Selected Cryptographic Methods for Securing Low-End Devices

Inauguraldissertation
zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften
der Universität Mannheim

vorgelegt von

Dipl. Wirtsch.-Inf. Dirk Stegemann aus Coesfeld (Westf.)

Mannheim, 2010

Abstract

We consider in this thesis the security goals confidentiality of messages and authenticity of entities in electronic communication with special focus on applications in environments with restricted computational power, e.g., RFID-tags or mobile phones. We introduce the concept of stream ciphers, describe and analyze their most important building blocks, analyze their security features, and indicate ways to improve their resistance against certain types of attacks. In the context of entity authentication, we describe special protocols based on randomly choosing elements from a secret set of linear vector spaces and relate the security of these protocols to the hardness of a certain learning problem.

Zusammenfassung

Abstract

Wir betrachten in dieser Arbeit die Sicherheitsziele Vertraulichkeit von Nachrichten und Authentizität von Kommunikationspartnern im Umfeld elektronischer Kommunikation mit besonderem Schwerpunkt auf Anwendungen auf ressourcenbeschränkten Endgeräten wie RFID-Tags oder Mobiltelefonen. Wir betrachten insbesondere Stromchiffren, beschreiben und analysieren ihre wichtigsten Bestandteile, untersuchen ihre Sicherheitseigenschaften und zeigen Möglichkeiten auf, wie sich ihre Resistenz gegenüber bestimmten Angriffstechniken verbessern lässt. Im Zusammenhang mit der Authentifikation von Kommunikationspartnern beschreiben wir spezielle Authentifikationsprotokolle, die auf der zufälligen Auswahl von Elementen aus einer geheimen Menge von linearen Vektorräumen beruhen, und führen die Sicherheit dieser Protokolle auf die Komplexität eines bestimmten Lernproblems zurück.

Acknowledgment

After all the typing has been done, there is one page left to write - the page that ends up being one of the first in the thesis but might as well be the last, since it bears the opportunity to look back on the process of creating the document that is about to be finalized.

In this process, my supervisor Matthias Krause has been a most valuable source of support and inspiration. I have known few people with such a deep understanding of the theoretical foundations of cryptography and computer science and with such great reliability in telling apart promising ideas from dead end streets. Having been a teacher myself, it will always remain a secret to me how he manages to hold perfectly consistent 90 -minute blackboard lectures right off the top of his head.

Together with the deputy head of the theoretical computer science and data security group, our secretary Karin Teynor, Matthias has additionally provided an efficient work environment with a productive combination of responsibilities and degrees of freedom that will be hard to duplicate.

My co-supervisor Stefan Lucks has always been my prime example of a natural-born cryptographer. He would talk about his work and share his ideas and experience with a sweeping passion that literally drags his students and colleagues into the world of cryptography. At the same time, he is one of the few living efficiently accessible cryptographic oracles (in the true sense) that have an answer to virtually any crypto-related question - either the solution right away or a "Oh yes, there was a paper at EUROCRYPT 2005 about that" type of pointer that reliably leads you in the right direction.

Matthias and Stefan have connected me to the international cryptographic community with many bright researchers and amazing talents. In the spirit of these people, who respect each other for the outcome of their work rather than for the titles they hold, and who obstinately organize the author lists of their papers in alphabetical order, I would like to express my gratitude for many fruitful and inspiring crypto-related as well as less-crypto-related discussions to a few colleagues, co-authors and community members that I had the pleasure to interact with over the years: Frederik Armknecht, Tobias Eibach, Simon Fischer, Andreas Kemper, Willi Meier, Emin Islam Tatlı, and Siavash Vahdati.

After all, there is more to the world than cryptography and IT-security, and I am grateful to have my family a handful of long-time friends taking great care in reminding me of the difference between important and really important. You all have contributed to the forthcoming pages more than you may know.

And finally, my life would be so much different without the love, understanding and unswerving support of my wife Olha, so this thesis is most naturally dedicated to her.

Contents

1 Introduction 1
1.1 What this Thesis is about 1
1.2 Publications 2
I Confidential Communication with Stream Ciphers 5
2 Algorithms for Confidential Communication 7
2.1 Security Definitions and Attacker Models 7
2.2 Block Ciphers 9
2.3 Dedicated Stream Ciphers 10
2.4 Asymmetric Ciphers 13
3 Stream Cipher Building Blocks 15
3.1 Boolean Functions 15
3.2 Feedback Shift Registers 16
3.2.1 Linear Feedback Shift Registers (LFSRs) 16
3.2.2 Feedback Shift Registers With Carry (FCSRs) 21
4 Stream Ciphers based on Feedback Shift Registers 33
4.1 Generic Constructions 33
4.1.1 Combination Generators and Filter Generators 33
4.1.2 Additional Memory 34
4.1.3 Irregular Clocking 35
4.2 Example Ciphers 35
4.2.1 Self-Shrinking Generator 36
4.2.2 $\quad E_{0}$ Generator 36
4.2.3 A5/1 Generator 38
4.2.4 TRIVIUM 39
4.2.5 Grain-128 40
4.2.6 Filtered FCSRS 40
4.3 Abstraction: Internal Bitstream Generators 44
5 The BDD-Attack 47
5.1 Introduction and Overview 47
5.2 Representing Boolean Functions with Binary Decision Diagrams 48
5.2.1 Free Binary Decision Diagrams (FBDDs) 48
5.2.2 Ordered Binary Decision Diagrams (OBDDs) 50
5.3 BDD-based Initial State Recovery 52
5.4 Generic BDD Constructions 54
5.4.1 Keystream Consistency Check Q_{m} 54
5.4.2 FSR Consistency Check R_{m} 56
5.5 Applications 59
5.5.1 Self-Shrinking Generator 59
5.5.2 Bluetooth Keystream Generator E_{0} 60
5.5.3 GSM Kevstream Generator A5/1 61
5.5.4 TRIVIUM 65
5.5.5 Grain-128 68
5.5.6 The F-FCSR Stream Cipher Family 69
5.6 Divide-and-Conquer Strategies (DCS) 70
5.6.1 DCS for regularly clocked (k, l)-Combiners 71
5.6.2 DCS for the A5/1 Generator 73
5.7 Simulations and Experimental Results 76
5.8 Discussion of the BDD-Attack 77
6 Other Generic Attacks on Stream Ciphers 79
6.1 Correlation Attacks 79
6.1.1 The Basic Idea 79
6.1.2 Analysis of the Special Case $C\left(x_{t}, q_{t}\right)=\alpha\left(x_{+}\right) \oplus \beta\left(q_{t}\right.$ 82
6.2 Algebraic Attacks 84
6.2.1 The Basic Idea 84
6.2.2 Analysis of a restricted Scenario 85
6.3 Countermeasures and Design Principles 87
6.3.1 Increasing the Resistance against Correlation Attacks 87
6.3.2 Increasing the Resistance against Algebraic Attacks 89
6.4 Application to E_{0} 90
II Authenticity with Linear Protocols 95
7 Algorithms for Entity and Message Authentication 97
7.1 Security Definitions and Attacker Models 97
7.1.1 Entity Authentication 98
7.1.2 Entity Recognition 98
7.1.3 Message Authentication 99
7.1.4 Message Recognition 99
7.1.5 Attacker Models 100
7.2 Message Authentication Codes 101
7.2.1 Message Authentication Codes based on Block Ciphers 102
7.2.2 Message Authentication Codes based on Cryptographic Hash Functions 102
7.3 Message Authentication with Digital Signatures 103
7.4 Challenge-Response based Entity Authentication 104
7.5 Authentication Schemes based on Hash Chains 105
7.6 Authentication based on the Hardness of Learning Problems 106
CONTENTS x1
8 The HB Family of Authentication Protocols 107
8.1 The HB Protocol 107
8.2 The HB^{+}Protocol 108
8.3 Variants of the HB^{+}Protocol 109
8.3.1 The HB^{++}Protocol 110
8.3.2 The HB* Protocol 111
8.3.3 The HB-MP Protocols 112
8.3.4 The HB ${ }^{\#}$ Protocol 113
8.3.5 The Trusted-HB Protocol 114
9 The (n, k, L) Family of Authentication Protocols 117
9.1 Introduction and Overview 117
9.2 The Linear (n, k, L) Protocol 117
9.3 The Linear $(n, k, L)^{+}$Protocol 119
9.4 The Linear $(n, k, L)^{++}$Protocol 119
9.5 Special Cases of Linear (n, k, L) Protocols 121
9.6 Security of Linear (n, k, L)-tvpe Protocols and the LULS Problem 122
9.6.1 The Search-for-a-Basis Heuristic 122
9.6.2 The LULS Problem 123
9.6.3 On Solving the LULS Problem 124
9.7 Discussion 126
10 Conclusion 129
Bibliography 131
List of Tables 143
List of Figures 145
List of Algorithms 147
Index 147

Chapter 1

Introduction

1.1 What this Thesis is about

In this thesis, we consider two important security goals in electronic communication: confidentiality of messages and authenticity of entities.

While many algorithms and systems have been proposed for a variety of application scenarios, we focus our attention on methods that are particularly useful for devices with rather little computational power. This characterization is not entirely sharp - for example, it is arguable whether a modern smartphone is rather a particularly complex mobile phone or a small computer equipped with a telephone function - but will serve as a guideline to distinguish RFID tags and Bluetooth devices from personal computers and grids.

By confidentiality of messages, we mean that messages which are exchanged over a publicly observable channel should only be meaningful to legitimate communication partners. This is probably the most prominent service that cryptographic systems are expected to provide, commonly by encrypting (or enciphering) messages. In the first part of this thesis, we therefore introduce the concepts of block ciphers and stream ciphers and devote our main attention to hardware-oriented stream cipher constructions. We describe and analyze their most important building blocks, consider generic attack strategies - particularly the BDD-based attack correlation attacks and algebraic attacks - and indicate design principles that provide a certain resistance against these attacks. Furthermore, we review the design and security features of practically used algorithms such as the A5/1 algorithm used in the GSM standard and the E_{0} cipher used in Bluetooth. In the case of E_{0}, we indicate possible design improvements in the light of the presented attacks.

In human face-to-face communication, authentication is implicitly and without further ado performed through face (and sometimes additionally voice) recognition. In electronic communication, e.g. on the internet, it is often not so easy to verify that a communication partner is in fact who she claims to be. Authentication of entities is therefore another important task of modern cryptographic systems. We address this security goal in the second part of this thesis by investigating lightweight authentication protocols that are based on randomly choosing elements from a set of L linear subspaces of GF $(2)^{n+k}$, relate their security to the hardness of a certain learning problem and indicate
possible improvements and further research directions.

1.2 Publications

This thesis is based on the following publications.
Fully reviewed Publications

1. Design Principles for Combiners with Memory, Proceedings of the 6th International Conference on Cryptology in India (INDOCRYPT 2005), volume 3739 of LNCS, pages 104-117, Springer, 2005, with Frederik Armknecht and Matthias Krause

Lower bounds on the complexities of algebraic attacks and correlation attacks, application to E_{0} and proposal of a more secure E_{0} variant
2. Reducing The Space Complexity of BDD-based Attacks on Keystream Generators, Proceedings of Fast Software Encrpytion, 13th International Workshop (FSE 2006), volume 4047 of LNCS, pages 163-178, Springer, 2006, with Matthias Krause

Divide-and-conquer strategies for reducing the memory requirements of BDD-attacks, application to $E_{0}, \mathrm{~A} 5 / 1$ and the Self Shrinking Generator
3. Extended BDD-based Cryptanalysis of Keystream Generators, Proceedings of the 14th International Workshop on Selected Areas in Cryptography (SAC 2007), volume 4876 of LNCS, pages 17-35, Springer, 2007

Extension of the BDD-attack to NFSRs and arbitrary compression functions, application to Trivium, Grain and F-FCSR
4. More on the Security of Linear RFID Authentication Protocols, Proceedings of the 16th International Workshop on Selected Areas in Cryptography (SAC 2009), volume 5867 of LNCS, pages 182-196, Springer, 2009, with Matthias Krause
Generalization of the CKK-protocol, security analysis in the active attack scenario, definition of linear (n, k, L) protocols and the LULS problem
5. Some Remarks on FCSRs and Implications for FCSR-based Stream Ciphers, Journal of Mathematical Cryptology, volume 3, pages 227-236, 2009, with Simon Fischer and Willi Meier
Simplified description of the sequences produced by a single cell of a Galois FCSR given that the register's initial state is periodic, mappings between periodic states of the Fibonacci and the Galois representation of an FCSR, explicit determination of the autocorrelation of an l-sequence

Workshop Records and Technical Reports

1. Equivalent Representations of the F-FCSR Keystream Generator, Workshop Record of the State of the Art of Stream Ciphers (SASC 2008), with Simon Fischer and Willi Meier
2. Building Stream Ciphers from FCSRs, Workshop Record of the 2nd GIKryptowochenende, 2008
3. Some Remarks on FCSRs and Implications for FCSR-based Stream Ciphers, Workshop Record of the Second Workshop on Mathematical Cryptology (WMC '08), 2008, with Simon Fischer and Willi Meier
4. Algebraic Attacks against Linear RFID Authentication Protocols, Dagstuhl Seminar on Symmetric Cryptography, Workshop Record, 2009, with Matthias Krause

During my time as PhD student, I also contributed to a few other publications that are not mentioned in this thesis.

- Security Challenges of Location-aware Mobile Business, Proceedings of the 2nd IEEE International Workshop on Mobile Commerce and Services, pages 84-93, IEEE Computer Society, with Emin Islam Tatlı and Stefan Lucks
- Dynamic Anonymity, The 4th World Enformatika Conferences, International Conference on Information Security (ICIS '05), 2005, with Emin Islam Tatlı and Stefan Lucks
- Dynamic Mobile Anonymity with Mixing, Technical Report, University of Mannheim, 2006, with Emin Islam Tatlı and Stefan Lucks
- Workshop Record of the 2nd GI-Kryptowochenende (editor), 2006, with Frederik Armknecht

Part I

Confidential Communication with Stream Ciphers

Chapter 2

Algorithms for Confidential Communication

2.1 Security Definitions and Attacker Models

Often people want systems to be secure without having a precise idea of what they mean by security.

In a communication scenario in which two parties (usually called Alice and Bob), communicate over an insecure channel (e.g., a telephone land line or a TCP/IP connection), most people would agree that security means (possibly among other things) that an eavesdropper on the communication channel (wiretapping the telephone line or observing the messages when passing a router) should not be able to understand what Alice and Bob are talking about, or more formally, that the exchanged messages should remain confidential.

Many people have come across this problem already at some point in their childhood and most probably tried to solve it by enciphering the messages in one way or another, i.e., by transforming the plaintext messages into some meaningless-looking strings and having the receiver reverse the transformation in order to recover the plaintext.

This idea is probably almost as old as mankind, and the first documented ideas for enciphering methods date back to ancient times. Since then, cipher systems have been built and used for critical governmental and military applications with varying success, thereby influencing the course of history at quite a few points (Kahn, 1996).

Surprisingly enough, it was not until World War Two that a formal model and analysis of cipher systems was developed in a famous seminal paper by Shannon (1949), which is now considered one of the foundations of modern cryptography.

Since then, we typically assume a communication model consisting of a reliable but publicly observable communication channel, a sender who is equipped with an encryption algorithm E, a receiver running a decryption algorithm D, and a key source that provides encryption keys k_{e} and decryption keys k_{d} (see Fig. 2.1).

A cipher system is called symmetric if $k_{e}=k_{d}$ and asymmetric if $k_{e} \neq k_{d}$.
We usually relate the security of a communication system to an attacker

Figure 2.1: The Shannon communication model
that is defined by

- his goal
- his computational power
- the information available to him
and characterize the attacker by his success probability and his resource consumption in terms of time, memory and amount of utilized information. The most common goal is to obtain the secret key (leading to key recovery attacks), but also weaker goals such as deducing partial information about the exchanged information are often considered.

Depending on whether the attacker has unlimited or limited computational power (i.e., time and memory resources at his disposal), we talk about an information theoretic or a complexity theoretic security setting.

Concerning the amount of available information, we typically distinguish the following classes.

- ciphertext-only: The attacker has only access to the public channel.
- known plaintext: The attacker additionally knows a number of plaintexts and their encryptions under the unknown key.
- chosen plaintext: The attacker may have a number of plaintexts of his choice encrypted under the unknown key and obtain the corresponding ciphertexts.
- chosen ciphertext: The attacker may have a number of ciphertexts decrypted under the unknown key and obtain the corresponding plaintexts.

Note that we always assume the attacker to be able to eavesdrop on the public channel and, following Kerckhoffs' principle (Kerckhoffs, 1883), to know the complete specification of the cipher system. The only information about the system that he does not have is the secret key in use.

Performing a security analysis in this setting means to investigate how much effort it takes the attacker to reach his goal. Consequently, the more effort is required, the more secure we consider the system. Or put another way, the more powerful the attackers that a system is able to resist (i.e., whom the system is able to prevent from reaching their goal), the better.

One of Shannon's most important observations is the fact that the one-time pad (encrypting by XOR-synthesis of a binary message with an equally long random bit string) is information-theoretically secure, i.e., an attacker cannot recover the plaintext from the ciphertext even with unlimited computational power.

While this system is used to the present day by intelligence agencies for highly critical information, the requirement that the secret information (that has to be exchanged confidentially between sender and receiver in advance) has to be as long as the message makes it impractical for many important applications.

The way out is to trade off security and usability (in fact, a very common strategy in practical IT security), i.e., to relax the requirements of the system while hoping not to lose too many of its security properties.

In the case of cipher systems, the relaxation consists in limiting the secret information (most commonly called the key) to a size that is small enough to be efficiently exchanged between sender and receiver, and at the same time large enough for the system to resist attackers equipped with a realistic amount of resources.

Symmetric-key cipher implementations that are based on this idea can be classified into two categories, block ciphers and stream ciphers, which we describe in more detail in the following.

2.2 Block Ciphers

Suppose for the moment that we want to encrypt a plaintext block-wise (or word-wise) with a fixed block length l. In order to be able to decrypt, we use a bijective mapping (i.e., a permutation) $E:\{0,1\}^{l} \rightarrow\{0,1\}^{l}$ for encryption and its inverse $D=E^{-1}$ for decryption.

Ideally, we would like to choose E from all 2^{l} ! possible permutations for a fixed block length l prior to the communication. However, only with very low probability, our choice will have a representation that is more efficient than a list of input-output pairs with 2^{l} entries, which is clearly too inefficient to be exchanged between sender and receiver for reasonable block sizes.

The compromise between security and usability in this case is to pick a set of 2^{n} permutations that can be efficiently implemented using a device that is parametrized with an n-bit string (the key) to determine which permutation it actually realizes. Such a device is commonly called a block cipher.

Definition 2.1. A block cipher consists of two mappings

$$
\left.E: \begin{array}{rl}
\{0,1\}^{l} \times\{0,1\}^{n} & \rightarrow \\
(x, k) & \mapsto
\end{array}\left\{_{y}, 1\right\}^{l}\right\}
$$

and

$$
D: \begin{array}{rlcc}
\{0,1\}^{l} \times\{0,1\}^{n} & \rightarrow & \{0,1\}^{l} \\
(y, k) & \mapsto & x
\end{array}
$$

that satisfy $D(E(x, k), k)=x$ for all $x \in\{0,1\}^{l}$ and all $k \in\{0,1\}^{n}$. We call E the encryption function, D the decryption function, l the block length, and n the key length of the block cipher.

Note that for a fixed $k \in\{0,1\}^{n}, E(\cdot, k)$ and $D(\cdot, k)$ are permutations (i.e., bijective mappings) and inverse to each other, and we may view the key as an identifier of a particular permutation. In this sense, picking a key means to fix a particular permutation, and choosing a particular block cipher of block length l means choosing 2^{n} out of the 2^{l} ! possible permutations of $\{0,1\}^{l}$.

On the security side, we demand that an attacker cannot distinguish the block cipher setting from the ideal case, more precisely that the permutations provided by the block cipher be indistinguishable from a permutation that was randomly chosen from all possible permutations.

We note that an attacker who can distinguish a block cipher based permutation from a randomly chosen permutation may not necessarily be able to deduce information about the encrypted messages nor the key. But conversely, we can be sure that an attacker who cannot tell whether a random permutation or a block cipher is used cannot deduce any nontrivial information.

Block ciphers are among the most widely used cryptographic primitives, with the Data Encryption Standard (DES) and the Advanced Encryption Standard (AES) being particularly prominent examples (see Menezes et al. (2001) for detailed descriptions and security considerations).

Care has to be taken when a sequence of blocks $b_{1}, b_{2}, \ldots, b_{m} \in\{0,1\}^{l}$ has to be encrypted. For common block lenghts of 128 bits or more, this is the case in virtually any practical application. The most straightforward procedure, the Electronic Codebook (ECB) mode, which computes the ciphertexts as $c_{i}:=E\left(b_{i}, k\right)$, implies that coinciding plaintext blocks will have coinciding corresponding ciphertext blocks and is therefore not recommended.

A more suitable mode is the Cipher Block Chaining (CBC) mode (Ehrsam et al., 1976), which is defined by $E^{\mathrm{CBC}}\left(\left(b_{1}, \ldots, b_{m}\right), k\right.$, IV $):=\left(c_{1}, \ldots, c_{m}\right)$ with

$$
c_{i}:=\left\{\begin{array}{c}
E\left(\mathrm{IV} \oplus b_{1}, k\right) \text { for } i=1 \tag{2.1}\\
E\left(c_{i-1} \oplus b_{i}, k\right) \text { for } 1<i \leq m
\end{array} .\right.
$$

and a (usually publicly known) initialization vector IV $\in\{0,1\}^{l}$.
Many more block cipher modes of operation for different purposes exist, see Menezes et al. (2001) for an introduction and overview.

2.3 Dedicated Stream Ciphers

Besides block ciphers, dedicated constructions exist for (immediately, i.e., not waiting for the next block to be filled) encrypting data streams. These constructions are typically called stream ciphers.

In this thesis, we want to focus on constructions that try to approximate the one-time pad by producing from a short, fixed-length secret information a long random-looking sequence that is XOR-combined with the plaintext in order to obtain the ciphertext.

Consequently, the heart of most such stream ciphers is a keystream generator, which is initialized at the beginning of the conversation with a secret key \mathcal{K}. Many modern constructions accept an additional initialization vector IV that can be seen as a pointer into the keystream produced for \mathcal{K}. Cipher designs normally assume the IV to be public, such that it can be easily exchanged between sender and receiver.

Hence, the keystream generator produces keystream bits $\left(z_{t}\right)_{t \geq 0}$ that are added to the plaintext stream $\left(p_{t}\right)_{t \geq 0}$ on the sender's side in order to obtain the ciphertext stream $\left(c_{t}\right)_{t \geq 0}$ as $c_{t}:=p_{t} \oplus z_{t}$ for all $t \geq 0$. The receiver uses the same cipher and the same initialization data \mathcal{K} and IV as the sender in order to compute the keystream $\left(z_{t}\right)_{t \geq 0}$ himself and to recover the plaintext as $p_{t}=c_{t} \oplus z_{t}$ for all $t \geq 0$ (see Fig. 2.2).

Figure 2.2: Stream cipher communication scenario

The keystream generator itself is often split into two components, a key/IV setup procedure and a finite state machine (FSM). The key/IV setup (or rather initial state setup) transforms the key and the IV into the initial state of the FSM. The FSM usually operates in a clocking-based manner, outputting a piece of keystream and updating its state in each clock cycle, hence producing the keystream sequence $\left(z_{t}\right)_{t \geq 0}$ (cf. Fig. 2.3).

More formally, the FSM is defined by a state update function $\delta:\{0,1\}^{n} \rightarrow$ $\{0,1\}^{n}$ and a keystream function $g:\{0,1\}^{n} \rightarrow\{0,1\}^{*}$. In each clock t, keystream bits are produced according to $g(\omega(t))$ from the current state $\omega(t)$, and the internal state is updated to $\omega(t+1)=\delta(\omega(t))$. Hence, the output of the generator is completely determined by the starting state $\omega(0)$.

Figure 2.3: Common construction of the keystream generator

Definition 2.2. We call an FSM-state periodic if, when running, the FSM will return to the same state after a finite number of steps.

We will later need the notion of equivalent FSMs, which we define as follows.
Definition 2.3. The FSMs M_{1} and M_{2} are called equivalent if for each possible starting state of M_{1} there exists a corresponding starting state of M_{2} and vice versa such that, when running, M_{1} and M_{2} produce the same output.

Definition 2.4. We call a sequence $u=\left(u_{i}\right)_{i \geq 0}$ strictly periodic (or simply periodic) with period T if $u_{i+T}=u_{i}$ for all $i \geq 0$. We call a sequence u eventually periodic if there exists a $t \geq 0$ such that $\mathrm{u}^{\prime}=\left(u_{i}\right)_{i \geq t}$ is periodic.

Definition 2.5. For a (deterministic) finite state machine we can define a (directed) state transition graph as follows. The vertex set consists of the set of possible states, and there exists an edge from state u to state v if and only if v is the image of u under the state transition function.

In order to approximate the one-time pad and its security features, the output of the keystream generator should look random, or more formally, the output should not be efficiently distinguishable from a truely random sequence.
Therefore, the sequence should share as many properties with truely random sequences as possible.

The National Institute of Standards and Technology (NIST) maintains a collection of such properties and provides infrastructure for checking pseudorandom number generators against these properties (Rukhin et al., 2010).

We will exemplarily consider as properties the period length of the sequence, the number of occurrences of a particular block in one period of the sequence, and its autocorrelation.

Definition 2.6. The autocorrelation $\theta_{\tau}(\mathbf{u})$ of a binary sequence $\mathbf{u}=\left(u_{i}\right)_{i \geq 0}$ with shift τ is the correlation of the sequences $\left(u_{i}\right)_{i>0}$ and $\left(u_{i+\tau}\right)_{i>0}$, i.e.,

$$
\begin{align*}
\theta_{\tau}(\mathbf{u}) & :=\sum_{i \geq 0}(-1)^{u_{i} \oplus u_{i+\tau}} \\
& =\left|\left\{i: u_{i} \oplus u_{i+\tau}=0\right\}\right|-\left|\left\{i: u_{i} \oplus u_{i+\tau}=1\right\}\right| \tag{2.2}\\
& =\left|\left\{i: u_{i}=u_{i+\tau}\right\}\right|-\left|\left\{i: u_{i} \neq u_{i+\tau}\right\}\right| .
\end{align*}
$$

Observation 2.7. A truely random sequence is aperiodic, the probability of a τ bit block's occurrence at position i in the sequence is $2^{-\tau}$, and its autocorrelation is zero-valued for all shifts τ.

Consequently, we require that a keystream generator's output bitstream u satisfy the following postulates.

Pseudorandomness Postulate 1. A keystream sequence should have a large period T (for many applications at least $T \geq 2^{50}$).

Pseudorandomness Postulate 2. A keystream seqeunce should contain a given τ-bit block around $T \cdot 2^{-\tau}$ times.

Pseudorandomness Postulate 3. For a keystream sequence u, $\frac{\left|\theta_{\tau}(\mathrm{u})\right|}{T}$ should be small for any shift $\tau<T$.

2.4 Asymmetric Ciphers

It was assumed for a long time that a reasonable cipher system could only be symmetric, i.e., the encryption key k_{e} and the decreption key k_{d} had to be equal. Only in the 1970s, the first practical asymmetric cipher systems based on different keys for encryption and decryption were proposed, with the RSA cryptosystem being one of the most prominent examples (see, e.g., Vaudenay (2006) for an introduction).

In systems in which deducing the decryption key from the encryption key is infeasible (which is the case for practical asymmetric ciphers), there no need to keep the encryption key secret any more. Therefore, the encryption key k_{e} is often called the public key and the decryption key k_{d} is called the private key, and cipher systems that allow for publishing the encryption key are also called public key (cipher) systems. The receiver can publish his public key, and any potential sender can encrypt messages using this public key without the need for establishing a common key as in symmetric cipher systems.

However, asymmetric cipher systems usually require much more computational effort for encryption and decryption than symmetric cipher systems for comparable security levels, which limits their suitability for low-end devices.

Chapter 3

Stream Cipher Building Blocks

We now present the most important building blocks for stream ciphers, with a special focus on components that are particularly useful for hardware-oriented ciphers.

3.1 Boolean Functions

Definition 3.1. We call a function

$$
\begin{array}{cccc}
f: & \{0,1\}^{n} & \rightarrow & \{0,1\}^{m} \\
\left(x_{1}, \ldots, x_{n}\right) & \mapsto & \left(y_{1}, \ldots, y_{m}\right)
\end{array}
$$

an m-output Boolean function in n variables. We say that f depends on the input x_{i} if

$$
f\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right) \neq f\left(x_{1}, \ldots, x_{i-1}, x_{i} \oplus 1, x_{i+1}, \ldots, x_{n}\right) .
$$

Definition 3.2. We call a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ balanced if $\left|f^{-1}(0)\right|=\left|f^{-1}(1)\right|$.

Observation 3.3. Each Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be equivalently represented in algebraic normal form, i.e., as a polynomial
$F\left(w_{1}, \ldots, w_{n}\right)=\bigoplus_{j \in M} m_{j}$ with monomials $m_{j}=\bigwedge_{l \in M^{j}} w_{l}$ and $M^{j}(f) \subseteq\{1, \ldots, n\}$.
$\left|M^{j}(f)\right|$ is called the degree of the monomial m_{j}. The degree of the polynomial F (abbreviated by $\operatorname{deg}(F)$) is defined to be the maximum over the degrees of the monomials occuring in F.

We call a Boolean function F with $\operatorname{deg}(F)=1$ a linear function.
Definition 3.4. For a binary vector $x=\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$, we denote by the Hamming weight of x (abbreviated by $\mathrm{wt}(x)$) the number of non-zero components in x, i.e.,

$$
\operatorname{wt}(x):=\left|\left\{i \in\{1, \ldots, n\} \mid x_{i} \neq 0\right\}\right| .
$$

For ease of notation, we will often implicitly identify a vector $\left(u_{0}, \ldots, u_{k-1}\right) \in$ $\{0,1\}^{k}$ with the integer $u=\sum_{i=0}^{k-1} u_{i} 2^{i}$.

3.2 Feedback Shift Registers

Feedback shift registers have turned out to be particularly useful devices for producing bitstreams with good pseudorandomness properties.

Definition 3.5. A Feedback Shift Register (FSR) in Fibonacci architecture consists of an n-bit register $a=\left(a_{0}, \ldots, a_{n-1}\right)$ and a state update function $f:\{0,1\}^{n} \rightarrow\{0,1\}$. Starting from an initial configuration a^{0}, in each clock a_{0} is produced as output and the register is updated according to $a:=\left(a_{1}, \ldots, a_{n-2}, f\left(a_{0}, \ldots, a_{n-1}\right)\right)$.
Depending on whether f is a linear function, we call the register a Linear Feedback Shift Register (LFSR) or a Nonlinear Feedback Shift Register (NFSR).

The FSR-construction is illustrated in Fig. 3.1.
The definition implies that the output bitstream $\left(w_{t}\right)_{t \geq 0}$ produced from an initial configuration $a^{0}=\left(a_{0}^{0}, \ldots, a_{n-1}^{0}\right)$ can be expressed as

$$
w_{t}=\left\{\begin{array}{cl}
a_{t}^{0} & \text { for } \quad t \in\{0, \ldots, n-1\} \\
f\left(w_{t-n}, \ldots, w_{t-1}\right) & \text { for } \quad t \geq n
\end{array}\right.
$$

while the state of the FSR after t clockings corresponds to $\left(w_{t}, \ldots, w_{t+n-1}\right)$.
Surprisingly, even after many decades of research, the properties of general FSRs and the sequences they produce are hardly understood. We therefore focus on two special cases, linear feedback shift registers and feeback shift registers with carry, which are much less resistant to analysis and have found their way into practical applications.

3.2.1 Linear Feedback Shift Registers (LFSRs)

Fibonacci and Galois representations of LFSRs

Definition 3.6. An n-stage Linear Feedback Shift Register (LFSR) in Fibonacci architecture (see Fig. 3.2) contains a main register with n binary cells $\left(y_{0}, \ldots, y_{n-1}\right)$ and fixed binary feedback taps $\left(d_{0}, \ldots, d_{n-1}\right)$. From an initial state y, the LFSR outputs in each clock t the value y_{0}, computes the sum $\sigma=\sum_{i=0}^{n-1} y_{i} d_{n-i-1}$ over the integers and updates the register according to $y=\left(y_{1}, y_{2}, \ldots, y_{n-1}, \sigma \bmod 2\right)$.

Figure 3.1: Feedback shift register (FSR) of length n

Figure 3.2: LFSR in Fibonacci architecture

Based on an initial configuration y^{0}, we can describe the output bitstream $\left(w_{t}\right)_{t \geq 0}$ of a Fibonacci LFSR by

$$
w_{t}=\left\{\begin{array}{cl}
y_{t}^{0} & \text { for } \quad t \in\{0, \ldots, n-1\} \\
\sigma_{t} \bmod 2 & \text { for } \quad t \geq n
\end{array}\right.
$$

where $\sigma_{t}=\sum_{i=1}^{n} w_{t-i} d_{i-1}$ for $t \geq n$.
Note that for performance reasons, the feedback bit $(\sigma \bmod 2)$ is usually computed as

$$
\sigma \bmod 2=\bigoplus_{i=0}^{n-1} y_{i} d_{n-i-1}
$$

Additionally to the (most commonly used) Fibonacci architecture, there exists a Galois architecture for LFSRs.
Definition 3.7. An n-stage LFSR in Galois architecture (see Fig. 3.3) contains n binary main register cells $\left(x_{0}, \ldots, x_{n-1}\right)$ with fixed binary feedback taps $\left(d_{0}, \ldots, d_{n-1}\right), d_{n-1} \neq 0$. Starting from an initial state x, the Galois LFSR outputs in each clock the value x_{0}, computes the sums $\sigma_{i}=x_{i+1}+x_{0} d_{i}$ for $0 \leq i<n$ (with $x_{n}=0$) and updates x_{i} to $\sigma_{i} \bmod 2$ for all $0 \leq i<n-1$.

Figure 3.3: LFSR in Galois architecture
Again, we may equivalently compute the update value for x_{i} as $x_{i+1} \oplus x_{0} d_{i}$.

Algebraic model: Formal Power Series and $\mathbb{F}_{2^{n}}$

We denote the ring of formal power series $\alpha(X)=\sum_{i=0}^{\infty} u_{i} X^{i}$ with $u_{i} \in\{0,1\}$ (i.e., with coefficients in the integers modulo 2) by $\mathbb{F}_{2}[[X]]$, and the Galois field with 2^{n} elements by $\mathbb{F}_{2^{n}}$.
Theorem 3.8 (Golomb (1981)). There is a one-to-one correspondence between quotients of polynomials $\alpha(X)=\frac{h(X)}{q(X)} \in \mathbb{F}_{2}[[X]]$ and eventually periodic binary sequences u which associates to each such quotient its coefficient sequence $\mathrm{u}=\left(u_{0}, u_{1}, \ldots\right)$. The sequence u is strictly periodic if and only if $\operatorname{deg}(h(X))<\operatorname{deg}(q(X))$.

For both the Fibonacci and the Galois architecture, we define the connection polynomial $q(X)$ by

$$
q(X):=d_{n-1} X^{n}+d_{n-2} X^{n-1}+\ldots+d_{0} X-1
$$

and associate a Fibonacci state $\left(y_{0}, \ldots, y_{n-1}\right)$ with the polynomial

$$
\begin{equation*}
h(X)=\sum_{k=0}^{n-1} \sum_{i=0}^{k} d_{i-1} y_{k-i} X^{k}, \text { where } d_{-1}=1 \tag{3.1}
\end{equation*}
$$

and a Galois state $\left(x_{0}, \ldots, x_{n-1}\right)$ with the polynomial

$$
\begin{equation*}
h(X)=-\left(x_{0}+x_{1} X+\ldots+x_{n-1} X^{n-1}\right) . \tag{3.2}
\end{equation*}
$$

Theorem 3.9 (Golomb $(\mathbf{1 9 8 1})$). The output sequence of an LFSR with feedback tap vector corresponding to the connection polynomial $q(X)$ and an initial state corresponding to $h(X)$ is the coefficient sequence of $\alpha(X)=\frac{h(X)}{q(X)}$.

Corollary 3.10. The LFSR's output sequence is strictly periodic for any initial state.

Proof. Since by the definition of $h(X), \operatorname{deg}(h(X)) \leq n-1<n=\operatorname{deg}(q(X))$, the claim follows from Theorem 3.8.

The Fibonacci and Galois architectures can be related in the following way. Suppose that $\operatorname{deg}(q)=n$ and q is irreducible, let α denote a root of $q(X)$ in $\mathbb{F}_{2^{n}}$, express a $p \in \mathbb{F}_{2^{n}}$ as linear combination of the elements in $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right\}$, and define

$$
\begin{align*}
T: & \mathbb{F}_{2^{n}} \\
& \rightarrow\{0,1\} \tag{3.3}\\
p_{0}+p_{1} \alpha+\ldots+p_{n-1} \alpha^{n-1} & \mapsto p_{0}
\end{align*}
$$

For periodic Galois states x, we define a mapping E by
$E: \quad$ \{periodic Galois states $\} \rightarrow \mathbb{F}_{2^{n}}$

$$
\begin{equation*}
\left(x_{0}, \ldots, x_{n-1}\right) \mapsto x_{0}+x_{1} \alpha+x_{2} \alpha^{2}+\ldots+x_{n-1} \alpha^{n-1} \tag{3.4}
\end{equation*}
$$

For an element $p \in \mathbb{F}_{2^{n}}$, we define a mapping S by

$$
\begin{align*}
S: \quad \mathbb{F}_{2^{n}} & \rightarrow \text { \{periodic Fibonacci states }\} \\
p & \mapsto\left(T\left(\alpha^{1-n} p\right), T\left(\alpha^{2-n} p\right), \ldots, T\left(\alpha^{-1} p\right), T(p)\right), \tag{3.5}
\end{align*}
$$

i.e., $y_{i}=T\left(\alpha^{-i} p\right)$.

Theorem 3.11 (Goresky and Klapper (2002)). The mappings E and S are one-to-one, i.e., there exist inverse functions E^{-1} and S^{-1} that map elements of $\mathbb{F}_{2^{n}}$ to the set of periodic Galois states and periodic Fibonacci states to $\mathbb{F}_{2^{n}}$, respectively.

We note that since $\left\{1, \alpha^{-1}, \ldots, \alpha^{1-n}\right\}$ is a basis for $\mathbb{F}_{2^{n}}$ over \mathbb{F}_{2}, E^{-1} and S^{-1} may be efficiently computed by solving systems of linear equations in $\left\{x_{0}, \ldots, x_{n-1}\right\}$ and p, respectively.

We can now describe the evolution of the LFSR states (resp. their $\mathbb{F}_{2^{n}}$ representations) in the following way.

Theorem 3.12 (Golomb (1981), Goresky and Klapper (2002)). For an initial LFSR state corresponding to $p \in \mathbb{F}_{2^{n}}$, the sequence $\left(p^{t}\right)_{t \geq 0}$ of $\mathbb{F}_{2^{n}}$ representations of the register state at time t is given by $p^{t}=\alpha^{-t} p \in \mathbb{F}_{2^{n}}$, and the t-th output bit of the register can be computed as $z^{t}=T\left(\alpha^{-t} p\right) \in\{0,1\}$. The period of the sequence $\left(p^{t}\right)_{t \geq 0}$ equals the order of α in $\mathbb{F}_{2^{n}}$.

Corollary 3.13 (Golomb (1981), Goresky and Klapper (2002)). If $q(X)$ is not only an irreducible but also a primitive polynomial, α has the maximum possible order $2^{n}-1$ and hence the period, too, reaches its maximum $2^{n}-1$.

Consequently, we call LFSRs with primitive connection polynomials maximumlengh LFSRs and the sequences they produce m-sequences.
Remark 3.14. There are $\frac{\varphi\left(2^{n}-1\right)}{n}$ primitive polynomials of degree $n \geq 1$ over \mathbb{F}_{2}, where for $m \in \mathbb{N}, \varphi(m)=\{i \in\{1, \ldots, m\} \mid \operatorname{gcd}(i, m)=1\}$.

Sequences produced by individual Register Cells

We now want to describe the sequences of values taken by a particular LFSR register cell. In the case of Fibonacci LFSRs, the following observation is straightforward to make.

Theorem 3.15. For an n-stage Fibonacci LFSR with connection polynomial $q(X)$ and initial state y^{0}, the sequence of values $\left(y_{i}^{t}\right)_{t \geq 0}$ taken by the i-th register cell y_{i} is the original sequence shifted by i positions, i.e., given by the Fibonacci LFSR-sequence with connection polynomial $q(X)$ produced from the initial state $S\left(\alpha^{-i} S^{-1}(x)\right)$ with α a root of $q(X)$.

A similar correspondence holds for Galois LFSRs.
Theorem 3.16. For an n-stage Galois LFSR with connection polynomial $q(X)$ and initial state polynomial $h(X)$, the sequence of values taken by the i-th register cell x_{i} is the sequence produced by a Galois LFSR with connection polynomial $q(X)$ and initial state polynomial

$$
h_{i}(X)=x_{i}(0) \cdot q(X)+X \cdot\left(h_{i+1}(X)+d_{i} h_{0}(X)\right) \text { with } h_{n}(X) \equiv 0
$$

Proof. Obviously, $h_{0}(X)=h(X)$. Since $\operatorname{deg}(q)=n$, we have $d_{n-1}=1$, which implies $x_{n-1}(t+1)=x_{0}(t)$. We obtain for $i=n-1$

$$
\begin{aligned}
\frac{h_{n-1}(X)}{q(X)} & =\sum_{t=0}^{\infty} x_{n-1}(t) \cdot X^{t}=x_{n-1}(0)+X \cdot \sum_{t=0}^{\infty} x_{n-1}(t+1) X^{t} \\
& =x_{n-1}(0)+X \cdot \sum_{t=0}^{\infty} x_{0}(t) \cdot X^{t} \\
& =x_{n-1}(0)+X \cdot \frac{h_{0}(X)}{q(X)},
\end{aligned}
$$

and therefore

$$
h_{n-1}(X)=x_{n-1}(0) \cdot q(X)+X \cdot h_{0}(X) .
$$

For $0 \leq i<n-1$, we have

$$
\begin{aligned}
\frac{h_{i}(X)}{q(X)} & =\sum_{t=0}^{\infty} x_{i}(t) \cdot X^{t}=x_{i}(0)+X \cdot \sum_{t=0}^{\infty} x_{i}(t+1) \cdot X^{t} \\
& =x_{i}(0)+X \cdot \sum_{t=0}^{\infty}\left(x_{i+1}(t)+d_{i} x_{0}(t)\right) \cdot X^{t} \\
& =x_{i}(0)+X \cdot\left(\frac{h_{i+1}(X)}{q(X)}+d_{i} \frac{h_{0}(X)}{q(X)}\right),
\end{aligned}
$$

which implies

$$
h_{i}(X)=x_{i}(0) \cdot q(X)+X \cdot\left(h_{i+1}(X)+d_{i} h_{0}(X)\right)
$$

We can write the relation for $h_{i}(X)$ in closed form as follows.
Lemma 3.17. The recurrence relation

$$
h_{i}(X)=x_{i}(0) \cdot q(X)+X \cdot\left(h_{i+1}(X)+d_{i} h_{0}(X)\right) \text { with } h_{n}(X) \equiv 0
$$

can be expressed as $h_{i}(X)=F_{i}(x) \cdot q(X)+M_{i} \cdot h_{0}(X)$ with

$$
M_{i}=X \cdot \sum_{j=i}^{n-1} d_{j} X^{j-i} \text { and } F_{i}(x)=\sum_{j=i}^{n-1} x_{j}(0) X^{j-i}
$$

Proof. The claimed formula is straightforwardly obtained by induction.

Mappings between periodic Galois and Fibonacci states

Proposition 3.18. There exists a bijective mapping between periodic initial Galois LFSR states and periodic initial Fibonacci LFSR states such that the registers produce the same output (see Fig. 3.4).

Proof. According to Theorem 3.11, the mapping

$$
\left.\begin{array}{rl}
\Phi:\{\text { periodic Galois states }\} & \rightarrow \\
x & \mapsto p e r i o d i c ~ F i b o n a c c i ~ s t a t e s ~
\end{array}\right\}
$$

with E and S defined as in Eqs. (3.4) and (3.5) is one-to-one.

Figure 3.4: Mapping between periodic Galois and Fibonacci LFSR states

Lemma 3.19. The value x_{i} of the i-th cell in the main register of a Galois $L F S R$ can be computed in polynomial time from the state y of the corresponding Fibonacci LFSR as the i-th component of the vector $E^{-1}\left(S^{-1}(x)\right)$.

Proof. The claim follows immediately from Theorem 3.11.

Statistical Properties of m-Sequences

m-sequences are statistically very similar to truely random sequences. Concerning the three properties that we selected in Section 2.3, their behaviour can be characterized as follows.
Observation $3.20(\mathbf{G o l o m b}(\mathbf{1 9 8 1})$). Consider an m-sequence u produced by an n-stage LFSR.

- The period of u is $T=2^{n}-1$.
- Any τ-bit block B occurs in one period of u exactly $2^{n-\tau}$ times if $B \neq 0$ and $2^{n-\tau}-1$ times if $B=0$.
- The autocorrelation $\theta_{\tau}(\mathrm{u})$ satisfies $\frac{\left|\theta_{\tau}(\mathrm{u})\right|}{T}=\frac{1}{2^{n}-1}$.

The definition of LFSRs suggests another pseudorandomness critereon, the linear complexity.

Definition 3.21. The linear complexity of a binary sequence $u=\left(u_{i}\right)_{i \geq 0}$ (abbreviated by $\mathrm{lc}(\mathrm{u})$) is the length of the shortest LFSR that generates the sequence.

Lemma 3.22. A sequence $\mathbf{u}=\left(u_{i}\right)_{i \geq 0}$ with period T satisfies $\operatorname{lc}(\mathrm{u}) \leq T$.
Proof. The T-stage Fibonacci LFSR with feedback taps $(0, \ldots, 0,1) \in\{0,1\}^{T}$ will obivously generate \mathbf{u} from the initial state $y=\left(u_{0}, \ldots, u_{T-1}\right)$.

Remark 3.23. There exists an algorithm that computes for a given sequence u with $l=\operatorname{lc}(\mathrm{u})$ in time $\mathcal{O}\left(l^{3}\right)$ and from the first $2 l$ bits of u the value l and the feedback tap vector of an l-stage LFSR that generates u . This algorithm is known as the Berlekamp-Massey algorithm for register synthesis (see, e.g., Menezes et al. (2001) for a description).

We conclude that the linear complexity of a keystream sequence should be large enough such that a generating LFSR cannot be determined with realistic resources.

Pseudorandomness Postulate 4. The linear complexity lc(u) of a keystream sequence u should be reasonably large.

We note that although the period of an m-sequence is $T=2^{n}-1$, its linear complexity is only n, i.e. logarithmic in T, and therefore much lower than the upper bound given by Lemma 3.22. Conversely, if an LFSR is to produce a sequence with linear complexity l^{*}, its required minimum size is exponential in l^{*}, which is impractical for most applications. In fact, this is the main reason why LFSRs - despite their many other desirable statistical properties - are not suitable for direct use as keystream generators.

3.2.2 Feedback Shift Registers With Carry (FCSRs)

Feedback with carry shift registers (FCSRs) have been discussed since the mid1990s in the context of efficient pseudorandom number generation, particularly as an alternative to LFSRs (Couture and L'Ecuyer, 1994, Klapper and Goresky, 1997, Marsaglia and Zaman, 1992).

Analogously to Section 3.2.1, we describe the structure of FCSRs and make some observations on the properties of their output sequences. All our results have been experimentally confirmed with the computer algebra system Magma (Bosma et al., 1997).

Fibonacci and Galois representations of FCSRs

Definition 3.24. An n-stage FCSR in Fibonacci architecture (see Fig. 3.5) contains a main register with n binary cells $\left(y_{0}, \ldots, y_{n-1}\right)$ and fixed binary feedback taps $\left(d_{0}, \ldots, d_{n-1}\right)$ as well as an additional memory b. From an initial state (y, b), the FCSR outputs in each clock t the value y_{0}, computes the sum $\sigma=b+\sum_{i=0}^{n-1} y_{i} d_{n-i-1}$ over the integers and updates the register and memory according to $b=\sigma$ div 2 and $y=\left(y_{1}, y_{2}, \ldots, y_{n-1}, \sigma \bmod 2\right)$.

Figure 3.5: FCSR in Fibonacci architecture
Based on an initial configuration $\left(y^{0}, b^{0}\right)$, we can describe the output bitstream $\left(w_{t}\right)_{t \geq 0}$ of a Fibonacci FCSR by

$$
w_{t}=\left\{\begin{array}{cl}
y_{t}^{0} & \text { for } \quad t \in\{0, \ldots, n-1\} \\
\sigma_{t} \bmod 2 & \text { for } \quad t \geq n
\end{array}\right.
$$

where $\sigma_{t}=b^{t-n}+\sum_{i=1}^{n} w_{t-i} d_{i-1}$ and $b^{t-n+1}=\sigma_{t}$ div 2 for $t \geq n$, which implies

$$
\begin{equation*}
\sigma_{t}=\left(\sigma_{t-1} \operatorname{div} 2\right)+\sum_{i=1}^{n} w_{t-i} d_{i-1} \text { with } \sigma_{n-1}=2 b^{0} \tag{3.6}
\end{equation*}
$$

We note that in general, b may be an arbitrarily large value. However, if the register's state is periodic, b may be bounded as follows.

Proposition 3.25 (Klapper and Goresky (1997)). If the Fibonacci FCSR is in a periodic state, the value of the memory b satisfies $0 \leq b<\mathrm{wt}(d+1)$.

Corollary 3.26. A Fibonacci FCSR with a periodic initial state will not require more than $\left\lfloor\log _{2}(\mathrm{wt}(d+1)-1)\right\rfloor+1$ bits to store the value b at any time.

Similarly to the Galois architecture for LFSRs, there exists a Galois architecture for FCSRs, which was first observed by Noras (1997) and further analyzed by Goresky and Klapper (2002).

