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ABSTRACT

We introduce a novel approach for image registration for
high dynamic range (HDR) videos. We estimate a translation
vector between two low dynamic range (LDR) frames cap-
tured at different exposure settings. By using row and column
histograms, counting the number of dark and bright pixels
in a row or column, and maximizing the correlation between
the histograms of two consecutive frames, we reduce the
two-dimensional problem to two one-dimensional searches.
This saves computation time, which is critical in recording
HDR videos in real-time. The robustness of our estimation
is increased through application of a Kalman filter. A novel
certainty criterium controls whether the estimated translation
is used directly or discarded and extrapolated from previous
frames. Our experiments show that our proposed approach
performs registration more robustly on videos and is 1.4 to 3
times faster than comparable algorithms.

Index Terms— Image Registration, HDR Video

1. INTRODUCTION

Natural scenes usually have a range of brightness values that
exceeds the capabilities of traditional LDR capturing devices
by far. This leads to under- and overexposed pixels in the
captured images, and information on brightness differences
between these pixels is lost. The most popular solution to
this problem is temporal exposure bracketing, i.e., using a set
of LDR images captured in quick sequence at different expo-
sure settings. Each LDR image then captures one facet of the
scene’s dynamic range. When fused together, an HDR image
is created that covers the full dynamic range of the scene.

This paper is based on the HDR image capturing method
proposed in [1]. The first approach to capturing HDR videos
using temporal bracketing was published in 2003 [2]. How-
ever to our knowledge, no system to capture and display HDR
videos using this technique in real-time has been developed
up to the present day. One of the reasons for this may be
the high computational cost of creating an HDR frame from
a set of LDR frames. In this paper we address the challenge
of estimating the camera motion between two LDR frames
efficiently so that they can be merged without adding blur.

Existing approaches to registration of general images
often have difficulties coping with the high brightness dif-
ference between LDR exposures [3]. Only few techniques
treat this problem specifically [4]. The authors of the original
HDR video paper propose a method for estimating camera
and scene motion, but its computational cost is too high to
be used in real-time [2]. Ward uses thresholded images that
are robust to brightness variation and performs an efficient
hierarchical search for translational camera motion [5]. We
improve upon this approach in terms of speed and make use
of temporal coherence of motion vectors in videos. We re-
place the hierarchical 2D search with two separate exhaustive
1D searches to speed up the computation. By introducing
a certainty criterion for our estimation, we are able to filter
out outliers and improve the registration accuracy for HDR
videos.

2. HDR VIDEO PROCESSING PIPELINE

The process of creating a frame in an HDR video can be
thought of as a pipeline where the output of each step is the
input to the subsequent one. The capturing of LDR images
constitutes the first step. LDR images are captured as de-
scribed in [1]. We start by grabbing a frame at full resolution
and an exposure setting (shutter and gain) that covers most of
the scene’s dynamic range. This base frame is then analyzed
for under- and overexposed image areas, and rectangular re-
gions for re-exposure are chosen. These regions are captured
again using a higher or lower exposure setting respectively.
Note that the resulting re-exposures usually have a smaller
frame size. This saves a considerable amount of overall cap-
turing and processing time. The newly captured frames are
analyzed for badly exposed image areas again, and more re-
exposures are triggered if necessary. The capturing process
ends once all regions are properly exposed in at least one of
the LDR frames.

Many of the subsequent steps only operate on the bright-
ness values of the captured images. We thus perform a color
conversion into the Yxy color space to separate the luminance
channel Y from the chrominance channels x and y.

The next step in the HDR video pipeline is image reg-
istration and is the focus of this paper. The input to image



registration is a set of LDR exposures in the Yxy color space.
Such a set consists of exactly one base frame at full resolu-
tion and a number of smaller re-exposures captured at differ-
ent points in time. The task of image registration is now to
estimate the camera motion that occurred between the expo-
sures so that pixel correspondences can be established. We
argue that a purely translational camera motion model is suf-
ficiently accurate for high frame rates. This assumption is
supported by [5]. In our approach, the output of image regis-
tration is a set of two-dimensional integer vectors describing
the shift between the base frame and each re-exposure.

