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Abstra
tWe 
onsider in this thesis the se
urity goals 
on�dentiality of messages andauthenti
ity of entities in ele
troni
 
ommuni
ation with spe
ial fo
us on appli-
ations in environments with restri
ted 
omputational power, e.g., RFID-tagsor mobile phones. We introdu
e the 
on
ept of stream 
iphers, des
ribe andanalyze their most important building blo
ks, analyze their se
urity features,and indi
ate ways to improve their resistan
e against 
ertain types of atta
ks.In the 
ontext of entity authenti
ation, we des
ribe spe
ial proto
ols based onrandomly 
hoosing elements from a se
ret set of linear ve
tor spa
es and relatethe se
urity of these proto
ols to the hardness of a 
ertain learning problem.
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ZusammenfassungWir betra
hten in dieser Arbeit die Si
herheitsziele Vertrauli
hkeit von Na
h-ri
hten und Authentizität von Kommunikationspartnern im Umfeld elektro-nis
her Kommunikation mit besonderem S
hwerpunkt auf Anwendungen aufressour
enbes
hränkten Endgeräten wie RFID-Tags oder Mobiltelefonen. Wirbetra
hten insbesondere Strom
hi�ren, bes
hreiben und analysieren ihre wi
h-tigsten Bestandteile, untersu
hen ihre Si
herheitseigens
haften und zeigen Mög-li
hkeiten auf, wie si
h ihre Resistenz gegenüber bestimmten Angri�ste
hnikenverbessern lässt. Im Zusammenhang mit der Authenti�kation von Kommuni-kationspartnern bes
hreiben wir spezielle Authenti�kationsprotokolle, die aufder zufälligen Auswahl von Elementen aus einer geheimen Menge von linea-ren Vektorräumen beruhen, und führen die Si
herheit dieser Protokolle auf dieKomplexität eines bestimmten Lernproblems zurü
k.
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Chapter 1Introdu
tion1.1 What this Thesis is aboutIn this thesis, we 
onsider two important se
urity goals in ele
troni
 
ommuni-
ation: 
on�dentiality of messages and authenti
ity of entities.While many algorithms and systems have been proposed for a variety ofappli
ation s
enarios, we fo
us our attention on methods that are parti
ularlyuseful for devi
es with rather little 
omputational power. This 
hara
terizationis not entirely sharp � for example, it is arguable whether a modern smartphoneis rather a parti
ularly 
omplex mobile phone or a small 
omputer equippedwith a telephone fun
tion � but will serve as a guideline to distinguish RFIDtags and Bluetooth devi
es from personal 
omputers and grids.By 
on�dentiality of messages, we mean that messages whi
h are ex
hangedover a publi
ly observable 
hannel should only be meaningful to legitimate 
om-muni
ation partners. This is probably the most prominent servi
e that 
ryp-tographi
 systems are expe
ted to provide, 
ommonly by en
rypting (or en
i-phering) messages. In the �rst part of this thesis, we therefore introdu
e the
on
epts of blo
k 
iphers and stream 
iphers and devote our main attention tohardware-oriented stream 
ipher 
onstru
tions. We des
ribe and analyze theirmost important building blo
ks, 
onsider generi
 atta
k strategies � parti
ularlythe BDD-based atta
k 
orrelation atta
ks and algebrai
 atta
ks � and indi
atedesign prin
iples that provide a 
ertain resistan
e against these atta
ks. Further-more, we review the design and se
urity features of pra
ti
ally used algorithmssu
h as the A5/1 algorithm used in the GSM standard and the E0 
ipher usedin Bluetooth. In the 
ase of E0, we indi
ate possible design improvements inthe light of the presented atta
ks.In human fa
e-to-fa
e 
ommuni
ation, authenti
ation is impli
itly and with-out further ado performed through fa
e (and sometimes additionally voi
e)re
ognition. In ele
troni
 
ommuni
ation, e.g. on the internet, it is often notso easy to verify that a 
ommuni
ation partner is in fa
t who she 
laims tobe. Authenti
ation of entities is therefore another important task of modern
ryptographi
 systems. We address this se
urity goal in the se
ond part of thisthesis by investigating lightweight authenti
ation proto
ols that are based onrandomly 
hoosing elements from a set of L linear subspa
es of GF(2)n+k, re-late their se
urity to the hardness of a 
ertain learning problem and indi
ate



2 1.2 Publi
ationspossible improvements and further resear
h dire
tions.1.2 Publi
ationsThis thesis is based on the following publi
ations.Fully reviewed Publi
ations1. Design Prin
iples for Combiners with Memory, Pro
eedings of the 6th In-ternational Conferen
e on Cryptology in India (INDOCRYPT 2005), vol-ume 3739 of LNCS, pages 104�117, Springer, 2005, with Frederik Armkne
htand Matthias KrauseLower bounds on the 
omplexities of algebrai
 atta
ks and 
orrelationatta
ks, appli
ation to E0 and proposal of a more se
ure E0 variant2. Redu
ing The Spa
e Complexity of BDD-based Atta
ks on Keystream Gen-erators, Pro
eedings of Fast Software En
rpytion, 13th InternationalWork-shop (FSE 2006), volume 4047 of LNCS, pages 163�178, Springer, 2006,with Matthias KrauseDivide-and-
onquer strategies for redu
ing the memory requirements ofBDD-atta
ks, appli
ation to E0, A5/1 and the Self Shrinking Generator3. Extended BDD-based Cryptanalysis of Keystream Generators, Pro
eedingsof the 14th International Workshop on Sele
ted Areas in Cryptography(SAC 2007), volume 4876 of LNCS, pages 17�35, Springer, 2007Extension of the BDD-atta
k to NFSRs and arbitrary 
ompression fun
-tions, appli
ation to Trivium, Grain and F-FCSR4. More on the Se
urity of Linear RFID Authenti
ation Proto
ols, Pro
eed-ings of the 16th International Workshop on Sele
ted Areas in Cryptogra-phy (SAC 2009), volume 5867 of LNCS, pages 182�196, Springer, 2009,with Matthias KrauseGeneralization of the CKK-proto
ol, se
urity analysis in the a
tive atta
ks
enario, de�nition of linear (n, k, L) proto
ols and the LULS problem5. Some Remarks on FCSRs and Impli
ations for FCSR-based Stream Ci-phers, Journal of Mathemati
al Cryptology, volume 3, pages 227�236,2009, with Simon Fis
her and Willi MeierSimpli�ed des
ription of the sequen
es produ
ed by a single 
ell of a GaloisFCSR given that the register's initial state is periodi
, mappings betweenperiodi
 states of the Fibona

i and the Galois representation of an FCSR,expli
it determination of the auto
orrelation of an l-sequen
eWorkshop Re
ords and Te
hni
al Reports1. Equivalent Representations of the F-FCSR Keystream Generator, Work-shop Re
ord of the State of the Art of Stream Ciphers (SASC 2008), withSimon Fis
her and Willi Meier2. Building Stream Ciphers from FCSRs, Workshop Re
ord of the 2nd GI-Kryptowo
henende, 2008
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ations 33. Some Remarks on FCSRs and Impli
ations for FCSR-based Stream Ci-phers, Workshop Re
ord of the Se
ond Workshop on Mathemati
al Cryp-tology (WMC '08), 2008, with Simon Fis
her and Willi Meier4. Algebrai
 Atta
ks against Linear RFID Authenti
ation Proto
ols, DagstuhlSeminar on Symmetri
 Cryptography, Workshop Re
ord, 2009, with Matt-hias KrauseDuring my time as PhD student, I also 
ontributed to a few other publi
ationsthat are not mentioned in this thesis.
• Se
urity Challenges of Lo
ation-aware Mobile Business, Pro
eedings ofthe 2nd IEEE International Workshop on Mobile Commer
e and Servi
es,pages 84�93, IEEE Computer So
iety, with Emin Islam Tatl� and StefanLu
ks
• Dynami
 Anonymity, The 4th World Enformatika Conferen
es, Interna-tional Conferen
e on Information Se
urity (ICIS '05), 2005, with EminIslam Tatl� and Stefan Lu
ks
• Dynami
 Mobile Anonymity with Mixing, Te
hni
al Report, University ofMannheim, 2006, with Emin Islam Tatl� and Stefan Lu
ks
• Workshop Re
ord of the 2nd GI-Kryptowo
henende (editor), 2006, withFrederik Armkne
ht
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Part ICon�dential Communi
ationwith Stream Ciphers





Chapter 2Algorithms for Con�dentialCommuni
ation2.1 Se
urity De�nitions and Atta
ker ModelsOften people want systems to be se
ure without having a pre
ise idea of whatthey mean by se
urity.In a 
ommuni
ation s
enario in whi
h two parties (usually 
alled Ali
e andBob), 
ommuni
ate over an inse
ure 
hannel (e.g., a telephone land line ora TCP/IP 
onne
tion), most people would agree that se
urity means (possi-bly among other things) that an eavesdropper on the 
ommuni
ation 
hannel(wiretapping the telephone line or observing the messages when passing a router)should not be able to understand what Ali
e and Bob are talking about, or moreformally, that the ex
hanged messages should remain 
on�dential.Many people have 
ome a
ross this problem already at some point in their
hildhood and most probably tried to solve it by en
iphering the messages inone way or another, i.e., by transforming the plaintext messages into somemeaningless-looking strings and having the re
eiver reverse the transformationin order to re
over the plaintext.This idea is probably almost as old as mankind, and the �rst do
umentedideas for en
iphering methods date ba
k to an
ient times. Sin
e then, 
iphersystems have been built and used for 
riti
al governmental and military appli-
ations with varying su

ess, thereby in�uen
ing the 
ourse of history at quitea few points (Kahn, 1996).Surprisingly enough, it was not until World War Two that a formal modeland analysis of 
ipher systems was developed in a famous seminal paper byShannon (1949), whi
h is now 
onsidered one of the foundations of modern
ryptography.Sin
e then, we typi
ally assume a 
ommuni
ation model 
onsisting of a reli-able but publi
ly observable 
ommuni
ation 
hannel, a sender who is equippedwith an en
ryption algorithm E, a re
eiver running a de
ryption algorithm D,and a key sour
e that provides en
ryption keys ke and de
ryption keys kd (seeFig. 2.1).A 
ipher system is 
alled symmetri
 if ke = kd and asymmetri
 if ke 6= kd.We usually relate the se
urity of a 
ommuni
ation system to an atta
ker



8 2.1 Se
urity De�nitions and Atta
ker Models
E D

p p
Public Channel

c c

Key Source

Sender Receiver

ke kdFigure 2.1: The Shannon 
ommuni
ation modelthat is de�ned by
• his goal
• his 
omputational power
• the information available to himand 
hara
terize the atta
ker by his su

ess probability and his resour
e 
on-sumption in terms of time, memory and amount of utilized information. Themost 
ommon goal is to obtain the se
ret key (leading to key re
overy atta
ks),but also weaker goals su
h as dedu
ing partial information about the ex
hangedinformation are often 
onsidered.Depending on whether the atta
ker has unlimited or limited 
omputationalpower (i.e., time and memory resour
es at his disposal), we talk about an in-formation theoreti
 or a 
omplexity theoreti
 se
urity setting.Con
erning the amount of available information, we typi
ally distinguish thefollowing 
lasses.
• 
iphertext-only : The atta
ker has only a

ess to the publi
 
hannel.
• known plaintext : The atta
ker additionally knows a number of plaintextsand their en
ryptions under the unknown key.
• 
hosen plaintext : The atta
ker may have a number of plaintexts of his
hoi
e en
rypted under the unknown key and obtain the 
orresponding
iphertexts.
• 
hosen 
iphertext : The atta
ker may have a number of 
iphertexts de-
rypted under the unknown key and obtain the 
orresponding plaintexts.Note that we always assume the atta
ker to be able to eavesdrop on thepubli
 
hannel and, following Ker
kho�s' prin
iple (Ker
kho�s, 1883), to knowthe 
omplete spe
i�
ation of the 
ipher system. The only information about thesystem that he does not have is the se
ret key in use.Performing a se
urity analysis in this setting means to investigate how mu
he�ort it takes the atta
ker to rea
h his goal. Consequently, the more e�ort isrequired, the more se
ure we 
onsider the system. Or put another way, the morepowerful the atta
kers that a system is able to resist (i.e., whom the system isable to prevent from rea
hing their goal), the better.



2.2 Blo
k Ciphers 9One of Shannon's most important observations is the fa
t that the one-timepad (en
rypting by XOR-synthesis of a binary message with an equally longrandom bit string) is information-theoreti
ally se
ure, i.e., an atta
ker 
annotre
over the plaintext from the 
iphertext even with unlimited 
omputationalpower.While this system is used to the present day by intelligen
e agen
ies forhighly 
riti
al information, the requirement that the se
ret information (thathas to be ex
hanged 
on�dentially between sender and re
eiver in advan
e)has to be as long as the message makes it impra
ti
al for many importantappli
ations.The way out is to trade o� se
urity and usability (in fa
t, a very 
ommonstrategy in pra
ti
al IT se
urity), i.e., to relax the requirements of the systemwhile hoping not to lose too many of its se
urity properties.In the 
ase of 
ipher systems, the relaxation 
onsists in limiting the se
retinformation (most 
ommonly 
alled the key) to a size that is small enough to bee�
iently ex
hanged between sender and re
eiver, and at the same time largeenough for the system to resist atta
kers equipped with a realisti
 amount ofresour
es.Symmetri
-key 
ipher implementations that are based on this idea 
an be
lassi�ed into two 
ategories, blo
k 
iphers and stream 
iphers, whi
h we de-s
ribe in more detail in the following.2.2 Blo
k CiphersSuppose for the moment that we want to en
rypt a plaintext blo
k-wise (orword-wise) with a �xed blo
k length l. In order to be able to de
rypt, we use abije
tive mapping (i.e., a permutation) E : {0, 1}l → {0, 1}l for en
ryption andits inverse D = E−1 for de
ryption.Ideally, we would like to 
hoose E from all 2l! possible permutations for a�xed blo
k length l prior to the 
ommuni
ation. However, only with very lowprobability, our 
hoi
e will have a representation that is more e�
ient than alist of input-output pairs with 2l entries, whi
h is 
learly too ine�
ient to beex
hanged between sender and re
eiver for reasonable blo
k sizes.The 
ompromise between se
urity and usability in this 
ase is to pi
k a setof 2n permutations that 
an be e�
iently implemented using a devi
e that isparametrized with an n-bit string (the key) to determine whi
h permutation ita
tually realizes. Su
h a devi
e is 
ommonly 
alled a blo
k 
ipher.De�nition 2.1. A blo
k 
ipher 
onsists of two mappings
E : {0, 1}l × {0, 1}n → {0, 1}l

(x, k) 7→ yand
D : {0, 1}l × {0, 1}n → {0, 1}l

(y, k) 7→ xthat satisfy D(E(x, k), k) = x for all x ∈ {0, 1}l and all k ∈ {0, 1}n. We 
all
E the en
ryption fun
tion, D the de
ryption fun
tion, l the blo
k length, and nthe key length of the blo
k 
ipher.



10 2.3 Dedi
ated Stream CiphersNote that for a �xed k ∈ {0, 1}n, E(·, k) and D(·, k) are permutations (i.e.,bije
tive mappings) and inverse to ea
h other, and we may view the key as anidenti�er of a parti
ular permutation. In this sense, pi
king a key means to �xa parti
ular permutation, and 
hoosing a parti
ular blo
k 
ipher of blo
k length
l means 
hoosing 2n out of the 2l! possible permutations of {0, 1}l.On the se
urity side, we demand that an atta
ker 
annot distinguish theblo
k 
ipher setting from the ideal 
ase, more pre
isely that the permutationsprovided by the blo
k 
ipher be indistinguishable from a permutation that wasrandomly 
hosen from all possible permutations.We note that an atta
ker who 
an distinguish a blo
k 
ipher based permuta-tion from a randomly 
hosen permutation may not ne
essarily be able to dedu
einformation about the en
rypted messages nor the key. But 
onversely, we 
anbe sure that an atta
ker who 
annot tell whether a random permutation or ablo
k 
ipher is used 
annot dedu
e any nontrivial information.Blo
k 
iphers are among the most widely used 
ryptographi
 primitives, withthe Data En
ryption Standard (DES) and the Advan
ed En
ryption Standard(AES) being parti
ularly prominent examples (see Menezes et al. (2001) fordetailed des
riptions and se
urity 
onsiderations).Care has to be taken when a sequen
e of blo
ks b1, b2, . . . , bm ∈ {0, 1}l hasto be en
rypted. For 
ommon blo
k lenghts of 128 bits or more, this is the
ase in virtually any pra
ti
al appli
ation. The most straightforward pro
e-dure, the Ele
troni
 Codebook (ECB) mode, whi
h 
omputes the 
iphertextsas ci := E(bi, k), implies that 
oin
iding plaintext blo
ks will have 
oin
iding
orresponding 
iphertext blo
ks and is therefore not re
ommended.A more suitable mode is the Cipher Blo
k Chaining (CBC) mode (Ehrsamet al., 1976), whi
h is de�ned by ECBC((b1, . . . , bm), k, IV) := (c1, . . . , cm) with

ci :=

{
E(IV ⊕ b1, k) for i = 1
E(ci−1 ⊕ bi, k) for 1 < i ≤ m

. (2.1)and a (usually publi
ly known) initialization ve
tor IV ∈ {0, 1}l.Many more blo
k 
ipher modes of operation for di�erent purposes exist, seeMenezes et al. (2001) for an introdu
tion and overview.2.3 Dedi
ated Stream CiphersBesides blo
k 
iphers, dedi
ated 
onstru
tions exist for (immediately, i.e., notwaiting for the next blo
k to be �lled) en
rypting data streams. These 
on-stru
tions are typi
ally 
alled stream 
iphers.In this thesis, we want to fo
us on 
onstru
tions that try to approximate theone-time pad by produ
ing from a short, �xed-length se
ret information a longrandom-looking sequen
e that is XOR-
ombined with the plaintext in order toobtain the 
iphertext.Consequently, the heart of most su
h stream 
iphers is a keystream genera-tor, whi
h is initialized at the beginning of the 
onversation with a se
ret key K.Many modern 
onstru
tions a

ept an additional initialization ve
tor IV that
an be seen as a pointer into the keystream produ
ed for K. Cipher designs nor-mally assume the IV to be publi
, su
h that it 
an be easily ex
hanged betweensender and re
eiver.



2.3 Dedi
ated Stream Ciphers 11Hen
e, the keystream generator produ
es keystream bits (zt)t≥0 that areadded to the plaintext stream (pt)t≥0 on the sender's side in order to obtainthe 
iphertext stream (ct)t≥0 as ct := pt ⊕ zt for all t ≥ 0. The re
eiver usesthe same 
ipher and the same initialization data K and IV as the sender inorder to 
ompute the keystream (zt)t≥0 himself and to re
over the plaintext as
pt = ct ⊕ zt for all t ≥ 0 (see Fig. 2.2).

Keystream Generator

key

⊕

z0, z1, z2,

IV

z3, z4, . . .

(pi) p3, p4, . . .

stream cipher

p0, p1, p2,

=
c3, c4, . . .c0, c1, c2,

(ci)

Keystream Generator

key

⊕

z0, z1, z2,

IV

z3, z4, . . .

c3, c4, . . .

stream cipher

c0, c1, c2,

=
p3, p4, . . .p0, p1, p2,

(pi)

Sender ReceiverFigure 2.2: Stream 
ipher 
ommuni
ation s
enarioThe keystream generator itself is often split into two 
omponents, a key/IVsetup pro
edure and a �nite state ma
hine (FSM). The key/IV setup (or ratherinitial state setup) transforms the key and the IV into the initial state of theFSM. The FSM usually operates in a 
lo
king-based manner, outputting a pie
eof keystream and updating its state in ea
h 
lo
k 
y
le, hen
e produ
ing thekeystream sequen
e (zt)t≥0 (
f. Fig. 2.3).More formally, the FSM is de�ned by a state update fun
tion δ : {0, 1}n →
{0, 1}n and a keystream fun
tion g : {0, 1}n → {0, 1}∗. In ea
h 
lo
k t,keystream bits are produ
ed a

ording to g(ω(t)) from the 
urrent state ω(t),and the internal state is updated to ω(t + 1) = δ(ω(t)). Hen
e, the output ofthe generator is 
ompletely determined by the starting state ω(0).

key/IV setup
key

IV

initial state
FSM z0, z1, z2, . . .

Keystream Generator

Figure 2.3: Common 
onstru
tion of the keystream generatorDe�nition 2.2. We 
all an FSM-state periodi
 if, when running, the FSM willreturn to the same state after a �nite number of steps.



12 2.3 Dedi
ated Stream CiphersWe will later need the notion of equivalent FSMs, whi
h we de�ne as follows.De�nition 2.3. The FSMs M1 and M2 are 
alled equivalent if for ea
h possiblestarting state of M1 there exists a 
orresponding starting state of M2 and vi
eversa su
h that, when running, M1 and M2 produ
e the same output.De�nition 2.4. We 
all a sequen
e u = (ui)i≥0 stri
tly periodi
 (or simplyperiodi
) with period T if ui+T = ui for all i ≥ 0. We 
all a sequen
e ueventually periodi
 if there exists a t ≥ 0 su
h that u′ = (ui)i≥t is periodi
.De�nition 2.5. For a (deterministi
) �nite state ma
hine we 
an de�ne a (di-re
ted) state transition graph as follows. The vertex set 
onsists of the set ofpossible states, and there exists an edge from state u to state v if and only if vis the image of u under the state transition fun
tion.In order to approximate the one-time pad and its se
urity features, theoutput of the keystream generator should look random, or more formally, theoutput should not be e�
iently distinguishable from a truely random sequen
e.Therefore, the sequen
e should share as many properties with truely randomsequen
es as possible.The National Institute of Standards and Te
hnology (NIST) maintains a
olle
tion of su
h properties and provides infrastru
ture for 
he
king pseudo-random number generators against these properties (Rukhin et al., 2010).We will exemplarily 
onsider as properties the period length of the sequen
e,the number of o

urren
es of a parti
ular blo
k in one period of the sequen
e,and its auto
orrelation.De�nition 2.6. The auto
orrelation θτ (u) of a binary sequen
e u = (ui)i≥0with shift τ is the 
orrelation of the sequen
es (ui)i≥0 and (ui+τ )i≥0, i.e.,
θτ (u) :=

∑

i≥0

(−1)ui⊕ui+τ

= |{i : ui ⊕ ui+τ = 0}| − |{i : ui ⊕ ui+τ = 1}|

= |{i : ui = ui+τ}| − |{i : ui 6= ui+τ}| .

(2.2)Observation 2.7. A truely random sequen
e is aperiodi
, the probability of a τ-bit blo
k's o

urren
e at position i in the sequen
e is 2−τ , and its auto
orrelationis zero-valued for all shifts τ .Consequently, we require that a keystream generator's output bitstream usatisfy the following postulates.Pseudorandomness Postulate 1. A keystream sequen
e should have a largeperiod T (for many appli
ations at least T ≥ 250).Pseudorandomness Postulate 2. A keystream seqeun
e should 
ontain a given
τ-bit blo
k around T · 2−τ times.Pseudorandomness Postulate 3. For a keystream sequen
e u, |θτ(u)|

T shouldbe small for any shift τ < T .
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 Ciphers 132.4 Asymmetri
 CiphersIt was assumed for a long time that a reasonable 
ipher system 
ould only besymmetri
, i.e., the en
ryption key ke and the de
reption key kd had to beequal. Only in the 1970s, the �rst pra
ti
al asymmetri
 
ipher systems basedon di�erent keys for en
ryption and de
ryption were proposed, with the RSA
ryptosystem being one of the most prominent examples (see, e.g., Vaudenay(2006) for an introdu
tion).In systems in whi
h dedu
ing the de
ryption key from the en
ryption key isinfeasible (whi
h is the 
ase for pra
ti
al asymmetri
 
iphers), there no need tokeep the en
ryption key se
ret any more. Therefore, the en
ryption key ke isoften 
alled the publi
 key and the de
ryption key kd is 
alled the private key,and 
ipher systems that allow for publishing the en
ryption key are also 
alledpubli
 key (
ipher) systems. The re
eiver 
an publish his publi
 key, and anypotential sender 
an en
rypt messages using this publi
 key without the needfor establishing a 
ommon key as in symmetri
 
ipher systems.However, asymmetri
 
ipher systems usually require mu
h more 
omputa-tional e�ort for en
ryption and de
ryption than symmetri
 
ipher systems for
omparable se
urity levels, whi
h limits their suitability for low-end devi
es.
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Chapter 3Stream Cipher BuildingBlo
ksWe now present the most important building blo
ks for stream 
iphers, with aspe
ial fo
us on 
omponents that are parti
ularly useful for hardware-oriented
iphers.3.1 Boolean Fun
tionsDe�nition 3.1. We 
all a fun
tion
f : {0, 1}n → {0, 1}m

(x1, . . . , xn) 7→ (y1, . . . , ym)an m-output Boolean fun
tion in n variables. We say that f depends on theinput xi if
f(x1, . . . , xi−1, xi, xi+1, . . . , xn) 6= f(x1, . . . , xi−1, xi ⊕ 1, xi+1, . . . , xn) .De�nition 3.2. We 
all a Boolean fun
tion f : {0, 1}n → {0, 1} balan
ed if

|f−1(0)| = |f−1(1)|.Observation 3.3. Ea
h Boolean fun
tion f : {0, 1}n → {0, 1} 
an be equiva-lently represented in algebrai
 normal form, i.e., as a polynomial
F (w1, . . . , wn) =

⊕

j∈M

mj with monomials mj =
∧

l∈Mj

wl and M j(f) ⊆ {1, . . . , n} .

|M j(f)| is 
alled the degree of the monomial mj . The degree of the polynomial
F (abbreviated by deg(F )) is de�ned to be the maximum over the degrees of themonomials o

uring in F .We 
all a Boolean fun
tion F with deg(F ) = 1 a linear fun
tion.De�nition 3.4. For a binary ve
tor x = (x1, . . . , xn) ∈ {0, 1}n, we denoteby the Hamming weight of x (abbreviated by wt(x)) the number of non-zero
omponents in x, i.e.,

wt(x) := |{i ∈ {1, . . . , n}|xi 6= 0}| .



16 3.2 Feedba
k Shift RegistersFor ease of notation, we will often impli
itly identify a ve
tor (u0, . . . , uk−1) ∈

{0, 1}k with the integer u =
∑k−1

i=0 ui2
i.3.2 Feedba
k Shift RegistersFeedba
k shift registers have turned out to be parti
ularly useful devi
es forprodu
ing bitstreams with good pseudorandomness properties.De�nition 3.5. A Feedba
k Shift Register (FSR) in Fibona

i ar
hite
ture
onsists of an n-bit register a = (a0, . . . , an−1) and a state update fun
tion

f : {0, 1}n → {0, 1}. Starting from an initial 
on�guration a0, in ea
h 
lo
k a0 isprodu
ed as output and the register is updated a

ording to a := (a1, . . . , an−2, f(a0, . . . , an−1)).Depending on whether f is a linear fun
tion, we 
all the register a Linear Feed-ba
k Shift Register (LFSR) or a Nonlinear Feedba
k Shift Register (NFSR).The FSR-
onstru
tion is illustrated in Fig. 3.1.The de�nition implies that the output bitstream (wt)t≥0 produ
ed from aninitial 
on�guration a0 = (a0
0, . . . , a

0
n−1) 
an be expressed as

wt =

{
a0

t for t ∈ {0, . . . , n− 1}
f(wt−n, . . . , wt−1) for t ≥ n

,while the state of the FSR after t 
lo
kings 
orresponds to (wt, . . . , wt+n−1).Surprisingly, even after many de
ades of resear
h, the properties of generalFSRs and the sequen
es they produ
e are hardly understood. We therefore fo
uson two spe
ial 
ases, linear feedba
k shift registers and feeba
k shift registerswith 
arry, whi
h are mu
h less resistant to analysis and have found their wayinto pra
ti
al appli
ations.3.2.1 Linear Feedba
k Shift Registers (LFSRs)Fibona

i and Galois representations of LFSRsDe�nition 3.6. An n-stage Linear Feedba
k Shift Register (LFSR) in Fibona

iar
hite
ture (see Fig. 3.2) 
ontains a main register with n binary 
ells (y0, . . . , yn−1)and �xed binary feedba
k taps (d0, . . . , dn−1). From an initial state y, the LFSRoutputs in ea
h 
lo
k t the value y0, 
omputes the sum σ =
∑n−1

i=0 yidn−i−1 overthe integers and updates the register a

ording to y = (y1, y2, . . . , yn−1, σ mod 2).
an−1 a0· · ·

F

a1

Figure 3.1: Feedba
k shift register (FSR) of length n
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σ

mod2
yn−1 yn−2 · · · y0

dn−1d0 · · ·d1Figure 3.2: LFSR in Fibona

i ar
hite
tureBased on an initial 
on�guration y0, we 
an des
ribe the output bitstream
(wt)t≥0 of a Fibona

i LFSR by

wt =

{
y0

t for t ∈ {0, . . . , n− 1}
σt mod 2 for t ≥ n

,where σt =
∑n

i=1 wt−idi−1 for t ≥ n.Note that for performan
e reasons, the feedba
k bit (σ mod 2) is usually
omputed as
σ mod 2 =

n−1⊕

i=0

yidn−i−1 .Additionally to the (most 
ommonly used) Fibona

i ar
hite
ture, there ex-ists a Galois ar
hite
ture for LFSRs.De�nition 3.7. An n-stage LFSR in Galois ar
hite
ture (see Fig. 3.3) 
on-tains n binary main register 
ells (x0, . . . , xn−1) with �xed binary feedba
k taps
(d0, . . . , dn−1), dn−1 6= 0. Starting from an initial state x, the Galois LFSRoutputs in ea
h 
lo
k the value x0, 
omputes the sums σi = xi+1 + x0di for
0 ≤ i < n (with xn = 0) and updates xi to σi mod 2 for all 0 ≤ i < n− 1.

xn−1 σ

dn−2

· · · σ

d1

x1 σ

d0

x0

dn−1Figure 3.3: LFSR in Galois ar
hite
tureAgain, we may equivalently 
ompute the update value for xi as xi+1⊕ x0di.Algebrai
 model: Formal Power Series and F2nWe denote the ring of formal power series α(X) =
∑∞

i=0 uiX
i with ui ∈ {0, 1}(i.e., with 
oe�
ients in the integers modulo 2) by F2[[X ]], and the Galois �eldwith 2n elements by F2n .Theorem 3.8 (Golomb (1981)). There is a one-to-one 
orresponden
e be-tween quotients of polynomials α(X) = h(X)

q(X) ∈ F2[[X ]] and eventually peri-odi
 binary sequen
es u whi
h asso
iates to ea
h su
h quotient its 
oe�
ientsequen
e u = (u0, u1, . . .). The sequen
e u is stri
tly periodi
 if and only if
deg(h(X)) < deg(q(X)).



18 3.2 Feedba
k Shift RegistersFor both the Fibona

i and the Galois ar
hite
ture, we de�ne the 
onne
tionpolynomial q(X) by
q(X) := dn−1X

n + dn−2X
n−1 + . . . + d0X − 1and asso
iate a Fibona

i state (y0, . . . , yn−1) with the polynomial

h(X) =
n−1∑

k=0

k∑

i=0

di−1yk−iX
k, where d−1 = 1 , (3.1)and a Galois state (x0, . . . , xn−1) with the polynomial

h(X) = −
(
x0 + x1X + . . . + xn−1X

n−1
)

. (3.2)Theorem 3.9 (Golomb (1981)). The output sequen
e of an LFSR with feed-ba
k tap ve
tor 
orresponding to the 
onne
tion polynomial q(X) and an initialstate 
orresponding to h(X) is the 
oe�
ient sequen
e of α(X) = h(X)
q(X) .Corollary 3.10. The LFSR's output sequen
e is stri
tly periodi
 for any initialstate.Proof. Sin
e by the de�nition of h(X), deg(h(X)) ≤ n − 1 < n = deg(q(X)),the 
laim follows from Theorem 3.8. 2The Fibona

i and Galois ar
hite
tures 
an be related in the following way.Suppose that deg(q) = n and q is irredu
ible, let α denote a root of q(X) in F2n ,express a p ∈ F2n as linear 
ombination of the elements in {1, α, α2, . . . , αn−1},and de�ne

T : F2n → {0, 1}
p0 + p1α + . . . + pn−1α

n−1 7→ p0 .
(3.3)For periodi
 Galois states x, we de�ne a mapping E by

E : {periodi
 Galois states} → F2n

(x0, . . . , xn−1) 7→ x0 + x1α + x2α
2 + . . . + xn−1α

n−1 ,(3.4)For an element p ∈ F2n , we de�ne a mapping S by
S : F2n → {periodi
 Fibona

i states}

p 7→
(
T (α1−np), T (α2−np), . . . , T (α−1p), T (p)

)
,

(3.5)i.e., yi = T (α−ip).Theorem 3.11 (Goresky and Klapper (2002)). The mappings E and S areone-to-one, i.e., there exist inverse fun
tions E−1 and S−1 that map elementsof F2n to the set of periodi
 Galois states and periodi
 Fibona

i states to F2n ,respe
tively.We note that sin
e {1, α−1, . . . , α1−n} is a basis for F2n over F2, E−1 and
S−1 may be e�
iently 
omputed by solving systems of linear equations in
{x0, . . . , xn−1} and p, respe
tively.We 
an now des
ribe the evolution of the LFSR states (resp. their F2n-representations) in the following way.
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k Shift Registers 19Theorem 3.12 (Golomb (1981), Goresky and Klapper (2002)). For aninitial LFSR state 
orresponding to p ∈ F2n , the sequen
e (pt)t≥0 of F2n-representations of the register state at time t is given by pt = α−tp ∈ F2n,and the t-th output bit of the register 
an be 
omputed as zt = T (α−tp) ∈ {0, 1}.The period of the sequen
e (pt)t≥0 equals the order of α in F2n .Corollary 3.13 (Golomb (1981), Goresky and Klapper (2002)). If q(X)is not only an irredu
ible but also a primitive polynomial, α has the maximumpossible order 2n − 1 and hen
e the period, too, rea
hes its maximum 2n − 1.Consequently, we 
all LFSRs with primitive 
onne
tion polynomialsmaximum-lengh LFSRs and the sequen
es they produ
e m-sequen
es.Remark 3.14. There are ϕ(2n−1)
n primitive polynomials of degree n ≥ 1 over

F2, where for m ∈ N, ϕ(m) = {i ∈ {1, . . . , m}|gcd(i, m) = 1}.Sequen
es produ
ed by individual Register CellsWe now want to des
ribe the sequen
es of values taken by a parti
ular LFSR reg-ister 
ell. In the 
ase of Fibona

i LFSRs, the following observation is straight-forward to make.Theorem 3.15. For an n-stage Fibona

i LFSR with 
onne
tion polynomial
q(X) and initial state y0, the sequen
e of values (yt

i)t≥0 taken by the i-th register
ell yi is the original sequen
e shifted by i positions, i.e., given by the Fibona

iLFSR-sequen
e with 
onne
tion polynomial q(X) produ
ed from the initial state
S(α−iS−1(x)) with α a root of q(X).A similar 
orresponden
e holds for Galois LFSRs.Theorem 3.16. For an n-stage Galois LFSR with 
onne
tion polynomial q(X)and initial state polynomial h(X), the sequen
e of values taken by the i-th regis-ter 
ell xi is the sequen
e produ
ed by a Galois LFSR with 
onne
tion polynomial
q(X) and initial state polynomial

hi(X) = xi(0) · q(X) + X · (hi+1(X) + dih0(X)) with hn(X) ≡ 0.Proof. Obviously, h0(X) = h(X). Sin
e deg(q) = n, we have dn−1 = 1, whi
himplies xn−1(t + 1) = x0(t). We obtain for i = n− 1

hn−1(X)

q(X)
=

∞∑

t=0

xn−1(t) ·X
t = xn−1(0) + X ·

∞∑

t=0

xn−1(t + 1)Xt

= xn−1(0) + X ·
∞∑

t=0

x0(t) ·X
t

= xn−1(0) + X ·
h0(X)

q(X)
,and therefore

hn−1(X) = xn−1(0) · q(X) + X · h0(X) .



20 3.2 Feedba
k Shift RegistersFor 0 ≤ i < n− 1, we have
hi(X)

q(X)
=

∞∑

t=0

xi(t) ·X
t = xi(0) + X ·

∞∑

t=0

xi(t + 1) ·Xt

= xi(0) + X ·
∞∑

t=0

(xi+1(t) + dix0(t)) ·X
t

= xi(0) + X ·

(
hi+1(X)

q(X)
+ di

h0(X)

q(X)

)

,whi
h implies
hi(X) = xi(0) · q(X) + X · (hi+1(X) + dih0(X)) . 2We 
an write the relation for hi(X) in 
losed form as follows.Lemma 3.17. The re
urren
e relation

hi(X) = xi(0) · q(X) + X · (hi+1(X) + dih0(X)) with hn(X) ≡ 0
an be expressed as hi(X) = Fi(x) · q(X) + Mi · h0(X) with
Mi = X ·

n−1∑

j=i

djX
j−i and Fi(x) =

n−1∑

j=i

xj(0)Xj−i .Proof. The 
laimed formula is straightforwardly obtained by indu
tion. 2Mappings between periodi
 Galois and Fibona

i statesProposition 3.18. There exists a bije
tive mapping between periodi
 initialGalois LFSR states and periodi
 initial Fibona

i LFSR states su
h that theregisters produ
e the same output (see Fig. 3.4).Proof. A

ording to Theorem 3.11, the mapping
Φ : {periodi
 Galois states} → {periodi
 Fibona

i states}

x 7→ S(E(x))with E and S de�ned as in Eqs. (3.4) and (3.5) is one-to-one. 2

periodic
Galois

x

F2n

periodic
Fibonacci

y

∑

n−1

i=0
xiα

i

S−1

(

T (α1−np), T (α2−np), . . . , T (α−1p), T (p)
)

E−1Figure 3.4: Mapping between periodi
 Galois and Fibona

i LFSR statesLemma 3.19. The value xi of the i-th 
ell in the main register of a GaloisLFSR 
an be 
omputed in polynomial time from the state y of the 
orrespondingFibona

i LFSR as the i-th 
omponent of the ve
tor E−1(S−1(x)).Proof. The 
laim follows immediately from Theorem 3.11. 2
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k Shift Registers 21Statisti
al Properties of m-Sequen
es
m-sequen
es are statisti
ally very similar to truely random sequen
es. Con
ern-ing the three properties that we sele
ted in Se
tion 2.3, their behaviour 
an be
hara
terized as follows.Observation 3.20 (Golomb (1981)). Consider an m-sequen
e u produ
ed byan n-stage LFSR.
• The period of u is T = 2n − 1.
• Any τ-bit blo
k B o

urs in one period of u exa
tly 2n−τ times if B 6= 0and 2n−τ − 1 times if B = 0.
• The auto
orrelation θτ (u) satis�es |θτ(u)|

T = 1
2n−1 .The de�nition of LFSRs suggests another pseudorandomness 
ritereon, thelinear 
omplexity.De�nition 3.21. The linear 
omplexity of a binary sequen
e u = (ui)i≥0 (ab-breviated by lc(u)) is the length of the shortest LFSR that generates the sequen
e.Lemma 3.22. A sequen
e u = (ui)i≥0 with period T satis�es lc(u) ≤ T .Proof. The T -stage Fibona

i LFSR with feedba
k taps (0, . . . , 0, 1) ∈ {0, 1}Twill obivously generate u from the initial state y = (u0, . . . , uT−1). 2Remark 3.23. There exists an algorithm that 
omputes for a given sequen
e

u with l = lc(u) in time O(l3) and from the �rst 2l bits of u the value l andthe feedba
k tap ve
tor of an l-stage LFSR that generates u. This algorithmis known as the Berlekamp-Massey algorithm for register synthesis (see, e.g.,Menezes et al. (2001) for a des
ription).We 
on
lude that the linear 
omplexity of a keystream sequen
e should belarge enough su
h that a generating LFSR 
annot be determined with realisti
resour
es.Pseudorandomness Postulate 4. The linear 
omplexity lc(u) of a keystreamsequen
e u should be reasonably large.We note that although the period of an m-sequen
e is T = 2n− 1, its linear
omplexity is only n, i.e. logarithmi
 in T , and therefore mu
h lower than theupper bound given by Lemma 3.22. Conversely, if an LFSR is to produ
e asequen
e with linear 
omplexity l∗, its required minimum size is exponential in
l∗, whi
h is impra
ti
al for most appli
ations. In fa
t, this is the main reasonwhy LFSRs � despite their many other desirable statisti
al properties � are notsuitable for dire
t use as keystream generators.3.2.2 Feedba
k Shift Registers With Carry (FCSRs)Feedba
k with 
arry shift registers (FCSRs) have been dis
ussed sin
e the mid-1990s in the 
ontext of e�
ient pseudorandom number generation, parti
ularlyas an alternative to LFSRs (Couture and L'E
uyer, 1994, Klapper and Goresky,1997, Marsaglia and Zaman, 1992).