Definition 3.27. An n-stage FCSR in Galois architecture (see Fig. 3.6) contains n binary main register cells $\left(x_{0}, \ldots, x_{n-1}\right)$ with fixed binary feedback taps $\left(d_{0}, \ldots, d_{n-1}\right), d_{n-1} \neq 0$, and $n-1$ memory cells $\left(a_{0}, \ldots, a_{n-2}\right)$. Starting from an initial state (x, a), the Galois FCSR outputs in each clock the value x_{0}, computes the sums $\sigma_{i}=x_{i+1}+a_{i} d_{i}+x_{0} d_{i}$ for $0 \leq i<n$ (with $x_{n}=0$ and $a_{n-1}=0$) and updates x_{i} to $\sigma_{i} \bmod 2$ and a_{i} to σ_{i} div 2 for all $0 \leq i<n-1$.

We will assume that memory cells are only present at those positions with feedback taps, i.e., $a_{i}=0$ if $d_{i}=0$ for all $0 \leq i<n-1$, since $a_{i}=0$ for all i with $d_{i}=0$ is a necessary condition for periodic states (x, a).

Figure 3.6: FCSR in Galois architecture
Implementors will often prefer the Galois architecture to the Fibonacci architecture since the size of the memory is intrinsically limited and the memory bits can be updated in parallel, with each addition involving at most three bits.

Algebraic model: 2-adic Numbers and \mathbb{Z}_{2}

The algebraic structure that is associated with FCSRs is the ring of 2-adic numbers. A 2 -adic integer is a formal power series $\alpha=\sum_{i=0}^{\infty} u_{i} 2^{i}$ with $u_{i} \in$ $\{0,1\}$. The collection of all such formal power series forms the ring of 2-adic numbers. This ring especially contains rational numbers p / q, where p and q are integers and q is odd. 2-adic numbers and eventually periodic sequences are linked by the following Theorem.

Theorem 3.28 (Klapper and Goresky (1997)). There is a one-to-one correspondence between rational numbers $\alpha=p / q$ (with odd q) and eventually periodic binary sequences u which associates to each such rational number α the bit sequence $u=\left(u_{0}, u_{1}, \ldots\right)$ of its 2-adic expansion. The sequence u is strictly periodic if and only if $\alpha \leq 0$ and $|\alpha| \leq 1$.

For both FCSR architectures, we define the connection integer q as $q=$ $1-2 d$. We identify a Galois state (x, a) with the integer

$$
\begin{equation*}
p=x+2 a \tag{3.7}
\end{equation*}
$$

and a Fibonacci state (y, b) with the integer

$$
\begin{equation*}
p=b 2^{n}-\sum_{k=0}^{n-1} \sum_{i=0}^{k} q_{i} y_{k-i} 2^{k} \tag{3.8}
\end{equation*}
$$

Theorem 3.29 (Klapper and Goresky (1997)). The output sequence of an FCSR with feedback tap vector corresponding to the connection integer q and an initial state corresponding to p is the 2-adic expansion of $\alpha=\frac{p}{q}$.

Corollary 3.30. The output sequence of an FCSR with feedback tap vector corresponding to q will be strictly periodic if and only if the integer p that corresponds to the initial state satisfies $0 \leq p \leq|q|$.

Proof. The claim is an immediate consequence of Theorem 3.28.
Theorem 3.29 justifies the following definition.
Definition 3.31. We call two Galois states (x, a) and (x^{\prime}, a^{\prime}) equivalent if

$$
x+2 a=x^{\prime}+2 a^{\prime} .
$$

Similarly, we call two Fibonacci states $(y, b),\left(y^{\prime}, b^{\prime}\right)$ equivalent if

$$
b 2^{n}-\sum_{k=0}^{n-1} \sum_{i=0}^{k} q_{i} y_{k-i} 2^{k}=b^{\prime} 2^{n}-\sum_{k=0}^{n-1} \sum_{i=0}^{k} q_{i} y_{k-i}^{\prime} 2^{k} .
$$

Note that although equivalent states produce the same output, the sequence of states $\left((x(t), a(t))_{t \geq 0}\right.$ in the Fibonacci case and $(y(t), b(t))_{t \geq 0}$ in the Galois case) obtained by running the FCSR from equivalent starting states may be different.

Similarly to the LFSR-case, we can now describe the evolution of the FCSR states based on their representations in the set $\mathbb{Z} /(q \mathbb{Z})$ of integers modulo q, which we denote for simplicity by \mathbb{Z}_{q}.
Theorem 3.32 (Klapper and Goresky (1997)). For an initial state corresponding to $p \in \mathbb{Z}_{|q|}$, the sequence of integer representations of the states $\left(p^{t}\right)_{t \geq 0}$ is given by $p^{t}=2^{-t} p$ mod q and the $t-t h$ output bit can be computed as $z^{t}=p^{t} \bmod 2=\left(2^{-t} p \bmod q\right) \bmod 2$. If $0<p<|q|, q$ odd, and p and q are coprime, then the period of the sequence $\left(p^{t}\right)_{t \geq 0}$ equals the order of 2 modulo q. For $p=0$ and $p=|q|$, the FCSR produces the 2 -adic expansions of $0 / q=0$ and $|q| / q=-1$, respectively, which both have period one. If $0<p<|q|, q$ odd, and p and q are coprime, then the period of the sequence $\left(p^{t}\right)_{t \geq 0}$ equals the order of 2 modulo q.

Corollary 3.33. If q is a (negative) prime for which 2 is a primitive root, the period reaches its maximum $|q|-1$.

Consequently, we call FCSRs with prime connection integers for which w is a primitive root maximum-length FCSRs and the sequences they produce l-sequences.

In contrast to the number of primitive polynomals in the LFSR-case, the number of connection integers q producing l-sequences is not known with certainty. However, there exists the following conjecture.
Conjecture 3.34 (Hooley (1967), Klapper (2004)). The number of primes q of bitlength n for which the order of 2 modulo q is $q-1$ is asymptotically $\frac{c n}{\log (n)}$, where $c \approx 0.37$ is a constant.

For a maximum-length Galois FCSR with connection integer q, the state transition graph (see Definition 2.5) has exactly three connected components, i.e., the two fixed points $(0,0)$ and $\left(2^{n-1}, d-2^{n-1}\right)$ (corresponding to $p=0$ and $p=|q|)$ and a component containing all the remaining states. This component consists of a main cycle of length $|q|-1$ and paths of lengths at most $n+4$ leading to it (Arnault et al., 2008). In other words:
Observation 3.35. An n-stage maximum-length Galois FCSR will be in a periodic state after at most $n+4$ clockings.

Sequences produced by individual Register Cells

As for LFSRs, the sequences produced by individual main register cells of an FCSR are again FCSR-sequences.

Theorem 3.36. For a Fibonacci FCSR with connection integer q and an initial state corresponding to the integer p, the sequence $\left(y_{i}^{t}\right)_{t \geq 0}$ of values taken by the main register cell y_{i} is the FCSR sequence given by the 2-adic expansion of p_{i} / q with $p_{i}=2^{-i} p$.

Theorem 3.37 (Arnault and Berger (2005a), Theorem 4). For a Galois FCSR with initial state (x, a) and $p=x+2 a$, the sequence $\left(x_{i}^{t}\right)_{t \geq 0}$ of values taken by the main register cell i is again an FCSR-sequence, more precisely the 2-adic expansion of p_{i} / q with $p_{i}=F_{i}(x, a) \cdot q+M_{i} \cdot p, F_{i}(x, a)=\sum_{j=i}^{n-1}\left(x_{j}+2 a_{j}\right) 2^{j-i}$, and with constants $M_{i}=2 \sum_{j=i}^{n-1} d_{j} 2^{j-i}$.

It is interesting to note (and will prove useful in Section 3.2.2) that if the initial state (x, a) is periodic, this expression can be further simplified as follows.

Proposition 3.38. For a maximum-length Galois FCSR with connection integer q, a periodic initial state $\left(x^{0}, a^{0}\right)$, and $p^{t}=x^{t}+2 a^{t}$, the sequence $\left(x_{i}^{t}\right)_{t \geq 0}$ of values taken by a fixed main register cell i corresponds to $\left(p^{t+s_{i}} \bmod 2\right)_{t \geq 0}$ with $s_{i}=-\log _{2}\left(M_{i}\right) \bmod q$ and $M_{i}=2 \sum_{j=i}^{n-1} d_{j} 2^{j-i}$.

Proof. If $\left(x^{0}, a^{0}\right)$ is periodic, the 2-adic expansions of p_{i} / q have to be strictly periodic for all i. Theorem 3.28 implies that $0 \leq p_{i}<|q|$, hence $p_{i}=p_{i} \bmod q=$ $M_{i} \cdot p^{0} \bmod q$. In a maximum-length Galois FCSR, each possible value of $p_{i} \bmod q$ is passed after s_{i} iterations, hence $p_{i}=2^{-s_{i}} p^{0} \bmod q$, and we have $M_{i}=2^{-s_{i}} \bmod q$.

Proposition 3.38 implies that the sequence $\left(x_{i}^{t}\right)_{t \geq 0}$ corresponds to the sequence produced by the whole FCSR (i.e., $\left.\left(x_{0}^{t}\right)_{t \geq 0}\right)$ shifted by s_{i} positions. Note that the phase shifts s_{i} are independent of the initial state p and depend on i (and q) only.

Example 3.39. Consider the toy example of Arnault and Berger (2005a) with $q=-347$, hence $n=8$ and $d=174$. The output of the FCSR is strictly periodic with period $-q-1=346$. We find $M_{0}=1, M_{1}=174, M_{2}=86, M_{3}=42$, $M_{4}=20, M_{5}=10, M_{6}=4, M_{7}=2$. The phase shifts are $s_{0}=0, s_{1}=1$, $s_{2}=23, s_{3}=250, s_{4}=67, s_{5}=68, s_{6}=344, s_{7}=345$.

Mappings between periodic Galois and Fibonacci States

There is an onto function

$$
\begin{align*}
E: \quad\{\text { periodic Galois states }\} \backslash\left\{\left(1, \ldots, 1 ; a_{0}, \ldots, a_{n-2}\right)\right\} & \rightarrow \mathbb{Z}_{|q|} \\
(x, y) & \mapsto x+2 a \bmod q \tag{3.9}
\end{align*}
$$

that assigns to a Galois state an element of $\mathbb{Z}_{|q|}$.
Moreover, there exists a one to one mapping S from $\mathbb{Z}_{|q|}$ onto the set of strictly periodic states of the Fibonacci FCSR with connection integer q except
for the state $(1, \ldots, 1 ; \mathrm{wt}(q+1)-1)$, namely

$$
\begin{align*}
S: \mathbb{Z}_{|q|} & \rightarrow\{\text { periodic Fibonacci states }\} \backslash\{(1, \ldots, 1 ; \text { wt }(q+1)-1)\} \\
p & \mapsto(y, b) \tag{3.10}
\end{align*}
$$

with

$$
y_{i}=\left(\left(2^{-i} p \bmod q\right) \bmod 2\right) \text { for } 0 \leq i \leq n-1
$$

and

$$
b=\frac{1}{2^{n}}\left(p+\sum_{k=0}^{n-1} \sum_{j=0}^{k} d_{j-1} y_{k-j} 2^{k}\right)
$$

Conversely, for a given periodic Fibonacci state (y, b) the corresponding integer p will satisfy $0 \leq p<|q|$.

Hence, for an arbitrary initial state of a Galois FCSR with connection integer q, we can compute a periodic initial state of a Fibonacci FCSR with connection integer q and vice versa such that the two registers will produce the same output (Goresky and Klapper, 2002).

Obviously, the mapping E from the Galois states to $\mathbb{Z}_{|q|}$ is not one to one, i.e., generally more than one state is mapped to the same $p \in \mathbb{Z}_{|q|}$. However, the following Proposition shows how to compute for given $p \in \mathbb{Z}_{|q|}$ the uniquely determined corresponding periodic state (x, a).

Proposition 3.40. For all $p \in \mathbb{Z}_{|q|}$, the only strictly periodic state (x, a) with $x+2 a=p$ of a maximum-length Galois FCSR of size n with connection integer q is given by $x_{i}=M_{i} \cdot p \bmod q \bmod 2$ and $a=(p-x) / 2$ with M_{i} defined as in Proposition 3.38.

Proof. We first observe that $x+2 a=x+2 \frac{p-x}{2}=p$, hence (x, a) corresponds to p. If $p=0$, we have $(x, a)=(0,0)$ at all times, so (x, a) is periodic. Similarly for $p=|q|$, the only possible state (x, a) is $\left(2^{n}-1, d-2^{n-1}\right)$, and this state is periodic (see Section 3.2.2). If $p \neq 0$, the state transition graph representing the evolution of the states consists of a main cycle of length $|q|-1$ and paths converging to it. Hence, for each initial state (x^{\prime}, a^{\prime}) with $x^{\prime}+2 a^{\prime}=p$, there exists exactly one state (\tilde{x}, \tilde{a}) with $\tilde{x}+2 \tilde{a}=p$ that lies on the main cycle. For this state (\tilde{x}, \tilde{a}), the sequences $\left(\tilde{x}_{i}^{t}\right)_{t \geq 0}$ have to be strictly periodic. Due to Proposition 3.38, the first bit of the 2-adic expansion of p_{i} / q and hence \tilde{x}_{i} is equal to $p_{i} \bmod 2$ with $p_{i}=M_{i} \cdot p \bmod q$. Moreover, \tilde{a} is uniquely determined by \tilde{x} and p, which implies $(\tilde{x}, \tilde{a})=(x, a)$.

Proposition 3.40 provides a possible answer to the open question raised by Goresky and Klapper (2002) how to intrinsically characterize the periodic states corresponding to a particular $p \in \mathbb{Z}_{|q|}$ and allows us to link periodic Fibonacci and periodic Galois states similarly to the LFSR-case.

Corollary 3.41. There exists a bijective mapping between periodic initial Galois FCSR states and periodic initial Fibonacci FCSR states such that registers produce the same output (see Fig. 3.7).

Proof. Proposition 3.40 implies a mapping \tilde{E} of periodic Galois states onto $\mathbb{Z}_{|q|}$. With E and S defined by Eqs. (3.9) and (3.10), the claim follows.

Figure 3.7: Mapping between periodic Galois and Fibonacci FCSR states

Example 3.42. Continuing Example 3.39, let $q=-347$. For $p=100$, we compute $x_{i}=M_{i} \cdot p \bmod q \bmod 2$, which yields $x=(01010000)_{2}=64+16=$ 80 , and obtain $a=(p-x) / 2=10$. Hence, the strictly periodic initial state corresponding to $p=100$ is $(x, a)=(80,10)$. Plugging the values of p and q into Eq. (3.10) yields the corresponding periodic Fibonacci state $(y, b)=(148,2)$.

Finally, we may obtain the sequence produced by a Galois main register cell from a Fibonacci FCSR as follows.

Lemma 3.43. The value x_{i} of the i-th cell in the main register of a Galois $F C S R$ can be computed from the strictly periodic state (y, b) of the corresponding Fibonacci FCSR by

$$
x_{i}=M_{i}\left(b 2^{n}-\sum_{k=0}^{n-1} \sum_{j=0}^{k} d_{j-1} y_{k-j} 2^{k}\right) \bmod q \bmod 2 .
$$

Proof. The claimed formula is an immediate consequence of Eq. (3.8) and Propositions 3.38 and 3.40 .

Statistical properties of l-sequences

The period T of an l-sequence produced by an n-stage FCSR with connection integer q is $|q|-1$ (Klapper and Goresky, 1997), i.e., $2^{n-1}-1<T<2^{n}-1$. The linear complexity of l-sequences is close to $\frac{|q|-1}{2}$ (Tian and Qi, 2009).
Theorem 3.44 (Blum et al. (1986), Goresky and Klapper (2006)). Let u be an l-sequence with connection integer q. The number of occurrences of any block $e=\left(e_{0}, e_{1}, \ldots, e_{\tau-1}\right)$ of size τ in u varies at most by 1 as the block varies over all 2^{τ} possibilities. That is, there is an integer w^{\prime} so that every block of length τ occurs either w^{\prime} times or $w^{\prime}+1$ times in u . The number of blocks of length τ that occur $w^{\prime}+1$ times is $(q-1) \bmod 2^{\tau}$, and the number of blocks of length τ that occur w^{\prime} times is $2^{\tau}-\left((q-1) \bmod 2^{\tau}\right)$.

We are especially interested in the occurrences of a particular block $B=$ $\left(b_{0}, \ldots, b_{\tau-1}\right)$ in one period of a sequence u with period length m, i.e., in the indices $i, 0 \leq i<m$, such that

$$
u_{i \bmod m}=b_{0}, u_{(i+1)} \bmod m=b_{1}, \ldots, u_{(i+\tau-1)} \bmod m=b_{\tau-1}
$$

Theorem 3.45. Let u be an l-sequence with connection integer q. Then for all $0<\tau<q$, the number of occurences of any block $B=\left(b_{0}, \ldots, b_{\tau-1}\right)$ in a period of u is $\left\lfloor(q-1-v) / 2^{\tau}\right\rfloor+1$ if $v \neq 0$ and $\left\lfloor(q-1-v) / 2^{\tau}\right\rfloor$ if $v=0$, where $v=\left(-q \cdot \sum_{i=0}^{\tau-1} b_{i} 2^{i}\right) \bmod 2^{\tau}$.

This result was essentially observed by Klapper (2004). We provide an alternative proof illustrating some methods that will be useful in the remainder of this section.
Proof (Theorem 3.45). Identify the block B with the integer $\beta:=\sum_{i=0}^{\tau-1} b_{i} 2^{i}$, $0 \leq \beta<2^{\tau}$. The number of occurrences of B in a period of \mathbf{u} equals the number of shifts of u starting with B, which in turn equals the number of integers u with $-u / q \equiv \beta \bmod 2^{\tau}$ and $0<u<q$. Since q is invertible $\bmod 2^{\tau}$, we have $u \equiv-q \beta \bmod 2^{\tau}$. Set $v=-q \beta \bmod 2^{\tau} \in\left\{0, \ldots, 2^{\tau}-1\right\}$. If $v \leq q-1$, the set of integers u fulfilling this condition can be written as

$$
\begin{array}{ll}
\left\{v, v+2^{\tau}, \ldots, v+\left\lfloor\frac{q-1-v}{2^{\tau}}\right\rfloor \cdot 2^{\tau}\right\} & \text { for } v \neq 0 \\
\left\{v+2^{\tau}, \ldots, v+\left\lfloor\frac{q-v}{2^{\tau}}\right\rfloor \cdot 2^{\tau}\right\} & \text { for } v=0
\end{array}
$$

The size of this set is $\left\lfloor(q-1-v) / 2^{\tau}\right\rfloor+1$ if $v \neq 0$ and $\left\lfloor(q-1-v) / 2^{\tau}\right\rfloor$ if $v=0$.
If $v>q-1$, the block B will not appear in u. In this case, we have $-2^{\tau} \leq q-1-v<0$, which means $\left\lfloor(q-1-v) / 2^{\tau}\right\rfloor=-1$ and therefore $\left\lfloor(q-1-v) / 2^{\tau}\right\rfloor+1=0$.

The expected autocorrelation of l-sequences can be shown to be zero (Xu and Qi, 2006). For any given shift τ, the autocorrelation is in $\mathcal{O}\left(\ln ^{2} q\right)$ (Xu et al., 2009), but how to compute its exact value is believed to be difficult (Goresky and Klapper, 1997) and is only known for $q=p^{e}$, where p is prime and $e \geq 2$, and τ of a special form (Xu and $\mathrm{Qi}, 2006$).

We now describe a method for computing the exact value of the autocorrelation which is based on counting the number of occurrences of particular $(\tau+1)$-bit blocks $B=\left(b_{\tau}, b_{\tau-1}, \ldots, b_{0}\right)$ in the sequence. The main idea is to fix the first and the last bit in B and to compute the correlation based on how often these restricted blocks occur in the sequence. Hence, we define

$$
B_{i j}^{\gamma}:=\text { number of blocks } B=\left(i, b_{\tau-1}, b_{\tau-2}, \ldots, b_{1}, j\right) \text { that occur } \gamma \text { times }
$$

for $(i, j) \in\{0,1\}^{2}$ and compute the correlation as

$$
\begin{equation*}
\theta_{\tau}=\left(\sum_{\gamma} \gamma \cdot B_{00}^{\gamma}+\sum_{\gamma} \gamma \cdot B_{11}^{\gamma}\right)-\left(\sum_{\gamma} \gamma \cdot B_{10}^{\gamma}+\sum_{\gamma} \gamma \cdot B_{01}^{\gamma}\right) \tag{3.11}
\end{equation*}
$$

Theorem 3.45 implies that a given $(\tau+1)$-bit block $B_{i j}^{\gamma}$ occurs either w times or $w+1$ times in a period of \mathbf{u}, which means that $\gamma \in\{w, w+1\}$ in Eq. (3.11).

We now want to characterize more precisely the sets of τ-bit blocks that occur equally often.

Lemma 3.46. The block $B=\left(b_{0}, b_{1}, \ldots, b_{\tau-1}\right)$ occurs $w+1$ times in a period of u if $\beta=\sum_{i=0}^{\tau-1} b_{i} 2^{i}$ fulfills $0<-q \beta \bmod 2^{\tau} \leq q-1 \bmod 2^{\tau}$, and w times otherwise, where $w=\left\lfloor 2^{k-\tau}\right\rfloor+\left(\left(q \bmod 2^{k}\right)\right.$ div $\left.2^{\tau}\right)$ and $k=\left\lfloor\log _{2}(q)\right\rfloor$

Proof. Let $v=-q \beta \bmod 2^{\tau}$, hence $0 \leq v<2^{\tau}$. We first consider the case $\tau \leq k$ and define $e=q \bmod 2^{k}, x=e \operatorname{div} 2^{\tau}$ and $y=e \bmod 2^{\tau}$. Since q is odd, we have $y>0$ and $(y-1) \bmod 2^{\tau}=\left(y \bmod 2^{\tau}\right)-1$ and therefore

$$
q-1-v=2^{k}+x \cdot 2^{\tau}+\underbrace{y-1-v}_{S} .
$$

Since $0 \leq y-1<2^{\tau}$, we have $-2^{\tau}<S<2^{\tau}$, and $S \geq 0$ if and only if $y-1 \geq v$. Hence,

$$
\left\lfloor\frac{q-1-v}{2^{\tau}}\right\rfloor=\left\{\begin{array}{ll}
2^{k-\tau}+x & \text { for } S \geq 0 \\
2^{k-\tau}+x-1 & \text { for } S<0
\end{array} .\right.
$$

We have $v=0$ if and only if $\beta=0$, and $v=0$ implies $S \geq 0$. We obtain the result by applying Theorem 3.45.

In case $\tau>k$, we have $0 \leq q-1<2^{k+1} \leq 2^{\tau}$ and therefore $-2^{\tau}<q-v-1<$ 2^{τ}, which implies $\left\lfloor(q-1-v) / 2^{\tau}\right\rfloor \in\{-1,0\}$, i.e., the block corresponding to v occurs either $0=w$ or $1=w+1$ times in \mathbf{u}. It is $q-1=q-1 \bmod 2^{\tau}$ since $\tau>k$, and we have $\left\lfloor(q-1-v) / 2^{\tau}\right\rfloor=0$ if and only if $v \leq q-1$. Hence, by Theorem 3.45, the block corresponding to v occurs $w+1=1$ times in \mathbf{u} if and only if $0<v \leq q-1 \bmod 2^{\tau}$.

Note that since there are $q-1 \bmod 2^{\tau}$ elements $\beta \in \mathbb{Z}_{2^{\tau}}$ fulfilling $0<-q \beta \leq$ $q-1 \bmod 2^{\tau}$, Lemma 3.46 implies similarly to Theorem 3.44 that the number of τ-bit blocks occuring $w+1$ times in a period of u is $q-1 \bmod 2^{\tau}$ and the number of blocks occuring w times is $2^{\tau}-\left((q-1) \bmod 2^{\tau}\right)$.

Based on our observations, we can reformulate Eq. (3.11) as

$$
\theta_{\tau}=\left(B_{00}+B_{11}\right)-\left(B_{01}+B_{10}\right) \text { with } B_{i j}=w \cdot B_{i j}^{w}+(w+1) \cdot B_{i j}^{w+1}
$$

Before we derive an explicit formula for θ_{τ}, we state a preliminary Lemma that is useful for speeding up the computation.
Lemma 3.47. For a block B of length τ corresponding to $\beta=\sum_{i=0}^{\tau-1} b_{i} 2^{i} \in \mathbb{Z}_{2^{\tau}}$ and $v=-q \beta \bmod 2^{\tau}$, we have $\beta \equiv v \bmod 2$.

Proof. We have

$$
\begin{aligned}
\beta \bmod 2 & =\left(v \cdot(-q)^{-1} \bmod 2^{\tau}\right) \bmod 2=v \cdot(-q)^{-1} \bmod 2 \\
& = \begin{cases}0 & v \equiv 0 \bmod 2 \\
1 & v \equiv 1 \bmod 2\end{cases}
\end{aligned}
$$

since $q^{-1} \bmod 2^{\tau}$ is odd if and only if q is odd.
Hence, in order to compute B_{00}^{w+1}, it suffices to compute the number of blocks corresponding to even $\beta \in \mathbb{Z}_{2^{\tau}}$ that occur $w+1$ times, which, by Lemmas 3.46 and 3.47, is equal to the number of $\beta \in \mathbb{Z}_{2^{\tau-1}}$ such that $0<2 \beta(-q) \bmod 2^{\tau+1} \leq$ $q-1 \bmod 2^{\tau+1}$, which is equivalent to

$$
2 \beta q \bmod 2^{\tau+1} \geq-q \bmod 2^{\tau+1}
$$

The blocks corresponding to the remaining β will occur w times. By similar arguments, we obtain $B_{i j}^{w}+B_{i j}^{w+1}=2^{\tau-1}$ for all pairs $(i, j) \in\{0,1\}^{2}$.

From the complement property of l-sequences we know that $B_{00}^{w+1}=B_{11}^{w+1}$ and $B_{01}^{w+1}=B_{10}^{w+1}$. Moreover, we have $B_{00}^{w+1}+B_{01}^{w+1}+B_{10}^{w+1}+B_{11}^{w+1}=$ $q-1 \bmod 2^{\tau+1}$ due to Theorem 3.44. Hence,

$$
\begin{aligned}
B_{01} & =w\left(2^{\tau-1}-B_{01}^{w+1}\right)+(w+1) B_{01}^{w+1} \\
& =w 2^{\tau-1}+B_{01}^{w+1} \\
& =w 2^{\tau-1}+\frac{q-1 \bmod 2^{\tau+1}}{2}-B_{00}^{w+1},
\end{aligned}
$$

and therefore

$$
\begin{aligned}
\theta_{\tau} & =\left(B_{00}+B_{11}\right)-\left(B_{01}+B_{10}\right) \\
& =2\left(B_{00}-B_{01}\right) \\
& =2\left(w B_{00}^{w}+w B_{00}^{w+1}-w 2^{\tau-1}-\frac{q-1 \bmod 2^{\tau+1}}{2}+2 B_{00}^{w+1}\right) \\
& =2 w\left(B_{00}^{w}+B_{00}^{w+1}-2^{\tau-1}\right)-\left(q-1 \bmod 2^{\tau}\right)+4 B_{00}^{w+1} \\
& =4 B_{00}^{w+1}-\left(q-1 \bmod 2^{\tau+1}\right) .
\end{aligned}
$$

Altogether, we obtain the following result.
Proposition 3.48. Let u denote an l-sequence with connection integer q. Then for a given shift $\tau>0$ the autocorrelation $\theta_{\tau}(\mathrm{u})$ is equal to $4 B(\tau, q)-(q-$ $\left.1 \bmod 2^{\tau+1}\right)$, where $B(\tau, q)$ denotes the number of $\beta \in \mathbb{Z}_{2^{\tau-1}}$ such that

$$
2 \beta q \bmod 2^{\tau+1}>-q \bmod 2^{\tau+1}
$$

The effort required for computing $\theta_{\tau}(\mathbf{u})$ is dominated by the computation of $B(\tau, q)$. The straightforward approach to test all $\beta \in\left\{0, \ldots, 2^{r-1}-1\right\}$ can be performed by evaluating the function

$$
f(\beta)=2 q \beta \bmod 2^{\tau+1}= \begin{cases}f(\beta-1)+2 q \bmod 2^{\tau+1} & \text { for } \beta>0 \\ 0 & \text { for } \beta=0\end{cases}
$$

for $\beta \in\left\{0, \ldots, 2^{r-1}-1\right\}$, which needs little memory, but $\mathcal{O}\left(\left(2^{\tau-1}-1\right) \log _{2} 2^{\tau}\right)=$ $\mathcal{O}\left(\tau \cdot 2^{\tau}\right)$ operations. Hence, our method is only practical for small shifts τ.

Example 3.49. For $q=-347$ and the corresponding l-sequence \mathbf{u}, we compute for the shift $\tau=6$ the values $B(\tau, q)=8$ and $q-1 \bmod 2^{\tau+1}=26$, which implies $\theta_{\tau}(\mathbf{u})=4 \cdot 8-26=6$. Similarly for $\tau=8$, we obtain $B(\tau, q)=24$ and $q-1 \bmod 2^{\tau+1}=90$, hence $\theta_{\tau}(u)=6$.

Analogously to the definition of linear complexity (Definition 3.21), Klapper and Goresky (1997) have established the notion of 2 -adic span.

Definition 3.50. The 2-adic span $\lambda_{2}(\mathrm{u})$ of a binary sequence u is the size (in terms of number of cells) of the smallest FCSR that generates u .

Lemma 3.51 (Klapper and Goresky (1997)). For a sequence u let $\alpha=$ $\sum_{i=0}^{\infty} a_{i} 2^{i}=\frac{p}{q}$ be the fraction in lowest terms whose 2-adic expansion agrees with u. Then

$$
\left|\left(\lambda_{2}(\mathbf{u})-2\right)-\varphi_{2}(\mathbf{u})\right| \leq \log _{2}\left(\varphi_{2}(\mathbf{u})\right)
$$

where $\varphi_{2}(\mathrm{u})=\log _{2}(\max (|p|,|q|))$.
Remark 3.52. Let u be an eventually periodic sequence with 2-adic span λ_{2}. Then it is possible to compute integers p, q such that the 2-adic expansion of p / q is u in time $\mathcal{O}\left(\left(\lambda_{2}\right)^{2}\right)$ while using only the first $2 \lambda_{2}+1$ bits of u . This algorihm resembles the Berlekamp-Massey algorithm for LFSR synthesis and is described by Arnault et al. (2004), Klapper and Xu (2004).

This suggests to add the 2-adic span to our list of pseudorandomness postulates.

Pseudorandomness Postulate 5. The 2-adic span $\lambda_{2}(\mathrm{u})$ of a keystream sequence u should be reasonably large.

We conclude that similarly to the LFSR-case, the output of maximum-length FCSRs is not directly suitable as keystream due to its low 2-adic span. However, their otherwise desirable statistical properties recommend both LFSRs and FCSRs, when combined with other devices, as building blocks for stream ciphers.

Chapter 4

Stream Ciphers based on Feedback Shift Registers

4.1 Generic Constructions

We have seen in the previous chapter that both LFSRs and FCSRs may provide sequences with good pseudorandomness properties, but the LFSRs' low linear complexity and the FCSRs' small 2-adic span prevent both devices from being directly used as keystream generators. Nevertheless, many stream ciphers try to benefit from the desirable properties of FSR-sequences and combine one or more FSRs with other components in order to compensate their weaknesses.

We consider in this chapter several generic strategies, namely running FSR sequences through additional Boolean functions before outputting keystream (combination generators and filter generators), adding a small number of memory bits that are updated in a nonlinear way, and state-dependent clocking of the FSRs.

4.1.1 Combination Generators and Filter Generators

A combination generator (more precisely, the FSM of a combination generator) consists of a small number of feedback shift registers R^{0}, \ldots, R^{k-1} and a Boolean function $C:\{0,1\}^{k} \rightarrow\{0,1\}$ that combines the output sequences of the internal registers in order to produce the output keystream (Rueppel (1992), see Fig. 4.1). More precisely, in each clock cycle t, each FSR R^{j} provides a bit x_{t}^{j} and the generator produces a keystream bit $z_{t}=C\left(x_{t}\right)$, where $x_{t}=\left(x_{t}^{0}, \ldots, x_{t}^{k-1}\right)$.

A filter generator (again, the FSM of a filter generator to be precise) contains only one feedback shift register R of length n and a Boolean filter function $C:\{0,1\}^{n} \rightarrow\{0,1\}$ that produces the output keystream from the current contents of certain register cells (Rueppel (1992), see Fig. 4.2).

Some combination or filter generators (e.g., the F-FCSR stream cipher family to be discussed in Section 4.2.6) produce more than one output bit per clock cycle, i.e., the keystream function C maps into $\{0,1\}^{*}$ instead of $\{0,1\}$.

Theorem 3.11 and Corollary 3.41 have shown that for both LFSRs and FCSRs, there exist one-to-one mappings between periodic Fibonacci states and periodic Galois states such that the output sequences produced from these states

Figure 4.1: FSR-based combination generator

Figure 4.2: FSR-based filter generator
coincide. Moreover, the sequences produced by individual main register cells are again LFSR/FCSR-sequences (Theorem 3.16 and Proposition 3.38).

These observations imply that we can transform a Galois LFSR/FCSR-based filter generator into a Galois LFSR/FCSR-based combination generator that contains as many registers (with appropriate starting states) as the filter function has inputs. Furthermore, Galois registers in the combination generator may be arbitrarily replaced by Fibonacci registers with equivalent starting states. Finally, we may even build an equivalent filter generator based on a Fibonacci LFSR/FCSR (with modified filter) based on Lemmas 3.19 and 3.43. Figure 4.3 summarizes these equivalences.

Note that if all operations of the generator's FSM are linear, its initial state can be efficiently determined from a number of keystream bits by solving a system of linear equations. Therefore, especially in the case that all FSRs are LFSRs, a non-linear function should be chosen as keystream function C.

4.1.2 Additional Memory

In order to improve resistance against correlation attacks and algebraic attacks (to be discussed in Sections 6.1 and 6.2), the keystream generation component of a combination generator is sometimes equipped with a few bits of additional memory, thereby becoming a keystream-FSM. The keystream-FSM takes k bits as input from the FSRs and consists of l memory bits, a keystream function

$$
C:\{0,1\}^{k} \times\{0,1\}^{l} \rightarrow\{0,1\}^{*}
$$

Figure 4.3: Equivalent representations of combination and filter generators
and a memory update function

$$
\delta:\{0,1\}^{k} \times\{0,1\}^{l} \rightarrow\{0,1\}^{l}
$$

In each clock t, it produces from the current input $x_{t}=\left(x_{t}^{0}, \ldots, x_{t}^{k-1}\right)$ and the current memory state $q_{t}=\left(q_{t}^{0}, \ldots, q_{t}^{l-1}\right)$ the keystream output $C\left(x_{t}, q_{t}\right)$ and updates the memory to $q_{t+1}:=\delta\left(x_{t}, q_{t}\right)$.

A regularly clocked keystream generator with a keystream-FSM of the described form is commonly called regularly clocked (k, l)-combiner (with memory). Observe that in this notation, the memoryless combination generator described in Section 4.1.1 corresponds to a ($k, 0$)-combiner.

LFSR-based combiners with memory were originally introduced by Rueppel (1986). Since then, they have been widely examined in cryptography and have found their way into practical applications. The perhaps best known example used in practice is the E_{0} keystream generator, which is in the set of example ciphers that we are going to examine more closely in the remainder of this thesis.

4.1.3 Irregular Clocking

Another way to introduce nonlinearity into a keystream generator is to clock the FSRs in an irregular manner. This is often accomplished by a clock control mechanism which determines based on the current FSM state how often each register's update function is applied before the next keystream bits are produced.

Examples for this desgin include the A5/1 generator (to be described in Section 4.2.3) and the shrinking generator (Coppersmith et al., 1994).

4.2 Example Ciphers

In the ECRYPT stream cipher project eStream (eStream), a number of new ciphers have been proposed and analyzed in the past few years. Many of these recent designs partly replace LFSRs by other feedback shift registers such as nonlinear feedback shift registers (NFSRs) and feedback shift registers with carry (FCSRs) in order to prevent standard cryptanalysis techniques like algebraic attacks and correlation attacks. Moreover, combinations of different types of feedback shift registers permit alternative compression functions.

As examples for these recent proposals, we consider the ciphers Trivium, Grain and the F-FCSR family along with the more aged self-shrinking generator, the E_{0} generator, and the $\mathrm{A} 5 / 1$ generator.

4.2.1 Self-Shrinking Generator

The self-shrinking generator was proposed by Meier and Staffelbach (1994) and consists of only one LFSR and no memory. Every two clock cycles of the LFSR, the generator produces a keystream bit according to the function

$$
\text { shrink: } \begin{aligned}
\{0,1\}^{2} & \rightarrow\{0,1, \epsilon\} \\
(a, b) & \mapsto \begin{cases}b & \text { if } a=1 \\
\epsilon & \text { otherwise }\end{cases}
\end{aligned}
$$

where ϵ denotes the empty word. For an internal bitstream $w=\left(w_{0}, \ldots, w_{2 m-1}\right)$, the self-shrinking generator produces the keystream $z=\left(z_{0}, \ldots, z_{m-1}\right)$ according to

```
shrinkstream : \(\{0,1\}^{2 m} \rightarrow\{0,1, \epsilon\}^{m}\)
\(\left(w_{0}, \ldots, w_{2 m-1}\right) \mapsto\left(\operatorname{shrink}\left(w_{0}, w_{1}\right), \ldots, \operatorname{shrink}\left(w_{2 m-2}, w_{2 m-1}\right)\right)\),
```

i.e., $z_{t}=\operatorname{shrink}\left(w_{2 t}, w_{2 t+1}\right)$ for $t \in\{0, \ldots, m-1\}$.

The designers proposed a short-keystream attack requiring about $2^{0.75 n}$ operations, which was improved to $2^{0.694 n}$ by Zenner et al. (2001). The currently best short-kevstream attack is a guess-and-determine attack due to Hell and Johansson (2006) requiring around $2^{0.65 n}$ operations and an amount of memory that is polynomial in n. The BDD-Attack on the self-shrinking generator, which we will describe in Section 5.5.1, needs roughly as many operations, but exponentially more memory.

The long-keystream attack by Mihaljevid (1996) needs at least $2^{0.3 n}$ keystream bits in order to compute the initial state in less than $2^{0.6563 n}$ polynomial-time operations. Its asymptotic runtime was improved by Hell and Johansson (2006), Zhang and Feng (2006) for the case that up to $2^{0.5 n}$ keystream bits are available, while even an improved tradeoff is possible if the weight of the LFSR feedback polynomial is at most 5 (Debraize and Goubin, 2008).

4.2.2 $\quad E_{0}$ Generator

The Bluetooth stream cipher has key length 128 bits and IV-length 128 bits. It consists of a kev/IV setup procedure and the kevstream generator E_{0} (The Bluetooth SIG, 2001).
E_{0} is a regularly clocked $(k, l)=(4,4)$ combiner. It consists of four LFSRs R^{0}, \ldots, R^{3} of lenghts $\left(n_{0}, \ldots, n_{3}\right)=(25,31,33,39)$ and a four-bit memory unit. We denote by $x_{t}=\left(x_{t}^{0}, \ldots, x_{t}^{3}\right) \in\{0,1\}^{4}$ the bits read from the LFSRs and by $q_{t}=\left(q_{t}^{0}, \ldots, q_{t}^{3}\right) \in\{0,1\}^{4}$ the memory state at time t.

The keystream function $g:\{0,1\}^{4} \times\{0,1\}^{4} \rightarrow\{0,1\}$ is defined as

$$
g\left(x_{t}, q_{t}\right):=\bigoplus_{i=0}^{3} x_{t}^{i} \bigoplus_{i=0}^{3} c^{i} q_{t}^{i},
$$

where $\left(c^{3}, \ldots, c^{0}\right)=(0,1,0,0)$.

The memory update function $\delta:\{0,1\}^{4} \times\{0,1\}^{4} \rightarrow\{0,1\}^{4}$ is given by

$$
\delta\left(x_{t}, q_{t}\right):=\left(q_{t+1}^{3}, q_{t+1}^{2}, q_{t+1}^{1}, q_{t+1}^{0}\right)
$$

where

$$
\begin{aligned}
\left(q_{t+1}^{1}, q_{t+1}^{0}\right) & :=\left(q_{t}^{3}, q_{t}^{2}\right) \\
\left(q_{t+1}^{3}, q_{t+1}^{2}\right) & :=s_{t} \oplus T_{1}\left(q_{t}^{3}, q_{t}^{2}\right) \oplus T_{2}\left(q_{t}^{1}, q_{t}^{0}\right) \\
s_{t} & :=\left\lfloor\frac{x_{t}^{3}+x_{t}^{2}+x_{t}^{1}+x_{t}^{0}+2 \cdot q_{t}^{3}+q_{t}^{2}}{2}\right\rfloor \in\{0,1\}^{2} \\
T_{1}\left(q_{t}^{3}, q_{t}^{2}\right) & :=\left(q_{t}^{3}, q_{t}^{2}\right) \\
T_{2}\left(q_{t}^{3}, q_{t}^{2}\right) & :=\left(q_{t}^{2}, q_{t}^{3} \oplus q_{t}^{2}\right) .
\end{aligned}
$$

Figure 4.4 illustrates the design of E_{0}.

Figure 4.4: The E_{0} keystream generator

Note that we may write s_{t} as

$$
\begin{equation*}
s_{t}=\left\lfloor\frac{s_{t}^{\prime}+2 \cdot q_{t}^{3}+q_{t}^{2}}{2}\right\rfloor \text { with } s_{t}^{\prime}:=\sum_{i=0}^{3} x_{t}^{i} . \tag{4.1}
\end{equation*}
$$

Hence, the memory update function depends only on the sum s_{t}^{\prime}. Similarly, the keystream function g depends only on the value $\bigoplus_{i=0}^{3} x_{t}^{i}=s_{t}^{\prime} \bmod 2$, which implies

$$
\begin{equation*}
g\left(x_{t}, q_{t}\right)=\left(s_{t}^{\prime} \bmod 2\right) \oplus \bigoplus_{i=0}^{3} c^{i} q_{t}^{i} \tag{4.2}
\end{equation*}
$$

Since the Bluetooth technology so far is most often applied in wireless voice transmission and data exchange between personal information managers and other mobile devices, confidentiality of the communication is one of the most important security requirements.

Consequently, the security of the Bluetooth encryption has been analyzed in several papers (Armknecht and Krause, 2003, Courtois, 2003, Ekdahl, 2003, Fluhrer and Lucks. 2001. Golić et al.. 2002. Hermelin and Nvberg. 1999. Jakobsson and Wetzel, 2001, Krause, 2002, Lu and Vaudenay, 2005, 2004, Saarinen, 2000). Armknecht et al. (2004) showed that an efficient attack on E_{0} implies an efficient attack on the whole cipher. Therefore, improving the security of E_{0} is a natural demand.

The best currently known long-keystream attacks against E_{0} are algebraic attacks (Armknecht and Krause, 2003) and correlation attacks (Lu and Vaudenay, 2004, Lu et al., 2005). However, all these attacks need a large amount of keystream (2^{28} to 2^{39} in the case of correlation attacks), and even in terms of time and memory requirements, the attack by Lu et al. (2005) is the only feasible one among them.

We note that, when applied to the Bluetooth setting, the correlation attacks by Lu and Vaudenay (2004), Lu et al. (2005) depend on the linearity of the key-schedule and other specific properties of the Bluetooth encryption system.

4.2.3 A5/1 Generator

The A5/1 keystream generator is used in the GSM standard for mobile telephones. The initialization procedure transforms a 64 -bit secret key and a 22 -bit public frame number into the 64 -bit initial state of the generator. According to Briceno et al. (1999), who obtained the A5/1 design by reverse engineering, the generator consists of 3 LFSRs R^{0}, R^{1}, R^{2} of lengths n_{0}, n_{1}, n_{2}, respectively, and a clock control ensuring that the keybits do not linearly depend on the initial states of the LFSRs. For each $r \in\{0,1,2\}$, a register cell $q_{N^{r}}, N^{r} \in\left\{\left\lceil\frac{n_{r}}{2}\right\rceil-1,\left\lceil\frac{n_{r}}{2}\right\rceil\right\}$, is selected in LFSR R^{r} as input for the clock control. The GSM standard uses the parameters $\left(n_{0}, n_{1}, n_{2}\right)=$ $(19,22,23)$ and $\left(N^{0}, N^{1}, N^{2}\right)=(11,12,13)$.

Let v_{i} and v_{i}^{\prime} denote the bits at the control and at the output positions in register R^{i} for $i \in\{0,1,2\}$. In each master clock of the generator, the keystream bit $z_{i}=f\left(v_{0}^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}\right):=v_{0}^{\prime} \oplus v_{1}^{\prime} \oplus v_{2}^{\prime}$ is produced, and register R^{i} is clocked if and only if $v_{i}=\operatorname{maj}_{3}\left(v_{0}, v_{1}, v_{2}\right)$, where

$$
\begin{aligned}
\operatorname{maj}_{3}:\{0,1\}^{3} & \rightarrow\{0,1\} \\
(a, b, c) & \mapsto \begin{cases}1 & \text { if } a+b+c \geq 2 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The A5/1 construction is illustrated in Fig. 4.5.
The first short-keystream attack on A5/1 was given by Golió (1997) and needs 2^{42} polynomial time operations. Afterwards, several long-keystream attacks on A5/1 were proposed. Biryukov et al. (2000) present an attack that breaks A5/1 from 2^{15} known keystream bits within minutes after a preprocessing step of 2^{48} operations. Ekdahl and Johansson (2001), Maximov et al. (2005) exploit the linearity of the initialization procedure and manage to break the cipher within minutes, requiring only a few seconds of conversation and little computational resources. A recent effort by a research group around Nohl and Krißler (2010) has received much attention for implementing a distributed, timememory tradeoff-based brute-force attack that produced a 2 -terabyte rainbow

Figure 4.5: The A5/1 keystream generator
table for $\mathrm{A} 5 / 1$, such that the session key of any conversation can be easily derived. A5/1 is supposed to be replaced bv $\mathrm{A} 5 / 3$. but onlv recentlv. Dunkelman et al. (2010) have published a practical attack on its underlying block cipher.

4.2.4 TRIVIUM

Trivium (de Cannière and Preneel, 2005) is a regularly clocked combination generator that consists of three interconnected NFSRs R^{0}, R^{1}, R^{2} of lenghts $93,84,111$, respectively. The 288 -bit initial state of the generator is derived from an 80 -bit key and an 80 -bit IV by 1152 initialization rounds. The keystream function computes a keystream bit z_{t} by linearly combining six bits taken from the registers, with each NFSR contributing two bits.

More precisely, from an initial state $\left(s_{1}, \ldots, s_{288}\right)$ the algorithm produces keystream bits z_{t} as follows.

```
for \(t=0\) to \(N-1\) do
    \(t_{1} \leftarrow s_{1} \oplus s_{28}\)
    \(t_{2} \leftarrow s_{94} \oplus s_{109}\)
    \(t_{3} \leftarrow s_{178} \oplus s_{223}\)
    \(z_{t} \leftarrow t_{1} \oplus t_{2} \oplus t_{3}\)
    \(u_{1} \leftarrow t_{1} \oplus s_{2} s_{3} \oplus s_{100}\)
    \(u_{2} \leftarrow t_{2} \oplus s_{95} s_{96} \oplus s_{202}\)
    \(u_{3} \leftarrow t_{3} \oplus s_{179} s_{180} \oplus s_{25}\)
    \(\left(s_{1}, \ldots, s_{93}\right) \leftarrow\left(s_{2}, \ldots, s_{93}, u_{3}\right)\)
    \(\left(s_{94}, \ldots, s_{177}\right) \leftarrow\left(s_{95}, \ldots, s_{177}, u_{1}\right)\)
    \(\left(s_{178}, \ldots, s_{288}\right) \leftarrow\left(s_{179}, \ldots, s_{288}, u_{2}\right)\)
end for
```

Due to its simplicity, especially its low non-linearity, Trivium has received much cryptanalytic attention (see, e.g., Aumasson et al. (2009), Eibach (2008), eSTREAM Discussion Forum (2005), Maximov and Biryukov (2007)). While the best key recovery attack, which is due to Dinur and Shamin (2009), is able to tackle 767 out of 1152 initialization rounds with 2^{45} to 2^{36} operations, the full cipher still remains unbroken.

4.2.5 Grain-128

The regularly clocked combination generator Grain-128 (Hell et al., 2005) supports keys of size 128 bits and IVs of size 96 bits. The design is based on two interconnected FSRs, an LFSR R^{0} and an NFSR R^{1}, both of lenghts 128 bits, and a non-linear keystream function. We denote the content of the LFSR by $\left(s_{t}, s_{t+1}, \ldots, s_{t+127}\right)$ and the content of the NFSR by $\left(b_{t}, b_{t+1}, \ldots, b_{t+127}\right)$.

In each clock cycle, the registers are updated according to

$$
\begin{aligned}
s_{t+128} & =s_{t} \oplus s_{t+7} \oplus s_{t+38} \oplus s_{t+70} \oplus s_{t+81} \oplus s_{t+96} \\
b_{t+128} & =s_{t} \oplus b_{t} \oplus b_{t+26} \oplus b_{t+56} \oplus b_{t+91} \oplus b_{t+96} \oplus b_{t+3} b_{t+67} \oplus b_{t+11} b_{t+13} \\
& \oplus b_{t+17} b_{t+18} \oplus b_{t+27} b_{t+59} \oplus b_{t+40} b_{t+48} \oplus b_{t+61} b_{t+65} \oplus b_{t+68} b_{t+84},
\end{aligned}
$$

and a keystream bit z_{t} is derived as

$$
\begin{aligned}
z_{t} & =\left(\bigoplus_{j \in A} b_{t+j}\right) \oplus b_{t+12} s_{t+8} \oplus s_{t+13} s_{t+20} \oplus b_{t+95} s_{t+42} \\
& \oplus s_{t+60} s_{t+79} \oplus b_{t+12} b_{t+95} s_{t+95}
\end{aligned}
$$

with $A=\{2,15,36,45,64,73,89\}$.
Besides a generic time-memory-data-tradeoff attack Biryukov and Shamir, 2000) that recovers the key with time and keystream around 2^{128}, the relatedkey chosen-IV attack due to Lee et al. (2008) is able to recover the key with $2^{26.59}$ chosen IVs, $2^{31.39}$ keystream bits and 2^{27} operations.

