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Chapter 1

Introduction

Banking regulation has drown special attention of policy makers, institutions and the

economists since years. The integration of banks and financial markets made financial

stability extremely dependent on the banking systems. The systemic crises in the past

decades motivated forms of regulation which are more closely associated with prevention

than with compensation. The need to increase stability and to help protect the inter-

national financial system led to the Bank for International Settlements (BIS) Accord in

1988 and the United States of America’s new Federal Deposit Insurance Corporation

Improvement Act of 1991. The successor accord, Basel II, introduced in 2004, aimed to

improve upon the risk insensitivity of the Basel I. However, the recent crisis raised new

challenges for banking regulation in addition to what had been considered previously.

The banking theory and in particular the theories of banking regulation have focused

on the riskiness of banks’ portfolio. The risk-taking behavior of banks and different

situations of moral hazard problem have been the main concentration. This thesis is a

collection of three essays which apply a different perspective to questions in the literature

of banking regulation. Chapters two and three analyze the risk-taking behavior of a bank

which can choose between two regimes of operation. Chapter four adds the regulator into

the setup and surveys the banking theories for regulating not only an individual bank

but also systemic risk-taking among banks. In the first two chapters, two portfolios

different in their expected return and the risk level are available to the bank. When

the bank changes the portfolio it is called regime switching. Both chapters study the

bank’s risk-return preferences in the absence of outsider intervention. While in chapter

two the relationship between the cash-flow and the regime choice is investigated in

a continuous time setup, in chapter three the analysis is carried out a discrete time

setup. The regime choice is examined with respect to the capital level in static and also

dynamic setups. Moreover, chapter three questions the standard theory of “gambling for

resurrection”. Chapter four covers regulatory policies to control a bank’s risk of failure
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2 CHAPTER 1. INTRODUCTION

and collects macro-prudential regulatory proposals for different risk-taking issues in a

banking system.

The literature generally defines a bank-regulator game. The bank optimizes its equity

value. The regulator plays as a social planer and optimizes the social value of the bank,

including both the equity value and deposits value. The key feature is that the regulator’s

decision need to be incentive compatible for the equity holders. Higher risk can increase

the equity value of the bank under distress. However, the risky operating of the bank

may have negative net present value. A strong regulator forces bank-closure before the

bank’s net present value becomes negative. In case that the regulator can commit to a

policy, she plays first and announces the regulatory policies and the closure threshold.

Given the closure threshold, the bank makes the decision of capital structure. The

banking regulation theories solve the game by backward induction to find the optimal

regulatory policies.

In contrast to most of other studies, this research allows for regime switching during

a bank’s lifetime. An agent changes its investment portfolio depending on preferences

for risk and return, and the cash-flow of the investment. Chapter two analyzes this

switching behavior for a bank optimizing equity value on behalf of its shareholders.

Having deposits, the bank can choose one of the two regimes of operation in each moment

of time. If the cash-flow is below the deposit payment, the bank has to inject money or

go bankrupt. However, bankruptcy and liquidating assets are costly in the sense that the

deposit insurer has to repay to depositors. The riskier regime returns a higher outcome

but with lower probability. This regime raises the equity value when the cash-flow is

low. Since the equity value is still positive, the bank has the chance to operate with

low cash-flow, what creates risk-incentives for the bank under distress. Nevertheless, the

switching involves some cost and it is not always a rational decision to bear this cost

to increase the risk. For a high level of the cash-flow, the bank is able to pay the cost.

Thus, the bank switches to the less risky projects (what offers a higher expected return

with less uncertainty). This characteristic increases the equity value comparing to the

riskier regime for large levels of the cash-flow. Therefore, the bank with high cash-flow

has sufficient incentives for risk-reduction and always takes the opportunity regardless

of a large switching cost.

This result is unlike the standard asset substitution opportunity, which insists on banks’

risk-taking. If the switching cost reduces and tends to zero, the model above converges

to the standard asset substitution theory. The other contribution of the second chapter

is to bridge the gap between the stochastic switching models and the banking theories.

This produces thresholds in terms of the state variable, the cash-flow, at which the

regime of operation changes.

Chapter three studies how banks’ willingness to engage in risky investments relates to

their capital. The fact that the continuous time model does not give a closed form
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solution motivates applying a discrete time setup for further analysis of the banks’ risk-

taking behavior. The other difference from chapter two is that the bank has to put

effort to monitor its creditors in order to incur less risk. Making a safer portfolio by

monitoring creditors is costly and the bank may optimally stop exerting effort. This

means that the bank takes the more risky project which brings a higher outcome in

the less probable case of success. In case of failure the risky project does not return

more than the less risky regime. The striking result is that there is a non-monotonic

relationship between a bank’s risk level and its capital. Though bankers invest in riskier

projects in distress, risky but efficient projects are also attractive for “relatively wealthy”

banks. When the capital decreases, at the intermediate level the bank stops monitoring

creditors and chooses riskier investments since the effort cost exceeds the expected loss

of failure. Nevertheless, as the capital decreases further, the bank reverses its strategy

in order to benefit from higher likelihood of success before falling into extreme distress,

where the capital level is so low that the bank can only survive by taking more risk. The

effort cost of monitoring is the main source of such a non-monotonic risk optimization.

The robustness check on non-monetary effort cost confirms the result. In a dynamic

setup the non-monotonicity vanishes due to the bankruptcy at failure. This finding is

in line with the result of chapter two. For an intertemporal investment decision, where

reinvestment rate is low, a bank highly in debt prefers the riskier investment in the hope

of high profit in short-term.

Chapter four reviews the process in which banking regulation theories evolved from the

individual bank regulation towards macro-prudential regulation. The chapter begins

with a basic setup to explain how the risk-taking behavior cannot be dealt without

regulatory actions. The chapter introduces the shareholders’ risk taking in the way

discussed in chapter three. In addition, there is managerial moral hazard such that a

bank’s manager takes more risky projects because of a pecuniary private benefit. If the

capital is not sufficiently large, the shareholders do not offer an incentive compatible

contract to the manager. The deposit insurance guarantees the depositors. Taxing the

bank’s operation prevents subsidizing banks by taxpayers. However, the insurance or tax

system increase the shareholders’ incentives for risk-taking, and the insurance does not

reduce the managerial moral hazard. The intuition is that the bank has to pay for the

tax or insurance out of its profit that decreases its equity value. These market failures

require a strong supervisory agent to optimize ex-ante policies against risk-taking and

ex-post resolution policies in case of bank failure.

It is shown that the capital adequacy and closure policy are not as effective as expected

due to the social cost of asset liquidation. Partial deposit insurance creates incentives for

the uninsure depositors to monitor the bank closely. A likely liquidity provision by the

regulator increases the bank’s charter value and thus reduces incentives for risk-taking.

Despite these policies focused on individual banks, allowing a healthy bank take over a
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failed financial institute motivates banks to avoid risky speculative investments. In fact,

this idea connects the individual bank regulation to the systemic risk regulation.

The second part in chapter four argues that if a bank is large, or if it is interconnected

to many other institutes and/or many banks take risk together, then failure transmit

into the entire banking system. In that situation, healthy institutes in the private sector

do not have enough endowment to take over the failed banks. These externalities have

been seen in the 2007-2009 crisis, what is studied in chapter four with statistics of huge

payments by the government. This inspires banking regulation theories to concentrate

on the systemic risk issues. The risk can originate from an exogenous economic shock

or from an endogenous risk-taking of banks and their systemic failures. This part of

research emphasizes the risk-taking due to moral hazard problems that arises from the

asset side of banks’ balance-sheet.

Rewarding schemes such as granting the healthy banks to take over the failed banks

are proven to mitigate the moral hazard problem. Redefining the capital adequacy by

taking into account banks’ contribution to the collective risk-shifting (among banks)

can effectively improve upon the risk-based capital requirement for an individual bank

in the Basel II. A systemic tax policy is confirmed to be optimal for regulating a large

bank which cannot be closed in the circumstance that the supervisory authority has

power to expropriate the shareholders’ ownership and the management. Indeed, for

each regulatory policy requires an optimal implementation that takes into account spe-

cific conditions.

These three essays represent a relevant contribution to the literature once they combine

several aspects of banking regulation theories. The assumptions are general and, thus,

the results can be applied to the real world situations. For instance, statistical evidences

are provided for the systemic failure situations in the last chapter. Instead of usual one-

sided attitude of the literature to the risk-taking behavior of banks, this research takes

an unbiased approach to examine the advantages and disadvantages of risk for banks.

Thus, the findings suggest incentive mechanisms concerning different perspectives of the

regulation problems. In a nutshell, this thesis first emphasizes the complex problems

regarding risk-taking in the banking systems and demonstrates nonmonotonic relation

of the risk choices to the banks’ decisive factors. Next, the optimal methods to deal with

the risk issues in both micro and macro scales are analyzed.



Chapter 2

A Switching Model in Banking

2.1 Introduction

During its lifetime, a bank may change its portfolio several times. For instance, an

under-capitalized bank which is likely to default may choose a riskier portfolio to increase

its equity value. This behavior is known as “gambling for resurrection” and may be a

rational strategy if this is the only chance to survive. Apart from this type of motivation

to change the portfolio, a bank may generally change its regime of operation. A new

regime of operation means that both return and risk of cash-flow generated by the

bank’s assets are different from the initial asset allocation. Although the initial choice

of strategy has been studied extensively in the literature, regime switching has been

discussed only restrictively.

In this paper I investigate optimal switching strategies of a bank having the choice

between two regimes of operation at each moment in time in a continuous time model.

First, I discuss a bank’s operation under each regime separately. In my basic setup,

a bank is insolvent when it cannot pay the deposit coupon out of the cash-flow. An

insolvent bank closes down if the equity value is zero. This no-asset-substitution set-up

is similar to Decamps et al. (2004)’s model without the regulatory part. This chapter

studies the relationship between the equity value and the regime choice at each point in

time. The main contribution is that the whole characteristics of the portfolio changes

in a regime switch.

I find that less risk increases the equity value for the higher cash-flow, as a result of larger

expected return. The effect is reversed for the low cash-flow case such that less risk

decreases the equity value. I interpret the low risk regime as when the bank monitors its

creditors to keep the net present value (NPV) of investments positive. This follows from

the ”delegated monitoring” idea of Diamond (1984) where banks monitor investments

on behalf of the depositors. Subsequently, the bank in distress shirks and chooses a

riskier portfolio with lower expected return. The assumption of the higher risk and

5



6 CHAPTER 2. A SWITCHING MODEL IN BANKING

lower expected return rules out the first-order stochastic dominance problem. Next,

knowing about the advantage of each regime conditional on the cash-flow I examine

the switching strategies of a bank in the absence of outsider intervention. I borrow the

assumption of Dangl and Lehar (2004) regarding reversibility of costly switching at each

point of time.

To highlight the intuition of switching, I follow Decamps and Djembissi (2005) who show

how the trade off between return and risk influences asset substitution behavior in firms.

Banks finance their investments in large parts by deposits. Imperfect transferability of

banks’ assets make their liquidation costly. In addition, profitability of bank’s invest-

ment requires costly monitoring by the bank. Without the incentive for the banker to

monitor, the NPV of the investment becomes negative. This illustrates that insuffi-

ciently capitalized banks do not have the incentive to monitor and they switch to the

higher risk regime in order to increase the equity value.

To analyze the bank’s strategies I choose a continuous time framework which is generally

applied in financial literature studying the switching behavior. To solve the switching

model, I apply the stochastic control techniques and the general approach of the dynamic

programming principle. Since the existing mathematical models do not combine the

optimal switching strategy and the bank’s stopping problem, I have to fill the gaps

in the analytical solution with economical intuitions. In the setup of this paper, the

outflow of the switching problem is the cash-flow net of the deposit payment that can be

negative. Therefore, the basic assumptions of Vath and Pham (2007) are not satisfied.

Still, their explicit solution provides an intuition for my case. The free boundary problem

related to the variational inequalities divide the cash-flow state space into the stopping

region and the continuation region. Pham (2005b) considers the smooth-fit principle for

the value function through boundaries of switching regions. Having all his assumptions,

this principle gives the boundary conditions to find closed forms of value functions. Yet,

Pham (2005b)’s results are applicable to my model only when the closure level of the

cash-flow is given. Hence, where the analytical solution is not available I present an

intuitive conjecture about the missing characteristic of the objective function (NPV of

an operating bank) and the boundary conditions in terms of the state variable cash-flow.

Finally, I apply a numerical method to solve three examples: the costly switching case,

an extreme case of too expensive switching, and the other extreme case of cost-free

switching. The simulations confirm my analytical results regarding the uniqueness of

switching points for each regime. When capital drops below a cash-flow threshold the

bank operating under less risky regime switches to the riskier regime. If the capital

decreases further and falls below a minimum cash-flow level the bank closes. If the capital

increases, above another threshold the bank operating in the risky regime switches to the

less risky regime. The three thresholds are feasible in the way that the switching regions

do not intersect. However, if there is no cost of switching there is a unique threshold

below which the bank does not monitor creditors and operates in riskier regime as long
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as the cash-flow is above the closure threshold. If the switching is too costly, the bank

does not shirk (from monitoring) when the capital decreases but stops operation. This

happens while risk-reduction and operating in Good regime is more profitable for a bank

when the capital raises sufficiently. My findings are in line with Dangl and Lehar (2004)

if the expected returns do not change from one regime of operation to the other. Because

in the setup of this chapter the expected returns play an important role, the extreme

case of too costly switching is totaly different from the result of Dangl and Lehar (2004).

The literature on the bank risk-taking is closely linked to the literature on banking reg-

ulation. Decamps et al. (2004) study the three pillars of Basel II (Basel Committee

(2001)) and attempt to clarify how market discipline and supervisory action can com-

plement capital adequacy. They assume that a bank chooses one of two different regimes

of operation, i.e. one with a higher return and another one with a higher risk, at the

very beginning and follows it without switching. They show how the regulatory system

can affect the initial decision of a bank to choose a safer portfolio.

In the setup of Dangl and Lehar (2004) bankers on behalf of equity-holders1 can switch

the regime of operation through asset substitution. In their model switching is costly and

reversible such that only the risk level can change at each point of time. They assume

that the regulator who audits the bank at random time intervals wants to prevent asset

substitution for a higher risk. The regulatory closure thresholds allow a well-capitalized

bank to lower its risk and continue to operate even if the cash-flow is smaller than it

would be when the high risk portfolio were chosen. They compare the power of two

exogenous regulations, i.e. Building Block (BB) regulation and a Value at Risk (VaR)

regulatory capital adequacy. Since VaR regulation is risk sensitive, it is more efficient

than risk insensitive BB capital adequacy in preventing gambling for resurrection.

Leland (1994) follows the asset substitution argument of Jensen and Meckling (1976).

He studies the optimal capital structure and finds that equity-holders prefer to make the

firm’s activities riskier in order to increase the firm’s equity value at the expense of debt

value. In his paper the debt-holders are hurt by higher risk in the case of unprotected

debt in which the equity value is enhanced by greater risk. But the opposite is true

when the debt is protected by a positive net worth covenant. In this case, increasing

the risk lowers the equity value as well as the debt value.

Leland and Toft (1996a) extend Leland (1994)’s model and show that risk shifting dis-

appears when the time to maturity of debt is shortened, confirming that short-term

debt facilitates the disciplining of bank managers. Likewise, Leland (1998) includes a

single switching to risky portfolio without any cost. Erricson (1997) assumes a constant

switching cost and allows for an irreversible switch. Both these papers focus on the

optimal capital structure while the asset substitution opportunity causes agency costs.

1In this literature, the possible frictions between bankers and equity-holders and between depositors
and the Deposit Insurer Foundation are ignored.
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To obtain analytical solutions, I borrow the methods from the literature in stochastic

switching models. Dangl and Lehar (2004) consider the elementary stopping models in

which an agent decides on continuing or stopping the operation generating a stochastic

outcome. Since these types of entry/exit models are not directly applicable to the

switching model, the solution of Dangl and Lehar (2004) to the switching problem is by

conjectures on the control limits policies.2 The stopping model in the leading paper by

Brekke and Oksendal (1994) has been developed into a computational model by Fackler

(2004). Bayraktar and Egami (2007) apply a probabilistic approach towards the optimal

switching problem in which the value function is characterized directly. They rely on

the so called coupled optimal stopping problems instead of the dynamic programming

principle.

Analytically the switching models of Pham (2005b) and Vath and Pham (2007) are

the closest to my model. Vath and Pham (2007) solve the general switching model in

which a regime is basically replaced by another regime in order to maximize an objective

function. They use a viscosity solutions approach to determine the optimal investment

decision for a multi-activity firm. Their method involves a sequence of stopping times

with regime shifts. They find the explicit solution for the two regimes case of Brekke

and Oksendal (1994).

The following section introduces the model, explains the no-asset-substitution cases.

Section 2.3 presents the switching model and the optimal switching-stopping strategies.

In section 2.4 the strategies are quantified for several cases. Numerical examples are

explained in section 2.5. Section 2.6 concludes. The appendix includes some proofs and

solutions. Figures are presented in the last section.

2.2 The Model

The asset value of the bank generates cash-flow x which is assumed to follow a geomet-

ric Brownian motion, following Merton (1974) and Leland (1994). The banker makes

decisions on investment and the regime of operation. There are two choices of port-

folios. Each one represents a regime of operation and the bank cannot operate under

a combination of two regimes. The representative banker can switch from the current

portfolio to another at each moment. When the bank monitors its creditors, it receives

a higher mean of cash-flow and a lower risk. This regime is called Good. Consequently,

I call the other regime Bad in which the bank stops monitoring. In this case the risk

2See Pham (2005a) for a survey on the aspects of stochastic control problems.
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increases while the bank loses the mean value.3 Thus, the cash-flow process is denoted by

dx =

{
µGxdt+ σGxdω the Good regime is operating

µBxdt+ σBxdω the Bad regime is operating

x(0) = x0 > 0. (2.1)

where we have σG < σB for risk levels, and for drifts µG > µB. ω is a white noise

variable. Assume that all agents are risk neutral with an instantaneous discount rate r.

Thus, the deposit rate, d, is equal to the risk free rate r. Interpreting the Good regime

as operation under delegated monitoring, note that this monitoring is assumed to be

costless or to have a variable component which has already been subtracted from the

original drift of the cash-flow. In other words, µG could be interpreted as µ−m where

mx is the proportion of cash-flow lost in monitoring.

When the banker closes the bank at default, the bank’s assets are liquidated for a value of

αx, where α is given exogenously.4 Because we are in a risk neutral world, the expected

net present value of the cash-flow (conditional on the information available at time t)

has to coincide with the current value of the unlevered bank,

Wt = Ext
[∫ +∞

t

e−rτxτdτ

]
=

xt
r − µ

, (2.2)

where Ex is the expectation operator over variable x. In order to have a positive cash-

flow for all asset values above zero, I need an arbitrage free model,5 i.e. µ < r. But

for a real bank holding deposits (levered bank) equation (2.2) no longer holds because

of bankruptcy risk. In this model long-term deposits are fully insured, with the face

value normalized to one. Thus, the equity-holders are residual claimants. There is

an instantaneous switching cost, k, which is paid by the equity-holders at switching

moments.

In the following subsection, I concentrate on the case where the bank has only one type

of regime. This will introduce incentives of the bank for switching between two regimes.

Throughout, I assume a simple world where the bank operates in the absence of outsider

intervention.

3I consider a general case rather than only risk shifting which is supposed in the most of asset
substitution literature.

4Note that α is not necessarily less than 1, since the state variable is the cash-flow. This is unlike
to Leland (1994) in which the state variable is the asset value of the firm and there is a fractional
bankruptcy cost or cost of liquidation.

5The integral never converges for µ > r.
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2.2.1 No Asset Substitution

I explain the simple stopping problem for the bank in this section. Suppose the bank

chooses one type of regime at time t = 0, and operates for its entire lifetime without

asset substitution and any change in the portfolio. Thus, the bank has the only option

to stop when operation is no longer beneficial. That means as soon as the equity-holders’

wealth becomes negative, the banker stops operating and liquidates the assets.

In the absence of outsider intervention, the banker on behalf of equity-holders abandons

the operation as the cash-flow drops below threshold xC . Although a firm ex-ante

maximizes the value of its asset portfolio, a levered bank ex-post (when deposits are in

place) maximizes the equity value. In this framework the earnings of the bank from the

cash-flow, before deposit payment and extra benefit, is determined by:

W (x) = Ex
[∫ τC

0

xte
−rtdt+ e−rτCαxC

]
(2.3)

where stopping time τC is a random variable, defined as the first instant where xt falls

below xC , given x0 = x. Then W is found typically by solving the ordinary differential

equation (ODE)6

rW = (1/2)σ2x2Wxx + µxWx + x. (2.4)

The general solution is:

W (x) =
x

r − µ
+K1x

γ1 +K2x
γ2 , (2.5)

where γ1 > 1, γ2 < 0 are the roots of:

(1/2)σ2γ(γ − 1) + µγ − r = 0, (2.6)

and thus equal to:

γ =
−(µ− (1/2)σ2)±

√
(µ− (1/2)σ2)2 + 2σ2r

σ2
. (2.7)

The coefficients K1, K2 are determined by the boundary conditions:

W (xC) = αxC , (2.8)

6Refer to Dixit and Pindyck (1994) “Equivalent Risk-neutral Valuation”, P. 121-125.
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and

x→ +∞, W (x)
asymptotically−→ x

r − µ
. (2.9)

The latter condition attributes to the case that the high cash-flow prevents bankruptcy.

Therefore, since bankruptcy is unlikely, the earnings of the bank converges to the asset

value of an unlevered bank with the same cash-flow.

From (2.9) we have K1 = 0, and W is determined by

W (x) =
x

r − µ
+ (α− 1

r − µ
)xC(

x

xC
)γ2 . (2.10)

The second term in (2.10) indicates the option value associated with the irreversible

closure at xC . As condition (2.9) shows, this option value converges to zero for a high

value of cash-flow.

With a similar approach, I can find the closed forms for other contingent claims, i.e. the

market value of deposits and the market value of equity:

• The market value of the uninsured deposits: In contrast to the insured

contract held by the depositors, that is always worth 1, the coupon flow d provided

by the bank is not insured. The market value of the uninsured deposits D(x) is the

present value of coupon flow r. Whenever the cash-flow is below the coupon flow,

the banker has to inject money into the bank in order to survive the situation.

Since this claim is exposed to the default risk, the insurer bears the difference

between the insured value and the market value of the coupon flow, i.e. 1−D(x).

This is the current value of possible future expenditures necessary to guarantee

the full face value to depositors in case of bank closure.7 The claim D(x) satisfies

the ODE below:

rD = (1/2)σ2x2Dxx + µxDx + r. (2.11)

Therefore, D(x) has a power function closed form with coefficients found from

boundary conditions. The first boundary condition is D(xC) = αxC = W (xC),

also called “absolute priority rule”. According to this rule, the equity-holders

receive nothing from the asset value at the closure time.8 Since a high amount

of cash-flow rules out default risk, the market value of deposits converges to the

7For simplicity I assume that the bank pays the insurance premium equal 1−D(x0) at time t = 0.
Yet, the insurance premium could follow a more complicated process, e.g. a regular payment.

