Shamir (2000), modern designs inorporate keystreamgenerators whose size is at least twie the key length. Hene, for the BDD-Attakin its urrent form to yield an atual attak on the whole ipher (inluding thekey/IV setup), we would need p(1−α)

p+α < 1
2 , whih means α > 1

3 for p = 1. Thiswill rarely be the ase for pratial designs.Hene, the generi nature of the BDD-Attak is at the same time its draw-bak: Currently, we annot make use of any IV-knowledge and we see no wayto e�iently take the key/IV setup (usually performing many operations with-out produing observable output) with our method. Similarly, it seems hard toTable 5.2: Simulation parameters of the BDD-based attakgenerator DCS key length avg no. ofinterval q(n) samples
E0 − [19, 37] 0.85 2000
E0 s1 [19, 37] 0.95 2700
E0 s2 [19, 37] 0.9 2700A5/1 − [15, 30] 0.9 3000A5/1 s1 [19, 37] 0.77 2400SSG − [10, 35] 0.8 3300



78 5.8 Disussion of the BDD-AttakTable 5.3: Performane of the BDD-based attak in pratiegenerator DCS estimated pratial performaneTime Spae
E0 − 20.51n 265.28 20.51n 265.28

E0 s1 20.475(n+n0) 272.68 20.475(n−n0) 248.93

E0 s2 20.54n+0.27n0 275.87 20.54n−1.08n0 242.12A5/1 − 20.5763n 236.88 20.5763n 236.88A5/1 s1 20.3953n+0.77n0 239.93 20.3953n 225.30SSG − 20.525n 20.525ninorporate the speialities in the ipher operations that are heavily exploitedby other, more spei� attaks.It therefore remains as an open question whether the BDD-Approah an beombined with other strategies (e.g., orrelation attaks and algebrai attakswhih are to be onsidered in the next hapter) in order to obtain attaks onmodern designs whose internal state is muh larger than the seret key.



Chapter 6Other Generi Attaks onStream CiphersIn this setion, we onsider two other prominent generi attaks on streamiphers � orrelation attaks and algebrai attaks.A orrelation attak onsists of �nding and exploiting linear funtions
L(Xt, . . . , Xt+r−1, zt, . . . , zt+r−1)whih are biased, i.e., equal to zero with some probability 6= 1/2. Algebraiattaks, in a way, mark the opposite. Here, non-linear equations of preferablylow degree that are true with probability one are used to desribe the seretinformation by a system of equations.The basi ideas of these attaks have been known for quite a few years.The �rst appearane of orrelation attaks dates bak to the mid-80s (Siegen-thaler, 1985), while algebrai attaks have been disovered around the year 2003(Armkneht and Krause, 2003, Courtois, 2003, Courtois and Meier, 2003).In this thesis, we fous on partiular variants of orrelation attaks and al-gebrai attaks on LFSR-based ombiners with memory, whih we desribe inSetions 6.1 and 6.2, respetively. We indiate ways to redue the e�ieny ofthese attaks in Setion 6.3 and apply our �ndings in Setion 6.4 to improve theseurity of the Bluetooth keystream generator E0 by relatively small modi�a-tions of the original design.6.1 Correlation Attaks6.1.1 The Basi IdeaInspired by Zenner (2004), we �rst desribe the basi ideas behind orrelationattaks.De�nition 6.1. We de�ne the bias λ(X) of a binary random variable X as

λ(X) := Pr[X = 0]− Pr[X = 1] = E[(−1)X ]and the orrelation between two random variables X and Y as λ(X⊕Y ). We all
X unbiased if λ(X) = 0, and we say that X and Y unorrelated if λ(X⊕Y ) = 0.



80 6.1 Correlation AttaksFor pe(X, Y ) de�ned as
pe(X, Y ) := Pr[X ⊕ Y = 0] = Pr[X = Y ] ,we have λ(X ⊕ Y ) = 2pe(X, Y ) − 1, or equivalently pe(X, Y ) = 1

2 + λ(X⊕Y )
2 .Note that X and Y are unorrelated if and only if pe(X, Y ) = 1

2 .We �rst onsider the ase of ombination generators without memory on-sisting of k FSRs R1, . . . , Rk−1 and a keystream funtion C : {0, 1}k → {0, 1}(see Setion 4.1.1).The fundamental property that orrelation attaks are based on is thatthe keystream (zt)t≥0 and the bitstream (wj
t )t≥0 produed by FSR Rj , j ∈

{0, . . . , k − 1} are orrelated, more preisely
Pr[zt ⊕ wj

t = 0] = Pr[zt = wj
t ] = pe(zt, w

j
t ) = λ′ 6=

1

2
for all t . (6.1)The original orrelation attak proposed by Siegenthaler (1985) then pro-eeds as follows.1. Make a guess ω̃j(0) for the initial state ωj(0) of Rj and ompute from

ω̃j(0) the sequene (w̃j
t )t≥0.2. For a suitably hosen n, ompute the sum

D̃ :=

n−1∑

i=0

(w̃j
i ⊕ zi)over the integers.We now distinguish two ases. If the guess in step (1) was orret, D̃ is (n, λ′)-binomially distributed with expeted value µ = λ′n and variane σ2 = nλ′(1 −

λ′). On the other hand, if the guess was wrong, (zt ⊕ w̃j
t )t≥0 behaves likea random sequene, i.e., D̃ is (n, 1

2 )-binomially distributed with µ = n
2 and

σ2 = n
4 .Hene, if we an tell whih distribution D̃ was drawn from, we an dedueif our guess ω̃j(0) was orret. A straightforward approah is to set a threshold

D′ and to aept ω̃j(0) if D̃ > D′. Otherwise, we assume the guessed initialstate was wrong and we try the next one.With |Rj| denoting the number of ells in register Rj , this method willrequire a number of steps in the order of 2|R
j | for reovering ωj(0), and about

2
P

i6=j
|Ri| operations for omputing the remaining k−1 initial states, whih addsup to an overall e�ort of 2|R

j| + 2
P

i6=j
|Ri|, whereas exhaustive searh on thewhole initial state of the generator would require 2

Pk−1
i=0 |Ri| = 2|R

j | · 2
P

i6=j |Ri|operations. The number n of required keystream bits to tell apart the twodistributions (with a �xed error probability) depends on the value | 12 − λ′|,i.e., the absolute distane between λ′ and 1
2 , and will shrink as this distaneinreases.This strategy an be straightforwardly extended to orrelations of linearombinations of FSR output bits and the keystream implied by

Pr[zt = ⊕k−1
j=0γjw

j
t ] 6=

1

2
with γj ∈ {0, 1} . (6.2)



6.1 Correlation Attaks 81However, we now have to guess the initial states of all Rj with γj = 1 simulta-neously, whih leads to an overall e�ort in the order of
2

Pk−1
j=0 γj |R

j | + 2
Pk−1

j=0 (γj⊕1)|Rj | .It is interesting to note that if indeed zt = ⊕k−1
j=0γjw

j
t for a lok yle t,then the update relations of the FSRs (and sums thereof) ontinue to hold if wereplae the term ⊕k−1

j=0γjw
j
t by zt. Conversely, if a keystream bit zt satis�es alarge number of suh relations, it is reasonable to assume that ⊕k−1

j=0γjw
j
t = ztand to assume ⊕k−1

j=0γjw
j
t 6= zt if zt satis�es only few. In this way, we an obtaina andidate guess for the registers Rj with γj 6= 0, whih an be inrementallyimproved in order to obtain the true values. This idea was proposed and for-malized by Meier and Sta�elbah as Fast Correlation Attak and has onstantlybeen extended and improved sine its original publiation in 1988 (see, e.g., Hell(2007) as a reent example).As natural ountermeasure against orrelation attaks, we would try to useombination funtions that indue the lowest possible orrelations between thekeystream and the FSR bitstreams.De�nition 6.2. A Boolean funtion g : {0, 1}k → {0, 1} is said to be r-thorder orrelation immune if no linear funtion L depending on up to r < kinput variables exists suh that Pr[L(x) = g(x)] 6= 1

2 .However, there exist at least two tradeo�s that limit the e�et of a orrelationimmune ombination funtion on the overall seurity of the generator.Firstly, Siegenthaler (1984), Xiao and Massey (1988) showed that an inreasein orrelation immunity leads to a lower linear omplexity and vie versa. Hene,the output keystream of a highly orrelation immune generator will be e�ientlyreproduible by an LFSR.For the seond tradeo�, we need the following de�nition.De�nition 6.3. Let {Li|1 ≤ i ≤ 2k} denote the set of linear funtions in up to
k variables. The orrelation oe�ient between a Boolean funtion g : {0, 1}k →
{0, 1} and Li is de�ned as ci = 2 · pi − 1 with pi = Pr[Li(x) = g(x)].Meier and Sta�elbah (1989) observed that

2k

∑

i=1

c2
i = 1 , (6.3)i.e., if g is not orrelated to any low-weight linear funtion, it is at the sametime even stronger orrelated to linear funtions with larger weight. Hene,orrelations itself an never be prevented.Rueppel (1986) showed that LFSR-based ombiners with memory are ableto overome the tradeo� between orrelation immunity and linear omplexity,but it turns out that a tradeo� similar to Eq. (6.3) is still possible as soonas orrelations are regarded that span several onseutive lok yles (Goli¢,1993, 1996, Lu and Vaudenay, 2005, 2004, Salmasizadeh et al., 1997). This isthe setting that we are going to onsider in the following.



82 6.1 Correlation Attaks6.1.2 Analysis of the Speial Case C(xt, qt) = α(xt)⊕ β(qt)We fous on the speial ase of LFSR-based (k, l)-ombiners with memory whosekeystream funtion C an be written as the sum of two funtions α : {0, 1}k →
{0, 1} and β : {0, 1}l → {0, 1}, i.e.,

C(xt, qt) = α(xt)⊕ β(qt) (6.4)in the LFSR output bits xt = (x0
t , . . . , x

k−1
t ) and the memory state qt =

(q0
t , . . . , ql−1

t ) at time t. Moreover, we are going to onsider only biased lin-ear ombinations of β(qt).Therefore, we look for oe�ients γ = (γ0, . . . , γr−1) suh that
λ(γ) :=

(

Pr

[
r−1⊕

i=0

γi · β(qt+i) = 0

]

− Pr

[
r−1⊕

i=0

γi · β(qt+i) = 1

])

6= 0 . (6.5)Lu and Vaudenay (2005, 2008) showed that the bias λ(γ) is related to theorrelation of the keystream (zt)t≥0 and the sequene (x0
t )t≥0 produed by theshortest LFSR (assume R0 for simpliity) by

Pr

[
w⊕

i=1

(
γ0(x

0
t+vi
⊕ zt+vi

)⊕ . . .⊕ γr−1(x
0
t+vi+r−1 ⊕ zt+vi+r−1)

)

]

=
1

2
+

(λ(γ))w

2
,with w and v1, . . . , vw depending on the initial state polynomials of the LFSRs.Hene, biased linear ombinations of β(qt) imply a vulnerability to a orrelationattak, and for the attak to be as e�ient as possible, we are interested inoe�ient vetors γ yielding

λmax := max{|λ(γ)|} .General methods to systematially ompute λmax and the orrespondingequations exist (e.g., see Goli¢ (1993)), but sine their resoure onsumption isexponential in k, l and r, these methods are only feasible for small parameters.However, our speial ase allows for a losed formula for the bias λ(γ), whihwe are going to derive in the following.We assume that for eah time t ≥ 1, there is a separate Boolean funtion
βt : {0, 1}l × {0, 1}k → {0, 1} revealing information about qt and xt and de�ne

F r : {0, 1}l × ({0, 1}k)r → {0, 1}
(q1, x1, . . . , xr) 7→ β1(q1, x1)⊕ . . .⊕ βr(qr, xr) ,where qt+1 := δ(qt, xt).De�nition 6.4. We de�ne the bias of a Boolean funtion f : {0, 1}n → {0, 1}as
λ(f) := Pr[f(x) = 0]− Pr[f(x) = 1] .We all f unbiased if λ(f) = 0.Note that if all inputs x are equally likely, we have λ(f) = 2−n

(
|f−1(0)| − |f−1(1)|

).The value λ(F r), for whih we now derive a matrix-based expression, or-responds to Eq. (6.5) after setting βt(qt, xt) := β(qt) if γt = 1 and βt :≡ 0otherwise.



6.1 Correlation Attaks 83De�nition 6.5. For all states q, q′ ∈ {0, 1}l, let p(q, q′) denote the probabilitythat state q will hange into q′, i.e., p(q, q′) = 2−k |{x|δ(q, x) = q′}| . Addition-ally, de�ne
bt(q, q

′) :=
1

2k
(|{x|βt(q, x) = 0 ∧ δ(q, x) = q′}|

− |{x|βt(q, x) = 1 ∧ δ(q, x) = q′}|) .We all the matrix P = (p(q, q′))q,q′∈{0,1}l the transition matrix of the memoryupdate funtion δ and the matrix Bt = (bt(q, q
′))q,q′∈{0,1}l the bias matrix of δand βt w.r.t. to time t.Theorem 6.6. For all r ≥ 1,

λ(F r) = 2−l
(
eT
)
◦B1 ◦ · · · ◦Br ◦ e ,where e denotes the onstant-1 vetor of length 2l and MT denotes the transposeof matrix M .In order to prove Theorem 6.6, we �rst ollet some observations on om-puting biases.

• For a given �nite set S and funtions f, g : S → R we denote by (f, g) =
1
|S|

∑

s∈S f(s)g(s) a positive de�nite salar produt on R
S . Note that eahBoolean funtion f : {0, 1}n → {0, 1} satis�es λ(f) =

(
(−1)f , 1

).
• Consider two disjoint �nite sets S and S′, funtions f : S → R and

g : S′ → R, and let h : S × S′ → R be de�ned by h(s, s′) = f(s)g(s′).Then
(h, 1) =

1

|S||S′|

∑

s∈S,s′∈S′

f(s)g(s′)

=
1

|S|

∑

s∈S

f(s)
1

|S′|

∑

s′∈S′

g(s′)

= (f, 1)(g, 1) .This implies that for Boolean funtions f : {0, 1}n → {0, 1}, g : {0, 1}m →
{0, 1}, and h : {0, 1}n×{0, 1}m → {0, 1}, de�ned by h(s, s′) = f(s)⊕g(s′),we have λ(h) = λ(f) · λ(g).Now let us denote by f r : {0, 1}l ×

(
{0, 1}k

)r
→ R the funtion (−1)F r .For all r ≥ 1 and q ∈ {0, 1}l, we de�ne an additional funtion

f r
q : {0, 1}l ×

(
{0, 1}k

)r
→ {−1, 0, 1} ⊆ R

(q1, x1, . . . , xr) 7→

{
f r(q1, x1, · · · , xr) if δ(qr, xr) = q
0 otherwise ,with qt+1 = δ(qt, xt) for i ∈ {1, . . . , r − 1}, and let Γr

q = (f r
q , 1) and Γr =

(Γr
q)q∈{0,1}l . Then f r =

∑

q∈{0,1}l f r
q and λ(F r) =

∑

q∈{0,1}l Γr
q.Theorem 6.6 is now a straightforward onsequene of the following Lemma.



84 6.2 Algebrai AttaksLemma 6.7. For q ∈ {0, 1}l and r ≥ 1, the bias matries Bt from De�ni-tion 6.5 satisfy
(Γr)T = 2−l(eT ) ◦B1 ◦ · · · ◦Br .Proof. For all q, q′ ∈ {0, 1}l we de�ne

gq,q′ : {0, 1}k → {0, 1}

x 7→

{
1 if δ(q, x) = q′

0 otherwise .Observe that for eah t ≥ 1,
((−1)βt(q,·)gq,q′ , 1) = bt(q, q

′) . (6.6)We prove the laim by indution on r. Note that, due to Eq. (6.6), for all
q ∈ {0, 1}l

Γ1
q = 2−(k+l)

∑

q1,x1

(−1)β1(q1,x1)gq1,q(x1) = 2−l
∑

q1

bt(q1, q) .Consequently, Γ1 = 2−l(eT ) ◦B1. For r > 1, the funtion f r
q an be written as

f r
q (q1, x1, · · · , xr) =

∑

q′∈{0,1}l

f r−1
q′ (q1, x1, · · · , xr−1)(−1)βr(q′,xr)gq′,q(xr) .Hene, by Eq. (6.6), we obtain

Γr
q =

∑

q′∈{0,1}l

Γr−1
q′ br(q

′, q) and (Γr)T = (Γr−1)T ◦Br . 2Note that the formula given by Theorem 6.6 an be e�iently evaluated andtherefore permits an exhaustive searh for the best orrelations even for largevalues of r up to the length of the shortest LFSR.6.2 Algebrai Attaks6.2.1 The Basi IdeaAlgebrai attaks (Armkneht and Krause, 2003, Courtois, 2003, Courtois andMeier, 2003) are based on solving systems of equations and were, just likeorrelation attaks, targeted at LFSR-based ombination generators withoutmemory, in our notation onsisting of k LFSRs R0, . . . , Rk−1 and a nonlinearkeystream funtion C that produes from the LFSR output xt = (x0
t , . . . , x

k−1
t )a keystream bit zt = C(xt) in eah lok yle t. At this point, we only de-sribe the basi ideas behind algebrai attaks and refer the interested readerto Armkneht (2006) for a thorough treatment of the subjet.The ore of algebrai attaks is to �nd Boolean funtions F : {0, 1}k·r →

{0, 1} of low preferably degree suh that for all loks t,
F (xt, . . . , xt+r−1, zt, . . . , zt+r−1) = 0 . (6.7)Sine the ombiner's FSRs are LFSRs by assumption, we an express thebit xj

t that LFSR Rj produes at time t by a linear funtion Lj
t in the initial



6.2 Algebrai Attaks 85state ωj(0) of Rj as xj
t = Lj

t (ω
j(0)). Hene, olleting equations of the type ofEq. (6.7) yields a system of equations in the seret initial states of the LFSRs.However, sine the keystream funtion is non-linear, solving the system andthereby reovering the seret initial state is NP-hard in general, so we shouldnot hope for an e�ent generally appliable key reovery algorithm based onthis strategy, but we may still be fortunate enough to enounter speial asesthat are su�iently easy to solve.This might espeially be the ase if the number of known keystream bitsand therefore the number of equations inreases. Let R denote the number ofaessible equations and µ the number of ourring monomials. If R ≪ µ, apromising method is to ompute Groebner bases.Unfortunately, it seems hard to predit the required time e�ort, albeit simu-lations indiate that the neessary amount of time drops with inreasing num-ber of equations (Armkneht and Ars, 2009, Faugère and Ars, 2003).In the ase of R ≈ µ, linearization (Courtois et al., 2000) seems to be the�rst hoie. The idea of linearization is to substitute eah ourring monomialby a new variable and to treat the whole system as a system of linear equations,making it easily solvable by Gaussian elimination.For the ase that the number of equations exeeds the number of monomi-als, one might redue the degree of the equations in a preomputation step.This idea is known as fast algebrai attaks, whih have been introdued byCourtois (2003) and further improved by, e.g., Armkneht (2004a), Hawkes andRose (2004). However, the attak senario is more restritive as it requires theattaker to know many suessive keystream bits and Eq. (6.7) to have a speialstruture.All theses approahes have in ommon that their runtime strongly dependson the degree d of the inorporated equations. The lower the degree, the fasterthe attaks. Hene, a natural ountermeasure against suh attaks is to preventthe existene of low-degree equations.6.2.2 Analysis of a restrited SenarioFor our analysis, we will onentrate on algebrai attaks where R ≈ µ and µ isapproximately (nd). If ϕ denotes the number of funtions F of degree d ful�llingEq. (6.7) and n denotes the total length of the LFSRs, then the amount ofdata is ≈ (nd)/ϕ, and the required memory and runtime are in O