22 3.2 Feedba
k Shift RegistersAnalogously to Se
tion 3.2.1, we des
ribe the stru
ture of FCSRs and makesome observations on the properties of their output sequen
es. All our resultshave been experimentally 
on�rmed with the 
omputer algebra systemMagma(Bosma et al., 1997).Fibona

i and Galois representations of FCSRsDe�nition 3.24. An n-stage FCSR in Fibona

i ar
hite
ture (see Fig. 3.5)
ontains a main register with n binary 
ells (y0, . . . , yn−1) and �xed binary feed-ba
k taps (d0, . . . , dn−1) as well as an additional memory b. From an initialstate (y, b), the FCSR outputs in ea
h 
lo
k t the value y0, 
omputes the sum
σ = b +

∑n−1
i=0 yidn−i−1 over the integers and updates the register and memorya

ording to b = σ div 2 and y = (y1, y2, . . . , yn−1, σ mod 2).

b

σ

div 2 mod 2
yn−1 yn−2 · · · y0

dn−1d0 · · ·d1Figure 3.5: FCSR in Fibona

i ar
hite
tureBased on an initial 
on�guration (y0, b0), we 
an des
ribe the output bit-stream (wt)t≥0 of a Fibona

i FCSR by
wt =

{
y0

t for t ∈ {0, . . . , n− 1}
σt mod 2 for t ≥ n

,where σt = bt−n+
∑n

i=1 wt−idi−1 and bt−n+1 = σt div 2 for t ≥ n, whi
h implies
σt = (σt−1 div 2) +

n∑

i=1

wt−idi−1 with σn−1 = 2b0 . (3.6)We note that in general, b may be an arbitrarily large value. However, if theregister's state is periodi
, b may be bounded as follows.Proposition 3.25 (Klapper and Goresky (1997)). If the Fibona

i FCSRis in a periodi
 state, the value of the memory b satis�es 0 ≤ b < wt(d + 1).Corollary 3.26. A Fibona

i FCSR with a periodi
 initial state will not requiremore than ⌊log2(wt(d + 1)− 1)⌋+ 1 bits to store the value b at any time.Similarly to the Galois ar
hite
ture for LFSRs, there exists a Galois ar
hite
-ture for FCSRs, whi
h was �rst observed by Noras (1997) and further analyzedby Goresky and Klapper (2002).De�nition 3.27. An n-stage FCSR in Galois ar
hite
ture (see Fig. 3.6) 
on-tains n binary main register 
ells (x0, . . . , xn−1) with �xed binary feedba
k taps
(d0, . . . , dn−1), dn−1 6= 0, and n− 1 memory 
ells (a0, . . . , an−2). Starting froman initial state (x, a), the Galois FCSR outputs in ea
h 
lo
k the value x0, 
om-putes the sums σi = xi+1+aidi+x0di for 0 ≤ i < n (with xn = 0 and an−1 = 0)and updates xi to σi mod 2 and ai to σi div 2 for all 0 ≤ i < n− 1.



3.2 Feedba
k Shift Registers 23We will assume that memory 
ells are only present at those positions withfeedba
k taps, i.e., ai = 0 if di = 0 for all 0 ≤ i < n − 1, sin
e ai = 0 for all iwith di = 0 is a ne
essary 
ondition for periodi
 states (x, a).
xn−1 σ

dn−2

an−2

· · · σ

d1

a1

x1 σ

d0

a0

x0

dn−1Figure 3.6: FCSR in Galois ar
hite
tureImplementors will often prefer the Galois ar
hite
ture to the Fibona

i ar-
hite
ture sin
e the size of the memory is intrinsi
ally limited and the memorybits 
an be updated in parallel, with ea
h addition involving at most three bits.Algebrai
 model: 2-adi
 Numbers and Z2The algebrai
 stru
ture that is asso
iated with FCSRs is the ring of 2-adi
numbers. A 2-adi
 integer is a formal power series α =
∑∞

i=0 ui2
i with ui ∈

{0, 1}. The 
olle
tion of all su
h formal power series forms the ring of 2-adi
numbers. This ring espe
ially 
ontains rational numbers p/q, where p and qare integers and q is odd. 2-adi
 numbers and eventually periodi
 sequen
es arelinked by the following Theorem.Theorem 3.28 (Klapper and Goresky (1997)). There is a one-to-one 
or-responden
e between rational numbers α = p/q (with odd q) and eventually pe-riodi
 binary sequen
es u whi
h asso
iates to ea
h su
h rational number α thebit sequen
e u = (u0, u1, . . .) of its 2-adi
 expansion. The sequen
e u is stri
tlyperiodi
 if and only if α ≤ 0 and |α| ≤ 1.For both FCSR ar
hite
tures, we de�ne the 
onne
tion integer q as q =
1− 2d. We identify a Galois state (x, a) with the integer

p = x + 2a (3.7)and a Fibona

i state (y, b) with the integer
p = b2n −

n−1∑

k=0

k∑

i=0

qiyk−i2
k . (3.8)Theorem 3.29 (Klapper and Goresky (1997)). The output sequen
e of anFCSR with feedba
k tap ve
tor 
orresponding to the 
onne
tion integer q and aninitial state 
orresponding to p is the 2-adi
 expansion of α = p

q .Corollary 3.30. The output sequen
e of an FCSR with feedba
k tap ve
tor 
or-responding to q will be stri
tly periodi
 if and only if the integer p that 
orre-sponds to the initial state satis�es 0 ≤ p ≤ |q|.



24 3.2 Feedba
k Shift RegistersProof. The 
laim is an immediate 
onsequen
e of Theorem 3.28. 2Theorem 3.29 justi�es the following de�nition.De�nition 3.31. We 
all two Galois states (x, a) and (x′, a′) equivalent if
x + 2a = x′ + 2a′ .Similarly, we 
all two Fibona

i states (y, b), (y′, b′) equivalent if

b2n −
n−1∑

k=0

k∑

i=0

qiyk−i2
k = b′2n −

n−1∑

k=0

k∑

i=0

qiy
′
k−i2

k .Note that although equivalent states produ
e the same output, the sequen
eof states ((x(t), a(t))t≥0 in the Fibona

i 
ase and (y(t), b(t))t≥0 in the Galois
ase) obtained by running the FCSR from equivalent starting states may bedi�erent.Similarly to the LFSR-
ase, we 
an now des
ribe the evolution of the FCSRstates based on their representations in the set Z/(qZ) of integers modulo q,whi
h we denote for simpli
ity by Zq.Theorem 3.32 (Klapper and Goresky (1997)). For an initial state 
or-responding to p ∈ Z|q|, the sequen
e of integer representations of the states
(pt)t≥0 is given by pt = 2−tp mod q and the t-th output bit 
an be 
omputed as
zt = pt mod 2 = (2−tp mod q) mod 2. If 0 < p < |q|, q odd, and p and q are
oprime, then the period of the sequen
e (pt)t≥0 equals the order of 2 modulo q .For p = 0 and p = |q|, the FCSR produ
es the 2-adi
 expansions of 0/q = 0 and
|q|/q = −1, respe
tively, whi
h both have period one. If 0 < p < |q|, q odd, and
p and q are 
oprime, then the period of the sequen
e (pt)t≥0 equals the order of
2 modulo q.Corollary 3.33. If q is a (negative) prime for whi
h 2 is a primitive root, theperiod rea
hes its maximum |q| − 1.Consequently, we 
all FCSRs with prime 
onne
tion integers for whi
h wis a primitive root maximum-length FCSRs and the sequen
es they produ
e
l-sequen
es.In 
ontrast to the number of primitive polynomals in the LFSR-
ase, thenumber of 
onne
tion integers q produ
ing l-sequen
es is not known with 
er-tainty. However, there exists the following 
onje
ture.Conje
ture 3.34 (Hooley (1967), Klapper (2004)). The number of primes
q of bitlength n for whi
h the order of 2 modulo q is q−1 is asymptoti
ally cn

log(n) ,where c ≈ 0.37 is a 
onstant.For a maximum-length Galois FCSR with 
onne
tion integer q, the statetransition graph (see De�nition 2.5) has exa
tly three 
onne
ted 
omponents,i.e., the two �xed points (0, 0) and (2n−1, d−2n−1) (
orresponding to p = 0 and
p = |q|) and a 
omponent 
ontaining all the remaining states. This 
omponent
onsists of a main 
y
le of length |q| − 1 and paths of lengths at most n + 4leading to it (Arnault et al., 2008). In other words:Observation 3.35. An n-stage maximum-length Galois FCSR will be in a pe-riodi
 state after at most n + 4 
lo
kings.
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k Shift Registers 25Sequen
es produ
ed by individual Register CellsAs for LFSRs, the sequen
es produ
ed by individual main register 
ells of anFCSR are again FCSR-sequen
es.Theorem 3.36. For a Fibona

i FCSR with 
onne
tion integer q and an initialstate 
orresponding to the integer p, the sequen
e (yt
i)t≥0 of values taken by themain register 
ell yi is the FCSR sequen
e given by the 2-adi
 expansion of pi/qwith pi = 2−ip.Theorem 3.37 (Arnault and Berger (2005a), Theorem 4). For a GaloisFCSR with initial state (x, a) and p = x+2a, the sequen
e (xt

i)t≥0 of values takenby the main register 
ell i is again an FCSR-sequen
e, more pre
isely the 2-adi
expansion of pi/q with pi = Fi(x, a) · q + Mi · p, Fi(x, a) =
∑n−1

j=i (xj + 2aj)2
j−i,and with 
onstants Mi = 2

∑n−1
j=i dj2

j−i.It is interesting to note (and will prove useful in Se
tion 3.2.2) that if theinitial state (x, a) is periodi
, this expression 
an be further simpli�ed as follows.Proposition 3.38. For a maximum-length Galois FCSR with 
onne
tion inte-ger q, a periodi
 initial state (x0, a0), and pt = xt +2at, the sequen
e (xt
i)t≥0 ofvalues taken by a �xed main register 
ell i 
orresponds to (pt+si mod 2)t≥0 with

si = − log2(Mi) mod q and Mi = 2
∑n−1

j=i dj2
j−i.Proof. If (x0, a0) is periodi
, the 2-adi
 expansions of pi/q have to be stri
tlyperiodi
 for all i. Theorem 3.28 implies that 0 ≤ pi < |q|, hen
e pi = pi mod q =

Mi · p0 mod q. In a maximum-length Galois FCSR, ea
h possible value of
pi mod q is passed after si iterations, hen
e pi = 2−sip0 mod q, and we have
Mi = 2−si mod q. 2Proposition 3.38 implies that the sequen
e (xt

i)t≥0 
orresponds to the se-quen
e produ
ed by the whole FCSR (i.e., (xt
0)t≥0) shifted by si positions.Note that the phase shifts si are independent of the initial state p and dependon i (and q) only.Example 3.39. Consider the toy example of Arnault and Berger (2005a) with

q = −347, hen
e n = 8 and d = 174. The output of the FCSR is stri
tly periodi
with period −q − 1 = 346. We �nd M0 = 1, M1 = 174, M2 = 86, M3 = 42,
M4 = 20, M5 = 10, M6 = 4, M7 = 2. The phase shifts are s0 = 0, s1 = 1,
s2 = 23, s3 = 250, s4 = 67, s5 = 68, s6 = 344, s7 = 345.Mappings between periodi
 Galois and Fibona

i StatesThere is an onto fun
tion

E : {periodi
 Galois states}\{(1, . . . , 1; a0, . . . , an−2)} → Z|q|

(x, y) 7→ x + 2a mod q(3.9)that assigns to a Galois state an element of Z|q|.Moreover, there exists a one to one mapping S from Z|q| onto the set ofstri
tly periodi
 states of the Fibona

i FCSR with 
onne
tion integer q ex
ept



26 3.2 Feedba
k Shift Registersfor the state (1, . . . , 1; wt(q + 1)− 1), namely
S : Z|q| → {periodi
 Fibona

i states}\{(1, . . . , 1; wt(q + 1)− 1)}

p 7→ (y, b) (3.10)with
yi = ((2−ip mod q) mod 2) for 0 ≤ i ≤ n− 1and

b =
1

2n



p +

n−1∑

k=0

k∑

j=0

dj−1yk−j2
k



 .Conversely, for a given periodi
 Fibona

i state (y, b) the 
orresponding integer
p will satisfy 0 ≤ p < |q|.Hen
e, for an arbitrary initial state of a Galois FCSR with 
onne
tion integer
q, we 
an 
ompute a periodi
 initial state of a Fibona

i FCSR with 
onne
tioninteger q and vi
e versa su
h that the two registers will produ
e the same output(Goresky and Klapper, 2002).Obviously, the mapping E from the Galois states to Z|q| is not one to one,i.e., generally more than one state is mapped to the same p ∈ Z|q|. However,the following Proposition shows how to 
ompute for given p ∈ Z|q| the uniquelydetermined 
orresponding periodi
 state (x, a).Proposition 3.40. For all p ∈ Z|q|, the only stri
tly periodi
 state (x, a) with
x+2a = p of a maximum-length Galois FCSR of size n with 
onne
tion integer
q is given by xi = Mi · p mod q mod 2 and a = (p− x)/2 with Mi de�ned as inProposition 3.38.Proof. We �rst observe that x + 2a = x + 2 p−x

2 = p, hen
e (x, a) 
orrespondsto p. If p = 0, we have (x, a) = (0, 0) at all times, so (x, a) is periodi
. Similarlyfor p = |q|, the only possible state (x, a) is (2n − 1, d − 2n−1), and this stateis periodi
 (see Se
tion 3.2.2). If p 6= 0, the state transition graph representingthe evolution of the states 
onsists of a main 
y
le of length |q| − 1 and paths
onverging to it. Hen
e, for ea
h initial state (x′, a′) with x′ + 2a′ = p, thereexists exa
tly one state (x̃, ã) with x̃ + 2ã = p that lies on the main 
y
le.For this state (x̃, ã), the sequen
es (x̃t
i)t≥0 have to be stri
tly periodi
. Due toProposition 3.38, the �rst bit of the 2-adi
 expansion of pi/q and hen
e x̃i isequal to pi mod 2 with pi = Mi · p mod q. Moreover, ã is uniquely determinedby x̃ and p, whi
h implies (x̃, ã) = (x, a). 2Proposition 3.40 provides a possible answer to the open question raised byGoresky and Klapper (2002) how to intrinsi
ally 
hara
terize the periodi
 states
orresponding to a parti
ular p ∈ Z|q| and allows us to link periodi
 Fibona

iand periodi
 Galois states similarly to the LFSR-
ase.Corollary 3.41. There exists a bije
tive mapping between periodi
 initial Ga-lois FCSR states and periodi
 initial Fibona

i FCSR states su
h that registersprodu
e the same output (see Fig. 3.7).Proof. Proposition 3.40 implies a mapping Ẽ of periodi
 Galois states onto

Z|q|. With E and S de�ned by Eqs. (3.9) and (3.10), the 
laim follows. 2
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periodic
Galois
(x, a)

Z|q|
periodic

Fibonacci
(y, b)p = x + 2a

p = b2n
−

∑n−1

k=0

∑k

j=0
qjyk−j2

k

yi = ((2−ip mod q) mod 2)

b = 1

2n

(

p +
∑n−1

k=0

∑k

j=0
qjyk−j2

k

)

Ẽ−1Figure 3.7: Mapping between periodi
 Galois and Fibona

i FCSR statesExample 3.42. Continuing Example 3.39, let q = −347. For p = 100, we
ompute xi = Mi · p mod q mod 2, whi
h yields x = (01010000)2 = 64 + 16 =
80, and obtain a = (p − x)/2 = 10. Hen
e, the stri
tly periodi
 initial state
orresponding to p = 100 is (x, a) = (80, 10). Plugging the values of p and qinto Eq. (3.10) yields the 
orresponding periodi
 Fibona

i state (y, b) = (148, 2).Finally, we may obtain the sequen
e produ
ed by a Galois main register 
ellfrom a Fibona

i FCSR as follows.Lemma 3.43. The value xi of the i-th 
ell in the main register of a GaloisFCSR 
an be 
omputed from the stri
tly periodi
 state (y, b) of the 
orrespondingFibona

i FCSR by

xi = Mi



b2n −
n−1∑

k=0

k∑

j=0

dj−1yk−j2
k



 mod q mod 2 .Proof. The 
laimed formula is an immediate 
onsequen
e of Eq. (3.8) and Propo-sitions 3.38 and 3.40. 2Statisti
al properties of l-sequen
esThe period T of an l-sequen
e produ
ed by an n-stage FCSR with 
onne
tioninteger q is |q| − 1 (Klapper and Goresky, 1997), i.e., 2n−1 − 1 < T < 2n − 1.The linear 
omplexity of l-sequen
es is 
lose to |q|−1
2 (Tian and Qi, 2009).Theorem 3.44 (Blum et al. (1986), Goresky and Klapper (2006)). Let

u be an l-sequen
e with 
onne
tion integer q. The number of o

urren
es of anyblo
k e = (e0, e1, . . . , eτ−1) of size τ in u varies at most by 1 as the blo
k variesover all 2τ possibilities. That is, there is an integer w′ so that every blo
k oflength τ o

urs either w′ times or w′ + 1 times in u. The number of blo
ks oflength τ that o

ur w′ + 1 times is (q − 1)mod 2τ , and the number of blo
ks oflength τ that o

ur w′ times is 2τ − ((q − 1)mod 2τ ).We are espe
ially interested in the o

urren
es of a parti
ular blo
k B =
(b0, . . . , bτ−1) in one period of a sequen
e u with period length m, i.e., in theindi
es i, 0 ≤ i < m, su
h that

ui mod m = b0, u(i+1) mod m = b1, . . . , u(i+τ−1) mod m = bτ−1 .Theorem 3.45. Let u be an l-sequen
e with 
onne
tion integer q. Then forall 0 < τ < q, the number of o

uren
es of any blo
k B = (b0, . . . , bτ−1) in aperiod of u is ⌊(q − 1− v)/2τ⌋+ 1 if v 6= 0 and ⌊(q− 1− v)/2τ⌋ if v = 0, where
v = (−q ·

∑τ−1
i=0 bi2

i)mod 2τ .



28 3.2 Feedba
k Shift RegistersThis result was essentially observed by Klapper (2004). We provide an al-ternative proof illustrating some methods that will be useful in the remainderof this se
tion.Proof (Theorem 3.45). Identify the blo
k B with the integer β :=
∑τ−1

i=0 bi2
i,

0 ≤ β < 2τ . The number of o

urren
es of B in a period of u equals the numberof shifts of u starting with B, whi
h in turn equals the number of integers uwith −u/q ≡ β mod 2τ and 0 < u < q. Sin
e q is invertible mod 2τ , we have
u ≡ −qβ mod 2τ . Set v = −qβ mod 2τ ∈ {0, . . . , 2τ − 1}. If v ≤ q − 1, the setof integers u ful�lling this 
ondition 
an be written as

{v, v + 2τ , . . . , v + ⌊ q−1−v
2τ ⌋ · 2τ} for v 6= 0

{v + 2τ , . . . , v + ⌊ q−1−v
2τ ⌋ · 2τ} for v = 0

.The size of this set is ⌊(q− 1− v)/2τ⌋+ 1 if v 6= 0 and ⌊(q− 1− v)/2τ⌋ if v = 0.If v > q − 1, the blo
k B will not appear in u. In this 
ase, we have
−2τ ≤ q − 1 − v < 0, whi
h means ⌊(q − 1 − v)/2τ⌋ = −1 and therefore
⌊(q − 1− v)/2τ⌋+ 1 = 0. 2The expe
ted auto
orrelation of l-sequen
es 
an be shown to be zero (Xuand Qi, 2006). For any given shift τ , the auto
orrelation is in O(ln2 q) (Xu et al.,2009), but how to 
ompute its exa
t value is believed to be di�
ult (Goreskyand Klapper, 1997) and is only known for q = pe, where p is prime and e ≥ 2,and τ of a spe
ial form (Xu and Qi, 2006).We now des
ribe a method for 
omputing the exa
t value of the auto
or-relation whi
h is based on 
ounting the number of o

urren
es of parti
ular
(τ + 1)-bit blo
ks B = (bτ , bτ−1, . . . , b0) in the sequen
e. The main idea is to�x the �rst and the last bit in B and to 
ompute the 
orrelation based on howoften these restri
ted blo
ks o

ur in the sequen
e. Hen
e, we de�ne

Bγ
ij := number of blo
ks B = (i, bτ−1, bτ−2, . . . , b1, j) that o

ur γ timesfor (i, j) ∈ {0, 1}2 and 
ompute the 
orrelation as
θτ =

(
∑

γ

γ ·Bγ
00 +

∑

γ

γ · Bγ
11

)

−

(
∑

γ

γ ·Bγ
10 +

∑

γ

γ ·Bγ
01

)

. (3.11)Theorem 3.45 implies that a given (τ +1)-bit blo
k Bγ
ij o

urs either w timesor w + 1 times in a period of u, whi
h means that γ ∈ {w, w + 1} in Eq. (3.11).We now want to 
hara
terize more pre
isely the sets of τ -bit blo
ks thato

ur equally often.Lemma 3.46. The blo
k B = (b0, b1, . . . , bτ−1) o

urs w + 1 times in a periodof u if β =

∑τ−1
i=0 bi2

i ful�lls 0 < −qβ mod 2τ ≤ q − 1 mod 2τ , and w timesotherwise, where w = ⌊2k−τ ⌋+ ((q mod 2k) div 2τ ) and k = ⌊log2(q)⌋Proof. Let v = −qβ mod 2τ , hen
e 0 ≤ v < 2τ . We �rst 
onsider the 
ase
τ ≤ k and de�ne e = q mod 2k, x = e div 2τ and y = e mod 2τ . Sin
e q is odd,we have y > 0 and (y − 1) mod 2τ = (y mod 2τ )− 1 and therefore

q − 1− v = 2k + x · 2τ + y − 1− v
︸ ︷︷ ︸

S

.
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e 0 ≤ y − 1 < 2τ , we have −2τ < S < 2τ , and S ≥ 0 if and only if
y − 1 ≥ v. Hen
e,

⌊
q − 1− v

2τ

⌋

=

{
2k−τ + x for S ≥ 0
2k−τ + x− 1 for S < 0

.We have v = 0 if and only if β = 0, and v = 0 implies S ≥ 0. We obtain theresult by applying Theorem 3.45.In 
ase τ > k, we have 0 ≤ q−1 < 2k+1 ≤ 2τ and therefore −2τ < q−v−1 <
2τ , whi
h implies ⌊(q − 1− v)/2τ⌋ ∈ {−1, 0}, i.e., the blo
k 
orresponding to vo

urs either 0 = w or 1 = w + 1 times in u. It is q − 1 = q − 1 mod 2τ sin
e
τ > k, and we have ⌊(q − 1 − v)/2τ⌋ = 0 if and only if v ≤ q − 1. Hen
e, byTheorem 3.45, the blo
k 
orresponding to v o

urs w + 1 = 1 times in u if andonly if 0 < v ≤ q − 1 mod 2τ . 2Note that sin
e there are q−1 mod 2τ elements β ∈ Z2τ ful�lling 0 < −qβ ≤
q − 1 mod 2τ , Lemma 3.46 implies similarly to Theorem 3.44 that the numberof τ -bit blo
ks o

uring w + 1 times in a period of u is q − 1 mod 2τ and thenumber of blo
ks o

uring w times is 2τ − ((q − 1) mod 2τ ).Based on our observations, we 
an reformulate Eq. (3.11) as

θτ = (B00 + B11)− (B01 + B10) with Bij = w ·Bw
ij + (w + 1) ·Bw+1

ij .Before we derive an expli
it formula for θτ , we state a preliminary Lemmathat is useful for speeding up the 
omputation.Lemma 3.47. For a blo
k B of length τ 
orresponding to β =
∑τ−1

i=0 bi2
i ∈ Z2τand v = −qβ mod 2τ , we have β ≡ v mod 2.Proof. We have

β mod 2 =
(
v · (−q)−1 mod 2τ

) mod 2 = v · (−q)−1 mod 2

=

{
0 v ≡ 0 mod 2
1 v ≡ 1 mod 2 ,sin
e q−1 mod 2τ is odd if and only if q is odd. 2Hen
e, in order to 
ompute Bw+1

00 , it su�
es to 
ompute the number of blo
ks
orresponding to even β ∈ Z2τ that o

ur w + 1 times, whi
h, by Lemmas 3.46and 3.47, is equal to the number of β ∈ Z2τ−1 su
h that 0 < 2β(−q) mod 2τ+1 ≤
q − 1 mod 2τ+1, whi
h is equivalent to

2βq mod 2τ+1 ≥ −q mod 2τ+1 .The blo
ks 
orresponding to the remaining β will o

ur w times. By similararguments, we obtain Bw
ij + Bw+1

ij = 2τ−1 for all pairs (i, j) ∈ {0, 1}2.From the 
omplement property of l-sequen
es we know that Bw+1
00 = Bw+1

11and Bw+1
01 = Bw+1

10 . Moreover, we have Bw+1
00 + Bw+1

01 + Bw+1
10 + Bw+1

11 =
q − 1 mod 2τ+1 due to Theorem 3.44. Hen
e,

B01 = w(2τ−1 −Bw+1
01 ) + (w + 1)Bw+1

01

= w2τ−1 + Bw+1
01

= w2τ−1 +
q − 1 mod 2τ+1

2
−Bw+1

00 ,
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k Shift Registersand therefore
θτ = (B00 + B11)− (B01 + B10)

= 2(B00 −B01)

= 2

(

wBw
00 + wBw+1

00 − w2τ−1 −
q − 1 mod 2τ+1

2
+ 2Bw+1

00

)

= 2w(Bw
00 + Bw+1

00 − 2τ−1)− (q − 1 mod 2τ ) + 4Bw+1
00

= 4Bw+1
00 − (q − 1 mod 2τ+1) .Altogether, we obtain the following result.Proposition 3.48. Let u denote an l-sequen
e with 
onne
tion integer q. Thenfor a given shift τ > 0 the auto
orrelation θτ (u) is equal to 4B(τ, q) − (q −

1 mod 2τ+1), where B(τ, q) denotes the number of β ∈ Z2τ−1 su
h that
2βq mod 2τ+1 > −q mod 2τ+1 .The e�ort required for 
omputing θτ (u) is dominated by the 
omputation of

B(τ, q). The straightforward approa
h to test all β ∈ {0, . . . , 2r−1 − 1} 
an beperformed by evaluating the fun
tion
f(β) = 2qβ mod 2τ+1 =

{
f(β − 1) + 2q mod 2τ+1 for β > 0
0 for β = 0for β ∈ {0, . . . , 2r−1−1}, whi
h needs little memory, butO ((2τ−1 − 1

)
log2 2τ

)
=

O (τ · 2τ ) operations. Hen
e, our method is only pra
ti
al for small shifts τ .Example 3.49. For q = −347 and the 
orresponding l-sequen
e u, we 
omputefor the shift τ = 6 the values B(τ, q) = 8 and q − 1 mod 2τ+1 = 26, whi
himplies θτ (u) = 4 · 8− 26 = 6. Similarly for τ = 8, we obtain B(τ, q) = 24 and
q − 1 mod 2τ+1 = 90, hen
e θτ (u) = 6.Analogously to the de�nition of linear 
omplexity (De�nition 3.21), Klapperand Goresky (1997) have established the notion of 2-adi
 span.De�nition 3.50. The 2-adi
 span λ2(u) of a binary sequen
e u is the size (interms of number of 
ells) of the smallest FCSR that generates u.Lemma 3.51 (Klapper and Goresky (1997)). For a sequen
e u let α =
∑∞

i=0 ai2
i = p

q be the fra
tion in lowest terms whose 2-adi
 expansion agreeswith u. Then
|(λ2(u)− 2)− ϕ2(u)| ≤ log2(ϕ2(u)) ,where ϕ2(u) = log2(max(|p|, |q|)).Remark 3.52. Let u be an eventually periodi
 sequen
e with 2-adi
 span λ2.Then it is possible to 
ompute integers p, q su
h that the 2-adi
 expansion of p/qis u in time O((λ2)

2) while using only the �rst 2λ2 + 1 bits of u. This algorihmresembles the Berlekamp-Massey algorithm for LFSR synthesis and is des
ribedby Arnault et al. (2004), Klapper and Xu (2004).This suggests to add the 2-adi
 span to our list of pseudorandomness postu-lates.
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k Shift Registers 31Pseudorandomness Postulate 5. The 2-adi
 span λ2(u) of a keystream se-quen
e u should be reasonably large.We 
on
lude that similarly to the LFSR-
ase, the output of maximum-lengthFCSRs is not dire
tly suitable as keystream due to its low 2-adi
 span. How-ever, their otherwise desirable statisti
al properties re
ommend both LFSRsand FCSRs, when 
ombined with other devi
es, as building blo
ks for stream
iphers.
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Chapter 4Stream Ciphers based onFeedba
k Shift Registers4.1 Generi
 Constru
tionsWe have seen in the previous 
hapter that both LFSRs and FCSRs may providesequen
es with good pseudorandomness properties, but the LFSRs' low linear
omplexity and the FCSRs' small 2-adi
 span prevent both devi
es from beingdire
tly used as keystream generators. Nevertheless, many stream 
iphers tryto bene�t from the desirable properties of FSR-sequen
es and 
ombine one ormore FSRs with other 
omponents in order to 
ompensate their weaknesses.We 
onsider in this 
hapter several generi
 strategies, namely running FSRsequen
es through additional Boolean fun
tions before outputting keystream(
ombination generators and �lter generators), adding a small number of mem-ory bits that are updated in a nonlinear way, and state-dependent 
lo
king ofthe FSRs.4.1.1 Combination Generators and Filter GeneratorsA 
ombination generator (more pre
isely, the FSM of a 
ombination genera-tor) 
onsists of a small number of feedba
k shift registers R0, . . . , Rk−1 and aBoolean fun
tion C : {0, 1}k → {0, 1} that 
ombines the output sequen
es of theinternal registers in order to produ
e the output keystream (Rueppel (1992), seeFig. 4.1). More pre
isely, in ea
h 
lo
k 
y
le t, ea
h FSR Rj provides a bit xj
t andthe generator produ
es a keystream bit zt = C(xt), where xt = (x0

t , . . . , x
k−1
t ).A �lter generator (again, the FSM of a �lter generator to be pre
ise) 
ontainsonly one feedba
k shift register R of length n and a Boolean �lter fun
tion

C : {0, 1}n → {0, 1} that produ
es the output keystream from the 
urrent
ontents of 
ertain register 
ells (Rueppel (1992), see Fig. 4.2).Some 
ombination or �lter generators (e.g., the F-FCSR stream 
ipher familyto be dis
ussed in Se
tion 4.2.6) produ
e more than one output bit per 
lo
k
y
le, i.e., the keystream fun
tion C maps into {0, 1}∗ instead of {0, 1}.Theorem 3.11 and Corollary 3.41 have shown that for both LFSRs and FC-SRs, there exist one-to-one mappings between periodi
 Fibona

i states and pe-riodi
 Galois states su
h that the output sequen
es produ
ed from these states
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Figure 4.2: FSR-based �lter generator
oin
ide. Moreover, the sequen
es produ
ed by individual main register 
ellsare again LFSR/FCSR-sequen
es (Theorem 3.16 and Proposition 3.38).These observations imply that we 
an transform a Galois LFSR/FCSR-based�lter generator into a Galois LFSR/FCSR-based 
ombination generator that
ontains as many registers (with appropriate starting states) as the �lter fun
-tion has inputs. Furthermore, Galois registers in the 
ombination generator maybe arbitrarily repla
ed by Fibona

i registers with equivalent starting states.Finally, we may even build an equivalent �lter generator based on a Fibona

iLFSR/FCSR (with modi�ed �lter) based on Lemmas 3.19 and 3.43. Figure 4.3summarizes these equivalen
es.Note that if all operations of the generator's FSM are linear, its initial state
an be e�
iently determined from a number of keystream bits by solving asystem of linear equations. Therefore, espe
ially in the 
ase that all FSRs areLFSRs, a non-linear fun
tion should be 
hosen as keystream fun
tion C.4.1.2 Additional MemoryIn order to improve resistan
e against 
orrelation atta
ks and algebrai
 atta
ks(to be dis
ussed in Se
tions 6.1 and 6.2), the keystream generation 
omponentof a 
ombination generator is sometimes equipped with a few bits of additionalmemory, thereby be
oming a keystream-FSM. The keystream-FSM takes k bitsas input from the FSRs and 
onsists of l memory bits, a keystream fun
tion
C : {0, 1}k × {0, 1}l → {0, 1}∗ ,
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Figure 4.3: Equivalent representations of 
ombination and �lter generatorsand a memory update fun
tion
δ : {0, 1}k × {0, 1}l → {0, 1}l .In ea
h 
lo
k t, it produ
es from the 
urrent input xt = (x0

t , . . . , x
k−1
t ) andthe 
urrent memory state qt = (q0

t , . . . , ql−1
t ) the keystream output C(xt, qt) andupdates the memory to qt+1 := δ(xt, qt).A regularly 
lo
ked keystream generator with a keystream-FSM of the de-s
ribed form is 
ommonly 
alled regularly 
lo
ked (k, l)-
ombiner (with memory).Observe that in this notation, the memoryless 
ombination generator des
ribedin Se
tion 4.1.1 
orresponds to a (k, 0)-
ombiner.LFSR-based 
ombiners with memory were originally introdu
ed by Rueppel(1986). Sin
e then, they have been widely examined in 
ryptography and havefound their way into pra
ti
al appli
ations. The perhaps best known exampleused in pra
ti
e is the E0 keystream generator, whi
h is in the set of example
iphers that we are going to examine more 
losely in the remainder of this thesis.4.1.3 Irregular Clo
kingAnother way to introdu
e nonlinearity into a keystream generator is to 
lo
kthe FSRs in an irregular manner. This is often a

omplished by a 
lo
k 
ontrolme
hanism whi
h determines based on the 
urrent FSM state how often ea
hregister's update fun
tion is applied before the next keystream bits are produ
ed.Examples for this desgin in
lude the A5/1 generator (to be des
ribed inSe
tion 4.2.3) and the shrinking generator (Coppersmith et al., 1994).4.2 Example CiphersIn the ECRYPT stream 
ipher proje
t eStream (eStream), a number of new
iphers have been proposed and analyzed in the past few years. Many of thesere
ent designs partly repla
e LFSRs by other feedba
k shift registers su
h asnonlinear feedba
k shift registers (NFSRs) and feedba
k shift registers with
arry (FCSRs) in order to prevent standard 
ryptanalysis te
hniques like alge-brai
 atta
ks and 
orrelation atta
ks. Moreover, 
ombinations of di�erent typesof feedba
k shift registers permit alternative 
ompression fun
tions.



36 4.2 Example CiphersAs examples for these re
ent proposals, we 
onsider the 
iphers Trivium,Grain and the F-FCSR family along with the more aged self-shrinking generator,the E0 generator, and the A5/1 generator.4.2.1 Self-Shrinking GeneratorThe self-shrinking generator was proposed by Meier and Sta�elba
h (1994) and
onsists of only one LFSR and no memory. Every two 
lo
k 
y
les of the LFSR,the generator produ
es a keystream bit a

ording to the fun
tion
shrink : {0, 1}2 → {0, 1, ǫ}

(a, b) 7→

{
b if a = 1
ǫ otherwise ,where ǫ denotes the empty word. For an internal bitstream w = (w0, . . . , w2m−1),the self-shrinking generator produ
es the keystream z = (z0, . . . , zm−1) a

ord-ing to

shrinkstream : {0, 1}2m → {0, 1, ǫ}m

(w0, . . . , w2m−1) 7→ (shrink(w0, w1), . . . , shrink(w2m−2, w2m−1)),i.e., zt = shrink(w2t, w2t+1) for t ∈ {0, . . . , m− 1}.The designers proposed a short-keystream atta
k requiring about 20.75n op-erations, whi
h was improved to 20.694n by Zenner et al. (2001). The 
urrentlybest short-keystream atta
k is a guess-and-determine atta
k due to Hell andJohansson (2006) requiring around 20.65n operations and an amount of mem-ory that is polynomial in n. The BDD-Atta
k on the self-shrinking generator,whi
h we will des
ribe in Se
tion 5.5.1, needs roughly as many operations, butexponentially more memory.The long-keystream atta
k by Mihaljevi¢ (1996) needs at least 20.3n keystreambits in order to 
ompute the initial state in less than 20.6563n polynomial-timeoperations. Its asymptoti
 runtime was improved by Hell and Johansson (2006),Zhang and Feng (2006) for the 
ase that up to 20.5n keystream bits are available,while even an improved tradeo� is possible if the weight of the LFSR feedba
kpolynomial is at most 5 (Debraize and Goubin, 2008).4.2.2 E0 GeneratorThe Bluetooth stream 
ipher has key length 128 bits and IV-length 128 bits.It 
onsists of a key/IV setup pro
edure and the keystream generator E0 (TheBluetooth SIG, 2001).
E0 is a regularly 
lo
ked (k, l) = (4, 4) 
ombiner. It 
onsists of four LFSRs

R0, . . . , R3 of lenghts (n0, . . . , n3) = (25, 31, 33, 39) and a four-bit memory unit.We denote by xt = (x0
t , . . . , x

3
t ) ∈ {0, 1}4 the bits read from the LFSRs and by

qt = (q0
t , . . . , q3

t ) ∈ {0, 1}4 the memory state at time t.The keystream fun
tion g : {0, 1}4 × {0, 1}4 → {0, 1} is de�ned as
g(xt, qt) :=

3⊕

i=0

xi
t

3⊕

i=0

ciqi
t ,where (c3, . . . , c0) = (0, 1, 0, 0).



4.2 Example Ciphers 37The memory update fun
tion δ : {0, 1}4 × {0, 1}4 → {0, 1}4 is given by
δ(xt, qt) := (q3

t+1, q
2
t+1, q

1
t+1, q

0
t+1)where

(q1
t+1, q

0
t+1) := (q3

t , q2
t )

(q3
t+1, q

2
t+1) := st ⊕ T1(q

3
t , q2

t )⊕ T2(q
1
t , q0

t )

st :=
⌊x3

t + x2
t + x1

t + x0
t + 2 · q3

t + q2
t

2

⌋
∈ {0, 1}2

T1(q
3
t , q2

t ) := (q3
t , q2

t )

T2(q
3
t , q2

t ) := (q2
t , q3

t ⊕ q2
t ) .Figure 4.4 illustrates the design of E0.
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Figure 4.4: The E0 keystream generatorNote that we may write st as
st = ⌊

s′t + 2 · q3
t + q2

t

2
⌋ with s′t :=

3∑

i=0

xi
t . (4.1)Hen
e, the memory update fun
tion depends only on the sum s′t. Similarly, thekeystream fun
tion g depends only on the value ⊕3

i=0 xi
t = s′t mod 2, whi
himplies

g(xt, qt) = (s′t mod 2)⊕
3⊕

i=0

ciqi
t . (4.2)Sin
e the Bluetooth te
hnology so far is most often applied in wireless voi
etransmission and data ex
hange between personal information managers andother mobile devi
es, 
on�dentiality of the 
ommuni
ation is one of the mostimportant se
urity requirements.



