
The ICE-Map Visualization

Kai Eckert
kai@informatik.uni-mannheim.de

Technical Report TR-2011-003
Department of Computer Science
University of Mannheim, Germany

December 7, 2011

Abstract

In this paper, we describe in detail the Information Content Evalua-
tion Map (ICE-Map Visualization, formerly referred to as IC Difference
Analysis). The ICE-Map Visualization is a visual data mining approach
for all kinds of concept hierarchies that uses statistics about the concept
usage to help a user in the evaluation and maintenance of the hierarchy.
It consists of a statistical framework that employs the the notion of infor-
mation content from information theory, as well as a visualization of the
hierarchy and the result of the statistical analysis by means of a treemap.

1 Introduction

In 1854, there was a severe Cholera outbreak in London in the Soho district.
At this time, people generally believed that Cholera was caused by polluted
air (miasma theory). John Snow, a physicist, questioned this theory and tried
to find evidence for another source for the Cholera, particularly the drinking
water. So he investigated the Cholera cases carefully and gathered a lot of data
about them. He drew a map of the affected area and marked every fatal case
with black bars (Figure 1).

On this map, it can be seen that the cases are scattered around the Broad
Street and based on the distribution, John Snow had the suspicion that the
water pump in the Broad Street could be the source. He convinced the district
council to disable the pump and subsequently, the Cholera cases decreased.

This is the very condensed version of the story that is often called in various
slightly modified versions as the “invention” of visual data mining, i.e. the

1

Figure 1: Original map made by John Snow in 1854. Cholera cases are high-
lighted in black.

2

analysis of data and the identification of correlations by means of a proper
visualization. In this sense, it became a myth1 (McLeod, 2000).

Visual data mining (VDM) is not just the visualization of data, it usually
refers to a whole process that involves the user to interpret the visualization of
the data and adapt it interactively to discover interesting correlations or facts
that are otherwise not visible and hard to recognize. Applications of visual data
mining range from the search for specific information – also in retrieval settings
to fulfill a specific need – to the browsing of huge amounts of data to find
interesting aspects. The interaction with the data and the visualization plays
an important role; the visualization system has to help the user to navigate
through the data. This combination of visualization and interaction is solely
possible by means of modern computers with high resolution graphical displays.

VDM approaches can be found in various systems and for various purposes.
For instance, Fluit, Sabou, and Harmelen (2005) present three different appli-
cations that use the Cluster Map technology, an interactive visualization for
overlapping clusters. DaCosta and Venturini (2006) use the concept of points of
interest for the purpose of VDM on numeric or symbolic data. G. Smith et al.
(2006) introduce FacetMap, an interactive visualization, primarily as a means
to organize and retrieve data from various heterogeneous sources.

Shneiderman (1996, p. 337) introduces a mantra for this kind of VDM:
“Overview first, zoom and filter, then details-on-demand.”

Overall, he identified seven high-level tasks for VDM:

• Overview: Gain an overview of the entire collection.

• Zoom : Zoom in on items of interest.

• Filter: filter out uninteresting items.

• Details-on-demand: Select an item or group and get details when needed.

• Relate: View relationships among items.

• History: Keep a history of actions to support undo, replay, and progressive
refinement.

• Extract: Allow extraction of sub-collections and of the query parameters.

1In fact, John Snow was not the first one to use maps for data visualization and the
drawing of the map was actually only one means for his investigations (Koch, 2004) – see also
the original report (Snow, 1855). Nevertheless, the “Ghost Map” is a very nice example for
the power of a proper visualization. The story about John Snow and the Cholera outbreak is
the central theme of a novel called “The Ghost Map” (Johnson, 2006).

3

2 Foundations

The ICE-Map Visualization is a VDM approach that follows the mantra of
Shneiderman and is specifically designed for the purpose of maintenance and
use of concept hierarchies in various settings. In this paper, we use the following
definitions:

Definition 2.1 (Concept) A concept represents a real world object and/or
abstract entity like a knowledge concept. As a representation, it usually consists
of a description that defines the scope of the concept and one or more labels to
name (and also define) the concept.