((
n
d

)2
) and

O
((

n
d

)3
), respetively. Moreover, we now onsider the ase of (k, l)-ombinerswith memory, i.e., we have an additional l-bit memory, the keystream bits ztare omputed from the LFSR state xt = (x0

t , . . . , x
k−1
t ) and the memory state

qt = (q0
t , . . . , ql−1

t ) as zt = C(xt, qt), while the memory is updated in eah lokyle aording to qt+1 = δ(xt, qt).In order to formalize that an LFSR output vetor (xt, . . . , xr+r−1) ∈ ({0, 1}k)rmay (in onjuntion with a suitable memory state qt) yield a given keystreampiee (zt, . . . , zt+r−1), we use the notion of an extended output funtion in-trodued by Armkneht (2006) (only that we all it the extended keystreamfuntion in order to be more onsistent with the rest of our notation).De�nition 6.8. For the keystream funtion C : {0, 1}k × {0, 1}l → {0, 1} ofa (k, l)-ombiner with memory and an integer r > 0, we de�ne the extended



86 6.2 Algebrai Attakskeystream funtion CΨ by
CΨ : {0, 1}l × ({0, 1}k)r → {0, 1}r

(q, x1, . . . , xr) 7→ (z1, . . . , zr)with qi+1 = δ(xi, qi) for 0 ≤ i < r and zi = C(xi, qi) for 1 ≤ i ≤ r.With this notion, Armkneht and Krause (2003) adapted the struture ofEq. (6.7) to the setting of ombiners with memory.De�nition 6.9. For a Z = (z1, . . . , zr) ∈ {0, 1}r, we all a Boolean funtion
FZ : ({0, 1}k)r → {0, 1} a Z-funtion (with respet to CΨ) if it is not onstantzero and satis�es

CΨ(q, x1, . . . , xr) = Z ⇒ FZ(x1, . . . , xr) = 0 (6.8)for all q ∈ {0, 1}l and all (x1, . . . , xr) ∈ ({0, 1}k)r.Note that this de�nition implies that FZ vanishes on all ombinations of LFSR-inputs over r lok yles and starting states q that yield the keystream piee
Z. The algebrai attak of Armkneht and Krause (2003) now onsists in om-puting for eah Z ∈ {0, 1}r a Z-funtion FZ of the lowest possible degree andto set up the system of equations

F(zt,...,zt+r−1)(xt, . . . , xt+r−1) = 0, t = 0, 1, . . . ,express the xt in terms of the initial LFSR states and solve the system.As mentioned earlier, the e�ieny of the attak fundamentally depends onthe degree of the Z-funtions. Therefore, we want to bound the lowest possible
Z-funtion degree that an our for a given (k, l)-ombiner.De�nition 6.10. For a Z ∈ {0, 1}r, we de�ne
XZ,Q :=

{

x ∈
(
{0, 1}k

)r
|CΨ(Q, x1, . . . , xr) = Z

}

XZ :=
{

x ∈
(
{0, 1}k

)r
|∃q ∈ {0, 1}l : CΨ(q, x1, . . . , xr) = Z

}

=
⋃

Q∈{0,1}l

XZ,QFrom Eq. (6.8) we dedue that FZ is a Z-funtion if and only if F (x) = 0for all x ∈ XZ . This leads diretly to the notion of annihilators.De�nition 6.11. We say that a Boolean funtion p : {0, 1}n → {0, 1}, p 6≡ 0,is an annihilator of a subset A ⊆ {0, 1}n if p(x) = 0 for all x ∈ A. We denotethe set of annihilators of A by Ann(A). Furthermore, we de�ne for A ⊂ {0, 1}n

mindeg(A) := min{deg(f)|f ∈ Ann(A)} .If A = {0, 1}n, we set mindeg(A) :=∞.We observe that if we an prove a lower bound for mindeg(XZ) for all Z,this gives a lower bound for Z-funtion degrees and hene the e�ort requiredby an algebrai attak. In the following, we will propose a onstrution whihenables us to derive suh a lower bound.We �rst show that under ertain onditions, eah speial lower bound for
mindeg(Xzr,Q) is also a general lower bound for mindeg(X(z1,...,zr)).



6.3 Countermeasures and Design Priniples 87Theorem 6.12. If the keystream funtion C an be expressed as
C(x, q) = α(x) ⊕ β(q) , (6.9)with α : {0, 1}k → {0, 1} satisfying mindeg

(
α−1(0)

)
= mindeg

(
α−1(1)

)
= dand β : {0, 1}l → {0, 1} then

mindeg(XZ) ≥ mindeg(XZ,Q) = dfor all r ≥ 1, Z = (z1, . . . , zr) ∈ {0, 1}r, and Q ∈ {0, 1}l.Proof. Beause of XZ,Q ⊆ XZ , eah annihilator of XZ is also an annihilatorof XZ,Q. This shows the �rst inequality.Moreover, all hoies z ∈ {0, 1} and Q ∈ {0, 1}l satisfy Xz,Q = α−1(β(Q)⊕z)and therefore mindeg(Xz,Q) = d.Let r ≥ 1, Z = (z1, . . . , zr) ∈ {0, 1}r, q1 ∈ {0, 1}l and f(Y1) ∈ F2[Y1] be anannihilator of Xz1,q1 . Then f an be seen as an element in F2[Y1, . . . , Yr] whihannihilates XZ,q1 , too. This shows that mindeg (xZ,q1 ) ≤ mindeg (xz1q1) = d.We prove now by indution over r that mindeg(XZ,q1) ≥ d for all hoiesof q1 and Z. For r = 1, the laim is ertainly true. Now let r > 1 and thelaim be true for all r′ < r. Fix Z = (z1, . . . , zr) and q1 and f(Y1, . . . , Yr) ∈
Ann(XZ,Q) having the minimal degree mindeg(XQ,Z). Choose an arbitraryvalue (x1, . . . , xr) ∈ ({0, 1}k)r and set q2 := δ(x1, q1). Then

f∗(Y2 . . . , Yr) := f(x1, Y2, . . . , Yr)annihilates X(z2,...,zr),q2
. Hene,

mindeg (xZ,q1 ) = deg(f) ≥ deg(f∗) ≥ mindeg
(
x(z2,...,zr),q2

)
≥ d ,where the last inequality is true by assumption. 26.3 Countermeasures and Design Priniples6.3.1 Inreasing the Resistane against Correlation At-taksTheorem 6.6 allows to ompute the biases whih are relevant for orrelationattaks against ombiners with memory with a keystream funtion as in Eq. (6.4)and to derive orresponding design riteria to immunize them against attaksthat exploit these biases. In partiular, Theorem 6.6 yields two di�erent riteriafor δ and βt in order to ahieve that λ(F r) = 0 for all r ≥ 1.The �rst one assumes the situation that βt is independent of x ∈ {0, 1}k,i.e., βt(q, x) = βt(q) for all x, whih holds, e.g., for E0.De�nition 6.13. We say that δ is balaned if k = l and |{x|δ(q, x) = q′}| = 1for all q, q′.Note that for a balaned δ, p(q, q′) = 2−k for all q, q′.Theorem 6.14. Let βt either be onstant zero or, at least at one time t, dependonly on q and be balaned. If δ is also balaned, then λ(F r) = 0.



88 6.3 Countermeasures and Design PriniplesProof. If βt ≡ 0, then Bt equals P , the transition matrix of δ. Due to (eT )·P =
eT , we an assume w.l.o.g. that β1 6≡ 0. Observe that the property of βt beingbalaned implies that ∑q(−1)β1(q) = 0. Let x(q,q′) := {x|δ(q, x) = q′}. If βtdepends only on q, then bt(q, q

′) an be rewritten to
bt(q, q

′) =







0 if x(q,q′) = ∅
|x(q,q′)|/2k if x(q,q′) 6= ∅ ∧ β(q) = 0
−|x(q,q′)|/2k if x(q,q′) 6= ∅ ∧ β(q) = 1







= (−1)βt(q) · p(q, q′) .Let vT := (eT ) · B1. We show that v is already the all-zero vetor, whihonludes the proof. Let (vT )q denote the q-th entry of vT . We have
(vT )q =

∑

q

(−1)β1(q)p(q, q′) = 2−k ·
∑

q

(−1)β1(q)

︸ ︷︷ ︸

=0

= 0 . 2In the ase that the funtions βt are not independent of x, it is also possibleto entirely avoid orrelations if we put some additional restritions on βt.De�nition 6.15. The funtion β : {0, 1}l×{0, 1}k → {0, 1} is alled q-balanedif all states q ∈ {0, 1}l satisfy
∣
∣
{
x ∈ {0, 1}k| β(q, x) = 0

}∣
∣ =

∣
∣
{
x ∈ {0, 1}k| β(q, x) = 1

}∣
∣ .Lemma 6.16. Let B denote the bias matrix of the state transition funtion

δ : {0, 1}l × {0, 1}k → {0, 1}l and a q-balaned funtion β : {0, 1}l × {0, 1}k →
{0, 1}. Then B ◦ e = ~0.Proof. It an be easily heked that for all q ∈ {0, 1}l,

(B ◦ e)q =

∣
∣
{
x ∈ {0, 1}k, β(q, x) = 0

}∣
∣−
∣
∣
{
x ∈ {0, 1}k, β(q, x) = 1

}∣
∣

2k
,whih, by de�nition, vanishes if β is q-balaned. 2Theorem 6.17. Let r ≥ 1 and βt be either q-balaned or onstant zero for all

t, 1 ≤ t ≤ r. Then λ(F r) = 0.Proof. Note that for βt ≡ 0, the bias matrix Bt equals the transition matrix
P . As eah row of P orresponds to a probability distribution over {0, 1}l, weobtain P ◦ e = e. The rest follows straightforwardly from Theorem 6.6. 2We want to point out that the previous statements are only true as longas the orresponding input words xt are independent values in {0, 1}k. In thease that LFSRs are used as driving devies, this is only the ase as long as
r is at most the length of the shortest LFSR. This imposes no serious draw-bak, beause so far, no feasible methods are known to ompute the bias whileonsidering the LFSR-struture.As we have seen, our results immediately imply two di�erent design riteriato avoid any biased linear ombinations in the expressions β(qt). Atually, theyhave even wider appliations. For example, the keystream funtion

f
((

c1, c2, c3, c4
)
,
(
x1, x2, x3, x4

))
= c2 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4used in E0 is q-balaned. This guarantees that no biased linear ombinations ofthe keystream bits zt exist for r ≤ 25, the length of the shortest LFSR.



6.3 Countermeasures and Design Priniples 896.3.2 Inreasing the Resistane against Algebrai AttaksWe have seen that the e�ieny of algebrai drops with inreasing minimumdegree of the Z-funtions. Theorem 6.12 then implies the following strategy.Choose a keystream funtion C(x, q) = α(x) ⊕ β(q) suh that mindeg
(
α−1(0)

)and mindeg
(
α−1(1)

) is the maximum possible value. This will guarantee thesame lower bound for all Z-funtions, as long the values x1, . . . , xr are inde-pendent elements in {0, 1}k. In the ase that they are the outputs of LFSRs,this ondition holds if r is no larger than the length of the shortest LFSR (e.g.,25 in the ase of E0). This restrition is not ritial, sine urrently knownmethods (e.g., Armkneht et al. (2006), Didier and Tillih (2006)) are only ableto pratially derive Z-funtions if r is not muh larger than 20.The value d is equivalently known under the term algebrai immunity, whihwas introdued by Meier et al. (2004) in the ontext of memoryless ombiners,extended to ombiners with memory by Armkneht (2004b), and examined inseveral papers sine then.Observation 6.18 (Courtois and Meier (2003)). Any Boolean funtion in
n variables has an algebrai immunity of at most ⌈n

2 ⌉.This means that any proposal for a funtion with optimum algebrai immu-nity ⌈n
2 ⌉ an be inorporated in our design.Proposals on how to onstrut funtions with maximum (or at least high)algebrai immunity have been made, e.g., by Armkneht and Krause (2006),Carlet (2008), Dalai et al. (2005). A rather straightforward andidate is the(generalized) majority-funtion.Corollary 6.19. Let k ≥ 1. The majority funtion maj : {0, 1}k → {0, 1}de�ned by

maj(x) =

{
0 if wt(x) < k/2 or wt(x) = k/2 and x1 = 0
1 otherwise ,satis�es mindeg(maj−1(0)) = mindeg(maj−1(1)) = k/2.A proof an be found in (Braeken and Lano, 2005). The authors pointed outthat maj has a very low nonlinearity, making it a bad hoie for memorylessombiners. However, this is no problem in our setting, as long as high biases λare avoided (e.g., using the priniples desribed in Setion 6.3.1).Using our design priniple and a Boolean funtion with optimum algebraiimmunity, it is possible to exlude the existene of Z-funtions having a degreeless than ⌈k/2⌉. In fat, experiments have shown by exhaustive searh that theatual values of mindeg are often higher, showing that ⌈k/2⌉ seems to be a ratheroarse estimation. Moreover, one an easily inrease this bound, even withoutinreasing the number of LFSRs by using several di�erent bits per LFSR andlok yle. For example, in the ase of E0, one ould use the modi�ed outputand update funtions zt := maj(x2t−1, x2t) and qt+1 := δ(δ(qt, x2t−1), x2t). Thebitrate is halfed, but the existene of Z-funtions of degree less than 4 an beexluded.



90 6.4 Appliation to E06.4 Appliation to E0In this setion, we apply the results from the previous setions to improve theseurity of the E0 keystream generator. Consequently, we assume that k = l = 4and that the keystream bit zt is omputed by zt = f(qt, xt) = α(xt) ⊕ β(qt),with α(xt) = x0
t ⊕ x1

t ⊕ x2
t ⊕ x3

t and β(qt) = q1
t . Reall from Setion 4.2.2 thatthe state transition funtion of E0 is de�ned as

δ0(qt, xt) =
(
S1

t+1 ⊕ q0
t ⊕ q3

t ,S0
t+1 ⊕ q1

t ⊕ q2
t ⊕ q3

t , q0
t , q1

t

)
,where St+1 = (S1

t+1,S
0
t+1) =

⌊
x0

t+x1
t+x2

t+x3
t+2·q0

t +q1
t

2

⌋ .Lu and Vaudenay (2005, 2008) proved that λmax = 25/256 for r ≤ 25, where25 is the length of the shortest LFSR. This observation and the exploit of asynhronization �aw led to the urrently best attak on the Bluetooth ipher(Lu and Vaudenay, 2004). Table 6.1 shows the resoure requirements of thisattak.The urrently best algebrai attak on E0 in this senario uses Z-funtionsof degree 4 over 4 loks (Armkneht and Krause, 2003). The orrespondingperformane data are given in Table 6.2. Courtois (2003) proposed a method toobtain equations of degree 3, however with the enormous value r ≈ 8.822.188.It is still an open question whether Z-funtions exist of degree < 4 and r ≪
8.822.188 for E0.We now try to improve the resistane of E0 to orrelation attaks and alge-brai attaks of the desribed types by arefully modifying its omponents.First, using our C-implementation of Theorem 6.6 based on the ATLASlinear algebra library (Whaley and Petitet, 2005), we omputed the maximumabsolute biases over 25 lok yles (the length of E0's shortest LFSR) for all16 E0-variants in whih β is de�ned as β(a1,a2,a3,a4)(qt) = a1 · q0

t ⊕ a2 · q1
t ⊕

a3 · q2
t ⊕ a4 · q3

t for a = (a1, a2, a3, a4) ∈ {0, 1}4. Note that the original βorresponds to β(0,1,0,0). As Table 6.3 shows, the minimum absolute bias λ =
0.024414 is obtained for a = (0, 1, 1, 1). We denote the orresponding generatorby E1

0 . However, with the help of a toolkit developed by Brandeis (2004) thatdetermines Z-funtions by exhaustive searh, we have omputed Z-funtionsof degree 3 for E1
0 , whih makes it weaker against algebrai attaks than theoriginal E0. However, hoosing a = (1, 0, 1, 1), i.e., the a-value with the seondbest minimum absolute bias, yields mindeg = 6. We all the orrespondinggenerator E2

0 .In the next step, we exploit our theory to ompletely avoid biases. Startingfrom the original de�nition of E0, we obtain the generator E3
0 by replaing thestate transition funtion by δ1, whih we de�ne as the integer addition moduloTable 6.1: The resoure onsumption of the fastest orrelation attakon E0 as presented by Lu and Vaudenay (2004)

λmax Frames Data Time Spae
λ m = max( 1

λ10 , 236.59
λ8 ) 24m 36m + 3 · 218 ·min(m, 218) m

25
256 234.74 239.32 240.17 234.74



6.4 Appliation to E0 91Table 6.2: The resoure onsumption of an algebrai attak on
E0 with key size n and an equation of degree d

#F Data Time SpaeGeneral ϕ O
((

n
d

)
/ϕ
)

O
((

n
d

)3
)

O
((

n
d

)2
)

E0: n = 128, d = 4 1 223.35 270.04 246.69

24, i.e.,
δ1

(
q0
t , . . . , q3

t , x0
t , . . . , x

3
t

)
=





3∑

i=0

q3−i
t 2i +

3∑

j=0

x3−j
t 2j



 mod 16 .Sine δ1 is balaned, Theorem 6.14 implies λ = 0. However, we omputed
Z-funtions of degree 3 for E3

0 .We therefore replae the funtion α of E3
0 by the majority funtion desribedin Corollary 6.19. For the resulting generator E4

0 , we obtain mindeg = 5.If we additionally replae the funtion β by the majority funtion, mindegeven inreases to 6. Note that the λ = 0 property is still preserved by thesemodi�ations. Thus, we obtain a keystream generator E5
0 with λmax = 0 whoseresistane against algebrai attaks is signi�antly inreased ompared to theoriginal E0.For all our variants of E0, Table 6.4 lists the minimum degree and the re-spetive number of Z-funtions over r lok yles. For Example, for E4

0 , theminimum degree of Z-funtions over up to 5 lok yles is 5, and there are 40,
264, 896, and 2528 Z-funtions over 2, 3, 4 and 5 lok yles, respetively.The omputation of the number of Z-funtions over 6 loks for E5

0 ould notbe ompleted with the resoures at our disposal. Sine in all our experiments,the minimum degree of the Z-funtions never dereased with inreasing r, wesuspet that mindeg = 6 will also hold for E5
0 and r = 6.Note that in all ases, the values of mindeg were atually higher than thetheoretial lower bound ⌈k/2⌉ = 2.The onstrutions of the onsidered generators and the respetive perfor-manes of algebrai and orrelation attaks are summarized in Table 6.6 andillustrated in Figure 6.1.We note that the generator E2

0 , whih is just a slight modi�ation of E0 (weonly made β depend on two more state bits), already yields a similar resistaneagainst algebrai attaks as E5
0 and signi�antly dereases the vulnerabilityagainst orrelation attaks.



