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Abstract. This document presents insights from extensive reverse engineering
efforts of the memory management mechanisms of Windows XP. The focus lies
on (1) the mechanisms which are used to map executable modules into the
address space and (2) the role of the page fault handler in this context.

1 Introduction

Malware is an ubiquitous threat, which is growing from day to day. In order to fight
it and mitigate its effects, it is necessary to analyze the upcoming malicious samples.
There are two main different approaches to that analysis in general, one static and a
dynamic one. The static approach tries to comprehend the concrete semantics of either
the complete program, or parts of it, by disassembling its instructions [2,8,22,23,9]. In
most cases malicious applications are protected in several manners, e.g. by encryption,
code obfuscation and anti-reversing tricks in general [11,24]. Accordingly, before their
functionality can be analyzed, these protection layers have to be removed [29,49], which
is a very time consuming process.

In the dynamic approach the malicious application is more viewed as a black box
and its behaviour is monitored while it is executed. The monitoring itself can be re-
alized from different points of the application and operating system stack. It can be
done from within the monitored application itself, from the kernel, or from outside the
system by using a hypervisor. Depending on the particular location of the monitoring
component, different techniques can be applied to intercept the interaction between
the malware and the operating system, e.g. system call hooks [47,51], binary instru-
mentation [10,25,46], virtual machine introspection [1,16,14] and so on. The two main
disadvantages of dynamic analysis are the fact that it most often is easy to detect
[17] and, furthermore, that in each analysis run only one possible execution path is
monitored [30].

Sometimes static and dynamic methods are combined [36,33,26] to speed up the
analysis process. For instance the sample is executed for a certain time and then, e.g.
after all protection and decryption layers are hopefully passed, the resulting instructions
are dumped and disassembled [44,6]. This diminishes the necessary effort of the analyzer
and benefits from the advantages of both approaches.

In nearly all of those analysis scenarios a detailed understanding of the underlying
operating system internals is mandatory. Especially in dynamic analysis a full under-
standing of the memory management internals is essential, since there the analyzing
components are either embedded directly into the operating system or they are highly
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interacting with it. In order to learn the functionality of a running process without
having its source code at hand, it is mandatory to reconstruct its data structures, and
this cannot be done without knowing the way how these are mapped into the available
memory.

Besides malware analysis, also the field of digital memory forensics [18,37] heavily
depends on this kind of knowledge. Most malicious applications still are aiming at the
Windows operating system, which obviously is not an open-source system. Though
there already exist excellent work in describing its internals [34,39,38], there still is a
lack of information about some lower level mechanisms.

Hence, in the following we will investigate the memory management of Windows
XP and focus on the mechanisms which are used to map executable modules into the
address space and the role of the page fault handler in this context. For that purpose,
we will briefly explain some background information in section 2 and then delve into
the memory internals in section 4.

2 Memory Management Background

In this section we will present some fundamentals which are necessary to understand
the remainder of this work. Since our approach heavily relies on the Windows paging
mechanism, we start with a short preface about paging in general. After that we will
briefly present the highly related mechanism of translation lookaside buffers.

2.1 Paging

Most contemporary operating systems use a paging mechanism to realize virtual ad-
dress spaces and abstract from their physical memory. The virtual memory is divided
into equal sized pages and the physical memory into frames of the same size, and each
page can be mapped to an arbitrary frame. Pages that are currently not mapped are
temporarily stored on secondary storage, e.g. in a page file on the hard disk. Effects of
paging are that physical memory is used much more efficiently and can be also smaller
than the virtual memory offered by the OS. Furthermore, a page-level memory pro-
tection scheme can be applied, e.g. to mark particular memory ranges as read-only
or non executable. Before paging the x86 CPUs only offered segmentation for mem-
ory protection, which offered less flexibility and operated with a much more coarse
granularity.

The mapping between virtual and physical addresses normally is done transpar-
ently to the running applications by the memory management unit (MMU), which is a
dedicated part of the CPU. Under some special conditions, the hardware cannot resolve
the mapping on its own without the help of the OS. In such an event a page fault is
generated, which has to be handled by the page fault handler of the OS. Examples
of such events are accessing pages that are currently not mapped into the physical
memory or trying to write to read-only memory.

Besides these reaction on page faults, the OS also maintains some memory related
system threads. Those periodically exchange data between the physical memory and
the hard disk, e.g. to always maintain sufficient available memory.



For managing the paging mechanism, the MMU and the related system functions use
some specific data structures, namely page tables. Since the address spaces of different
processes are isolated from each other, each process uses its own instances of these
structures. Each page table entry (PTE) describes the memory range of one associated
page. In order to locate the PTE which is associated to a particular memory address,
it is split up into two parts: the upper bits are an index into the page table, and the
lower bits are an offset to the start address of the relating frame.