4.2.6 Filtered FCSRs

In order for the initial state not to be recoverable from a number of observed keystream bits by solving a system of linear equations, we have to demand that keystream generators contain nonlinear operations to a certain extent. Since all LFSR-operations are linear by definition, nonlinearity must be introduced into an LFSR-based combination or filter generator by a carefully chosen keystream function C.

FCSRs, on the other hand, have a nonlinear update function, which suggests choosing a simple XOR operation (which is \mathbb{F}_{2}-linear) as keystream function. This has been done in the case of the F-FCSR stream cipher family.

The F-FCSR Stream Cipher Family

F-FCSR-H is an FCSR-based filter generator that consists of a single Galois FCSR of length $n=160$ with carry cells present at $l=82$ positions. The connection integer is chosen as

$$
q=-1993524591318275015328041611344215036460140087963
$$

which implies

$$
d=\left(\frac{1-q}{2}\right)=(\text { ae985dff } 26619 \mathrm{fc} 58623 \mathrm{dc} 8 \mathrm{a} \text { af46d590 3dd4254e })_{16}
$$

At each clock, the generator uses the static filter $d=F$ to extract a pseudorandom byte. The filter splits into 8 subfilters (subfilter j is obtained by selecting the bit j in each byte of F)

$$
\begin{aligned}
& F_{0}=(00110111010010101010)_{2}, F_{4}=(01110010001000111100)_{2} \\
& F_{1}=(10011010110111000001)_{2}, F_{5}=(10011100010010001010)_{2} \\
& F_{2}=(10111011101011101111)_{2}, F_{6}=(00110101001001100101)_{2} \\
& F_{3}=(11110010001110001001)_{2}, F_{7}=(11010011101110110100)_{2} .
\end{aligned}
$$

The bit b_{i} (with $0 \leq i \leq 7$) of each extracted byte is expressed by

$$
b_{i}=\bigoplus_{j=0}^{19} f_{i}^{(j)} x_{8 j+i} \quad \text { where } F_{i}=\sum_{j=0}^{19} f_{i}^{(j)} 2^{j}
$$

and where the x_{k} are the bits contained in the main register.
The cipher is initialized with an 80 -bit key K and an IV of length $0 \leq v \leq 80$ according to Algorithm 1. After the setup phase, the output stream is produced by Algorithm 2 .

```
Algorithm 1 F-FCSR-H-KeyIVSetup( \(K\), IV)
    \(x:=K+2^{80} \cdot \mathrm{IV}=\left(0^{80-v}| | \mathrm{IV}| | K\right)\)
    \(a:=0=\left(0^{82}\right)\)
    for \(i=0\) to 19 do
        Clock the FCSR automaton
        Extract a pseudorandom byte \(S_{i}\) using the filter \(F\)
    end for
    \(x:=\sum_{i=0}^{19} S_{i} \cdot 8^{i}=\left(S_{15}\|\ldots\| S_{0}\right)\)
    Clock the FCSR automaton 162 times (discard output in this step)
```

```
Algorithm 2 F-FCSR-H-KeystreamGeneration
    while true do
        Clock the FCSR
        Extract a pseudorandom byte \(S\) using the filter \(F\)
        Output the value \(S\) as keystream byte
    end while
```

F-FCSR-16 works analogously to F-FCSR-H, only with larger parameters. It consists of a Galois FCSR of length $n=256$ with carry cells present at $l=130$ positions. The connection integer is chosen as

$$
\begin{aligned}
q= & (1839714408456194711298691618093441316582 \\
& 98317655923135753017128462155618715019)_{10},
\end{aligned}
$$

which implies

$$
\begin{aligned}
d=\left(\frac{1-q}{2}\right)= & (\text { cb5e129f ad4f7e66 780caa2e c8c9cedb } \\
& 2102 \mathrm{f} 996 \text { baf08f39 efb55a6e 390002c6 })_{16} .
\end{aligned}
$$

To extract two pseudorandom bytes, the static filter $F=d$ is used. The filter F is split into 16 subfilters (subfilter j is obtained by selecting the bit j in each 16 -bit word of F)

$$
\begin{aligned}
& F_{0}=(0110001100011000)_{2}, F_{8}=(1010000011011010)_{2} \\
& F_{1}=(1111010111000101)_{2}, F_{9}=(1101010100111101)_{2} \\
& F_{2}=(1111110001001101)_{2}, F_{10}=(0011000100011000)_{2} \\
& F_{3}=(1110111100010100)_{2}, F_{11}=(1011111101111110)_{2} \\
& F_{4}=(1100000101111000)_{2}, F_{12}=(0101100001100110)_{2} \\
& F_{5}=(0001010000111100)_{2}, F_{13}=(0011110011101010)_{2} \\
& F_{6}=(1011001100100101)_{2}, F_{14}=(1001101101001100)_{2} \\
& F_{7}=(0100001101101001)_{2}, F_{15}=(1010011101111000)_{2}
\end{aligned}
$$

The bit b_{i} (with $0 \leq i \leq 15$) of each extracted word is expressed by

$$
b_{i}=\bigoplus_{j=0}^{15} f_{i}^{(j)} x_{16 j+i} \quad \text { where } F_{i}=\sum_{j=0}^{15} f_{i}^{(j)} 2^{j}
$$

and where the x_{k} are the bits contained in the main register.
The cipher is initialized with a 128-bit key K and an IV of length $0 \leq v \leq 128$ according to Algorithm 3. After the setup phase, the output stream is produced by Algorithm 4 .

```
Algorithm 3 F-FCSR-16-KeyIVSetup( \(K\), IV)
    \(x:=K+2^{128} \cdot \mathrm{IV}=\left(0^{128-v}| | \mathrm{IV}| | K\right)\)
    \(a:=0=\left(0^{130}\right)\)
    for \(i=0\) to 15 do
        Clock the FCSR automaton
        Extract a pseudorandom word \(S_{i}\) using the filter \(F\).
    end for
    \(x:=\sum_{i=0}^{15} S_{i} \cdot 2^{16 i}=\left(S_{15}\|\ldots\| S_{0}\right)\)
    \(a:=0=\left(0^{130}\right)\)
    Clock the FCSR automaton 258 times (discard output in this step)
```

```
Algorithm 4 F-FCSR-16-KeystreamGeneration
    while true do
        Clock the FCSR
        \(S=x \wedge F\)
        Split \(S\) into 16 words of length 16 bits each, such that \(S=\sum_{i=0}^{15} S_{i} 2^{16 i}\)
        Output the value \(\bigoplus_{i=0}^{15} S_{i}\) as keystream word
    end while
```


Security Considerations

Using FCSRs as building blocks for stream ciphers had initially been suggested by Klapper and Goresky (1997, 1994). A few years later Arnault and Berger
(2005a) revisited the idea by proposing and analyzing a generic filter generator based on a Galois FCSR and the XOR operation as keystream function. Several concrete instantiations of this idea were proposed (Arnault and Berger, 2005 b) and improved in the light of cryptanalysis results (Jaulmes and Muller, 2006, 2005), before the the two ciphers F-FCSR-H and F-FCSR-16 in the form described above were specified by Arnault et al. (2006).

In the absence of any apparent weaknesses in these versions, the ECRYPT stream cipher project eStream suggested F-FCSR-H and F-FCSR-16 for practical applications (Babbage et al., 2008).

Various analyses suggest that the produced keystream has good pseudorandomness properties (Arnault and Berger, 2005a, Arnault et al., 2008). The filter function computes the binary XOR of its inputs, and its initialization procedure ensures that the initial state of the generator is periodic. Hence, by Proposition 3.38, the keystream generation procedure is equivalent to taking the bitwise XOR-sum of different parts of the same l-sequence, while the starting position is given by the initial state and the distances between the parts are constant. This design was motivated by the conjecture that linear and 2-adic operations are unrelated and that the correlation between two distant parts of the same l-sequence is low (Arnault and Berger, 2005a). Our explicit computation of the distances for F-FCSR-H based on Proposition 3.38 shows that the parts of the sequence are indeed almost evenly distributed over the period (see Fischer et al. (2008), Appendix A).

However, while Arnault et al. (2008) had shown that the cells of the carry and the main register will not be zero for several consecutive clock cycles. Hell and Johansson (2008, 2009) observed that the sequence of main register states $\left(x_{t}\right)_{t \geq 0}$ that are passed during the operation of the cipher are likely to contain sufficiently long runs of the form $(0, \ldots, 0,1,0)$, which turns the state update function into a linear function and allows for setting up a system of linear equations in order to recover the register state. With a few optimizations. Hell and Johansson show how to recover the state of the register in F-FCSR-H from around $2^{23.7}$ bytes of keystream in 10 seconds on average with standard PC hardware. The same idea yields efficient attacks on F-FCSR-16 and X-FCSR (Stankovski et al., 2009), a software-oriented stream cipher based on FCSRs (Arnault et al., 2007). Hence, it turns out that the update function of FCSRs does not introduce as much nonlinearity as originally expected. In the light of these attacks, F-FCSR-H and F-FCSR-16 were removed from the eStream list of recommended ciphers.

Finally, we want to note that replacing the Galois FCSR in an F-FCSR-Hlike construction by a Fibonacci FCSR while keeping the XOR filter function yields an insecure keystream generator. This can be seen as follows.

Consider the F-FCSR-H parameters, i.e., $n=160, l=82$ and with $k=8$ linear filters, but applied to a Fibonacci FCSR. Initially, there are 160 binary variables (ignoring the memory), and each updated bit is represented by a new variable (ignoring the details of the construction and assuming independence). Each iteration gives another 8 linear equations in these (initial and newly introduced) state variables. The main register can be recovered by solving the system of linear equations if the number of equations is at least as large as the number of variables. This requires r iterations, where $8 r \geq 160+r$. Consequently, $r=23$ iterations are sufficient, or 184 bits of keystream. Gaussian elimination of this system requires a computational effort of about 184^{3}, which is about 2^{23}.

After recovering the main register, one can recover the contents of the memory cells. If the FCSR is in a periodic state (which can be expected already after the initialization phase), then the effective size of the memory reduces to 7 bits. Consequently, the memory can be guessed or recovered by FCSR-synthesis, and the whole state can be recovered in about 2^{30} steps and with less than 200 bits of keystream. A similar attack is possible for any other construction of this type with $k>1$.

4.3 Abstraction: Internal Bitstream Generators

The keystream generators that we analyze in this thesis are FSR-based in the sense that their internal state is distributed over a small number of feedback shift registers R^{0}, \ldots, R^{k-1} that provide input for the keystream function C.

For our subsequent analysis, it is convenient to think of these FSRs as a single entity, the internal bitstream generator, that produces an internal bitstream $\left(w_{t}\right)_{t \geq 0}$ defined by

$$
w_{t}:=w_{s(t)}^{r(t)} \text { with } r(t)=t \bmod k \text { and } s(t)=s \operatorname{div} k
$$

i.e., the t-th internal bit corresponds to the $s(t)$-th bit in the bitstream produced by $R^{r(t)}$ (see Fig. 4.6). Again, the internal bitstream (and hence the

Figure 4.6: Derivation of the keystream from the internal bitstream
output of the keystream generator) are entirely determined by the generator's starting state $\omega(0)$, and the first m bits can be computed as $\left(w_{0}, \ldots, w_{m-1}\right)=$ $H_{\leq m}(\omega(0))$, where

$$
H_{\leq m}:\{0,1\}^{n} \rightarrow\{0,1\}^{m}
$$

Definition 4.1. We call an integer i an initial position in w, if w_{i} corresponds to a bit from the initial state of some FSR, and a combined position otherwise. Correspondingly, we denote by $\operatorname{IP}(i)$ the set of initial positions and by $\mathrm{CP}(i)$ the set of combined positions in $\{0, \ldots, i-1\}$. We let $\operatorname{IB}(w)$ denote the bits at the initial positions in $w, n_{\min }$ the maximum i for which all $i^{\prime} \leq i$ are initial positions, and $n_{\max }$ the minimum i for which all $i^{\prime}>i$ are combined positions.

In an FSR-based bitstream generator, the FSRs may be interconnected in the sense that the update function F^{i} of R^{i} may also depend on the current content of the other registers such that $F^{i}:\{0,1\}^{n_{i}} \rightarrow\{0,1\}, n_{i} \leq n$, for all $i \in\{0, \ldots, k-1\}$.

The keystream function $C:\{0,1\}^{n} \rightarrow\{0,1\}^{*}$, which derives keystream bits from the current state, usually depends on one or more state bits from each FSR. For $|w|=m$ we denote the keystream prefix that is produced from w by $C_{m}(w)$, where $C_{m}:\{0,1\}^{m} \rightarrow\{0,1\}^{*}$.

Generally, we call a keystream generator regularly clocked, if for all $j \in$ $\{0, \ldots, k-1\}$, the register R^{j} is clocked equally often in each clocking of the whole generator. This definition translates into our notion of FSR-based internal bitstream generators as follows.

Definition 4.2. Let $D(w, t):=\left\{w_{i} \mid z_{t}\right.$ depends on $\left.w_{i}\right\}$. We call an FSR-based keystream generator regularly clocked if $\left|D(w, t) \backslash D\left(w, t^{\prime}\right)\right|$ is constant for all internal bitstreams w and all $0 \leq t^{\prime}<t$.

Note that this definition corresponds to the notion of an oblivious keystream generator that was established by Krause (2007).

Two important parameters of FSR-based keystream generators are the bestcase compression ratio and the information rate, which we define as follows.

Definition 4.3. If γm is the maximum number of keybits that the generator produces from internal bitstreams of length m, we call $\gamma \in(0,1]$ the best-case compression ratio of the generator. Moreover, for a randomly chosen and uniformly distributed internal bitstream $W^{(m)} \in\{0,1\}^{m}$ and a random keystream Z, we define as information rate α the average information that Z reveals about $W^{(m)}$, i.e., $\alpha:=\frac{1}{m} I\left(W^{(m)}, Z\right) \in(0,1] \cdot 1$

For a randomly chosen and uniformly distributed internal bitstream $w \in$ $\{0,1\}^{m}$, the probability of the keybits' $C_{m}(w)$ being a prefix of a given keystream $z \in\{0,1\}^{*}$ can be expressed as

$$
\begin{align*}
& \operatorname{Pr}_{w \in\{0,1\}^{m}}\left[C_{m}(w) \text { is prefix of } z\right]= \\
& \sum_{i=0}^{\lceil\gamma m\rceil} \operatorname{Pr}_{w \in\{0,1\}^{m}}\left[\left|C_{m}(w)\right|=i\right] \cdot \operatorname{Pr}_{\substack{w \in\{0,1\}^{m} \\
|C m(w)|=i}}\left[C_{m}(w)=\left(z_{0}, \ldots, z_{i-1}\right)\right] . \tag{4.3}
\end{align*}
$$

Concerning this probability, we make the following assumption.
Assumption 4.4 (Independence Assumption). For all $m \geq 1$, a randomly chosen, uniformly distributed internal bitstream $w \in\{0,1\}^{m}$, and all keystreams $z \in\{0,1\}^{*}$, we have $\operatorname{Pr}_{w}\left[C_{m}(w)\right.$ is prefix of $\left.z\right]=p_{C}(m)$, i.e., the probability of $C_{m}(w)$ being a prefix of z is independent of z.

As shown by Krause (2002), the computation of α can be simplified as follows if the generator fulfills the Independence Assumption.

Lemma 4.5. If a keystream generator satisfies the Independence Assumption, we have $\alpha=-\frac{1}{m} \log _{2}\left(p_{C}(m)\right)$.

[^0]Proof. The definitions of information and entropy imply
$\alpha=\frac{1}{m} I\left(W^{(m)}, Z\right)=\frac{1}{m}\left(H\left(W^{(m)}\right)-H\left(W^{(m)} \mid Z\right)\right)=\frac{1}{m}\left(m-H\left(W^{(m)} \mid Z\right)\right)$
and

$$
H\left(W^{(m)} \mid Z\right)=
$$

$\sum_{z \in\{0,1\}^{*}} \operatorname{Pr}[Z=z]\left(-\sum_{w \in\{0,1\}^{m}} \operatorname{Pr}\left[W^{(m)}=w \mid Z=z\right] \cdot \log _{2} \operatorname{Pr}\left[W^{(m)}=w \mid Z=z\right]\right)$.
Under the Independence Assumption (Assumption 4.4), all $w \in\{0,1\}^{m}$ and $z \in\{0,1\}^{*}$ satisfy

$$
\operatorname{Pr}\left[W^{(m)}=w \mid Z=z\right]=\left\{\begin{array}{cl}
\frac{1}{p_{C}(m) \cdot 2^{m}} & \text { if } C(w) \text { is prefix of } z \\
0 & \text { otherwise }
\end{array}\right.
$$

With $\tilde{W}:=\left\{w \in\{0,1\}^{m} \mid C_{m}(w)\right.$ is prefix of $\left.z\right\}$, we obatin

$$
\begin{aligned}
H\left(W^{(m)} \mid Z\right) & =\sum_{z \in\{0,1\}^{*}} \operatorname{Pr}[Z=z] \underbrace{\left(-\sum_{w \in \tilde{W}}\left(p_{C}(m) 2^{m}\right)^{-1} \cdot \log _{2}\left(\left(p_{C}(m) 2^{m}\right)^{-1}\right)\right)}_{\log _{2}\left(p_{C}(m) 2^{m}\right)} \\
& =\log _{2}\left(p_{C}(m) 2^{m}\right),
\end{aligned}
$$

and finally

$$
\alpha=-\frac{1}{m}\left(m-\log _{2}\left(p_{C}(m) 2^{m}\right)\right)=\frac{1}{m}\left(m-\log _{2} p_{C}(m)-m\right)=-\frac{1}{m} \log _{2} p_{C}(m)
$$

Corollary 4.6. The information rate α of a regularly clocked FSR-based keystream generator fulfilling the Independence Assumption is given by $\alpha=\frac{\beta(m)}{m}$.

Proof. The Independence Assumption and Definition 4.2 imply that the $2^{\beta(m)}$ possible keystream blocks of length $\beta(m)$ that can be produced from the m bit internal bitstream all have probability $p_{C}(m)$. Hence $p_{C}(m)=2^{-\beta(m)}$ and therefore $\alpha=-\frac{1}{m} \log _{2}\left(2^{-\beta(m)}\right)=\frac{\beta(m)}{m}$.

Observation 4.7. For a regularly clocked FSR-based keystream generator with k FSRs that uses exactly one bit from each register for computing a keystream bit z_{t}, we have $\alpha=\frac{1}{k}$.

Finally, we assume the internal bitstream to behave pseudorandomly, which we formalize as follows.

Assumption 4.8 (Pseudorandomness Assumption). For $m \leq\left\lceil\alpha^{-1} n\right\rceil$, let w and $\omega(0)$ denote randomly chosen, uniformly distributed elements of $\{0,1\}^{m}$ and $\{0,1\}^{|\operatorname{IP}(m)|}$, respectively. Then, all keystreams z satisfy $\operatorname{Pr}_{w}\left[C_{m}(w)\right.$ is prefix of $\left.z\right] \approx \operatorname{Pr}_{\omega(0)}\left[C_{m}\left(H_{\leq m}(\omega(0))\right)\right.$ is prefix of $\left.z\right]$.

We expect the Pseudorandomness Assumption to hold since a significant violation would imply the vulnerability of the generator to a correlation attack.

Chapter 5

The BDD-Attack

5.1 Introduction and Overview

Krause (2002, 2007) proposed a Binary Decision Diagram (BDD) attack on LFSR-based combination generators. The BDD-attack is a generic attack in the sense that it does not depend on specific design properties of the respective cipher. It only relies on the assumptions that the generator's internal bitstream behaves pseudorandomly and that the test whether a given internal bitstream w produces a sample keystream can be represented in a Free Binary Decision Diagram (FBDD) of size polynomial in the length of w.

The attack reconstructs the secret initial state from the shortest informa-tion-theoretically possible prefix of the keystream (usually a small multiple of the state size), whereas other generic attack techniques in many cases require amounts of known keystream that are unlikely to be available in practice. Particularly in the case of E_{0} and $\mathrm{A} 5 / 1$, the first keystream frame already suffices to obtain all the information that is needed to compute the initial state.

As an extension of the original attack by Krause (2002), we show that the BDD-based approach remains applicable in the presence of (possibly interdependent) NFSRs and FCSRs combined with arbitrary keystream functions, as long as not too many new internal bits are produced in each clock cycle of the cipher. Consequently, we apply the attack to the NFSR-based proposals TriviUm, Grain, and the F-FCSR family, which were described in Section 4.2. In order to avoid redundancies, we directly outline this more general technique and treat the original attack by Krause as a special case.

One drawback of the BDD-attack is its high memory consumption. We approach this problem by presenting various efficiently parallelizable divide-and-conquer strategies (DCS) for E_{0} and $\mathrm{A} 5 / 1$ that substantially reduce the memory requirements and allow us to tackle much larger key lengths with fixed computational resources. In the case of E_{0}, our DCS lowers the attack's memory requirements by a factor of 2^{25} and additionally yields a slight improvement of the theoretical runtime.

Finally, we present comprehensive experimental results for the BDD-attack on reduced versions of the $E_{0}, \mathrm{~A} 5 / 1$ and the self-shrinking generator, which show that the attack performance in practice does not seem to substantially deviate from the theoretical figures.

5.2 Representing Boolean Functions with Binary Decision Diagrams

Boolean functions can be represented in many ways, e.g., in truth tables or symbolically as a formula in algebraic normal form (ANF). For our attack, yet another representation will turn out to be particularly useful, namely the graphbased representation in a Binary Decision Diagram (BDD).

BDDs and their variants have received much attention since the publication of the fundamental paper by Bryant (1986). We briefly review the definition of BDDs and their most important algorithmic properties and kindly refer the reader to Wegener (2000) for a more comprehensive overview.

Definition 5.1. A Binary Decision Diagram ($B D D$) G over a set of variables $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ is a directed, acyclic graph $G=(V, E)$ with $E \subseteq$ $V \times V \times\{0,1\}$. Each inner node v has exactly two outgoing edges, a 0-edge $\left(v, v_{0}, 0\right)$ and a 1-edge ($v, v_{1}, 1$) leading to the 0 -successor v_{0} and the 1 -successor v_{1}, respectively. G contains exactly two nodes with outdegree 0 , the sinks s_{0} and s_{1}. Each inner node v is assigned a label v.label $\in x_{n}$, whereas the two sinks are labeled $s_{0} . l a b e l=0$ and $s_{1} . l a b e l=1$. There is exacly one node with indegree 0 , the root of G. We define the size of G (denoted by $|G|$) to be the number of nodes it contains, i.e., $|G|:=|V|$. Each node $v \in V$ represents a Boolean Function $f_{v} \in B_{n}=\left\{f \mid f:\{0,1\}^{n} \rightarrow\{0,1\}\right\}$ in the following manner. For an input $a=\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n}$, the computation of $f_{v}(a)$ starts in v. In a node with label x_{i}, the outgoing edge with label a_{i} is chosen, until one of the sinks is reached. The value $f_{v}(a)$ is then given by the label of this sink.

Definition 5.2. For a $B D D G$ over x_{n}, let $G^{-1}(1) \subseteq\{0,1\}^{n}$ denote the set of inputs accepted by G, i.e., all inputs $a \in\{0,1\}^{n}$ such that $f_{\text {root }}(a)=1$.

Note that we may delete all $v \in V$ in G that are not reachable from the root without changing the function $f_{\text {root }}$ that G computes.

We can straightforwardly use BDDs as a data structure for subsets of $\{0,1\}^{n}$. In order to represent $S \subseteq\{0,1\}^{n}$, we construct a BDD G_{S} that computes the characteristic function f_{S} of S given by $f_{S}(x)=1$ if $x \in S$ and $f_{S}(x)=0$ otherwise. Hence, G_{S} will accept exactly the elements of S. Moreover, we can compute a BDD representing the intersection $S \cap T$ of two sets S and T from their BDD-representations G_{S} and G_{T} by an AND-synthesis of G_{S} and G_{T}.

Remark 5.3. Since general BDDs have many degrees of freedom for representing a particular Boolean function, many important operations and especially those that are needed in our context are NP-hard (cf. Wegener (200d) for details).

We therefore concentrate on the more restricted models of Free Binary Decision Diagrams (FBDDs) and Ordered Binary Decision Diagrams (OBDDs).

5.2.1 Free Binary Decision Diagrams (FBDDs)

Definition 5.4. An oracle graph $G^{0}=(V, E)$ over a set of variables $X_{n}=$ $\left\{x_{1}, \ldots, x_{n}\right\}$ is a modified BDD that contains only one sink s,labeled $*$, and for all $x_{i} \in X_{n}$ and all paths P from the root in G to the sink, there exists at most one node in P that is labeled x_{i}.

Definition 5.5. A Free Binary Decision Diagram G with respect to an oracle graph G^{0} (abbreviated by $G^{0}-F B D D$) over a set of variables $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ is a $B D D$ in which all inputs $a \in\{0,1\}^{n}$ satisfy the following condition. Let the list $G^{0}(a)$ contain the variables from X_{n} in the order in which they occur on the path defined by a in G^{0}. Similarly, let the list $G(a)$ contain the variables from X_{n} in the order in which the components of a are read in G. If x_{i} and x_{j} are both contained in $G(a)$, then they occur in $G(a)$ in the same order as in $G^{0}(a)$.

We call a $B D D G$ an $F B D D$, if there exists an oracle graph G^{0} such that G is a $G^{0}-F B D D$.

Figure 5.1 shows examples for an oracle graph G^{0} and a G^{0}-FBDD.
The definition of FBDDs implies their important read-once property, i.e., on each path in an FBDD G, each variable in X_{n} is tested at most once.

Figure 5.1: An oracle graph G^{0} over $\left\{z_{0}, \ldots, z_{3}\right\}$ and a G^{0}-FBDD
FBDDs possess several algorithmic properties that will prove useful in our context. Let G^{0} denote an oracle graph over $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ and let the G^{0} FBDDs G_{f}, G_{g} and G_{h} represent Boolean functions $f, g, h:\{0,1\}^{n} \rightarrow\{0,1\}$.

FBDD Property 1. There exists an algorithm MIN that computes for G_{f} in time $\mathcal{O}\left(\left|G_{f}\right|\right)$ the (uniquely determined) minimal $G^{0}-F B D D G$ that represents f. Every minimal $G^{0}-F B D D G$ over X_{n} satisfies $|G| \leq n \cdot\left|G_{f}^{-1}(1)\right|$.

FBDD Property 2. There exists an algorithm $S Y N T H$ that computes for G_{f}, G_{g} and G_{h} in time $\mathcal{O}\left(\left|G^{0}\right| \cdot\left|G_{f}\right| \cdot\left|G_{g}\right| \cdot\left|G_{h}\right|\right)$ a $G^{0}-F B D D$ of size $|G| \leq$ $\left|G^{0}\right| \cdot\left|G_{f}\right| \cdot\left|G_{g}\right| \cdot\left|G_{h}\right|$ which represents the function $f \wedge g \wedge h$.

FBDD Property 3. There exists an algorithm SAT-ENUM that enumerates for a $G^{0}-F B D D G_{f}$ all elements in $G_{f}^{-1}(1)$ in time $\mathcal{O}\left(n \cdot\left|G_{f}^{-1}(1)\right|\right)$.

Definition 5.6. We call an algorithm A over the input space $\{0,1\}^{n}$ read-once algorithm, if it reads each input bit at most once.

Definition 5.7. Fix a read-once algorithm A over $\{0,1\}^{n}$, an input $x \in\{0,1\}^{n}$ and an oracle graph G^{0} over X_{n}. Let the list $\pi(A, x)$ contain the variables from X_{n} in the order in which they are read by A when procesing x, and let the list $\pi\left(G^{0}, x\right)$ contain the variables from X_{n} in the order in which they occur on the path defined by x in G^{0}. We say that the read-once algorithm A respects the oracle graph G^{0} (A is G^{0}-respecting) if for all inputs $x \in\{0,1\}^{n}$, any two variables x_{i}, x_{j} from $\pi(A, x)$ occur in the same order in $\pi\left(G^{0}, x\right)$ as in $\pi(A, x)$.

Read-once algorithms correspond to Eraser Turing Machines (Eraser-TMs), which only differ from general Turing machines in the property that each input bit is deleted immediately after being read (Ajtai et al., 1986, Krause et al., 1988). We consider Eraser-TMs that have an associated oracle graph which determines the reading order of the input bits. During the computation, the machine follows the path that the input defines in the oracle graph in order to determine the next bit to read.

The following observation links read-once algorithms to FBDDs and is an immediate consequence of the observations by Meinel (1989).

Observation 5.8. Fix a subset $F \subseteq\{0,1\}^{n}$ and an oracle graph G^{0} over $X_{n}=$ $\left\{x_{1}, \ldots, x_{n}\right\}$. Each G^{0}-respecting read-once algorithm A that decides for an input $x=\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$ whether $x \in F$ while using at most p bits of additional memory can be efficiently transformed into a $G^{0}-F B D D$ of size at most $\left|G^{0}\right| \cdot 2^{p}$.

Proof. Consider the Eraser-TM with p memory cells that corresponds to A. A configuration of A is given by the tuple $\left(v_{i}, y_{1}, \ldots, y_{p}\right)$, where v_{i} denotes the current vertex in G^{0} and $\left(y_{1}, \ldots, y_{p}\right)$ represents the current content of the additional memory cells.

We transform A into a G^{0}-FBDD G_{A} as follows. The vertices in G_{A} have the form $\left[v_{i}, y\right] \in V\left(G^{0}\right) \times\{0,1\}^{p}$, and a vertex $\left[v_{i}, y\right]$ is labled with v_{i}. label. If $\left(v_{i_{0}}, y_{0}\right)$ denotes the initial configuration of A, we define as root of G_{A} the vertex $\left[v_{i_{0}}, y_{0}\right]$. For each transition $\delta\left(v_{i}, y, x_{v_{i} \text {. label }}\right)=\left(v_{i}^{\prime}, y^{\prime}\right)$ of A, we add to G_{A} a directed $\left(x_{v_{i} \text {.label }}\right)$-edge from vertex $\left[v_{i}, y\right]$ to vertex $\left[v_{i}^{\prime}, y^{\prime}\right]$. For a stop configuration $\delta\left(v_{i}, y, x_{v_{i} \text {.label }}\right)=\left(v_{i}, y\right)$ of A with output $b \in\{0,1\}$, we add a directed $\left(x_{v_{i} \text {.label }}\right)$-edge from vertex $\left[v_{i}, y\right]$ to the b-sink.

We observe that since A is G^{0}-respecting, the reading order on each path from the root to a sink in G_{A} is consistent with G^{0}, which makes G_{A} a G^{0} FBDD.

For a fixed $v_{i} \in V\left(G^{0}\right), A$ has at most 2^{p} configurations $\left(v_{i}, y\right)$. Therefore, the maximum size of G_{A} is $\left|G^{0}\right| \cdot 2^{p}$.

Many important Boolean functions can even be efficiently represented in a more restricted BDD variant, so-called Ordered Binary Decision Diagrams (OBDDs), which we are going to describe next.

5.2.2 Ordered Binary Decision Diagrams (OBDDs)

Ordered Binary Decision Diagrams were first described by Bryant (1986) and have become an important tool for circuit verification, VLSI-design and many other applications.

Definition 5.9. A variable ordering π for a set of variables $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ is a permutation of the index set $I=\{1, \ldots, n\}$, where $\pi(i)$ denotes the position of x_{i} in the π-ordered variable list $x_{\pi^{-1}(1)}, x_{\pi^{-1}(2)}, \ldots, x_{\pi^{-1}(n)}$.

Definition 5.10. $A \pi$-Ordered Binary Decision Diagram (π-OBDD) with respect to a variable ordering π is a $B D D$ in which the sequence of tests on a path from the root to a sink is restricted by π, i.e., whenever an edge leads from an x_{i}-node to an x_{j}-node, then $\pi(i)<\pi(j) . A B D D G$ is called OBDD, if there exists a variable ordering π such that G is a $\pi-O B D D$.

For an $O B D D G$ we define its width as

$$
w(G):=\max _{i}\left\{\mid\left\{v \in G \mid v . \text { label }=x_{i}\right\} \mid\right\}
$$

Note that we may view any π-OBDD as a degenerated G^{0}-FBDD in which the reading order on each path from the root to one of the sinks is consistent with π, i.e., G^{0} is degenerated into a linear list that corresponds to π.

Conversely, a π-OBDD may at the same time be a $G^{0}-$ FBDD in the following sense.

Definition 5.11. A variable ordering π for X_{n} is said to be consistent with an oracle graph G^{0} over X_{n} if for any $(i, j) \in\{1, \ldots, n\}^{2}$ with $\pi(i)<\pi(j), x_{i}$ occurs before x_{j} on all paths in G^{0}.

Observation 5.12. If a variable ordering π is consistent with an oracle graph G^{0}, then any $\pi-O B D D$ is a $G^{0}-F B D D$.

Figure 5.2 shows a π-OBDD that computes the function

$$
f\left(z_{0}, \ldots, z_{3}\right)=z_{0} z_{2} \vee z_{0} \overline{z_{2}} z_{3} \vee \overline{z_{0}} z_{1} z_{3}
$$

Similarly to FBDDs, OBDDs allow for efficient implementations of the operations that we will be interested in. Let π denote a variable ordering for $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ and let the π-OBDDs G_{f}, G_{g} and G_{h} represent Boolean functions $f, g, h:\{0,1\}^{n} \rightarrow\{0,1\}$.

OBDD Property 1. The size of G_{f} is bounded by $\left|G_{f}\right| \leq m \cdot w\left(G_{f}\right)$.
OBDD Property 2. There exists an algorithm MIN that computes in time $\mathcal{O}\left(\left|G_{f}\right|\right)$ the uniquely determined minimal $\pi-O B D D G$ with $w(G) \leq\left|G_{f}^{-1}(1)\right|$ that represents f.

OBDD Property 3. There exists an algorithm SYNTH that computes in time $\mathcal{O}\left(\left|G_{f}\right| \cdot\left|G_{g}\right| \cdot\left|G_{h}\right|\right)$ a minimal $\pi-O B D D G$ with $w(G) \leq w\left(G_{f}\right) \cdot w\left(G_{g}\right) \cdot w\left(G_{h}\right)$.

OBDD Property 4. There exists an algorithm SAT-ENUM that enumerates all elements of $G_{f}^{-1}(1)$ in time $O\left(n \cdot\left|G_{f}^{-1}(1)\right|\right)$.

Figure 5.2: A π-OBDD over $\left\{z_{0}, \ldots, z_{3}\right\}$ with $\pi(0)=0, \pi(1)=2, \pi(2)=1$ and $\pi(3)=3$.

Definition 5.13. We say that a read-once algorithm A respects a variable ordering π (A is π-respecting) if A does not read x_{i} after x_{j} in case $\pi(i)<\pi(j)$ for all $i, j \in\{1, \ldots n\}$.

Similarly to the correspondence of read-once algorithms and FBDDs described by Observation 5.8, we can transform a π-respecting read-once algorithm into a π-OBDD.

Observation 5.14. Fix a subset $F \subseteq\{0,1\}^{n}$ and a variable ordering π for $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$. Each π-respecting read-once algorithm A that decides for an input $x=\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$ whether $x \in F$ while using at most p bits of additional memory can be efficiently transformed into a $\pi-O B D D$ of width at most 2^{p}.

Proof. The proof is largely analogous to the proof of Observation 5.8, but we include it for completeness.

Consider the eraser Turing machine with p memory cells that corresponds to A. We can assume w.l.o.g. that the input is π-ordered, i.e., it is given as $x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)}$. A configuration of A is given by the tuple $\left(i, y_{1}, \ldots, y_{p}\right)$, where i denotes the current read position in the input and (y_{1}, \ldots, y_{p}) represents the content of the p additional memory cells.

We transform A into a π-OBDD G_{A} as follows. The vertices in G_{A} have the form $[i, y] \in\{1, \ldots, n\} \times\{0,1\}^{p}$, and a vertex $[i, y]$ is labled with x_{i}. If $\left(i_{0}, y_{0}\right)$ denotes the initial configuration of A, we define as root of G_{A} the vertex $\left[i_{0}, y_{0}\right]$. For each transition $\delta\left(i, y, x_{i}\right)=\left(i^{\prime}, y^{\prime}\right)$ of A, we add to G_{A} a directed x_{i}-edge from vertex $[i, y]$ to vertex $\left[i^{\prime}, y^{\prime}\right]$. For a stop configuration $\delta\left(i, y, x_{i}\right)=(i, y)$ of A with output $b \in\{0,1\}$, we add a directed x_{i}-edge from vertex $[i, y]$ to the b-sink.

We observe that since A is π-respecting, the reading order on each path from the root to a sink in G_{A} is consistent with π, which makes G_{A} a π-OBDD.

For a fixed $i \in\{1, \ldots, n\}, A$ has at most 2^{p} configurations (i, y). Therefore, the maximum width of G_{A} is 2^{p}.

5.3 BDD-based Initial State Recovery

The BDD-based attack on keystream generators is a known-plaintext initial state recovery attack, i.e., the attacker tries to reconstruct the unknown initial state $\omega(0)$ of the keystream generator from a few known plaintext bits p_{0}, p_{1}, \ldots and their encryptions c_{1}, c_{2}, \ldots. In our scenario in which a ciphertext bit c_{i} is computed from a plaintext bit p_{i} and a keystream bit z_{i} via $c_{i}=p_{i} \oplus z_{i}$, the keystream bit z_{i} can be reconstructed from (p_{i}, c_{i}) by computing $p_{i} \oplus c_{i}=z_{i}$.

We first observe that for any internal bitstream $w \in\{0,1\}^{m}$ that yields a prefix of the observed keystream, the following two conditions must hold.

Condition 1. w is an m-extension of the initial state bits in w, i.e., we have $H_{\leq m}(\operatorname{IB}(w))=w$.

Condition 2. $C_{m}(w)$ is a prefix of the observed keystream z.
We call any $w \in\{0,1\}^{m}$ that satisfies these conditions an m-candidate. Our strategy is now to start with $m=n_{\min }$ and to dynamically compute the m candidates for $m>n_{\text {min }}$ until only one m-candidate is left. The first bits of
this m-candidate will contain the initial state $\omega(0)$ that we are looking for. We can expect to be left with only one m-candidate for $m \geq\left\lceil\alpha^{-1} n\right\rceil$, which follows directly from the following Lemma.
Lemma 5.15 (Krause (2002)). Under Assumption 4.8, all keystreams z and all $m \leq\left\lceil\alpha^{-1} n\right\rceil$ satisfy $\mid\left\{\omega(0) \in\{0,1\}^{n}: C_{m}\left(H_{\leq m}(\omega(0))\right)\right.$ is prefix of $\left.y\right\} \mid \approx$ $2^{|\mathrm{IP}(m)|-\alpha m} \leq 2^{n-\alpha m}$. Hence, there exist approximately $2^{n-\alpha m} m$-candidates.

The key problem that we have to solve is to compute and represent the m-candidates efficiently. Our solution is based on the following BDD-based approach. Let G_{m}^{0} denote the oracle graph over $\left\{w_{0}, \ldots, w_{m-1}\right\}$ that represents the order in which the keystream function C_{m} reads the bits from the internal bitstream. We represent the bitstreams w fulfilling conditions 1 and 2 in the minimal G_{m}^{0}-FBDDs R_{m} and Q_{m}, respectively. Starting from $P_{n_{\min }}:=Q_{n_{\min }}$, we compute for $n_{\min }<m \leq\left\lceil\alpha^{-1} n\right\rceil$ the G_{m}^{0}-FBDDs $P_{m}:=\operatorname{MIN}\left(P_{m-1} \wedge\right.$ $Q_{m} \wedge S_{m}$), where the minimum G_{m}^{0}-FBDD S_{m} tests whether w_{m-1} is in the m extension of $\operatorname{IB}(w)$. Note that we have $P_{m}=\operatorname{MIN}\left(Q_{m} \wedge R_{m}\right)$ with $R_{m}=\bigwedge_{i=1}^{m} S_{i}$ for all m, and P_{m} accepts exactly the m-candidates. This strategy is summarized in Algorithm 5 .

```
Algorithm 5 RecoverInitialState
    \(P=Q_{n_{\text {min }}}\)
    for \(m=n_{\text {min }}+1\) to \(\left\lceil\alpha^{-1} n\right\rceil\) do
        \(P=\operatorname{MIN}\left(P \wedge Q_{m} \wedge S_{m}\right)\)
    end for
    return the initial state bits contained in one of the \(w \in P^{-1}(1)\)
```

The efficiency of Algorithm 5 essentially depends on the sizes of the intermediate results P_{m}, which we are going to estimate in the following.

Assumption 5.16 (BDD Assumption). For all $m \geq n_{\text {min }}$ we assume that $\left|G_{m}^{0}\right|,\left|S_{m}\right|,\left|Q_{m}\right| \in m^{\mathcal{O}(1)}$ and that there exists an integer $p \geq 1$ such that $\left|R_{m}\right| \leq$ $\left|G_{m}^{0}\right| \cdot 2^{p \cdot|\mathrm{CP}(m)|}$.

Lemma 5.17. Let \mathcal{K} denote an $F S R$-based keystream generator with k FSRs R^{0}, \ldots, R^{k-1} of lengths $n^{(0)}, \ldots, n^{(k-1)}$, and let $n=\sum_{i=0}^{k-1} n^{(i)}$. If \mathcal{K} fulfills the BDD Assumption and the Pseudorandomness Assumption, we have for all $n_{\text {min }}<m \leq\left\lceil\alpha^{-1} n\right\rceil$

$$
\begin{aligned}
\left|P_{m}\right| & \leq \max _{1 \leq m \leq\left\lceil\alpha^{-1} n\right\rceil}\left\{\min \left\{\epsilon(m)\left|Q_{m}\right| \cdot 2^{m-|\operatorname{IP}(m)|}, m \cdot 2^{|\operatorname{IP}(m)|-\alpha m}\right\}\right\} \\
& \leq \epsilon(m)\left|Q_{m}\right| \cdot 2^{\frac{p(1-\alpha)}{p+\alpha} n} \leq n^{\mathcal{O}(1)} 2^{\frac{p(1-\alpha)}{p+\alpha} n}
\end{aligned}
$$

with $\epsilon(m)=\left|G_{m}^{0}\right|^{2}$. If there exists a variable ordering π_{m} such that all $G_{m}^{0}{ }^{-}$ $F B D D$ s are $\pi_{m}-O B D D s, \epsilon(m)$ reduces to the constant 1 .

The proof borrows from the ideas presented by Krause (2002, 2007) and works as follows.

Proof. The definitions of Q_{m} and R_{m} imply that $P_{m}=Q_{m} \wedge R_{m}$ for $n_{\min }<$ $m \leq\left\lceil\alpha^{-1} n\right\rceil$, and therefore $\left|P_{m}\right| \leq\left|G_{m}^{0}\right| \cdot\left|Q_{m}\right| \cdot\left|R_{m}\right|$ (FBDD Property 2) in
the FBDD-case and $\left|P_{m}\right| \leq\left|Q_{m}\right| \cdot\left|R_{m}\right|$ (OBDD Property 3) in the OBDD-case. Under Assumption 5.16 we obtain

$$
\begin{equation*}
\left|P_{m}\right| \leq \epsilon(m)\left|Q_{m}\right| \cdot 2^{p \cdot|\operatorname{CP}(m)|} . \tag{5.1}
\end{equation*}
$$

On the other hand, Lemma 5.15 implies that $\left|P_{m}\right| \leq m \cdot\left|P_{m}^{-1}(1)\right| \approx m$. $2^{m^{*}-\alpha m}$ for $m^{*}=|\operatorname{IP}(\mathrm{m})|$ and $n_{\min }<m \leq\left\lceil\alpha^{-1} n\right\rceil$, which means

$$
\begin{equation*}
\left|P_{m}\right| \leq m \cdot 2^{m^{*}-\alpha m}=m \cdot 2^{(1-\alpha) m^{*}-\alpha \cdot|\operatorname{CP}(m)|} \tag{5.2}
\end{equation*}
$$

Combining Eqs. (5.1) and (5.2), we obtain for $n_{\min }<m \leq\left\lceil\alpha^{-1}\right\rceil n$

$$
\begin{aligned}
\left|P_{m}\right| & \leq \min \left\{\epsilon(m)\left|Q_{m}\right| \cdot 2^{p \cdot|\mathrm{CP}(m)|}, m \cdot 2^{(1-\alpha) m^{*}-\alpha \cdot|\mathrm{CP}(m)|}\right\} \\
& \leq \epsilon(m)\left|Q_{m}\right| \cdot \min \left\{2^{p \cdot|\mathrm{CP}(m)|}, 2^{(1-\alpha) m^{*}-\alpha \cdot|\mathrm{CP}(m)|}\right\} \\
& =\epsilon(m)\left|Q_{m}\right| \cdot \min \left\{2^{p \cdot r\left(m^{*}\right)}, 2^{(1-\alpha) m^{*}-\alpha r\left(m^{*}\right)}\right\} \text { with } r\left(m^{*}\right)=|\mathrm{CP}(m)| \\
& \leq \epsilon(m)\left|Q_{m}\right| \cdot 2^{p \cdot r^{*}\left(m^{*}\right)},
\end{aligned}
$$

where $r^{*}\left(m^{*}\right)$ denotes the solution of $p \cdot r\left(m^{*}\right)=(1-\alpha) m^{*}-\alpha r\left(m^{*}\right)$. We obtain $r^{*}\left(m^{*}\right)=\frac{1-\alpha}{p+\alpha} m^{*}$ and hence $\left|P_{m}\right| \leq \epsilon(m)\left|Q_{m}\right| \cdot 2^{\frac{p(1-\alpha)}{p+\alpha} m^{*}}$. With $n_{\text {min }}<$ $m \leq\left\lceil\alpha^{-1} n\right\rceil$ and therefore $\epsilon(m)\left|Q_{m}\right| \in m^{\mathcal{O}(1)} \subseteq n^{\mathcal{O}(1)}$ and $m^{*}=|\operatorname{IP}(m)| \leq n$, we obtain

$$
\left|P_{m}\right| \leq \epsilon(m)\left|Q_{m}\right| \cdot 2^{\frac{p(1-\alpha)}{p+\alpha} n} \leq n^{\mathcal{O}(1)} 2^{\frac{p(1-\alpha)}{p+\alpha} n} \text { for all } n_{\min }<m \leq\left\lceil\alpha^{-1} n\right\rceil
$$

From this bound on $\left|P_{m}\right|$, we can straightforwardly derive the time, memory and data requirements of the BDD-based attack.

Theorem 5.18. Let \mathcal{K} denote a regularly clocked FSR-based keystream generator with an unknown initial state $\omega(0) \in\{0,1\}^{n}$, information rate α and best-case compression ratio γ. If \mathcal{K} fulfills the Independence Assumption, the Pseudorandomness Assumption and the $B D D$ Assumption, an initial state \tilde{s}^{0} that yields the same keystream as $\omega(0)$ can be computed with time and memory requirements in $\mathcal{O}\left(\epsilon(n)\left|Q_{n}\right| 2^{\frac{p(1-\alpha)}{p+\alpha} n}\right)$ from the first $\left\lceil\gamma \alpha^{-1} n\right\rceil$ consecutive keystream bits of \mathcal{K} under $\omega(0)$.

Note that by setting $p=1$ in Theorem 5.18, we obtain the main Theorem of Krause (2002).

5.4 Generic BDD Constructions

5.4.1 Keystream Consistency Check Q_{m}

In most cases, a BDD Q_{m} that checks Condition 2 can be straightforwardly derived from the definition of the keystream function C. If the computation of a keystream bit z_{t} depends on $u(j)>1$ bits from an FSR R^{j}, a fixed bit in the bitstream produced by R^{j} will generally appear and have to be read in the computation of up to $u(j)$ keystream bits. In this case, we compute a keystream bit z_{t} from a number of new bits which are being considered for the first time,
and several old bits that were already involved in the computation of previous keystream bits. This would imply (at least in a straightforward implementation) reading a fixed variable more than once on the same path in Q_{m}, which is prohibited by the FBDD-definition. The less restrictive general BDDs would permit this construction, but could no longer guarantee the efficiency of the operations that our attack depends on (cf. Remark 5.3).

A similar problem has been considered by Krause (2002) in the context of the irregularly clocked A5/1 generator (cf. Section 4.2.3), which uses the bits of the internal bitstream both for computing keystream bits and as input for the clock control mechanism. His solution was to increase the number of unknowns by working with $u(j)$ synchronized duplicates of the R^{j}-bitstream at the expense of a reduced information rate α.

We now consider the more general situation that the keystream function depends on new bits and some function(s) g_{1}, \ldots, g_{r} in the old bits. In order to preserve the read-once property, we introduce auxiliary variables for the values of these functions such that z_{t} is computed only from new bits. This construction is illustrated in the following example.

Example 5.19. Consider the keystream function $z_{t}=C_{m}\left(w_{t+5}, w_{t+7}, w_{t+9}\right)$, where C_{m} is defined by $C_{m}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \oplus x_{2} \oplus x_{3}$. Assuming canonical reading order, w_{t+9} would be the new bit and w_{t+5} and w_{t+7} the old bits. With the auxiliary variable $\tilde{w}_{t}:=g_{1}\left(w_{t+5}, w_{t+7}\right)$ and $g_{1}\left(x_{1}, x_{2}\right):=x_{1} \oplus x_{2}$, we can express z_{t} as $z_{t}=\tilde{w}_{t} \oplus w_{t+9}$.

In general, if we add for each of the r auxiliary variables an FSR to the generator that outputs at clock t the corresponding value of g_{j}, we can equivalently compute z_{t} without considering the bits from the internal bitstream more than once. Obviously, we obtain a generator with a lowered information rate, since more bits of the internal bitstream have to be read in order to compute the same number of keystream bits.

