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1 Introduction

\Computer programming is an exact science in that all the properties of a

program and all the consequences of executing it in a given environment

can, in principle, be found out from the text of the program itself by

means of purely deductive reasoning."

C. A. R. Hoare

\The notion of program veri�cation appears to trade upon an equivo-

cation. Algorithms, as logical structures, are appropriate subjects for

deductive veri�cation. Programs, as causal models of those structures,

are not. The success of program veri�cation as a generally applicable and

completely reliable method for guaranteeing program performance is not

even a theoretical possibility."

J. H. Fetzer

To communicate means to interchange information. A language is a collection

of strings (or sentences), built up from basic letters according to particular rules.

To communicate such strings is uninteresting unless these strings refer to objects of

particular worlds or domains. Languages are named according to the objects their

strings refer to. We talk about natural languages if we mean languages whose strings

refer to objects of the \real, physical world". For example, English is a natural

language: The string \dog", consisting of the three basic letters \d", \o" and \g",

most commonly refers to an animal with four legs which can bark.

On the other hand, a programming language can be viewed as a means to com-

municate algorithmic ideas (programs) between people and machines. For example,

the program P given by the text

readln(x); y := x+ 1; writeln(y);

can be seen as an algorithmic representation of the successor function succ : IN !
IN; x 7! x + 1. Based on our intuitive interpretation of the basic program-letters1,

the program P is thus related to an object of a mathematical domain. The successor

1For example, the intuitive interpretation of the program-letter \+" would be the binary addition

function.

Veri�cation in the Hierarchical Development of Reactive Systems.



4 Chapter 1: Introduction

function succ can thus be viewed as the meaning of the program P . When used in

order to provide interpretations (meanings) for programming languages, mathemat-

ical domains are called semantic domains, semantic models or simply semantics of

the according programming language. On the other hand, the programs (program

texts) that constitute the programming language are called the syntax of the pro-

gramming language. De�ning the semantics of a programming language amounts to

choose a semantic domain and to systematically connect the syntax with this seman-

tic domain, that is, to systematically \link" every program with one element of the

semantic domain considered. A program is then said to denote the (semantic) object

it is linked to or to be the denotation of this object.

The successor function above could also be represented by a formula ' of a suitable

logic2. Both, the program P and the formula ' can be conceived as descriptions of

the successor function. The di�erence between these two descriptions is, that the

program P is given in a way, \understandable" and thus executable by a machine.

The program P is sometimes called an implementation of the successor function

whereas the formula ' is called a speci�cation of this function. Some computer

scientists prefer to use the phrase \speci�cation" for programs as well, di�ering from

logical speci�cations only in the level of abstraction (see for example [3, 126]). The

program P is then often called an executable speci�cation as it resides at a lower

(machine oriented) level of abstraction than the formula '.

Programs are usually developed with the intention to delegate work to machines.

Instead of calculating a given problem \by hand", one develops a program and,

by executing the program on a machine, aims to obtain solutions to the problem.

However, the outputs returned by the machine should be \correct", that is, the

outputs should actually be solutions to the problem. Ideally, one would like to

have a guarantee that the machine always calculates the correct solutions to the

problem. Such a guarantee however, could only be achieved on the basis of rigorous

mathematical reasoning. As will be seen in the next section, giving a mathematical

proof that a program, executed on a physically existing machine, always yields the

correct answers is condemned to be impossible.

2For example by a formula of �rst-order predicate logic.

Veri�cation in the Hierarchical Development of Reactive Systems.
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1.1 What Can be Achieved by Formal Veri�cation

\[...], from a realistic perspective rather then a formalist, there seems to be

a divide between the concrete physical objects that populate the physical

world and the abstract objects about which we reason in mathematics."

J. Barwise

Physical machines versus abstractions of physical machines. Being an

element of the \real, physical world", a physical machine (and thus the execution

of a program on this machine) is subject to any physical inuence exerted by its

environment, whether these are lightning strikes, air humidity or whatsoever. The

complexity of the sum of these inuences entirely exceeds the limits of mathematical

representation.

In order to address this problem, we can look for a means to abstract from this

mathematically intractable complexity exhibited by physical machines. This can be

done in several ways:

� One can mimic physical machines by abstract machines which are mathemati-

cal objects, equipped with components such as states, actions (the execution of

which might cause state changes), and maybe others. For example, transition

systems [114] are abstract machines which are often used to model physical ma-

chines: Programs for a physical machine are divided into \blocks" which are

then abstractly represented by elementary actions of a transition system. Ab-

stract machines often arise in a particular type of semantics, called operational

semantics [172]. This type of semantics abstractly reects what would happen

when programs were executed on the according physical machine.

� Alternatively, one can relate programs to mathematical objects such as sets,

functions and operators. This gives rise to so called denotational semantics (see

for example [184]). Programs are interpreted as functions from initial states to

�nal states. As opposed to operational semantics, the concept of intermediate

computation steps is not employed.

� Using axiomatic semantics, one relates programs to assertions of a suitable

logical framework. The Hoare-logic [101] for sequential while-programs is prob-

ably the most famous such semantics. There, an assertion of the form fpgSfqg

Veri�cation in the Hierarchical Development of Reactive Systems.



6 Chapter 1: Introduction

means, that the program S satis�es a property q if it terminates, provided it

started in a state where the property p holt. The program S can also be viewed

as a predicate transformer that maps a (�nal state) predicate q to the weakest

(initial state) predicate p such that the Hoare-assertion fpgSfqg is valid [64].

The choice of an appropriate semantic domain will depend on those aspects of

physical machines one is interested to model: Whereas operational semantics closer

reect what actually happens while executing a program on a physical machine and

are thus closer to the \intuitive semantics" of a programming language, they might

not be abstract enough for some purposes. While denotational semantics are more

abstract then their operational counterparts, the mathematical theory which under-

pins them might be more di�cult to access. An important feature of denotational

semantics (which is not always enjoyed by operational semantics) is, that they are

compositional. This means that the semantics of a program P is determined by the

semantics of the constituent parts of P . Finally, axiomatic semantics are well suited

for reasoning about properties of programs.

Regardless of the relative advantages and drawbacks of the types of semantics

discussed above, they share one important feature: If being de�ned with care, they

can provide unambiguous and consistent interpretations of many interesting pro-

gramming languages3. This is a necessary prerequisite for any meaningful reasoning

about programs. Still, it is important to keep in mind the di�erence between the

physical machine or the physical system and the mathematical object used to model

it:

\[. . . ] it is only the model which is veri�ed; how well this veri�cation

serves as a predictor for the behaviour of the computer system depends

upon the extend to which the model accounts for behaviours of the com-

puter, including its interactions with all the software which it runs, as

well as other parameters such as temperature and gamma rays."

[124, page 3]

3This is in contrast to natural languages: The string \dog" usually refers to the animal mentioned

earlier but is sometimes also used to address a bad fellow. Hence, statements containing the word

\dog" might be interpreted di�erently according to varying social contexts.

Veri�cation in the Hierarchical Development of Reactive Systems.
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The world of our minds versus the world of formal speci�cations. The

intuition of a problem whatsoever always resides in our minds whereas a formal

(hence mathematically expressed) speci�cation of the problem necessarily lives in

the mathematical world. A provably correct bridge connecting these two worlds

cannot exist. For example, think of a problem which is presented to an engineer by

another person or through a requirement analysis. The �rst thing he (a women might

do better in what follows) will do, is to try to access the problem itself. However,

he might come up with an intuition of the problem which does not match the actual

problem. In this case, any formal speci�cation proposed by the engineer is doomed

to be wrong. If his intention only captures parts of the problem, he will end up with

an under-speci�cation (as explained in [142, page 378]).

Note that even if the engineer succeeds in gaining the right intuition of the prob-

lem, he might not possess enough expertise in the speci�cation formalism in order to

correctly formalize his intuition4.

In summary, what can be achieved at most is a guarantee (a mathematical proof)

that a model of a physical system correctly solves a model of that problem we intend

the physical system to solve. The activity of providing such a guarantee is called

formal veri�cation or simply veri�cation. Veri�cation has been severely criticized for

being based on models of physical machines whence it does not allow to assert any-

thing about the actual physical machines themselves [80]. The aforementioned article

has stipulated an important and controversial discussion on the relative dangers and

bene�ts of \veri�cation" [157, 171] and the reader is encouraged to consult [13] for

an objective discussion of these topics.

Being aware of the aforementioned \world-gaps" is important in order to under-

stand what can be achieved by formal veri�cation. However, yet another fundamental

problem lurks in the mathematical world itself: The work of A. Church on e�ective

calculability [39] and of A. M. Turing on computability [200] (see also the work of

K. G�odel [79]) lead to the famous Church-Turing-Thesis (see for example [104, page

166]). A consequence of this thesis is, that there exist mathematically de�nable

problems which cannot be solved by the most powerful machines we can imagine.

4Of course, the same problem arises in the development of programs: An engineer might possess

an appropriate algorithmic solution to the problem in his mind but fail to capture his solution by

say, a program in C++ or PASCAL.

Veri�cation in the Hierarchical Development of Reactive Systems.
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The Church-Turing-Thesis implies, that there even exist mathematically de�nable

statements about abstractions of physical machines that can neither be proved nor

disproved in a purely formal and thus mechanical fashion. Hence, for particular

properties, an automatic \veri�cation-machine" can never succeed in showing that

some other machine enjoys these properties5. These results have had a particularly

strong impact to the �eld of computer aided veri�cation [46]. Fortunately, many

physical machines can be modelled by abstract machines for which computer aided

veri�cation and automatic veri�cation is feasible.

In summary, the objective of any veri�cation activity cannot be to show the

correctness of physical systems. Even for particular abstract models of physical

systems, veri�cation remains infeasible.

1.2 Objectives of Reactive System Design Veri�cation

\The goal of research in program veri�cation it to discover techniques for

mathematically describing an algorithm so that conclusions drawn from

formal deduction predict the behaviour of an execution of the algorithm

on a physical machine with high degree of accuracy."

W. R. Bevier, M. K. Smith and W. D. Young

Abstract models of physical systems capture the abstract logical structure of a

physical system, that is, they embody what might be called the \abstract essence"

of a physical system. This abstract essence is called the design of a physical system

or the system design and developing the design of a physical system is the �rst step

towards the �nal realization of the physical system itself. Whereas veri�cation does

not apply to physical systems, veri�cation is very often feasible for designs of them.

The veri�cation of system designs is called design veri�cation. It is well known, that

the most serious failures of physical machines are caused by conceptual errors, that

is, by errors which have already been made during the design phase [181]. Clearly, the

most e�cient way of uncovering and removing this kind of errors is to eliminate them

during the design phase itself and not after the realization of the physical machine

when the machines complexity becomes overwhelming [25, 24]. Moreover, traditional

techniques such as testing are not applicable during the design phase as they are

5That is, as soon as the involved machines can simulate Turing machines [200].

Veri�cation in the Hierarchical Development of Reactive Systems.
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applied to physical machines. Design veri�cation is thus a valuable method which

can help avoiding failures of physical systems that can cause tremendous expenses [78]

or even human dead [131].

With the advent of systems that operate continuously while computing subtasks

concurrently, design veri�cation has become most important. Such systems, called

reactive computer systems (RCSs for short) [94], are often employed for safety critical

tasks like, for example, air tra�c control or the supervision of nuclear power plants.

Owing to the concurrent execution of di�erent subsystems and the coordination and

and synchronization issues involved, reactive systems are much more complex than

purely sequential systems and thus extremely di�cult to comprehend and design. In

order to keep the procedure of designing and verifying RCSs-designs intellectually

tractable, complying with the following proposals seems to be necessary.

� The formalisms, employed for creating and verifying RCSs-designs should be

simple and accessible by system designers which in general are not particularly

trained in mathematical concerns of computer science [48, 146].

� A programming language should be connected with the semantic model used.

Process algebras like, for example, CCS [154] or CSP [102, 103] can be used

as Programming languages for RCSs-designs. The constituent elements (pro-

grams) of process algebras are called process terms. A process algebra should

comprise a few basic programming constructs that su�ce to express those basic

concepts of (physical) RCSs that we intend to model. Process algebras allow

to compose complex designs of RCSs out of smaller designs in a syntactic way.

Employing process algebras keeps the design procedure more tractable than

developing designs directly in the semantic domain. More important however,

process terms can sometimes be used to �nitely denote RCSs-designs which

could only be captured by an in�nite object of the underlying semantic do-

main. Consequently, many operations which are are algorithmically feasible on

process algebras could not be accordingly automated (in an e�ective way) for

the underlying semantic domain. A veri�cation technique however should be

fully and e�ciently automatizable thereby discharging system designers from

the tedious and mathematically complicated details of veri�cation [48, 53, 146].

� Redundantly expressing a system design in di�erent types of design formalisms

Veri�cation in the Hierarchical Development of Reactive Systems.
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is called the dual language approach (see, for example, [96]). Typically an

imperative/operational-based design formalism (like, for example, transition

systems) is combined with a descriptive/property-based formalism (like, for

example, logical frameworks). Verifying a design then amounts to show the

consistency of the two redundant descriptions of this design. As described

in [96], the dual language approach to veri�cation has valuable advantages:

Operational design descriptions are less likely to omit required attributes of

the intended design and can often directly be coded into an executable pro-

gram. On the other hand, property-based design descriptions are intuitive,

concise and abstract in the sense, that they minimize unnecessary details as,

for example, concerns about the precise architecture of physical reactive sys-

tems. A very successful dual language approach to RCSs-design veri�cation

(employing operational and logical design formalisms) is called model checking

(see [46, 48] for an introduction) and will be discussed in Section 3.2.

� As the complexity of reactive system designs becomes overwhelming very quickly,

methods which allow to develop designs in a hierarchical fashion must be

supported by the design formalisms employed. Such methods allow to de-

velop a design on di�erent levels of abstraction6 thereby making the devel-

opment procedure more transparent and thus tractable: Most likely, a devel-

oper �rst divides the intended (complex) design into various \sub-designs" to

capture the abstract overall structure of the complete design. Subsequently,

the sub-designs will be developed by enriching them step by step with de-

tails. This is the design technique usually encountered in practice and, as

argued in [186, 48, 53, 146, 10], design formalisms must support such typical

design styles. In process algebraic settings, syntactic action re�nement (sur-

veyed in [90]), SAR for short, can be used for the hierarchical development of

RCSs-designs. Intuitively, SAR means to re�ne an (atomic) action � occur-

ring in a process term P by a more complex process term Q thereby yielding

a more detailed process description P [� ; Q] where �[� ; Q] denotes the

SAR-operator.

6Please note, that in this case \abstraction" refers to mathematical objects (designs of reactive

systems) and not to the kind of abstraction which is employed to model (to design) a physical

reactive system.

Veri�cation in the Hierarchical Development of Reactive Systems.
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1.3 Contributions of this Thesis

The obvious method to obtain correct designs of RCSs is as follows: First, we for-

malize those properties we wish the intended design to exhibit, that is, we devise a

speci�cation of the intended design. Subsequently, we invest experience and guess

work to develop an according design. Finally, existing veri�cations techniques like,

for example, model checking [46, 48] can be applied in order to show that the design

satis�es the speci�cation. However, adaptation of the system and subsequent veri-

�cation has to be undergone repeatedly until the design meets the speci�cation, a

time consuming task. Another method (called \automated program synthesis") uses

transformational methods to construct a (a priori correct) design directly from the

speci�cation [41, 145, 174, 11], thereby avoiding the need for an explicit veri�cation.

However, the above methods implicitly assume, that the actual speci�cation is

indeed the desired one, and that subsequent changes of it will not become necessary.

During a design phase however, speci�cations (and hence the according designs)

are most often subject to repeated adaptations actuated by changed requirements or

resources. Such changes also emerge in realistic design-scenarios where a speci�cation

is arrived at by successively enriching an initial speci�cation with details.

It would thus be desirable to extend the above mentioned approaches in the follow-

ing way: Once it has been proved that a design D satis�es a speci�cation ' (denoted

D j= '), transforming ' into a modi�ed speci�cation '0 should entail a transforma-

tion of D into a design D0 such that D0 j= '0. This paradigm supports a stepwise

and a priori correct development of RCSs-designs. Reversely, re-engineering [215]

amounts to the ability to infer D j= ' from D0 j= '0. This allows to reuse veri�cation

knowledge that has already been gained through preceding steps in a development

sequence.

The main contribution of this thesis is the introduction of a technique that sup-

ports a priori correct RCSs-design development and re-engineering. The technique

is based on dual language approaches to veri�cation: Designs of RCSs are expressed

in an operational fashion by means of a TCSP -like process algebra equipped with a

transition system semantics (see, for example, [162]). Speci�cations are formalized

within a particular temporal logic, the Modal Mu-Calculus (�L for short) [119]. This

logic is well suited for specifying designs of RCSs since it allows to formalize impor-

tant properties of RCSs-designs like, for example, absence of deadlock. To support

Veri�cation in the Hierarchical Development of Reactive Systems.
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the hierarchical development of RCSs-designs, the method of syntactic action re-

�nement, SAR (surveyed in [90]) is exploited. Intuitively, SAR means that actions

� that occur in a process term P are re�ned by a more complex process term Q

thereby yielding the more detailed process term P [�; Q]. There, the process term

Q is conceived as a detailed description of the abstract action �. In order to obtain

the development/re-engineering-technique, SAR for formulas ' of the Modal Mu-

Calculus �L will be de�ned in a way that conforms to SAR for TCSP -like process

terms P (see Section 4.1). We show the validity of the assertion

T (P ) j= ' i� T (P [�; Q]) j= '[�; Q] (�)

where T (P ) is the transition system induced by P and the operator �[�; Q] denotes

syntactic action re�nement, both on process terms and formulas (see Section 4.2).

The distinguishing features of this result are

� The use of SAR. This supports hierarchical development of in�nite state tran-

sition systems7: As opposed to semantic action re�nement, SAR is applied

to process terms whence state spaces of transition systems do not have to be

handled algorithmically to implement SAR. This allows to apply assertion (�)
to in�nite state transition systems. The restriction to �nite state transition

systems would disallow the design of particular physical RCSs.

� Using assertion (�), correctly developing (or adapting) a design with respect to
adding details to the actual speci�cation (or by changing it) boils down to \glu-

ing" re�nement operators to formulas and process terms. On the other hand,

re-engineering amounts to replacing re�nement operators, that is, to �rst \cut-

ting away" inappropriate re�nement operators (stepping backwards through

a development sequence) and subsequently resuming the development proce-

dure. This development/re-engineering-technique as illustrated by Figure 1 is

developed in Section 4.2 and applied in Section 4.2.1.

� The SAR-operator implicitly supplies an abstraction technique that, by the

syntactic nature of the SAR-operator, relates system descriptions. Again, this

allows in�nite state systems to be considered. Hence, if not applied in the

7Intuitively, a transition system is called an in�nite state transition system if it has an in�nite

number of states (see also page 19).

Veri�cation in the Hierarchical Development of Reactive Systems.
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context of developing/re-engineering designs of RCSs, assertion (�) can still be
useful to support model checking techniques: Many designs cannot be handled

by model checking techniques due to the (huge or in�nite) size of their state

spaces. However, if we can �nd a process term Ps and a formula 's and

establish an appropriate abstraction (induced by applications of the re�nement

operator), for example P = Ps[�1 ; Q1] : : : [�n ; Qn] and ' = 's[�1 ;

Q1] : : : [�n ; Qn] then Ps might well be manageable by a model checker since

the state space of Ps might be exponentially smaller then the state space of P

due to the well known state space explosion problem8. We can then apply the

model checker to decide T (Ps) j= 's and conclude via assertion (�) whether
T (P ) j= ' holds or not. In Section 4.6, it will be discussed to what extend

this abstraction technique can be fully automatized. An application of this

abstraction technique can be found in Section 4.2.1.

� As the Modal Mu-Calculus subsumes many other logics [72, 58] used to spec-

ify designs of RCSs, we believe that our results provide a basis for similar

investigations employing these logics and other semantics for concurrency.

Variations on the theme:

� Some particular conditions concerning the structure of the process terms Q have

to be obeyed in order to guarantee that assertion (�) is valid. These conditions can
often be met by a simple and e�cient restructuring of these terms. In Section 4.3,

it will be shown however, that these conditions can even be dropped completely if

particular fragments of �L are considered instead of the full logic. One interesting

fragment of �L will be identi�ed for which it is possible to guarantee the validity of

the assertion

T (P ) j= ') T (P [�; Q]) j= '[�; Q]:

Further, a fragment for which the assertion

T (P ) j= '( T (P [�; Q]) j= '[�; Q]

holds will be presented.

8A linear reduction of the number of actions in a process term might entail an exponential

reduction of the underlying state space.
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T (P ) j= '

x???y
~www�

x???y

T (P [�1 ; Q1]) j= '[�1 ; Q1]

x???y
~www�

x???y

T (P [�1 ; Q][�2 ; Q2]) j= '[�1 ; Q1][�2 ; Q2]

: :

: :

: :

Figure 1: Developing/Re-engineering Correct Designs

� Exploiting several di�erent levels of abstraction helps to devise complex process
terms and formulas in a hierarchical, hence transparent way. However, physicalRCSs

can be constructed more conveniently from the according process terms if they are

non-hierarchical. Hence, a reduction function (see, for example, [4, 88]) is used to

collapse the di�erent levels of abstraction that occur in a process term P [� ; Q],

yielding the process term red(P [�; Q]). Roughly, the reduction function removes

re�nement operators from process expressions P [�; Q] by \syntactically replacing"

every action � in P by the process term Q. Similarly, a logical reduction function

is introduced to derive the non-hierarchical \low level"-speci�cation Red('[�; Q])

from a (hierarchical) speci�cation '[� ; Q]. However, even for non-hierarchical

formulas ' and process terms Q, the formula Red('[a ; Q]) has size O(2j'j�jQj) in

the worst case (where j'j and jQj are the number of symbols that occur in ' and Q

respectively).

The third contribution of this thesis is the introduction of a generalization of the

Modal Mu-Calculus (referred to as �Lg) in which such exponential blow up's does not

occur (see Section 4.4). Instead of being restricted to atomic actions, modalities of

�Lg-formulas are generalized to contain more complex process terms, in a way similar

to the logic PDL [82]. �Lg-formulas allow to express properties of \subprocesses"
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of systems in a much more concise way than �L-formulas. In Section 4.4, we de�ne

SAR for the logic �Lg (denoted by �[�; Q]) and show that an assertion as (�) also
holds for �Lg-formulas. Further, the logical reduction function Redg for �Lg will be

de�ned in a way, such that Redg('[a; Q]) has size O(j'j � jQj), provided ' and Q

are non-hierarchical. Though many properties can be expressed more conveniently by

using the logic �Lg instead of �L, we give a transformation that takes �Lg-formulas

to logically equivalent �L-formulas. This allows existing methods and tools for the

Modal Mu-Calculus to be integrated into our framework.

Whereas classical methods like, for example, model checking can be used to carry

out the horizontal veri�cation task (that is, to prove or disprove P j= '), the obtained

results can be used to carry out vertical veri�cation: The re�ned system P [a ; Q]

is (a priori) correct with respect to the re�ned speci�cation '[a ; Q]. This means

that veri�cation is for free if the hierarchical development of RCSs-designs is based

on assertion (�). At each stage of the development procedure, low level speci�cations

and implementation near designs can be e�ciently constructed via the reduction

functions.

The obtained results are applied to a serial of examples and a more thorough case

study is carried out in Section 4.2.1. Particular parts of this thesis are also available

in a more condensed form (see [136, 137, 138, 139, 140]).
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2 Designing Reactive Systems

Two types of computer systems can be identi�ed (see for example [68, pp. 1048]):

One class consists of so called sequential computer systems which typically solve

scienti�c problems like, for example, calculate Fast Fourier Transformations, sort a

list or compute a shortest path between two nodes of a graph. The computational

behaviour common to all these computer systems is, that they accept input data

(in some initial state), perform some calculations, and eventually terminate (in some

�nal state) providing the according output data. Semantics of sequential systems

can thus be de�ned in terms of relations between initial states and �nal states.

Many computer systems however, are required to operate continuously while

maintaining an ongoing interaction with their environment. Such computer sys-

tems are called reactive computer systems (RCSs for short) or reactive systems [94]

(see also [143, 144]). Representatives of this class of computer systems are operating

systems, communication protocols, and control systems. Most often, RCSs exhibit

the ability to compute various subtasks concurrently in order to comply with the

requirements of the overall task. For example, the control system of a nuclear power

plant must be able to quickly calculate whether some measured reactor data violates

some de�ned safety requirements in order to shut down the reactor but at the same

time continue to observe the reactor. Though it has been observed that \concur-

rency" and \reactivity" are system features, in some sense independent from each

other [68, page 1049], it has been argued to conceive concurrent computer system

as RCSs [68, page 1049][173]. This view is typically adopted in the literature, that

is, the ability of the concurrent execution of subsystems is implicitly attributed to

RCSs.

As opposed to sequential computer systems, termination of RCSs is not required

but instead most often amounts to an abnormal end of the system. The de�nition of

reasonable semantics for RCSs can thus not relay on relations between initial and

�nal system states. Instead, RCSs can be modelled on the basis of this information

about RCSs that can be gathered during their execution [154, page 12].
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2.1 Semantic Domains for Reactive System Designs

When modelling RCSs one has to decide which aspects of physical RCSs should be

considered relevant for the purposes at hand. The decision for a particular semantics

has to be take carefully in order to allow the faithful reection of the relevant aspects

of physical RCSs by their models. To put it the other way round, the decision for a

particular semantics determines which aspects of RCSs are negligible and can thus

be abstracted by the modelling process.

A rough classi�cation of semantics for RCSs can be given with respect to three

parameters [159, 183]: \behaviour versus system", \interleaving versus true concur-

rency" and \linear time versus branching time". These parameters correspond to the

level of abstraction at which the RCSs are examined. Whereas semantics of type

\system"allow an explicit representation of system states, a behaviour semantics ab-

stract from such information. \True concurrency" semantics distinguish between the

concepts of concurrency and nondeterminism whereas an \interleaving"-semantics

identi�es them. Finally, a \linear time"-semantics abstracts from the choice points

that might occur in computations whereas a \branching time" semantics takes in-

formations about such points into account. Further distinctions between semantics

for RCSs can be taken with respect to the extent to which internal behaviour (that

is, concerns about internal actions) of RCSs is taken into account [203]. A classi-

�cation of various standard semantics for RCSs according to the parameters \be-

haviour/system", \true concurrency/interleaving" and \linear time/branching time"

can be found in [159, 183].

The relationships between various semantics for RCSs have been investigated,

for example, in [202, 203, 159, 183]. In the present thesis, the semantic domain of

labelled transition systems is used to model RCSs whence they are described more

precisely in the next section.

2.1.1 Transition System Semantics

\Everything really moves continuously. But there are many kinds of ma-

chine which can pro�tably be thought of as being discrete-state machines."

A. M. Turing

Many physical systems can be appropriately modelled as objects that dynami-
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cally evolve through discrete points in time by performing particular activities. For

example, the activity of preparing a cup of tea consists of boiling a kettle of water,

putting some tea leaves into a mug, and subsequently pouring the hot water into

the mug. In reality, the constituent activities of preparing a cup of tea exhibit a

continuous nature. However, we can model them by non-interruptible, instantaneous

atomic actions. As a consequence we abstract from the continuous nature of the con-

stituent activities 9. Abstracting from the duration and exact timing of activities by

modelling them via atomic actions has the advantage, that the resulting model will

be independent of the speed and performance of the person (or the oven) involved in

preparing the tea (see also [103, page 24]). For a \computer system"-example this

amounts to independence of clock rates or the rate of microinstructions per second.

As an example, we can model the activity of boiling the water by the atomic action

\boil water" thereby also abstracting from constituent activities of boiling the water

(like, for example, �lling water into the kettle). Accordingly, we can employ the

atomic actions \put leaves" and \pour water" in order to model the activities of

putting the leaves into the mug and pouring water into the mug. Putting the leaves

into the mug before pouring the water into it seems to be reasonable. Also, we wont

pour the water into the mug unless it is hot. Boiling the water is independent from

putting the leaves into the mug. Hence, we model these two activities as concurrent

activities. As we abstract from the exact timing of actions, it seems to be reasonable

to model the entire concurrent activity of boiling the water and putting the leaves into

the mug by an arbitrary interleaving [63] of the actions boil water and put leaves,

that is, by the \action-sequences"

boil water; put leaves and

put leaves; boil water

where the semicolon stands for the successive execution of the atomic actions. Finally,

if the water is hot and the leaves are within the mug, we can pour the hot water

into the mug, that is, we combine the two concurrent atomic actions put leaves and

boil water with the action pour water by sequential composition.

9In the real-time approach to the design and analysis of reactive systems, the continuous nature

of activities is taken into account (see [158]) for an overview).
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The resulting model of the overall \tea preparing"-activity can then be graphically

represented as shown in Figure 2.

boil_water

boil_water

put_leaves

put_leaves

pour_water

(s1)

(s )2 (s )3

(s )4

(s )5

Figure 2: The \Tea Preparation"-Process

If the nodes of the structure in Figure 2 are labelled with according (state-) names,

as given in the according brackets, we can employ the notion of labelled transition

systems (LTSs for short) to model the activity of preparing a cup of tea.

De�nition 2.1 (Labelled Transition System -LTS-)

A labelled transition system T = (s; S; Act;!) consists of

� s 2 S a starting state,

� S, a set of states,

� Act, a set of atomic actions, and

� !� S � Act� S, a transition relation.

(s; �; s0) 2! is called a transition. For (s; �; s0) we also write s
�! s0. A state

t0 2 S is called reachable from a state t 2 S if and only if there exists a sequence

t = s1
�1! s2

�2! : : :
�n�1! sn = t0 where si 2 S for 1 � i � n and �j 2 Act for

1 � j < n. A labelled transition system T = (s; S; Act;!) is called a �nite state

LTS if and only if the set fs0 2 S j s0 is reachable from sg of reachable states is

�nite and the set ! of transitions is �nite. Otherwise, T is called an in�nite state

labelled transition system. For simplicity, we let LTS also denote the set of labelled

transition systems.
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Example 2.2

The activity of preparing tea as illustrated in Figure 2 can be modelled by the transi-

tions system T = (s1; S; Act;!) where

� S = fsij1 � i � 5g,

� Act = fboil water; put leaves; put waterg, and

� != f(s1; boil water; s3); (s1; put leaves; s2); (s3; put leaves; s4);
(s2; boil water; s4); (s4; pour water; s5)g. 2

LTSs were introduced by R. M. Keller in [114] under the name \named transition

systems"10. In his article, Keller used them to model and analyze concurrent systems.