38 4.2 Example CiphersConsequently, the se
urity of the Bluetooth en
ryption has been analyzedin several papers (Armkne
ht and Krause, 2003, Courtois, 2003, Ekdahl, 2003,Fluhrer and Lu
ks, 2001, Goli¢ et al., 2002, Hermelin and Nyberg, 1999, Jakob-sson and Wetzel, 2001, Krause, 2002, Lu and Vaudenay, 2005, 2004, Saarinen,2000). Armkne
ht et al. (2004) showed that an e�
ient atta
k on E0 impliesan e�
ient atta
k on the whole 
ipher. Therefore, improving the se
urity of E0is a natural demand.The best 
urrently known long-keystream atta
ks against E0 are algebrai
atta
ks (Armkne
ht and Krause, 2003) and 
orrelation atta
ks (Lu and Vau-denay, 2004, Lu et al., 2005). However, all these atta
ks need a large amountof keystream (228 to 239 in the 
ase of 
orrelation atta
ks), and even in termsof time and memory requirements, the atta
k by Lu et al. (2005) is the onlyfeasible one among them.We note that, when applied to the Bluetooth setting, the 
orrelation atta
ksby Lu and Vaudenay (2004), Lu et al. (2005) depend on the linearity of thekey-s
hedule and other spe
i�
 properties of the Bluetooth en
ryption system.4.2.3 A5/1 GeneratorThe A5/1 keystream generator is used in the GSM standard for mobile tele-phones. The initialization pro
edure transforms a 64-bit se
ret key and a 22-bitpubli
 frame number into the 64-bit initial state of the generator. A

ord-ing to Bri
eno et al. (1999), who obtained the A5/1 design by reverse en-gineering, the generator 
onsists of 3 LFSRs R0, R1, R2 of lengths n0, n1,
n2, respe
tively, and a 
lo
k 
ontrol ensuring that the keybits do not lin-early depend on the initial states of the LFSRs. For ea
h r ∈ {0, 1, 2}, aregister 
ell qNr , N r ∈ {⌈nr

2 ⌉ − 1, ⌈nr

2 ⌉}, is sele
ted in LFSR Rr as inputfor the 
lo
k 
ontrol. The GSM standard uses the parameters (n0, n1, n2) =
(19, 22, 23) and (N0, N1, N2) = (11, 12, 13).Let vi and v′i denote the bits at the 
ontrol and at the output positions inregister Ri for i ∈ {0, 1, 2}. In ea
h master 
lo
k of the generator, the keystreambit zi = f(v′0, v

′
1, v

′
2) := v′0 ⊕ v′1 ⊕ v′2 is produ
ed, and register Ri is 
lo
ked ifand only if vi = maj3(v0, v1, v2), wheremaj3 : {0, 1}3 → {0, 1}

(a, b, c) 7→

{
1 if a + b + c ≥ 2
0 otherwiseThe A5/1 
onstru
tion is illustrated in Fig. 4.5.The �rst short-keystream atta
k on A5/1 was given by Goli¢ (1997) andneeds 242 polynomial time operations. Afterwards, several long-keystream at-ta
ks on A5/1 were proposed. Biryukov et al. (2000) present an atta
k thatbreaks A5/1 from 215 known keystream bits within minutes after a prepro
ess-ing step of 248 operations. Ekdahl and Johansson (2001), Maximov et al. (2005)exploit the linearity of the initialization pro
edure and manage to break the 
i-pher within minutes, requiring only a few se
onds of 
onversation and little
omputational resour
es. A re
ent e�ort by a resear
h group around Nohl andKriÿler (2010) has re
eived mu
h attention for implementing a distributed, time-memory tradeo�-based brute-for
e atta
k that produ
ed a 2-terabyte rainbow
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· · · · · ·Figure 4.5: The A5/1 keystream generatortable for A5/1, su
h that the session key of any 
onversation 
an be easily de-rived. A5/1 is supposed to be repla
ed by A5/3, but only re
ently, Dunkelmanet al. (2010) have published a pra
ti
al atta
k on its underlying blo
k 
ipher.4.2.4 TriviumTrivium (de Cannière and Preneel, 2005) is a regularly 
lo
ked 
ombinationgenerator that 
onsists of three inter
onne
ted NFSRs R0, R1, R2 of lenghts93,84,111, respe
tively. The 288-bit initial state of the generator is derived froman 80-bit key and an 80-bit IV by 1152 initialization rounds. The keystreamfun
tion 
omputes a keystream bit zt by linearly 
ombining six bits taken fromthe registers, with ea
h NFSR 
ontributing two bits.More pre
isely, from an initial state (s1, . . . , s288) the algorithm produ
eskeystream bits zt as follows.for t = 0 to N − 1 do

t1 ← s1 ⊕ s28

t2 ← s94 ⊕ s109

t3 ← s178 ⊕ s223

zt ← t1 ⊕ t2 ⊕ t3
u1 ← t1 ⊕ s2s3 ⊕ s100

u2 ← t2 ⊕ s95s96 ⊕ s202

u3 ← t3 ⊕ s179s180 ⊕ s25

(s1, . . . , s93)← (s2, . . . , s93, u3)
(s94, . . . , s177)← (s95, . . . , s177, u1)
(s178, . . . , s288)← (s179, . . . , s288, u2)end forDue to its simpli
ity, espe
ially its low non-linearity, Trivium has re
eivedmu
h 
ryptanalyti
 attention (see, e.g., Aumasson et al. (2009), Eiba
h (2008),eSTREAM Dis
ussion Forum (2005), Maximov and Biryukov (2007)). Whilethe best key re
overy atta
k, whi
h is due to Dinur and Shamir (2009), is ableto ta
kle 767 out of 1152 initialization rounds with 245 to 236 operations, thefull 
ipher still remains unbroken.



40 4.2 Example Ciphers4.2.5 Grain-128The regularly 
lo
ked 
ombination generator Grain-128 (Hell et al., 2005) sup-ports keys of size 128 bits and IVs of size 96 bits. The design is based on twointer
onne
ted FSRs, an LFSR R0 and an NFSR R1, both of lenghts 128 bits,and a non-linear keystream fun
tion. We denote the 
ontent of the LFSR by
(st, st+1, . . . , st+127) and the 
ontent of the NFSR by (bt, bt+1, . . . , bt+127).In ea
h 
lo
k 
y
le, the registers are updated a

ording to

st+128 = st ⊕ st+7 ⊕ st+38 ⊕ st+70 ⊕ st+81 ⊕ st+96

bt+128 = st ⊕ bt ⊕ bt+26 ⊕ bt+56 ⊕ bt+91 ⊕ bt+96 ⊕ bt+3bt+67 ⊕ bt+11bt+13

⊕ bt+17bt+18 ⊕ bt+27bt+59 ⊕ bt+40bt+48 ⊕ bt+61bt+65 ⊕ bt+68bt+84 ,and a keystream bit zt is derived as
zt =




⊕

j∈A

bt+j



⊕ bt+12st+8 ⊕ st+13st+20 ⊕ bt+95st+42

⊕ st+60st+79 ⊕ bt+12bt+95st+95with A = {2, 15, 36, 45, 64, 73, 89}.Besides a generi
 time-memory-data-tradeo� atta
k (Biryukov and Shamir,2000) that re
overs the key with time and keystream around 2128, the related-key 
hosen-IV atta
k due to Lee et al. (2008) is able to re
over the key with
226.59 
hosen IVs, 231.39 keystream bits and 227 operations.4.2.6 Filtered FCSRsIn order for the initial state not to be re
overable from a number of observedkeystream bits by solving a system of linear equations, we have to demand thatkeystream generators 
ontain nonlinear operations to a 
ertain extent. Sin
e allLFSR-operations are linear by de�nition, nonlinearity must be introdu
ed intoan LFSR-based 
ombination or �lter generator by a 
arefully 
hosen keystreamfun
tion C.FCSRs, on the other hand, have a nonlinear update fun
tion, whi
h suggests
hoosing a simple XOR operation (whi
h is F2-linear) as keystream fun
tion.This has been done in the 
ase of the F-FCSR stream 
ipher family.The F-FCSR Stream Cipher FamilyF-FCSR-H is an FCSR-based �lter generator that 
onsists of a single GaloisFCSR of length n = 160 with 
arry 
ells present at l = 82 positions. The
onne
tion integer is 
hosen as

q = −1993524591318275015328041611344215036460140087963 ,whi
h implies
d =

(
1− q

2

)

= (ae985dff 26619fc5 8623dc8a af46d590 3dd4254e)16 .
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h 
lo
k, the generator uses the stati
 �lter d = F to extra
t a pseu-dorandom byte. The �lter splits into 8 sub�lters (sub�lter j is obtained bysele
ting the bit j in ea
h byte of F )
F0 = (0011 0111 0100 1010 1010)2, F4 = (0111 0010 0010 0011 1100)2

F1 = (1001 1010 1101 1100 0001)2, F5 = (1001 1100 0100 1000 1010)2

F2 = (1011 1011 1010 1110 1111)2, F6 = (0011 0101 0010 0110 0101)2

F3 = (1111 0010 0011 1000 1001)2, F7 = (1101 0011 1011 1011 0100)2 .The bit bi (with 0 ≤ i ≤ 7) of ea
h extra
ted byte is expressed by
bi =

19⊕

j=0

f
(j)
i x8j+i where Fi =

19∑

j=0

f
(j)
i 2j ,and where the xk are the bits 
ontained in the main register.The 
ipher is initialized with an 80-bit key K and an IV of length 0 ≤ v ≤ 80a

ording to Algorithm 1. After the setup phase, the output stream is produ
edby Algorithm 2.Algorithm 1 F-FCSR-H-KeyIVSetup(K, IV)

x := K + 280 · IV = (080−v||IV||K)
a := 0 = (082)for i = 0 to 19 doClo
k the FCSR automatonExtra
t a pseudorandom byte Si using the �lter Fend for
x :=

∑19
i=0 Si · 8i = (S15|| . . . ||S0)Clo
k the FCSR automaton 162 times (dis
ard output in this step)Algorithm 2 F-FCSR-H-KeystreamGenerationwhile true doClo
k the FCSRExtra
t a pseudorandom byte S using the �lter FOutput the value S as keystream byteend whileF-FCSR-16 works analogously to F-FCSR-H, only with larger parameters.It 
onsists of a Galois FCSR of length n = 256 with 
arry 
ells present at l = 130positions. The 
onne
tion integer is 
hosen as

q = (1839714408456194711298691618093441316582
98317655923135753017128462155618715019)10 ,whi
h implies

d =
(

1−q
2

)
= (cb5e129f ad4f7e66 780caa2e c8c9cedb

2102f996 baf08f39 efb55a6e 390002c6)16 .



42 4.2 Example CiphersTo extra
t two pseudorandom bytes, the stati
 �lter F = d is used. The�lter F is split into 16 sub�lters (sub�lter j is obtained by sele
ting the bit j inea
h 16-bit word of F )
F0 = (0110 0011 0001 1000)2, F8 = (1010 0000 1101 1010)2

F1 = (1111 0101 1100 0101)2, F9 = (1101 0101 0011 1101)2

F2 = (1111 1100 0100 1101)2, F10 = (0011 0001 0001 1000)2

F3 = (1110 1111 0001 0100)2, F11 = (1011 1111 0111 1110)2

F4 = (1100 0001 0111 1000)2, F12 = (0101 1000 0110 0110)2

F5 = (0001 0100 0011 1100)2, F13 = (0011 1100 1110 1010)2

F6 = (1011 0011 0010 0101)2, F14 = (1001 1011 0100 1100)2

F7 = (0100 0011 0110 1001)2, F15 = (1010 0111 0111 1000)2The bit bi (with 0 ≤ i ≤ 15) of ea
h extra
ted word is expressed by
bi =

15⊕

j=0

f
(j)
i x16j+i where Fi =

15∑

j=0

f
(j)
i 2j ,and where the xk are the bits 
ontained in the main register.The 
ipher is initialized with a 128-bit key K and an IV of length 0 ≤ v ≤ 128a

ording to Algorithm 3. After the setup phase, the output stream is produ
edby Algorithm 4.Algorithm 3 F-FCSR-16-KeyIVSetup(K, IV)

x := K + 2128 · IV = (0128−v||IV||K)
a := 0 = (0130)for i = 0 to 15 doClo
k the FCSR automatonExtra
t a pseudorandom word Si using the �lter F .end for
x :=

∑15
i=0 Si · 216i = (S15|| . . . ||S0)

a := 0 = (0130)Clo
k the FCSR automaton 258 times (dis
ard output in this step)Algorithm 4 F-FCSR-16-KeystreamGenerationwhile true doClo
k the FCSR
S = x ∧ FSplit S into 16 words of length 16 bits ea
h, su
h that S =

∑15
i=0 Si2

16iOutput the value⊕15
i=0 Si as keystream wordend whileSe
urity ConsiderationsUsing FCSRs as building blo
ks for stream 
iphers had initially been suggestedby Klapper and Goresky (1997, 1994). A few years later Arnault and Berger



4.2 Example Ciphers 43(2005a) revisited the idea by proposing and analyzing a generi
 �lter genera-tor based on a Galois FCSR and the XOR operation as keystream fun
tion.Several 
on
rete instantiations of this idea were proposed (Arnault and Berger,2005b) and improved in the light of 
ryptanalysis results (Jaulmes and Muller,2006, 2005), before the the two 
iphers F-FCSR-H and F-FCSR-16 in the formdes
ribed above were spe
i�ed by Arnault et al. (2006).In the absen
e of any apparent weaknesses in these versions, the ECRYPTstream 
ipher proje
t eStream suggested F-FCSR-H and F-FCSR-16 for pra
-ti
al appli
ations (Babbage et al., 2008).Various analyses suggest that the produ
ed keystream has good pseudoran-domness properties (Arnault and Berger, 2005a, Arnault et al., 2008). The �lterfun
tion 
omputes the binary XOR of its inputs, and its initialization pro
edureensures that the initial state of the generator is periodi
. Hen
e, by Proposi-tion 3.38, the keystream generation pro
edure is equivalent to taking the bitwiseXOR-sum of di�erent parts of the same l-sequen
e, while the starting positionis given by the initial state and the distan
es between the parts are 
onstant.This design was motivated by the 
onje
ture that linear and 2-adi
 operationsare unrelated and that the 
orrelation between two distant parts of the same
l-sequen
e is low (Arnault and Berger, 2005a). Our expli
it 
omputation of thedistan
es for F-FCSR-H based on Proposition 3.38 shows that the parts of thesequen
e are indeed almost evenly distributed over the period (see Fis
her et al.(2008), Appendix A).However, while Arnault et al. (2008) had shown that the 
ells of the 
arryand the main register will not be zero for several 
onse
utive 
lo
k 
y
les, Helland Johansson (2008, 2009) observed that the sequen
e of main register states
(xt)t≥0 that are passed during the operation of the 
ipher are likely to 
ontainsu�
iently long runs of the form (0, . . . , 0, 1, 0), whi
h turns the state updatefun
tion into a linear fun
tion and allows for setting up a system of linearequations in order to re
over the register state. With a few optimizations, Helland Johansson show how to re
over the state of the register in F-FCSR-H fromaround 223.7 bytes of keystream in 10 se
onds on average with standard PChardware. The same idea yields e�
ient atta
ks on F-FCSR-16 and X-FCSR(Stankovski et al., 2009), a software-oriented stream 
ipher based on FCSRs(Arnault et al., 2007). Hen
e, it turns out that the update fun
tion of FCSRsdoes not introdu
e as mu
h nonlinearity as originally expe
ted. In the light ofthese atta
ks, F-FCSR-H and F-FCSR-16 were removed from the eStream listof re
ommended 
iphers.Finally, we want to note that repla
ing the Galois FCSR in an F-FCSR-H-like 
onstru
tion by a Fibona

i FCSR while keeping the XOR �lter fun
tionyields an inse
ure keystream generator. This 
an be seen as follows.Consider the F-FCSR-H parameters, i.e., n = 160, l = 82 and with k = 8linear �lters, but applied to a Fibona

i FCSR. Initially, there are 160 binaryvariables (ignoring the memory), and ea
h updated bit is represented by a newvariable (ignoring the details of the 
onstru
tion and assuming independen
e).Ea
h iteration gives another 8 linear equations in these (initial and newly intro-du
ed) state variables. The main register 
an be re
overed by solving the systemof linear equations if the number of equations is at least as large as the numberof variables. This requires r iterations, where 8r ≥ 160 + r. Consequently,
r = 23 iterations are su�
ient, or 184 bits of keystream. Gaussian eliminationof this system requires a 
omputational e�ort of about 1843, whi
h is about 223.



44 4.3 Abstra
tion: Internal Bitstream GeneratorsAfter re
overing the main register, one 
an re
over the 
ontents of the memory
ells. If the FCSR is in a periodi
 state (whi
h 
an be expe
ted already afterthe initialization phase), then the e�e
tive size of the memory redu
es to 7 bits.Consequently, the memory 
an be guessed or re
overed by FCSR-synthesis, andthe whole state 
an be re
overed in about 230 steps and with less than 200 bitsof keystream. A similar atta
k is possible for any other 
onstru
tion of this typewith k > 1.4.3 Abstra
tion: Internal Bitstream GeneratorsThe keystream generators that we analyze in this thesis are FSR-based in thesense that their internal state is distributed over a small number of feedba
kshift registers R0, . . . , Rk−1 that provide input for the keystream fun
tion C.For our subsequent analysis, it is 
onvenient to think of these FSRs as a singleentity, the internal bitstream generator, that produ
es an internal bitstream
(wt)t≥0 de�ned by

wt := w
r(t)
s(t) with r(t) = t mod k and s(t) = s div k ,i.e., the t-th internal bit 
orresponds to the s(t)-th bit in the bitstream pro-du
ed by Rr(t) (see Fig. 4.6). Again, the internal bitstream (and hen
e the
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Figure 4.6: Derivation of the keystream from the internal bitstreamoutput of the keystream generator) are entirely determined by the generator'sstarting state ω(0), and the �rst m bits 
an be 
omputed as (w0, . . . , wm−1) =
H≤m(ω(0)), where

H≤m : {0, 1}n → {0, 1}m .De�nition 4.1. We 
all an integer i an initial position in w, if wi 
orrespondsto a bit from the initial state of some FSR, and a 
ombined position otherwise.Correspondingly, we denote by IP(i) the set of initial positions and by CP(i)the set of 
ombined positions in {0, . . . , i− 1}. We let IB(w) denote the bits atthe initial positions in w, nmin the maximum i for whi
h all i′ ≤ i are initialpositions, and nmax the minimum i for whi
h all i′ > i are 
ombined positions.



4.3 Abstra
tion: Internal Bitstream Generators 45In an FSR-based bitstream generator, the FSRs may be inter
onne
ted inthe sense that the update fun
tion F i of Ri may also depend on the 
urrent
ontent of the other registers su
h that F i : {0, 1}ni → {0, 1}, ni ≤ n, for all
i ∈ {0, . . . , k − 1}.The keystream fun
tion C : {0, 1}n → {0, 1}∗, whi
h derives keystream bitsfrom the 
urrent state, usually depends on one or more state bits from ea
hFSR. For |w| = m we denote the keystream pre�x that is produ
ed from w by
Cm(w), where Cm : {0, 1}m → {0, 1}∗.Generally, we 
all a keystream generator regularly 
lo
ked, if for all j ∈
{0, . . . , k − 1}, the register Rj is 
lo
ked equally often in ea
h 
lo
king of thewhole generator. This de�nition translates into our notion of FSR-based internalbitstream generators as follows.De�nition 4.2. Let D(w, t) := {wi|zt depends on wi}. We 
all an FSR-basedkeystream generator regularly 
lo
ked if |D(w, t)\D(w, t′)| is 
onstant for allinternal bitstreams w and all 0 ≤ t′ < t.Note that this de�nition 
orresponds to the notion of an oblivious keystreamgenerator that was established by Krause (2007).Two important parameters of FSR-based keystream generators are the best-
ase 
ompression ratio and the information rate, whi
h we de�ne as follows.De�nition 4.3. If γm is the maximum number of keybits that the generatorprodu
es from internal bitstreams of length m, we 
all γ ∈ (0, 1] the best-
ase
ompression ratio of the generator. Moreover, for a randomly 
hosen and uni-formly distributed internal bitstream W (m) ∈ {0, 1}m and a random keystream
Z, we de�ne as information rate α the average information that Z reveals about
W (m), i.e., α := 1

mI
(
W (m), Z

)
∈ (0, 1].1For a randomly 
hosen and uniformly distributed internal bitstream w ∈

{0, 1}m, the probability of the keybits' Cm(w) being a pre�x of a given keystream
z ∈ {0, 1}∗ 
an be expressed as

Pr
w∈{0,1}m

[Cm(w) is pre�x of z] =

⌈γm⌉
∑

i=0

Pr
w∈{0,1}m

[|Cm(w)| = i] · Pr
w ∈ {0, 1}m

|Cm(w)| = i

[Cm(w) = (z0, . . . , zi−1)] .
(4.3)Con
erning this probability, we make the following assumption.Assumption 4.4 (Independen
e Assumption). For all m ≥ 1, a randomly
hosen, uniformly distributed internal bitstream w ∈ {0, 1}m, and all keystreams

z ∈ {0, 1}∗, we have Prw[Cm(w) is pre�x of z] = pC(m), i.e., the probability of
Cm(w) being a pre�x of z is independent of z.As shown by Krause (2002), the 
omputation of α 
an be simpli�ed as followsif the generator ful�lls the Independen
e Assumption.Lemma 4.5. If a keystream generator satis�es the Independen
e Assumption,we have α = − 1

m log2(pC(m)).1Re
all that for two random variables A and B, the value I(A, B) = H(A) − H(A|B)de�nes the information that B reveals about A.



46 4.3 Abstra
tion: Internal Bitstream GeneratorsProof. The de�nitions of information and entropy imply
α =

1

m
I
(

W (m), Z
)

=
1

m

(

H
(

W (m)
)

−H
(

W (m)|Z
))

=
1

m

(

m−H
(

W (m)|Z
))and

H
(

W (m)|Z
)

=

∑

z∈{0,1}∗

Pr [Z = z]



−
∑

w∈{0,1}m

Pr
[

W (m) = w|Z = z
]

· log2 Pr
[

W (m) = w|Z = z
]



 .Under the Independen
e Assumption (Assumption 4.4), all w ∈ {0, 1}m and
z ∈ {0, 1}∗ satisfy

Pr[W (m) = w|Z = z] =

{ 1
pC(m)·2m if C(w) is pre�x of z

0 otherwise .With W̃ := {w ∈ {0, 1}m|Cm(w) is pre�x of z}, we obatin
H
(

W (m)|Z
)

=
∑

z∈{0,1}∗

Pr [Z = z]



−
∑

w∈W̃

(pC(m)2m)−1 · log2((pC(m)2m)−1)





︸ ︷︷ ︸

log2(pC(m)2m)

= log2(pC(m)2m) ,and �nally
α = −

1

m
(m−log2 (pC(m)2m)) =

1

m
(m−log2 pC(m)−m) = −

1

m
log2 pC(m) 2Corollary 4.6. The information rate α of a regularly 
lo
ked FSR-based key-stream generator ful�lling the Independen
e Assumption is given by α = β(m)

m .Proof. The Independen
e Assumption and De�nition 4.2 imply that the 2β(m)possible keystream blo
ks of length β(m) that 
an be produ
ed from the m-bit internal bitstream all have probability pC(m). Hen
e pC(m) = 2−β(m) andtherefore α = − 1
m log2(2

−β(m)) = β(m)
m . 2Observation 4.7. For a regularly 
lo
ked FSR-based keystream generator with

k FSRs that uses exa
tly one bit from ea
h register for 
omputing a keystreambit zt, we have α = 1
k .Finally, we assume the internal bitstream to behave pseudorandomly, whi
hwe formalize as follows.Assumption 4.8 (Pseudorandomness Assumption). For m ≤ ⌈α−1n⌉, let

w and ω(0) denote randomly 
hosen, uniformly distributed elements of {0, 1}mand {0, 1}|IP(m)|, respe
tively. Then, all keystreams z satisfy
Prw[Cm(w) is pre�x of z] ≈ Prω(0)[Cm(H≤m(ω(0))) is pre�x of z].We expe
t the Pseudorandomness Assumption to hold sin
e a signi�
antviolation would imply the vulnerability of the generator to a 
orrelation atta
k.



Chapter 5The BDD-Atta
k5.1 Introdu
tion and OverviewKrause (2002, 2007) proposed a Binary De
ision Diagram (BDD) atta
k onLFSR-based 
ombination generators. The BDD-atta
k is a generi
 atta
k inthe sense that it does not depend on spe
i�
 design properties of the respe
tive
ipher. It only relies on the assumptions that the generator's internal bitstreambehaves pseudorandomly and that the test whether a given internal bitstream
w produ
es a sample keystream 
an be represented in a Free Binary De
isionDiagram (FBDD) of size polynomial in the length of w.The atta
k re
onstru
ts the se
ret initial state from the shortest informa-tion-theoreti
ally possible pre�x of the keystream (usually a small multiple ofthe state size), whereas other generi
 atta
k te
hniques in many 
ases requireamounts of known keystream that are unlikely to be available in pra
ti
e. Par-ti
ularly in the 
ase of E0 and A5/1, the �rst keystream frame already su�
esto obtain all the information that is needed to 
ompute the initial state.As an extension of the original atta
k by Krause (2002), we show that theBDD-based approa
h remains appli
able in the presen
e of (possibly interde-pendent) NFSRs and FCSRs 
ombined with arbitrary keystream fun
tions, aslong as not too many new internal bits are produ
ed in ea
h 
lo
k 
y
le of the
ipher. Consequently, we apply the atta
k to the NFSR-based proposals Triv-ium, Grain, and the F-FCSR family, whi
h were des
ribed in Se
tion 4.2. Inorder to avoid redundan
ies, we dire
tly outline this more general te
hnique andtreat the original atta
k by Krause as a spe
ial 
ase.One drawba
k of the BDD-atta
k is its high memory 
onsumption. Weapproa
h this problem by presenting various e�
iently parallelizable divide-and-
onquer strategies (DCS) for E0 and A5/1 that substantially redu
e thememory requirements and allow us to ta
kle mu
h larger key lengths with �xed
omputational resour
es. In the 
ase of E0, our DCS lowers the atta
k's memoryrequirements by a fa
tor of 225 and additionally yields a slight improvement ofthe theoreti
al runtime.Finally, we present 
omprehensive experimental results for the BDD-atta
kon redu
ed versions of the E0, A5/1 and the self-shrinking generator, whi
hshow that the atta
k performan
e in pra
ti
e does not seem to substantiallydeviate from the theoreti
al �gures.



48 5.2 Representing Boolean Fun
tions with Binary De
ision Diagrams5.2 Representing Boolean Fun
tions with BinaryDe
ision DiagramsBoolean fun
tions 
an be represented in many ways, e.g., in truth tables orsymboli
ally as a formula in algebrai
 normal form (ANF). For our atta
k, yetanother representation will turn out to be parti
ularly useful, namely the graph-based representation in a Binary De
ision Diagram (BDD).BDDs and their variants have re
eived mu
h attention sin
e the publi
ationof the fundamental paper by Bryant (1986). We brie�y review the de�nitionof BDDs and their most important algorithmi
 properties and kindly refer thereader to Wegener (2000) for a more 
omprehensive overview.De�nition 5.1. A Binary De
ision Diagram (BDD) G over a set of vari-ables Xn = {x1, . . . , xn} is a dire
ted, a
y
li
 graph G = (V, E) with E ⊆
V × V × {0, 1}. Ea
h inner node v has exa
tly two outgoing edges, a 0-edge
(v, v0, 0) and a 1-edge (v, v1, 1) leading to the 0-su

essor v0 and the 1-su

essor
v1, respe
tively. G 
ontains exa
tly two nodes with outdegree 0, the sinks s0 and
s1. Ea
h inner node v is assigned a label v.label ∈ xn, whereas the two sinksare labeled s0.label = 0 and s1.label = 1. There is exa
ly one node with indegree
0, the root of G. We de�ne the size of G (denoted by |G|) to be the numberof nodes it 
ontains, i.e., |G| := |V |. Ea
h node v ∈ V represents a BooleanFun
tion fv ∈ Bn = {f |f : {0, 1}n → {0, 1}} in the following manner. For aninput a = (a1, . . . , an) ∈ {0, 1}n, the 
omputation of fv(a) starts in v. In a nodewith label xi, the outgoing edge with label ai is 
hosen, until one of the sinks isrea
hed. The value fv(a) is then given by the label of this sink.De�nition 5.2. For a BDD G over xn, let G−1(1) ⊆ {0, 1}n denote the set ofinputs a

epted by G, i.e., all inputs a ∈ {0, 1}n su
h that froot(a) = 1.Note that we may delete all v ∈ V in G that are not rea
hable from the rootwithout 
hanging the fun
tion froot that G 
omputes.We 
an straightforwardly use BDDs as a data stru
ture for subsets of {0, 1}n.In order to represent S ⊆ {0, 1}n, we 
onstru
t a BDD GS that 
omputes the
hara
teristi
 fun
tion fS of S given by fS(x) = 1 if x ∈ S and fS(x) = 0otherwise. Hen
e, GS will a

ept exa
tly the elements of S. Moreover, we 
an
ompute a BDD representing the interse
tion S ∩ T of two sets S and T fromtheir BDD-representations GS and GT by an AND-synthesis of GS and GT .Remark 5.3. Sin
e general BDDs have many degrees of freedom for represent-ing a parti
ular Boolean fun
tion, many important operations and espe
iallythose that are needed in our 
ontext are NP-hard (
f. Wegener (2000) for de-tails).We therefore 
on
entrate on the more restri
ted models of Free Binary De-
ision Diagrams (FBDDs) and Ordered Binary De
ision Diagrams (OBDDs).5.2.1 Free Binary De
ision Diagrams (FBDDs)De�nition 5.4. An ora
le graph G0 = (V, E) over a set of variables Xn =
{x1, . . . , xn} is a modi�ed BDD that 
ontains only one sink s, labeled ∗, and forall xi ∈ Xn and all paths P from the root in G to the sink, there exists at mostone node in P that is labeled xi.



5.2 Representing Boolean Fun
tions with Binary De
ision Diagrams 49De�nition 5.5. A Free Binary De
ision Diagram G with respe
t to an ora
legraph G0 (abbreviated by G0-FBDD) over a set of variables Xn = {x1, . . . , xn}is a BDD in whi
h all inputs a ∈ {0, 1}n satisfy the following 
ondition. Let thelist G0(a) 
ontain the variables from Xn in the order in whi
h they o

ur on thepath de�ned by a in G0. Similarly, let the list G(a) 
ontain the variables from
Xn in the order in whi
h the 
omponents of a are read in G. If xi and xj areboth 
ontained in G(a), then they o

ur in G(a) in the same order as in G0(a).We 
all a BDD G an FBDD, if there exists an ora
le graph G0 su
h that Gis a G0-FBDD.Figure 5.1 shows examples for an ora
le graph G0 and a G0-FBDD.The de�nition of FBDDs implies their important read-on
e property, i.e., onea
h path in an FBDD G, ea
h variable in Xn is tested at most on
e.

Figure 5.1: An ora
le graph G0 over {z0, . . . , z3} and a G0-FBDDFBDDs possess several algorithmi
 properties that will prove useful in our
ontext. Let G0 denote an ora
le graph over Xn = {x1, . . . , xn} and let the G0-FBDDs Gf , Gg and Gh represent Boolean fun
tions f, g, h : {0, 1}n → {0, 1}.FBDD Property 1. There exists an algorithm MIN that 
omputes for Gf intime O(|Gf |) the (uniquely determined) minimal G0-FBDD G that represents
f . Every minimal G0-FBDD G over Xn satis�es |G| ≤ n · |G−1

f (1)|.FBDD Property 2. There exists an algorithm SYNTH that 
omputes for Gf ,
Gg and Gh in time O(|G0| · |Gf | · |Gg| · |Gh|) a G0-FBDD G of size |G| ≤
|G0| · |Gf | · |Gg| · |Gh| whi
h represents the fun
tion f ∧ g ∧ h.FBDD Property 3. There exists an algorithm SAT-ENUM that enumeratesfor a G0-FBDD Gf all elements in G−1

f (1) in time O(n · |G−1
f (1)|).De�nition 5.6. We 
all an algorithm A over the input spa
e {0, 1}n read-on
ealgorithm, if it reads ea
h input bit at most on
e.De�nition 5.7. Fix a read-on
e algorithm A over {0, 1}n, an input x ∈ {0, 1}nand an ora
le graph G0 over Xn. Let the list π(A, x) 
ontain the variables from

Xn in the order in whi
h they are read by A when pro
esing x, and let thelist π(G0, x) 
ontain the variables from Xn in the order in whi
h they o

ur onthe path de�ned by x in G0. We say that the read-on
e algorithm A respe
tsthe ora
le graph G0 (A is G0-respe
ting) if for all inputs x ∈ {0, 1}n, any twovariables xi, xj from π(A, x) o

ur in the same order in π(G0, x) as in π(A, x).
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tions with Binary De
ision DiagramsRead-on
e algorithms 
orrespond to Eraser Turing Ma
hines (Eraser-TMs),whi
h only di�er from general Turing ma
hines in the property that ea
h inputbit is deleted immediately after being read (Ajtai et al., 1986, Krause et al.,1988). We 
onsider Eraser-TMs that have an asso
iated ora
le graph whi
hdetermines the reading order of the input bits. During the 
omputation, thema
hine follows the path that the input de�nes in the ora
le graph in order todetermine the next bit to read.The following observation links read-on
e algorithms to FBDDs and is animmediate 
onsequen
e of the observations by Meinel (1989).Observation 5.8. Fix a subset F ⊆ {0, 1}n and an ora
le graph G0 over Xn =
{x1, . . . , xn}. Ea
h G0-respe
ting read-on
e algorithm A that de
ides for aninput x = (x1, . . . , xn) ∈ {0, 1}n whether x ∈ F while using at most p bits ofadditional memory 
an be e�
iently transformed into a G0-FBDD of size atmost |G0| · 2p.Proof. Consider the Eraser-TM with p memory 
ells that 
orresponds to A.A 
on�guration of A is given by the tuple (vi, y1, . . . , yp), where vi denotesthe 
urrent vertex in G0 and (y1, . . . , yp) represents the 
urrent 
ontent of theadditional memory 
ells.We transform A into a G0-FBDD GA as follows. The verti
es in GA havethe form [vi, y] ∈ V (G0) × {0, 1}p, and a vertex [vi, y] is labled with vi.label.If (vi0 , y0) denotes the initial 
on�guration of A, we de�ne as root of GA thevertex [vi0 , y0]. For ea
h transition δ(vi, y, xvi.label) = (v′i, y

′) of A, we add to
GA a dire
ted (xvi.label)-edge from vertex [vi, y] to vertex [v′i, y

′]. For a stop
on�guration δ(vi, y, xvi.label) = (vi, y) of A with output b ∈ {0, 1}, we add adire
ted (xvi.label)-edge from vertex [vi, y] to the b-sink.We observe that sin
e A is G0-respe
ting, the reading order on ea
h pathfrom the root to a sink in GA is 
onsistent with G0, whi
h makes GA a G0-FBDD.For a �xed vi ∈ V (G0), A has at most 2p 
on�gurations (vi, y). Therefore,the maximum size of GA is |G0| · 2p. 2Many important Boolean fun
tions 
an even be e�
iently represented ina more restri
ted BDD variant, so-
alled Ordered Binary De
ision Diagrams(OBDDs), whi
h we are going to des
ribe next.5.2.2 Ordered Binary De
ision Diagrams (OBDDs)Ordered Binary De
ision Diagrams were �rst des
ribed by Bryant (1986) andhave be
ome an important tool for 
ir
uit veri�
ation, VLSI-design and manyother appli
ations.De�nition 5.9. A variable ordering π for a set of variables Xn = {x1, . . . , xn}is a permutation of the index set I = {1, . . . , n}, where π(i) denotes the positionof xi in the π-ordered variable list xπ−1(1), xπ−1(2), . . . , xπ−1(n).De�nition 5.10. A π-Ordered Binary De
ision Diagram (π-OBDD) with re-spe
t to a variable ordering π is a BDD in whi
h the sequen
e of tests on a pathfrom the root to a sink is restri
ted by π, i.e., whenever an edge leads from an
xi-node to an xj-node, then π(i) < π(j). A BDD G is 
alled OBDD, if thereexists a variable ordering π su
h that G is a π-OBDD.



5.2 Representing Boolean Fun
tions with Binary De
ision Diagrams 51For an OBDD G we de�ne its width as
w(G) := max

i
{|{v ∈ G|v.label = xi}|} .Note that we may view any π-OBDD as a degenerated G0-FBDD in whi
hthe reading order on ea
h path from the root to one of the sinks is 
onsistentwith π, i.e., G0 is degenerated into a linear list that 
orresponds to π.Conversely, a π-OBDD may at the same time be a G0-FBDD in the followingsense.De�nition 5.11. A variable ordering π for Xn is said to be 
onsistent withan ora
le graph G0 over Xn if for any (i, j) ∈ {1, . . . , n}2 with π(i) < π(j), xio

urs before xj on all paths in G0.Observation 5.12. If a variable ordering π is 
onsistent with an ora
le graph

G0, then any π-OBDD is a G0-FBDD.Figure 5.2 shows a π-OBDD that 
omputes the fun
tion
f(z0, . . . , z3) = z0z2 ∨ z0z̄2z3 ∨ z̄0z1z3 .Similarly to FBDDs, OBDDs allow for e�
ient implementations of the op-erations that we will be interested in. Let π denote a variable ordering for

Xn = {x1, . . . , xn} and let the π-OBDDs Gf , Gg and Gh represent Booleanfun
tions f, g, h : {0, 1}n → {0, 1}.OBDD Property 1. The size of Gf is bounded by |Gf | ≤ m · w(Gf ).OBDD Property 2. There exists an algorithm MIN that 
omputes in time
O(|Gf |) the uniquely determined minimal π-OBDD G with w(G) ≤ |G−1

f (1)|that represents f .OBDD Property 3. There exists an algorithm SYNTH that 
omputes in time
O(|Gf | · |Gg| · |Gh|) a minimal π-OBDD G with w(G) ≤ w(Gf ) ·w(Gg) ·w(Gh).OBDD Property 4. There exists an algorithm SAT-ENUM that enumeratesall elements of G−1

f (1) in time O
(

n · |G−1
f (1)|

).