In the case of regularly clocked keystream generators, we define the set of variable indices that the keystream function depends on as

$$
I:=\left\{i \mid z_{t} \text { depends on } w_{t+i}\right\} \subseteq\{0, \ldots, n-1\} .
$$

The bits contributed by register $R^{j}, j \in\{1, \ldots, k\}$, can be expressed as

$$
I_{j}:=\{i \in I \mid i \equiv j \bmod k\}
$$

Then, the set of new bits is given as

$$
I^{*}:=\left\{i_{1}^{*}, \ldots, i_{k}^{*}\right\} \text { with } i_{j}^{*}=\operatorname{argmax}_{i \in I_{j}}\left\{\pi_{m}(i)\right\} \text { for } j \in\{1, \ldots, k\}
$$

and the old bits are those in the set $I^{\prime}:=I \backslash I^{*}$.
Concerning the information rate of the modified generator, Observation 4.7 implies:
Observation 5.20. Fix a regularly clocked keystream generator and denote by I the set of positions in the internal bitstream that its keystream function depends on. If the keystream function can be expressed as a function depending on the k variables in $\left\{w_{t+i} \mid i \in I^{*}\right\}$ and the values of r subfunctions depending on the variables in $\left\{w_{t+i} \mid i \in I^{\prime}\right\}$, the keystream function can be transformed into an equivalent read-once keystream generation algorithm such that the resulting generator's information rate is $\alpha=\frac{1}{k+r}$.

5.4.2 FSR Consistency Check R_{m}

Recall that each bit w_{t} of an internal bitstream w is either an initial state bit of some FSR or a combination of other internal bits. In order to decide for a given internal bitstream whether it satisfies Condition 1, we need to check whether the update relations imposed on the bits at the combined positions are fulfilled. Hence, if a combined bit w_{t} is produced by an update relation $f\left(s_{0}, \ldots, s_{n-1}\right)$, we need to check whether $f\left(w_{i_{1}}, \ldots, w_{i_{p}}\right)=w_{t}$, which is equivalent to testing whether

$$
\tilde{f}\left(w_{i_{1}}, \ldots, w_{i_{p}}, w_{t}\right):=f\left(w_{i_{1}}, \ldots, w_{i_{p}}\right) \oplus w_{t}=0
$$

The OBDD S_{m} implements this test for the single combined bit w_{m-1} and represents the constant-one function if w_{m-1} is an initial bit. The OBDD $R_{m}=$ $\bigwedge_{i=1}^{m} S_{i}$ performs the consistency tests for the whole internal bitstream.

We first consider the case of FSRs (without additional memory), for which we need the following definition.

Definition 5.21. For a polynomial $f:\{0,1\}^{n} \rightarrow\{0,1\}$ with
$f\left(w_{1}, \ldots, w_{n}\right)=\bigoplus_{j \in M} m_{j}$ with monomials $m_{j}=\bigwedge_{l \in M^{j}} w_{l}$ and $M^{j}(f) \subseteq\{1, \ldots, n\}$
and a reading order $\pi \in \sigma_{n}$, we define the set of active monomials at time t as

$$
\operatorname{AM}_{\pi}(f, t):=\left\{m_{j}: 0<\left|\left\{\pi^{-1}(1), \ldots, \pi^{-1}(t)\right\} \cap M^{j}(f)\right|<\left|M^{j}(f)\right|\right\}
$$

Hence, $\operatorname{AM}(f, t)$ contains all monomials in f for which at least one, but not all factors are known after the first t inputs have been read.
Lemma 5.22. For a polynomial $f:\{0,1\}^{n} \rightarrow\{0,1\}$ with $n>1$ and a reading order π for the inputs, the set of inputs satisfying $f\left(w_{1}, \ldots, w_{n}\right)=0$ can be represented in a $\pi-O B D D$ of width $2^{\max _{1 \leq t \leq n}\left\{\left|\mathrm{AM}_{\pi}(f, t)\right|\right\}+1}$.

Proof. Let $p:=\max _{1 \leq t \leq n}\left\{\left|\mathrm{AM}_{\pi}(f, t)\right|\right\}$. In order to compute $f\left(w_{1}, \ldots, w_{n}\right)$, we may proceed in the following way. We define p auxiliary variables b_{1}, \ldots, b_{p}, which will store the intermediate values of partly evaluated monomials, and an additional variable b_{0} for the sum of evaluated monomials. We initialize $b_{0}:=0, b_{t}:=1$ for $t>0$, and read the variables w_{1}, \ldots, w_{n} in the order given by π. For each variable w_{t}, we update all auxiliary variables that are associated with monomials containing w_{t}. If a monomial becomes active by reading w_{t}, we allocate an auxiliary variable b_{j} and define $b_{j}:=w_{t}$. If a monomial is entirely evaluated after reading w_{t}, we add its value to b_{0} and free the associated auxiliary variable. Since there are at most p active monomials at any time, no more than $p+1$ auxiliary variables will be needed simultaneously.

Observation 5.14 implies that this strategy can be transformed into a π OBDD of width 2^{p+1}, which imples the claim.

From Lemma 5.22, we can directly derive an upper bound for the width of the π_{m}-OBDD S_{m} for an FSR.

Corollary 5.23. For a given reading order π_{m}, an integer $m>0$, an $F S R R$ with update relation f, and $p:=\max _{0 \leq t<m}\left\{\left|\mathrm{AM}_{\pi_{m}}(\tilde{f}, t)\right|\right\}+1$, we can construct a $\pi_{m}-O B D D S_{m}$ of width at most 2^{p} that tests for an internal bitstream $w \in$ $\{0,1\}^{m}$ if w fulfills the update relation imposed on w_{m-1}.

Remark 5.24. For the special case $p=1$, we obtain the LFSR-bound that was proved by Krause (2002).

We now turn to the case of Fibonacci FCSRs. Eq. (3.6) implies that we need access to σ_{t-1} in order to check whether the update relation holds for w_{t}. Therefore, we work with a modified FCSR that essentially outputs the sum σ_{t} instead of the bit $w_{t}=\sigma_{t} \bmod 2$ in each clock. For a Fibonacci FCSR with p bits of additional memory, we let the modified FCSR output for an initial memory state $\left(b_{p-1}^{0}, \ldots, b_{0}^{0}\right)$ with $b^{0}=\sum_{i=0}^{p-1} b_{i}^{0} 2^{i}$ the values $y_{t}^{0}=: \sigma_{t}^{0}$ for $t<n-1,\left(b_{0}^{p-1}, \ldots, b_{0}^{0}, y_{n-1}^{0}\right)$ for $t=n-1$, and $\left(\sigma_{t}^{p}, \sigma_{t}^{p-1}, \ldots, \sigma_{t}^{0}\right)$ for $t \geq n$ with $\sigma_{t}=\sum_{i=0}^{p} \sigma_{t}^{i} 2^{i}$ and $w_{t}=\sigma_{t}^{0}$.

Note that a bit w_{m} in the output of the modified FCSR, $m \geq 0$, then corresponds to the i-th component bit of some intermediate sum σ_{t} with

$$
(i, t)=\tau(m):=\left\{\begin{array}{cl}
(0, m) & \text { if } m<n-1 \\
(m-(n-1) \bmod (p+1), & \text { otherwise } \\
(m-(n-1) \operatorname{div}(p+1))+(n-1)) &
\end{array}\right.
$$

Lemma 5.25. For a Fibonacci FCSR R with p bits of additional memory, an integer $m>0$, and a reading order π_{m}, we can construct a $\pi_{m}-O B D D S_{m}$ of width at most 2^{p+1} that tests for the internal bitstream $w \in\{0,1\}^{m}$ of the modified FCSR with $m=n-1+t(p+1)$ whether the last $p+1$ bits fulfill the update relation.

Proof. In order to check whether $\sigma_{t}=\left(\sigma_{t-1} \operatorname{div} 2\right)+\sum_{i=1}^{n} w_{t-i} \cdot d_{i-1}$, we can equivalently test if

$$
\sigma_{t}=\sum_{i=1}^{p} \sigma_{t-1}^{i} \cdot 2^{i}+\sum_{i=1}^{n} \sigma_{t-i}^{0} \cdot d_{i-1}
$$

since $w_{t}=\sigma_{t} \bmod 2=\sigma_{t}^{0}$.
Algorithm 6 describes a read-once algorithm that checks whether the last $p+1$ bits of a bitstream $w \in\{0,1\}^{m}$ are consistent with the values of the remaining bits in w. Since the algorithm uses exactly $p+1$ bits of additional memory, Observation 5.14 implies that it can be transformed into an OBDD of width at most 2^{p+1}, which implies the claim.

Note that according to Corollary 3.26, we have $p \approx \log (\mathrm{~d})$ for a periodic initial FCSR-state, where d denotes the FCSR's feedback tap vector.

In the case of Galois FCSRs with $a_{i} \leq d_{i}$ at all times, we denote by $x_{i}(t)$ and $a_{i}(t)$ the value of the register cells x_{i} and a_{i} at time t. We think of the main register of the Galois FCSR as producing the bitstream

$$
x_{0}(0), x_{1}(0), \ldots, x_{n-1}(0), \ldots, x_{i_{1}}(t), \ldots, x_{i_{l}}(t), \ldots
$$

where $i_{j} \in\left\{1 \leq i<n \mid d_{i}=1\right\}, l=\operatorname{wt}(d)-1, i_{j}<i_{j^{\prime}}$ for $j<j^{\prime}$, and $t>0$. Similarly, we view the bitstream produced by the carry register as $a_{i_{1}}(t), \ldots, a_{i_{l}}(t), \ldots$ for $t \geq 0$.

Lemma 5.26. For a Galois $F C S R$ R with $a_{i-1} \leq d_{i-1}$ for all $i \in\{1, \ldots, n-1\}$, an integer $m>0$, and a reading order π_{m}, we can construct a $\pi_{m}-O B D D S_{m}$

```
Algorithm 6 FibonacciFCSR- \(S_{m}\left(\pi_{m}, w\right)\)
    Let \((i, t):=\tau(m)\)
    if \(t<n-1\) then
        return true// Nothing to check for initial bits
    end if
    \(\tilde{\sigma}:=0 / /\) Initialize the \((p+1)\)-bit auxiliary variable
    for \(j=0\) to \(m-1\) do
        \(\left(i^{\prime}, t^{\prime}\right):=\tau\left(\left(\pi_{m}\right)^{-1}(j)\right) / /\) Determine the \(\sigma_{t^{\prime}}^{i^{\prime}}\) that corresponds to the cur-
        rently read variable \(w_{j}\)
        if \(t^{\prime} \in\{t-n, \ldots, t-1\}\) and \(i^{\prime}=0\) then
            \(\tilde{\sigma}:=\tilde{\sigma}+w_{j} \cdot d_{t-t^{\prime}-1}\)
        end if
        if \(t^{\prime}=t-1\) and \(i^{\prime} \in\{1, \ldots p\}\) then
            \(\tilde{\sigma}:=\tilde{\sigma}+w_{j} \cdot 2^{i^{\prime}}\)
        end if
        if \(t^{\prime}=t\) then
            if \(\tilde{\sigma}^{i^{\prime}} \neq \sigma_{t^{\prime}}^{i^{\prime}}\) then
                return false
            end if
        end if
    end for
    return true
```

of width at most 2 that tests whether a bit in the bitstream produced by the main register fulfills the corresponding update relations. For a bit in the bitstream of the carry register, we can perform this consistency test in a $\pi_{m}-O B D D$ of maximum width 8.

Proof. The definition of Galois FCSRs implies $x_{n-1}(t)=x_{0}(t-1)$ and for $i \in\{n-2, \ldots, 0\}$ that $x_{i}(t)=x_{i+1}(t-1)$ if $d_{i}=0$ and $x_{i}(t)=x_{i+1}(t-1) \oplus$ $a_{i}(t-1) \oplus x_{0}(t-1)$ if $d_{i}=1$. Note that we have $x_{i_{j}+1}(t-1)=x_{i_{j+1}}\left(t-\left(i_{j+1}-i_{j}\right)\right)$ and therefore

$$
\begin{aligned}
x_{i_{j}}(t) & =x_{i_{j}+1}(t-1) \oplus a_{i_{j}}(t-1) \oplus x_{0}(t-1) \\
& =x_{i_{j+1}}\left(t-\left(i_{j+1}-i_{j}\right)\right) \oplus a_{i_{j}}(t-1) \oplus x_{0}(t-1) .
\end{aligned}
$$

According to Corollary 5.23, we can test these linear conditions in a π_{m}-OBDD of width at most 2 .

Similarly, Corollary 5.23 yields a maximum width of $2^{3}=8$ in the case of the carry register, since $b_{i_{j}}(t)$ can be computed as

$$
\begin{aligned}
a_{i_{j}}(t) & =x_{i_{j}+1}(t-1) a_{i_{j}}(t-1) \oplus a_{i_{j}}(t-1) x_{0}(t-1) \oplus x_{0}(t-1) x_{i_{j}}(t-1) \\
& =x_{i_{j+1}}\left(t-\left(i_{j+1}-i_{j}\right)\right) a_{i_{j}}(t-1) \oplus a_{i_{j}}(t-1) x_{0}(t-1) \\
& \oplus x_{0}(t-1) x_{i_{j+1}}\left(t-\left(i_{j+1}-i_{j}\right)\right),
\end{aligned}
$$

which implies the claim.
From the bounds on $w\left(S_{m}\right)$ for the different types of FSRs, we can now straightforwardly derive a bound for $w\left(R_{m}\right)$ for an FSR-based keystream generator. Let \mathcal{K} denote an FSR-based keystream generator consisting of k FSRs
R^{0}, \ldots, R^{k-1} with π_{m}-OBDDs $S_{m}^{0}, \ldots, S_{m}^{k-1}$ and $w\left(S_{m}^{i}\right) \leq 2^{p_{i}}$ for all $i \in$ $\{0, \ldots, k-1\}$. Moreover, let s_{i} denote the fraction of combined bits that R^{i} contributes to the internal bitstream.
Corollary 5.27. There exists a $\pi_{m}-O B D D R_{m}$ of width at most $2^{|\operatorname{CP}(m)|} \sum_{i=0}^{k-1} p_{i} s_{i}$ that tests for a potential internal bitstream $w \in\{0,1\}^{m}$ of an $F S R$-based keystream generator whether it is an m-extension of the initial bits.
Proof. The claim follows directly from $R_{m}=\bigwedge_{i=1}^{m} S_{i}$ and the OBDD-properties described in Section 5.2.

5.5 Applications

5.5.1 Self-Shrinking Generator

As discussed in Section 4.2.1, the self-shrinking generator consists of only one LFSR and no memory. It produces at most m keybits from an internal bitstream $w_{2 m}$, i.e., $\gamma \cdot 2 m=m$ and $\gamma=0.5$.
Lemma 5.28. For all keystreams $z \in\{0,1\}^{*}$, there exist at most $\binom{m / 2}{|z|} 2^{m / 2-|z|}$ internal bitstreams $w \in\{0,1\}^{m}$ such that $C_{m}(w)=z$.
Proof. We first observe that due to $\gamma=0.5$, we have $\left|C_{m}(w)\right| \leq 0.5 m$, i.e., no internal bitstream of length m can produce more than $\frac{m}{2}$ keystreams bits. We fix a keystream z of length at most $\frac{m}{2}$ and let $Z_{z}=\left\{w \in\{0,1\}^{m}: C_{m}(w)=z\right\}$. For each $w \in Z_{z}$, there exists a set $I=\left\{i_{1}, \ldots, i_{|z|}\right\} \subseteq\left\{0, \ldots, \frac{m}{2}\right\}$ such that $\left(w_{2 i_{j}}, w_{2 i_{j}+1}\right)=\left(1, z_{j}\right)$ for $j \in\{1, \ldots,|z|\}$.

Moreover, w must satisfy $w_{2 i_{j}}=0$ for all $i_{j} \in\left\{0, \ldots, \frac{m}{2}\right\} \backslash I$. There are $\binom{m / 2}{|z|}$ possible choices for I and $2^{m / 2-|z|}$ possible assignments to the unrestricted variables. Hence,

$$
\left|Z_{z}\right|=\binom{m / 2}{|z|} 2^{m / 2-|z|}
$$

Corollary 5.29 (Krause (2002)). The information rate of the self-shrinking generator is $\alpha=1-\frac{\log (3)}{2} \approx 0.2075$.
Proof. Lemma 5.28 implies that for a $z \in\{0,1\}^{*}$,

$$
\begin{aligned}
\mid\left\{w \in\{0,1\}^{m}: C_{m}(w) \text { is prefix of } z\right\} \mid & =\sum_{|z|=0}^{m / 2}\binom{m / 2}{|z|} 2^{m / 2-|z|} \\
& =\sum_{|z|=0}^{m / 2}\binom{m / 2}{|z|} 1^{|z|} 2^{m / 2-|z|} \\
& =(1+2)^{m / 2}=3^{m / 2}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\alpha & =-\frac{1}{m} \operatorname{Pr}_{w}\left[C_{m}(w) \text { is Prefix of } z\right] \\
& =-\frac{1}{m} \frac{\mid\left\{w \in\{0,1\}^{m}: C_{m}(w) \text { is prefix of } z\right\} \mid}{2^{m}} \\
& =1-\frac{\log (3)}{2} \approx 0.2075,
\end{aligned}
$$

which concludes the proof.
Algorithm 7 tests whether a given internal bitstream w is consistent with a keystream prefix z. Since the algorithm is read-once and uses at most $\lfloor\log (m)\rfloor+$ 1 bits of additional memory, Observation 5.14 implies that it can be transformed into a π_{m}-OBDD Q_{m} with $w\left(Q_{m}\right) \leq m$ and $\left|Q_{m}\right| \leq m^{2}$, where π_{m} denotes the canonical reading order.

```
Algorithm 7 SelfShrinkingGenerator- \(Q_{m}(w, z)\)
    \(t:=0\)
    \(u:=0 / /\) auxiliary variable \(u, u \leq\left\lfloor\frac{m}{2}\right\rfloor\)
    while \(t<m-1\) do
        if \(w_{t}=1\) then
            if \(z_{u} \neq w_{t+1}\) then
                return false
            end if
            \(u:=u+1\)
        end if
        \(t:=t+2\)
    end while
    return true
```

Altogether, we obtain from Theorem 5.18, Corollary 5.23, and Remark 5.24:
Corollary 5.30 (Krause (2002)). From a prefix of length $\lceil 2.41 n\rceil$ of a keystream $z=C_{m}(L(x))$ produced by a self-shrinking generator of key length n, an initial state \tilde{x} with $C_{m}(L(\tilde{x}))=z$ can be computed in time and with space in $\mathcal{O}\left(n^{2} \cdot 2^{0.6563 n}\right)$.

Compared with the attacks mentioned in Section 4.2.1, the BDD-Attack is almost as fast as the currently best short-kevstream attack due to Hell and Johansson (2006), but consumes exponentially more memory.

5.5.2 Bluetooth Keystream Generator E_{0}

Recall from Section 4.2 .2 that the E_{0} keystream generator is a regularly clocked (4, 4)-combiner with 4 LFSRs, a 4-bit memory unit and an internal state size of 128 bits. Therefore, we have $\alpha=\gamma=\frac{1}{4}$.

Algorithm 8 tests whether a given internal bitstream w is consistent with an observed E_{0}-keystream z, given that the initial memory state is q_{0}. Exploiting Eqs. (4.1) and (4.2), the algorithm relies on a lookup-table $\delta^{\prime}:\{0, \ldots, 4\} \times\{0,1\}^{4}$ that maps the sum $s_{t}^{\prime}=\sum_{i=0}^{3} w_{t}^{i}$ and the current memory state q_{t} to the next memory state $q_{t+1}=\delta^{\prime}\left(s_{t}^{\prime}, q_{t}\right)$. Since the algorithm uses a constant amount of additional memory, it can be transformed into a π_{m}-OBDD Q_{m} of constant maximum width, as indicated by Observation 5.14. Similarly to the case of the Self-Shrinking Generator, π_{m} denotes the canonical reading order.

In summary, Theorem 5.18, Corollary 5.23, and Remark 5.24 imply the following performance figures for the BDD-based attack on E_{0}.

Corollary 5.31 (Krause (2002)). From a prefix of length n of a keystream $z=C_{m}(L(x))$ produced by an E_{0} keystream generator of key length n, an initial

```
Algorithm \(8 E_{0}-Q_{m}\left(q_{0}, w, z\right)\)
    \(/ / w\) is interpreted as \(w=w_{0}^{0}, \ldots, w_{0}^{3}, \ldots, w_{j}^{0}, \ldots, w_{j}^{3}, \ldots, w_{m-1 \operatorname{div} 4}^{m-1 \bmod 4}\)
    \(t:=0\)
    \(s:=0 / /\) auxiliary variable for the integer sum, \(s \in\{0, \ldots, 4\}\)
    \(q:=q_{0} / /\) auxiliary variable for the memory state
    for \(t=0\) to \(\left\lfloor\frac{m}{4}\right\rfloor-1\) do
        \(s:=w_{t}^{0}+w_{t}^{1}+w_{t}^{2}+w_{t}^{3}\)
        if \((s \bmod 2) \oplus \bigoplus_{i=0}^{3} c^{i} q \neq z_{t}\) then
            return false
        end if
        \(q:=\delta^{\prime}(s, q)\)
    end for
    return true
```

state \tilde{x} with $C_{m}(L(\tilde{x}))=z$ can be computed in time and with space in $\mathcal{O}\left(n \cdot 2^{0.6 n}\right)$, i.e., with $2^{76.8}$ polynomial-time operations for $n=128$.

The BDD-Attack slightly improves the attack by Fluhrer and Lucks (2001), which trades off time and the number of required keystream bits. For the minimum number of 132 available keystream bits the attack needs 2^{84} polynomial time operations.

5.5.3 GSM Keystream Generator A5/1

We note that a bit that serves as input for the keystream function f at a particular time has been considered a few clockings earlier by the clock control mechanism. Based on our observations in Section 5.4.1, we therefore duplicate the three registers of $\mathrm{A} 5 / 1$ such that the keystream bits are computed from the first three registers and the clock control operates on the remaining registers. However, the keystream generation algorithm of the resulting generator is still not read-once, since the bits of unclocked registers are reconsidered in subsequent iterations. The read-once Algorithm 9 fixes this problem by introducing auxiliary variables for these unchanged values. It can be straightforwardly checked that this algorithm is equivalent to the original $\mathrm{A} 5 / 1$ algorithm.

Due to the irregular clocking of the A5/1 algorithm, the information rate α is a little less straightforward to compute, but can be determined as follows.

Lemma 5.32 (Krause (2002), Stegemann (2004)). The information rate of the modified A5/1 keystream generator is given by

$$
\alpha=\frac{1}{2} \log u_{1} \approx 0.2193
$$

where u_{1} denotes the positive real root of the polynomial $p(u)=u^{3}-3 u^{2}+8$.
Proof. The Independence Assumption has been shown to hold for A5/1 by Krause (2002) and Stegemann (2004). For an arbitrary keystream $z, m \geq 1$, and a randomly chosen internal bitstream $w,|w|=m$, let

$$
p(m):=\operatorname{Pr}_{w}\left[C_{m}(w) \text { is prefix of } z\right]
$$

```
Algorithm 9 read-once-A5/1(w)
    \(/ / w\) is interpreted as \(w=w_{0}^{0}, \ldots, w_{0}^{5}, \ldots, w_{j}^{0}, \ldots, w_{j}^{5}, \ldots, w_{m-1 \operatorname{div} 6}^{m-1 \bmod 6}\)
    \(i:=[0,0,0] / /\) current read positions
    \(u:=\) NIL // unchanged index \(\in\{0,1,2\), NIL \(\}\)
    \(v:=\) NIL // unchanged control value \(\in\{0,1, N I L\}\)
    \(v^{\prime}:=\) NIL // unchanged output value \(\in\{0,1, N I L\}\)
    \(t:=0\)
    while (true) do
        if \(\exists r \in\{0,1,2\} \backslash\{u\}: 6 \cdot i[r]+r \geq m\) then
            stop
        end if
        Read \(:=\{0,1,2\} \backslash\{u\}\)
        Let \(r_{0}, \ldots, r_{\mid \text {Read } \mid-1}\) the elements of Read in ascending order, i.e. \(r_{m}<r_{n}\)
        for \(m<n\)
        out \(\left[r_{0}\right]:=w_{i\left[r_{0}\right]}^{r_{0}}\)
        out \(\left[r_{1}\right]:=w_{i\left[r_{1}\right]}^{r_{1}}\)
        if \(u \neq N I L\) then // \(\exists\) an unchanged index
            out \([u]:=v^{\prime} / /\) copy the unchanged output value
        else // all read positions incremented
            out \(\left[r_{2}\right]:=w_{i\left[r_{2}\right]}^{r_{2}} / / \mathrm{read}\) the third output value
        end if
        output \(z_{t}=\) out \([0] \oplus\) out \([1] \oplus\) out \([2]\)
        if \(\exists r \in\{0,1,2\} \backslash\{u\}: 6 \cdot i[r]+3+r \geq m\) then
            stop
        end if
        \(c\left[r_{0}\right]:=w_{i\left[r_{0}\right]}^{3+r_{0}}\)
        \(c\left[r_{1}\right]:=w_{i\left[r_{1}\right]}^{3+r_{1}}\)
        if \(u \neq N I L\) then // \(\exists\) an unchanged index
            \(c[u]:=v / /\) copy the unchanged control value
        else // all read positions incremented
            \(c\left[r_{2}\right]:=w_{i\left[r_{2}\right]}^{3+r_{2}} / /\) read the third control value
        end if
        controlbit \(:=\operatorname{maj}_{3}(c[0], c[1], c[2])\)
        if \(\exists r \in\{0,1,2\}: c[r] \neq\) controlbit then
            // By definition of \(\mathrm{maj}_{3}, \exists\) at most one such \(r\)
            \(u:=r / /\) set unchanged index
            \(v:=\) controlbit \(\oplus 1 / /\) set unchanged control value
            \(v^{\prime}:=\) out \([r] / /\) set unchanged output value
        else // all read positions incremented
            \(u:=v:=v^{\prime}:=N I L\)
        end if
        for \(l \in\{0,1,2\} \backslash\{u\}\) do
            \(i[l]:=i[l]+1 / /\) increment read positions
        end for
        \(t:=t+1\)
    end while
```

Moreover, define for $m \geq 0$ and $k \leq m$

$$
p(m, k):=\operatorname{Pr}_{w \in u\{0,1\}^{m}}\left[\left|C_{m}(w)\right|=k\right] .
$$

Since a keystream bit is computed either from 4 or 6 internal bits, we have $\frac{m}{6} \leq\left|C_{m}(w)\right| \leq \frac{m}{4}$. Based on Equation (4.3) we can express $p(m)$ as

$$
\begin{aligned}
p(m) & =\underset{w}{\operatorname{Pr}}\left[C_{m}(w) \text { is prefix of } z\right] \\
& =\sum_{i=0}^{\lceil\gamma m\rceil} \operatorname{Pr}\left[\left|C_{m}(w)\right|=i\right] \cdot{\underset{\left|C_{m}(w)\right|=i}{\operatorname{Pr}}\left[C_{m}(w)=z_{0}, \ldots, z_{i-1}\right]}=\sum_{k=\frac{m}{6}}^{\frac{m}{4}} p(m, k) \cdot 2^{-k} .
\end{aligned}
$$

Furthermore, Lemma 4.5 implies $\alpha=-\frac{1}{m} \log _{2}(p(m))$. Therefore, we now derive a suitable recurrence relation for $p(m)$ and use this expression to compute α.

Let W denote the random variable that stores the number of internal bits that were used for the computation of the first $\frac{m}{6}$ keystream bits. Moreover, let W^{\prime} store the number of keystream bits that were computed from 6 internal bits. These definitions imply

$$
W=6 \cdot W^{\prime}+4 \cdot\left(\frac{m}{6}-W^{\prime}\right)
$$

The number of internal bits that have not been read after the $\frac{m}{6}$ keystream bits have been produced is given by

$$
m-W=m-\left(6 \cdot W^{\prime}+4 \cdot\left(\frac{m}{6}-W^{\prime}\right)\right)=\frac{1}{3} m-2 W^{\prime}
$$

We obtain the following recurrence relation for $p(m)$.

$$
\begin{aligned}
p(m) & =\sum_{i=0}^{\frac{m}{6}}\left(2^{-\frac{m}{6}} \operatorname{Pr}\left[W^{\prime}=i\right] \cdot \sum_{j=\left(\frac{1}{3} m-2 i\right) / 6}^{\left(\frac{1}{3} m-2 i\right) / 6} 2^{-j} p\left(\frac{1}{3} m-2 i, j\right)\right) \\
& =\sum_{i=0}^{\frac{m}{6}} 2^{-\frac{m}{6}} \operatorname{Pr}\left[W^{\prime}=i\right] \cdot p\left(\frac{1}{3} m-2 i\right)
\end{aligned}
$$

Since W^{\prime} is $\left(\frac{m}{6}, \frac{1}{4}\right)$-binomially distributed (cf. Stegemann (2004) for a proof), we can write $\operatorname{Pr}\left[W^{\prime}=i\right]$ as

$$
\operatorname{Pr}\left[W^{\prime}=i\right]=\binom{\frac{m}{6}}{i}\left(\frac{1}{4}\right)^{i}\left(\frac{3}{4}\right)^{\frac{m}{6}-i}
$$

which implies

$$
p(m)=\sum_{i=0}^{\frac{m}{6}} 2^{-\frac{m}{6}}\binom{\frac{m}{6}}{i}\left(\frac{1}{4}\right)^{i}\left(\frac{3}{4}\right)^{\frac{m}{6}-i} \cdot p\left(\frac{1}{3} m-2 i\right)
$$

With $p(m)=2^{-\alpha m}$, we obtain a recurrence relation for α :

$$
\begin{aligned}
2^{-\alpha m} & =\sum_{i=0}^{\frac{m}{6}} 2^{-\frac{m}{6}}\binom{\frac{m}{6}}{i}\left(\frac{1}{4}\right)^{i}\left(\frac{3}{4}\right)^{\frac{m}{6}-i} \cdot 2^{-\alpha\left(\frac{1}{3} m-2 i\right)} \\
& =2^{-\left(\frac{1}{6}+\frac{\alpha}{3}\right) m} \sum_{i=0}^{\frac{m}{6}}\binom{\frac{m}{6}}{i}\left(\frac{1}{4}\right)^{i}\left(\frac{3}{4}\right)^{\frac{m}{6}-i} \cdot 2^{2 \alpha i}
\end{aligned}
$$

Lemma 5.45 implies that this equation is equivalent to

$$
\begin{aligned}
2^{-\alpha m} & =2^{-\left(\frac{1}{6}+\frac{\alpha}{3}\right) m}\left(\frac{1}{4}\right)^{\frac{m}{6}}\left(3+2^{2 \alpha}\right)^{\frac{m}{6}} \\
\Longleftrightarrow 2^{-6 \alpha} & =2^{-(1+2 \alpha)} \frac{1}{4}\left(3+2^{2 \alpha}\right) \\
\Longleftrightarrow 2^{1-4 \alpha} & =\frac{1}{4}\left(3+2^{2 \alpha}\right) \\
\Longleftrightarrow 2\left(2^{2 \alpha}\right)^{-2}-\frac{1}{4}\left(2^{2 \alpha}\right)-\frac{3}{4} & =0
\end{aligned}
$$

By substituting $u:=2^{2 \alpha}$, i.e., $\alpha=\frac{1}{2} \log u$, we finally obtain

$$
u^{3}+3 u^{2}-8=0
$$

The read-once Algorithm 10 tests for a given internal bitstream w and an observed keystream z whether z could have been produced by w. In order to transform Algorithm 10 into an FBDD, we proceed as follows. We first convert the function output-test into an output $-\operatorname{FBDD}\left(i, u, v, v^{\prime}, t\right)$. Let out $\left[r_{j}\right]$ denote the value of the variable $w_{i\left[r_{j}\right]}^{r_{j}}$ for $j \in\{0,1,2\}$ and let

$$
\hat{v}^{\prime}:= \begin{cases}\operatorname{out}\left[r_{0}\right] \oplus \operatorname{out}\left[r_{1}\right] \oplus \operatorname{out}\left[r_{2}\right] & u=\text { NIL } \\ \operatorname{out}\left[r_{0}\right] \oplus \operatorname{out}\left[r_{1}\right] \oplus v^{\prime} & u \neq \text { NIL }\end{cases}
$$

Then, output $-\operatorname{FBDD}\left(i, u, v, v^{\prime}, t\right)$ is a complete binary tree of depth 2 if $u \neq$ NIL and a complete binary tree of depth 1 if $u=$ NIL with

$$
q_{j}=\left\{\begin{array}{cl}
\text { control }-\operatorname{FBDD}\left(i, u, v, \hat{v}^{\prime}, \text { out }, t\right) & \text { if } \hat{v}^{\prime}=w_{t} \\
0-\operatorname{sink} & \text { otherwise }
\end{array}\right.
$$

If there exists an $r \in\{0,1,2\} \backslash\{u\}$ such that $6 \cdot i[r]+r \geq m$, then

$$
\text { output }-\operatorname{FBDD}\left(i, u, v, v^{\prime}, t\right)
$$

is identical to the 1 -sink. Similarly, in order to convert the function control - test into a

$$
\text { control }-\operatorname{FBDD}\left(i, u, v, v^{\prime}, \text { out }, t\right)
$$

let $c\left[r_{j}\right]$ denote the value of $w_{i\left[r_{j}\right]}^{3+r_{j}}$, set

$$
\text { controlbit }:=\left\{\begin{array}{ll}
\operatorname{maj}_{3}\left(c\left[r_{0}\right], c\left[r_{1}\right], c\left[r_{2}\right]\right) & \text { if } u=\mathrm{NIL} \\
\operatorname{maj}_{3}\left(c\left[r_{0}\right], c\left[r_{1}\right], v\right) & \text { if } u \neq \mathrm{NIL}
\end{array},\right.
$$

and define $\hat{i}, \hat{u}, \hat{v}$, and \hat{v}^{\prime} as in the function control - test.
control $-\operatorname{FBDD}\left(i, u, v, v^{\prime}, t\right)$ is then a complete binary tree of depth 2 if $u \neq$ NIL and a complete binary tree of depth 1 if $u=$ NIL with

$$
q_{j}=\text { output }-\operatorname{FBDD}\left(\hat{i}, \hat{u}, \hat{v}, \hat{v}^{\prime}, t+1\right) .
$$

As above, if there exists an $r \in\{0,1,2\} \backslash\{u\}$ such that $6 \cdot i[r]+3+r \geq m$, then control $-\operatorname{FBDD}\left(i, u, v, v^{\prime}, t\right)$ is identical to the 1 -sink.

Altogether, the FBDD Q_{m} is given by

$$
\text { output - FBDD }([0,0,0], \text { NIL, NIL, NIL, } 0) .
$$

Since the sub-FBDDs output - FBDD and control - FBDD have constant sizes and there are at most $\mathcal{O}\left(m^{4}\right)$ different sub-FBDDs, the size of Q_{m} satisfies $\left|Q_{m}\right| \in \mathcal{O}\left(m^{4}\right)$.

Ignoring the current position t in the keystream and omitting the test whether $z_{t}=\hat{v}^{\prime}$ in the function output - test, we can straightforwardly derive from Q_{m} the oracle graph G_{m}^{0} that defines the order in which the bits of the w_{j} are read in Q_{m}. It is easy to see that $\left|G_{m}^{0}\right| \in \mathcal{O}\left(m^{3}\right)$.

```
Algorithm \(10 \mathrm{~A} 5 / 1-Q_{m}(w, z)\)
    \(/ / w\) is interpreted as \(w=w_{0}^{0}, \ldots, w_{0}^{5}, \ldots, w_{j}^{0}, \ldots, w_{j}^{5}, \ldots, w_{m-1 \operatorname{div} 6}^{m-1 \bmod 6}\)
    export \(w, m, z / /\) global variables
    return output-test([0,0,0],NIL,NIL,NIL, 0 )
```

The definition of A5/1 implies that the keystream function reads the bits produced by a fixed LFSR $R^{j}, j \in\{0, \ldots 5\}$, in canonical order. Hence, the reading order π_{m}^{j} defined by $\pi_{m}^{j}(i):=i$ div k for $i \equiv j \bmod 6$ is consistent with G_{m}^{0} in the sense of Definition 5.11. Observation 5.12 then implies that the $\pi_{m}^{j}{ }^{-}$ OBDD S_{m} with $j=(m-1) \bmod 6$ constructed according to Corollary 5.23 and Remark 5.24 is a G_{m}^{0}-FBDD.

Obviously, at most $\frac{m}{4}$ keybits are produced from an internal bitstream of length m, which implies $\gamma=\frac{1}{4}$.

In summary, we obtain by plugging the computed values into the statements of Theorem 5.18:

Corollary 5.33 (Krause (2002)). From a prefix of length $\lceil 1.14 n\rceil$ of a keystream $y=C_{m}(L(x))$ produced by an A5/1 keystream generator of key length n, an initial state \tilde{x} with $C_{m}(L(\tilde{x}))=y$ can be computed in time and with space in $\mathcal{O}\left(n^{10} \cdot 2^{0.6403 n}\right)$, i.e, with $2^{0.6403 n}=2^{41}$ polynomial-time operations for $n=64$.

We note that since $\lceil 1.14 n\rceil=73$ and the framelength in GSM is 114 Bits for each direction, we only need the first frame, i.e., the first around 4.6 milliseconds, of a conversation in order to reconstruct the initial state of the keystream generator.

5.5.4 TRIVIUM

Trivium (see Section 4.2.4) is a regularly clocked keystream generator consisting of three interconnected NFSRs R^{0}, R^{1}, R^{2} of lengths $n^{(0)}=93, n^{(1)}=84$, and $n^{(2)}=111$. The 288 -bit initial state of the generator is derived from an 80 bit

```
function output-test \(\left(i, u, v, v^{\prime}, t\right)\)
// \(i=\) current read positions
// \(u=\) unchanged index \(\in\{0,1,2, N I L\}\)
// \(v=\) unchanged control value \(\in\{0,1, N I L\}\)
// \(v^{\prime}=\) unchanged output value \(\in\{0,1, N I L\}\)
// \(t=\) current position in the keystream
if \(\exists r \in\{0,1,2\} \backslash\{u\}: 6 \cdot i[r]+r \geq m\) then
    return true
end if
Read \(:=\{0,1,2\} \backslash\{u\}\)
Let \(r_{0}, \ldots, r_{\mid \text {Read } \mid-1}\) the elements of Read in ascending order, i.e. \(r_{m}<r_{n}\)
for \(m<n\)
out \(\left[r_{0}\right]:=w_{i\left[r_{0}\right]}^{r_{0}}\)
\(\operatorname{out}\left[r_{1}\right]:=w_{i\left[r_{1}\right]}^{r_{1}}\)
if \(u \neq N I L\) then // \(\exists\) an unchanged index
    out \([u]:=v^{\prime} / /\) copy the unchanged output value
else // all read positions incremented
    out \(\left[r_{2}\right]:=w_{i\left[r_{2}\right]}^{r_{2}} / /\) read the third output value
end if
\(\hat{v}^{\prime}:=\) out \([0] \oplus\) out \([1] \oplus\) out \([2]\)
if \(z_{t} \neq \hat{v}^{\prime}\) then
    return false // keystream inconsistent
end if
return control-test \(\left(i, u, v, \hat{v}^{\prime}\right.\), out,\(\left.t\right)\)
```

key and an 80 bit IV. The keystream function computes a keystream bit z_{t} by linearly combining six bits of the internal state, with each NFSR contributing two bits (cf. Section 4.2.4 for details). In order to mount the BDD-attack on Trivium, we write the keystream function as

$$
z_{t}=g_{1}\left(s_{1}, s_{94}, s_{178}\right) \oplus s_{28} \oplus s_{109} \oplus s_{223}
$$

and proceed as described in Section 5.4.1 by adding an LFSR R^{3} which computes g_{1} to the generator. For π_{m} equal to the canonical reading order, we have $p_{i}=$ $\max _{1 \leq t \leq 288}\left\{\left|\mathrm{AM}_{\pi_{m}}\left(\tilde{f}^{i}, t\right)\right|\right\}+1=2$ and $s_{i}=\frac{1}{4}$ for $i \in\{0,1,2\}$ as well as $p_{3}=1$ and $s_{3}=\frac{1}{4}$, which implies $p=\sum_{i=0}^{3} p_{i} s_{i}=\frac{7}{4}$. Since the modified generator computes one keystream bit from four internal bits, we have $\beta(m)=\frac{1}{4} m$ and $\alpha=\gamma=\frac{1}{4}$. Based on Lemma 5.22, we can obviously construct a π_{m}-OBDD Q_{m} with $w\left(Q_{m}\right) \leq 2$ that performs the consistency test for the observed keystream z.

Observation 5.34. For Trivium we have $\operatorname{Pr}_{w}\left[C_{m}(w)\right.$ is prefix of $\left.z\right]=p_{C}(m)=$ $2^{-\left|C_{m}(w)\right|}$, i.e., the Independence Assumption holds.

Proof. Let $\tilde{z}=\left(\tilde{z}_{1}, \ldots, \tilde{z}_{|\tilde{z}|}\right)$ denote an arbitrary $|\tilde{z}|$-bit keystream. Since $w^{(m)}$ is randomly chosen and uniformly distributed, we have

$$
\underset{w}{\operatorname{Pr}}\left[z_{1}=w_{1}+w_{28}+w_{94}+w_{109}+w_{178}+w_{223}=\tilde{z}_{1}\right]=\frac{1}{2} .
$$

```
function control-test \(\left(i, u, v, v^{\prime}\right.\), out,\(\left.t\right)\)
if \(\exists r \in\{0,1,2\} \backslash\{u\}: 6 \cdot i[r]+3+r \geq m\) then
    return true
end if
Read \(:=\{0,1,2\} \backslash\{u\}\)
Let \(r_{0}, \ldots, r_{\mid \text {Read } \mid-1}\) the elements of Read in ascending order, i.e. \(r_{m}<r_{n}\)
for \(m<n\)
\(c\left[r_{0}\right]:=w_{i\left[r_{0}\right]}^{3+r_{0}}\)
\(c\left[r_{1}\right]:=w_{i\left[r_{1}\right]}^{3+r_{1}}\)
if \(u \neq N I L\) then // \(\exists\) an unchanged index
    \(c[u]:=v / /\) copy the unchanged control value
else // all read positions incremented
    \(c\left[r_{2}\right]:=w_{i\left[r_{2}\right]}^{3+r_{2}} / /\) read the third control value
end if
controlbit \(:=\operatorname{maj}_{3}(c[0], c[1], c[2])\)
if \(\exists r \in\{0,1,2\}: c[r] \neq\) controlbit then
    // By definition of \(m a j_{3}, \exists\) at most one such \(r\)
    \(\hat{u}:=r / /\) set unchanged index
    \(\hat{v}:=\) controlbit \(\oplus 1 / /\) set unchanged control value
    \(\hat{v}^{\prime}:=\) out \([r] / /\) set unchanged output value
else // all read positions incremented
    \(\hat{u}:=\hat{v}:=\hat{v}^{\prime}:=N I L\)
end if
for \(l \in\{0,1,2\}\) do
    \(\hat{i}[l]:=i[l]+ \begin{cases}1 & l \neq u \\ 0 & l=u\end{cases}\)
end for
return output-test \(\left(\hat{i}, \hat{u}, \hat{v}, \hat{v}^{\prime}, t+1\right)\)
```

Three of the six internal bits utilized in the computation of a particular keybit will be reused in later steps, but each step also involves three previously unconsidered bits. Hence, the claim follows by induction.

By plugging α, γ and p into the statement of Theorem 5.18, we obtain:
Theorem 5.35. The secret initial state of the Trivium automaton can be recovered from the first n keystream bits in time and with space in $\mathcal{O}\left(n \cdot 2^{0.65625 n}\right) \approx$ 2^{189} for $n=288$.

Theorem 5.35 shows that the BDD-attack is applicable to Trivium, but its performance is not competitive with recently published attacks requiring only 2^{45} operations as described in Section 4.2.4.

5.5.5 Grain-128

The regularly clocked stream cipher Grain-128 (see Section 4.2.5) has a key size of 128 bits and an IV size of 96 bits. The design is based on two interconnected shift registers, an LFSR R^{0} and an NFSR R^{1}, both of lengths $n^{(0)}=n^{(1)}=128$ and a nonlinear keystream function. We denote the content of the LFSR by $s_{t}, s_{t+1}, \ldots, s_{t+127}$ and the content of the NFSR by $b_{t}, b_{t+1}, \ldots, b_{t+127}$. The corresponding update functions and the keystream function are given in Section 4.2.5.

We add to the keystream generator an NFSR R^{2} which computes the keystream bits z_{t} and have the generator output the values produced by R^{2} in each clock.

More precisely, we can compute z_{t} as

$$
\begin{aligned}
& z_{t}=g_{1}\left(b_{t+2}, b_{t+15}, b_{t+36}, b_{t+45}, b_{t+64}, b_{t+73}, b_{t+89}, b_{t+12}, s_{t+8}, s_{t+13}, s_{t+20},\right. \\
& \left.\quad s_{t+60}, s_{t+79}\right) \oplus b_{t+95} g_{2}\left(s_{t+42}\right) \oplus g_{3}\left(b_{t+12}\right) b_{t+95} s_{t+95},
\end{aligned}
$$

where $g_{2}\left(s_{t+42}\right)=s_{t+42}$ and $g_{3}\left(b_{t+12}\right)=b_{t+12}$ and g_{1} contains 3 monomials of degree 2.

Hence, we can compute one keystream bit from 3 internal bits, which implies $\beta(m)=\frac{1}{3} m$ and $\alpha=\gamma=\frac{1}{3}$. For π_{m} equal to the canonical reading order, it is $p_{0}=1$, and we have $p_{1}=\max _{0 \leq i \leq 117}\left\{\left|\operatorname{AM}_{\pi_{m}}\left(\tilde{f}^{1}, t+i\right)\right|\right\}+1=4$, and $p_{2}=\max _{0 \leq i \leq 95}\left\{\left|\mathrm{AM}_{\pi_{m}}\left(\tilde{f}^{2}, t+i\right)\right|\right\}+1=4$. Hence, $p=\frac{1}{3}+\frac{4}{3}+\frac{4}{3}=3$. Obviously, the consistency test for an observed keystream can be performed by a π_{m}-OBDD Q_{m} with $w\left(Q_{m}\right) \leq 2^{3}=8$ according to Lemma 5.22. Since new bits are utilized in the computation of each keybit, we can expect the Independence Assumption to hold.

Hence, the application of Theorem 5.18 yields
Theorem 5.36. The secret initial state of the Grain automaton can be recovered from the first n keystream bits in time and with space in $\mathcal{O}\left(n \cdot 2^{0.6 n}\right) \approx 2^{154}$ for $n=256$.

Compared to the attacks listed in Section 4.2.5, although far from the effort required by exhaustive key search, Theorem 5.36 is to the best of our knowledge the first exploitable cryptanalytic result under realistic assumptions besides generic time-memorv-data-tradeoff attacks as presented by Biryukov and Shamir (2000).

5.5.6 The F-FCSR Stream Cipher Family

The F-FCSR stream cipher family in its current version consists of the variants F-FCSR-H and F-FCSR-16 (see Section 4.2.6).

F-FCSR-H has key length 80 bits and consists of a single Galois FCSR M of length $n=160$ and a feedback tap vector d of Hamming weight 83. Memory cells are only present at those 82 positions $i \in\{1, \ldots, n-1\}$, for which $d_{i}=1$. At each clock, eight keystream bits b_{i} are created by taking the XOR-sum of up to 15 variables of the current internal state (cf. Section 4.2.6 for details).

In order to mount the BDD-attack, we split the FCSR into the main register R^{0} and the carry register R^{1}. Since each keystream bit is computed as the sum of up to 15 internal bits, we are in a similar situation as described in Example 5.19 and need additional LFSRs R^{2}, \ldots, R^{9} to compute the keystream bits $z_{i}, 0 \leq i<8$. The modified keystream function simply returns these bits in each clock. With $l:=\mathrm{wt}(d)-1$ we obtain eight keystream bits from $2 l+8$ internal bits, hence $\beta(m)=\frac{8}{2 l+1} m$ and $\alpha=\gamma=\frac{8}{2 l+8}=\frac{2}{43}$. We have $p_{0}=p_{1}=l, p_{i}=1$ for $i \in\{2, \ldots, 9\}, s_{0}=s_{1}=\frac{l}{2 l+8}$, and $s_{i}=\frac{1}{2 l+8}$ for $2 \leq i \leq 9$, which implies $p=\frac{2 l^{2}+1}{2 l+1}$.

Obviously, the consistency test for the observed keystream z can be performed by an OBDD Q_{m} with $w\left(Q_{m}\right) \leq 2$. Since the computation of the keybits involves new internal bits in every clock, we can expect the Independence Assumption to hold. Note that we have l additional unknowns from the initial value of the carry register.

Plugging the computed values into the statement of Lemma 5.17 implies the following theorem.

Theorem 5.37. The secret initial state of the F-FCSR-H automaton can be recovered from the first $n+l$ keystream bits in time and with space in $\mathcal{O}\left(n \cdot 2^{0.9925(n+l)}\right) \approx$ 2^{241} for $n=160$ and $l=82$.

The F-FCSR-16 generator has the same structure as F-FCSR-H, but larger parameters. More precisely, we have key length 128 bits, $n=256$ and the feedback tap vector has Hamming weight 131 (i.e., $l=130$), where memory cells are only present at nonzero tap positions as before. Since F-FCSR-16 produces 16 keystream bits per clock, we construct 16 additional LFSRs that produce these bits. Hence, we can compute 16 keystream bits from $2 l+16$ internal bits, which implies $\beta(m)=\frac{16}{2 l+16} m$ and $\alpha=\gamma=\frac{16}{2 l+16}=\frac{4}{69}$. Analogously to the case of F-FCSR-H, we obtain $p=\frac{2 l^{2}+16}{2 l+16}$. The modified generator satisfies the Independence Assumption as before, and we have $l=130$ additional unknowns.

We obtain by applying Lemma 5.17 :
Theorem 5.38. The secret initial state of the F-FCSR-16 automaton can be recovered from the first $n+l$ keystream bits in time and with space in $\mathcal{O}\left(n \cdot 2^{0.94(n+l)}\right) \approx$ 2^{363} for $n=256$ and $q^{\prime}=8$.