8If αxC > 1, then αxC − 1 is given to equity-holders. But in this case there is no uncertainty for
deposits. As I see later, a lower closure threshold still increases the market value of equity. Thus, I can
assume αxC < 1, and absolute priority rule holds.
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principal. Hence, another boundary condition is x → +∞, D(x) → d/r = 1.

Then, D(x) is given by

D(x) = 1 + (αxC − 1)(
x

xC
)γ2 . (2.12)

• The market value of the equity: Being a residual claim, the value of equity is

determined by9

E(x) = W (x)−D(x)

=
x

r − µ
− 1 + (1− xC

r − µ
)(
x

xC
)γ2 . (2.13)

As in Leland (1994), when there is no protection for the debt,10 bankruptcy occurs only

if the firm cannot meet the required instantaneous deposit payment by issuing additional

equity, i.e. when the equity value falls to zero. Of course, given the absolute priority

rule, the equity value is zero at closure. Maximizing the social value of the bank, W ,

gives xC = 0. However, the limited liability of equity prevents xC from being arbitrarily

small.11 Thus, maximizing nonnegative E(x) for all values of x > xC sets the closure

threshold as

0 < xc =
γ2(r − µ)

γ2 − 1
< 1 (γ2 < 0), (2.14)

which is the result of the “smooth-pasting” condition

dE/dxC |x=xc = 0. (2.15)

From equations (2.7) and (2.14), the closure threshold depends on risk free interest rate

r and the process of cash-flow such that

∂γ2

∂σ
> 0,

∂γ2

∂µ
< 0 ⇒ γB2 > γG2, (2.16)

and
∂xc
∂σ

= − r − µ
(γ2 − 1)2

∂γ2

∂σ
< 0, (2.17)

9The value of equity is also found directly from E(x) = Ex[
∫ τC
0

(xt − r)e−rtdt]. The second order
differential equation rE = (1/2)σ2x2Exx +µxEx + x− r and appropriate boundary conditions give the
same closed forms. I will follow this approach in the next section.

10The debt (deposit) is insured from the depositor’s point of view. However, there is no constraint
on the bank to meet the required instantaneous deposit payment.

11Still, a lower closure threshold raises the equity value as dE/dxC ≤ 0 for xC > 0.
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where γi2 is parameter γ2 associated with regime i ∈ {G,B}. The closure threshold is

not monotonic in the drift as the derivative indicates

∂xc
∂µ

= − r − µ
(γ2 − 1)2

∂γ2

∂µ
− γ2

γ2 − 1
≶ 0. (2.18)

Therefore, the closure threshold depends on the regime of operation and the parameters.

2.2.2 Comparison of the Two Regimes

Having learned about the stopping strategies of a bank under a single regime, now the

two regimes (Good and Bad) can be compared. As (2.13) shows, the equity value is a

convex function of the cash-flow. For a sufficiently high value of the cash-flow under each

regime i ∈ {G,B}, Ei(x) asymptotically converges to x
r−µi − 1 which equals the asset

value of an unlevered bank with the same cash-flow net of the deposits principal of the

levered bank. Because µG > µB, the equity value under regime Good is higher than the

equity value under regime Bad for the high amount of cash-flow. If µG = µB the closure

of the bank under the Bad regime occurs below the closure under the Good regime.

Figure 2.1 shows the case in which higher risk is always preferred, since it increases the

value of equity, EB(x) � EG(x).

As µG > µB, and xC is not monotonic with respect to drift µ, the difference between two

drifts yields different results. When dµ = µG − µB is high compared to dσ = σG − σB,

and the drift coefficient of the Good portfolio, µG, tends to the risk free interest rate r,

the bank with the Good portfolio closes at a lower threshold than the bank with Bad

portfolio. Further, for a sufficiently high value of the cash-flow the expected value of

equity under the Good regime is higher than the expected value of equity under the Bad

regime. In such a case, the bank definitely prefers the Good portfolio with the higher

equity value to the Bad portfolio, shown in figure 2.2. Alternatively, µG > µB leads

to EG(x) > EB(x) for the high cash-flow while non-monotonic closure may result in

xG > xB. Then the equity value functions of the two regimes cross as figure 2.3 shows.

Therefore, depending on the cash-flow level the bank may prefer a different regime. With

the intuitions from the figures, the following propositions discuss all cases. The proofs

are in the appendix.

Proposition 2.1 Assume that the bank has two possible portfolio choices: (µG, σG) and

(µB, σB), where µG > µB, σG < σB. Then for all x in the operation area of the bank,

EG(x) > EB(x) if and only if xG < xB.

Proof See appendix.

Proposition 2.2 Assume two regime choices for the bank such that µG = µB = µ.

Then xG > xB and EB(x) > EG(x), for all x in the operation area of the bank.
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Proof See appendix.

If drifts of two regimes are equal, equity value functions converge asymptotically to the

same line for high values of cash-flow as figure 2.2 shows. The next corollary regarding

figure 2.3 follows directly from the propositions above.

Corollary 2.1 Necessary and sufficient conditions in order to have crossing equity value

functions are µG > µB and xG > xB.

Proof For sufficiently high value of cash-flow we have

x→ +∞, E(x)−→ x

r − µ
− 1.

Hence ∃M ∈ R such that ∀x > M , EG(x) > EB(x) iff µG > µB. From proposition

2.1, ∃ m ∈ R such that ∀x < m, EG(x) < EB(x) iff xG > xB, as xG = xB only

yields EG(x) > EB(x) because of a higher drift. Since equity functions are continuous,

∃ xs ∈ R,m ≤ xs ≤ M such that EG(xs) = EB(xs). Because of convexity of the two

equity functions the cross is unique. �

Remark 2.1 Note that I do not consider any potential preference on strategies or clo-

sure. For instance, Decamps et al. (2004) assume that the Good regime dominates the

closure decision which is always preferred to the Bad regime. To implement this assump-

tion, I need that 1
r−µG

> α > 1
r−µB

. But in this paper I suppose that for all positive

cash-flows the expected value of the bank, operating perpetually under either the Good

or the Bad portfolio, is preferred to closure. However, the trade off between a higher

drift and a higher risk is the important feature.

Taking the Good regime, the closure point moves by any change in the drift and risk

level of cash-flow. The crossing holds iff the closure point decreases by lowering the

drift and increasing the risk level. It means I need conditions under which the total

differential of xC is negative, i.e. dxC < 0. Since dµ < 0 and dσ > 0, from (2.17), (2.18)

and

dxC =
∂xC
∂µ

dµ+
∂xC
∂σ

dσ, (2.19)

we see that dxC < 0 iff

dσ

dµ
<

∂γ2
∂µ

∂γ2
∂σ

+
γ2(γ2 − 1)

(r − µ)∂γ2
∂σ

. (2.20)

Excluding trivial cases in which the bank chooses only one regime with certainty, there

are opportunities for advantages of each regime. For a high value of the cash-flow the

banker chooses the Good regime and monitors creditors. Then, bankruptcy is less likely.

On the other hand, when the cash flow is too low, only survival is important for the

bank. The high risk guaranties non-zero equity value and makes operation possible for

lower cash-flow. That means the Bad regime is more attractive for a bank in distress.
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2.3 Switching Strategies in a Crossing Case

The last section showed that the two regimes might have advantages and disadvantages

for different values of the cash-flow. This result provides the intuition for switching from

one regime of operation to another as the cash-flow varies. In this section, assume that

the parameters satisfy inequality (2.20) which yield crossing equity functions as shown

in figure 2.3.

The bank has three choices at each moment, i.e. the Good portfolio, the Bad portfolio

or closure. Unlike closure, the two regimes can be reversibly abandoned at a cost. This

cost may be arbitrarily high, thereby ruling out switching. Denote the bank’s three

possible actions by {Stick,Switch,Stop}, for sticking to the current regime, switching to

another regime, and stopping the operation, respectively.

The general optimal switching model applies in this case. Following conjectures of Dangl

and Lehar (2004), in a model including a lump-sum linear cost of switching, “control

limits policies”indicate the optimal decision. The intuition from our previous results

makes control limits policies applicable. The bank prefers the Good portfolio for higher

cash-flow but the Bad portfolio for lower cash-flows. Since there is a lump-sum cost,

control limits policy leads to an interval [SG, SB] exerting the minimal control. As long

as the cash-flow is in the interior of the interval, the bank sticks to the current regime. If

cash-flow x falls below SG, the bank with regime Good must switch to the Bad regime,

and if x rises up SB the bank with regime Bad must switch to the Good regime.

Although this policy seems intuitively reasonable, such a switching-stopping model does

not fit to the former entering/exiting models leading to the control limit policies. Dangl

and Lehar (2004) refer to such models which are basically different from their switching-

stopping model. Thus, the model needs a direct solution without any prediction. On

one hand, to solve the problem directly, I need equity value functions to find the optimal

switching-stopping strategies. On the other hand, I can find the equity value function

only by proper boundary conditions resulting from the optimal strategies of the bank.

The viscosity solutions argument is a proper approach which considers the two optimiza-

tion problems (maximizing the objective function and finding the optimal boundaries)

simultaneously. Therefore, I state the switching model (between the two risky regimes)

as the viscosity solutions arguments of Pham (2005b). His arguments mathematically

fit to my model under the constraint that the bank only has a switching problem.

2.3.1 The Switching Model

I verify switching strategies using the framework of Pham (2005b) in this section. In

order to exclude the closure problem, suppose there is enough support for the bank in

distress. When there is welfare cost of closure, governments consider bail out policies. In
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here, we can assume the government recapitalizes the bank by public funds and the bank

operates forever with cash-flows above XSC > 0.12 Having only a switching problem,

this model satisfies assumptions H1-H4 of Pham (2005b) such that,

• H1. Lipschitz condition holds for the linear drift and variance of state variable x.

• H2. Variances are positive under each regime.

• H3. The out-flow function, x− r, is Lipschitz continuous.

• H4. The switching cost is positive, and sticking to the current regime is costless.

My value function is the equity value denoted by Ψi(x) for regime i. Define the differ-

ential operator ∆iF (x) for any value function F (x) under regime i as

∆iF (x) = µixF
′(x) +

σ2
i

2
x2F ′′(x). (2.21)

Theorem 1.3.1 of Pham (2005b) proves the existence of the viscosity solution to an

ordinary differential equation. I state it for this model in the next proposition.13

Proposition 2.3 Assuming constant drift and risk of the state variable x and the linear

profit function P (x) = x − r, for each regime i, the value function Ψi is a continuous

viscosity solution on (XSC ,∞) to the variational inequality:

min{rΨi(x)−∆iΨi(x)− P (x),Ψi(x)− (Ψj 6=i(x)− k)} = 0, x > XSC . (2.22)

This means that for both regimes, we have supersolution and subsolution properties:

• Viscosity supersolution property: for any x̄ > XSC and F ∈ C2(XSC ,∞) s.t. x̄ is

a local minimum of Ψi − F,Ψi(x̄) = F (x̄), we have

min{rF (x̄)−∆iF (x̄)− P (x̄),Ψi(x̄)− (Ψj 6=i(x̄)− k)} ≥ 0, (2.23)

• Viscosity subsolution property: for any x̄ > XSC and F ∈ C2(XSC ,∞) s.t. x̄ is a

local maximum of Ψi − F,Ψi(x̄) = F (x̄), we have

min{rF (x̄)−∆iF (x̄)− P (x̄),Ψi(x̄)− (Ψj 6=i(x̄)− k)} ≤ 0. (2.24)

Based on (2.22) there exists a continuation area for each regime. Whenever the cash-flow

is in the interior of the operation area, the bank sticks to the current regime. Then the

equity value is a solution to an ODE determined by the first term in (2.22) being equal

12We can later call XSC the closure threshold.
13See Pham (2005b), Appendix for the proof of a general case.
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zero. The continuation area is connected to the switching region where it is optimal to

change the regime. Switching area is a closed set by definition: as soon as the cash-flow

reaches the boundaries of the operation area and falls in the switching region, the second

term in (2.22) will be equal to zero. This equality is the value matching condition net

the switching cost. Moreover, Lemma 1.4.1 of Pham (2005b) adds the smoothness of the

value functions in their continuation region. Having the value functions from the last

proposition, I need the optimal boundary conditions to find the switching/continuation

regions. The optimality condition resulting from theorem 1.4.1 of Pham (2005b) is the

so called smooth-fit property14 over the boundaries of the switching regions. Note that

there is no explicit solution in Pham (2005b). I denote the switching point from regime

Good to regime Bad, SG and the switching point from Bad to Good, SB. We do not

know yet if they exist uniquely. However, under assumptions H1 to H4 proposition 2.4

gives the smooth-fit property conditions for any switching point.

Proposition 2.4 For i ∈ {G,B}, the value function Ψi is continuously differentiable

on (XSC ,∞). Moreover, at SG and SB we have

Ψ́G(SG) = Ψ́B(SG), (2.25)

Ψ́G(SB) = Ψ́B(SB). (2.26)

I divide the whole range of the cash-flow for regime i, (XSC ,∞), to SWi and Ci, as the

switching region for regime i and its continuation region, respectively. The two subsets

intersect in Si. In this work viscosity solution arguments cannot directly prove that the

continuation region and the switching region of a regime i ∈ {G,B} only connect as

cases (a) and (b) of figure 2.4. Therefore, the case (c) is also possible since it satisfies all

results of Pham (2005b), although it might not intuitively be reasonable for this model.

2.3.2 The Optimal Stopping-Switching Model

In order to find the overall strategies of a bank I need to add its optimal closure de-

cision to the switching problem, since in the absence of outsider intervention different

actions of the bank are not independent. The closure decision influences the switching

actions and vice versa. I characterize the optimal switching strategies of each regime

including the closure decision in this section. The mathematical solution of the com-

bined stopping-switching model is far beyond this work.15 Consequently, I develop the

model taking into account the economical intuitions in this section. The first intuitive

conjecture is that lemma 4.1 of Vath and Pham (2007) holds for the stopping-switching

14Or the smooth-pasting condition.
15Vath and Pham (2007) find explicit solutions for a special setting of switching model which is

different from this model.
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model similar to the stopping model.16

Conjecture 1. The value function, optimal equity Ψ̂i, i ∈ {G,B}, is smooth C2

on continuation region Ci and satisfies

rΨ̂i(x)−∆iΨ̂i(x)− P (x) = 0.

Lemma 2.1 The closure threshold is above zero, i.e. ∃XSC > 0, Ψ̂i(XSC) = 0 for

i ∈ {G,B} which is the optimal regime for the low cash-flows.

Proof If the bank never closes above zero zero cash-flow and operates under regime i

arbitrarily close to 0, then 0 ∈ Ci. From conjecture 1, Ψ̂i has a general form

Ψi(x) =
x

r − µi
− 1 +Ki1x

γi1 +Ki2x
γi2 .

When x converges to 0, the first and third terms converge to zero as well. Then if

Ki2 6= 0 the forth term converges to infinity. And for Ki2 = 0, Ψ̂i converges to -1. By

contradiction, 0 ∈ Ci and closure threshold XSC is above zero. �

Conjecture 2. For all x, Ψ̂i is monotonically increasing in x, i ∈ {G,B}.

Proposition 2.5 As µG > µB, the switching region of regime Bad is a non-empty set.

Proof In general, the bank can switch or close down when the current regime is no

longer beneficial. No matter which regime or strategy is optimal, the boundary condition

must hold: when the state variable cash-flow rises sufficiently, each claim asymptotically

converges to the claim on an unlevered bank with the same cash-flow. It means that

x→ +∞, Ψ̂i(x)
asymptotically−→ x

r − µi
− 1, i ∈ {G,B}.

Therefore, the higher drift of the Good regime trivially increases the social value and

the equity value of the bank with high cash-flow. Accordingly, the better choice for high

cash-flow is regime Good. Operating under the Bad regime a bank which has sufficiently

high cash-flow reduces the risk and switches to regime Good. Of course with a higher

cost of switching the switching point from Bad to Good increases. However, for any

0 < k < ∞ there exists SB < ∞ such that Ψ̂B(x) = Ψ̂G(x) − k (from the boundary

condition). It indicates that the switching region of the Bad regime includes (SB,∞),

i.e. SWB ⊇ (SB,∞) and SWB 6= �. �

16In this section, I state some economical conjectures where the mathematical proof is missing.
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Lemma 2.2 The optimal closure threshold of the bank is xG or XSC ≤ xB.

Proof If the bank follows operating in regime Good and never switches it has to close

optimally at xG. Where xB < xG, having the switching opportunity the bank is able

to continue operation with the lower cash-flows under regime Bad. Since the switching

action is optimal only if it increases the equity value, for all x in the operation area we

have lower bounds Ei(x) ≤ Ψ̂i(x), i ∈ {G,B}. Thus, the zero of Ψ̂ occurs below the zero

of Ei, i ∈ {G,B} or at an equal level of the cash-flow. It means that for the switching

case, if the bank switches to regime Bad or stays with this regime for the low cash-flow

it stops operation at a smaller threshold than the no-substitution case. For the same

reason, having switching opportunity the bank may decides to operate under regime

Good if it can close at a lower cash-flow. Concluding from both switching cases, for the

closure threshold of the stopping-switching model, XSC , we have XSC ≤ xB < xG. �

Lemma 2.3 The switching regions, SWG and SWB do not intersect.

Proof If SWG and SWB intersect, the switch is not stable. Because if in each switch the

bank loses an amount of cash-flow and enters to the switching area of another regime,

it has to switch back. This is not an optimal policy as the bank loses the cash-flow

continuously for the cost of switching back and forth. Thus, only the two continuation

regions, CG and CB can intersect. �

Remark 2.2 Suppose there exist two switching points for regime Bad, mB and MB

where mB < MB and continuation area CB = (mB,MB). Define the switching region

of the Good regime as an interval SWG = (mG,MG). From lemma 2.3 we must have

that SWG ⊆ CB, shown in figure 2.5. Then, if the cash-flow decreases from a high value

M > MB to a lower level m < mB we see that two times switching is more costly than

operating along M to m only under regime Good. With multiple switches the bank

faces multiple costs of switching

Ψ̂G(m) < Ψ̂G(mG) = Ψ̂B(mG)− k
< Ψ̂B(MB)− k = Ψ̂G(MB)− 2k

< Ψ̂G(M)− 2k.

Without switch along M to m, the equity value decreases smoothly. Any other case

of two or more switching points for each regime decreases the equity value with the

same intuition as the case in figure 2.5, unless a lower closure threshold can be achieved.

Albeit, if the bank could close at a lower level of cash-flow under regime Good, there

would be no incentive to switch to the Bad regime in the meantime. As the incentive

for choosing regime Bad is a lower closure, we can exclude all multiple switchings which
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are too costly. Doing so, there is at most one switching point for each regime and the

switching regions are convex sets. That means the optimal continuation area of each

regime is a convex set too as shown in parts (a) and (b) of figure 2.4.

Proposition 2.6 Assume optimal SG and SB exist uniquely. Then switching points are

different and SG < SB.

Proof The higher drift of the Good regime increases the social value and the equity value

of the bank when the cash-flow rises sufficiently such that these claims asymptotically

converge to the claims on an unlevered bank with the same cash-flow. Hence, above

some certain level of the cash-flow, a bank operating under regime Good sticks to it.

If the bank was operating under regime Bad would switch to regime Good above this

level. Thus, the threshold level is an upper boundary of the operation area of the Bad

regime. Under the assumption of uniqueness of switching points, CB is a convex set with

lower boundary XSC . It follows that the upper boundary is SB and CB = (XSC , SB).

Further, the continuation area of the Good regime is convex since SG is unique. Having

monotonically increasing equity values, SG > XSC since by definition Ψ̂B(XSC) = 0 and

Ψ̂′B(XSC) = 0 while

Ψ̂B(SG) = Ψ̂G(SG) + k > 0 (k > 0).

From lemma 2.3, the operation area of regime Good is a super set of SWB = [SB,∞).

Therefore, the bank should stick to operation under regime Good above SG and CG =

(SG,∞), where SG ≤ SB.

If switching from Good to Bad and from Bad to Good occur at the same value of

cash-flow, i.e. SG = SB = S, then we have

ΨG(S) = ΨB(S)− k, ΨB(S) = ΨG(S)− k, (2.27)

Ψ́G(S) = Ψ́B(S). (2.28)

From (2.27), we have

ΨG(S) = ΨB(S)− k
= ΨG(S)− k − k
= ΨG(S)− 2k.

which holds only if k = 0. By contradiction to k > 0, the first assumption is not satisfied,

i.e. SG 6= SB. �

Accordingly, a bank with regime Good gambles for resurrection when in distress and

increases the risk loosing the expected return. Then higher risk will help to close the

bank in a lower level of cash-flow. Figure 2.7 shows the optimal strategies of the bank.

When the cash-flow falls below SG, the bank operating in the Good regime switches
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to the Bad regime. Having the Bad regime, when the cash-flow drops bellow XSC , the

bank will close. But if the cash-flow increases and raises above SB, the bank switches

from Bad to Good in order to benefit from larger return.

Conjecture 3.

a) An increase in k > 0 decreases value functions Ψ̂i, i ∈ {G,B}.
b) When switching is costless k = 0, the equity Ψo

i reaches maximum value, i.e. ∀x,Ψo
i (x) >

Ψ̂i(x), i ∈ {G,B}.

The intuition is that the equity values are american option like claims. The higher

the strike price, the lower the option value. That means the equity value decreases when

switching cost increases. Therefore, when k = 0 the equity values are maximal.

Remark 2.3 When switching cost is high the bank does not switch unless in excessive

need. Therefore, I expect the higher k, the bank switches at a lower level to Bad regime,

i.e at a lower SG. Similarly for the other way of switching, a bank with regime Bad

postpones switching to a larger value of cash-flow. It means that the higher k, the larger

SB. Interval (SG, SB) expands by increasing k while equity values decrease. However,

SG is prevented from being arbitrarily small since SG > XSC > 0. Hence, there exists k∗

such that any k > k∗ rules out switching from Good to Bad. The banker stops operation

under regime Good instead of expensive switch. Then we have SWB = (SB,+∞) and

SWG = �. This gives that CB = (XSC , SB) and CG = (xG,+∞) as figure 2.6 shows.

Remark 2.4 In the limit when k = 0, it follows that SG = SB = S. Having the costless

switching opportunity, the argument of remark 2 is no longer valid. At any level of

cash-flow, the bank can instantly switch without any cost to increase the equity value

or survive distress.