Figure 5.2: A π-OBDD over {z0, . . . , z3} with π(0) = 0, π(1) = 2, π(2) = 1 and
π(3) = 3.
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overyDe�nition 5.13. We say that a read-on
e algorithm A respe
ts a variable or-dering π (A is π-respe
ting) if A does not read xi after xj in 
ase π(i) < π(j)for all i, j ∈ {1, . . . .n}.Similarly to the 
orresponden
e of read-on
e algorithms and FBDDs de-s
ribed by Observation 5.8, we 
an transform a π-respe
ting read-on
e algorithminto a π-OBDD.Observation 5.14. Fix a subset F ⊆ {0, 1}n and a variable ordering π for
Xn = {x1, . . . , xn}. Ea
h π-respe
ting read-on
e algorithm A that de
ides foran input x = (x1, . . . , xn) ∈ {0, 1}n whether x ∈ F while using at most p bitsof additional memory 
an be e�
iently transformed into a π-OBDD of width atmost 2p.Proof. The proof is largely analogous to the proof of Observation 5.8, but wein
lude it for 
ompleteness.Consider the eraser Turing ma
hine with p memory 
ells that 
orrespondsto A. We 
an assume w.l.o.g. that the input is π-ordered, i.e., it is given as
xπ(1), xπ(2), . . . , xπ(n). A 
on�guration of A is given by the tuple (i, y1, . . . , yp),where i denotes the 
urrent read position in the input and (y1, . . . , yp) representsthe 
ontent of the p additional memory 
ells.We transform A into a π-OBDD GA as follows. The verti
es in GA have theform [i, y] ∈ {1, . . . , n} × {0, 1}p, and a vertex [i, y] is labled with xi. If (i0, y0)denotes the initial 
on�guration of A, we de�ne as root of GA the vertex [i0, y0].For ea
h transition δ(i, y, xi) = (i′, y′) of A, we add to GA a dire
ted xi-edgefrom vertex [i, y] to vertex [i′, y′]. For a stop 
on�guration δ(i, y, xi) = (i, y) of
A with output b ∈ {0, 1}, we add a dire
ted xi-edge from vertex [i, y] to the
b-sink.We observe that sin
e A is π-respe
ting, the reading order on ea
h path fromthe root to a sink in GA is 
onsistent with π, whi
h makes GA a π-OBDD.For a �xed i ∈ {1, . . . , n}, A has at most 2p 
on�gurations (i, y). Therefore,the maximum width of GA is 2p. 25.3 BDD-based Initial State Re
overyThe BDD-based atta
k on keystream generators is a known-plaintext initialstate re
overy atta
k, i.e., the atta
ker tries to re
onstru
t the unknown initialstate ω(0) of the keystream generator from a few known plaintext bits p0, p1, . . .and their en
ryptions c1, c2, . . .. In our s
enario in whi
h a 
iphertext bit ci is
omputed from a plaintext bit pi and a keystream bit zi via ci = pi ⊕ zi, thekeystream bit zi 
an be re
onstru
ted from (pi, ci) by 
omputing pi ⊕ ci = zi.We �rst observe that for any internal bitstream w ∈ {0, 1}m that yields apre�x of the observed keystream, the following two 
onditions must hold.Condition 1. w is an m-extension of the initial state bits in w, i.e., we have
H≤m(IB(w)) = w.Condition 2. Cm(w) is a pre�x of the observed keystream z.We 
all any w ∈ {0, 1}m that satis�es these 
onditions an m-
andidate. Ourstrategy is now to start with m = nmin and to dynami
ally 
ompute the m-
andidates for m > nmin until only one m-
andidate is left. The �rst bits of
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overy 53this m-
andidate will 
ontain the initial state ω(0) that we are looking for. We
an expe
t to be left with only one m-
andidate for m ≥ ⌈α−1n⌉, whi
h followsdire
tly from the following Lemma.Lemma 5.15 (Krause (2002)). Under Assumption 4.8, all keystreams z andall m ≤ ⌈α−1n⌉ satisfy |{ω(0) ∈ {0, 1}n : Cm(H≤m(ω(0))) is pre�x of y}| ≈
2|IP(m)|−αm ≤ 2n−αm. Hen
e, there exist approximately 2n−αm m-
andidates.The key problem that we have to solve is to 
ompute and represent the
m-
andidates e�
iently. Our solution is based on the following BDD-basedapproa
h. Let G0

m denote the ora
le graph over {w0, . . . , wm−1} that representsthe order in whi
h the keystream fun
tion Cm reads the bits from the internalbitstream. We represent the bitstreams w ful�lling 
onditions 1 and 2 in theminimal G0
m-FBDDs Rm and Qm, respe
tively. Starting from Pnmin := Qnmin ,we 
ompute for nmin < m ≤ ⌈α−1n⌉ the G0

m-FBDDs Pm := MIN(Pm−1 ∧
Qm ∧Sm), where the minimum G0

m-FBDD Sm tests whether wm−1 is in the m-extension of IB(w). Note that we have Pm = MIN(Qm∧Rm) with Rm =
∧m

i=1 Sifor allm, and Pm a

epts exa
tly the m-
andidates. This strategy is summarizedin Algorithm 5.Algorithm 5 Re
overInitialState
P = Qnminfor m = nmin + 1 to ⌈α−1n⌉ do

P = MIN(P ∧Qm ∧ Sm)end forreturn the initial state bits 
ontained in one of the w ∈ P−1(1)The e�
ien
y of Algorithm 5 essentially depends on the sizes of the inter-mediate results Pm, whi
h we are going to estimate in the following.Assumption 5.16 (BDD Assumption). For all m ≥ nmin we assume that
|G0

m|, |Sm|, |Qm| ∈ mO(1) and that there exists an integer p ≥ 1 su
h that |Rm| ≤
|G0

m| · 2
p·|CP(m)|.Lemma 5.17. Let K denote an FSR-based keystream generator with k FSRs

R0, . . . , Rk−1 of lengths n(0), . . . , n(k−1), and let n =
∑k−1

i=0 n(i). If K ful�llsthe BDD Assumption and the Pseudorandomness Assumption, we have for all
nmin < m ≤ ⌈α−1n⌉

|Pm| ≤ max
1≤m≤⌈α−1n⌉

{

min
{

ǫ(m)|Qm| · 2
m−|IP(m)|, m · 2|IP(m)|−αm

}}

≤ ǫ(m)|Qm| · 2
p(1−α)

p+α
n ≤ nO(1)2

p(1−α)
p+α

nwith ǫ(m) = |G0
m|

2. If there exists a variable ordering πm su
h that all G0
m-FBDDs are πm-OBDDs, ǫ(m) redu
es to the 
onstant 1.The proof borrows from the ideas presented by Krause (2002, 2007) andworks as follows.Proof. The de�nitions of Qm and Rm imply that Pm = Qm ∧ Rm for nmin <

m ≤ ⌈α−1n⌉, and therefore |Pm| ≤ |G0
m| · |Qm| · |Rm| (FBDD Property 2) in
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 BDD Constru
tionsthe FBDD-
ase and |Pm| ≤ |Qm| · |Rm| (OBDD Property 3) in the OBDD-
ase.Under Assumption 5.16 we obtain
|Pm| ≤ ǫ(m)|Qm| · 2

p·|CP(m)| . (5.1)On the other hand, Lemma 5.15 implies that |Pm| ≤ m · |P−1
m (1)| ≈ m ·

2m∗−αm for m∗ = |IP(m)| and nmin < m ≤ ⌈α−1n⌉, whi
h means
|Pm| ≤ m · 2m∗−αm = m · 2(1−α)m∗−α·|CP(m)| . (5.2)Combining Eqs. (5.1) and (5.2), we obtain for nmin < m ≤ ⌈α−1⌉n

|Pm| ≤ min{ǫ(m)|Qm| · 2
p·|CP(m)|, m · 2(1−α)m∗−α·|CP(m)|}

≤ ǫ(m)|Qm| ·min{2p·|CP(m)|, 2(1−α)m∗−α·|CP(m)|}

= ǫ(m)|Qm| ·min{2p·r(m∗), 2(1−α)m∗−αr(m∗)} with r(m∗) = |CP(m)|

≤ ǫ(m)|Qm| · 2
p·r∗(m∗) ,where r∗(m∗) denotes the solution of p · r(m∗) = (1 − α)m∗ − αr(m∗). Weobtain r∗(m∗) = 1−α

p+αm∗ and hen
e |Pm| ≤ ǫ(m)|Qm| · 2
p(1−α)

p+α
m∗ . With nmin <

m ≤ ⌈α−1n⌉ and therefore ǫ(m)|Qm| ∈ mO(1) ⊆ nO(1) and m∗ = |IP(m)| ≤ n,we obtain
|Pm| ≤ ǫ(m)|Qm| · 2

p(1−α)
p+α

n ≤ nO(1)2
p(1−α)

p+α
n for all nmin < m ≤ ⌈α−1n⌉ . 2From this bound on |Pm|, we 
an straightforwardly derive the time, memoryand data requirements of the BDD-based atta
k.Theorem 5.18. Let K denote a regularly 
lo
ked FSR-based keystream gen-erator with an unknown initial state ω(0) ∈ {0, 1}n, information rate α andbest-
ase 
ompression ratio γ. If K ful�lls the Independen
e Assumption, thePseudorandomness Assumption and the BDD Assumption, an initial state s̃0that yields the same keystream as ω(0) 
an be 
omputed with time and mem-ory requirements in O (ǫ(n)|Qn|2

p(1−α)
p+α

n
) from the �rst ⌈γα−1n⌉ 
onse
utivekeystream bits of K under ω(0).Note that by setting p = 1 in Theorem 5.18, we obtain the main Theoremof Krause (2002).5.4 Generi
 BDD Constru
tions5.4.1 Keystream Consisten
y Che
k QmIn most 
ases, a BDD Qm that 
he
ks Condition 2 
an be straightforwardlyderived from the de�nition of the keystream fun
tion C. If the 
omputation ofa keystream bit zt depends on u(j) > 1 bits from an FSR Rj , a �xed bit inthe bitstream produ
ed by Rj will generally appear and have to be read in the
omputation of up to u(j) keystream bits. In this 
ase, we 
ompute a keystreambit zt from a number of new bits whi
h are being 
onsidered for the �rst time,
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 BDD Constru
tions 55and several old bits that were already involved in the 
omputation of previouskeystream bits. This would imply (at least in a straightforward implementation)reading a �xed variable more than on
e on the same path in Qm, whi
h isprohibited by the FBDD-de�nition. The less restri
tive general BDDs wouldpermit this 
onstru
tion, but 
ould no longer guarantee the e�
ien
y of theoperations that our atta
k depends on (
f. Remark 5.3).A similar problem has been 
onsidered by Krause (2002) in the 
ontext of theirregularly 
lo
ked A5/1 generator (
f. Se
tion 4.2.3), whi
h uses the bits of theinternal bitstream both for 
omputing keystream bits and as input for the 
lo
k
ontrol me
hanism. His solution was to in
rease the number of unknowns byworking with u(j) syn
hronized dupli
ates of the Rj-bitstream at the expenseof a redu
ed information rate α.We now 
onsider the more general situation that the keystream fun
tiondepends on new bits and some fun
tion(s) g1, . . . , gr in the old bits. In order topreserve the read-on
e property, we introdu
e auxiliary variables for the valuesof these fun
tions su
h that zt is 
omputed only from new bits. This 
onstru
tionis illustrated in the following example.Example 5.19. Consider the keystream fun
tion zt = Cm(wt+5, wt+7, wt+9),where Cm is de�ned by Cm(x1, x2, x3) = x1 ⊕ x2 ⊕ x3. Assuming 
anoni
alreading order, wt+9 would be the new bit and wt+5 and wt+7 the old bits. Withthe auxiliary variable w̃t := g1(wt+5, wt+7) and g1(x1, x2) := x1 ⊕ x2, we 
anexpress zt as zt = w̃t ⊕ wt+9.In general, if we add for ea
h of the r auxiliary variables an FSR to the gen-erator that outputs at 
lo
k t the 
orresponding value of gj , we 
an equivalently
ompute zt without 
onsidering the bits from the internal bitstream more thanon
e. Obviously, we obtain a generator with a lowered information rate, sin
emore bits of the internal bitstream have to be read in order to 
ompute thesame number of keystream bits.In the 
ase of regularly 
lo
ked keystream generators, we de�ne the set ofvariable indi
es that the keystream fun
tion depends on as
I := {i|zt depends on wt+i} ⊆ {0, . . . , n− 1} .The bits 
ontributed by register Rj , j ∈ {1, . . . , k}, 
an be expressed as

Ij := {i ∈ I|i ≡ j mod k} .Then, the set of new bits is given as
I∗ := {i∗1, . . . , i

∗
k} with i∗j = argmaxi∈Ij

{πm(i)} for j ∈ {1, . . . , k} ,and the old bits are those in the set I ′ := I\I∗.Con
erning the information rate of the modi�ed generator, Observation 4.7implies:Observation 5.20. Fix a regularly 
lo
ked keystream generator and denote by
I the set of positions in the internal bitstream that its keystream fun
tion dependson. If the keystream fun
tion 
an be expressed as a fun
tion depending on the
k variables in {wt+i|i ∈ I∗} and the values of r subfun
tions depending onthe variables in {wt+i|i ∈ I ′}, the keystream fun
tion 
an be transformed intoan equivalent read-on
e keystream generation algorithm su
h that the resultinggenerator's information rate is α = 1

k+r .
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 BDD Constru
tions5.4.2 FSR Consisten
y Che
k RmRe
all that ea
h bit wt of an internal bitstream w is either an initial state bit ofsome FSR or a 
ombination of other internal bits. In order to de
ide for a giveninternal bitstream whether it satis�es Condition 1, we need to 
he
k whetherthe update relations imposed on the bits at the 
ombined positions are ful�lled.Hen
e, if a 
ombined bit wt is produ
ed by an update relation f(s0, . . . , sn−1),we need to 
he
k whether f(wi1 , . . . , wip
) = wt, whi
h is equivalent to testingwhether

f̃(wi1 , . . . , wip
, wt) := f(wi1 , . . . , wip

)⊕ wt = 0 .The OBDD Sm implements this test for the single 
ombined bit wm−1 andrepresents the 
onstant-one fun
tion if wm−1 is an initial bit. The OBDD Rm =
∧m

i=1 Si performs the 
onsisten
y tests for the whole internal bitstream.We �rst 
onsider the 
ase of FSRs (without additional memory), for whi
hwe need the following de�nition.De�nition 5.21. For a polynomial f : {0, 1}n → {0, 1} with
f(w1, . . . , wn) =

⊕

j∈M

mj with monomials mj =
∧

l∈Mj

wl and M j(f) ⊆ {1, . . . , n}and a reading order π ∈ σn, we de�ne the set of a
tive monomials at time t as
AMπ(f, t) := {mj : 0 < |{π−1(1), . . . , π−1(t)} ∩M j(f)| < |M j(f)|} .Hen
e, AM(f, t) 
ontains all monomials in f for whi
h at least one, but not allfa
tors are known after the �rst t inputs have been read.Lemma 5.22. For a polynomial f : {0, 1}n → {0, 1} with n > 1 and a readingorder π for the inputs, the set of inputs satisfying f(w1, . . . , wn) = 0 
an berepresented in a π-OBDD of width 2max1≤t≤n{|AMπ(f,t)|}+1.Proof. Let p := max1≤t≤n{|AMπ(f, t)|}. In order to 
ompute f(w1, . . . , wn),we may pro
eed in the following way. We de�ne p auxiliary variables b1, . . . , bp,whi
h will store the intermediate values of partly evaluated monomials, andan additional variable b0 for the sum of evaluated monomials. We initialize

b0 := 0, bt := 1 for t > 0, and read the variables w1, . . . , wn in the order givenby π. For ea
h variable wt, we update all auxiliary variables that are asso
iatedwith monomials 
ontaining wt. If a monomial be
omes a
tive by reading wt,we allo
ate an auxiliary variable bj and de�ne bj := wt. If a monomial isentirely evaluated after reading wt, we add its value to b0 and free the asso
iatedauxiliary variable. Sin
e there are at most p a
tive monomials at any time, nomore than p + 1 auxiliary variables will be needed simultaneously.Observation 5.14 implies that this strategy 
an be transformed into a π-OBDD of width 2p+1, whi
h imples the 
laim. 2From Lemma 5.22, we 
an dire
tly derive an upper bound for the width ofthe πm-OBDD Sm for an FSR.Corollary 5.23. For a given reading order πm, an integer m > 0, an FSR Rwith update relation f , and p := max0≤t<m{|AMπm
(f̃ , t)|}+1, we 
an 
onstru
ta πm-OBDD Sm of width at most 2p that tests for an internal bitstream w ∈

{0, 1}m if w ful�lls the update relation imposed on wm−1.
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tions 57Remark 5.24. For the spe
ial 
ase p = 1, we obtain the LFSR-bound that wasproved by Krause (2002).We now turn to the 
ase of Fibona

i FCSRs. Eq. (3.6) implies that weneed a

ess to σt−1 in order to 
he
k whether the update relation holds for
wt. Therefore, we work with a modi�ed FCSR that essentially outputs thesum σt instead of the bit wt = σt mod 2 in ea
h 
lo
k. For a Fibona

i FCSRwith p bits of additional memory, we let the modi�ed FCSR output for aninitial memory state (b0

p−1, . . . , b
0
0) with b0 =

∑p−1
i=0 b0

i 2
i the values y0

t =: σ0
t for

t < n − 1, (bp−1
0 , . . . , b0

0, y
0
n−1) for t = n − 1, and (σp

t , σp−1
t , . . . , σ0

t ) for t ≥ nwith σt =
∑p

i=0 σi
t2

i and wt = σ0
t .Note that a bit wm in the output of the modi�ed FCSR, m ≥ 0, then
orresponds to the i-th 
omponent bit of some intermediate sum σt with

(i, t) = τ(m) :=







(0, m) if m < n− 1
(m− (n− 1) mod (p + 1), otherwise

(m− (n− 1) div (p + 1)) + (n− 1))
.Lemma 5.25. For a Fibona

i FCSR R with p bits of additional memory, aninteger m > 0, and a reading order πm, we 
an 
onstru
t a πm-OBDD Smof width at most 2p+1 that tests for the internal bitstream w ∈ {0, 1}m of themodi�ed FCSR with m = n − 1 + t(p + 1) whether the last p + 1 bits ful�ll theupdate relation.Proof. In order to 
he
k whether σt = (σt−1 div 2) +

∑n
i=1 wt−i · di−1, we 
anequivalently test if

σt =

p
∑

i=1

σi
t−1 · 2

i +

n∑

i=1

σ0
t−i · di−1 ,sin
e wt = σt mod 2 = σ0

t .Algorithm 6 des
ribes a read-on
e algorithm that 
he
ks whether the last
p + 1 bits of a bitstream w ∈ {0, 1}m are 
onsistent with the values of theremaining bits in w. Sin
e the algorithm uses exa
tly p + 1 bits of additionalmemory, Observation 5.14 implies that it 
an be transformed into an OBDD ofwidth at most 2p+1, whi
h implies the 
laim. 2Note that a

ording to Corollary 3.26, we have p ≈ log(d) for a periodi
initial FCSR-state, where d denotes the FCSR's feedba
k tap ve
tor.In the 
ase of Galois FCSRs with ai ≤ di at all times, we denote by xi(t)and ai(t) the value of the register 
ells xi and ai at time t. We think of themain register of the Galois FCSR as produ
ing the bitstream

x0(0), x1(0), . . . , xn−1(0), . . . , xi1(t), . . . , xil
(t), . . . ,where ij ∈ {1 ≤ i < n|di = 1}, l = wt(d) − 1, ij < ij′ for j < j′, and

t > 0. Similarly, we view the bitstream produ
ed by the 
arry register as
ai1(t), . . . , ail

(t), . . . for t ≥ 0.Lemma 5.26. For a Galois FCSR R with ai−1 ≤ di−1 for all i ∈ {1, . . . , n−1},an integer m > 0, and a reading order πm, we 
an 
onstru
t a πm-OBDD Sm
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 BDD Constru
tionsAlgorithm 6 Fibona

iFCSR-Sm(πm, w)Let (i, t) := τ(m)if t < n− 1 thenreturn true// Nothing to 
he
k for initial bitsend if
σ̃ := 0 // Initialize the (p + 1)-bit auxiliary variablefor j = 0 to m− 1 do

(i′, t′) := τ((πm)−1(j)) // Determine the σi′

t′ that 
orresponds to the 
ur-rently read variable wjif t′ ∈ {t− n, . . . , t− 1} and i′ = 0 then
σ̃ := σ̃ + wj · dt−t′−1end ifif t′ = t− 1 and i′ ∈ {1, . . . p} then
σ̃ := σ̃ + wj · 2i′end ifif t′ = t thenif σ̃i′ 6= σi′

t′ thenreturn falseend ifend ifend forreturn trueof width at most 2 that tests whether a bit in the bitstream produ
ed by the mainregister ful�lls the 
orresponding update relations. For a bit in the bitstreamof the 
arry register, we 
an perform this 
onsisten
y test in a πm-OBDD ofmaximum width 8.Proof. The de�nition of Galois FCSRs implies xn−1(t) = x0(t − 1) and for
i ∈ {n − 2, . . . , 0} that xi(t) = xi+1(t − 1) if di = 0 and xi(t) = xi+1(t − 1) ⊕
ai(t−1)⊕x0(t−1) if di = 1. Note that we have xij+1(t−1) = xij+1 (t−(ij+1−ij))and therefore

xij
(t) = xij+1(t− 1)⊕ aij

(t− 1)⊕ x0(t− 1)

= xij+1 (t− (ij+1 − ij))⊕ aij
(t− 1)⊕ x0(t− 1) .A

ording to Corollary 5.23, we 
an test these linear 
onditions in a πm-OBDDof width at most 2.Similarly, Corollary 5.23 yields a maximum width of 23 = 8 in the 
ase ofthe 
arry register, sin
e bij

(t) 
an be 
omputed as
aij

(t) = xij+1(t− 1)aij
(t− 1)⊕ aij

(t− 1)x0(t− 1)⊕ x0(t− 1)xij
(t− 1)

= xij+1 (t− (ij+1 − ij))aij
(t− 1)⊕ aij

(t− 1)x0(t− 1)

⊕ x0(t− 1)xij+1(t− (ij+1 − ij)) ,whi
h implies the 
laim. 2From the bounds on w(Sm) for the di�erent types of FSRs, we 
an nowstraightforwardly derive a bound for w(Rm) for an FSR-based keystream gener-ator. Let K denote an FSR-based keystream generator 
onsisting of k FSRs
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R0, . . . , Rk−1 with πm-OBDDs S0

m, . . . , Sk−1
m and w(Si

m) ≤ 2pi for all i ∈
{0, . . . , k − 1}. Moreover, let si denote the fra
tion of 
ombined bits that Ri
ontributes to the internal bitstream.Corollary 5.27. There exists a πm-OBDD Rm of width at most 2|CP(m)|

Pk−1
i=0 pisithat tests for a potential internal bitstream w ∈ {0, 1}m of an FSR-based keystreamgenerator whether it is an m-extension of the initial bits.Proof. The 
laim follows dire
tly fromRm =

∧m
i=1 Si and the OBDD-propertiesdes
ribed in Se
tion 5.2. 25.5 Appli
ations5.5.1 Self-Shrinking GeneratorAs dis
ussed in Se
tion 4.2.1, the self-shrinking generator 
onsists of only oneLFSR and no memory. It produ
es at most m keybits from an internal bitstream

w2m, i.e., γ · 2m = m and γ = 0.5.Lemma 5.28. For all keystreams z ∈ {0, 1}∗, there exist at most (m/2
|z|

)
2m/2−|z|internal bitstreams w ∈ {0, 1}m su
h that Cm(w) = z.Proof. We �rst observe that due to γ = 0.5, we have |Cm(w)| ≤ 0.5m, i.e., nointernal bitstream of length m 
an produ
e more than m

2 keystreams bits. We�x a keystream z of length at most m
2 and let Zz = {w ∈ {0, 1}m : Cm(w) = z}.For ea
h w ∈ Zz, there exists a set I = {i1, . . . , i|z|} ⊆ {0, . . . , m

2 } su
h that
(w2ij

, w2ij+1) = (1, zj) for j ∈ {1, . . . , |z|}.Moreover, w must satisfy w2ij
= 0 for all ij ∈ {0, . . . , m

2 }\I. There are
(m/2

|z|

) possible 
hoi
es for I and 2m/2−|z| possible assignments to the unrestri
tedvariables. Hen
e,
|Zz| =

(
m/2

|z|

)

2m/2−|z| .
2Corollary 5.29 (Krause (2002)). The information rate of the self-shrinkinggenerator is α = 1− log(3)

2 ≈ 0.2075.Proof. Lemma 5.28 implies that for a z ∈ {0, 1}∗,
|{w ∈ {0, 1}m : Cm(w) is pre�x of z}| =

m/2
∑

|z|=0

(
m/2

|z|

)

2m/2−|z|

=

m/2
∑

|z|=0

(
m/2

|z|

)

1|z|2m/2−|z|

=(1 + 2)m/2 = 3m/2 .Hen
e,
α = −

1

m
Pr
w

[Cm(w) is Pre�x of z]

= −
1

m

|{w ∈ {0, 1}m : Cm(w) is pre�x of z}|

2m

= 1−
log(3)

2
≈ 0.2075 ,
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ationswhi
h 
on
ludes the proof. 2Algorithm 7 tests whether a given internal bitstream w is 
onsistent with akeystream pre�x z. Sin
e the algorithm is read-on
e and uses at most ⌊log(m)⌋+
1 bits of additional memory, Observation 5.14 implies that it 
an be transformedinto a πm-OBDD Qm with w(Qm) ≤ m and |Qm| ≤ m2, where πm denotes the
anoni
al reading order.Algorithm 7 SelfShrinkingGenerator-Qm(w, z)

t := 0
u := 0 // auxiliary variable u, u ≤ ⌊m

2 ⌋while t < m− 1 doif wt = 1 thenif zu 6= wt+1 thenreturn falseend if
u := u + 1end if

t := t + 2end whilereturn trueAltogether, we obtain from Theorem 5.18, Corollary 5.23, and Remark 5.24:Corollary 5.30 (Krause (2002)). From a pre�x of length ⌈2.41n⌉ of a keystream
z = Cm(L(x)) produ
ed by a self-shrinking generator of key length n, an ini-tial state x̃ with Cm(L(x̃)) = z 
an be 
omputed in time and with spa
e in
O(n2 · 20.6563n).Compared with the atta
ks mentioned in Se
tion 4.2.1, the BDD-Atta
k isalmost as fast as the 
urrently best short-keystream atta
k due to Hell andJohansson (2006), but 
onsumes exponentially more memory.5.5.2 Bluetooth Keystream Generator E0Re
all from Se
tion 4.2.2 that the E0 keystream generator is a regularly 
lo
ked
(4, 4)-
ombiner with 4 LFSRs, a 4-bit memory unit and an internal state size of128 bits. Therefore, we have α = γ = 1

4 .Algorithm 8 tests whether a given internal bitstream w is 
onsistent with anobserved E0-keystream z, given that the initial memory state is q0. ExploitingEqs. (4.1) and (4.2), the algorithm relies on a lookup-table δ′ : {0, . . . , 4}×{0, 1}4that maps the sum s′t =
∑3

i=0 wi
t and the 
urrent memory state qt to the nextmemory state qt+1 = δ′(s′t, qt). Sin
e the algorithm uses a 
onstant amountof additional memory, it 
an be transformed into a πm-OBDD Qm of 
onstantmaximum width, as indi
ated by Observation 5.14. Similarly to the 
ase of theSelf-Shrinking Generator, πm denotes the 
anoni
al reading order.In summary, Theorem 5.18, Corollary 5.23, and Remark 5.24 imply thefollowing performan
e �gures for the BDD-based atta
k on E0.Corollary 5.31 (Krause (2002)). From a pre�x of length n of a keystream

z = Cm(L(x)) produ
ed by an E0 keystream generator of key length n, an initial



5.5 Appli
ations 61Algorithm 8 E0-Qm(q0, w, z)// w is interpreted as w = w0
0 , . . . , w

3
0 , . . . , w

0
j , . . . , w3

j , . . . , w
m−1mod 4
m−1div 4

t := 0
s := 0 // auxiliary variable for the integer sum, s ∈ {0, . . . , 4}
q := q0 // auxiliary variable for the memory statefor t = 0 to ⌊m

4 ⌋ − 1 do
s := w0

t + w1
t + w2

t + w3
tif (s mod 2)⊕

⊕3
i=0 ciq 6= zt thenreturn falseend if

q := δ′(s, q)end forreturn truestate x̃ with Cm(L(x̃)) = z 
an be 
omputed in time and with spa
e in O(n·20.6n),i.e., with 276.8 polynomial-time operations for n = 128.The BDD-Atta
k slightly improves the atta
k by Fluhrer and Lu
ks (2001),whi
h trades o� time and the number of required keystream bits. For the min-imum number of 132 available keystream bits the atta
k needs 284 polynomialtime operations.5.5.3 GSM Keystream Generator A5/1We note that a bit that serves as input for the keystream fun
tion f at a par-ti
ular time has been 
onsidered a few 
lo
kings earlier by the 
lo
k 
ontrolme
hanism. Based on our observations in Se
tion 5.4.1, we therefore dupli
atethe three registers of A5/1 su
h that the keystream bits are 
omputed from the�rst three registers and the 
lo
k 
ontrol operates on the remaining registers.However, the keystream generation algorithm of the resulting generator is stillnot read-on
e, sin
e the bits of un
lo
ked registers are re
onsidered in subse-quent iterations. The read-on
e Algorithm 9 �xes this problem by introdu
-ing auxiliary variables for these un
hanged values. It 
an be straightforwardly
he
ked that this algorithm is equivalent to the original A5/1 algorithm.Due to the irregular 
lo
king of the A5/1 algorithm, the information rate αis a little less straightforward to 
ompute, but 
an be determined as follows.Lemma 5.32 (Krause (2002), Stegemann (2004)). The information rateof the modi�ed A5/1 keystream generator is given by
α =

1

2
log u1 ≈ 0.2193 ,where u1 denotes the positive real root of the polynomial p(u) = u3 − 3u2 + 8.Proof. The Independen
e Assumption has been shown to hold for A5/1 byKrause (2002) and Stegemann (2004). For an arbitrary keystream z, m ≥ 1,and a randomly 
hosen internal bitstream w, |w| = m, let

p(m) := Pr
w

[Cm(w) is pre�x of z] .
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ationsAlgorithm 9 read-on
e-A5/1(w)// w is interpreted as w = w0
0 , . . . , w

5
0 , . . . , w

0
j , . . . , w

5
j , . . . , wm−1 mod 6

m−1 div 6

i := [0, 0, 0] // 
urrent read positions
u :=NIL // un
hanged index ∈ {0, 1, 2, NIL}
v :=NIL // un
hanged 
ontrol value ∈ {0, 1, NIL}
v′ :=NIL // un
hanged output value ∈ {0, 1, NIL}
t := 0while (true) doif ∃r ∈ {0, 1, 2}\{u} : 6 · i[r] + r ≥ m thenstopend if

Read := {0, 1, 2}\{u}Let r0, . . . , r|Read|−1 the elements of Read in as
ending order, i.e. rm < rnfor m < n
out[r0] := wr0

i[r0]

out[r1] := wr1

i[r1]if u 6= NIL then // ∃ an un
hanged index
out[u] := v′ // 
opy the un
hanged output valueelse // all read positions in
remented
out[r2] := wr2

i[r2] // read the third output valueend ifoutput zt = out[0]⊕ out[1]⊕ out[2]if ∃r ∈ {0, 1, 2}\{u} : 6 · i[r] + 3 + r ≥ m thenstopend if
c[r0] := w3+r0

i[r0]

c[r1] := w3+r1

i[r1]if u 6= NIL then // ∃ an un
hanged index
c[u] := v // 
opy the un
hanged 
ontrol valueelse // all read positions in
remented
c[r2] := w3+r2

i[r2] // read the third 
ontrol valueend if
controlbit := maj3(c[0], c[1], c[2])if ∃r ∈ {0, 1, 2} : c[r] 6= controlbit then// By de�nition of maj3, ∃ at most one su
h r

u := r // set un
hanged index
v := controlbit⊕ 1 // set un
hanged 
ontrol value
v′ := out[r] // set un
hanged output valueelse // all read positions in
remented
u := v := v′ := NILend iffor l ∈ {0, 1, 2}\{u} do
i[l] := i[l] + 1 // in
rement read positionsend for

t := t + 1end while
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ations 63Moreover, de�ne for m ≥ 0 and k ≤ m

p(m, k) := Pr
w∈u{0,1}m

[|Cm(w)| = k] .Sin
e a keystream bit is 
omputed either from 4 or 6 internal bits, we have
m
6 ≤ |Cm(w)| ≤ m

4 . Based on Equation (4.3) we 
an express p(m) as
p(m) = Pr

w
[Cm(w) is pre�x of z]

=

⌈γm⌉
∑

i=0

Pr
w

[|Cm(w)| = i] · Pr
|Cm(w)|=i

[Cm(w) = z0, . . . , zi−1]

=

m
4∑

k= m
6

p(m, k) · 2−k .Furthermore, Lemma 4.5 implies α = − 1
m log2(p(m)). Therefore, we nowderive a suitable re
urren
e relation for p(m) and use this expression to 
ompute

α. Let W denote the random variable that stores the number of internal bitsthat were used for the 
omputation of the �rst m
6 keystream bits. Moreover,let W ′ store the number of keystream bits that were 
omputed from 6 internalbits. These de�nitions imply

W = 6 ·W ′ + 4 · (
m

6
−W ′) .The number of internal bits that have not been read after the m

6 keystream bitshave been produ
ed is given by
m−W = m− (6 ·W ′ + 4 · (

m

6
−W ′)) =

1

3
m− 2W ′ .We obtain the following re
urren
e relation for p(m).

p(m) =

m
6∑

i=0



2−
m
6 Pr[W ′ = i] ·

( 1
3m−2i)/6
∑

j=( 1
3m−2i)/6

2−jp

(
1

3
m− 2i, j

)




=

m
6∑

i=0

2−
m
6 Pr[W ′ = i] · p

(
1

3
m− 2i

)Sin
e W ′ is (m
6 , 1

4

)-binomially distributed (
f. Stegemann (2004) for aproof), we 
an write Pr[W ′ = i] as
Pr[W ′ = i] =

(m
6

i

)(
1

4

)i (
3

4

)m
6 −i

,whi
h implies
p(m) =

m
6∑

i=0

2−
m
6

(m
6

i

)(
1

4

)i (
3

4

)m
6 −i

· p

(
1

3
m− 2i

)
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ationsWith p(m) = 2−αm, we obtain a re
urren
e relation for α:
2−αm =

m
6∑

i=0

2−
m
6

(m
6

i

)(
1

4

)i (
3

4

)m
6 −i

· 2−α( 1
3m−2i)

= 2−( 1
6+ α

3 )m

m
6∑

i=0

(m
6

i

)(
1

4

)i (
3

4

)m
6 −i

· 22αiLemma 5.45 implies that this equation is equivalent to
2−αm = 2−( 1

6+ α
3 )m

(
1

4

)m
6

(3 + 22α)
m
6

⇐⇒ 2−6α = 2−(1+2α) 1

4
(3 + 22α)

⇐⇒ 21−4α =
1

4
(3 + 22α)

⇐⇒ 2(22α)−2 −
1

4
(22α)−

3

4
= 0By substituting u := 22α, i.e., α = 1

2 log u, we �nally obtain
u3 + 3u2 − 8 = 0 . 2The read-on
e Algorithm 10 tests for a given internal bitstream w and anobserved keystream z whether z 
ould have been produ
ed by w. In order totransform Algorithm 10 into an FBDD, we pro
eed as follows. We �rst 
onvertthe fun
tion output-test into an output− FBDD(i, u, v, v′, t). Let out[rj ] denotethe value of the variable w

rj

i[rj ] for j ∈ {0, 1, 2} and let
v̂′ :=

{
out[r0]⊕ out[r1]⊕ out[r2] u = NIL
out[r0]⊕ out[r1]⊕ v′ u 6= NIL

.Then, output− FBDD(i, u, v, v′, t) is a 
omplete binary tree of depth 2 if u 6=
NIL and a 
omplete binary tree of depth 1 if u = NIL with

qj =

{
control− FBDD(i, u, v, v̂′, out, t) if v̂′ = wt

0− sink otherwise .If there exists an r ∈ {0, 1, 2}\{u} su
h that 6 · i[r] + r ≥ m, then
output− FBDD(i, u, v, v′, t)is identi
al to the 1-sink. Similarly, in order to 
onvert the fun
tion control− testinto a

control− FBDD(i, u, v, v′, out, t) ,let c[rj ] denote the value of w
3+rj

i[rj ] , set
controlbit :=

{
maj3(c[r0], c[r1], c[r2]) if u = NIL
maj3(c[r0], c[r1], v) if u 6= NIL

,and de�ne î, û, v̂, and v̂′ as in the fun
tion control− test.
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control− FBDD(i, u, v, v′, t) is then a 
omplete binary tree of depth 2 if

u 6= NIL and a 
omplete binary tree of depth 1 if u = NIL with
qj = output− FBDD(̂i, û, v̂, v̂′, t + 1) .As above, if there exists an r ∈ {0, 1, 2}\{u} su
h that 6 · i[r] + 3 + r ≥ m,then control− FBDD(i, u, v, v′, t) is identi
al to the 1-sink.Altogether, the FBDD Qm is given by

output− FBDD([0, 0, 0], NIL, NIL, NIL, 0) .Sin
e the sub-FBDDs output− FBDD and control− FBDD have 
onstantsizes and there are at most O(m4) di�erent sub-FBDDs, the size of Qm satis�es
|Qm| ∈ O(m4).Ignoring the 
urrent position t in the keystream and omitting the test whether
zt = v̂′ in the fun
tion output− test, we 
an straightforwardly derive from Qmthe ora
le graph G0

m that de�nes the order in whi
h the bits of the wj are readin Qm. It is easy to see that |G0
m| ∈ O(m3).Algorithm 10 A5/1-Qm(w, z)// w is interpreted as w = w0
0 , . . . , w

5
0 , . . . , w

0
j , . . . , w5

j , . . . , w
m−1 mod 6
m−1 div 6export w, m, z // global variablesreturn output-test([0,0,0℄,NIL,NIL,NIL,0)The de�nition of A5/1 implies that the keystream fun
tion reads the bitsprodu
ed by a �xed LFSR Rj, j ∈ {0, . . . 5}, in 
anoni
al order. Hen
e, thereading order πj

m de�ned by πj
m(i) := i div k for i ≡ j mod 6 is 
onsistent with

G0
m in the sense of De�nition 5.11. Observation 5.12 then implies that the πj

m-OBDD Sm with j = (m − 1) mod 6 
onstru
ted a

ording to Corollary 5.23and Remark 5.24 is a G0
m-FBDD.Obviously, at most m
4 keybits are produ
ed from an internal bitstream oflength m, whi
h implies γ = 1

4 .In summary, we obtain by plugging the 
omputed values into the statementsof Theorem 5.18:Corollary 5.33 (Krause (2002)). From a pre�x of length ⌈1.14n⌉ of a keystream
y = Cm(L(x)) produ
ed by an A5/1 keystream generator of key length n, an ini-tial state x̃ with Cm(L(x̃)) = y 
an be 
omputed in time and with spa
e in
O(n10 ·20.6403n), i.e, with 20.6403n = 241 polynomial-time operations for n = 64.We note that sin
e ⌈1.14n⌉ = 73 and the framelength in GSM is 114 Bits forea
h dire
tion , we only need the �rst frame, i.e., the �rst around 4.6 millise
-onds, of a 
onversation in order to re
onstru
t the initial state of the keystreamgenerator.5.5.4 TriviumTrivium (see Se
tion 4.2.4) is a regularly 
lo
ked keystream generator 
onsistingof three inter
onne
ted NFSRs R0, R1, R2 of lengths n(0) = 93, n(1) = 84, and
n(2) = 111. The 288-bit initial state of the generator is derived from an 80 bit
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ationsfun
tion output-test(i, u, v, v′, t)// i=
urrent read positions// u=un
hanged index ∈ {0, 1, 2, NIL}// v=un
hanged 
ontrol value ∈ {0, 1, NIL}// v′=un
hanged output value ∈ {0, 1, NIL}// t=
urrent position in the keystreamif ∃r ∈ {0, 1, 2}\{u} : 6 · i[r] + r ≥ m thenreturn trueend if
Read := {0, 1, 2}\{u}Let r0, . . . , r|Read|−1 the elements of Read in as
ending order, i.e. rm < rnfor m < n
out[r0] := wr0

i[r0]

out[r1] := wr1

i[r1]if u 6= NIL then // ∃ an un
hanged index
out[u] := v′ // 
opy the un
hanged output valueelse // all read positions in
remented
out[r2] := wr2

i[r2] // read the third output valueend if
v̂′ := out[0]⊕ out[1]⊕ out[2]if zt 6= v̂′ thenreturn false // keystream in
onsistentend ifreturn 
ontrol-test(i, u, v, v̂′, out, t)key and an 80 bit IV. The keystream fun
tion 
omputes a keystream bit zt bylinearly 
ombining six bits of the internal state, with ea
h NFSR 
ontributingtwo bits (
f. Se
tion 4.2.4 for details). In order to mount the BDD-atta
k onTrivium, we write the keystream fun
tion as

zt = g1(s1, s94, s178)⊕ s28 ⊕ s109 ⊕ s223and pro
eed as des
ribed in Se
tion 5.4.1 by adding an LFSR R3 whi
h 
omputes
g1 to the generator. For πm equal to the 
anoni
al reading order, we have pi =
max1≤t≤288{|AMπm

(f̃ i, t)|}+1 = 2 and si = 1
4 for i ∈ {0, 1, 2} as well as p3 = 1and s3 = 1

4 , whi
h implies p =
∑3

i=0 pisi = 7
4 . Sin
e the modi�ed generator
omputes one keystream bit from four internal bits, we have β(m) = 1

4m and
α = γ = 1

4 . Based on Lemma 5.22, we 
an obviously 
onstru
t a πm-OBDD Qmwith w(Qm) ≤ 2 that performs the 
onsisten
y test for the observed keystream
z.Observation 5.34. For Trivium we have Prw[Cm(w)is pre�x of z] = pC(m) =
2−|Cm(w)|, i.e., the Independen
e Assumption holds.Proof. Let z̃ = (z̃1, . . . , z̃|z̃|) denote an arbitrary |z̃|-bit keystream. Sin
e w(m)is randomly 
hosen and uniformly distributed, we have

Pr
w

[z1 = w1 + w28 + w94 + w109 + w178 + w223 = z̃1] =
1

2
.
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fun
tion 
ontrol-test(i, u, v, v′, out, t)if ∃r ∈ {0, 1, 2}\{u} : 6 · i[r] + 3 + r ≥ m thenreturn trueend if
Read := {0, 1, 2}\{u}Let r0, . . . , r|Read|−1 the elements of Read in as
ending order, i.e. rm < rnfor m < n
c[r0] := w3+r0

i[r0]

c[r1] := w3+r1

i[r1]if u 6= NIL then // ∃ an un
hanged index
c[u] := v // 
opy the un
hanged 
ontrol valueelse // all read positions in
remented
c[r2] := w3+r2

i[r2] // read the third 
ontrol valueend if
controlbit := maj3(c[0], c[1], c[2])if ∃r ∈ {0, 1, 2} : c[r] 6= controlbit then// By de�nition of maj3, ∃ at most one su
h r

û := r // set un
hanged index
v̂ := controlbit⊕ 1 // set un
hanged 
ontrol value
v̂′ := out[r] // set un
hanged output valueelse // all read positions in
remented
û := v̂ := v̂′ := NILend iffor l ∈ {0, 1, 2} do
î[l] := i[l] +

{
1 l 6= u
0 l = uend forreturn output-test(̂i, û, v̂, v̂′, t + 1)



68 5.5 Appli
ationsThree of the six internal bits utilized in the 
omputation of a parti
ular key-bit will be reused in later steps, but ea
h step also involves three previouslyun
onsidered bits. Hen
e, the 
laim follows by indu
tion. 2By plugging α, γ and p into the statement of Theorem 5.18, we obtain:Theorem 5.35. The se
ret initial state of the Trivium automaton 
an be re-
overed from the �rst n keystream bits in time and with spa
e in O (n · 20.65625n
)
≈

2189 for n = 288.Theorem 5.35 shows that the BDD-atta
k is appli
able to Trivium, but itsperforman
e is not 
ompetitive with re
ently published atta
ks requiring only
245 operations as des
ribed in Se
tion 4.2.4.5.5.5 Grain-128The regularly 
lo
ked stream 
ipher Grain-128 (see Se
tion 4.2.5) has a key sizeof 128 bits and an IV size of 96 bits. The design is based on two inter
onne
tedshift registers, an LFSR R0 and an NFSR R1, both of lengths n(0) = n(1) = 128and a nonlinear keystream fun
tion. We denote the 
ontent of the LFSR by
st, st+1, . . . , st+127 and the 
ontent of the NFSR by bt, bt+1, . . . , bt+127. The
orresponding update fun
tions and the keystream fun
tion are given in Se
-tion 4.2.5.We add to the keystream generator an NFSR R2 whi
h 
omputes the keystreambits zt and have the generator output the values produ
ed by R2 in ea
h 
lo
k.More pre
isely, we 
an 
ompute zt as

zt = g1(bt+2, bt+15, bt+36, bt+45, bt+64, bt+73, bt+89, bt+12, st+8, st+13, st+20,

st+60, st+79)⊕ bt+95g2(st+42)⊕ g3(bt+12)bt+95st+95 ,where g2(st+42) = st+42 and g3(bt+12) = bt+12 and g1 
ontains 3 monomials ofdegree 2.Hen
e, we 
an 
ompute one keystream bit from 3 internal bits, whi
h implies
β(m) = 1

3m and α = γ = 1
3 . For πm equal to the 
anoni
al reading order, itis p0 = 1, and we have p1 = max0≤i≤117{|AMπm

(f̃1, t + i)|} + 1 = 4, and
p2 = max0≤i≤95{|AMπm

(f̃2, t + i)|} + 1 = 4. Hen
e, p = 1
3 + 4

3 + 4
3 = 3.Obviously, the 
onsisten
y test for an observed keystream 
an be performed bya πm-OBDDQm with w(Qm) ≤ 23 = 8 a

ording to Lemma 5.22. Sin
e new bitsare utilized in the 
omputation of ea
h keybit, we 
an expe
t the Independen
eAssumption to hold.Hen
e, the appli
ation of Theorem 5.18 yieldsTheorem 5.36. The se
ret initial state of the Grain automaton 
an be re
ov-ered from the �rst n keystream bits in time and with spa
e in O (n · 20.6n
)
≈ 2154for n = 256.Compared to the atta
ks listed in Se
tion 4.2.5, although far from the e�ortrequired by exhaustive key sear
h, Theorem 5.36 is to the best of our knowl-edge the �rst exploitable 
ryptanalyti
 result under realisti
 assumptions be-sides generi
 time-memory-data-tradeo� atta
ks as presented by Biryukov andShamir (2000).