Finite state automata (FSA) are mathematical structures, omnipresent in com-

puter science (see [170] for a detailed introduction). Historically, FSA have been

introduced in order to model nervous activity [149, 117]. FSA are closely related to

�nite state LTSs, the only di�erence being the additional distinction of �nal states

for FSA.

Various modi�cations of LTSs have been investigated in order to capture di�erent

computational aspects of RCSs. Examples are \concurrent transition systems" [187],

\distributed transition systems" [35], \modal transition systems" [129], \timed tran-

sitions systems" [100] and \probabilistic transition systems" [130].

For some purposes, LTSs are too discriminating a semantics for RCSs. For ex-

ample, it seems to be unreasonable to distinguish the transition systems T1 from T2
(as shown in Figure 3) since they exhibit the same behaviour. In order to avoid

a a

b bc

1

c

2

a

b c

Figure 3: Two Equivalent Processes

10In this de�nition, no explicit starting state was employed.
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such unreasonable distinctions, various behavioural equivalences11 can be de�ned on

LTSs, each of which gives rise to a particular semantic domain (the elements of such

semantic domains are equivalence classes of LTSs rather then single LTSs). For

this reason, LTSs can be considered as a fundamental unifying structure based on

which many di�erent aspects of RCSs can be modelled (see also [155]). Well known

behavioural equivalences are, for example, trace equivalence [103], failure equiva-

lence [30], simulation equivalence [166], observational equivalence [97] and strong

bisimulation equivalence [154]. For a comparative study of various behavioural equiv-

alences see [202, 203, 61].

Strong bisimulation equivalence (SBE for short) is the �nest behavioural equiv-

alence, that is, it identi�es less LTSs than the other equivalences mentioned above.

We now review the formal de�nition of SBE.

De�nition 2.3 (Strong Bisimulation Equivalence)

For a �xed set Act of atomic actions let Ti = (si; Si; Act;!i), i = 1; 2, be two labelled

transition systems. For s1 2 S1 and s2 2 S2, a binary relation S � S1 � S2 is a

strong bisimulation for s1 and s2 if (s1; s2) 2 S implies for all (r; s) 2 S and a 2 Act

(i) Whenever r
a!1 r

0 then, for some s0, s
a!2 s

0 and (r0; s0) 2 S and

(ii) Whenever s
a!2 s

0 then, for some r0, r
a!1 r

0 and (r0; s0) 2 S.

Two states s1 and s2 are strongly bisimular if there exists a strong bisimulation for

s1 and s2. Two labelled transition systems Ti = (si; Si; Act;!i), i = 1; 2, are strongly

bisimular, written T1 �b T2, if s1 and s2 are strongly bisimular. The equivalence

relation �b is called strong bisimulation equivalence. 2

SBE occurs frequently in related mathematical branches and can be character-

ized by means of certain two-player games (see for example [191, 192, 193]), modal

logics [153, 154] or axiomatic systems [154]. Further it has been abstractly de�ned

in category-theoretic settings in order to supply a uni�ed view on bisimulation for

di�erent semantic domains (see for example [109, 179]). SBE enjoys important

algorithmic properties. The question whether two LTS are strongly bisimular is

decidable even for certain in�nite state LTSs (called context-free processes, see

11Also called \semantic equivalences", for example, in [202, 203].
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for example [38]). In contrary, this does not hold for failure-, trace-, and simula-

tion equivalence [93]. It is well known that deciding language equivalence of FSA

is PSPACE-complete [151]. In fact, deciding whether two �nite state LTSs are

equivalent is PSPACE-hard for any behavioural equivalence that lies between strong

bisimulation equivalence and trace equivalence [177]. In contrary, a polynomial time

algorithm that decides strong bisimulation equivalence of two �nite state LTSs was

given in [110] (see also [111]) and shortly later an improved algorithm was proposed

in [165]. Checking that two LTSs are bisimular can also be done compositionally

(see for example [92]) and (with the aid of ordered binary decision diagrams [31])

symbolically (see for example [22]).

2.1.2 Discussion

When using LTSs to model RCSs one is concerned with control ow aspects rather

then issues about concrete data values. Clearly, this can be seen as a drawback

when being concerned with the implementation of RCSs. On the other side, \data-

abstraction" is a valuable feature when being concerned with the design ofRCSs (and

the veri�cation of these designs) as it puts away \unnecessary" design complexity: It

has been observed that the correctness of RCSs is particularly sensitive to control

issues whereas data processing is most often less likely to cause fatal errors [65, 95]. A

good example might be the destruction of ARIANE 5 [78]. The explosion was actually

caused by an excessive oating point number. However, this overow was caused by

a part of the on board software that was unnecessarily running after take o�. Yet

another design error was to leave the inertial computer system unprotected from

being made inoperative by an excessive value of the according variable. Finally, the

speci�cation of the inertial reference system did not speci�cally include the ARIANE

5 trajectory data but those of ARIANE 4: The excessive oating point number was

generated due to the higher initial acceleration and a trajectory which leads to a

build-up of horizontal velocity of ARIANE 5 which is �ve times more rapid than for

ARIANE 4. Hence, the excessive oating point number was only the result of various

design errors.

It has been argued that a system can most often be divided into a (safety-critical)

control part and a (non-critical) functional part [145, 212, 216]. LTSs are an ap-

propriate concept to formalize such control parts. Moreover, �nite state LTSs are
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su�cient to model large classes of RCSs (see [68, page 1060] and [46]) such as con-

trol systems [41], communication protocols [60, 180] or digital circuits [46, 45] and

automatic veri�cation techniques can be applied to �nite state LTSs [46, 45].

In this thesis, LTSs (together with strong bisimulation equivalence) are used

to formalize designs of RCSs. According to the classi�cation in Section 2.1 on

page 17 this means that RCSs are modelled by a semantic domain of type \state",

\interleaving" and \branching time". Apart from the discussion above, this type of

semantics has been chosen for the following reasons:

� The close relation to the well known concept of �nite state automata makes

LTSs easily accessible by any computer scientist.

� Being a semantic domain of type \state", in�nite behaviour can in many cases

be represented by �nite state LTSs. In general, in�nite behaviour cannot be

represented by �nite objects of a \behaviour"-semantics like, for example, event

structures. Finite state LTSs can be graphically represented, for example, by

process graphs [202] which supports human comprehension.

� Being a semantics of type \interleaving", LTSs abstract away from architec-

tural details of the RCSs considered. The correctness of designs will there-

fore be independent of the computing power or performance of the according

RCSs [103, page 24]. LTSs are well suited as a design formalism for RCSs as

they capture computational phenomena like, for example, \deadlock" [5, 185].

On the other hand, a \true concurrency"-semantics might be more appropriate

for describing RCSs at an implementation-near level of abstraction (see [53]

and [198, page 21]).

� Being a \branching time"-semantics, LTSs capture the important design con-

cept of nondeterminism. Nondeterminism discharges a system designer from

giving too many implementation details already in the design-phase and thus

allows to maintain the high abstraction level, necessary for the application of

veri�cation techniques (see also [103, pp. 101]). Further, the results and tech-

niques of this thesis can applied in conjunction with results from automated

program synthesis (see [68, pp. 1058] for an introduction to automated pro-

gram synthesis). It has been argued that temporal logics should be interpreted
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over \branching time" semantic models of RCSs when used for automated

program synthesis [75, page 149].

2.2 Process Algebras: Programming with Reactive System

Designs

Though the study of semantic domains for RCSs is useful in its own, algebraic no-

tations, usually called process algebras12 (PAs for short), supply additional bene�ts.

First, PAs allow objects of a semantic domain to be written as concise strings called

process expressions or process terms. PAs are thus a means to represent huge or

even in�nite semantic objects in a short and �nite manner thus making them man-

ageable algorithmically. Within PAs, reasoning about designs of RCSs often boils

down to syntactic manipulations of process terms. For example, it is possible to

axiomatize strong bisimulation equivalence by a set of algebraic laws whence the

equivalence of (�nite state) RCSs-designs can be shown by applying these laws (see

for example [154]).

PAs can be viewed as programming languages for designs of RCSs. The syntax of

PAs is usually generated by simple grammars which contain a number of primitives

(basic process terms) and a number of structural operators. The operators can then

be used to compose more complex process terms out of simpler ones according to the

rules of the grammar. The primitives can then be connected to the basic objects of

the semantic domain used and the structural operators induce operations on objects

of the semantic domain.

The best known PAs are

� The Calculus of Communicating Systems (CCS) [154],

� the Communicating Sequential Processes (CSP ) [102, 103],

� the Theory of Communicating Sequential Processes (TCSP ) [30] and

� the Algebra of Communicating Processes (ACP ) [19].

The standard semantic domains of these PAs are

12Also called \process calculi" [154] or \abstract programming languages" [198].
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� LTSs with bisimulation equivalence [154] for CCS,

� the \failure trace semantics" [30] for CSP and TCSP and

� \process graphs" with bisimulation equivalence [19] for ACP .

The PAs mentioned above have primarily been used to model software systems

(see [147, 156] where CSP was also used to model hardware systems). However,

di�erent PAs have be devised in order to model digital circuits, the best known of

which might be CIRCAL [152]. Di�erent semantic domains for the above mentioned

PAs have been investigated. For example, CCS has been interpreted over Petri-nets

(for example in [89, 87, 23]) and over event structures (for example in [23]). TCSP

has been interpreted over event structures (for example in [135, 12]) and over LTSs

(for example in [162]). Connections between di�erent semantic domains for particular

PAs have been studied, for example, in [12] for TCSP and in [23] for CCS. Various

PAs (with their standard semantics) have been related to each other, for example,

in [29] (CCS with CSP ) and [162] (TCSP with CCS). Despite the conciseness of

PAs, they often exhibit a high expressive power, for example, CCS and CSP have

Turing power (see [154] and [198] respectively).

2.3 Hierarchical Development of Reactive System Designs

As was discussed in the previous chapter, PAs support the formalization of RCSs-

designs in a modular fashion: Models of RCSs can be denoted by process expressions

whose subexpressions denote subcomponents of the according models. The analysis

of a design can thus be done component-wise which allows to focus on particular

details of the design at a time. Standard PAs thus support some kind of horizontal

modularity. However, �xing the set of atomic actions in order to abstractly denote

\real world activities" means to determine a particular level of abstraction which

is then �xed once and for all. This inexibility to change the level of abstraction is

unsatisfactory from a system designers viewpoint. Vertical modularity is an important

means to overcome this problem and to control the complexity of developing RCSs-

designs: A complex design can �rst be given as concise and simple as possible and

then be turned into the actually desired design by means of successive re�nement

steps. This method is referred to as the hierarchical design of RCSs.
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Di�erent approaches that aim to allow vertical modularity exist some of which will

be discussed below. In doing so, we closely follow the comparative surveys [204, 90]

where various approaches to vertical modularity are discussed and many references

can be found.

� Re�nement Operator versus Hierarchy of Designs. A re�nement operator usu-

ally takes as its arguments a \target-design", a \target-primitive" and a design

which is supposed to describe the target-primitive in a more precise way and

which we call the \detail-design". The application of the re�nement operator

then renders the target-design more precise by \replacing" the occurrences of

the target-primitive in the target-design by the detail-design. By analogy, the

application of a re�nement operator amounts to implementing the body of a

procedure (the detail-design) of a subroutine in a program (the target-design)

for which hitherto only the \head" (the target-primitive) had existed.

In contrary, hierarchies of designs are based on implementation relations repre-

sentatives of which are the behavioural equivalences, discussed in Section 2.1.1.

Implementation relations are used to express that a low level design behaves

\essentially in the same way" as a high level design. We refer the reader to [2]

where many articles on implementation relations can be found. Ascending a

hierarchy of designs is in some sense \semantic preserving". For this reason,

hierarchies of designs will henceforth referred to as semantic preserving re�ne-

ment.

� Semantic Action Re�nement versus Syntactic Action Re�nement. Re�nement

operators are most often used in settings where the target-primitives are atomic

actions. One axis to distinguish re�nement operator approaches is to distin-

guish the kind of domain on which re�nement operators are de�ned. In semantic

action re�nement, the arguments of a re�nement operator are objects of a se-

mantic domain whereas process algebraic expressions constitute the arguments

in syntactic action re�nement.

Approaches to action re�nement can be further distinguished: Whereas action

re�nement in atomic action re�nement preserves atomicity (detail-designs are con-

sidered to appear non-interruptible and atomic in the target-design), atomicity is
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relative to the current level of abstraction in non-atomic action re�nement (that is,

actions of the target-design can interfere with the detail-design). Action re�nement

approaches are further distinguished according to the type of semantics that is ex-

plicitly (in semantic action re�nement) or implicitly (in syntactic action re�nement)

involved, for example, whether a \true concurrency" or an \interleaving semantics"

is used.

2.3.1 R�: A Process Algebra With Syntactic Action Re�nement

In this section we �x the process algebraic framework that is used to develop reactive

systems. Let Act := fa; b; : : :g be a �xed countable set of (atomic) actions and

V arAct := fv1; v2; : : :g a �xed countable set of distinguished action variables which

will be used as \place-holders" for process terms in what follows (see De�nition 4.5).

We require Act \ V arAct = ;.
Remark 2.4

In what follows, we let �; �; ; : : : range over the set A := Act[V arAct, the elements

of which are called (atomic) performances. 2

We let Idf := fx; y; : : :g be a �xed set of identi�ers. As usual the process expres-

sion 0 is used to denote a process which is unable to perform any atomic performance.

Two languages are used to build up process expressions of the form P [�; Q]. The

language R� supplies the terms Q whereas the language R� provides the terms P .

De�nition 2.5 (The Process Algebras R�, �, R� and �)

Let R� be the language of process terms generated by the grammar

Q ::= � j (Q +Q) j (Q;Q) j Q[�; Q]:

Let R� be the language of process expressions generated by the grammar

P ::= 0 j � j x j (P + P ) j (P ;P ) j (PkAP ) j fix(x = P ) j P [�; Q]

where �[�; Q] is the syntactic action re�nement operator, Q 2 R� and A � A. Let
�; � be the languages of process expressions generated by the grammars for R�; R�

respectively, without the rule P ::= P [�; Q]. These two languages will subsequently

be used to de�ne logical substitution (see De�nition 4.5). 2
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Intuitively, the operators of the language R� can be conceived as follows:

� 0: Denotes a terminated process that cannot execute any performance.

� �: Stands for the system that can execute the performance � thereby evolving

to the terminated process.

� x: Is used to evaluate process terms of the form fix(x = P ) (see below). In

isolation, x behaves like the terminated process.

� (P1 + P2): Denotes the system that can nondeterministically execute the sub-

system P1 or the subsystem P2.

� (P1;P2): Stands for the system that can execute the subsystem P1 and, upon

successful termination of P1, proceeds to the execution of the subsystem P2.

� (P1kAP2): Denotes the system that can execute the subsystems P1 and P2

concurrently (by interleaving the performances of P1 and P2). Performances

that occur in the synchronization set A have to be executed synchronously.

� fix(x = P ): Denotes the system that executes the subsystem P recursively.

� P [�; Q]: Stands for the system that replaces the execution of a performance

� by the execution of the subsystem Q every time the subsystem P performs

�. This operator allows to hierarchically design reactive systems.

In the presence of the sequential composition operator \;" it is common to use a

special predicate
p

(see, for example, [4]) to evaluate the semantics of the sequential

composition operator \;". Let
p � � be the least set which contains the term

0 and is closed under the rules (E 2 p
and F 2 p

) ) (E op F ) 2 p
where

op 2 fkA;+; ; g and (E 2 p
) ) fix(x = E) 2 p

. An occurrence of an identi�er

x 2 Idf is called free in a process expression P 2 R� i� it does not occur within

a subterm of the form fix(x = Q). An occurrence of x is called bound i� it is not

free. In what follows we only consider R�-expressions P in which all identi�ers which

occur free in P are distinct from all identi�ers which occur bound in P . This can

easily be achieved by consistent renaming of bound identi�ers. An identi�er x is

guarded in a term P 2 R� i� each free occurrence of x only occurs in subexpressions

F where F lies in a subexpression (E;F ) such that E 62 p
. A term P 2 R� is
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called guarded i� in each subexpression fix(x = Q) of P the identi�er x is guarded

in Q. For a language L � R� we de�ne the set of guarded R�-expressions by

GL := fP 2 L j P is guardedg.
As in [88] we de�ne a function which gives the set of performances of a process

expression.

De�nition 2.6 (Performances of process expressions)

Let P; P1; P2 2 R� and Q 2 R� be process expressions. The function � : R� ! 2A

is de�ned by

�(�) := ; where � 2 f0g [ Idf ; �(�) := f�g ,

�((P1 op P2)) := �(P1) [ �(P2) where op 2 f+; ; ; kAg ; �(fix(x = P )) := �(P ) ,

�(P [�; Q]) :=

8<
:
�(P ) n f�g [ �(Q) if � 2 �(P )

�(P ) else
2

The set of synchronization performances of a process expression P 2 R� is given

by the following function.

De�nition 2.7 (Synchronization performances of process expressions)

Let P; P1; P2 2 R� and Q 2 R� be process expressions. The function � : R� ! 2A

is de�ned by

�(�) := ; where � 2 f0g [ Idf [A ; �(fix(x = P )) := �(P ) ,

�((P1 op P2)) := �(P1) [ �(P2) where op 2 f+; ; g

�((P1kAP2)) := �(P1) [ �(P2) [A ,

�(P [�; Q]) :=

8<
:
�(P ) n f�g [ �(Q) if � 2 �(P )

�(P ) else
2

Let the alphabet of a process expression P 2 R� be de�ned by alph(P ) := �(P ) [
�(P ). For Q 2 R� we have alph(Q) = �(Q). Below, we de�ne some important
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properties of process expressions which will be employed later when the main result

is proven.

De�nition 2.8 (Alphabet-disjointness)

� A process expression P1 2 R� is called �-disjoint from a process expression

P2 2 R� i� �(P1) \ �(P2) = ;.

� A process expression P1 2 R� is called ��-disjoint from a process expression

P2 2 R� i� �(P1) \ �(P2) = ;.

� A process expression P 2 R� is called alphabet-disjoint from a process expres-

sion Q 2 R� i� P is �-disjoint and ��-disjoint from Q, that is, alph(P ) \
alph(Q) = ;. 2

De�nition 2.9 (Unique synchronization, distinctness)

� A process expression P 2 R� is called uniquely synchronized i� for all terms

(P1kAP2) which occur in P , A = �(Pi) holds for i = 1; 2. For a language

L � R� we de�ne the uniquely synchronized fragment of L by

UL := fP 2 L j P is uniquely synchronizedg:

� A process expression Q 2 R� is called distinct i� for all subexpressions of

the form (Q1;Q2), (Q1 + Q2) and Q1[� ; Q2] that occur in Q we have that

�(Q1) \ �(Q2) = ;. 2

Lemma 2.10

Let P = (P1kAP2) 2 U� be a process expression. Then we have that A = �(P ).

Proof:

� A � �(P ). Follows immediately from the de�nition of the function � : �! 2A.

� �(P ) � A. Assume A � �(P ), i.e.

9� 2 A(� 2 �(P ) and � 62 A)

Then � 2 �(P1) or � 2 �(P2) since � 2 �(P ) = A [ �(P1) [ �(P2) by de�nition

and � 62 A by the assumption. W.l.o.g. assume � 2 �(P1). Since P is uniquely
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synchronized we have A = �(P1) by De�nition 2.9 whence we must have � 2 A.

Contradiction.

We now proceed to the de�nition of performance re�nement. As in [4, 88] we use

a reduction function red : R� ! � which removes the occurrence of all re�nement

operators in a process expression (see De�nition 2.15). The reduction function is

based on an operation of syntactic substitution. We adapt the de�nition of [88] for

our purposes.

De�nition 2.11 (Syntactic Substitution for �)

Let P; P1; P2 2 � and Q 2 � be process expressions. Syntactic substitution, denoted

(P )fQ=�g is de�ned as follows:

(�)fQ=�g := � where � 2 f0g [ Idf ; (�)fQ=�g :=
8<
:
Q if � = �

� otherwise
,

((P1 op P2))fQ=�g := ((P1)fQ=�g op (P2)fQ=�g) where op 2 f+; ; g ,

((P1 kA P2))fQ=�g :=
8<
:

((P1)fQ=�g kAnf�g[�(Q) (P2)fQ=�g) if � 2 A
((P1)fQ=�g kA (P2)fQ=�g) if � 62 A ,

(fix(x = P ))fQ=�g := fix(x = (P )fQ=�g) 2

Remark 2.12

To avoid excessive use of brackets we sometimes use the notation PfQ=�g instead of

(P )fQ=�g if the context avoids ambiguity. 2

The following remark shows that several nested applications of the substitution

operation can be reduced to only one such application.

Remark 2.13

Let P 2 � and Q1; Q2 2 � be process expressions and 1; 2 2 A. Further let

� 2 f; ;+g. If 1; 2 62 �((Q1 �Q2)) [ alph(P ) and 1 6= 2 then

(((P )f(1 � 2)=�g)fQ2=2g)fQ1=1g = (P )f(Q1 �Q2)=�g: 2

The proof of the above remark is by induction on the structure of P 2 �. The

following lemma shows that the set of performances and the set of synchronization

performances of a term (P )fQ=�g 2 � can be directly calculated from the terms

P;Q and �.
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Lemma 2.14

Let P 2 �, Q 2 � be process expressions and � 2 A be a performance. Then we

have

1) �((P )fQ=�g) =
8<
:
�(P ) n f�g [ �(Q) if � 2 �(P )
�(P ) else

2) �((P )fQ=�g) =
8<
:
�(P ) n f�g [ �(Q) if � 2 �(P )
�(P ) else

Proof: The proof is by induction on the structure P 2 �.

De�nition 2.15 (Reduction function for R�)

Let P; P1; P2 2 R� and Q 2 R� be process expressions. The reduction function (for

process expressions) red : R�! � is de�ned as follows:

red(�) := � for � 2 f0g [ Idf [ A ; red(fix(x = P )) := fix(x = red(P )) ,

red((P1 op P2)) := (red(P1) op red(P2)) where op 2 f+; ; ; kAg ,

red(P [�; Q]) := (red(P ))fred(Q)=�g 2

We illustrate the reduction function by the following example.

Example 2.16

Consider the process expression P = ((�; �)kf�g�)[� ; (�1 + �2)]. Then we have

that red(P ) = (((�1 + �2); �)kf�1;�2g(�1 + �2)). 2

Remark 2.17 states that one application of the reduction function is su�cient to

remove all re�nement operators occurring in a process expression.

Remark 2.17

Let P 2 R� and Q 2 R�. Then red(P [�; Q]) = red(red(P )[�; Q]). 2

The following lemma states that the set of performances and the set of synchro-

nization performances of process expressions are invariant under the application of

the reduction function.

Lemma 2.18

Let P 2 R� be a process expression. Then we have
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1) �(P ) = �(red(P ))

2) �(P ) = �(red(P ))

Proof: The proof is by induction on the structure of P 2 R� using Lemma 2.14.

Lemma 2.19

Let P 2 �, Q1; Q2 2 R� be process expressions and 1; 2 2 A such that 1 6= 2.

Further let � 2 f ; ; + g. If 1; 2 62 alph(P ) [ �((Q1 � Q2)) then we have that

red(((P [�; (1 � 2)])[2 ; Q2])[1 ; Q1]) = red(P [�; (Q1 �Q2)]).

Proof: Follows from Remark 2.13 and Remark 2.17.

The next lemma shows how the reduction function distributes over the parallel

composition operator.

Lemma 2.20

Let P1; P2 2 R� and Q 2 R� be process expressions.

1) If � 62 A then red((P1 kA P2)[�; Q]) =

(red(P1[�; Q]) kA red(P2[�; Q]))

2) If � 2 A then red((P1 kA P2)[�; Q]) =

(red(P1[�; Q]) kAnf�g[�(Q) red(P2[�; Q]))

Proof: Follows from De�nition 2.11, De�nition 2.15 and Lemma 2.18.

The operational semantics of the language � is de�ned as follows (see also [162]).

De�nition 2.21 (Operational semantics for �)

Let P;Q 2 � be process expressions.

�
�
!0

P
�
!P 0

(P+Q)
�
!P 0

Q
�
!Q0

(P+Q)
�
!Q0

Q
�
!Q0

(P ;Q)
�
!Q0

if P 2 p P
�
!P 0

(P ;Q)
�
!(P 0;Q)

P
�
!P 0

(PkAQ)
�
!(P 0kAQ)

if � 62 A Q
�
!Q0

(PkAQ)
�
!(PkAQ0)

if � 62 A

P [fix(x=P )=x]
�
!Q

fix(x=P )
�
!Q

P
�
!P 0 Q

�
!Q0

(PkAQ)
�
!(P 0kAQ0)

if � 2 A
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2

A process expression P determines a labelled transition system with termination, that

is, a tuple T (P ) = (P;�;A;!;
p
) where P 2 � is the initial state and!� ��A��

is the set of transitions, derived from the operational semantics.
p

is the set of

terminated states as de�ned before.

To supply semantics for terms P 2 R� we de�ne T (P ) := T (red(P )). This

expresses the philosophy that the behaviour of the process P is considered to be

identical to that of the process red(P ) (see also [4]). Intuitively this is justi�ed by the

observation that information about � is distributed over several levels of abstraction

in the term P [�; Q], that is, it can be considered as a `coded' version of the term

red(P [� ; Q]) where the di�erent abstraction levels have been collapsed. In what

follows we sometimes identify the term P with the transition system T (P ) if the
context avoids ambiguity.

Remark 2.22

The absence of the parallel composition operator in terms Q 2 R� is no severe

restriction. For any �nite state system it is possible to replace kA by appropriate

combinations of sequential composition and binary choice operators without changing

the semantics (up to strong bisimulation equivalence [154]). The exclusion of the

empty process term 0 from the language R� means that we disallow `forgetful re-

�nement'13. As the re�nement of a (terminating) action by some in�nite behaviour

violates the intuition [90], no expression of the form fix(x = P ) is allowed to occur

in a term Q 2 R�. 2

De�nition 2.23 (See [12])

Let P;A1; : : : ; An 2 � and x1; : : : ; xn 2 Idf be pairwise distinct identi�ers. The �-

term P [A1=x1; : : : ; An=xn] arises from P by substituting each free occurrence of the

identi�ers x1; : : : ; xn in P simultaneously by the terms A1; : : : ; An. 2

Some elementary properties of the reduction function which allow us to relate

the behaviour of P and red(P [� ; Q]) are necessary for the proof of the main

theorem. In turn, the proofs of those properties make use of Lemma 2.25 which

13Such re�nements cannot be explained by a change in the level of abstraction [201] and are

usually avoided.
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establishes a connection between behavioural properties of guarded processes P 2 G�
and P [A1=x1; : : : ; An=xn].

In [12], Lemma 2.24 is used to prove Lemma 2.25.

Lemma 2.24 (See [12])

Let P;B;A1; : : :An 2 G� and let x1; : : : ; xn; y 2 Idf be pairwise distinct identi�ers

such that y does not occur free in A1; : : : ; An. Then

P [A1=x1; : : : ; An=xn; B[ ~A=~x]=y] = P [B=y][ ~A=~x]

Proof: By induction on the structure of P 2 G� (see also [12]).

Lemma 2.25

[See [12]] Let P;A1; : : : ; An 2 G� and let x1; : : : ; xn 2 Idf be pairwise distinct iden-

ti�ers which are guarded in P . Then we have:

If P [A1=x1; : : : ; An=xn]
�! Q, then there exists P 0 2 G� with

1: P
�! P 0 and

2: P 0[A1=x1; : : : ; An=xn] = Q

Proof: In [12] the action pre�xing (see, for example [154]) is used instead of

an operator for sequential composition. Hence, we only show the induction steps

P =  2 A and P = (P1;P2). Note that the semantics of our choice operator `+'

resembles to the `external choice' semantics of the operator `2' in [12].

P 2 Idf [ f0g: Trivial.
P =  2 A : Then [ ~A=~x] = . We choose P 0 = 0 to complete this step.

P = (P1;P2) :

Assume (P1;P2)[ ~A=~x]
�! Q. Then (P1[ ~A=~x];P2[ ~A=~x])

�! Q.

Case 1: P1[ ~A=~x] 2 p. Then P1 2 p. To see this assume P1[ ~A=~x] 2 p and P1 62 p.
From the former we have either P1 2 p which gives an immediate contradiction or xi

must occur unguarded in P1 for some i 2 f1; : : : ; ng and Ai 2 p. But this is a con-
tradiction to the conditions of the lemma since it implies that xi occurs unguarded

in P .
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By the assumption and De�nition 2.21 we have P2[ ~A=~x]
�! Q which implies

9P 0
2(P2

�! P 0
2 and P

0
2[ ~A=~x] = Q)

by the induction hypothesis. Hence

9P 0
2((P1;P2)

�! P 0
2 and P

0
2[ ~A=~x] = Q)

by De�nition 2.21 since P1 2 p.

Case 2: P1[ ~A=~x] 62 p. This implies P1 62 p. By the assumption and De�nition 2.21

we have

Q = (E;P2[ ~A=~x]) where P1[ ~A=~x]
�! E

This implies

9P 0
1(P1

�! P 0
1 and P

0
1[ ~P=~x] = E)

by the induction hypothesis. Hence

9P 0
1((P1;P2)

�! (P 0
1;P2) and P

0
1[ ~A=~x] = E)

by De�nition 2.21. Further

(P 0
1;P2)[ ~A=~x] =

(P 0
1[ ~A=~x];P2[ ~A=~x]) =

(E;P2[ ~A=~x]) =

Q

whence the claim of the lemma follows by choosing P 0 = (P 0
1;P2).

Some elementary properties of the function red are summarized in the following

which allow us to relate the behaviour of P and red(P [� ; Q]). The proofs of

Lemma 2.28, Lemma 2.30, Lemma 2.31 and Lemma 2.32 stated below make use

of Lemma 2.25. Lemma 2.26 states that re�nements behave well in the sense that

they neither remove a process expression from the set
p

of terminated processes nor

introduce a reduced process expression to it while Lemma 2.27 states that we can

�rst substitute the term E for every variable x in P and than re�ne the resulting

expression instead of substituting the re�ned term E for every x in the re�ned term

P .
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Lemma 2.26

Let P 2 � and Q 2 R�. Then P 2 p i� red(P [�; Q]) 2 p.