Definition 2.2 (Knowledge Organization System) A Knowledge Organi-
zation System (KOS) is a structured model of concepts that is used to represent
and organize knowledge.

Definition 2.3 (Concept Hierarchy) A concept hierarchy is a knowledge
organization system that provides at least one relationship between the concepts
that leads to a hierarchical structure. A common example for such a relationship
is “broader than”, respectively “narrower than”, but there are also others, like
“is a”/“has subclass” or “part of”/“has part”.

Essential for building a hierarchy is the transitivity of the relationship: if
A is broader than B and B is broader than C, A has also to be broader than C
or the organization in a hierarchy would be counter-intuitive.

During the creation, maintenance, and the actual use of concept hierarchies,
there are several tasks to be done and several questions to be answered that
require a sound knowledge of the concept hierarchy. Therefore, in a dynamic
setting, where new concept hierarchies have to be chosen and deployed, as well
as during the maintenance of existing concept hierarchies, a proper tool support
is required.

As an motivating example, consider the use of an automatic indexing system.
Naturally, one is interested in the evaluation of the indexing results, but the
evaluation is not trivial for thesauri with thousands of concepts and thousands
of documents to be indexed. The ICE-Map Visualization is developed for exactly
this scenario: The concept use is visualized to allow for a proper and intuitive
evaluation of the indexing result.

Literature on thesaurus creation and maintenance mentions a number of
tasks that might be necessary including the following taken from (Kuhlen,
Seeger, & Strauch, 2004, pp. 151-153):

1. Adaptation of the concept hierarchy to changes in the vocabulary of the
domain of interest by means of adding of new terms or concepts,

4

2. deletion and/or merging of rarely used concepts,

3. splitting, extension or restriction of extensively used concepts,

4. review of the hierarchical structure to avoid extensive subclassing and

Depending on the intended use of the KOS, there might be more tasks. For
example, if the KOS should be used for automatic indexing, the following task
has to be added:

• Identification of problematic concepts for the indexing software, i.e. con-
cepts that are erroneous assigned or missing.

The first task is a different issue, that we addressed for instance in (Meusel,
Niepert, Eckert, & Stuckenschmidt, 2010). The remaining four tasks can be sup-
ported by means of the ICE-Map Visualization, which makes it a very universal
and powerful tool.

In order to enable a domain expert to carry out these actions, we analyze the
thesaurus and detect unbalanced hierarchy structures as well as terms that are
more often or less often used in indexing than we would expect. We support this
step using a statistical measure that comes along with a proper visualization
that makes it easy for the user to spot potential problems.

The ICE-Map Visualization is designed to visualize the usage of concepts in
a hierarchy, for example, how often they are used for indexing. Therefore, we
further define as follows:

Definition 2.4 (Document) A document is a single information item or
resource, that usually contains textual information and is made available to the
IR system with one or more of the following attributes:

1. title,

2. abstract,

3. fulltext (structured or plain text),

4. other bibliographic information (creator(s), publisher, year, identifiers,
...),

5. links to textual representations and/or descriptions of the content.

Definition 2.5 (Annotation) An annotation is the assignment of a concept
to a document (Definitions 2.4 and 2.1) for information retrieval purposes, i.e.
the result of an indexing process.

5

3 Statistical Framework

Table 1 introduces the mathematical notation based on the definitions so far
that is used in the remainder of this section.

Symbol Explanation

c A concept according to Definition 2.1.
Children(c) The direct child concepts (narrower concepts) of c.
Children+(c) All recursive child concepts (narrower concepts) of c.
Parents(c) The direct parent concepts (broader concepts) of c. That can be

more than one in the case of a polyhierarchy.
Siblings(c) The sibling concepts of c. In case of multiple parents, the cor-

responding parent has to be denoted, but we skip this here for
simplicity.

Aset(c) The set of annotations (Definition 2.5) related to concept c.