The fully registered exposure set is then merged into a
single HDR frame. This step includes an implementation of
ghost removal to compensate for scene motion that is not cov-
ered by image registration.

The last step in the chain is tone mapping of the HDR
frame. The dynamic range of the frame is compressed to be
displayable on a LDR display.

3. HISTOGRAM-BASED IMAGE REGISTRATION

This Section describes our histogram-based algorithm for im-
age registration. It solely operates on the brightness channel
of the images. The input to our algorithm is a set of n ex-
posures consisting of one full resolution base frame I0 and
smaller re-exposures Ii for i = 1, ..., n − 1 captured at dif-
ferent exposure settings. Each re-exposure was initiated by
badly exposed regions detected during the analysis of an al-
ready captured frame. The analyzed frame can thus be con-
sidered the parent frame of the re-exposure. The base frame is
the root of the whole set. Each exposure is contained entirely
in its parent.

Our algorithm performs no image registration on the base
frame of an exposure set. Each re-exposure is registered with
respect to its parent, i.e., a two-dimensional integer translation
vector ~vi between frames Ii−1 and Ii is estimated. Without
loss of generality, we assume that exposure Ii−1 is the par-
ent of Ii. By summing up all vectors along the path from an
exposure Ii to the base frame, an absolute shift between each
exposure and the base frame can be easily calculated.

For estimating the translation vectors, we use mean
threshold bitmaps (MTB) as described in [5]. A mean thresh-
old bitmap is a black and white image that was created from a
greyscale image such that 50% of the image pixels are white
and 50% are black. The advantage of an MTB compared to a
regular grayscale image is that – within certain limits – two
exposures depicting the same scene captured at two different
exposure settings will result in approximately the same MTB.
This fact is very desirable for image registration. The creation
of MTBs is covered in Section 3.1.

Once the MTBs of two exposures to be registered are
computed, we proceed by computing a column histogram,
counting the number of black pixels in each column of the
MTB. This is demonstrated in Figure 1. Such a column his-

Fig. 1. Mean Threshold Bitmap of an LDR frame and its
corresponding column histogram counting black pixels.

togram is computed for both MTBs. By using normalized
cross correlation between the two column histograms, we es-
timate the horizontal component of the translation vector. Re-
peating this process for image rows allows us to estimate the
vertical component respectively. More details on the compu-
tation are given in Section 3.2.

As a last step, all resulting vectors are validated using a
Kalman filter to incorporate knowledge of the prior motion
into the estimation. A novel certainty criterion is used to de-
termine the weighting between using the computed transla-
tion directly and extrapolating it from the preceding trajec-
tory. This process is described in Secion 3.3.

3.1. Mean Threshold Bitmap

Image registration starts with the creation of two MTBs for
the two exposures Ii−1 and Ii to be registered. Since a re-
exposure is always contained entirely in its parent, processing
time can be reduced by computing the full MTB of the re-
exposure Ii, but only computing the MTB of the overlapping
image area in the parent frame Ii−1.

The first step is to build a regular histogram with 256 bins
over the brightness values of Ii. From the histogram, we can
deduce the median brightness valuemi to be used as a thresh-
old so that 50% of the thresholded pixels are white and 50%
black. At this point, the exposure values (e.g., shutter values)
ei−1, ei at which the two frames were captured as well as the
response function f of the capturing camera are known. The
response function maps the amount of light incident upon a
cell of the CCD sensor onto a pixel value. We can thus use
these known values to calculate the unknown threshold mi−1

as follows:

mi−1 = f(f−1(mi)/ei ∗ ei−1). (1)

This is an improvement over the original algorithm and saves
the computation of a histogram over Ii−1.



In the original paper, ignoring pixels with a value near
the median is suggested because they are unstable with re-
gard to thresholding. In our experiments, we found that a
noise threshold of T = 2 brightness steps below and above
the mean leads to good results.