Proof: Immediate.

Lemma 2.27

Let P;E 2 �, Q 2 R� and x 2 Idf . Then

red(P [�; Q])[red(E[�; Q])=x] = red((P [E=x])[�; Q])

Proof: By induction on the structure of P 2 �.

Lemma 2.28

Let P 2 G� and Q 2 R� be process expressions. Then we have

1) If � 6= � and � 62 �(Q) then, for all P 0 2 G�, we have

P
�! P 0 ) red(P [�; Q])

�! red(P 0[�; Q])

2) If � 62 �(Q) then, for all P 0 2 G�,
red(P [�; Q])

�! P 0 ) 9P 00(P
�! P 00 and red(P 00[�; Q]) = P 0)

3) If P 2 UG� and � 6= � and (� 2 �(P )^ � 62 �(P ))) (� 62 �(Q)) then, for all
P 0 2 UG�, P �! P 0 ) red(P [�; Q])

�! red(P 0[�; Q])

Proof: The proofs of assertion 1) and assertion 3) only di�er in one case for the

induction step P = (P1kAP2). Hence we prove assertion 1) and assertion 3) simul-

taneously making a distinction only in the above mentioned case. The proof is by

structural induction on P 2 G� (P 2 UG� resp.).

P = 0, P = x 2 Idf and P =  where  6= �: Trivial.

P = �:

Obvious as P
�! 0, red(P [�; Q]) = � = P since � 6= � and red(0[�; Q]) = 0.

P = (P1 + P2):
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Assume (P1 + P2)
�! P 0 for some P 0 2 G�. By De�nition 2.21 we get P1

�! P 0

or P2
�! P 0. W.l.o.g. assume the former. Then

red(P1[�; Q])
�! red(P 0[�; Q])

by the induction hypothesis. This implies

(red(P1[�; Q]) + red(P2[�; Q]))
�! red(P 0[�; Q])

As (red(P1[�; Q]) + red(P2[�; Q])) = red((P1 + P2)[�; Q]) we get

red(P [�; Q])
�! red(P 0[�; Q]):

P = (P1;P2):

Assume (P1;P2)
�! P 0 for some P 0 2 G�. By De�nition 2.21 we have to con-

sider two cases:

Case 1: P1 2 p. By the assumption we must have P2
�! P 0. We get

red(P2[�; Q])
�! red(P 0[�; Q])

by the induction hypothesis. By Lemma 2.26 we get red(P1[� ; Q]) 2 p
. This

implies

(red(P1[�; Q]); red(P2[�; Q]))
�! red(P 0[�; Q])

hence

red(P [�; Q])
�! red(P 0[�; Q]):

Case 2: P1 62 p. Then P1
�! P 0

1 and (P1;P2)
�! (P 0

1;P2) by De�nition 2.21. We get

red(P1[�; Q])
�! red(P 0

1[�; Q])

by the induction hypothesis. By De�nition 2.21 we obtain

(red(P1[�; Q]); ~P )
�! (red(P 0

1[�; Q]); ~P )

for any ~P 2 �. Let ~P = red(P2[�; Q]) then

red(P [�; Q])
�! red((P 0

1;P2)[�; Q]) = red(P 0[�; Q]):

Veri�cation in the Hierarchical Development of Reactive Systems.



39

P = (P1 kA P2):

Assume (P1 kA P2)
�! P 0 for some P 0 2 G�. We distinguish four di�erent cases:

Case 1: �; � 62 A. Then we have

P 0 = (P 0
1 kA P2) where P1

�! P 0
1

or

P 0 = (P1 kA P 0
2) where P2

�! P 0
2

by De�nition 2.21 and � 62 A. W.l.o.g. assume the former. Then

red(P1[�; Q])
�! red(P 0

1[�; Q])

by the induction hypothesis. Hence

(red(P1[�; Q]) kA red(P2[�; Q]))
�! (red(P 0

1[�; Q]) kA red(P2[�; Q]))

by De�nition 2.21 and � 62 A. We conclude

red((P1 kA P2)[�; Q])
�! red((P 0

1 kA P2)[�; Q])

by assertion 1) of Lemma 2.20 since � 62 A.

Case 2: � 62 A and � 2 A. In this case we have to use the condition � 62 �(Q).

This condition is satis�ed by the premises of assertion 1). For assertion 3) we have

that � 2 A implies � 2 �(P ) by de�nition. Since � 62 A by the current case and P

is uniquely synchronized, we have � 62 �(P ) by Lemma 2.10 whence we may assume

� 62 �(Q) as requested by the premises of assertion 3). We can now proceed in the

simultaneous proof of assertion 1) and assertion 3): We have

P 0 = (P 0
1 kA P2) where P1

�! P 0
1

or

P 0 = (P1 kA P 0
2) where P2

�! P 0
2

by De�nition 2.21 and since � 62 A. W.l.o.g. assume the former. Then

red(P1[�; Q])
�! red(P 0

1[�; Q])
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by the induction hypothesis. Since � 62 A by the current case and � 62 �(Q) we have
� 62 A n f�g [ �(Q). Hence

(red(P1[�; Q]) kAnf�g[�(Q) red(P2[�; Q]))
�!

(red(P 0
1[�; Q]) kAnf�g[�(Q) red(P2[�; Q]))

by De�nition 2.21. We conclude

red((P1 kA P2)[�; Q])
�! red((P 0

1 kA P2)[�; Q])

by assertion 2) of Lemma 2.20 since � 2 A.

Case 3: � 2 A and � 62 A. Since � 2 A we have

P 0 = (P 0
1 kA P 0

2) and P1
�! P 0

1 and P2
�! P 0

2

by De�nition 2.21. This implies

red(P1[�; Q])
�! red(P 0

1[�; Q])

and

red(P2[�; Q])
�! red(P 0

2[�; Q])

by the induction hypothesis. Hence

(red(P1[�; Q]) kA red(P2[�; Q]))
�! (red(P 0

1[�; Q]) kA red(P 0
2[�; Q]))

by De�nition 2.21 since � 2 A. Since � 62 A we conclude

red((P1 kA P2)[�; Q])
�! red((P 0

1 kA P 0
2)[�; Q])

by assertion 1) of Lemma 2.20.

Case 4: � 2 A and � 2 A. Then

P 0 = (P 0
1 kA P 0

2) and P1
�! P 0

1 and P2
�! P 0

2

by De�nition 2.21. Hence

red(P1[�; Q])
�! red(P 0

1[�; Q])

Veri�cation in the Hierarchical Development of Reactive Systems.



41

and

red(P2[�; Q])
�! red(P 0

2[�; Q])

by the induction hypothesis. Since � 6= � by the conditions of the lemma and � 2 A
by the current case we have � 2 A n f�g [ �(Q). Hence

(red(P1[�; Q]) kAnf�g[�(Q) red(P2[�; Q]))
�!

(red(P 0
1[�; Q]) kAnf�g[�(Q) red(P

0
2[�; Q]))

by De�nition 2.21. Since � 2 A we conclude

red((P1 kA P2)[�; Q])
�! (red((P 0

1 kA P 0
2)[�; Q])

by assertion 2) of Lemma 2.20.

P = fix(x = P1).

Assume fix(x = P1)
�! P 0. Then P1[fix(x = P1)=x]

�! P 0. Hence

9P̂ 2 G�(P1
�! P̂ and P̂ [fix(x = P1)=x] = P 0)

by Lemma 2.25. This implies

9P̂ 2 G�(red(P1[�; Q])
�! red(P̂ [�; Q]))

by the induction hypothesis whence

9P̂ 2 G�
�
red(P1[�; Q])[fix(x = red(P1[�; Q]))=x]

�!

red(P̂ [�; Q])[fix(x = red(P1[�; Q]))=x]
�

We obtain

9P̂ 2 G�
�
fix(x = red(P1[�; Q]))

�!

red(P̂ [�; Q])[fix(x = red(P1[�; Q]))=x]
�

by De�nition 2.21. It follows

9P̂ 2 G�
�
red((fix(x = P1))[�; Q])

�!
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red(P̂ [�; Q])[fix(x = red(P1[�; Q]))=x]
�

by De�nition 4.5 and De�nition 4.13. Hence

9P̂ 2 G�
�
red((fix(x = P1))[�; Q])

�!

red((P̂ [fix(x = P1)=x])[�; Q]))

by Lemma 2.27 whence we conclude

red((fix(x = P1))[�; Q])
�! red(P 0[�; Q]):

We proceed to the proof of assertion 2). Again we use structural induction on

P 2 G�.

P = � 2 f0g [ Idf : Trivial, since red(P [�; Q]) = �.

P = :

Case 1:  = �. Then red(�[� ; Q]) = red(Q). But � 62 �(Q) by the condi-

tion whence the implication is trivially true.

Case 2:  6= �. Assume  = �. Then red(�[� ; Q]) = �. Hence P 0 = 0.

We choose P 00 = 0 whence red(P 00[� ; Q]) = 0 = P 0. Assume  6= �. Then

red(P [�; Q]) = . Since  6= � the implication is trivially true.

P = (P1 + P2):

Assume red((P1 + P2)[� ; Q])
�! P 0 for some P 0 2 G�. From De�nition 2.11

and De�nition 2.15 we obtain

(red(P1[�; Q]) + red(P2[�; Q]))
�! P 0

hence

red(P1[�; Q])
�! P 0 or red(P2[�; Q])

�! P 0:

W.l.o.g. assume the former. Then

9P 00(P1
�! P 00 and red(P 00[�; Q]) = P 0)
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and

9P 00((P1 + P2)
�! P 00 and red(P 00[�; Q]) = P 0):

P = (P1;P2):

Assume red((P1;P2)[�; Q])
�! P 0 for some P 0 2 G�. We obtain

(red(P1[�; Q]); red(P2[�; Q]))
�! P 0:

Case 1: P 0 = (E; red(P2[�; Q])) where red(P1[�; Q])
�! E.

Case 2: P 0 = F where red(P2[�; Q])
�! F and red(P1[�; Q]) 2 p.

For case 1 we get

9 ~P (P1
�! ~P and red( ~P [�; Q]) = E) (�)

by the induction hypothesis. This implies

9 ~P ((P1;P2)
�! ( ~P ;P2) and red( ~P [�; Q]) = E)

by De�nition 2.21. As

red(( ~P ;P2)[�; Q]) = (E; red(P2[�; Q])) = P 0

by assertion (�), we conclude

9P 00((P1;P2)
�! P 00 and red(P 00[�; Q]) = P 0)

by choosing P 00 = ( ~P ;P2).

For case 2 we obtain

9P 00(P2
�! P 00 and red(P 00[�; Q]) = F )

by the induction hypothesis. By Lemma 2.26 we have P1 2 p since

red(P1[�; Q]) 2 p. Hence we obtain

9P 00((P1;P2)
�! P 00 and red(P 00[�; Q]) = F ):
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P = (P1kAP2):

Assume red((P1 kA P2)[� ; Q])
�! P 0 for some P 0 2 G�. Again we have four

cases:

Case 1: � 62 A and � 62 A. Then we have

(red(P1[�; Q]) kA red(P2[�; Q]))
�! P 0

by assertion 1) of Lemma 2.20. Since � 62 A we have

P 0 = (E kA red(P2[�; Q])) where red(P1[�; Q])
�! E E 2 G�

or

P 0 = (red(P1[�; Q]) kA F ) where red(P2[�; Q])
�! F F 2 G�

by De�nition 2.21. W.l.o.g. assume the former. Then

9 ~P
�
P1

�! ~P and red( ~P [�; Q]) = E
�

by the induction hypothesis whence by De�nition 2.21

9 ~P
�
(P1 kA P2)

�! ( ~P kA P2) and red( ~P [�; Q]) = E
�

(�)

since � 62 A. As � 62 A we have

red(( ~P kA P2)[�; Q]) = (red( ~P [�; Q]) kA red(P2[�; Q]))

by assertion 1) of Lemma 2.20 whence

red(( ~P kA P2)[�; Q]) = (E kA red(P2[�; Q])) = P 0

by (�). Hence we conclude

9P 00
�
(P1 kA P2)

�! P 00 and red(P 00[�; Q]) = P 0
�

by choosing P 00 = ( ~P kA P2).

Case 2: � 62 A and � 2 A. Since � 2 A we have

(red(P1[�; Q]) kAnf�g[�(red(Q)) red(P2[�; Q]))
�! P 0
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by assertion 2) of Lemma 2.20. Now � 62 A and � 62 �(Q) imply � 62 A n f�g [ �(Q)
whence

P 0 = (E kAnf�g[�(red(Q)) red(P2[�; Q])) where red(P1[�; Q])
�! E

or

P 0 = (red(P1[�; Q]) kAnf�g[�(red(Q)) F ) where red(P2[�; Q])
�! F

by De�nition 2.21. W.l.o.g. assume the former. Then

9 ~P
�
P1

�! ~P and red( ~P [�; Q]) = E
�

by the induction hypothesis whence

9 ~P
�
(P1 kA P2)

�! ( ~P kA P2) and red( ~P [�; Q]) = E
�

by De�nition 2.21 since � 62 A by the current case. As � 2 A we have

red(( ~P kA P2)[�; Q]) = (red( ~P [�; Q]) kAnf�g[�(red(Q)) red(P2[�; Q])) = P 0

by assertion 2) of Lemma 2.20. We conclude

9P 00
�
(P1 kA P2)

�! and red(P 00[�; Q]) = P 0
�

by choosing P 00 = ( ~P kA P2).

Case 3: � 2 A and � 62 A. Then

(red(P1[�; Q]) kA red(P2[�; Q]))
�! P 0

which follows by assertion 1) of Lemma 2.20 since � 62 A. Since � 2 A we have

P 0 = (E kA F ) where

red(P1[�; Q])
�! E and red(P2[�; Q])

�! F

by De�nition 2.21. Hence

9 ~P1

�
P1

�! ~P1 and red( ~P1[�; Q]) = E
�

and

9 ~P2

�
P1

�! ~P2 and red( ~P2[�; Q]) = F
�
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by the induction hypothesis. Now

P 0 = (E kA F ) = (red( ~P1[�; Q]) kA red( ~P2[�; Q]))

from the two assertions above whence

P 0 = red(( ~P1 kA ~P2)[�; Q])

by assertion 1) of Lemma 2.20 since � 62 A. Hence

9P 00
�
(P1 kA P2)

�! P 00 and red(P 00[�; Q]) = P 0
�

by choosing P 00 = ( ~P1 kA ~P2).

Case 4: � 2 A and � 2 A. Since � 2 A

(red(P1[�; Q]) kAnf�g[�(red(Q)) red(P2[�; Q]))
�! P 0

by assertion 2) of Lemma 2.20.

First assume � 6= �. Then � 2 A by the current case and � 6= � imply � 2
A n f�g [ �(Q). Hence P 0 = (E kAnf�g[�(Q) F ) where

red(P1[�; Q])
�! E and red(P2[�; Q])

�! F

by De�nition 2.21. This implies

9 ~P1

�
P1

�! ~P1 and red( ~P1[�; Q]) = E
�

and

9 ~P2

�
P2

�! ~P2 and red( ~P2[�; Q]) = F
�

by the induction hypothesis. Since � 2 A by the current case we have

9 ~P19 ~P2((P1 kA P2)
�! ( ~P1 kA ~P2))

by De�nition 2.21. Since

P 0 = (E kAnf�g[�(Q) F ) = (red( ~P1[�; Q]) kAnf�g[�(Q) red( ~P2[�; Q]))

we have

P 0 = red(( ~P1 kA ~P2)[�; Q])
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by assertion 2) of Lemma 2.20 since � 2 A. Hence we conclude

9P 00
�
(P1 kA P2)

�! P 00 and red(P 00[�; Q]) = P 0
�

by choosing P 00 = ( ~P1 kA ~P2).

Now assume � = �. Then we must have

(red(P1[�; Q]) kAnf�g[�(Q) red(P2[�; Q]))
�

6! P 0 (z)

which trivially validates assertion 2). To see this we note that red(Pi[� ; Q]) =

red(Pi[� ; Q]) since � = � for i = 1; 2. Since � 62 �(Q) by assumption we have

red(Pi[� ; Q])
�

6! for i = 1; 2 which by De�nition 2.21 implies (z).

P = fix(x = P1):

Assume red((fix(x = P1))[�; Q])
�! P 0. Then

fix(x = red(P1[�; Q]))
�! P 0

by De�nition 4.5 and De�nition 4.13 whence we must have

red(P1[�; Q])[fix(x = red(P1[�; Q]))=x]
�! P 0

by De�nition 2.21. This implies

9P̂ 2 G�
�
red(P1[�; Q])

�! P̂ and

P̂ [fix(x = red(P1[�; Q])=x] = P 0
�

(�)
by Lemma 2.25. Further we have

9 ~P 2 G�(P1
�! ~P and red( ~P [�; Q]) = P̂ ) (��)

by the induction hypothesis. Hence

9 ~P 2 G�(P1[fix(x = P1)=x]
�! ~P [fix(x = P1)=x])

which implies

9 ~P 2 G�(fix(x = P1)
�! ~P [fix(x = P1)=x]) (� � �)
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by De�nition 2.21. Further we have

red(( ~P [fix(x = P1)=x])[�; Q])

= red( ~P [�; Q])[red((fix(x = P1))[�; Q])=x]

by Lemma 2.27

= red( ~P [�; Q])[fix(x = red(P1[�; Q]))=x]

by De�nition 4.5 and De�nition 4.13

= P̂ [fix(x = red(P1[�; Q]))=x]

by (��)
= P 0

by (�). We conclude

9P 00 2 G�(fix(x = P1)
�! P 00 and red(P 00[�; Q]) = P 0)

by (� � �) and choosing P 00 = ~P [fix(x = P1)=x].

The condition, that the considered expressions P 2 G� are uniquely synchronized

is crucial for the proof of assertion 3) in Lemma 2.28. Intuitively, the e�ect of this

condition is the following: Consider a term P = (P1kA1
P2) where P1 = (Q1kA2

Q2),

Pi; Qi 2 G� and Ai � A for i = 1; 2. Then a modi�cation of the synchronization set

A2 might destroy synchronizations between processes that are induced by the terms

Q1 and P2, i.e. terms which are resided on di�erent syntactic levels (with respect to

the nesting depth of parallel composition operators):

Example 2.29

Let P = (P1kA1
P2) where P1 = (Q1kA2

Q2) and Q1 = �, Q2 = , P2 = �, A1 = f�g
and A2 = f�g. We have � 62 A1 whence the condition (� 2 A1^� 62 A1)) � 62 �(Q)
would be satis�ed for any Q 2 R�. But we have red(P [� ; �])

�

6!. Note that P is

not uniquely synchronized. In this example, the condition of unique synchronization

for P would enforce either A1 = A2 = ; or A1 = A2 = f�; �; : : :g. In the former case

we would have red(P [�; �])
�! whereas in the latter we would have P

�

6! validating

assertion 3) of Lemma 2.28. 2

Veri�cation in the Hierarchical Development of Reactive Systems.



49

Lemma 2.30

Let P 2 G� be a process expression. Then we have

1) If � 62 �(P ) then, for all P 0 2 G�, we have

P
�! P 0 ) red(P [�; �])

�! red(P 0[�; �])

2) If � 62 alph(P ) then, for all P 0 2 G�, we have

red(P [�; �])
�! P 0 ) 9P 00(P

�! P 00 and red(P 00[�; �]) = P 0)

3) If P 2 UG� then, for all P 0 2 UG�, we have

8� 2 �(P )
�
P

�! P 0 ) red(P [�; �])
�! red(P 0[�; �])

�

Proof: All assertions are proved by structural induction on P 2 G� (P 2 UG�

respectively). We only show the cases where the proof di�ers substantially from the

proof of the previous lemma.

For assertion 1) we show

P = �:

�
�! 0, red(P [� ; �]) = � whence red(P [� ; �])

�! 0 which completes this

case since red(0[�; �]) = 0.

P = (P1kAP2):

Assume (P1kAP2)
�! P 0 for some P 0 2 G�. We distinguish two cases:

Case 1: � 62 A. Then
P 0 = (P 0

1kAP2) where P1
�! P 0

1

or

P 0 = (P1kAP 0
2) where P2

�! P 0
2

by De�nition 2.21. W.l.o.g. assume the former. Then

red(P1[�; �])
�! red(P 0

1[�; �])
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by the induction hypothesis and as � 62 �(P1). By the conditions of the lemma

� 62 �(P ) which implies � 62 A. Hence

(red(P1[�; �])kAred(P2[�; �]))
�! (red(P 0

1[�; �])kAred(P2[�; �]))

by De�nition 2.21. Since � 62 A we conclude

red((P1kAP2)[�; Q])
�! red((P 0

1kAP2)[�; �])

by assertion 1) of Lemma 2.20.

Case 2: � 2 A. Then P 0 = (P 0
1kAP 0

2) whence

red(P1[�; �])
�! red(P 0

1[�; �])

and

red(P2[�; �])
�! red(P 0

2[�; �])

by the induction hypothesis and � 62 �(Pi) (i = 1; 2). Hence

(red(P1[�; �])kAnf�g[f�gred(P2[�; �]))
�!

(red(P 0
1[�; �])kAnf�g[f�gred(P 0

2[�; �]))

by De�nition 2.21. Since � 2 A we conclude

red((P1kAP2)[�; �])
�! red((P 0

1kAP 0
2)[�; �])

by assertion 2) of Lemma 2.20.

For assertion 2) we show

P = :

Case 1:  = �. Then red(�[� ; �]) = �. By De�nition 2.21 we have P 0 = 0.

We choose P 00 = 0. Then P
�! P 00 and red(P 00[�; �]) = red(0[�; �]) = 0 = P 0.

Case 2:  = �: cannot occur due to the condition � 62 �(P ) of the lemma.
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Case 3:  6= � and  6= �: The implication is trivially true.

P = (P1kAP2):

Assume red((P1kAP2)[� ; �])
�! P 0 for some P 0 2 G�. Again we distinguish

the two cases:

Case 1: � 62 A. Then

(red(P1[�; �])kAred(P2[�; �]))
�! P 0

by assertion 1) of Lemma 2.20. By the conditions of the lemma follows � 62 A. Hence

P 0 = (EkAred(P2[�; �])) where red(P1[�; �])
�! E

or

P 0 = (red(P1[�; �])kAF ) where red(P2[�; �])
�! F

by De�nition 2.21. W.l.o.g. assume the former. Then

9 ~P
�
P1

�! ~P and red( ~P [�; �]) = E
�

by the induction hypothesis as � 62 alph(P1) whence by De�nition 2.21

9 ~P
�
(P1kAP2)

�! ( ~PkAP2) and red( ~P [�; �]) = E
�

since � 62 A. Now P 0 = (EkAred(P2[�; �])) and � 62 A whence we get

P 0 = red(( ~PkAP2)[�; �])

by assertion 1) of Lemma 2.20. Hence we conclude

9P 00
�
(P1kAP2)

�! P 00 and red(P 00[�; �]) = P 0
�

by choosing P 00 = ( ~PkAP2).

Case 2: � 2 A. Then

(red(P1[�; �])kAnf�g[f�gred(P2[�; �]))
�! P 0
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by assertion 2) of Lemma 2.20 whence P 0 = (EkAnf�g[f�gF ) where

red(P1[�; �])
�! E and red(P2[�; �])

�! F

by De�nition 2.21. We obtain

9 ~P1

�
P1

�! ~P1 and red( ~P1[�; �]) = E
�

and

9 ~P2

�
P2

�! ~P2 and red( ~P2[�; �]) = F
�

by the induction hypothesis. Hence

9 ~P19 ~P2

�
(P1kAP2)

�! ( ~P1kA ~P2)
�

by De�nition 2.21 since � 2 A. Now since � 2 A

red(( ~P1kA ~P2)[�; �]) = (red( ~P1[�; �])kAnf�g[f�gred( ~P2[�; �]))

by assertion 2) of Lemma 2.20 whence

red(( ~P1kA ~P2)[�; �]) = P 0:

We conclude

9P 00
�
(P1kAP2)

�! P 00 and red(P 00[�; �]) = P 0
�

by choosing P 00 = ( ~P1kA ~P2).

The proof of assertion 3) can easily be reduced to the proof of assertion 1). All

induction steps are identical, except of case 1) in the induction step P = (P1kAP2)

which does not occur in the proof of assertion 3): � 2 �(P ) implies � 2 A (by the

unique synchronisation of P ).

Lemma 2.31

Let P 2 G� be a process expression and 1; 2 2 A such that 1 6= 2. If 1; 2 62
alph(P ) then, for all P 0 2 G�, we have

1) P
�! P 0 ) 9P 00(red(P [�; (1; 2)])

1! P 00 2! red(P 0[�; (1; 2)])
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2) 8P 00 2 G�
�
red(P [�; (1; 2)])

1! P 0 2! P 00 )
9 ~P (P �! ~P and red( ~P [�; (1; 2)]) = P 00)

�

Proof: Induction on the structure of P 2 G�.

Proof of assertion 1).

P 2 f0g [ Idf : Trivial.

P = :

Case 1:  6= �. Then the implication is trivially true.

Case 2:  = �. Then �
�! 0 whence P 0 = 0. Now red(�[� ; (1; 2)]) = (1; 2).

We choose P 00 = (0; 2). Then

(red(P [�; (1; 2)])
1! P 00 2! red(P 0[�; (1; 2)])):

P = (P1 + P2):

Assume (P1 + P2)
�! P 0 for some P 0 2 G�. Then we obtain

P1
�! P 0 or P2

�! P 0

by De�nition 2.21. W.l.o.g. assume the former. Then

9P 00(red(P1[�; (1; 2)])
1! P 00 2! red(P 0[�; (1; 2)])):

This implies

9P 00(red((P1 + P2)[�; (1; 2)])
1! P 00 2! red(P 0[�; (1; 2)])):

P = (P1;P2):

Assume (P1;P2)
�! P 0 for some P 0 2 G�.
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Case 1: P 0 = (P 0
1;P2) where P1

�! P 0
1

Case 2: P 0 = P 0
2 where P2

�! P 0
2 and P1 2 p

For case 1 we obtain

9P 00(red(P1[�; (1; 2)])
1! P 00 2! red(P 0

1[�; (1; 2)]))

by the induction hypothesis. This implies

9P 00
�
(red(P1[�; (1; 2)]); red(P2[�; (1; 2)]))

1! (P 00; red(P2[�; (1; 2)]))

and

(P 00; red(P2[�; (1; 2)])
2! (red(P 0

1[�; (1; 2)]); red(P2[�; (1; 2)])
�
:

We obtain

9P 00
�
red((P1;P2)[�; (1; 2)])

1! (P 00; red(P2[�; (1; 2)])) and

(P 00; red(P2[�; (1; 2)]))
2! red((P 0

1;P2)[�; (1; 2)])
�

by De�nition 2.11 and De�nition 2.15. Hence we conclude the desired result

9 ~P (red((P1;P2)[�; (1; 2)])
1! ~P

2! red((P 0
1;P2)[�; (1; 2)]))

by choosing ~P = (P 00; red(P2[�; (1; 2)]).

For case 2 we have

9P 00(red(P2[�; (1; 2)])
1! P 00 2! red(P 0

2[�; (1; 2)]))

by the induction hypothesis. Since P1 2 p
we have red(P1[� ; (1; 2)]) 2 p

by

Lemma 2.26. Hence

9P 00((red((P1;P2)[�; (1; 2)])
1! P 00 2! red(P 0

2[�; (1; 2)]))):

P = (P1kAP2):
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Assume (P1kAP2)
�! P 0 for some P 0 2 G�.

Case 1: � 62 A. Then
P 0 = (P 0

1kAP2) where P1
�! P 0

1

or

P 0 = (P1kAP 0
2) where P2

�! P 0
2

by De�nition 2.21. W.l.o.g. assume the former. Then

9P 00(red(P1[�; (1; 2)])
1! P 00 2! red(P 0

1[�; (1; 2)]))

by the induction hypothesis. This implies

9P 00
�
(red(P1[�; (1; 2)])kAred(P2[�; (1; 2)]))

1! (P 00kAred(P2[�; (1; 2)]))

and

(P 00kAred(P2[�; (1; 2)])
2! (red(P 0

1[�; (1; 2)])kAred(P2[�; (1; 2)])
�
:

since 1; 2 62 A which follows by the condition of the lemma. Since � 62 A we obtain

9P 00
�
red((P1kAP2)[�; (1; 2)])

1! (P 00kAred(P2[�; (1; 2)]))

and

(P 00kAred(P2[�; (1; 2)])
2! red((P 0

1kAP2)[�; (1; 2)])
�
:

by assertion 1) of Lemma 2.20. We conclude

9 ~P (red((P1kAP2)[�; (1; 2)])
1! ~P

2! red((P 0
1kAP2)[�; (1; 2)]))

by choosing ~P = (P 00kAred(P2[�; (1; 2)])).

Case 2: � 2 A. Then P 0 = (P 0
1kAP 0

2) where

P1
�! P 0

1 and P2
�! P 0

2

by De�nition 2.21. Hence

9 ~P1

�
red(P1[�; (1; 2)])

1! ~P1
2! red(P 0

1[�; (1; 2)])
�
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and

9 ~P2

�
red(P2[�; (1; 2)])

1! ~P2
2! red(P 0

2[�; (1; 2)])
�

by the induction hypothesis whence

9 ~P19 ~P2

�
(red(P1[�; (1; 2)])kAnf�g[f1;2gred(P2[�; (1; 2)]))

1!

( ~P1kAnf�g[f1;2g ~P2)
2!

(red(P 0
1[�; (1; 2)])kAnf�g[f1;2gred(P 0

2[�; (1; 2)]))
�

by De�nition 2.21. Since � 2 A

9 ~P19 ~P2

�
red((P1kAP2)[�; (1; 2)])

1! ( ~P1kAnf�g[f1;2g ~P2) and

( ~P1kAnf�g[f1;2g ~P2)
2! red((P 0

1kAP 0
2)[�; (1; 2)])

�

by assertion 2) of Lemma 2.20. We conclude

9P 00
�
red((P1kAP2)[�; (1; 2)])

1! P 00 and

P 00 2! red((P 0
1kAP 0

2)[�; (1; 2)])
�

by choosing P 00 = ( ~P1kAnf�g[f1;2g ~P2).