H A concept hierarchy according to Definition 2.3. H is a partially
ordered set of concepts based on the broader/narrower relationship
and forms a (polyhierarchic) tree.

root(H) The root concept of H, i.e. the only concept c in H for which
holds that Parents(c) = ∅. Note that we require H to have a
single root concept. Otherwise, we introduce an artificial single
root concept that becomes the parent of all former root concepts.

root(c) The root concept of the concept hierarchy H where c belongs to.

Lower case denotes single elements, while upper case denotes sets. Accordingly,
functions returning single elements are written lower case, functions returning sets
are written upper case.

Table 1: Symbols and definitions

The usage of a concept c is determined by a weight function w(c) ∈ R+
0 that

assigns a non-negative, real weight to it. Based on this weight function, we
further define:

w+(c) = w(c) +
∑

c′∈Children(c)

w+(c′) (1)

w+(c) is a monotonic function on the partial order of the concept hierarchy
H, i.e. the value never increases while walking down the hierarchy. This gives
the value of the root node a special role as the maximum value of w+, which we
denote as ŵ+:

ŵ+(c) = w+(root(c)) = max
H

w+(c) (2)

6

Now, we come back to our motivating example. If we use the number of an-
notations made for a given concept as the weight function w(c), we can calculate
the likelihood that a concept is assigned to a random document as follows:

L(c) =
w+(c) + 1

ŵ+(c) + 1
L(c) ∈ (0, 1] (3)

The addition of 1 is necessary to allow a value of 0 for w(c). Otherwise, the
logarithm of L(c) (cf. Equation 4) would not be defined for w(c) = 0.

In information theory, the Information Content or Self-information of an
event x is defined as − logL(x), i.e., the information content of an event is
the higher, the more unlikely the event is. Together with a normalizing factor,
we get the following definition for the Information Content IC(c) ∈ [0, 1] of a
concept c:

IC(c) =
− logL(c)

log(ŵ+(c) + 1)
ŵ+(c) 6= 0 (4)

This is again a monotonic function on the partial order of H and assigns 0
to the root concept and 1 to concepts with w(c) = 0.

The ICE-Map Visualization always compares two data sets based on the
difference of the information content. Therefore we originally referred to it as
IC Difference Analysis, but that way the underlying statistics could be con-
fused with the overall VDM approach. Nevertheless, the basis of the ICE-Map
Visualization is the difference of two information content calculations ICA(c)
and ICB(c) by means of two different weight functions or a weight function ap-
plied to two different data sets, e.g. two sets of annotations from two different
indexing processes. Accordingly, we define the IC Difference DA

B(c) ∈ [−1, 1]:

DA
B(c) = ICA(c)− ICB(c) (5)

The ICE-Map Visualization is usually used to evaluate a data set against
some reference, thus we refer to A as “analysis” and B as “base”.

4 Weight Functions

The power of the ICE-Map Visualization lies in the possibility to choose arbi-
trary weight functions for analysis A and base B. In this section, we introduce
two simple weight functions that can be used:

wIC(c) = |Aset(c)| (6)

7

If we use the number of annotations for a given concept as w(c), Equation 4
corresponds2 to the information content of a concept, as introduced by Resnik
(1995). When Equation 6 is used, it has to be denoted somehow, which annota-
tion set is actually used, especially, when two different sets are to be compared.

Sometimes, one might want to use the ICE-Map Visualization to evaluate
data sets without the availability of a reference set. Especially during the main-
tenance of a concept hierarchy this will happen quite often, as usually no two
sets of annotations are available for a given document base. For this reason,
we introduce the second weight function that can be used as a heuristic to
determine the expected information content of a concept:

wIIC(c) = |Children(c)| (7)

Equation 7 is based on the assumption that more common concepts should
have a lesser information content than more specific concepts. The use of Equa-
tion 7 leads to the so called Intrinsic Information Content (IIC), i.e. an informa-
tion content that is determined only by means of the thesaurus structure itself,
as introduced by Seco, Veale, and Hayes (2004).