For our algorithm, it is sufficient to calculate the two me-
dians mi−1 and mi which are then used to build the row and
column histograms. The MTB itself is not built.

3.2. Row and Column Histograms

We estimate a two-dimensional shift ~vi = (xi, yi) between
two exposures Ii−1 and Ii by estimating two one-dimensional
shifts xi and yi separately. It is a greedy algorithm for image
registration where each dimension of the shift vector is esti-
mated independently of the other.

We start by estimating the horizontal shift xi. The first
step in doing so is to build column histograms over the full
image Ii and the overlapping image area of Ii−1. A bin in
the column histogram represents the number of black pixels
in the corresponding column of the exposure’s MTB. Since
near-median pixels are ignored as described in the previous
Section, two individual histograms counting black and white
pixels respectively must be built for each exposure. Let wi

and hi be the width and height of Ii. The column histogram
Bx

i (j) of exposure Ii counting black pixels is a function of
the column index j = 1, ..., wi and is defined as

Bx
i (j) = |{Ii(j, k) < mi − T ; k = 1, ..., hi}| (2)

where Ii(j, k) is the pixel value at position (j, k) and | · |
denotes the number of elements in the set. The histogram
W x

i counting white pixels and the two histograms for Ii−1

are defined accordingly.
The horizontal shift xi is now estimated using these four

histograms. We let the shift s assume all possible integer val-
ues within a search range (e.g., -64 to 64 pixels) and com-
pute the normalized cross correlation (NCC) between the his-
tograms of exposures Ii−1 and Ii under the given shift:

NCC(s) =
C√
N1N2

(3)

whereC is the cross correlation value between the histograms
of Ii−1 and Ii

C =
wi∑

j=1

(
W x

i (j)W x
i−1(j − s) +Bx

i (j)Bx
i−1(j − s)

)
(4)

and N1 and N2 are the two normalization values

N1 =
wi∑

j=1

(
W x

i (j)2 +Bx
i (j)2

)
(5)

N2 =
wi∑

j=1

(
W x

i−1(j − s)2 +Bx
i−1(j − s)2

)
. (6)

The s producing the highest correlation value is then used as
the estimate for xi.

Using row histograms, the vertical shift yi can be esti-
mated analogously. Our experiments show that the choice
of which dimension to start with has little effect on the final
result. We also found that performing multiple iterations of
the greedy algorithm does not improve the registration qual-
ity significantly. We therefore only estimate xi and yi once
and set ~vi = (xi, yi) as the resulting translation vector.

3.3. Kalman Filtering

A Kalman filter is used to incorporate the entire trajectory
of the camera motion into the estimate of the current frame.
For this purpose, we developed a criterion that allows us to
judge the certainty of the estimate of ~vi. It is simple and yet
performs well – as will be seen in Section 4.

From manually registered HDR test videos, we computed
mean µ and standard deviation σ of the distances d between
two consecutive motion vectors: d = |~vi−1 − ~vi|. With
approximately zero mean and assuming that the distances
are Gaussian distributed, over 99% of the motion vectors
lie within 3σ from the previous vector. At the same time,
erroneous measurements can be assumed to be uniformly
distributed over the entire search range.

We thus use d as criterion for the certainty of the mea-
sured shift. A d > 3σ is likely to indicate an incorrect mea-
surement, and the corresponding shift vector is discarded. If
d ≤ 3σ, the state of the Kalman filter is updated using ~vi as
the measured state and d as the variance of the measurement.
In both cases, we use the current state of the filter as the shift
vector of the frame to be registered. The state is also used to
predict the motion vector ~vi+1. It helps to improve the perfor-
mance of the greedy search algorithm and allows to calculate
d for the next frame.

In our scenario, increasing the search range also increases
the chance to detect errors in the shift measurement. Since
computing the NCC is rather cheap, we set our search range
to approximately±20σ to leave enough room for error detec-
tion.