The conventional x86 architecture uses pages of 4 KB in size, but there exist exten-
sions with 2 MB or 4 MB pages. Since most processes only use a very small amount
of their available virtual memory, multiple levels of page table structures are used to
reduce the space necessary for managing the memory. In two-level paging an additional
page directory is employed, where each page directory entry (PDE) points to a separate
page table (Figure 1). In that scenario, the virtual address is split into three parts: one
index into the page directory, one index into the resulting page table and the last part
as an offset into the frame.

Obviously the usage of multiple-level paging involves a performance degradation,
since multiple memory lookups have to be performed in order to locate the resulting
entry. To speed up this process, Table lookaside buffers (TLB) are used. These are very
fast caches that store information about the virtual-to-physical address mapping from
the last memory accesses.
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Fig. 1. Two Level Paging [20].

Each PTE contains different information about the related page and its current
state (lower part of figure 2). The most important one is bit 0, which specified if the
PTE is present (or valid) or not. Only if this bit is set, the MMU can perform the
address resolution on its own. If it is cleared the OS will be invoked to take action.
In that case, all the other PTE fields can be used by the OS arbitrarily. One other



essential field of valid PTEs is the page base address or frame number, which specifies
to which physical frame the page is currently mapped. Furthermore, there are a lot of
bit fields that are used for memory protection and for the page substitution strategy.

A PDE is quite similar to a PTE with the main difference that it points to a PTE
instead of a frame.
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Fig. 2. PDE and PTE Fields [20].

As mentioned, all paging structures are maintained separately for each running
process. Switching between different address spaces is done by simply modifying the
pointer that specifies the page directory (or page table in case of a single-level paging).
In the Intel architecture this pointer is kept in the page directory base register (PDBR),
which is stored within the upper 20 bits of the control register 3 (CR3).

Detailed information on paging and its related facilities and data structures can be
found in the Intel Software Developers Manuals [20].



2.2 Translation Lookaside Buffers

Modern hardware architectures use several mechanism to speed up memory accesses to
overcome the performance gap between the CPU and RAM. One method to improve
the effectiveness of virtual memory is to use translation lookaside buffers (TLBs). With-
out those resolving a virtual to a physical address may require several memory read
operations, depending on the amount of page levels. A TLB is fast associative memory
that stores the last recently used mappings between virtual page numbers (VPN) and
resulting physical frame numbers (PFN). If memory is accessed for the second time,
while its mapping is still stored in the TLB, no further page walk has to be performed.

There exist many different ways to implement TLBs. Some are rather small and
contained within the CPU, others are larger and placed between the CPU and the
different caches. Sometimes there are distinct TLBs for data and instruction addresses,
the x86 architecture offers a DTLB for the former and an ITLB for the latter one.
Normally the DTLB and ITLB are synchronized, but there are projects in which they
are enforced to become unsynchronized. This can be done for several reasons, e.g. to
implement the NX feature on CPUs that does not offer support for that [45], to unpack
compressed applications [44] or even to realize memory cloaking [43].

Besides the VPN and the PFN, each TLB entry also has to store a copy of the most
important other PTE flags, e.g. the accessed and the dirty bit as well as the memory
protection flags. Accordingly, one critical requirement for the operating system is to
keep the TLB entries and the PTE entries coherent. Therefore, it has the possibility
to flush the complete TLB or just selected entries. For instance on a context switch all
process related entries have to be removed from the TLB, since those are meaningless
and incorrect when switching to a different address space.

3 Memory Protection and Exploitation Techniques

In this section we present contemporary memory protection techniques as well as the
countermeasures to overcome them. We have arranged them in a reasonable chronicle
order, i.e. we alternate the particular protection techniques with the appropriate ex-
ploitation mechanisms, starting with Data Ezecution Prevention and ending with JIT

spraying.

3.1 No eXecute

One important contemporary security technique is called No eXecute (NX). It is also
known under different other names, depending on the CPU or OS vendor who specifies
it: W & X, eXecute disable (XD), Enhanced Virus Protection bit or Data Ezecution
Prevention (DEP). Originally this feature was introduced under the name W & X with
OpenBSD 3.3 in May 2003. Another famous advocate of related techniques is the PaX
[45] project.

The aim of this technique is to enforce the distinction between data and code
memory. In general there is no differentiation between code and data on the commonly
used von Neumann architecture. Each byte in memory can either be used as code, if its



address is loaded into the instruction pointer, or it can be used as data if it is accessed
by a load or store operation. One very striking effect of this is that attackers are able
to conceal malicious code as harmless data and then later on, with the help of some
vulnerability, execute it as code.

The NX protection scheme can either be implemented by hardware or simulated in
software. On newer x86,/x64 machines there is one dedicated PTE flag that controls if a
certain page is executable or not. If this flag is set, a page fault is invoked on the attempt
to execute code from the corresponding page. Therefore, besides the hardware support
the operating system and, especially the page fault handler, has to implement this
security feature as well. In the Windows world, DEP was introduced with Windows
XP Service Pack 2 as an option and, nowadays, is enabled by default with current
Windows version.