Depending on the applied weight functions, we can create various configura-
tions for the ICE-Map Visualization, leading to different applications:

DICa
ICb (c) This way, the a set of annotations can directly be compared to a ref-

erence set of – usually intellectually created – annotations. This measure
shows for example deviations between manually and automatically as-
signed concepts and therefore directly points to potential problems in the
automatic indexing process.

DICa
IIC (c) With this configuration, we can monitor an indexing system without

the need of a reference set.

DICb
IIC(c) This configuration is very useful to gain an overview on the focus of

a document base, based on intellectually assigned concepts, as well as to
gain an understanding of the characteristics of the reference set or the
underlying KOS.

DICa
ICa(c) With two different indexed document sets, we can compare both sets,

for example to compare the foci of two different libraries.

5 Visualization

The statistical framework is only one half of the ICE-Map Visualization. While
it can be used independently of the visualization to calculate the IC Difference

2Beside the normalization and the addition of 1 to deal with zero values.

8

Figure 2: Original “slice-and-dice” layout

for one concept, the main purpose is to provide the user with the big picture of
a full analysis of a concept hierarchy.

A major challenge in supporting KOS maintenance is to provide adequate
tool support that guides the user to potential problems in a KOS based on the
measures described above. In particular we have to find a way to provide the
user with a view on the concept hierarchy that encodes the overall structure of
the thesaurus or selected parts of it and the evaluation results for the different
concepts in the thesaurus.

The ICE-Map Visualization uses a treemap to visualize the concept hierar-
chy together with the results of the analysis. The treemap visualization was
developed by Shneiderman (1992) in the early 1990s, originally with the pur-
pose to get an overview of disc usage of a particular hard drive. Shneiderman
needed a compact representation of its directory structure, showing additional
information like file size and file type in one view.

According to Shneiderman, treemaps are a representation designed for hu-
man visualization of complex traditional tree structures: arbitrary trees are
shown with a 2-d space-filling representation. Consider a tree with weight or
size information attached to each node and a 2-d space with corners (x1, y1) and
(x2, y2). For each child ci of the root node r, a partition of the space along the
x-axis is calculated. For the first partition, this reads as

x3 = x1 +

(
|c1|
|r|

)
(x2 − x1) (8)

with |c1| as the size of child node 1 and |r| as the size of the root node. For
the next level, the corresponding partition is partitioned again along the y-axis,
then again on the x-axis and so on (Figure 2). Shneiderman called this approach
the “slice-and-dice” algorithm. Since then, a lot of different implementations
and optimizations have been presented, e.g. by Shneiderman and Wattenberg
(2001) or Bederson, Shneiderman, and Wattenberg (2002).

9

6 Squarified Layout

In our implementation, we use the squarified layout, as presented by Bruls,
Huizing, and Wijk (2000). In the description of the algorithm below, we use the
following conventions:

We want to layout the children c ∈ C of a given parent concept p. Therefore,
we want to determine the dimensions (width, height) and the position (x,y) of
the rectangle that is occupied by each concept. We denote them with cw, ch,
cx, and cy, respectively. Note that we regard c and p as compound objects,
containing the dimension and position information denoted by the subscript.

We know the dimensions of the area that can be used to layout the child
concepts, pw and ph. For each concept c, we can calculate its area ca based on
a weight function w(c) 6= 0 as a fraction of the area of the parent concept p:

ca = pw · ph ·
w(c)

w(c) +
∑

i∈Siblings(c) w(i)
(9)

The general idea of the squarified layout is to split the children into several
rows that are laid out one after the other. Each row is placed in the lower, left
corner of the remaining area and the rectangles of the concepts are assembled
horizontally, if the remaining area is higher than wide, and vertically, if the
remaining area is wider than high. In the first case, a row uses the full width
of the remaining area, in the latter the full height.

We can calculate the width and height of every concept c in a row R, as
well as its position, i.e. the coordinates of its lower left corner, based on the
rectangle s of the remaining free area. First, we introduce the calculation of cw
and ch under the assumption that the row is laid out horizontally with a given
width and with relative positioning, i.e. the lower left corner of the row is (0, 0).