P = fix(x = P1):

Assume P = fix(x = P1)
�! P 0. Then P1[fix(x = P1)=x]

�! P 0. Hence

9P̂ (P1
�! P̂ and P̂ [fix(x = P1)=x] = P 0)

by Lemma 2.25. This implies

9 ~P
�
red(P1[�; (1; 2)])

1! ~P
2! red(P̂ [�; (1; 2)])

�

by the induction hypothesis. Hence

9 ~P
�
red(P1[�; (1; 2)])[fix(x = red(P1[�; (1; 2)]))=x]

1!

~P [fix(x = red(P1[�; (1; 2)]))=x]
2!
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red(P̂ [�; (1; 2)])[fix(x = red(P1[�; (1; 2)]))=x]
�

which implies

9 ~P
�
fix(x = red(P1[�; (1; 2)]))

1!
~P [fix(x = red(P1[�; (1; 2)]))=x]

2!
red(P̂ [�; (1; 2)])[fix(x = red(P1[�; (1; 2)]))=x]

�

by De�nition 2.21. It follows

9 ~P
�
red((fix(x = P1))[�; (1; 2)])

1!

~P [fix(x = red(P1[�; (1; 2)]))=x]
2!

red(P̂ [�; (1; 2)])[red((fix(x = P1))[�; (1; 2)])=x]
�

by De�nition 4.5 and De�nition 4.13. We get

9 ~P
�
red(fix(x = P1)[�; (1; 2)])

1!

~P [fix(x = red(P1[�; (1; 2)]))=x]
2!

red((P̂ [fix(x = P1)=x])[�; (1; 2)])
�

by Lemma 2.27. We conclude

9P 00
�
red(fix(x = P1)[�; (1; 2)])

1!

P 00 2!
red(P 0[�; (1; 2)])

�

by choosing P 00 = ~P [fix(x = red(P1[�; (1; 2)]))=x].

Proof of assertion 2).

P 2 f0g [ Idf : Trivial.

P = :
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Case 1:  6= �. The red([� ; (1; 2)]) = . Hence the implication is trivially

true since 1; 2 62 �(P ) by the condition of assertion 2).

Case 2:  = �. Then red(�[� ; (1; 2)]) = (1; 2). Hence we have P 0 = (0; 2)

and P 00 = 0. On the other hand �
�! 0. We choose ~P = 0. Hence

P
�! ~P and red( ~P [�; (1; 2)]) = P 00:

P = (P1 + P2):

Assume red((P1 + P2)[�; (1; 2)])
1! P 0 2! P 00 for P 0; P 00 2 G�. We obtain

(red(P1[�; (1; 2)]) + red(P2[�; (1; 2)]))
1! P 0 2! P 00:

Hence we obtain

red(P1[�; (1; 2)])
1! P 0 2! P 00

or

red(P2[�; (1; 2)])
1! P 0 2! P 00:

W.l.o.g. assume the former. Then

9 ~P (P1
�! ~P and red( ~P [�; (1; 2)]) = P 00)

by the induction hypothesis. This implies

9 ~P ((P1 + P2)
�! ~P and red( ~P [�; (1; 2)]) = P 00):

P = (P1;P2):

Assume red((P1;P2)[�; (1; 2)])
1! P 0 2! P 00 for P 0; P 00 2 G�. We obtain

(red(P1[�; (1; 2)]); red(P2[�; (1; 2)]))
1! P 0 2! P 00:

Case 1)

P 0 = (E; red(P2[�; (1; 2)])) where red(P1[�; (1; 2)])
1! E
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and

P 00 = (E 0; red(P2[�; (1; 2)])) where E
2! E 0

(Note that red(P1[�; (1; 2)])
1! implies E 62 p since 1 62 �(P ))

Case 2)

P 0 = F where red(P2[�; (1; 2)])
1! F and red(P1[�; (1; 2)]) 2 p

and

P 00 = F 0 where F
2! F 0

For case 1 we have

red(P1[�; (1; 2)])
1! E

2! E 0

whence we get

9 ~P (P1
�! ~P and red( ~P [�; (1; 2)]) = E 0)

by the induction hypothesis. This implies

9 ~P ((P1;P2)
�! ( ~P ;P2)) (�)

and

(red( ~P [�; (1; 2)]); red(P2[�; (1; 2)])) = (E 0; red(P2[�; (1; 2)]))

which gives

red(( ~P ;P2)[�; (1; 2)]) = (E 0; red(P2[�; (1; 2)])) = P 00 (��)

Taking (�) and (��) together we obtain

9 ~P ((P1;P2)
�! ( ~P ;P2) and red(( ~P ;P2)[�; (1; 2)]) = P 00)

whence we obtain

9 ~P ((P1;P2)
�! ~P and red( ~P [�; (1; 2)]) = P 00):

For case 2 we obtain

9 ~P (P2
�! ~P and red( ~P [�; (1; 2)]) = F 0)
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by the induction hypothesis. From red(P1[� ; (1; 2)]) 2 p
we have P1 2 p

by

Lemma 2.26. Hence we obtain

9 ~P ((P1;P2)
�! ~P and red( ~P [�; (1; 2)]) = F 0):

P = (P1kAP2):

Assume red((P1kAP2)[�; (1; 2)])
1! P 0 2! P 00 for some P 0; P 00 2 G�.

Case 1) � 62 A. Then

(red(P1[�; (1; 2)])kAred(P2[�; (1; 2)]))
1! P 0 2! P 00

by assertion 2) of Lemma 2.20. By the condition of the lemma follows 1; 2 62 A.

We distinguish two sub-cases:

Case (I)

P 0 = (EkAred(P2[�; (1; 2)])) where red(P1[�; (1; 2)])
1! E

and

P 00 = (E 0kAred(P2[�; (1; 2)])) where E
2! E 0

(Note that red(P2[�; (1; 2)])
26! since 2 62 �(P ))

Case (II)

P 0 = (red(P1[�; (1; 2)])kAF ) where red(P2[�; (1; 2)])
1! F

and

P 00 = (red(P1[�; (1; 2)])kAF 0) where F
2! F 0

(Note that red(P1[�; (1; 2)])
26! since 2 62 �(P ))

W.l.o.g we only consider case (I), i.e. we have

red(P1[�; (1; 2)])
1! E

2! E 0
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whence we get

9 ~P (P1
�! ~P and red( ~P [�; (1; 2)]) = E 0):

This implies

9 ~P ((P1kAP2)
�! ( ~PkAP2)) (�)

since � 62 A and

(red( ~P [�; (1; 2)])kAred(P2[�; (1; 2)])) = (E 0kAred(P2[�; (1; 2)]))

which gives

red(( ~PkAP2)[�; (1; 2)]) = (E 0kAred(P2[�; (1; 2)])) = P 00 (��)

by assertion 1) of Lemma 2.20. Taking (�) and (��) together we obtain

9 ~P ((P1kAP2)
�! ( ~PkAP2) and red(( ~PkAP2)[�; (1; 2)]) = P 00)

whence

9 ~P ((P1kAP2)
�! ~P and red( ~P [�; (1; 2)]) = P 00):

Case 2) � 2 A. Then

(red(P1[�; (1; 2)])kAnf�g[f1 ;2gred(P2[�; (1; 2)]))
1! P 0 2! P 00

by assertion 2) of Lemma 2.20. Since 1 2 A n f�g [ f1; 2g we have P 0 =

(EkAnf�g[f1;2gF ) where

red(P1[�; (1; 2)])
1! E and red(P2[�; (1; 2)])

1! F:

Since P 0 2! P 00 and 2 2 A n f�g [ f1; 2g we have P 00 = (E 0kAnf�g[f1;2gF 0) where

E
2! E 0 and F

2! F 0:

Hence

9 ~P1

�
P1

�! ~P1 and red( ~P1[�; (1; 2)]) = E 0
�

and

9 ~P2

�
P2

�! ~P2 and red( ~P2[�; (1; 2)]) = F 0
�

Veri�cation in the Hierarchical Development of Reactive Systems.



62 Chapter 2: Designing Reactive Systems

by the induction hypothesis. Since � 2 A

9 ~P19 ~P2

�
(P1kAP2)

�! ( ~P1kA ~P2)
�

by De�nition 2.21. From assertion 2) of Lemma 2.20 follows

red(( ~P1kA ~P2)[�; (1; 2)]) =

(red( ~P1[�; (1; 2)])kAnf�g[f1;2gred( ~P2[�; (1; 2)])) =

(E 0kAnf�g[f1;2gF 0) = P 00

whence we conclude

9 ~P
�
(P1kAP2)

�! ~P and red( ~P [�; (1; 2)]) = P 00
�

by choosing ~P = ( ~P1kA ~P2).

P = fix(x = P1):

Assume red((fix(x = P1))[�; (1; 2)])
1! P 0 2! P 00. Then

fix(x = red(P1[�; (1; 2)]))
1! P 0 2! P 00

Hence we must have

red(P1[�; (1; 2)])[fix(x = red(P1[�; (1; 2)]))=x]
1! P 0 2! P 00

by De�nition 2.21. By Lemma 2.25

9P̂
�
red(P1[�; (1; 2)])

1! P̂ and

P̂ [fix(x = red(P1[�; (1; 2)]))=x] = P 0
�

Since P 0 2! P 00 we have P̂ [fix(x = red(P1[�; (1; 2)]))=x]
2! P 00 whence

9 ~P
�
P̂

2! ~P and ~P [fix(x = red(P1[�; (1; 2)]))=x] = P 00
�

by Lemma 2.25. Hence

9 �P (P1
�! �P and red( �P [�; (1; 2)]) = ~P )
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by the induction hypothesis. Hence

9 �P (P1[fix(x = P1)=x]
�! �P [fix(x = P1)=x])

which implies

9 �P (fix(x = P1)
�! �P [fix(x = P1)=x])

by De�nition 2.21. Furthermore

red(( �P [fix(x = P1)=x])[�; (1; 2)]) =

red( �P [�; (1; 2)])[red((fix(x = P1))[�; (1; 2)])=x] =

~P [red((fix(x = P1))[�; (1; 2)])=x] =

~P [fix(x = red(P1[�; (1; 2)])=x] =

P 00

which gives

9 ~P
�
fix(x = P1)

�! ~P and red( ~P [�; (1; 2)]) = P 00
�

by choosing P 00 = �P [fix(x = P1)=x].

Lemma 2.32

Let P 2 G� and 1; 2 2 A such that 1 6= 2. If 1; 2 62 alph(P ) then, for all

P 0 2 G�, we have

1) P
�! P 0 ) 8i 2 f1; 2g

�
red(P [�; (1 + 2)])

i! red(P 0[�; (1 + 2)])
�

2) 9i 2 f1; 2g
�
red(P [�; (1 + 2)])

i! P 0 )
9 ~P (P �! ~P and red( ~P [�; (1 + 2])) = P 0)

�

Proof: The proof is by an induction on the structure of P 2 G� similarly to the

proof of the previous lemma.
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2.3.2 Discussion

In this thesis, a re�nement approach of type \re�nement operator", \interleaving",

\syntactic action re�nement" and \non-atomic" has been chosen in order to support

the hierarchical design of RCSs. This decision has been taken for the following

reasons:

� Re�nement through a hierarchy of designs has the disadvantage that no clear

separation between di�erent abstraction levels is achieved. This gives rise to

confusion in the design process rather than it adds transparency to it. A clear

separation of di�erent abstraction levels is considered to be a valuable feature

in any design procedure [88, 90]. This can be achieved in re�nement operator

based approaches.

� An important feature of syntactic action re�nement is its e�ective algorithmic

feasibility. For example, syntactic action re�nement for standard PAs can

always implemented e�ectively since process expressions are strings of �nite

length even if they denote semantic objects of in�nite size like, for example,

in�nite state transition systems. Clearly, semantic action re�nement cannot be

implemented e�ectively for in�nite state transition systems. In this thesis, we

are concerned with in�nite state LTSs which excludes the usage of semantic

action re�nement. Apart from this, syntactic action re�nement is easier to

understand than semantic action re�nement due to its de�nitional clarity (the

reader is invited to compare the two notions in [88] with each other).

The approach of atomic action re�nement is much more restrictive than the no-

tion of non-atomic action re�nement. Finally, we have argued that PAs and LTSs

together with bisimulation equivalence are a very suitable setting to model RCSs.

Being an interleaving based setting, our approach to re�nement will necessarily be of

type interleaving. It is well known, that (non-atomic) syntactic action re�nement in

interleaving semantics has some particular disadvantages: Many interleaving based

behavioural equivalences (like, for example, strong bisimulation equivalence or trace

equivalence) that are used for veri�cation [2] are not preserved under the application

of syntactic action re�nement operators [36]. More precisely, these equivalences are

no congruence for the syntactic action re�nement operator. This problem is mainly
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caused by the mutual interference of syntactic action re�nement with synchroniza-

tion issues, in particular, syntactic action re�nement operators do not distribute over

operators for parallel composition [88]. As will be become clear in Section 4.2, the

results of this thesis can be used to alleviate this problem (see also [138]).

3 Veri�cation of Reactive System Designs

The di�culties inherent in designing and realizing RCSs steam from the ability of

RCSs to execute subcomponents concurrently which results in the need to ensure an

appropriate synchronization of these subcomponents. As RCSs are no monolithic

systems but maintain an ongoing interaction with their environment, the environment

itself can be viewed as an RCSs that executes concurrently with the RCSs under

consideration [103, page 65]. The main problem in designing and analyzing RCSs

is thus to intellectually manage the logical complexity of the synchronization and

the interaction of many constituent RCSs that execute in parallel. Various methods

have been proposed which help to gain an increased con�dence in physical RCSs

and their designs (see also [163] for a more detailed presentation of the two methods

reviewed below some other methods and various references):

� Dynamic Testing: Dynamic Testing amounts to compare the behaviour that

is observed by executing physical RCSs with a speci�cation of the intended

behaviour. This approach has two principal drawbacks: First, the correctness

of a range of executions does not admit to infer that all executions of the

RCSs are correct. Faults might lurk in the very next execution of the RCSs.

Second, testing cannot be applied in the design phase as it can only be applied

to physical RCSs. Consequently, testing does not allow to detect conceptual

errors already in the design phase but foremost when RCSs have actually be

realized (and with them the error as well). Tracing down the error will be very

di�cult due to the overwhelming complexity of physical RCSs.

� Symbolic Execution: In Symbolic execution (also called simulation), the de-

sign of physical RCSs is executed symbolically and the observed behaviour

is compared with a speci�cation of the intended behaviour. The di�erence to

dynamic testing is that models (the designs) of RCSs are executed instead
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physical RCSs. This makes symbolic execution applicable in the design phase

and thus evades much of the complexity dynamic testing has to deal with.

However, as dynamic testing it is not a method that allows to infer complete

correctness of the whole design on the basis of a range of correct simulations.

As has already been discussed in the introduction of this thesis, veri�cation (and

also simulation) su�ers from the fact that only models of RCSs are veri�ed and that

veri�cation of physical RCSs is impossible. At �rst glimpse, one might assume that

dynamic testing is superior in this aspect. However, executions of physical RCSs are

always subject to physical inuences exerted by the environment and can thus vary

with the location (think of testing a physical RCSs in a desert or in the arctic) and

also with time (think of testing a physical RCSs in the desert, once at daytime and

once at night). Hence, it seems that dynamic testing su�ers from similar drawbacks

than formal veri�cation.

Neither one of the above mentioned methods nor formal veri�cation allow to

ensure the correctness of physical RCSs but all of them can be used to gain an

increased con�dence in such systems. Of course, the highest bene�t comes with the

joint application of di�erent methods during the design phase and after the realization

of RCSs. There is a general consensus that di�erent approaches support each other

and that research should be pursued in the particular approaches but also in possible

combinations of di�erent methods [24, 48, 53, 163, 216].

This thesis aims to contribute to the research in formal veri�cation of RCSs-

designs. The remainder of this chapter will thus be concerned with a review of

some formalisms that play an important role in veri�cation and a review of the most

prominent approaches to RCSs-design veri�cation.

3.1 Expressing Properties of Reactive Systems: Modal and

Temporal Logics

As has already been explained, formal veri�cation means to show that RCSs-designs

satisfy some desirable properties. Particularly important formalisms used to specify

properties of RCSs are temporal logics (TLs for short). General surveys on di�erent

TLs and their role in computer science are [15, 213, 40, 68, 120, 169, 190, 83, 62, 192].

TLs are formal languages that extend classical propositional logic or �rst order
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predicate logic by a set of temporal operators. These operators provide a means to

formalize time dependent properties of RCSs. For example, TLs allow to formalize

properties like \the action � will eventually be executed". Temporal logics can also

be seen as a special case of modal logics (see for example [57, 37]) which augment

classical logics by modal operators in order to formalize di�erent \modes of truth"

like, for example, that an assertion is \necessarily true" or \possibly true". Inter-

preting modal operators in time dependent contexts (that is as temporal operators)

specializes modal logics to temporal logics (see also [144, pp. 76], [120, pp. 793]

and [68, pp. 1048] where the historical evolution of modal and temporal logics is

addressed).

TLs can be roughly classi�ed according to the following parameters14: \propo-

sitional" versus \�rst order predicate" TLs, \endogenous" versus \exogenous" TLs,

\branching time" versus \linear time" TLs, and \past time" versus \future time"

TLs.

� Propositional TLs versus �rst order predicate TLs. Whereas propositional logic

constitutes the non-temporal (or non-modal) part of propositional TLs, the

usage of variables, constants, functions, predicates and quanti�ers is allowed

in �rst order predicate TLs. In contrary to propositional TLs, �rst order

predicate TLs tend to be highly undecidable (see [68, page 998]).

� endogenous TLs versus exogenous TLs. Whereas formulas of endogenous TLs

(also called \global TLs") are interpreted over one system, exogenous TLs (also

called \compositional" TLs) allow to express properties of several di�erent sys-

tems within one formula. Most TLs used for the veri�cation of RCSs-designs

are endogenous. However, exogenous TLs facilitate compositional reasoning:

The proof that a RCSs-design satis�es a formula can be divided into correct-

ness proofs of constituent parts of the RCSs-design.

� Branching time TLs versus linear time TLs. The way in which the nature of

time is conceived gives rise to di�erent types of TLs. Amongst them, the most

prominent types of TLs are linear time TLs and branching time TLs. In linear

time TLs, the course of time is assumed to be linear, that is, at each moment in

14This classi�cation and a detailed discussion on the di�erent types of TLs can be found in [68,

pp. 998].
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time there exists only one possible future moment. In contrary, time is assumed

to have a tree-like nature in branching time TLs, that is, at each moment in

time there exist several possible future moments. Prominent linear time TLs

are, for example, the \Linear Time Temporal Logic" LTL (see for example [173,

141, 143, 144]) and the \Temporal Logic of Actions" TLA (see for example [126,

76]). Important branching time TLs are, for example, the \computational tree

logics"CTL and CTL� (see for example [41, 73, 69, 75]), the \Hennessy-Milner-

Logic"HML [153, 154] and the \Modal Mu-Calculus" �L [119] (see also [192]).

Various articles discuss the question whether linear time TLs or branching

time TLs are superior in order to reason about RCSs-designs [71, 40, 75, 206].

However, using a particular type of logic �nally depends on pragmatic rather

then theoretical arguments (see also [206]). References to many linear time and

branching time TLs can be found in [124, page 27].

Yet another way to conceive the nature of time is to represent time as a set

of time instances (moments) equipped with a partial order. This gives rise to

so called partial order TLs, examples of which are the \Interleaving Set Tem-

poral Logic" ISTL [112] or the \Event Structure Temporal Logic" ESL [168].

Surveys on partial order TLs are, for example, [169, 62].

� Past time TLs versus future time TLs. Most TLs used in computer science

contain only future time temporal operators. Future time temporal operators

allow to formalize properties of future moments whereas past time temporal

operators allow to express properties of moments in time that have already

been passed through by a system. Though the inclusion of past time temporal

operators in TLs does in general add no expressive power, they can be useful

for compositional veri�cation [98, 133]. Some other articles on the usage of

past time temporal operators in TLs are, for example, [188, 127, 128, 108].

The concept of !-automata (see [199] for a survey) is closely related to the concept

of TLs. As opposed to ordinary �nite state automata FSA (see [170] for a survey),

!-automata are �nite state automata that accept \in�nite objects" like, for example,

words of in�nite length or trees of in�nite size. The set of in�nite words (or in�nite

trees) accepted by an !-automaton are conceived to be (abstract) representations of

the computation paths (or trees) of that physical RCSs which is modelled by the
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!-automata. Historically, !-automata have been used in order to develop decision

procedures for logics. The fundamental result was given by M. O. Rabin who showed

that the monadic second order logic MSOL is decidable [176] and much of the work

of devising decision procedures for other logics (see for example [195, 160, 161, 196])

has been based on Rabin's results.

3.2 Classical Veri�cation Techniques

In this section, we review some techniques which can be used for the veri�cation of

RCSs-designs.

� In [141], Z. Manna and A. Pnueli gave a sound and complete axiom system of a

linear time temporal logic (LTL) to reason \by hand" about RCSs-designs (see

also [173] and [68, pp.1054] for further information). However the probability

that proofs are incorrect or too complex to be done by hand is huge regarding

the enormous complexity of computer systems used nowadays. For this reason

deduction systems have been invented to check established hand proofs (called

proof checkers) or to prove properties (theorems) of designs automatically by

theorem provers (for general information on these topics see [68, pp.1054] and

[124, 48, 1, 181, 32]). When applied in the context of program veri�cation a

theorem prover investigates the question `�) ' ?' where � denotes the RCSs-

design and ' the speci�cation which is to be checked. Most often however, the

axiom systems on which theorem provers are based are incomplete, in�nite or

the underlying logic is too expressive whence the above question tends to be

undecidable. To circumvent this problem interactive theorem provers can be

used where human ingenuity is involved in order to guide the search for a cor-

rectness proof (see [181, 48] for general information and various references).

� Related to the above approach to veri�cation is a method based on the theory

of !-automaton on in�nite words or in�nite trees. There the RCSs-design and

the speci�cation are given as !-automata AM and AS and one shows that the

language L(AM) accepted by AM is a subset of the language L(AS) accepted by

AS, that is, L(AM) � L(AS) (see, for example, [207, 205, 122]). Optimization
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techniques to alleviate the state space explosion problem like, for example, lo-

calization reduction [124] (where only the parts of the system which are relevant

for the veri�cation of the property under consideration are veri�ed) have been

investigated. For an overview and various references on this approach see [124].

� In [41, 175], E. M. Clarke and J. Sifakis independently stipulated the investiga-

tion of an other method for RCSs-design veri�cation, called model checking. A

model checker is an algorithm which, on input a (operational) RCSs-design P

and a formula ' of a suitable temporal logic, decides whether P is a model of

' , that is, whether P possesses (or satis�es) the property ' (denoted P j= ').

Though very appealing being a fully algorithmic (computer-aided) approach,

veri�cation based on model checking has two major drawbacks: Firstly, the

designs under consideration are usually restricted to have a �nite state space.

Some sophisticated methods like \local" or \on-the-y" model checking al-

gorithms, where only the important parts of a system15 are represented in a

demand-driven fashion have been investigated to model check in�nite state

designs (see, for example, [194, 28, 106, 191]). In general however model check-

ing in�nite state designs is undecidable for su�ciently expressive languages16.

Secondly, the representation of the (�nite) state spaces of many designs ex-

ceeds all conceivable computational resources due to their gigantic size. Since

(classical) model checker usually relay on the exhaustive investigation of state

spaces, many RCSs-designs cannot be veri�ed using the naive model check-

ing approach. Dramatic improvements have been achieved by optimization

techniques: Ordered binary decision diagrams (OBDDs) [31] can be used to

(symbolically) represent state spaces in a concise form. Symbolic model check-

ing [150, 33] (surveyed in [47, 99, 45]) made it possible to verify some very large

designs not manageable by conventional model checkers [33]. Though sym-

15The parts of the system which are relevant with respect to the property to be checked.
16The used speci�cation languages highly inuence the merits of model checking techniques:

For example, though model-checking formulas of the Modal Mu-Calculus [119] is decidable for

in�nite sequential processes [34] it already becomes undecidable for the (parallel) process algebra

V BPP [77]. Generally, as soon as the language for formalizing RCSs-designs has Turing strength

and the speci�cation logic is su�ciently expressive, almost no interesting properties are decidable.

Veri�cation in the Hierarchical Development of Reactive Systems.



71

bolic model checking is meanwhile successfully applied in industry [67, 14] (see

also [46]), it is known that many RCSs-designs can not be expressed concisely

using OBDDs [210] whence they usually remain out of the scope of symbolic

model checking techniques. In [148], partial order semantics are described on

which a technique called partial order reduction is based. This technique can be

used by model checkers to partition the state space of designs into \equivalent"

subsets of states. Consequently, only the representative subsets of the com-

plete state space have to be veri�ed by the model checker [86, 214, 211, 7, 84]

(a survey of various partial order methods can be found in [167]). Abstract

interpretations, a technique invented by R. Cousot and P. Cousot (see for ex-

ample [55, 54, 56]), are used to collapse subsets of state spaces of designs P

into one (or more) abstract states. Depending on the property ' under consid-

eration, it can be su�cient to check that the design PA which is based on the

abstracted state space satis�es ' to conclude that the (concrete) design P satis-

�es '. This technique has been exploited to reduce the costs of model checking

algorithms17, for example, in [44, 115, 59]. Some of the above mentioned opti-

mization methods can be applied in combination: For example, symbolic model

checking can be enhanced by using abstraction techniques [113] or partial or-

der reduction [7]. Some other optimization techniques, various model checking

tools and successful applications of model checkers in practice can be found

in [48]. Still, the veri�cation of many RCSs-designs remained to be intractable

by the model checking approach due to the well known problem of state space

explosion: Depending on the semantics used, n actions executed concurrently

might require a state space of cardinality n! to semantically represent the ac-

cording design. In other words, the description of a RCSs-design (for example

a process algebraic expressions) might be exponentially more concise than the

state space of its semantical representation (for example, the transition system

induced by a process algebraic expression).

� The situation underlying the above veri�cation methods is that the RCSs-

design and the speci�cation are already given whence the design veri�cation

17In�nite state designs can sometimes be model checked via abstractions by �rst collapsing the

in�nite set of states into an (abstract) �nite set of states see, for example, [17].
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can be carried out. It is implicitly assumed that the speci�cation is reasonable

in the sense, that \in principle" it is possible to �nd a design that satis�es it.

This however might not be the case due to inconsistent parts of the speci�cation

leading to the question of satis�ability classically investigated in the context of

logics: Given a formula ' in the logic under consideration, does an object

which satis�es ' exist or not? An algorithm DL which decides this question for

a particular logic L is called a decision procedure (with respect to satis�ability)

for L (see also [68, pp.1030]). Decision procedures are exploited in another

approach to the veri�cation of RCSs-designs, called automated program syn-

thesis. There, a decision procedure is used to check satis�ability of a formula

(the speci�cation) ' of the intended RCSs-design. Provided ' is satis�able

a (usually �nite state) design that satis�es ' is constructed. Unsatis�ability

of ' tantamount to inconsistency of ' whence ' has to be modi�ed accord-

ingly. This approach was applied successfully to generate the synchronization

skeleton of RCSs-designs, that is, the program part where details irrelevant to

synchronization are ignored [42, 145, 174, 11] (see also [68, pp.1058] for further

discussion).

� Finally, veri�cation can be based on the direct comparison of operational

RCSs-designs P;Q. Usually, a binary relation R between designs is de�ned

formalizing those aspects under which P and Q are considered to be seman-

tically equal thereby abstracting away from irrelevant implementation details.

Prominent instances of R are (strong) bisimulation equivalence, (strong) trace

equivalence or failure trace equivalence (see Section 2.1.1). If we consider P to

be a concrete design (that is an implementation-near design) and Q an abstract

design (which exhibits less implementation details), R(P;Q) formalizes that P
and Q share particular semantical properties (subject to the de�nition of R)
though being expressed at di�erent levels of abstraction. For this reason in-

stances of R are called implementation relations in the context of RCSs-design

veri�cation (for an overview on this topic see, for example, [2]). The predicate

R(P;Q) can also be conceived as one step in a re�nement sequence leading

towards a precise implementation of an algorithm which might then be trans-

latable into an executable system. This technique is thus based on hierarchies

Veri�cation in the Hierarchical Development of Reactive Systems.



73

of designs which we called semantics preserving re�nements in Section 2.3.

Combinations of some of the above reviewed veri�cation techniques have been

investigated, for example, in [164] (proof checking with model checking) or [65, 182]

(theorem proving with model checking).

3.3 The Problem with Classical Veri�cation Techniques

To exemplify the main disadvantage implicit in the approaches to RCSs-design ver-

i�cation discussed in the previous chapter, we recast in a uniform way:

� Mechanical Veri�cation (see, e.g., [141]). Task: Given formulas ' (denoting the

desired properties of the system) and � (denoting the design) in an appropriate

logic, use an appropriate deductive system D to derive a proof that ' follows

from �, i.e., �
D) '. We recast this into ' 2 2THD(�), where THD(�) is the

least set that contains � and is closed under
D).

� !-automata (see, e.g., [124]). Task: Given the description of a system and a

speci�cation as !-automata AM and AS, check L(AM) � L(AS). We recast

this into AM 2 fA j L(A) 2 2L(A
S)g.

� Model Checking (see, e.g., [41, 175]). Task: Given a (transition) system P

and a speci�cation ' in a logic L, check P j=L '. We recast this into P 2
fQ j Q j=L 'g.

� Synthesis of Reactive Systems (see, e.g., [41]). Task: Given the speci�cation '

of the properties to be satis�ed by the intended design in a suitable logic L,

create by means of a transformation T a (transition) system T (') such that

T (') j=L ', i.e. T (') 2 fQ j Q j=L 'g.

� Semantics-Preserving Re�nement (see, e.g., [2]). Task: Given the (transition)

systems P and Q, check that R(P;Q) for a desired implementation relation R.
We recast this into P 2 QR where QR is the least set which contains Q and is

closed under the relation R, i.e. P 2 SR and R(P;Q) implies Q 2 SR.

We observe that it is possible to de�ne the task to be solved in all the veri�cation

methods mentioned above by

D 2 Q(S):
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In the case of mechanical veri�cation, D denotes a speci�cation whereas D denotes

a RCSs-design in all other cases mentioned above. Q(S) represents the theory of a

system in the case of mechanical veri�cation whereas Q is a language parameterized

by a speci�cation S in the other approaches. What is missing in all the above

discussed veri�cation methods are transformations ref and Ref which satisfy the

property induced by the diagram shown in Figure 3.3.