On an Intel machine, the physical address extension (PAE) mode has to be enabled
in order to use the NX flag within the PTEs. Originally this extension was introduced to
enable the usage of a physical address space that is larger than 4 GB. As an implication
the PTE size was increased from 32 to 64 bit, while offering also that flag. Though
most current Windows installations do not use the address space enlargement, they
have PAE enabled to offer hardware support for their DEP feature.

3.2 Return Oriented Programming

In order to overcome the NX protection, attackers use different methods. One very
powerful way is to locate and execute useful instructions in one of the loaded system or
application library modules. In the beginning, attackers performed return to libc [13]
attacks, in which they called helpful library functions, e.g. to start a different process
or to modify security settings on the local system. A more sophisticated generalization
of this approach is return oriented programming (ROP) [40,21]. Here attackers do not
call complete library functions, but instead they use only small code chunks and chain
those together to implement their desired functionality.

In order to concatenate code chunks, called gadgets, the attacker has to locate
useful instruction sequences which are trailed by a return (RET) operation. Having
those gadgets at hand, the attacker can prepare a list of their start addresses, and
prepare the stack in a way such that the first of these address is placed in a location of
a regular saved RET address. When the overwritten RET address is popped from the
stack, the ROP sequence is started. Each time a small code chunk has been completed
and the trailing return operation is executed, the starting address of the next chunk is
popped from the stack. In order to further control and customize the executed code,
function arguments can also be interleaved into the list of code addresses on the stack.

This technique is particularly powerful on CISC architectures, because of their
variable length instruction set. Since an instruction has not to be memory-aligned, it
can be executed with an arbitrary byte offset with respect to its intended start address.
This has the effect that an attacker is not limited to the set of the intended instructions,
but can also jump directly into the middle of an existing instruction, which results in
a totally different one. Nevertheless, there exist also approaches for performing ROP
on RISC architectures [7].



3.3 Address Space Layout Randomization

Another security technique which is often used in modern computer systems is Address
Space Layout Randomization (ASLR). With that mechanism all memory locations are
no longer fixed and predictable, but are chosen randomly. Consequently, the stack,
the heap and the loaded modules will have different memory addresses each time a
process is started. Therefore, it is much harder for attackers to find usable memory
locations, e.g. the beginning of a certain function or the effective location of malicious
code or data. Accordingly, when the memory layout is randomized and an exploit is
performed that does not take this into account, the process will rather crash than being
exploited. Therefore, memory randomization should always be combined with a crash
monitor facility. Once again the Pax project [45] was one of the pushing forces for this
protection scheme. Also modern Windows operating systems use ASLR.

Of course there are countermeasures for this security scheme as well. One possible
approach is to locate and utilize non-randomized memory, since early implementations
of ASLR do not randomize the complete memory but only some parts of it. Even the
current implementation in Windows allows the disabling of ASLR on a per-module-
base. Accordingly, even if all Windows libraries are ASLR-protected, a lot of custom
libraries are not and constitute an easy exploitation target for attackers. In [12] the
protection could be bypassed, because the Internet Explorer DLL mscorie.dll was dis-
tributed with ASLR disabled. There are a bunch of more different ways to defeat ASLR,
[15,32].

3.4 Other Memory Protections

In the preceding section we have presented two of the most contemporary memory
protection techniques: DEP and ASLR. Besides those, many other (memory) protection
features have been introduced into operating systems as well as into available compilers.
In the following we will summarizes more of those in a sketchy way. A comprehensive
list with detailed descriptions can be found in [42].

Stack cookies or stack canaries are used to detect stack buffer overwriting [48,35,50].
In each function prologue a special non-predictable value is stored between the local
variable area and the return address on the stack. Before leaving the function the
epilogue then verifies that value and crashes the process if it was modified.

Also the heap memory can be protected by cookies in a similar way, as it is for
example done in Windows XP SP2. Windows Vista goes one step further and encrypts
all heap-related meta data to protect it from being overwritten. A related technique
that also protects the heap memory is safe unlinking, in which additional checks are
done before a heap chunk is unlinked [27].

Variable reordering [48] is used to move possibly overwritable buffers to the end
of the local variable list, such that no other variables are affected by an overwriting
attempt. This technique addresses the case in which the vulnerable function is never
left, hence the modified RET address is never popped from the stack. Instead some
local variables on the stack are modified in order to manipulate the regular control flow
even without returning from the function at all.



SEH Handler Validation tries to detect the manipulation of SEH routine addresses.
There exist different implementations. Some of them maintain a list of all known and
trustable SEH handlers per module [31]. If an exception is to be raised, the particular
handler is then checked against this predefined list before it is called. If it is unknown,
and hence constitute an illegitimate one, the process is crashed immediately.