92 6.4 Appliation to E0Table 6.3: Maximum absolute biases and performaneof orrelation attaks for βa-generators
a max (λ) Frames Data Time Spae

(0, 0, 0, 1) 0.097656 234.74 239.32 240.17 234.74

(0, 0, 1, 0) 0.244141 224.16 228.74 237.59 224.16

(0, 0, 1, 1) 0.156250 229.31 233.90 237.74 229.31

(0, 1, 0, 0) 0.097656 2
34.74

2
39.32

2
40.17

2
34.74

(0, 1, 0, 1) 0.097656 234.74 239.32 240.17 234.74

(0, 1, 1, 0) 0.156250 229.31 233.90 237.74 229.31

(0, 1, 1, 1) 0.024414 2
53.56

2
58.15

2
58.73

2
53.56

(1, 0, 0, 0) 0.244141 224.16 228.74 237.59 224.16

(1, 0, 0, 1) 0.250000 223.89 228.47 237.59 223.89

(1, 0, 1, 0) 0.097656 234.74 239.32 240.17 234.74

(1, 0, 1, 1) 0.038528 2
46.98

2
51.56

2
52.15

2
46.98

(1, 1, 0, 0) 0.156250 229.31 233.90 237.74 229.31

(1, 1, 0, 1) 0.156250 229.31 233.90 237.74 229.31

(1, 1, 1, 0) 0.152588 229.58 234.17 237.77 229.58

(1, 1, 1, 1) 0.097656 234.74 239.32 240.17 234.74

Table 6.4: mindeg and number of Z-funtionsfor the andidate generatorsCipher E0 E1
0 E2

0 E3
0 E4

0 E5
0

mindeg 4 3 6 3 5 6Cloks Number of equations
r = 2 0 12 0 4 40 12
r = 3 0 48 24 40 264 318
r = 4 16 144 160 144 896 1416
r = 5 64 384 544 416 2528 > 0
r = 6 192 ? > 0 ? ? ?

Table 6.5: De�nitions of the andidate generators
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Table 6.6: Performane of algebrai and orre-lation attaks on the andidate generatorsAlgebrai Attak Correlation Attak

mindeg Time λ Time
E0 4 270.18 0.097656 240.17

E1
0 3 255.25 0.024414 258.73

E2
0 6 297.22 0.038528 252.15

E3
0 3 255.25 0 n/a

E4
0 5 284.11 0 n/a

E5
0 6 297.22 0 n/a
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λmax
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E
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E
2

0Figure 6.1: Comparison of the andidate generators to E0
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Part IIAuthentiity with LinearProtools





Chapter 7Algorithms for Entity andMessage Authentiation7.1 Seurity De�nitions and Attaker ModelsWe have seen in the �rst part of this thesis that in order for people to all apartiular system seure, this system should allow for on�dential ommunia-tion, whih is usually ahieved by enrypting the messages that are exhangedbetween ommuniation partners.Let us revisit our two-party ommuniation senario from Setion 2.1. Twoparties, Alie and Bob, ommuniate over a hannel that is aessible to anadversary. Besides the on�dentiality of exhanged messages, it may also bebene�ial for Alie to ensure that she is really talking to Bob instead of anadversary masquerading as Bob, and that a message that laims to ome fromBob was in fat sent by Bob and has not been modi�ed during the transmission.These requirements may seem less obvious than message on�dentiality at�rst glane, but turn out to be equally, if not even more important in manypratial systems. Consider, for example, banking transations. It is ertainlydesirable to hinder an adversary observing how muh money a ustomer with-draws from his aount or to whom he transfers how muh money, but it seemseven more important to prevent an adversary from withdrawing or transferringmoney from somebody else's aount.In the proess of ensuring these properties, Alie has to gain on�dene inthe identity of Bob as ommuniation partner or as originator of a message. Anidentity is a set of information that distinguishes a spei� entity from everyother within a partiular environment, e.g., a given and family name, an e-mailaddress, or a URI (Adams, 2005). This implies that the mapping r : A→ I froman entity set A to an identity spae I should be injetive, i.e., no two entities
a1, a2 ∈ A are mapped to the same identity i ∈ I. Note that the mappingbetween entities and identities an also be modeled as a relation R ⊆ A × Iwith (a, i) ∈ R if and only if identity i is assoiated to entitiy a. We say that ahas identity i, or that identity i is bound to entity a, and all the tuple (a, i) anidentity binding for a. An identity may also be bound to another identity froma di�erent identity spae, e.g., an international bank aount number (IBAN,see ISO/IEC (2007)) to an e-mail address.



98 7.1 Seurity De�nitions and Attaker Models7.1.1 Entity AuthentiationConsider a bank ustomer who uses an automated teller mahine (ATM) towithdraw money from his aount. In the ourse of the transation, the ustomeris usually required to plug his bank ard into the mahine and to enter hispersonal identi�ation number (PIN). If PIN and bank aount number maththe information that is stored in the bank's database, the ATM is onvinedthat the aount number in fat belongs to the person standing in front of themahine.In our more abstrat ommuniation setting, Bob (the laimant or theprover) laims to have a ertain identity, e.g., a bank aount number. In orderfor Alie (the veri�er) to believe that the presented identity really belongs toBob, she will usually require some orroborating evidene of his laim, e.g. aPIN. The proess of obtaining and verifying this evidene is alled entity au-thentiation (Adams, 2005), and a partiular algorithm that implements entityauthentiation is alled an entity authentiation sheme or entity authentia-tion protool. As desribed by Zuherato (2005), the orroborating evidene(sometimes also termed redentials) is usually omputed based on
• someting knwon, e.g., a password or personal identi�ation number (PIN),
• something possessed, e.g., physial devies suh as mehanial keys orsmart ards,
• something inherent, e.g., biometri information suh as a �ngerprint orthe struture of the iris.If the veri�er is onvined by the orroborating evidene, we say that the au-thentiation was suessful. After a suessful authentiation, the prover is saidto be authentiated. If the prover is in fat who he laims to be, then we allthe prover authenti.Identi�ation is often used as a synonym for entity authentiation. However,some authors de�ne identi�ation as the ation of merely laiming an identitywithout providing orroborating evidene. We tend to favour the latter de�ni-tion, but will avoid the term identi�ation altogether whenever possible.7.1.2 Entity ReognitionEntitiy authentiation usually assumes that the identities of the ommuniationpartners are long-term identities that are bound to the entities during a systemsetup phase independently of atual ommuniation sessions. This assumption isreasonable in systems that are rather stati, e.g., a orporate IT infrastruture,but less suitable for low-end sensor network senarios in whih nodes join andleave systems dynamially and are limited in their omputing power and storageapaities. In suh senarios, it is often su�ient to ensure that an entityan reognize a ommuniation partner that she has talked to before (entityreognition, see Hammell et al. (2005)). Shemes that solve this problem usuallyan make do with short-term identities that are established dynamially whenthe entities start ommuniating for the �rst time, as we will see in Setion 7.5.



7.1 Seurity De�nitions and Attaker Models 997.1.3 Message AuthentiationThe way most ATMs work is based on the assumption that one the ustomer isauthentiated, he and not the adversary will be the one talking to the ATM forthe remainder of the ommuniation session. Therefore, a ustomer is usuallyasked for orroborating evidene only one per session. On the other hand, inorder to prevent an attaker from taking over the session of a ustomer who hasleft the ATM without logging out (thereby breaking the assumption), sessionsare usually aborted after a relatively short period of ustomer inativity.The ATM assumption translates into our abstrat setting by requiring thatthe adversary have no aess to ommuniation hannels that have been estab-lished between legitimate ommuniation partners. This may be valid in theATM senario, but is a lot less reasonable if we onsider an online banking usease, in whih a ustomer issues a redit transfer order to his bank over theinternet. In general, we an make no reliable assumptions on the route an in-ternet message takes to reah its destination, and the probabilities of a messagebeing read or even modi�ed on the way have to be onsidered non-negligible.Hene, the banking server should require orroborating evidene of eah reeivedmessage in fat originating from the laimed sender.In our abstrat model, Bob (the prover) would attah orroborating evi-dene of his reatorship to eah message he sends to Alie (the veri�er). Aswith entity authentiation, the proess of obtaining and verifying this orrobo-rating evidene is alled message authentiation, an algorithm that implementsmessage authentiation is alled message authentiation algorithm or messageauthentiation sheme, and a message for whih the authenti�ation was su-essful is alled authentiated. If the message in fat originates from the laimedsender and was not altered during transmission, we say that the message isauthenti.In addition to message authentiity, many appliations have additional unique-ness and timeliness requirements that dupliate or lost messages as well as mes-sages that are reeived in the wrong order be deteted and handled appropri-ately. We note that the presene of these properties is implied by some authors'de�nitions of authentiity (see, e.g., Menezes et al. (2001)). However, we hooseto separate uniqueness and timeliness from our authentiity de�nition sine theyare sometimes overed by transport layers in ommuniation staks rather thanby authentiity shemes in the narrow sense. An example is the widely usedTLS protool (see Dierks and Resorla (2008)), whih relies on TCP to ensurethese properties.7.1.4 Message ReognitionSimilarly to entity reognition (see Setion 7.1.2), message reognition as aweaker form of message authentiation only requires to ensure that a messageoriginates from a partiular sender that has been talked to before, and (un-like most message authentiation shemes) not onsider or hek any long-termsender identities. Instead, the ommuniating parties generate short-term iden-tities just before starting the onversation.



100 7.1 Seurity De�nitions and Attaker Models7.1.5 Attaker ModelsAs in the ase of on�dential ommuniation, we relate the seurity of an entityauthentiation sheme to an attaker (or adversary) model. The most prominentattaker goal in the entity authentiation/reognition setting is to impersonatean entity, i.e., to onviningly masquerade as somebody else. Attaks that aretargeted at this goal are usually alled impersonation attaks. Another attakergoal may be to prevent the authentiation of a legitimate prover or message(denial of servie) by disturbing the authentiation.The most pessimisti assumption is an ative attaker who has full ontrolof the ommuniation hannel, as suggested in the Dolev-Yao seurity model(Dolev and Yao, 1983). More preisely, an ative attaker may
• read all exhanged messages,
• modify exhanged mesages, espeially delay or suppress their delivery oralter their ontent,
• introdue additional messages into the ommuniation hannel, espeiallyreplay previously reorded messages.We note that this model partiularly allows the attaker to
• present a previously reorded legitimate evidene to the veri�er (replayattak),
• interleave several authentiation sessions (running in parallel or sequen-tially) by using information obtained from one session in the ontext ofanother,
• disobey the authentiation sheme by sending messages whih the reeiverdoes not expet in the urrent protool state.
• at as a man-in-the-middle (MITM), i.e., inteept messages from one om-muniation partner, possibly modify them, and pass them on to the re-eiver.Of speial interest in our analysis is a speial lass of ative attakers, whihwe all detetion attakers.De�nition 7.1. A detetion attaker on an entity authentiation protool is anative attaker who is restrited to the following disjoint attak stages.1. Interat with a legitimate prover in any desired way.2. Interat with a legitimate veri�er and try to impersonate the prover.In the message authentiation/reognition setting, we ommonly assumethat the attaker has ative ontrol over the ommuniation hannel as above,and is additionally able to fore Bob to send message payload data xi of hishoie (whih will then be aepted by Alie as authenti). Thereby, his hoiesof the xi may be adaptive, i.e., xi may depend on the information that wasobtained for xi′ for i′ < i. We de�ne that he has reahed his goal if he is able togenerate a message with payload x 6= xi for all i that is authentiated by Alie(existential forgery in a hosen message senario, see, e.g., Luks et al. (2008)).



7.2 Message Authentiation Codes 101Sometimes seurity is evaluated also with respet to passive attakers whoare able to read exhanged messages, but annot in�uene the ommuniationhannel in any way.In all ases, we follow Kerkho�s' priniple (Kerkho�s, 1883) also in theauthentiation setting and assume the attaker to know the entire spei�ationof the authentiation sheme and all information that the sheme proessesexept for the data that it expliitly requires to be kept on�dential.7.2 Message Authentiation CodesDe�nition 7.2. A Message Authentiation Code (MAC) is a mapping
MAC : {0, 1}∗ × {0, 1}n → {0, 1}l

(x, k) 7→ m
(7.1)that omputes for a message x an authentiation ode m under an n-bit key k.A MAC is ommonly used in our two-party ommuniation senario in thefollowing way (see Fig. 7.1). Alie and Bob agree on a symmetri key k prior tothe ommuniation. Bob omputes for a message x the value m = MAC(x, k)and transmits (x, m) = (x, MAC(x, k)) to Alie. Alie omputes for a reeivedmessage (x′, m′) the value MACverify(x′, m′, k) with

MACverify : {0, 1}∗ × {0, 1}l × {0, 1}n → {0, 1}

(x, m, k) 7→

{
1 if MAC(x, k) = m
0 otherwise ,and believes the message to ome from Bob if MACverify(x′, m′, k) = 1. Hene,the value m = MAC(x, k) serves as orroborating evidene of the authentiityof x.

MAC
x

Public Channel
(x, m) (x′, m′)

Key Source

Bob (Sender) Alice (Receiver)

k k

MACverify

Figure 7.1: Message authentiation with message authentiation odesA MAC is onsidered seure if it is infeasible to perform an existential forgeryunder an adaptive hosen message attak (see Setion 7.1.5), i.e., an attakerwho may obtain MAC(xi, k) under the seret key k for messages xi of his hoieis not able to produe with a realisti amount of resoures a pair (x, m) with
x 6= xi for all i suh that MACverify(x, m, k) = 1. Obviously, reovering theseert key k that is used to generate the authentiation ode is su�ient for anexistential forgery.Similarly to the ipher systems desribed in Setion 2.1, sine Alie andBob both use the same key in the prodution and veri�ation of m, message



102 7.2 Message Authentiation Codesauthentiation odes are said to belong to the set of symmetri authentiationshemes.We note that a MAC by itself does not provide assurane of message time-liness nor uniqueness.7.2.1 Message Authentiation Codes based on Blok Ci-phersThe struture of Eq. (7.1) suggests to use blok iphers as building bloks formessage authentiation odes. This idea is implemented, e.g., in the CBC-MAC (ISO/IEC, 1999), whih is based on the CBC mode of a blok ipher
E : {0, 1}l × {0, 1}n → {0, 1}l (see Setion 2.2). If the CBC mode enryptionof an m-blok message b = (b1, . . . , bm) is given by ECBC((b1, . . . , bm), k, IV) :=
(c1, . . . , cm), the CBC-MAC value for this message is omputed as

MACCBC((b1, . . . , bm), k) := cmwith (c1, . . . , cm) = ECBC((b1, . . . , bm), k, 0).Note that the CBC-MAC is inseure if we allow the messages to have di�erentlenghts, sine we an forge an authenti message by appending arbitrary bloksto observed authenti messages for whih the CBC-MAC value is known. Thisissue is addressed by variants of the CBC-MAC onstrution suh as CMAC(see, e.g., Preneel (2005) for a disussion).If a message authentiation ode is built from a blok ipher, this ipher willdominate the resoure requirements of the MAC. The AES blok ipher (seeMenezes et al. (2001)) is widely used for building message authentiation odes,and e�ient implementations, partiularly for resoure-onstraint environmentsare ontinously being developed and optimized (Moradi et al., 2011). In additionto general purpose blok iphers, lightweight blok iphers suh as PRESENT(Bogdanov et al., 2007) and KATAN/KTANTAN (De Cannière et al., 2009) arespei�ally targeted at low-end devies.7.2.2 Message Authentiation Codes based on Crypto-graphi Hash FuntionsDe�nition 7.3. A ryptographi hash funtion is a mapping H : {0, 1}∗ →
{0, 1}l whih maps an input of arbitrary length to a �xed-length output.Cryptographi hash funtions are usually required to be
• ollision resistant, i.e., it is infeasible for an adversary to �nd two inputs

x 6= x′ suh that h(x) = h(x′),
• preimage resistant, i.e., it is infeasible for an adversary to �nd for a givenoutput y ∈ {0, 1}l an input x suh that h(x) = y, and
• 2nd preimage resistant, i.e., it is infeasible for an adversary to �nd for agiven input x another input x′ suh that h(x) = h(x′).We note that ollision resistane implies 2nd preimage resistane. However,preimage resistane does not imply 2nd preimage resistane, nor does 2nd preim-age resistane imply preimage resistane. A ryptographi hash funtion thatis both preimage resistant and 2nd preimage resistant is said to be one-way.



7.3 Message Authentiation with Digital Signatures 103A ollision resistant ryptographi hash funtion H for arbitraty inputs x ∈
{0, 1}∗ may be onstruted from a ollision resistant ompression funtion h :
{0, 1}c × {0, 1}d → {0, 1}c with c < d by expanding x to L bloks of length d(with the last blok only ontaining the bitlength of x), i.e., x = (M1, . . . , ML),and omputing the output as H(x) := HL with

Hi :=

{
C for i = 0

h(Hi−1, Mi) for 0 < i ≤ L
with C ∈ {0, 1}c onstant.This onstrution is attributed to Merkle and Damgård (Damgård, 1990,Merkle, 1979, 1990). In partiular, blok iphers may be used as ompressionfuntions, e.g., as in the Davies-Meyer sheme (Davies and Prie, 1984) byomputing the values Hi based on a blok ipher E : {0, 1}l× {0, 1}n → {0, 1}lwith l = c, n = d as

h(Hi−1, Mi) := E(Hi−1, Mi)⊕Hi−1 ,see, e.g., Blak et al. (2002), Preneel et al. (1994).Construting a ryptographi hash funtion from a blok ipher may bepartiularly bene�ial on low-end devies with too little apaity to implementboth a blok ipher and a dediated ryptographi hash funtion.Potentially the most prominent examples of ryptographi hash funtions arethe MD5 hash funtion (Rivest, 1992) and the SHA hash funtion family (NIST,2008).1 Similarly to blok iphers, also dediated lightweight ryptographi hashfuntions exist, see, e.g., Guo et al. (2011).We omit further details and refer the interested reader to Preneel (1993)for an introdution to ryptographi hash funtions and to Fleishmann et al.(2008), Preneel (2009) for information on more reent hash funtion proposalsand their properties.Cryptographi hash funtions an readily produe a �xed-length �ngerprint(or digest) of an arbitrarily long message, but in order to turn a hash funtioninto a message authentiation ode in the sense of Eq. (7.1), it has to be spei�edhow to handle the seret key that the authentiation relies on. A ommonapproah is the HMAC onstrution (Krawzyk et al., 1997) that derives an l-bitmessage authentiation ode from a ryptogrpahi hash funtion H : {0, 1}∗ →
{0, 1}l and a key k ∈ {0, 1}n as

MACH : {0, 1}∗ × {0, 1}n → {0, 1}l

(x, k) 7→ H ((k ⊕ opad)||H (k ⊕ ipad||x))with publily known onstants opad and ipad.7.3 Message Authentiation with Digital Signa-turesCorroborating evidene of a message's authentiity an also be omputed withasymmetri ipher systems as de�ned in Setion 2.4. Therefore, we use the1Sine the seurity of these algorithms is inreasingly under question, at the time of writingof this thesis, a ompetition is being held by the National Institute of Standards and Teh-nology (NIST) to selet a suessor algorithm for the SHA hash funtion family (see NIST(2010)), whih is stimulating the development of many new designs and intensive researh inthis �eld.