Calculate-Row(R,width)

1 area =
∑

c∈R ca // cf. Equation 9.
2 height = area/width
3 x = 0
4 for c ∈ R
5 cw = width · (ca/area)
6 ch = height
7 cx = x
8 x = x + cw
9 cy = 0

10 return height

Note that Calculate-Row returns the height of the calculated row. This
is used in the following procedure, where a row R is actually placed within a
free area s. Place-Row adheres to the above mentioned strategy and returns
the remaining free area after the placement of the new row.

10

Place-Row(R, s)

1 width = min(sw , sh)
2 height = Calculate-Row(R,width)
3 if sw > sh // Distinction between horizontal and
4 Rotate-Row(R) // vertical layout, see text above.
5 s ′w = sw − height
6 s ′h = width
7 s ′x = sx + height
8 s ′y = sy
9 else s ′w = sw

10 s ′h = sh − height
11 s ′x = sx
12 s ′y = sy + height
13 Shift-Row(R, s)
14 return s ′

The rotation3 – if the row has to be layed out vertically – and shift of the
row are implemented as follows, using simple vector arithmetic:

Rotate-Row(R)

1 for c ∈ R
2 Swap(cw, ch)
3 Swap(cx, cy)
4 return

Shift-Row(R, s)

1 for c ∈ R
2 cx = cx + sx
3 cy = cy + sy
4 return

The remaining question is: How should the children be distributed to the
single rows? The heuristic used in this case is as follows: Sort the children by
their size in descending order and then start adding them to a row R. Then cal-
culate the “badness” of the row based on the worst aspect ratio of the concepts
in the row:

badness(R) =

{
maxc∈R |cw/ch − 1| R 6= ∅
∞ R = ∅

(10)

If the addition of a concept would increase the badness, do not add it and
instead start a new row. This leads to the following procedure for a parent
concept p and its children C:

3The rotation is that simple because the position of the concept is only relative at the
time of the invocation, i.e. it is a rotation around (0, 0).

11

Figure 3: Squarified Layout (Source: Bruls, Huizing, and Wijk, 2000)

Layout-Children(C , p)

1 Sort C by ca decreasing // cf. Equation 9.
2 R = T = ∅ // Initialize rows, T means temporary.
3 s = Copy(p) // Start with the area of p.
4 for c ∈ C
5 Add(T , c)
6 Calculate-Row(T ,min(sw , sh))
7 if badness(T) > badness(R) // Check, if badness is increased.
8 s = Place-Row(R, s) // Place row and
9 R = T = ∅ // start a new one.

10 Add(T , c) // Prepare T for next row.
11 Add(R, c) // Extend the row and continue.
12 if R 6= ∅
13 Place-Row(R, s) // Place remaining concepts, if any.
14 return

Figure 3 (Bruls et al., 2000) illustrates the algorithm for one concept with
child concepts having the weights (6, 6, 4, 3, 2, 2, 1).

With Layout-Children, we can now recursively layout the whole treemap.
The drawing of the treemap gives us two degrees of freedom that can be used

12

to visualize information beside the hierarchical structure. One is represented by
the size of the concepts, the other by its color.

We experimented with various combinations of metrics to determine the size
and color weights of a concept. It turned out that the size should usually not be
used to visualize aspects other than the hierarchy, because otherwise we would
not get a stable visualization of the hierarchy that does not change its layout if
another analysis on the concept usage is performed.

The most convenient weight function for the size is based on the number of
children of a concept, either only the direct children (Equation 7) or with all
subchildren (Equation 1 with Equation 7 as internal weight function). Usually
the latter is to be preferred, as this way the space is evenly distributed between
all the concepts of the hierarchy and thus uses the space optimally to view as
much concepts as possible. In any case, some positive value has to be added to
the weight function to prevent zero values for concepts without children.