3.5 Heap Spraying

Exploitation attempts often consists of two consecutive steps: the first one prepares
the current environment for successful exploitation and the second one triggers some
vulnerability in the running software. In the preparation step in most cases executable
shellcode is placed at some memory location, which the control flow will be redirected
to as an effect of a successful exploit. Depending on the situation that particular desti-
nation code address may be known in advance or not. Furthermore, it may be possible
to explicitly write to that particular address or not. Therefore, even with having a ex-
ploitable vulnerability at hand, it may still pose a serious problem to effectively prepare
the memory such that after exploitation meaningful shellcode is executed.

One popular approach to prepare the memory in an appropriate way is heap spraying
[5]. The technique is rather old but has become famous again in the context of web
browser and PDF exploits. The idea is to fill the complete heap memory with identical
copies of the same malicious code (Figure 3). If large parts of the heap are prepared in
such way, chances are high that one of those created shellcode instances is hit when a
vulnerability is exploited. In order to increase the effectiveness of this approach, very
large NOP-slides are installed before each shellcode instance. A NOP-slide is a very
long sequence of NOP operations or some other instructions that do not modify any of
the important CPU registers. No matter at which point inside the NOP sequence the
execution starts, eventually the shellcode will be reached.

3.6 JIT Spraying

One problem with traditional heap spraying is that on systems with DEP the resulting
heap memory is non-executable. Hence, the execution of shellcode which was laid out
by this method, will lead to a system crash. A more prevailing spraying technique called
JIT spraying was introduced in [3,4]. The improving idea focuses on modern interpreter
languages which employ Just in Time (JIT) compilers, e.g. the ActionScript Virtual
machine which is included in Adobe Acrobat Reader. For increasing the computing per-
formance the script code is compiled into native machine instructions just right before
it is executed. Obviously, the compiler output has to reside in executable memory. By
predicting the JIT compiler results and designing an appropriate compiler input it is
possible to generate an output which can be misused as shellcode.

The idea shown in [3,41] uses long chains of XOR operations with 4 Byte immedi-
ate values as JIT compiler input. Since the immediate values are copied 1:1 into the
resulting output, it is possible to encode x86 machine instructions by them. Due to the
properties of the CISC instruction set, the resulting code will have a complete different
semantic when it is not executed from the beginning but with a 1-byte offset. In that
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Fig. 3. Heap Spray.

case the first instruction is determined by the immediate value which was used with
the first XOR operation.

4 Windows Memory Management

In order to instrument the Windows memory management mechanisms for dynamic
malware analysis, a detailed understanding about the Windows paging internals, espe-
cially about the underlying data structures and the involved algorithms is necessary.
Therefore, in the following section we will give detailed background information about
the memory management internals of the 32 bit version of Windows. Most of the find-
ings were obtained by reverse engineering Windows XP, but newer Windows version
do not differ significantly in these fundamental system essentials.

4.1 Memory Objects

The 32 bit Windows versions split the available 4 GB virtual address space into a lower
2 GB part of per-process user space and another upper 2 GB region of global kernel



space memory. Optionally this partitioning can be changed to a 3 GB user space region
plus only 1 GB for the kernel. Each running process has its own user space memory,
which cannot be accessed directly from other processes. This is realized by modifying
the page directory pointer in the CR3 register on each context switch. All processes
use the same kernel space memory, hence the same system page table entries for the
upper 2 GB. Since we are focusing solely on user space exploits, we do not consider
kernel space memory in the remainder of this paper.

Windows memory can contain several different types of code or data regions and
each of those is affected by paging: stacks, heaps, mapped modules as well as process
and thread environment and control blocks. Memory can also be characterized by the
type of the source from which its content arises. Some memory regions contain data
from files, which are mapped into the address space, others reflect mapped data which
is actually stored in physical devices and others contain volatile data which only exists
in the physical memory itself and will be gone once it is powered off. The two most
important source types result in private and file-backed memory. While the first one is
used for all dynamic memory, like stack, heap or system management blocks, the latter
one is either associated with regular files or with one of the page files. Windows always
uses memory-mapped files when executable files are loaded into a process. Hence, it is
a very important construct, especially with respect to memory execution protection.

Windows differs between files which are mapped as data and those which are
mapped as executable images. Data files may have random content and structure and
are simply mapped one to one from file layout to memory layout. Image files, on the
other hand, have to be stored in the portable ezecutable (PE) format [19,28] and may
contain data as well as executable code. A PE file contains several sections, which
each are associated with different usage characteristics. Data sections may be read-
only or writable and they may contain initialized or non-initialized data. Code sections
in general are executable and read-only, but may be modified to being writable in some
scenarios as well. To support reusing of code and reduce the amount of necessary mem-
ory, code sections are therefore loaded with a copy on write flag. This means that all
processes that load the same executable will effectively use the same physical memory
until one process modifies that memory. In that case, a private copy of the affected
page is created for that process and all other processes will still remain using the old
unmodified page.