104 7.4 Challenge-Response based Entity Authentiationderyption operation, whih employs the private key, to produe the evidene,and the enryption operation, whih is based on the publi key, to verify theevidene. Sine in ontrast to message authentiation odes the evidene ispubliy veri�able without the need to establish a ommon seret, an evidenebased on an asymmetri system is usually alled digital signature (see, e.g.,Vaudenay (2006) for an introdution).The seurity de�nition of digital signatures is similar to the de�nition formessage authentiation odes. A digital signature is onsidered seure if it isinfeasible for an adversary who may obtain signatures for messages xi of hishoie under the seret signature key to produe a signature for a message
x 6= xi that will be aepted by a legitimate veri�er. As in the MAC ase,reovering the signature key is su�ient for being able to forge signatures forarbitrary messages.In order to spend less e�ort on rather ostly asymmetri operations, theevidene is typially omputed for a digest of the message (derived with a ryp-tographi hash funtion) rather than for the message as a whole. But still, aswith ipher systems, message authentiation based on asymmetri digital signa-ture shemes usually requires substantially more e�ort than symmetri messageauthentiation odes, and this e�ort has to be onsidered too large in manylow-end devie appliations.7.4 Challenge-Response based Entity Authenti-ationEntity authentiation is usually performed by proving the posession of someobjet (often alled key), either a piee of information like a password or aPIN, or a physial objet suh as a mehanial key (see also Setion 7.1.1).2In our attaker model, presenting the key itself to the prover as orroboratingevidene is not an option in most ases of eletroni ommuniation, sine itwould dislose it also to the attaker and immediately allow for impersonationattaks. Hene, the orroborating evidene needs to be some information that isderived from the key, but not the key itself. However, if this derived informationdoes not hange from one authentiation to another, it is as valuable as the keythat is was derived from beause the attaker ould just replay it to impersonatethe prover.We see that the orroborating evidene should be some information that isderived from the objet and is valid only for a short period of time, ideally onlyfor one authentiation session, suh that the veri�er an deide whether he ispresented a reent (or fresh) evidene or some outdated information, whih hewould then assume to have been replayed by an attaker.The most ommon tehniques to implement freshness veri�ation of a orrob-orating evidene are timestamps and veri�er-supplied hallenges. Timestampsare inluded into the evidene in an agreed way to doument its reation time.While being rather straightforward to inlude, timestamps require a means forprover and veri�er to agree on the urrent time (be it UTC time or some abstrat2Stritly speaking, we ould also model physial objets as piees of information by iden-tifying them with their spei�ation. However, obtaining this spei�ation may not alwaysbe feasible, e.g., as in the ase of physial unloneable funtions (PUFs) that are inherentlydetermined by eletrial or mehanial properties of a devie (see, e.g., Pappu (2001))



7.5 Authentiation Shemes based on Hash Chains 105ounter-based time), whih may not always be feasible espeially in low-end de-vie appliations.Veri�er-supplied hallenges are independent of time synhronization, butrequire the veri�er to provide a hallenge (usually a binary string) that theprover has to inlude in the omputation of the evidene. If the veri�er keepstrak of the hallenges he supplies to provers, he an rejet evidenes thatare based on out-dated hallenges. Entity authentiation shemes based onveri�er-supplied hallenges are usually alled hallenge-response authentiationshemes. Whether a hallenge-response sheme is suitable for a partiularresoure-onstraint appliation primarily depends on the severity of the om-muniation overhead for transmitting the hallenge to the prover.We note that we an rather straightforwardly build hallenge-response entityauthentiation shemes from message authentiation shemes by requiring theprover to provide as orroborating evidene of his identity a message with theveri�er-supplied hallenge as payload and orroborating evidene of this mes-sage's authentiity. Alternatively, an enryption of the hallenge an be used asorroborating evidene (ISO/IEC, 1993).7.5 Authentiation Shemes based on Hash ChainsA slightly di�erent �avour of entity authentiation protools whih has beenproposed by Lamport (1981) is based on a one-way funtion h : {0, 1}l → {0, 1}l.Prover and veri�er agree on a value n, the prover hooses an arbitrary value
x0, omputes the sequene (xi)1≤i≤n with xi = h(xi−1), and transmits thevalue xn to the veri�er in a tamper-proof, but not neessarily on�dential way.As orroborating evidene in the i-th authentiation session, 1 ≤ i ≤ n, theprover presents the value xn−i (i.e., the preimage of xn−i+1 under h) and isauthentiated if and only if h(xn−i) = xn−i+1.Sine the sequene (xi) is produed by repeated (hained) appliation of h,and h is often implemented as a ryptographi hash funtion or its ompressionfuntion, this authentiation tehnique is known as hash hain based authenti-ation.Due to the onstrution, the number of possible authentiations is limitedto the length of the hash hain, whih, in the absene of auxiliary tehniques,makes the onstrution slightly less suited for authentiating long-term identi-ties. Therefore, hash hain based authentiation is more often used for entityreognition than for entity authentiation. On the other hand, ompared todigital signatures, the sheme is omputationally muh more e�ient on typiallow-end devies, and sine the transmission of the hain endpoint xn does nothave to be on�dential, it requires less e�ort than onventional key establish-ment tehniques in the initialization phase.Message authentiation shemes an be built based on hash hains, e.g., asin the Guy Fawkes protool suggested by Anderson et al. (1998). The Jane Doeprotool by Luks et al. (2008) uses the elements of the hash hain as keys for amessage authentiation ode, and the hain elements are suessively dislosedto the veri�er suh that he an perform the authentiation. In order to preventforgery attaks, are has to be taken not to dislose these values too soon, whihis ensured by a seond hash hain that is produed on the veri�er's side andstepwise dislosed to the prover.



106 7.6 Authentiation based on the Hardness of Learning Problems7.6 Authentiation based on the Hardness of Learn-ing ProblemsA speial ase of lightweight hallenge-response based entity authentiation asdesribed in Setion 7.4 is the following generi strategy:1. Construt from a lightweight funtion E a basi hallenge-response proto-ol and redue the seurity of the basi protool against passive attakersto the hardness of a suitable learning problem.2. De�ne a protool P over E and try to redue the seurity of P againstative attakers to the seurity of the basi protool against passive at-takers.For a funtion E : X × K → Y with suitably hosen input spae X , keyspae K and output spae Y , the basi protool is de�ned as follows. Theveri�er (Alie) and the prover (Bob) share a seret key k ∈ K. A basi roundonsists of the following steps.
• Alie and Bob exhange hallenge information. As a speial ase, this stepmay only onsist of Alie sending a publily known onstant value (a hellomessage) that is just used as a trigger to initiate the ommuniation.
• Based on the hallenges, Bob hooses a random element x ∈ X whihis distributed aording to a publily known probability distribution PrBand sends z = E(x, k) as orroborating evidene of his knowledge of k toAlie.
• Alie veri�es z based on the hallenges and the ommon seret k.After r suh rounds and depending on the number of rounds with suessfulveri�ations, Alie deides whether to authentiate Bob.In the following, we onsider two entity authentiation protool families ofthis type, the HB family and the family of linear (n, k, L) protools.



Chapter 8The HB Family ofAuthentiation Protools8.1 The HB ProtoolThe HB protool was proposed by Juels and Weis (2005) as an authentiationprotool that an be exeuted by humans. The use ase that they had in mindwas seurely logging into a terminal in the presene of adversaries eavesdroppingon what the user types into the keyboard.The veri�er (Alie) and the prover (Bob) share a ommon seret k ∈ {0, 1}nand a publi noise parameter η ∈
(
0, 1

2

). A basi round of the HB protool worksas follows. Alie transmits a random hallenge a ∈ {0, 1}n to Bob, who hoosesa value ν ∈ {0, 1}n with Pr[ν = 1] = η and transmits the value z := (a · k) ⊕ νas orroborating evidene to Alie, where x ·y ∈ {0, 1} for x, y ∈ {0, 1}n denotesthe inner produt of x and y over GF(2). She aepts z if and only if z is equalto (a · k). Fig. 8.1 illustrates the basi round of HB.Note that in the terminology of Setion 7.6, we have K = GF(2)n, X = Y =
GF(2)n×GF(2), y = GF(2), and the basis operation is de�ned by E((x, ν), k) =
(x, y), where y = x · k ⊕ ν.The entire protool onsists of r basi rounds, and Alie authentiates Bob

Verifier Prover

Alice Bob
RFID reader RFID tag

a ∈R {0, 1}n

z = (a · k) ⊕ ν
Accept iff

choose
ν ∈ {0, 1},
Pr[ν = 1] = η

z = (a · k)

key k key k

Figure 8.1: Basi round of the HB protool



108 8.2 The HB
+ Protoolif and only if the number of rounds in whih the reeived value z was rejetedis less than ηr, or equivalently, for A denoting a random (r × n) matrix over

{0, 1} and k written as (n× 1) matrix, Alie authentiates Bob if and only if
|(A ◦ k)⊕ z| < ηr .Hene, a passive attaker who observes the ommuniation between Alieand Bob and wants to impersonate Bob is faed with the problem of �nding a

k′ ∈ {0, 1}n suh that
|(A ◦ k′)⊕ z| < ηr .This problem orresponds to the Learning Parity in the Presene of Noise(LPN) problem, whih is de�ned as follows.De�nition 8.1 (Learning Parity in the Presene of Noise). Let A be arandom (r×n) matrix , let k be a random n-bit vetor, let η ∈

(
0, 1

2

) be a onstantnoise parameter, and let ν be a random r-bit vetor suh that |ν| ≤ ηr. Given
A, η, and z = (A ◦ k)⊕ ν, �nd an n-bit vetor k′ suh that |(A ◦ k′)⊕ z)| ≤ ηr.The LPN problem is well-established in the literature (see, e.g., Hopper andBlum (2001), Juels and Weis (2005) for an overview). It has been shown to be
NP-hard, but its di�ulty on random instanes is still an open question. Thebest known algorithm to date is due to Blum et al. (2003) and has a running timeof 2O( n

log n ), with tighter analyses and implementation improvements proposedby Fossorier et al. (2006), Levieil and Fouque (2006).Hopper and Blum (2001), Juels and Weis (2005) showed that the seurityof the HB protool against passive attakers an be redued to the hardness ofthe LPN problem in the sense that a passive attaker who an impersonate theprover in the HB protool an be used to solve the LPN problem.However, a detetion attaker Eve (see De�nition 7.1) an break the HBprotool and impersonate the prover as follows (Juels and Weis, 2005). Everepeatedly sends the same hallenge a to Bob in order to learn the error-freevalue of a ·k for the unknown seret k. She repeats this proedure for n linearlyindependent values a (e.g., the standard basis {e1, . . . , en} of {0, 1}n) and anthen reover k by Gaussian elimination.8.2 The HB
+ Protool

HB
+ was proposed by Juels and Weis (2005) to strenghen HB against ativeattakers. It introdues an additional message, a prover-supplied blinding fator,and works as follows.Veri�er (Alie) and prover (Bob) share two seret values k1, k2 ∈ {0, 1}nand a publi noise paramter η ∈

(
0, 1

2

). At the beginning of a basi protoolround, Bob sends a randomly hosen blinding fator b ∈ {0, 1}n to Alie, andshe replies with a hallenge a ∈ {0, 1}n. Bob then omputes his orroboratingevidene as z = (a ·k1)⊕ (b ·k2)⊕ ν with ν ∈ {0, 1} suh that Pr[ν = 1] = η andtransmits z to Alie, who aepts z if and only if z is equal to (a · k1)⊕ (b · k2).The basi protool round of HB
+ is illustrated in Fig. 8.2.As in the HB protool, the basi protool round is repeated r times, andAlie authentiates Bob if and only if the number of basi rounds ending inrejetion of the evidene is less than ηr.
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Verifier Prover

Alice Bob
RFID reader RFID tag

a ∈R {0, 1}n

z = (a · k1) ⊕ (b · k2) ⊕ ν
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choose
ν ∈ {0, 1},
Pr[ν = 1] = η

z = (a · k1) ⊕ (b · k2)
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b ∈R {0, 1}n

Figure 8.2: Basi round of the HB
+ protoolJuels and Weis (2005) were able to show that a detetion attaker (see De�-nition 7.1) on HB

+ an be used to attak the HB protool in a passive attakersenario, and this attak an in turn be used to solve the LPN problem. Hene,the hardness of LPN implies the seurity of HB
+ against the ative adversarythat HB is not able to resist.However, Gilbert et al. (2005) observed that this redution annot be ex-tended to general ative adversaries, who an also at as man-in-the-middle be-tween legitimate prover and legitimate veri�er. More preisely, an HB

+ man-in-the-middle attaker Eve ould proeed as follows. She hooses a value δ ∈ {0, 1}nand replaes a veri�er-supplied hallenge a by a ⊕ δ. Bob will then produe aorroborating evidene z′ as
z′ = (a · k1)⊕ (δ · k1)⊕ (b · k2)⊕ ν ,and Eve observes whether Alie aepts z′. If this is the ase, then (δ·k1)⊕ν = 0,whih implies δ · k1 = 0 with probability 1 − η. Conversely, if Alie rejets z′,then δ · k1 = 1 with probability 1 − η. Similarly to the attak on HB, Evean repeat this proedure for n linearly independent values δ and reover k1.With this knowledge, Eve an already impersonate Bob by hoosing b = 0. Ifshe wants to reover also k2, she an hoose an arbitrary b and interat witha legitimate veri�er, supply z′ = a · k1 as orroborating evidene and dedue

b · k2 = 0 if and only if the veri�er aepts z′. Again, repeating these steps for
n linearly independent blinding fators b yields k2.In the following, we will refer to this attak on HB

+ as Gilbert/Robshaw/Sibertattak (GRS attak).8.3 Variants of the HB
+ ProtoolAfter its publiation in 2005, HB

+ has reieved onsiderable attention in theryptographi ommunity. Espeially its simpliity, its e�ieny on the prover'sside, and its provable resistane against passive attaks (albeit relying on thehardness of LPN) while being vulnerable to the rather simple GRS attak,motivated a number of follow-up proposals that aim to avoid this shortomingwhile preserving as many of the advantages as possible.However, it turns out that resisting GRS-style attaks � modifying the ver-i�er's hallenge and learning from his reation to the evidene that the prover



110 8.3 Variants of the HB
+ Protoolprodues from the perturbed input � does not seem to be an easy task. Parti-ularly Gilbert et al. (2008b) showed that many of the follow-up proposals endup being less e�ient than HB

+ while not providing onsiderably more seurity.In the following, we desribe the most prominent ones of these proposals anddisuss their seurity properties.8.3.1 The HB
++ ProtoolThe HB

++ protool was proposed by Bringer et al. (2006) and onsists, justas HB
+, of a number of repetitions of a basi protool round. However, at thebeginning of an authentiation session, four serets k1, k

′
1, k2, k

′
2 are derived froma shared seret master key K, a prover-supplied blinding fator B ∈ {0, 1}80 anda veri�er's hallenge A ∈ {0, 1}80. This is done by applying a publily knownhash funtion to K, A and B. Bringer et al. propose a partiular funtion

h : {0, 1}768×{0, 1}80×{0, 1}80 → {0, 1}320, whih implies a master seret sizeof 768 bits and four session keys of size 80 bits eah (see Fig. 8.3).In a basi protool round, veri�er (Alie) and prover (Bob) exhange a blind-ing fator b and a hallenge a as in HB
+. Then Bob hooses two noise parameters

ν and ν′ with ν, ν′ ∈ {0, 1} and Pr[ν = 1] = Pr[ν′ = 1] = η. The orroboratingevidene onsists of two omponents (z, z′) with
z = (a · k1)⊕ (b · k2)⊕ ν

z′ = (ROTi(f(a)) · k′
1)⊕ (ROTi(f(b)) · k′

2)⊕ ν′ ,where ROTi(x) denotes the rotation of x ∈ {0, 1}∗ by i positions to the left, and
f denotes a permutation. Analogously to HB

+, Alie heks whether z and z′satisfy
z = (a · k1)⊕ (b · k2) ,

z′ = (ROTi(f(a)) · k′
1)⊕ (ROTi(f(b)) · k′

2) .Figure 8.4 illustrates a basi protool round of HB
++.The basi protool is repeated r times, and Alie authentiates Bob if boththe number of erroneous z evidenes and the number of erroneous z′ evidenesdo not exeed a threshold t.Bringer et al. (2006) showed that the resistane of HB

++ against passiveattaks an be redued to the hardness of LPN, and that the protool is able toresist the GRS attak if f is arefully hosen.
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1
)

⊕(ROTi(f(b)) · k′
2
) ⊕ ν′Figure 8.4: Basi round of the HB

++ protoolBut still, HB
++ remains vulnerable to a speial extension of the GRS attak.Gilbert et al. (2008b) disovered that by disturbing the hallenge a in s out of rrounds of an authentiation session, exploiting the observed veri�ation resulton the veri�er's side and the speial struture of h, an adversary an deduelinear equations in a number of bits of k1. The resulting system an be expressedas an LPN instane and solved with moderate e�ort. From the reovered k1,the session key k′

1 an be derived in a similar manner. The knowledge of k1and k′
1 is already su�ient for impersonating Bob sine the adversay an reuseblinding fators b from suessful authentiations of Bob along with k1, k′

1 toorret z and z′ appropriately.8.3.2 The HB
∗ ProtoolAnother variant of HB

+, the HB
∗ protool, was proposed by Du and Kim(2007). As in HB

+, veri�er (Alie) and prover (Bob) share two seret values k1and k2. Additionally, there is a shared seret s that is used to on�dentiallytransmit an auxiliary value γ from Bob to Alie.At the beginning of a basi protool round, Bob hooses γ ∈ {0, 1} with
Pr[γ = 1] = η′, and ν ∈ {0, 1} with Pr[ν = 1] = η, and transmits a randomlyhosen blinding fator b ∈ {0, 1}n and the enrypted value of γ, whih is om-puted as w = (b · s) ⊕ γ, to Alie. As in HB

+, Alie replies with a hallenge
a ∈ {0, 1}n. Bob then omputes his orroborating evidene as

z =

{
(a · k1)⊕ (b · k2)⊕ ν if γ = 0
(a · k2)⊕ (b · k1)⊕ ν if γ = 1

,and Alie heks whether (a · k1) ⊕ (b · k2) equals z if (b · s) = w (i.e., γ = 0),and whether (a · k2) ⊕ (b · k1) equals z if (b · s) 6= w (i.e., γ = 1). Again, Bobis authentiated if the veri�ation fails for less than a threshold t out of r basiprotool rounds. The basi protool round of HB
∗ is illustrated in Fig. 8.5.Du and Kim laim resistane against the GRS attak, but Gilbert et al.(2008b) observed that although in eah basi round one of the two protoolmodes is seretly seleted by the value γ, a modi�ed GRS attak remains appli-able. This attak is again based on adding a vetor δ to the veri�er's hallenge

a and exploiting the information that the result of the veri�ation leaks about
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ak2 ⊕ bk1 if bs 6= wFigure 8.5: Basi round of the HB
∗ protoolthe serets k1 and k2. A ase distintion shows that the aeptane probabil-ity of z varies depending on the values of δ · k1 and δ · k2 in suh a way thatthe attaker an disriminate between (sets of) the ases. Depending on thehoies of η and η′, the attaker may either reover k1 as in the GRS attakand impersonate Bob by sending (b, w) = (0, 0) as �rst message, or learn thetwo-dimensional vetorial spae < k1, k2 >, whih an similarly be exploited toimpersonate Bob.8.3.3 The HB-MP ProtoolsMunilla and Peinado (2007) proposed the HB-MP protool as an HB

+-variantthat presumably resists the GRS attak. It uses a two-pass basi protool asfollows. Both veri�er (Alie) and prover (Bob) share a seret (k1, k2). In the i-th exeution of the basi protool, Alie sends a hallenge a ∈R {0, 1}m to Bob,who hooses a ν ∈R {0, 1}m suh that Pr[νi = 1] = η for all i ∈ [1, m]. Thenhe omputes k1 := rotate(k1, (k2)i), where (k2)i denotes the i-th bit of k2 androtate(x, y) the rotation of x by y positions. He omputes z := (a · (⌊k1⌋m))⊕ νwith ⌊k1⌋m denoting the m least signi�ant bits of k1. Finally, he hooses avalue b that satis�es (b · (⌊k1⌋m)) = z and transmits b to Alie. Alie aeptsthe evidene if and only if b · (⌊k1⌋m) equals a · (⌊k1⌋m) whih is equivalent to
(a⊕ b) · (⌊k1⌋m) = 0 . (8.1)Figure 8.6 illustrates the basi round of HB-MP.As with HB

+, Bob is authentiated if the number of failed basi protoolrounds is less than some threshold t.Despite the laim in the original proposal, HB-MP is vulnerable to a passiveattak as observed by Gilbert et al. (2008b). Equation (8.1) implies that a basiprotool round is always passed if a and b are equal. Munilla and Peinado re-ommend immediate rejetion for this ase, but nevertheless suitable evidenesan be onstruted from an observed r-round authentiation session with ex-hanged messages (ai, bi), i ∈ [1, r]. In order to impersonate the prover, we
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Verifier Prover