5.5 Appli
ations 695.5.6 The F-FCSR Stream Cipher FamilyThe F-FCSR stream 
ipher family in its 
urrent version 
onsists of the variantsF-FCSR-H and F-FCSR-16 (see Se
tion 4.2.6).F-FCSR-H has key length 80 bits and 
onsists of a single Galois FCSR Mof length n = 160 and a feedba
k tap ve
tor d of Hamming weight 83. Memory
ells are only present at those 82 positions i ∈ {1, . . . , n− 1}, for whi
h di = 1.At ea
h 
lo
k, eight keystream bits bi are 
reated by taking the XOR-sum of upto 15 variables of the 
urrent internal state (
f. Se
tion 4.2.6 for details).In order to mount the BDD-atta
k, we split the FCSR into the main register
R0 and the 
arry register R1. Sin
e ea
h keystream bit is 
omputed as thesum of up to 15 internal bits, we are in a similar situation as des
ribed inExample 5.19 and need additional LFSRs R2, . . . , R9 to 
ompute the keystreambits zi, 0 ≤ i < 8. The modi�ed keystream fun
tion simply returns thesebits in ea
h 
lo
k. With l := wt(d) − 1 we obtain eight keystream bits from
2l + 8 internal bits, hen
e β(m) = 8

2l+1m and α = γ = 8
2l+8 = 2

43 . We have
p0 = p1 = l, pi = 1 for i ∈ {2, . . . , 9}, s0 = s1 = l

2l+8 , and si = 1
2l+8 for

2 ≤ i ≤ 9, whi
h implies p = 2l2+1
2l+1 .Obviously, the 
onsisten
y test for the observed keystream z 
an be per-formed by an OBDD Qm with w(Qm) ≤ 2. Sin
e the 
omputation of thekeybits involves new internal bits in every 
lo
k, we 
an expe
t the Indepen-den
e Assumption to hold. Note that we have l additional unknowns from theinitial value of the 
arry register.Plugging the 
omputed values into the statement of Lemma 5.17 implies thefollowing theorem.Theorem 5.37. The se
ret initial state of the F-FCSR-H automaton 
an be re-
overed from the �rst n+l keystream bits in time and with spa
e in O (n · 20.9925(n+l)

)
≈

2241 for n = 160 and l = 82.The F-FCSR-16 generator has the same stru
ture as F-FCSR-H, but largerparameters. More pre
isely, we have key length 128 bits, n = 256 and thefeedba
k tap ve
tor has Hamming weight 131 (i.e., l = 130), where memory 
ellsare only present at nonzero tap positions as before. Sin
e F-FCSR-16 produ
es
16 keystream bits per 
lo
k, we 
onstru
t 16 additional LFSRs that produ
ethese bits. Hen
e, we 
an 
ompute 16 keystream bits from 2l + 16 internal bits,whi
h implies β(m) = 16

2l+16m and α = γ = 16
2l+16 = 4

69 . Analogously to the
ase of F-FCSR-H, we obtain p = 2l2+16
2l+16 . The modi�ed generator satis�es theIndependen
e Assumption as before, and we have l = 130 additional unknowns.We obtain by applying Lemma 5.17:Theorem 5.38. The se
ret initial state of the F-FCSR-16 automaton 
an be re-
overed from the �rst n+l keystream bits in time and with spa
e in O (n · 20.94(n+l)

)
≈

2363 for n = 256 and q′ = 8.Our analysis supports the se
urity requirement that the Hamming weight of
c should not be too small, whi
h Arnault et al. (2006) motivated by 
ompletelydi�erent arguments. Although the BDD-atta
k is to the best of our knowledgethe �rst nontrivial atta
k on the 
urrent version of the F-FCSR family, itse�
ien
y is by no means 
lose to exhaustive key sear
h.



70 5.6 Divide-and-Conquer Strategies (DCS)5.6 Divide-and-Conquer Strategies (DCS)One obvious disadvantage of BDD-based atta
ks is their high memory 
onsump-tion, whi
h is essentially determined by the size of the intermediate BDDs Pm.One possible approa
h are divide-and-
onquer strategies (DCS) that divide thesear
h spa
e, i.e., the set {0, 1}m of internal bitstreams of length m, into seg-ments and to apply BDD-based atta
ks to the segments individually.We represent a segmentation of {0, 1}m by a fun
tion θm : {0, 1}m → {0, 1}∗assigning a segment to ea
h internal bitstream. The number of di�erent seg-ments is then given by |im(θm)|. We denote by θς
m the 
hara
teristi
 fun
tionof segment ς ∈ im(θm), i.e.,

θς
m : {0, 1}m → {0, 1}

w 7→

{
1 if θm(w) = ς
0 otherwise .Consequently, we denote by Θς

m the G0
m-FBDD representing θς

m, i.e., the G0
m-FBDD that a

epts exa
tly those w ∈ {0, 1}m that satisfy θς

m(w) = 1. Basedon a segmentation θm, we 
an perform the BDD-based atta
k as outlined inAlgorithm 11.Algorithm 11 Re
overInitialState-DCSfor all ς ∈ im(θm) do
P ς = Qnmin

∧Θς
nminfor m = nmin + 1 to ⌈α−1n⌉ do

P ς = MIN(P ς ∧Qm ∧ Sm ∧Θς
m)end forif (P ς)−1 (1) 6= {} thenreturn the initial state bits 
ontained in one of the w ∈ (P ς)

−1
(1)end ifend forIn the same way as the original atta
k des
ribed in Algorithm 5, the per-forman
e of the DCS-based atta
k fundamentally depends on the size of theintermediate FBDDs P ς

m. Compared to the FBDDs Pm in the original atta
k,
P ς

m satis�es |(P ς
m)−1(1)| ≤ | (Pm)

−1
(1)| due to its 
onstru
tion. Hen
e,

m · | (P ς
m)−1 (1)| ≤ m · | (Pm)−1 (1)| .On the other hand, the 
onstru
tion of P ς

m implies
|G0

m| · |Qm| · |Rm| · |Θ
ς
m| ≥ |G

0
m| · |Qm| · |Rm| ,i.e., one of the two bounds that we have used to estimate |Pm| in the proofof Lemma 5.17 de
reases and the other one in
reases. We 
on
lude that ingeneral, we will only bene�t from a divide-and-
onquer strategy if |Θς

m| is small(preferrably polynomial in m) and |im(θm)|, the number of segments, is nottoo large, as we have to apply the atta
k to ea
h segment instead of only on
e.However, sin
e a parti
ular internal bitstream belongs to exa
tly one segment,the sets of internal bitstreams mapped to the same segment are disjoint, andthe atta
ks on the individual segments 
an be e�
iently parallelized.



5.6 Divide-and-Conquer Strategies (DCS) 71We now 
onsider the spe
ial 
ase of setting 
onstant the bits at 
ertain initialpositions in the internal bitstream. If V ⊆ IP(m), |V | ≤ n, denotes the set ofinitial positions to be set 
onstant, we de�ne the restri
tion of w ∈ {0, 1}m tothe bits at the positions in V as w|V := (wi1 , . . . , wi|V |
) with ij ∈ V , ij < ik for

j < k, and the 
orresponding segmentation fun
tion as
θm,V : {0, 1}m → {0, 1}|V |

w 7→ w|V
.We 
all a position j ≥ 1 a V-determined position in w = (w0, . . . , wm−1) if

j ∈ V ∪ {0, . . . , m− 1} or if the value of wj is determined by the bits wl, l ∈ V .We note that |im(θm,V )| = 2|V | and that the 
onstru
tion of the G0
m-FBDD

Θς
m,V is trivial, while its size is bounded by |Θς

m,V | ∈ O(|V |). The atta
k onan individual segment ς ∈ {0, 1}|V | only needs to regard the bits at the n− |V |non-
onstant initial positions as unknowns, and in the worst 
ase, there areno V -determined positions ex
ept for those in V . The DCS-based atta
k on asingle segment therefore 
orresponds (in the worst 
ase) to the original atta
kwith redu
ed key length. Following the lines of the proof of Lemma 5.17 westraightforwardly obtainTheorem 5.39. For an FSR-based keystream generator ful�lling the require-ments of Lemma 5.17 and a divide-and-
onquer strategy based on setting 
on-stant the bits at initial positions j ∈ V , |V | ≤ n, the divide-and-
onquer algo-rithm (Algorithm 11) will 
onsume time in the order of O (2|V |ǫ(n)|Qn||V |2r∗)and memory in the order of O (ǫ(n)|Qn||V |2
r∗), with r∗ := p(1−α)

p+α (n− |V |).5.6.1 DCS for regularly 
lo
ked (k, l)-CombinersBased on Theorem 5.39, we analyze two parti
ular 
hoi
es for V that are appli-
able to regularly 
lo
ked (k, l)-
ombiners, e.g., the E0 keystream generator.First, we de�ne V to 
ontain exa
tly the positions of the �rst s initial bitsof ea
h FSR. In the worst 
ase, there are no V -determined positions besides thepositions in V .For a segment ς ∈ im(θm,V ), a BDD-based sear
h of the 
orrespondingsegment requires as mu
h e�ort as the original BDD-atta
k on a (k, l)-
ombinerof key length (n−ks). We therefore obtain r∗ = k−1
k+1 (n−ks) and the exponentialpart of the overall runtime be
omes

2ks+ k−1
k+1 (n−ks) = 2

k−1
k+1 n+ 2k

k+1 s ,whi
h is by a fa
tor of 2
2k

k+1 s worse than in the original atta
k. On the otherhand, the required memory is redu
ed by a fa
tor of 2
k−1
k+1 ks.We note that we only need to 
onsider the assignments to the positionsin V that are 
onsistent with z. If the 
ombination of the �rst s initial bitsin ea
h register determines the values of the �rst s keystream bits (E0 hasthis property, for instan
e), Lemma 5.15 implies that it is su�
ient to 
onsideraround |{0, 1}(1−α)ks| = 2(k−1)s of the |im(θm,V )| = 2ks possible segments,whi
h makes the runtime de
rease by a fa
tor of 2s to

2
k−1
k+1 n+ k−1

k+1 s .



72 5.6 Divide-and-Conquer Strategies (DCS)Lemma 5.40. For a regularly 
lo
ked (k, l)-
ombiner ful�lling the requirementsof Lemma 5.17 and the divide-and-
onquer strategy of setting 
onstant the �rst
s bits produ
ed by ea
h FSR, the divide-and-
onquer algorithm (Algorithm 11)will 
onsume time in the order of O (ǫ(n)|Qn| · ks · 2

k−1
k+1 (n+s)+s

) and memoryin the order of O (ǫ(n)|Qn| · ks · 2
k−1
k+1 (n−ks)

). If the 
ombiner always produ
es
s keystream bits from the registers' �rst s initial bits, the runtime de
reases bya fa
tor of 2s.The E0 keystream generator is a regularly 
lo
ked (4, 4)-
ombiner, whi
himpliesCorollary 5.41. For the E0 keystream generator with key length n = 128,
hoosing V to 
ontain the positions of the �rst s initial bits of ea
h LFSR yieldsa runtime of the DCS-based atta
k of 20.6(128+s) polynomial time operations anda memory 
onsumption in the order of 20.6(128−4s).As a se
ond example, we 
hoose as V the set of all initial positions thatbelong to the shortest FSR, w.l.o.g. the FSR R0. If we denote by n0 ≤

n
kthe length of R0, {0, 1}n0 is the set of all possible initial states of R0. Sin
eevery k-th position of an internal bitstream w is V -determined, the atta
k on aparti
ular segment 
orresponds to the performan
e of the original BDD-atta
kon a (k− 1, l)-
ombiner of key length n−n0, hen
e r∗ = k−2

k (n−n0). It is easyto see that for n0 ≤
n

k+1 , we have
|V |+ r∗ = n0 +

k − 2

k
(n− n0) ≤

k − 1

k + 1
n ,whi
h means that for su�
iently small n0, we even obtain a runtime improve-ment in addition to the signi�
antly redu
ed spa
e 
onsumption.Lemma 5.42. For a regularly 
lo
ked (k, l)-
ombiner ful�lling the requirementsof Lemma 5.17, n0 the length of the shortest FSR, and the divide-and-
onquerstrategy of setting 
onstant the shortest FSR, the divide-and-
onquer algorithm(Algorithm 11) will 
onsume time in the order of O (ǫ(n)|Qn| · n0 · 2n0+

k−2
k

(n−n0)
)and memory in the order of O (ǫ(n)|Qn| · n0 · 2

k−2
k

(n−n0)
).In the 
ase of the E0 keystream generator, we have n0 = 25 ≤ 25.6 = 128

4+1and obtainCorollary 5.43. For the E0 keystream generator with key length n = 128,
hoosing V to be the set of all initial positions that belong to the LFSR oflength n0 = 25 (the shortest LFSR) yields a runtime of the DCS-based atta
k of
225+ 1

2103 = 276.5 polynomial-time operations and a memory 
onsumption in theorder of 251.5.Compared to the original BDD-atta
k, we have improved the memory 
on-sumption by a fa
tor of about 225 and the runtime by a fa
tor of 20.3.Shaked and Wool (2006) set 
onstant the last parts of the LFSRs in E0(60 bits in total) and thereby lowered the memory requirements to 223 whilein
reasing the runtime to the order of 283.



5.6 Divide-and-Conquer Strategies (DCS) 735.6.2 DCS for the A5/1 GeneratorIn the following, we 
ompute the information rate of the A5/1 generator withrespe
t to a family of 
hoi
es for the set V , parti
ularly those de�ned by setting
onstant the initial states of one or more LFSRs. As stated in Se
tion 5.5.3,in the unmodi�ed de�nition of the A5/1 generator, ea
h of the three LFSRsis divided into two, approximately equally long halfs, a value-half 
onsisting ofthe output 
ell and the 
ells between output and 
lo
k-
ontrol 
ell and a 
ontrolhalf 
onsisting of the 
lo
k-
ontrol 
ell and the rest of the register. Sin
e thevalue-LFSRs and the 
ontrol-LFSRs in the modi�ed setting 
orrespond to thevalue-halfs and the 
ontrol-halfs in the unmodi�ed 
ase, setting 
onstant theinitial states of LFSRs or half-LFSRs in the original de�nition is equivalent to�xing the 
orresponding LFSRs in the modi�ed 
ase.For all natural numbers i ≥ 1, we denote by Zi and Wi the random vari-ables 
orresponding to the i-th keystream bit and the number of internal bitspro
essed for the produ
tion of the i-th keystream bit, respe
tively, taken overthe probability spa
e of all random internal bitstreams. In all 
ases, Zi and Wiwill ful�ll the following 
onditions.
• For all i > 1, Wi is independent of W1, . . . , Wi−1, and Zi is independentof Z1, . . . , Zi−1.
• Pr[Zi = 0] = Pr[Zi = 1] = 1

2 .
• There are natural numbers a > b > c and probabilities p, q and r = 1−p−qsu
h that Pr[Wi = a] = p, Pr[Wi = b] = q, and Pr[Wi = c] = r.We denote the situation that Zi and Wi ful�ll the above 
onditions as 
ase

[(p, a), (q, b), (r, c)]. It 
an be easily 
he
ked that the unrestri
ted A5/1 gen-erator 
orresponds to 
ase [(1/4, 6), (3/4, 4), (0, 0)]. We will see below that allgenerators derived from the A5/1 generator by setting 
onstant one or more ofthe six LFSRs 
orrespond to [(p, a), (q, b), (r, c)] for some p, q, r, a, b, c. We maythen 
ompute the information rate α with the help of the following Theorem.Theorem 5.44. In the 
ase [(p, a), (q, b), (r, c)], the information rate equals α,where t = 2α is the unique positive real solution of pta + qtb + rtc − 2 = 0.Note that for the spe
ial 
ase [(1, k), 0, 0] the information rate is 1/k.In order to prove Theorem 5.44, we need the following te
hni
al result.Lemma 5.45 (Krause (2002)). All natural numbers N ≥ 1, probabilities p ∈

(0, 1) and real numbers β > 0 satisfy∑N
i=0

(
N
i

)
pi(1−p)N−i2βi =

(
1− p + p2β

)N
.Proof (Theorem 5.44). Sin
e we 
an obtain the information rate α from

α = − 1
m log2 pC(m) following Assumption 4.4, we now 
ompute the proba-bility pC(m) = Prw[Cm(w) is pre�x of z] for the 
ases that parts of the LFSRsare set 
onstant.Case [(p, a), (q, b), (r, c)] implies that from all random internal bitstreams oflength m, m divisible by a, at least m/a keystream bits are produ
ed. Thenumber of internal bits remaining from m internal bits after the produ
tion of

m/a keystream bits 
an be 
omputed as
m− aU − bV − c

(m

a
− U − V

)

=
a− c

a
m− (a− c)U − (b− c)V ,



74 5.6 Divide-and-Conquer Strategies (DCS)where U and V denote the number of keystream bits among the �rst m/akeystream bits for whi
h a and b internal bits are pro
essed, respe
tively. Notethat U is (p, m/a)-binomially distributed and that V , under the 
ondition that
U = i, is (q/(q + r), m/a− i)-binomially distributed. We obtain the followingrelation for pC(m).
pC(m) = 2−

m
a

m
a∑

i=0

m
a
−i
∑

j=0

Pr[U = i, V = j]p

(
a− c

a
m− (a− c)i− (b − c)j

) , i.e.,
2−αm = 2−

m
a

m
a∑

i=0

(m
a

i

)

pi(1− p)
m
a
−i

·

m
a
−i
∑

j=0

(m
a − i

j

)(
q

q + r

)j (
r

q + r

)m
a
−i−j

· 2−α( a−c
a

m−(a−c)i−(b−c)j) ,whi
h is equivalent to
2(1−aα+(a−c)α) m

a =

m
a∑

i=0

(m
a

i

)

pi(1 − p)
m
a
−i · 2(a−c)αi

·

m
a
−i
∑

j=0

(m
a − i

j

)(
q

1− p

)j (
r

1− p

)m
a
−i−j

· 2(b−c)αj .Now, we apply Lemma 5.45 to the inner sum and obtain
2(1−nα) m

a =

m
a∑

i=0

(m
a

i

)

pi(1− p)
m
a
−i · 2(a−c)αi ·

(
r

1− p
+

q

1− p
2(b−c)α

)m
a
−i

.Setting s := r
1−p + q

1−p2(b−c)α, we get
(

2

s2cα

)m
a

=

m
a∑

i=0

(m
a

i

)

pi(1− p)
m
a
−i · 2((a−c)α−log(s))i

=
(

1− p + p2(a−c)α−log(s)
)m

a

.Consequently, we obtain by setting t := 2α

2

stc
= 1− p + p

ta−c

s
⇔ 2 = (1− p)stc + pta .

s = r
1−p + q

1−p tb−c implies 2 = rtc + qtb +pta, whi
h in turn implies the 
laim.2We now 
ompute the information rates for restri
tions of type (v1v2v3|c1c2c3) ∈
{0, 1}6, whi
h means that those output LFSRs i in the modi�ed version of thegenerator for whi
h vi = 1 and the 
ontrol LFSRs j for whi
h cj = 1 are set
onstant. Note that the unrestri
ted 
ase 
orresponds to (000|000). We do not
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onsider the 
ase of 5 
onstant LFSRs, sin
e the initial state of the remainingunknown LFSR from a given keystream 
an be 
omputed in linear time.For symmetry reasons, 
ertain 
hoi
es for (v1v2v3|c1c2c3) are equivalent.First, it is easy to see that for all permutations πm of {1, 2, 3}, restri
tion
(v1v2v3|c1c2c3) is equivalent to resti
tion (vπm(1), vπm(2)vπm(3)|cπm(1)cπm(2)cπm(3)).Furthermore, we observe that with respe
t to restri
tion (v|c), v, c ∈ {0, 1}3,the number of internal bits W (u, V, C) pro
essed for the produ
tion of the nextkeystream bit assuming the 
urrent values in the 
ontrol LFSRs are u ∈ {0, 1}3equals

W (u, v, c) =
∑

i,ci=0

fi(u) +
∑

i,vi=0

fi(u) , (5.3)where for i ∈ {1, 2, 3} the Boolean fun
tion fi : {0, 1}3 → {0, 1} is de�ned tooutput 1 on u i� the i-th LFSR will be 
lo
ked w.r.t. u, more pre
isely
fi(u) = (ui ⊕ u((i+1) mod 3) ⊕ 1) ∨ (ui ⊕ u((i+2) mod 3) ⊕ 1) .Equation (5.3) implies that for all v, c, u ∈ {0, 1}3 and i ∈ {1, 2, 3}, W (u, v, c) =

W (u, v′, c′), where v′, c′ are obtained from v, c by ex
hanging the i-th 
ompo-nent. Hen
e, restri
tion (v|c) is equivalent to restri
tion (v′|c′). It is thereforesu�
ient to analyze the restri
tions (000|100), (100|100), (100|010), (100|110),
(000|111), (100|111), and (110|110).We �rst 
onsider the restri
tion (100|100). If the a
tual 
ontent of the output
ells of the two non-
onstant 
ontrol LFSRs is 00 or 11, then four internal bitswill be pro
essed, otherwise two internal bits will be pro
essed. Hen
e, the
orresponding 
ase is [(1/2, 4), (1/2, 2), 0] and therefore α ≈ 0.3215.Under restri
tion (100|010), four internal bits will be pro
essed if the a
tual
ontent of the output 
ell of the 
onstant 
ontrol LFSR is b ∈ {0, 1} and thea
tual 
ontent of the two non-
onstant 
ontrol LFSR is bb. If we have bb̄ thentwo, and in all remaining 
ases 3 internal bits will be pro
essed. Therefore, weare in the 
ase [(1/4, 4), (1/2, 3), (1/4, 2)] and obtain α ≈ 0.3271.Under restri
tion (110|110), two internal bits will be pro
essed if the assign-ment to the output 
ells of the 
onstant 
ontrol LFSRs is 01 or 10 or if all threeoutput 
ells of the 
ontrol LFSRs 
oin
ide. If the assignment to the output 
ellsof the 
onstant 
ontrol LFSRs is bb for some b ∈ {0, 1} and the random assign-ment to the remaining 
ontrol 
ell is b̄, then the next keystream bit dependsonly on the 
onstant assignments, and no internal bit will be pro
essed. Hen
e,in 
ontrast to the above 
ases, pC(m) and α are not independent of the 
onstantLFSRs and the given keystream. Therefore, we 
ompute only the average in-formation rate over all possible assignments to the 
onstant 
ontrol and outputLFSRs. A

ording to the above observation, the probability that two internalbits are pro
essed for the next keystream bit is 3/4, and the probability that0 internal bits are pro
essed for the next ouput bit is 1/4. In total, we obtain
[(3/4, 4), (1/4, 0), 0] and therefore α ≈ 0.6113.We 
an handle the remaining 
ases with similar arguments.The information rates for the dis
ussed 
ases are summarized in Table 5.1.Lemma 5.46. For the A5/1 keystream generator and the devide-and-
onquerstrategy of setting 
onstant parti
ular sub-LFSRs as indi
ated in Table 5.1, thedivide-and-
onquer algorithm (Algorithm 11) will 
onsume time in the order of
O
(
2|V | · n11 · 2r∗) and memory in the order of O (n11 · 2r∗) with r∗ = 1−α

1+αn.



76 5.7 Simulations and Experimental ResultsTable 5.1: Information rates α for the restri
ted A5/1
|V | restri
tion α r∗ |V |+ r∗
2
3n (100|111) 0.6430 0.2173n 0.8840n

(110|110) 0.6113 0.2412n 0.9079n
1
2n (000|111) 0.4386 0.3902n 0.8902n

(100|110) 0.4261 0.4024n 0.9024n
1
3n (000|110) 0.3271 0.5070n 0.8403n

(100|100) 0.3215 0.5134n 0.8467n
1
6n (000|100) 0.2622 0.5840n 0.7507n

0 (000|000) 0.2193 0.6403n 0.6403n5.7 Simulations and Experimental ResultsIn order to provide a fast implementation of the FBDD algorithms, the FBDD-library developed by Stegemann (2004) based on the publi
ly available OBDDpa
kage CUDD (Somenzi, 2001) was extended to support divide-and-
onquerstrategies. We used this library for our experiments on a standard Linux PCwith a 2.7 GHz Intel Xeon pro
essor and 4 GB of RAM. All implementationswere done in C using the g

-
ompiler.Sin
e the runtime of the 
ryptanalysis fundamentally depends on the maxi-mum size of the intermediate FBDDs Pm, we investigate how mu
h experimen-tally obtained values of |Pm| deviate from the theoreti
al �gures.We �rst 
onsider the basi
 BDD-based atta
k. For the self-shrinking gener-ator, the E0 generator and the A5/1 generator, we analyzed several thousandsof redu
ed instan
es with random primitive feedba
k polynomials and randominitial states for various key lengths. For ea
h 
onsidered random generator, we
omputed the a
tual maximum BDD-size of the intermediate results
Pmax(n) = max

1≤m≤⌈α−1n⌉
{|Pm|} ,the theoreti
al upper bound

P t
max(n) = max

1≤m≤⌈α−1n⌉

{

ǫ(m) · |Qm| · 2
p(1−α)

p+α
n
}that was obtained in Lemma 5.17, as well as the quotient q(n) = log(Pmax(n))

log(P t
max(n)) .Similarly, we tested for E0 and A5/1 the divide-and-
onquer strategy ofsetting 
onstant the shortest LFSR (denoted by strategy s1), and we 
onsidered�xing the �rst s = ⌊n0

2 ⌋ ≤
n
8 bits of ea
h of the four LFSRs in E0 (denoted bystrategy s2), with n0 the length of the shortest LFSR. Note that (s1) 
orrespondsto the 
ase (100|100) for the A5/1 generator. Sin
e the q(n)-values did notnoti
eably de
rease with in
reasing n in all our simulations, we estimate theatta
k's performan
e in dependen
e of n by multiplying the theoreti
al �guresby 2q(n). Parti
ularly, we 
an obtain 
onje
tures about the atta
k's performan
eon real-life instan
es of E0 and A5/1 by repla
ing n with the a
tual key lengths.Tables 5.2 and 5.3 shows the results of these 
omputations along with detailsabout our experiments. We observe that our results are 
onsistent with an



5.8 Dis
ussion of the BDD-Atta
k 77earlier analysis of the basi
 BDD-based atta
k on E0 and the self-shrinkinggenerator whi
h was 
ondu
ted by S
hleer (2002).On average, the atta
k based on DCS (s1) took 87 minutes for E0 with
n = 37 and 54 minutes for A5/1 with n = 30. The longest key lengths that wewere able to ta
kle with the resour
es des
ribed at the beginning of this se
tionwere n = 46 for E0 and n = 37 for A5/1. These atta
ks used up almost all ofthe available memory and took 60.5 and 25.1 hours to 
omplete on average.5.8 Dis
ussion of the BDD-Atta
kWe observe that when 
onsidering only the keystream generator (without thekey/IV setup pro
edure), the BDD-Atta
k is an e�
ient generi
 initial statere
overy atta
k that is faster than exhaustive sear
h for a broad 
lass of stream
iphers. This leads straightforwardly to an e�
ient atta
k for older designs like
E0 and A5/1, whose key length is roughly equal to the internal state size.From the extended BDD-Atta
k, e.g. on Trivium, we observe that the BDDapproa
h may still be applied to re
over the initial internal state of a keystreamgenerator under the following generalizations.1. Instead of LFSRs, feedba
k shift registers with nonlinear update fun
tionsare used. This is in 
ontrast to algebrai
 atta
ks (to be dis
ussed in thenext 
hapter), whi
h fundamentally depend on the linearity of the updatefun
tion. The only requirement that we have is that the update relationbe balan
ed.2. The shift registers in�uen
e ea
h other via ex
hanging update bits.However, sin
e the adaption of time/memory/data tradeo�s to stream 
i-phers by Biryukov and Shamir (2000), modern designs in
orporate keystreamgenerators whose size is at least twi
e the key length. Hen
e, for the BDD-Atta
kin its 
urrent form to yield an a
tual atta
k on the whole 
ipher (in
luding thekey/IV setup), we would need p(1−α)

p+α < 1
2 , whi
h means α > 1

3 for p = 1. Thiswill rarely be the 
ase for pra
ti
al designs.Hen
e, the generi
 nature of the BDD-Atta
k is at the same time its draw-ba
k: Currently, we 
annot make use of any IV-knowledge and we see no wayto e�
iently ta
ke the key/IV setup (usually performing many operations with-out produ
ing observable output) with our method. Similarly, it seems hard toTable 5.2: Simulation parameters of the BDD-based atta
kgenerator DCS key length avg no. ofinterval q(n) samples
E0 − [19, 37] 0.85 2000
E0 s1 [19, 37] 0.95 2700
E0 s2 [19, 37] 0.9 2700A5/1 − [15, 30] 0.9 3000A5/1 s1 [19, 37] 0.77 2400SSG − [10, 35] 0.8 3300



78 5.8 Dis
ussion of the BDD-Atta
kTable 5.3: Performan
e of the BDD-based atta
k in pra
ti
egenerator DCS estimated pra
ti
al performan
eTime Spa
e
E0 − 20.51n 265.28 20.51n 265.28

E0 s1 20.475(n+n0) 272.68 20.475(n−n0) 248.93

E0 s2 20.54n+0.27n0 275.87 20.54n−1.08n0 242.12A5/1 − 20.5763n 236.88 20.5763n 236.88A5/1 s1 20.3953n+0.77n0 239.93 20.3953n 225.30SSG − 20.525n 20.525nin
orporate the spe
ialities in the 
ipher operations that are heavily exploitedby other, more spe
i�
 atta
ks.It therefore remains as an open question whether the BDD-Approa
h 
an be
ombined with other strategies (e.g., 
orrelation atta
ks and algebrai
 atta
kswhi
h are to be 
onsidered in the next 
hapter) in order to obtain atta
ks onmodern designs whose internal state is mu
h larger than the se
ret key.



Chapter 6Other Generi
 Atta
ks onStream CiphersIn this se
tion, we 
onsider two other prominent generi
 atta
ks on stream
iphers � 
orrelation atta
ks and algebrai
 atta
ks.A 
orrelation atta
k 
onsists of �nding and exploiting linear fun
tions
L(Xt, . . . , Xt+r−1, zt, . . . , zt+r−1)whi
h are biased, i.e., equal to zero with some probability 6= 1/2. Algebrai
atta
ks, in a way, mark the opposite. Here, non-linear equations of preferablylow degree that are true with probability one are used to des
ribe the se
retinformation by a system of equations.The basi
 ideas of these atta
ks have been known for quite a few years.The �rst appearan
e of 
orrelation atta
ks dates ba
k to the mid-80s (Siegen-thaler, 1985), while algebrai
 atta
ks have been dis
overed around the year 2003(Armkne
ht and Krause, 2003, Courtois, 2003, Courtois and Meier, 2003).In this thesis, we fo
us on parti
ular variants of 
orrelation atta
ks and al-gebrai
 atta
ks on LFSR-based 
ombiners with memory, whi
h we des
ribe inSe
tions 6.1 and 6.2, respe
tively. We indi
ate ways to redu
e the e�
ien
y ofthese atta
ks in Se
tion 6.3 and apply our �ndings in Se
tion 6.4 to improve these
urity of the Bluetooth keystream generator E0 by relatively small modi�
a-tions of the original design.6.1 Correlation Atta
ks6.1.1 The Basi
 IdeaInspired by Zenner (2004), we �rst des
ribe the basi
 ideas behind 
orrelationatta
ks.De�nition 6.1. We de�ne the bias λ(X) of a binary random variable X as

λ(X) := Pr[X = 0]− Pr[X = 1] = E[(−1)X ]and the 
orrelation between two random variables X and Y as λ(X⊕Y ). We 
all
X unbiased if λ(X) = 0, and we say that X and Y un
orrelated if λ(X⊕Y ) = 0.



80 6.1 Correlation Atta
ksFor pe(X, Y ) de�ned as
pe(X, Y ) := Pr[X ⊕ Y = 0] = Pr[X = Y ] ,we have λ(X ⊕ Y ) = 2pe(X, Y ) − 1, or equivalently pe(X, Y ) = 1

2 + λ(X⊕Y )
2 .Note that X and Y are un
orrelated if and only if pe(X, Y ) = 1

2 .We �rst 
onsider the 
ase of 
ombination generators without memory 
on-sisting of k FSRs R1, . . . , Rk−1 and a keystream fun
tion C : {0, 1}k → {0, 1}(see Se
tion 4.1.1).The fundamental property that 
orrelation atta
ks are based on is thatthe keystream (zt)t≥0 and the bitstream (wj
t )t≥0 produ
ed by FSR Rj , j ∈

{0, . . . , k − 1} are 
orrelated, more pre
isely
Pr[zt ⊕ wj

t = 0] = Pr[zt = wj
t ] = pe(zt, w

j
t ) = λ′ 6=

1

2
for all t . (6.1)The original 
orrelation atta
k proposed by Siegenthaler (1985) then pro-
eeds as follows.1. Make a guess ω̃j(0) for the initial state ωj(0) of Rj and 
ompute from

ω̃j(0) the sequen
e (w̃j
t )t≥0.2. For a suitably 
hosen n, 
ompute the sum

D̃ :=

n−1∑

i=0

(w̃j
i ⊕ zi)over the integers.We now distinguish two 
ases. If the guess in step (1) was 
orre
t, D̃ is (n, λ′)-binomially distributed with expe
ted value µ = λ′n and varian
e σ2 = nλ′(1 −

λ′). On the other hand, if the guess was wrong, (zt ⊕ w̃j
t )t≥0 behaves likea random sequen
e, i.e., D̃ is (n, 1

2 )-binomially distributed with µ = n
2 and

σ2 = n
4 .Hen
e, if we 
an tell whi
h distribution D̃ was drawn from, we 
an dedu
eif our guess ω̃j(0) was 
orre
t. A straightforward approa
h is to set a threshold

D′ and to a

ept ω̃j(0) if D̃ > D′. Otherwise, we assume the guessed initialstate was wrong and we try the next one.With |Rj| denoting the number of 
ells in register Rj , this method willrequire a number of steps in the order of 2|R
j | for re
overing ωj(0), and about

2
P

i6=j
|Ri| operations for 
omputing the remaining k−1 initial states, whi
h addsup to an overall e�ort of 2|R

j| + 2
P

i6=j
|Ri|, whereas exhaustive sear
h on thewhole initial state of the generator would require 2

Pk−1
i=0 |Ri| = 2|R

j | · 2
P

i6=j |Ri|operations. The number n of required keystream bits to tell apart the twodistributions (with a �xed error probability) depends on the value | 12 − λ′|,i.e., the absolute distan
e between λ′ and 1
2 , and will shrink as this distan
ein
reases.This strategy 
an be straightforwardly extended to 
orrelations of linear
ombinations of FSR output bits and the keystream implied by

Pr[zt = ⊕k−1
j=0γjw

j
t ] 6=

1

2
with γj ∈ {0, 1} . (6.2)



6.1 Correlation Atta
ks 81However, we now have to guess the initial states of all Rj with γj = 1 simulta-neously, whi
h leads to an overall e�ort in the order of
2

Pk−1
j=0 γj |R

j | + 2
Pk−1

j=0 (γj⊕1)|Rj | .It is interesting to note that if indeed zt = ⊕k−1
j=0γjw

j
t for a 
lo
k 
y
le t,then the update relations of the FSRs (and sums thereof) 
ontinue to hold if werepla
e the term ⊕k−1

j=0γjw
j
t by zt. Conversely, if a keystream bit zt satis�es alarge number of su
h relations, it is reasonable to assume that ⊕k−1

j=0γjw
j
t = ztand to assume ⊕k−1

j=0γjw
j
t 6= zt if zt satis�es only few. In this way, we 
an obtaina 
andidate guess for the registers Rj with γj 6= 0, whi
h 
an be in
rementallyimproved in order to obtain the true values. This idea was proposed and for-malized by Meier and Sta�elba
h as Fast Correlation Atta
k and has 
onstantlybeen extended and improved sin
e its original publi
ation in 1988 (see, e.g., Hell(2007) as a re
ent example).As natural 
ountermeasure against 
orrelation atta
ks, we would try to use
ombination fun
tions that indu
e the lowest possible 
orrelations between thekeystream and the FSR bitstreams.De�nition 6.2. A Boolean fun
tion g : {0, 1}k → {0, 1} is said to be r-thorder 
orrelation immune if no linear fun
tion L depending on up to r < kinput variables exists su
h that Pr[L(x) = g(x)] 6= 1

2 .However, there exist at least two tradeo�s that limit the e�e
t of a 
orrelationimmune 
ombination fun
tion on the overall se
urity of the generator.Firstly, Siegenthaler (1984), Xiao and Massey (1988) showed that an in
reasein 
orrelation immunity leads to a lower linear 
omplexity and vi
e versa. Hen
e,the output keystream of a highly 
orrelation immune generator will be e�
ientlyreprodu
ible by an LFSR.For the se
ond tradeo�, we need the following de�nition.De�nition 6.3. Let {Li|1 ≤ i ≤ 2k} denote the set of linear fun
tions in up to
k variables. The 
orrelation 
oe�
ient between a Boolean fun
tion g : {0, 1}k →
{0, 1} and Li is de�ned as ci = 2 · pi − 1 with pi = Pr[Li(x) = g(x)].Meier and Sta�elba
h (1989) observed that

2k

∑

i=1

c2
i = 1 , (6.3)i.e., if g is not 
orrelated to any low-weight linear fun
tion, it is at the sametime even stronger 
orrelated to linear fun
tions with larger weight. Hen
e,
orrelations itself 
an never be prevented.Rueppel (1986) showed that LFSR-based 
ombiners with memory are ableto over
ome the tradeo� between 
orrelation immunity and linear 
omplexity,but it turns out that a tradeo� similar to Eq. (6.3) is still possible as soonas 
orrelations are regarded that span several 
onse
utive 
lo
k 
y
les (Goli¢,1993, 1996, Lu and Vaudenay, 2005, 2004, Salmasizadeh et al., 1997). This isthe setting that we are going to 
onsider in the following.