The type of a mapped file does not determine if it is loaded as a data or an image
file, but the code that loads it into memory has to specify that. Therefore, image files
can be mapped as data files as well. In contrary to that, if a data file is not stored in
the PE format, the system loader will refuse to load it as an image.

In general data files as well as image files can be mapped to arbitrary virtual memory
ranges. Nevertheless, when mapping a file an optional base address can be specified.
Windows then tries to load the file to that specified address and will return an error,
if the specified range is already occupied. If no base address is given, Windows tries to
determine a free memory range on its own. In the case of image files, a favored base
address is always given in the PE header. However, if the specified address is already
used, image files may be relocated as well.
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For file-backed memory a bunch of different management objects are involved: wvir-
tual address descriptors, sections, subsections, segments, PPTEs and control areas. Fig-
ure 4 [38] gives an overview of the relationships between those different object types.
In the following we will briefly explain the different objects and illustrate when and
how they are created and used.
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Fig. 4. Memory Management Objects for Mapped Files [38].

One purpose of this large collection of different objects is to avoid multiple copies
of the same data in memory. On the one hand, this allows inter-process communica-
tion through memory-mapped files, and, on the other hand, it allows reduction of the
amount of consumed memory. This is especially effective in the case of system libraries,
which have to be mapped into all running processes.

Virtual Address Descriptors For managing the user space memory, Windows main-
tains a tree of virtual address descriptors (VAD) per process. For each block of consec-
utive memory addresses that share the same memory-related settings, one VAD entry
exists. Fach of those entries stores the following information about the corresponding
memory:

— start and end address

— protection settings, e.g. read-only, writable, executable

— is the memory backed by a file or private memory?

for file backed memory information about the associated file

While all of the following objects in this section are solely related to memory mapped
files, the VAD tree and entries are also used for private memory.
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Sections Every memory-mapped file is associated with a section object, which has to
be created before its content can be mapped. Sections are managed system-wide and
can be associated with a globally valid name, which enables different processes to map
the same section object into their virtual address space while using the same physical
frames. Obviously, the same process can also map each section multiple times into its
address space into different address regions.

A section objects stores a pointer to the related segment object plus a lot of flags
that further describe the associated file, e.g. if it is a data or an image file or if it is
stored on a network or on a floppy device. The latter information is used for caching
strategies, e.g. an application loaded from a floppy disc should still be executable when
the disc has been removed from the drive.

Segments Windows uses segment objects to manage and represent the content of
mapped files. If a section from a file is created for the first time, a segment object is
created. If the same process or a different one maps the same file again subsequently,
that first created segment object will be used and no new one will be created anymore.
Since a segment can be used either to represent a mapped data file or a mapped image
file, it is possible that two different segment objects exist for one file. This is the case
when a file is mapped first as a data file and then as an image or vice versa. One
essential part of the segment structure is an array of prototype PTEs (PPTE), that
further describe the characteristics of the mapped file content.

Prototype PTEs Prototype PTEs are used by the operating system for maintaining
shared memory. Their structure is quite similar to real PTEs, but they are never used
by the hardware, but solely by the OS. When a file is mapped for the first time, no PTEs
are actually created, but only an array of PPTEs is set up. On the actual first access to
the related memory, the PPTEs are used as a template and real PTEs are created from
them. If afterwards the physical memory has to be reused and the content is paged
out to the hard disk, the associated PTEs become invalid and are modified to point to
their parenting PPTE. This enables the memory manager to efficiently manage areas
of shared memory: when such an invalid page becomes valid again and the memory
manager maps it to a different physical frame than before, only the contents of the
PPTE has to be updated instead of enumerating all processes and modifying probably
existing PTEs in their address spaces.

Control Areas Control areas (CA) are used to store detailed information about the
different parts of a segment in a list of subsections. Besides this list, the CA also
maintains usage counters, e.g. how often this segment currently is mapped into the
address space of the running processes.

Subsections For each mapped file there are one ore more subsection objects which
store important mapping data about the different regions of it. For data files there
normally is only one subsection, since the complete address range has the same char-
acteristics, but for image files there in general are multiple subsections: one for each

12



PE section plus one for the PE header. This is due to the different characteristics of
PE sections, e.g. some may be read-only while others are writable or executable. These
differences are reflected by the PPTEs which are created for the pages that belong to
each subsection. As mentioned before, the PPTEs for the complete file are stored in
one array with the segment object. Each subsection stores a pointer to the first related
PPTE in its field SubsectionBase. The number of PPTEs associated to each subsection
results from the number of pages which are necessary to map its full content to the
memory. One example mapping is shown in Figure 5.

Image
Control
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k/ SubSection 1
FFTEL SubSection 2
PETE 2 /
PPTE 3
SubSection |

FRTE| / subSection m
— /

Fig. 5. Subsections and Associated PPTEs.