D 2 Q(S)

ref
???y

???yRef
ref(D) 2 Q(Ref(S))

Figure 4: Transformations of Designs and Speci�cations

The relevance of the existence of such transformations comes form the following

observation: The (coarse) live cycle of a RCSs-design usually consists of its devel-

opment and its maintenance. Eventually the design might be scraped. However,

meanwhile its (hopefully long) lifetime, the design will most likely be subject of re-

peated alignment to new requirements and resources. This involves an adaptation of

the old speci�cation to comprise the new requirements imposed on the design and of

course the adaption of the design itself. Any change of the old design or the old spec-

i�cation however requires a reapplication of the whole veri�cation procedure to the

new design and the new speci�cation if one of the above veri�cation methods is used.

This means that the information D 2 Q(S) cannot be reused whence every change

of the design or the speci�cation requires to apply the chosen veri�cation method

from the very scratch again. Hence, the above presented veri�cation methods do

not support the procedure of hierarchical design system development under which

we understood the stepwise development of a design (where a design is developed

by successive enrichment with details) and design maintenance (where parts of the

design are changed or extended) when used in isolation. The remainder of this thesis

is devoted to the introduction of such transformations.
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4 Veri�cation in the Hierarchical Development of

Reactive Systems

As we have seen in Section 2.3, the method of syntactic action re�nement (in pro-

cess algebras) supports and facilitates the hierarchical development of (potentially

in�nite state) transition systems: Actions � that occur in process expressions P are

re�ned by more complex expressions Q thereby yielding more detailed process de-

scriptions P [� ; Q]. Considering a veri�cation setting based on process algebras

and logics (like, for example, the model checking approach), the following problems

arise: Knowing that the system induced by a process term P satis�es a particular

formula does neither tell us which formulas are satis�ed by the system induced by

the re�ned term P [�; Q], nor which system satis�es a re�ned speci�cation.

In Section 4.1, we de�ne syntactic action re�nement for Modal Mu-Calculus for-

mulas (denoted by '[�; Q]). In Section 4.2 we show that the assertion

P j= ', P [�; Q] j= '[�; Q] (�)

holds under certain conditions (see Section 4.2, Theorem 4.42). In the above as-

sertion, P and Q are R�- and R�-process terms respectively, and ' is a Modal

Mu-Calculus formula which in addition might contain re�nement operators. Intu-

itively, assertion (�) says, that the transition system induced by a term P satis�es a

speci�cation ' (denoted by P j= ') if and only if the transition system induced by

the re�ned term P [� ; Q] satis�es the re�ned speci�cation '[� ; Q]. Assertion

(�) embodies what we understand by simultaneous syntactic action re�nement: The

satisfaction relation \j=" is preserved ()-direction) and reected ((-direction) un-

der the simultaneous application of re�nement operators to process expressions and

formulas.

To motivate the investigations carried out in Section 4.2 we consider the following

example. Assume, that a given process term P induces the system shown in Figure 5

(a) and that the terms Q�; : : : ; Q� (which induce the subsystems in the according

rectangles) are subexpressions of the term P . Let us only consider the actions occur-

ring in the term Q�. We observe, that the system in Figure 5 (a) has the temporal

property \eventually, the action �1 or the action �2 is executed". This property can

be denoted by a formula ' of the Modal Mu-Calculus. Further assume, that the
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1δ δ 2 Q δ

Q

Q

Q α

β α β

δ

(a) (b)

γ
γ

Figure 5: System Changes Induced by Syntactic Action Re�nement

process term Ps induces the system shown in Figure 5 (b). This system has the

property \eventually, the action � is executed" which can be expressed by a Modal

Mu-Calculus formula 's.

The process term P arises from the term Ps by four syntactic action re�nements,

namely

P = Ps[�; Q�][� ; Q�][ ; Q ][� ; Q�]:

The de�nition of SAR for the Modal Mu-Calculus proposed in this paper will be such

that

' = 's[�; Q�][� ; Q�][ ; Q][� ; Q�]:

By assertion (�) we thus immediately know that

Ps j= 's if and only if P j= ':

As the above example indicates (and as has already been discussed in Section 1.3),

assertion (�) can be used for the following:

� It o�ers the possibility of simplifying the veri�cation task by repeatedly apply-

ing (�) as was shown in the example. Instead of checking that

P = Ps[�; Q�] : : : [� ; Q�] j= 's[�; Q�] : : : [� ; Q�] = '

we only have to check Ps j= 's. We will see, how this application of assertion

(�) can enhance model checking techniques.

� Let us assume that the speci�cation of a system is developed incrementally

and that the initial speci�cation 's is now given more details by re�ning it

Veri�cation in the Hierarchical Development of Reactive Systems.



77

to ' = 's[� ; Q�] : : : [� ; Q�]. When we look for an implementation of

', we only have to supply an implementation Ps for 's thereby automatically

obtaining a process P = Ps[� ; Q�] : : : [� ; Q�] such that P j= '. We will

see, that this application of assertion (�) can be used as a method of a priori

veri�cation, that is, assertion (�) allows to incorporate veri�cation into the

procedure of hierarchical system development.

Existing veri�cation methods can be used to verify P j= '. Subsequently, as-

sertion (�) can be used in the procedure of (a priori correct) hierarchical system

engineering: Via assertion (�), the re�nement of the original property ' into the

new property '[a ; Q] automatically supplies the system P [a ; Q] such that

P [a; Q] j= '[a; Q].

Section 4.3 is devoted to investigations of how the conditions under which asser-

tion (�) holds can be alleviated. In Section 4.4 we are concerned with complexity

issues of the method of simultaneous syntactic action re�nement. An extension of

the Modal Mu-Calculus (called the generalized Modal Mu-Calculus, �Lg) is intro-

duced and syntactic action re�nement is de�ned for it. Finally, we show that an

assertion as assertion (�) can be proved for �Lg. We will demonstrate, that employ-

ing �Lg instead of the standard Modal Mu-Calculus makes simultaneous syntactic

action re�nement much more e�cient.

4.1 Specifying Reactive Systems: The Modal Mu-Calculus

and Syntactic Action Re�nement for the Modal Mu-

Calculus

TheModal Mu-Calculus, �L as developed by [119] is a particularly expressive branch-

ing time temporal logic as most of the logics commonly used to reason about reac-

tive systems can be translated into it [72, 58]. In fact, every logic over transition

systems which does not distinguish bisimular systems and is translatable into the

monadic second order logicMSOL can be translated into �L [107]. The Modal Mu-

Calculus �L is thus often considered as a generic \assembly" logic [28, 20, 53, 59, 34].

In [160, 161, 70] it was shown, that when interpreted on in�nite trees �L is equally

expressive as nondeterministic !-automata on in�nite trees and hence as powerful

as MSOL on those structures. With regard to model checking, �L is one of the
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primarily considered logics (extensive literature on �L-model checking can be found

in [1]. See also [194, 28, 44, 106, 191, 18, 59, 45, 217]).

From a practical point of view we note that many model checking tools like the

NCSU Concurrency Workbench [52], the (Edinburgh) Concurrency Workbench [51]

or the Concurrency Factory [50] are based on �L. Complete axiomatizations of �L
have been given in [208, 209] opening this logic to the �eld of theorem proving. Proof

systems based on �L have been developed, for example, with respect to transition

systems [9] and state-chart processes [132]. PVS (Prototype Veri�cation System) is

an interactive theorem prover based on higher order logic which in addition uses a �L-
decision procedure for a well de�ned fragment of PSV. The DFA&OPT-MetaFrame

tool kit can be used to synthesize e�cient data ow analysis algorithms from spec-

i�cations given in �L with additional backward modalities [118, 188]. In addition,

�L was applied in the �eld of automated program synthesis: �L is used in [116, 123]

to synthesize reactive systems. Further, �L has found application in the �eld of

arti�cial intelligence [85].

De�nition 4.1 (Modal Mu-Calculi)

The (negation free form of the) Modal Mu-Calculus �L (see [119]) is generated by

the grammar

' ::= > j ? j Z j ('1 _ '2) j ('1 ^ '2) j [�]' j h�i' j �Z:' j �Z:'

where � ranges over the set A and Z ranges over a �xed set V ar of variables.

Let On be the class of ordinals ranged over by �; �; �; I. The approximative Modal

Mu-Calculus App (see [119]) is the language generated by the grammar

' ::= > j ? j Z j _
�2I

'� j
^
�2I

'� j [�]' j h�i' j ��Z:' j ��Z:'

where �; �; I 2 On. For I = f1; 2g we let
W
�2I '� := ('1 _ '2) and

V
�2I '� :=

('1 ^ '2). Let �LApp be the language generated by the grammar which consists of all

clauses that are used in the grammars of the languages �L and App. 2

As an aside, please note that for �; I 2 On we have that � 2 I , � < I.

The modal operators of �LApp can be conceived as follows: A �LApp-formula of

the form [�]' is satis�ed by a process P which, by committing any �-transition, must

evolve to a process P 0 which satis�es '. Dually, A �LApp-formula of the form h�i'
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is satis�ed by a process P that is able to commit an �-transition thereby evolving to

a process P 0 which satis�es '. The (very rough) intuition behind a maximum �xed

point operator formula ' = �Z:'0 is, that a process satis�es ' if it always satis�es

'0, regardless of the transitions P might execute. Dually, a process P satis�es a

minimum �xed point operator formula �Z:'0 if P eventually reaches a state where

'0 holds. The properties denoted by formulas of the form ��Z:'0 (dually ��Z:'0)

can be thougth of as \approximations" of the property denoted by the formula �Z:'0

(�Z:'0 respectively).

We now introduce an operator for syntactic action re�nement to the logic �LApp.

De�nition 4.2 (Action re�nement for Modal Mu-Calculi)

Let R�L (R�LApp) be the language generated by the grammar for �L (�LApp) aug-

mented with the rule ' ::= '[�; Q] where Q 2 R�. 2

We let � range over the set f�; �g. A (approximation) �xed point formula has the

form �Z:' (��Z:' respectively.) in which �Z binds free occurrences of Z in '. A

variable Z is called free i� it is not bound. A R�LApp-formula ' is called closed i�

every variable Z which occurs in ' is bound. A R�LApp-formula ' is called guarded

i� every occurrence of a variable Z in ' lies in the scope of a modality [�] or h�i. For
L � �LApp, we let CGL := f' 2 �LApp j ' is closed and guardedg. Below, we de�ne
a function which yields the set of performances that occur in a R�LApp-formula.

De�nition 4.3 (Performance-sets of formulas)

The function � : R�LApp ! 2A is de�ned as follows:

�(�) := ; if � 2 f>;?g [ V ar ; �(
N
'�) :=

S
�2I �('�) if

N
2 f
W
�2I ;

V
�2Ig ,

�([�]') := f�g [ �(') �(h�i') := f�g [ �(') ,

�(�Z:') := �(') �(��Z:') := �(') ,

�('[�; Q]) :=

8<
:
�(') n f�g [ �(Q) if � 2 �(')

�(') else

2
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De�nition 4.4 (alphabet-disjointness of formulas from process terms)

A formula ' 2 R�LApp is called alphabet-disjoint from a process expression P 2 R�
i� �(') \ alph(P ) = ;. 2

We can now introduce the concept of logical substitution on which the reduction

function for R�LApp-formulas (De�nition 4.13) will be based.

De�nition 4.5 (Logical substitution for �LApp)

Let Q;Q1; Q2 2 � and �; '; '� 2 �LApp (� 2 On). The operation of logical substi-

tution, (�)f�; Qg is de�ned as follows:

(�)f�; Qg := � if � 2 f>;?g [ V ar

(
N
'�)f�; Qg :=

N
('�)f�; Qg if

N
2 f
V
�2I ;

W
�2Ig

(4�')f�; Qg := 4�(')f�; Qg if � 6= �

(4�')f�; Qg :=

8>>>>>>>><
>>>>>>>>:

4�(')f�; Qg if Q = �

((4(')f�; Qg)f ; Q1g ^ (4�(')f�; Qg)f� ; Q2g) if Q = (Q1 +Q2)

(4(4�(')f�; Qg)f� ; Q2g)f ; Q1g if Q = (Q1;Q2)

(��Z:')f�; Qg := ��Z:(')f� ; Qg

(�Z:')f� ; Qg := �Z:(')f� ; Qg

where in each clause 4� means throughout either h�i or [�] for all � 2 A. We require

that ; � 2 V arAct are fresh action variables, that is,  6= � and ; � 62 �((')f�; Qg)
and  62 �((4�(')f�; Qg)f� ; Q2g). 2

When applied to a formula ', the operation of logical substitution �f� ; Qg
replaces each occurrence of the action � in ' by the logical structure exhibited by the
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term Q: As a term Q = (Q1+Q2) can execute actions from both components Q1 and

Q2, the binary choice operator + is modelled by conjunction. A term Q = (Q1;Q2)

is logically modelled by appropriate nested sequences of modalities that also reect

the branching information contained in the term Q.

Example 4.6

Let Q1 = (�; ( + �)) and Q2 = ((�; ) + (�; �)) be process terms and � = h�i>
be a formula. Then (�)f� ; Q1g = h�i(hi> ^ h�i>) whereas (�)f� ; Q2g =

(h�ihi> ^ h�ih�i>) 2

Example 4.7

Let ' = �Z:[�](h�iZ _ [�]?) and Q = (� + �). Then

(')f�; Qg = �Z:([�](h�iZ _ ([�]? ^ [�]?)) ^ [�](h�iZ _ ([�]? ^ [�]?))): 2

Remark 4.8

To avoid excessive use of brackets we sometimes use the notation 'f�; Qg instead

of (')f�; Qg if the context avoids ambiguity. 2

In the case of ([�]')f� ; Qg and (h�i')f� ; Qg the right-hand side of Def-

inition 4.5 involves f� ; Qg as well as terms of the type [�]' respectively. h�i'.
Hence we must prove that the operation of logical substitution is always de�ned. For

this purpose we introduce the following notation. The length j � j : �LApp ! On of

formulas is given by j � j := 1 where � 2 f?;>g [ V ar, jN'�j := sup�2I(j'�j) + 1

where
N 2 fW�2I ;

V
�2Ig, j4�'j := j'j + 1 where 4� 2 f[�]; h�ig, j�Z:'j := j'j+ 1

and j��Z:'j := j'j+ 1.

Example 4.9

Let ' = ��Z:[�]Z. Then j'j = 3 for all � 2 On. 2

The length j�j : �! IN of process expressions is given by j�j := 1 and j(Q1 op Q2)j :=
1 + jQ1j + jQ2j where op 2 f; ;+g. The relation �� (� � �LApp)2 is de�ned by

(Q1;  ) � (Q2; ') i� jQ1j < jQ2j or (jQ1j = jQ2j and j j < j'j). By using the relation
� on the set (� � �LApp)2 the e�ect of decreasing the complexity (length) of Q by

the application of the substitution operator (')f� ; Qg is stronger than the e�ect

of reducing the complexity of '. The following result shows that the operation of

logical substitution is always de�ned.
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Lemma 4.10

Let ' 2 �LApp be a formula and Q 2 � be a process expression. Then we have that

(')f�; Qg 2 �LApp for any � 2 A.

Proof: By well-founded induction on the relation �. We only show the case where

' = [�]'0 and Q = (Q1 +Q2). Let ; � 2 V arAct be as required in De�nition 4.5.

By De�nition 4.5 we have (')f�; Qg =
�
([]('0)f�; Qg)f ; Q1g ^ ([�]('0)f�; Qg)f� ; Q2g

�
(1)

Clearly j'0j < j[�]'0j whence (Q;'0) � (Q; [�]'0), hence ('0)f� ; Qg) = '̂ 2
�LApp. Hence []'̂ 2 �LApp. As (Q1; []'̂) � (Q; [�]'0) since jQ1j < jQj we obtain
([]'̂)f ; Q1g = '̂1 2 �LApp. A similar argument provides ([�]'̂)f� ; Q2g = '̂2 2
�LApp for the second conjunct of (1). Hence ('̂1 ^ '̂2) 2 �LApp.

Lemma 4.11

Let ' 2 �LApp, Q 2 � and � 2 A. Then we have

�((')f�; Qg) :=
8<
:
�(') n f�g [ �(Q) if � 2 �(')
�(') else

Proof: By well-founded induction on the relation �.
The following lemma can be seen as the counterpart of Remark 2.13 for the logical

framework.

Lemma 4.12

Let Q1; Q2 2 � be process expressions and ' 2 �LApp be a formula. Let 1; 2 2 A
such that 1 6= 2 and � 2 f+; ; g. If 1; 2 62 �((Q1 �Q2)) [ �(') then we have that

((')f�; (1 � 2)g)f2 ; Q2g)f1 ; Q1g = (')f�; (Q1 �Q2)g:

Proof: By induction on the structure of ' 2 �LApp.

We now come to the de�nition of the logical reduction function.

De�nition 4.13 (Logical reduction function for R�LApp)

Let Q 2 R� be a process expression and ' 2 R�LApp be a formula. We de�ne the

logical reduction function Red : R�LApp ! �LApp as follows:

Red(�) := � if � 2 f>;?g [ V ar Red('[�; Q]) := (Red('))f� ; red(Q)g

Veri�cation in the Hierarchical Development of Reactive Systems.



83

Red(
N
'�) :=

N
Red('�) if

N
2 f
V
�2I ;

W
�2Ig

Red([�]') := [�]Red(') ; Red(h�i') := h�iRed(')

Red(��Z:') := ��Z:Red(') Red(�Z:') := �Z:Red(') 2

Some elementary properties of the logical reduction functionRed are given below.
Remark 4.14 states that one application of the reduction function is enough to remove

all re�nement operators occurring in a formula. It can be conceived as the counterpart

of Remark 2.17 for the logical framework.

Remark 4.14

Let Q 2 R� be a process expression and ' 2 R�LApp be a formula. Then we have

that Red('[�; Q]) = Red(Red(')[�; Q]).

The proof follows immediately from De�nition 4.5 and De�nition 4.13.

Lemma 4.15 states that the result of the reduction of formulas with nested re-

�nements is equal to the result of the re�nement on certain formulas without nested

re�nements. It is the counterpart of Lemma 2.19.

Lemma 4.15

Let Q1; Q2 2 R� be process expressions, ' 2 R�LApp be a formula and � 2 f; ;+g.
If 1; 2 2 A such that 1 6= 2 and 1; 2 62 �(')[ �(red(Q1 �Q2)) then we have that

Red((('[�; (1 � 2)])[2 ; Q2])[1 ; Q1]) = Red('[�; (Q1 �Q2)]).

Proof: Follows by Lemma 4.12 and Remark 4.14.

The following lemma states that the logical reduction function Red is always

de�ned.

Lemma 4.16

Let ' 2 R�LApp be a formula. Then Red(') 2 �LApp.

Proof: The proof is by induction on the structure of ' using Lemma 4.10.

The next lemma shows that the set of performances of a formula ' 2 R�LApp

remains unchanged under the application of the reduction function.
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Lemma 4.17

Let ' 2 R�LApp be a formula. Then we have �(') = �(Red(')).

Proof: The proof is by induction on the structure of ' 2 R�LApp using Lemma 2.18

and Lemma 4.11.

De�nition 4.18

Let ';  1; : : : ;  n 2 �LApp and Z1; : : : ; Zn 2 V ar be pairwise distinct variables. The

�LApp-formula '[ 1=Z1] : : : [ n=Zn] arises from ' by substituting each free occurrence

of the variables Z1; : : : ; Zn in ' simultaneously by the formulas  1; : : : ;  n. 2

The next lemma shows that the application of substitution and reduction can be

permuted in an appropriate way.

Lemma 4.19

Let ';  2 �LApp, Q 2 R� and Z 2 V ar. Then

Red('[�; Q])[Red( [�; Q])=Z] = Red(('[ =Z])[�; Q]):

Proof: Immediate.

We now de�ne an \interpretation function" which maps �L-formulas to App-

formulas. This function will later be use to \transfer" results concerned with the

logic App to the logic �L.
De�nition 4.20

Let !1 2 On be the �rst uncountable ordinal (that is, the least ordinal with cardinality

@1). The interpretation function I : �L ! App is de�ned by

I(�) := � for � 2 f?;>g [ V ar,

I(('1 � '2)) := (I('1)� I('2)) for � 2 f^;_g,

I([�]') := [�]I(') ; I(h�i') := h�iI(') ; I(�Z:') := �!1Z:I(') 2

According to the last rule of the de�nition of I, a �xed point formula ' =

�Z:'0 is interpreted in App by its !1-fold approximation. As we will see later, this

approximation constitutes a formula that is equivalent to '.

The lemma below shows that the interpretation and the reduction of a �L-formula
can be permuted.
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Lemma 4.21

Let ' 2 �L be a formula and Q 2 � be a process expression. Then we have that

Red(I(')[�; Q]) = I(Red('[�; Q])).

Proof: First note that I(Red('[� ; Q])) = I((')f� ; Qg) since ' 2 �L and

Q 2 �. Similarly, Red(I(')[� ; Q]) = (I('))f� ; Qg since I(') 2 App and

Q 2 �. It thus su�ces to show (I('))f� ; Qg = I((')f� ; Qg). This is done

by well-founded induction on the relation � involving a case discrimination on the

structure of ' 2 �L and a subsidiary case discrimination on the structure of Q 2 �.

We only show the case where ' = [�]'0 and Q = (Q1;Q2): We have

(I([�]'0))f�; Qg

= ([�]I('0))f�; Qg

=

�
[]
�
[�](I('0))f�; Qg

�
f� ; Q2g

�
f ; Q1g (By De�nition 4.5)

=

�
[]
�
[�]I(('0)f�; Qg)

�
f� ; Q2g

�
f ; Q1g (Induction, j'0j < j'j)

=

�
[]
�
I([�]('0)f�; Qg)

�
f� ; Q2g

�
f ; Q1g (By De�nition 4.20)

=

�
[]I

�
([�]('0)f�; Qg)f� ; Q2g

��
f ; Q1g (Induction, jQ2j < jQj)

=

�
I
�
[]([�]('0)f�; Qg)f� ; Q2g

��
f ; Q1g (By De�nition 4.20)

= I

��
[]([�]('0)f�; Qg)f� ; Q2g

�
f ; Q1g

�
(Induction, jQ1j < jQj)

= I((')f�; Qg) (By De�nition 4.5)

We now extend the satisfaction relation of the Modal Mu-Calculus (see, for ex-

ample, [119, 192]) in order to handle (logical) action re�nement operators.

De�nition 4.22 (Satisfaction of R�LApp-formulas)

Let P 2 R�, Q 2 R�, ';  2 R�LApp and Z 2 V ar. Let # : V ar ! 2R� be a

valuation function18.

18The customary updating notation is used: #[E=Z] is the valuation #0 which agrees with # on

all variables Z 2 V ar except Z, and #0(Z) = E .
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P j=# > , P 6j=# ? ; P j=# Z i� P 2 #(Z)

P j=#
V
�2I '� i� P j=# '� for all � 2 I

P j=#
W
�2I '� i� P j=# '� for some � 2 I

P j=# [�]' i� P 2 fE 2 R�j8E 0 2 R�(E �! E 0 ) E 0 j=# ')g

P j=# h�i' i� P 2 fE 2 R�j9E 0 2 R�(E �! E 0 and E 0 j=# ')g

P j=# �Z:' i� P 2 TnE � R�jfE 2 R�jE j=#[E=Z] 'g � E
o

P j=# �Z:' i� P 2 SnE � R�jE � fE 2 R�jE j=#[E=Z] 'g
o

P j=# '[�; Q] i� P j=# Red('[�; Q])

The semantics of approximation �xed point formulas is given by \syntactic unrolling"

according to Figure 6 (see, for example, [119, 192]). 2

P j=# �
0Z:' i� P j=# ?

P j=# �
�+1Z:' i� P j=# '[�

�Z:'=Z]

P j=# �
�Z:' i� P j=#

W
�2� �

�Z:' for any limit ordinal �.

P j=# �
0Z:' i� P j=# >

P j=# �
�+1Z:' i� P j=# '[�

�Z:'=Z]

P j=# �
�Z:' i� P j=#

V
�2� �

�Z:' for any limit ordinal �.

Figure 6: Semantics of Approximation Fixed Point Formulas

It is now possible to capture satisfaction of a �xed point formula by means of

approximation �xed point formulas.

Remark 4.23 (See, for example, [119, 192])
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1) P j=# �Z:' i� P j=# �
�Z:' for some � 2 On

2) P j=# �Z:' i� P j=# �
�Z:' for all � 2 On 2

We say P satis�es ' (with respect to #) i� P j=# '. For a closed R�LApp-formula '

we simply write P j= '. Minimum- and maximum �xed points always exist by the

results of [197].

Example 4.24

Let � = �Z:([a]? ^ [b]Z) and  = �Z:(hai> _ hbiZ). Then � intuitively expresses

the safety property `there is no a-action executable on any b-path' and  expresses

the liveness property `there exists a b-path after which the action a can eventually be

executed'. (see also [192]). 2

Example 4.25

Let P1 = fix(x = ((�k;�); x)), P2 = fix(y = (((�; �)+(�;�)); y)), ' = �Z:(h�ih�iZ^
h�ih�iZ), Q := [ ; (�1;�2)]. Pi j= ' and Pi[� ; Q] j= '[� ; Q] for

i = 1; 2 (to see this note that '[� ; Q] is logically equivalent to the formula

�Z:(h�1ih�2ih�iZ ^ h�ih�1ih�2iZ)). In addition P1[� ; Q] satis�es h�1ih�ih�1i>
which is not satis�ed by P2[�; Q]. 2

4.1.1 Discussion

We decided to use the Modal Mu-Calculus as our logical framework for the following

reasons. The modalities of �L intuitively capture the idea of \computation steps".

Furthermore, the two di�erent modalities allow a clean distinction between existential

and universal properties [21, 16].

We have seen that the two basic temporal attributes of reactive systems, referred

to as safety- and liveness properties [125, 6] are captured by maximum- and minimum

�xed point operators respectively [59]. Nested �xed point operators can complicate an

intuitive understanding of formulas. Generally, formulas with a �xed number n 2 IN

of �xed point operators cannot capture particular properties that can be captured

by formulas with n+ 1 �xed point operators [27]. It has been argued however, that

most of the properties interesting for practical purposes can be expressed by formulas

with two �xed point operators [72]. The ability to formalize important attributes
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of reactive systems like, for example, safety-, liveness-, fairness- or cyclic properties

in all combinations [192, 26] reinforces the pertinence of �L to reason about RCSs-

designs. Further, LTSs are generic structures for the interpretation of the logic �L as

they are closely related to \Kripke structures" (see, for example, [121]), the original

mathematical structure over which modal logics have been interpreted. Moreover,

�L logically characterizes strong bisimulation equivalence (see, for example, [192]),

the most thoroughly investigated equivalence relation for LTSs. Hence, LTSs and

�L �t together also from the theoretical point of view.

4.2 Simultaneous Syntactic Action Re�nement (SSAR) for

the Process Algebra R� and the Modal Mu-Calculus

In this section we provide the link between SAR in the process algebra R� and SAR

in the logic R�L.
De�nition 4.26

For a �xed point formula ' = �Z:'0 2 �LApp, the closure ordinal of ' (relative to a

valuation function #) is the least ordinal � 2 On such that

fP 2 R� j P j=# �
�Z:'0g = fP 2 R� j P j=# �

�+1Z:'0g:

Let cl#(') denote the closure ordinal of ' (relative to #). If ' is closed we simply

write cl('). 2

For ' 2 �LApp, let k'k# denote the set fP 2 R� j P j=# 'g.
Lemma 4.27

Let # be a valuation function and let ' = �Z:'0 2 �LApp. Then

� k'k# = k�cl#(')Z:'0k#,

� k�cl#(')Z:'0k# = k��Z:'0k# for each � � cl#('),

� cl#(') � !1. 2

Proof: The second assertion follows directly from De�nition 4.26. The third asser-

tion is a consequence of the facts that cl#(') � jR�j for any valuation function #

(see, e.g., [26, p.20] or [190, p. 530]) and that R� is a countable set of processes. The
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�rst assertion is a consequence of the fact that any formula ' 2 �LApp determines a

monotonic function E 7! k'k#[E=Z], E � R�.

The lemma above can be used in order construct for each Modal Mu-Calculus

formula ' 2 �L an approximative Modal Mu-Calculus formula  2 App such that

k'k# = k k#. These constructions can be achieved via the interpretation function

of De�nition 4.20.

Lemma 4.28

Let ' 2 �L. Then k'k# = kI(')k#.

Proof: The proof is by induction on the structure of ' 2 �L. The interesting cases
are where ' is a �xed point formula. We only show the case ' = �Z:'0: We have

P j=# �Z:'
0

i� P 2 \n
E � R�jfE 2 R�jE j=#[E=Z] '

0g � E
o

i� P 2 \n
E � R�jfE 2 R�jE j=#[E=Z] I('0)g � E

o
(By induction)

i� P j=# �Z:I('0)
i� P j=# �

!1Z:I('0) (By Lemma 4.27)

i� P j=# I(�Z:'0):

Remark 4.29

Consider De�nition 4.20: We used the �rst uncountable ordinal !1 to fomulate the

transformation I. If we considered only �nite state transition systems, we could

replace !1 with the �rst trans�nite ordinal !0. For �nite state systems, Lemma 4.28

would then still be valid. 2

De�nition 4.30

The depth of a formula ' 2 �LApp (relative to a valuation function #) is given by

the function d# : �LApp ! On de�ned as follows:

d#(�) := 0 where � 2 f>;?g [ V ar

d#(
N
'�) := sup�2I(d#('�)) + 1 where

N 2 fW�2I ;
V
�2Ig
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d#(4�') := d#(') + 1 where 4� 2 fh�i; [�]g

d#(�
0Z:') := 0

d#(�
�+1Z:') := d#('[�

�Z:'=Z])

d#(�
�Z:') := sup�2�(d#(�

�Z:')) + 1 where � is a limit ordinal.

d#(�Z:') := d#(�
�Z:') + 1 where � = cl#(�Z:').

For closed formulas ' we simply write d('). 2

Example 4.31

Let ' = �2Z:([�]? ^ h�iZ). Then

d(') = d
�
([�]? ^ h�i([�]? ^ h�i(�0Z:([�]? ^ h�iZ))))

�
= 4:

2

The transitive and non-reexive relation�d#� (���LApp)2 is de�ned by (Q1;  ) �d#

(Q2; ') i� jQ1j < jQ2j or (jQ1j = jQ2j and d#( ) < d#(')).