4. EXPERIMENTAL RESULTS

For our experiments, we captured five HDR test videos – both
with and without using a tripod. The videos consist of three
indoor and two outdoor shots of mainly static scenes with a
large amount of camera rotation. All videos have a resolu-
tion of 640 × 480 and an average of 87 HDR frames. Each
HDR frame was created using one base frame and 3.35 re-
exposures on the average. The first two videos were used to
fine-tune the parameters of the algorithm (e.g., search range,
noise threshold T , uncertainty threshold for d). All five videos
are used for performance evaluation. All frames were regis-
tered manually, and the resulting translation vectors constitute
the ground truth for evaluating the accuracy of our automatic



Video # Ward without filtering with filtering
1 1.56 (3.46) 5.21 (6.90) 1.12 (2.60)
2 1.05 (2.21) 1.31 (1.49) 1.13 (0.89)
3 1.37 (4.05) 1.12 (3.47) 0.78 (0.78)
4 2.27 (4.70) 1.78 (3.76) 1.38 (1.37)
5 3.96 (6.33) 4.52 (6.69) 2.77 (2.89)

Fig. 2. Average registration error (and standard deviation in
brackets) for the five test videos. The algorithms compared
are: Ward’s algorithm, our approach without filtering and our
full algorithm.

algorithm. As the criteria for our evaluation, we use mean
and standard deviation of the distance between our estimate
and the ground truth over all frames of a video. Since it is our
goal to capture and display HDR videos in real-time, the time
taken for registration of a frame of a certain size is our second
criterion. Both criteria are compared to our implementation
of Ward’s algorithm [5].

Ward’s algorithm was developed for registering still im-
ages only. It does not make use of the history of motion
vectors. So we start by comparing its accuracy to the one
achieved by the still image version of our algorithm, exclud-
ing the filtering and prediction. The search range is set to 16
for both approaches. The second and third column of the table
in Figure 2 show the results of this comparison. It can be seen
that in this setup both algorithms perform similarly with re-
spect to accuracy. The first video contains re-exposures with a
height of only 48 pixels which is too small for our algorithm
to handle properly. Video 5 is an indoor scene with motion
blur in some of the long exposures. This explains the bad
accuracy achieved by both.

In the second step, we add Kalman filtering to our ap-
proach and set the search range to 64. The rightmost column
of the table indicates the accuracy improvement achieved.
The effect of filtering outliers can be seen best in the reduced
standard deviation. The motion vectors of the small frames
of video 1 are now interpolated from the surrounding bigger
frames, leading to a much better accuracy.

Figure 3 shows the time taken for both algorithms to per-
form image registration. Since for both algorithms the image
content does not influence the speed, we conducted all time
measurements on a random frame and registered it with it-
self. The HDR capturing algorithm we employ always cap-
tures re-exposures at full width but with varying height [1],
so the frame was cropped to heights from 100 to 480 pixels in
steps of 10 before registration. Depending on the frame size,
Ward’s algorithm takes between 1.4 and 3 times longer than
ours.

At full resolution, approximately 7.3 out of the 8 ms taken
by our algorithm are due to the computation of means and the
construction of row and column histograms. Only 0.7 ms are
taken for computing the normalized cross correlation. Filter-
ing the results takes approximately 0.016 ms and is negligible.
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Fig. 3. Time taken for registration of images with a width of
640 pixels and the given height.

5. CONCLUSION AND OUTLOOK

We introduced an approach to the registration of LDR expo-
sures for the creation of HDR videos in real-time. The focus
was on improved registration speed compared to existing al-
gorithms. We believe that the accuracy achieved by our al-
gorithm using Kalman filtering is acceptable in most view-
ing scenarios. The biggest obstacles for further accuracy im-
provement are the assumptions of purely translational motion
and integer-valued motion vectors. The former is an inherent
part of our algorithm. However in future work, we would like
to add sub-pixel shift measurements to our approach to over-
come the 0.5 pixels of average quantization error immanent to
our implementation. We would also like to explore the pos-
sibility of registering different pairs of exposures than just a
frame and its parent.
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