82 6.1 Correlation Atta
ks6.1.2 Analysis of the Spe
ial Case C(xt, qt) = α(xt)⊕ β(qt)We fo
us on the spe
ial 
ase of LFSR-based (k, l)-
ombiners with memory whosekeystream fun
tion C 
an be written as the sum of two fun
tions α : {0, 1}k →
{0, 1} and β : {0, 1}l → {0, 1}, i.e.,

C(xt, qt) = α(xt)⊕ β(qt) (6.4)in the LFSR output bits xt = (x0
t , . . . , x

k−1
t ) and the memory state qt =

(q0
t , . . . , ql−1

t ) at time t. Moreover, we are going to 
onsider only biased lin-ear 
ombinations of β(qt).Therefore, we look for 
oe�
ients γ = (γ0, . . . , γr−1) su
h that
λ(γ) :=

(

Pr

[
r−1⊕

i=0

γi · β(qt+i) = 0

]

− Pr

[
r−1⊕

i=0

γi · β(qt+i) = 1

])

6= 0 . (6.5)Lu and Vaudenay (2005, 2008) showed that the bias λ(γ) is related to the
orrelation of the keystream (zt)t≥0 and the sequen
e (x0
t )t≥0 produ
ed by theshortest LFSR (assume R0 for simpli
ity) by

Pr

[
w⊕

i=1

(
γ0(x

0
t+vi
⊕ zt+vi

)⊕ . . .⊕ γr−1(x
0
t+vi+r−1 ⊕ zt+vi+r−1)

)

]

=
1

2
+

(λ(γ))w

2
,with w and v1, . . . , vw depending on the initial state polynomials of the LFSRs.Hen
e, biased linear 
ombinations of β(qt) imply a vulnerability to a 
orrelationatta
k, and for the atta
k to be as e�
ient as possible, we are interested in
oe�
ient ve
tors γ yielding

λmax := max{|λ(γ)|} .General methods to systemati
ally 
ompute λmax and the 
orrespondingequations exist (e.g., see Goli¢ (1993)), but sin
e their resour
e 
onsumption isexponential in k, l and r, these methods are only feasible for small parameters.However, our spe
ial 
ase allows for a 
losed formula for the bias λ(γ), whi
hwe are going to derive in the following.We assume that for ea
h time t ≥ 1, there is a separate Boolean fun
tion
βt : {0, 1}l × {0, 1}k → {0, 1} revealing information about qt and xt and de�ne

F r : {0, 1}l × ({0, 1}k)r → {0, 1}
(q1, x1, . . . , xr) 7→ β1(q1, x1)⊕ . . .⊕ βr(qr, xr) ,where qt+1 := δ(qt, xt).De�nition 6.4. We de�ne the bias of a Boolean fun
tion f : {0, 1}n → {0, 1}as
λ(f) := Pr[f(x) = 0]− Pr[f(x) = 1] .We 
all f unbiased if λ(f) = 0.Note that if all inputs x are equally likely, we have λ(f) = 2−n

(
|f−1(0)| − |f−1(1)|

).The value λ(F r), for whi
h we now derive a matrix-based expression, 
or-responds to Eq. (6.5) after setting βt(qt, xt) := β(qt) if γt = 1 and βt :≡ 0otherwise.



6.1 Correlation Atta
ks 83De�nition 6.5. For all states q, q′ ∈ {0, 1}l, let p(q, q′) denote the probabilitythat state q will 
hange into q′, i.e., p(q, q′) = 2−k |{x|δ(q, x) = q′}| . Addition-ally, de�ne
bt(q, q

′) :=
1

2k
(|{x|βt(q, x) = 0 ∧ δ(q, x) = q′}|

− |{x|βt(q, x) = 1 ∧ δ(q, x) = q′}|) .We 
all the matrix P = (p(q, q′))q,q′∈{0,1}l the transition matrix of the memoryupdate fun
tion δ and the matrix Bt = (bt(q, q
′))q,q′∈{0,1}l the bias matrix of δand βt w.r.t. to time t.Theorem 6.6. For all r ≥ 1,

λ(F r) = 2−l
(
eT
)
◦B1 ◦ · · · ◦Br ◦ e ,where e denotes the 
onstant-1 ve
tor of length 2l and MT denotes the transposeof matrix M .In order to prove Theorem 6.6, we �rst 
olle
t some observations on 
om-puting biases.

• For a given �nite set S and fun
tions f, g : S → R we denote by (f, g) =
1
|S|

∑

s∈S f(s)g(s) a positive de�nite s
alar produ
t on R
S . Note that ea
hBoolean fun
tion f : {0, 1}n → {0, 1} satis�es λ(f) =

(
(−1)f , 1

).
• Consider two disjoint �nite sets S and S′, fun
tions f : S → R and

g : S′ → R, and let h : S × S′ → R be de�ned by h(s, s′) = f(s)g(s′).Then
(h, 1) =

1

|S||S′|

∑

s∈S,s′∈S′

f(s)g(s′)

=
1

|S|

∑

s∈S

f(s)
1

|S′|

∑

s′∈S′

g(s′)

= (f, 1)(g, 1) .This implies that for Boolean fun
tions f : {0, 1}n → {0, 1}, g : {0, 1}m →
{0, 1}, and h : {0, 1}n×{0, 1}m → {0, 1}, de�ned by h(s, s′) = f(s)⊕g(s′),we have λ(h) = λ(f) · λ(g).Now let us denote by f r : {0, 1}l ×

(
{0, 1}k

)r
→ R the fun
tion (−1)F r .For all r ≥ 1 and q ∈ {0, 1}l, we de�ne an additional fun
tion

f r
q : {0, 1}l ×

(
{0, 1}k

)r
→ {−1, 0, 1} ⊆ R

(q1, x1, . . . , xr) 7→

{
f r(q1, x1, · · · , xr) if δ(qr, xr) = q
0 otherwise ,with qt+1 = δ(qt, xt) for i ∈ {1, . . . , r − 1}, and let Γr

q = (f r
q , 1) and Γr =

(Γr
q)q∈{0,1}l . Then f r =

∑

q∈{0,1}l f r
q and λ(F r) =

∑

q∈{0,1}l Γr
q.Theorem 6.6 is now a straightforward 
onsequen
e of the following Lemma.
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 Atta
ksLemma 6.7. For q ∈ {0, 1}l and r ≥ 1, the bias matri
es Bt from De�ni-tion 6.5 satisfy
(Γr)T = 2−l(eT ) ◦B1 ◦ · · · ◦Br .Proof. For all q, q′ ∈ {0, 1}l we de�ne

gq,q′ : {0, 1}k → {0, 1}

x 7→

{
1 if δ(q, x) = q′

0 otherwise .Observe that for ea
h t ≥ 1,
((−1)βt(q,·)gq,q′ , 1) = bt(q, q

′) . (6.6)We prove the 
laim by indu
tion on r. Note that, due to Eq. (6.6), for all
q ∈ {0, 1}l

Γ1
q = 2−(k+l)

∑

q1,x1

(−1)β1(q1,x1)gq1,q(x1) = 2−l
∑

q1

bt(q1, q) .Consequently, Γ1 = 2−l(eT ) ◦B1. For r > 1, the fun
tion f r
q 
an be written as

f r
q (q1, x1, · · · , xr) =

∑

q′∈{0,1}l

f r−1
q′ (q1, x1, · · · , xr−1)(−1)βr(q′,xr)gq′,q(xr) .Hen
e, by Eq. (6.6), we obtain

Γr
q =

∑

q′∈{0,1}l

Γr−1
q′ br(q

′, q) and (Γr)T = (Γr−1)T ◦Br . 2Note that the formula given by Theorem 6.6 
an be e�
iently evaluated andtherefore permits an exhaustive sear
h for the best 
orrelations even for largevalues of r up to the length of the shortest LFSR.6.2 Algebrai
 Atta
ks6.2.1 The Basi
 IdeaAlgebrai
 atta
ks (Armkne
ht and Krause, 2003, Courtois, 2003, Courtois andMeier, 2003) are based on solving systems of equations and were, just like
orrelation atta
ks, targeted at LFSR-based 
ombination generators withoutmemory, in our notation 
onsisting of k LFSRs R0, . . . , Rk−1 and a nonlinearkeystream fun
tion C that produ
es from the LFSR output xt = (x0
t , . . . , x

k−1
t )a keystream bit zt = C(xt) in ea
h 
lo
k 
y
le t. At this point, we only de-s
ribe the basi
 ideas behind algebrai
 atta
ks and refer the interested readerto Armkne
ht (2006) for a thorough treatment of the subje
t.The 
ore of algebrai
 atta
ks is to �nd Boolean fun
tions F : {0, 1}k·r →

{0, 1} of low preferably degree su
h that for all 
lo
ks t,
F (xt, . . . , xt+r−1, zt, . . . , zt+r−1) = 0 . (6.7)Sin
e the 
ombiner's FSRs are LFSRs by assumption, we 
an express thebit xj

t that LFSR Rj produ
es at time t by a linear fun
tion Lj
t in the initial



6.2 Algebrai
 Atta
ks 85state ωj(0) of Rj as xj
t = Lj

t (ω
j(0)). Hen
e, 
olle
ting equations of the type ofEq. (6.7) yields a system of equations in the se
ret initial states of the LFSRs.However, sin
e the keystream fun
tion is non-linear, solving the system andthereby re
overing the se
ret initial state is NP-hard in general, so we shouldnot hope for an e�
ent generally appli
able key re
overy algorithm based onthis strategy, but we may still be fortunate enough to en
ounter spe
ial 
asesthat are su�
iently easy to solve.This might espe
ially be the 
ase if the number of known keystream bitsand therefore the number of equations in
reases. Let R denote the number ofa

essible equations and µ the number of o

urring monomials. If R ≪ µ, apromising method is to 
ompute Groebner bases.Unfortunately, it seems hard to predi
t the required time e�ort, albeit simu-lations indi
ate that the ne

essary amount of time drops with in
reasing num-ber of equations (Armkne
ht and Ars, 2009, Faugère and Ars, 2003).In the 
ase of R ≈ µ, linearization (Courtois et al., 2000) seems to be the�rst 
hoi
e. The idea of linearization is to substitute ea
h o

urring monomialby a new variable and to treat the whole system as a system of linear equations,making it easily solvable by Gaussian elimination.For the 
ase that the number of equations ex
eeds the number of monomi-als, one might redu
e the degree of the equations in a pre
omputation step.This idea is known as fast algebrai
 atta
ks, whi
h have been introdu
ed byCourtois (2003) and further improved by, e.g., Armkne
ht (2004a), Hawkes andRose (2004). However, the atta
k s
enario is more restri
tive as it requires theatta
ker to know many su

essive keystream bits and Eq. (6.7) to have a spe
ialstru
ture.All theses approa
hes have in 
ommon that their runtime strongly dependson the degree d of the in
orporated equations. The lower the degree, the fasterthe atta
ks. Hen
e, a natural 
ountermeasure against su
h atta
ks is to preventthe existen
e of low-degree equations.6.2.2 Analysis of a restri
ted S
enarioFor our analysis, we will 
on
entrate on algebrai
 atta
ks where R ≈ µ and µ isapproximately (nd). If ϕ denotes the number of fun
tions F of degree d ful�llingEq. (6.7) and n denotes the total length of the LFSRs, then the amount ofdata is ≈ (nd)/ϕ, and the required memory and runtime are in O

((
n
d

)2
) and

O
((

n
d

)3
), respe
tively. Moreover, we now 
onsider the 
ase of (k, l)-
ombinerswith memory, i.e., we have an additional l-bit memory, the keystream bits ztare 
omputed from the LFSR state xt = (x0

t , . . . , x
k−1
t ) and the memory state

qt = (q0
t , . . . , ql−1

t ) as zt = C(xt, qt), while the memory is updated in ea
h 
lo
k
y
le a

ording to qt+1 = δ(xt, qt).In order to formalize that an LFSR output ve
tor (xt, . . . , xr+r−1) ∈ ({0, 1}k)rmay (in 
onjun
tion with a suitable memory state qt) yield a given keystreampie
e (zt, . . . , zt+r−1), we use the notion of an extended output fun
tion in-trodu
ed by Armkne
ht (2006) (only that we 
all it the extended keystreamfun
tion in order to be more 
onsistent with the rest of our notation).De�nition 6.8. For the keystream fun
tion C : {0, 1}k × {0, 1}l → {0, 1} ofa (k, l)-
ombiner with memory and an integer r > 0, we de�ne the extended
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 Atta
kskeystream fun
tion CΨ by
CΨ : {0, 1}l × ({0, 1}k)r → {0, 1}r

(q, x1, . . . , xr) 7→ (z1, . . . , zr)with qi+1 = δ(xi, qi) for 0 ≤ i < r and zi = C(xi, qi) for 1 ≤ i ≤ r.With this notion, Armkne
ht and Krause (2003) adapted the stru
ture ofEq. (6.7) to the setting of 
ombiners with memory.De�nition 6.9. For a Z = (z1, . . . , zr) ∈ {0, 1}r, we 
all a Boolean fun
tion
FZ : ({0, 1}k)r → {0, 1} a Z-fun
tion (with respe
t to CΨ) if it is not 
onstantzero and satis�es

CΨ(q, x1, . . . , xr) = Z ⇒ FZ(x1, . . . , xr) = 0 (6.8)for all q ∈ {0, 1}l and all (x1, . . . , xr) ∈ ({0, 1}k)r.Note that this de�nition implies that FZ vanishes on all 
ombinations of LFSR-inputs over r 
lo
k 
y
les and starting states q that yield the keystream pie
e
Z. The algebrai
 atta
k of Armkne
ht and Krause (2003) now 
onsists in 
om-puting for ea
h Z ∈ {0, 1}r a Z-fun
tion FZ of the lowest possible degree andto set up the system of equations

F(zt,...,zt+r−1)(xt, . . . , xt+r−1) = 0, t = 0, 1, . . . ,express the xt in terms of the initial LFSR states and solve the system.As mentioned earlier, the e�
ien
y of the atta
k fundamentally depends onthe degree of the Z-fun
tions. Therefore, we want to bound the lowest possible
Z-fun
tion degree that 
an o

ur for a given (k, l)-
ombiner.De�nition 6.10. For a Z ∈ {0, 1}r, we de�ne
XZ,Q :=

{

x ∈
(
{0, 1}k

)r
|CΨ(Q, x1, . . . , xr) = Z

}

XZ :=
{

x ∈
(
{0, 1}k

)r
|∃q ∈ {0, 1}l : CΨ(q, x1, . . . , xr) = Z

}

=
⋃

Q∈{0,1}l

XZ,QFrom Eq. (6.8) we dedu
e that FZ is a Z-fun
tion if and only if F (x) = 0for all x ∈ XZ . This leads dire
tly to the notion of annihilators.De�nition 6.11. We say that a Boolean fun
tion p : {0, 1}n → {0, 1}, p 6≡ 0,is an annihilator of a subset A ⊆ {0, 1}n if p(x) = 0 for all x ∈ A. We denotethe set of annihilators of A by Ann(A). Furthermore, we de�ne for A ⊂ {0, 1}n

mindeg(A) := min{deg(f)|f ∈ Ann(A)} .If A = {0, 1}n, we set mindeg(A) :=∞.We observe that if we 
an prove a lower bound for mindeg(XZ) for all Z,this gives a lower bound for Z-fun
tion degrees and hen
e the e�ort requiredby an algebrai
 atta
k. In the following, we will propose a 
onstru
tion whi
henables us to derive su
h a lower bound.We �rst show that under 
ertain 
onditions, ea
h spe
ial lower bound for
mindeg(Xzr,Q) is also a general lower bound for mindeg(X(z1,...,zr)).
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iples 87Theorem 6.12. If the keystream fun
tion C 
an be expressed as
C(x, q) = α(x) ⊕ β(q) , (6.9)with α : {0, 1}k → {0, 1} satisfying mindeg

(
α−1(0)

)
= mindeg

(
α−1(1)

)
= dand β : {0, 1}l → {0, 1} then

mindeg(XZ) ≥ mindeg(XZ,Q) = dfor all r ≥ 1, Z = (z1, . . . , zr) ∈ {0, 1}r, and Q ∈ {0, 1}l.Proof. Be
ause of XZ,Q ⊆ XZ , ea
h annihilator of XZ is also an annihilatorof XZ,Q. This shows the �rst inequality.Moreover, all 
hoi
es z ∈ {0, 1} and Q ∈ {0, 1}l satisfy Xz,Q = α−1(β(Q)⊕z)and therefore mindeg(Xz,Q) = d.Let r ≥ 1, Z = (z1, . . . , zr) ∈ {0, 1}r, q1 ∈ {0, 1}l and f(Y1) ∈ F2[Y1] be anannihilator of Xz1,q1 . Then f 
an be seen as an element in F2[Y1, . . . , Yr] whi
hannihilates XZ,q1 , too. This shows that mindeg (xZ,q1 ) ≤ mindeg (xz1q1) = d.We prove now by indu
tion over r that mindeg(XZ,q1) ≥ d for all 
hoi
esof q1 and Z. For r = 1, the 
laim is 
ertainly true. Now let r > 1 and the
laim be true for all r′ < r. Fix Z = (z1, . . . , zr) and q1 and f(Y1, . . . , Yr) ∈
Ann(XZ,Q) having the minimal degree mindeg(XQ,Z). Choose an arbitraryvalue (x1, . . . , xr) ∈ ({0, 1}k)r and set q2 := δ(x1, q1). Then

f∗(Y2 . . . , Yr) := f(x1, Y2, . . . , Yr)annihilates X(z2,...,zr),q2
. Hen
e,

mindeg (xZ,q1 ) = deg(f) ≥ deg(f∗) ≥ mindeg
(
x(z2,...,zr),q2

)
≥ d ,where the last inequality is true by assumption. 26.3 Countermeasures and Design Prin
iples6.3.1 In
reasing the Resistan
e against Correlation At-ta
ksTheorem 6.6 allows to 
ompute the biases whi
h are relevant for 
orrelationatta
ks against 
ombiners with memory with a keystream fun
tion as in Eq. (6.4)and to derive 
orresponding design 
riteria to immunize them against atta
ksthat exploit these biases. In parti
ular, Theorem 6.6 yields two di�erent 
riteriafor δ and βt in order to a
hieve that λ(F r) = 0 for all r ≥ 1.The �rst one assumes the situation that βt is independent of x ∈ {0, 1}k,i.e., βt(q, x) = βt(q) for all x, whi
h holds, e.g., for E0.De�nition 6.13. We say that δ is balan
ed if k = l and |{x|δ(q, x) = q′}| = 1for all q, q′.Note that for a balan
ed δ, p(q, q′) = 2−k for all q, q′.Theorem 6.14. Let βt either be 
onstant zero or, at least at one time t, dependonly on q and be balan
ed. If δ is also balan
ed, then λ(F r) = 0.



88 6.3 Countermeasures and Design Prin
iplesProof. If βt ≡ 0, then Bt equals P , the transition matrix of δ. Due to (eT )·P =
eT , we 
an assume w.l.o.g. that β1 6≡ 0. Observe that the property of βt beingbalan
ed implies that ∑q(−1)β1(q) = 0. Let x(q,q′) := {x|δ(q, x) = q′}. If βtdepends only on q, then bt(q, q

′) 
an be rewritten to
bt(q, q

′) =







0 if x(q,q′) = ∅
|x(q,q′)|/2k if x(q,q′) 6= ∅ ∧ β(q) = 0
−|x(q,q′)|/2k if x(q,q′) 6= ∅ ∧ β(q) = 1







= (−1)βt(q) · p(q, q′) .Let vT := (eT ) · B1. We show that v is already the all-zero ve
tor, whi
h
on
ludes the proof. Let (vT )q denote the q-th entry of vT . We have
(vT )q =

∑

q

(−1)β1(q)p(q, q′) = 2−k ·
∑

q

(−1)β1(q)

︸ ︷︷ ︸

=0

= 0 . 2In the 
ase that the fun
tions βt are not independent of x, it is also possibleto entirely avoid 
orrelations if we put some additional restri
tions on βt.De�nition 6.15. The fun
tion β : {0, 1}l×{0, 1}k → {0, 1} is 
alled q-balan
edif all states q ∈ {0, 1}l satisfy
∣
∣
{
x ∈ {0, 1}k| β(q, x) = 0

}∣
∣ =

∣
∣
{
x ∈ {0, 1}k| β(q, x) = 1

}∣
∣ .Lemma 6.16. Let B denote the bias matrix of the state transition fun
tion

δ : {0, 1}l × {0, 1}k → {0, 1}l and a q-balan
ed fun
tion β : {0, 1}l × {0, 1}k →
{0, 1}. Then B ◦ e = ~0.Proof. It 
an be easily 
he
ked that for all q ∈ {0, 1}l,

(B ◦ e)q =

∣
∣
{
x ∈ {0, 1}k, β(q, x) = 0

}∣
∣−
∣
∣
{
x ∈ {0, 1}k, β(q, x) = 1

}∣
∣

2k
,whi
h, by de�nition, vanishes if β is q-balan
ed. 2Theorem 6.17. Let r ≥ 1 and βt be either q-balan
ed or 
onstant zero for all

t, 1 ≤ t ≤ r. Then λ(F r) = 0.Proof. Note that for βt ≡ 0, the bias matrix Bt equals the transition matrix
P . As ea
h row of P 
orresponds to a probability distribution over {0, 1}l, weobtain P ◦ e = e. The rest follows straightforwardly from Theorem 6.6. 2We want to point out that the previous statements are only true as longas the 
orresponding input words xt are independent values in {0, 1}k. In the
ase that LFSRs are used as driving devi
es, this is only the 
ase as long as
r is at most the length of the shortest LFSR. This imposes no serious draw-ba
k, be
ause so far, no feasible methods are known to 
ompute the bias while
onsidering the LFSR-stru
ture.As we have seen, our results immediately imply two di�erent design 
riteriato avoid any biased linear 
ombinations in the expressions β(qt). A
tually, theyhave even wider appli
ations. For example, the keystream fun
tion

f
((

c1, c2, c3, c4
)
,
(
x1, x2, x3, x4

))
= c2 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4used in E0 is q-balan
ed. This guarantees that no biased linear 
ombinations ofthe keystream bits zt exist for r ≤ 25, the length of the shortest LFSR.



6.3 Countermeasures and Design Prin
iples 896.3.2 In
reasing the Resistan
e against Algebrai
 Atta
ksWe have seen that the e�
ien
y of algebrai
 drops with in
reasing minimumdegree of the Z-fun
tions. Theorem 6.12 then implies the following strategy.Choose a keystream fun
tion C(x, q) = α(x) ⊕ β(q) su
h that mindeg
(
α−1(0)

)and mindeg
(
α−1(1)

) is the maximum possible value. This will guarantee thesame lower bound for all Z-fun
tions, as long the values x1, . . . , xr are inde-pendent elements in {0, 1}k. In the 
ase that they are the outputs of LFSRs,this 
ondition holds if r is no larger than the length of the shortest LFSR (e.g.,25 in the 
ase of E0). This restri
tion is not 
riti
al, sin
e 
urrently knownmethods (e.g., Armkne
ht et al. (2006), Didier and Tilli
h (2006)) are only ableto pra
ti
ally derive Z-fun
tions if r is not mu
h larger than 20.The value d is equivalently known under the term algebrai
 immunity, whi
hwas introdu
ed by Meier et al. (2004) in the 
ontext of memoryless 
ombiners,extended to 
ombiners with memory by Armkne
ht (2004b), and examined inseveral papers sin
e then.Observation 6.18 (Courtois and Meier (2003)). Any Boolean fun
tion in
n variables has an algebrai
 immunity of at most ⌈n

2 ⌉.This means that any proposal for a fun
tion with optimum algebrai
 immu-nity ⌈n
2 ⌉ 
an be in
orporated in our design.Proposals on how to 
onstru
t fun
tions with maximum (or at least high)algebrai
 immunity have been made, e.g., by Armkne
ht and Krause (2006),Carlet (2008), Dalai et al. (2005). A rather straightforward 
andidate is the(generalized) majority-fun
tion.Corollary 6.19. Let k ≥ 1. The majority fun
tion maj : {0, 1}k → {0, 1}de�ned by

maj(x) =

{
0 if wt(x) < k/2 or wt(x) = k/2 and x1 = 0
1 otherwise ,satis�es mindeg(maj−1(0)) = mindeg(maj−1(1)) = k/2.A proof 
an be found in (Braeken and Lano, 2005). The authors pointed outthat maj has a very low nonlinearity, making it a bad 
hoi
e for memoryless
ombiners. However, this is no problem in our setting, as long as high biases λare avoided (e.g., using the prin
iples des
ribed in Se
tion 6.3.1).Using our design prin
iple and a Boolean fun
tion with optimum algebrai
immunity, it is possible to ex
lude the existen
e of Z-fun
tions having a degreeless than ⌈k/2⌉. In fa
t, experiments have shown by exhaustive sear
h that thea
tual values of mindeg are often higher, showing that ⌈k/2⌉ seems to be a rather
oarse estimation. Moreover, one 
an easily in
rease this bound, even withoutin
reasing the number of LFSRs by using several di�erent bits per LFSR and
lo
k 
y
le. For example, in the 
ase of E0, one 
ould use the modi�ed outputand update fun
tions zt := maj(x2t−1, x2t) and qt+1 := δ(δ(qt, x2t−1), x2t). Thebitrate is halfed, but the existen
e of Z-fun
tions of degree less than 4 
an beex
luded.



90 6.4 Appli
ation to E06.4 Appli
ation to E0In this se
tion, we apply the results from the previous se
tions to improve these
urity of the E0 keystream generator. Consequently, we assume that k = l = 4and that the keystream bit zt is 
omputed by zt = f(qt, xt) = α(xt) ⊕ β(qt),with α(xt) = x0
t ⊕ x1

t ⊕ x2
t ⊕ x3

t and β(qt) = q1
t . Re
all from Se
tion 4.2.2 thatthe state transition fun
tion of E0 is de�ned as

δ0(qt, xt) =
(
S1

t+1 ⊕ q0
t ⊕ q3

t ,S0
t+1 ⊕ q1

t ⊕ q2
t ⊕ q3

t , q0
t , q1

t

)
,where St+1 = (S1

t+1,S
0
t+1) =

⌊
x0

t+x1
t+x2

t+x3
t+2·q0

t +q1
t

2

⌋ .Lu and Vaudenay (2005, 2008) proved that λmax = 25/256 for r ≤ 25, where25 is the length of the shortest LFSR. This observation and the exploit of asyn
hronization �aw led to the 
urrently best atta
k on the Bluetooth 
ipher(Lu and Vaudenay, 2004). Table 6.1 shows the resour
e requirements of thisatta
k.The 
urrently best algebrai
 atta
k on E0 in this s
enario uses Z-fun
tionsof degree 4 over 4 
lo
ks (Armkne
ht and Krause, 2003). The 
orrespondingperforman
e data are given in Table 6.2. Courtois (2003) proposed a method toobtain equations of degree 3, however with the enormous value r ≈ 8.822.188.It is still an open question whether Z-fun
tions exist of degree < 4 and r ≪
8.822.188 for E0.We now try to improve the resistan
e of E0 to 
orrelation atta
ks and alge-brai
 atta
ks of the des
ribed types by 
arefully modifying its 
omponents.First, using our C-implementation of Theorem 6.6 based on the ATLASlinear algebra library (Whaley and Petitet, 2005), we 
omputed the maximumabsolute biases over 25 
lo
k 
y
les (the length of E0's shortest LFSR) for all16 E0-variants in whi
h β is de�ned as β(a1,a2,a3,a4)(qt) = a1 · q0

t ⊕ a2 · q1
t ⊕

a3 · q2
t ⊕ a4 · q3

t for a = (a1, a2, a3, a4) ∈ {0, 1}4. Note that the original β
orresponds to β(0,1,0,0). As Table 6.3 shows, the minimum absolute bias λ =
0.024414 is obtained for a = (0, 1, 1, 1). We denote the 
orresponding generatorby E1

0 . However, with the help of a toolkit developed by Brandeis (2004) thatdetermines Z-fun
tions by exhaustive sear
h, we have 
omputed Z-fun
tionsof degree 3 for E1
0 , whi
h makes it weaker against algebrai
 atta
ks than theoriginal E0. However, 
hoosing a = (1, 0, 1, 1), i.e., the a-value with the se
ondbest minimum absolute bias, yields mindeg = 6. We 
all the 
orrespondinggenerator E2

0 .In the next step, we exploit our theory to 
ompletely avoid biases. Startingfrom the original de�nition of E0, we obtain the generator E3
0 by repla
ing thestate transition fun
tion by δ1, whi
h we de�ne as the integer addition moduloTable 6.1: The resour
e 
onsumption of the fastest 
orrelation atta
kon E0 as presented by Lu and Vaudenay (2004)

λmax Frames Data Time Spa
e
λ m = max( 1

λ10 , 236.59
λ8 ) 24m 36m + 3 · 218 ·min(m, 218) m

25
256 234.74 239.32 240.17 234.74
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ation to E0 91Table 6.2: The resour
e 
onsumption of an algebrai
 atta
k on
E0 with key size n and an equation of degree d

#F Data Time Spa
eGeneral ϕ O
((

n
d

)
/ϕ
)

O
((

n
d

)3
)

O
((

n
d

)2
)

E0: n = 128, d = 4 1 223.35 270.04 246.69

24, i.e.,
δ1

(
q0
t , . . . , q3

t , x0
t , . . . , x

3
t

)
=





3∑

i=0

q3−i
t 2i +

3∑

j=0

x3−j
t 2j



 mod 16 .Sin
e δ1 is balan
ed, Theorem 6.14 implies λ = 0. However, we 
omputed
Z-fun
tions of degree 3 for E3

0 .We therefore repla
e the fun
tion α of E3
0 by the majority fun
tion des
ribedin Corollary 6.19. For the resulting generator E4

0 , we obtain mindeg = 5.If we additionally repla
e the fun
tion β by the majority fun
tion, mindegeven in
reases to 6. Note that the λ = 0 property is still preserved by thesemodi�
ations. Thus, we obtain a keystream generator E5
0 with λmax = 0 whoseresistan
e against algebrai
 atta
ks is signi�
antly in
reased 
ompared to theoriginal E0.For all our variants of E0, Table 6.4 lists the minimum degree and the re-spe
tive number of Z-fun
tions over r 
lo
k 
y
les. For Example, for E4

0 , theminimum degree of Z-fun
tions over up to 5 
lo
k 
y
les is 5, and there are 40,
264, 896, and 2528 Z-fun
tions over 2, 3, 4 and 5 
lo
k 
y
les, respe
tively.The 
omputation of the number of Z-fun
tions over 6 
lo
ks for E5

0 
ould notbe 
ompleted with the resour
es at our disposal. Sin
e in all our experiments,the minimum degree of the Z-fun
tions never de
reased with in
reasing r, wesuspe
t that mindeg = 6 will also hold for E5
0 and r = 6.Note that in all 
ases, the values of mindeg were a
tually higher than thetheoreti
al lower bound ⌈k/2⌉ = 2.The 
onstru
tions of the 
onsidered generators and the respe
tive perfor-man
es of algebrai
 and 
orrelation atta
ks are summarized in Table 6.6 andillustrated in Figure 6.1.We note that the generator E2

0 , whi
h is just a slight modi�
ation of E0 (weonly made β depend on two more state bits), already yields a similar resistan
eagainst algebrai
 atta
ks as E5
0 and signi�
antly de
reases the vulnerabilityagainst 
orrelation atta
ks.
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ation to E0Table 6.3: Maximum absolute biases and performan
eof 
orrelation atta
ks for βa-generators
a max (λ) Frames Data Time Spa
e

(0, 0, 0, 1) 0.097656 234.74 239.32 240.17 234.74

(0, 0, 1, 0) 0.244141 224.16 228.74 237.59 224.16

(0, 0, 1, 1) 0.156250 229.31 233.90 237.74 229.31

(0, 1, 0, 0) 0.097656 2
34.74

2
39.32

2
40.17

2
34.74

(0, 1, 0, 1) 0.097656 234.74 239.32 240.17 234.74

(0, 1, 1, 0) 0.156250 229.31 233.90 237.74 229.31

(0, 1, 1, 1) 0.024414 2
53.56

2
58.15

2
58.73

2
53.56

(1, 0, 0, 0) 0.244141 224.16 228.74 237.59 224.16

(1, 0, 0, 1) 0.250000 223.89 228.47 237.59 223.89

(1, 0, 1, 0) 0.097656 234.74 239.32 240.17 234.74

(1, 0, 1, 1) 0.038528 2
46.98

2
51.56

2
52.15

2
46.98

(1, 1, 0, 0) 0.156250 229.31 233.90 237.74 229.31

(1, 1, 0, 1) 0.156250 229.31 233.90 237.74 229.31

(1, 1, 1, 0) 0.152588 229.58 234.17 237.77 229.58

(1, 1, 1, 1) 0.097656 234.74 239.32 240.17 234.74

Table 6.4: mindeg and number of Z-fun
tionsfor the 
andidate generatorsCipher E0 E1
0 E2

0 E3
0 E4

0 E5
0

mindeg 4 3 6 3 5 6Clo
ks Number of equations
r = 2 0 12 0 4 40 12
r = 3 0 48 24 40 264 318
r = 4 16 144 160 144 896 1416
r = 5 64 384 544 416 2528 > 0
r = 6 192 ? > 0 ? ? ?

Table 6.5: De�nitions of the 
andidate generators
δ α

(
x1

t , x
2
t , x

3
t , x

4
t

)
β
(
c1
t , c

2
t , c

3
t , c

4
t

)

E0 δ0 x1
t ⊕ x2

t ⊕ x3
t ⊕ x4

t c2
t

E1
0 δ0 x1

t ⊕ x2
t ⊕ x3

t ⊕ x4
t c2

t ⊕ c3
t ⊕ c4

t

E2
0 δ0 x1

t ⊕ x2
t ⊕ x3

t ⊕ x4
t c1

t ⊕ c3
t ⊕ c4

t

E3
0 δ1 x1

t ⊕ x2
t ⊕ x3

t ⊕ x4
t c2

t

E4
0 δ1 maj(x1

t , x
2
t , x

3
t , x

4
t ) c2

t

E5
0 δ1 maj(x1

t , x
2
t , x

3
t , x

4
t ) maj(c1

t , c
2
t , c

3
t , c

4
t )
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Table 6.6: Performan
e of algebrai
 and 
orre-lation atta
ks on the 
andidate generatorsAlgebrai
 Atta
k Correlation Atta
k

mindeg Time λ Time
E0 4 270.18 0.097656 240.17

E1
0 3 255.25 0.024414 258.73

E2
0 6 297.22 0.038528 252.15

E3
0 3 255.25 0 n/a

E4
0 5 284.11 0 n/a

E5
0 6 297.22 0 n/a

1 5

0.01

0.05

0.1
E0

E
3

0

E
4

0

E
1

0
E

2

0

λmax

for r ≤ 25

min{deg(FZ)}
for r ≤ 5

E
4

0

E
2

0Figure 6.1: Comparison of the 
andidate generators to E0
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Part IIAuthenti
ity with LinearProto
ols





Chapter 7Algorithms for Entity andMessage Authenti
ation7.1 Se
urity De�nitions and Atta
ker ModelsWe have seen in the �rst part of this thesis that in order for people to 
all aparti
ular system se
ure, this system should allow for 
on�dential 
ommuni
a-tion, whi
h is usually a
hieved by en
rypting the messages that are ex
hangedbetween 
ommuni
ation partners.Let us revisit our two-party 
ommuni
ation s
enario from Se
tion 2.1. Twoparties, Ali
e and Bob, 
ommuni
ate over a 
hannel that is a

essible to anadversary. Besides the 
on�dentiality of ex
hanged messages, it may also bebene�
ial for Ali
e to ensure that she is really talking to Bob instead of anadversary masquerading as Bob, and that a message that 
laims to 
ome fromBob was in fa
t sent by Bob and has not been modi�ed during the transmission.These requirements may seem less obvious than message 
on�dentiality at�rst glan
e, but turn out to be equally, if not even more important in manypra
ti
al systems. Consider, for example, banking transa
tions. It is 
ertainlydesirable to hinder an adversary observing how mu
h money a 
ustomer with-draws from his a

ount or to whom he transfers how mu
h money, but it seemseven more important to prevent an adversary from withdrawing or transferringmoney from somebody else's a

ount.In the pro
ess of ensuring these properties, Ali
e has to gain 
on�den
e inthe identity of Bob as 
ommuni
ation partner or as originator of a message. Anidentity is a set of information that distinguishes a spe
i�
 entity from everyother within a parti
ular environment, e.g., a given and family name, an e-mailaddress, or a URI (Adams, 2005). This implies that the mapping r : A→ I froman entity set A to an identity spa
e I should be inje
tive, i.e., no two entities
a1, a2 ∈ A are mapped to the same identity i ∈ I. Note that the mappingbetween entities and identities 
an also be modeled as a relation R ⊆ A × Iwith (a, i) ∈ R if and only if identity i is asso
iated to entitiy a. We say that ahas identity i, or that identity i is bound to entity a, and 
all the tuple (a, i) anidentity binding for a. An identity may also be bound to another identity froma di�erent identity spa
e, e.g., an international bank a

ount number (IBAN,see ISO/IEC (2007)) to an e-mail address.