Lemma 4.32

Let ' = ��1+1Z1:�
�2+1Z2: : : : �

�n+1Zn: (n � 1) be a CG�LApp-formula. Consider

the formula � =  [�1=Z1] : : : [�n=Zn] where, for 1 � i < n, the formulas �i are de�ned

by

�1 := ��1Z1:�
�2+1Z2: : : : �

�n+1Zn: ;

�i+1 := ��i+1Zi+1:�
�i+2+1: : : : ��n+1Zn: [�1=Z1] : : : [�i=Zi]:

Then for all P 2 R� we have that

1) P j= ' i� P j= �,

2) For any Q 2 � we have that P j= Red('[�; Q]) i� P j= Red(�[�; Q]),

3) d(') = d(�).
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Proof: 1) Immediate, since P j= ��+1Z:'0 i� P j= '0[��Z:'0=Z].

2) We can derive that Red(( [�1=Z1] : : : [�n=Zn])[�; Q]) equals

Red( [�; Q])[Red(�1[�; Q])=Z1] : : : [Red(�n[�; Q])=Zn]

by n successive applications of Lemma 4.19. In a similar way, we infer that the

formula Red(�1[�; Q]) equals

��1Z1:�
�2+1Z2: : : : �

�n+1Zn:Red( [�; Q]):

For 1 � m � n, let [Red(�[� ; Q])=Z]�m abbreviate the sequence of substitu-

tions [Red(�1[� ; Q])=Z1] : : : [Red(�m[� ; Q])=Zm]. For 1 � i < n, the formula

Red(�i+1[�; Q]) equals

��i+1Zi:�
�i+2+1Zi+2: : : : �

�n+1Zn:Red(( [�1=Z1] : : : [�i=Zi])[�; Q])

= ��i+1Zi:�
�i+2+1Zi+2: : : : �

�n+1Zn:Red( [�; Q])[Red(�[�; Q])=Z]�i

which follows by i successive applications of Lemma 4.19. Since P j= ��+1Z:'0 i�

P j= '0[��Z:'0=Z] we obtain the following sequence of equivalence assertions:

P j= Red( [�; Q])[Red(�[�; Q])=Z]�n

, P j= ��n+1Zn:Red( [�; Q])[Red(�[�; Q])=Z]�n�1

: : :

: : :

: : :

, P j= ��2+1Z2:�
�3+1Z3: : : : �

�n+1Zn:Red( [�; Q])[Red(�[�; Q])=Z]�1

, P j= ��1+1Z1:�
�2+1Z2:�

�3+1Z3: : : : �
�n+1Zn:Red( [�; Q])

, P j= Red('[�; Q])

3) By de�nition we have d(��+1Z:'0) = d('0[��Z:'0=Z]).

The following two \expansion lemmata" formalize the possibility to re�ne perfor-

mances of process expressions and formulas by simple process expressions, composed
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of two performances, without a�ecting the satisfaction relation. In the proofs of the

following two lemmata and Theorem 4.38, the guardedness and closedness conditions

will allow to reduce the induction steps for (approximation) �xed point formulas to

previous induction steps.

Lemma 4.33 (Expansion lemma for `;')

Let P 2 G� and let ' 2 CGApp be a formula and 1; 2 2 A such that 1 6= 2 and

1; 2 62 alph(P ) [ �('). Then
P j= ', red(P [�; (1; 2)]) j= Red('[�; (1; 2)]):

Proof: The proof is by trans�nite induction on the depth d(') of ' 2 CGApp. Only
the cases where ' is of the form h�i' or [�]'0 di�er conceptually from the proof of

Theorem 4.36. We here only show the case where ' = [�]'0.

' = [�]'0 where � 6= �:

Both directions are proved by an indirect argument.

`)':

Assume P j= [�]'0 and red(P [�; (1; 2)]) 6j= Red(([�]'0)[�; (1; 2)])

From

red(P [�; (1; 2)]) 6j= Red(([�]'0)[�; (1; 2)])

we obtain

red(P [�; (1; 2)]) 6j= [�]Red('0[�; (1; 2)])

by De�nition 4.5 and De�nition 4.13.

Hence we get

9E 0 2 R�
�
red(P [�; (1; 2)])

�! E 0 and

E 0 6j= Red('0[�; (1; 2)])
�

(1)

by De�nition 4.22. Now � 6= �, � 62 �((1; 2)) due to the condition 1; 2 62 �(')

and since � 2 �('). We obtain

9P 00(P
�! P 00 and red(P 00[�; (1; 2)]) = E 0) (2)
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by application of assertion 2) from Lemma 2.28. Now (1) and (2) give

red(P 00[�; (1; 2)]) 6j= Red('0[�; (1; 2)])

whence we get

9P 00(P
�! P 00 and P 00 6j= '0)

by the induction hypothesis (note that d('0) < d(')), yielding the contradiction

P 6j= [�]'0:

`(':

Assume red(P [� ; (1; 2)]) j= Red(([�]'0)[� ; (1; 2)]) and P 6j= [�]'0, that

is,

9E 0 2 R�(P �! E 0 and E 0 6j= '0)

Since � 6= � we obtain

9E 0 2 R�(red(P [�; (1; 2)])
�! red(E 0[�; (1; 2)]) and E

0 6j= '0)

by application of assertion 1) from Lemma 2.28. But this implies

9E 0 2 R�
�
red(P [�; (1; 2)])

�! red(E 0[�; (1; 2)]) and

red(E 0[�; (1; 2)]) 6j= Red('0[�; (1; 2)])
�

by the induction hypothesis (again we have d('0) < d(')). Hence we get

red(P [�; (1; 2)]) 6j= [�]Red('0[�; (1; 2)])

whence the desired contradiction follows.

' = [�]'0:

First, we observe that

Red(([�]'0)[�; (1; 2)]) = [1][2]Red('0[�; (1; 2)])

follows by De�nition 4.5 and De�nition 4.13.
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We proceed as follows.

`)':

Assume P j= [�]'0 and red(P [�; (1; 2)]) 6j= Red(([�]'0)[�; (1; 2)])

We have:

red(P [�; (1; 2)]) 6j= Red(([�]'0)[�; (1; 2)])

, red(P [�; (1; 2)]) 6j= [1][2]Red('0[�; (1; 2)])

(By the claim)

, 9P 0; P 00 2 R�
�
red(P [�; (1; 2)])

1! P 0 and P 0 2! P 00 and

P 00 6j= Red('0[� ; (1; 2)])
�

(1) Since 1; 2 62 �(P ) we can apply assertion 2) of

Lemma 2.31 and obtain

9 ~P (P �! ~P and red( ~P [�; (1; 2)]) = P 00) (2)

Taking (1) and (2) together we have red( ~P [� ; (1; 2)]) 6j= Red('0[� ; (1; 2)]).

By the induction hypothesis we obtain

~P 6j= '0 (3)

But (2) and (3) imply

P 6j= [�]'0:

`(':

Assume red(P [� ; (1; 2)]) j= Red(([�]'0)[� ; (1; 2)]) and P 6j= [�]'0. From

the latter we obtain

9P 0 2 R�(P �! P 0 and P 0 6j= '0):

By assertion 1) of Lemma 2.31 we get

9P 00(red(P [�; (1; 2)])
1! P 00 2! red(P 0[�; (1; 2)])) (1)
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Further P 0 6j= '0 implies

red(P 0[�; (1; 2)]) 6j= Red('0[�; (1; 2)]) (2)

by the induction hypothesis. By (1) and (2)

9E 0; E 00 2 R�
�
red(P [�; (1; 2)])

1! E 0 2! E 00 and

E 00 6j= Red('0[�; (1; 2)])
�

and therefore

red(P [�; (1; 2)]) 6j= Red(([�]'0)[�; (1; 2)]):

Lemma 4.34 (Expansion lemma for `+')

Let P 2 G�. Let ' 2 CGApp be a formula and 1; 2 2 A be such that 1 6= 2 and

1; 2 62 alph(P ) [ �('). Then

P j= ', red(P [�; (1 + 2)]) j= Red('[�; (1 + 2)]):

Proof: In analogy to the proof of the proceeding lemma using Lemma 2.32.

In Theorem 4.36 we can meet the conditions that Q is distinct, P is alphabet-

disjoint to Q and that ' is �-disjoint to Q by renaming the performances of Q in

the obvious way. This renaming is consistent with the usual approach to action

re�nement since a performance � which is to be re�ned in the term P [� ; Q]

is the abstraction of the term Q whence it should not be considered equal to any

performance which occurs in Q itself thereby supporting the separation of di�erent

levels of abstraction [88]. Disjoint sets of performances are necessary as can be seen

in the following.

Example 4.35

Consider the process expression P := (akfbga) and the formula ' := haihai>. We

have P j= ' but red(P [a ; b]) 6j= Red('[a ; b]). Note that the process expression

P is not ��-disjoint from the process term Q, that is, we have �(P ) \ �(Q) 6= ;. 2

Veri�cation in the Hierarchical Development of Reactive Systems.



96 Chapter 4: Veri�cation in the Hierarchical Development of Reactive Systems

Theorem 4.36

Let P 2 G� be a process term and ' 2 CGApp be a formula. Further let Q 2 � be

a distinct process term, such that P is alphabet-disjoint from Q and ' is �-disjoint

from Q. Then P j= ', red(P [�; Q]) j= Red('[�; Q]).

Proof: Induction on the relation �d involving a case discrimination of the structure

of ' 2 CGApp and a subsidiary case discrimination of the structure of Q 2 �.

First note that the case ' = Z cannot occur since Z is neither a guarded nor a

closed formula.

Induction Base:

' = �, where � 2 f>;?g: Trivial.

Induction Hypothesis:

8� 2 A 8P 2 G� 8 ~' 2 CGApp 8 ~Q 2 R� such that ~Q is distinct, P and ~'

are alphabet-disjoint from ~Q and ( ~Q; ~') �d (Q;') we have

P j= ~', red(P [�; ~Q]) j= Red( ~'[�; ~Q])

Induction Step:

' =
W
�2I '�:

We have P j= ' i� P j= W
�2I '�

i� P j= '� for some � 2 I

(by De�nition 4.22)

i� red(P [�; Q]) j= Red('�[�; Q]) for some � 2 I

(By the induction hypothesis. Note that the induction hypothesis is applicable since

d('�) � sup�2I(d('�)) < sup�2I(d('�)) + 1 = d(').

i� red(P [�; Q]) j= _
�2I

Red('�[�; Q])
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(By De�nition 4.22)

i� red(P [�; Q]) j= _
�2I

�
Red('�)

�
f�; red(Q)g

(By De�nition 4.13)

i� red(P [�; Q]) j=
� _
�2I

Red('�)
�
f�; red(Q)g

(By De�nition 4.5)

i� red(P [�; Q]) j=
�
Red(_

�2I

'�)
�
f�; red(Q)g

(By De�nition 4.13)

i� red(P [�; Q]) j= Red(( _
�2I

'�))[�; Q])

(By De�nition 4.13)

i� red(P [�; Q]) j= Red('[�; Q])

' =
V
�2I '�: Similarly to the above case.

' = [�]'0 where � 6= �:

Both directions are proved by an indirect argument.

`)':

In this case we exploit the condition that the formula ' is �-disjoint from the process

term Q, that is, �(') \ �(Q) = ;.

Assume P j= [�]'0 and red(P [�; Q]) 6j= Red(([�]'0)[�; Q])

From

red(P [�; Q]) 6j= Red(([�]'0)[�; Q])

we obtain

red(P [�; Q]) 6j= [�]Red('0[�; Q]):
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Hence

9E 0 2 R�
�
red(P [�; Q])

�! E 0 and

E 0 6j= Red('0[�; Q])
�

(1)

by De�nition 4.22. Now � 62 �(Q) due to �-disjointness of ' form Q and since

� 2 �('). Hence

9P 00(P
�! P 00 and red(P 00[�; Q]) = E 0) (2)

by application of assertion 2) from Lemma 2.28. Now (1) and (2) give

red(P 00[�; Q]) 6j= Red('0[�; Q])

whence we obtain

9P 00(P
�! P 00 and P 00 6j= '0)

by the induction hypothesis: First note that P 00 and '0 are alphabet-disjoint from Q.

Further, we have that d('0) < d('). It follows

P 6j= [�]'0:

`(':

Assume red(P [�; Q]) j= Red(([�]'0)[�; Q]) and P 6j= [�]'0. From P 6j= [�]'0 we

obtain

9E 0 2 R�(P �! E 0 and E 0 6j= '0):

Since � 6= � by the current induction step and � 62 �(Q) by the condition of of

�-disjointness we obtain

9E 0 2 R�(red(P [�; Q])
�! red(E 0[�; Q]) and E 0 6j= '0)

by application of assertion 1) from Lemma 2.28. But this implies

9E 0 2 R�
�
red(P [�; Q])

�! red(E 0[�; Q]) and

red(E 0[�; Q]) 6j= Red('0[�; Q])
�
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by the induction hypothesis. Hence

red(P [�; Q]) 6j= [�]Red('0[�; Q])

that is,

red(P [�; Q]) 6j= Red(([�]'0)[�; Q]):

' = [�]'0: We do the proof by a case discrimination on the structure of Q 2 �.

a) Q = �:

Both directions are proved by means of an indirect argument.

`)':

The condition of alphabet-disjointness of P from Q implies the condition of �-

disjointness of P from Q, that is, �(P )\ �(Q) = ;. The latter condition is necessary

to carry out this induction step.

Assume P j= [�]'0 and red(P [�; �]) 6j= Red(([�]'0)[�; �])

From

red(P [�; �]) 6j= Red(([�]'0)[�; �])

we obtain

red(P [�; �]) 6j= [�]Red('0[�; �]):

Hence

9E 0 2 R�
�
red(P [�; �])

�! E 0 and

E 0 6j= Red('0[�; �])
�

(1)

Now � 2 �(Q) implies � 62 �(P ) whence

9P 00(P
�! P 00 and red(P 00[�; �]) = E 0) (2)

by application of assertion 2) from Lemma 2.30. Now (1) and (2) give

red(P 00[�; �]) 6j= Red('0[�; �])
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whence

9P 00(P
�! P 00 and P 00 6j= '0)

by the induction hypothesis, that is,

P 6j= [�]'0:

`(':

Assume red(P [�; �]) j= Red(([�]'0)[� ; Q]) and P 6j= [�]'0. From P 6j= [�]'0 we

obtain

9E 0 2 R�(P �! E 0 and E 0 6j= '0):

Hence

9E 0 2 R�(red(P [�; �])
�! red(E 0[�; �]) and E 0 6j= '0)

by application of assertion 1) from Lemma 2.30. But this implies

9E 0 2 R�
�
red(P [�; �])

�! red(E 0[�; �]) and

red(E 0[�; �]) 6j= Red('0[�; �])
�

by the induction hypothesis. Hence

red(P [�; �]) 6j= [�]Red('0[�; �])

that is,

red(P [�; �]) 6j= Red(([�]'0)[�; �])

Let ; � 2 V arAct be such that ; � 62 alph(P ) [ �(Q) [ �(') and  6= �.

b) Q = (Q1 +Q2):

Let P̂ := red(P [�; ( + �)] and '̂ := Red('[�; ( + �)]).

We have P j= '

, P̂ j= '̂

(By Lemma 4.34)
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, red((red(P̂ [� ; Q2]))[ ; Q1]) j=
Red((Red('̂[� ; Q2]))[ ; Q1])

(By two applications of the induction hypothesis. Note that

(Qi;  ) �d (Q; 
0), i 2 f1; 2g, for any  ;  0 2 CG�LApp.

Since Q is distinct, red(P̂ [� ; Q2]) is alphabet-disjoint from Q1

and Red('̂[� ; Q2]) is �-disjoint from Q1)

red(((P [�; ( + �])[� ; Q2])[ ; Q1]) j=
Red((('[�; ( + �)])[� ; Q2])[ ; Q1])

(By Remark 2.17 and Remark 4.14)

, red(P [�; (Q1 +Q2)]) j= Red(([�]'0)[�; (Q1 +Q2)])

(By Lemma 2.19 and Lemma 4.15)

c) Q = (Q1;Q2):

Let P̂ := red(P [�; (; �)] and '̂ := Red('[�; (; �)]).

We have P j= '

, P̂ j= '̂

(By Lemma 4.33)

, red(red(P̂ [� ; Q2])[ ; Q1]) j= Red(Red('̂[� ; Q2])[ ; Q1])

(By two applications of the induction hypothesis)

, red(((P [�; (; �)])[� ; Q2])[ ; Q1]) j=
Red((('[�; (; �)])[� ; Q2])[ ; Q1])

(By Remark 2.17 and Remark 4.14)

, red(P [�; (Q1;Q2)]) j= Red(([�]'0)[�; (Q1;Q2)])

(By Lemma 2.19 and Lemma 4.15)
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' = hi'0:

`)': The proof of this direction proceeds in analogy to the `('-direction of the

case ' = []'0.

`(': The proof of this direction proceeds in analogy to the `)'-direction of the

case ' = []'0.

' = ��Z:'0:

First consider the case � = 0. If � = �, then ' is eqivalent to > whereas ' is

equivalent to ? in the case � = �. Hence we can apply the base case to complete

this step.

Now let � be a limit ordinal and � = �, i.e. ' = ��Z:'0. We have P j= '

i� P j= ^
�2�

��Z:'0

(By De�nition 4.22)

i� 8� < �(P j= ��Z:'0)

(By De�nition 4.22)

i� 8� < �
�
red(P [�; Q]) j= Red((��Z:'0)[�; Q])

�

(By the induction hypothesis. Note that d(��Z:'0) < d('))

i� 8� < �
�
red(P [�; Q]) j= ��Z:Red('[�; Q])

�

(By De�nition 4.5 and De�nition 4.13)

i� red(P [�; Q]) j= ^
�2�

��Z:Red('[�; Q])

(By De�nition 4.5)

i� red(P [�; Q]) j= ��Z:Red('[�; Q])
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(By De�nition 4.22)

i� red(P [�; Q]) j= Red((��Z:')[�; Q])

(By De�nition 4.5 and De�nition 4.13)

i� red(P [�; Q]) j= Red('[�; Q])

Let � be a limit ordinal and � = �, i.e. ' = ��Z:'0. The proof of this case proceeds

in analogy to the proof of the preceeding case.

Now let � be a successor ordinal. For n � 1 and �1 + 1 = �, we prove the claim of

the theorem for formulas

' = ��1+1Z1:�
�2+1Z2: : : : �

�n+1Zn: 

where  is of the form >, ?, h�i'0, [�]'0, W�2I '�,
V
�2I '�, �Z:'

0 or ��Z:'0 (� a

limit ordinal): By assertion 1) of Lemma 4.32 follows

P j= ' i� P j=  [�1=Z1] : : : [�n=Zn]

where the formulas �i (1 � i � n) are given according to Lemma 4.32. Note that

by assertion 3) of Lemma 4.32 we have d(') = d( [�1=Z1] : : : [�n=Zn]). In the cases

where  is of the form >, ? or ��Z:'0 (where � 2 On is a limit ordinal) the present

case can be readily reduced to these previous cases which gives

P j= ' i� red(P [�; Q]) j= Red(( [�1=Z1] : : : [�n=Zn])[�; Q]):

We show the induction argument for the other cases. For m 2 IN, let [�=Z]�m ab-

breviate the sequence of substitutions [�1=Z1] : : : [�m=Zm].

 =
N
'� where

N 2 fW�2I ;
V
�2Ig:

Then

 [�=Z]�n =
�O

'�

�
[�=Z]�n =

O
'�[�=Z]

�n

Clearly

d(
O

'�[�=Z]
�n) = sup

�2I
(d('�[�=Z]

�n)) + 1
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> sup
�2I

(d('�[�=Z]
�n)) � d('�[�=Z]

�n) for any � 2 I:

Hence the induction hypothesis is applicable to '�[�=Z]
�n for any � 2 I. Con-

sequently, we can reduce the current case to previous case where ' =
N
'� andN 2 fW�2I ;

V
�2Ig.

 = 4� 
0 where 4� 2 fh�i; [�]g. Then

 [�=Z]�n = (4� 
0)[�=Z]�n = 4� 

0[�=Z]�n:

Clearly we have

d(4� 
0[�=Z]�n) = d( 0[�=Z]�n) + 1 > d( 0[�=Z]�n)

Hence, the induction hypothesis is applicable to  0[�=Z]�n whence we can reduce the

current case to the previous case where ' = 4�'
0 and 4� 2 fh�i; [�]g.

By assertion 2) of Lemma 4.32 it follows that red(P [�; Q]) j= Red('[�; Q]).

Theorem 4.37

Let P 2 G� be a process term and ' 2 CG�L be a formula. Further let Q 2 � be

a distinct process term, such that P is alphabet-disjoint from Q and ' is �-disjoint

from Q. Then P j= ', red(P [�; Q]) j= Red('[�; Q]).

Proof: Let ' 2 CG�L. Then
P j= '

i� P j= I(') (By Lemma 4.28)

i� red(P [�; Q]) j= Red(I(')[�; Q])

(This follows from Theorem 4.36 since I(') 2 CGApp. Note that � 2 �L is closed

and guarded i� I(�) 2 App is closed and guarded. Further, � 2 �L is alphabet-

disjoint from Q 2 � i� I(�) 2 App is alphabet-disjoint from Q.)

i� red(P [�; Q]) j= I(Red('[�; Q])) (By Lemma 4.21)

i� red(P [�; Q]) j= Red('[�; Q]) (By Lemma 4.28)

Veri�cation in the Hierarchical Development of Reactive Systems.



105

Theorem 4.38

Let P 2 G� be a process term and ' 2 CG�L be a formula. Further let Q 2 R� be

a distinct process term, such that P is alphabet-disjoint from Q and ' is �-disjoint

from Q. Then P j= ', red(P [�; Q]) j= Red('[�; Q]).

Proof: Assume red(P [� ; Q]) j= Red('[� ; Q]). We have that red(Q) =

red(red(Q)). Hence, the assumption is equivalent to

red(P [�; red(Q)]) j= Red('[�; red(Q)]) (�)

which follows from De�nition 2.11, 2.15, 4.5 and De�nition 4.13. By Lemma 2.18

we have �(Q) = �(red(Q)). Further, Q is distinct i� red(Q) is distinct. Since

red(Q) 2 �, it follows from Theorem 4.37 that assertion (�) is equivalent to the

assertion P j= '.

The next three lemmata formalize the intuition, that process terms P [� ; Q]

and formulas '[� ; Q] exhibit the same semantics as the reduced process term

red(P [�; Q]) and Red('[�; Q]) respectively.

Lemma 4.39

Let P 2 R� and ' 2 �L. Then P j=# ' i� red(P ) j=# '.

Proof: T (P ) = T (red(P )) by de�nition.

Lemma 4.40

Let P 2 R� and ' 2 R�L. Then P j=# ', P j=# Red(').

Proof: The proof is by induction on the structure of ' 2 R�L.
Corollary 4.41

Let P 2 R� and ' 2 R�L. Then P j=# ', red(P ) j=# '.

Proof: Follows from Lemma 4.39 and Lemma 4.40.

Theorem 4.42 (Simultaneous syntactic action re�nement)

Let P 2 GR� be a process term and ' 2 CG�L be a formula. Further let Q 2 R�

be a distinct process term such that P is alphabet-disjoint from Q and ' is �-disjoint

from Q. Then P j= ', P [�; Q] j= '[�; Q].

Proof:

P j= '
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i� red(P ) j= ' (By Corollary 4.41)

i� red(P ) j= Red(') (By Lemma 4.40)

i� red(red(P )[�; Q]) j= Red(Red(')[�; Q]) (By Theorem 4.38)

i� red(P [�; Q]) j= Red('[�; Q]) (By Remark 2.17 and Remark 4.14)

i� P [�; Q] j= Red('[�; Q]) (By Corollary 4.41)

i� P [�; Q] j= '[�; Q] (By Lemma 4.40)

Before proceeding to the case study in the next section, we demonstrate the

applicability of Theorem 4.42 by means of a simple example.

Example 4.43 (A priori-veri�cation and abstraction)

Consider the following `assembly line' P in a car factory shown in Figure 7.

mount_windscreen

adjust_motor

adjust_gear

put_car1

put_car2

mount_windscreen

adjust_gear
get_car1

get_car2

control2control1

adjust_motor

mount_windscreen

adjust_motor

adjust_gear

Figure 7: The Process P

The complete description of the assembly line is given by the program P shown in

Figure 8. The job of P is to adjust the motor and the gear of a car and to mount the

windscreen. Hence P can be modelled by means of a few atomic actions. get car1

(get car2): get a car from conveyer band one (two resp.), adjust gear, adjust motor,

mount windscreen, put car1 (put car2): put the car back on conveyer band one (two

resp.). To reach a de�ned system status before the car is carried back to the conveyer

band two control actions are executed by P .

The process P has the temporal property that `whenever a car is taken from the

conveyer band (either get car1 or get car2 is executed), the control actions will even-
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fix(x = Q; x) where Q =

(get car; (((adjust; control)kfcontrol1;control2g(mount windscreen; control)); put car))
such that

get car = (get car1 + get car2)

adjust = (adjust gear; adjust motor)

put car = (put car1 + put car2)

control = (control1; control2)

Figure 8: The Process Term P

tually be executed'. We denote this property by the formula19 ' = �Z:(([gc1]�Y:(� ^
�) ^	) ^ ([gc2]�Y:(� ^ �) ^	)) where � =

�
(hgc1i> ^ hgc2i>) _ (hagihami> _ (hmwi> _ (hc1ihc2i> _ (hpc1i> ^ hpc2i>))))

�

� =
�
([gc1]Y ^ [gc2]Y ) ^ ([ag][am]Y ^ ([mw]Y ^ (([pc1]Y ^ [pc2]Y ))))

�

	 =
�
([gc1]Z ^ [gc2]Z) ^ ([ag][am]Z ^ ([mw]Z ^ ([c1][c2]Z ^ ([pc1]Z ^ [pc2]Z))))

�

in the logic �L.
The process P arises from the process Ps shown in Figure 9 by the application of

four successive re�nement steps, that is,

P1 = Ps[control; (control1; control2)]

P2 = P1[put car ; (put car1 + put car2)]

P3 = P2[adjust; (adjust gear; adjust motor)]

P = P3[get car ; (get car1 + get car2)]

where Ps = fix(x = ( ~Q; x)) and ~Q abbreviates the expression

(get car; (((adjust; control)kfcontrolg(mount windscreen; control)); put car)). Let us

assume that we had already established Ps j= 's where

's = �Z:([gc]�Y:(�s ^ �s) ^	s) and

�s = (hgci> _ (hai> _ (hmwi> _ (hci> _ (hpci>)))))
19Formulas will sometimes be given in a more concise form using the ob-

vious abbreviations for action names like gc1 (pc2,mw,ag,am,c1) for get car1

(put car2;mount windscreen; adjust gear; adjust motor; control1 resp.).

Veri�cation in the Hierarchical Development of Reactive Systems.



108 Chapter 4: Veri�cation in the Hierarchical Development of Reactive Systems

�s = ([gc]Y ^ ([a]Y ^ ([mw]Y ^ ([pc]Y ))))

	s = ([gc]Z ^ ([a]Z ^ ([mw]Z ^ ([c]Z ^ ([pc]Z)))))

(Again, the obvious abbreviations for action names of Ps are used in 's). Now

mount_windscreen

mount_windscreen

get_car

put_car

control

adjust

adjust

Figure 9: The Process Ps

'1 = 's[control; (control1; control2)]

'2 = '1[put car ; (put car1 + put car2)]

'3 = '2[adjust; (adjust gear; adjust motor)]

' = '3[get car; (get car1 + get car2)]

whence Ps j= 's i� P j= ' follows by Theorem 4.42. 2

It is well known, that the Modal Mu-Calculus induces strong bisimulation equiva-

lence (in the sense of Milner [154]) on the set of (�nitely branching) transition systems

(see, for example, [192]). To exploit this fact for our approach, we lift bisimulation

equivalence to the set R� by de�ning P �b P
0 i� T (P ) �b T (P 0). As a direct

consequence of Theorem 4.42 we then obtain the following \vertical modularity"

result.

Corollary 4.44

Let P; P 0 2 R� be guarded process terms and ' 2 R�L be a closed and guarded

formula. Let Q1; : : : ; Qn 2 R� be distinct and pairwise alphabet-disjoint. Let Qi be

such, that that P and ' are alphabet-disjoint from Qi, 1 � i � n. Let [� ; Q]n

abbreviate [�1 ; Q1]; : : : ; [�n ; Qn]. If P �b P
0 then P [� ; Q]n j= '[� ; Q]n ,

P 0[�; Q]n j= '[�; Q]n.

Proof: Follows immediately from Theorem 4.42
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Corollary 4.44 can thus be used after any development sequence to syntactically

interchange the original \target-process term" P with a term P 0, provided P and P 0

are strongly bisimular.

Remark 4.45

Clearly, we can replace the premise P �b P
0 by the premise P 0 j= '. Using model

checking however, the best algorithm known hitherto needs in the worst case time

O(alt(')2(NP +1)balt(')=2c+1) to decide P 0 j= ' and space about N
alt(')=2
P where alt(')

is the alternation depth of �xed point operators in ', and NP is the number of states

of T (P ) (see [134]). In contrast, deciding bisimilarity for two processes P; P 0 needs

time O(MP +MP 0 logNP + NP 0) and space O(MP +MP 0 + NP + NP 0) (see [165])

where MP is the number of transitions of T (P ). 2

The abstraction technique comprised by Theorem 4.42 can be used to abstract

those parts of the system description that are irrelevant for the veri�cation at hand.

For a given system description P and a property ' we construct a small description

Ps and a small formula 's, such that we can establish P = Ps[�1 ; Q1] : : : [�n ; Qn]

and ' = 's[�1 ; Q1] : : : [�n ; Qn]. It then su�ces to decide Ps j= 's in order to

show whether P j= ' holds or not. As the case study in the next section shows, the

size of the state space of Ps can be exponentially smaller (with respect to
Pn

i=1 jQij)
than the size of the state space of P (see also [139]).