Our analysis supports the security requirement that the Hamming weight of c should not be too small, which Arnault et al. (2006) motivated by completely different arguments. Although the BDD-attack is to the best of our knowledge the first nontrivial attack on the current version of the F-FCSR family, its efficiency is by no means close to exhaustive key search.

5.6 Divide-and-Conquer Strategies (DCS)

One obvious disadvantage of BDD-based attacks is their high memory consumption, which is essentially determined by the size of the intermediate BDDs P_{m}. One possible approach are divide-and-conquer strategies (DCS) that divide the search space, i.e., the set $\{0,1\}^{m}$ of internal bitstreams of length m, into segments and to apply BDD-based attacks to the segments individually.

We represent a segmentation of $\{0,1\}^{m}$ by a function $\theta_{m}:\{0,1\}^{m} \rightarrow\{0,1\}^{*}$ assigning a segment to each internal bitstream. The number of different segments is then given by $\left|\operatorname{im}\left(\theta_{m}\right)\right|$. We denote by θ_{m}^{ς} the characteristic function of segment $\varsigma \in \operatorname{im}\left(\theta_{m}\right)$, i.e.,

$$
\begin{aligned}
\theta_{m}^{\varsigma}:\{0,1\}^{m} & \rightarrow\{0,1\} \\
w & \mapsto \begin{cases}1 & \text { if } \theta_{m}(w)=\varsigma \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Consequently, we denote by Θ_{m}^{ς} the G_{m}^{0}-FBDD representing θ_{m}^{ς}, i.e., the $G_{m}^{0}{ }^{-}$ FBDD that accepts exactly those $w \in\{0,1\}^{m}$ that satisfy $\theta_{m}^{\varsigma}(w)=1$. Based on a segmentation θ_{m}, we can perform the BDD-based attack as outlined in Algorithm 11.

```
Algorithm 11 RecoverInitialState-DCS
    for all \(\varsigma \in \operatorname{im}\left(\theta_{m}\right)\) do
        \(P^{\varsigma}=Q_{n_{\text {min }}} \wedge \Theta_{n_{\text {min }}}^{\varsigma}\)
        for \(m=n_{\text {min }}+1\) to \(\left\lceil\alpha^{-1} n\right\rceil\) do
            \(P^{\varsigma}=\operatorname{MIN}\left(P^{\varsigma} \wedge Q_{m} \wedge S_{m} \wedge \Theta_{m}^{\varsigma}\right)\)
        end for
        if \(\left(P^{\varsigma}\right)^{-1}(1) \neq\{ \}\) then
            return the initial state bits contained in one of the \(w \in\left(P^{\varsigma}\right)^{-1}(1)\)
        end if
    end for
```

In the same way as the original attack described in Algorithm 5, the performance of the DCS-based attack fundamentally depends on the size of the intermediate FBDDs P_{m}^{ς}. Compared to the FBDDs P_{m} in the original attack, P_{m}^{ς} satisfies $\left|\left(P_{m}^{\varsigma}\right)^{-1}(1)\right| \leq\left|\left(P_{m}\right)^{-1}(1)\right|$ due to its construction. Hence,

$$
m \cdot\left|\left(P_{m}^{\varsigma}\right)^{-1}(1)\right| \leq m \cdot\left|\left(P_{m}\right)^{-1}(1)\right|
$$

On the other hand, the construction of P_{m}^{ς} implies

$$
\left|G_{m}^{0}\right| \cdot\left|Q_{m}\right| \cdot\left|R_{m}\right| \cdot\left|\Theta_{m}^{\varsigma}\right| \geq\left|G_{m}^{0}\right| \cdot\left|Q_{m}\right| \cdot\left|R_{m}\right|
$$

i.e., one of the two bounds that we have used to estimate $\left|P_{m}\right|$ in the proof of Lemma 5.17 decreases and the other one increases. We conclude that in general, we will only benefit from a divide-and-conquer strategy if $\left|\Theta_{m}^{\varsigma}\right|$ is small (preferrably polynomial in m) and $\left|\operatorname{im}\left(\theta_{m}\right)\right|$, the number of segments, is not too large, as we have to apply the attack to each segment instead of only once. However, since a particular internal bitstream belongs to exactly one segment, the sets of internal bitstreams mapped to the same segment are disjoint, and the attacks on the individual segments can be efficiently parallelized.

We now consider the special case of setting constant the bits at certain initial positions in the internal bitstream. If $V \subseteq \operatorname{IP}(m),|V| \leq n$, denotes the set of initial positions to be set constant, we define the restriction of $w \in\{0,1\}^{m}$ to the bits at the positions in V as $\left.w\right|_{V}:=\left(w_{i_{1}}, \ldots, w_{i_{|V|}}\right)$ with $i_{j} \in V, i_{j}<i_{k}$ for $j<k$, and the corresponding segmentation function as

$$
\begin{aligned}
\theta_{m, V}:\{0,1\}^{m} & \rightarrow\{0,1\}^{|V|} \\
w & \left.\mapsto w\right|_{V}
\end{aligned}
$$

We call a position $j \geq 1$ a V -determined position in $w=\left(w_{0}, \ldots, w_{m-1}\right)$ if $j \in V \cup\{0, \ldots, m-1\}$ or if the value of w_{j} is determined by the bits $w_{l}, l \in V$.

We note that $\left|\operatorname{im}\left(\theta_{m, V}\right)\right|=2^{|V|}$ and that the construction of the G_{m}^{0}-FBDD $\Theta_{m, V}^{\varsigma}$ is trivial, while its size is bounded by $\left|\Theta_{m, V}^{\varsigma}\right| \in \mathcal{O}(|V|)$. The attack on an individual segment $\varsigma \in\{0,1\}^{|V|}$ only needs to regard the bits at the $n-|V|$ non-constant initial positions as unknowns, and in the worst case, there are no V-determined positions except for those in V. The DCS-based attack on a single segment therefore corresponds (in the worst case) to the original attack with reduced key length. Following the lines of the proof of Lemma 5.17 we straightforwardly obtain

Theorem 5.39. For an FSR-based keystream generator fulfilling the requirements of Lemma 5.17 and a divide-and-conquer strategy based on setting constant the bits at initial positions $j \in V,|V| \leq n$, the divide-and-conquer algorithm (Algorithm 11) will consume time in the order of $\mathcal{O}\left(2^{|V|} \epsilon(n)\left|Q_{n}\right||V| 2^{r^{*}}\right)$ and memory in the order of $\mathcal{O}\left(\epsilon(n)\left|Q_{n}\right||V| 2^{r^{*}}\right)$, with $r^{*}:=\frac{p(1-\alpha)}{p+\alpha}(n-|V|)$.

5.6.1 DCS for regularly clocked (k, l)-Combiners

Based on Theorem 5.39, we analyze two particular choices for V that are applicable to regularly clocked (k, l)-combiners, e.g., the E_{0} keystream generator.

First, we define V to contain exactly the positions of the first s initial bits of each FSR. In the worst case, there are no V-determined positions besides the positions in V.

For a segment $\varsigma \in \operatorname{im}\left(\theta_{m, V}\right)$, a BDD-based search of the corresponding segment requires as much effort as the original BDD-attack on a (k, l)-combiner of key length $(n-k s)$. We therefore obtain $r^{*}=\frac{k-1}{k+1}(n-k s)$ and the exponential part of the overall runtime becomes

$$
2^{k s+\frac{k-1}{k+1}(n-k s)}=2^{\frac{k-1}{k+1} n+\frac{2 k}{k+1} s}
$$

which is by a factor of $2^{\frac{2 k}{k+1} s}$ worse than in the original attack. On the other hand, the required memory is reduced by a factor of $2^{\frac{k-1}{k+1} k s}$.

We note that we only need to consider the assignments to the positions in V that are consistent with z. If the combination of the first s initial bits in each register determines the values of the first s keystream bits (E_{0} has this property, for instance), Lemma 5.15 implies that it is sufficient to consider around $\left|\{0,1\}^{(1-\alpha) k s}\right|=2^{(k-1) s}$ of the $\left|\operatorname{im}\left(\theta_{m, V}\right)\right|=2^{k s}$ possible segments, which makes the runtime decrease by a factor of 2^{s} to

$$
2^{\frac{k-1}{k+1} n+\frac{k-1}{k+1} s}
$$

Lemma 5.40. For a regularly clocked (k, l)-combiner fulfilling the requirements of Lemma 5.1才 and the divide-and-conquer strategy of setting constant the first s bits produced by each FSR, the divide-and-conquer algorithm (Algorithm 11) will consume time in the order of $\mathcal{O}\left(\epsilon(n)\left|Q_{n}\right| \cdot k s \cdot 2^{\frac{k-1}{k+1}(n+s)+s}\right)$ and memory in the order of $\mathcal{O}\left(\epsilon(n)\left|Q_{n}\right| \cdot k s \cdot 2^{\frac{k-1}{k+1}(n-k s)}\right)$. If the combiner always produces s keystream bits from the registers' first s initial bits, the runtime decreases by a factor of 2^{s}.

The E_{0} keystream generator is a regularly clocked (4,4)-combiner, which implies

Corollary 5.41. For the E_{0} keystream generator with key length $n=128$, choosing V to contain the positions of the first s initial bits of each LFSR yields a runtime of the DCS-based attack of $2^{0.6(128+s)}$ polynomial time operations and a memory consumption in the order of $2^{0.6(128-4 s)}$.

As a second example, we choose as V the set of all initial positions that belong to the shortest FSR, w.l.o.g. the FSR R^{0}. If we denote by $n_{0} \leq \frac{n}{k}$ the length of $R^{0},\{0,1\}^{n_{0}}$ is the set of all possible initial states of R^{0}. Since every k-th position of an internal bitstream w is V-determined, the attack on a particular segment corresponds to the performance of the original BDD-attack on a $(k-1, l)$-combiner of key length $n-n_{0}$, hence $r^{*}=\frac{k-2}{k}\left(n-n_{0}\right)$. It is easy to see that for $n_{0} \leq \frac{n}{k+1}$, we have

$$
|V|+r^{*}=n_{0}+\frac{k-2}{k}\left(n-n_{0}\right) \leq \frac{k-1}{k+1} n,
$$

which means that for sufficiently small n_{0}, we even obtain a runtime improvement in addition to the significantly reduced space consumption.

Lemma 5.42. For a regularly clocked (k, l)-combiner fulfilling the requirements of Lemma 5.1才, n_{0} the length of the shortest FSR, and the divide-and-conquer strategy of setting constant the shortest FSR, the divide-and-conquer algorithm (Algorithm11) will consume time in the order of $\mathcal{O}\left(\epsilon(n)\left|Q_{n}\right| \cdot n_{0} \cdot 2^{n_{0}+\frac{k-2}{k}\left(n-n_{0}\right)}\right)$ and memory in the order of $\mathcal{O}\left(\epsilon(n)\left|Q_{n}\right| \cdot n_{0} \cdot 2^{\frac{k-2}{k}\left(n-n_{0}\right)}\right)$.

In the case of the E_{0} keystream generator, we have $n_{0}=25 \leq 25.6=\frac{128}{4+1}$ and obtain

Corollary 5.43. For the E_{0} keystream generator with key length $n=128$, choosing V to be the set of all initial positions that belong to the LFSR of length $n_{0}=25$ (the shortest LFSR) yields a runtime of the DCS-based attack of $2^{25+\frac{1}{2} 103}=2^{76.5}$ polynomial-time operations and a memory consumption in the order of $2^{51.5}$.

Compared to the original BDD-attack, we have improved the memory consumption by a factor of about 2^{25} and the runtime by a factor of $2^{0.3}$.

Shaked and Wool (2006) set constant the last parts of the LFSRs in E_{0} (60 bits in total) and thereby lowered the memory requirements to 2^{23} while increasing the runtime to the order of 2^{83}.

5.6.2 DCS for the A5/1 Generator

In the following, we compute the information rate of the $\mathrm{A} 5 / 1$ generator with respect to a family of choices for the set V, particularly those defined by setting constant the initial states of one or more LFSRs. As stated in Section 5.5.3, in the unmodified definition of the $\mathrm{A} 5 / 1$ generator, each of the three LFSRs is divided into two, approximately equally long halfs, a value-half consisting of the output cell and the cells between output and clock-control cell and a control half consisting of the clock-control cell and the rest of the register. Since the value-LFSRs and the control-LFSRs in the modified setting correspond to the value-halfs and the control-halfs in the unmodified case, setting constant the initial states of LFSRs or half-LFSRs in the original definition is equivalent to fixing the corresponding LFSRs in the modified case.

For all natural numbers $i \geq 1$, we denote by Z_{i} and W_{i} the random variables corresponding to the i-th keystream bit and the number of internal bits processed for the production of the i-th keystream bit, respectively, taken over the probability space of all random internal bitstreams. In all cases, Z_{i} and W_{i} will fulfill the following conditions.

- For all $i>1, W_{i}$ is independent of W_{1}, \ldots, W_{i-1}, and Z_{i} is independent of Z_{1}, \ldots, Z_{i-1}.
- $\operatorname{Pr}\left[Z_{i}=0\right]=\operatorname{Pr}\left[Z_{i}=1\right]=\frac{1}{2}$.
- There are natural numbers $a>b>c$ and probabilities p, q and $r=1-p-q$ such that $\operatorname{Pr}\left[W_{i}=a\right]=p, \operatorname{Pr}\left[W_{i}=b\right]=q$, and $\operatorname{Pr}\left[W_{i}=c\right]=r$.

We denote the situation that Z_{i} and W_{i} fulfill the above conditions as case $[(p, a),(q, b),(r, c)]$. It can be easily checked that the unrestricted A5/1 generator corresponds to case $[(1 / 4,6),(3 / 4,4),(0,0)]$. We will see below that all generators derived from the $\mathrm{A} 5 / 1$ generator by setting constant one or more of the six LFSRs correspond to $[(p, a),(q, b),(r, c)]$ for some p, q, r, a, b, c. We may then compute the information rate α with the help of the following Theorem.
Theorem 5.44. In the case $[(p, a),(q, b),(r, c)]$, the information rate equals α, where $t=2^{\alpha}$ is the unique positive real solution of $p t^{a}+q t^{b}+r t^{c}-2=0$.
Note that for the special case $[(1, k), 0,0]$ the information rate is $1 / k$.
In order to prove Theorem 5.44, we need the following technical result.
Lemma 5.45 (Krause (2002)). All natural numbers $N \geq 1$, probabilities $p \in$ $(0,1)$ and real numbers $\beta>0$ satisfy $\sum_{i=0}^{N}\binom{N}{i} p^{i}(1-p)^{N-i} 2^{\beta i}=\left(1-p+p 2^{\beta}\right)^{N}$.
Proof (Theorem 5.44). Since we can obtain the information rate α from $\alpha=-\frac{1}{m} \log _{2} p_{C}(m)$ following Assumption 4.4, we now compute the probability $p_{C}(m)=\operatorname{Pr}_{w}\left[C_{m}(w)\right.$ is prefix of $\left.z\right]$ for the cases that parts of the LFSRs are set constant.

Case $[(p, a),(q, b),(r, c)]$ implies that from all random internal bitstreams of length m, m divisible by a, at least m / a keystream bits are produced. The number of internal bits remaining from m internal bits after the production of m / a keystream bits can be computed as

$$
m-a U-b V-c\left(\frac{m}{a}-U-V\right)=\frac{a-c}{a} m-(a-c) U-(b-c) V,
$$

where U and V denote the number of keystream bits among the first m / a keystream bits for which a and b internal bits are processed, respectively. Note that U is $(p, m / a)$-binomially distributed and that V, under the condition that $U=i$, is $(q /(q+r), m / a-i)$-binomially distributed. We obtain the following relation for $p_{C}(m)$.

$$
\begin{aligned}
p_{C}(m)= & 2^{-\frac{m}{a}} \sum_{i=0}^{\frac{m}{a}} \sum_{j=0}^{\frac{m}{a}-i} \operatorname{Pr}[U=i, V=j] p\left(\frac{a-c}{a} m-(a-c) i-(b-c) j\right), \text { i.e., } \\
2^{-\alpha m}= & 2^{-\frac{m}{a}} \sum_{i=0}^{\frac{m}{a}}\binom{\frac{m}{a}}{i} p^{i}(1-p)^{\frac{m}{a}-i} \\
& \cdot \sum_{j=0}^{\frac{m}{a}-i}\binom{\frac{m}{a}-i}{j}\left(\frac{q}{q+r}\right)^{j}\left(\frac{r}{q+r}\right)^{\frac{m}{a}-i-j} \cdot 2^{-\alpha\left(\frac{a-c}{a} m-(a-c) i-(b-c) j\right)},
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
2^{(1-a \alpha+(a-c) \alpha) \frac{m}{a}}= & \sum_{i=0}^{\frac{m}{a}}\binom{\frac{m}{a}}{i} p^{i}(1-p)^{\frac{m}{a}-i} \cdot 2^{(a-c) \alpha i} \\
& \cdot \sum_{j=0}^{\frac{m}{a}-i}\binom{\frac{m}{a}-i}{j}\left(\frac{q}{1-p}\right)^{j}\left(\frac{r}{1-p}\right)^{\frac{m}{a}-i-j} \cdot 2^{(b-c) \alpha j} .
\end{aligned}
$$

Now, we apply Lemma 5.45 to the inner sum and obtain

$$
2^{(1-n \alpha) \frac{m}{a}}=\sum_{i=0}^{\frac{m}{a}}\binom{\frac{m}{a}}{i} p^{i}(1-p)^{\frac{m}{a}-i} \cdot 2^{(a-c) \alpha i} \cdot\left(\frac{r}{1-p}+\frac{q}{1-p} 2^{(b-c) \alpha}\right)^{\frac{m}{a}-i}
$$

Setting $s:=\frac{r}{1-p}+\frac{q}{1-p} 2^{(b-c) \alpha}$, we get

$$
\begin{aligned}
\left(\frac{2}{s 2^{c \alpha}}\right)^{\frac{m}{a}} & =\sum_{i=0}^{\frac{m}{a}}\binom{\frac{m}{a}}{i} p^{i}(1-p)^{\frac{m}{a}-i} \cdot 2^{((a-c) \alpha-\log (s)) i} \\
& =\left(1-p+p 2^{(a-c) \alpha-\log (s)}\right)^{\frac{m}{a}}
\end{aligned}
$$

Consequently, we obtain by setting $t:=2^{\alpha}$

$$
\frac{2}{s t^{c}}=1-p+p \frac{t^{a-c}}{s} \Leftrightarrow 2=(1-p) s t^{c}+p t^{a}
$$

$s=\frac{r}{1-p}+\frac{q}{1-p} t^{b-c}$ implies $2=r t^{c}+q t^{b}+p t^{a}$, which in turn implies the claim.
We now compute the information rates for restrictions of type $\left(v_{1} v_{2} v_{3} \mid c_{1} c_{2} c_{3}\right) \in$ $\{0,1\}^{6}$, which means that those output LFSRs i in the modified version of the generator for which $v_{i}=1$ and the control LFSRs j for which $c_{j}=1$ are set constant. Note that the unrestricted case corresponds to (000|000). We do not
consider the case of 5 constant LFSRs, since the initial state of the remaining unknown LFSR from a given keystream can be computed in linear time.

For symmetry reasons, certain choices for $\left(v_{1} v_{2} v_{3} \mid c_{1} c_{2} c_{3}\right)$ are equivalent. First, it is easy to see that for all permutations π_{m} of $\{1,2,3\}$, restriction $\left(v_{1} v_{2} v_{3} \mid c_{1} c_{2} c_{3}\right)$ is equivalent to restiction $\left(v_{\pi_{m}(1)}, v_{\pi_{m}(2)} v_{\pi_{m}(3)} \mid c_{\pi_{m}(1)} c_{\pi_{m}(2)} c_{\pi_{m}(3)}\right)$. Furthermore, we observe that with respect to restriction $(v \mid c), v, c \in\{0,1\}^{3}$, the number of internal bits $W(u, V, C)$ processed for the production of the next keystream bit assuming the current values in the control LFSRs are $u \in\{0,1\}^{3}$ equals

$$
\begin{equation*}
W(u, v, c)=\sum_{i, c_{i}=0} f_{i}(u)+\sum_{i, v_{i}=0} f_{i}(u) \tag{5.3}
\end{equation*}
$$

where for $i \in\{1,2,3\}$ the Boolean function $f_{i}:\{0,1\}^{3} \rightarrow\{0,1\}$ is defined to output 1 on u iff the i-th LFSR will be clocked w.r.t. u, more precisely

$$
f_{i}(u)=\left(u_{i} \oplus u_{((i+1) \bmod 3)} \oplus 1\right) \vee\left(u_{i} \oplus u_{((i+2) \bmod 3)} \oplus 1\right) .
$$

Equation (5.3) implies that for all $v, c, u \in\{0,1\}^{3}$ and $i \in\{1,2,3\}, W(u, v, c)=$ $W\left(u, v^{\prime}, c^{\prime}\right)$, where v^{\prime}, c^{\prime} are obtained from v, c by exchanging the i-th component. Hence, restriction $(v \mid c)$ is equivalent to restriction $\left(v^{\prime} \mid c^{\prime}\right)$. It is therefore sufficient to analyze the restrictions (000|100), (100|100), (100|010), (100|110), (000|111), (100|111), and (110|110).

We first consider the restriction (100|100). If the actual content of the output cells of the two non-constant control LFSRs is 00 or 11, then four internal bits will be processed, otherwise two internal bits will be processed. Hence, the corresponding case is $[(1 / 2,4),(1 / 2,2), 0]$ and therefore $\alpha \approx 0.3215$.

Under restriction ($100 \mid 010$), four internal bits will be processed if the actual content of the output cell of the constant control LFSR is $b \in\{0,1\}$ and the actual content of the two non-constant control LFSR is $b b$. If we have $b \bar{b}$ then two, and in all remaining cases 3 internal bits will be processed. Therefore, we are in the case $[(1 / 4,4),(1 / 2,3),(1 / 4,2)]$ and obtain $\alpha \approx 0.3271$.

Under restriction (110|110), two internal bits will be processed if the assignment to the output cells of the constant control LFSRs is 01 or 10 or if all three output cells of the control LFSRs coincide. If the assignment to the output cells of the constant control LFSRs is $b b$ for some $b \in\{0,1\}$ and the random assignment to the remaining control cell is \bar{b}, then the next keystream bit depends only on the constant assignments, and no internal bit will be processed. Hence, in contrast to the above cases, $p_{C}(m)$ and α are not independent of the constant LFSRs and the given keystream. Therefore, we compute only the average information rate over all possible assignments to the constant control and output LFSRs. According to the above observation, the probability that two internal bits are processed for the next keystream bit is $3 / 4$, and the probability that 0 internal bits are processed for the next ouput bit is $1 / 4$. In total, we obtain $[(3 / 4,4),(1 / 4,0), 0]$ and therefore $\alpha \approx 0.6113$.

We can handle the remaining cases with similar arguments.
The information rates for the discussed cases are summarized in Table 5.1.
Lemma 5.46. For the A5/1 keystream generator and the devide-and-conquer strategy of setting constant particular sub-LFSRs as indicated in Table 5.1, the divide-and-conquer algorithm (Algorithm 11) will consume time in the order of $\mathcal{O}\left(2^{|V|} \cdot n^{11} \cdot 2^{r^{*}}\right)$ and memory in the order of $\mathcal{O}\left(n^{11} \cdot 2^{r^{*}}\right)$ with $r^{*}=\frac{1-\alpha}{1+\alpha} n$.

Table 5.1: Information rates α for the restricted A5/1

$\|V\|$	restriction	α	r^{*}	$\|V\|+r^{*}$
$\frac{2}{3} n$	$(100 \mid 111)$	0.6430	$0.2173 n$	$0.8840 n$
	$(110 \mid 110)$	0.6113	$0.2412 n$	$0.9079 n$
$\frac{1}{2} n$	$(000 \mid 111)$	0.4386	$0.3902 n$	$0.8902 n$
	$(100 \mid 110)$	0.4261	$0.4024 n$	$0.9024 n$
$\frac{1}{3} n$	$(000 \mid 110)$	0.3271	$0.5070 n$	$0.8403 n$
	$(100 \mid 100)$	0.3215	$0.5134 n$	$0.8467 n$
$\frac{1}{6} n$	$(000 \mid 100)$	0.2622	$0.5840 n$	$0.7507 n$
0	$(000 \mid 000)$	0.2193	$0.6403 n$	$0.6403 n$

5.7 Simulations and Experimental Results

In order to provide a fast implementation of the FBDD algorithms, the FBDDlibrary developed by Stegemann (2004) based on the publicly available OBDD package CUDD (Somenzi, 2001) was extended to support divide-and-conquer strategies. We used this library for our experiments on a standard Linux PC with a 2.7 GHz Intel Xeon processor and 4 GB of RAM. All implementations were done in C using the gcc-compiler.

Since the runtime of the cryptanalysis fundamentally depends on the maximum size of the intermediate FBDDs P_{m}, we investigate how much experimentally obtained values of $\left|P_{m}\right|$ deviate from the theoretical figures.

We first consider the basic BDD-based attack. For the self-shrinking generator, the E_{0} generator and the $\mathrm{A} 5 / 1$ generator, we analyzed several thousands of reduced instances with random primitive feedback polynomials and random initial states for various key lengths. For each considered random generator, we computed the actual maximum BDD-size of the intermediate results

$$
P_{\max }(n)=\max _{1 \leq m \leq\left\lceil\alpha^{-1} n\right\rceil}\left\{\left|P_{m}\right|\right\}
$$

the theoretical upper bound

$$
P_{\max }^{t}(n)=\max _{1 \leq m \leq\left\lceil\alpha^{-1} n\right\rceil}\left\{\epsilon(m) \cdot\left|Q_{m}\right| \cdot 2^{\frac{p(1-\alpha)}{p+\alpha} n}\right\}
$$

that was obtained in Lemma 5.17, as well as the quotient $q(n)=\frac{\log \left(P_{\max }(n)\right)}{\log \left(P_{\max }^{t}(n)\right)}$.
Similarly, we tested for E_{0} and A5/1 the divide-and-conquer strategy of setting constant the shortest LFSR (denoted by strategy s1), and we considered fixing the first $s=\left\lfloor\frac{n_{0}}{2}\right\rfloor \leq \frac{n}{8}$ bits of each of the four LFSRs in E_{0} (denoted by strategy s2), with n_{0} the length of the shortest LFSR. Note that ($s 1$) corresponds to the case $(100 \mid 100)$ for the $\mathrm{A} 5 / 1$ generator. Since the $q(n)$-values did not noticeably decrease with increasing n in all our simulations, we estimate the attack's performance in dependence of n by multiplying the theoretical figures by $2^{q(n)}$. Particularly, we can obtain conjectures about the attack's performance on real-life instances of E_{0} and A5/1 by replacing n with the actual key lengths. Tables 5.2 and 5.3 shows the results of these computations along with details about our experiments. We observe that our results are consistent with an
earlier analysis of the basic BDD-based attack on E_{0} and the self-shrinking generator which was conducted by Schleer (2002).

On average, the attack based on DCS (s1) took 87 minutes for E_{0} with $n=37$ and 54 minutes for A5/1 with $n=30$. The longest key lengths that we were able to tackle with the resources described at the beginning of this section were $n=46$ for E_{0} and $n=37$ for A5/1. These attacks used up almost all of the available memory and took 60.5 and 25.1 hours to complete on average.

5.8 Discussion of the BDD-Attack

We observe that when considering only the keystream generator (without the key/IV setup procedure), the BDD-Attack is an efficient generic initial state recovery attack that is faster than exhaustive search for a broad class of stream ciphers. This leads straightforwardly to an efficient attack for older designs like E_{0} and $\mathrm{A} 5 / 1$, whose key length is roughly equal to the internal state size.

From the extended BDD-Attack, e.g. on Trivium, we observe that the BDD approach may still be applied to recover the initial internal state of a keystream generator under the following generalizations.

1. Instead of LFSRs, feedback shift registers with nonlinear update functions are used. This is in contrast to algebraic attacks (to be discussed in the next chapter), which fundamentally depend on the linearity of the update function. The only requirement that we have is that the update relation be balanced.
2. The shift registers influence each other via exchanging update bits.

However, since the adaption of time/memory/data tradeoffs to stream ciphers by Biryukov and Shamir (2000), modern designs incorporate keystream generators whose size is at least twice the key length. Hence, for the BDD-Attack in its current form to yield an actual attack on the whole cipher (including the key/IV setup), we would need $\frac{p(1-\alpha)}{p+\alpha}<\frac{1}{2}$, which means $\alpha>\frac{1}{3}$ for $p=1$. This will rarely be the case for practical designs.

Hence, the generic nature of the BDD-Attack is at the same time its drawback: Currently, we cannot make use of any IV-knowledge and we see no way to efficiently tacke the key/IV setup (usually performing many operations without producing observable output) with our method. Similarly, it seems hard to

Table 5.2: Simulation parameters of the BDD-based attack

generator	DCS	key length interval	avg $q(n)$	no. of samples
E_{0}	-	$[19,37]$	0.85	2000
E_{0}	s 1	$[19,37]$	0.95	2700
E_{0}	s 2	$[19,37]$	0.9	2700
$\mathrm{~A} 5 / 1$	-	$[15,30]$	0.9	3000
$\mathrm{~A} 5 / 1$	s 1	$[19,37]$	0.77	2400
SSG	-	$[10,35]$	0.8	3300

Table 5.3: Performance of the BDD-based attack in practice

generator	D DS	estimated practical performance			
		Time		Space	
E_{0}	-	$2^{0.51 n}$	$2^{65.28}$	$2^{0.51 n}$	$2^{65.28}$
E_{0}	s 1	$2^{0.475\left(n+n_{0}\right)}$	$2^{72.68}$	$2^{0.475\left(n-n_{0}\right)}$	$2^{48.93}$
E_{0}	s 2	$2^{0.54 n+0.27 n_{0}}$	$2^{75.87}$	$2^{0.54 n-1.08 n_{0}}$	$2^{42.12}$
$\mathrm{~A} 5 / 1$	-	$2^{0.5763 n}$	$2^{36.88}$	$2^{0.5763 n}$	$2^{36.88}$
$\mathrm{~A} 5 / 1$	s 1	$2^{0.3953 n+0.77 n_{0}}$	$2^{39.93}$	$2^{0.3953 n}$	$2^{25.30}$
SSG	-	$2^{0.525 n}$		$2^{0.525 n}$	

incorporate the specialities in the cipher operations that are heavily exploited by other, more specific attacks.

It therefore remains as an open question whether the BDD-Approach can be combined with other strategies (e.g., correlation attacks and algebraic attacks which are to be considered in the next chapter) in order to obtain attacks on modern designs whose internal state is much larger than the secret key.

Chapter 6

Other Generic Attacks on Stream Ciphers

In this section, we consider two other prominent generic attacks on stream ciphers - correlation attacks and algebraic attacks.

A correlation attack consists of finding and exploiting linear functions

$$
L\left(X_{t}, \ldots, X_{t+r-1}, z_{t}, \ldots, z_{t+r-1}\right)
$$

which are biased, i.e., equal to zero with some probability $\neq 1 / 2$. Algebraic attacks, in a way, mark the opposite. Here, non-linear equations of preferably low degree that are true with probability one are used to describe the secret information by a system of equations.

The basic ideas of these attacks have been known for quite a few years. The first appearance of correlation attacks dates back to the mid-80s (Siegenthaler, 1985), while algebraic attacks have been discovered around the year 2003 (Armknecht and Krause, 2003, Courtois, 2003, Courtois and Meier, 2003).

In this thesis, we focus on particular variants of correlation attacks and algebraic attacks on LFSR-based combiners with memory, which we describe in Sections 6.1 and 6.2, respectively. We indicate ways to reduce the efficiency of these attacks in Section 6.3 and apply our findings in Section 6.4 to improve the security of the Bluetooth keystream generator E_{0} by relatively small modifications of the original design.

6.1 Correlation Attacks

6.1.1 The Basic Idea

Inspired by Zenner (2004), we first describe the basic ideas behind correlation attacks.

Definition 6.1. We define the bias $\lambda(X)$ of a binary random variable X as

$$
\lambda(X):=\operatorname{Pr}[X=0]-\operatorname{Pr}[X=1]=\mathbb{E}\left[(-1)^{X}\right]
$$

and the correlation between two random variables X and Y as $\lambda(X \oplus Y)$. We call X unbiased if $\lambda(X)=0$, and we say that X and Y uncorrelated if $\lambda(X \oplus Y)=0$.

For $p_{e}(X, Y)$ defined as

$$
p_{e}(X, Y):=\operatorname{Pr}[X \oplus Y=0]=\operatorname{Pr}[X=Y],
$$

we have $\lambda(X \oplus Y)=2 p_{e}(X, Y)-1$, or equivalently $p_{e}(X, Y)=\frac{1}{2}+\frac{\lambda(X \oplus Y)}{2}$. Note that X and Y are uncorrelated if and only if $p_{e}(X, Y)=\frac{1}{2}$.

We first consider the case of combination generators without memory consisting of k FSRs R^{1}, \ldots, R^{k-1} and a keystream function $C:\{0,1\}^{k} \rightarrow\{0,1\}$ (see Section 4.1.1).

The fundamental property that correlation attacks are based on is that the keystream $\left(z_{t}\right)_{t \geq 0}$ and the bitstream $\left(w_{t}^{j}\right)_{t \geq 0}$ produced by FSR $R^{j}, j \in$ $\{0, \ldots, k-1\}$ are correlated, more precisely

$$
\begin{equation*}
\operatorname{Pr}\left[z_{t} \oplus w_{t}^{j}=0\right]=\operatorname{Pr}\left[z_{t}=w_{t}^{j}\right]=p_{e}\left(z_{t}, w_{t}^{j}\right)=\lambda^{\prime} \neq \frac{1}{2} \text { for all } t \tag{6.1}
\end{equation*}
$$

The original correlation attack proposed by Siegenthaler (1985) then proceeds as follows.

1. Make a guess $\tilde{\omega}^{j}(0)$ for the initial state $\omega^{j}(0)$ of R^{j} and compute from $\tilde{\omega}^{j}(0)$ the sequence $\left(\tilde{w}_{t}^{j}\right)_{t \geq 0}$.
2. For a suitably chosen n, compute the sum

$$
\tilde{D}:=\sum_{i=0}^{n-1}\left(\tilde{w}_{i}^{j} \oplus z_{i}\right)
$$

over the integers.
We now distinguish two cases. If the guess in step (1) was correct, \tilde{D} is $\left(n, \lambda^{\prime}\right)$ binomially distributed with expected value $\mu=\lambda^{\prime} n$ and variance $\sigma^{2}=n \lambda^{\prime}(1-$ $\left.\lambda^{\prime}\right)$. On the other hand, if the guess was wrong, $\left(z_{t} \oplus \tilde{w}_{t}^{J}\right)_{t \geq 0}$ behaves like a random sequence, i.e., \tilde{D} is $\left(n, \frac{1}{2}\right)$-binomially distributed with $\mu=\frac{n}{2}$ and $\sigma^{2}=\frac{n}{4}$.

Hence, if we can tell which distribution \tilde{D} was drawn from, we can deduce if our guess $\tilde{\omega}^{j}(0)$ was correct. A straightforward approach is to set a threshold D^{\prime} and to accept $\tilde{\omega}^{j}(0)$ if $\tilde{D}>D^{\prime}$. Otherwise, we assume the guessed initial state was wrong and we try the next one.

With $\left|R^{j}\right|$ denoting the number of cells in register R^{j}, this method will require a number of steps in the order of $2^{\left|R^{j}\right|}$ for recovering $\omega^{j}(0)$, and about $2^{\sum_{i \neq j}\left|R^{i}\right|}$ operations for computing the remaining $k-1$ initial states, which adds up to an overall effort of $2^{\left|R^{j}\right|}+2^{\sum_{i \neq j}\left|R^{i}\right|}$, whereas exhaustive search on the whole initial state of the generator would require $2^{\sum_{i=0}^{k-1}\left|R^{i}\right|}=2^{\left|R^{j}\right|} \cdot 2^{\sum_{i \neq j}\left|R^{i}\right|}$ operations. The number n of required keystream bits to tell apart the two distributions (with a fixed error probability) depends on the value $\left|\frac{1}{2}-\lambda^{\prime}\right|$, i.e., the absolute distance between λ^{\prime} and $\frac{1}{2}$, and will shrink as this distance increases.

This strategy can be straightforwardly extended to correlations of linear combinations of FSR output bits and the keystream implied by

$$
\begin{equation*}
\operatorname{Pr}\left[z_{t}=\oplus_{j=0}^{k-1} \gamma_{j} w_{t}^{j}\right] \neq \frac{1}{2} \text { with } \gamma_{j} \in\{0,1\} \tag{6.2}
\end{equation*}
$$

However, we now have to guess the initial states of all R^{j} with $\gamma_{j}=1$ simultaneously, which leads to an overall effort in the order of

$$
2^{\sum_{j=0}^{k-1} \gamma_{j}\left|R^{j}\right|}+2^{\sum_{j=0}^{k-1}\left(\gamma_{j} \oplus 1\right)\left|R^{j}\right|} .
$$

It is interesting to note that if indeed $z_{t}=\oplus_{j=0}^{k-1} \gamma_{j} w_{t}^{j}$ for a clock cycle t, then the update relations of the FSRs (and sums thereof) continue to hold if we replace the term $\oplus_{j=0}^{k-1} \gamma_{j} w_{t}^{j}$ by z_{t}. Conversely, if a keystream bit z_{t} satisfies a large number of such relations, it is reasonable to assume that $\oplus_{j=0}^{k-1} \gamma_{j} w_{t}^{j}=z_{t}$ and to assume $\oplus_{j=0}^{k-1} \gamma_{j} w_{t}^{j} \neq z_{t}$ if z_{t} satisfies only few. In this way, we can obtain a candidate guess for the registers R^{j} with $\gamma_{j} \neq 0$, which can be incrementally improved in order to obtain the true values. This idea was proposed and formalized by Meier and Staffelbach as Fast Correlation Attack and has constantly been extended and improved since its original publication in 1988 (see, e.g., Hell (2007) as a recent example).

As natural countermeasure against correlation attacks, we would try to use combination functions that induce the lowest possible correlations between the keystream and the FSR bitstreams.

Definition 6.2. A Boolean function $g:\{0,1\}^{k} \rightarrow\{0,1\}$ is said to be r-th order correlation immune if no linear function L depending on up to $r<k$ input variables exists such that $\operatorname{Pr}[L(x)=g(x)] \neq \frac{1}{2}$.

However, there exist at least two tradeoffs that limit the effect of a correlation immune combination function on the overall security of the generator.

Firstly, Siegenthaler (1984), Xiao and Massey (1988) showed that an increase in correlation immunity leads to a lower linear complexity and vice versa. Hence, the output keystream of a highly correlation immune generator will be efficiently reproducible by an LFSR.

For the second tradeoff, we need the following definition.
Definition 6.3. Let $\left\{L_{i} \mid 1 \leq i \leq 2^{k}\right\}$ denote the set of linear functions in up to k variables. The correlation coefficient between a Boolean function $g:\{0,1\}^{k} \rightarrow$ $\{0,1\}$ and L_{i} is defined as $c_{i}=2 \cdot p_{i}-1$ with $p_{i}=\operatorname{Pr}\left[L_{i}(x)=g(x)\right]$.

Meier and Staffelbach (1989) observed that

$$
\begin{equation*}
\sum_{i=1}^{2^{k}} c_{i}^{2}=1 \tag{6.3}
\end{equation*}
$$

i.e., if g is not correlated to any low-weight linear function, it is at the same time even stronger correlated to linear functions with larger weight. Hence, correlations itself can never be prevented.

Rueppel (1986) showed that LFSR-based combiners with memory are able to overcome the tradeoff between correlation immunity and linear complexity, but it turns out that a tradeoff similar to Eq. (6.3) is still possible as soon as correlations are regarded that span several consecutive clock cycles Golió, 1993, 1996, Lu and Vaudenay, 2005, 2004, Salmasizadeh et al., 1997). This is the setting that we are going to consider in the following.

6.1.2 Analysis of the Special Case $C\left(x_{t}, q_{t}\right)=\alpha\left(x_{t}\right) \oplus \beta\left(q_{t}\right)$

We focus on the special case of LFSR-based (k, l)-combiners with memory whose keystream function C can be written as the sum of two functions $\alpha:\{0,1\}^{k} \rightarrow$ $\{0,1\}$ and $\beta:\{0,1\}^{l} \rightarrow\{0,1\}$, i.e.,

$$
\begin{equation*}
C\left(x_{t}, q_{t}\right)=\alpha\left(x_{t}\right) \oplus \beta\left(q_{t}\right) \tag{6.4}
\end{equation*}
$$

in the LFSR output bits $x_{t}=\left(x_{t}^{0}, \ldots, x_{t}^{k-1}\right)$ and the memory state $q_{t}=$ $\left(q_{t}^{0}, \ldots, q_{t}^{l-1}\right)$ at time t. Moreover, we are going to consider only biased linear combinations of $\beta\left(q_{t}\right)$.

Therefore, we look for coefficients $\gamma=\left(\gamma_{0}, \ldots, \gamma_{r-1}\right)$ such that

$$
\begin{equation*}
\lambda(\gamma):=\left(\operatorname{Pr}\left[\bigoplus_{i=0}^{r-1} \gamma_{i} \cdot \beta\left(q_{t+i}\right)=0\right]-\operatorname{Pr}\left[\bigoplus_{i=0}^{r-1} \gamma_{i} \cdot \beta\left(q_{t+i}\right)=1\right]\right) \neq 0 \tag{6.5}
\end{equation*}
$$

Lu and Vaudenay (2005, 2008) showed that the bias $\lambda(\gamma)$ is related to the correlation of the keystream $\left(z_{t}\right)_{t \geq 0}$ and the sequence $\left(x_{t}^{0}\right)_{t \geq 0}$ produced by the shortest LFSR (assume R^{0} for simplicity) by
$\operatorname{Pr}\left[\bigoplus_{i=1}^{w}\left(\gamma_{0}\left(x_{t+v_{i}}^{0} \oplus z_{t+v_{i}}\right) \oplus \ldots \oplus \gamma_{r-1}\left(x_{t+v_{i}+r-1}^{0} \oplus z_{t+v_{i}+r-1}\right)\right)\right]=\frac{1}{2}+\frac{(\lambda(\gamma))^{w}}{2}$,
with w and v_{1}, \ldots, v_{w} depending on the initial state polynomials of the LFSRs. Hence, biased linear combinations of $\beta\left(q_{t}\right)$ imply a vulnerability to a correlation attack, and for the attack to be as efficient as possible, we are interested in coefficient vectors γ yielding

$$
\lambda_{\max }:=\max \{|\lambda(\gamma)|\}
$$

General methods to systematically compute $\lambda_{\max }$ and the corresponding equations exist (e.g., see Golić (1993)), but since their resource consumption is exponential in k, l and r, these methods are only feasible for small parameters.

However, our special case allows for a closed formula for the bias $\lambda(\gamma)$, which we are going to derive in the following.

We assume that for each time $t \geq 1$, there is a separate Boolean function $\beta_{t}:\{0,1\}^{l} \times\{0,1\}^{k} \rightarrow\{0,1\}$ revealing information about q_{t} and x_{t} and define

$$
\begin{aligned}
F^{r}:\{0,1\}^{l} \times\left(\{0,1\}^{k}\right)^{r} & \rightarrow\{0,1\} \\
\left(q_{1}, x_{1}, \ldots, x_{r}\right) & \mapsto \beta_{1}\left(q_{1}, x_{1}\right) \oplus \ldots \oplus \beta_{r}\left(q_{r}, x_{r}\right),
\end{aligned}
$$

where $q_{t+1}:=\delta\left(q_{t}, x_{t}\right)$.
Definition 6.4. We define the bias of a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ as

$$
\lambda(f):=\operatorname{Pr}[f(x)=0]-\operatorname{Pr}[f(x)=1] .
$$

We call f unbiased if $\lambda(f)=0$.
Note that if all inputs x are equally likely, we have $\lambda(f)=2^{-n}\left(\left|f^{-1}(0)\right|-\left|f^{-1}(1)\right|\right)$.
The value $\lambda\left(F^{r}\right)$, for which we now derive a matrix-based expression, corresponds to Eq. (6.5) after setting $\beta_{t}\left(q_{t}, x_{t}\right):=\beta\left(q_{t}\right)$ if $\gamma_{t}=1$ and $\beta_{t}: \equiv 0$ otherwise.

Definition 6.5. For all states $q, q^{\prime} \in\{0,1\}^{l}$, let $p\left(q, q^{\prime}\right)$ denote the probability that state q will change into q^{\prime}, i.e., $p\left(q, q^{\prime}\right)=2^{-k}\left|\left\{x \mid \delta(q, x)=q^{\prime}\right\}\right|$. Additionally, define

$$
\begin{aligned}
b_{t}\left(q, q^{\prime}\right):= & \frac{1}{2^{k}}\left(\left|\left\{x \mid \beta_{t}(q, x)=0 \wedge \delta(q, x)=q^{\prime}\right\}\right|\right. \\
& \left.-\left|\left\{x \mid \beta_{t}(q, x)=1 \wedge \delta(q, x)=q^{\prime}\right\}\right|\right) .
\end{aligned}
$$

We call the matrix $P=\left(p\left(q, q^{\prime}\right)\right)_{q, q^{\prime} \in\{0,1\}^{l}}$ the transition matrix of the memory update function δ and the matrix $B_{t}=\left(b_{t}\left(q, q^{\prime}\right)\right)_{q, q^{\prime} \in\{0,1\}^{l}}$ the bias matrix of δ and β_{t} w.r.t. to time t.

Theorem 6.6. For all $r \geq 1$,

$$
\lambda\left(F^{r}\right)=2^{-l}\left(e^{T}\right) \circ B_{1} \circ \cdots \circ B_{r} \circ e,
$$

where e denotes the constant-1 vector of length 2^{l} and M^{T} denotes the transpose of matrix M.

In order to prove Theorem 6.6, we first collect some observations on computing biases.

- For a given finite set S and functions $f, g: S \rightarrow \mathbb{R}$ we denote by $(f, g)=$ $\frac{1}{|S|} \sum_{s \in S} f(s) g(s)$ a positive definite scalar product on \mathbb{R}^{S}. Note that each Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ satisfies $\lambda(f)=\left((-1)^{f}, 1\right)$.
- Consider two disjoint finite sets S and S^{\prime}, functions $f: S \rightarrow \mathbb{R}$ and $g: S^{\prime} \rightarrow \mathbb{R}$, and let $h: S \times S^{\prime} \rightarrow \mathbb{R}$ be defined by $h\left(s, s^{\prime}\right)=f(s) g\left(s^{\prime}\right)$. Then

$$
\begin{aligned}
(h, 1) & =\frac{1}{|S|\left|S^{\prime}\right|} \sum_{s \in S, s^{\prime} \in S^{\prime}} f(s) g\left(s^{\prime}\right) \\
& =\frac{1}{|S|} \sum_{s \in S} f(s) \frac{1}{\left|S^{\prime}\right|} \sum_{s^{\prime} \in S^{\prime}} g\left(s^{\prime}\right) \\
& =(f, 1)(g, 1) .
\end{aligned}
$$

This implies that for Boolean functions $f:\{0,1\}^{n} \rightarrow\{0,1\}, g:\{0,1\}^{m} \rightarrow$ $\{0,1\}$, and $h:\{0,1\}^{n} \times\{0,1\}^{m} \rightarrow\{0,1\}$, defined by $h\left(s, s^{\prime}\right)=f(s) \oplus g\left(s^{\prime}\right)$, we have $\lambda(h)=\lambda(f) \cdot \lambda(g)$.

Now let us denote by $f^{r}:\{0,1\}^{l} \times\left(\{0,1\}^{k}\right)^{r} \rightarrow \mathbb{R}$ the function $(-1)^{F^{r}}$.
For all $r \geq 1$ and $q \in\{0,1\}^{l}$, we define an additional function

$$
\begin{array}{rll}
f_{q}^{r}:\{0,1\}^{l} \times\left(\{0,1\}^{k}\right)^{r} & \rightarrow\{-1,0,1\} \subseteq \mathbb{R} \\
\left(q_{1}, x_{1}, \ldots, x_{r}\right) & \mapsto \begin{cases}f^{r}\left(q_{1}, x_{1}, \cdots, x_{r}\right) & \text { if } \delta\left(q_{r}, x_{r}\right)=q \\
0 & \text { otherwise },\end{cases}
\end{array}
$$

with $q_{t+1}=\delta\left(q_{t}, x_{t}\right)$ for $i \in\{1, \ldots, r-1\}$, and let $\Gamma_{q}^{r}=\left(f_{q}^{r}, 1\right)$ and $\Gamma^{r}=$ $\left(\Gamma_{q}^{r}\right)_{q \in\{0,1\}^{l}}$. Then $f^{r}=\sum_{q \in\{0,1\}^{l}} f_{q}^{r}$ and $\lambda\left(F^{r}\right)=\sum_{q \in\{0,1\}^{l}} \Gamma_{q}^{r}$.

Theorem 6.6 is now a straightforward consequence of the following Lemma.