The color is determined by the result of the analysis that is performed on
the concept hierarchy. The ICE-Map Visualization uses the IC difference with
arbitrary weight functions. In the default setup, the weight between −1 and 1
is mapped to a color range from red (−1) over white (0) to blue (1). The lower
the information content of a concept is, the higher is the underlying weight
function. This way, the treemap can be interpreted as a temperature map, with
red areas indicating “hot” areas regarding the usage (or whatever is used as
weight function) and blue ones “cold” areas, compared to the chosen reference.

7 Implementation

Figure 4: Treemap of the Concept “Body Regions” from MeSH.

Figure 4 shows the treemap of a part of the MeSH thesaurus (Body Regions),
where each area represents a concept in the thesaurus. As Bruls et al. (2000)

13

point out, a drawback of the treemap visualization in general and especially
the squarified layout is that it is not easy to recognize the underlying hierar-
chy. They propose the use of a profiled border, in combination with a cushion
visualization (Wijk & Wetering, 1999). Our reference implementation of the
ICE-Map Visualization uses nested areas with line borders and a written title
on top of each concept – provided there is enough space; otherwise, the title is
omitted. In our experiments, we found this very convenient and usually there
is no problem to see and understand the nested structure of the underlying
hierarchy.

Nevertheless, the treemap visualization requires some time for the user to get
familiar with. Thus, the reference implementation introduces further means to
improve the usability, following the above mentioned mantra: “Overview first,
zoom and filter, then details-on-demand.”

First of all, the treemap visualization itself is highly interactive. By double-
clicking on a concept in the treemap the user can zoom into the hierarchy.
A double-click on the top concept zooms out again. A major drawback of
treemaps is the possibility for the user to lose the orientation in the hierarchy
as the visualization can not provide information about the environment of the
currently selected top concept, when zooming in.

We deal with this problem in two ways (Figure 5): First, we provide a root-
line above the treemap visualization, that shows the path from the top of the
hierarchy to the currently shown concept. The concepts in the root-line are
colored accordingly. A click on a concept in the root-line directly zooms out to
the concept.

Second, the treemap is combined with a hierarchical common treeview. This
allows interactive navigation through the hierarchy without losing the orienta-
tion. The selection of a concept in the treeview leads to a selection of the concept
in the treemap and vice versa. For a selected concept, additional information
about the concept is provided in a pop-up box.

The colors of the visualization can be adjusted by the slider below the
treemap. This way, the contrast can be improved by narrowing the color range
to smaller values of the analysis result. Additionally, the balance between red
and blue can be adjusted. The latter can be used to set the color of the top
concept to white and thus visualize the subconcepts as if the current top concept
would be the root of the hierarchy.

8 Related Work

To the best of our knowledge, no one ever used such a combination of statistical
analysis and the treemap visualization to perform visual datamining on con-
cept hierarchies. However, there are several aspects of our work where related

14

Figure 5: Reference implementation of the ICE-Map Visualization

approaches exist. The treemap visualization itself is widely used, especially to
visualize large hierarchical datasets. For example, M. Smith and Fiore (2001)
employed it to visualize Usenet newsgroups. Calmet and Daemi (2004a, 2004b)
evaluate ontologies using the Kullback-Leibler Divergence, which is widely used
in information theory and defined as follows:

DKL(p||q) =
∑
i

p(i) log
p(i)

q(i)
(11)

This is a measure of the differences between two probability distributions p
and q and as such related to Equation 5. The authors use the Kullback-Leibler
Divergence to get an overall measure of the thesaurus suitability, instead of
evaluating a single concept. Rayson and Garside (2000) use a log-likelihood
approach to compare text copora and show that it can be used to determine
key terms in a corpus which distinguishes it from the reference corpus.

9 Conclusion

In this paper, we described the technical background of the ICE-Map Visualiza-
tion. Based on this description, everyone should be able to implement it. We
do not present any evaluation or usage examples here, you can find them in the
papers where we employed the ICE-Map Visualization (cf. Section 10). Our
reference implementation is part of SEMTINEL, an analysis and visualization
framework for concept hierarchies that is available free and open source4.