Alice Bob
RFID reader RFID tag

a ∈R {0, 1}m

Accept iff

choose
ν ∈ {0, 1}m

Pr[νi = 1] = η

b · (⌊k1⌋m) = a · (⌊k1⌋m)

key k1, k2 key k1, k2

x = rotate(k1, (k2)i)

z = (a · (⌊k1⌋m)) ⊕ ν

b with b · (⌊k1⌋m) = z
x = rotate(k1, (k2)i)Figure 8.6: Basi round of the HB-MP protoolompute for the veri�er's hallenge a′

i an evidene b′i as bi := a′
i ⊕ ai ⊕ bi. Thenwe have b′i 6= a′

i sine ai 6= bi, and
(ai ⊕ bi) · (⌊k1⌋m) = (a′

i ⊕ b′i) · (⌊k1⌋m) .Hene, with this strategy we an suessfully impersonate the prover if and onlyif the observed authentiation session was suessful.8.3.4 The HB
# ProtoolIn the light of the little resistane of the above desribed HB

+ variants againstGRS-type attaks, Gilbert et al. (2008a) introdued HB
# as an improvementof HB

+ that is provably resistant against the GRS attak. It an be seen as aompressed version of HB
+ and works as follows.Veri�er (Alie) and prover (Bob) share two seret matries K1 and K2. Bobsends an l2-bit blinding value b ∈R {0, 1}l2 to Alie, who replies with an l1-bithallenge a ∈R {0, 1}l1. Bob then hooses an m-bit vetor ν = (ν1, . . . , νm)suh that Pr[νi = 1] = η for i ∈ [1, m] and transmits to Alie as orroboratingevidene the value z = aK1 ⊕ bK2 ⊕ ν. Alie aepts an evidene z if and onlyif wt(a ·K1 ⊕ b ·K2 ⊕ z) ≤ t for some threshold t (see Fig. 8.7).In ontrast to HB

+, an authentiation session based on HB
# onsists onlyof a single round. Hene, the protool is similar to m exeutions of HB

+ withindividual serets in eah basi round.Although provably resistant against the GRS attak and ertain extensions,
HB

# has been shown by Oua� et al. (2008) not to resist general man-in-the-middle attaks. Partiularly, Oua� et al. show how to dedue the Hammingweight of the error vetor ν in a partiular authentiation session, whih anin turn be used to set up a system of linear equations to reover K1 and K2.The attak has resonable suess probabilities for pratial parameter hoiesof HB
# and is generally appliable also to other members of the HB protoolfamily.
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Verifier Prover

Alice Bob
RFID reader RFID tag

a ∈R {0, 1}l1

z = a · K1 ⊕ b · K2 ⊕ ν
Accept iff

choose
ν ∈ {0, 1}m

Pr[νi = 1] = η

wt((a · K1) ⊕ (b · K2) ⊕ z) ≤ t

key K1,K2 key K1,K2

b ∈R {0, 1}l2

Figure 8.7: One round of the HB
# protool8.3.5 The Trusted-HB ProtoolA generi way to prevent man-in-the-middle attaks on HB

+-like protools is tohave the prover send a signature of his view of the ommuniation transript atthe end of the authentiation protool. An adversary who is not able to forgethe signature will thereby be prevented from impersonating the prover. Obvi-ously, the hoie of signature shemes is restrited by the resoure ontraintsof the HB
+ target appliation environment, whih rules out standard messageauthentiation shemes (that ould by themselves be used for entity authenti-ation, see Setion 7.4). The proposal Trusted-HB by Bringer and Chabanne(2008) tries to solve this trade-o� by using a family of universal hash funtionsthat are represented by Toeplitz matries, partiularly by a subset of Toeplitzmatries that an be generated by LFSRs.De�nition 8.2. A �nite olletion H of hash funtions h : {0, 1}m → {0, 1}n isalled family of universal hash funtions if for eah pair of values x, y ∈ {0, 1}m,the number of hash funtions h ∈ H for whih h(x) = h(y) is preisely |H|

m , i.e.,for a randomly hosen h ∈ H, Pr[h(x) = h(y)] = 1
m for all x, y ∈ {0, 1}m.De�nition 8.3. An (n×m) Boolean Toeplitz matrix U ontains a �xed valuein eah left-to-right diagonal, i.e., U is a Toeplitz matrix if Ui,j = Ui+k,j+k forevery 0 ≤ i, i + k < n and 0 ≤ j, j + k < m.Mansour et al. (1990) showed that a familyH of universal hash funtions anbe onstruted by representing the h ∈ H as Toeplitz matries U and omputing

h(M) as h(M) := U ◦M with M written as (m× 1) matrix.The idea of Krawzyk (1994), whih is also used in Trusted-HB, was to re-strit the family of Toeplitz matries to those whose onseutive olumns anbe represented as the onseutive states of an LFSR with irreduible onnetionpolynomial. This restrition trades o� redued seurity guarantees and om-pat matrix representations, whih are espeially useful in resoure-onstrainedenvironments. The signature for a message M ∈ {0, 1}m is then omputed as
MAC(M) := h(M)⊕ e(i), where e(i) ∈ {0, 1}n denotes the i-th unused one-timepad, while h and e(i), i ≥ 0, are the seret key shared by prover and veri�er.Therefore Trusted-HB onsists of two stages:1. Prover and veri�er exeute the standard HB

+ protool.



8.3 Variants of the HB
+ Protool 1152. The prover omputes a signature on the ommuniation transript of the�rst stage based on LFSR-based Toeplitz matries and transmits it to theveri�er for veri�ation.However, the partiular implementation of step (2) in Trusted-HB turned outto be �awed (Frumkin and Shamir, 2009), partiularly beause it seems hard inpratie to keep h on�dential and provide values e(i) that are su�iently loseto the one-time pad assumption. How the signature an be implemented in aboth a seure and e�ient way is therefore an open problem to the present day.



116 8.3 Variants of the HB
+ Protool



Chapter 9The (n, k, L) Family ofAuthentiation Protools9.1 Introdution and OverviewAs a possible alternative to HB-type protools, another lass of lightweightauthentiation protools (so-alled CKK protools) were introdued by Ciho«et al. (2008). These protools an be generalized to linear (n, k, L) protools,in whih the seret key onsists of the spei�ation of L n-dimensional linearsubspaes V1, . . . , VL of GF(2)n+k, while the identi�ation is performed by ol-laboratively generating an element v ∈ Vl for a random l ∈ {1, . . . , L}. Ciho«et al. (2008) suggested the CKK2 protool, a speial linear (n, k, 2) protool, andthe CKKσ,L protool, a speial linear (n, k, L) protool, for pratial appliation.Compared to HB-type protools, the advantages of (n, k, L) protools andespeially their improvements (n, k, L)+ and (n, k, L)++ are that fewer bits haveto be ommuniated, omputational e�ort and memory requirements are loweron the prover's side (essentially, the prover has to generate random elementsfrom L di�erent n-dimensional subspaes of GF(2)n+k), and that (n, k, L)-typeprotools seem to be more resistant against ative attaks. The drawbak isthat we annot prove the seurity of (n, k, L) protools by redution to a well-established problem like the LPN-problem yet. However, we show that similarlyto HB-type protools, the seurity of (n, k, L)-type protools an be related tothe hardness of a ertain learning problem, the Learning Unions of L linearsubspaes (LULS) problem.We have experimentally on�rmed the orretness and e�ieny of our at-taks and algorithms with the omputer algebra system Magma (Bosma et al.,1997).9.2 The Linear (n, k, L) ProtoolIn a linear (n, k, L) protool, veri�er (Alie) and prover (Bob) share as ommonseret the spei�ations of L injetive linear funtions F1, . . . , FL : GF(2)n −→
GF(2)n+k, i.e., eah Fi orresponds to an n-dimensional subspae Vi of GF(2)n+k.After reeiving an arbitrary hallenge from Alie, Bob omputes as or-



118 9.2 The Linear (n, k, L) Protoolroborating evidene an element w = Fl(u) for l ∈R [L] and u ∈R GF(2)n.Alie aepts an evidene w if there is an l ∈ [L] suh that w ∈ Vl, where
[L] := {1, . . . , L} (see Fig. 9.1).Obviously, this protool is vulnerable to a simple passive attak, sine anadversary an store a number of proofs and then impersonate Bob by presentingthese proofs to Alie.Moreover, an ative adversary an suessfully reover the key as follows.1. Collet a set of messages O = {v1, . . . , vs} sent by Bob, with s largeenough for O to ontain a basis for Vl for all l ∈ [L] with high probability.2. Construt an s× s-matrix M over {0, 1}, where Mi,j = 1 i� Alie aepts

vi ⊕ vj .Note that if vi and vj belong to the same subspae Vl, Pr[Mi,j = 1] = 1. If
{vi, vj} 6⊆ Vl for all l ∈ [L], then

Pr[Mi,j = 1] = Pr

[

vi ⊕ vj ∈
L⋃

l=1

Vl

]

≤ (L− 2)2−k .The expeted number of messages needed for onstruting Or an be estimatedbased on the following experiment.Set B := ∅.repeatChoose a random v ∈ GF(2)n (w.r.t. the uniform distribution).
V := V ∪ {v}.until V is a generating system of GF(2)n.Lemma 9.1 (Goªebi�wski et al. (2008)). Consider the experiment of repeat-edly hoosing a random element v ∈ GF(2)n and adding v to an initially emptyset V until V ontains a generating system of GF(2)n. Let p(n) denote theprobability that the experiment stops after n iterations (i.e., V is a basis of

GF(2)n), and E(n) denote the expeted number of iterations of the experiment.Then p(n) ≈ 0.2887 and E(n) ≈ n + 1.6067.Hene, s ∈ Θ(L · E(n)) = Θ(Ln), i.e., it is possible to e�iently omputespei�ations of V1, . . . , VL and to impersonate Bob by replying with w ∈ Vl forarbitrary l ∈ [L].
Verifier Prover

Alice Bob
RFID reader RFID tag

challenge
choose l ∈R [L],

w = Fl(u)
accept if
∃l ∈ {1, . . . , L}
with w ∈ Vl

u ∈R GF(2)n

key F1, . . . , FL key F1, . . . , FL

Figure 9.1: Basi round of the (n, k, L) protool



9.3 The Linear (n, k, L)+ Protool 1199.3 The Linear (n, k, L)+ ProtoolIn order to prevent the desribed attaks on the linear (n, k, L) protool, weonsider the following ommuniation mode, whih, analogously to the HB+protool (see Setion 8.2), de�nes (n, k, L)+ protools.Alie starts by sending an a ∈R GF(2)n/2 to Bob. Bob hooses values
b ∈R GF(2)n/2 and l ∈R [L] and sends w = Fl(a, b) to Alie. Alie aepts a
w ∈ GF(2)n+k if there is some l ∈ [L] with w ∈ Vl and the pre�x of length n/2of F−1

l (w) is equal to a (see Fig. 9.2).However, (n, k, L)+ protools an be broken by the man-in-the-middle at-tak outlined in Algorithm 12. In this attak, s is hosen large enough for
{w1, . . . , ws} to ontain a basis of Vl with high probability (see Lemma 9.1).The attak is repeated until spei�ations of all V1, . . . , VL have been omputed.Algorithm 12 (n, k, L)+_MITM-Attak(n, k, L)Fix a1 6= ~0 in GF(2)n/2.Send a1 to Bob and reeive w1 ∈ Vl for some unknown l ∈ [L].for r = 2, . . . , s dorepeatInterept a from Alie.Send a′ := a⊕ a1 to Bob and reeive w′.until Alie aepts w′⊕w1 (whih happens with probability at least 1/L)De�ne ar := a′ and wr := w′.end forreturn {w1, . . . , ws} (whih allows to ompute Vl)9.4 The Linear (n, k, L)++ ProtoolThe parameters n, k, L as well as Vl, Fl for l ∈ [L] are de�ned as above. Let
n = 2N . The (n, k, L)++ protool works similarly to the (n, k, L)+ protool, butuses an additional publily known invertible funtion f : GF(2)n −→ GF(2)n,whih we all onnetion funtion.In a basi protool round, Alie hooses a random a ∈ GF(2)N , a 6= ~0, movesto inner state a, and sends a to Bob. Bob hooses random values b ∈ GF(2)N

Verifier Prover

Alice Bob
RFID reader RFID tag

a ∈R GF(2)n/2

choose l ∈R [L],

w = Fl(a, b)

b ∈R GF(2)n/2

let (ã, b̃) = F−1

l (w)
accept if ã = a

if ∃l ∈ {1, . . . , L}
with w ∈ Vl

key F1, . . . , FL key F1, . . . , FL

Figure 9.2: Basi round of the (n, k, L)+ protool



120 9.4 The Linear (n, k, L)++ Protooland l ∈ [L] and sends w = Fl(f(a, b)) bak to Alie. Alie aepts a message
w ∈ GF(2)n in inner state a if w 6= ~0, and ∃l ∈ [L] suh that w ∈ Vl, and
f−1(F−1

l (w)) has the form (a, b) for some b ∈ GF(2)N . The basi protoolround of (n, k, L)++ is illustrated in Fig. 9.3. Note that hoosing f to be theidentity yields the (n, k, L)+ protool.For the (n, k, L)++ protool, we onsider a speial type of man-in-the-middleattak whih we all (x, y)-equality attak. The aim of an (x, y)-equality attakerEve is to generate two messages w 6= w′ ∈ GF(2)n+k and to e�iently test byman-in-the-middle aess to the protool whether w and w ⊕ w′ belong to thesame linear subspae Vl for some l ∈ [L]. As desribed above, suh an attakan be used to e�iently ompute spei�ations of the subspaes V1, . . . , VL.Eve works in three phases:1. Send a message y ∈ GF(2)N to Bob and reeive w′ = Fl(f(y, b′)).2. Observe a hallenge a ∈ GF(2)N sent by Alie.3. Compute a value x = x(y, w′, a) ∈ GF(2)N , send it to Bob, reeive themessage w = Fr(f(x, b)), and send w ⊕ w′ to Alie.The suess probability of the attak is equal to the probability that Alieaepts w ⊕ w′ given that l = r. Note that if f is GF(2)-linear (as in the
(n, k, L)+ protool), setting x = a⊕ y yields an attak with suess probabilityone.We now de�ne a onnetion funtion whih yields provable seurity against
(x, y)-equality attaks. In the following we identify {0, 1}N with the �nite �eld
K = F2N and denote by +, · the addition and multipliation in K. We de�ne aonnetion funtion f by

f : K ×K → K ×K
(a, b) 7→ (ab, ab3)

. (9.1)Hene, Alie aepts a message w with F−1
l (w) = (u, v) ∈ K2 in inner state

a ∈ K∗ if (a−1u)3 = a−1v, whih is equivalent to u3 = a2v.Theorem 9.2. The suess probability of an (x, y)-equality attaker against the
(n, k, L)++ protool with onnetion funtion f de�ned in Eq. (9.1) is at most

3
2N−1 .

Verifier Prover

Alice Bob
RFID reader RFID tag

a ∈R GF(2)N

choose l ∈R [L],

w = Fl(f(a, b))

b ∈R GF(2)N

let (ã, b̃) = f−1(F−1

l
(w))

accept if ã = a

if ∃l ∈ {1, . . . , L}
with w ∈ Vl

key F1, . . . , FL key F1, . . . , FL

Figure 9.3: Basi round of the (n, k, L)++ protool



9.5 Speial Cases of Linear (n, k, L) Protools 121Proof. For given y, a ∈ K∗, Eve has to hoose an element x ∈ K∗ suh that
w + w′ = (u, v) ∈ K × K will be aepted by Alie in inner state a, where
w = Fl(x, b) and w′ = Fl(y, b′) for some l ∈ [L], and b, b′ ∈ K∗. Note that Evehas no information about b, b′, and that u = xb + yb′ and v = xb3 + yb′3.Consequently, Eve's hoie for the value x has to satisfy

(xb + yb′)3 = a2(xb3 + yb′3)

⇔ (x + yc)3 = a2(x + yc3) with c := b′(b−1)

⇔ P (x, c) = 0,with P (x, d) for all d ∈ K∗ de�ned as
P (x, d) := x3 + (yd)x2 + (y2d2 + a2)x + d3(y3 + y2a2) .Note that there are |K∗| = 2N − 1 di�erent polynomials P (x, d) with respet tothe variable x. For all x ∈ K∗ let P (x) := {d|P (x, d) = 0}. Note that P (x, d) isa polynomial of degree 3 also in the unknown d. This implies that |P (x)| ≤ 3for all x ∈ K∗ .Eve has to hoose an x that satis�es c ∈ P (x). Sine she does not have anyinformation about c, her suess probability is at most 3

2N−1 . 29.5 Speial Cases of Linear (n, k, L) ProtoolsThe de�nition of the (n, k, L) protool family was inspired by two earlier pro-posals, the CKK2 protool and the CKKσ,L (Ciho« et al., 2008) protool, whihan be seen as restrited (n, k, L) protools.In our notation, the protool CKK2 is an (n + k, k, 2) protool with theadditional properties that F1(u, a) = (u, f(u), a) and F2(u, a) = (u, a, f(u))for all u ∈ GF(2)n and a ∈ GF(2)k, where f denotes a seret linear funtion
f : GF(2)n −→ GF(2)k. The protool CKKσ,L is an (n, k, L) protool withthe restrition Fl(u) = σl(u||f(u)) for all l ∈ [L], where σ denotes a seretpermutation σ ∈ Sn+k and f a seret linear funtion f : GF(2)n −→ GF(2)k.Hene, the seret keys have the form (f, σ). The parameters n = 128 and k = 30were suggested by Ciho« et al. (2008) for pratial appliations of CKK2 andCKKσ,L.Goªebi�wski et al. (2008) presented an attak against the CKK2 protool,whih annot be applied to general (n, k, L) protools. Its running time isproportional to∑k−1

s=0

(
n
s

), i.e., of order nΘ(k). As an improvement of this result,we now desribe a very fast attak against the CKK2 protool with parameters
(n, k) whose running time is dominated by the e�ort required for inverting k
(n× n)-matries.Let f : GF(2)n −→ GF(2)k denote the seret key and reall that

V1 = {(v, f(v), a), v ∈ GF(2)n, a ∈ GF(2)k} ,

V2 = {(v, a, f(v)), v ∈ GF(2)n, a ∈ GF(2)k} .Let the funtions f1, . . . , fk : GF(2)n −→ GF(2) denote the omponent fun-tions of the seret funtion f , i.e., f(v) = (f1(v), . . . , fk(v)) for all v ∈ GF(2)n.The attak is based on the simple fat that if an observation (v, a, b) satis�es