4.2.1 Applications of SSAR: A Case Study

While the application of Theorem 4.42 to develop/re-engineer reactive systems can

readily be seen, applying Theorem 4.42 as an abstraction technique to enhance model

checking might require some further illustration. To this end, we consider a \data

processing-environment" (DPE) which consists of a central data base and several

users of the data base. Conceptually, our example is similar to Milner's scheduler [154]

or to the IEEE Futurebus+ (considered, for example, in [43]) as several structurally

equal subsystems are executed in parallel. To ensure the consistency of the data

base, it must be accessed in mutual exclusion by the users. Thus, the data base

represents a critical section and accessing it is controlled by parameterized read-and

write semaphores.

We assume a situation where a DPE has already been implemented and we want
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to prove, that the given implementation has a desirable property. In order to demon-

strate how our approach allows to �x bug's at high levels of abstraction (instead

of �xing the bug at the complex concrete level) we deliberately start with a faulty

implementation.

Instead of model checking that the concrete system is faulty, we �rst construct

an abstract system and model check that the abstract system contains an according

(abstract) bug. Using Theorem 4.42, we then infer that the concrete system is faulty

as well. We then �x the bug on the abstract level and model check that the `abstract'

bug has been removed. Finally, Theorem 4.42 is applied again to automatically derive

a corrected concrete system from the corrected abstract system.

Let us start with giving some implementation details. The i-th user of the DPE

is modelled by the process term20

Useri := fix((xi = PDi; xi) + (vri ; readi; p
r
i ; xi) + (vwi ;writei; p

w
i ; xi)):

We de�ne USERn := (User1k;User2k;; : : : k;Usern). Useri can either process (local)
data by executing the subsystem PDi or access the data base (to read or write data)

by coordinating with a particular control process Conti. For user Useri we thus use

a control process Conti, implemented by the process term

Conti := fix(yi = (vri ; readi; p
r
i ; yi) + (vwi ;writei; p

w
i ; yi)):

Let us �rst consider a faulty control component de�ned by

CONT n := (Cont1k;; Cont2k;; : : : ; k;Contn):

A correct control component is

CorrCONT n := (Cont1 + Cont2 + : : :+ Contn):

We next de�ne a faulty and a correct DPE parameterized with respect to the number

of users, that is,

DPE(n) = (USERnkfvri ;vwi ;readi;writei;pri ;pwi j 1�i�ngCONT
n)

and

CorrDPE(n) = (USERnkfvri ;vwi ;readi;writei;pri ;pwi j 1�i�ngCorrCONT
n):

20In the example, we sometimes omit parenthesis in order to support readability.
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Useri can read data from the data base if Useri and Conti can jointly execute vri

(Useri occupies the read-semaphore), readi (Useri reads data) and p
r
i (Useri releases

the read-semaphore). As PDi is assumed to be a `local subsystem' of Useri, it is

reasonable to require that PDi and PDj contain no common actions for i 6= j.

Further, we assume PDi (1 � i � n) to be distinct. Since the control component

CONT n executes the control processes Conti (1 � i � n) concurrently, mutual

exclusive access to the data base is not guaranteed.

We now consider a (faulty) \four user DPE" DPE(4). We would like to prove

that User1 and User2 cannot write data at the same time as long as only actions

from User1 and User2 are executed by DPE(4). In other words, we would like to

show that DPE(4) has no computation sequence (that consists of actions from User1

and User2) which leads to a state where the actions write1 and write2 can both be

executed. This amounts to show, that DPE(4) has no such computation path which

leads to such a `bad state'. In order to do this, we try to disprove that DPE(4)

has a computation path along which a bad state is reachable. This property can be

expressed by the Modal Mu-Calculus formula

�i;jerror = �Z:(hwriteii> ^ hwriteji>) _ halph(Useri) [ alph(Userj)iZ

for i = 1 and j = 2. In the above formula, alph(P ) denotes the set of actions that

occur in a process term P and hAi' abbreviates the formula h�1i'_h�2i'; : : : ; h�ni'
for �1; : : : ; �n 2 A.

It turns out that the considered implementation of the DPE is faulty, that is,

DPE(4) j= �1;2error. This could be proved directly by using a model checker. However,

depending on the terms PDi (i = 1; 2; 3; 4), the state space of DPE(4) can be-

come tremendous due to the state explosion problem. In order to model check that

DPE(4) j= �1;2error we �rst abstract away those implementation details of DPE(4)

that are irrelevant for the veri�cation. To this end, we de�ne

SmallUseri := fix(xi = (pdi; xj + (ri; xi + wi; xi))

and

SmallConti := fix(xi = ri; xi + wi; xi):

Using these process terms, we de�ne

DPE4small =
�
USER2k;SmallUser3k;SmallUser4kL
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CONT 2k;SmallCont3k;SmallCont4
�

where L = fvri ; vwi ; readi; writei; pri ; pwi ; rj; wj j i = 1; 2 and j = 3; 4g. We can then

establish the re�nement

T = DPE4small[pd3 ; PD3][r3 ; vr3; read3; p
r
3][w3 ; vw3 ;write3; p

w
3 ]

DPE(4) = T [pd4 ; PD4][r4 ; vr4; read4; p
r
4][w4 ; vw4 ;write4; p

w
4 ]:

Note that the formula �1;2error remains unchanged under the above re�nements followed

by logical reduction21. By Theorem 4.42, it su�ces to model check thatDPE4small j=
�1;2error to conclude thatDPE(4) j= �1;2error. In what follows, we let PDi be implemented

by three sequential actions. Then the state space of DPE4small only contains 10

states whence it is about 8 times smaller than the state space of DPE(4).

We can now �x the bug on the abstract level by using the correct control compo-

nent:

CorrDPE4small =
�
USER2k;SmallUser3k;SmallUser4kL

(CorrCONT 2 + SmallCont3 + SmallCont4)
�

Model checking can now be used on the abstract level to show that we have

CorrDPE4small 6j= �1;2error:

For

T 0 = CorrDPE4small[pd3 ; PD3][r3 ; vr3; read3; p
r
3][w3 ; vw3 ;write3; p

w
3 ]

CorrDPE(4) = T 0[pd4 ; PD4][r4 ; vr4; read4; p
r
4][w4 ; vw4 ;write4; p

w
4 ]:

we can immediately conclude (using Theorem 1 again) that

CorrDPE(4) 6j= �1;2error:

The example above shows, that those parts of the system description that share

no actions with the formula under consideration can be immediately abstracted. We

believe that this makes precise, which parts of the system description are completely

21Let  be the formula that arises by applying the above re�nement operators to the formula

�1;2
error

. Then �1;2
error

= Red( ) whence P j=  i� (by de�nition) P j= Red( ) i� P j= �1;2
error

.
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irrelevant for the actual veri�cation task and that such situations (where the property

of interest `refers' only to a part of the system) often occur in practice.

It is clear, that the state space of DPE(i) grows exponentially in the number i

of DPE-users. The state space of DPE(8) contains about 13000 states whereas a

system abstracted with the above strategy contained 19 states, a 680-fold reduction

of the state space22. Note that we can exploit the above sketched strategy to disprove

mutual exclusive write-access (in the above sense) of all users Useri. This property

can be expressed by the formula

�n
error =

^
i<j�n

�i;jerror :

The application of model checking to verify all conjuncts in the above formula

amounts to check a total of about 530 states in order to prove that DPE(8) j= �8
error.

In contrary, classical model checking would necessitate to create the whole state space

of 13000 states in order to verify this property.

Additional logical reasoning (based on the structure of the system) might be

necessary if we want to abstract parts of the process term, that share action with the

formula under consideration. For further abstracting the (faulty) DPE(4)-example,

assume PDi = ti1; t
i
2; t

i
3 (i = 1; 2). We can then use the formula

	error = �Z:(hwrite1ihpw1 i> ^ hwrite2ihpw2 i>) _ ht11iht12iht13iht21iht22iht23iZ

to carry out some more abstractions since we have that DPE4small j= 	error implies

DPE4small j= �1;2error (showing the validity of this implication is the above mentioned

additional logical reasoning). We proceed as follows:

Let DPE4V erySmall be the process term that arises from DPE4small by substituting

the process term PDi by the action pdi, the term readi; p
r
i by the action ri and the

term writei; p
w
i by the action wi where i = 1; 2. If

T = DPE4V erySmall[pd1 ; PD1][pd2 ; PD2][r1 ; read1; p
r
1]

then

DPE4small = T [r2 ; read2; p
r
2][w1 ; write1; p

w
1 ][w2 ; write2; p

w
2 ]:

22We used the Edinburgh Concurrency Workbench 7.0 [49] to calculate the size of the state spaces.
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Now consider the formula

�error = �Z:(hw1i> ^ hw2i>) _ hpd1ihpd2iZ:

We have that

 = �error[pd1 ; PD1][pd2 ; PD2][r1 ; read1; p
r
1]

	error =  [r2 ; read2; p
r
2][w1 ; write1; p

w
1 ][w2 ; write2; p

w
2 ]:

We use model checking to show that DPE4V erySmall j= �error. By Theorem 4.42

follows DPE4small j= 	error and hence DPE4small j= �1;2error.

User-guidance (involving additional logical reasoning) seems to be necessary in

situations, where system parts that share actions with the formula under considera-

tion are abstracted.

4.2.2 Discussion

The equivalence in Theorem 4.42 guarantees that the reduction functions red and

Red are de�ned appropriately as it excludes the use of nonsensical reduction func-

tions: Using the de�nition Red(') = > would trivially validate the implication from

left to right.

It is clear, that (logical) SAR as used in Theorem 4.42 is not complete in the sense,

that we cannot derive every (interesting) formula  from a formula '. We believe

however, that Theorem 4.42 can always be useful to provide \basic knowledge" in

the overall development procedure.

We have argued that alphabet-disjoint process expressions and formulas can be

obtained by renaming the actions of Q in the obvious way. Alphabet-disjointness

can also be achieved by additional re�nements. Consider, for example, the terms

P = (� + �) and Q = (�; ). Then P is not alphabet-disjoint from Q. We can

solve this problem by applying additional re�nements as follows: We consider P1 =

P [� ; �1][� ; �1] instead of P and Q2 = Q[� ; �2][ ; 2] instead of Q where

the indices signalize the level of abstraction. Instead of P [�; Q] we can then work

with P1[�1 ; Q2] which satis�es the conditions of Theorem 4.42. We have argued

that such renamings are consistent with existing approaches to action re�nement (see

also [88]).
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As the case study in Section 4.2.1 demonstrates, the restriction of distinctness

of Q is not severe and often ensues naturally. It could be argued further, that

distinctness prohibits Q from being non-deterministic. Introducing non-determinism

while making a speci�cation more precise (through action re�nement) seems to be

counterproductive.

However, in Section 4.3 we show that both, the condition of alphabet-disjointness

and the condition of distinctness can be dropped completely provided we restrict

ourselves to particular fragments of the logic R�L.
A potential drawback of Theorem 4.42 is the length of the formulas that are

generated by the reduction of R�L-formulas: Provided ' 2 �L and Q 2 �, we have

that jRed('[�; Q])j = O(2j'j�jQj). If we let Q0 2 � we have

jRed('[�; Q][� ; Q0])j = O(22
j'j�jQj�jQ0j)

and so on. Such \exponential blow-ups" will be avoided by using the generalized

Modal Mu-Calculus (see Section 4.4) and a suitable reduction function (see De�ni-

tion 4.54 and De�nition 4.55).

4.3 SSAR for Fragments of the Modal Mu-Calculus

Renaming of actions can often be applied successfully in order to meet the condi-

tions of alphabet disjointness. However, this condition rules out the possibility to

conduct particular re�nement steps which can become important in the development

of reactive systems: Suppose the system P can execute the atomic actions a; b. At

the current level of abstraction, the action a (b) is considered to be the name of a

procedure Qa (Qb respectively.) which is not yet implemented. In an intermediate

development step, Qa and Qb are implemented making use of a common subsystem

S which we might assume has been provided by a system library. Hence, alphabet

disjointness of Qa and Qb does not hold. It is clear that dropping the condition of

alphabet-disjointness of the process terms P from Q only makes sense in conjunction

with abandoning alphabet-disjointness of ' from Q. Dropping the latter restric-

tion however leads to fundamental problems: Without it, repeated syntactic action

re�nement might transform an originally satis�able formula into an unsatis�able one:
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Example 4.46

Let ' = (h�1i> ^ [�2]?). Clearly, ' is satis�able. On the other hand, the formula

'[�1 ; �][�2 ; �] is not satis�able. 2

The above example show that we cannot hope for a result like Theorem 4.42 for

any fragment L � R�L in which it is allowed to compose formulas ' 2 L contain-

ing both types of modalities, that is, h�i and [�] without accepting any restrictions

on alphabet-disjointness. This is the reason why we consider the logics R�Lh�i and

R�L[�] where respectively only one modality type might occur in the formulas. Intu-

itively, the language R�Lh�i allows to specify properties of reactive systems where the

branching character of computations is neglected, that is, the focus lies on specify-

ing particular computation paths rather than computation trees as in the logic R�L
whence it can be used to specify computation paths which must be executable by

a system. The expressiveness of these two fragments of the full Modal Mu-Calculus

has already been investigated in [21, 16].

De�nition 4.47 (The fragments R�Lh�i and R�L[�])

Let �Lh�i � �L be the language generated by the grammar

� ::= > j ? j Z j (� ^ �) j (� _ �) j h�i� j �Z:� j �Z:�

and �L[�] � �L be the language generated by the grammar

� ::= > j ? j Z j (� ^ �) j (� _ �) j [�]� j �Z:� j �Z:�

where � ranges over the set A and Z ranges over a �xed set V ar of variables.

Let R�Lh�i (R�L[�]) be the language generated by the grammar for �Lh�i (�L[�]

respectively.) with the additional rule � ::= �[�; Q] where Q 2 R�. 2

The logics R�Lh�i and R�L[�] can be used to express interesting properties of reactive

systems:

Example 4.48

� The unless-property \� remains true in every computation unless 	" is true

for a process if

P j= �Z:(	 _ (� ^ 2�(P )Z)) 2 R�L[�]

where 2A� := ([�1]�^ ([�2]�^ (: : : ([�n�1]�^ [�n]�) : : :) for A = f�1; : : : ; �ng.
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� Let the complement �c of the formula � (see, for example, [192]) capture the

\bad states" which should not be reached by the system P . Then P satis�es the

safety-property \P never reaches a bad state whenever 	 has become true", if

P j= �Z:((	c _ (	 ^ �Y:(� ^2�(P )Y ))) ^ 2�(P )Z) 2 R�L[�]:

� The process P satis�es the guarantee-property [142] \eventually � in any in�-

nite computation sequence of P" if

P j= �Z:(� _ 2�(P )Z) 2 R�L[�]:

Further, R�L[�] can be used to express liveness-properties under fairness and

cyclic-properties (see [192]). 2

Example 4.49 (See [26])

� If

P j= �Y:�Z:((� _ ��(P )Z) ^ ��(P )Y ) 2 R�Lh�i

where �A� := (h�1i�_(h�2i�_(: : : (h�n�1i�_h�ni�) : : :) for A = f�1; : : : ; �ng,
then \there exists a computation sequence of P in which � holds in�nitely of-

ten".

� If

P j= �Y:((�Z:(� _ ��(P )Z) ^ ��(P )Y ) 2 R�Lh�i

then \there exists a computation sequence of P along which � is always attain-

able". 2

While dropping the conditions on alphabet-disjointness (and distinctness), we can

still derive two special cases of Theorem 4.42 for the fragments R�L[�] and R�Lh�i of

the logic R�L.
Theorem 4.50 (Developing systems w.r.t. R�Lh�i-properties)

Let P 2 UGR� and Q 2 R� be process terms. Let ' 2 CGR�Lh�i be a formula.

Then we have the following:

1) If P is ��-disjoint from Q and � 62 �(P ) or
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2) if �(') � �(P ) then

P j= ') P [�; Q] j= '[�; Q]:

Proof: The proof of this theorem proceeds in analogy to the proof of Theorem 4.42:

First, one has to prove the claim of the above theorem for process terms P 2 UG�

and formulas ' 2 CGApph�i (the language Apph�i is generated by the grammar of the

language App where the rule � ::= [�]� is removed). Most of those induction steps

are proved in analogy to the proof of this steps in Theorem 4.36 (of course only the

implication from the left hand side to the right hand side is considered here). Hence,

we only show the induction steps which di�er substantially from the induction steps

in Theorem 4.36.

' = hi'0 where  2 A.

Case 1: ' = h�i'0 where � 6= �.

Assume P j= '. Then

9P 0 2 R�(P �! P 0 ^ P 0 j= '0)

Obeying condition 1) of the theorem, we can immediately apply assertion 3) of

Lemma 2.28. On the other hand, condition 2) and � 2 �(') imply � 2 �(P ).

Hence assertion 3) of Lemma 2.28 is also applicable in this case whence we have

red(P [�; Q])
�! red(P 0[�; Q])

Further we have

red(P 0[�; Q]) j= Red('0[�; Q])

by the induction hypothesis, that is,

red(P [�; Q]) j= h�iRed('0[�; Q])

by De�nition 4.22. We conclude

red(P [�; Q]) j= Red((h�i'0)[�; Q])

by De�nition 2.11 and De�nition 4.5.
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Case 2: ' = h�i'0.

Case discrimination on the structure of Q 2 R�.

Q = �.

Assume P j= '. Then

9P 0 2 R�(P �! P 0 ^ P 0 j= '0)

Obeying condition 1), we have that � 62 �(P ) since P has to be ��-disjoint from Q

and � 2 �(Q). Hence

red(P [�; Q])
�! red(P 0[�; Q])

by the application of assertion 1) of Lemma 2.30. On the other hand, condition

2) ensures that � 2 �(P ) since � 2 �('). Hence, we can apply assertion 3) of

Lemma 2.30 and likewise obtain

red(P [�; Q])
�! red(P 0[�; Q]):

Further we have

red(P 0[�; Q]) j= Red('0[�; Q])

by the induction hypothesis, that is,

red(P [�; Q]) j= h�iRed('0[�; Q])

by De�nition 4.22. We conclude

red(P [�; Q]) j= Red((h�i'0)[�; Q])

by De�nition 2.11 and De�nition 4.5.

Q 2 f(Q1;Q2); (Q1 + Q2); Q1[ ; Q2]g. These cases are proved in analogy to

the proof of those steps in Theorem 4.38 and Theorem 4.36. Here of course, we only

prove the implication from the left hand side to the right hand side. Please note that

exploiting condition 1), the induction hypothesis is applicable since ��-disjointness

of P from Q1 and Q2 and � 62 �(P ) implies that P [�; Q1] remains ��-disjoint from
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Q2. In contrary to Theorem 4.38, the condition that Q is distinct is thus not neces-

sary to carry out these induction steps. Using condition 2), the induction hypothesis

is applicable since �(') � �(P ) implies �('[�; Q]) � �(P [�; Q]).

The proof of Theorem 4.50 is then carried out in analogy to the proof of Theo-

rem 4.42 (note that we have P 2 UGR� i� red(P ) 2 UG�).
Theorem 4.51 (Debugging systems w.r.t. R�L[�]-properties)

Let P 2 UGR� and Q 2 R� be process terms. Let ' 2 CGR�L[�] be a formula.

Then we have the following:

1) If P is ��-disjoint from Q and � 62 �(P ) or

2) if �(') � �(P ) then

P j= '( P [�; Q] j= '[�; Q]:

Proof: In analogy to the proof of Theorem 4.50. The induction step where ' =

[]'0 is proved by a contrapositive argument: Assuming that P 6j= ' we have that

9P 0(P
! P 0 ^ P 0 6j= '0). By similar reasoning as in Theorem 4.50, we can easily

derive that red(P [�; Q]) 6j= Red(P [�; Q]) for the two cases  6= � and  = �.

As an application of the Theorems given above we consider a (\lock-step") solu-

tion of a two process mutual exclusion problem:

Example 4.52

The process terms P� and P� are given by 2

fix(x = (((�1; (�;�2)) + (�1; (�; �2))); x))

and

fix(y = (((�1; (�; �2)) + (�1; (�;�2))); y))

respectively. It is easy to see that the processME�� = (P�kf�i;�i;�;�gP�) where i = 1; 2

enters the (abstract) critical sections � and � in mutual exclusion. For A � A we

let �A' abbreviate the formula
W
�2Ah�i' and 2A' abbreviate the formula

V
�2A[�]'.

We have that

ME�� j= ' = �Y:(�Z:(h�i> _ ��(ME��)Z) ^ ��(ME��)Y );
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that is, there exists a computation sequence of ME�� along which it is always possible

to reach a state where the performance � can be executed. Now let Q = (1 + 2).

Then we have that

ME�� [�; Q][� ; Q] j= �[�; Q][� ; Q]

via Theorem 4.50 which says that ME��[�; Q][� ; Q] can execute a computation

sequence along which it is always possible to reach a state where all performances of

Q can be executed. This holds, though another performance (� in our case) is also

re�ned by Q. 2

Please note that Theorem 4.50 and Theorem 4.51 can both be established without

the need to consider restrictions of alphabet-disjointness (and distinctness).

4.3.1 Discussion

Amongst the applications of Theorem 4.42 to the veri�cation of reactive systems,

the concept of a priori-veri�cation might be the most interesting one. There, every

property ' of a system P which can be expressed in R�L \carries over" (in its

re�ned form '[� ; Q]) to the re�ned system P [� ; Q], in particular this holds

for all safety and liveness properties. Strong safety properties (which involve the

box modality [�]) might not be carried over (in the above sense) when dropping

the restriction of alphabet disjointness. Theorem 4.50 shows however, that it is still

possible to verify systems `a priori' with respect to properties expressible in the logic

R�Lh�i, without the need to ensure alphabet disjointness of the considered process

terms and formulas. In essence, these properties are \existential" properties, that is,

weak safety and liveness properties (according to [192]).

In its contrapositive form, Theorem 4.51 can be used to `debug' a (concrete)

reactive system by means of debugging an abstract system (where the abstraction

is based on syntactic action re�nement between those systems): If P 6j= ' 2 R�L[�]

then P [� ; Q] 6j= '[� ; Q]. In the case we cannot prove P j= ', no information

about satisfaction of '[�; Q] by P [�; Q] can be inferred. However, Theorem 4.51

might also be used to support model checking techniques for systems that otherwise

would remain unfeasable due to the size of their state spaces: If P is such a system

then no information at all about satisfaction with respect to any property ' can
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be established by means of model checking techniques. In particular we could not

show P 6j= '. However, if we could establish appropriate abstractions Ps and 's,

i.e. P = Ps[�1 ; Q1] : : : [�n ; Qn] and ' = 's[�1 ; Q1] : : : [�n ; Qn] then

Ps might well become manageable by a model checker since the state space of Ps

might be exponentially smaller then the state space of P due to the well known state

explosion problem23. Then we could apply the model checker to prove Ps 6j= 's and

conclude P 6j= ' via Theorem 4.51. Various interesting properties can be expressed in

R�L[�] (and therefore be used in the debug-procedure described above), in particular

strong safety properties of a system P like, that is, �Z:('^2�(P )Z) meaning \' holds

in every state of P".

4.4 SSAR for the Generalized Modal Mu-Calculus

In this section we present the generalized Modal Mu-Calculus. The syntax of this

logic is similar to the standard Modal Mu-Calculus except for the generalizations of

the modalities. In order to introduce the new production rules we next de�ne an

extension of the language � (see De�nition 2.5): Let �0 be the language generated

by the grammar for � with the additional rule Q ::= 0.

De�nition 4.53 (Generalized Modal Mu-Calculi �Lg and R�Lg)

The generalized Modal Mu-Calculus �Lg is generated by the grammar for the (stan-

dard) Modal Mu-Calculus (see De�nition 4.1) in which the rules ' ::= [�]' and

' ::= h�i' are replaced by the rules ' ::= [E]' and ' ::= hEi' (where E 2 �0).

Let R�Lg be the language generated by the above grammar with the additional rule

' ::= '[�; Q] where Q 2 R�. 2

For E 2 �0 we let 4E 2 fhEi; [E]g and adapt the length of formulas (as de�ned

on page 81) by j4E'j := j'j + jEj where ' 2 �Lg. A formula ' 2 R�Lg is called

simple i� for all modalities hEi and [E] that occur in ' we have that E 2 �. A R�Lg-

formula ' is called guarded i� every occurrence of a variable Z in ' lies in the scope of

a modality [E] or hEi where E 62 p. The notions of closedness is as for the standard
23A linear reduction of the number of performances in a term P 2 R� can entail an exponential

reduction of the number of reachable states of T (P ). Please note that model checking algorithms

are based on the investigation of the involved system state spaces, regardless whether those spaces

are represented explicitly or implicitly (e.g. using BDDs [31]).
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Modal Mu-Calculus (see page 79). The notion of �-disjointness (see De�nition 4.4)

is as for the standard Modal Mu-Calculus where �(4E') := �(E) [ �(').
We now introduce a logical substitution operation for the generalized Modal

Mu-Calculus �Lg by which we are able to de�ne the reduction function for R�Lg-

formulas.

De�nition 4.54 (Logical substitution for �Lg)

Let Q 2 � and E 2 �0 be process expressions and ';  2 �Lg be formulas. The

operation of (generalized) logical substitution, (')f�; Qgg is de�ned as follows:

(�)f�; Qgg := � if � 2 f>;?g [ V ar ; (�Z:')f� ; Qgg := �Z:(')f� ; Qgg

((' �  ))f�; Qgg := ((')f� ; Qgg � ( )f�; Qgg) if � 2 f^;_g

([E]')f� ; Qgg := [EfQ=�g](')f� ; Qgg

(hEi')f� ; Qgg := hEfQ=�gi(')f� ; Qgg 2

De�nition 4.55 (Logical reduction function for R�Lg)

Let Q 2 R� and E 2 �0 be process expressions and ';  2 R�Lg be formulas. We

de�ne the (generalized) logical reduction function Redg : R�Lg ! �Lg as follows:

Redg(�) := � if � 2 f>;?g [ V ar ; Redg('[�; Q]) := (Redg('))f� ; red(Q)gg

Redg((' �  )) := (Redg(') �Redg( )) if � 2 f^;_g

Redg([E]') := [E]Redg(') ; Redg(hEi') := hEiRedg(')

Redg(�Z:') := �Z:Redg(') 2

The distinguishing feature of the above presented reduction function is, that

jRedg('[�; Q])j = O(j'j � jQj);

provided we have ' 2 �Lg and Q 2 �. It is thus possible to derive (non hierarchical)

�Lg-formulas from the according hierarchical speci�cations in polynomial time, as

opposed to hierarchical formulas of the Modal Mu-Calculus (see Section 4.2.2).
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Lemma 4.56

Let ' 2 R�Lg and Q 2 R�. Then Redg((Redg('))[�; Q]) = Redg('[�; Q]).

Proof: Follows from De�nition 4.55 and the fact that Redg(') 2 �Lg.

We now de�ne the satisfaction relation for the generalized Modal Mu-Calculus.

De�nition 4.57 (Satisfaction for R�Lg)

Let P 2 R�, Q 2 R�, E 2 �0, ';  2 R�Lg and Z 2 V ar.

P j=g
# > , P 6j=g

# ? ; P j=g
# Z i� P 2 #(Z)

P j=g
# (' ^  ) i� P j=g

# ' and P j=g
#  

P j=g
# (' _  ) i� P j=g

# ' or P j=g
#  

P j=g
# [E]' i� E 2 p implies P j=g

# ' and E
�! E 0 implies

P 2 fF 2 R� j 8F 0(F
�! F 0 ) F 0 j=g

# [E
0]'g

P j=g
# hEi' i� E 2 p implies P j=g

# ' and E
�! E 0 implies

P 2 fF 2 R� j 9F 0(F
�! F 0 and F 0 j=g

# hE 0i'g
P j=g

# �Z:' i� P 2 TnE � R�jfE 2 R�jE j=g
#[E=Z] 'g � E

o

P j=g
# �Z:' i� P 2 SnE � R�jE � fE 2 R�jE j=g

#[E=Z] 'g
o

P j=g
# '[�; Q] i� P j=g

# Redg('[�; Q])

2

Assertions about subprocesses of systems can be expressed in �Lg in a more

intuitive and concise way than in �L.
Example 4.58

Let � = �Z:(hEi> _ [�]Z). A system P satis�es � if any \�-path" of P eventu-

ally leads to a state (a subsystem of P ) where P can execute any computation step

executable by the system E. 2

The semantics of �Lg coincides with the semantics of the Modal Mu-Calculus if

we restrict the generalized modalities [E] and hEi such that E 2 Act. In order to

relate the logics �L and �Lg with each other we need the following results. In what

follows, 4E means either hEi or [E] throughout the statements.
Lemma 4.59

Let P 2 R� and E1; E2 2 �0 be process expressions and ' 2 R�Lg be a formula.

Then
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1) P j=g
# 4(E1+E2)' and E1 62 p imply P j=g

# 4E1',

2) P j=g
# 4E1' and E2 2 p imply P j=g

# 4(E1+E2)',

3) P j=g
# 4E1' and P j=g

# 4E2' imply P j=g
# 4(E1+E2)'.

Proof:

1) Assume P j=g
# h(E1 + E2)i'. W.l.o.g. let E1

�! E 0
1. Then

9P 0(P
�! P 0 and P 0 j=g

# hE 0
1i'):

Hence P j=g
# hE1i'.

Now assume P j=g
# [(E1 + E2)]' and P 6j=g

# [E1]'. The latter implies

9E 0
1(E1

�! E 0
1) and 9P 0(P

�! P 0 and P 0 6j=g
# [E

0
1]')

by De�nition 4.57 (note that E1 62 p). But E1
�! E 0

1 implies (E1+E2)
�! E 0

1 by the

operational semantics. It follows P 6j=g
# [(E1 + E2)]', contradiction.

2) By the operational semantics we have that E2 2 p
implies ((E1 + E2)

�! E 0 i�

E1
�! E 0). Assertion 2) then follows directly from De�nition 4.57.

3) Assume P j=g
# hE1i' and P j=g

# hE2i'. Case i): E2 2 p. The claim follows directly

from assertion 2). Case ii): E2 62 p. For E1 2 p, the claim follows by assertion 2).

Now let E1 62 p
. Assume E1

�! E 0
1. Then 9P 0(P

�! P 0 and P 0 j=g
# hE 0

1i') by the

premise. Further assume E2
�! E 0

2. Then 9P 00(P
�! P 00 and P 00 j=g

# hE 0
2i') by the

premise. By the operational semantics and De�nition 4.57 follows P j=g
# h(E1+E2)i'.