Section Object Pointers Due to the different mapping and usage characteristics of
data files and image files, different segments and, hence, control areas are used. If for
example a file is first mapped as a data file, a corresponding data section control area
is created. If then the same file is mapped as an image, an image section control area
is created as well. Both objects are of the same type, but there are some differences.
The most obvious one is that for data files normally only one subsection is created,
while for image files the number of subsections equals the number of PE sections in the
related file plus one. In fact, Windows internally maps each executable which is about
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to be loaded first as a data file and then in a second step as an image. This results in
the creation of two different control areas, from which either is used depending on the
type of the created view.

To maintain these different control areas per file Windows stores one unique array
for each opened file that contains pointer to the related data and image control areas.
Obviously, either of these two pointers may be zero, but not both of them. This array
is called section object pointers and is pointed to by each file object.

Summary In order to recap the inter-relationship between all the different mentioned
memory objects, we give a short explanatory summary. Each process may create mul-
tiple file objects, which are only accessible from within the same process. Of course, it
is possible to open the same file several times from different processes, but then each
time a new file object is created. If a file should be mapped into the address space, a
process has to create an associated section object first. Since a section object may be
given a system-wide name, it is possible to use it from different processes as well.

For each section that is created for a data file, one segment and one control area is
created as well. No matter how many section objects are created for one file hereafter,
and no matter if this is done from one or from different processes, always the same
identical and initially created segment and control area objects are used. For sections
that are mapped as image files also one segment and one control area are created,
which are different from those for the data file. Accordingly, if a file is mapped as data
file and as an image file, two instances of segments and control area exist, one of each
for the data file mapping and the others for the image file mapping. Pointers to these
control areas are stored in the section object pointers array.

4.2 Windows Paging

In the preceding section we have presented the memory related objects which are used
by Windows to implement memory mapped files and private memory on a higher
abstraction level. As explained in section 2.1 contemporary operating systems use page
directories and page tables to manage their virtual address space. The following section
will explain how the described high level memory objects are implemented on a lower
level.

Datastructures On a 32 bit Windows machine with PAE-kernel a PTE is 64 bits in
size and its least significant bit specifies if the entry is valid or not. If this validity-bit
is cleared, the PTE can not be used by the MMU and a page fault will be invoked
when it is accessed. Those invalid PTEs are called software PTFEs (in contrast to valid
hardware PTEs) and all other bits of them can be used by the OS arbitrarily. Windows
know several software PTE types and their exact subtype is determined by some of the
other fields of the general data type MMPTE_SOFTWARE (Listing 1.1).

+0x000 Valid : Pos 0, 1 Bit
+0x000 PageFileLow : Pos 1, 4 Bits
+0x000 Protection : Pos 5, 5 Bits
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+0x000 Prototype : Pos 10, 1 Bit
+0x000 Transition : Pos 11, 1 Bit
4+0x000 Unused : Pos 12, 20 Bits
+0x000 PageFileHigh : Pos 32, 32 Bits

Listing 1.1. Type MMPTE_SOFTWARE

Depending on these field values, one of the subtypes Zero PTFE, Demand Zero PTE,
Transition PTE, Pagefile PTE or *Prototype PTE is determined and used. Table 1
shows all the different possibilities.

Subtype Condition

Zero all bits of the PTE are cleared

Demand Zero|Prototype=0, Transition=0,PagefileLow=0, PagefileHigh=0
Transition Prototype=0, Transition=1

Pagefile Prototype=0, Transition=0,PagefileLow#0, PagefileHigh#0
*Prototype |Prototype=1

Table 1. Software PTEs

Zero PTFEs Zero PTEs specify entries which are not initialized yet. Windows uses
a special form of paging, called demand paging in which new allocated memory is
not initialized instantly, but just filled with zeroes. On the attempt to actually access
this memory, the PTE has to be initialized properly with the correct values. On that
occasion the page fault handler looks up the related VAD entry to decide how to further
initialize the PTE.

Demand Zero PTEs Demand Zero PTEs are also used for demand paging. When empty
memory is allocated, again actually no memory is cleared at once, but only specially
crafted PTEs are set up. When later on the related memory is accessed, the PF handler
simply takes the necessary physical frames from an internal list of already cleared
memory.

Transition PTFEs Transition PTEs mark entries which just have become invalid. De-
pending on their state, they may have to be written back to the related mapped
(page)file or they will be discarded. For performance reasons Windows does not re-
move invalid pages from the physical memory at once, but they remain for some time
for the case that they may be needed again.

Pagefile PTEs Pagefile PTEs specify memory which is currently swapped out to one
of the page files. The exact page file and the related position within is determined by
the fields PagefileLow and Pagefile High.
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*Prototype PTEs *Prototype PTEs are used for memory which is associated with a
section object. There often is a misunderstanding with that particular type of PTE.
PPTE themselves are never contained within any page table, but they are stored with
the segment objects in some special memory region of the kernel space. A PTE that
points to a PPTE has the Prototype-field set (like shown in 1), but it is not a prototype
PTE itself. Therefore, we refer to this kind of PTE by the name *PPTE.