2.4 Quantification of the Optimal Strategies

Applying a system of optimality conditions, I model the equity value of the Bad regime

for the cash-flow bounded in an interval [XSC , SB] and the equity value for the Good

regime in the interval [SG,+∞). As the solution of the second order ODE from (2.22),

we have the general closed forms of the equity value functions:

ΨG(x) =
x

r − µG
− 1 +K1x

γG1 +K2x
γG2 , (2.29)

ΨB(x) =
x

r − µB
− 1 +K3x

γB1 +K4x
γB2 . (2.30)
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Add the boundary conditions for all barriers:

ΨG(SG) = ΨB(SG)− k, (2.31)

ΨB(SB) = ΨG(SB)− k, (2.32)

x→ +∞ ⇒ ΨG(x)
asymptotically.−→ x

r − µG
− 1, (2.33)

ΨB(XSC) = 0. (2.34)

Then K1 = 0 from (2.33), and I find the rest of coefficients versus SG, SB and XSC from

the system of equations below:

XSC
r−µB

− 1 +K3X
γB1

SC +K4X
γB2

SC = 0

SG
r−µG

− 1 +K2S
γG2

G = SG
r−µB

− 1 +K3S
γB1

G +K4S
γB2

G − k

SB
r−µB

− 1 +K3S
γB1

B +K4S
γB2

B = SB
r−µG

− 1 +K2S
γG2

B − k

(2.35)

Since the coefficients are complicated functions of barriers, I present them in detail in

the appendix. Given the coefficients in the closed forms of the equity value functions, I

use the optimality conditions (2.25), (2.26) and the smooth-fit property bellow in order

to determine SG, SB and XSC ,

Ψ́B(XSC) = 0. (2.36)

The following system of non-linear equations determines all barriers simultaneously:

1

r − µG
+K2γG2S

γG2−1
G =

1

r − µB
+K3γB1S

γB1−1

G +K4γB2S
γB2−1

G (2.37)

1

r − µB
+K3γB1S

γB1−1

B +K4γB2S
γB2−1

B =
1

r − µG
+K2γG2S

γG2−1
B (2.38)

1

r − µB
+K3γB1X

γB1−1
SC +K4γB2X

γB2−1
SC = 0 (2.39)

Substituting for K2, K3 and K4 in (2.37)-(2.39), I have a set of three nonlinear equations

to solve for the three unknown variables. Since the equations also contain cross multipli-

cations of the unknown variables, an analytical solution is not possible.17 Such models

can only be solved numerically. However, the next proposition confirms the expected

result.

17The closed form of the equity value points out that XSC > 0. This property and negative out-flow
for x < r, make it impossible to apply the approach by Vath and Pham (2007) to get explicit solution.
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Proposition 2.7 In system of equations (2.37)-(2.39) there exist XSC , SG and SB such

that:

(1)XSC > 0,

(2)SG 6= 0 and SG 6= XSC,

(3)SB <∞.

Proof See appendix.

2.4.1 Two Alternative Cases

Before finding numerical evidences for the general stopping-switching model, I explain

two cases in which the general model no longer fits. Remarks 2.3 and 2.4 discuss two

special cases for the switching cost k. Equations (2.37)-(2.39) can not give solutions for

k > k∗ or where k = 0. Therefore, in this subsection I adjust the framework of the

model for each of the two boundary cases.18

2.4.1.1 Costless Switching

For k = 0 that SG = SB = S, the closed forms of the equity value functions are the

same as (2.29)-(2.30). But the boundary conditions need to change, as we have only

three boundary conditions for four unknown Kj’s,

Ψ̂G(S) = Ψ̂B(S), (2.40)

x→ +∞ ⇒ Ψ̂G(x)
asymptotically.−→ x

r − µG
− 1, (2.41)

Ψ̂B(xSC) = 0. (2.42)

From (2.41), again K1 = 0 in (2.29). Since only (2.40) and (2.42) are not enough for

determining K2, K3 and K4, I have to add smooth-pasting condition (2.28).

Given coefficients, the optimality condition (2.35) determines the closure threshold.

However, another optimality condition is necessary in order to find the switching point.

To achieve an optimal closure and switching strategy together, I use the following opti-

mality condition:19

∂Ψ̂G

∂S
− ∂Ψ̂G

∂XSC

|x=XSC

∂XSC

∂S
= 0, (2.43)

where

∂XSC

∂S
=

∂(Ψ̂′B(XSC))

∂S

∂(Ψ̂′B(XSC))

∂XSC

. (2.44)

18I exclude the rigorous details of calculation as nonlinear systems of equations do not give any explicit
solution.

19See Leland (1998)



24 CHAPTER 2. A SWITCHING MODEL IN BANKING

Since the smooth fit property is satisfied at the switching point, optimizing equity value

for the Good regime yields optimality of the equity value under the Bad regime. Con-

dition (2.43) takes into account the total differential of the value function and condition

(2.44) considers the optimality of closure with respect to the switching strategy. The

system of non-linear equations (2.28) and (2.43), substituting for (2.44), indicates the

critical points.

2.4.1.2 Too Costly Switching

Suppose k > k∗ and the bank in the Bad regime never switches. The associated equity

value function is given by (2.13) and (2.14),

Ψ̂G(x) = EG(x) =
x

r − µG
− 1 + (1− xG

r − µG
)(
x

xG
)γG2 (2.45)

xG =
γG2(r − µG)

γG2 − 1
. (2.46)

The closed form of Ψ̂B is (2.30) with coefficients indicated by (2.32) and (2.34). Then

we have optimality conditions (2.26) and (2.35).

2.5 Numerical Examples

This section presents three examples of the switching model combined with closure for

the general and special cases. First, we should look at the crossing behavior of two

equity value functions, assuming no switch. The parameters in real values are in Table

1.

Table 1. Parameters

Parameter r σG σB µG µB
Value 0.1 0.08 0.2 0.03 0.02

Table 2 shows the closure points under the two different regimes with incentives for

switching since closures satisfy xG > xB. Figure 2.8 sketches the equity functions. Then

I build the proper system of equations for the general case and alternatives substituting

for parameters. Note that nonlinear equations basically have multiple solutions and I

have to choose the feasible solution.

Table 2. A Crossing Case

γG1 γG2 γB1 γB2 xG xB EB(xG)

2.79714 -11.1721 2.23607 -2.23607 0.0642492 0.0552786 0.023886
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2.5.1 General Case: Two Switches

Since the Bad regime always switches to Good, SB < +∞ and the higher k the larger

SB. However, from (2.22) a necessary and sufficient condition for switching from Good

to Bad is 0 < k ≤ Ψ̂B(SG)− Ψ̂G(SG) such that SG itself is dependent on k. The solution

in table 3 shows that SG > xG does not necessarily hold since switching opportunity

increases the equity values, Ψ̂G > EG and Ψ̂B > EB. Even k > EB(xG) gives two

switching points.

Table 3. Combined Switching and Closure

k 10−15 0.01 0.02 0.05 0.1 0.15

XSC 0.052354 0.052755 0.052746 0.053188 0.053715 0.054141

SG 0.103470 0.083786 0.078051 0.068565 0.060124 0.054774

SB 0.103471 0.116189 0.120477 0.133016 0.158241 0.190163

The interval (SG, SB) expands by increasing k. When the switching cost is large, the

bank waits till it is necessary to change the regime of operation. Hence, it switches to

the Bad regime at a more stressful level. With k = 0.15 the switching point SG is very

close to the closure threshold. My try for k larger than or equal to 0.156 ended up SG
being less than XSC which is infeasible.20 The bank operating under Bad regime also

switches to Good when it can cover the cost and this increases SB. Figure 2.9 shows

the case of k = 0.02. Applying low values of k I find two switching points converge such

that for k = 10−15 they are extremely close.

2.5.2 A Costless Switch

When k = 0, costless switches happen at the same level of cash-flow, SG = SB = S. The

bank in regime Bad switches to Good if the cash-flow rises S, while the bank operating

under regime Good switches to Bad as soon as the cash-flow falls bellow S. Then, if the

cash-flow decreases further and reaches XSC the bank with Bad regime stops operating.

Under above parameters, as figure 2.10 shows the two critical points are S = 0.1034702

and XSC = 0.0523536. One could expect these values from the general case above. The

closure threshold obtains the smallest value, comparing to table 3. The switching point

S is inside intervals [SG, SB]k for all k > 0.

20Unfortunately, the analysis cannot explain this boundary for k.
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2.5.3 Too Costly Switch

Table 4 gives risk reduction results of our example under high switching costs.

Table 4. Too Costly Switching and Closure

k 0.16 0.2 0.5 1 100

XSC 0.0542028 0.0544057 0.0549685 0.0551454 0.0552782

SB 0.197326 0.228221 0.510823 1.01398 101.305

Figure 2.11 sketches case k = 0.16. As k grows the Bad regime is still beneficial since

XSC < xG. We see in table 4 that the higher the switching cost the larger the closure

threshold and switching point. The critical points are also larger than the general

case with two switches. By increasing the cost switching from Good to Bad becomes

unprofitable. However, risk reduction is still valuable but at a larger level of cash-flow.

2.6 Conclusion

This paper develops a continuous time model to verify banks’ risk-taking behavior. Two

regimes of operation are available to a representative bank at each moment of time. The

difference is in both return and risk levels of the portfolio chosen under each regime. It

is assumed that the bank is already operating in the market. The question is how the

operation should continue further in time. Investigating the gambling for resurrection

rationale shows that when the cash-flow decreases below a certain level the bank takes

more risk (regime Bad). If the cash-flow raises above a larger threshold the bank switches

to the less risky regime which generates a higher expected return (regime Good). The

cash-flow thresholds are named switching points. Optimal switching strategies for regime

Good and Bad are presented. Insolvency is defined as if the cash-flow falls below the

deposit payment at each moment. The deposits are fully insured. In the severe case

of insolvency that the bank’s equity values zero, the bank goes bankrupt and stops

operation.

This research extends the literature on risk-taking behavior in the sense that it includes

the change in the return in addition to the risk changes. Hence, advantages of a regime

creates incentives for the bank to stick on it or switch to another regime. In this regard,

the paper promotes the switching model of Dangl and Lehar (2004) who only study the

risky asset substitution problem. In my model, the switchings behavior is a result of the

trade off between the return and risk. Optimally there exists at most one switching point

for each regime. However, the switching cost affects optimal strategies of switching and
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closure in case of bankruptcy. A high switching cost rules out risk taking by lowering

switching criteria and increasing closure threshold. It influences risk reduction incentives

by pushing the switching point upward. Costless switching ends up in one switching

point, above which the bank operates under Good regime. Below this criteria, the bank

operates under regime Bad, unless the cash-flow drops at the closure threshold.

The stopping-switching problem which optimizes the bank’s switching and closure strate-

gies does not have a closed form solution. The extreme cases where the switching cost

is too high or the switching is costless cannot be solved as the boundary cases of the

general setup. Thus, I combine the switching model of Pham (2005b), the basic stop-

ping model, and economical intuitions in order to optimize strategies of a bank for each

case. Founding a verification theorem for each case is as severe as inventing a stochastic

control model which could solve the general switching-stopping problem. This should

be done as further stochastic control studies.

The entrance problem, i.e. under which regime a bank starts operation at t = 0 is

left for further research. The initial regime depends on the initial capital. Having the

relationship between the cash-flow and the capital, the results of switching-stopping

model can explain this problem only partially: we need at least positive capital which

requires x0 > XSC . If x0 ∈ SWi, i ∈ {G,B} the bank optimally starts under regime j.

In case of bankruptcy, the “lender of last resort” (LOLR) has to bear all deposits. Thus,

the high risk of insolvency is not in favor of the supervisory agency who has to play as the

LOLR. This research excludes outsiders’ intervention. Yet, the setup can be extended

to include the regulator’s role as the social planner who maximizes the total surplus of

the bank operation.
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Appendix

Proof of Proposition 2.1. Where the equity value in regime Good is always higher

than in regime Bad, it is trivial that the closure threshold is lower. For the other way,

if xG < xB, while µG > µB, then for the first derivatives É(.) we have

∀ x > xB > xG,

xÉG(x)− xÉB(x) = x(
1

r − µG
− 1

r − µB
)− γG2(

xG
r − µG

− 1)(
x

xG
)γG2

+γB2(
xB

r − µB
− 1)(

x

xB
)γB2

> xB(
1

r − µG
− 1

r − µB
)− γG2(

xG
r − µG

− 1)(
x

xB
)γG2

+γB2(
xB

r − µB
− 1)(

x

xB
)γB2

> ((
xG

r − µG
− xB
r − µB

)

−γG2(
xG

r − µG
− 1) + γB2(

xB
r − µB

− 1))(
x

xB
)γB2

= ((
xG

r − µG
)(1− γG2) + γG2︸ ︷︷ ︸

0

−

(
xB

r − µB
)(1− γB2) + γB2︸ ︷︷ ︸

0

)(
x

xB
)γB2

= 0.

Therefore, ÉG(x) > ÉB(x), ∀x > xB; and since EG(xB) > EB(xB) = 0, for all possible

cash flows x we have EG(x) > EB(x). �

Proof of Proposition 2.2. If µG = µB = µ, then dµ = 0 in (2.19). It follows

from (2.17) that xG > xB. Therefore, ∀x > xG,

EG(x)− EB(x) = (1− π

r
− xG
r − µ

)(
x

xG
)γG2 − (1− π

r
− xB
r − µ

)(
x

xB
)γB2

< (1− π

r
− xB
r − µ

)((
x

xG
)γG2 − (

x

xB
)γB2)

< (1− π

r
− xB
r − µ

)((
x

xG
)γG2 − (

x

xB
)γG2)

< (1− π

r
− xB
r − µ

)((
x

xG
)γG2 − (

x

xG
)γG2)

= 0. �
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Solutions to system of equations (2.35):

K2 = (r2(SγB2

B SγB1

G − SγB1

B SγB2

G − k(SγB2

B + SγB2

G )XγB1

SC + kSγB1

B XγB2

SC +

kSγB1

G XγB2

SC ) + SB(SγB2

G XγB1

SC − S
γB1

G XγB2

SC )(µG − µB) + k(−SγB2

G XγB1

SC

+SγB1

G XγB2

SC )µGµB + SγB2

B (SγB1

G µG(XSC + µB)−XγB1

SC (SG(µG − µB)

+kµGµB)) + SγB1

B (−SγB2

G µG(XSC + µB) +XγB2

SC (SG(µG − µB) +

kµGµB)) + r(k(SγB2

G XγB1

SC − S
γB1

G XγB2

SC )(µG + µB) + SγB2

B (kXγB1

SC

(µG + µB)− SγB1

G (XSC + µG + µB)) + SγB1

B (−kXγB2

SC (µG + µB)

+SγB2

G (XSC + µG + µB))))/((SγB2

B SγG2

G XγB1

SC − S
γB1

B SγG2

G XγB2

SC + SγG2

B

(−SγB2

G XγB1

SC + SγB1

G XγB2

SC ))(r − µG)(r − µB))

K3 = (XγB2

SC (k(SγG2

B + SγG2

G )(r − µG)(r − µB)− (−SγG2

B SG + SBS
γG2

G )

(µG − µB)) + (SγB2

B SγG2

G − SγG2

B SγB2

G )(r − µG)(r −XSC − µB))

/((SγB2

B SγG2

G XγB1

SC − S
γB1

B SγG2

G XγB2

SC + SγG2

B (−SγB2

G XγB1

SC +

SγB1

G XγB2

SC ))(r − µG)(r − µB))

K4 = (XγB1

SC (−k(SγG2

B + SγG2

G )(r − µG)(r − µB) + (−SγG2

B SG + SBS
γG2

G )

(µG − µB))− (SγB1

B SγG2

G − SγG2

B SγB1

G )(r − µG)(r −XSC − µB))/

((SγB2

B SγG2

G XγB1

SC − S
γB1

B SγG2

G XγB2

SC + SγG2

B (−SγB2

G

XγB1

SC + SγB1

G XγB2

SC ))(r − µG)(r − µB))
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Proof of Proposition 2.7. Proof by contradiction for each case:

(1) By replacing coefficients K2, K3 and K4 in (2.39) and ordering powers of XSC in the

equation I have

(XγB1+1
SC (r − µG)(1− γB1)(SγG2

B SγB2

G − SγB2

B SγG2

G ) +

XγB1

SC γB1(r − µG)(r − µB)(SγG2

B SγB2

G − SγB2

B SγG2

G ) +

XγB1+γB2

SC (γB1 − γB2)(k(r − µG)(r − µB)(SγG2

G + SγG2

B ) + (µG − µB)

(SBS
γG2

G − SGSγG2

B )) +XγB2+1
SC (r − µG)(−1 + γB2)(SγG2

B SγB1

G − SγB1

B SγG2

G ) +

XγB2

SC γB2(r − µG)(r − µB)(SγB1

B SγG2

G − SγG2

B SγB1

G ))/

((XγB1+1
SC (SγB2

B SγG2

G − SγG2

B SγB2

G ) +

XγB2+1
SC (SγG2

B SγB1

G − SγB1

B SγG2

G ))(r − µG)(r − µB)) = 0 (2.47)

Simplifying this equation term by term with respect to the denominator, we see that

the left hand side of the equation gives the following limit

lim
XSC→ 0

1− γB2

r − µB
− γB2

XSC +
X
γB1−γB2+1

SC

(S
γG2
B

S
γB1
G

−S
γB1
B

S
γG2
G

)

(S
γB2
B

S
γG2
G
−S

γG2
B

S
γB2
G

)

 .

When XSC → 0, the fact that the limit must go to 0 gives γB2 = 0 and γB2 − 1 = 0

which contradict.
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(2) Similar to part (1), I replace the coefficients in (2.38) and order it versus the powers

of SG.21 The limit of resulting equation when SG → 0 is equal zero if

γB2 = γB1 or (
SB
XSC

)γB1 = −k (r − µG)(r − µB)

(r − µG)(r − µB)−XSC(r − µG)

and: r = µG or r = µB or k = 0 or γB2 = 0 or SB =∞ or XSC = 0

and: µG = µB.

These necessary conditions are inconsistent and not satisfied. Therefore, SG 6= 0.

Assume SG = XSC = S, rewrite (2.38) and (2.39) replacing for the coefficients and S.

We must have equation (2.38) plus equation (2.47) equals zero. This gives:

S =
(1− k)γG2(r − µG)

γG2 − 1

First of all we find S < 0 for k > 1. Next, k = 1 yields S = 0 which is impossible.

Then, for k < 1 the two smooth-pasting conditions (2.38) and (2.39) no longer hold.

The contradiction rejects the hypothesis.

(3) By SB converging to∞, the equation (2.37), substituting for coefficients K2, K3 and

K4, holds if µG = µB or γB1 = 1. Since the latter cannot be true, equality of the drifts is

the necessary condition. Under this condition, (2.47) indicates that XSC is exactly the

closure threshold in no-switch case for the Bad regime. Following this result, SG from

(2.38) is

SG = xB

(
kγG2(1− γB2)

γG2 − γB2

)γB2

Such SG may cause SG < xB. Despite the result is consistent with proposition 2.2, the

assumption of unequal drifts rejects the hypothesis of SG →∞. �

21Since the resulting equation is more rigorous than helpful, I do not mention it here.
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Figures

Figure 2.1: The equity value vs. the cash-flow, where µG = µB.

Figure 2.2: The equity value vs the cash-flow where µG > µB and xG < xB.
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Figure 2.3: Value of equity vs the cash-flow where µG > µB and xG > xB.

Figure 2.4: Examples of continuation and switching areas for a regime i ∈ {G,B}. The bank
operates under regime i as long as x ∈ Ci and it will switch to regime j 6= i as soon as x ∈ SWi.

Figure 2.5: An example of more than one switching point for each regime.
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Figure 2.6: Only one switching point: from regime Bad to regime Good

Figure 2.7: Optimal switching decisions and the optimal operation regions.

Figure 2.8: Trivial cases.
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Figure 2.9: A general case in optimal switching-stopping, k = 0.02.
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Figure 2.10: Costless switching.

Figure 2.11: Too costly switching, k = 0.16.



Chapter 3

Switching Models for Banking: Is

Gambling for Resurrection Valid?

3.1 Introduction

“Gambling for resurrection” has been covered in the financial as well as political eco-

nomics literature. The conventional wisdom is that an agent under distress gambles

and takes higher risk in order to survive. Under standard assumption that a bank can

choose one of two different regimes of operation, i.e. one portfolio with a higher return

and another portfolio with a higher risk, the relationship between a bank’s capital and

risk level is monotonic. The contribution of this paper is to show that the monotonicity

does not always hold true.

In the first part, this paper examines the endogenous choice of risk-return regime for risk-

neutral bankers who maximize the equity value. The bank’s wealth is normalized with

respect to the deposit value, and there is hence a one to one relationship between the

net wealth and the capital (equity). With limited liability and fully insured deposits the

bank increases its risk, loosing part of the expected return of the investment. However,

it can then operate under a safer regime when having enough wealth. In a discrete

time static model the “cutoff values” below which a bank takes more risk are found in

terms of the net wealth. The risk-taking strategy is mainly influenced by the cost of

effort to reduce the risk. If the bank could operate without an extra cost to monitor

its creditors, it would increase the risk only below a unique level of the initial wealth.

However, if the bank has to pay for having a better chance to succeed in its operation,

the optimal risk-taking strategy is obtained by multiple cutoff values. In fact, a bank

may go bankrupt at failure with a higher level of the initial wealth under the less risky

portfolio because of the effort cost. This can lead to the multiple cutoff value policy.

37



38 CHAPTER 3. IS GAMBLING FOR RESURRECTION VALID?

The second part of this paper extends the setup to a dynamic model to investigate

the intertemporal risk-taking behavior. The two periods of the model are connected

to each other through the dividend policy. At the beginning of each period the bank

chooses a risk-return regime of operation by maximizing the net present value (NPV).

The main finding in this part is that beside gambling for resurrection a bank may reduce

its risk by switching from the risky regime to the safer regime if the low risk portfolio

is sufficiently advantageous. The optimal risk-return choice varies depending on the

capital level and the dividend payment. The risk reduction or gambling for resurrection

strategy is impacted also by the interest rate which determines the deposit payment.

Due to the assumption that failure brings bankruptcy, the uniqueness of a cutoff value

is robust with respect to the effort cost.

Risk-taking behavior has been widely discussed in the literature, mostly as a base for

regulation studies. Decamps et al. (2004) verify Basel (II) regulatory policies in a

continuous-time model but without dynamic regime switching. I follow them to specify

effort cost to the safer regime. The discrete-time model of my paper which includes

endogenous regime switching contributes to this avenue of studies. A good reference of

switching models is the continuous-time model of Dangl and Lehar (2004). They assume

standard gambling for resurrection with two switching points which are identical in the

absence of switching cost. Nevertheless, a continuous time model does not necessarily

have closed form solutions. This obstacle makes it impossible to verify the bank’s en-

dogenous portfolio choice analytically in a general continuous time model. Therefore, in

this chapter I structure the bank’s problem in a discrete-time model.