98 7.1 Se
urity De�nitions and Atta
ker Models7.1.1 Entity Authenti
ationConsider a bank 
ustomer who uses an automated teller ma
hine (ATM) towithdraw money from his a

ount. In the 
ourse of the transa
tion, the 
ustomeris usually required to plug his bank 
ard into the ma
hine and to enter hispersonal identi�
ation number (PIN). If PIN and bank a

ount number mat
hthe information that is stored in the bank's database, the ATM is 
onvin
edthat the a

ount number in fa
t belongs to the person standing in front of thema
hine.In our more abstra
t 
ommuni
ation setting, Bob (the 
laimant or theprover) 
laims to have a 
ertain identity, e.g., a bank a

ount number. In orderfor Ali
e (the veri�er) to believe that the presented identity really belongs toBob, she will usually require some 
orroborating eviden
e of his 
laim, e.g. aPIN. The pro
ess of obtaining and verifying this eviden
e is 
alled entity au-thenti
ation (Adams, 2005), and a parti
ular algorithm that implements entityauthenti
ation is 
alled an entity authenti
ation s
heme or entity authenti
a-tion proto
ol. As des
ribed by Zu

herato (2005), the 
orroborating eviden
e(sometimes also termed 
redentials) is usually 
omputed based on
• someting knwon, e.g., a password or personal identi�
ation number (PIN),
• something possessed, e.g., physi
al devi
es su
h as me
hani
al keys orsmart 
ards,
• something inherent, e.g., biometri
 information su
h as a �ngerprint orthe stru
ture of the iris.If the veri�er is 
onvin
ed by the 
orroborating eviden
e, we say that the au-thenti
ation was su

essful. After a su

essful authenti
ation, the prover is saidto be authenti
ated. If the prover is in fa
t who he 
laims to be, then we 
allthe prover authenti
.Identi�
ation is often used as a synonym for entity authenti
ation. However,some authors de�ne identi�
ation as the a
tion of merely 
laiming an identitywithout providing 
orroborating eviden
e. We tend to favour the latter de�ni-tion, but will avoid the term identi�
ation altogether whenever possible.7.1.2 Entity Re
ognitionEntitiy authenti
ation usually assumes that the identities of the 
ommuni
ationpartners are long-term identities that are bound to the entities during a systemsetup phase independently of a
tual 
ommuni
ation sessions. This assumption isreasonable in systems that are rather stati
, e.g., a 
orporate IT infrastru
ture,but less suitable for low-end sensor network s
enarios in whi
h nodes join andleave systems dynami
ally and are limited in their 
omputing power and storage
apa
ities. In su
h s
enarios, it is often su�
ient to ensure that an entity
an re
ognize a 
ommuni
ation partner that she has talked to before (entityre
ognition, see Hammell et al. (2005)). S
hemes that solve this problem usually
an make do with short-term identities that are established dynami
ally whenthe entities start 
ommuni
ating for the �rst time, as we will see in Se
tion 7.5.



7.1 Se
urity De�nitions and Atta
ker Models 997.1.3 Message Authenti
ationThe way most ATMs work is based on the assumption that on
e the 
ustomer isauthenti
ated, he and not the adversary will be the one talking to the ATM forthe remainder of the 
ommuni
ation session. Therefore, a 
ustomer is usuallyasked for 
orroborating eviden
e only on
e per session. On the other hand, inorder to prevent an atta
ker from taking over the session of a 
ustomer who hasleft the ATM without logging out (thereby breaking the assumption), sessionsare usually aborted after a relatively short period of 
ustomer ina
tivity.The ATM assumption translates into our abstra
t setting by requiring thatthe adversary have no a

ess to 
ommuni
ation 
hannels that have been estab-lished between legitimate 
ommuni
ation partners. This may be valid in theATM s
enario, but is a lot less reasonable if we 
onsider an online banking use
ase, in whi
h a 
ustomer issues a 
redit transfer order to his bank over theinternet. In general, we 
an make no reliable assumptions on the route an in-ternet message takes to rea
h its destination, and the probabilities of a messagebeing read or even modi�ed on the way have to be 
onsidered non-negligible.Hen
e, the banking server should require 
orroborating eviden
e of ea
h re
eivedmessage in fa
t originating from the 
laimed sender.In our abstra
t model, Bob (the prover) would atta
h 
orroborating evi-den
e of his 
reatorship to ea
h message he sends to Ali
e (the veri�er). Aswith entity authenti
ation, the pro
ess of obtaining and verifying this 
orrobo-rating eviden
e is 
alled message authenti
ation, an algorithm that implementsmessage authenti
ation is 
alled message authenti
ation algorithm or messageauthenti
ation s
heme, and a message for whi
h the authenti�
ation was su
-
essful is 
alled authenti
ated. If the message in fa
t originates from the 
laimedsender and was not altered during transmission, we say that the message isauthenti
.In addition to message authenti
ity, many appli
ations have additional unique-ness and timeliness requirements that dupli
ate or lost messages as well as mes-sages that are re
eived in the wrong order be dete
ted and handled appropri-ately. We note that the presen
e of these properties is implied by some authors'de�nitions of authenti
ity (see, e.g., Menezes et al. (2001)). However, we 
hooseto separate uniqueness and timeliness from our authenti
ity de�nition sin
e theyare sometimes 
overed by transport layers in 
ommuni
ation sta
ks rather thanby authenti
ity s
hemes in the narrow sense. An example is the widely usedTLS proto
ol (see Dierks and Res
orla (2008)), whi
h relies on TCP to ensurethese properties.7.1.4 Message Re
ognitionSimilarly to entity re
ognition (see Se
tion 7.1.2), message re
ognition as aweaker form of message authenti
ation only requires to ensure that a messageoriginates from a parti
ular sender that has been talked to before, and (un-like most message authenti
ation s
hemes) not 
onsider or 
he
k any long-termsender identities. Instead, the 
ommuni
ating parties generate short-term iden-tities just before starting the 
onversation.



100 7.1 Se
urity De�nitions and Atta
ker Models7.1.5 Atta
ker ModelsAs in the 
ase of 
on�dential 
ommuni
ation, we relate the se
urity of an entityauthenti
ation s
heme to an atta
ker (or adversary) model. The most prominentatta
ker goal in the entity authenti
ation/re
ognition setting is to impersonatean entity, i.e., to 
onvin
ingly masquerade as somebody else. Atta
ks that aretargeted at this goal are usually 
alled impersonation atta
ks. Another atta
kergoal may be to prevent the authenti
ation of a legitimate prover or message(denial of servi
e) by disturbing the authenti
ation.The most pessimisti
 assumption is an a
tive atta
ker who has full 
ontrolof the 
ommuni
ation 
hannel, as suggested in the Dolev-Yao se
urity model(Dolev and Yao, 1983). More pre
isely, an a
tive atta
ker may
• read all ex
hanged messages,
• modify ex
hanged mesages, espe
ially delay or suppress their delivery oralter their 
ontent,
• introdu
e additional messages into the 
ommuni
ation 
hannel, espe
iallyreplay previously re
orded messages.We note that this model parti
ularly allows the atta
ker to
• present a previously re
orded legitimate eviden
e to the veri�er (replayatta
k),
• interleave several authenti
ation sessions (running in parallel or sequen-tially) by using information obtained from one session in the 
ontext ofanother,
• disobey the authenti
ation s
heme by sending messages whi
h the re
eiverdoes not expe
t in the 
urrent proto
ol state.
• a
t as a man-in-the-middle (MITM), i.e., inte
ept messages from one 
om-muni
ation partner, possibly modify them, and pass them on to the re-
eiver.Of spe
ial interest in our analysis is a spe
ial 
lass of a
tive atta
kers, whi
hwe 
all dete
tion atta
kers.De�nition 7.1. A dete
tion atta
ker on an entity authenti
ation proto
ol is ana
tive atta
ker who is restri
ted to the following disjoint atta
k stages.1. Intera
t with a legitimate prover in any desired way.2. Intera
t with a legitimate veri�er and try to impersonate the prover.In the message authenti
ation/re
ognition setting, we 
ommonly assumethat the atta
ker has a
tive 
ontrol over the 
ommuni
ation 
hannel as above,and is additionally able to for
e Bob to send message payload data xi of his
hoi
e (whi
h will then be a

epted by Ali
e as authenti
). Thereby, his 
hoi
esof the xi may be adaptive, i.e., xi may depend on the information that wasobtained for xi′ for i′ < i. We de�ne that he has rea
hed his goal if he is able togenerate a message with payload x 6= xi for all i that is authenti
ated by Ali
e(existential forgery in a 
hosen message s
enario, see, e.g., Lu
ks et al. (2008)).



7.2 Message Authenti
ation Codes 101Sometimes se
urity is evaluated also with respe
t to passive atta
kers whoare able to read ex
hanged messages, but 
annot in�uen
e the 
ommuni
ation
hannel in any way.In all 
ases, we follow Ker
kho�s' prin
iple (Ker
kho�s, 1883) also in theauthenti
ation setting and assume the atta
ker to know the entire spe
i�
ationof the authenti
ation s
heme and all information that the s
heme pro
essesex
ept for the data that it expli
itly requires to be kept 
on�dential.7.2 Message Authenti
ation CodesDe�nition 7.2. A Message Authenti
ation Code (MAC) is a mapping
MAC : {0, 1}∗ × {0, 1}n → {0, 1}l

(x, k) 7→ m
(7.1)that 
omputes for a message x an authenti
ation 
ode m under an n-bit key k.A MAC is 
ommonly used in our two-party 
ommuni
ation s
enario in thefollowing way (see Fig. 7.1). Ali
e and Bob agree on a symmetri
 key k prior tothe 
ommuni
ation. Bob 
omputes for a message x the value m = MAC(x, k)and transmits (x, m) = (x, MAC(x, k)) to Ali
e. Ali
e 
omputes for a re
eivedmessage (x′, m′) the value MACverify(x′, m′, k) with

MACverify : {0, 1}∗ × {0, 1}l × {0, 1}n → {0, 1}

(x, m, k) 7→

{
1 if MAC(x, k) = m
0 otherwise ,and believes the message to 
ome from Bob if MACverify(x′, m′, k) = 1. Hen
e,the value m = MAC(x, k) serves as 
orroborating eviden
e of the authenti
ityof x.

MAC
x

Public Channel
(x, m) (x′, m′)

Key Source

Bob (Sender) Alice (Receiver)

k k

MACverify

Figure 7.1: Message authenti
ation with message authenti
ation 
odesA MAC is 
onsidered se
ure if it is infeasible to perform an existential forgeryunder an adaptive 
hosen message atta
k (see Se
tion 7.1.5), i.e., an atta
kerwho may obtain MAC(xi, k) under the se
ret key k for messages xi of his 
hoi
eis not able to produ
e with a realisti
 amount of resour
es a pair (x, m) with
x 6= xi for all i su
h that MACverify(x, m, k) = 1. Obviously, re
overing these
ert key k that is used to generate the authenti
ation 
ode is su�
ient for anexistential forgery.Similarly to the 
ipher systems des
ribed in Se
tion 2.1, sin
e Ali
e andBob both use the same key in the produ
tion and veri�
ation of m, message



102 7.2 Message Authenti
ation Codesauthenti
ation 
odes are said to belong to the set of symmetri
 authenti
ations
hemes.We note that a MAC by itself does not provide assuran
e of message time-liness nor uniqueness.7.2.1 Message Authenti
ation Codes based on Blo
k Ci-phersThe stru
ture of Eq. (7.1) suggests to use blo
k 
iphers as building blo
ks formessage authenti
ation 
odes. This idea is implemented, e.g., in the CBC-MAC (ISO/IEC, 1999), whi
h is based on the CBC mode of a blo
k 
ipher
E : {0, 1}l × {0, 1}n → {0, 1}l (see Se
tion 2.2). If the CBC mode en
ryptionof an m-blo
k message b = (b1, . . . , bm) is given by ECBC((b1, . . . , bm), k, IV) :=
(c1, . . . , cm), the CBC-MAC value for this message is 
omputed as

MACCBC((b1, . . . , bm), k) := cmwith (c1, . . . , cm) = ECBC((b1, . . . , bm), k, 0).Note that the CBC-MAC is inse
ure if we allow the messages to have di�erentlenghts, sin
e we 
an forge an authenti
 message by appending arbitrary blo
ksto observed authenti
 messages for whi
h the CBC-MAC value is known. Thisissue is addressed by variants of the CBC-MAC 
onstru
tion su
h as CMAC(see, e.g., Preneel (2005) for a dis
ussion).If a message authenti
ation 
ode is built from a blo
k 
ipher, this 
ipher willdominate the resour
e requirements of the MAC. The AES blo
k 
ipher (seeMenezes et al. (2001)) is widely used for building message authenti
ation 
odes,and e�
ient implementations, parti
ularly for resour
e-
onstraint environmentsare 
ontinously being developed and optimized (Moradi et al., 2011). In additionto general purpose blo
k 
iphers, lightweight blo
k 
iphers su
h as PRESENT(Bogdanov et al., 2007) and KATAN/KTANTAN (De Cannière et al., 2009) arespe
i�
ally targeted at low-end devi
es.7.2.2 Message Authenti
ation Codes based on Crypto-graphi
 Hash Fun
tionsDe�nition 7.3. A 
ryptographi
 hash fun
tion is a mapping H : {0, 1}∗ →
{0, 1}l whi
h maps an input of arbitrary length to a �xed-length output.Cryptographi
 hash fun
tions are usually required to be
• 
ollision resistant, i.e., it is infeasible for an adversary to �nd two inputs

x 6= x′ su
h that h(x) = h(x′),
• preimage resistant, i.e., it is infeasible for an adversary to �nd for a givenoutput y ∈ {0, 1}l an input x su
h that h(x) = y, and
• 2nd preimage resistant, i.e., it is infeasible for an adversary to �nd for agiven input x another input x′ su
h that h(x) = h(x′).We note that 
ollision resistan
e implies 2nd preimage resistan
e. However,preimage resistan
e does not imply 2nd preimage resistan
e, nor does 2nd preim-age resistan
e imply preimage resistan
e. A 
ryptographi
 hash fun
tion thatis both preimage resistant and 2nd preimage resistant is said to be one-way.



7.3 Message Authenti
ation with Digital Signatures 103A 
ollision resistant 
ryptographi
 hash fun
tion H for arbitraty inputs x ∈
{0, 1}∗ may be 
onstru
ted from a 
ollision resistant 
ompression fun
tion h :
{0, 1}c × {0, 1}d → {0, 1}c with c < d by expanding x to L blo
ks of length d(with the last blo
k only 
ontaining the bitlength of x), i.e., x = (M1, . . . , ML),and 
omputing the output as H(x) := HL with

Hi :=

{
C for i = 0

h(Hi−1, Mi) for 0 < i ≤ L
with C ∈ {0, 1}c 
onstant.This 
onstru
tion is attributed to Merkle and Damgård (Damgård, 1990,Merkle, 1979, 1990). In parti
ular, blo
k 
iphers may be used as 
ompressionfun
tions, e.g., as in the Davies-Meyer s
heme (Davies and Pri
e, 1984) by
omputing the values Hi based on a blo
k 
ipher E : {0, 1}l× {0, 1}n → {0, 1}lwith l = c, n = d as

h(Hi−1, Mi) := E(Hi−1, Mi)⊕Hi−1 ,see, e.g., Bla
k et al. (2002), Preneel et al. (1994).Constru
ting a 
ryptographi
 hash fun
tion from a blo
k 
ipher may beparti
ularly bene�
ial on low-end devi
es with too little 
apa
ity to implementboth a blo
k 
ipher and a dedi
ated 
ryptographi
 hash fun
tion.Potentially the most prominent examples of 
ryptographi
 hash fun
tions arethe MD5 hash fun
tion (Rivest, 1992) and the SHA hash fun
tion family (NIST,2008).1 Similarly to blo
k 
iphers, also dedi
ated lightweight 
ryptographi
 hashfun
tions exist, see, e.g., Guo et al. (2011).We omit further details and refer the interested reader to Preneel (1993)for an introdu
tion to 
ryptographi
 hash fun
tions and to Fleis
hmann et al.(2008), Preneel (2009) for information on more re
ent hash fun
tion proposalsand their properties.Cryptographi
 hash fun
tions 
an readily produ
e a �xed-length �ngerprint(or digest) of an arbitrarily long message, but in order to turn a hash fun
tioninto a message authenti
ation 
ode in the sense of Eq. (7.1), it has to be spe
i�edhow to handle the se
ret key that the authenti
ation relies on. A 
ommonapproa
h is the HMAC 
onstru
tion (Kraw
zyk et al., 1997) that derives an l-bitmessage authenti
ation 
ode from a 
ryptogrpahi
 hash fun
tion H : {0, 1}∗ →
{0, 1}l and a key k ∈ {0, 1}n as

MACH : {0, 1}∗ × {0, 1}n → {0, 1}l

(x, k) 7→ H ((k ⊕ opad)||H (k ⊕ ipad||x))with publi
ly known 
onstants opad and ipad.7.3 Message Authenti
ation with Digital Signa-turesCorroborating eviden
e of a message's authenti
ity 
an also be 
omputed withasymmetri
 
ipher systems as de�ned in Se
tion 2.4. Therefore, we use the1Sin
e the se
urity of these algorithms is in
reasingly under question, at the time of writingof this thesis, a 
ompetition is being held by the National Institute of Standards and Te
h-nology (NIST) to sele
t a su

essor algorithm for the SHA hash fun
tion family (see NIST(2010)), whi
h is stimulating the development of many new designs and intensive resear
h inthis �eld.
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ationde
ryption operation, whi
h employs the private key, to produ
e the eviden
e,and the en
ryption operation, whi
h is based on the publi
 key, to verify theeviden
e. Sin
e in 
ontrast to message authenti
ation 
odes the eviden
e ispubli
y veri�able without the need to establish a 
ommon se
ret, an eviden
ebased on an asymmetri
 system is usually 
alled digital signature (see, e.g.,Vaudenay (2006) for an introdu
tion).The se
urity de�nition of digital signatures is similar to the de�nition formessage authenti
ation 
odes. A digital signature is 
onsidered se
ure if it isinfeasible for an adversary who may obtain signatures for messages xi of his
hoi
e under the se
ret signature key to produ
e a signature for a message
x 6= xi that will be a

epted by a legitimate veri�er. As in the MAC 
ase,re
overing the signature key is su�
ient for being able to forge signatures forarbitrary messages.In order to spend less e�ort on rather 
ostly asymmetri
 operations, theeviden
e is typi
ally 
omputed for a digest of the message (derived with a 
ryp-tographi
 hash fun
tion) rather than for the message as a whole. But still, aswith 
ipher systems, message authenti
ation based on asymmetri
 digital signa-ture s
hemes usually requires substantially more e�ort than symmetri
 messageauthenti
ation 
odes, and this e�ort has to be 
onsidered too large in manylow-end devi
e appli
ations.7.4 Challenge-Response based Entity Authenti-
ationEntity authenti
ation is usually performed by proving the posession of someobje
t (often 
alled key), either a pie
e of information like a password or aPIN, or a physi
al obje
t su
h as a me
hani
al key (see also Se
tion 7.1.1).2In our atta
ker model, presenting the key itself to the prover as 
orroboratingeviden
e is not an option in most 
ases of ele
troni
 
ommuni
ation, sin
e itwould dis
lose it also to the atta
ker and immediately allow for impersonationatta
ks. Hen
e, the 
orroborating eviden
e needs to be some information that isderived from the key, but not the key itself. However, if this derived informationdoes not 
hange from one authenti
ation to another, it is as valuable as the keythat is was derived from be
ause the atta
ker 
ould just replay it to impersonatethe prover.We see that the 
orroborating eviden
e should be some information that isderived from the obje
t and is valid only for a short period of time, ideally onlyfor one authenti
ation session, su
h that the veri�er 
an de
ide whether he ispresented a re
ent (or fresh) eviden
e or some outdated information, whi
h hewould then assume to have been replayed by an atta
ker.The most 
ommon te
hniques to implement freshness veri�
ation of a 
orrob-orating eviden
e are timestamps and veri�er-supplied 
hallenges. Timestampsare in
luded into the eviden
e in an agreed way to do
ument its 
reation time.While being rather straightforward to in
lude, timestamps require a means forprover and veri�er to agree on the 
urrent time (be it UTC time or some abstra
t2Stri
tly speaking, we 
ould also model physi
al obje
ts as pie
es of information by iden-tifying them with their spe
i�
ation. However, obtaining this spe
i�
ation may not alwaysbe feasible, e.g., as in the 
ase of physi
al un
loneable fun
tions (PUFs) that are inherentlydetermined by ele
tri
al or me
hani
al properties of a devi
e (see, e.g., Pappu (2001))
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ounter-based time), whi
h may not always be feasible espe
ially in low-end de-vi
e appli
ations.Veri�er-supplied 
hallenges are independent of time syn
hronization, butrequire the veri�er to provide a 
hallenge (usually a binary string) that theprover has to in
lude in the 
omputation of the eviden
e. If the veri�er keepstra
k of the 
hallenges he supplies to provers, he 
an reje
t eviden
es thatare based on out-dated 
hallenges. Entity authenti
ation s
hemes based onveri�er-supplied 
hallenges are usually 
alled 
hallenge-response authenti
ations
hemes. Whether a 
hallenge-response s
heme is suitable for a parti
ularresour
e-
onstraint appli
ation primarily depends on the severity of the 
om-muni
ation overhead for transmitting the 
hallenge to the prover.We note that we 
an rather straightforwardly build 
hallenge-response entityauthenti
ation s
hemes from message authenti
ation s
hemes by requiring theprover to provide as 
orroborating eviden
e of his identity a message with theveri�er-supplied 
hallenge as payload and 
orroborating eviden
e of this mes-sage's authenti
ity. Alternatively, an en
ryption of the 
hallenge 
an be used as
orroborating eviden
e (ISO/IEC, 1993).7.5 Authenti
ation S
hemes based on Hash ChainsA slightly di�erent �avour of entity authenti
ation proto
ols whi
h has beenproposed by Lamport (1981) is based on a one-way fun
tion h : {0, 1}l → {0, 1}l.Prover and veri�er agree on a value n, the prover 
hooses an arbitrary value
x0, 
omputes the sequen
e (xi)1≤i≤n with xi = h(xi−1), and transmits thevalue xn to the veri�er in a tamper-proof, but not ne
essarily 
on�dential way.As 
orroborating eviden
e in the i-th authenti
ation session, 1 ≤ i ≤ n, theprover presents the value xn−i (i.e., the preimage of xn−i+1 under h) and isauthenti
ated if and only if h(xn−i) = xn−i+1.Sin
e the sequen
e (xi) is produ
ed by repeated (
hained) appli
ation of h,and h is often implemented as a 
ryptographi
 hash fun
tion or its 
ompressionfun
tion, this authenti
ation te
hnique is known as hash 
hain based authenti-
ation.Due to the 
onstru
tion, the number of possible authenti
ations is limitedto the length of the hash 
hain, whi
h, in the absen
e of auxiliary te
hniques,makes the 
onstru
tion slightly less suited for authenti
ating long-term identi-ties. Therefore, hash 
hain based authenti
ation is more often used for entityre
ognition than for entity authenti
ation. On the other hand, 
ompared todigital signatures, the s
heme is 
omputationally mu
h more e�
ient on typi
allow-end devi
es, and sin
e the transmission of the 
hain endpoint xn does nothave to be 
on�dential, it requires less e�ort than 
onventional key establish-ment te
hniques in the initialization phase.Message authenti
ation s
hemes 
an be built based on hash 
hains, e.g., asin the Guy Fawkes proto
ol suggested by Anderson et al. (1998). The Jane Doeproto
ol by Lu
ks et al. (2008) uses the elements of the hash 
hain as keys for amessage authenti
ation 
ode, and the 
hain elements are su

essively dis
losedto the veri�er su
h that he 
an perform the authenti
ation. In order to preventforgery atta
ks, 
are has to be taken not to dis
lose these values too soon, whi
his ensured by a se
ond hash 
hain that is produ
ed on the veri�er's side andstepwise dis
losed to the prover.
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ation based on the Hardness of Learning Problems7.6 Authenti
ation based on the Hardness of Learn-ing ProblemsA spe
ial 
ase of lightweight 
hallenge-response based entity authenti
ation asdes
ribed in Se
tion 7.4 is the following generi
 strategy:1. Constru
t from a lightweight fun
tion E a basi
 
hallenge-response proto-
ol and redu
e the se
urity of the basi
 proto
ol against passive atta
kersto the hardness of a suitable learning problem.2. De�ne a proto
ol P over E and try to redu
e the se
urity of P againsta
tive atta
kers to the se
urity of the basi
 proto
ol against passive at-ta
kers.For a fun
tion E : X × K → Y with suitably 
hosen input spa
e X , keyspa
e K and output spa
e Y , the basi
 proto
ol is de�ned as follows. Theveri�er (Ali
e) and the prover (Bob) share a se
ret key k ∈ K. A basi
 round
onsists of the following steps.
• Ali
e and Bob ex
hange 
hallenge information. As a spe
ial 
ase, this stepmay only 
onsist of Ali
e sending a publi
ly known 
onstant value (a hellomessage) that is just used as a trigger to initiate the 
ommuni
ation.
• Based on the 
hallenges, Bob 
hooses a random element x ∈ X whi
his distributed a

ording to a publi
ly known probability distribution PrBand sends z = E(x, k) as 
orroborating eviden
e of his knowledge of k toAli
e.
• Ali
e veri�es z based on the 
hallenges and the 
ommon se
ret k.After r su
h rounds and depending on the number of rounds with su

essfulveri�
ations, Ali
e de
ides whether to authenti
ate Bob.In the following, we 
onsider two entity authenti
ation proto
ol families ofthis type, the HB family and the family of linear (n, k, L) proto
ols.



Chapter 8The HB Family ofAuthenti
ation Proto
ols8.1 The HB Proto
olThe HB proto
ol was proposed by Juels and Weis (2005) as an authenti
ationproto
ol that 
an be exe
uted by humans. The use 
ase that they had in mindwas se
urely logging into a terminal in the presen
e of adversaries eavesdroppingon what the user types into the keyboard.The veri�er (Ali
e) and the prover (Bob) share a 
ommon se
ret k ∈ {0, 1}nand a publi
 noise parameter η ∈
(
0, 1

2

). A basi
 round of the HB proto
ol worksas follows. Ali
e transmits a random 
hallenge a ∈ {0, 1}n to Bob, who 
hoosesa value ν ∈ {0, 1}n with Pr[ν = 1] = η and transmits the value z := (a · k) ⊕ νas 
orroborating eviden
e to Ali
e, where x ·y ∈ {0, 1} for x, y ∈ {0, 1}n denotesthe inner produ
t of x and y over GF(2). She a

epts z if and only if z is equalto (a · k). Fig. 8.1 illustrates the basi
 round of HB.Note that in the terminology of Se
tion 7.6, we have K = GF(2)n, X = Y =
GF(2)n×GF(2), y = GF(2), and the basis operation is de�ned by E((x, ν), k) =
(x, y), where y = x · k ⊕ ν.The entire proto
ol 
onsists of r basi
 rounds, and Ali
e authenti
ates Bob

Verifier Prover

Alice Bob
RFID reader RFID tag

a ∈R {0, 1}n

z = (a · k) ⊕ ν
Accept iff

choose
ν ∈ {0, 1},
Pr[ν = 1] = η

z = (a · k)

key k key k

Figure 8.1: Basi
 round of the HB proto
ol
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+ Proto
olif and only if the number of rounds in whi
h the re
eived value z was reje
tedis less than ηr, or equivalently, for A denoting a random (r × n) matrix over

{0, 1} and k written as (n× 1) matrix, Ali
e authenti
ates Bob if and only if
|(A ◦ k)⊕ z| < ηr .Hen
e, a passive atta
ker who observes the 
ommuni
ation between Ali
eand Bob and wants to impersonate Bob is fa
ed with the problem of �nding a

k′ ∈ {0, 1}n su
h that
|(A ◦ k′)⊕ z| < ηr .This problem 
orresponds to the Learning Parity in the Presen
e of Noise(LPN) problem, whi
h is de�ned as follows.De�nition 8.1 (Learning Parity in the Presen
e of Noise). Let A be arandom (r×n) matrix , let k be a random n-bit ve
tor, let η ∈

(
0, 1

2

) be a 
onstantnoise parameter, and let ν be a random r-bit ve
tor su
h that |ν| ≤ ηr. Given
A, η, and z = (A ◦ k)⊕ ν, �nd an n-bit ve
tor k′ su
h that |(A ◦ k′)⊕ z)| ≤ ηr.The LPN problem is well-established in the literature (see, e.g., Hopper andBlum (2001), Juels and Weis (2005) for an overview). It has been shown to be
NP-hard, but its di�
ulty on random instan
es is still an open question. Thebest known algorithm to date is due to Blum et al. (2003) and has a running timeof 2O( n

log n ), with tighter analyses and implementation improvements proposedby Fossorier et al. (2006), Levieil and Fouque (2006).Hopper and Blum (2001), Juels and Weis (2005) showed that the se
urityof the HB proto
ol against passive atta
kers 
an be redu
ed to the hardness ofthe LPN problem in the sense that a passive atta
ker who 
an impersonate theprover in the HB proto
ol 
an be used to solve the LPN problem.However, a dete
tion atta
ker Eve (see De�nition 7.1) 
an break the HBproto
ol and impersonate the prover as follows (Juels and Weis, 2005). Everepeatedly sends the same 
hallenge a to Bob in order to learn the error-freevalue of a ·k for the unknown se
ret k. She repeats this pro
edure for n linearlyindependent values a (e.g., the standard basis {e1, . . . , en} of {0, 1}n) and 
anthen re
over k by Gaussian elimination.8.2 The HB
+ Proto
ol

HB
+ was proposed by Juels and Weis (2005) to strenghen HB against a
tiveatta
kers. It introdu
es an additional message, a prover-supplied blinding fa
tor,and works as follows.Veri�er (Ali
e) and prover (Bob) share two se
ret values k1, k2 ∈ {0, 1}nand a publi
 noise paramter η ∈

(
0, 1

2

). At the beginning of a basi
 proto
olround, Bob sends a randomly 
hosen blinding fa
tor b ∈ {0, 1}n to Ali
e, andshe replies with a 
hallenge a ∈ {0, 1}n. Bob then 
omputes his 
orroboratingeviden
e as z = (a ·k1)⊕ (b ·k2)⊕ ν with ν ∈ {0, 1} su
h that Pr[ν = 1] = η andtransmits z to Ali
e, who a

epts z if and only if z is equal to (a · k1)⊕ (b · k2).The basi
 proto
ol round of HB
+ is illustrated in Fig. 8.2.As in the HB proto
ol, the basi
 proto
ol round is repeated r times, andAli
e authenti
ates Bob if and only if the number of basi
 rounds ending inreje
tion of the eviden
e is less than ηr.
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Verifier Prover

Alice Bob
RFID reader RFID tag

a ∈R {0, 1}n

z = (a · k1) ⊕ (b · k2) ⊕ ν
Accept iff

choose
ν ∈ {0, 1},
Pr[ν = 1] = η

z = (a · k1) ⊕ (b · k2)

key k1, k2 key k1, k2

b ∈R {0, 1}n

Figure 8.2: Basi
 round of the HB
+ proto
olJuels and Weis (2005) were able to show that a dete
tion atta
ker (see De�-nition 7.1) on HB

+ 
an be used to atta
k the HB proto
ol in a passive atta
kers
enario, and this atta
k 
an in turn be used to solve the LPN problem. Hen
e,the hardness of LPN implies the se
urity of HB
+ against the a
tive adversarythat HB is not able to resist.However, Gilbert et al. (2005) observed that this redu
tion 
annot be ex-tended to general a
tive adversaries, who 
an also a
t as man-in-the-middle be-tween legitimate prover and legitimate veri�er. More pre
isely, an HB

+ man-in-the-middle atta
ker Eve 
ould pro
eed as follows. She 
hooses a value δ ∈ {0, 1}nand repla
es a veri�er-supplied 
hallenge a by a ⊕ δ. Bob will then produ
e a
orroborating eviden
e z′ as
z′ = (a · k1)⊕ (δ · k1)⊕ (b · k2)⊕ ν ,and Eve observes whether Ali
e a

epts z′. If this is the 
ase, then (δ·k1)⊕ν = 0,whi
h implies δ · k1 = 0 with probability 1 − η. Conversely, if Ali
e reje
ts z′,then δ · k1 = 1 with probability 1 − η. Similarly to the atta
k on HB, Eve
an repeat this pro
edure for n linearly independent values δ and re
over k1.With this knowledge, Eve 
an already impersonate Bob by 
hoosing b = 0. Ifshe wants to re
over also k2, she 
an 
hoose an arbitrary b and intera
t witha legitimate veri�er, supply z′ = a · k1 as 
orroborating eviden
e and dedu
e

b · k2 = 0 if and only if the veri�er a

epts z′. Again, repeating these steps for
n linearly independent blinding fa
tors b yields k2.In the following, we will refer to this atta
k on HB

+ as Gilbert/Robshaw/Sibertatta
k (GRS atta
k).8.3 Variants of the HB
+ Proto
olAfter its publi
ation in 2005, HB

+ has re
ieved 
onsiderable attention in the
ryptographi
 
ommunity. Espe
ially its simpli
ity, its e�
ien
y on the prover'sside, and its provable resistan
e against passive atta
ks (albeit relying on thehardness of LPN) while being vulnerable to the rather simple GRS atta
k,motivated a number of follow-up proposals that aim to avoid this short
omingwhile preserving as many of the advantages as possible.However, it turns out that resisting GRS-style atta
ks � modifying the ver-i�er's 
hallenge and learning from his rea
tion to the eviden
e that the prover
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es from the perturbed input � does not seem to be an easy task. Parti
-ularly Gilbert et al. (2008b) showed that many of the follow-up proposals endup being less e�
ient than HB

+ while not providing 
onsiderably more se
urity.In the following, we des
ribe the most prominent ones of these proposals anddis
uss their se
urity properties.8.3.1 The HB
++ Proto
olThe HB

++ proto
ol was proposed by Bringer et al. (2006) and 
onsists, justas HB
+, of a number of repetitions of a basi
 proto
ol round. However, at thebeginning of an authenti
ation session, four se
rets k1, k

′
1, k2, k

′
2 are derived froma shared se
ret master key K, a prover-supplied blinding fa
tor B ∈ {0, 1}80 anda veri�er's 
hallenge A ∈ {0, 1}80. This is done by applying a publi
ly knownhash fun
tion to K, A and B. Bringer et al. propose a parti
ular fun
tion

h : {0, 1}768×{0, 1}80×{0, 1}80 → {0, 1}320, whi
h implies a master se
ret sizeof 768 bits and four session keys of size 80 bits ea
h (see Fig. 8.3).In a basi
 proto
ol round, veri�er (Ali
e) and prover (Bob) ex
hange a blind-ing fa
tor b and a 
hallenge a as in HB
+. Then Bob 
hooses two noise parameters

ν and ν′ with ν, ν′ ∈ {0, 1} and Pr[ν = 1] = Pr[ν′ = 1] = η. The 
orroboratingeviden
e 
onsists of two 
omponents (z, z′) with
z = (a · k1)⊕ (b · k2)⊕ ν

z′ = (ROTi(f(a)) · k′
1)⊕ (ROTi(f(b)) · k′

2)⊕ ν′ ,where ROTi(x) denotes the rotation of x ∈ {0, 1}∗ by i positions to the left, and
f denotes a permutation. Analogously to HB

+, Ali
e 
he
ks whether z and z′satisfy
z = (a · k1)⊕ (b · k2) ,

z′ = (ROTi(f(a)) · k′
1)⊕ (ROTi(f(b)) · k′

2) .Figure 8.4 illustrates a basi
 proto
ol round of HB
++.The basi
 proto
ol is repeated r times, and Ali
e authenti
ates Bob if boththe number of erroneous z eviden
es and the number of erroneous z′ eviden
esdo not ex
eed a threshold t.Bringer et al. (2006) showed that the resistan
e of HB

++ against passiveatta
ks 
an be redu
ed to the hardness of LPN, and that the proto
ol is able toresist the GRS atta
k if f is 
arefully 
hosen.
Verifier Prover

Alice Bob
RFID reader RFID tag

A ∈R {0, 1}n

(k1, k
′

1
, k2, k

′

2
)

secret K secret K
B ∈R {0, 1}n

= h(K, A,B)(k1, k
′

1
, k2, k

′

2
)

= h(K, A,B)Figure 8.3: Initialization of the HB
++ proto
ol
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Verifier Prover

Alice Bob
RFID reader RFID tag

a ∈R {0, 1}n

z′ = (ROTi(f(a)) · k′
1
)

Accept iff

choose
ν, ν′ ∈ {0, 1}
Pr[ν = 1] = η

z = (a · k1) ⊕ (b · k2)
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′

1
, k2, k

′

2
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′

1
, k2, k

′

2
b ∈R {0, 1}n

Pr[ν′ = 1] = η

z = a · k1 ⊕ b · k2 ⊕ ν

⊕(ROTi(f(b)) · k′
2
) ⊕ ν′

z′ = (ROTi(f(a)) · k′
1
)

⊕(ROTi(f(b)) · k′
2
) ⊕ ν′Figure 8.4: Basi
 round of the HB

++ proto
olBut still, HB
++ remains vulnerable to a spe
ial extension of the GRS atta
k.Gilbert et al. (2008b) dis
overed that by disturbing the 
hallenge a in s out of rrounds of an authenti
ation session, exploiting the observed veri�
ation resulton the veri�er's side and the spe
ial stru
ture of h, an adversary 
an dedu
elinear equations in a number of bits of k1. The resulting system 
an be expressedas an LPN instan
e and solved with moderate e�ort. From the re
overed k1,the session key k′

1 
an be derived in a similar manner. The knowledge of k1and k′
1 is already su�
ient for impersonating Bob sin
e the adversay 
an reuseblinding fa
tors b from su

essful authenti
ations of Bob along with k1, k′

1 to
orre
t z and z′ appropriately.8.3.2 The HB
∗ Proto
olAnother variant of HB

+, the HB
∗ proto
ol, was proposed by Du
 and Kim(2007). As in HB

+, veri�er (Ali
e) and prover (Bob) share two se
ret values k1and k2. Additionally, there is a shared se
ret s that is used to 
on�dentiallytransmit an auxiliary value γ from Bob to Ali
e.At the beginning of a basi
 proto
ol round, Bob 
hooses γ ∈ {0, 1} with
Pr[γ = 1] = η′, and ν ∈ {0, 1} with Pr[ν = 1] = η, and transmits a randomly
hosen blinding fa
tor b ∈ {0, 1}n and the en
rypted value of γ, whi
h is 
om-puted as w = (b · s) ⊕ γ, to Ali
e. As in HB

+, Ali
e replies with a 
hallenge
a ∈ {0, 1}n. Bob then 
omputes his 
orroborating eviden
e as

z =

{
(a · k1)⊕ (b · k2)⊕ ν if γ = 0
(a · k2)⊕ (b · k1)⊕ ν if γ = 1

,and Ali
e 
he
ks whether (a · k1) ⊕ (b · k2) equals z if (b · s) = w (i.e., γ = 0),and whether (a · k2) ⊕ (b · k1) equals z if (b · s) 6= w (i.e., γ = 1). Again, Bobis authenti
ated if the veri�
ation fails for less than a threshold t out of r basi
proto
ol rounds. The basi
 proto
ol round of HB
∗ is illustrated in Fig. 8.5.Du
 and Kim 
laim resistan
e against the GRS atta
k, but Gilbert et al.(2008b) observed that although in ea
h basi
 round one of the two proto
olmodes is se
retly sele
ted by the value γ, a modi�ed GRS atta
k remains appli-
able. This atta
k is again based on adding a ve
tor δ to the veri�er's 
hallenge

a and exploiting the information that the result of the veri�
ation leaks about
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Verifier Prover

Alice Bob
RFID reader RFID tag

a ∈R {0, 1}n

z =

{

ak1 ⊕ bk2 ⊕ ν if γ = 0

ak2 ⊕ bk1 ⊕ ν if γ = 1

Accept iff

choose
ν ∈ {0, 1}
Pr[ν = 1] = η

key k1, k2, s key k1, k2, s

b, w = (b · s) ⊕ γ

choose
γ ∈ {0, 1}
Pr[γ = 1] = η′

choose

b ∈R {0, 1}n

z =

{

ak1 ⊕ bk2 if bs = w

ak2 ⊕ bk1 if bs 6= wFigure 8.5: Basi
 round of the HB
∗ proto
olthe se
rets k1 and k2. A 
ase distin
tion shows that the a

eptan
e probabil-ity of z varies depending on the values of δ · k1 and δ · k2 in su
h a way thatthe atta
ker 
an dis
riminate between (sets of) the 
ases. Depending on the
hoi
es of η and η′, the atta
ker may either re
over k1 as in the GRS atta
kand impersonate Bob by sending (b, w) = (0, 0) as �rst message, or learn thetwo-dimensional ve
torial spa
e < k1, k2 >, whi
h 
an similarly be exploited toimpersonate Bob.8.3.3 The HB-MP Proto
olsMunilla and Peinado (2007) proposed the HB-MP proto
ol as an HB