Algorithms There are different system services of Windows related to memory man-
agement, some are called actively when a memory related operation is executed and
others are always running in the background, e.g. the system threads which periodically
write back modified pages to the hard disk or zero out pages that have become free.
For our purposes the following operations are important, hence we will take a further
look at them:

allocation of private memory

— memory-mapping of files, either image- or data-files
modification of page protection settings

— page fault handling

If we are dealing with private memory, the situation is rather simple. All possi-
ble execution pathes to allocate memory lead to NtAllocateVirtualMemory. This
system routine first performs some validity checks on the specified parameters, then
optionally attaches to the address space of a different process, if such has been specified
as target. After that, if a particular target memory address has been specified, it checks
if the related address range is available. If not a suitable memory region is determined
from the list of free memory. Then a VAD entry is created and initialized with the
specified page protection settings. Finally, all related PTEs are zeroed out, such that
the PF handler will be called to set them up properly on their first access.

In the case of file-backed memory, things are more sophisticated. For mapping
a file into memory, first a section objects has to be created. This can be done by
calling the native API function NtCreateSection, which is a thin wrapper around
MmCreateSection. If the file is mapped for the first time, a new segment object and
control area are created first. Then, depending on the fact if the section is created for
a page-, data- or an image-file, different actions are taken:

— MiCreateDataFileMap is called for data files
— MiCreatelmageFileMap is called for images
— MiCreatePagingFileMap is called for page file mapped memory

After returning from one of those functions, the final section object is created and
initialized accordingly. Notice that the creation of a section includes setting up the
segment, the control area, the subsections and the PPTEs (except for data files), but
does not create any PTEs.

While mapping a data file, the main purpose of MiCreateDataFileMap is to
setup the subsection object. In the normal case only one subsection is created, but
under some special conditions multiple subsections are used, e.g. if the file is very
large. For data files, the subsection field SubsectionBase is left blank. This defers the
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creation of PPTE until the the section is mapped into the memory and finally accessed
for the first time. The reasoning behind this is to avoid wasting memory when very large
data files are mapped. Instead the SegmentPteTemplate field of the segment object is
setup properly which can be used to create the PPTEs subsequently if necessary.

Things are a bit different on invocation of MiCreateImageFileMap. First the
PE header of the specified file is loaded and verified. Then one subsection is created for
the PE header and one for each PE section of the image file. There is one exception to
this: if a very small file is mapped, only one subsection is used for the complete file, no
matter how many PE sections exist. Besides the subsections also the related PPTEs
for each of them are created and their page protection flags are set according to the
protection settings of the related PE section. These PPTEs will be used as a template
for building the real PTEs, when the image section is mapped afterwards.

The page file can be used as base for file-mapped memory as well. In such cases, dur-
ing the creation of the related section object, the function MiCreatePagingFileMap
is called. This one first sets up and initializes one subsection and then creates all
related PPTEs. For those entries the protection setting specified when calling NtCre-
ateSection is used. After initialization a pagefile-backed section object is handled like
a data-file section object with only little differences. One difference exist with respect
to the creation of PPTEs, which is done immediately for paging-files, but deferred for
regular data-files.

After a section is created, it can be mapped into the address space by creating a view
from it. There can be different views for the same section with different protection flags
mapped into the memory of one or multiple processes. All of them will use the same
identical physical memory. Obviously, modifications in one of those views are instantly
reflected in the other views as well. For creating a view the API NtMapViewOfSec-
tion is called, which leads to MmMapViewOfSection. Depending on the type of the
underlying section, either MiMapViewOfImageSection or MiMapViewOfData-
Section is called.

MiMapViewOfDataSection performs the following steps:

— the helper routine MiAddViewsForSection is called

— if a base address was specified, it is checked for availability, otherwise a sufficient
available memory range is determined

— finally the VAD entry is built using the protection setting specified when calling
NtMapViewOfSection

MiAddViewsForSection enumerates all subsections and checks if the PPTEs for
those already have been created, e.g. the section has been mapped before. If not, the
PPTEs are initialized from the SegmentPteTemplate of the associated segment.

MiMapViewOfImageSection is very similar to MiMapViewOfDataSection:
first it is checked if a base address was specified and if the memory is unoccupied yet.
If no base is given, an appropriate memory range is selected instead. After that, a VAD
entry is created and initialized. No PPTEs have to be created in this case, since they
were already initialized when the section object was created. It should be noticed that
there is only one VAD entry for the complete image section, though it normally consists
of several subsections with different page protections. Therefore, in contrast to a data
section, the VAD protection setting for an image file is rather meaningless. Windows
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will always take a look into the related PPTEs to gather protection information about
the associated memory.