The model presented in this chapter is generalized comparing to Dangl and Lehar (2004)

in the sense that both return and risk level of portfolio change from one regime to

another. Further, I define no deficiency assumption on any regime to the extent that

even the riskier regime may have positive net present value (NPV). This is different

from the assumption in Decamps et al. (2004) which gives priority to liquidation rather

than operating under the riskier regime. Also in credit rationing, Stiglitz and Weiss

(1981) assign the riskier projects for being inefficient. In contrary, in this paper I discuss

advantages and disadvantages of each regime, free from deficiency assumptions.

The focus of studies in some other literature is on the risk of creditors or firms. In

that view, the bank has to take a monitoring position to avoid risky creditors. Stiglitz

and Weiss (1981) relate the risk-taking behavior of creditors to the interest rate and

analyze credit rationing. In their paper, as demand and supply of loans are functions of

the interest rate, it plays the role of screening device for the bank. High interest rates

attract riskier borrowers and decrease the bank’s expected profit. The bank is reluctant

to take risk and monitors its creditors through the interest rate at which they are willing

to borrow. In the lender-borrower relationship, Berlin and Mester (1992) define a bank’s

role in preventing a firm’s gambling for resurrection. The bank may receive a noisy signal
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indicating the success/failure of the firm in order to then allow/restrict renegotiation of

loan covenants.

My work is in the class of studies concerned with regulating the banks’ risk-taking and

deal directly with the risk incentives. Diamond and Dybvig (1983) study bank deposit

contracts and risk-taking incentives of bank-managers which lead to speculative bank-

runs. Mailath and Mester (1994) solve the bank-regulatory game in a two period model

in which the bank accesses to one risk-free and one risky asset. They explain regulatory

forbearance and how the regulatory agency cannot commit ex ante to a tough closure

policy. The bank takes higher risk and the regulator wants to impose closure before the

net present value of the bank’s assets become negative. However, from a social welfare

perspective, it is almost always optimal to let an under-capitalized bank continue to

operate. This generates bad incentives for the bankers from an ex ante point of view

to take risk. Acharya and Yorulmazer (2007) observe a herding behavior among many

banks to increase the risk as a result of the managers’ moral hazard, and the regulator’s

problem regarding closure policy. Cordella and Yeyati (2003) analyze the moral hazard

problem within a multi-period model but assume independent risk-taking strategy in

each period. The existing risk-taking studies can be summerized as either an agent

chooses between a safe asset and a risky investment in a one period model or if a

dynamic model is prsented, each period is independent and unaffected by other periods.

This motivates my work to challenge the classical idea of gambling for resurrection,

allowing fully endogenous risk-taking behavior.

The following section sets up a one period model to determine the switching cutoff

values and the associated policies. Section 3.3 develops the setup to a two period model.

In section 3.4 the optimal dividend policy is investigated. Section 3.5 presents some

numerical examples to illustrate the result. Section 3.6 concludes. The appendix includes

the proof of a remark.

3.2 The One-Period Model with Discrete Return

Assume a risk neutral world. The initial status of the bank is W0 which consists of initial

equity, A0 ≥ 0, and deposit principal normalized to one, i.e. W0 = A0 + 1. Deposits

are fully insured and shareholders have limited liability. Operation of the bank has a

constant returns to scale technology with rate of return (RR) zi under regime i ∈ {0, 1}.
At the end of period, stochastic variable zi returns Ri in case of success which occurs

with probability Pi under regime i. In case of failure, the rate or return of regime i is ri,

zi =

{
Ri > 0 with probability Pi,

ri > −1 with probability 1− Pi.
(3.1)
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Following Stiglitz and Weiss (1981), assume that regime 1 has higher expected return

and more concentrated distribution than regime 0. This means that µ1 > µ0 where

µi = PiRi + (1 − Pi)ri but R1 < R0 and r0 ≤ r1. It must be then P1 > P0. Further,

I assume that regime 1 bears monetary effort cost e ≥ 0. The cost can be interpreted

as expenses of monitoring creditors (delegated monitoring as in Diamond (1984)). By

definition, none of the two regimes is essentially inefficient or less preferable. The equity

value at time t = 1 is,

W1 = max(0, (W0 − ie)(1 + zi)− C). (3.2)

In order to create incentives for the bank to monitor its creditors, the added value of

high effort regime should exceed its cost, i.e. for W0 ≥ 1,

W0(1 + µ1)−W0 > e(1 + µ1) ⇔ e <
µ1

1 + µ1

. (3.3)

The risk free interest rate in the market is 0 < rf < 1, where rf < Ri for i ∈ {0, 1}.
Generally the bank faces two optimization problems. First it must decide on how much

capital to invest in a risky regime, and second it must decide which regime to take. Due

to the risk neutrality assumption, the bank invests either all the wealth or nothing. We

can thus translate the bank’s first problem to an entrance decision. The bank decides

to enter the market and starts operation if the expected profit of investing in a risky

regime is more than the expected value of saving the initial capital. Define discount rate

β = 1
1+rf

, the bank take any risky regime i if,

A0 ≤ βE(W1, i). (3.4)

For the bank to start operation, a necessary condition is that the bank must be sol-

vent if the operation succeeds. Otherwise, the bank would never choose that regime of

operation. This requires for any regime i,

W0 ≥
C

1 +Ri

+ ie, i ∈ {0, 1}. (3.5)

Since C
1+R0

< C
1+R1

+ e, the high effort regime may cause insolvency where the low effort

operation is solvent.

Yet, if the NPV is negative the bank has incentive to operate under a risky regime

because of a higher return (comparing to the risk free RR) in case of success. Therefore,

solvency and profitability of a risky regime i is the necessary and sufficient condition for

the bank to take deposit and start operation under that regime,

A0 ≤ βPi((A0 + 1− ie)(1 +Ri)− C). (3.6)
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To solve the inequality for A0, the sign of βPi(1+Ri)−1 is important. This term can be

interpreted as the NPV of success return for investing one unit in risky regime i, although

the effort cost of regime 1 must be considered too. Many papers, e.g. Mailath and Mester

(1994), assume that a risky regime has negative NPV. With their assumption the result

is gambling for resurrection: if βPi(1 + Ri) < 1, the bank chooses risky investment i

where the capital is below a threshold,

A0 ≤
βPi(C − (1− ie)(1 +Ri))

βPi(1 +Ri)− 1
. (3.7)

which is meaningful (positive) iff its numerator is negative. Alternatively, suppose suc-

cess of any risky regime is profitable,

βPi(1 +Ri) > 1, i ∈ {0, 1}. (3.8)

Contrary to the classical idea, the bank operates under a risky regime iff,

A0 ≥
βPi(C − (1− ie)(1 +Ri))

βPi(1 +Ri)− 1
. (3.9)

The unique cut-off value policy obtains for the entrance decision if the numerator is

positive. Otherwise, the bank starts operating under a risky regime for any positive

level of initial capital.1 When (3.9) holds, the bank enters the market and takes deposits.

Hence, for the initial wealth we have,

W0 ≥ Gi =
βPi(C + ie(1 +Ri)− 1)

βPi(1 +Ri)− 1
. (3.10)

Now focus on the bank’s second problem: optimization of risk-return regime. Regime

i is risky for some level of initial wealth if its failure brings out insolvency, i.e. W0 <
C

1+ri
+ ie. Without loss of generality suppose C

1+r0
< C

1+r1
+ e. Again the high effort

regime though succeeds with a higher probability causes insolvency in case of failure

for initial wealth C
1+r0

< W0 <
C

1+r1
+ e where the bank under the low effort regime is

solvent.2 Correspondingly, the regime choice is different in each possible case. The bank

optimally chooses regime i0 at the beginning of the period to maximize the expected

value of its equity,

E(W1, i0) ≥ E(W1, i), i0 6= i ∈ {0, 1}. (3.11)

The following proposition describes the bank’s optimal strategy.

1Cordella and Yeyati (2003) have similar result, albeit with respect to rate of returns and interest
rate.

2Without the assumption regarding the thresholds, proposition 3.1 has to be repeated for a case
1 + µ1 > P0(1 +R0), but the result does not change.
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Proposition 3.1 (I) Suppose for expected returns P1(1 +R1) > P0(1 +R0).

(a) If P1(1+R1) > 1+µ0, the regime choice is characterized by a unique cutoff, i.e. for

each set of parameters there exists only one cutoff value, in terms of net wealth, above

which the bank takes less risk. Figure 3.1 shows possible cases.

(b) If P1(1+R1) < 1+µ0, multiple cutoff values characterize the optimal regime choices

in two out of five feasible orders of thresholds, S1, S2, S3,
C

1+r0
and C

1+r1
+ e, as shown

by figure 3.2. In each multiple-cutoff strategy three cutoff values in terms of net wealth

exist such that the bank’s regime choice differs from lower to higher than each. In other

cases, unique cutoff value gives the optimal regime choices.

(II) If P0(1 +R0) > P1(1 +R1), then unique cutoff value policy is optimal.

Proof (I.a) As failure of a regime may cause bankruptcy, find initial wealth levels

associated to each likely failure case. Three cases are possible: the bank is solvent for

any return of each regime, it is insolvent only at failure of regime 1, it is insolvent at a

failure. Compare expected profits under two regime choices.

1. Suppose the bank is solvent for all returns, i.e. W0 ≥ C
1+r1

+ e. From (11) regime

1 makes the bank better off iff

(W0 − e)(1 + µ1)− C ≥ W0(1 + µ0)− C.

Consequently, the bank chooses regime i0 = 1 iff

W0 ≥ S1 = e(1 + µ1)/(µ1 − µ0), (3.12)

and i0 = 0 otherwise.

2. When C
1+r0
≤ W0 <

C
1+r1

+ e, failure of regime 1 makes the bank insolvent because

of effort cost but at return r0 the bank is still solvent. It chooses regime i0 = 1 iff

P1((W0 − e)(1 +R1)− C) ≥ W0(1 + µ0)− C ⇔

W0 ≥ S2 =
(P1 − 1)C + eP1(1 +R1)

P1(1 +R1)− 1− µ0

(3.13)

3. Neither r0, nor r1 yield solvency, i.e. W0 <
C

1+r0
. The bank prefers the high effort

regime iff

P1((W0 − e)(1 +R1)− C) ≥ P0(W0(1 +R0)− C) ⇔

W0 ≥ S3 =
C(P1 − P0) + eP1(1 +R1)

P1 − P0 + P1R1 − P0R0

. (3.14)
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In spite of having three thresholds, notice that S1 >
C

1+r1
+ e contradicts S2 <

C
1+r1

+ e

and vice versa,

S2 <
C

1 + r1

+ e ⇔

((P1 − 1)(1 + r1)− [P1(1 +R1)− 1− µ0])C

(P1(1 +R1)− 1− µ0)(1 + r1)
<

e[(P1(1 +R1)− 1− µ0)− P1(1 +R1)]

P1(1 +R1)− 1− µ0

⇔ C

1 + r1

>
e(1 + µ0)

µ1 − µ0

.

Therefore, where S1 >
C

1+r1
+ e, S2 is not feasible as S2 >

C
1+r1

+ e. Then optimal regime

is 0 for all C
1+r0

< W0 <
C

1+r1
+ e. Yet, S2 >

C
1+r0

contradicts S3 <
C

1+r0
and vice versa.

C

1 + r0

< S2 ⇔

C(P1(1 +R1)− 1− µ0 − (P1 − 1)(1 + r0))

(P1(1 +R1)− 1− µ0)(1 + r0)
<

eP1(1 +R1)

P1(1 +R1)− 1− µ0

(3.15)

⇔ C(P1(1 +R1)− P0(1 +R0)− (P1 − P0)(1 + r0))

(1 + r0)(P1(1 +R1)− 1− µ0)
<

eP1(1 +R1)

P1(1 +R1)− 1− µ0

(3.16)

⇔ C(P1(1 +R1)− P0(1 +R0)− (P1 − P0)(1 + r0))

(1 + r0)(P1(1 +R1)− P0(1 +R0))
<

eP1(1 +R1)

P1(1 +R1)− P0(1 +R0)
(3.17)

⇔ S3 >
C

1 + r0

,

Thus, the optimal regime is 0 for all W0 ≤ C
1+r0

. It means that S1 is the unique cutoff

value. In a similar way, we end up having S2 or S3 as a unique cutoff value iff one of

them is feasible, ruling out feasibility of two others.
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Figure 3.1: Switching strategy in a one period model with discrete return, expected
gross success-return of regime 1 exceeds expected return of regime 0.

(I.b) Under assumption P1(1 + R1) < 1 + µ0, the inequality (3.13) changes. In other

words, now regime 1 is the optimal choice for W0 ≤ S2, and regime 0 is optimal oth-

erwise. In contrast to part (I.a), inequalities (3.16) and (3.17) reverse. Here S2 >
C

1+r0

requires S3 < C
1+r0

, and S2 < C
1+r1

+ e directs to C
1+r1

< S1. If S1 is feasible, then

feasibility of S2 makes S3 feasible, case (a) in figure 3.2. However, S2 might be lower

than C
1+r0

. Then for C
1+r0
≤ W0 <

C
1+r1

+e we have i0 = 0. But it means that S3 is above
C

1+r0
and the optimal regime is 0 where W0 <

C
1+r0

. Case (b) shows the unique cutoff

value S1. With feasible S3, feasibility of S2 rather than case (a) can also lead to case

(c) where S1 is above C
1+r1

and still infeasible. Hence, three cutoff values are S3, S2 and
C

1+r1
+ e. In case (d), S1 is infeasible but C

1+r1
< S1. This demands S2 <

C
1+r1

+ e, but we

have infeasibility of S2 <
C

1+r0
< S3. Therefore, C

1+r1
is the unique cutoff value. The last

possible case is (e) in figure 3.2. There, feasible S3 appears with S2 >
C

1+r1
+ e which

brings out S1 infeasible. Hence, S3 is the unique cutoff value, as below S2 between two

boundaries C
1+r0

and C
1+r1

+ e the optimal strategy is regime 1.

(II) In a similar approach as (I.a), we observe the bank is reluctant to exert effort. Since

S3 < 0, below C
1+r0

the optimal choice is regime 0. Still, if P1(1 + R1) > 1 + µ0, then

S2 >
C

1+r0
because S3 < 0 < C

1+r0
. In this case, either S1 or S2 is the unique cutoff value

(cases (a) and (b) in figure 3.1). But P1(1 + R1) < 1 + µ0 causes S2 <
C

1+r0
. Therefore,

either S1 is feasible and the unique cutoff value or it is only above C
1+r1

, making C
1+r1

+ e

the unique cutoff value (cases (b) and (d) in figure 3.2).�

Remark 3.1 In part (I.b) of proposition 3.1, the expected return of the high effort

regime equals its return in the likely case of success and that is lower than the expected

return of the risky regime. It occurs when the return of regime 0 in case of failure is

not too small and this motivates for taking higher risk of regime 0. Thus, if failure
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Figure 3.2: Switching strategy in a one period model with discrete return, expected
return of regime 0 surpass expected gross success-return of regime 1.

makes the bank insolvent under regime 1 but solvent for regime 0, as above S2, the

bank prefers regime 0. However, effort cost is small enough such that the bank exerts

effort to gain more through higher probability of success. This can be seen in the

interval between feasible S2 and S3. Insolvency at failure of either regime 0 or 1 makes

regime 1 more interesting since its failure has a lower probability. Under assumption

P1(1 + R1) < P0(1 + R0) in part (II), in expectation the bank is more profitable if

succeeds in regime 0 than in regime 1. Hence, it is reluctant to choose the safer regime.

This brings out a unique cutoff policy, with a large cutoff value comparing to all other

cases.

Remark 3.2 In the benchmark case without effort cost, i.e. e = 0, the optimal regime

is i0 = 1 because of its higher expected return, as long as W0 ≥ C
1+r0

. Note that now the

order changes for boundaries C
1+r1

< C
1+r0

. Within the same method as proposition 3.1,

cutoff values are found based upon the similar assumptions. Nevertheless, the optimal

regime choice is given by a unique cutoff value for each case. The proof is included in

the appendix.

Comparing the results of remark 3.2 and proposition 3.1, we see that effort cost plays an

important role for the bank’s choice of the regime of operation. The classical gambling
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for resurrection obtains as long as there is no effort cost. This result is for instance seen

in Dangl and Lehar (2004) if changing from one regime to another, i.e. regime-switch,

costs nothing. While the switching cost yields separate thresholds for the risk reduction

and gambling for resurrection, the effort cost for a portfolio with higher expected return

induces non-monotone regime choices. Decamps et al. (2004) consider an effort cost

in their continuous time model, but they assume negative NPV of the riskier regime

which makes it worse than no operation. Therefore, they obtain a standard gambling

for resurrection cutoff policy. The model in this paper shows that effort cost on the one

hand and no deficiency (no negative NPV) of risky regimes on the other hand are the

source of a multiplicity of cutoff values.

Remark 3.3 Robustness Check of Proposition 3.1 for Non-monetary Effort Cost: Al-

ternatively, there might be non-monetary effort cost for regime 1, which does not affect

the return of the portfolio but inflicts an additional monitoring cost on the bank. Con-

sequently, the bank has to pay e at the end of the period and the equity value is

W1 = (1 + zi0)W0 − i0e− C. (3.18)

Then the solvency value in terms of net wealth is

W0 ≥
i0e+ C

1 + zi0
. (3.19)

Assume that C
1+r0

< e+C
1+r1

. With the same value of e, regime choice cutoff values turn out

to be smaller compared to the original model with monetary cost, since the effort cost is

paid out once returns are realized. For high level of net wealth above e+C
1+r1

, between two

boundaries and below C
1+r0

, the bank brings effort iff W0 is, respectively in each interval,

above the following cutoff values,

Ŝ1 =
e

µ1 − µ0

, (3.20)

Ŝ2 =
(P1 − 1)C + eP1

P1(1 +R1)− (1 + µ0)
(3.21)

Ŝ3 =
C(P1 − P0) + eP1

P1(1 +R1)− P0(1 +R0)
. (3.22)

Nonetheless, proposition 3.1 including some multi-cutoff strategies is satisfied.

We can interpret regime strategies in the one period model as a short-run decision in

a dynamic model. However, the short-run decision can be different from the long-run

decision. If at the beginning of each period the bank optimizes not only the profit of

the end of period but also a stream of future profits the decision for risk taking may
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Figure 3.3: The Time-line of two-period model

change. The intuition is that the bank faces an intertemporal decision on its profit. For

instance, the profit of one period operation adds on the bank’s wealth which determines

the regime of operation for the next period. Since the result of one period influences

next periods, the bank has to take into account the consequences of its today’s decision

on the future. To capture the intertemporal effects, in the following section I analyze

the optimal behavior of banks in a dynamic setup of two periods.

3.3 The Two-Period Model with Discrete Return

Suppose there are three dates, t = 0, 1 and 2. At the beginning of period one, t = o,

the bank receives deposits normalized to 1 that it has to pay back in equal payments

C at t = 1, 2. Having initial equity, the initial wealth W0 exceeds principal.3 At the

end of the first period the bank has to pay dividend out of positive profit. The dividend

is assume to be an exogenously given fraction of the first period outcome less deposit

payment, (1 − δ)(Y1 − C) > 0. The remaining wealth, δ(Y1 − C) > 0, covers effort

cost and generates outcome in the next period.4 At t = 2 residual profits (after deposit

payment) are paid to shareholders. Therefore, the bank on behalf of the shareholders

aims to optimize the dividend of the first period added to the final profit. The discount

rate is 0 < β < 1. The rate of return (RR) is zi given by equation (3.1). Figure 3.3

sketches the timing of the model.

3Alternatively, deposits could be defined as being rolled over each period. This would however not
affect the results.

4Note that 0 < δ < 1 represent the reinvestment ratio. This notation makes the further calculations
simpler.
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Again I assume that there is monetary effort cost e for regime 1. The bank may switch at

t = 1 to a different regime of operation in the second period, i.e. i0 6= i1. Different form

Dangl and Lehar (2004), I abstract from switching costs in the present model in which

the low risk induces effort costs. The second period operation and regime choice are

known from the one period model. The first period decisions are affected by the second

period, as the bank has to consider its net present value of two periods operation. The

best strategy at time t = 0 is the solution to the following optimization problem:

maxi0 E((1− δ)max(Y1 − C, 0) + β max(Y2 − C, 0)), (3.23)

where

Y1 = (1 + zi0)(W0 − i0e), (3.24)

W1 = max(0, δ(Y1 − C)), (3.25)

Y2 =

{
(1 + zi1)(W1 − i1e) for W1 > 0,

0 otherwise.
(3.26)

The wealth of the bank must cover the deposit payment, dividend and the cost of

operation under an appropriate regime. After the realization of the return at the end of

each period the bank is solvent if its associated level of wealth is larger than the deposit

payment. However, at t = 1 after paying for deposit and dividend the bank may not

have enough money for continuation under either regime. Then the bank closes and pays

the remaining wealth to the shareholders. Hence, when making its decision regarding

i0 and i1 the bank must consider costs and solvency. That means for some range of W0

even success in the first period is not enough to continue operation. For such values, the

model reduces to the one period model already discussed in the last section. Therefore,

a second period will only be relevant if Y2−C > 0. Indeed, first it is required Y1−C > 0

which is verified in the last section. The sufficient condition

Y2 − C > 0⇔
(δ((1 + zi0)(W0 − i0e)− C)− i1e)(1 + zi1)− C > 0 (3.27)

extends to several cases under each some outcome cannot be solvent. The reverse cases,

where Y2 < C, can be described by

zi1 <
C

δ((1 + zi0)(W0 − i0e)− C)− i1e
− 1. (3.28)

This determines the relation between the returns of the first period and the second

period which does not bring solvency for the bank at the end of two periods operation.
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3.3.1 No Risk of Insolvency

For now focus on the very special case where initial wealth is sufficiently high such that

all returns of the first and the second period are solvent. From (3.25) it means that for

all values of zi0 and zi1 where i0, i1 ∈ {0, 1}, initial wealth should exceed

W0 > T (zi0 , zi1) =
C(1 + δ(1 + zi1))

δ(1 + zi0)(1 + zi1)
+
e(i1 + i0δ(1 + zi0))

δ(1 + zi0)
. (3.29)

Proposition 3.2 If initial wealth of the bank satisfies (3.29), the unique cutoff value

policy holds if S1 > T (zi0 , zi1). Otherwise the bank never chooses regime 0. Therefore,

risk-return choice of each period is independent of another period.

Proof To find switching strategies, the model is solved by backward induction. The

solution to the second period is the same as the one period model with W1 as initial

wealth. Consequently from (3.12), the bank operates under regime i1 = 1 iff W1 ≥ S1,

i.e.

W1 ≥
e(1 + µ1)

µ1 − µ0

, (3.30)

and regime 0 otherwise. To solve the first period optimization problem, assume the

bank operates under a given regime i1 in the second period. Plug (3.24)-(3.26) in (3.23).