4http://www.semtinel.org

15

10 Acknowledgements

The ICE-Map Visualization was developed as part of my dissertation. While I
describe it in this paper for the first time with the statistical framework in a
generalized form, the visualization itself exists now for over four years. During
the development and especially regarding the possible usage scenarios I was sup-
ported by my colleagues Magnus Pfeffer and Heiner Stuckenschmidt. Together,
we published several papers: The ICE-Map Visualization was first presented
at the Fourth International Conference on Knowledge Capture (K-CAP 2007)
as IC Difference Analysis where it was granted the best paper award (Eckert,
Stuckenschmidt, & Pfeffer, 2007). In (Eckert, Stuckenschmidt, & Pfeffer, 2008),
we published an extended description of the methodology on the use case of the
evaluation of automatic indexing results. In (Pfeffer, Eckert, & Stuckenschmidt,
2008), the methodology was adapted to classification systems and automatic
classification. In (Eckert, Hänger, & Niemann, 2009), we evaluated tagging re-
sults and compared them to intellectual indexing and automatic indexing using
the ICE-Map Visualization.

References

Bederson, B. B., Shneiderman, B., & Wattenberg, M. (2002). Ordered and
quantum treemaps: Making effective use of 2D space to display hierarchies.
ACM Trans. Graph., 21 (4), 833-854. Available from http://hcil.cs.umd
.edu/trs/2001-18/2001-18.pdf

Bruls, M., Huizing, K., & Wijk, J. J. van. (2000). Squarified treemaps. In
Joint Eurographics and IEEE TCVG Symposium on Visualization, IEEE
Computer Society (pp. 33–42). Available from http://www.win.tue.nl/
∼vanwijk/stm.pdf

Calmet, J., & Daemi, A. (2004a). Assessing Conflicts in Ontologies (Tech.
Rep.). IAKS Calmet, University Karlsruhe (TH), Germany. Available
from http://avalon.ira.uka.de/iaks-calmet/papers/WSEAS 2004.pdf

Calmet, J., & Daemi, A. (2004b). From entropy to ontology (Tech. Rep.). In-
stitute for Algorithms and Cognitive Systems (IAKS), University of Karl-
sruhe (TH), Germany. Available from http://iaks-www.ira.uka.de/calmet/
papers/AT2AI4.pdf

DaCosta, D., & Venturini, G. (2006). An interactive visualization environment
for data exploration using points of interest. In Advanced Data Mining
and Applications, Second International Conference, ADMA 2006, Xi’an,
China, August 14-16, 2006, Proceedings (p. 416-423).

Eckert, K., Hänger, C., & Niemann, C. (2009). Tagging and Automation -
Challenges and Chances for Academic Libraries. Library Hi Tech, 27 (4).
Available from http://dx.doi.org/10.1108/07378830911007664

Eckert, K., Stuckenschmidt, H., & Pfeffer, M. (2007). Interactive Thesaurus
Assessment for Automatic Document Annotation. In Proceedings of The

16

Fourth International Conference on Knowledge Capture (K-CAP 2007),
Whistler, Canada.

Eckert, K., Stuckenschmidt, H., & Pfeffer, M. (2008). Semtinel: Interactive
Supervision of Automatic Indexing. In JCDL ’08: Proceedings of the
2008 conference on Digital libraries. Pittsburgh, PA, USA: ACM, New
York.

Fluit, C., Sabou, M., & Harmelen, F. van. (2005). Ontology-based Information
Visualisation: Towards Semantic Web Applications. In V. Geroimenko
(Ed.), Visualising the Semantic Web (2nd edition). Springer Verlag.

Johnson, S. (2006). The Ghost Map - The Story of London’s Deadliest Epidemic
- and How It Changed the Way We Think about Disease, Cities, Science,
and the Modern World. Riverhead.

Koch, T. (2004). The Map as Intent: Variations on the Theme of John Snow.
Cartographica, 39 (4), pp. 1-13.