Lemma 6.7. For $q \in\{0,1\}^{l}$ and $r \geq 1$, the bias matrices B_{t} from Definition 6.5 satisfy

$$
\left(\Gamma^{r}\right)^{T}=2^{-l}\left(e^{T}\right) \circ B_{1} \circ \cdots \circ B_{r}
$$

Proof. For all $q, q^{\prime} \in\{0,1\}^{l}$ we define

$$
\begin{aligned}
g_{q, q^{\prime}}:\{0,1\}^{k} & \rightarrow\{0,1\} \\
x & \mapsto\left\{\begin{array}{ll}
1 & \text { if } \delta(q, x)=q^{\prime} \\
0 & \text { otherwise }
\end{array} .\right.
\end{aligned}
$$

Observe that for each $t \geq 1$,

$$
\begin{equation*}
\left((-1)^{\beta_{t}(q, \cdot)} g_{q, q^{\prime}}, 1\right)=b_{t}\left(q, q^{\prime}\right) . \tag{6.6}
\end{equation*}
$$

We prove the claim by induction on r. Note that, due to Eq. (6.6), for all $q \in\{0,1\}^{l}$

$$
\Gamma_{q}^{1}=2^{-(k+l)} \sum_{q_{1}, x_{1}}(-1)^{\beta_{1}\left(q_{1}, x_{1}\right)} g_{q_{1}, q}\left(x_{1}\right)=2^{-l} \sum_{q_{1}} b_{t}\left(q_{1}, q\right)
$$

Consequently, $\Gamma^{1}=2^{-l}\left(e^{T}\right) \circ B_{1}$. For $r>1$, the function f_{q}^{r} can be written as

$$
f_{q}^{r}\left(q_{1}, x_{1}, \cdots, x_{r}\right)=\sum_{q^{\prime} \in\{0,1\}^{l}} f_{q^{\prime}}^{r-1}\left(q_{1}, x_{1}, \cdots, x_{r-1}\right)(-1)^{\beta_{r}\left(q^{\prime}, x_{r}\right)} g_{q^{\prime}, q}\left(x_{r}\right)
$$

Hence, by Eq. (6.6), we obtain

$$
\Gamma_{q}^{r}=\sum_{q^{\prime} \in\{0,1\}^{l}} \Gamma_{q^{\prime}}^{r-1} b_{r}\left(q^{\prime}, q\right) \quad \text { and } \quad\left(\Gamma^{r}\right)^{T}=\left(\Gamma^{r-1}\right)^{T} \circ B_{r}
$$

Note that the formula given by Theorem 6.6 can be efficiently evaluated and therefore permits an exhaustive search for the best correlations even for large values of r up to the length of the shortest LFSR.

6.2 Algebraic Attacks

6.2.1 The Basic Idea

Algebraic attacks (Armknecht and Krause. 2003. Courtois. 2003. Courtois and Meier, 2003) are based on solving systems of equations and were, just like correlation attacks, targeted at LFSR-based combination generators without memory, in our notation consisting of k LFSRs R^{0}, \ldots, R^{k-1} and a nonlinear keystream function C that produces from the LFSR output $x_{t}=\left(x_{t}^{0}, \ldots, x_{t}^{k-1}\right)$ a keystream bit $z_{t}=C\left(x_{t}\right)$ in each clock cycle t. At this point, we only describe the basic ideas behind algebraic attacks and refer the interested reader to Armknecht (2006) for a thorough treatment of the subject.

The core of algebraic attacks is to find Boolean functions $F:\{0,1\}^{k \cdot r} \rightarrow$ $\{0,1\}$ of low preferably degree such that for all clocks t,

$$
\begin{equation*}
F\left(x_{t}, \ldots, x_{t+r-1}, z_{t}, \ldots, z_{t+r-1}\right)=0 \tag{6.7}
\end{equation*}
$$

Since the combiner's FSRs are LFSRs by assumption, we can express the bit x_{t}^{j} that LFSR R^{j} produces at time t by a linear function L_{t}^{j} in the initial
state $\omega^{j}(0)$ of R^{j} as $x_{t}^{j}=L_{t}^{j}\left(\omega^{j}(0)\right)$. Hence, collecting equations of the type of Eq. (6.7) yields a system of equations in the secret initial states of the LFSRs.

However, since the keystream function is non-linear, solving the system and thereby recovering the secret initial state is NP-hard in general, so we should not hope for an efficent generally applicable key recovery algorithm based on this strategy, but we may still be fortunate enough to encounter special cases that are sufficiently easy to solve.

This might especially be the case if the number of known keystream bits and therefore the number of equations increases. Let R denote the number of accessible equations and μ the number of occurring monomials. If $R \ll \mu$, a promising method is to compute Groebner bases.

Unfortunately, it seems hard to predict the required time effort, albeit simulations indicate that the neccessary amount of time drops with increasing number of equations (Armknecht and Ars, 2009, Faugère and Ars, 2003).

In the case of $R \approx \mu$, linearization (Courtois et al., 2000) seems to be the first choice. The idea of linearization is to substitute each occurring monomial by a new variable and to treat the whole system as a system of linear equations, making it easily solvable by Gaussian elimination.

For the case that the number of equations exceeds the number of monomials, one might reduce the degree of the equations in a precomputation step. This idea is known as fast algebraic attacks, which have been introduced by Courtois (2003) and further improved by, e.g., Armknecht (2004a). Hawkes and Rose (2004). However, the attack scenario is more restrictive as it requires the attacker to know many successive keystream bits and Eq. (6.7) to have a special structure.

All theses approaches have in common that their runtime strongly depends on the degree d of the incorporated equations. The lower the degree, the faster the attacks. Hence, a natural countermeasure against such attacks is to prevent the existence of low-degree equations.

6.2.2 Analysis of a restricted Scenario

For our analysis, we will concentrate on algebraic attacks where $R \approx \mu$ and μ is approximately $\binom{n}{d}$. If φ denotes the number of functions F of degree d fulfilling Eq. (6.7) and n denotes the total length of the LFSRs, then the amount of data is $\approx\binom{n}{d} / \varphi$, and the required memory and runtime are in $O\left(\binom{n}{d}^{2}\right)$ and $O\left(\binom{n}{d}^{3}\right)$, respectively. Moreover, we now consider the case of (k, l)-combiners with memory, i.e., we have an additional l-bit memory, the keystream bits z_{t} are computed from the LFSR state $x_{t}=\left(x_{t}^{0}, \ldots, x_{t}^{k-1}\right)$ and the memory state $q_{t}=\left(q_{t}^{0}, \ldots, q_{t}^{l-1}\right)$ as $z_{t}=C\left(x_{t}, q_{t}\right)$, while the memory is updated in each clock cycle according to $q_{t+1}=\delta\left(x_{t}, q_{t}\right)$.

In order to formalize that an LFSR output vector $\left(x_{t}, \ldots, x_{r+r-1}\right) \in\left(\{0,1\}^{k}\right)^{r}$ may (in conjunction with a suitable memory state q_{t}) yield a given keystream piece $\left(z_{t}, \ldots, z_{t+r-1}\right)$, we use the notion of an extended output function introduced by Armknecht (2006) (only that we call it the extended keystream function in order to be more consistent with the rest of our notation).

Definition 6.8. For the keystream function $C:\{0,1\}^{k} \times\{0,1\}^{l} \rightarrow\{0,1\}$ of $a(k, l)$-combiner with memory and an integer $r>0$, we define the extended
keystream function C_{Ψ} by

$$
\begin{aligned}
C_{\Psi}:\{0,1\}^{l} \times\left(\{0,1\}^{k}\right)^{r} & \rightarrow\{0,1\}^{r} \\
\left(q, x_{1}, \ldots, x_{r}\right) & \mapsto\left(z_{1}, \ldots, z_{r}\right)
\end{aligned}
$$

with $q_{i+1}=\delta\left(x_{i}, q_{i}\right)$ for $0 \leq i<r$ and $z_{i}=C\left(x_{i}, q_{i}\right)$ for $1 \leq i \leq r$.
With this notion, Armknecht and Krause (2003) adapted the structure of Eq. (6.7) to the setting of combiners with memory.
Definition 6.9. For a $Z=\left(z_{1}, \ldots, z_{r}\right) \in\{0,1\}^{r}$, we call a Boolean function $F_{Z}:\left(\{0,1\}^{k}\right)^{r} \rightarrow\{0,1\}$ a Z-function (with respect to C_{Ψ}) if it is not constant zero and satisfies

$$
\begin{equation*}
C_{\Psi}\left(q, x_{1}, \ldots, x_{r}\right)=Z \Rightarrow F_{Z}\left(x_{1}, \ldots, x_{r}\right)=0 \tag{6.8}
\end{equation*}
$$

for all $q \in\{0,1\}^{l}$ and all $\left(x_{1}, \ldots, x_{r}\right) \in\left(\{0,1\}^{k}\right)^{r}$.
Note that this definition implies that F_{Z} vanishes on all combinations of LFSRinputs over r clock cycles and starting states q that yield the keystream piece Z.

The algebraic attack of Armknecht and Krause (2003) now consists in computing for each $Z \in\{0,1\}^{r}$ a Z-function F_{Z} of the lowest possible degree and to set up the system of equations

$$
F_{\left(z_{t}, \ldots, z_{t+r-1}\right)}\left(x_{t}, \ldots, x_{t+r-1}\right)=0, \quad t=0,1, \ldots,
$$

express the x_{t} in terms of the initial LFSR states and solve the system.
As mentioned earlier, the efficiency of the attack fundamentally depends on the degree of the Z-functions. Therefore, we want to bound the lowest possible Z-function degree that can occur for a given (k, l)-combiner.

Definition 6.10. For a $Z \in\{0,1\}^{r}$, we define

$$
\begin{aligned}
X_{Z, Q} & :=\left\{x \in\left(\{0,1\}^{k}\right)^{r} \mid C_{\Psi}\left(Q, x_{1}, \ldots, x_{r}\right)=Z\right\} \\
X_{Z} & :=\left\{x \in\left(\{0,1\}^{k}\right)^{r} \mid \exists q \in\{0,1\}^{l}: C_{\Psi}\left(q, x_{1}, \ldots, x_{r}\right)=Z\right\}=\bigcup_{Q \in\{0,1\}^{l}} X_{Z, Q}
\end{aligned}
$$

From Eq. (6.8) we deduce that F_{Z} is a Z-function if and only if $F(x)=0$ for all $x \in X_{Z}$. This leads directly to the notion of annihilators.

Definition 6.11. We say that a Boolean function $p:\{0,1\}^{n} \rightarrow\{0,1\}, p \not \equiv 0$, is an annihilator of a subset $A \subseteq\{0,1\}^{n}$ if $p(x)=0$ for all $x \in A$. We denote the set of annihilators of A by $\operatorname{Ann}(A)$. Furthermore, we define for $A \subset\{0,1\}^{n}$

$$
\operatorname{mindeg}(A):=\min \{\operatorname{deg}(f) \mid f \in \operatorname{Ann}(A)\}
$$

If $A=\{0,1\}^{n}$, we set $\operatorname{mindeg}(A):=\infty$.
We observe that if we can prove a lower bound for $\operatorname{mindeg}\left(X_{Z}\right)$ for all Z, this gives a lower bound for Z-function degrees and hence the effort required by an algebraic attack. In the following, we will propose a construction which enables us to derive such a lower bound.

We first show that under certain conditions, each special lower bound for $\operatorname{mindeg}\left(X_{z_{r}, Q}\right)$ is also a general lower bound for mindeg $\left(X_{\left(z_{1}, \ldots, z_{r}\right)}\right)$.

Theorem 6.12. If the keystream function C can be expressed as

$$
\begin{equation*}
C(x, q)=\alpha(x) \oplus \beta(q) \tag{6.9}
\end{equation*}
$$

with $\alpha:\{0,1\}^{k} \rightarrow\{0,1\}$ satisfying mindeg $\left(\alpha^{-1}(0)\right)=\operatorname{mindeg}\left(\alpha^{-1}(1)\right)=d$ and $\beta:\{0,1\}^{l} \rightarrow\{0,1\}$ then

$$
\operatorname{mindeg}\left(X_{Z}\right) \geq \operatorname{mindeg}\left(X_{Z, Q}\right)=d
$$

for all $r \geq 1, Z=\left(z_{1}, \ldots, z_{r}\right) \in\{0,1\}^{r}$, and $Q \in\{0,1\}^{l}$.
Proof. Because of $X_{Z, Q} \subseteq X_{Z}$, each annihilator of X_{Z} is also an annihilator of $X_{Z, Q}$. This shows the first inequality.

Moreover, all choices $z \in\{0,1\}$ and $Q \in\{0,1\}^{l}$ satisfy $X_{z, Q}=\alpha^{-1}(\beta(Q) \oplus z)$ and therefore mindeg $\left(X_{z, Q}\right)=d$.

Let $r \geq 1, Z=\left(z_{1}, \ldots, z_{r}\right) \in\{0,1\}^{r}, q_{1} \in\{0,1\}^{l}$ and $f\left(Y_{1}\right) \in \mathbb{F}_{2}\left[Y_{1}\right]$ be an annihilator of $X_{z_{1}, q_{1}}$. Then f can be seen as an element in $\mathbb{F}_{2}\left[Y_{1}, \ldots, Y_{r}\right]$ which annihilates $X_{Z, q_{1}}$, too. This shows that mindeg $\left(x_{Z, q_{1}}\right) \leq \operatorname{mindeg}\left(x_{z_{1} q_{1}}\right)=d$.

We prove now by induction over r that $\operatorname{mindeg}\left(X_{Z, q_{1}}\right) \geq d$ for all choices of q_{1} and Z. For $r=1$, the claim is certainly true. Now let $r>1$ and the claim be true for all $r^{\prime}<r$. Fix $Z=\left(z_{1}, \ldots, z_{r}\right)$ and q_{1} and $f\left(Y_{1}, \ldots, Y_{r}\right) \in$ $\operatorname{Ann}\left(X_{Z, Q}\right)$ having the minimal degree $\operatorname{mindeg}\left(X_{Q, Z}\right)$. Choose an arbitrary value $\left(x_{1}, \ldots, x_{r}\right) \in\left(\{0,1\}^{k}\right)^{r}$ and set $q_{2}:=\delta\left(x_{1}, q_{1}\right)$. Then

$$
f^{*}\left(Y_{2} \ldots, Y_{r}\right):=f\left(x_{1}, Y_{2}, \ldots, Y_{r}\right)
$$

annihilates $X_{\left(z_{2}, \ldots, z_{r}\right), q_{2}}$. Hence,

$$
\operatorname{mindeg}\left(x_{Z, q_{1}}\right)=\operatorname{deg}(f) \geq \operatorname{deg}\left(f^{*}\right) \geq \operatorname{mindeg}\left(x_{\left(z_{2}, \ldots, z_{r}\right), q_{2}}\right) \geq d
$$

where the last inequality is true by assumption.

6.3 Countermeasures and Design Principles

6.3.1 Increasing the Resistance against Correlation Attacks

Theorem 6.6 allows to compute the biases which are relevant for correlation attacks against combiners with memory with a keystream function as in Eq. (6.4) and to derive corresponding design criteria to immunize them against attacks that exploit these biases. In particular, Theorem 6.6 yields two different criteria for δ and β_{t} in order to achieve that $\lambda\left(F^{r}\right)=0$ for all $r \geq 1$.

The first one assumes the situation that β_{t} is independent of $x \in\{0,1\}^{k}$, i.e., $\beta_{t}(q, x)=\beta_{t}(q)$ for all x, which holds, e.g., for E_{0}.

Definition 6.13. We say that δ is balanced if $k=l$ and $\left|\left\{x \mid \delta(q, x)=q^{\prime}\right\}\right|=1$ for all q, q^{\prime}.

Note that for a balanced $\delta, p\left(q, q^{\prime}\right)=2^{-k}$ for all q, q^{\prime}.
Theorem 6.14. Let β_{t} either be constant zero or, at least at one time t, depend only on q and be balanced. If δ is also balanced, then $\lambda\left(F^{r}\right)=0$.

Proof. If $\beta_{t} \equiv 0$, then B_{t} equals P, the transition matrix of δ. Due to $\left(e^{T}\right) \cdot P=$ e^{T}, we can assume w.l.o.g. that $\beta_{1} \not \equiv 0$. Observe that the property of β_{t} being balanced implies that $\sum_{q}(-1)^{\beta_{1}(q)}=0$. Let $x_{\left(q, q^{\prime}\right)}:=\left\{x \mid \delta(q, x)=q^{\prime}\right\}$. If β_{t} depends only on q, then $b_{t}\left(q, q^{\prime}\right)$ can be rewritten to

$$
\begin{aligned}
b_{t}\left(q, q^{\prime}\right) & =\left\{\begin{array}{cl}
0 & \text { if } x_{\left(q, q^{\prime}\right)}=\emptyset \\
\left|x_{\left(q, q^{\prime}\right)}\right| / 2^{k} & \text { if } x_{\left(q, q^{\prime}\right)} \neq \emptyset \wedge \beta(q)=0 \\
-\left|x_{\left(q, q^{\prime}\right)}\right| / 2^{k} & \text { if } x_{\left(q, q^{\prime}\right)} \neq \emptyset \wedge \beta(q)=1
\end{array}\right\} \\
& =(-1)^{\beta_{t}(q)} \cdot p\left(q, q^{\prime}\right) .
\end{aligned}
$$

Let $v^{T}:=\left(e^{T}\right) \cdot B_{1}$. We show that v is already the all-zero vector, which concludes the proof. Let $\left(v^{T}\right)_{q}$ denote the q-th entry of v^{T}. We have

$$
\left(v^{T}\right)_{q}=\sum_{q}(-1)^{\beta_{1}(q)} p\left(q, q^{\prime}\right)=2^{-k} \cdot \underbrace{\sum_{q}(-1)^{\beta_{1}(q)}}_{=0}=0 .
$$

In the case that the functions β_{t} are not independent of x, it is also possible to entirely avoid correlations if we put some additional restrictions on β_{t}.
Definition 6.15. The function $\beta:\{0,1\}^{l} \times\{0,1\}^{k} \rightarrow\{0,1\}$ is called q-balanced if all states $q \in\{0,1\}^{l}$ satisfy

$$
\left|\left\{x \in\{0,1\}^{k} \mid \beta(q, x)=0\right\}\right|=\left|\left\{x \in\{0,1\}^{k} \mid \beta(q, x)=1\right\}\right|
$$

Lemma 6.16. Let B denote the bias matrix of the state transition function $\delta:\{0,1\}^{l} \times\{0,1\}^{k} \rightarrow\{0,1\}^{l}$ and a q-balanced function $\beta:\{0,1\}^{l} \times\{0,1\}^{k} \rightarrow$ $\{0,1\}$. Then $B \circ e=\overrightarrow{0}$.

Proof. It can be easily checked that for all $q \in\{0,1\}^{l}$,

$$
(B \circ e)_{q}=\frac{\left|\left\{x \in\{0,1\}^{k}, \beta(q, x)=0\right\}\right|-\left|\left\{x \in\{0,1\}^{k}, \beta(q, x)=1\right\}\right|}{2^{k}},
$$

which, by definition, vanishes if β is q-balanced.
Theorem 6.17. Let $r \geq 1$ and β_{t} be either q-balanced or constant zero for all $t, 1 \leq t \leq r$. Then $\lambda\left(F^{r}\right)=0$.

Proof. Note that for $\beta_{t} \equiv 0$, the bias matrix B_{t} equals the transition matrix P. As each row of P corresponds to a probability distribution over $\{0,1\}^{l}$, we obtain $P \circ e=e$. The rest follows straightforwardly from Theorem 6.6.

We want to point out that the previous statements are only true as long as the corresponding input words x_{t} are independent values in $\{0,1\}^{k}$. In the case that LFSRs are used as driving devices, this is only the case as long as r is at most the length of the shortest LFSR. This imposes no serious drawback, because so far, no feasible methods are known to compute the bias while considering the LFSR-structure.

As we have seen, our results immediately imply two different design criteria to avoid any biased linear combinations in the expressions $\beta\left(q_{t}\right)$. Actually, they have even wider applications. For example, the keystream function

$$
f\left(\left(c^{1}, c^{2}, c^{3}, c^{4}\right),\left(x^{1}, x^{2}, x^{3}, x^{4}\right)\right)=c^{2} \oplus x^{1} \oplus x^{2} \oplus x^{3} \oplus x^{4}
$$

used in E_{0} is q-balanced. This guarantees that no biased linear combinations of the keystream bits z_{t} exist for $r \leq 25$, the length of the shortest LFSR.

6.3.2 Increasing the Resistance against Algebraic Attacks

We have seen that the efficiency of algebraic drops with increasing minimum degree of the Z-functions. Theorem 6.12 then implies the following strategy. Choose a keystream function $C(x, q)=\alpha(x) \oplus \beta(q)$ such that mindeg $\left(\alpha^{-1}(0)\right)$ and mindeg $\left(\alpha^{-1}(1)\right)$ is the maximum possible value. This will guarantee the same lower bound for all Z-functions, as long the values x_{1}, \ldots, x_{r} are independent elements in $\{0,1\}^{k}$. In the case that they are the outputs of LFSRs, this condition holds if r is no larger than the length of the shortest LFSR (e.g., 25 in the case of E_{0}). This restriction is not critical, since currently known methods (e.g., Armknecht et al. (2006), Didier and Tillich (2006)) are only able to practically derive Z-functions if r is not much larger than 20 .

The value d is equivalently known under the term algebraic immunity, which was introduced by Meier et al. (2004) in the context of memoryless combiners, extended to combiners with memory by Armknecht (2004b), and examined in several papers since then.

Observation 6.18 (Courtois and Meier (2003)). Any Boolean function in n variables has an algebraic immunity of at most $\left\lceil\frac{n}{2}\right\rceil$.

This means that any proposal for a function with optimum algebraic immunity $\left\lceil\frac{n}{2}\right\rceil$ can be incorporated in our design.

Proposals on how to construct functions with maximum (or at least high) algebraic immunity have been made, e.g., by Armknecht and Krause (2006), Carlet (2008), Dalai et al. (2005). A rather straightforward candidate is the (generalized) majority-function.

Corollary 6.19. Let $k \geq 1$. The majority function maj : $\{0,1\}^{k} \rightarrow\{0,1\}$ defined by

$$
\operatorname{maj}(x)= \begin{cases}0 & \text { if } \operatorname{wt}(x)<k / 2 \text { or } \operatorname{wt}(x)=k / 2 \text { and } x_{1}=0 \\ 1 & \text { otherwise }\end{cases}
$$

satisfies mindeg $\left(\operatorname{maj}^{-1}(0)\right)=\operatorname{mindeg}\left(\operatorname{maj}^{-1}(1)\right)=k / 2$.

A proof can be found in (Braeken and Lano, 2005). The authors pointed out that maj has a very low nonlinearity, making it a bad choice for memoryless combiners. However, this is no problem in our setting, as long as high biases λ are avoided (e.g., using the principles described in Section 6.3.1).

Using our design principle and a Boolean function with optimum algebraic immunity, it is possible to exclude the existence of Z-functions having a degree less than $\lceil k / 2\rceil$. In fact, experiments have shown by exhaustive search that the actual values of mindeg are often higher, showing that $\lceil k / 2\rceil$ seems to be a rather coarse estimation. Moreover, one can easily increase this bound, even without increasing the number of LFSRs by using several different bits per LFSR and clock cycle. For example, in the case of E_{0}, one could use the modified output and update functions $z_{t}:=\operatorname{maj}\left(x_{2 t-1}, x_{2 t}\right)$ and $q_{t+1}:=\delta\left(\delta\left(q_{t}, x_{2 t-1}\right), x_{2 t}\right)$. The bitrate is halfed, but the existence of Z-functions of degree less than 4 can be excluded.

6.4 Application to E_{0}

In this section, we apply the results from the previous sections to improve the security of the E_{0} keystream generator. Consequently, we assume that $k=l=4$ and that the keystream bit z_{t} is computed by $z_{t}=f\left(q_{t}, x_{t}\right)=\alpha\left(x_{t}\right) \oplus \beta\left(q_{t}\right)$, with $\alpha\left(x_{t}\right)=x_{t}^{0} \oplus x_{t}^{1} \oplus x_{t}^{2} \oplus x_{t}^{3}$ and $\beta\left(q_{t}\right)=q_{t}^{1}$. Recall from Section 4.2.2 that the state transition function of E_{0} is defined as

$$
\delta_{0}\left(q_{t}, x_{t}\right)=\left(\mathcal{S}_{t+1}^{1} \oplus q_{t}^{0} \oplus q_{t}^{3}, \mathcal{S}_{t+1}^{0} \oplus q_{t}^{1} \oplus q_{t}^{2} \oplus q_{t}^{3}, q_{t}^{0}, q_{t}^{1}\right)
$$

where $\mathcal{S}_{t+1}=\left(\mathcal{S}_{t+1}^{1}, \mathcal{S}_{t+1}^{0}\right)=\left\lfloor\frac{x_{t}^{0}+x_{t}^{1}+x_{t}^{2}+x_{t}^{3}+2 \cdot q_{t}^{0}+q_{t}^{1}}{2}\right\rfloor$.
Lu and Vaudenay (2005, 2008) proved that $\lambda_{\text {max }}=25 / 256$ for $r \leq 25$, where 25 is the length of the shortest LFSR. This observation and the exploit of a synchronization flaw led to the currently best attack on the Bluetooth cipher (Lu and Vaudenay, 2004). Table 6.1 shows the resource requirements of this attack.

The currently best algebraic attack on E_{0} in this scenario uses Z-functions of degree 4 over 4 clocks (Armknecht and Krause, 2003). The corresponding performance data are given in Table 6.2. Courtois (2003) proposed a method to obtain equations of degree 3 , however with the enormous value $r \approx 8.822 .188$. It is still an open question whether Z-functions exist of degree <4 and $r \ll$ 8.822.188 for E_{0}.

We now try to improve the resistance of E_{0} to correlation attacks and algebraic attacks of the described types by carefully modifying its components.

First, using our C-implementation of Theorem 6.6 based on the ATLAS linear algebra library (Whaley and Petitet, 2005), we computed the maximum absolute biases over 25 clock cycles (the length of E_{0} 's shortest LFSR) for all $16 E_{0}$-variants in which β is defined as $\beta_{\left(a_{1}, a_{2}, a_{3}, a_{4}\right)}\left(q_{t}\right)=a_{1} \cdot q_{t}^{0} \oplus a_{2} \cdot q_{t}^{1} \oplus$ $a_{3} \cdot q_{t}^{2} \oplus a_{4} \cdot q_{t}^{3}$ for $a=\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in\{0,1\}^{4}$. Note that the original β corresponds to $\beta_{(0,1,0,0)}$. As Table 6.3 shows, the minimum absolute bias $\lambda=$ 0.024414 is obtained for $a=(0,1,1,1)$. We denote the corresponding generator by E_{0}^{1}. However, with the help of a toolkit developed by Brandeis (2004) that determines Z-functions by exhaustive search, we have computed Z-functions of degree 3 for E_{0}^{1}, which makes it weaker against algebraic attacks than the original E_{0}. However, choosing $a=(1,0,1,1)$, i.e., the a-value with the second best minimum absolute bias, yields mindeg $=6$. We call the corresponding generator E_{0}^{2}.

In the next step, we exploit our theory to completely avoid biases. Starting from the original definition of E_{0}, we obtain the generator E_{0}^{3} by replacing the state transition function by δ_{1}, which we define as the integer addition modulo

Table 6.1: The resource consumption of the fastest correlation attack on E_{0} as presented by Lu and Vaudenay (2004)

$\lambda_{\max }$	Frames	Data	Time	Space
λ	$m=\max \left(\frac{1}{\lambda^{10}}, \frac{236.59}{\lambda^{8}}\right)$	$24 m$	$36 m+3 \cdot 2^{18} \cdot \min \left(m, 2^{18}\right)$	m
$\frac{25}{256}$	$2^{34.74}$	$2^{39.32}$	$2^{40.17}$	$2^{34.74}$

Table 6.2: The resource consumption of an algebraic attack on E_{0} with key size n and an equation of degree d

	$\# F$	Data	Time	Space
General	φ	$O\left(\binom{n}{d} / \varphi\right)$	$O\left(\binom{n}{d}^{3}\right)$	$O\left(\binom{n}{d}^{2}\right)$
$E_{0}: n=128, d=4$	1	$2^{23.35}$	$2^{70.04}$	$2^{46.69}$

2^{4}, i.e.,

$$
\delta_{1}\left(q_{t}^{0}, \ldots, q_{t}^{3}, x_{t}^{0}, \ldots, x_{t}^{3}\right)=\left(\sum_{i=0}^{3} q_{t}^{3-i} 2^{i}+\sum_{j=0}^{3} x_{t}^{3-j} 2^{j}\right) \bmod 16
$$

Since δ_{1} is balanced, Theorem 6.14 implies $\lambda=0$. However, we computed Z-functions of degree 3 for E_{0}^{3}.

We therefore replace the function α of E_{0}^{3} by the majority function described in Corollary 6.19. For the resulting generator E_{0}^{4}, we obtain mindeg $=5$.

If we additionally replace the function β by the majority function, mindeg even increases to 6 . Note that the $\lambda=0$ property is still preserved by these modifications. Thus, we obtain a keystream generator E_{0}^{5} with $\lambda_{\max }=0$ whose resistance against algebraic attacks is significantly increased compared to the original E_{0}.

For all our variants of E_{0}, Table 6.4 lists the minimum degree and the respective number of Z-functions over r clock cycles. For Example, for E_{0}^{4}, the minimum degree of Z-functions over up to 5 clock cycles is 5 , and there are 40, 264,896 , and $2528 Z$-functions over $2,3,4$ and 5 clock cycles, respectively.

The computation of the number of Z-functions over 6 clocks for E_{0}^{5} could not be completed with the resources at our disposal. Since in all our experiments, the minimum degree of the Z-functions never decreased with increasing r, we suspect that mindeg $=6$ will also hold for E_{0}^{5} and $r=6$.

Note that in all cases, the values of mindeg were actually higher than the theoretical lower bound $\lceil k / 2\rceil=2$.

The constructions of the considered generators and the respective performances of algebraic and correlation attacks are summarized in Table 6.6 and illustrated in Figure 6.1.

We note that the generator E_{0}^{2}, which is just a slight modification of E_{0} (we only made β depend on two more state bits), already yields a similar resistance against algebraic attacks as E_{0}^{5} and significantly decreases the vulnerability against correlation attacks.

Table 6.3: Maximum absolute biases and performance of correlation attacks for β_{a}-generators

a	$\max (\lambda)$	Frames	Data	Time	Space
$(0,0,0,1)$	0.097656	$2^{34.74}$	$2^{39.32}$	$2^{40.17}$	$2^{34.74}$
$(0,0,1,0)$	0.244141	$2^{24.16}$	$2^{28.74}$	$2^{37.59}$	$2^{24.16}$
$(0,0,1,1)$	0.156250	$2^{29.31}$	$2^{33.90}$	$2^{37.74}$	$2^{29.31}$
$(0,1,0,0)$	$\mathbf{0 . 0 9 7 6 5 6}$	$\mathbf{2}^{34.74}$	$\mathbf{2}^{39.32}$	$\mathbf{2}^{40.17}$	$\mathbf{2}^{\mathbf{3 4 . 7 4}}$
$(0,1,0,1)$	0.097656	$2^{34.74}$	$2^{39.32}$	$2^{40.17}$	$2^{34.74}$
$(0,1,1,0)$	0.156250	$2^{29.31}$	$2^{33.90}$	$2^{37.74}$	$2^{29.31}$
$(0,1,1,1)$	$\mathbf{0 . 0 2 4 4 1 4}$	$\mathbf{2}^{53.56}$	$\mathbf{2}^{58.15}$	$\mathbf{2}^{58.73}$	$\mathbf{2}^{53.56}$
$(1,0,0,0)$	0.244141	$2^{24.16}$	$2^{28.74}$	$2^{37.59}$	$2^{24.16}$
$(1,0,0,1)$	0.250000	$2^{23.89}$	$2^{28.47}$	$2^{37.59}$	$2^{23.89}$
$(1,0,1,0)$	0.097656	$2^{34.74}$	$2^{39.32}$	$2^{40.17}$	$2^{34.74}$
$(1,0,1,1)$	$\mathbf{0 . 0 3 8 5 2 8}$	$\mathbf{2}^{46.98}$	$\mathbf{2}^{51.56}$	$\mathbf{2}^{\mathbf{5 . 1 5}}$	$\mathbf{2}^{\mathbf{4 6 . 9 8}}$
$(1,1,0,0)$	0.156250	$2^{29.31}$	$2^{33.90}$	$2^{37.74}$	$2^{29.31}$
$(1,1,0,1)$	0.156250	$2^{29.31}$	$2^{33.90}$	$2^{37.74}$	$2^{29.31}$
$(1,1,1,0)$	0.152588	$2^{29.58}$	$2^{34.17}$	$2^{37.77}$	$2^{29.58}$
$(1,1,1,1)$	0.097656	$2^{34.74}$	$2^{39.32}$	$2^{40.17}$	$2^{34.74}$

Table 6.4: mindeg and number of Z-functions for the candidate generators

Cipher	E_{0}	E_{0}^{1}	E_{0}^{2}	E_{0}^{3}	E_{0}^{4}	E_{0}^{5}	
mindeg	4	3	6	3	5	6	
Clocks	Number of equations						
$r=2$	0	12	0	4	40	12	
$r=3$	0	48	24	40	264	318	
$r=4$	16	144	160	144	896	1416	
$r=5$	64	384	544	416	2528	>0	
$r=6$	192	$?$	>0	$?$	$?$	$?$	

Table 6.5: Definitions of the candidate generators

	δ	$\alpha\left(x_{t}^{1}, x_{t}^{2}, x_{t}^{3}, x_{t}^{4}\right)$	$\beta\left(c_{t}^{1}, c_{t}^{2}, c_{t}^{3}, c_{t}^{4}\right)$
E_{0}	δ_{0}	$x_{t}^{1} \oplus x_{t}^{2} \oplus x_{t}^{3} \oplus x_{t}^{4}$	c_{t}^{2}
E_{0}^{1}	δ_{0}	$x_{t}^{1} \oplus x_{t}^{2} \oplus x_{t}^{3} \oplus x_{t}^{4}$	$c_{t}^{2} \oplus c_{t}^{3} \oplus c_{t}^{4}$
E_{0}^{2}	δ_{0}	$x_{t}^{1} \oplus x_{t}^{2} \oplus x_{t}^{3} \oplus x_{t}^{4}$	$c_{t}^{1} \oplus c_{t}^{3} \oplus c_{t}^{4}$
E_{0}^{3}	δ_{1}	$x_{t}^{1} \oplus x_{t}^{2} \oplus x_{t}^{3} \oplus x_{t}^{4}$	c_{t}^{2}
E_{0}^{4}	δ_{1}	$\operatorname{maj}\left(x_{t}^{1}, x_{t}^{2}, x_{t}^{3}, x_{t}^{4}\right)$	c_{t}^{2}
E_{0}^{5}	δ_{1}	$\operatorname{maj}\left(x_{t}^{1}, x_{t}^{2}, x_{t}^{3}, x_{t}^{4}\right)$	$\operatorname{maj}\left(c_{t}^{1}, c_{t}^{2}, c_{t}^{3}, c_{t}^{4}\right)$

Table 6.6: Performance of algebraic and correlation attacks on the candidate generators

	Algebraic Attack		Correlation Attack	
	mindeg	Time	λ	Time
E_{0}	4	$2^{70.18}$	0.097656	$2^{40.17}$
E_{0}^{1}	3	$2^{55.25}$	0.024414	$2^{58.73}$
E_{0}^{2}	6	$2^{97.22}$	0.038528	$2^{52.15}$
E_{0}^{3}	3	$2^{55.25}$	0	n/a
E_{0}^{4}	5	$2^{84.11}$	0	n/a
E_{0}^{5}	6	$2^{97.22}$	0	n/a

Figure 6.1: Comparison of the candidate generators to E_{0}

Part II

Authenticity with Linear Protocols

Chapter 7

Algorithms for Entity and Message Authentication

7.1 Security Definitions and Attacker Models

We have seen in the first part of this thesis that in order for people to call a particular system secure, this system should allow for confidential communication, which is usually achieved by encrypting the messages that are exchanged between communication partners.

Let us revisit our two-party communication scenario from Section 2.1. Two parties, Alice and Bob, communicate over a channel that is accessible to an adversary. Besides the confidentiality of exchanged messages, it may also be beneficial for Alice to ensure that she is really talking to Bob instead of an adversary masquerading as Bob, and that a message that claims to come from Bob was in fact sent by Bob and has not been modified during the transmission.

These requirements may seem less obvious than message confidentiality at first glance, but turn out to be equally, if not even more important in many practical systems. Consider, for example, banking transactions. It is certainly desirable to hinder an adversary observing how much money a customer withdraws from his account or to whom he transfers how much money, but it seems even more important to prevent an adversary from withdrawing or transferring money from somebody else's account.

In the process of ensuring these properties, Alice has to gain confidence in the identity of Bob as communication partner or as originator of a message. An identity is a set of information that distinguishes a specific entity from every other within a particular environment, e.g., a given and family name, an e-mail address, or a URI (Adams, 2005). This implies that the mapping $r: A \rightarrow I$ from an entity set A to an identity space I should be injective, i.e., no two entities $a_{1}, a_{2} \in A$ are mapped to the same identity $i \in I$. Note that the mapping between entities and identities can also be modeled as a relation $R \subseteq A \times I$ with $(a, i) \in R$ if and only if identity i is associated to entitiy a. We say that a has identity i, or that identity i is bound to entity a, and call the tuple (a, i) an identity binding for a. An identity may also be bound to another identity from a different identity space, e.g., an international bank account number (IBAN, see ISO/IEC (2007)) to an e-mail address.

7.1.1 Entity Authentication

Consider a bank customer who uses an automated teller machine (ATM) to withdraw money from his account. In the course of the transaction, the customer is usually required to plug his bank card into the machine and to enter his personal identification number (PIN). If PIN and bank account number match the information that is stored in the bank's database, the ATM is convinced that the account number in fact belongs to the person standing in front of the machine.

In our more abstract communication setting, Bob (the claimant or the prover) claims to have a certain identity, e.g., a bank account number. In order for Alice (the verifier) to believe that the presented identity really belongs to Bob, she will usually require some corroborating evidence of his claim, e.g. a PIN. The process of obtaining and verifying this evidence is called entity authentication (Adams, 2005), and a particular algorithm that implements entity authentication is called an entity authentication scheme or entity authentication protocol. As described by Zuccherato (2005), the corroborating evidence (sometimes also termed credentials) is usually computed based on

- someting knwon, e.g., a password or personal identification number (PIN),
- something possessed, e.g., physical devices such as mechanical keys or smart cards,
- something inherent, e.g., biometric information such as a fingerprint or the structure of the iris.

If the verifier is convinced by the corroborating evidence, we say that the authentication was successful. After a successful authentication, the prover is said to be authenticated. If the prover is in fact who he claims to be, then we call the prover authentic.

Identification is often used as a synonym for entity authentication. However, some authors define identification as the action of merely claiming an identity without providing corroborating evidence. We tend to favour the latter definition, but will avoid the term identification altogether whenever possible.

7.1.2 Entity Recognition

Entitiy authentication usually assumes that the identities of the communication partners are long-term identities that are bound to the entities during a system setup phase independently of actual communication sessions. This assumption is reasonable in systems that are rather static, e.g., a corporate IT infrastructure, but less suitable for low-end sensor network scenarios in which nodes join and leave systems dynamically and are limited in their computing power and storage capacities. In such scenarios, it is often sufficient to ensure that an entity can recognize a communication partner that she has talked to before (entity recognition, see Hammell et al. (2005)). Schemes that solve this problem usually can make do with short-term identities that are established dynamically when the entities start communicating for the first time, as we will see in Section 7.5.

7.1.3 Message Authentication

The way most ATMs work is based on the assumption that once the customer is authenticated, he and not the adversary will be the one talking to the ATM for the remainder of the communication session. Therefore, a customer is usually asked for corroborating evidence only once per session. On the other hand, in order to prevent an attacker from taking over the session of a customer who has left the ATM without logging out (thereby breaking the assumption), sessions are usually aborted after a relatively short period of customer inactivity.

The ATM assumption translates into our abstract setting by requiring that the adversary have no access to communication channels that have been established between legitimate communication partners. This may be valid in the ATM scenario, but is a lot less reasonable if we consider an online banking use case, in which a customer issues a credit transfer order to his bank over the internet. In general, we can make no reliable assumptions on the route an internet message takes to reach its destination, and the probabilities of a message being read or even modified on the way have to be considered non-negligible. Hence, the banking server should require corroborating evidence of each received message in fact originating from the claimed sender.

In our abstract model, Bob (the prover) would attach corroborating evidence of his creatorship to each message he sends to Alice (the verifier). As with entity authentication, the process of obtaining and verifying this corroborating evidence is called message authentication, an algorithm that implements message authentication is called message authentication algorithm or message authentication scheme, and a message for which the authentification was successful is called authenticated. If the message in fact originates from the claimed sender and was not altered during transmission, we say that the message is authentic.

In addition to message authenticity, many applications have additional uniqueness and timeliness requirements that duplicate or lost messages as well as messages that are received in the wrong order be detected and handled appropriately. We note that the presence of these properties is implied by some authors' definitions of authenticity (see, e.g., Menezes et al. (2001)). However, we choose to separate uniqueness and timeliness from our authenticity definition since they are sometimes covered by transport layers in communication stacks rather than by authenticity schemes in the narrow sense. An example is the widely used TLS protocol (see Dierks and Rescorla (2008)), which relies on TCP to ensure these properties.

7.1.4 Message Recognition

Similarly to entity recognition (see Section 7.1.2), message recognition as a weaker form of message authentication only requires to ensure that a message originates from a particular sender that has been talked to before, and (unlike most message authentication schemes) not consider or check any long-term sender identities. Instead, the communicating parties generate short-term identities just before starting the conversation.

7.1.5 Attacker Models

As in the case of confidential communication, we relate the security of an entity authentication scheme to an attacker (or adversary) model. The most prominent attacker goal in the entity authentication/recognition setting is to impersonate an entity, i.e., to convincingly masquerade as somebody else. Attacks that are targeted at this goal are usually called impersonation attacks. Another attacker goal may be to prevent the authentication of a legitimate prover or message (denial of service) by disturbing the authentication.

The most pessimistic assumption is an active attacker who has full control of the communication channel, as suggested in the Dolev-Yao security model (Dolev and Yao, 1983). More precisely, an active attacker may

- read all exchanged messages,
- modify exchanged mesages, especially delay or suppress their delivery or alter their content,
- introduce additional messages into the communication channel, especially replay previously recorded messages.

We note that this model particularly allows the attacker to

- present a previously recorded legitimate evidence to the verifier (replay attack),
- interleave several authentication sessions (running in parallel or sequentially) by using information obtained from one session in the context of another,
- disobey the authentication scheme by sending messages which the receiver does not expect in the current protocol state.
- act as a man-in-the-middle (MITM), i.e., intecept messages from one communication partner, possibly modify them, and pass them on to the receiver.

Of special interest in our analysis is a special class of active attackers, which we call detection attackers.

Definition 7.1. A detection attacker on an entity authentication protocol is an active attacker who is restricted to the following disjoint attack stages.

1. Interact with a legitimate prover in any desired way.
2. Interact with a legitimate verifier and try to impersonate the prover.

In the message authentication/recognition setting, we commonly assume that the attacker has active control over the communication channel as above, and is additionally able to force Bob to send message payload data x_{i} of his choice (which will then be accepted by Alice as authentic). Thereby, his choices of the x_{i} may be adaptive, i.e., x_{i} may depend on the information that was obtained for $x_{i^{\prime}}$ for $i^{\prime}<i$. We define that he has reached his goal if he is able to generate a message with payload $x \neq x_{i}$ for all i that is authenticated by Alice (existential forgery in a chosen message scenario, see, e.g., Lucks et al. (2008)).

Sometimes security is evaluated also with respect to passive attackers who are able to read exchanged messages, but cannot influence the communication channel in any way.

In all cases, we follow Kerckhoffs' principle (Kerckhoffs, 1883) also in the authentication setting and assume the attacker to know the entire specification of the authentication scheme and all information that the scheme processes except for the data that it explicitly requires to be kept confidential.

7.2 Message Authentication Codes

Definition 7.2. A Message Authentication Code (MAC) is a mapping
that computes for a message x an authentication code m under an n-bit key k.
A MAC is commonly used in our two-party communication scenario in the following way (see Fig. 7.1). Alice and Bob agree on a symmetric key k prior to the communication. Bob computes for a message x the value $m=\operatorname{MAC}(x, k)$ and transmits $(x, m)=(x, \operatorname{MAC}(x, k))$ to Alice. Alice computes for a received message (x^{\prime}, m^{\prime}) the value MACverify $\left(x^{\prime}, m^{\prime}, k\right)$ with

$$
\text { MACverify : } \begin{aligned}
\{0,1\}^{*} \times\{0,1\}^{l} \times\{0,1\}^{n} & \rightarrow \\
(x, m, k) & \mapsto\left\{\left\{\begin{array}{cl}
1 & \text { if } \operatorname{MAC}(x, k)=m \\
0 & \text { otherwise }
\end{array}\right.\right.
\end{aligned}
$$

and believes the message to come from Bob if $\operatorname{MACverify}\left(x^{\prime}, m^{\prime}, k\right)=1$. Hence, the value $m=\operatorname{MAC}(x, k)$ serves as corroborating evidence of the authenticity of x.

Figure 7.1: Message authentication with message authentication codes

A MAC is considered secure if it is infeasible to perform an existential forgery under an adaptive chosen message attack (see Section 7.1.5), i.e., an attacker who may obtain $\operatorname{MAC}\left(x_{i}, k\right)$ under the secret key k for messages x_{i} of his choice is not able to produce with a realistic amount of resources a pair (x, m) with $x \neq x_{i}$ for all i such that MACverify $(x, m, k)=1$. Obviously, recovering the secert key k that is used to generate the authentication code is sufficient for an existential forgery.

Similarly to the cipher systems described in Section 2.1, since Alice and Bob both use the same key in the production and verification of m, message
authentication codes are said to belong to the set of symmetric authentication schemes.

We note that a MAC by itself does not provide assurance of message timeliness nor uniqueness.

7.2.1 Message Authentication Codes based on Block Ciphers

The structure of Eq. (7.1) suggests to use block ciphers as building blocks for message authentication codes. This idea is implemented, e.g., in the CBCMAC (ISO/IEC, 1999), which is based on the CBC mode of a block cipher $E:\{0,1\}^{l} \times\{0,1\}^{n} \rightarrow\{0,1\}^{l}$ (see Section 2.2). If the CBC mode encryption of an m-block message $b=\left(b_{1}, \ldots, b_{m}\right)$ is given by $E^{\mathrm{CBC}}\left(\left(b_{1}, \ldots, b_{m}\right), k\right.$, IV $):=$ $\left(c_{1}, \ldots, c_{m}\right)$, the CBC-MAC value for this message is computed as

$$
\operatorname{MAC}^{\mathrm{CBC}}\left(\left(b_{1}, \ldots, b_{m}\right), k\right):=c_{m}
$$

with $\left(c_{1}, \ldots, c_{m}\right)=E^{\mathrm{CBC}}\left(\left(b_{1}, \ldots, b_{m}\right), k, 0\right)$.
Note that the CBC-MAC is insecure if we allow the messages to have different lenghts, since we can forge an authentic message by appending arbitrary blocks to observed authentic messages for which the CBC-MAC value is known. This issue is addressed by variants of the CBC-MAC construction such as CMAC (see, e.g., Preneel (2005) for a discussion).

If a message authentication code is built from a block cipher, this cipher will dominate the resource requirements of the MAC. The AES block cipher (see Menezes et al. (2001)) is widely used for building message authentication codes, and efficient implementations, particularly for resource-constraint environments are continously being developed and optimized (Moradi et al., 2011). In addition to general purpose block ciphers, lightweight block ciphers such as PRESENT (Bogdanov et al., 2007) and KATAN/KTANTAN (De Cannière et al., 2009) are specifically targeted at low-end devices.

7.2.2 Message Authentication Codes based on Cryptographic Hash Functions

Definition 7.3. A cryptographic hash function is a mapping $H:\{0,1\}^{*} \rightarrow$ $\{0,1\}^{l}$ which maps an input of arbitrary length to a fixed-length output.

Cryptographic hash functions are usually required to be

- collision resistant, i.e., it is infeasible for an adversary to find two inputs $x \neq x^{\prime}$ such that $h(x)=h\left(x^{\prime}\right)$,
- preimage resistant, i.e., it is infeasible for an adversary to find for a given output $y \in\{0,1\}^{l}$ an input x such that $h(x)=y$, and
- 2 nd preimage resistant, i.e., it is infeasible for an adversary to find for a given input x another input x^{\prime} such that $h(x)=h\left(x^{\prime}\right)$.

We note that collision resistance implies 2nd preimage resistance. However, preimage resistance does not imply 2nd preimage resistance, nor does 2 nd preimage resistance imply preimage resistance. A cryptographic hash function that is both preimage resistant and 2nd preimage resistant is said to be one-way.

A collision resistant cryptographic hash function H for arbitraty inputs $x \in$ $\{0,1\}^{*}$ may be constructed from a collision resistant compression function h : $\{0,1\}^{c} \times\{0,1\}^{d} \rightarrow\{0,1\}^{c}$ with $c<d$ by expanding x to L blocks of length d (with the last block only containing the bitlength of x), i.e., $x=\left(M_{1}, \ldots, M_{L}\right)$, and computing the output as $H(x):=H_{L}$ with

$$
H_{i}:=\left\{\begin{array}{cl}
C & \text { for } i=0 \\
h\left(H_{i-1}, M_{i}\right) & \text { for } 0<i \leq L
\end{array} \quad \text { with } C \in\{0,1\}^{c}\right. \text { constant. }
$$

This construction is attributed to Merkle and Damgård Damgård, 1990, Merkle, 1979, 1990). In particular, block ciphers may be used as compression functions, e.g., as in the Davies-Meyer scheme (Davies and Price, 1984) by computing the values H_{i} based on a block cipher $E:\{0,1\}^{l} \times\{0,1\}^{n} \rightarrow\{0,1\}^{l}$ with $l=c, n=d$ as

$$
h\left(H_{i-1}, M_{i}\right):=E\left(H_{i-1}, M_{i}\right) \oplus H_{i-1}
$$

see, e.g., Black et al. (2002), Preneel et al. (1994).
Constructing a cryptographic hash function from a block cipher may be particularly beneficial on low-end devices with too little capacity to implement both a block cipher and a dedicated cryptographic hash function.

Potentially the most prominent examples of cryptographic hash functions are the MD5 hash function (Rivest, 1992) and the SHA hash function family (NIST, 2008) ${ }^{1}$ Similarly to block ciphers, also dedicated lightweight cryptographic hash functions exist, see, e.g., Guo et al. (2011).

We omit further details and refer the interested reader to Preneel (1993) for an introduction to cryptographic hash functions and to Fleischmann et al. (2008), Preneel (2009) for information on more recent hash function proposals and their properties.