Since Y2 > C, the objective function follows

maxi0 E[(1− δ)((1 + zi0)(W0 − i0e)− C) +

β((1 + zi1)(δ((1 + zi0)(W0 − i0e)− C)− i1e)− C)] (3.31)

which is, using equation (3.25), equivalent to

maxi0 (1− δ)[(1 + µi0)(W0 − i0e)− C]

+β[(1 + µi1)(δ((1 + µi0)(W0 − i0e)− C)− i1e)− C]

Rearranging yields

maxi0 (1 + µi0)[1− δ + βδ(1 + µi1)]W0

−((1 + µi0)[1− δ + βδ(1 + µi1)]i0 + β(1 + µi1)i1)e

−(1− δ + β + βδ(1 + µi1))C. (3.32)

The optimal regime choice of t = 0 maximizes the net present value of two periods for

any given regime in the second period. Therefore, for each i1 the bank is better off by
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choosing i0 = 1 if the expected value of two periods under i0 = 1 is better than or equal

to the expected value under i0 = 0. This condition can be simplified to

(1 + µ0)[1− δ + βδ(1 + µi1)]W0 ≤
(1 + µ1)[1− δ + βδ(1 + µi1)]W0 − (1 + µ1)[1− δ + βδ(1 + µi1)]e,

which gives

W0 ≥
e(1 + µ1)

µ1 − µ0

. (3.33)

The threshold is identical to S1 which implies that the first period decision is independent

of the second period.

Hence, I can consider each period in isolation. This is a result of the assumption that

the dividend ratio is given exogenously. Since the bank is solvent for all returns, the

future outcome does not affect the current situation. However, the feasibility condition

requires the threshold to be greater than T (zi0 , zi1) for i0, i1 ∈ {0, 1}. If not, the bank

chooses only the regime with a higher expected return. �

In addition to the independence of the regime choices in the two periods for the special

case above, the cutoff value is only affected by average returns. No return makes the

bank insolvent and the risk is irrelevant. The variances and return intervals thus do not

appear in the regime choice decisions for this situation. The bank chooses the low effort

regime only if it cannot afford the effort cost associated with the high mean return. The

effect of variances in regime strategies are examined in the next subsection that involves

some risk of insolvency.

3.3.2 Operating under Risk of Bankruptcy

When the outcome of the first period is low such that the bank needs higher outcome

in the second period, condition (3.29) is crucial. For some cases, failure may cause

insolvency, but even success return may not be sufficient for one more period operation.

The general setting is explored in the next section as part of numerical example, since

equation (3.29) extends to too many conditions which cannot be solved in a general

case. To obtain analytical solutions and gain intuition, I have to limit the setting to a

simple benchmark. Now, assume the extreme case in which the bank loses total wealth

and goes bankrupt if it fails. It means that RR zi from (3.1) returns ri = −1, i = 0, 1

in case of failure. Then similar to proposition 3.2, we compare the expected returns of

operation under two alternative regimes. The bank asserts effort iff the success of regime

1 is more profitable than success of regime 0,

P1[(1 +R1)(W1 − e)− C] ≥ P0[(1 +R0)W1 − C].
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That gives the unique cutoff point of the second period (hence in terms of W1), below

which the bank chooses riskier regime,

W1 ≥ S3 =
C(P1 − P0) + eP1(1 +R1)

P1(1 +R1)− P0(1 +R0)
. (3.34)

In the next step, I apply backward induction to solve for the bank’s regime choices in

the first period. Proposition 3.3 describes switching and cutoff strategies under the risk

of bankruptcy, i.e. (3.29) does not hold or (3.27) is violated.

Proposition 3.3 When ri = −1, i = 0, 1, for an exogenous δ ∈ (0, 1), the unique-cutoff

policy optimizes risk-return regime of the first period. There exist a nonempty switching

area, in terms of net wealth.

Proof The bank chooses i0 by maximizing objective function (3.23) which gives

maxi0 E[(1− δ)max((1 + zi0)(W0 − i0e)− C, 0) +

β max((1 + zi1)(δ((1 + zi0)(W0 − i0e)− C)− i1e)− C, 0)] (3.35)

The optimal choice is affected by i1 since not all returns have positive value for the

bank. Although, i1 is known by the threshold in (3.34) at t = 1, the bank needs to

realize it at t = 0. The operation continues for the second period only after success at

the first period. Hence, substitute W1 from (3.25) and (3.26) in (3.34), we have i1 = 1

iff W0 ≥ Qi0 such that

Qi0 =
C(P1 − P0 + δ(P1(1 +R1)− P0(1 +R0))) + eP1(1 +R1)

δ(P1(1 +R1)− P0(1 +R0))(1 +Ri0)
+ i0e. (3.36)

Since Q0 < Q1, the bank at t = 0 finds its optimal choice of the first period,

(I) i1 = 1 iff W0 ≥ Q1 where

Q1 =
C(P1 − P0 + δ(P1(1 +R1)− P0(1 +R0))) + eP1(1 +R1)

δ(P1(1 +R1)− P0(1 +R0))(1 +R1)
+ e, (3.37)

(II) i1 = 0 iff W0 < Q0 where

Q0 =
C(P1 − P0 + δ(P1(1 +R1)− P0(1 +R0))) + eP1(1 +R1)

δ(P1(1 +R1)− P0(1 +R0))(1 +R0)
, (3.38)

(III) i1 6= i0 iff Q0 ≤ W0 < Q1, i.e. [Q0, Q1] is a nonempty subset of switching area.
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Now, I analyze the choice of the first period risk-return regime, i0, in each of the three

intervals. First assume W0 ≥ Q1, then high effort regime is optimal iff

P1[(1− δ)((1 +R1)(W0 − e)− C) + βP1((1 +R1)(δ((1 +R1)

(W0 − e)− C)− e)− C)] ≥ P0[(1− δ)((1 +R0)W0 − C) +

βP1((1 +R1)(δ((1 +R0)W0 − C)− e)− C)].

Threshold U1 obtains such that i0 = 1 iff W0 ≥ U1,

U1 = (C(P1 − P0)(1− δ + δβP1(1 +R1) + βP1) +

eP1(1 +R1)(1− δ + δβP1(1 +R1) + β(P1 − P0)))/

((P1(1 +R1)− P0(1 +R0))(1− δ + δβP1(1 +R1))). (3.39)

Next, if Q0 ≤ W0 < Q1 the bank switches from the regime it has at t = 0 to another

regime at t = 1. Thus, there are two options of regime combination: (i0 = 1, i1 = 0)

and (i0 = 0, i1 = 1). The bank is better off by the former regime combination iff

P1[(1− δ)((1 +R1)(W0 − e)− C) + βP0((1 +R0)δ

((1 +R1)(W0 − e)− C)− C)] ≥ P0[(1− δ)((1 +R0)W0 − C) +

βP1((1 +R1)(δ((1 +R0)W0 − C)− e)− C)].

This gives threshold U2 for W0, below which the bank asserts no effort and takes higher

risk,

U2 = (C((P1 − P0)(1− δ) + δβP1P0(R0 −R1)) + eP1(1 +R1)(1− δ
−βP0 + δβP0(1 +R0)))/((P1(1 +R1)− P0(1 +R0))(1− δ)). (3.40)

For low initial wealth W0 < Q0, the bank chooses i0 = 1 at t = 0, though it undertakes

higher risk in the second period, iff

P1[(1− δ)((1 +R1)(W0 − e)− C) + βP0((1 +R0)(δ((1 +R1)

(W0 − e)− C))− C)] ≥ P0[(1− δ)((1 +R0)W0 − C) + βP0

((1 +R0)(δ((1 +R0)W0 − C))− C)].

This demands W0 ≥ U3 with threshold

U3 = (C(P1 − P0)(1− δ + δβP0(1 +R0) + βP0) +

eP1(1 +R1)(1− δ + δβP0(1 +R0)))/

((P1(1 +R1)− P0(1 +R0))(1− δ + δβP0(1 +R0))). (3.41)
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Nevertheless, only feasible thresholds are cutoff values that requires them to satisfy

U3 ≤ Q0, Q0 ≤ U2 < Q1 and Q1 ≤ U1. Note that Q0 6= Q1, and all the thresholds

cannot be equal. Q0 and Q1 are both continuous, decreasing and convex in δ,

dQ1

dδ
=

−(C(P1 − P0) + eP1(1 +R1))

δ2(P1(1 +R1)− P0(1 +R0))(1 +R1)
< 0, (3.42)

dQ0

dδ
=

−(C(P1 − P0) + eP1(1 +R1))

δ2(P1(1 +R1)− P0(1 +R0))(1 +R0)
< 0, (3.43)

d2Q1

dδ2
> 0,

d2Q0

dδ2
> 0. (3.44)

Having equal denominators in U1 and U3, high probability of success and expected return

in regime 1 brings U1 > U3. Moreover, these two monotone thresholds have monotone

first derivatives with respect to δ. Also U2 is increasing and convex in δ,

U1 − U3 = (Cβ[(P1 − P0)(1− δ) + δβP0P1(R1 −R0)] +

eP1(1 +R1)(P1 − P0))/((P1(1 +R1)− P0(1 +R0))

(1− δ + δβP0(1 +R0))(1− δ + δβP1(1 +R1))) > 0, (3.45)

dU1

dδ
=

βP1(P1 − P0)(C + e(1 +R1))(1− βP1(1 +R1))

(P1(1 +R1)− P0(1 +R0))(1− δ + βP1(1 +R1))2
, (3.46)

dU2

dδ
=

βCP0P1(R0 −R1) + βeP0P1R0(1 +R1)

(1− δ)2(P1(1 +R1)− P0(1 +R0))
(3.47)

dU3

dδ
=

βP0(P1 − P0)C(1− βP0(1 +R0))

(P1(1 +R1)− P0(1 +R0))(1− δ + βP0(1 +R0))2
, (3.48)

d2U2

dδ2
> 0 (3.49)

Hence, as functions of δ, each of U1, U2 and U3 intersect Q0 and Q1 only once.

I verify that the intersection of U1 and Q1, denoted by δ1, is identical to the intersection

of U2 and Q1. It is a root of the equation

C[δP0(R0 −R1)(1− δ + δβP1(1 +R1))− (1− δ)(P1 − P0)] = e(1 +R1)

[(1− δ)(P1 − δP0 + P0(1 +R0)) + δβP0P1(1 +R1)(1− δ(1 +R0))]. (3.50)

This is equivalent to U2 = Q1, as well. When U1 > Q1, the LHS in equation (3.50)

is larger than its RHS. This implies U2 > Q1, and vice versa. Thus, feasibility of U1

demands infeasibility of U2 and the other way around.
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Similarly, I find that U2 = Q0 occurs at δ0 which is the solution to the following equation,

C[δP0(R0 −R1)(1− δ + δβP0(1 +R0))− (1− δ)(P1 − P0)] =

eP1(1 +R1)(δ(1 +R0)− 1)(1− δ + δβP0(1 +R0)). (3.51)

This equation imposes U3 = Q0 as well. If the LHS is larger than the RHS in this

equation then U3 < Q0 which gives Q0 > U2. Conversely, feasibility of U2 makes U3

infeasible. Compare the two equations, coefficients of δ in (3.50) are larger than those

in (3.51). Therefore, δ1 > δ0, which completes the sufficient conditions for feasibility of

only one of the thresholds per given δ. It follows that given δ, only one of thresholds

Uj, j = 1, 2, 3 is the unique cutoff value.�

Remark 3.4 The model with non-monetary cost is analogous to this case.

3.4 Numerical Examples

In order to illustrate the results, I present three benchmark sets of parameters for the

two-period model. The first example is in line with the setting presented in proposition

3.3. Next, I investigate two more general cases in which the bank can be solvent at

failure of a regime.

3.4.1 Bankruptcy at Failure

Figure 3.4 shows regime choices and switching strategies for different initial wealth levels

and investment policy without effort cost e, as it does not influence the generality of the

result. In this case we have r0 = r1 = −1.

When the effort cost is equal to 0 the bank takes regime 1 for a lower level of initial wealth

since the expected return is higher at each level of wealth. In addition, lower dividend

ratio, i.e. higher δ, creates more incentive to undertake risk. To summarize, there are

two trade-offs. The intertemporal one is associated to the dividend and reinvestment

decision. Though the reinvestment ratio is exogenous, the bank needs to decide about

postponing either higher risk or higher return. Another trade-off is between higher

probability of success or higher success return. The optimal combination of regime

choices for two periods is a result of two trade-offs.

When the dividend ratio is low, failure does not bring a large loss to the bank whose

wealth is also small. Since the profit of success is low, the bank behaves indifferent

between failure and the low dividend. Thus, it gambles for resurrection first. If the

bank succeeds it has sufficient wealth and plays safe in the second period. In this area

we observe risk reduction from period one to two.
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Figure 3.4: Inter-temporal Switching strategies in a two-period model without effort
cost, i.e. e = 0, showing four possible regime-combinations in the optimal region w.r.t
initial wealth W0 and reinvestment ratio δ

For the wealth level between Q0 and Q1, the bank can afford the effort cost and takes

the safer regime for high dividend. In that case, it has to play risky in the second period

because reinvestment is low such that the bank does not have sufficient wealth to start

the second period under the safer regime. This area is included for the gambling for

resurrection strategy from the first period to the second.

In addition, note that the switching area is actually a super-set of [Q0, Q1], depending

on δ. Given the dividend ratio, if U2 is feasible (δ0 < δ < δ1), both two-way switching

strategies are taken in this range of wealth.

3.4.2 Solvency at Failure

Suppose ri > −1, i ∈ {0, 1}. The thresholds of proposition 3.1 give possible cutoff

points for the second period. Consider the following examples:

Example 1. Take parameter set:

R1 r1 P1 R0 r0 P0 β δ e

0.75 −0.1 0.65 0.9 −0.3 0.45 0.9 0.99 0.3
(3.52)
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Since the deposit is fully insured, the payment equals C = 1
β+β2 . Note that (3.8) is not

true for regime 0 but is satisfied under regime 1. Therefore, the bank may take regime 0

for W0 ≤ G0 = 3.31. But regime 1 is worthier than no operation for all positive wealth

because G1 = −14.7693. Checking the assumptions of proposition 3.1 and Sjs, we find

case (b) of figure 3.2 with unique cutoff value S1 = 2.05 for the second period. In order

to have W1 > S1 the bank needs for each regime and its outcome of the first period, zi0 ,

W0 > Q(zi0) =
C + S1/δ

1 + zi0
+ i0e. (3.53)

We see that Q(R0) < Q(R1) < Q(r1) < Q(r0). Next, I verify whether each combination

of outcomes of two periods is solvent. It means that I compute 16 thresholds from (3.29)

for all outcomes of two periods. Locate them on intervals made by Q(zi0)s for the initial

wealth. Find optimal regime in each interval bounded to the described thresholds by

comparing expected profits of solvent outcomes. At the end the unique cutoff point is

2.24, where Q(R1) < 2.24 < Q(r1). For all 1 < W0 < 2.24 the bank operates under

riskier regime while if it was operating for only one period it would take safer regime

already above S1 < 2.24. In other words, having the opportunity to operate for one

more period the bank takes the safer regime at a larger capital comparing to the case of

one period operation.

Example 2. Assume parameters

R1 r1 P1 R0 r0 P0 β δ e

0.65 0.1 0.65 0.75 0 0.3 0.57 0.99 0.2
(3.54)

Now, for one period operation (e.g. second period) we have case (a) of figure 3.2 with

three consistent cutoff points S3 = 1.106, S2 = 1.158 and S1 = 1.253. Consequently,

there are four thresholds Q(zi0), i0 ∈ {r0, r1, R0, R1} for each case. Also take into account

16 thresholds from equation (3.29). The numerical solution determines the unique cutoff

policy as many thresholds are infeasible. The cutoff value is 1.76 below which the bank

chooses regime i0 = 0.

A risky investment is worthy in regime 0 (based on (3.10)) for W0 ≤ G0 = 1.154, and

in regime 1 if W0 ≤ G1 = 1.193 where (3.8) does not hold true. Only two thresholds

T (R0, R0) = 1.007 and T (R0, R1) = 1.145 are below Gis. Still, Gis are bellow all Q(zi0)s.

Hence, the bank operates under the risky regime in the second period. The bank can

survive two periods only if it chooses the risky regime at t = 0 and succeeds. Thus,

operating for only one period under regime 1 produces a higher expected profit than

operating under regime 0 in the first period and hoping to succeed and continue for

the second period. Since in this example S2 < G1 < G0 < S1, the bank decides about

regimes based on Sjs and operates for only one period below Gis. To conclude, the bank

operates for one period under regime 0 where S2 ≤ W0 < G0. But it takes the safer
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regime for S3 ≤ W0 < S2 and the riskier regime below S3.

Comparison of the two examples shows that when the risk free interest rate is high (dis-

count factor β is small) the deposit payment is large. Therefore, in operation, the bank

loses capital. As far as possible, it operates one period and takes risk non-monotonically

in terms of the capital level. Otherwise, if the deposit payment is low it can be solvent

at failure and has less tendency towards risk. Then, it can operate for two periods and

follows the unique cutoff policy at the first period.

3.5 Endogenous Reinvestment

To complete the optimization problem of the bank, I include its dividend policy and find

optimal δ. This decision is made at t = 1 simultaneous with the regime choice decision.

The bank must be solvent by then and the first period outcome is realized such that

Y1 > C. The objective function is still (3.31). For simplicity, we assume r0 = r1 = −1.

For every i1, the optimal δ obtains from

maxδ (1− δ)(Y1 − C) + βP (zi1)((1 + zi1)(δ(Y1 − C)− i1e)− C). (3.55)

Rearrange it for δ∗,

δ∗ = argmax δ(βP (zi1)(1 + zi1)− 1)(Y1 − C) + (Y1 − C)

−Iδ>0 [βP (zi1)(i1e(1 + zi1) + C)]. (3.56)

Since this equation is a linear function of δ, the reinvestment ratio depends on the sign

of its coefficient in (3.50). Notice that this is the same problem as the bank has at t = 0

when it decides to enter the game. The bank reinvests all of its capital in a risky regime

iff (3.8) holds true, βPi(1 + Ri) − 1 > 0. Therefore, if a bank operated for one period,

from section 3.2, the solvent bank would pay no dividend and δ∗ = 1.

If the bank reinvest, its capital at t = 1 is W1 = Y1 − C. In order to have a profitable

investment in regime i, the NPV should be positive,

W1 ≥
βPi(ie(1 +Ri) + C)

βPi(1 +Ri)− 1
. (3.57)

Therefore, for operating under regime 1 the bank needs

W1 ≥ G0 =
βP0C

βP0(1 +R0)− 1
, (3.58)
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and for operating under regime 0 it should be that,

W1 ≥ G1 =
βP1(e(1 +R1) + C)

βP1(1 +R1)− 1
. (3.59)

Still the bank chooses between regime 0 and 1 at t = 1 based on cutoff policy. Feasibility

of cutoff value S1 requires S1 > G0 and S1 > G1. Both conditions are satisfied where

C(P1 − P0 − βP0P1(R0 −R1))

βP0(1 +R0)− 1
> eP1(1 +R1). (3.60)

Knowing all about the second period, the bank finds its first period investment strategies

by backward induction.

Endogenously optimization of the reinvestment reduces to a bang-bang policy of reinvest-

ing all or nothing, as agents are risk neutral. When the bank reinvests all the outcome

of the first period, the problem is similar to the regime choice optimization in the two

period model. The optimal strategy can again be characterized by unique cutoff policy

as assumptions of proposition 3.3 hold. This makes the endogenous reinvestment model

another robustness check to the findings in the previous sections.

3.6 Conclusion

This work questions gambling for resurrection and verifies existence of a non-monotonic

relationship between the capital level of a bank and its portfolio risk. The standard

rationale of banks taking risk under distress is violated in a static model which compares

two different regimes of operation. This is beyond plenty of studies which focus only

on selecting risky or risk-free asset, e.g Mailath and Mester (1994). Indeed, the cost

of effort to reduce the risk from one risky regime to the less risky one plays the main

role to rule out standard cutoff policy. The risk is less in one portfolio since the bank

exerts effort to monitor creditors. The riskier projects however produce a larger return

if succeed while the probability of failure and associated losses are larger. I observe

two types of risk-return strategies. The first type is in line with the standard rationale:

the risk neutral banker chooses the riskier asset when the capital decreases, in order

to benefit from a higher return in case of success and hope to survive the distress.

However, in the second type, the risk-taking decision depends on the initial level at

which the capital begins to decay. First, when the capital decreases from a high level,

a bank with less risk faces bankruptcy in case of failure, because the monitoring effort

is paids out of the capital. Therefore, the bank stops monitoring and the risk increases.

Risky mortgages are examples of such behavior in banks. Further the capital decreases,

the bank operating under a risky regime also goes bankrupt in case of failure. Thus, the

bank changes its portfolio to the one with less risk of failure. Nevertheless, with very
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low capital at which neither monitoring nor risky projects can survive in case of failure,

the bank goes on operating under risky regime.

In the dynamic model, contrary to Dangl and Lehar (2004), the risk-taking and the inter-

temporal switching strategies are endogenous (not forced by a regulator) and influence

each other. Under their hypothesis of gambling for resurrection, the cutoff value of the

risk-taking policy is identical to the switching point, when the switching cost is omitted.

Therefore, no switch means the bank chooses a certain fixed regime. In this paper, if

a switching area exist it includes cutoff values. The switching area of each regime is a

continuous set with at most one point of intersection with the switching area of the other

regime. Depending on the dividend ratio, each switching area may narrow or widen and

one may disappear. When both exist they intersect on a unique cutoff value. Low

dividend raises gambling for resurrection but high dividend causes the bank to reduce

risk in the first period. Yet the impact is reversed after paying dividend out since there is

no outside investor and the bank is poor. Monitoring cost increases risk-taking incentive

gently but does not have a structural effect.

The findings regarding non-monotonic risk-taking policies contribute to the banking

regulation literature. Banks finance their investments in large parts by deposits. Imper-

fect transferability of banks’ assets make banks’ liquidation costly. To make profit the

bank needs to spend on monitoring the creditors. Yet, with limited liability and insuf-

ficient capital the bank shirks in order to increase the equity value. From a regulatory

point of view, the closure policy with a sufficiently high capital ratio requirement would

eliminate the risk-taking incentives. However, a strict regulatory closure policy is not

socially optimal. The regulator should not only protect the depositors but also optimize

the social value of the bank. This way, the supervisory agency ends up in large scale

forbearance in case of a crisis. Instead, my results propose more accurate screening of

risks in the banks, in the first place. The possible methods could be the more market

based approaches, for instance partial private insurance and risk-based taxing.
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Appendix

Proof of remark 3.2: Suppose 1 + µ1 > P0(1 + R0). If C
1+r1

≤ W0 <
C

1+r0
, the bank

takes regime 1 above threshold S0
1 defined below,

P1((1 +R1)W0 − C) + (1 + P1)((1 + r1)W0 − C) ≥
P0((1 +R0)W0 − C) (3.61)

W0 ≥ S0
1 =

C(1− P0)

1 + µ1 − P0(1 +R0)
. (3.62)

The LHS and RHS of (3.61) are the expected returns under regime 1 and 0, respectively.