122 9.6 Seurity of Linear (n, k, L)-type Protools and the LULS ProblemAlgorithm 13 CKK2_Attak(n, k)Let {e1, . . . , en} denote the standard basis of GF(2)n.for r ∈ [k] doConsider a set of messages produed by Bob and extrat from it a set
Or = {(vr,1, ar,1, br,1), . . . , (vr,n, ar,n, br,n)} suh that vr,1, . . . , vr,n form abasis of GF(2)n and ar,i(r) = br,i(r) = f r(vr,i) for all i ∈ [n].Derive f r(e1), . . . , f

r(en) from Or.return f1, . . . , fkend for
ar = br for some r ∈ [k], whih is true with probability 1/2, then we know that
f r(v) = ar = br. The attak works as desribed in Algorithm 13.The orretness of the attak follows straightforwardly from the de�nitions.Lemma 9.1 implies that the expeted number of messages needed for onstrut-ing Or is 2 · E(n) ≈ 2n + 3.2134. For the parameter hoies proposed forpratial appliations, the attak is very e�ient already on standard PC hard-ware (Magma V2.15-9 on a 3.4 GHz Intel Pentium IV with 4 GB RAM), seeTable 9.1.9.6 Seurity of Linear (n, k, L)-type Protools andthe Learning Unions of L Linear SubspaesProblem9.6.1 The Searh-for-a-Basis HeuristiThere are several exhaustive searh strategies for omputing spei�ations ofthe seret subspaes V1, . . . , VL.As an example, we desribe the searh-for-a-basis heuristi, whih tries toonstrut a set Q of examples whih form a basis of Vl for some l ∈ L. For alllinearly independent sets Q of n examples let p(Q) denote the probability thatan example oming from the orale belongs to the linear span 〈Q〉 of Q. It isquite obvious that p(Q) is maximal if Q is a basis of Vl for some l ∈ L. If p(Q)is not too small, we an ompute an approximation p̃(Q) of p(Q) by testing for
w ∈ 〈Q〉 for a su�iently large number of examples w. For v ∈ Q and w 6∈ Qwe denote by Q(v, w) the set obtained by replaing v by w in Q.The idea of the heuristi is to start with an arbitrary linearly independentset Q of n examples and to try to improve this set by �nding v ∈ Q and w 6∈ Qsuh that p̃(Q) < p̃(Q(v, w)). Iterating this proedure at most n times yields abasis for Vl for some l ∈ [L].Table 9.1: Performane of the passive attak on CKK2

(n, k) approx. number of observations approx. attak time
(128, 30) 311 0.3 s

(1024, 256) 2197 179 s



9.6 Seurity of Linear (n, k, L)-type Protools and the LULS Problem 123This kind of heuristi is infeasible if the following ondition is ful�lled. For arandom linear independent set Q of n examples the probability p(Q) is negligiblysmall with probability 1 − ǫ, ǫ negligibly small. The parameters n, k should behosen suh that this ondition is guaranteed.We estimate the probability p(Q) for the ase L = 2. For a linear indepen-dent set Q of n examples let Q = Q1 ∪ Q2, where Q1 ⊆ V1 and Q2 ⊆ V2 \ V1.Without loss of generality, let |Q1| = n/2 + s and |Q2| = n/2 − s. The event
w ∈ 〈Q〉 happens i� w ∈ V1∩ < Q1 > or w ∈ V2 and w ∈ V2∩ < Q1 >, i.e.,

p(Q) ≤
1

2

(

2s−n/2 + 2−k
)

.Note that dim(V1 ∩ V2) = n− k for random n-dimensional subspaes V1, V2. If
n, k are hosen suh that 2−k, 2−n/4 and the probability that |v| 6∈ [n/4, 3n/4]are negligibly small, then the above ondition is ful�lled (note that the expetedvalue of s is 2−kn/2).The parameters (n, k) should be hosen suh that these attaks beomeinfeasible. Moreover, k should be large enough suh that the probability p ofa random v ∈ GF(2)n+k belonging to ⋃L

l=1 Vl is negligibly small. Note that
p < L2−k.The subspaes V1, . . . , VL should have the property Vi ⊕ Vj = GF(2)n+k forall i 6= j ∈ [L], otherwise the e�etive key length would be redued. This implies
n ≥ k.
9.6.2 The Learning Unions of L Linear Subspaes ProblemThe Learning Unions of L Linear Subspaes (LULS) Problem refers to the fol-lowing ommuniation game between a learner and an orale. The orale holdsthe spei�ations of L n-dimensionial linear subspaes V1, . . . , VL of GF(2)n+k.The learner an send requests hello to the orale. If the orale reeives hello, ithooses randomly and uniformly an l ∈ [L] and v ∈ Vl and sends the (positive)example v to the learner. The aim of the learner is to ompute spei�ationsof V1, . . . , VL from a su�iently large set v1, . . . , vs of examples produed bythe orale. Note that this orresponds to a passive key reovery attak against
(n, k, L)-type protools. A possible strategy is the searh-for-a-basis heuristidesribed in Setion 9.6.1.An ative adversary who is able to solve the LULS problem e�iently anbreak the (n, k, L)+ protool. In partiular, knowing spei�ations of the se-ret subspaes V1, . . . , VL, he an generate spei�ations of the subspaes Vl(a)(i.e., the image of Fl(a, ·)), for arbitrary a ∈ GF(2)n/2 and l ∈ [L] by re-peatedly sending a to Bob. Then the adversary uses N = n/2 subspaes
Vl(ai), . . . , Vl(aN ) for {a1, . . . , aN} linearly independent to forge a response for



124 9.6 Seurity of Linear (n, k, L)-type Protools and the LULS Problema hallenge a =
∑N

i=1 αiai by omputing
w =

N∑

i=1

αivi with vi ∈R Vl(ai)

=

N∑

i=1

αiFl(ai, bi)

= Fl(a, b′) with b =

N∑

i=1

bi .In the ase of the (n, k, L)++ protool, the adversary annot just return arandom w ∈ Vl(a), but has to make sure that the �rst half of f−1(F−1
l (w))orresponds to a. How suh a w an be found e�iently (possibly based on thespei�ations of the subspaes Vl(a)) is a matter of further researh.In the following, we present and disuss an algebrai learning algorithm forLULS.9.6.3 On Solving the LULS ProblemA Learning Algorithm for the LULS ProblemReall that the LULS problem with parameters n, k, L onsists in omputingspei�ations of L seret n-dimensional linear subspaes of GF(2)n+k from pos-itive examples v produed by an orale whih hooses randomly and uniformly

l ∈ [L] and v ∈ Vl. In this thesis we treat the ase L = 2 and onsider the spe-ial ase that Vl = {(v, f(v)), v ∈ GF(2)n}, l ∈ {1, 2}, for seret linear funtions
f1, f2 : GF(2)n −→ GF(2)k. Our algorithm omputes for all i ∈ [k] spei�a-tions of the i-th omponent funtions f i

1, f
i
2 : GF(2)n −→ GF(2) separately, i.e.,it su�es to onsider the ase k = 1. The learning algorithm is based on thefollowing reasoning.1. Take a set O = {(v1, w1), . . . , (v

n, wn)} ⊆ GF(2)n+1 of examples suh that
B = {v1, . . . , vn} forms a basis of GF(2)n. For all i ∈ [n] let xi and yidenote the variables orresponding to f1(v

i) and f2(v
i), respetively.2. For b ∈ {0, 1} let Ib = {i ∈ [n], wi = b}.3. For all i ∈ [n] let ti = xi ⊕ yi, and for all i < j ∈ [n] let ti,j = xiyj ⊕ xjyi.4. Observe that for all i ∈ [n] the equality (wi⊕ xi)(wi ⊕ yi) = 0 holds. Thisimplies

xiyi = 0 if i ∈ I0 and xiyi = 1⊕ ti if i ∈ I1 . (9.2)5. Observe that eah example (v, w) ∈ GF(2)n+1, v 6∈ B satis�es the follow-ing: If v =
⊕

i∈I vi, (i.e., I ⊆ [n] de�nes the unique representation of vw.r.t. B), then
(

w ⊕
⊕

i∈I

xi

)(

w ⊕
⊕

i∈I

yi

)

= 0 . (9.3)



9.6 Seurity of Linear (n, k, L)-type Protools and the LULS Problem 125Observe that Eq. (9.3) an be rewritten as a relation TB(I, w) in thevariables ti and ti,j in the following way. If w = 0 then Eq. (9.3) isequivalent to ⊕i∈I xiyi ⊕
⊕

i<j∈I ti,j = 0. Together with Eq. (9.2) thisimplies ⊕i∈I1∩I(ti ⊕ 1) ⊕
⊕

i<j∈I ti,j = 0 for w = 0. Consequently, for
w = 0 we de�ne TB(I, w) as

⊕

i∈I∩I1

ti ⊕
⊕

i<j∈I

ti,j =

{
0 if |I ∩ I1| is even
1 if |I ∩ I1| is odd .If w = 1 then Eq. (9.3) is equivalent to 1 ⊕

⊕

i∈I ti ⊕
⊕

i∈I∩I1
(ti ⊕ 1) ⊕

⊕

i<j∈I ti,j = 0. Hene, for w = 1 we de�ne TB(I, w) as
⊕

i∈I∩I0

ti ⊕
⊕

i<j∈I

ti,j =

{
0 if |I ∩ I1| is odd
1 if |I ∩ I1| is even .Note that a relation similar to Eq. (9.3) was also exhibited by Blass et al. (2008)for designing an algebrai attak against Ff protools.The learning algorithm now proeeds as desribed in Algorithm 14.Algorithm 14 LULS-solve(O)Let initially the system LES of linear equations in the 1

2 (n2 + n) variables ti(i ∈ [n]) and ti,j (i < j ∈ [n]) be empty.repeatChoose an observation (v, w) ∈ O, v 6∈ B ∪ {~0}, and ompute the uniquesubset I ⊆ [n] with v =
⊕

i∈I vi.Enlarge the system LES by the linear equation TB(I, w).until the system LES has 1
2 (n2 + n) linearly independent equations.Compute by Gaussian elimination the unique solution θ of the system LES.Compute from θ the unique orret assignments to xi, yi for all i ∈ [n].The orret assignments to the xi and yi variables (the last step of Al-gorithm 14) an be omputed from θ = (θi)i∈[n] (θi,j)i<j∈[n] as follows. For

b = 0, 1 let Kb denote the set Kb = {i ∈ [n], θi = b}. We know that for all
i ∈ K0, xi = yi = wi is satis�ed, and for all i ∈ K1 it holds that yi = xi ⊕ 1.This implies that for all i < j in K1, θi,j satis�es

θi,j = xi(xj ⊕ 1)⊕ xj(xi ⊕ 1) = xi ⊕ xj .This yields a system LES∗ of 1/2|K1|(|K1|−1) linear equations in the variables
xi, i ∈ K1, of rank |K1| − 1. Sine it does not matter whih of the two seretlinear subspaes we denote by V1 and whih by V2, we have the freedom toset xk = 0 for some �xed k ∈ K1. The system LES∗ together with xk = 0yields a system of full rank and allows to ompute the orret assigment to the
xi-variables by Gaussian elimination.Analysis and Experimental ResultsThe reason for the fat that the repeat yle of the algorithm is left after a�nite number of rounds is that the following (2n − (n + 1)) × (n(n + 1)/2)-matrix M(n) over GF(2) has full row rank (whih is not hard to show). The



126 9.7 Disussionrow indies of M(n) are all subsets I ⊆ [n] with |I| ≥ 2, the olumn indies are
[n] ∪ {(i, j), 1 ≤ i < j ≤ n}. We have M(n)I,i = 1 i� i ∈ I and M(n)I,(i,j) = 1i� {i, j} ⊆ [n].We do not give here a theoretial analysis of the expeted number of roundsof the repeat yle. Our experiments show that the algorithm needs only slightlymore than 1

2 (n2 + n) + n observations to ompute the seret funtions f1 and
f2. Partiularly for n = 128, we need approx. 8390 examples and 4 minutes ona 3.4 GHz Intel Pentium IV with 4 GB RAM and Magma V2.15-9.How severe is the restrition that the seret subspaes have the speial form
V = {(v, f(v)), v ∈ GF(2)n} for some surjetive linear mapping f : GF(2)n −→
GF(2)k? Let us onsider the general ase V = {A ◦ v, v ∈ GF(2)n} for an
((n + k) × n) matrix A. V an be written in the speial form i� the �rst nrows of A are linearly independent. For randomly hosen A this is true withprobability p(n) ≈ 0.2887 (Lemma 9.1).We have seen that we an solve the LULS problem with parameters (n, k, 2)by solving k LULSproblems with parameters (n, 1, 2). For the speial LULSproblem with parameters (n, 1, L), L > 2, we an de�ne a similar system LESonsisting of degree-L equations in the variables xl

i, i ∈ [n], l ∈ [L], indued asabove by equations of the form
(

w ⊕
⊕

i∈I

x1
i

)

. . .

(

w ⊕
⊕

i∈I

xL
i

)

= 0 . (9.4)The problem is that for L > 2 the equations have several symmetries suhthat the system an not be solved uniquely. A possible way out is to
• hoose an appropriate parameter s < k whih divides k, let k = s · p,
• write vetors w ∈ GF(2)k as vetors w ∈ GF(2s)p, and
• solve the orresponding p LULS problem with parameters (n, 1, L) over

GF(2s).Hamann (2010) has desribed a learning algorihm based on this idea thatsolves the desribed speial ase of the LULS problem in average running timein the order of knO(L). His analysis supports the onjeture that there is nofaster way to solve an (n, k, L) LULS problem, whih suggests parameter hoieslike (n, L) ∈ {(128, 8), (256, 6)} for pratial appliations.9.7 DisussionWe have seen that the seret key of CKK2 protools an be omputed veryquikly from a su�iently large set of messages sent by the prover. This kindof protool should not be used in pratie.The parameters of (n, k, L)++ protools have to be hosen in suh that solv-ing the LULS problem with parameters (n
2 , k, L) is infeasible. We reommendto use n = 256, k = 64 and L = 5.Another interesting question is to searh for simpler nonlinear onnetionfuntions f for whih a seurity proof an be found. In our proposal, the proverhas to perform three multipliations in the �nite �eld of order 2n/2 in order toompute f(a, b).



9.7 Disussion 127Yet another open question is whether the very symmetrially struturedsystems of degree-L equations arising in our LULS algorithm in Setion 9.6.3an be solved more e�iently by more advaned tehniques like the F4- or F5-algorithm or ube attaks (Dinur and Shamir, 2008, 2009, Faugère, 1999, 2002).If one ould generate onvining evidene that suh algorithms annot beat ourlinearization attak, then (n, k, L)++ protools with the above parameters ouldbe seriously onsidered for pratial use.A problem of (n, k, L) protools is the large key length of L · n · n + k in thease that random mappings F1, . . . , FL are used. It is an important task to lookfor seure and e�ient ways to generate pseudorandom keys. In this ontext,the (still unbroken) CKKσ,L protools look appealing, but we onjeture thatCKKσ,L protools an be e�ently broken. However, promising suggestions forkey length redutions have been made by Gilbert et al. (2008a) and Bringer andChabanne (2008) in the ontext of Trusted-HB (see Setion 8.3.5). Adaptingthese ideas to (n, k, L) protools would mean
• to onsider speial forms of seret subspaes Vl = {(Al ◦ v), v ∈ GF(2)n},where Al denotes a seret (n + k) × n Toeplitz matrix (Gilbert et al.,2008a), and
• to de�ne the Toeplitz matrix Al to be generated by a seret Linear Feed-bak Shift Register (Bringer and Chabanne, 2008).Cheking the feasibility and seurity of these onstrutions should be a mat-ter of further researh.
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Chapter 10ConlusionIn this thesis, we have analyzed two of the most prominent seurity requirementsin eletroni ommuniation, on�dentiality of messages and authentiity ofentities.Conerning on�dentiality of messages, we have de�ned and analyzed hardware-oriented stream iphers and their most important building bloks. We havedesribed three generi attaks on stream iphers, BDD-Attaks, orrelationattaks and algebrai attaks, and analyzed their impat on pratially usedstream iphers as well as newly proposed designs. In the ase of theE0 keystreamgenerator from the Bluetooth standard, we have indiated ways to improve itsseurity with respet to the onsidered attaks by areful loal modi�ations ofthe design.In order to provide entity authentiation for environments in whih only littleomputational resoures are available, e.g. on RFID-tags or mobile telephones,we de�ned and investigated lightweight authentiation protools that are basedon randomly hoosing elements from a seret set of vetor spaes. We relatedthe seurity of these protools to the hardness of a ertain learning problemand provided a �rst omplexity analysis of this problem as a starting point forfurther researh.



130



BibliographyCarlisle Adams. Identi�ation. In Henk Tilborg, editor, Enylopedia of Cryp-tography and Seurity, pages 272�273. Springer US, 2005.Miklós Ajtai, László Babai, Péter Hajnal, János Komlós, Pavel Pudlák, VojtehRödl, Endre Szemerédi, and György Turán. Two lower bounds for branhingprograms. In Pro. of STOC '86, pages 30�38. ACM, 1986.Ross Anderson, Franeso Bergadano, Bruno Crispo, Jong-Hyeon Lee, Char-alampos Manifavas, and Roger Needham. A new family of authentiationprotools. SIGOPS Oper. Syst. Rev., 32:9�20, 1998.Frederik Armkneht. Improving fast algebrai attaks. In Pro. of FSE 2004,volume 3017 of LNCS, pages 65�82. Springer, 2004a.Frederik Armkneht. On the existene of low-degree equations for algebrai at-taks. Tehnial report, Cryptology ePrint Arhive, Report 2004/185, 2004b.Frederik Armkneht. Algebrai Attaks on Certain Stream Ciphers. PhD thesis,University of Mannheim, Mannheim, Germany, 2006.Frederik Armkneht and Gwenolé Ars. Algebrai attaks on stream iphers withGröbner bases. In Gröbner Bases, Coding, and Cryptography, pages 329�348.Springer, 2009.Frederik Armkneht and Matthias Krause. Algebrai attaks on ombiners withmemory. In Pro. of CYPTO 2003, volume 2729 of LNCS, pages 162�176.Springer, 2003.Frederik Armkneht and Matthias Krause. Construting single- and multi-output boolean funtions with maximal algebrai immunity. In Pro. ofICALP 2006, volume 4052 of LNCS, pages 180�191. Springer, 2006.Frederik Armkneht, Joseph Lano, and Bart Preneel. Extending the resynhro-nization attak. In Pro. of SAC 2004, volume 3357 of LNCS, pages 19�38.Springer, 2004.Frederik Armkneht, Claude Carlet, Philippe Gaborit, Simon Künzli, WilliMeier, and Olivier Ruatta. E�ient omputation of algebrai immunity foralgebrai and fast algebrai attaks. In Pro. of EUROCRYPT 2006, volume4004 of LNCS, pages 147�164. Springer, 2006.



132 BIBLIOGRAPHYFrançois Arnault and Thierry P. Berger. Design and properties of a new pseudo-random generator based on a �ltered FCSR automaton. IEEE Trans. Comp.,54(11):1374�1383, 2005a.François Arnault, Thierry P. Berger, and Abdelkader Neer. Feedbak witharry shift register synthesis with the eulidean algorithm. IEEE Trans. In-form. Theory, 50(5):910�917, 2004.François Arnault, Thierry P. Berger, and Cédri Lauradoux. Update on F-FCSR stream ipher. eSTREAM, ECRYPT Stream Cipher Projet, Report2006/025, 2006. http://www.erypt.eu.org/stream.François Arnault, Thierry P. Berger, and Marine Minier. Some results on FCSRautomata with appliations to the seurity of FCSR-based pseudorandomgenerators. IEEE Trans. Inform. Theory, 54(2):836�840, 2008.François Arnault and Thierry P. Berger. F-FCSR: Design of a new lass ofstream iphers. In Pro. of FSE 2004, volume 3557 of LNCS, pages 83�97.Springer, 2005b.François Arnault, Thierry P. Berger, Cédri Lauradoux, and Marine Minier. X-FCSR � a new software oriented stream ipher based upon FCSRs. In Pro.of INDOCRYPT 2007, volume 4859 of LNCS, pages 341�350. Springer, 2007.Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube testersand key reovery attaks on redued-round MD6 and Trivium. In Pro. ofFSE 2008, volume 5665 of LNCS, pages 1�22. Springer, 2009.Steve Babbage, Christophe de Cannière, Anne Canteaut, Calos Cid,Henri Gilbert, Thomas Johansson, Matthew Parker, Bart Preneel, Vin-ent Rijmen, and Matthew J.B. Robshaw. The eSTREAM port-folio (rev. 1). eSTREAM, ECRYPT Stream Cipher Projet, 2008.http://www.erypt.eu.org/stream.Alex Biryukov and Adi Shamir. Cryptanalyti time/memory/data tradeo�s forstream iphers. In Pro. of ASIACRYPT 2000, volume 1976 of LNCS, pages1�13. Springer, 2000.Alex Biryukov, Adi Shamir, and David Wagner. Real time ryptanalysis of A5/1on a PC. In Pro. of FSE 2000, volume 1978 of LNCS, pages 1�13. Springer,2000.John Blak, Phillip Rogaway, and Thomas Shrimpton. Blak-box analysis ofthe blok-ipher-based hash-funtion onstrutions from PGV. In Pro ofCRYPTO 2002, volume 2442 of LNCS, pages 103�118. Springer, 2002.Erik-Oliver Blass, Anil Kurmus, Re�k Molva, Guevara Noubir, and AbdullatifShikfa. The Ff -family of protools for RFID-privay and authentiation.http://eprint.iar.org/2008/476, 2008.Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, theparity problem, and the statistial query model. J. ACM, 50(4):506�519,2003.