+-variantthat presumably resists the GRS atta
k. It uses a two-pass basi
 proto
ol asfollows. Both veri�er (Ali
e) and prover (Bob) share a se
ret (k1, k2). In the i-th exe
ution of the basi
 proto
ol, Ali
e sends a 
hallenge a ∈R {0, 1}m to Bob,who 
hooses a ν ∈R {0, 1}m su
h that Pr[νi = 1] = η for all i ∈ [1, m]. Thenhe 
omputes k1 := rotate(k1, (k2)i), where (k2)i denotes the i-th bit of k2 androtate(x, y) the rotation of x by y positions. He 
omputes z := (a · (⌊k1⌋m))⊕ νwith ⌊k1⌋m denoting the m least signi�
ant bits of k1. Finally, he 
hooses avalue b that satis�es (b · (⌊k1⌋m)) = z and transmits b to Ali
e. Ali
e a

eptsthe eviden
e if and only if b · (⌊k1⌋m) equals a · (⌊k1⌋m) whi
h is equivalent to
(a⊕ b) · (⌊k1⌋m) = 0 . (8.1)Figure 8.6 illustrates the basi
 round of HB-MP.As with HB

+, Bob is authenti
ated if the number of failed basi
 proto
olrounds is less than some threshold t.Despite the 
laim in the original proposal, HB-MP is vulnerable to a passiveatta
k as observed by Gilbert et al. (2008b). Equation (8.1) implies that a basi
proto
ol round is always passed if a and b are equal. Munilla and Peinado re
-ommend immediate reje
tion for this 
ase, but nevertheless suitable eviden
es
an be 
onstru
ted from an observed r-round authenti
ation session with ex-
hanged messages (ai, bi), i ∈ [1, r]. In order to impersonate the prover, we
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Verifier Prover

Alice Bob
RFID reader RFID tag

a ∈R {0, 1}m

Accept iff

choose
ν ∈ {0, 1}m

Pr[νi = 1] = η

b · (⌊k1⌋m) = a · (⌊k1⌋m)

key k1, k2 key k1, k2

x = rotate(k1, (k2)i)

z = (a · (⌊k1⌋m)) ⊕ ν

b with b · (⌊k1⌋m) = z
x = rotate(k1, (k2)i)Figure 8.6: Basi
 round of the HB-MP proto
ol
ompute for the veri�er's 
hallenge a′

i an eviden
e b′i as bi := a′
i ⊕ ai ⊕ bi. Thenwe have b′i 6= a′

i sin
e ai 6= bi, and
(ai ⊕ bi) · (⌊k1⌋m) = (a′

i ⊕ b′i) · (⌊k1⌋m) .Hen
e, with this strategy we 
an su

essfully impersonate the prover if and onlyif the observed authenti
ation session was su

essful.8.3.4 The HB
# Proto
olIn the light of the little resistan
e of the above des
ribed HB

+ variants againstGRS-type atta
ks, Gilbert et al. (2008a) introdu
ed HB
# as an improvementof HB

+ that is provably resistant against the GRS atta
k. It 
an be seen as a
ompressed version of HB
+ and works as follows.Veri�er (Ali
e) and prover (Bob) share two se
ret matri
es K1 and K2. Bobsends an l2-bit blinding value b ∈R {0, 1}l2 to Ali
e, who replies with an l1-bit
hallenge a ∈R {0, 1}l1. Bob then 
hooses an m-bit ve
tor ν = (ν1, . . . , νm)su
h that Pr[νi = 1] = η for i ∈ [1, m] and transmits to Ali
e as 
orroboratingeviden
e the value z = aK1 ⊕ bK2 ⊕ ν. Ali
e a

epts an eviden
e z if and onlyif wt(a ·K1 ⊕ b ·K2 ⊕ z) ≤ t for some threshold t (see Fig. 8.7).In 
ontrast to HB

+, an authenti
ation session based on HB
# 
onsists onlyof a single round. Hen
e, the proto
ol is similar to m exe
utions of HB

+ withindividual se
rets in ea
h basi
 round.Although provably resistant against the GRS atta
k and 
ertain extensions,
HB

# has been shown by Oua� et al. (2008) not to resist general man-in-the-middle atta
ks. Parti
ularly, Oua� et al. show how to dedu
e the Hammingweight of the error ve
tor ν in a parti
ular authenti
ation session, whi
h 
anin turn be used to set up a system of linear equations to re
over K1 and K2.The atta
k has resonable su

ess probabilities for pra
ti
al parameter 
hoi
esof HB
# and is generally appli
able also to other members of the HB proto
olfamily.
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Verifier Prover

Alice Bob
RFID reader RFID tag

a ∈R {0, 1}l1

z = a · K1 ⊕ b · K2 ⊕ ν
Accept iff

choose
ν ∈ {0, 1}m

Pr[νi = 1] = η

wt((a · K1) ⊕ (b · K2) ⊕ z) ≤ t

key K1,K2 key K1,K2

b ∈R {0, 1}l2

Figure 8.7: One round of the HB
# proto
ol8.3.5 The Trusted-HB Proto
olA generi
 way to prevent man-in-the-middle atta
ks on HB

+-like proto
ols is tohave the prover send a signature of his view of the 
ommuni
ation trans
ript atthe end of the authenti
ation proto
ol. An adversary who is not able to forgethe signature will thereby be prevented from impersonating the prover. Obvi-ously, the 
hoi
e of signature s
hemes is restri
ted by the resour
e 
ontraintsof the HB
+ target appli
ation environment, whi
h rules out standard messageauthenti
ation s
hemes (that 
ould by themselves be used for entity authenti-
ation, see Se
tion 7.4). The proposal Trusted-HB by Bringer and Chabanne(2008) tries to solve this trade-o� by using a family of universal hash fun
tionsthat are represented by Toeplitz matri
es, parti
ularly by a subset of Toeplitzmatri
es that 
an be generated by LFSRs.De�nition 8.2. A �nite 
olle
tion H of hash fun
tions h : {0, 1}m → {0, 1}n is
alled family of universal hash fun
tions if for ea
h pair of values x, y ∈ {0, 1}m,the number of hash fun
tions h ∈ H for whi
h h(x) = h(y) is pre
isely |H|

m , i.e.,for a randomly 
hosen h ∈ H, Pr[h(x) = h(y)] = 1
m for all x, y ∈ {0, 1}m.De�nition 8.3. An (n×m) Boolean Toeplitz matrix U 
ontains a �xed valuein ea
h left-to-right diagonal, i.e., U is a Toeplitz matrix if Ui,j = Ui+k,j+k forevery 0 ≤ i, i + k < n and 0 ≤ j, j + k < m.Mansour et al. (1990) showed that a familyH of universal hash fun
tions 
anbe 
onstru
ted by representing the h ∈ H as Toeplitz matri
es U and 
omputing

h(M) as h(M) := U ◦M with M written as (m× 1) matrix.The idea of Kraw
zyk (1994), whi
h is also used in Trusted-HB, was to re-stri
t the family of Toeplitz matri
es to those whose 
onse
utive 
olumns 
anbe represented as the 
onse
utive states of an LFSR with irredu
ible 
onne
tionpolynomial. This restri
tion trades o� redu
ed se
urity guarantees and 
om-pa
t matrix representations, whi
h are espe
ially useful in resour
e-
onstrainedenvironments. The signature for a message M ∈ {0, 1}m is then 
omputed as
MAC(M) := h(M)⊕ e(i), where e(i) ∈ {0, 1}n denotes the i-th unused one-timepad, while h and e(i), i ≥ 0, are the se
ret key shared by prover and veri�er.Therefore Trusted-HB 
onsists of two stages:1. Prover and veri�er exe
ute the standard HB

+ proto
ol.
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omputes a signature on the 
ommuni
ation trans
ript of the�rst stage based on LFSR-based Toeplitz matri
es and transmits it to theveri�er for veri�
ation.However, the parti
ular implementation of step (2) in Trusted-HB turned outto be �awed (Frumkin and Shamir, 2009), parti
ularly be
ause it seems hard inpra
ti
e to keep h 
on�dential and provide values e(i) that are su�
iently 
loseto the one-time pad assumption. How the signature 
an be implemented in aboth a se
ure and e�
ient way is therefore an open problem to the present day.
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Chapter 9The (n, k, L) Family ofAuthenti
ation Proto
ols9.1 Introdu
tion and OverviewAs a possible alternative to HB-type proto
ols, another 
lass of lightweightauthenti
ation proto
ols (so-
alled CKK proto
ols) were introdu
ed by Ci
ho«et al. (2008). These proto
ols 
an be generalized to linear (n, k, L) proto
ols,in whi
h the se
ret key 
onsists of the spe
i�
ation of L n-dimensional linearsubspa
es V1, . . . , VL of GF(2)n+k, while the identi�
ation is performed by 
ol-laboratively generating an element v ∈ Vl for a random l ∈ {1, . . . , L}. Ci
ho«et al. (2008) suggested the CKK2 proto
ol, a spe
ial linear (n, k, 2) proto
ol, andthe CKKσ,L proto
ol, a spe
ial linear (n, k, L) proto
ol, for pra
ti
al appli
ation.Compared to HB-type proto
ols, the advantages of (n, k, L) proto
ols andespe
ially their improvements (n, k, L)+ and (n, k, L)++ are that fewer bits haveto be 
ommuni
ated, 
omputational e�ort and memory requirements are loweron the prover's side (essentially, the prover has to generate random elementsfrom L di�erent n-dimensional subspa
es of GF(2)n+k), and that (n, k, L)-typeproto
ols seem to be more resistant against a
tive atta
ks. The drawba
k isthat we 
annot prove the se
urity of (n, k, L) proto
ols by redu
tion to a well-established problem like the LPN-problem yet. However, we show that similarlyto HB-type proto
ols, the se
urity of (n, k, L)-type proto
ols 
an be related tothe hardness of a 
ertain learning problem, the Learning Unions of L linearsubspa
es (LULS) problem.We have experimentally 
on�rmed the 
orre
tness and e�
ien
y of our at-ta
ks and algorithms with the 
omputer algebra system Magma (Bosma et al.,1997).9.2 The Linear (n, k, L) Proto
olIn a linear (n, k, L) proto
ol, veri�er (Ali
e) and prover (Bob) share as 
ommonse
ret the spe
i�
ations of L inje
tive linear fun
tions F1, . . . , FL : GF(2)n −→
GF(2)n+k, i.e., ea
h Fi 
orresponds to an n-dimensional subspa
e Vi of GF(2)n+k.After re
eiving an arbitrary 
hallenge from Ali
e, Bob 
omputes as 
or-
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olroborating eviden
e an element w = Fl(u) for l ∈R [L] and u ∈R GF(2)n.Ali
e a

epts an eviden
e w if there is an l ∈ [L] su
h that w ∈ Vl, where
[L] := {1, . . . , L} (see Fig. 9.1).Obviously, this proto
ol is vulnerable to a simple passive atta
k, sin
e anadversary 
an store a number of proofs and then impersonate Bob by presentingthese proofs to Ali
e.Moreover, an a
tive adversary 
an su

essfully re
over the key as follows.1. Colle
t a set of messages O = {v1, . . . , vs} sent by Bob, with s largeenough for O to 
ontain a basis for Vl for all l ∈ [L] with high probability.2. Constru
t an s× s-matrix M over {0, 1}, where Mi,j = 1 i� Ali
e a

epts

vi ⊕ vj .Note that if vi and vj belong to the same subspa
e Vl, Pr[Mi,j = 1] = 1. If
{vi, vj} 6⊆ Vl for all l ∈ [L], then

Pr[Mi,j = 1] = Pr

[

vi ⊕ vj ∈
L⋃

l=1

Vl

]

≤ (L− 2)2−k .The expe
ted number of messages needed for 
onstru
ting Or 
an be estimatedbased on the following experiment.Set B := ∅.repeatChoose a random v ∈ GF(2)n (w.r.t. the uniform distribution).
V := V ∪ {v}.until V is a generating system of GF(2)n.Lemma 9.1 (Goªebi�wski et al. (2008)). Consider the experiment of repeat-edly 
hoosing a random element v ∈ GF(2)n and adding v to an initially emptyset V until V 
ontains a generating system of GF(2)n. Let p(n) denote theprobability that the experiment stops after n iterations (i.e., V is a basis of

GF(2)n), and E(n) denote the expe
ted number of iterations of the experiment.Then p(n) ≈ 0.2887 and E(n) ≈ n + 1.6067.Hen
e, s ∈ Θ(L · E(n)) = Θ(Ln), i.e., it is possible to e�
iently 
omputespe
i�
ations of V1, . . . , VL and to impersonate Bob by replying with w ∈ Vl forarbitrary l ∈ [L].
Verifier Prover

Alice Bob
RFID reader RFID tag

challenge
choose l ∈R [L],

w = Fl(u)
accept if
∃l ∈ {1, . . . , L}
with w ∈ Vl

u ∈R GF(2)n

key F1, . . . , FL key F1, . . . , FL

Figure 9.1: Basi
 round of the (n, k, L) proto
ol



9.3 The Linear (n, k, L)+ Proto
ol 1199.3 The Linear (n, k, L)+ Proto
olIn order to prevent the des
ribed atta
ks on the linear (n, k, L) proto
ol, we
onsider the following 
ommuni
ation mode, whi
h, analogously to the HB+proto
ol (see Se
tion 8.2), de�nes (n, k, L)+ proto
ols.Ali
e starts by sending an a ∈R GF(2)n/2 to Bob. Bob 
hooses values
b ∈R GF(2)n/2 and l ∈R [L] and sends w = Fl(a, b) to Ali
e. Ali
e a

epts a
w ∈ GF(2)n+k if there is some l ∈ [L] with w ∈ Vl and the pre�x of length n/2of F−1

l (w) is equal to a (see Fig. 9.2).However, (n, k, L)+ proto
ols 
an be broken by the man-in-the-middle at-ta
k outlined in Algorithm 12. In this atta
k, s is 
hosen large enough for
{w1, . . . , ws} to 
ontain a basis of Vl with high probability (see Lemma 9.1).The atta
k is repeated until spe
i�
ations of all V1, . . . , VL have been 
omputed.Algorithm 12 (n, k, L)+_MITM-Atta
k(n, k, L)Fix a1 6= ~0 in GF(2)n/2.Send a1 to Bob and re
eive w1 ∈ Vl for some unknown l ∈ [L].for r = 2, . . . , s dorepeatInter
ept a from Ali
e.Send a′ := a⊕ a1 to Bob and re
eive w′.until Ali
e a

epts w′⊕w1 (whi
h happens with probability at least 1/L)De�ne ar := a′ and wr := w′.end forreturn {w1, . . . , ws} (whi
h allows to 
ompute Vl)9.4 The Linear (n, k, L)++ Proto
olThe parameters n, k, L as well as Vl, Fl for l ∈ [L] are de�ned as above. Let
n = 2N . The (n, k, L)++ proto
ol works similarly to the (n, k, L)+ proto
ol, butuses an additional publi
ly known invertible fun
tion f : GF(2)n −→ GF(2)n,whi
h we 
all 
onne
tion fun
tion.In a basi
 proto
ol round, Ali
e 
hooses a random a ∈ GF(2)N , a 6= ~0, movesto inner state a, and sends a to Bob. Bob 
hooses random values b ∈ GF(2)N

Verifier Prover

Alice Bob
RFID reader RFID tag

a ∈R GF(2)n/2

choose l ∈R [L],

w = Fl(a, b)

b ∈R GF(2)n/2

let (ã, b̃) = F−1

l (w)
accept if ã = a

if ∃l ∈ {1, . . . , L}
with w ∈ Vl

key F1, . . . , FL key F1, . . . , FL

Figure 9.2: Basi
 round of the (n, k, L)+ proto
ol
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oland l ∈ [L] and sends w = Fl(f(a, b)) ba
k to Ali
e. Ali
e a

epts a message
w ∈ GF(2)n in inner state a if w 6= ~0, and ∃l ∈ [L] su
h that w ∈ Vl, and
f−1(F−1

l (w)) has the form (a, b) for some b ∈ GF(2)N . The basi
 proto
olround of (n, k, L)++ is illustrated in Fig. 9.3. Note that 
hoosing f to be theidentity yields the (n, k, L)+ proto
ol.For the (n, k, L)++ proto
ol, we 
onsider a spe
ial type of man-in-the-middleatta
k whi
h we 
all (x, y)-equality atta
k. The aim of an (x, y)-equality atta
kerEve is to generate two messages w 6= w′ ∈ GF(2)n+k and to e�
iently test byman-in-the-middle a

ess to the proto
ol whether w and w ⊕ w′ belong to thesame linear subspa
e Vl for some l ∈ [L]. As des
ribed above, su
h an atta
k
an be used to e�
iently 
ompute spe
i�
ations of the subspa
es V1, . . . , VL.Eve works in three phases:1. Send a message y ∈ GF(2)N to Bob and re
eive w′ = Fl(f(y, b′)).2. Observe a 
hallenge a ∈ GF(2)N sent by Ali
e.3. Compute a value x = x(y, w′, a) ∈ GF(2)N , send it to Bob, re
eive themessage w = Fr(f(x, b)), and send w ⊕ w′ to Ali
e.The su

ess probability of the atta
k is equal to the probability that Ali
ea

epts w ⊕ w′ given that l = r. Note that if f is GF(2)-linear (as in the
(n, k, L)+ proto
ol), setting x = a⊕ y yields an atta
k with su

ess probabilityone.We now de�ne a 
onne
tion fun
tion whi
h yields provable se
urity against
(x, y)-equality atta
ks. In the following we identify {0, 1}N with the �nite �eld
K = F2N and denote by +, · the addition and multipli
ation in K. We de�ne a
onne
tion fun
tion f by

f : K ×K → K ×K
(a, b) 7→ (ab, ab3)

. (9.1)Hen
e, Ali
e a

epts a message w with F−1
l (w) = (u, v) ∈ K2 in inner state

a ∈ K∗ if (a−1u)3 = a−1v, whi
h is equivalent to u3 = a2v.Theorem 9.2. The su

ess probability of an (x, y)-equality atta
ker against the
(n, k, L)++ proto
ol with 
onne
tion fun
tion f de�ned in Eq. (9.1) is at most

3
2N−1 .

Verifier Prover

Alice Bob
RFID reader RFID tag

a ∈R GF(2)N

choose l ∈R [L],

w = Fl(f(a, b))

b ∈R GF(2)N

let (ã, b̃) = f−1(F−1

l
(w))

accept if ã = a

if ∃l ∈ {1, . . . , L}
with w ∈ Vl

key F1, . . . , FL key F1, . . . , FL

Figure 9.3: Basi
 round of the (n, k, L)++ proto
ol
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ial Cases of Linear (n, k, L) Proto
ols 121Proof. For given y, a ∈ K∗, Eve has to 
hoose an element x ∈ K∗ su
h that
w + w′ = (u, v) ∈ K × K will be a

epted by Ali
e in inner state a, where
w = Fl(x, b) and w′ = Fl(y, b′) for some l ∈ [L], and b, b′ ∈ K∗. Note that Evehas no information about b, b′, and that u = xb + yb′ and v = xb3 + yb′3.Consequently, Eve's 
hoi
e for the value x has to satisfy

(xb + yb′)3 = a2(xb3 + yb′3)

⇔ (x + yc)3 = a2(x + yc3) with c := b′(b−1)

⇔ P (x, c) = 0,with P (x, d) for all d ∈ K∗ de�ned as
P (x, d) := x3 + (yd)x2 + (y2d2 + a2)x + d3(y3 + y2a2) .Note that there are |K∗| = 2N − 1 di�erent polynomials P (x, d) with respe
t tothe variable x. For all x ∈ K∗ let P (x) := {d|P (x, d) = 0}. Note that P (x, d) isa polynomial of degree 3 also in the unknown d. This implies that |P (x)| ≤ 3for all x ∈ K∗ .Eve has to 
hoose an x that satis�es c ∈ P (x). Sin
e she does not have anyinformation about c, her su

ess probability is at most 3

2N−1 . 29.5 Spe
ial Cases of Linear (n, k, L) Proto
olsThe de�nition of the (n, k, L) proto
ol family was inspired by two earlier pro-posals, the CKK2 proto
ol and the CKKσ,L (Ci
ho« et al., 2008) proto
ol, whi
h
an be seen as restri
ted (n, k, L) proto
ols.In our notation, the proto
ol CKK2 is an (n + k, k, 2) proto
ol with theadditional properties that F1(u, a) = (u, f(u), a) and F2(u, a) = (u, a, f(u))for all u ∈ GF(2)n and a ∈ GF(2)k, where f denotes a se
ret linear fun
tion
f : GF(2)n −→ GF(2)k. The proto
ol CKKσ,L is an (n, k, L) proto
ol withthe restri
tion Fl(u) = σl(u||f(u)) for all l ∈ [L], where σ denotes a se
retpermutation σ ∈ Sn+k and f a se
ret linear fun
tion f : GF(2)n −→ GF(2)k.Hen
e, the se
ret keys have the form (f, σ). The parameters n = 128 and k = 30were suggested by Ci
ho« et al. (2008) for pra
ti
al appli
ations of CKK2 andCKKσ,L.Goªebi�wski et al. (2008) presented an atta
k against the CKK2 proto
ol,whi
h 
annot be applied to general (n, k, L) proto
ols. Its running time isproportional to∑k−1

s=0

(
n
s

), i.e., of order nΘ(k). As an improvement of this result,we now des
ribe a very fast atta
k against the CKK2 proto
ol with parameters
(n, k) whose running time is dominated by the e�ort required for inverting k
(n× n)-matri
es.Let f : GF(2)n −→ GF(2)k denote the se
ret key and re
all that

V1 = {(v, f(v), a), v ∈ GF(2)n, a ∈ GF(2)k} ,

V2 = {(v, a, f(v)), v ∈ GF(2)n, a ∈ GF(2)k} .Let the fun
tions f1, . . . , fk : GF(2)n −→ GF(2) denote the 
omponent fun
-tions of the se
ret fun
tion f , i.e., f(v) = (f1(v), . . . , fk(v)) for all v ∈ GF(2)n.The atta
k is based on the simple fa
t that if an observation (v, a, b) satis�es
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urity of Linear (n, k, L)-type Proto
ols and the LULS ProblemAlgorithm 13 CKK2_Atta
k(n, k)Let {e1, . . . , en} denote the standard basis of GF(2)n.for r ∈ [k] doConsider a set of messages produ
ed by Bob and extra
t from it a set
Or = {(vr,1, ar,1, br,1), . . . , (vr,n, ar,n, br,n)} su
h that vr,1, . . . , vr,n form abasis of GF(2)n and ar,i(r) = br,i(r) = f r(vr,i) for all i ∈ [n].Derive f r(e1), . . . , f

r(en) from Or.return f1, . . . , fkend for
ar = br for some r ∈ [k], whi
h is true with probability 1/2, then we know that
f r(v) = ar = br. The atta
k works as des
ribed in Algorithm 13.The 
orre
tness of the atta
k follows straightforwardly from the de�nitions.Lemma 9.1 implies that the expe
ted number of messages needed for 
onstru
t-ing Or is 2 · E(n) ≈ 2n + 3.2134. For the parameter 
hoi
es proposed forpra
ti
al appli
ations, the atta
k is very e�
ient already on standard PC hard-ware (Magma V2.15-9 on a 3.4 GHz Intel Pentium IV with 4 GB RAM), seeTable 9.1.9.6 Se
urity of Linear (n, k, L)-type Proto
ols andthe Learning Unions of L Linear Subspa
esProblem9.6.1 The Sear
h-for-a-Basis Heuristi
There are several exhaustive sear
h strategies for 
omputing spe
i�
ations ofthe se
ret subspa
es V1, . . . , VL.As an example, we des
ribe the sear
h-for-a-basis heuristi
, whi
h tries to
onstru
t a set Q of examples whi
h form a basis of Vl for some l ∈ L. For alllinearly independent sets Q of n examples let p(Q) denote the probability thatan example 
oming from the ora
le belongs to the linear span 〈Q〉 of Q. It isquite obvious that p(Q) is maximal if Q is a basis of Vl for some l ∈ L. If p(Q)is not too small, we 
an 
ompute an approximation p̃(Q) of p(Q) by testing for
w ∈ 〈Q〉 for a su�
iently large number of examples w. For v ∈ Q and w 6∈ Qwe denote by Q(v, w) the set obtained by repla
ing v by w in Q.The idea of the heuristi
 is to start with an arbitrary linearly independentset Q of n examples and to try to improve this set by �nding v ∈ Q and w 6∈ Qsu
h that p̃(Q) < p̃(Q(v, w)). Iterating this pro
edure at most n times yields abasis for Vl for some l ∈ [L].Table 9.1: Performan
e of the passive atta
k on CKK2

(n, k) approx. number of observations approx. atta
k time
(128, 30) 311 0.3 s

(1024, 256) 2197 179 s



9.6 Se
urity of Linear (n, k, L)-type Proto
ols and the LULS Problem 123This kind of heuristi
 is infeasible if the following 
ondition is ful�lled. For arandom linear independent set Q of n examples the probability p(Q) is negligiblysmall with probability 1 − ǫ, ǫ negligibly small. The parameters n, k should be
hosen su
h that this 
ondition is guaranteed.We estimate the probability p(Q) for the 
ase L = 2. For a linear indepen-dent set Q of n examples let Q = Q1 ∪ Q2, where Q1 ⊆ V1 and Q2 ⊆ V2 \ V1.Without loss of generality, let |Q1| = n/2 + s and |Q2| = n/2 − s. The event
w ∈ 〈Q〉 happens i� w ∈ V1∩ < Q1 > or w ∈ V2 and w ∈ V2∩ < Q1 >, i.e.,

p(Q) ≤
1

2

(

2s−n/2 + 2−k
)

.Note that dim(V1 ∩ V2) = n− k for random n-dimensional subspa
es V1, V2. If
n, k are 
hosen su
h that 2−k, 2−n/4 and the probability that |v| 6∈ [n/4, 3n/4]are negligibly small, then the above 
ondition is ful�lled (note that the expe
tedvalue of s is 2−kn/2).The parameters (n, k) should be 
hosen su
h that these atta
ks be
omeinfeasible. Moreover, k should be large enough su
h that the probability p ofa random v ∈ GF(2)n+k belonging to ⋃L

l=1 Vl is negligibly small. Note that
p < L2−k.The subspa
es V1, . . . , VL should have the property Vi ⊕ Vj = GF(2)n+k forall i 6= j ∈ [L], otherwise the e�e
tive key length would be redu
ed. This implies
n ≥ k.
9.6.2 The Learning Unions of L Linear Subspa
es ProblemThe Learning Unions of L Linear Subspa
es (LULS) Problem refers to the fol-lowing 
ommuni
ation game between a learner and an ora
le. The ora
le holdsthe spe
i�
ations of L n-dimensionial linear subspa
es V1, . . . , VL of GF(2)n+k.The learner 
an send requests hello to the ora
le. If the ora
le re
eives hello, it
hooses randomly and uniformly an l ∈ [L] and v ∈ Vl and sends the (positive)example v to the learner. The aim of the learner is to 
ompute spe
i�
ationsof V1, . . . , VL from a su�
iently large set v1, . . . , vs of examples produ
ed bythe ora
le. Note that this 
orresponds to a passive key re
overy atta
k against
(n, k, L)-type proto
ols. A possible strategy is the sear
h-for-a-basis heuristi
des
ribed in Se
tion 9.6.1.An a
tive adversary who is able to solve the LULS problem e�
iently 
anbreak the (n, k, L)+ proto
ol. In parti
ular, knowing spe
i�
ations of the se-
ret subspa
es V1, . . . , VL, he 
an generate spe
i�
ations of the subspa
es Vl(a)(i.e., the image of Fl(a, ·)), for arbitrary a ∈ GF(2)n/2 and l ∈ [L] by re-peatedly sending a to Bob. Then the adversary uses N = n/2 subspa
es
Vl(ai), . . . , Vl(aN ) for {a1, . . . , aN} linearly independent to forge a response for



124 9.6 Se
urity of Linear (n, k, L)-type Proto
ols and the LULS Problema 
hallenge a =
∑N

i=1 αiai by 
omputing
w =

N∑

i=1

αivi with vi ∈R Vl(ai)

=

N∑

i=1

αiFl(ai, bi)

= Fl(a, b′) with b =

N∑

i=1

bi .In the 
ase of the (n, k, L)++ proto
ol, the adversary 
annot just return arandom w ∈ Vl(a), but has to make sure that the �rst half of f−1(F−1
l (w))
orresponds to a. How su
h a w 
an be found e�
iently (possibly based on thespe
i�
ations of the subspa
es Vl(a)) is a matter of further resear
h.In the following, we present and dis
uss an algebrai
 learning algorithm forLULS.9.6.3 On Solving the LULS ProblemA Learning Algorithm for the LULS ProblemRe
all that the LULS problem with parameters n, k, L 
onsists in 
omputingspe
i�
ations of L se
ret n-dimensional linear subspa
es of GF(2)n+k from pos-itive examples v produ
ed by an ora
le whi
h 
hooses randomly and uniformly

l ∈ [L] and v ∈ Vl. In this thesis we treat the 
ase L = 2 and 
onsider the spe-
ial 
ase that Vl = {(v, f(v)), v ∈ GF(2)n}, l ∈ {1, 2}, for se
ret linear fun
tions
f1, f2 : GF(2)n −→ GF(2)k. Our algorithm 
omputes for all i ∈ [k] spe
i�
a-tions of the i-th 
omponent fun
tions f i

1, f
i
2 : GF(2)n −→ GF(2) separately, i.e.,it su�
es to 
onsider the 
ase k = 1. The learning algorithm is based on thefollowing reasoning.1. Take a set O = {(v1, w1), . . . , (v

n, wn)} ⊆ GF(2)n+1 of examples su
h that
B = {v1, . . . , vn} forms a basis of GF(2)n. For all i ∈ [n] let xi and yidenote the variables 
orresponding to f1(v

i) and f2(v
i), respe
tively.2. For b ∈ {0, 1} let Ib = {i ∈ [n], wi = b}.3. For all i ∈ [n] let ti = xi ⊕ yi, and for all i < j ∈ [n] let ti,j = xiyj ⊕ xjyi.4. Observe that for all i ∈ [n] the equality (wi⊕ xi)(wi ⊕ yi) = 0 holds. Thisimplies

xiyi = 0 if i ∈ I0 and xiyi = 1⊕ ti if i ∈ I1 . (9.2)5. Observe that ea
h example (v, w) ∈ GF(2)n+1, v 6∈ B satis�es the follow-ing: If v =
⊕

i∈I vi, (i.e., I ⊆ [n] de�nes the unique representation of vw.r.t. B), then
(

w ⊕
⊕

i∈I

xi

)(

w ⊕
⊕

i∈I

yi

)

= 0 . (9.3)



9.6 Se
urity of Linear (n, k, L)-type Proto
ols and the LULS Problem 125Observe that Eq. (9.3) 
an be rewritten as a relation TB(I, w) in thevariables ti and ti,j in the following way. If w = 0 then Eq. (9.3) isequivalent to ⊕i∈I xiyi ⊕
⊕

i<j∈I ti,j = 0. Together with Eq. (9.2) thisimplies ⊕i∈I1∩I(ti ⊕ 1) ⊕
⊕

i<j∈I ti,j = 0 for w = 0. Consequently, for
w = 0 we de�ne TB(I, w) as

⊕

i∈I∩I1

ti ⊕
⊕

i<j∈I

ti,j =

{
0 if |I ∩ I1| is even
1 if |I ∩ I1| is odd .If w = 1 then Eq. (9.3) is equivalent to 1 ⊕

⊕

i∈I ti ⊕
⊕

i∈I∩I1
(ti ⊕ 1) ⊕

⊕

i<j∈I ti,j = 0. Hen
e, for w = 1 we de�ne TB(I, w) as
⊕

i∈I∩I0

ti ⊕
⊕

i<j∈I

ti,j =

{
0 if |I ∩ I1| is odd
1 if |I ∩ I1| is even .Note that a relation similar to Eq. (9.3) was also exhibited by Blass et al. (2008)for designing an algebrai
 atta
k against Ff proto
ols.The learning algorithm now pro
eeds as des
ribed in Algorithm 14.Algorithm 14 LULS-solve(O)Let initially the system LES of linear equations in the 1

2 (n2 + n) variables ti(i ∈ [n]) and ti,j (i < j ∈ [n]) be empty.repeatChoose an observation (v, w) ∈ O, v 6∈ B ∪ {~0}, and 
ompute the uniquesubset I ⊆ [n] with v =
⊕

i∈I vi.Enlarge the system LES by the linear equation TB(I, w).until the system LES has 1
2 (n2 + n) linearly independent equations.Compute by Gaussian elimination the unique solution θ of the system LES.Compute from θ the unique 
orre
t assignments to xi, yi for all i ∈ [n].The 
orre
t assignments to the xi and yi variables (the last step of Al-gorithm 14) 
an be 
omputed from θ = (θi)i∈[n] (θi,j)i<j∈[n] as follows. For

b = 0, 1 let Kb denote the set Kb = {i ∈ [n], θi = b}. We know that for all
i ∈ K0, xi = yi = wi is satis�ed, and for all i ∈ K1 it holds that yi = xi ⊕ 1.This implies that for all i < j in K1, θi,j satis�es

θi,j = xi(xj ⊕ 1)⊕ xj(xi ⊕ 1) = xi ⊕ xj .This yields a system LES∗ of 1/2|K1|(|K1|−1) linear equations in the variables
xi, i ∈ K1, of rank |K1| − 1. Sin
e it does not matter whi
h of the two se
retlinear subspa
es we denote by V1 and whi
h by V2, we have the freedom toset xk = 0 for some �xed k ∈ K1. The system LES∗ together with xk = 0yields a system of full rank and allows to 
ompute the 
orre
t assigment to the
xi-variables by Gaussian elimination.Analysis and Experimental ResultsThe reason for the fa
t that the repeat 
y
le of the algorithm is left after a�nite number of rounds is that the following (2n − (n + 1)) × (n(n + 1)/2)-matrix M(n) over GF(2) has full row rank (whi
h is not hard to show). The
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ussionrow indi
es of M(n) are all subsets I ⊆ [n] with |I| ≥ 2, the 
olumn indi
es are
[n] ∪ {(i, j), 1 ≤ i < j ≤ n}. We have M(n)I,i = 1 i� i ∈ I and M(n)I,(i,j) = 1i� {i, j} ⊆ [n].We do not give here a theoreti
al analysis of the expe
ted number of roundsof the repeat 
y
le. Our experiments show that the algorithm needs only slightlymore than 1

2 (n2 + n) + n observations to 
ompute the se
ret fun
tions f1 and
f2. Parti
ularly for n = 128, we need approx. 8390 examples and 4 minutes ona 3.4 GHz Intel Pentium IV with 4 GB RAM and Magma V2.15-9.How severe is the restri
tion that the se
ret subspa
es have the spe
ial form
V = {(v, f(v)), v ∈ GF(2)n} for some surje
tive linear mapping f : GF(2)n −→
GF(2)k? Let us 
onsider the general 
ase V = {A ◦ v, v ∈ GF(2)n} for an
((n + k) × n) matrix A. V 
an be written in the spe
ial form i� the �rst nrows of A are linearly independent. For randomly 
hosen A this is true withprobability p(n) ≈ 0.2887 (Lemma 9.1).We have seen that we 
an solve the LULS problem with parameters (n, k, 2)by solving k LULSproblems with parameters (n, 1, 2). For the spe
ial LULSproblem with parameters (n, 1, L), L > 2, we 
an de�ne a similar system LES
onsisting of degree-L equations in the variables xl

i, i ∈ [n], l ∈ [L], indu
ed asabove by equations of the form
(

w ⊕
⊕

i∈I

x1
i

)

. . .

(

w ⊕
⊕

i∈I

xL
i

)

= 0 . (9.4)The problem is that for L > 2 the equations have several symmetries su
hthat the system 
an not be solved uniquely. A possible way out is to
• 
hoose an appropriate parameter s < k whi
h divides k, let k = s · p,
• write ve
tors w ∈ GF(2)k as ve
tors w ∈ GF(2s)p, and
• solve the 
orresponding p LULS problem with parameters (n, 1, L) over

GF(2s).Hamann (2010) has des
ribed a learning algorihm based on this idea thatsolves the des
ribed spe
ial 
ase of the LULS problem in average running timein the order of knO(L). His analysis supports the 
onje
ture that there is nofaster way to solve an (n, k, L) LULS problem, whi
h suggests parameter 
hoi
eslike (n, L) ∈ {(128, 8), (256, 6)} for pra
ti
al appli
ations.9.7 Dis
ussionWe have seen that the se
ret key of CKK2 proto
ols 
an be 
omputed veryqui
kly from a su�
iently large set of messages sent by the prover. This kindof proto
ol should not be used in pra
ti
e.The parameters of (n, k, L)++ proto
ols have to be 
hosen in su
h that solv-ing the LULS problem with parameters (n
2 , k, L) is infeasible. We re
ommendto use n = 256, k = 64 and L = 5.Another interesting question is to sear
h for simpler nonlinear 
onne
tionfun
tions f for whi
h a se
urity proof 
an be found. In our proposal, the proverhas to perform three multipli
ations in the �nite �eld of order 2n/2 in order to
ompute f(a, b).



9.7 Dis
ussion 127Yet another open question is whether the very symmetri
ally stru
turedsystems of degree-L equations arising in our LULS algorithm in Se
tion 9.6.3
an be solved more e�
iently by more advan
ed te
hniques like the F4- or F5-algorithm or 
ube atta
ks (Dinur and Shamir, 2008, 2009, Faugère, 1999, 2002).If one 
ould generate 
onvin
ing eviden
e that su
h algorithms 
annot beat ourlinearization atta
k, then (n, k, L)++ proto
ols with the above parameters 
ouldbe seriously 
onsidered for pra
ti
al use.A problem of (n, k, L) proto
ols is the large key length of L · n · n + k in the
ase that random mappings F1, . . . , FL are used. It is an important task to lookfor se
ure and e�
ient ways to generate pseudorandom keys. In this 
ontext,the (still unbroken) CKKσ,L proto
ols look appealing, but we 
onje
ture thatCKKσ,L proto
ols 
an be e�
ently broken. However, promising suggestions forkey length redu
tions have been made by Gilbert et al. (2008a) and Bringer andChabanne (2008) in the 
ontext of Trusted-HB (see Se
tion 8.3.5). Adaptingthese ideas to (n, k, L) proto
ols would mean
• to 
onsider spe
ial forms of se
ret subspa
es Vl = {(Al ◦ v), v ∈ GF(2)n},where Al denotes a se
ret (n + k) × n Toeplitz matrix (Gilbert et al.,2008a), and
• to de�ne the Toeplitz matrix Al to be generated by a se
ret Linear Feed-ba
k Shift Register (Bringer and Chabanne, 2008).Che
king the feasibility and se
urity of these 
onstru
tions should be a mat-ter of further resear
h.
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Chapter 10Con
lusionIn this thesis, we have analyzed two of the most prominent se
urity requirementsin ele
troni
 
ommuni
ation, 
on�dentiality of messages and authenti
ity ofentities.Con
erning 
on�dentiality of messages, we have de�ned and analyzed hardware-oriented stream 
iphers and their most important building blo
ks. We havedes
ribed three generi
 atta
ks on stream 
iphers, BDD-Atta
ks, 
orrelationatta
ks and algebrai
 atta
ks, and analyzed their impa
t on pra
ti
ally usedstream 
iphers as well as newly proposed designs. In the 
ase of theE0 keystreamgenerator from the Bluetooth standard, we have indi
ated ways to improve itsse
urity with respe
t to the 
onsidered atta
ks by 
areful lo
al modi�
ations ofthe design.In order to provide entity authenti
ation for environments in whi
h only little
omputational resour
es are available, e.g. on RFID-tags or mobile telephones,we de�ned and investigated lightweight authenti
ation proto
ols that are basedon randomly 
hoosing elements from a se
ret set of ve
tor spa
es. We relatedthe se
urity of these proto
ols to the hardness of a 
ertain learning problemand provided a �rst 
omplexity analysis of this problem as a starting point forfurther resear
h.
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