If W0 <
C

1+r1
the LHS of inequality (3.61) reduces to only P1((1+R1)W0−C). Assuming

P1(1 +R1)− P0(1 +R0) > 0, the optimal regime is 0 below a threshold,

S0
2 =

C(P1 − P0)

P1(1 +R1)− P0(1 +R0)
. (3.63)

To check the feasibility of the threshold, compare them to boundaries We see that

S0
1 <

C
1+r0

follows from assumption µ0 < µ1. Yet for another boundary we have

S0
1 >

C

1 + r1

⇔ µ1 − µ0 < (r1 − r0)(1− P0), (3.64)

which equals

S0
2 ≥

C

1 + r1

, if P1(1 +R1) > P0(1 +R0) (3.65)

S0
2 <

C

1 + r1

, if P1(1 +R1) < P0(1 +R0). (3.66)

In (3.66) however, S0
2 < 0. It means that i0 = 0 for W0 <

C
1+r1

and S0
1 is feasible and

the unique cutoff value. But when P1(1 +R1) > P0(1 +R0), either S0
2 or S0

1 is feasible.

Accordingly, we end up in unique-cutoff policy.

If conditions 1 + µ1 < P0(1 + R0) is violated, then S0
1 < 0 and infeasible. The same

holds for S0
2 if P1(1 + R1) < P0(1 + R0). It follows that the only cutoff value is C

1+r1
.

Yet, for P1(1 + R1) > P0(1 + R0), see that S0
2 ≮ C

1+r1
. Hence the bank takes regime 0

below unique cutoff value C
1+r1

. �



Chapter 4

The Theories of Bank Regulation

and Systemic Failures

4.1 Introduction

This paper surveys the recent literature on bank regulation, in particular for regulating

systemic risk. Traditionally, there has been micro-prudential banking regulation focusing

on individual banks and the risk they hold. As an example, the survey of Bhattacharya

et al. (1998) covers the literature in the economics of bank regulation prior to Basel II.

Subsequently, until around, the focus of the literature was on the optimal combination

and implementation of the Basel II accords. The 2007-2009 financial crisis, however, has

highlighted the interdependencies in the banking sector and in the financial industry as

a whole. As a consequence, systemic risk issues have been in the focus of the recent

theories on banking regulation and studies concentrated on macro-prudential regulation

strategies.

These latest experiences provide the motivation to review how the banking regulation

theories have been progressing. Hence, the contribution of this survey is to connect the

previous bank regulation literature that has focused on a single entity with the most

recent ideas on taking systemic risk into account. The focus is to show how the latter

is complementary to the former and in which directions both strains of the academic

discussions should progress.

First in a basic setup, I discuss bank failures. The fundamental problems that poten-

tially lead to bank default in the expense of depositors are addressed. These are the

shareholders’ risk-taking and managerial moral hazard. To protect depositors the super-

visory authority has to regulate banks on behalf of depositors. However, the authority

faces time-inconsistency problem in solving this. The regulator who wants ex-ante to

reduce the risk-taking incentives by threatening to liquidate assets in case of default,
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might have to forego the liquidation ex-post because of the high social cost. Solutions

to this time-inconsistency problem are presented in the first part of this article. Hereby,

I mostly concentrate on the latest studies in which risk-based approaches, e.g. Basel II,

are considered.

The second part of the article explores the topics of regulating systemic risk. Widespread

bank-failures, named systemic failure, bring externalities into the financial system. The

externalities consist of bank-runs contagion and massive bank-failures such that no pri-

vate institute is able to compensate for the losses. In order to prevent this, governments

have to take the systemic risks into account for regulation. In banks, systemic risk

may originate from either the liability or the asset side of the balance-sheet. Bank-runs

are examples of exogenous shocks which appear in the liability side. Moral hazard and

risky investments generate risk in the asset side. In this paper, the components of both

idiosyncratic (exogenous) shocks on banks and the contribution of banks (endogenous

shocks) to systemic crises are studied. To overcome the time-inconsistency problem in

each of these cases, ex-ante optimal macro-prudential regulation policies are required.

My article covers this topic following the literature which specifically refers to the expe-

rience of the recent crisis, its origins and consequences. For this reason, after presenting

the systemic risk regulatory proposals; e.g. granting healthy banks, systemic risk sen-

sitive capital adequacy and taxing, I review the statistics about the resolution policies

applied in the past crisis events.

In order to show how this survey relates to the existing literature, I first give an overview

of previous survey studies. In an integrated model, Bhattacharya et al. (1998) analyze

different deposit insurance related moral hazards and regulatory policies. Reasons for

the existence of banks are discussed on the asset side as well as the liability side of the

balance sheet. On one hand, they explain the delegated monitoring idea of Diamond

(1984) that banks monitor the creditors on behalf of depositors at a lower cost than non-

intermediated bilateral contracting between investors and entrepreneurs. On the other

hand, the argument of Diamond and Dybvig (1983) is presented that the intermediaries

contribute to improve risk sharing and provide liquidity better than non-intermediated

case where investors would have to wait for the payoffs from the long term investments.

Based on Diamond and Dybvig (1983), the governments’ deposit insurance can prevent

panic bank-runs. However, the insured banks have incentives for moral hazard in the

sense to keep lower liquid reserve and to seek riskier portfolios. The regulatory policies

are needed to attack these risk-taking activities.

In 1988, the Basel I accord introduced the capital requirements to rule out incentives

for risk taking. However, studies such as Gennotte and Pyle (1991) and Boot and

Greenbaum (1993) show particular situations in which stringent capital constraints do

not reduce the risk in banking sector. Besanko and Kanatas (1996) emphasize that

when the inside and outside equities are extremely distinguishable the higher capital



4.1. INTRODUCTION 63

requirement can reduce the bank’s incentive to monitor the borrowers and increase risk.

Further studies on fair priced and risk sensitive deposit insurance by for instance Chan

et al. (1992) illustrate that the moral hazard can not be prevented if the regulator can

not observe the bank’s risk.

To confront private information problems, partial deposit insurance is suggested as a

regulatory instrument which brings forth market discipline as the actuaries have to

measure the bank’s risk and also uninsured depositors monitor the bank. Peters (1994)

points out that the informed uninsured depositors, with their own endowments at risk,

will monitor and discipline banks better than governmental regulators do.

Risk-based capital adequacy is another cure to the moral hazard issue. This idea pro-

vided supports for the Federal Deposit Insurance Corporation (FDIC) Improvement Act

of 1991 in the US and also evolved in the Basel I guidelines. FDIC prompt corrective

action mandates progressive penalties against banks that exhibit progressively deterio-

rating capital ratios. Bank closure is considered as a threat to reduce incentives for risk

in this law. Dahl and Spivey (1995) investigate banks’ efforts for recovery under the

closure threat forced by the FDIC. They find that the determination of failure for an

undercapitalized bank is better defined in terms of the banks’ capacity for recovery than

the likelihood for further decay since the bank can recapitalize quickly by equity infusion.

Empirical studies assessing the cost and benefit of the FDIC prompt correction, such as

Jones and King (1995), suggest that the risk-based capital standards should improve to

better recognize the credit risk of troubled banks.

Assessing regulatory closure policy shows less efficiency as expected, though it is not

socially optimal either. For instance, Boot and Thakor (1993) argue that the regulator

cares about its reputation and does not exert closure when it is needed and this again

raises the risk taking by banks. Instead of a tough closure policy, Fries et al. (1997)

propose optimal reorganization of the bank and closure rule beside fair pricing of deposit

guarantees. The other branch of studies focusing on moral hazard issues, e.g. Leland

(1994) and Leland and Toft (1996b), works on the capital structure to prevent asset

substitution.

The 1988 Basel I capital framework evolved overtime. The Basel committee issued an

amendment to refine the framework to address risks, e.g. market risks, other than credit

risk. Accordingly, banks were allowed, subject to strict quantitative and qualitative

standards, to use internal value-at-risk models as a basis for measuring their market risk

capital requirements. In June 1999 the committee issued a proposal for a new capital

adequacy framework. After nearly six years of challenging works, the Basel II capital

framework was released in June 2004. It consists of three pillars: minimum capital

adequacy expanded standards of the 1988 Accord; supervisory review; and regulatory

closure to strengthen market discipline.
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Following the works on how to refine regulatory strategies which resulted in the Basel

II standards, most of literature prior to the recent crisis has focused on how to mix the

three pillars of Basel II and improve their implementation. Prescott (2004) verifies that

the banks have incentives not to reveal the true level of risk. Stochastic audit is found

to be more effective comparing to the periodical banks’ reports of their risks. In a model

of optimal bank closure with stochastic audit Bhattacharya et al. (2006) find an optimal

combination of capital requirement, closure rule and frequent audit which can eliminate

risk-taking incentive for banks. Decamps et al. (2004) and Dangl and Lehar (2004) take

a similar approach towards the gambling for resurrection problem for banks in distress.

Further, there are researches on details of the Basel II implementation. For instance,

Repullo and Suarez (2004) focus on loan pricing and demonstrate that the banks which

adopt the internal rating based on the Basel II attract low risk firms by reduction in

their loan rates.

Considering banks as liquidity-creators, the bank fragility issue relates also to the capital

market risks and the market-driven fragility. In this regard, Boot and Thakor (2008)

review the existing literature on the interbank relationship as well as the integration of

banks and markets. In the recent years of crisis some empirical researches examined

the effectiveness of Basel II. Also there have been studies about the regulatory policies

in emerging markets. The view on banks as institutions that are closely related to

each other and to the entire economy directed recent studies to focus on the analysis of

systemic banking regulation.

This new strain in the literature motivates a new survey to collect their findings and ex-

plain different regulatory proposals in an analytical framework. The optimal regulatory

strategies depend on the background problems, whether it is an exogenous shock or one

of the moral hazard issues. I describe the possible regulatory confrontations related to

each category of problems.

The paper follows in the next five sections. Section 4.2 outlines the basic setup and bank

failure problems. In section 4.3, I review different policies that the regulatory authority

can apply to individual banks. Section 4.4 discusses the effects of systemic failures.

Subsequently, section 4.5 presents the regulatory proposals addressing systemic risk.

Section 4.6 includes the statistics of the recent crises. At last, section 4.7 summarizes

and concludes.

4.2 The Basic Model: Failures in Banks

Market failures can provide the intuition for the existence of a supervisory authority.

This section consists of the basic setup that allows for a stringent analysis of the par-

ticular problems causing market failures in the banking sector. The details concerning

possible regulatory actions are investigated in the next section.
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In a risk neutral world, assume a representative bank receives 1 unit of deposit at date

0. Having equity E the bank’s total wealth A = 1 + E can be invested in a liquid risk

free asset which returns r > 0, per unit of investment at date 1. The manager working

for shareholders, can alternatively give loans to risky credits. To monitor creditors and

have less risk, the bank has to bear cost e ≥ 0 drawn out of the wealth at t = 1. This

regime1 of operation, denoted by i = 1, generates R > r per unit of the investment

with probability P1 or zero otherwise, at time t = 1. However, because of the effort

cost, the shareholders or the manager may decide to shirk2 (i = 0) which increases the

risk, reducing the probability of success to P0 < P1. The shareholders can not observe

the manager’s decision until the return is realized at date 1.3 If they ask the manager

to stop monitoring she will do, but they can not force the manager to monitor. This

happens since the manager receives some non-pecuniary benefit Q > 0 if the shirking

regime succeeds and generates R − q, q ≥ 0, per unit of the investment at the end of

the period.

The depositors are paid a fixed amountD at date 1. Risky regime i brings the total4

expected profit at the end of period,

Πi = Pi max(0, A(R− (1− i)q)− ie−D). (4.1)

The return is higher under more risky regime when it succeeds, i.e. R− q ≥ R− e which

requires e ≥ q. But shirking is inefficient in the sense that its total return is less than

monitoring regime: R− q +Q < R.

For the expected profit of risky operation to be positive, the capital should exceed some

thresholds,

E ≥ D −R + q + i(e− q)
R− (1− i)q

. (4.2)

If the bank could define the deposit payment endogenously, the manager would propose

D such that the bank would be solvent in case of success. This means from (4.2) for the

deposit payment

D ≤ (1 + E)(R− (1− i)q)− ie. (4.3)

Since the bank should motivate depositors, they have to pay them at least the same as

the risk free return, i.e. D ≥ r. Then it follows

1The decision or plan of operating with a specific portfolio is known as the regime of operation.
2To stop monitoring the creditors.
3The depositors have no information at all.
4In this risk neutral setup, the investment decision is optimally to invest all in a risky asset or

nothing. This has been justified in my second paper.
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(1 + E)(R− (1− i)q)− ie ≥ r. (4.4)

One main problem of high risk (low probability of success) is a negative net present value

(NPV). This occurs when there is no monitoring on the creditors, where for each unit

of investment P0(R − q) − r < 0. Given deposit payment D, without loss of generality

assume D+e
R

> D
R−q .

5 Then, the shareholders rather prefers less risk iff Π1 ≥ Π0, which

requires for the total capital level,

E ≥ (P1 − P0)(D −R) + P1e− P0q

(P1 − P0)R + P0q
= Ê. (4.5)

4.2.1 The Moral Hazard

The choice of regime depends on how the shareholders compensate the manager to work

for their interest. This part of work outlines the possible managerial contract that the

shareholders can offer and motivate the manager to operate in their favorite regime,

though it may be risky.

When the manager is paid a certain salary s independent of her performance, the ex-

pected profit of the shareholders in (4.1) changes substituting A − s for A. Then the

shareholders take the less risky regime for large capital levels, i.e. E ≥ Ê+s. If the cap-

ital was not sufficiently high the shareholders would prefer more risk. Where E < Ê+s,

they would only make a fixed payment s to the manager at the beginning of the period

as less as her outside option utility in order to have her in the firm. Then the manager

would work for her private benefit and shirk which would be also in the interest of the

shareholders.

However, if the shareholders want to have less risk the manager’s salary should depend

on the performance which influences the success and failure of the bank. To motivate for

the less risky regime the shareholders offer an incentive compatible (IC) contract to the

manager paying a salary s only when the bank’s operation succeeds and the manager’s

expected profit under regime i = 1 is higher than under regime i = 0:

P1s ≥ P0(s+Q) ⇐⇒ s ≥ QP0

P1 − P0

. (4.6)

Note that the shareholders make such a contract iff for their expected profit Π1(s) ≥
Π0(s) where

Πi(s) = Pi max(0, A(R− (1− i)q)− ie−D − s). (4.7)

5Otherwise, the calculation changes but not the result.
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For this we have a new capital requirement,

E ≥ (P1 − P0)(D −R + s) + P1e− P0q

(P1 − P0)R + P0q
= E∗. (4.8)

Another option for the shareholders is to define the salary as a share of the profit6,

si = αΠi where Pii is defined in (4.1). If the shareholders’ expected return (1− α)Πi is

higher under regime i = 1, the IC constraint changes to s1 > s0 + P0Q, or

α(P1[AR− e−D]) ≥ α(P0[A(R− q)−D]) + P0Q. (4.9)

Since α is independent from the regime choice, the shareholders decision is redundant

to the one presented in (4.5). Therefore, if E > Ê, fraction α must satisfy

α ≥ QP0

[A(P1 − P0)R + P0q]− eP1 −D(P1 − P0)
= α̂. (4.10)

4.2.2 Deposit Insurance and the Moral Hazard

In case of insolvency, even if all the outcome of its operation goes to the depositors,

it is less than the promised deposit payment. Thus, the excessive risk of default is at

the expense of depositors in the absence of any guarantee. This subsection examines

whether protecting depositors is an effective strategy to prevent failure in the banking

sector.

A defaulted bank has to go bankrupt and the shareholders and the manager receive

nothing. A fair priced deposit insurance can protect the depositors. The insurer can be

a private company or the state. However, whenever the high amount of deposit payment

is not manageable by the private insurer the state has to intervene. Since a large scale

default can influence the entire economy, the state has to bear this responsibility.

For having a faired price insurance, the premium equals the expected value of the worst

default case, i.e.

m = D(1− P0). (4.11)

which should be also subtracted from the profit function in (4.1). The state could

then levy a tax on the bank equal to m. This prevents subsidization of the bank by

taxpayers, in case of a default. However, the insurance premium or tax would shift the

capital requirement for less risk-taking to Ê + m. Regarding managerial contract, the

fixed IC salary s does not change since the IC constraint (4.6) remains the same.

6See for instance Acharya and Yorulmazer (2007) that I explain in section 4.4.
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If the manager is paid a share of the profit, the shareholders’ decision is as above but

the IC constraint (4.9) changes. In other words, A − m appears instead of A in both

sides of (4.9). This raises the minimum required managerial share because now we need

α ≥ QP0

[(A−m)(P1 − P0)R + P0q]− eP1 −D(P1 − P0)
= α∗. (4.12)

where α∗ > α̂. This shows that the insurance or tax system increases the sharehold-

ers’ risk-taking incentives by shifting the minimum capital threshold upward. With an

analogous argument, the insurance does not reduce the managerial moral hazard.

4.2.3 Introducing the Regulatory Actions

According to the result of the last subsection, there is a need for a regulatory agency

which not only provides resolutions in case of failure but also has power to force ex-ante

risk reduction policies.

For low capital levels the shareholders prefer the riskier regime of operation and let the

manager fulfil their interest. As a straight forward result of the shareholders’ risk-taking

being related to the capital level, the regulator may offer a capital adequacy rule to

prevent the risk-taking. It follows that the regulator closes the bank where the capital

is below the required level A∗ or Â depending on the managerial contract.

My simple setup does not include any bankruptcy cost. In the real world, any bank

failure influences its creditors and depositors. The creditors will not receive further

investment. And for the depositors, they can not follow their plan to use the payment.

For instance, a company may stop its development since it has not received the deposit

payment, or received it later only through the insurance payment. These social costs

make the closure policy not to be ex-post optimal. Mailath and Mester (1994) describe

how the closure policy cannot be imposed. Yet, given the incentive compatible contract

the bank with less risky loans may default too. Thus, the banking system demands

for optimizing the resolution policies rather than only closure. Freixas (1999) considers

partially insured deposits and examines the liquidity provision policy where closure is not

ex-post optimal. Freixas and Rochet (2010) concentrate on introduction of a systemic

tax that requires a regulatory authority with the power to replace the manager and

shareholders.

The following sections describe how an optimal resolution policy depends on whether it is

an individual bank failure or a systemic failure. The next section surveys the resolution

policies for individual bank defaults. Explaining regulatory strategies focused on a single

bank makes a proper background for extending the model further to examine systemic

crises. More systemic risk regulatory policies are presented in section 4.5.
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4.3 The Resolution of Individual Bank Failures

This section addresses the possible intervention policies of a strong regulatory/supervisory

authority to resolve costly bankruptcies. The main problem that the regulator faces when

taking action against a risky or failed bank is known as time-inconsistency. This prob-

lem and the alternatives to deal with it are explained in the next subsections. In each

case, the basic set-up described above may change slightly to fit the requirements. For

instance, the time horizon and risk aversion/neutrality may differ. We see how policy

implications may change from one situation and set of assumptions to the other.

4.3.1 The Time-Inconsistency Problem

A strong regulator should have the power to shut down the operation of a bank which is

taking excessive risk, as this ex-post reaction can influence ex-ante the investment of the

bank. In order for the regulator to have the opportunity of supervisory visit to the bank,

I must consider a time horizon more than one period. Mailath and Mester (1994) assume

that the regulator has two options at date 1 and the bank has two periods of operation

if the regulator, visiting at date 1, lets it operate for one more period. This subsection

analyzes the model of Mailath and Mester (1994) which looks into the effectiveness of

the regulatory closure policy.

I exclude the friction between the manager of the bank and the shareholders. Suppose,

the bank decides only between the liquid asset with certain return r (safe) and regime

of operation i = 1 (risky). The bank receives 1 unit of deposit at the beginning of each

period and invests all. The risky assets mature at the end of the second period. For less

complication assume the risky loans are free of the cost of monitoring effort, i.e. e = 0.

The inefficiency of the risky asset is defined as having negative NPV, P1R < r. There is

a fixed cost of closure C, borne by the regulator who repays fully the depositors of the

failed bank.

Note that the regulator is redundant if the bank takes no risky investment for the

two periods (i1, i2) =(safe,safe). If the bank loses in the second period it has to pay

everything even out of the profit of the first period. Therefore, it prefers7 (risky,safe)

strictly to (risky,risky) iff the NPV is larger for (risky,safe) than for (risky,risky),

P1[(R− 1) + (r − 1)] > 2p2
1(R− 1). (4.13)

First, suppose the bank takes the strategy of switching from one regime to the other

at the beginning of the second period. The regulatory policy is to close the bank if it

chooses safe for the first period because the bank would otherwise choose risky for the

7(risky,safe) and (safe,risky) are equivalent.
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second period. Hence, the optimal solution is for the bank to play (risky,safe) and for

the regulator to leave it open.

Next, consider the bank always plays risky in the second period, if it is open. If the

regulator closes the bank the expected cost for the regulator will be (1 − P1) + C that

is the closure cost plus the deposit payment. If the bank remains open the regulator’s

expected cost is 2(1 − P1)2 + 2(1 − P1)P1(2 − R) + C(1 − P 2
1 ). The first term is the

expected deposit payment when the bank loses in both periods. The second term is the

expected cost if the bank succeeds in one of the two periods. And the last term is the

cost of closure in case the bank loses in at leas one of the two periods. Comparing the

regulator’s expected costs of policies, we see that the bank will be closed iff the expected

cost of closure is less than leaving the bank open,

C <
(1− P1)(1− 2P1(R− 1))

P 2
1

. (4.14)

When (14) does no hold, the bank plays (risky,risky) because the regulator will play open.

Otherwise if (4.14) is satisfied, the bank chooses between taking risk facing liquidation

or staying under certainty. But then the regulator knows that the bank would play risky

in the second period. In a similar method we can find that the bank plays risky at the

first period and the regulator closes it iff

C <
(1− P1)(2− r)

P1

. (4.15)

Therefore, the cost of closure is the important variable to the regulator. Since closure

may be less costly in the future, the regulator can not commit ex-ante to be severe. When

the deposit value of a bank is very high the social cost of closure becomes large that

may lead to non-liquidation and bailout. This policy generates moral-hazard incentives.

This ”too big to fail (TBTF)” problem is more discussed in the next section as it is not

only an issue of a single bank, but also may affect the banking system.

4.3.2 Optimal Liquidity Provision

When bank closure and liquidation of assets are not ex-post optimal, a central bank may

find it essential to provide liquidity to the bank. This idea has been addressed as the

Lender of Last Resort (LOLR). The question in this part of the work is that how the

liquidity provision can optimally solve the time-inconsistency problem when the cost of

bankruptcy is large.