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://eprint.iacr.org/2008/476


BIBLIOGRAPHY 133Lenore Blum, Manuel Blum, and Mihael Shub. A simple unpreditable pseudo-random number generator. SIAM J. Comput., 15(1):364�383, 1986.Andrey Bogdanov, Lars Knudsen, Gregor Leander, Christof Paar, AxelPoshmann, Matthew J.B. Robshaw, Yannik Seurin, and Charlotte Vikkel-soe. PRESENT: An ultra-lightweight blok ipher. In Pro. of CHES 2007,volume 4727 of LNCS, pages 450�466. Springer, 2007.Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebrasystem. i. the user language. J. Symboli Comput., 24(3-4):235�265, 1997.An Braeken and Joseph Lano. On the (im)possibiliy of pratial and seurenonlinear �lters and ombiners. In Pro. of SAC 2005, volume 3897 of LNCS,pages 159�174. Springer, 2005.Jörg Brandeis. Implementierung eines algebraishen Angri�s auf den E0-Generator und verwandte Chi�ren. Master's thesis, University of Mannheim,Mannheim, Germany, 2004. (in german).Mar Brieno, Ian Goldberg, and David Wagner. A pedagogial implementationof A5/1, May 1999. http://jya.om/a51-pi.htm.Julien Bringer and Hervé Chabanne. Trusted-HB: A low ost version of HB+seure against a man-in-the-middle attak. IEEE Trans. Inform. Theor., 54:4339�4342, 2008.Julien Bringer, Hervé Chabanne, and Emmanuelle Dottax. HB
++: A lightweightauthentiation protool seure against some attaks. In Pro. of SePerU,pages 28�33. IEEE Computer Soiety Press, 2006.Randal E. Bryant. Graph-based algorithms for Boolean funtion manipulation.IEEE Trans. Comp., 35(8):677�691, 1986.Claude Carlet. A method of onstrution of balaned funtions with optimumalgebrai immunity. In Pro. of International Workshop on Coding and Cryp-tology, Coding and Cryptology, pages 25�43. World Sienti�, 2008.Jaek Ciho«, Marek Klonowski, and Mirosªaw Kutyª owski. Privay protetionfor RFID with hidden subset identi�ers. In Pro. of Pervasive 2008, volume5013 of LNCS, pages 298�314. Springer, 2008.Don Coppersmith, Hugo Krawzyk, and Yishay Mansour. The shrinking gener-ator. In Pro. of CRYPTO 1993, volume 773 of LNCS, pages 22�39. Springer,1994.Niolas Courtois. Fast algebrai attaks on stream iphers with linear feedbak.In Pro. of CRYPTO 2003, volume 2729 of LNCS, pages 177�194. Springer,2003.Niolas Courtois and Willi Meier. Algebrai attaks on stream iphers withlinear feedbak. In Pro. of EUROCRYPT 2003, volume 2656 of LNCS,pages 345�359. Springer, 2003.

http://jya.com/a51-pi.htm


134 BIBLIOGRAPHYNiolas Courtois, Alexander Klimov, Jaques Patarin, and Adi Shamir. E�ientalgoprithms for solving overde�ned systems of multivariate polynomial equa-tions. In Pro. of EUROCRYPT 2000, volume 1807 of LNCS, pages 392�407.Springer, 2000.Raymond Couture and Pierre L'Euyer. On the lattie struture of ertain linearongruential sequenes related to AWC/SWB generators. Math. Comput., 62(206):799�808, 1994.Deepak Kumar Dalai, Kishan Chand Gupta, and Subhamoy Maitra. Crypto-graphially signi�ant boolean funtions: Constrution and analysis in termsof algebrai immunity. In Pro. of FSE 2005, volume 3557 of LNCS, pages98�111. Springer, 2005.Ivan Damgård. A design priniple for hash funtions. In Pro of CRYPTO '89,volume 435 of LNCS, pages 416�427. Springer, 1990.Donald Davies and Wyn L. Prie. Digital signatures, an update. In Pro. 5thInternational Conferene on Computer Communiation, pages 845�849, 1984.Christophe de Cannière and Bart Preneel. Trivium spei�a-tions. eSTREAM, ECRYPT Stream Cipher Projet, 2005.http://www.erypt.eu.org/stream.Christophe De Cannière, Orr Dunkelman, and Miroslav Kne�zevi¢. KATAN andKTANTAN � a family of small and e�ient hardware-oriented blok iphers.In Pro. of CHES 2009, volume 5747 of LNCS, pages 272�288. Springer, 2009.Blandine Debraize and Louis Goubin. Guess-and-determine algebrai attak onthe self-shrinking generator. In Pro. of FSE 2008, volume 5086 of LNCS,pages 235�252. Springer, 2008.Frédéri Didier and Jean-Pierre Tillih. Computing the algebrai immunitye�iently. In Pro. of FSE 2006, volume 4047 of LNCS, pages 359�374.Springer, 2006.Tim Dierks and Eri Resorla. The transport layer seurity (TLS) protoolversion 1.2. RFC 5246, 2008. http://tools.ietf.org/html/rf5246.Itai Dinur and Adi Shamir. Cube attaks on tweakable blak boxpolynomials. Cryptology ePrint Arhive, Report 2008/385, 2008.http://eprint.iar.org.Itai Dinur and Adi Shamir. Cube attaks on tweakable blak box polynomials. InPro. of EUROCRYPT 2009, volume 5479 of LNCS, pages 278�299. Springer,2009.Danny Dolev and Andrew Yao. On the seurity of publi key protools. IEEETrans. Inform. Theory, 29:198�208, 1983.Dang Nguyen Du and Kwangjo Kim. Seuring HB
+ againstGRS man-in-the-middle attak. In Pro. of SCIS 2007, 2007.http://koasas.kaist.a.kr/bitstream/10203/23125/1/SCIS2007_Du.pdf.

http://www.ecrypt.eu.org/stream
http://tools.ietf.org/html/rfc5246
http://eprint.iacr.org
http://koasas.kaist.ac.kr/bitstream/10203/23125/1/SCIS2007_Duc.pdf


BIBLIOGRAPHY 135Orr Dunkelman, Nathan Keller, and Adi Shamir. A pratial-time related-keyattak on the kasumi ryptosystem used in GSM and 3G telephony. In Pro.of CRYPTO 2010, volume 6223 of LNCS, pages 393�410. Springer, 2010.William F. Ehrsam, Carl H. W. Meyer, John L. Smith, and Walter L. Tuhman.Message veri�ation and transmission error detetion by blok haining. USPatent 4074066, 1976.Tobias Eibah. Generi Attaks on Stream Ciphers. PhD thesis, UniversitätUlm, Ulm, Germany, 2008.Patrik Ekdahl. On LFSR Based Stream Ciphers (Analysis and Design). PhDthesis, Lund University, Sweden, 2003.Patrik Ekdahl and Thomas Johansson. Another attak on A5/1. In Pro. ofInternational Symposium on Information Theory, page 160. IEEE, 2001.eStream. eSTREAM, ECRYPT stream ipher projet, 2008.http://www.erypt.eu.org/stream.eSTREAM Disussion Forum. A reformulation of Trivium. eS-TREAM, ECRYPT Stream Cipher Projet, Disussion Forum, 2005.http://www.erypt.eu.org/stream/phorum/read.php?1,448.Jean-Charles Faugère. A new e�ient algorithm for omputing Gröbner bases(F4). Journal of pure and applied algebra, 139(1-3):61�68, 1999.Jean-Charles Faugère. A new e�ient algorithm for omputing Gröbner basiswithout redution to zero (F5). In Pro. of ISSAC 2002, pages 75�83. ACMPress, 2002.Jean-Charles Faugère and Gwenole Ars. An algebrai ryptanal-ysis of nonlinear �lter generators using Gröbner bases, 2003.http://www.inria.fr/rrrt/rr-4739.html.Simon Fisher, Willi Meier, and Dirk Stegemann. Equivalent representations ofthe F-FCSR keystream generator. In Workshop Reord of The State of theArt of Stream Ciphers (SASC 2008), 2008.Ewan Fleishmann, Christian Forler, and Mihael Gorski. Classi�ation ofthe SHA-3 andidates. Cryptology ePrint Arhive, Report 2008/511, 2008.http://eprint.iar.org/.Sott R. Fluhrer and Stefan Luks. Analysis of the E0 enryption system. InPro. of SAC 2001, volume 2259 of LNCS, pages 38�48. Springer, 2001.Mar Fossorier, Miodrag Mihaljevi¢, Hideki Imai, Yang Cui, and Kanta Mat-suura. An algorithm for solving the LPN problem and its appliation toseurity evaluation of the HB protools for RFID authentiation. In Pro. ofINDOCRYPT 2006, volume 4329 of LNCS, pages 48�62. Springer, 2006.Dimitry Frumkin and Adi Shamir. Untrusted-HB: Seurity vulnerabili-ties of Trusted-HB. Cryptology ePrint Arhive, Report 2009/044, 2009.http://eprint.iar.org.

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream/phorum/read.php?1,448
http://www.inria.fr/rrrt/rr-4739.html
http://eprint.iacr.org/
http://eprint.iacr.org


136 BIBLIOGRAPHYHeni Gilbert, Matthew J.B. Robshaw, and Yannik Seurin. HB#: Inreasingthe seurity and e�ieny of HB+. In Pro. of EUROCRYPT 2008, volume4965 of LNCS, pages 361�378. Springer, 2008a.Henri Gilbert, Matthew J.B. Robshaw, and Hervé Sibert. Ative attak againstHB+: A provable seure lightweight authentiation protool. Eletroni Let-ters, 41:1169�1170, 2005.Henri Gilbert, Matthew Robshaw, and Yannik Seurin. Good variants of HB+are hard to �nd. In Pro. of Finanial Cryptography and Data Seurity,volume 5143 of LNCS, pages 156�170. Springer, 2008b.Zbigniew Goªebi�wski, Krzysztof Majher, and Filip Zagórski. Attaks on CKKfamily of RFID authentiation protools. In Pro. Adho-now 2008, volume5198 of LNCS, pages 241�250. Springer, 2008.Jovan Dj. Goli¢. Correlation via linear sequential iruit approximation of om-biners with memory. In Pro. of EUROCRYPT 1993, volume 658 of LNCS,pages 113�123. Springer, 1993.Jovan Dj. Goli¢. Cryptanalysis of alleged A5 stream ipher. In Pro. of EURO-CRYPT 1997, volume 1233 of LNCS, pages 239�255. Springer, 1997.Jovan Dj. Goli¢. Correlation properties of general binary ombiners with mem-ory. Journal of Cryptology, 9(2):111�126, 1996.Jovan Dj. Goli¢, Vittorio Bagini, and Guglielmo Morgari. Linear ryptanalysisof Bluetooth stream ipher. In Pro. of EUROCRYPT 2002, volume 2332 ofLNCS, pages 238�255. Springer, 2002.Solomon W. Golomb. Shift Register Sequenes. Aegean Park Press, 1981.Mar Goresky and Andrew Klapper. Fibonai and Galois representations offeedbak-with-arry shift registers. IEEE Trans. Inform. Theory, 48(11):2826�2836, 2002.Mar Goresky and Andrew Klapper. Periodiity and distribution properties ofombined FCSR sequenes. In Pro. of SETA 2006, volume 4086 of LNCS,pages 334�341. Springer, 2006.Mark Goresky and Andrew Klapper. Arithmeti rossorrelations of feedbakwith arry shift registers. IEEE Trans. Inform. Theory, 43:1342�1345, 1997.Jian Guo, Thomas Peyrin, and Axel Poshmann. The PHOTON family oflightweight hash funtions. In Pro. of CRYPTO 2011, volume 6841 of LNCS,pages 222�239. Springer, 2011.Matthias Hamann. On the omplexity of a learning problem indued bya lightweight ryptographi onstrution. Master's thesis, University ofMannheim, 2010.Jonathan Hammell, André Weimerskirh, Joao Girao, and Dirk Westho�.Reognition in a low-power environment. Pro. of International Confereneon Distributed Computing Systems, 9:933�938, 2005.



BIBLIOGRAPHY 137Philip Hawkes and Gregory G. Rose. Rewriting variables: the omplexity offast algebrai attaks on stream iphers. In Pro. of CRYPTO 2004, volume3152 of LNCS, pages 390�406. Springer, 2004.Martin Hell. On the Design and Analysis of Stream Ciphers. PhD thesis, LundUniversity, Sweden, 2007.Martin Hell and Thomas Johansson. Breaking the F-FCSR-H stream ipherin real time. In Pro. of ASIACRYPT 2008, volume 5350 of LNCS, pages557�569. Springer, 2008.Martin Hell and Thomas Johansson. Breaking the stream iphers F-FCSR-Hand F-FCSR-16 in real time. Journal of Cryptology, pages 1�19, 2009.Martin Hell and Thomas Johansson. Two new attaks on the self-shrinkinggenerator. IEEE Trans. Inform. Theory, 52(8):3837�3843, 2006.Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. Astream ipher proposal: Grain-128. eSTREAM, ECRYPT Stream CipherProjet, Report 2005/010, 2005. http://www.erypt.eu.org/stream.Miia Hermelin and Kaisa Nyberg. Correlation properties of the Bluetooth om-biner. In Pro. of ICISC 1999, volume 1787 of LNCS, pages 17�29. Springer,1999.Christopher Hooley. On artin's onjeture. J. Reine Angew. Math., 22:209�220,1967.Niholas Hopper and Manuel Blum. Seure human identi�ation protools.In Pro. of ASIACRYPT 2001, volume 2248 of Leture Notes in ComputerSiene, pages 52�66. Springer, 2001.ISO/IEC. ISO/IEC 9797-1: Information tehnology � Seurity tehniques �Message Authentiation Codes (MACs) � Part 1: Mehanisms using a blokipher, 1999.ISO/IEC. ISO/IEC 9798-2: Information Tehnology - Seurity tehniques �Entitiy Authentiation Mehanisms Part 2: Entity Authentiation with sym-metri tehniques, 1993.ISO/IEC. ISO/IEC 13616-2: Finanial servies - International bank aountnumber (IBAN) � Part 2: Role and responsibilities of the Registration Au-thority, 2007.Markus Jakobsson and Susanne Wetzel. Seurity weakness in Bluetooth. InPro. of CT-RSA 2001, volume 2020 of LNCS, pages 176�191. Springer, 2001.Éliane Jaulmes and Frédéri Muller. Cryptanalysis of the F-FCSR stream ipherfamily. In Pro. of SAC 2006, volume 3897 of LNCS, pages 20�35. Springer,2006.Éliane Jaulmes and Frédéri Muller. Cryptanalysis of ECRYPT andidatesF-FCSR-8 and F-FCSR-H. eSTREAM, ECRYPT Stream Cipher Projet,Report 2005/046, 2005. http://www.erypt.eu.org/stream.

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream


138 BIBLIOGRAPHYAri Juels and Stephen A. Weis. Authentiating pervasive devies with humanprotools. In Pro. of CRYPTO 2005, volume 3621 of LNCS, pages 293�308.Springer, 2005.David Kahn. The Codebreakers. Sribner, 1996.Auguste Kerkho�s. La ryptographie militaire. Journal des Sienes Militaires,pages 161�191, 1883.Andrew Klapper. A survey of feedbak with arry shift registers. In Pro. ofSETA 2004, volume 3486 of LNCS, pages 56�71. Springer, 2004.Andrew Klapper and Mar Goresky. Feedbak shift registers, 2-adi span, andombiners with memory. Journal of Cryptology, 10:111�147, 1997.Andrew Klapper and Mark Goresky. 2-adi shift registers. In Pro. of FSE1994, volume 809 of LNCS, pages 174�178. Springer, 1994.Andrew Klapper and Jinzhong Xu. Register synthesis for algebrai feedbakshift registers based on non-primes. Des. Codes Cryptography, 31(3):227�250,2004.Matthias Krause. BDD-based ryptanalysis of keystream generators. In Pro.of EUROCRYPT 2002, volume 2332 of LNCS, pages 222�237. Springer, 2002.Matthias Krause. OBDD-based ryptanalysis of oblivious keystream generators.Theor. Comp. Sys., 40(1):101�121, 2007.Matthias Krause, Christoph Meinel, and Stephan Waak. Separating the eraserturing mahine lasses Le, NLe, co−NLe and Pe. In Mathematial Foun-dations of Computer Siene 1988, volume 324 of LNCS, pages 405�413.Springer, 1988.Hugo Krawzyk. LFSR-based hashing and authentiation. In Pro. of CRYPTO1994, volume 839 of LNCS, pages 129�139. Springer, 1994.Hugo Krawzyk, Mihir Bellare, and Ran Canetti. HMAC:Keyed-hashing for message authentiation. RFC 2104, 1997.http://tools.ietf.org/html/rf2104.Leslie Lamport. Password authentiation with inseure ommuniation. Com-mun. ACM, 24:770�772, November 1981.Yuseop Lee, Kitae Jeong, Jaehul Sung, and Seokhie Hong. Related-key hosenIV attaks on Grain-v1 and Grain-128. In Information Seurity and Privay,volume 5107 of LNCS, pages 321�335. Springer, 2008.Éri Levieil and Pierre-Alain Fouque. An improved LPN algorithm. In Seu-rity and Cryptography for Networks, volume 4116 of LNCS, pages 348�359.Springer, 2006.Yi Lu and Serge Vaudenay. Faster orrelation attak on the Bluetooth keystreamgenerator. In Pro. of CRYPTO 2004, volume 3152 of LNCS, pages 407�425.Springer, 2005.