Cryptographic hash functions can readily produce a fixed-length fingerprint (or digest) of an arbitrarily long message, but in order to turn a hash function into a message authentication code in the sense of Eq. (7.1), it has to be specified how to handle the secret key that the authentication relies on. A common approach is the HMAC construction (Krawczyk et al., 1997) that derives an l-bit message authentication code from a cryptogrpahic hash function $H:\{0,1\}^{*} \rightarrow$ $\{0,1\}^{l}$ and a key $k \in\{0,1\}^{n}$ as

$$
\begin{array}{rlc}
\mathrm{MAC}^{H}: \quad\{0,1\}^{*} \times\{0,1\}^{n} & \rightarrow & \{0,1\}^{l} \\
(x, k) & \mapsto & H((k \oplus \mathrm{opad}) \| H(k \oplus \mathrm{ipad} \| x))
\end{array}
$$

with publicly known constants opad and ipad.

7.3 Message Authentication with Digital Signatures

Corroborating evidence of a message's authenticity can also be computed with asymmetric cipher systems as defined in Section 2.4. Therefore, we use the

[^1]decryption operation, which employs the private key, to produce the evidence, and the encryption operation, which is based on the public key, to verify the evidence. Since in contrast to message authentication codes the evidence is publicy verifiable without the need to establish a common secret, an evidence based on an asymmetric system is usually called digital signature (see, e.g., Vaudenay (2006) for an introduction).

The security definition of digital signatures is similar to the definition for message authentication codes. A digital signature is considered secure if it is infeasible for an adversary who may obtain signatures for messages x_{i} of his choice under the secret signature key to produce a signature for a message $x \neq x_{i}$ that will be accepted by a legitimate verifier. As in the MAC case, recovering the signature key is sufficient for being able to forge signatures for arbitrary messages.

In order to spend less effort on rather costly asymmetric operations, the evidence is typically computed for a digest of the message (derived with a cryptographic hash function) rather than for the message as a whole. But still, as with cipher systems, message authentication based on asymmetric digital signature schemes usually requires substantially more effort than symmetric message authentication codes, and this effort has to be considered too large in many low-end device applications.

7.4 Challenge-Response based Entity Authentication

Entity authentication is usually performed by proving the posession of some object (often called key), either a piece of information like a password or a PIN, or a physical object such as a mechanical key (see also Section 7.1.1) ${ }^{2}$ In our attacker model, presenting the key itself to the prover as corroborating evidence is not an option in most cases of electronic communication, since it would disclose it also to the attacker and immediately allow for impersonation attacks. Hence, the corroborating evidence needs to be some information that is derived from the key, but not the key itself. However, if this derived information does not change from one authentication to another, it is as valuable as the key that is was derived from because the attacker could just replay it to impersonate the prover.

We see that the corroborating evidence should be some information that is derived from the object and is valid only for a short period of time, ideally only for one authentication session, such that the verifier can decide whether he is presented a recent (or fresh) evidence or some outdated information, which he would then assume to have been replayed by an attacker.

The most common techniques to implement freshness verification of a corroborating evidence are timestamps and verifier-supplied challenges. Timestamps are included into the evidence in an agreed way to document its creation time. While being rather straightforward to include, timestamps require a means for prover and verifier to agree on the current time (be it UTC time or some abstract

[^2]counter-based time), which may not always be feasible especially in low-end device applications.

Verifier-supplied challenges are independent of time synchronization, but require the verifier to provide a challenge (usually a binary string) that the prover has to include in the computation of the evidence. If the verifier keeps track of the challenges he supplies to provers, he can reject evidences that are based on out-dated challenges. Entity authentication schemes based on verifier-supplied challenges are usually called challenge-response authentication schemes. Whether a challenge-response scheme is suitable for a particular resource-constraint application primarily depends on the severity of the communication overhead for transmitting the challenge to the prover.

We note that we can rather straightforwardly build challenge-response entity authentication schemes from message authentication schemes by requiring the prover to provide as corroborating evidence of his identity a message with the verifier-supplied challenge as payload and corroborating evidence of this message's authenticity. Alternatively, an encryption of the challenge can be used as corroborating evidence (ISO/IEC, 1993).

7.5 Authentication Schemes based on Hash Chains

A slightly different flavour of entity authentication protocols which has been proposed by Lamport (1981) is based on a one-way function $h:\{0,1\}^{l} \rightarrow\{0,1\}^{l}$. Prover and verifier agree on a value n, the prover chooses an arbitrary value x_{0}, computes the sequence $\left(x_{i}\right)_{1 \leq i \leq n}$ with $x_{i}=h\left(x_{i-1}\right)$, and transmits the value x_{n} to the verifier in a tamper-proof, but not necessarily confidential way. As corroborating evidence in the i-th authentication session, $1 \leq i \leq n$, the prover presents the value x_{n-i} (i.e., the preimage of x_{n-i+1} under h) and is authenticated if and only if $h\left(x_{n-i}\right)=x_{n-i+1}$.

Since the sequence $\left(x_{i}\right)$ is produced by repeated (chained) application of h, and h is often implemented as a cryptographic hash function or its compression function, this authentication technique is known as hash chain based authentication.

Due to the construction, the number of possible authentications is limited to the length of the hash chain, which, in the absence of auxiliary techniques, makes the construction slightly less suited for authenticating long-term identities. Therefore, hash chain based authentication is more often used for entity recognition than for entity authentication. On the other hand, compared to digital signatures, the scheme is computationally much more efficient on typical low-end devices, and since the transmission of the chain endpoint x_{n} does not have to be confidential, it requires less effort than conventional key establishment techniques in the initialization phase.

Message authentication schemes can be built based on hash chains, e.g., as in the Guy Fawkes protocol suggested by Anderson et al. (1998). The Jane Doe protocol by Lucks et al. (2008) uses the elements of the hash chain as keys for a message authentication code, and the chain elements are successively disclosed to the verifier such that he can perform the authentication. In order to prevent forgery attacks, care has to be taken not to disclose these values too soon, which is ensured by a second hash chain that is produced on the verifier's side and stepwise disclosed to the prover.

7.6 Authentication based on the Hardness of Learning Problems

A special case of lightweight challenge-response based entity authentication as described in Section 7.4 is the following generic strategy:

1. Construct from a lightweight function E a basic challenge-response protocol and reduce the security of the basic protocol against passive attackers to the hardness of a suitable learning problem.
2. Define a protocol P over E and try to reduce the security of P against active attackers to the security of the basic protocol against passive attackers.

For a function $E: X \times K \rightarrow Y$ with suitably chosen input space X, key space K and output space Y, the basic protocol is defined as follows. The verifier (Alice) and the prover (Bob) share a secret key $k \in K$. A basic round consists of the following steps.

- Alice and Bob exchange challenge information. As a special case, this step may only consist of Alice sending a publicly known constant value (a hello message) that is just used as a trigger to initiate the communication.
- Based on the challenges, Bob chooses a random element $x \in X$ which is distributed according to a publicly known probability distribution Pr_{B} and sends $z=E(x, k)$ as corroborating evidence of his knowledge of k to Alice.
- Alice verifies z based on the challenges and the common secret k.

After r such rounds and depending on the number of rounds with successful verifications, Alice decides whether to authenticate Bob.

In the following, we consider two entity authentication protocol families of this type, the HB family and the family of linear (n, k, L) protocols.

Chapter 8

The HB Family of Authentication Protocols

8.1 The HB Protocol

The HB protocol was proposed by Juels and Weis (2005) as an authentication protocol that can be executed by humans. The use case that they had in mind was securely logging into a terminal in the presence of adversaries eavesdropping on what the user types into the keyboard.

The verifier (Alice) and the prover (Bob) share a common secret $k \in\{0,1\}^{n}$ and a public noise parameter $\eta \in\left(0, \frac{1}{2}\right)$. A basic round of the HB protocol works as follows. Alice transmits a random challenge $a \in\{0,1\}^{n}$ to Bob, who chooses a value $\nu \in\{0,1\}^{n}$ with $\operatorname{Pr}[\nu=1]=\eta$ and transmits the value $z:=(a \cdot k) \oplus \nu$ as corroborating evidence to Alice, where $x \cdot y \in\{0,1\}$ for $x, y \in\{0,1\}^{n}$ denotes the inner product of x and y over $\operatorname{GF}(2)$. She accepts z if and only if z is equal to $(a \cdot k)$. Fig. 8.1 illustrates the basic round of HB.

Note that in the terminology of Section 7.6, we have $K=\operatorname{GF}(2)^{n}, X=Y=$ $\mathrm{GF}(2)^{n} \times \mathrm{GF}(2), y=\mathrm{GF}(2)$, and the basis operation is defined by $E((x, \nu), k)=$ (x, y), where $y=x \cdot k \oplus \nu$.

The entire protocol consists of r basic rounds, and Alice authenticates Bob

Figure 8.1: Basic round of the HB protocol
if and only if the number of rounds in which the received value z was rejected is less than ηr, or equivalently, for A denoting a random $(r \times n)$ matrix over $\{0,1\}$ and k written as $(n \times 1)$ matrix, Alice authenticates Bob if and only if

$$
|(A \circ k) \oplus z|<\eta r
$$

Hence, a passive attacker who observes the communication between Alice and Bob and wants to impersonate Bob is faced with the problem of finding a $k^{\prime} \in\{0,1\}^{n}$ such that

$$
\left|\left(A \circ k^{\prime}\right) \oplus z\right|<\eta r
$$

This problem corresponds to the Learning Parity in the Presence of Noise (LPN) problem, which is defined as follows.

Definition 8.1 (Learning Parity in the Presence of Noise). Let A be a random $(r \times n)$ matrix, let k be a random n-bit vector, let $\eta \in\left(0, \frac{1}{2}\right)$ be a constant noise parameter, and let ν be a random r-bit vector such that $|\nu| \leq \eta r$. Given A, η, and $z=(A \circ k) \oplus \nu$, find an n-bit vector k^{\prime} such that $\left.\mid\left(A \circ k^{\prime}\right) \oplus z\right) \mid \leq \eta r$.

The LPN problem is well-established in the literature (see. e.g.. Hopper and Blum (2001), Juels and Weis (2005) for an overview). It has been shown to be NP-hard, but its difficulty on random instances is still an open question. The best known algorithm to date is due to Blum et al. (2003) and has a running time of $2^{O\left(\frac{n}{\log n}\right)}$, with tighter analyses and implementation improvements proposed by Fossorier et al. (2006), Levieil and Fouque (2006).

Hopper and Blum (2001), Juels and Weis (2005) showed that the security of the HB protocol against passive attackers can be reduced to the hardness of the LPN problem in the sense that a passive attacker who can impersonate the prover in the HB protocol can be used to solve the LPN problem.

However, a detection attacker Eve (see Definition 7.1) can break the HB protocol and impersonate the prover as follows (Juels and Weis, 2005). Eve repeatedly sends the same challenge a to Bob in order to learn the error-free value of $a \cdot k$ for the unknown secret k. She repeats this procedure for n linearly independent values a (e.g., the standard basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of $\{0,1\}^{n}$) and can then recover k by Gaussian elimination.

8.2 The HB^{+}Protocol

HB^{+}was proposed by Juels and Weis (2005) to strenghen HB against active attackers. It introduces an additional message, a prover-supplied blinding factor, and works as follows.

Verifier (Alice) and prover (Bob) share two secret values $k_{1}, k_{2} \in\{0,1\}^{n}$ and a public noise paramter $\eta \in\left(0, \frac{1}{2}\right)$. At the beginning of a basic protocol round, Bob sends a randomly chosen blinding factor $b \in\{0,1\}^{n}$ to Alice, and she replies with a challenge $a \in\{0,1\}^{n}$. Bob then computes his corroborating evidence as $z=\left(a \cdot k_{1}\right) \oplus\left(b \cdot k_{2}\right) \oplus \nu$ with $\nu \in\{0,1\}$ such that $\operatorname{Pr}[\nu=1]=\eta$ and transmits z to Alice, who accepts z if and only if z is equal to $\left(a \cdot k_{1}\right) \oplus\left(b \cdot k_{2}\right)$. The basic protocol round of HB^{+}is illustrated in Fig. 8.2.

As in the HB protocol, the basic protocol round is repeated r times, and Alice authenticates Bob if and only if the number of basic rounds ending in rejection of the evidence is less than ηr.

Figure 8.2: Basic round of the HB^{+}protocol
Juels and Weis (2005) were able to show that a detection attacker (see Definition 7.1) on HB^{+}can be used to attack the HB protocol in a passive attacker scenario, and this attack can in turn be used to solve the LPN problem. Hence, the hardness of LPN implies the security of HB^{+}against the active adversary that HB is not able to resist.

However, Gilbert et al. (2005) observed that this reduction cannot be extended to general active adversaries, who can also act as man-in-the-middle between legitimate prover and legitimate verifier. More precisely, an HB^{+}man-in-the-middle attacker Eve could proceed as follows. She chooses a value $\delta \in\{0,1\}^{n}$ and replaces a verifier-supplied challenge a by $a \oplus \delta$. Bob will then produce a corroborating evidence z^{\prime} as

$$
z^{\prime}=\left(a \cdot k_{1}\right) \oplus\left(\delta \cdot k_{1}\right) \oplus\left(b \cdot k_{2}\right) \oplus \nu
$$

and Eve observes whether Alice accepts z^{\prime}. If this is the case, then $\left(\delta \cdot k_{1}\right) \oplus \nu=0$, which implies $\delta \cdot k_{1}=0$ with probability $1-\eta$. Conversely, if Alice rejects z^{\prime}, then $\delta \cdot k_{1}=1$ with probability $1-\eta$. Similarly to the attack on HB, Eve can repeat this procedure for n linearly independent values δ and recover k_{1}. With this knowledge, Eve can already impersonate Bob by choosing $b=0$. If she wants to recover also k_{2}, she can choose an arbitrary b and interact with a legitimate verifier, supply $z^{\prime}=a \cdot k_{1}$ as corroborating evidence and deduce $b \cdot k_{2}=0$ if and only if the verifier accepts z^{\prime}. Again, repeating these steps for n linearly independent blinding factors b yields k_{2}.

In the following, we will refer to this attack on HB^{+}as Gilbert/Robshaw/Sibert attack (GRS attack).

8.3 Variants of the HB^{+}Protocol

After its publication in 2005, HB^{+}has recieved considerable attention in the cryptographic community. Especially its simplicity, its efficiency on the prover's side, and its provable resistance against passive attacks (albeit relying on the hardness of LPN) while being vulnerable to the rather simple GRS attack, motivated a number of follow-up proposals that aim to avoid this shortcoming while preserving as many of the advantages as possible.

However, it turns out that resisting GRS-style attacks - modifying the verifier's challenge and learning from his reaction to the evidence that the prover
produces from the perturbed input - does not seem to be an easy task. Particularly Gilbert et al. (2008b) showed that many of the follow-up proposals end up being less efficient than HB^{+}while not providing considerably more security.

In the following, we describe the most prominent ones of these proposals and discuss their security properties.

8.3.1 The HB^{++}Protocol

The HB^{++}protocol was proposed by Bringer et al. (2006) and consists, just as HB^{+}, of a number of repetitions of a basic protocol round. However, at the beginning of an authentication session, four secrets $k_{1}, k_{1}^{\prime}, k_{2}, k_{2}^{\prime}$ are derived from a shared secret master key K, a prover-supplied blinding factor $B \in\{0,1\}^{80}$ and a verifier's challenge $A \in\{0,1\}^{80}$. This is done by applying a publicly known hash function to K, A and B. Bringer et al. propose a particular function $h:\{0,1\}^{768} \times\{0,1\}^{80} \times\{0,1\}^{80} \rightarrow\{0,1\}^{320}$, which implies a master secret size of 768 bits and four session keys of size 80 bits each (see Fig. 8.3).

In a basic protocol round, verifier (Alice) and prover (Bob) exchange a blinding factor b and a challenge a as in HB^{+}. Then Bob chooses two noise parameters ν and ν^{\prime} with $\nu, \nu^{\prime} \in\{0,1\}$ and $\operatorname{Pr}[\nu=1]=\operatorname{Pr}\left[\nu^{\prime}=1\right]=\eta$. The corroborating evidence consists of two components $\left(z, z^{\prime}\right)$ with

$$
\begin{aligned}
z & =\left(a \cdot k_{1}\right) \oplus\left(b \cdot k_{2}\right) \oplus \nu \\
z^{\prime} & =\left(\operatorname{ROT}_{i}(f(a)) \cdot k_{1}^{\prime}\right) \oplus\left(\operatorname{ROT}_{i}(f(b)) \cdot k_{2}^{\prime}\right) \oplus \nu^{\prime}
\end{aligned}
$$

where $\operatorname{ROT}_{i}(x)$ denotes the rotation of $x \in\{0,1\}^{*}$ by i positions to the left, and f denotes a permutation. Analogously to HB^{+}, Alice checks whether z and z^{\prime} satisfy

$$
\begin{aligned}
z & =\left(a \cdot k_{1}\right) \oplus\left(b \cdot k_{2}\right) \\
z^{\prime} & =\left(\operatorname{ROT}_{i}(f(a)) \cdot k_{1}^{\prime}\right) \oplus\left(\operatorname{ROT}_{i}(f(b)) \cdot k_{2}^{\prime}\right)
\end{aligned}
$$

Figure 8.4 illustrates a basic protocol round of HB^{++}.
The basic protocol is repeated r times, and Alice authenticates Bob if both the number of erroneous z evidences and the number of erroneous z^{\prime} evidences do not exceed a threshold t.

Bringer et al. (2006) showed that the resistance of HB^{++}against passive attacks can be reduced to the hardness of LPN, and that the protocol is able to resist the GRS attack if f is carefully chosen.

Figure 8.3: Initialization of the HB^{++}protocol

Figure 8.4: Basic round of the HB^{++}protocol

But still, HB^{++}remains vulnerable to a special extension of the GRS attack. Gilbert et al. (2008b) discovered that by disturbing the challenge a in s out of r rounds of an authentication session, exploiting the observed verification result on the verifier's side and the special structure of h, an adversary can deduce linear equations in a number of bits of k_{1}. The resulting system can be expressed as an LPN instance and solved with moderate effort. From the recovered k_{1}, the session key k_{1}^{\prime} can be derived in a similar manner. The knowledge of k_{1} and k_{1}^{\prime} is already sufficient for impersonating Bob since the adversay can reuse blinding factors b from successful authentications of Bob along with k_{1}, k_{1}^{\prime} to correct z and z^{\prime} appropriately.

8.3.2 The HB* Protocol

Another variant of HB^{+}, the HB^{*} protocol, was proposed by Duc and Kim (2007). As in HB^{+}, verifier (Alice) and prover (Bob) share two secret values k_{1} and k_{2}. Additionally, there is a shared secret s that is used to confidentially transmit an auxiliary value γ from Bob to Alice.

At the beginning of a basic protocol round, Bob chooses $\gamma \in\{0,1\}$ with $\operatorname{Pr}[\gamma=1]=\eta^{\prime}$, and $\nu \in\{0,1\}$ with $\operatorname{Pr}[\nu=1]=\eta$, and transmits a randomly chosen blinding factor $b \in\{0,1\}^{n}$ and the encrypted value of γ, which is computed as $w=(b \cdot s) \oplus \gamma$, to Alice. As in HB^{+}, Alice replies with a challenge $a \in\{0,1\}^{n}$. Bob then computes his corroborating evidence as

$$
z= \begin{cases}\left(a \cdot k_{1}\right) \oplus\left(b \cdot k_{2}\right) \oplus \nu & \text { if } \gamma=0 \\ \left(a \cdot k_{2}\right) \oplus\left(b \cdot k_{1}\right) \oplus \nu & \text { if } \gamma=1\end{cases}
$$

and Alice checks whether $\left(a \cdot k_{1}\right) \oplus\left(b \cdot k_{2}\right)$ equals z if $(b \cdot s)=w$ (i.e., $\left.\gamma=0\right)$, and whether $\left(a \cdot k_{2}\right) \oplus\left(b \cdot k_{1}\right)$ equals z if $(b \cdot s) \neq w$ (i.e., $\gamma=1$). Again, Bob is authenticated if the verification fails for less than a threshold t out of r basic protocol rounds. The basic protocol round of HB^{*} is illustrated in Fig. 8.5.

Duc and Kim claim resistance against the GRS attack, but Gilbert et al. (2008b) observed that although in each basic round one of the two protocol modes is secretly selected by the value γ, a modified GRS attack remains applicable. This attack is again based on adding a vector δ to the verifier's challenge a and exploiting the information that the result of the verification leaks about

Verifier Alice RFID reader	Prover Bob RFID tag
key k_{1}, k_{2}, s	key k_{1}, k_{2}, s
	choose $\begin{aligned} & \gamma \in\{0,1\} \\ & \operatorname{Pr}[\gamma=1]=\eta^{\prime} \\ & b \in_{R}\{0,1\}^{n} \end{aligned}$
Accept iff	$\begin{aligned} & \text { choose } \\ & \nu \in\{0,1\} \\ & \quad \operatorname{Pr}[\nu=1]=\eta \end{aligned}$
$z=\left\{\begin{array}{l} a k_{1} \oplus b k \\ a k_{2} \oplus b k \end{array}\right.$	

Figure 8.5: Basic round of the HB^{*} protocol
the secrets k_{1} and k_{2}. A case distinction shows that the acceptance probability of z varies depending on the values of $\delta \cdot k_{1}$ and $\delta \cdot k_{2}$ in such a way that the attacker can discriminate between (sets of) the cases. Depending on the choices of η and η^{\prime}, the attacker may either recover k_{1} as in the GRS attack and impersonate Bob by sending $(b, w)=(0,0)$ as first message, or learn the two-dimensional vectorial space $\left\langle k_{1}, k_{2}\right\rangle$, which can similarly be exploited to impersonate Bob.

8.3.3 The HB-MP Protocols

Munilla and Peinado (2007) proposed the HB-MP protocol as an HB^{+}-variant that presumably resists the GRS attack. It uses a two-pass basic protocol as follows. Both verifier (Alice) and prover (Bob) share a secret (k_{1}, k_{2}). In the i th execution of the basic protocol, Alice sends a challenge $a \in_{R}\{0,1\}^{m}$ to Bob, who chooses a $\nu \in_{R}\{0,1\}^{m}$ such that $\operatorname{Pr}\left[\nu_{i}=1\right]=\eta$ for all $i \in[1, m]$. Then he computes $k_{1}:=\operatorname{rotate}\left(k_{1},\left(k_{2}\right)_{i}\right)$, where $\left(k_{2}\right)_{i}$ denotes the i-th bit of k_{2} and rotate (x, y) the rotation of x by y positions. He computes $z:=\left(a \cdot\left(\left\lfloor k_{1}\right\rfloor_{m}\right)\right) \oplus \nu$ with $\left\lfloor k_{1}\right\rfloor_{m}$ denoting the m least significant bits of k_{1}. Finally, he chooses a value b that satisfies $\left(b \cdot\left(\left\lfloor k_{1}\right\rfloor_{m}\right)\right)=z$ and transmits b to Alice. Alice accepts the evidence if and only if $b \cdot\left(\left\lfloor k_{1}\right\rfloor_{m}\right)$ equals $a \cdot\left(\left\lfloor k_{1}\right\rfloor_{m}\right)$ which is equivalent to

$$
\begin{equation*}
(a \oplus b) \cdot\left(\left\lfloor k_{1}\right\rfloor_{m}\right)=0 \tag{8.1}
\end{equation*}
$$

Figure 8.6 illustrates the basic round of HB-MP.
As with HB^{+}, Bob is authenticated if the number of failed basic protocol rounds is less than some threshold t.

Despite the claim in the original proposal, HB-MP is vulnerable to a passive attack as observed by Gilbert et al. (2008b). Equation (8.1) implies that a basic protocol round is always passed if a and b are equal. Munilla and Peinado recommend immediate rejection for this case, but nevertheless suitable evidences can be constructed from an observed r-round authentication session with exchanged messages $\left(a_{i}, b_{i}\right), i \in[1, r]$. In order to impersonate the prover, we

Figure 8.6: Basic round of the HB-MP protocol
compute for the verifier's challenge a_{i}^{\prime} an evidence b_{i}^{\prime} as $b_{i}:=a_{i}^{\prime} \oplus a_{i} \oplus b_{i}$. Then we have $b_{i}^{\prime} \neq a_{i}^{\prime}$ since $a_{i} \neq b_{i}$, and

$$
\left(a_{i} \oplus b_{i}\right) \cdot\left(\left\lfloor k_{1}\right\rfloor_{m}\right)=\left(a_{i}^{\prime} \oplus b_{i}^{\prime}\right) \cdot\left(\left\lfloor k_{1}\right\rfloor_{m}\right) .
$$

Hence, with this strategy we can successfully impersonate the prover if and only if the observed authentication session was successful.

8.3.4 The HB\# Protocol

In the light of the little resistance of the above described HB^{+}variants against GRS-type attacks, Gilbert et al. (2008a) introduced HB\# as an improvement of HB^{+}that is provably resistant against the GRS attack. It can be seen as a compressed version of HB^{+}and works as follows.

Verifier (Alice) and prover (Bob) share two secret matrices K_{1} and K_{2}. Bob sends an l_{2}-bit blinding value $b \in_{R}\{0,1\}^{l_{2}}$ to Alice, who replies with an l_{1}-bit challenge $a \in_{R}\{0,1\}^{l_{1}}$. Bob then chooses an m-bit vector $\nu=\left(\nu_{1}, \ldots, \nu_{m}\right)$ such that $\operatorname{Pr}\left[\nu_{i}=1\right]=\eta$ for $i \in[1, m]$ and transmits to Alice as corroborating evidence the value $z=a K_{1} \oplus b K_{2} \oplus \nu$. Alice accepts an evidence z if and only if $\operatorname{wt}\left(a \cdot K_{1} \oplus b \cdot K_{2} \oplus z\right) \leq t$ for some threshold t (see Fig. 8.7).

In contrast to HB^{+}, an authentication session based on $\mathrm{HB}^{\#}$ consists only of a single round. Hence, the protocol is similar to m executions of HB^{+}with individual secrets in each basic round.

Although provably resistant against the GRS attack and certain extensions, HB\# has been shown by Ouafi et al. (2008) not to resist general man-in-themiddle attacks. Particularly, Ouafi et al. show how to deduce the Hamming weight of the error vector ν in a particular authentication session, which can in turn be used to set up a system of linear equations to recover K_{1} and K_{2}. The attack has resonable success probabilities for practical parameter choices of $\mathrm{HB}^{\#}$ and is generally applicable also to other members of the HB protocol family.

Figure 8.7: One round of the $\mathrm{HB}^{\#}$ protocol

8.3.5 The Trusted-HB Protocol

A generic way to prevent man-in-the-middle attacks on HB^{+}-like protocols is to have the prover send a signature of his view of the communication transcript at the end of the authentication protocol. An adversary who is not able to forge the signature will thereby be prevented from impersonating the prover. Obviously, the choice of signature schemes is restricted by the resource contraints of the HB^{+}target application environment, which rules out standard message authentication schemes (that could by themselves be used for entity authentication, see Section (7.4). The proposal Trusted-HB by Bringer and Chabanne (2008) tries to solve this trade-off by using a family of universal hash functions that are represented by Toeplitz matrices, particularly by a subset of Toeplitz matrices that can be generated by LFSRs.

Definition 8.2. A finite collection \mathcal{H} of hash functions $h:\{0,1\}^{m} \rightarrow\{0,1\}^{n}$ is called family of universal hash functions if for each pair of values $x, y \in\{0,1\}^{m}$, the number of hash functions $h \in \mathcal{H}$ for which $h(x)=h(y)$ is precisely $\frac{|\mathcal{H}|}{m}$, i.e., for a randomly chosen $h \in \mathcal{H}, \operatorname{Pr}[h(x)=h(y)]=\frac{1}{m}$ for all $x, y \in\{0,1\}^{m}$.

Definition 8.3. An $(n \times m)$ Boolean Toeplitz matrix U contains a fixed value in each left-to-right diagonal, i.e., U is a Toeplitz matrix if $U_{i, j}=U_{i+k, j+k}$ for every $0 \leq i, i+k<n$ and $0 \leq j, j+k<m$.

Mansour et al. (1990) showed that a family \mathcal{H} of universal hash functions can be constructed by representing the $h \in \mathcal{H}$ as Toeplitz matrices U and computing $h(M)$ as $h(M):=U \circ M$ with M written as $(m \times 1)$ matrix.

The idea of Krawczyk (1994), which is also used in Trusted-HB, was to restrict the family of Toeplitz matrices to those whose consecutive columns can be represented as the consecutive states of an LFSR with irreducible connection polynomial. This restriction trades off reduced security guarantees and compact matrix representations, which are especially useful in resource-constrained environments. The signature for a message $M \in\{0,1\}^{m}$ is then computed as $\operatorname{MAC}(M):=h(M) \oplus e^{(i)}$, where $e^{(i)} \in\{0,1\}^{n}$ denotes the i-th unused one-time pad, while h and $e^{(i)}, i \geq 0$, are the secret key shared by prover and verifier.

Therefore Trusted-HB consists of two stages:

1. Prover and verifier execute the standard HB^{+}protocol.
2. The prover computes a signature on the communication transcript of the first stage based on LFSR-based Toeplitz matrices and transmits it to the verifier for verification.

However, the particular implementation of step (2) in Trusted-HB turned out to be flawed (Frumkin and Shamir, 2009), particularly because it seems hard in practice to keep h confidential and provide values $e^{(i)}$ that are sufficiently close to the one-time pad assumption. How the signature can be implemented in a both a secure and efficient way is therefore an open problem to the present day.

Chapter 9

The (n, k, L) Family of Authentication Protocols

9.1 Introduction and Overview

As a possible alternative to HB-type protocols, another class of lightweight authentication protocols (so-called CKK protocols) were introduced by Cichoń et al. (2008). These protocols can be generalized to linear (n, k, L) protocols, in which the secret key consists of the specification of $L n$-dimensional linear subspaces V_{1}, \ldots, V_{L} of $\operatorname{GF}(2)^{n+k}$, while the identification is performed by collaboratively generating an element $v \in V_{l}$ for a random $l \in\{1, \ldots, L\}$. Cichoń et al. (2008) suggested the CKK ${ }^{2}$ protocol, a special linear $(n, k, 2)$ protocol, and the CKK ${ }^{\sigma, L}$ protocol, a special linear (n, k, L) protocol, for practical application.

Compared to HB-type protocols, the advantages of (n, k, L) protocols and especially their improvements $(n, k, L)^{+}$and $(n, k, L)^{++}$are that fewer bits have to be communicated, computational effort and memory requirements are lower on the prover's side (essentially, the prover has to generate random elements from L different n-dimensional subspaces of $\mathrm{GF}(2)^{n+k}$), and that (n, k, L)-type protocols seem to be more resistant against active attacks. The drawback is that we cannot prove the security of (n, k, L) protocols by reduction to a wellestablished problem like the LPN-problem yet. However, we show that similarly to HB-type protocols, the security of (n, k, L)-type protocols can be related to the hardness of a certain learning problem, the Learning Unions of L linear subspaces (LULS) problem.

We have experimentally confirmed the correctness and efficiency of our attacks and algorithms with the computer algebra system Magma (Bosma et al., 1997).

9.2 The Linear (n, k, L) Protocol

In a linear (n, k, L) protocol, verifier (Alice) and prover (Bob) share as common secret the specifications of L injective linear functions $F_{1}, \ldots, F_{L}: \operatorname{GF}(2)^{n} \longrightarrow$ $\operatorname{GF}(2)^{n+k}$, i.e., each F_{i} corresponds to an n-dimensional subspace V_{i} of $\mathrm{GF}(2)^{n+k}$.

After receiving an arbitrary challenge from Alice, Bob computes as cor-
roborating evidence an element $w=F_{l}(u)$ for $l \in_{R}[L]$ and $u \in_{R} \operatorname{GF}(2)^{n}$. Alice accepts an evidence w if there is an $l \in[L]$ such that $w \in V_{l}$, where $[L]:=\{1, \ldots, L\}$ (see Fig. 9.1).

Obviously, this protocol is vulnerable to a simple passive attack, since an adversary can store a number of proofs and then impersonate Bob by presenting these proofs to Alice.

Moreover, an active adversary can successfully recover the key as follows.

1. Collect a set of messages $O=\left\{v^{1}, \ldots, v^{s}\right\}$ sent by Bob, with s large enough for O to contain a basis for V_{l} for all $l \in[L]$ with high probability.
2. Construct an $s \times s$-matrix M over $\{0,1\}$, where $M_{i, j}=1$ iff Alice accepts $v^{i} \oplus v^{j}$.

Note that if v^{i} and v^{j} belong to the same subspace $V_{l}, \operatorname{Pr}\left[M_{i, j}=1\right]=1$. If $\left\{v^{i}, v^{j}\right\} \nsubseteq V_{l}$ for all $l \in[L]$, then

$$
\operatorname{Pr}\left[M_{i, j}=1\right]=\operatorname{Pr}\left[v_{i} \oplus v_{j} \in \bigcup_{l=1}^{L} V_{l}\right] \leq(L-2) 2^{-k}
$$

The expected number of messages needed for constructing O_{r} can be estimated based on the following experiment.

Set $B:=\emptyset$.
repeat
Choose a random $v \in \mathrm{GF}(2)^{n}$ (w.r.t. the uniform distribution).
$V:=V \cup\{v\}$.
until V is a generating system of $\mathrm{GF}(2)^{n}$.
Lemma 9.1 (Gołebiewski et al. (2008)). Consider the experiment of repeatedly choosing a random element $v \in \mathrm{GF}(2)^{n}$ and adding v to an initially empty set V until V contains a generating system of $\mathrm{GF}(2)^{n}$. Let $p(n)$ denote the probability that the experiment stops after n iterations (i.e., V is a basis of $\left.\mathrm{GF}(2)^{n}\right)$, and $E(n)$ denote the expected number of iterations of the experiment. Then $p(n) \approx 0.2887$ and $E(n) \approx n+1.6067$.

Hence, $s \in \Theta(L \cdot E(n))=\Theta(L n)$, i.e., it is possible to efficiently compute specifications of V_{1}, \ldots, V_{L} and to impersonate Bob by replying with $w \in V_{l}$ for arbitrary $l \in[L]$.

Figure 9.1: Basic round of the (n, k, L) protocol

9.3 The Linear ($n, k, L)^{+}$Protocol

In order to prevent the described attacks on the linear (n, k, L) protocol, we consider the following communication mode, which, analogously to the HB^{+} protocol (see Section 8.2), defines $(n, k, L)^{+}$protocols.

Alice starts by sending an $a \in_{R} \mathrm{GF}(2)^{n / 2}$ to Bob. Bob chooses values $b \in_{R} \operatorname{GF}(2)^{n / 2}$ and $l \in_{R}[L]$ and sends $w=F_{l}(a, b)$ to Alice. Alice accepts a $w \in \operatorname{GF}(2)^{n+k}$ if there is some $l \in[L]$ with $w \in V_{l}$ and the prefix of length $n / 2$ of $F_{l}^{-1}(w)$ is equal to a (see Fig. 9.2).

However, $(n, k, L)^{+}$protocols can be broken by the man-in-the-middle attack outlined in Algorithm 12. In this attack, s is chosen large enough for $\left\{w_{1}, \ldots, w_{s}\right\}$ to contain a basis of V_{l} with high probability (see Lemma 9.1). The attack is repeated until specifications of all V_{1}, \ldots, V_{L} have been computed.

```
Algorithm \(12(n, k, L)^{+}\)_MITM-Attack \((n, k, L)\)
    Fix \(a_{1} \neq \overrightarrow{0}\) in \(\operatorname{GF}(2)^{n / 2}\).
    Send \(a_{1}\) to Bob and receive \(w_{1} \in V_{l}\) for some unknown \(l \in[L]\).
    for \(r=2, \ldots, s\) do
        repeat
            Intercept \(a\) from Alice.
            Send \(a^{\prime}:=a \oplus a_{1}\) to Bob and receive \(w^{\prime}\).
        until Alice accepts \(w^{\prime} \oplus w_{1}\) (which happens with probability at least \(1 / L\) )
        Define \(a_{r}:=a^{\prime}\) and \(w_{r}:=w^{\prime}\).
    end for
    return \(\left\{w_{1}, \ldots, w_{s}\right\}\) (which allows to compute \(V_{l}\) )
```


9.4 The Linear ($n, k, L)^{++}$Protocol

The parameters n, k, L as well as V_{l}, F_{l} for $l \in[L]$ are defined as above. Let $n=2 N$. The $(n, k, L)^{++}$protocol works similarly to the $(n, k, L)^{+}$protocol, but uses an additional publicly known invertible function $f: \operatorname{GF}(2)^{n} \longrightarrow \mathrm{GF}(2)^{n}$, which we call connection function.

In a basic protocol round, Alice chooses a random $a \in \mathrm{GF}(2)^{N}, a \neq \overrightarrow{0}$, moves to inner state a, and sends a to Bob. Bob chooses random values $b \in \operatorname{GF}(2)^{N}$

Figure 9.2: Basic round of the $(n, k, L)^{+}$protocol
and $l \in[L]$ and sends $w=F_{l}(f(a, b))$ back to Alice. Alice accepts a message $w \in \operatorname{GF}(2)^{n}$ in inner state a if $w \neq \overrightarrow{0}$, and $\exists l \in[L]$ such that $w \in V_{l}$, and $f^{-1}\left(F_{l}^{-1}(w)\right)$ has the form (a, b) for some $b \in \operatorname{GF}(2)^{N}$. The basic protocol round of $(n, k, L)^{++}$is illustrated in Fig. 9.3. Note that choosing f to be the identity yields the $(n, k, L)^{+}$protocol.

For the $(n, k, L)^{++}$protocol, we consider a special type of man-in-the-middle attack which we call (x, y)-equality attack. The aim of an (x, y)-equality attacker Eve is to generate two messages $w \neq w^{\prime} \in \operatorname{GF}(2)^{n+k}$ and to efficiently test by man-in-the-middle access to the protocol whether w and $w \oplus w^{\prime}$ belong to the same linear subspace V_{l} for some $l \in[L]$. As described above, such an attack can be used to efficiently compute specifications of the subspaces V_{1}, \ldots, V_{L}. Eve works in three phases:

1. Send a message $y \in \mathrm{GF}(2)^{N}$ to Bob and receive $w^{\prime}=F_{l}\left(f\left(y, b^{\prime}\right)\right)$.
2. Observe a challenge $a \in \mathrm{GF}(2)^{N}$ sent by Alice.
3. Compute a value $x=x\left(y, w^{\prime}, a\right) \in \operatorname{GF}(2)^{N}$, send it to Bob, receive the message $w=F_{r}(f(x, b))$, and send $w \oplus w^{\prime}$ to Alice.

The success probability of the attack is equal to the probability that Alice accepts $w \oplus w^{\prime}$ given that $l=r$. Note that if f is GF(2)-linear (as in the $(n, k, L)^{+}$protocol), setting $x=a \oplus y$ yields an attack with success probability one.

We now define a connection function which yields provable security against (x, y)-equality attacks. In the following we identify $\{0,1\}^{N}$ with the finite field $K=\mathbb{F}_{2^{N}}$ and denote by,$+ \cdot$ the addition and multiplication in K. We define a connection function f by

$$
\begin{array}{rlc}
f: K \times K & \rightarrow & K \times K \\
(a, b) & \mapsto & \left(a b, a b^{3}\right) \tag{9.1}
\end{array} .
$$

Hence, Alice accepts a message w with $F_{l}^{-1}(w)=(u, v) \in K^{2}$ in inner state $a \in K^{*}$ if $\left(a^{-1} u\right)^{3}=a^{-1} v$, which is equivalent to $u^{3}=a^{2} v$.

Theorem 9.2. The success probability of an (x, y)-equality attacker against the $(n, k, L)^{++}$protocol with connection function f defined in Eq. (9.1) is at most $\frac{3}{2^{N}-1}$.

Figure 9.3: Basic round of the $(n, k, L)^{++}$protocol

Proof. For given $y, a \in K^{*}$, Eve has to choose an element $x \in K^{*}$ such that $w+w^{\prime}=(u, v) \in K \times K$ will be accepted by Alice in inner state a, where $w=F_{l}(x, b)$ and $w^{\prime}=F_{l}\left(y, b^{\prime}\right)$ for some $l \in[L]$, and $b, b^{\prime} \in K^{*}$. Note that Eve has no information about b, b^{\prime}, and that $u=x b+y b^{\prime}$ and $v=x b^{3}+y b^{\prime 3}$.

Consequently, Eve's choice for the value x has to satisfy

$$
\begin{array}{cc}
& \left(x b+y b^{\prime}\right)^{3}=a^{2}\left(x b^{3}+y b^{\prime 3}\right) \\
\Leftrightarrow & (x+y c)^{3}=a^{2}\left(x+y c^{3}\right) \text { with } c:=b^{\prime}\left(b^{-1}\right) \\
\Leftrightarrow & P(x, c)=0
\end{array}
$$

with $P(x, d)$ for all $d \in K^{*}$ defined as

$$
P(x, d):=x^{3}+(y d) x^{2}+\left(y^{2} d^{2}+a^{2}\right) x+d^{3}\left(y^{3}+y^{2} a^{2}\right) .
$$

Note that there are $\left|K^{*}\right|=2^{N}-1$ different polynomials $P(x, d)$ with respect to the variable x. For all $x \in K^{*}$ let $P(x):=\{d \mid P(x, d)=0\}$. Note that $P(x, d)$ is a polynomial of degree 3 also in the unknown d. This implies that $|P(x)| \leq 3$ for all $x \in K^{*}$.

Eve has to choose an x that satisfies $c \in P(x)$. Since she does not have any information about c, her success probability is at most $\frac{3}{2^{N}-1}$.

9.5 Special Cases of Linear (n, k, L) Protocols

The definition of the (n, k, L) protocol family was inspired by two earlier proposals, the CKK 2 protocol and the CKK $^{\sigma, L}$ (Cichoń et al., 2008) protocol, which can be seen as restricted (n, k, L) protocols.

In our notation, the protocol CKK^{2} is an $(n+k, k, 2)$ protocol with the additional properties that $F_{1}(u, a)=(u, f(u), a)$ and $F_{2}(u, a)=(u, a, f(u))$ for all $u \in \operatorname{GF}(2)^{n}$ and $a \in \operatorname{GF}(2)^{k}$, where f denotes a secret linear function $f: \mathrm{GF}(2)^{n} \longrightarrow \mathrm{GF}(2)^{k}$. The protocol $\mathrm{CKK}^{\sigma, L}$ is an (n, k, L) protocol with the restriction $F_{l}(u)=\sigma^{l}(u \| f(u))$ for all $l \in[L]$, where σ denotes a secret permutation $\sigma \in \mathcal{S}_{n+k}$ and f a secret linear function $f: \mathrm{GF}(2)^{n} \longrightarrow \mathrm{GF}(2)^{k}$. Hence, the secret keys have the form (f, σ). The parameters $n=128$ and $k=30$ were suggested by Cichoń et al. (2008) for practical applications of CKK ${ }^{2}$ and CKK $^{\sigma, L}$.

Gołebięwski et al. (2008) presented an attack against the CKK ${ }^{2}$ protocol, which cannot be applied to general (n, k, L) protocols. Its running time is proportional to $\sum_{s=0}^{k-1}\binom{n}{s}$, i.e., of order $n^{\Theta(k)}$. As an improvement of this result, we now describe a very fast attack against the CKK ${ }^{2}$ protocol with parameters (n, k) whose running time is dominated by the effort required for inverting k $(n \times n)$-matrices.

Let $f: \mathrm{GF}(2)^{n} \longrightarrow \mathrm{GF}(2)^{k}$ denote the secret key and recall that

$$
\begin{aligned}
& V_{1}=\left\{(v, f(v), a), v \in \mathrm{GF}(2)^{n}, a \in \mathrm{GF}(2)^{k}\right\} \\
& V_{2}=\left\{(v, a, f(v)), v \in \mathrm{GF}(2)^{n}, a \in \mathrm{GF}(2)^{k}\right\}
\end{aligned}
$$

Let the functions $f^{1}, \ldots, f^{k}: \mathrm{GF}(2)^{n} \longrightarrow \mathrm{GF}(2)$ denote the component functions of the secret function f, i.e., $f(v)=\left(f^{1}(v), \ldots, f^{k}(v)\right)$ for all $v \in \operatorname{GF}(2)^{n}$. The attack is based on the simple fact that if an observation (v, a, b) satisfies

```
Algorithm \(13 \mathrm{CKK}^{2}\) _ \(\operatorname{Attack}(n, k)\)
    Let \(\left\{e_{1}, \ldots, e_{n}\right\}\) denote the standard basis of \(\operatorname{GF}(2)^{n}\).
    for \(r \in[k]\) do
        Consider a set of messages produced by Bob and extract from it a set
        \(O_{r}=\left\{\left(v_{r, 1}, a_{r, 1}, b_{r, 1}\right), \ldots,\left(v_{r, n}, a_{r, n}, b_{r, n}\right)\right\}\) such that \(v_{r, 1}, \ldots, v_{r, n}\) form a
        basis of \(\mathrm{GF}(2)^{n}\) and \(a_{r, i}(r)=b_{r, i}(r)=f^{r}\left(v_{r, i}\right)\) for all \(i \in[n]\).
        Derive \(f^{r}\left(e_{1}\right), \ldots, f^{r}\left(e_{n}\right)\) from \(O_{r}\).
        return \(f^{1}, \ldots, f^{k}\)
    end for
```

$a_{r}=b_{r}$ for some $r \in[k]$, which is true with probability $1 / 2$, then we know that $f^{r}(v)=a_{r}=b_{r}$. The attack works as described in Algorithm 13 .

The correctness of the attack follows straightforwardly from the definitions. Lemma 9.1 implies that the expected number of messages needed for constructing O_{r} is $2 \cdot E(n) \approx 2 n+3.2134$. For the parameter choices proposed for practical applications, the attack is very efficient already on standard PC hardware (Magma V2.15-9 on a 3.4 GHz Intel Pentium IV with 4 GB RAM), see Table 9.1.

9.6 Security of Linear (n, k, L)-type Protocols and the Learning Unions of L Linear Subspaces Problem

9.6.1 The Search-for-a-Basis Heuristic

There are several exhaustive search strategies for computing specifications of the secret subspaces V_{1}, \ldots, V_{L}.

As an example, we describe the search-for-a-basis heuristic, which tries to construct a set Q of examples which form a basis of V_{l} for some $l \in L$. For all linearly independent sets Q of n examples let $p(Q)$ denote the probability that an example coming from the oracle belongs to the linear span $\langle Q\rangle$ of Q. It is quite obvious that $p(Q)$ is maximal if Q is a basis of V_{l} for some $l \in L$. If $p(Q)$ is not too small, we can compute an approximation $\tilde{p}(Q)$ of $p(Q)$ by testing for $w \in\langle Q\rangle$ for a sufficiently large number of examples w. For $v \in Q$ and $w \notin Q$ we denote by $Q(v, w)$ the set obtained by replacing v by w in Q.

The idea of the heuristic is to start with an arbitrary linearly independent set Q of n examples and to try to improve this set by finding $v \in Q$ and $w \notin Q$ such that $\tilde{p}(Q)<\tilde{p}(Q(v, w))$. Iterating this procedure at most n times yields a basis for V_{l} for some $l \in[L]$.

Table 9.1: Performance of the passive attack on CKK ${ }^{2}$

(n, k)	approx. number of observations	approx. attack time
$(128,30)$	311	0.3 s
$(1024,256)$	2197	179 s

This kind of heuristic is infeasible if the following condition is fulfilled. For a random linear independent set Q of n examples the probability $p(Q)$ is negligibly small with probability $1-\epsilon, \epsilon$ negligibly small. The parameters n, k should be chosen such that this condition is guaranteed.

We estimate the probability $p(Q)$ for the case $L=2$. For a linear independent set Q of n examples let $Q=Q_{1} \cup Q_{2}$, where $Q_{1} \subseteq V_{1}$ and $Q_{2} \subseteq V_{2} \backslash V_{1}$. Without loss of generality, let $\left|Q_{1}\right|=n / 2+s$ and $\left|Q_{2}\right|=n / 2-s$. The event $w \in\langle Q\rangle$ happens iff $w \in V_{1} \cap<Q_{1}>$ or $w \in V_{2}$ and $w \in V_{2} \cap<Q_{1}>$, i.e.,

$$
p(Q) \leq \frac{1}{2}\left(2^{s-n / 2}+2^{-} k\right)
$$

Note that $\operatorname{dim}\left(V_{1} \cap V_{2}\right)=n-k$ for random n-dimensional subspaces V_{1}, V_{2}. If n, k are chosen such that $2^{-k}, 2^{-n / 4}$ and the probability that $|v| \notin[n / 4,3 n / 4]$ are negligibly small, then the above condition is fulfilled (note that the expected value of s is $2^{-k} n / 2$).

The parameters (n, k) should be chosen such that these attacks become infeasible. Moreover, k should be large enough such that the probability p of a random $v \in \operatorname{GF}(2)^{n+k}$ belonging to $\bigcup_{l=1}^{L} V_{l}$ is negligibly small. Note that $p<L 2^{-k}$.

The subspaces V_{1}, \ldots, V_{L} should have the property $V_{i} \oplus V_{j}=\mathrm{GF}(2)^{n+k}$ for all $i \neq j \in[L]$, otherwise the effective key length would be reduced. This implies $n \geq k$.

9.6.2 The Learning Unions of L Linear Subspaces Problem

The Learning Unions of L Linear Subspaces (LULS) Problem refers to the following communication game between a learner and an oracle. The oracle holds the specifications of $L n$-dimensionial linear subspaces V_{1}, \ldots, V_{L} of GF $(2)^{n+k}$. The learner can send requests hello to the oracle. If the oracle receives hello, it chooses randomly and uniformly an $l \in[L]$ and $v \in V_{l}$ and sends the (positive) example v to the learner. The aim of the learner is to compute specifications of V_{1}, \ldots, V_{L} from a sufficiently large set v^{1}, \ldots, v^{s} of examples produced by the oracle. Note that this corresponds to a passive key recovery attack against (n, k, L)-type protocols. A possible strategy is the search-for-a-basis heuristic described in Section 9.6.1.