Sometimes the protection of already allocated memory has to be modified, either
for private or for file-mapped memory. For this task Windows offer the NtProtectVir-
tualMemory API which is a wrapper for MiProtectVirtualMemory. This routine
has two different execution pathes, depending on the fact if the specified memory is
related to a mapped file or if it is private. In the first case the helper routine MiSet-
ProtectionOnSection is called, otherwise a loop over all related PTEs is performed
and each one is modified by setting the new protection value.

MiSetProtectionOnSection first obtains the current protection of the specified
section. This is done by either getting it from the first PTE (if it is valid), from the
VAD entry (if it a data file) or from the PPTE (if it is an image file). After that, it
enumerates all PTEs in the range of the section and sets their protection to the new
value. If some of the PTEs are not valid yet, they are initialized as *PPTEs. For all
PTEs that already are valid, the protection flag are modified directly.

Like explained in section 2.1, a page fault occurs if the MMU is not able to perform
the translation from a virtual to a physical address on its own. This may happen due
to one of the following reasons:

the related PTE or PDE is invalid

— the requested operation violates the PTE protection settings

a kernelmode page is tried to be accessed from usermode

— one of the special PTE flags is set which triggers the invocation of the page fault
handler

In any of those events a page fault exception is triggered. On intel machines thus
is is realized by the interrupt OxE, which is handled by KiTrapOE under Windows.
This trap handler is mainly a wrapper around the system function MimA ccessFault.
This system routine handles both, page faults in user space as well as in kernel space
memory. Since we are only interested in user space page faults, those parts of the
handler which are related to kernel memory are not further discussed here.

The first action of MmAccessFault is to ensure that the related PDE is valid.
If it is not currently mapped into physical memory, the dispatcher function MiDis-
patchFault is called to bring it in. After that there are two different cases, depending
on the validity flag of the related PTE. In case of a valid PTE, most probably a pro-
tection fault has been occurred. Otherwise the PTE is invalid and the PF handler has
to determine what kind of data should be mapped into the accessed memory region
and take action accordingly.

If the PTE is valid, the following actions are taken:

— if a write operation has caused the fault
e if the copy-on-write flag has been set in the PTE, the MiCopyOnWrite func-
tion is called to handle the fault
e if the page is not writable at all, an access violation (AV) exception is raised
— if an execute operation has caused the fault and the particular page is not executable
o if DEP is deactivated globally or for this process, the PTE is modified to be
executable, such that it will not fault the next time
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e otherwise an AV exception is raised

For an invalid PTE different actions have to be taken depending on the particular
subtype of the software PTE. First it is checked, if there is a VAD related to the speci-
fied address. If this is not the case, an invalid memory address was specified and thus an
AV exception is raised. Otherwise, and after a few more special case checks, the page
fault dispatcher MiDispatchFault is called which, depending on the further PTE
type, calls one of the helper functions MiResolveTransitionFault, MiResolveDe-
mandZeroFault, MiResolvePageFileFault or MiResolveProtoPteFault. Each
of these routines handles the fault in its particular way and finally makes the faulting
PTE wvalid and sets its memory protection flags appropriately. In case of a page fault for
a *PPTEs, the functions MiResolveProtoPteFault and MiCompleteProtoPte-
Fault are invoked. Inside the latter one the faulting and invalid PTE is created from
the associated PPTE of the subsection which is mapped to that particular memory
address.

NtCreateSection NtMapViewOfSection

‘ MiCreateDataFileMap HMiCrealelmageFlleMap

Mitap\iewOfDataSection

- T '
R Y MidddviewsForSection
i Build
|
Segment, Controlfrea, VAD Entry

‘ MiMapViewfimageSection

SubSections, Section

*

Build FTEs Build Modify Build
from PPTES PPTEs PTEs Zero PTES
& 13
{ *
i 5
MiCompleteProtoPterault %,
MmubccessFault ‘ MtProtectVirtualMemary ‘

Fig. 6. Windows Paging Functions.

i

NtallocateVirtualMemory ‘

What we care most about, when it comes to bringing a page into physical memory,
are the protection flags. In case of private memory, the appropriate flags are always
taken directly from the VAD entry. For file backed memory, on the other hand, the
settings may come from the PPTE or from the invalid PTE itself. If a section is mapped
for the first time, the protection setting of the PPTE will be used. If then the memory
protection of an already mapped subsection is modified, the new protection value is
stored within the PTE directly. If then the related memory is paged out and later on
paged in again, the memory protection will not be restored from the PPTE but from
the PTE instead.

Figure 6 gives a schematic overview of the functions described in this section and
illustrates when which related memory objects are built or accessed.
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5

Conclusions

In this work we have presented some unpublished facts about the internals of the
Windows memory management. In particular we have examined the various existing
memory management objects, the different kinds of software PTEs and then focused
on the involved internal algorithms. The knowledge resulting from this paper gives us
a better understanding of the underlying operating system functionality and will assist
us in developing better protection solutions in the future.
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