http://tools.ietf.org/html/rfc2104


BIBLIOGRAPHY 139Yi Lu and Serge Vaudenay. Cryptanalysis of an E0-like ombiner with memory.Journal of Cryptology, 21:430�457, 2008.Yi Lu and Serge Vaudenay. Cryptanalysis of the Bluetooth keystream generatortwo-level E0. In Pro. of ASIACRYPT 2004, volume 3329 of LNCS, pages483�499. Springer, 2004.Yi Lu, Willi Meier, and Serge Vaudenay. The onditional orrelation attak: Apratial attak on Bluetooth enryption. In Pro. of CRYPTO 2005, volume3621 of LNCS, pages 97�117. Springer, 2005.Stefan Luks, Erik Zenner, André Weimerskirh, and Dirk Westho�. Con-rete seurity for entity reognition: The Jane Doe protool. In Pro. ofINDOCRYPT 2008, volume 5365 of LNCS, pages 158�171. Springer, 2008.Yishay Mansour, Noam Nisan, and Prasoon Tiwari. The omputational om-plexity of universal hashing. In Pro. of STOC '90, pages 235�243, New York,NY, USA, 1990. ACM.George Marsaglia and Arif Zaman. A new lass of random number generators.Annals of Appl. Prob., 1(3):462�480, 1992.Alexander Maximov and Alex Biryukov. Two trivial attaks on Triv-ium. eSTREAM, ECRYPT Stream Cipher Projet, Report 2007/006, 2007.http://www.erypt.eu.org/stream.Alexander Maximov, Thomas Johansson, and Steve Babbage. An improvedorrelation attak on A5/1. In Pro. SAC 2005, volume 3357 of LNCS, pages1�18. Springer, 2005.Willi Meier and Othmar Sta�elbah. Nonlinearity riteria for ryptographifuntions. In Pro. of EUROCRYPT 1989, volume 434 of LNCS, pages 549�562. Springer, 1989.Willi Meier and Othmar Sta�elbah. Fast orrelation attaks on stream i-phers. In Pro. of EUROCRYPT 1988, volume 330 of LNCS, pages 301�314.Springer, 1988.Willi Meier and Othmar Sta�elbah. The self-shrinking generator. In Pro. ofEUROCRYPT 1994, volume 950 of LNCS, pages 205�214. Springer, 1994.Willi Meier, Enes Pasali, and Claude Carlet. Algebrai attaks and deompo-sition of boolean funtions. In Pro. of EUROCRYPT 2004, volume 3027 ofLNCS, pages 474�491. Springer, 2004.Christoph Meinel. Modi�ed Branhing Programs and Their ComputationalPower, volume 370 of LNCS. Springer, 1989.Alfred J. Menezes, Paul C. van Oorshot, and Sott A. Vanstone. AppliedCryptography. CRC Press, 2001.Ralph C. Merkle. Serey, Authentiation, and Publi Key Systems. PhD thesis,Stanford University, 1979.

http://www.ecrypt.eu.org/stream


140 BIBLIOGRAPHYRalph C. Merkle. A erti�ed digital signature. In Pro. of CRYPTO '89, volume435 of LNCS, pages 218�238. Springer, 1990.Miodrag J. Mihaljevi¢. A faster ryptanalysis of the self-shrinking generator. InPro. of ACISP 1996, volume 1172 of LNCS, pages 192�189. Springer, 1996.Amir Moradi, Axel Poshmann, San Ling, Christof Paar, and Huaxiong Wang.Pushing the limits: A very ompat and a threshold implementation of AES.In Pro. of EUROCRYPT 2011, volume 6632 of LNCS, pages 69�88. Springer,2011.Jorge Munilla and Alberto Peinado. HB-MP: A further step in the HB-familyof lightweight authentiation protools. Computer Networks, (51):2262�2267,2007.National Institute of Standards and TehnologyNIST. Seure Hash Standard (SHS), Otober 2008.http://sr.nist.gov/publiations/fips/fips180-3/.National Institute of Standards and Tehnology NIST. Cryp-tographi Hash Algorithm Competition, Deember 2010.http://www.nist.gov/hash-ompetition/.Karsten Nohl and Sasha Kriÿler. Geheimnislos - Vershlüsselung von Handy-Gesprähen knaken. i'X, 5:97�99, 2010. (in german).Jim Noras. Fast pseudorandom sequene generators: Linear feedbak shift reg-isters, ellular automata, and arry feedbak shift registers. Tehnial Re-port 94, Univ. Bradford Ele. Eng. Dept., Bradford, U.K., 1997.Khaled Oua�, Raphael Overbek, and Serge Vaudenay. On the seurity of HB#against a man-in-the-middle attak. In Pro. of ASIACRYPT 2008, volume5350 of LNCS, pages 108�124. Springer, 2008.Srinivasa R. Pappu. Physial One-Way Funtions. PhD thesis, MassahusettsInstitute of Tehnology, 2001.Bart Preneel. CBC-MAC and variants. In Henk Tilborg, editor, Enylopediaof Cryptography and Seurity, pages 63�66. Springer US, 2005.Bart Preneel. The state of hash funtions and the NIST SHA-3 ompetition.In Information Seurity and Cryptology, volume 5487 of LNCS, pages 1�11.Springer, 2009.Bart Preneel. Analysis and Design of Cryptographi Hash Funtions. PhDthesis, K.U. Leuven, 1993.Bart Preneel, René Govaerts, and Joos Vandewalle. Hash funtions based onblok iphers: a syntheti approah. In Pro. of CRYPTO '93, volume 773of LNCS, pages 368�378. Springer, 1994.Ronald Rivest. The MD5 message-digest algorithm. RFC 1321, 1992.http://tools.ietf.org/html/rf1321.Rainer A. Rueppel. Design and Analysis of Stream Ciphers. Springer, 1986.

http://csrc.nist.gov/publications/fips/fips180-3/
http://www.nist.gov/hash-competition/
http://tools.ietf.org/html/rfc1321


BIBLIOGRAPHY 141Rainer A. Rueppel. Stream iphers. In Contemporary Cryptology � The Sieneof Information Integrity, pages 65�134. IEEE Press, 1992.Andrew Rukhin, Juan Soto, James Nehvatal, Miles Smid, Elaine Barker, Ste-fan Leigh, Mark Levenson, Mark Vangel, David Banks, Alan Hekert, JamesDray, and San Vo. A Statistial Test Suite for the Validation of Random Num-ber Generators and Pseudo Random Number Generators for CryptographiAppliations. National Institute of Standards and Tehnology (NIST), April2010. http://sr.nist.gov/rng/.Markku Saarinen. Re: Bluetooth and E0. Posted at si.rypt.researh,02/09/00, 2000.Mahmoud Salmasizadeh, Jovan Dj. Goli¢, Ed Dawson, and Leone Simpson. Asystemati proedure for applying fast orrelation attaks to ombiners withmemory. In Pro. of SAC 1997, 1997.Felix Shleer. Einsatz von OBDDs zur Kryptanalyse von Flusshi�ren. Master'sthesis, University of Mannheim, Mannheim, Germany, 2002. (in german).Yaniv Shaked and Avishai Wool. Cryptanalysis of the Bluetooth E0 ipher usingOBDDs. Tehnial report, Cryptology ePrint Arhive, Report 2006/072, 2006.http://eprint.iar.org/.Claude Shannon. Communiation theory of serey systems. Bell Systems Teh-nial Journal, 28(4):656�715, 1949.Thomas Siegenthaler. Correlation-immunity of nonlinear ombining funtionsfor ryptographi appliations. IEEE Trans. Inform. Theory, IT-30(5):776�780, 1984.Thomas Siegenthaler. Derypting a lass of stream iphers using iphertextonly. IEEE Trans. Inform. Theory, C-34(1):81�85, 1985.Fabio Somenzi. CUDD: CU deision diagram pakage. University of Colorado,Boulder, CO, USA, Marh 2001. http://vlsi.olorado.edu/∼fabio/.Paul Stankovski, Martin Hell, and Thomas Johansson. An e�ient state reov-ery attak on X-FCSR-256. In Pro. of FSE 2009, volume 5665 of LNCS,pages 23�37. Springer, 2009.Dirk Stegemann. BDD-basierte Kryptanalyse des A5/1 Shlüsselstromgenera-tors. Master's thesis, University of Mannheim, 2004. (in german).The Bluetooth SIG. Spei�ation of the Bluetooth System, February 2001.Tian Tian and Wen-Feng Qi. Linearity properties of binary FCSR sequenes.Designs, Codes and Cryptography, 52:249�262, 2009.Serge Vaudenay. A Classial Introdution to Cryptography. Springer US, 2006.Ingo Wegener. Branhing Programs and Binary Deision Diagrams: Theory andAppliations. SIAM Monographs on Disrete Mathematis and Appliations,2000.

http://csrc.nist.gov/rng/
http://eprint.iacr.org/


142 BIBLIOGRAPHYClint R. Whaley and Antoine Petitet. Minimizing development and maintenaneosts in supporting persistently optimized BLAS. Software: Pratie andExperiene, 35(2):101�121, 2005.Guo-Zhen Xiao and James L. Massey. A spetral haraterization of orrelation-immune ombining funtions. IEEE Trans. Inform. Theory, IT-34(3):569�571, 1988.Hong Xu and Wen-Feng Qi. Autoorrelations of maximum-length FCSR se-quenes. SIAM J. Disrete Math., 20(3):568�577, 2006.Hong Xu, Wen-Feng Qi, and Yong-Hui Zheng. Autoorrelations of l-sequeneswith prime onnetion integer. Journal of Cryptography and Communiations,1(2):207�223, September 2009.Erik Zenner. On Cryptogaphi Properties of LFSR-based Pseudorandom Gen-erators. PhD thesis, University of Mannheim, Mannheim, Germany, 2004.Erik Zenner, Matthias Krause, and Stefan Luks. Improved ryptanalysis ofthe self-shrinking generator. In Pro. of ACISP 2001, volume 2119 of LNCS,pages 21�35. Springer, 2001.Bin Zhang and Dengguo Feng. New guess-and-determine attak on the self-shrinking generator. In Pro. of ASIACRYPT 2006, volume 4284 of LNCS,pages 54�68. Springer, 2006.Robert Zuherato. Entity authentiation. In Henk Tilborg, editor, Enylope-dia of Cryptography and Seurity, pages 203�203. Springer US, 2005.



List of Tables
5.1 Information rates α for the restrited A5/1 . . . . . . . . . . . . 765.2 Simulation parameters of the BDD-based attak . . . . . . . . . 775.3 Performane of the BDD-based attak in pratie . . . . . . . . . 786.1 The resoure onsumption of the fastest orrelation attak on E0as presented by Lu and Vaudenay (2004) . . . . . . . . . . . . . . 906.2 The resoure onsumption of an algebrai attak on E0 with keysize n and an equation of degree d . . . . . . . . . . . . . . . . . 916.3 Maximum absolute biases and performane of orrelation attaksfor βa-generators . . . . . . . . . . . . . . . . . . . . . . . . . . . 926.4 mindeg and number of Z-funtions for the andidate generators . 926.5 De�nitions of the andidate generators . . . . . . . . . . . . . . . 926.6 Performane of algebrai and orrelation attaks on the andidategenerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939.1 Performane of the passive attak on CKK2 . . . . . . . . . . . . 122



144 LIST OF TABLES



List of Figures
2.1 The Shannon ommuniation model . . . . . . . . . . . . . . . . 82.2 Stream ipher ommuniation senario . . . . . . . . . . . . . . . 112.3 Common onstrution of the keystream generator . . . . . . . . . 113.1 Feedbak shift register (FSR) of length n . . . . . . . . . . . . . 163.2 LFSR in Fibonai arhiteture . . . . . . . . . . . . . . . . . . . 173.3 LFSR in Galois arhiteture . . . . . . . . . . . . . . . . . . . . . 173.4 Mapping between periodi Galois and Fibonai LFSR states . . 203.5 FCSR in Fibonai arhiteture . . . . . . . . . . . . . . . . . . . 223.6 FCSR in Galois arhiteture . . . . . . . . . . . . . . . . . . . . . 233.7 Mapping between periodi Galois and Fibonai FCSR states . . 274.1 FSR-based ombination generator . . . . . . . . . . . . . . . . . 344.2 FSR-based �lter generator . . . . . . . . . . . . . . . . . . . . . . 344.3 Equivalent representations of ombination and �lter generators . 354.4 The E0 keystream generator . . . . . . . . . . . . . . . . . . . . . 374.5 The A5/1 keystream generator . . . . . . . . . . . . . . . . . . . 394.6 Derivation of the keystream from the internal bitstream . . . . . 445.1 An orale graph G0 over {z0, . . . , z3} and a G0-FBDD . . . . . . 495.2 A π-OBDD over {z0, . . . , z3} with π(0) = 0, π(1) = 2, π(2) = 1and π(3) = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516.1 Comparison of the andidate generators to E0 . . . . . . . . . . . 937.1 Message authentiation with message authentiation odes . . . . 1018.1 Basi round of the HB protool . . . . . . . . . . . . . . . . . . . 1078.2 Basi round of the HB

+ protool . . . . . . . . . . . . . . . . . . 1098.3 Initialization of the HB
++ protool . . . . . . . . . . . . . . . . . 1108.4 Basi round of the HB

++ protool . . . . . . . . . . . . . . . . . 1118.5 Basi round of the HB
∗ protool . . . . . . . . . . . . . . . . . . 1128.6 Basi round of the HB-MP protool . . . . . . . . . . . . . . . . . 1138.7 One round of the HB

# protool . . . . . . . . . . . . . . . . . . . 1149.1 Basi round of the (n, k, L) protool . . . . . . . . . . . . . . . . 1189.2 Basi round of the (n, k, L)+ protool . . . . . . . . . . . . . . . 1199.3 Basi round of the (n, k, L)++ protool . . . . . . . . . . . . . . . 120



146 LIST OF FIGURES



List of Algorithms1 F-FCSR-H-KeyIVSetup(K, IV) . . . . . . . . . . . . . . . . . . . 412 F-FCSR-H-KeystreamGeneration . . . . . . . . . . . . . . . . . . 413 F-FCSR-16-KeyIVSetup(K, IV) . . . . . . . . . . . . . . . . . . . 424 F-FCSR-16-KeystreamGeneration . . . . . . . . . . . . . . . . . . 425 ReoverInitialState . . . . . . . . . . . . . . . . . . . . . . . . . . 536 FibonaiFCSR-Sm(πm, w) . . . . . . . . . . . . . . . . . . . . . 587 SelfShrinkingGenerator-Qm(w, z) . . . . . . . . . . . . . . . . . . 608 E0-Qm(q0, w, z) . . . . . . . . . . . . . . . . . . . . . . . . . . . 619 read-one-A5/1(w) . . . . . . . . . . . . . . . . . . . . . . . . . . 6210 A5/1-Qm(w, z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6511 ReoverInitialState-DCS . . . . . . . . . . . . . . . . . . . . . . . 7012 (n, k, L)+_MITM-Attak(n, k, L) . . . . . . . . . . . . . . . . . . 11913 CKK2_Attak(n, k) . . . . . . . . . . . . . . . . . . . . . . . . . . 12214 LULS-solve(O) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



IndexZahlen2-adi numbers . . . . . . . . . . . . . . . . . . . . 232-adi span . . . . . . . . . . . . . . . . . . . . . . . . 30AA5/1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38Advaned Enryption Standard . . . . 10AES . . . . . . . .see Advaned EnryptionStandardautoorrelation . . . . . . . . . . . . . . . . . . . . 12BBDD. . . .see Binary Deision DiagramBinary Deision Diagram . . . . . . . . . 48blok ipher . . . . . . . . . . . . . . . . . . . . . . . . 9CCBC . . . . . . see Cipher Blok ChainingCipher Blok Chaining. . . . . . . . . . . . .10CKK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121onnetion polynomial . . . . . . . . . . . . . 18DData Enryption Standard . . . . . . . . . 10DES. . .see Data Enryption Standarddigital signature . . . . . . . . . . . . . . . . . . 104EE0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36ECB . . . . . . . . see Eletroni CodebookEletroni Codebook. . . . . . . . . . . . . . .10FF-FCSR . . . . . . . . . . . . . . . . . . . . . . . . . . . 40FBDD . . . . . . see Free Binary DeisionDiagramFeedbak Shift Register . . . . . . . . . . . . 16Feedbak with arry shift register . . 21Fibonai arhiteture . . . . . . . . . 16, 22Free Binary Deision Diagram . . . . . 49GGalois arhiteture . . . . . . . . . . . . . 17, 22

Grain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40HHamming weight . . . . . . . . . . . . . . . . . . 15hash hain. . . . . . . . . . . . . . . . . . . . . . . .105hash funtion . . . . . . . . . . . . . . . . . . . . . 102HB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107HB∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111HB+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108HB++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110HB# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113HBMP . . . . . . . . . . . . . . . . . . . . . . . . . . . 112HMAC . . . . . . . . . . . . . . . . . . . . . . . . . . . 103Llinear omplexity . . . . . . . . . . . . . . . . . . 21Linear Feedbak Shift Register (LFSR)16MMAC see message authentiation odeMD5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103message authentiation ode . . . . . . 101OOBDD . . see Ordered Binary DeisionDiagramone-time pad . . . . . . . . . . . . . . . . . . . . . . . 9orale graph . . . . . . . . . . . . . . . . . . . . . . . 48Ordered Binary Deision Diagram . 50Sself-shrinking generator . . . . . . . . . . . . 36SHA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103SSG . . . . . . see self-shrinking generatorTToeplitz matrix . . . . . . . . . . . . . . . . . . . 114Trivium . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Trusted-HB . . . . . . . . . . . . . . . . . . . . . . 114Wwt(x) . . . . . . . . . . . see Hamming weight


	Introduction
	What this Thesis is about
	Publications

	I Confidential Communication with Stream Ciphers
	Algorithms for Confidential Communication
	Security Definitions and Attacker Models
	Block Ciphers
	Dedicated Stream Ciphers
	Asymmetric Ciphers

	Stream Cipher Building Blocks
	Boolean Functions
	Feedback Shift Registers
	Linear Feedback Shift Registers (LFSRs)
	Feedback Shift Registers With Carry (FCSRs)


	Stream Ciphers based on Feedback Shift Registers
	Generic Constructions
	Combination Generators and Filter Generators
	Additional Memory
	Irregular Clocking

	Example Ciphers
	Self-Shrinking Generator
	E0 Generator
	A5/1 Generator
	Trivium
	Grain-128
	Filtered FCSRs

	Abstraction: Internal Bitstream Generators

	The BDD-Attack
	Introduction and Overview
	Representing Boolean Functions with Binary Decision Diagrams
	Free Binary Decision Diagrams (FBDDs)
	Ordered Binary Decision Diagrams (OBDDs)

	BDD-based Initial State Recovery
	Generic BDD Constructions
	Keystream Consistency Check Qm
	FSR Consistency Check Rm

	Applications
	Self-Shrinking Generator
	Bluetooth Keystream Generator E0
	GSM Keystream Generator A5/1
	Trivium
	Grain-128
	The F-FCSR Stream Cipher Family

	Divide-and-Conquer Strategies (DCS)
	DCS for regularly clocked (k,l)-Combiners
	DCS for the A5/1 Generator

	Simulations and Experimental Results
	Discussion of the BDD-Attack

	Other Generic Attacks on Stream Ciphers
	Correlation Attacks
	The Basic Idea
	Analysis of the Special Case C(xt,qt)=(xt)(qt)

	Algebraic Attacks
	The Basic Idea
	Analysis of a restricted Scenario

	Countermeasures and Design Principles
	Increasing the Resistance against Correlation Attacks
	Increasing the Resistance against Algebraic Attacks

	Application to E0


	II Authenticity with Linear Protocols
	Algorithms for Entity and Message Authentication
	Security Definitions and Attacker Models
	Entity Authentication
	Entity Recognition
	Message Authentication
	Message Recognition
	Attacker Models

	Message Authentication Codes
	Message Authentication Codes based on Block Ciphers
	Message Authentication Codes based on Cryptographic Hash Functions

	Message Authentication with Digital Signatures
	Challenge-Response based Entity Authentication
	Authentication Schemes based on Hash Chains
	Authentication based on the Hardness of Learning Problems

	The HB Family of Authentication Protocols
	The HB Protocol
	The HB+ Protocol
	Variants of the HB+ Protocol
	The HB++ Protocol
	The HB* Protocol
	The HB-MP Protocols
	The HB# Protocol
	The Trusted-HB Protocol


	The (n,k,L) Family of Authentication Protocols
	Introduction and Overview
	The Linear (n,k,L) Protocol
	The Linear (n,k,L)+ Protocol
	The Linear (n,k,L)++ Protocol
	Special Cases of Linear (n,k,L) Protocols
	Security of Linear (n,k,L)-type Protocols and the LULS Problem
	The Search-for-a-Basis Heuristic
	The LULS Problem
	On Solving the LULS Problem

	Discussion

	Conclusion

	Bibliography
	List of Tables
	List of Figures
	List of Algorithms
	Index