Despite all arguments against LOLR that it will cause the central bank to face the con-

sequent moral hazard problem and increasing risk, Freixas (1999) claims that the result

depends on the degree to which a bank’s deposits are insured. Freixas (1999) investigates
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two possible sources of risk, i.e exogenous and endogenous, and whether the regulatory

policy should change from one case to the other. He sorts out an efficient implemen-

tation of liquidity provision based on a cost benefit analysis. The main differences to

the setup from section 4.2 are that β percent of deposits are uninsured and the bank is

investing only in the risky asset (i=1).

A negative exogenous liquidity shock which causes failure of risky loans brings financial

distress. The time horizon is one period, at the end of which the central bank reacts

in case of a default. The promised payment to insured and uninsured deposits are

(1 − β)(1 + rD) and β(1 + rL), respectively. The expected value of the bank under

regulatory bailout or liquidation (in case of insolvency) is denoted by VL and VC . Since

the liquidation value is non-zero, the fair priced insurance premium changes to8

m = (1− P1)max[(1− β)(1 + rD)− VL, 0] (4.16)

and the subsidy by bailout sums up to

S = β(1 + rL)−max[VL − (1− β)(1 + rD), 0], (4.17)

assumed to be positive. Let ∆ be the difference between costs of continuation and

liquidation. The regulatory decision depends on ∆ which is decreasing in closure cost C.

When the central bank has no commitment for closure, since C is increasing in bank’s

wealth, A = E + 1, for some range of parameters the TBTF problem holds in the sense

that if a bank with asset A is bailed out, all larger banks would be optimally rescued.

Assume that the central bank makes commitment to a specific regulatory resolution

policy. Let θ > 0 be the probability that the central bank rescues the bank. The

optimal regulatory policy is determined by maximizing total surplus of the bank’s actions

subject to the incentive compatibility condition which requires a higher bank profit under

bailout for any given β. Freixas (1999) assumes that C is increasing in β. Thus, he finds

that either to bailout or to use a mixed strategy (between liquidation and bailout with

θ > 0) is optimal depending on the amount of uninsured debt, β. The mixed strategy

is interpreted as ”constructive ambiguity”, which had previously only been justified in

macroeconomics level.

In the second part, Freixas (1999) takes into account the moral hazard problem where

the risk level is chosen endogenously. The result about the optimal regulatory is similarly

dependent on β as long as the monitoring effort cost is not considered. First I describe his

general setup with endogenous risk taking, then explain how the monitoring assumption

influences the optimal regulatory actions.

The bank has a continuum of risk levels and chooses the probability of success at a cost

ϕ(P ), assumed to be strictly increasing, convex and twice differentiable. The difference

8Compare it to (4.11).
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to my setup is that in his model the differentiability of ϕ(P ) is necessary for optimizing

the risk level.9 Indeed, in his paper there is no agency problem between the shareholders

and the manager. The probability of gross return x = x(β) is P = P (x). The profit of

the bank for total return equals,

Π = P [x(β)− β(1 + rL)− (1− β)(1 + rD)]−m− ϕ(P ). (4.18)

The first best P̂ can be obtained from x(β) = dϕ(P )
dP

. However, since rate of return to

uninsured deposits rL and m should be already adjusted rationally for P , the first order

condition (maximizing Π) yields higher risk, i.e. smaller probability of success than P̂ .

Rewrite profit function to observe the relationship between parameters θ and P ,

Π = Π0 + (1− P )θS, (4.19)

where Π0 is the expected profit the bank would gain in the absence of any subsidy (if

no bailout). Concavity of Π (resulting from convexity of ϕ(P )) and the derivative of the

first order condition show that P is decreasing in θ. It means that liquidation is more

frequent as the bailout policy would increase the bank’s riskiness10. In addition, welfare

analysis shows that taking more risk decreases social surpluses of bailout policy. Yet,

the optimal policy for the central bank is either a systemic bailout or a mixed strategy.

In the case that the effort level of the bank determines the risk, the probability of suc-

cess P and its cost ϕ are thus functions of effort level e (a bounded value). The optimal

policy is similar to other cases; however, Freixas (1999) verifies that moral hazard effect

appears differently. Though, the social cost of bankruptcy implies that it is optimal to

rescue a bank with small level of uninsured debt; a larger amount of uninsured debt

generates a closer monitoring of the bank by its creditors. Hence, the moral hazard ef-

fect works counter-balanced. A mixed strategy stimulates banks to keep more uninsured

debt and tighter monitoring.11 This is the case also where the LOLR is able to commit

to bailout with some positive probability. Nevertheless, the bailout policy increases the

bank’s riskiness, decreases monitoring effort and the marginal benefits of rescuing banks.

The work of Cordella and Yeyati (2003) on the moral hazard problem focuses on the

value effect of bail-out policy where the central bank announces and commits ex-ante to

rescue banks in times of exogenous macroeconomic shocks. The probability of success

not only depends on the risk choice of the bank, but also is affected by a state dependent

term η, which is unobservable by the central bank. In a dynamic multi-period setup,

9In section 2 of this paper I consider a monitoring effort cost to bring a higher probability of success.
Thus, in my model ϕ(P ) takes only two values: e for P1 but 0 for P0.

10Sufficient conditions are considered to avoid corner solutions.
11The result is in line with the rationale that subordinated debt helps to have a better banking

discipline.
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the risky investment returns x with probability P (x, η) = ηP (x) where 0 ≤ η ≤ 1 is i.i.d

and P (x) is decreasing.12

With full deposit insurance, in the absence of bail-out policy, it is shown that quite

intuitively the bank never chooses lower risk than socially optimal. The central bank

follows a constructive ambiguity approach. The shareholders may recapitalize the bank

in case of failure by raising capital in the capital market, even if the central bank does

not bail out. In the non-recapitalization scenario, the probability of bailout θ becomes

a negative function of η. Then a state-independent bail-out policy, θ(η) = θ, increases

risk-taking of the bank as we could expect. However, regardless of the bank’s decision on

capitalization, the central bank minimizes the risk. The optimal risk-minimizing bailout

policy is obtained by a threshold η̂ below which the central bank rescues the bank with

certainty and lets it fail otherwise. Under this strategy, the bank always takes risk more

than optimal level. An alternative optimizing approach is to maximizing the central

bank’s objective, which considers the possible efficiency cost of bailout. This approach

brings about similar regulatory policy with a threshold at least as large as the risk-

minimizing threshold. In other words, the central bank is never less generous than the

risk-minimizing policy.

Accordingly, constructive ambiguity is beneficial to rule out the moral hazard problem

arising from the bank’s endogenous risk taking. However, on occasion of macroeco-

nomic shocks, systemical intervention of the central bank contingent on the exogenous

conditions is desirable as it creates risk-reducing value effects.

4.3.3 Takeover as an Incentives For Risk Reduction

Beside closure and bailout policies, the supervisory agency may allow for takeover of the

failed bank a healthy financial institute. This policy has been promoted as an incentive

program. In a dynamic model, Perotti and Suarez (2002) argues that a solvent bank

can buy a failed institution and benefit from the increase in its charter value.

In the setup presented by Perotti and Suarez (2002), a new branch of the bank enters the

market on a random basis determined by the regulator. The regulator decides also how

to resolve the failures. If both branches fail, she will employ two new banker and lets

them to compete in a duopoly. But if only one bank fails, she should optimize whether

to allow for takeover by the other branch.

For each bank, the return to a prudent lending is certain. There is an opportunity

for speculative lending which generates extra return but leaves the bank exposed to

exogenous solvency shocks. Monopoly is more profitable for a bank due to the absence

12To simplify the model the bank only chooses Markov strategies in risk-taking. This simplification
makes a closed form solution possible but reduces the problem to a specific case in which risk-taking in
each period is independent of and has no impact on other periods.
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of competition but the rent comes at a cost. The stochastic entry of the new branch

turns monopoly to duopoly. Therefore, the lending structure of each branch impacts the

other bank. A bank may speculate in a monopoly but in duopoly it can be allowed to

buy the failed branch if it is solvent. Thus, in a duopoly the bank has less incentive for

speculative lending because of the reward for being solvent. By takeover the survived

bank is temporarily a monopolist. The higher rent in this case makes a new branch

willing to enter the market.

The supervisory agency as a social planer optimizes the entrance and takeover policy,

minimizing the social losses in case of failures. It leads to allowing takeover and imple-

menting an optimum mixture of prudence and competition through an adequate level of

new entry rate. This way banks convert from speculative lending into strategic decisions

in order to remain solvent.

4.4 Regulating Systemic Risk

Failure of a substantial part of the economy, meaning a large institute or many small ones,

are considered as systemic failures. Mostly the regulation policies have so far focused on

individual bank’s risk. Therefore, insolvency of a bank is dealt with accurately in normal

times. However, in addition there is a risk of systemic failures that lead to severe crisis.

The recent crisis raised attention to the need for restructuring regulatory strategies in

order to take account of systemic risks. This section states why it is necessary to regulate

systemic financial crises and investigates the externalities involved in a systemic failure.

In 2008 the states let Lehman Brothers fail in order to limit moral hazard risk-taking.

On the contrary to the government’s interest, it led to a serious collapse of the financial

system. Eventually, failure of this large financial institute spread to a significant part

of the economy through direct and indirect interconnections to other institutes. Then,

the second externality appeared. No private sector, including banks and insurance com-

panies, could take over and compensate for the large scale failures of many banks and

institutes.

Hence, the recent crisis shows traces of externalities in two main directions. The first

externality is the spillover risk of one bank on other banks. The second is the collective

failures of banks where healthy banks can not take them over. The former is discussed

within a model of contagion and the latter as the too-many-to-fail problem, in the

following subsections.

If the banking system is in danger to collapse all together, naturally the supervisory

has to take precautionary reactions. After the failure of Lehman, the government could

not let any other large financial institute fail, despite the fact that the bail-out policy

strengthened moral-hazard. The costs and inconveniences on governments and super-
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visory authorities demonstrate needs for macro-prudential regulatory strategies that is

the topic of the next section.

4.4.1 Contagion and Too Much Related Banks

To illustrate the first externality effect a bank failure has on the banking system, I

refer to the case of transmitting bank-run, named contagion. Allen and Gale (2000)

study the fragility of a banking system, where bank runs spread in the system. Their

model is notable for my purpose since it separates the inter-bank structure from the

risk-taking behavior. This approach helps to emphasize the spillover externality and

avoids complexity caused by the risk optimization challenges. Allen and Gale (2000)

consider the liquidity provider13 role of banks which maximize their depositors’ utility.

Assume there are four banks each operating in a different region, denoted by A, B, C

and D. For simplicity, suppose each bank has no equity, i.e. E = 0, at date 0. The 1

unit of deposit (provided by the depositors of the same region) at time t = 0 is the only

available source of wealth to each bank. Depositors demand d1 and d2 at dates 1 and 2,

respectively.14 However, each bank receives early demands with probability wH or wL
in each region at date 1, where 0 < wH < wL < 1. The manager works for the bank

without moral hazard problem. The liquidity problem raises from the banks investment

in an illiquid asset which takes two periods to mature. It means that each bank invests

amount L in an asset which returns R > 1 per 1 unit at t = 2. Therefore, a bank

may have to liquidate assets prematurely to pay to depositors. Liquidating one unit of

investment produces 0 < λ < 1 unit at t = 1.

Each bank decides about the inter-bank market, an investment portfolio and a deposit

contract. Suppose a complete market in which every bank has deposits in each of other

regions. Since all regions and consumers are equivalent, with out loss of generality

assume in regions A and C there are early consumers with low probability, but in B

and D with the high probability. In the complete market banks can easily transfer their

excess supply of the liquid asset to the regions with excess demands at date 1. Suppose

every bank has deposit z = (wH − γ)/2 in each bank of three other regions, where

γ = wH+wL
2

. Now, the banks have to choose only the deposit contracts, d1, d2, and the

risky investment L. Each bank maximizes the expected utility of consumers at time

t = 0 in the following way,

γu(d1) + (1− γ)u(d2). (4.20)

13The framework of Diamond and Dybvig (1983).
14The depositors could not expect the same level of utility a bank in their region brings them in

autarky.
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As the total of depositors’ consumption in each period is a constant, it is optimal for the

bank to hold the liquid asset (by itself or as deposit in other regions) for the early deposit

demands, i.e. γd1 ≤ r(1 − L). It gives the feasibility constraint of the second period,

(1− γ)d2 ≤ RL. The objective function (4.20) increases as long as the consumption can

be shifted from early deposit demand to the late demands using the liquid asset. The

first order condition is obtained, ú(d1) ≥ ú(d2), where ú(.) is the first derivative. This

condition stops shifting deposit demand until d1 ≤ d2 which is an incentive constraint for

the depositors who wait longer. Otherwise, the depositors with late demand would be

better off withdrawing at date 1. This optimization problem is the same as if a central

planner optimizes risk sharing. Allen and Gale (2000) call this optimal allocation a first

best allocation, which is also incentive efficient as seen above. There is no bank-run and

no need for premature liquidation.

Consider a perturb state which occurs with probability zero, such that each bank in B,

C, and D receives early deposit demands with probability γ, but they come to the bank

in region A with probability γ+ ε, ε > 0. If a bank is insolvent it may liquidate some of

the illiquid asset to meet its commitment to early deposit demand. But it prefers to pay

out of liquid assets at first, and next liquidates the deposits in other banks. If neither

liquid asset, nor deposit liquidation helps, the bank will liquidate the illiquid assets at

date 1. This is called liquidation ”peking order15”.

In order to prevent a run16 in date 2, a bank with a fraction w of early deposits demands

has to keep at least (1−w)d1/R units of the illiquid asset. Since the amount of illiquid

asset is 1−L, the highest amount that can be liquidated at t = 1 is (1−L−(1−w)d1/R)

which produces the buffer

b(w) ≡ λ(1− L− (1− w)d1/R) (4.21)

As long as the amount of illiquid asset a bank needs to liquidate is less than this buffer,

the bank is insolvent but not bankrupt. In the perturb case, the assets of the bank in

region A are valued at r(1 − L) + λL + 3zd1 at date 1. The last term comes from its

deposits in three other regions, as in each one deposits are valued at d1. The liabilities

of bank A are valued at (1 + 3z)qA, where qj is the value of a bank’s deposits in region

j. Balancing assets and liabilities, qA is found:

qA =
r(1− L) + λL+ 3zd1

1 + 3z
. (4.22)

The bank in region A is bankrupt whenever,

εd1 ≤ b(γ + ε). (4.23)

15It holds for small λ.
16The bank can not pay to the late deposit demands fully.
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The loss to every other bank because of bankruptcy in A is z(d1 − qA). Those banks

will not be bankrupt iff the loss is less than their buffer,

z(d1 − qA) ≤ b(γ). (4.24)

Imagine that region A was only connected to B, and C only to D. Then, bankrun in

one sector of the market would never transmit to another sector. Allen and Gale (2000)

investigate the fragility of system where regions are incompletely connected where each

bank has deposit only in one neighbor bank. Region A has deposits 2z = wH − γ in B.

Similarly B in C, C in D and region D has deposits 2z in region A. Under the assumption

that two banks receive early deposit demands with high probability and two other with

low ones, the first best allocation is still achieved. The reason is that the objective

function is the same as (4.20) and the budget constraints for high liquidity shocks at

dates 1 and 2 are, respectively,

wHd1 = r(1− L) + (wH − γ)d1

[(1− wH) + (1− wH)d2] = RL,

which equal the previous constraints,

γd1 = r(1− L) (4.25)

(1− γ)d2 = RL. (4.26)

Similarly for the regions with low liquidity shocks the same budget constraints hold.

Thus, in this case the liquidity transfer makes the first best allocation possible. Never-

theless, in the perturb situation where (4.23) is satisfied for region A, the spillover to

region D can be large enough that,

2z(d1 − qA) > b(γ). (4.27)

Note that both inequalities (4.24) and (4.27) are possible. It means that, for a set of

parameters the complete market can be safe from bank-run contagion but not the incom-

plete market. As bank in A is bankrupt, its assets are valued less than d1. Therefore,

the deposit of region D in A is not sufficient and it must liquidate more than the safe

buffer. This in turn causes bankruptcy for the bank in D. In a similar way the losses

transfer to the bank in region C and then to one in B. Accordingly, all banks connected

by a chain of overlapping bank liabilities must go bankrupt.

As seen fragility of a system is different under complete and incomplete markets, but

there is not a monotone relation. Actually, the level of inter-connection among banks

determines how a contagion can spread.
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If the outcome in Allen and Gale (2000) were risky, similar to my setup in section 4.2,

the returns in different regions would not be perfectly correlated. In that case banks

would gain from risk sharing and they would hold claim on each other. Ex-ante, the

first best could be achieved. But, ex-post risk sharing would not be possible when the

returns were known, as arrangements and bankruptcy rules would not work properly, in

addition to the complicated analysis. This explains in some extend the more complexity

of contagion in the real world, that it leads to difficulty of dealing with crisis.

This discussion of contagion and financial fragility concentrates on the liability structure

of banks. The interbank relations has been addressed together with the TBTF problem.

The source to the systemic risk in both issues can be the asset side of the banks’ balance-

sheets. Rochet and Tirole (1996) investigate the TBTF and suggest peer monitoring

among commercial banks. In their work, TBTF occurs if the peer monitoring starts

after the liquidity shock and it more depends on the size of interbank loans than size of

the individual failed bank. Further work on interbank market is done in Freixas et al.

(2000). They show that on one hand, interbank credit lines reduce the cost of holding

reserves to cope with liquidity shocks. On the other hand, a contagion is inevitable

in these connection lines. Insolvency of one bank affects the stability of the banking

system because of a coordination failure, even if other banks are solvent. Moreover,

the subsidy generated in the network of cross-liabilities allows the insolvent bank to

continue its weak performance. If the central bank decides to liquidate this bank, it

has to compensate for payments of the defaulting bank to the depending banks. Here

two courses are available, inefficient liquidation of counterparts of an insolvent bank or

bailout the defaulting bank. Therefore, Freixas et al. (2000) result in a moral hazard

problem as TBTF.

4.4.2 Too Many To Fail

A soft regulator who ex-ante lowers monitoring capacity or ex-post rescues insolvent

banks, not-being sufficiently generous, triggers banks to collude on disclosing their losses.

Thus, many banks roll over their bad loans passively rather than to announce bankruptcy

against defaults. Consequently, the regulator may need to repeat rescue or recapital-

ization in the future. Mitchell (1997) explains this issue and call it “too many to fail”

(TMTF).

Acharya and Yorulmazer (2007) analyzes the herding behavior of banks leading to

TMTF. Their work focuses on banks’ inter-correlation of risk-taking and covers the

three main regulatory actions: closure, bailout and take-over. This subsection studies

the effectiveness of these policies in dealing with the TMTF.

The collective failure of many banks have been analyzed in the presence of regulatory

actions which focus on individual banks. These regulatory systems have been limitedly
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effective as they could not prevent systemic failures. This subsection includes a similar

setup that the regulatory policies exist but do not target systemic risks. We see how

banks take advantage of it and initiate widespread failures. To complement the problem

discussed in the last subsection, the focus is on the risk taking behavior of banks in

this part. Further, the banks’ herding on risk taking contributes to the second type of

externality in a large crisis.

Consider two equal-sized banks A and B operating each for two periods. Each period

has basically the setup of section 4.2. But it is adapted for letting the regulator into the

model and a few simplifications. The regulator may intervene at time t = 1. The only

source of fund for each bank is 1 unit of deposit per period. Deposits are debt contracts

with maturity of one period. The banks benefit from full deposit insurance only in the

first period which costs ad1, a > 0, where d1 is the deposit return at t = 1. Then d2

denotes the deposit return at t = 2.

Moral hazard of a bank manager is defined as before. However, assume the probabilities

of success do not change by moral hazard, i.e. P0 = P1 = P̄ , but the probability depends

on the period. P̄1 and P̄2 stand for the probability of success independent of whom owns

the bank’s assets at t = 1, 2, respectively. Further, ignore the effort cost, i.e. e = 0.

IC constraint (4.10) indicates that the banker needs a minimum share of α = Q
q

not to

commit moral hazard.

Define liquidation as selling the bank to outsiders who generates only R−δ in the success

state. Acharya and Yorulmazer (2007) assume δ < q which means outsiders can manage

the bank better than the moral hazard case but are not as productive as the bankers.

This is in line with the literature that the moral hazard risk-taking is the most severe

case in terms of social welfare as its outcome is the least.

The banks choose their interbank correlation, ρ ∈ {0, 1} which refers to the correlation

of their respective returns. Whereas ρ = 0, the two banks belong to two different

industries, and ρ = 1 means that they choose the same industry. Having two banks A

and B in the economy, 4 possible states at time t = 1 are given: SS, SF, FS, FF ,

while S and F recalling success and failure of bank A and B, respectively. Being in the

same industry the joint probabilities of the 4 cases are, P̄1, 0, 0, 1− P̄1. However, if the

banks are independent (two different industries) then the joint probability of each state

is given by multiplying the probabilities of the two outcomes.

To show that surviving bank will always buy the failed bank, take into account following

assumptions: (i) without loss of generality, bank A has the bargaining power to offer

to buy bank B, (ii) bank A will access to depositors of bank B after purchase, and (iii)

deposit insurance is costly to the regulator when there is a bank failure. The surviving

bank, A will always buy the failed bank in a price, ψ = P̄2(R − δ) − 1 equal to what

outsiders at most would pay in states SF . The surviving bank’s expected profit from

the investment in assets of the failed bank will be P̄2R− 1. Therefore, it purchases the
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failed bank and receives the discount (P̄2δ). This resolution policy is optimal also for the

regulator. The misallocation cost is zero, comparing to the misallocation cost of selling

to the outsiders, P̄2δ. The fiscal cost for the regulator is a(d1 − ψ) in both cases. The

bank’s bailout policy includes no misallocation cost but fiscal cost ad1.

In this unique subgame perfect equilibrium the regulator never intervenes in state SS.

In state FF , if both banks are sold to outsiders, the regulator’s objective function is

E(V L
2 ) = 2[P̄2(R− δ)− 1]− a(2d1 − 2ψ), (4.28)

and if both are bailed out, it takes the value

E(V B
2 ) = 2(P̄2R− 1)− a(2d1), (4.29)

of course it is already assumed that the bank’s manager has a minimum share of α in

each bailed out bank. Bailing out one bank and liquidating the other one, the objective

function takes a value between E(V L
2 ) and E(V B

2 ). As two banks are taken symmetri-

cally, the regulator takes the same action towards either of them. Hence, both banks

are liquidated if E(V L
2 ) ≥ E(V B

2 ) which gives δ ≤ δ∗, where δ∗ = a(P̄2R−1)

P̄2(1+a)
. Otherwise,

the regulator bails them out and takes a share υ in each bank’s equity υ < (1− α).