The proof for the box modality proceeds analogously.

From Lemma 4.59 easily follows

Corollary 4.60

Let P 2 R� and E1; E2 2 �0 be process expressions and ' 2 R�Lg be a formula. If

(E1 2 p i� E2 2 p) then ((P j=g
# 4E1' and P j=g

# 4E2') i� P j=g
# 4(E1+E2)').

Proof: Case 1: E1; E2 62 p. Then the claim follows from assertion 1) and assertion

3) of from Lemma 4.59. Case 2: E1; E2 2 p
. Then the claim follows directly from

De�nition 4.57.

Lemma 4.61

Let P 2 R� and E1; E2 2 �0 be process expressions and ' 2 R�Lg be a formula. If

E1 2 p, then P j=g
# 4E14E2' i� P j=g

# 4(E1;E2)'.
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Proof: Follows directly from De�nition 2.21 and De�nition 4.57.

Lemma 4.62

Let P 2 R� and E11; E12; E2 2 �0 be process expressions and ' 2 R�Lg be a formula.

Then

1) P j=g
# 4((E11+E12);E2)' and E11 62 p imply P j=g

# 4(E11;E2)',

2) P j=g
# 4(E11;E2)' and P j=g

# 4(E12;E2)' imply P j=g
# 4((E11+E12);E2)',

3) P j=g
# 4(E11;E2)' and E12 2 p imply P j=g

# 4((E11+E12);E2)'.

Proof: Follows from De�nition 2.21, De�nition 4.57, Corollary 4.60 and Lemma 4.61.

We only show assertion 2) for the diamond-modality:

Case 1: E11; E12 2 p. Then the claim follows from Corollary 4.60 and Lemma 4.61.

Case 2: E11 2 p
and E12 62 p

. Assume the premise holds. Suppose we have

((E11 + E12);E2)
�! E 0. Since E11 2 p

, it follows by De�nition 2.21 that E 0 =

(E 0
12;E2) where E12

�! E 0
12. Hence (E12;E2)

�! (E 0
12;E2). By De�nition 4.57 follows

9P 0(P
�! P 0 and P 0 j=g

# h(E 0
12;E2)i'). We conclude that P j=g

# h((E11+E12);E2)i'.

Case 3: E11; E12 62 p. Assume the premise holds. We have ((E11 + E12);E2)
�! E 0.

W.l.o.g., suppose E11
�! E 0

11 and E 0 = (E 0
11;E2). Hence 9P 0(P

�! P 0 and P 0 j=g
#

h(E 0
11;E2)i'). We conclude that P j=g

# h((E11 + E12);E2)i' by De�nition 4.57.

Lemma 4.63

Let P 2 R� and E1; E2 2 �0 be process expressions and ' 2 R�Lg be a formula.

Then P j=g
# 4E14E2' i� P j=g

# 4(E1;E2)'.

Proof: De�ne the function dt : �0 ! IN0 by dt(0) = 0 and dt(�) = 1 and

dt((E1 op E2)) = dt(E1) + dt(E2) + 1 where op 2 f; ;+g. The proof is by induc-

tion on dt((E1;E2)) within a case discrimination on the structure of E1 2 �0. We

only show the proof for the diamond-modality. The proof for the box-modality pro-

ceeds analogously.

E1 = 0: Follows from Lemma 4.61.
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E1 = �: Then P j=g
# h(E1;E2)i'

i� 9P 0(P
�! P 0 and P 0 j=g

# h(0;E2)i') (By De�nition 4.57)

i� 9P 0(P
�! P 0 and P 0 j=g

# h0ihE2i') (By the induction hypothesis)

i� P j=g
# hE1ihE2i' (By De�nition 4.57)

E1 = (E11 + E12):

Case 1: E11; E12 2 p. Then the claim follows from Lemma 4.61.

Case 2: E11 62 p
and E12 2 p

(the case E11 2 p
and E12 62 p

is proved analo-

gously). Then P j=g
# h((E11 + E12);E2)i'

i� P j=g
# h(E11;E2)i' (By assertion 1) and 3) of Lemma 4.62)

i� P j=g
# hE11ihE2i'

(By the induction hypothesis: dt(((E11+E12);E2)) = dt(E11)+dt(E12)+1+dt(E2)+

1 > dt(E11) + dt(E2) + 1 = dt((E11;E2)))

i� P j=g
# h(E11 + E12)ihE2i' (By assertion 1) and 2) of Lemma 4.59)

Case 3: E11; E12 62 p. Then P j=g
# h((E11 + E12);E2)i'

i� P j=g
# h(E11;E2)i' and P j=g

# h(E12;E2)i'

(By assertion 1) and 2) of Lemma 4.62)

i� P j=g
# hE11ihE2i' and P j=g

# hE12ihE2i'

(By the induction hypothesis: dt(((E11+E12);E2)) = dt(E11)+dt(E12)+1+dt(E2)+

1 > dt(E1i) + dt(E2) + 1 = dt((E1i;E2)) for i = 1; 2)

i� P j=g
# h(E11 + E12)ihE2i' (By Corollary 4.59)

E1 = (E11;E12):
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Case 1: E1 2 p. Then the claim follows from Lemma 4.61.

Case 2: E1 62 p
. Assume P j=g

# h((E11;E12);E2)i'. Suppose (E11;E12)
�! E 0.

This is equivalent to ((E11;E12);E2)
�! (E 0;E2) by De�nition 2.21 since E1 62 p

.

Hence 9P 0(P
�! P 0 and P 0 j=g

# h(E 0;E2)i') by De�nition 4.57. By the induction

hypothesis, this is equivalent to the assertion 9P 0(P
�! P 0 and P 0 j=g

# hE 0ihE2i')
since F

�! F 0 ) dt(F 0) < dt(F ) for any F 2 �0. By De�nition 4.57 follows

P j=g
# h(E11;E12)ihE2i'.

It should be noted that for Ei 62 p
(i=1,2) we have that P j=g

# h(E1 + E2)i'
i� P j=g

# (hE1i' ^ hE2i') which is in contrast to P j=PDL h(a + b)i' i� P j=PDL

(hai' _ hbi') in the logic PDL. Also note, that the generalized modalities [E] and

hEi are not necessarily dual to each other for E 62 p.
A formula ' in which no terminated process term occurs (this holds for all simple

formulas) clearly satis�es the condition that E1 2 p
i� E2 2 p

for all modalities

4(E1+E2) that occur in '. We will thus con�ne our consideration to simple formulas

in what follows.

Lemma 4.64

Let ' 2 R�Lg be simple and P 2 R�. Then P j=g
# ' i� P j=g

# Redg(').

Proof: The proof is by induction on j'j within a case discrimination on the structure
of simple formulas ' 2 R�Lg using Corollary 4.60 and Lemma 4.63.

We can now give a translation t that takes simple �Lg-formulas to �L-formulas.

De�nition 4.65 (Translation of simple �Lg-formulas into �L-formulas)

The translation t of simple �Lg-formulas into �L-formulas is given by

t(�) := � for � 2 f>;?g [ V ar ; t(�Z:') := �Z:t(')

t(('1 � '2)) := (t('1)� t('2)) for � 2 f^;_g

t(4E') :=

8>>><
>>>:

4Et(') if E 2 Act

(4t('))f ; Eg where  62 �(t(')) if E 62 Act
2
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Remark 4.66

Let ' 2 �Lg be a simple formula. Then clearly t(') 2 �L. 2

Re�nements in the two logics are related via the following lemma.

Lemma 4.67

Let ' 2 �Lg be a simple formula and Q 2 R� be a process term. Then we have

Red((t('))[�; Q]) = t(Redg('[�; Q])).

Proof:

Claim: For ' 2 �Lg and Q 2 � we have

(t('))f�; Qg = t((')f�; Qgg):

Assume the claim holds. Then

Red((t('))[�; Q])

= (Red(t(')))f�; red(Q)g (De�nition 4.13)

= (t('))f�; red(Q)g (t(') 2 �L by Lemma 4.66)

= t((')f�; red(Q)gg) (by the claim above)

= t((Redg('))f�; red(Q)gg) (' 2 �Lg)

= t(Redg('[�; Q])) (De�nition 4.55):

It remains to prove the claim. This is done by induction on j'j within a case dis-

crimination on the structure of simple formulas ' 2 �Lg. We only show the case

' = [E]'0 where E 62 p. The proof for the generalized diamond modality proceeds

analogously. The other induction steps follow immediately from the relevant de�ni-

tions and the induction hypothesis.

' = [E]'0 and E 62 Act: (t([E]'0))f�; Qg

= (([]t('0))f ; Eg)f�; Qg (�) (by De�nition 4.65)

where  62 �(t('0)). W.l.o.g. let  62 �(Q) and  6= �. Then assertion (�) equals

([](t('0))f�; Qg)f ; EfQ=�gg (by the choice of )

Veri�cation in the Hierarchical Development of Reactive Systems.



130 Chapter 4: Veri�cation in the Hierarchical Development of Reactive Systems

= ([]t(('0)f�; Qgg))f ; EfQ=�gg (by induction)

= t([EfQ=�g]('0)f�; Qgg) (De�nition 4.65)

= t(([E]'0)f�; Qgg) (De�nition 4.54)

Lemma 4.68

Let ' 2 �Lg be a simple formula and E1; E2 2 �. Then

1) t(4(E1;E2)') = t(4E14E2'),

2) t(4(E1+E2)') = t((4E1' ^4E2')).

Proof: Follows from De�nition 4.54, De�nition 4.65, and Lemma 4.67.

The following lemma relates the satisfaction relations of the logics �L and �Lg.

Lemma 4.69

Let P 2 R� be a process term and ' 2 �Lg be a simple formula. Then P j=g
#

' i� P j=# t(').

Proof: The proof is by induction on j'j involving a case discrimination on the struc-
ture of simple formulas ' 2 �Lg using Lemma 4.59, Corollary 4.60, Lemma 4.63 and

Lemma 4.67.

' 2 f>;?g [ V ar: Trivial.

' = ('1 � '2) where � 2 f_;^g: Immediately from the satisfaction relation of the

Modal Mu-Calculus, De�nition 4.57, De�nition 4.65 and the induction hypothesis.

' = 4E'
0: Case discrimination on the structure of E 2 �. Note that E = 0 cannot

occur since ' is simple.

E = �: We only show the case ' = [�]'0. The case where ' = h�i'0 is proved
analogously. Suppose P j=g

# [�]'. Then

8P 0(P
�! P 0 ) P 0 j=g

# [0]'
0) (By De�nition 4.57)

i� 8P 0(P
�! P 0 ) P 0 j=g

# '
0) (By De�nition 4.57)
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i� 8P 0(P
�! P 0 ) P 0 j=# t('

0)) (By the induction hypothesis)

i� P j=# [�]t(') (By De�nition 4.57)

i� P j=# t([�](')) (By De�nition 4.65)

E = (E1 + E2): Then P j=g
# 4(E1+E2)'

i� P j=g
# 4E1' and P j=g

# 4E2' (By Lemma 4.59)

i� P j=# t(4E1') and P j=# t(4E2') (By the induction hypothesis)

i� P j=# (t(4E1') ^ t(4E2')) (By De�nition 4.57)

i� P j=# t((4E1' ^4E2')) (By De�nition 4.65)

i� P j=# t(4(E1+E2)') (By Lemma 4.68)

E = (E1;E2): Then P j=g
# 4(E1;E2)'

i� P j=g
# 4E14E2' (By Lemma 4.63)

i� P j=# t(4E14E2') (By the induction hypothesis)

i� P j=# t(4(E1;E2)') (By Lemma 4.68)

' = �Z:'0: Then we have P j=g
# �Z:'

0

i� P 2 \n
E � R�jfE 2 R�jE j=g

#[E=Z] '
0g � E

o
(De�nition 4.57)

i� P 2 \n
E � R�jfE 2 R�jE j=#[E=Z] t('

0)g � E
o

(by induction)

i� P j=# �Z:t('
0) (By the satisfaction relation of R�L)

i� P j=# t(�Z:'
0) (De�nition 4.65)

' = �Z:'0: In analogy to the above step.

We can now give the re�nement theorem for (simple) R�Lg-formulas.

Theorem 4.70

Let P 2 GR� be a process term, ' 2 CGR�Lg be a simple formula and Q 2 R�

be a distinct process term, such that P and ' are alphabet-disjoint from Q. Then we

have P j=g ', P [�; Q] j=g '[�; Q]:
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Proof:

P j=g '

i� P j=g Redg(') (By Lemma 4.64)

i� P j= t(Redg(')) (By Lemma 4.69)

i� red(P [�; Q]) j= Red((t(Redg(')))[�; Q])

(Follows by Theorem 4.42 and Remark 4.66)

i� red(P [�; Q]) j= t(Redg((Redg('))[�; Q])) (By Lemma 4.67)

i� red(P [�; Q]) j=g Redg((Redg('))[�; Q]) (By Lemma 4.69)

i� red(P [�; Q]) j=g Redg('[�; Q]) (By Lemma 4.56)

i� P [�; Q] j=g '[�; Q]

(Follows from Lemma 4.64 and, by de�nition, T (P [� ; Q]) = T (red(P [� ; Q])))

Example 4.71

Consider the term P = (Q1k(Q2;�)) where we assume that Q1 2 � is alphabet-

disjoint from Q2 2 � and Qi (i = 1; 2) is distinct. The system P satis�es the

formula ' = �Z:(h�i> _ [Q2]Z) expressing the property that \every computation

path that emerges by recursively executing Q2 a �nite number of times can also be

executed by P and leads P to a state where P can execute �". Using classical model

checking techniques, the whole state space of P (the size of which can be exponential

in jP j) has to be computed. Now we have that P = red(Ps[� ; Q1][ ; Q2]) where

Ps = (�k(;�)) has six states. Further, ' = Redg('s[� ; Q1][ ; Q2]) where

's = �Z:(h�i> _ []Z). We can now use a model checker for the (standard) Modal

Mu-Calculus (see, for example, [18]) to decide whether Ps j=g 's. If Qi (i = 1; 2)

does not contain the action �, we can use Theorem 4.70 to decide P j=g '. 2

4.4.1 Discussion

Using the logic R�Lg together with the reduction function Redg instead of the logic

R�L solves the problem of the \exponential blow-up" that arises for R�L-formula
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reduction discussed in Section 4.2.2: Provided we consider terms Q 2 � and for-

mulas ' 2 �Lg (process terms P 2 �), the formula Redg('[� ; Q]) (process term

red(P [�; Q]) resp.) has size at most O(j'j � jQj) (O(jP j � jQj) resp.). Computing
reductions thus takes time O(j'j � jQj) and O(jP j � jQj) for the reduction of formu-

las and for the reduction of process terms respectively. Hence, after each re�nement

step, implementation near process terms and low level speci�cations can be e�ciently

derived by applying the according reduction functions.

We have seen, that the generalized Modal Mu-Calculus �Lg allows to formalize

properties of reactive systems in a very concise and intuitive way. Finally, �Lg-

formulas can be easily translated into logically equivalent �L-formulas. This allows
existing methods and tools for the Modal Mu-Calculus to be integrated into our

framework.

4.5 Related Work

Addressing a development/re-engineering-paradigm, [105] showed that a synchro-

nization structure S satis�es a formula ' if and only if a (semantical) re�nement

of S satis�es a particular re�nement of '. It is not clear however, to what extend

this approach can be used in practice: Recursive behaviour can only be modelled

by in�nite synchronizations structures. It thus seems to be questionable whether an

e�ective implementation of the involved method of semantic action re�nement can

be given. Further, a linear time temporal logic is used whereas we use the branching

time Modal Mu-Calculus.

[178] discusses a development technique based on so called \vertical implementa-

tion relations". Starting from a speci�cation T and an implementation U , it is shown

that T equals U modulo a particular vertical implementation relation
<�r

(denoted

by T
<�r

U) i� T is observation congruent (in the sense of Milner [154]) to U *r
(denoted by T ' U *r). There, T , U and U *r are TCSP -like process expressions
and U *r arises from U by the application of a so called r-abstraction. In con-

trary to our approach, both, the speci�cations (T ) and the implementations (U and

U *r) are expressed in an operational fashion. Consequently, the valuable features

of dual-language approaches to veri�cation [96] can not be exploited. Furthermore,

the speci�cation T remains �xed and can not be adapted to changing recources or

requirements, a situation which we wanted to overcome with our approach.
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If not used to develop and re-engineer systems, Theorem 4.42, Theorem 4.50 and

Theorem 4.51 can still be used to support model checking techniques for systems that

could not be handled otherwise due to the (huge or in�nite) size of their state spaces.

Thus, our approach is also conceptually related to a large body of research which

investigates techniques to enhance model checking techniques for huge or in�nite state

spaces [1]. \On the y" model checking [194, 28, 106, 191] focuses on generating only

those parts of the state space that are relevant for the property under consideration.

Other techniques exploit partial order reduction (surveyed in [167]) or binary decision

diagrams [31] with the aim to compactify state spaces without loosing information

about the systems.

Closest to our approach are the widely investigated abstraction techniques, that

are mostly based on the framework of abstract interpretations (see, for example, [55,

54]). Theorem 4.42 relates process terms and formulas with syntactic re�nements

of them. The abstractions used in [44, 91, 17, 182] are established on the system

description as well.

Syntactic action re�nement allows to create hierarchical system descriptions.

In [8], a model checking technique is presented that directly exploits the hierar-

chical structure of the considered systems: The BDD-based algorithm traverses \ab-

stract" transitions by expanding the according \concrete" transition systems on the

y. Hence, the system is analyzed at di�erent levels of abstraction which alleviates

the state explosion problem.

Those abstraction techniques di�er from our approach in that only the systems

are subject to abstractions whereas both, systems and formulas are abstracted in our

approach. Furthermore, our abstraction technique is exact whereas most abstraction

techniques found in literature are only conservative: Let SA be the abstraction of the

system S. Then we cannot infer S 6j= ' from SA 6j= ' if the involved abstraction is

only conservative. In our approach, no distinction is made between the treatment of

safety, liveness, universal and existential properties. On the other hand, some of the

above mentioned approaches allow to create abstract �nite state systems from con-

crete in�nite state systems which is not possible using our results. Another method

to enhance model checking exploits symmetries which are often exhibited by concur-

rent systems (see, for example, [43, 74]). Whereas those methods aim to \merge" the

symmetries that occur in the transition graph of a system, our technique exploits the
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structural equalities that occur in the process descriptions (process terms, that is).

In [81], action re�nement for an object based temporal logic has been investi-

gated. There, actions are conceived as propositions in the temporal language. Action

re�nement then amounts to mappings of propositions p to theories � which describe

the functionality of p on a lower level of abstraction. The main aim of this work is

to establish a proof-theory which can be used to show that a \concrete" description

 (the implementation) of a system is correctly related to an \abstract" descrip-

tion � (the speci�cation) of the system, in the sense, that � )  . Both, � and  

are formulas of the temporal language. Hence, this approach lacks the features of

dual-language formalisms (see [96]). As opposed to our re�nement operator-based

approach, this work is based on the idea of \hierarchies of designs" (see, e.g., [90]).

Again, the speci�cation � is to be �xed and can thus not be subject of any adaptation.

4.6 Future Directions

There remain some interesting problems still to be investigated.

Probably the most challenging problem is to determine under which conditions

Theorem 4.42, Theorem 4.50 and Theorem 4.51 hold when those actions that are con-

sidered to be \system-internal" are abstracted to \non-observable" actions, so called

� -actions (see, for example [154]). The � -actions can then, for example, be employed

to hide internal synchronization activity of the system from the environment of the

system. In the process algebra R�, abstractions of internal system behaviour can be

carried out by means of the so called \hiding-operator" of TCSP [162]. This operator

transforms observable actions into � -actions. The presence of the hiding-operator in

R� necessitates to deal with a computational phenomenon called divergence (see, for

example, [5]). Intuitively, divergence amounts to in�nite internal chatter of a system

which embodies another computational phenomenon called livelock. As opposed to

a deadlock where a system is unable to perform any activity (in order to leave an

undesired \termination state"), a livelock does not entirely disable a system from

any activity. However, a livelock disables the environment to interact with a system

as it engages the system in exclusively internal activities. We remember, that con-

tinuous interaction with its environment is a prime feature of reactive systems. From

the viewpoint of an external observer (the environment), a \livelocked system" thus

behaves like a \deadlocked system". Apart from dealing with livelocks on the system
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level, the speci�cation formalism has to be adapted: An intuitionistic modal logic

(see, for example, [189]) has to be used instead of the classical Modal Mu-Calculus

of Kozen [119]: For diverging systems P , there exist formulas ' of the Modal Mu-

Calculus for which neither P j= ' nor P 6j= ' holds, that is, the law of excluded

middle fails (see, for example, [189]).

Introducing an explicit abstraction operator into the process algebra R� and

investigations to what extent the abstraction technique embodied in Theorem 4.42

and Theorem 4.70 can be fully automated are other interesting questions. In Sec-

tion 4.2.1, we have seen that using Theorem 4.42 as an abstraction technique amounts

to \forgetting about re�nement operator sequences". Deciding Ps j= 's automati-

cally decides P j= ' where P = Ps[�1 ; Q1] : : : [�n ; Qn] and ' = 's[�1 ;

Q1] : : : [�n ; Qn]. The important point is, that the state space of Ps can be ex-

ponentially smaller than the state space of P . We expect that an algorithm can

be devised which, given a process term P and a formula ', computes a (abstract)

process term Ps 2 �, an according formula 's 2 �Lg, and appropriate re�nement

sequences �[�1 ; Q1] : : : [�n ; Qn] and �[�1 ; Q1] : : : [�n ; Qn] in time, polynomial

in jP j (the size of the process expression P ) and j'j (the size of the �Lg-formula ').

In order to give some reasons for our conjecture, we note that the computation of

appropriate re�nement sequences (in the sense above) boils down to the computation

of such sub-terms Q1; : : : ; Qn 2 � of P and ' which meet the conditions of Theo-

rem 4.42. Multiple occurrences of such sub-terms Q1; : : : ; Qn 2 � can be detected

in polynomial time by partition re�nement algorithms (see, for example, [165]24). In

order to achieve substantial state space reductions we can restrict our search for sub-

terms Q1; : : : ; Qn of P to terms of the form (P1kAP2): Such terms are the source of

state space explosion problems. An obvious bottleneck of any abstraction algorithm

that is based on Theorem 4.42 or Theorem 4.70 will be the test that Q 2 � (as this is

one condition for valid re�nements in the aforementioned Theorems). However, as �

is generated by a context-free grammar, the algorithm of [66] can be used to decide

Q 2 � in time O(jQj3). Considering that all known model checking algorithms for

the Modal Mu-Calculus need exponential time to decide whether a system P satis�es

24Of course we have to represent process terms P and formulas ' by their parse trees in order to

apply these algorithms. However, the size of the parse trees of P and ' grow linearly with respect

to jP j and j'j.
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a speci�cation ' (with respect to jP j and j'j), a polynomial time algorithm which

implements our abstraction technique would be very useful: The time needed to

compute abstractions would be entirely subsumed by the time required by the model

checking algorithm used.

Another interesting question is for which process algebras P, logics L1;L2 and

re�nement operators �[�;  ], an assertion like

8P 2 P 8' 2 L1 8 2 L2(P j= ' and Q j=  , P [�; Q] j= '[�;  ])

can be proved. This would allow (partial) speci�cations  of processes Q to be

\logically merged" into ' (in Theorem 4.42 and Theorem 4.70 the \whole logical

structure" ofQ is merged into '). There, the most important question to be answered

is whether the Modal Mu-Calculus is powerful enough to represent a reasonable

semantics for the operator �[�;  ].

5 Conclusion

We de�ned syntactic action re�nement for formulas ' of the Modal Mu-Calculus

(Section 4.1) and showed that the presented de�nition conforms to syntactic action

re�nement for the process algebra R� (which contains the parallel composition op-

erator of TCSP and recursion) in the sense, that for process terms P 2 R� the

assertion

P j= ', P [�; Q] j= '[�; Q] (�)

is valid (see Theorem 4.42). The operator �[� ; Q] denotes syntactic action re�ne-

ment both on formulas and process expressions. The development/re-engineering-

technique embodied in assertion (�) is called simultaneous syntactic action re�ne-

ment.

Assertion (�) is valid provided some particular conditions of alphabet-disjointed-

ness and distinction are obeyed. However, two special cases of assertion (�) which do
not rely upon these conditions were presented (see Theorem 4.50 and Theorem 4.51).

Assertion (�) can be applied in various ways to the veri�cation of reactive sys-

tems one of which is the (a priori) correct transformation of systems induced by the

syntactic re�nement of speci�cations: Provided we know P j= ', re�ning ' into
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'[� ; Q] automatically yields P [� ; Q] such that P [� ; Q] j= '[� ; Q] (see

Example 4.43, the case study in Section 4.2.1 and Example 4.52).

Further, we explained how the obtained results can be used as an abstraction

technique (see Example 4.43, the case study in Section 4.2.1 and Example 4.71) and

that that the results can sometimes make it possible to model check systems that

would remain infeasible otherwise.

We explained that assertion (�) can be combined with classical veri�cation tech-

niques like, for example, with model checking algorithms (see the case study in Sec-

tion 4.2.1). Hence, assertion (�) extends classical veri�cation technique which leads

to settings, that allow to automatically develop/re-engineer formally correct reactive

systems by hierarchically enriching/abstracting speci�cations with details.

In order to obtain an e�cient development/re-engineering-technique, we intro-

duced the generalized Modal Mu-Calculus (De�nition 4.53 and De�nition 4.57) and

de�ned a reduction function for this logic (De�nition 4.54 and De�nition 4.55). Com-

puting reductions takes time O(j'j � jQj) for hierarchical speci�cations '[� ; Q] 2
R�Lg and O(jP j � jQj) for hierarchical process terms P [�; Q] 2 R�, provided the

re�nements are not nested (that is, ', P and Q contain no re�nement operators).

Hence, after each re�nement step, implementation near process terms and low level

speci�cations can be e�ciently derived via the application of the reduction functions.

Theorem 4.70 embodies this e�cient development/re-engineering-technique.

We used the expressive Modal Mu-Calculus as speci�cation formalism and the

intuitive notion of transition systems as the semantic model for reactive systems.

We thus believe that our results can provide a basis for similar investigations that

employ other logics and semantic models.

The obtained results have been applied to a serial of examples and a more thor-

ough case study is carried out in Section 4.2.1. Particular parts of this thesis are also

available in a more condensed form (see [136, 137, 138, 139, 140]).
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Zusammenfassung

Die intensiv untersuchte Methode der syntaktischen Aktionsverfeinerung erm�oglicht

den formalen und hierarchischen Entwurf reaktiver Systeme in (prozess-) algebra-

ischen Entwicklungssprachen: Mit Hilfe der syntaktischen Aktionsverfeinerung k�onnen

(atomare) Aktionen eines abstrakten Systementwurfs durch komplexe (nicht-atomare)

Aktivit�aten beschrieben werden.

Eigenschaften von Systementw�urfen werden h�au�g in Temporaler Logik spezi-

�ziert. Eine besonders ausdrucksstarke Temporale Logik ist der Modale Mu-Kalk�ul.

Unter der Veri�kation eines Systementwurfs wird der mathematische Nachweis

erw�unschter Eigenschaften des Systementwurfs verstanden.

Diese Arbeit besch�aftigt sich mit der Integration herk�ommlicher Veri�kationstech-

niken (wie zum Beispiel der Methode der Modell-Pr�ufung - engl.: model checking)

in den hierarchischen, auf der syntaktischen Aktionsverfeinerung basierenden, Ent-

wurf reaktiver Systeme. Dazu wird zun�achst eine bereits existierende Methode zur

syntaktischen Aktionsverfeinerung f�ur die Prozess-Algebra TCSP vorgestellt und

f�ur unsere Zwecke erweitert. Anschlie�end de�nieren wir eine Methode zur syn-

taktischen Aktionsverfeinerung f�ur Formeln des Modalen Mu-Kalk�uls. Daraufhin

wird nachgewiesen, dass die Methode zur syntaktischen Aktionsverfeinerung f�ur den

Modalen Mu-Kalk�ul in kanonischer Weise zu der Methode zur syntaktischen Ak-

tionsverfeinerung f�ur TCSP passt: Unter bestimmten Voraussetzungen gilt, dass ein

abstrakter Systementwurf P eine abstrakte Spezi�kation ' genau dann erf�ullt, wenn

ein detaillierter Systementwurf P 0 eine detaillierte Spezi�kation '0 erf�ullt. Dabei

entsteht '0 aus ' durch die Anwendung der Methode zur syntaktischen Aktionsver-

feinerung im Modalen Mu-Kalk�ul. Diese Verfeinerung induziert eine syntaktische

Aktionsverfeinerung in TCSP welche P nach P 0 �uberf�uhrt. Vorausgesetzt, dass der

Systementwurf P die Spezi�kation ' erf�ullt, liefert uns also die Verfeinerung von '

in '0 automatisch einen \a priori" korrekten Systementwurf P 0 (in dem Sinn, dass

P 0 die Spezi�kation '0 erf�ullt).

Anschlie�end wird gezeigt, dass jeweils eine der beiden Implikationen in der obigen

�Aquivalenzaussage f�ur bestimmte Fragmente des Modalen Mu-Kalk�uls unter sehr

schwachen Voraussetzungen bewiesen werden kann.

Desweiteren f�uhren wir eine Erweiterung des Modalen Mu-Kalk�uls ein und de�-
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nieren eine Methode zur syntaktischen Aktionsverfeinerung f�ur diese Logik. Es wird

gezeigt, dass die obige �Aquivalenzaussage auch bei Verwendung der Erweiterung des

Modalen Mu-Kalk�uls g�ultig ist. Die Erweiterung des Modalen Mu-Kalk�uls erlaubt

eine kompaktere Spezi�zierung von Systemeigenschaften als dies mit dem herk�omm-

lichen Modalen Mu-Kalk�ul m�oglich ist. Dieser Umstand wird ausgenutzt, um eine

e�ziente Entwicklung von a priori korrekten Systementw�urfen auf der Basis unserer

Methode bereitzustellen. Dar�uber hinaus wird eine Anwendung unserer Methode

beschrieben, welche zur Beschleunigung der Entwurfsveri�kation mittels Modell-

Pr�ufung benutzt werden kann. Eine Fallstudie demonstriert die Anwendung der

Ergebnisse dieser Arbeit.
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