Kuhlen, R., Seeger, T., & Strauch, D. (Eds.). (2004). Grundlagen der praktis-
chen Dokumentation und Information, Band 1. Saur.

McLeod, K. S. (2000). Our sense of Snow: the myth of John Snow in medical
geography. Social Science & Medicine, 50 (7-8), 923 - 935. Available
from http://www.sciencedirect.com/science/article/B6VBF-3YDG0NP-3/2/
4aa97b73f3392c7b3110f84ba28decb7

Meusel, R., Niepert, M., Eckert, K., & Stuckenschmidt, H. (2010). Thesaurus
Extension using Web Search Engines. In International Conference on
Asia-Pacific Digital Libraries (ICADL), Brisbane, Australia.

Pfeffer, M., Eckert, K., & Stuckenschmidt, H. (2008). Visual Analysis of Clas-
sification Systems and Library Collections. In ECDL ’08: Proceedings of
the 12th European conference on Research and Advanced Technology for
Digital Libraries, Aarhus, Denmark (p. 436-439). Springer, Heidelberg.
Available from http://dx.doi.org/10.1007/978-3-540-87599-4 57

Rayson, P., & Garside, R. (2000). Comparing corpora using frequency profiling.
In Proceedings of the workshop on comparing corpora - volume 9 (pp. 1–
6). Stroudsburg, PA, USA: Association for Computational Linguistics.
Available from http://dx.doi.org/10.3115/1117729.1117730

Resnik, P. (1995). Using information content to evaluate semantic similarity
in a taxonomy. In Proceedings of the 14th International Joint Conference
on Artificial Intelligence (IJCAI-95). Available from http://arxiv.org/pdf/
cmp-lg/9511007

Seco, N., Veale, T., & Hayes, J. (2004). An intrinsic information content met-
ric for semantic similarity in wordnet. In Proceedings of the 16th Euro-
pean Conference on Artificial Intelligence (p. 1089-1090). Valencia, Spain.
Available from http://eden.dei.uc.pt/∼nseco/ecai2004b.pdf

Shneiderman, B. (1992). Tree visualization with tree-maps: 2-d space-filling
approach. ACM Trans. Graph., 11 (1), 92–99.

Shneiderman, B. (1996). The Eyes Have It: A Task by Data Type Taxonomy for
Information Visualizations. In Proceedings of the 1996 IEEE Symposium
on Visual Languages (VL ’96) (pp. 336–343). IEEE Computer Society,

17

Washington, DC, USA. Available from http://www.cs.uta.fi/∼jt68641/
infoviz/The Eyes Have It.pdf

Shneiderman, B., & Wattenberg, M. (2001). Ordered Treemap Layouts.
Online. Available from ftp://ftp.cs.umd.edu/pub/hcil/Reports-Abstracts
-Bibliography/2001-06html/2001-06.pdf

Smith, G., Czerwinski, M., Meyers, B., Robbins, D., Robertson, G., & Tan, D. S.
(2006). FacetMap: A Scalable Search and Browse Visualization. IEEE
Transactions on Visualization and Computer Graphics, 12 (5), 797-804.

Smith, M., & Fiore, A. (2001). Visualization components for persistent con-
versations. In Proceedings of the SIG-CHI on Human factors in comput-
ing systems (p. 136-143). Available from http://research.microsoft.com/
research/coet/Communities/chi2001/paper.pdf

Snow, J. (1855). Report on the Cholera Outbreak in the Parish of St. James,
Westminster, during the Autumn of 1854. In The Cholera Inquiry Com-
mittee (Ed.), (chap. Dr. Snow’s Report). Churchill, London. Available
from http://johnsnow.matrix.msu.edu/work.php?id=15-78-55

Wijk, J. J. van, & Wetering, H. van de. (1999). Cushion Treemaps: Visualization
of Hierarchical Information. In Proceedings of the IEEE Symposium on
Information Visualization (INFOVIS’99), San Francisco, October 25-26,
1999.

18