Knowing the regulator’s strategy, we find the banks’ decision on the interbank correla-

tion, which is their investment problem of date 0. Note that a bank’s first period profit

P̄1R− d1 is independent of ρ. Therefore, its expected profit of two periods,

E(π1) + E(π2(ρ)) (4.30)

is optimized with respect to ρ as E(π2(ρ)) maximizes. When two banks invest in the

same industry,17

E(π2(1)) = P̄1E(πss2 ) + (1− P̄1)E(πff2 ). (4.31)

But if they differentiate,

E(π2(0)) = P̄ 2
1E(πss2 ) + P̄1(1− P̄1)E(πsf2 (0)) + (1− P̄1)2E(πff2 ), (4.32)

where E(πsf2 (0)) = E(πss2 )+ P̄2δ, as we discussed before that the surviving bank receives

a discount P̄2δ by buying the failed bank in state SF . The choice of interbank correlation

is determined by the tradeoff between this discount and the subsidy at being bailed out

in state FF ,

E(π2(1))− E(π2(0)) = P̄1(1− P̄1)[E(πff2 (0))− P̄1δ]. (4.33)

17The outcomes are only success for both or failure of both banks.
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If the regulator liquidates two banks at t = 1, i.e. δ ≤ δ∗, banks choose the highest level

of correlation at t = 0. Otherwise, if banks are bailed out, E(πff2 ) = (1 − υ)(P̄2R − 1)

exceeds subsidy18P̄2δ if and only if,

υ < υ∗ = 1− P̄2δ

(P̄2R− 1)
. (4.34)

Thus, if υ∗ > 1 − α, for a bailout strategy of υ < 1 − α banks takes ρ = 1. But if

υ∗ ≤ 1− α, they herd where the regulator takes very low share υ < υ∗. To make banks

differentiate under a bailout policy the regulator has to take υ ∈ [υ∗, 1− α].

However, the ex-ante optimal policy may differ from the regulator’s ex-post policies.

The losses in state FF inspire the regulator to implement closure policies that mini-

mizes ex-ante the probability of this state. It means that the expected total output of

the banking sector is maximized when banks invest in different industries.19 In case

δ ≤ δ∗, obviously the ex-ante and ex-post policies are the same. In the more crucial

case of δ > δ∗, the regulator needs to take a dilution υ > υ∗ to prevent herding. Where

υ∗ < 1 − α, the regulator can take υ = υ∗ to provide incentive for banks to deviate

and still continue without moral hazard. Nevertheless, the most considerable case is

when υ∗ > 1−α. Acharya and Yorulmazer (2007) find a set of parameters under which

ex-ante it is optimal to liquidate both banks, as δ < q and the liquidation costs are

smaller than the agency cost. But discussed above that ex-post it is optimal to bailout

both banks, since the regulator is ex-post only maximizing the profits at state FF . The

regulator ex-ante objects to reduce the likelihood of joint-failure. She may give up some

of its profit and imposes a tougher liquidity policy in order to incentive less correlation

between banks. Hence, state FF includes time inconsistency problem for large δ.

Acharya and Yorulmazer (2007) compare too-big-to-fail and too-many-to-fail, assuming

two banks asymmetric in their sizes. Without loss of generality let bank A be the larger

bank which takes deposit more than 1 unit. The result changes due to the assumption

that the large bank has enough capital to buy the small bank but the small bank does

not have enough fund to acquire the large bank’s assets. Therefore, only in state SF the

surviving large bank buys the small bank. In state FS, if δ > δ∗ the regulator bails out

the failed large bank, since liquidating to outsiders is a misallocation. Otherwise, where

δ ≤ δ∗ the regulator liquidates any failed bank to outsiders. In their paper, Acharya and

Yorulmazer (2007) show that state FF is similar to the symmetric case, unless for large

δ. For δ ≤ δ∗, the small bank is actually indifferent between high and low correlation, as

it can not take over the assets of the other bank. But the big bank differentiates itself,

as it gets always an extra benefit in state SF than state SS. In the contrary, for δ > δ∗,

18The subsidy of differentiating, likely surviving and buying the other bank in state SF .
19It can be verified by computing the total expected output generated by banks, net of liquidation

and/or bailout policy, in a similar approach as above.
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since the small bank has no opportunity to access the failed large bank’s assets, only

its bailout subsidy at state FF matters. The bail out subsidy for the large bank does

not increase when the small bank fails too, whereas it does for the small bank if the big

bank fails. This gives incentives to the small bank to herd with the big bank. Thus, the

inter-bank correlation obtains by mixed strategies and there is no equilibrium in pure

strategy. Accordingly, the TMTF mostly affect small banks. Empirical works of Jain

and Gupta (1987) and Barron and Valev (2000) on US banks’ lending behavior prior to

the debt crisis of 1982-1984 support the results.

4.5 Macro-Prudential Regulation Policies

This section addresses prudential regulation policies dealing with the systemic risk. The

focus is on the three sever cases of moral hazard: 1)TMTF 2)Too much related to fail

and 3)TBTF. The first and the third cases have been briefly mentioned in the previous

sections and this section concentrates on rather macro-prudential approaches towards

these issues. The case of too much related too fail refers to a highly interconnected

banking system liable to contagion and distributing the risk. Next subsections introduce

policies against the distributed risk. Effectivity of each regulatory strategy is analyzed

with respect to the source of moral hazard.

4.5.1 Dealing with TMTF

Acharya and Yorulmazer (2008) concentrate directly on the time-inconsistency problem

as of TMTF. They show that granting surviving banks to take over the failed banks

create incentives for taking less risk. With the setup of Acharya and Yorulmazer (2007)

for n banks in an economy, this subsection analyzes the rewarding policy.

When too many banks are in default, the surviving banks may not have enough liquidity

to acquire large amount of assets of all the failed ones. Therefore, the price of assets

falls in the market such that outsiders of the banking sector can purchase some of the

failed banks’ assets. Even if the surviving bank want to issue equity to raise fund in

order to be able to purchase all the failed banks’ assets, they will need to compensate

the outsiders as their competitors in the market for failed banks’ assets. This will in

turn reduces the price for assets of the surviving banks because they have to sell equity

at a discount. Hence, they will still not access enough fund. The more failed banks, the

lower the market-clearing price and the higher the total misallocation cost.20

20The total misallocation cost equals the number of failures times a constant misallocation cost P̄2δ,
where δ is the loss in return generated by outsiders.
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Liquidating to outsiders is not ex-post optimal in a welfare analysis perspective. How-

ever, bailing out failed banks incurs a fiscal cost in the work of Acharya and Yorulmazer

(2008). Thus, the regulator ex-post optimally bails out some of the failed banks as long

as the marginal cost of bailout is less than the misallocation cost. Alternatively, sup-

pose that the regulator provides sufficient liquidity to surviving banks to buy the same

optimal number of failed banks. From the point of view of social welfare, the regulator

has to pay the same amount of insurance cost and the total misallocation cost is not

more than before, as surviving banks are the efficient users. Therefore, the ex-post social

welfare cost with the alternative policy is as equal as the direct bailout policy.

Ex-ante the regulator wishes to avoid too many failures. The time inconsistency problem

arises as she wants ex-ante to avoid herding among banks by threat of liquidating to

outsiders but has to ex-post bailout the failed banks. To mitigate herding, the regulator

takes dilution in the equity of the bailed out banks dependent on the severity of moral

hazard.21 The same result follows when the required liquidity is provided to surviving

banks.

Yet, the endowment of outsiders influences the herding incentives. The less endowment

the outsiders have, the price and the number of failed banks they together with the

surviving banks can acquire decreases. The regulator has to provide liquidity for even

smaller number of failures. This increases banks’ incentives to differentiate as their

surplus of takeing over failed banks raises. In turn, the regulator can take a smaller

dilution to control herding over a larger range of α.

A surviving bank uses its first period profit, R−d1, to purchase failed banks. When this

resource, available to each surviving bank at date 1, exceeds the maximum price outsiders

would pay for purchasing a failed bank, ψ, the bank can purchase larger amount of failed

banks’ assets. A surviving bank benefits more from the liquidity provision policy, as its

purchase surplus outweighs the subsidy of bailout policy.

This way, the regulator encourages banks to differentiate through rather relax liquida-

tion strategy. Comparing to ex-post optimal bailout policy, she can implement lower

interbank correlation by a smaller stake in the bailed out banks. To summarize, the

liquidity provision not only diminishes the likelihood of aggregate banking crisis but

also dominates the bailout policy from an ex-ante standpoint.

4.5.2 Too Related To Fail and Capital Adequacy

The externality from one bank’s investment to other banks’, broadens prudential banking

regulation studies towards a multiple-bank design. One extension approach is to take

into account banks’ correlation in the existing regulation strategies. This subsection

21As discussed in section 4.2, the choice of ε with respect to ε∗ and α depends on the relation between
δ and q.
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describes two proposals which concern capital adequacy. As discussed in the previous

sections, the ex-post optimal closure policies suffer from time-inconsistency problem.

This directs us to ex-ante optimal designs. Capital requirement is then the core of such

regulatory policies.

Acharya (2009) study the externalities of a bank failure on surviving banks. In a two

banks setup similar to Acharya and Yorulmazer (2007), if bank B fails, a fraction ς < 1 of

its depositors migrate to bank A. Since the overall investment in the economy reduces,

the return on the safe asset raises. This increases the cost of deposits on surviving

banks, because the return to depositors equals the return to the safe asset in equilibrium

(otherwise, there would be no investment or short-sell on it.).

Beside the ”recessionary spill-over”, there is a positive externality. Having more deposi-

tors, bank A can expand and acquire also the human capital of bank B. In fact, its cost of

investment decreases to σ percent, and so does the investment in the risky asset. Thus,

the total effect of two (negative and positive) externalities makes the difference between

the profit in state SF and the profit in state SS, i.e. E(πsf )−E(πss). This value which

determines the bank’s choice on interbank correlation, is by definition decreasing in ς

but increasing in σ. For any σ, a threshold ς∗(σ) can be found below which the total

externality is negative and banks have no incentive to differentiate. This situation can

also hold for sufficiently high investment cost σ∗(ς), given ς. We end up in collective

risk shifting, i.e. high ρ, for large σ and/or small ς, and low correlation otherwise.

As discussed in section 4.2, individual banks with low charter value (wealth) takes higher

risk. Now the systemic risk shifting due to their correlation is extra to the individual

failure risk. By definition, the loss of joint failure is larger than an individual bank failure.

This provokes the need for regulatory actions against both systemic and individual

risk-taking in Acharya (2009). Consequently, the regulator’s closure policies (including

liquidity provision) should exhibit less forbearance in the joint failure.

Regarding prudential treatments to penalize collective risk-taking and TMTF phenom-

ena, ex-ante mechanisms such as capital requirement can be effectively improved. Since,

the collective risk-shifting is based on externalities, a myopic capital adequacy regula-

tion, independent of ρ, can at best mitigate individual risk-shifting.

Acharya (2009) shows that a capital adequacy regulation, increasing in the correlation

of banks’ portfolio and individual portfolio risk, moderates banks’ systemic risk-shifting.

The negative externality in state SF incentives banks to increase the probability of state

SS by taking high correlation. However, the capital adequacy which depends on the

endogenous negative externality induces the cost of capital in that case. Hence, the high

cost of capital counteracts the negative externality. Accordingly, the proposal amends

the myopic capital requirement strategy. It suggests that banks should hold more capital

and take into account the general risk in economy in addition to their specific risk.
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The next proposal contains rather practical view to the capital adequacy strategies.

The main intuition is again about considering each bank’s contribution to a systemic

crisis. The systemic risk regulator can be compared to a senior manager who wants to

prevent financial distress in a firm. She applies risk management technics to measure

each division’s contribution to the total risk of the firm. The equity is assumed a public

good to the entire firm. Therefore, each unit must be charged according to the equity

value used to support it. Acharya et al. (2009) imply similar approach for regulating

crisis in the banking system.22 As systemic risk is defined to occur endogenously, each

bank’s contribution is measured.

Current regulation policies should be adjusted to consider systemic risk in the banking

system. Capital adequacy is thus as an intuitive regulatory instrument imposed to

depend on each bank’s measure of the systemic risk contribution. For instance, the Basel

II capital requirement multiplied by this measured systemic factor is an improvement,

consistent to the discussion above. The proposal is in fact an introduction to the Basel

III regulatory accords. However, it can be enforced efficiently under circumstances that

limit the cyclicality problem in the systemic risk measurement and the issue of fake

decrease in leverage.

4.5.3 TBTF and Systemic Taxing

Since a big complex bank can not be liquidated, a natural prudential strategy is to tax its

activities that bring negative externalities with the intuition to discourage the behavior

leading to systemic risk. Further, the accumulated tax then could be used to fund the

losses of the systemic crisis. However, from section 4.2 we know that for taxing being

effective against risk-taking a proper design is necessary. Freixas and Rochet (2010) plan

a systemic tax to deal with the extreme and rare event of large losses in a Systemically

Important Financial Institution (SIFI).

In case of a SIFI failure, a public supervisory intervention is needed since no private

insurance can cover the losses C, neither the shareholders want to recapitalize as their

expected NPV is negative. In a multi-period setup, take into account the manager’s

moral hazard discussed in section 4.2. The SIFI generates a fixed positive cash flow µ

in each period. But it may fail with a very small probability τ which increases by dτ

because of the manager’s moral hazard. Another main friction between the manager

and shareholders is that she is more impatient as his discount factor ξM is smaller than

shareholders’ ξ.

Existence of a strong and independent systemic risk authority which has the power to

restructure the bank and the ownership is necessary in Freixas and Rochet (2010), to

22A detailed discussion on the applied risk management methods is beyond this survey. Acharya et al.
(2009) describe following methods: value-at-risk and expected shortfall, stress tests and aggregate risk
scenarios, and pricing systemic risk.
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establish ex-ante optimal regulation. The authority has to bear a cost for restructuring

the bank Γ. As discussed in section 4.2, to avoid moral hazard, the manager’s salary

should depend on his performance and satisfy incentive compatibility constraint. Hence,

she receives a bonus s at the end of each successful period that

(1− τ)(s+ ξMω) ≤ (1− τ − dτ)(s+ ξMω) +Q. (4.35)

Still, she should be offered a one time payment G when she signs the contract. This fills

the gap between his reserved utility U (his training cost) and the expected continuation

payoff ω, i.e. G = U − ω, where ω = (1− τ)(s+ ξM).

The systemic risk authority expropriates the shareholders after the crisis. The regulator

sells the bank to new shareholders, naturally in a price equal to their expected benefit.

The price is the expected value of the bank π net of the one-time offer to the new

manager, i.e. Π − G where Π = µ − T + (1 − τ)(−s + Π). The regulatory cost of

restructuring reduces because of selling the bank. Hence, the systemic tax equal to the

expected cost for the regulator in case of crisis, T = τ [C + ξ(Γ− (Π−G))].

The clever proposal of Freixas and Rochet (2010) is to consider the regulator offering

a grace period to the new manager after the crisis. It means that if immediately af-

ter a restructuring the bank fails the manager will not be fired and the shareholders

are not expropriated, but the bank is bailed out. For the manager not to take moral

hazard in this period the minimum bonus of the period is Q/(dτ) which is larger than

ω from (4.31). In return, her one time payment reduces because of bigger bonus in

the grace period. After the grace period, everything is back to the contract mentioned

above. Nevertheless, guaranteeing a grace period is socially beneficial iff the total cost

of restructuring (immediately after previous restructuring) ξ(U + Γ) is higher than the

cost of loading the compensation of the manager (ξ− ξM)ω∗, where ω∗ is the manager’s

minimum continuation salary from (4.35). In other words, under such condition the one

period grace contract is socially more beneficial.

To find the optimal contract, Freixas and Rochet (2010) control for the optimal probabil-

ity of the bank being restructured. Furthermore, the question is whether the manager’s

payment contract is optimal with respect to her performance. The regulator optimizes

the total social surplus of the bank. Though no managerial payment in case of crisis

minimizes the managerial risk-taking incentives, a crisis implies restructuring the bank

which is costly to the systemic risk authority. The trade-off brings the solution to the

problem, as the sufficient requirements for having a grace period is explained above.

Freixas and Rochet (2010) solve the recursive dynamic programming problem to justify

the optimality of the contract with one grace period. The interesting point is that if there

was no supervisory of the regulator, the new shareholders would refuse to compensate

the new manager. The robustness of the result is also verified for larger τ .
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4.5.4 Market-Based System and Other Alternatives

Above mentioned methods make the regulator responsible for measuring risks and imple-

mentation of resolution policies. Alternatively, an insurance against only systemic part

of the risk would be a market-based complementary system. The insurer must compute

the risk and in case of crisis can pay part of losses to the financial stability regulator,

not directly to the institute.

As Acharya et al. (2009) discuss, to handle the crisis among insurance system, the

insurers only provide coverage for a small percent of losses. The regulator has to still be

the lender of last resort. However, the insurance companies would inspect the systemic

risk of each bank carefully and regularly such that banks have less incentive to game

than under fixed regulatory fees or capital requirements. This way the bank would limit

its systemic risk and provide more transparency to decrease the insurance premia. The

insurer’s pricing provides also more information for the public and the financial stability

regulator. Note that the insurance system can be combined and imposed together with

the systemic-risk-based capital adequacy or taxing policies. Therefore, a public-private

system would work more effectively both in examining the systemic risk and then in the

rare crisis event.

4.6 Regulatory Policies in the Recent Crisis

After surveying the regulatory policies, it is time to investigate what have been so far

done in the past crisis. This section presents the US regulatory data on bank and

financial institutions failures. The sample starts from 1934 but the main focus is on

the recent crises of 2007-2009 and its comparison to the past. The source of data is

FDIC’s Failures and Assistance Transactions database.23 Unfortunately, detailed data

on bailout are not available but there are data about other resolutions.

The resolution transactions are in three main categories: 1) assistance in which insti-

tution’s charter value survives, 2) failure with termination of the charter value, and 3)

payout, where the insurer pays the depositors directly and place assets in the liquidat-

ing receivership. Assistance transactions include transactions where a healthy institu-

tion acquires the entire bridge bank-type entity but certain other assets were moved

to liquidating receivership, or open bank assistance transactions under a systemic risk

determination. In a bridge bank transaction the FDIC itself acts temporarily as the ac-

quirer. It provides uninterrupted service to bank customers while having sufficient time

to market the institution. Reprivatization as management takeover with or without as-

sistance at takeover, followed by a sale, is very rare in the data. The second category

contains all types of ”Purchase and Assumption” (P&A) agreements. In these resolution

23The data for year 2010 is up to August, 20.
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transactions the healthy institution purchases some or all of assets of a failed institution

and assumes some or all of the liabilities, including all insured deposits.24

Figures 4.1 to 4.4 show number of all transactions of the three categories in four time

intervals. Figure 4.5 puts them all together in order to make comparison possible. The

second category transactions are known as ”failure, merger” in the figures. The trend

of average total deposits in failure (category two and three) and assistance transactions

provide information on volumes. In all years from 1934 to 1979, the total deposits

under assistance sums up to about 6$ billion. Compare it with years after. In the

80s the average total deposit under assistance is much higher than under failures. It is

increasing and the peak is 1.5$ billion in 1989. This is so while the number of assistance

is always very small. It means that mostly large banks have been under assistance. Huge

number of failures is seen in the 80s that is reversed in the 90s. The trend of systemic

failure is decreasing in the 90s and so do the trend of average total deposits. However, a

relatively larger volume of deposits were under failure transaction than assistance. Since

2000 there was not much problems in the banking system until 2008 and 2009. Though

the number of failures and assistance is not as large as the 80s, the average total deposits

is enormous. With low number of assistance transactions, up to about 6$ and 14$ billion

are spent to assist total deposits per bank in 2008 and 2009, respectively. Note that

the 7$ billion bailout to the financial system of the US is extra to these transactions.

The important role of bank sale is observable. However, the systemic shocks were such

extreme that they are mostly covered by huge cost for the government, i.e. the regulatory

authority.

4.7 Conclusion

This paper surveys the development of banking regulation towards systemic risk regu-

lation in the recent years. Regulating a single bank in normal times have been widely

studied. Regulation strategies against a bank’s risk-taking and resolution policies in case

of a failure are well optimized. However, they have been limited to individual banks’

problems.

Preventing or resolving a systemic crisis requires different policies. Ex-ante policies such

as capital adequacy, taxing and/or deposit insurance should adjust for this purpose. De-

pendence of the adequate capital ratio not only on each bank’s risk but also on banks’

correlation would decrease banks’ herding in risk-taking. Computing each bank’s contri-

bution to the systemic risk in a proper risk-management method, the capital adequacy

or insurance premium should depend on this measurement too. Systemic taxing for a

substantially important institute in an economy would diminish the risk if the regulator

is strong enough to expropriate the ownership. Taxing and partial insurance can also

24A bridge bank transaction is also a type of P&A.



4.7. CONCLUSION 89

provide funding for the losses. Private insurance companies would also monitor banks’

activities more closely and price premia more carefully. To protect the insurance system

from transmitted loss, the partial insurance given to banks should only cover a fraction

of their systemic risk.

Ex-post crisis resolutions should also be ex-ante optimal. Since at a crisis, asset liquida-

tion is not ex-post optimal in majority of failures, forbearance policies should encourage

risk-reduction. In other words, direct bailout would highly increase moral hazard and

must be prohibited. Researches propose takeover of a failed bank by a healthy insti-

tute should be allowed and also granted. It means that, the regulator should provide

liquidity to a survival of the crisis for purchasing failed institutes. The policy that em-

powers healthy banks involves the same social cost as a direct bailout, but has the great

advantage that reduces collective risk-taking among banks.

Still, there is much space for further development of macro-prudential regulation. Fur-

ther research could for instance consider the interbank relation. At failure of some

banks, how could their connection to other parts of financial system be controlled to

avoid transmission? How should this interconnection be ex-ante optimally regulated?

Beside open questions regarding interbank relations, implementation of existing propos-

als is equally important. The practical way the supervisory authority should impose a

policy or combination of policies depends on the economy and also legal systems. This

provides broad area of research in both applied and theoretical topics.
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Figures

Figure 4.1. US Bank Resolutions 1934-1979.

Figure 4.2. US Bank Resolutions in the 80s.

Assistance Transactions include: A/A transactions where assistance was provided to the

acquirer who purchased the entire institution, or where assistance was provided under a

systemic risk determination; and the institution’s charter survived.



4.7. FIGURES 91

Figure 4.3. US Bank Resolutions in the 90s.

Figure 4.4. US Bank Resolutions since 2000.

Assistance Transactions include: A/A transactions where assistance was provided to the

acquirer who purchased the entire institution, or where assistance was provided under a

systemic risk determination; and the institution’s charter survived.
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Figure 4.5. US Bank Resolutions 1980-August 2010
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