An active adversary who is able to solve the LULS problem efficiently can break the $(n, k, L)^{+}$protocol. In particular, knowing specifications of the secret subspaces V_{1}, \ldots, V_{L}, he can generate specifications of the subspaces $V_{l}(a)$ (i.e., the image of $\left.F_{l}(a, \cdot)\right)$, for arbitrary $a \in \mathrm{GF}(2)^{n / 2}$ and $l \in[L]$ by repeatedly sending a to Bob. Then the adversary uses $N=n / 2$ subspaces $V_{l}\left(a_{i}\right), \ldots, V_{l}\left(a_{N}\right)$ for $\left\{a_{1}, \ldots, a_{N}\right\}$ linearly independent to forge a response for
a challenge $a=\sum_{i=1}^{N} \alpha_{i} a_{i}$ by computing

$$
\begin{aligned}
w & =\sum_{i=1}^{N} \alpha_{i} v_{i} \text { with } v_{i} \in_{R} V_{l}\left(a_{i}\right) \\
& =\sum_{i=1}^{N} \alpha_{i} F_{l}\left(a_{i}, b_{i}\right) \\
& =F_{l}\left(a, b^{\prime}\right) \text { with } b=\sum_{i=1}^{N} b_{i} .
\end{aligned}
$$

In the case of the $(n, k, L)^{++}$protocol, the adversary cannot just return a random $w \in V_{l}(a)$, but has to make sure that the first half of $f^{-1}\left(F_{l}^{-1}(w)\right)$ corresponds to a. How such a w can be found efficiently (possibly based on the specifications of the subspaces $V_{l}(a)$) is a matter of further research.

In the following, we present and discuss an algebraic learning algorithm for LULS.

9.6.3 On Solving the LULS Problem

A Learning Algorithm for the LULS Problem

Recall that the LULS problem with parameters n, k, L consists in computing specifications of L secret n-dimensional linear subspaces of GF (2$)^{n+k}$ from positive examples v produced by an oracle which chooses randomly and uniformly $l \in[L]$ and $v \in V_{l}$. In this thesis we treat the case $L=2$ and consider the special case that $V_{l}=\left\{(v, f(v)), v \in \mathrm{GF}(2)^{n}\right\}, l \in\{1,2\}$, for secret linear functions $f_{1}, f_{2}: \mathrm{GF}(2)^{n} \longrightarrow \mathrm{GF}(2)^{k}$. Our algorithm computes for all $i \in[k]$ specifications of the i-th component functions $f_{1}^{i}, f_{2}^{i}: \mathrm{GF}(2)^{n} \longrightarrow \mathrm{GF}(2)$ separately, i.e., it suffices to consider the case $k=1$. The learning algorithm is based on the following reasoning.

1. Take a set $O=\left\{\left(v^{1}, w_{1}\right), \ldots,\left(v^{n}, w_{n}\right)\right\} \subseteq \mathrm{GF}(2)^{n+1}$ of examples such that $B=\left\{v^{1}, \ldots, v^{n}\right\}$ forms a basis of $\operatorname{GF}(2)^{n}$. For all $i \in[n]$ let x_{i} and y_{i} denote the variables corresponding to $f_{1}\left(v^{i}\right)$ and $f_{2}\left(v^{i}\right)$, respectively.
2. For $b \in\{0,1\}$ let $I_{b}=\left\{i \in[n], w_{i}=b\right\}$.
3. For all $i \in[n]$ let $t_{i}=x_{i} \oplus y_{i}$, and for all $i<j \in[n]$ let $t_{i, j}=x_{i} y_{j} \oplus x_{j} y_{i}$.
4. Observe that for all $i \in[n]$ the equality $\left(w_{i} \oplus x_{i}\right)\left(w_{i} \oplus y_{i}\right)=0$ holds. This implies

$$
\begin{equation*}
x_{i} y_{i}=0 \text { if } i \in I_{0} \text { and } x_{i} y_{i}=1 \oplus t_{i} \text { if } i \in I_{1} . \tag{9.2}
\end{equation*}
$$

5. Observe that each example $(v, w) \in \operatorname{GF}(2)^{n+1}, v \notin B$ satisfies the following: If $v=\bigoplus_{i \in I} v_{i}$, (i.e., $I \subseteq[n]$ defines the unique representation of v w.r.t. B), then

$$
\begin{equation*}
\left(w \oplus \bigoplus_{i \in I} x_{i}\right)\left(w \oplus \bigoplus_{i \in I} y_{i}\right)=0 \tag{9.3}
\end{equation*}
$$

Observe that Eq. (9.3) can be rewritten as a relation $T_{B}(I, w)$ in the variables t_{i} and $t_{i, j}$ in the following way. If $w=0$ then Eq. (9.3) is equivalent to $\bigoplus_{i \in I} x_{i} y_{i} \oplus \bigoplus_{i<j \in I} t_{i, j}=0$. Together with Eq. (9.2) this implies $\bigoplus_{i \in I_{1} \cap I}\left(t_{i} \oplus 1\right) \oplus \bigoplus_{i<j \in I} t_{i, j}=0$ for $w=0$. Consequently, for $w=0$ we define $T_{B}(I, w)$ as

$$
\bigoplus_{i \in I \cap I_{1}} t_{i} \oplus \bigoplus_{i<j \in I} t_{i, j}= \begin{cases}0 & \text { if }\left|I \cap I_{1}\right| \text { is even } \\ 1 & \text { if }\left|I \cap I_{1}\right| \text { is odd }\end{cases}
$$

If $w=1$ then Eq. (9.3) is equivalent to $1 \oplus \bigoplus_{i \in I} t_{i} \oplus \bigoplus_{i \in I \cap I_{1}}\left(t_{i} \oplus 1\right) \oplus$ $\bigoplus_{i<j \in I} t_{i, j}=0$. Hence, for $w=1$ we define $T_{B}(I, w)$ as

$$
\bigoplus_{i \in I \cap I_{0}} t_{i} \oplus \bigoplus_{i<j \in I} t_{i, j}= \begin{cases}0 & \text { if }\left|I \cap I_{1}\right| \text { is odd } \\ 1 & \text { if }\left|I \cap I_{1}\right| \text { is even }\end{cases}
$$

Note that a relation similar to Eq. (9.3) was also exhibited by Blass et al. (2008) for designing an algebraic attack against F_{f} protocols.

The learning algorithm now proceeds as described in Algorithm 14.

```
Algorithm 14 LULS-solve \((O)\)
    Let initially the system LES of linear equations in the \(\frac{1}{2}\left(n^{2}+n\right)\) variables \(t_{i}\)
    \((i \in[n])\) and \(t_{i, j}(i<j \in[n])\) be empty.
    repeat
        Choose an observation \((v, w) \in O, v \notin B \cup\{\overrightarrow{0}\}\), and compute the unique
        subset \(I \subseteq[n]\) with \(v=\bigoplus_{i \in I} v^{i}\).
        Enlarge the system \(L E S\) by the linear equation \(T_{B}(I, w)\).
    until the system \(L E S\) has \(\frac{1}{2}\left(n^{2}+n\right)\) linearly independent equations.
    Compute by Gaussian elimination the unique solution \(\theta\) of the system \(L E S\).
    Compute from \(\theta\) the unique correct assignments to \(x_{i}, y_{i}\) for all \(i \in[n]\).
```

The correct assignments to the x_{i} and y_{i} variables (the last step of Algorithm 14) can be computed from $\theta=\left(\theta_{i}\right)_{i \in[n]}\left(\theta_{i, j}\right)_{i<j \in[n]}$ as follows. For $b=0,1$ let K_{b} denote the set $K_{b}=\left\{i \in[n], \theta_{i}=b\right\}$. We know that for all $i \in K_{0}, x_{i}=y_{i}=w_{i}$ is satisfied, and for all $i \in K_{1}$ it holds that $y_{i}=x_{i} \oplus 1$. This implies that for all $i<j$ in $K_{1}, \theta_{i, j}$ satisfies

$$
\theta_{i, j}=x_{i}\left(x_{j} \oplus 1\right) \oplus x_{j}\left(x_{i} \oplus 1\right)=x_{i} \oplus x_{j}
$$

This yields a system $L E S^{*}$ of $1 / 2\left|K_{1}\right|\left(\left|K_{1}\right|-1\right)$ linear equations in the variables $x_{i}, i \in K_{1}$, of rank $\left|K_{1}\right|-1$. Since it does not matter which of the two secret linear subspaces we denote by V_{1} and which by V_{2}, we have the freedom to set $x_{k}=0$ for some fixed $k \in K_{1}$. The system $L E S^{*}$ together with $x_{k}=0$ yields a system of full rank and allows to compute the correct assigment to the x_{i}-variables by Gaussian elimination.

Analysis and Experimental Results

The reason for the fact that the repeat cycle of the algorithm is left after a finite number of rounds is that the following $\left(2^{n}-(n+1)\right) \times(n(n+1) / 2)$ matrix $M(n)$ over $\mathrm{GF}(2)$ has full row rank (which is not hard to show). The
row indices of $M(n)$ are all subsets $I \subseteq[n]$ with $|I| \geq 2$, the column indices are $[n] \cup\{(i, j), 1 \leq i<j \leq n\}$. We have $M(n)_{I, i}=1$ iff $i \in I$ and $M(n)_{I,(i, j)}=1$ iff $\{i, j\} \subseteq[n]$.

We do not give here a theoretical analysis of the expected number of rounds of the repeat cycle. Our experiments show that the algorithm needs only slightly more than $\frac{1}{2}\left(n^{2}+n\right)+n$ observations to compute the secret functions f_{1} and f_{2}. Particularly for $n=128$, we need approx. 8390 examples and 4 minutes on a 3.4 GHz Intel Pentium IV with 4 GB RAM and Magma V2.15-9.

How severe is the restriction that the secret subspaces have the special form $V=\left\{(v, f(v)), v \in \mathrm{GF}(2)^{n}\right\}$ for some surjective linear mapping $f: \mathrm{GF}(2)^{n} \longrightarrow$ $\mathrm{GF}(2)^{k}$? Let us consider the general case $V=\left\{A \circ v, v \in \mathrm{GF}(2)^{n}\right\}$ for an $((n+k) \times n)$ matrix A. V can be written in the special form iff the first n rows of A are linearly independent. For randomly chosen A this is true with probability $p(n) \approx 0.2887$ (Lemma 9.1).

We have seen that we can solve the LULS problem with parameters $(n, k, 2)$ by solving k LULSproblems with parameters ($n, 1,2$). For the special LULS problem with parameters $(n, 1, L), L>2$, we can define a similar system $L E S$ consisting of degree- L equations in the variables $x_{i}^{l}, i \in[n], l \in[L]$, induced as above by equations of the form

$$
\begin{equation*}
\left(w \oplus \bigoplus_{i \in I} x_{i}^{1}\right) \ldots\left(w \oplus \bigoplus_{i \in I} x_{i}^{L}\right)=0 . \tag{9.4}
\end{equation*}
$$

The problem is that for $L>2$ the equations have several symmetries such that the system can not be solved uniquely. A possible way out is to

- choose an appropriate parameter $s<k$ which divides k, let $k=s \cdot p$,
- write vectors $w \in \operatorname{GF}(2)^{k}$ as vectors $w \in \operatorname{GF}\left(2^{s}\right)^{p}$, and
- solve the corresponding p LULS problem with parameters $(n, 1, L)$ over $\mathrm{GF}\left(2^{s}\right)$.

Hamann (2010) has described a learning algorihm based on this idea that solves the described special case of the LULS problem in average running time in the order of $k n^{\mathcal{O}(L)}$. His analysis supports the conjecture that there is no faster way to solve an (n, k, L) LULS problem, which suggests parameter choices like $(n, L) \in\{(128,8),(256,6)\}$ for practical applications.

9.7 Discussion

We have seen that the secret key of CKK^{2} protocols can be computed very quickly from a sufficiently large set of messages sent by the prover. This kind of protocol should not be used in practice.

The parameters of $(n, k, L)^{++}$protocols have to be chosen in such that solving the LULS problem with parameters $\left(\frac{n}{2}, k, L\right)$ is infeasible. We recommend to use $n=256, k=64$ and $L=5$.

Another interesting question is to search for simpler nonlinear connection functions f for which a security proof can be found. In our proposal, the prover has to perform three multiplications in the finite field of order $2^{n / 2}$ in order to compute $f(a, b)$.

Yet another open question is whether the very symmetrically structured systems of degree- L equations arising in our LULS algorithm in Section 9.6.3 can be solved more efficiently by more advanced techniques like the F4- or F5algorithm or cube attacks (Dinur and Shamir, 2008, 2009, Faugère, 1999, 2002). If one could generate convincing evidence that such algorithms cannot beat our linearization attack, then $(n, k, L)^{++}$protocols with the above parameters could be seriously considered for practical use.

A problem of (n, k, L) protocols is the large key length of $L \cdot n \cdot n+k$ in the case that random mappings F_{1}, \ldots, F_{L} are used. It is an important task to look for secure and efficient ways to generate pseudorandom keys. In this context, the (still unbroken) $\mathrm{CKK}^{\sigma, L}$ protocols look appealing, but we conjecture that $\mathrm{CKK}^{\sigma, L}$ protocols can be efficently broken. However, promising suggestions for key length reductions have been made bv Gilbert et al. (2008a) and Bringer and Chabanne (2008) in the context of Trusted-HB (see Section 8.3.5). Adapting these ideas to (n, k, L) protocols would mean

- to consider special forms of secret subspaces $V_{l}=\left\{\left(A_{l} \circ v\right), v \in \mathrm{GF}(2)^{n}\right\}$, where A_{l} denotes a secret $(n+k) \times n$ Toeplitz matrix (Gilbert et al., 2008a), and
- to define the Toeplitz matrix A_{l} to be generated by a secret Linear Feedback Shift Register (Bringer and Chabanne, 2008).

Checking the feasibility and security of these constructions should be a matter of further research.

Chapter 10

Conclusion

In this thesis, we have analyzed two of the most prominent security requirements in electronic communication, confidentiality of messages and authenticity of entities.

Concerning confidentiality of messages, we have defined and analyzed hardwareoriented stream ciphers and their most important building blocks. We have described three generic attacks on stream ciphers, BDD-Attacks, correlation attacks and algebraic attacks, and analyzed their impact on practically used stream ciphers as well as newly proposed designs. In the case of the E_{0} keystream generator from the Bluetooth standard, we have indicated ways to improve its security with respect to the considered attacks by careful local modifications of the design.

In order to provide entity authentication for environments in which only little computational resources are available, e.g. on RFID-tags or mobile telephones, we defined and investigated lightweight authentication protocols that are based on randomly choosing elements from a secret set of vector spaces. We related the security of these protocols to the hardness of a certain learning problem and provided a first complexity analysis of this problem as a starting point for further research.

Bibliography

Carlisle Adams. Identification. In Henk Tilborg, editor, Encyclopedia of Cryptography and Security, pages 272-273. Springer US, 2005.

Miklós Ajtai, László Babai, Péter Hajnal, János Komlós, Pavel Pudlák, Vojtech Rödl, Endre Szemerédi, and György Turán. Two lower bounds for branching programs. In Proc. of STOC '86, pages 30-38. ACM, 1986.

Ross Anderson, Francesco Bergadano, Bruno Crispo, Jong-Hyeon Lee, Charalampos Manifavas, and Roger Needham. A new family of authentication protocols. SIGOPS Oper. Syst. Rev., 32:9-20, 1998.

Frederik Armknecht. Improving fast algebraic attacks. In Proc. of FSE 2004, volume 3017 of $L N C S$, pages 65-82. Springer, 2004a.

Frederik Armknecht. On the existence of low-degree equations for algebraic attacks. Technical report, Cryptology ePrint Archive, Report 2004/185, 2004b.

Frederik Armknecht. Algebraic Attacks on Certain Stream Ciphers. PhD thesis, University of Mannheim, Mannheim, Germany, 2006.

Frederik Armknecht and Gwenolé Ars. Algebraic attacks on stream ciphers with Gröbner bases. In Gröbner Bases, Coding, and Cryptography, pages 329-348. Springer, 2009.

Frederik Armknecht and Matthias Krause. Algebraic attacks on combiners with memory. In Proc. of CYPTO 2003, volume 2729 of $L N C S$, pages 162-176. Springer, 2003.

Frederik Armknecht and Matthias Krause. Constructing single- and multioutput boolean functions with maximal algebraic immunity. In Proc. of ICALP 2006, volume 4052 of LNCS, pages 180-191. Springer, 2006.

Frederik Armknecht, Joseph Lano, and Bart Preneel. Extending the resynchronization attack. In Proc. of SAC 2004, volume 3357 of LNCS, pages 19-38. Springer, 2004.

Frederik Armknecht, Claude Carlet, Philippe Gaborit, Simon Künzli, Willi Meier, and Olivier Ruatta. Efficient computation of algebraic immunity for algebraic and fast algebraic attacks. In Proc. of EUROCRYPT 2006, volume 4004 of LNCS, pages 147-164. Springer, 2006.

François Arnault and Thierry P. Berger. Design and properties of a new pseudorandom generator based on a filtered FCSR automaton. IEEE Trans. Comp., 54(11):1374-1383, 2005a.

François Arnault, Thierry P. Berger, and Abdelkader Necer. Feedback with carry shift register synthesis with the euclidean algorithm. IEEE Trans. Inform. Theory, 50(5):910-917, 2004.

François Arnault, Thierry P. Berger, and Cédric Lauradoux. Update on FFCSR stream cipher. eSTREAM, ECRYPT Stream Cipher Project, Report 2006/025, 2006. http://www.ecrypt.eu.org/stream.

François Arnault, Thierry P. Berger, and Marine Minier. Some results on FCSR automata with applications to the security of FCSR-based pseudorandom generators. IEEE Trans. Inform. Theory, 54(2):836-840, 2008.

François Arnault and Thierry P. Berger. F-FCSR: Design of a new class of stream ciphers. In Proc. of FSE 2004, volume 3557 of $L N C S$, pages 83-97. Springer, 2005b.

François Arnault, Thierry P. Berger, Cédric Lauradoux, and Marine Minier. XFCSR - a new software oriented stream cipher based upon FCSRs. In Proc. of INDOCRYPT 2007, volume 4859 of $L N C S$, pages 341-350. Springer, 2007.

Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube testers and key recovery attacks on reduced-round MD6 and Trivium. In Proc. of FSE 2008, volume 5665 of $L N C S$, pages 1-22. Springer, 2009.

Steve Babbage, Christophe de Cannière, Anne Canteaut, Calos Cid, Henri Gilbert, Thomas Johansson, Matthew Parker, Bart Preneel, Vincent Rijmen, and Matthew J.B. Robshaw. The eSTREAM portfolio (rev. 1). eSTREAM, ECRYPT Stream Cipher Project, 2008. http://www.ecrypt.eu.org/stream.

Alex Biryukov and Adi Shamir. Cryptanalytic time/memory/data tradeoffs for stream ciphers. In Proc. of ASIACRYPT 2000, volume 1976 of LNCS, pages 1-13. Springer, 2000.

Alex Biryukov, Adi Shamir, and David Wagner. Real time cryptanalysis of A5/1 on a PC. In Proc. of FSE 2000, volume 1978 of $L N C S$, pages 1-13. Springer, 2000.

John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of the block-cipher-based hash-function constructions from PGV. In Proc of CRYPTO 2002, volume 2442 of $L N C S$, pages 103-118. Springer, 2002.

Erik-Oliver Blass, Anil Kurmus, Refik Molva, Guevara Noubir, and Abdullatif Shikfa. The F_{f}-family of protocols for RFID-privacy and authentication. http://eprint.iacr.org/2008/476, 2008.

Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM, 50(4):506-519, 2003.

Lenore Blum, Manuel Blum, and Michael Shub. A simple unpredictable pseudorandom number generator. SIAM J. Comput., 15(1):364-383, 1986.

Andrey Bogdanov, Lars Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J.B. Robshaw, Yannick Seurin, and Charlotte Vikkelsoe. PRESENT: An ultra-lightweight block cipher. In Proc. of CHES 2007, volume 4727 of $L N C S$, pages $450-466$. Springer, 2007.

Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. i. the user language. J. Symbolic Comput., 24(3-4):235-265, 1997.

An Braeken and Joseph Lano. On the (im)possibiliy of practical and secure nonlinear filters and combiners. In Proc. of SAC 2005, volume 3897 of LNCS, pages 159-174. Springer, 2005.

Jörg Brandeis. Implementierung eines algebraischen Angriffs auf den $E_{0^{-}}$ Generator und verwandte Chiffren. Master's thesis, University of Mannheim, Mannheim, Germany, 2004. (in german).

Marc Briceno, Ian Goldberg, and David Wagner. A pedagogical implementation of A5/1, May 1999. http://jya.com/a51-pi.htm.

Julien Bringer and Hervé Chabanne. Trusted-HB: A low cost version of HB^{+} secure against a man-in-the-middle attack. IEEE Trans. Inform. Theor., 54: 4339-4342, 2008.

Julien Bringer, Hervé Chabanne, and Emmanuelle Dottax. HB^{++}: A lightweight authentication protocol secure against some attacks. In Proc. of SecPerU, pages 28-33. IEEE Computer Society Press, 2006.

Randal E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comp., 35(8):677-691, 1986.

Claude Carlet. A method of construction of balanced functions with optimum algebraic immunity. In Proc. of International Workshop on Coding and Cryptology, Coding and Cryptology, pages 25-43. World Scientific, 2008.

Jacek Cichoń, Marek Klonowski, and Mirosław Kutył owski. Privacy protection for RFID with hidden subset identifiers. In Proc. of Pervasive 2008, volume 5013 of LNCS, pages 298-314. Springer, 2008.

Don Coppersmith, Hugo Krawczyk, and Yishay Mansour. The shrinking generator. In Proc. of CRYPTO 1993, volume 773 of $L N C S$, pages 22-39. Springer, 1994.

Nicolas Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In Proc. of CRYPTO 2003, volume 2729 of $L N C S$, pages 177-194. Springer, 2003.

Nicolas Courtois and Willi Meier. Algebraic attacks on stream ciphers with linear feedback. In Proc. of EUROCRYPT 2003, volume 2656 of LNCS, pages 345-359. Springer, 2003.

Nicolas Courtois, Alexander Klimov, Jaques Patarin, and Adi Shamir. Efficient algoprithms for solving overdefined systems of multivariate polynomial equations. In Proc. of EUROCRYPT 2000, volume 1807 of $L N C S$, pages 392-407. Springer, 2000.

Raymond Couture and Pierre L'Ecuyer. On the lattice structure of certain linear congruential sequences related to AWC/SWB generators. Math. Comput., 62 (206):799-808, 1994.

Deepak Kumar Dalai, Kishan Chand Gupta, and Subhamoy Maitra. Cryptographically significant boolean functions: Construction and analysis in terms of algebraic immunity. In Proc. of FSE 2005, volume 3557 of LNCS, pages 98-111. Springer, 2005.

Ivan Damgård. A design principle for hash functions. In Proc of CRYPTO '89, volume 435 of $L N C S$, pages 416-427. Springer, 1990.

Donald Davies and Wyn L. Price. Digital signatures, an update. In Proc. 5th International Conference on Computer Communication, pages 845-849, 1984.

Christophe de Cannière and Bart Preneel. Trivium specifications. eSTREAM, ECRYPT Stream Cipher Project, 2005. http://www.ecrypt.eu.org/stream.

Christophe De Cannière, Orr Dunkelman, and Miroslav Knez̆ević. KATAN and KTANTAN - a family of small and efficient hardware-oriented block ciphers. In Proc. of CHES 2009, volume 5747 of $L N C S$, pages 272-288. Springer, 2009.

Blandine Debraize and Louis Goubin. Guess-and-determine algebraic attack on the self-shrinking generator. In Proc. of FSE 2008, volume 5086 of LNCS, pages 235-252. Springer, 2008.

Frédéric Didier and Jean-Pierre Tillich. Computing the algebraic immunity efficiently. In Proc. of FSE 2006, volume 4047 of LNCS, pages 359-374. Springer, 2006.

Tim Dierks and Eric Rescorla. The transport layer security (TLS) protocol version 1.2. RFC 5246, 2008. http://tools.ietf.org/html/rfc5246.

Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials. Cryptology ePrint Archive, Report 2008/385, 2008. http://eprint.iacr.org.

Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials. In Proc. of EUROCRYPT 2009, volume 5479 of LNCS, pages 278-299. Springer, 2009.

Danny Dolev and Andrew Yao. On the security of public key protocols. IEEE Trans. Inform. Theory, 29:198-208, 1983.

Dang Nguyen Duc and Kwangjo Kim. Securing HB^{+}against GRS man-in-the-middle attack. In Proc. of SCIS 2007, 2007. http://koasas.kaist.ac.kr/bitstream/10203/23125/1/SCIS2007_Duc.pdf.

Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-key attack on the kasumi cryptosystem used in GSM and 3G telephony. In Proc. of CRYPTO 2010, volume 6223 of $L N C S$, pages 393-410. Springer, 2010.

William F. Ehrsam, Carl H. W. Meyer, John L. Smith, and Walter L. Tuchman. Message verification and transmission error detection by block chaining. US Patent 4074066, 1976.

Tobias Eibach. Generic Attacks on Stream Ciphers. PhD thesis, Universität Ulm, Ulm, Germany, 2008.

Patrik Ekdahl. On LFSR Based Stream Ciphers (Analysis and Design). PhD thesis, Lund University, Sweden, 2003.

Patrik Ekdahl and Thomas Johansson. Another attack on A5/1. In Proc. of International Symposium on Information Theory, page 160. IEEE, 2001.
eStream. eSTREAM, ECRYPT stream cipher project, 2008. http://www.ecrypt.eu.org/stream.
eSTREAM Discussion Forum. A reformulation of Trivium. eSTREAM, ECRYPT Stream Cipher Project, Discussion Forum, 2005. http://www.ecrypt.eu.org/stream/phorum/read.php?1,448.

Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases (F4). Journal of pure and applied algebra, 139(1-3):61-68, 1999.

Jean-Charles Faugère. A new efficient algorithm for computing Gröbner basis without reduction to zero (F5). In Proc. of ISSAC 2002, pages 75-83. ACM Press, 2002.

Jean-Charles Faugère and Gwenole Ars. An algebraic cryptanalysis of nonlinear filter generators using Gröbner bases, 2003. http://www.inria.fr/rrrt/rr-4739.html.

Simon Fischer, Willi Meier, and Dirk Stegemann. Equivalent representations of the F-FCSR keystream generator. In Workshop Record of The State of the Art of Stream Ciphers (SASC 2008), 2008.

Ewan Fleischmann, Christian Forler, and Michael Gorski. Classification of the SHA-3 candidates. Cryptology ePrint Archive, Report 2008/511, 2008. http://eprint.iacr.org/.

Scott R. Fluhrer and Stefan Lucks. Analysis of the E_{0} encryption system. In Proc. of SAC 2001, volume 2259 of $L N C S$, pages 38-48. Springer, 2001.

Marc Fossorier, Miodrag Mihaljević, Hideki Imai, Yang Cui, and Kanta Matsuura. An algorithm for solving the LPN problem and its application to security evaluation of the HB protocols for RFID authentication. In Proc. of INDOCRYPT 2006, volume 4329 of $L N C S$, pages 48-62. Springer, 2006.

Dimitry Frumkin and Adi Shamir. Untrusted-HB: Security vulnerabilities of Trusted-HB. Cryptology ePrint Archive, Report 2009/044, 2009. http://eprint.iacr.org

Heni Gilbert, Matthew J.B. Robshaw, and Yannick Seurin. HB\#: Increasing the security and efficiency of HB^{+}. In Proc. of EUROCRYPT 2008, volume 4965 of LNCS, pages 361-378. Springer, 2008a.

Henri Gilbert, Matthew J.B. Robshaw, and Hervé Sibert. Active attack against HB^{+}: A provable secure lightweight authentication protocol. Electronic Letters, 41:1169-1170, 2005.

Henri Gilbert, Matthew Robshaw, and Yannick Seurin. Good variants of HB^{+} are hard to find. In Proc. of Financial Cryptography and Data Security, volume 5143 of $L N C S$, pages $156-170$. Springer, 2008b.

Zbigniew Gołebięwski, Krzysztof Majcher, and Filip Zagórski. Attacks on CKK family of RFID authentication protocols. In Proc. Adhoc-now 2008, volume 5198 of LNCS, pages 241-250. Springer, 2008.

Jovan Dj . Golić. Correlation via linear sequential circuit approximation of combiners with memory. In Proc. of EUROCRYPT 1993, volume 658 of LNCS, pages 113-123. Springer, 1993.

Jovan Dj. Golić. Cryptanalysis of alleged A5 stream cipher. In Proc. of EUROCRYPT 1997, volume 1233 of LNCS, pages 239-255. Springer, 1997.

Jovan Dj . Golić. Correlation properties of general binary combiners with memory. Journal of Cryptology, 9(2):111-126, 1996.

Jovan Dj. Golić, Vittorio Bagini, and Guglielmo Morgari. Linear cryptanalysis of Bluetooth stream cipher. In Proc. of EUROCRYPT 2002, volume 2332 of $L N C S$, pages 238-255. Springer, 2002.

Solomon W. Golomb. Shift Register Sequences. Aegean Park Press, 1981.
Marc Goresky and Andrew Klapper. Fibonacci and Galois representations of feedback-with-carry shift registers. IEEE Trans. Inform. Theory, 48(11): 2826-2836, 2002.

Marc Goresky and Andrew Klapper. Periodicity and distribution properties of combined FCSR sequences. In Proc. of SETA 2006, volume 4086 of LNCS, pages 334-341. Springer, 2006.

Mark Goresky and Andrew Klapper. Arithmetic crosscorrelations of feedback with carry shift registers. IEEE Trans. Inform. Theory, 43:1342-1345, 1997.

Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON family of lightweight hash functions. In Proc. of CRYPTO 2011, volume 6841 of LNCS, pages 222-239. Springer, 2011.

Matthias Hamann. On the complexity of a learning problem induced by a lightweight cryptographic construction. Master's thesis, University of Mannheim, 2010.

Jonathan Hammell, André Weimerskirch, Joao Girao, and Dirk Westhoff. Recognition in a low-power environment. Proc. of International Conference on Distributed Computing Systems, 9:933-938, 2005.

Philip Hawkes and Gregory G. Rose. Rewriting variables: the complexity of fast algebraic attacks on stream ciphers. In Proc. of CRYPTO 2004, volume 3152 of LNCS, pages 390-406. Springer, 2004.

Martin Hell. On the Design and Analysis of Stream Ciphers. PhD thesis, Lund University, Sweden, 2007.

Martin Hell and Thomas Johansson. Breaking the F-FCSR-H stream cipher in real time. In Proc. of ASIACRYPT 2008, volume 5350 of $L N C S$, pages 557-569. Springer, 2008.

Martin Hell and Thomas Johansson. Breaking the stream ciphers F-FCSR-H and F-FCSR-16 in real time. Journal of Cryptology, pages 1-19, 2009.

Martin Hell and Thomas Johansson. Two new attacks on the self-shrinking generator. IEEE Trans. Inform. Theory, 52(8):3837-3843, 2006.

Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. A stream cipher proposal: Grain-128. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/010, 2005. http://www.ecrypt.eu.org/stream

Miia Hermelin and Kaisa Nyberg. Correlation properties of the Bluetooth combiner. In Proc. of ICISC 1999, volume 1787 of LNCS, pages 17-29. Springer, 1999.

Christopher Hooley. On artin's conjecture. J. Reine Angew. Math., 22:209-220, 1967.

Nicholas Hopper and Manuel Blum. Secure human identification protocols. In Proc. of ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science, pages 52-66. Springer, 2001.

ISO/IEC. ISO/IEC 9797-1: Information technology - Security techniques Message Authentication Codes (MACs) - Part 1: Mechanisms using a block cipher, 1999.

ISO/IEC. ISO/IEC 9798-2: Information Technology - Security techniques Entitiy Authentication Mechanisms Part 2: Entity Authentication with symmetric techniques, 1993.

ISO/IEC. ISO/IEC 13616-2: Financial services - International bank account number (IBAN) - Part 2: Role and responsibilities of the Registration Authority, 2007.

Markus Jakobsson and Susanne Wetzel. Security weakness in Bluetooth. In Proc. of CT-RSA 2001, volume 2020 of LNCS, pages 176-191. Springer, 2001.

Éliane Jaulmes and Frédéric Muller. Cryptanalysis of the F-FCSR stream cipher family. In Proc. of SAC 2006, volume 3897 of $L N C S$, pages 20-35. Springer, 2006.

Éliane Jaulmes and Frédéric Muller. Cryptanalysis of ECRYPT candidates F-FCSR-8 and F-FCSR-H. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/046, 2005. http://www.ecrypt.eu.org/stream.

Ari Juels and Stephen A. Weis. Authenticating pervasive devices with human protocols. In Proc. of CRYPTO 2005, volume 3621 of LNCS, pages 293-308. Springer, 2005.

David Kahn. The Codebreakers. Scribner, 1996.
Auguste Kerckhoffs. La cryptographie militaire. Journal des Sciences Militaires, pages 161-191, 1883.

Andrew Klapper. A survey of feedback with carry shift registers. In Proc. of SETA 2004, volume 3486 of $L N C S$, pages 56-71. Springer, 2004.

Andrew Klapper and Marc Goresky. Feedback shift registers, 2-adic span, and combiners with memory. Journal of Cryptology, 10:111-147, 1997.

Andrew Klapper and Mark Goresky. 2-adic shift registers. In Proc. of FSE 1994, volume 809 of $L N C S$, pages 174-178. Springer, 1994.

Andrew Klapper and Jinzhong Xu. Register synthesis for algebraic feedback shift registers based on non-primes. Des. Codes Cryptography, 31(3):227-250, 2004.

Matthias Krause. BDD-based cryptanalysis of keystream generators. In Proc. of EUROCRYPT 2002, volume 2332 of $L N C S$, pages 222-237. Springer, 2002.

Matthias Krause. OBDD-based cryptanalysis of oblivious keystream generators. Theor. Comp. Sys., 40(1):101-121, 2007.

Matthias Krause, Christoph Meinel, and Stephan Waack. Separating the eraser turing machine classes $\mathrm{L}_{e}, \mathrm{NL}_{e}$, co $-\mathrm{NL}_{e}$ and P_{e}. In Mathematical Foundations of Computer Science 1988, volume 324 of LNCS, pages 405-413. Springer, 1988.

Hugo Krawczyk. LFSR-based hashing and authentication. In Proc. of CRYPTO 1994, volume 839 of LNCS, pages 129-139. Springer, 1994.

Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-hashing for message authentication. RFC 2104, 1997. http://tools.ietf.org/html/rfc2104.

Leslie Lamport. Password authentication with insecure communication. Commun. ACM, 24:770-772, November 1981.

Yuseop Lee, Kitae Jeong, Jaechul Sung, and Seokhie Hong. Related-key chosen IV attacks on Grain-v1 and Grain-128. In Information Security and Privacy, volume 5107 of $L N C S$, pages 321-335. Springer, 2008.

Éric Levieil and Pierre-Alain Fouque. An improved LPN algorithm. In Security and Cryptography for Networks, volume 4116 of LNCS, pages 348-359. Springer, 2006.

Yi Lu and Serge Vaudenay. Faster correlation attack on the Bluetooth keystream generator. In Proc. of CRYPTO 2004, volume 3152 of $L N C S$, pages 407-425. Springer, 2005.

Yi Lu and Serge Vaudenay. Cryptanalysis of an E0-like combiner with memory. Journal of Cryptology, 21:430-457, 2008.

Yi Lu and Serge Vaudenay. Cryptanalysis of the Bluetooth keystream generator two-level E0. In Proc. of ASIACRYPT 2004, volume 3329 of LNCS, pages 483-499. Springer, 2004.

Yi Lu, Willi Meier, and Serge Vaudenay. The conditional correlation attack: A practical attack on Bluetooth encryption. In Proc. of CRYPTO 2005, volume 3621 of $L N C S$, pages $97-117$. Springer, 2005.

Stefan Lucks, Erik Zenner, André Weimerskirch, and Dirk Westhoff. Concrete security for entity recognition: The Jane Doe protocol. In Proc. of INDOCRYPT 2008, volume 5365 of $L N C S$, pages 158-171. Springer, 2008.

Yishay Mansour, Noam Nisan, and Prasoon Tiwari. The computational complexity of universal hashing. In Proc. of STOC '90, pages 235-243, New York, NY, USA, 1990. ACM.

George Marsaglia and Arif Zaman. A new class of random number generators. Annals of Appl. Prob., 1(3):462-480, 1992.

Alexander Maximov and Alex Biryukov. Two trivial attacks on Trivium. eSTREAM, ECRYPT Stream Cipher Project, Report 2007/006, 2007. http://www.ecrypt.eu.org/stream

Alexander Maximov, Thomas Johansson, and Steve Babbage. An improved correlation attack on A5/1. In Proc. SAC 2005, volume 3357 of $L N C S$, pages $1-18$. Springer, 2005.

Willi Meier and Othmar Staffelbach. Nonlinearity criteria for cryptographic functions. In Proc. of EUROCRYPT 1989, volume 434 of $L N C S$, pages 549562. Springer, 1989.

Willi Meier and Othmar Staffelbach. Fast correlation attacks on stream ciphers. In Proc. of EUROCRYPT 1988, volume 330 of LNCS, pages 301-314. Springer, 1988.

Willi Meier and Othmar Staffelbach. The self-shrinking generator. In Proc. of EUROCRYPT 1994, volume 950 of LNCS, pages 205-214. Springer, 1994.

Willi Meier, Enes Pasalic, and Claude Carlet. Algebraic attacks and decomposition of boolean functions. In Proc. of EUROCRYPT 2004, volume 3027 of LNCS, pages 474-491. Springer, 2004.

Christoph Meinel. Modified Branching Programs and Their Computational Power, volume 370 of LNCS. Springer, 1989.

Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Applied Cryptography. CRC Press, 2001.

Ralph C. Merkle. Secrecy, Authentication, and Public Key Systems. PhD thesis, Stanford University, 1979.

Ralph C. Merkle. A certified digital signature. In Proc. of CRYPTO '89, volume 435 of LNCS, pages 218-238. Springer, 1990.

Miodrag J. Mihaljević. A faster cryptanalysis of the self-shrinking generator. In Proc. of ACISP 1996, volume 1172 of LNCS, pages 192-189. Springer, 1996.

Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang. Pushing the limits: A very compact and a threshold implementation of AES. In Proc. of EUROCRYPT 2011, volume 6632 of $L N C S$, pages 69-88. Springer, 2011.

Jorge Munilla and Alberto Peinado. HB-MP: A further step in the HB-family of lightweight authentication protocols. Computer Networks, (51):2262-2267, 2007.

National	Institute	of	Standards	and	Technology	
NIST.	Secure	Hash	Standard	$(S H S)$,	October	
2008.						

National Institute of Standards and Technology NIST. Cryptographic Hash Algorithm Competition, December 2010. http://www.nist.gov/hash-competition/.

Karsten Nohl and Sascha Krißler. Geheimnislos - Verschlüsselung von HandyGesprächen knacken. $i^{\prime} X, 5: 97-99,2010$. (in german).

Jim Noras. Fast pseudorandom sequence generators: Linear feedback shift registers, cellular automata, and carry feedback shift registers. Technical Report 94, Univ. Bradford Elec. Eng. Dept., Bradford, U.K., 1997.

Khaled Ouafi, Raphael Overbeck, and Serge Vaudenay. On the security of HB ${ }^{\text {\# }}$ against a man-in-the-middle attack. In Proc. of ASIACRYPT 2008, volume 5350 of LNCS, pages 108-124. Springer, 2008.

Srinivasa R. Pappu. Physical One-Way Functions. PhD thesis, Massachusetts Institute of Technology, 2001.

Bart Preneel. CBC-MAC and variants. In Henk Tilborg, editor, Encyclopedia of Cryptography and Security, pages 63-66. Springer US, 2005.

Bart Preneel. The state of hash functions and the NIST SHA-3 competition. In Information Security and Cryptology, volume 5487 of LNCS, pages 1-11. Springer, 2009.

Bart Preneel. Analysis and Design of Cryptographic Hash Functions. PhD thesis, K.U. Leuven, 1993.

Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based on block ciphers: a synthetic approach. In Proc. of CRYPTO '93, volume 773 of LNCS, pages 368-378. Springer, 1994.

Ronald Rivest. The MD5 message-digest algorithm. RFC 1321, 1992. http://tools.ietf.org/html/rfc1321.

Rainer A. Rueppel. Design and Analysis of Stream Ciphers. Springer, 1986.

Rainer A. Rueppel. Stream ciphers. In Contemporary Cryptology - The Science of Information Integrity, pages 65-134. IEEE Press, 1992.

Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker, Stefan Leigh, Mark Levenson, Mark Vangel, David Banks, Alan Heckert, James Dray, and San Vo. A Statistical Test Suite for the Validation of Random Number Generators and Pseudo Random Number Generators for Cryptographic Applications. National Institute of Standards and Technology (NIST), April 2010. http://csrc.nist.gov/rng/.

Markku Saarinen. Re: Bluetooth and E_{0}. Posted at sci.crypt.research, 02/09/00, 2000.

Mahmoud Salmasizadeh, Jovan Dj. Golić, Ed Dawson, and Leone Simpson. A systematic procedure for applying fast correlation attacks to combiners with memory. In Proc. of SAC 1997, 1997.

Felix Schleer. Einsatz von OBDDs zur Kryptanalyse von Flusschiffren. Master's thesis, University of Mannheim, Mannheim, Germany, 2002. (in german).

Yaniv Shaked and Avishai Wool. Cryptanalysis of the Bluetooth E_{0} cipher using OBDDs. Technical report, Cryptology ePrint Archive, Report 2006/072, 2006. http://eprint.iacr.org/.

Claude Shannon. Communication theory of secrecy systems. Bell Systems Technical Journal, 28(4):656-715, 1949.

Thomas Siegenthaler. Correlation-immunity of nonlinear combining functions for cryptographic applications. IEEE Trans. Inform. Theory, IT-30(5):776780, 1984.

Thomas Siegenthaler. Decrypting a class of stream ciphers using ciphertext only. IEEE Trans. Inform. Theory, C-34(1):81-85, 1985.

Fabio Somenzi. CUDD: $C U$ decision diagram package. University of Colorado, Boulder, CO, USA, March 2001. http://vlsi.colorado.edu/~fabio/.

Paul Stankovski, Martin Hell, and Thomas Johansson. An efficient state recovery attack on X-FCSR-256. In Proc. of FSE 2009, volume 5665 of LNCS, pages $23-37$. Springer, 2009.

Dirk Stegemann. BDD-basierte Kryptanalyse des A5/1 Schlüsselstromgenerators. Master's thesis, University of Mannheim, 2004. (in german).

The Bluetooth SIG. Specification of the Bluetooth System, February 2001.
Tian Tian and Wen-Feng Qi. Linearity properties of binary FCSR sequences. Designs, Codes and Cryptography, 52:249-262, 2009.

Serge Vaudenay. A Classical Introduction to Cryptography. Springer US, 2006.
Ingo Wegener. Branching Programs and Binary Decision Diagrams: Theory and Applications. SIAM Monographs on Discrete Mathematics and Applications, 2000.

Clint R. Whaley and Antoine Petitet. Minimizing development and maintenance costs in supporting persistently optimized BLAS. Software: Practice and Experience, 35(2):101-121, 2005.

Guo-Zhen Xiao and James L. Massey. A spectral characterization of correlationimmune combining functions. IEEE Trans. Inform. Theory, IT-34(3):569571, 1988.

Hong Xu and Wen-Feng Qi. Autocorrelations of maximum-length FCSR sequences. SIAM J. Discrete Math., 20(3):568-577, 2006.

Hong Xu, Wen-Feng Qi, and Yong-Hui Zheng. Autocorrelations of l-sequences with prime connection integer. Journal of Cryptography and Communications, 1(2):207-223, September 2009.

Erik Zenner. On Cryptogaphic Properties of LFSR-based Pseudorandom Generators. PhD thesis, University of Mannheim, Mannheim, Germany, 2004.

Erik Zenner, Matthias Krause, and Stefan Lucks. Improved cryptanalysis of the self-shrinking generator. In Proc. of ACISP 2001, volume 2119 of LNCS, pages 21-35. Springer, 2001.

Bin Zhang and Dengguo Feng. New guess-and-determine attack on the selfshrinking generator. In Proc. of ASIACRYPT 2006, volume 4284 of LNCS, pages 54-68. Springer, 2006.

Robert Zuccherato. Entity authentication. In Henk Tilborg, editor, Encyclopedia of Cryptography and Security, pages 203-203. Springer US, 2005.

List of Tables

5.1 Information rates α for the restricted A5/1 76
5.2 Simulation parameters of the BDD-based attack 77
5.3 Performance of the BDD-based attack in practice 78
6.1 The resource consumption of the fastest correlation attack on E_{0} as presented by Lu and Vaudenay (2004) 90
6.2 The resource consumption of an algebraic attack on E_{0} with key size n and an equation of degree d 91
6.3 Maximum absolute biases and performance of correlation attacks for β_{a}-generators 92
6.4 mindeg and number of Z-functions for the candidate generators 92
6.5 Definitions of the candidate generators 92
6.6 Performance of algebraic and correlation attacks on the candidate generators 93
9.1 Performance of the passive attack on CKK ${ }^{2}$ 122

List of Figures

2.1 The Shannon communication model 8
2.2 Stream cipher communication scenario 11
2.3 Common construction of the keystream generator 11
3.1 Feedback shift register (FSR) of length n 16
3.2 LFSR in Fibonacci architecture 17
3.3 LFSR in Galois architecture 17
3.4 Mapping between periodic Galois and Fibonacci LFSR states 20
3.5 FCSR in Fibonacci architecture 22
3.6 FCSR in Galois architecture 23
3.7 Mapping between periodic Galois and Fibonacci FCSR states 27
4.1 FSR-based combination generator 34
4.2 FSR-based filter generator 34
4.3 Equivalent representations of combination and filter generators 35
4.4 The E_{0} kevstream generator 37
4.5 The A5/1 kevstream generator 39
4.6 Derivation of the keystream from the internal bitstream 44
5.1 An oracle graph G^{0} over $\left\{z_{0}, \ldots, z_{3}\right\}$ and a G^{0}-FBDD 49
5.2 A π-OBDD over $\left\{z_{0}, \ldots, z_{3}\right\}$ with $\pi(0)=0, \pi(1)=2, \pi(2)=1$ and $\pi(3)=3$. 51
6.1 Comparison of the candidate generators to E_{0} 93
7.1 Message authentication with message authentication codes 101
8.1 Basic round of the HB protocol 107
8.2 Basic round of the HB^{+}protocol 109
8.3 Initialization of the HB^{++}protocol 110
8.4 Basic round of the HB^{++}protocol 111
8.5 Basic round of the HB^{*} protocol 112
8.6 Basic round of the HB-MP protocol 113
8.7 One round of the $\mathrm{HB}^{\#}$ protocol 114
9.1 Basic round of the (n, k, L) protocol 118
9.2 Basic round of the $(n, k, L)^{+}$protocol 119
9.3 Basic round of the $(n, k, L)^{++}$protocol 120

List of Algorithms

1 F-FCSR-H-KevIVSetup(K. IV) 41
2 F-FCSR-H-KeystreamGeneration 41
3 F-FCSR-16-KevIVSetup(K. IV) 42
4 F-FCSR-16-KevstreamGeneration 42
5 RecoverInitialState 53
6 FibonacciFCSR- $S_{m}\left(\pi_{m} . w\right)$ 58
7 SelfShrinkingGenerator- $Q_{m}(w, z)$ 60
$8 \quad E_{0}-Q_{m}\left(q_{0}, w, z\right)$ 61
9 read-once-A5/1 (w) 62
$10 \mathrm{~A} 5 / 1-Q_{m}(w, z)$ 65
11 RecoverInitialState-DCS 70
$12(n, k, L)^{+} \operatorname{MITM}-\operatorname{Attack}(n, k, L)$ 119
13 CKK $^{2} \operatorname{Attack}(n, k)$ 122
14 LULS-solve (O) 125

Index

Zahlen
2-adic numbers 23
2-adic span 30
A
A5/1 38
102
hash function
Grain 40
Advanced Encryption Standard 10 (
AES........see Advanced Encryption AES........s.see Advanced Encryption HB* 107 107H
Hamming weight 15
hash chain 105
Standard HB^{+} 108
autocorrelation 12
HB^{++} 110
HB ${ }^{\#}$ 113
HBMP 112
B
HMAC 103
BDD....see Binary Decision Diagram
BDD....see Binary Decision Diagram
Binary Decicsion Diagram 48
block cipher 9 L
C
CBC......see Cipher Block Chaining
Cipher Block Chaining 10
CKK 121 M
M
connection polynomial 18
D
Data Encryption Standard 10
DES...see Data Encryption Standarddigital signature 104
linear complexity 21
Linear Feedback Shift Register (LFSR)16
MAC see message authentication codeMD5 . 103message authentication code 101OOBDD . . see Ordered Binary DecisionDiagram
E 36
E_{0}
see Electronic Codebook
Electronic Codebook 10
F S
self-shrinking generator 36 tor
F-FCSR 40
HA
HA
FBDD see Free Binary Decision SSG see self-shrinking generator SSG see self-shrinking generatorDiagramFeedback Shift Register16 T
Feedback with carry shift register.. 21 Toeplitz matrix 114 114
Fibonacci architecture 16. 22
Trivium
Trivium 39 39
Free Binary Decision Diagram Trusted-HB Trusted-HB 114 114
GW
Galois architecture 17, 22
9one-time pad
oracle graph 48
Ordered Binary Decision Diagram 50W$\mathrm{wt}(x)$
.......... see Hamming weight

[^0]: ${ }^{1}$ Recall that for two random variables A and B, the value $I(A, B)=H(A)-H(A \mid B)$ defines the information that B reveals about A.

[^1]: ${ }^{1}$ Since the security of these algorithms is increasingly under question, at the time of writing of this thesis, a competition is being held by the National Institute of Standards and Technology (NIST) to select a successor algorithm for the SHA hash function family (see NIST (2010)), which is stimulating the development of many new designs and intensive research in this field.

[^2]: ${ }^{2}$ Strictly speaking, we could also model physical objects as pieces of information by identifying them with their specification. However, obtaining this specification may not always be feasible, e.g., as in the case of physical uncloneable functions (PUFs) that are inherently determined by electrical or mechanical properties of a device (see, e.g., Pappu (2001))

