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Abstract

Predicting organismal phenotypes from genotype data is important for plant and animal breeding, medicine, and
evolutionary biology. Genomic-based phenotype prediction has been applied for single-nucleotide polymorphism (SNP)
genotyping platforms, but not using complete genome sequences. Here, we report genomic prediction for starvation stress
resistance and startle response in Drosophila melanogaster, using ,2.5 million SNPs determined by sequencing the
Drosophila Genetic Reference Panel population of inbred lines. We constructed a genomic relationship matrix from the SNP
data and used it in a genomic best linear unbiased prediction (GBLUP) model. We assessed predictive ability as the
correlation between predicted genetic values and observed phenotypes by cross-validation, and found a predictive ability
of 0.23960.008 (0.23060.012) for starvation resistance (startle response). The predictive ability of BayesB, a Bayesian
method with internal SNP selection, was not greater than GBLUP. Selection of the 5% SNPs with either the highest absolute
effect or variance explained did not improve predictive ability. Predictive ability decreased only when fewer than 150,000
SNPs were used to construct the genomic relationship matrix. We hypothesize that predictive power in this population
stems from the SNP–based modeling of the subtle relationship structure caused by long-range linkage disequilibrium and
not from population structure or SNPs in linkage disequilibrium with causal variants. We discuss the implications of these
results for genomic prediction in other organisms.
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Introduction

Most efforts to understand the genetic architecture of quanti-

tative traits have focused on mapping the variants causing

phenotypic variation in quantitative trait locus (QTL) mapping

populations derived from crosses between lines genetically

divergent for the trait, or in association mapping populations,

with the goal of understanding the biological underpinnings of

trait variation [1]. However, the ability to accurately predict

quantitative trait phenotypes from information on genotypic

variation in the absence of knowledge of causal variants will

revolutionize evolutionary biology, medicine and human biology,

and breeding of agriculturally important plant and animal species.

The premise of personalized medicine is based on prediction of

individual genetic risk to disease from genome-wide association

studies [2,3], and the ability to select individuals or lines in animal

and plant breeding programs based on genotypic information

circumvents the costly process of progeny testing and reduces the

generation interval in applied breeding programs, leading to

greater efficiency [4,5].

In classical animal and plant breeding, the genetic quality of

individuals or lines is predicted from phenotypic values of selection

candidates and their relatives. The widely used Best Linear

Unbiased Prediction (BLUP, [6]) method models the covariance

structures between individuals via the numerator relationship

matrix, which is constructed from known pedigree information

and thus reflects expected relationships between individuals (i.e. the

proportion of shared alleles of identical ancestral origin) given the

pedigree. The advent of high-throughput genotyping platforms for

many agronomic species [7] enabled genotyping large numbers of

individuals for dense panels of single nucleotide polymorphisms

(SNPs) spanning the genome. The expected, pedigree-based

numerator relationship matrix can then be replaced by a realized,

genome-based relationship matrix (often called the ‘‘genomic’’

relationship matrix, [8]). This approach is equivalent to a random

regression approach in which all SNP genotypes are simulta-
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neously accounted for as explanatory variables in a multiple

regression model [9]. In animal and plant breeding, selection

based on genome-based predictions of genetic values is expected to

massively increase genetic progress [4,10] and has quickly found

its way into widespread practical application (see [4,5] for reviews).

Genome based-prediction follows a different paradigm than

genome wide association studies (GWAS). GWAS identify single

molecular variants associated with phenotypic variability using

individual statistical tests for significance of each variant. Genome-

based prediction uses the entire genomic variability captured by

the available marker set to explain the observed phenotypic

variation, and does not rely on selection of single loci based on

significance tests. Standard prediction methods are thought to

work for traits with a highly polygenic or even infinitesimal [11]

genetic architecture, where the effect of a single variant is too small

to be captured by a statistical test in a GWAS. There is strong

empirical evidence that many quantitative traits have such a highly

polygenic genetic architecture in farm animals [12], agriculturally

used plants [13], model organisms and humans [14,15].

With the advent of next generation sequencing technologies, it is

now feasible to implement genomic prediction based on complete

genome sequences of higher organisms. While these techniques

have only been applied to individuals or cohorts of limited size

[16] to date, initiatives to sequence larger panels are under way

[17,18], and genotyping by whole genome resequencing will

become a standard technology in the foreseeable future.

The accuracy of prediction methods based on marker data

depends on the heritability of the trait, its genetic architecture

(number of loci affecting trait variation, mode of inheritance, and

distribution of allelic effects, [19]), the LD reflecting effective

population size, the size of the genome, the marker density and the

sample size used in the statistical analysis [20]. Various methods of

prediction incorporating genomic information have been studied

on real and simulated data, including Genomic Best Linear

Unbiased Prediction (GBLUP) approaches with genomic relation-

ship matrices [8], Random Regression BLUP (RRBLUP),

Bayesian linear regression methods [10,21] or fully non-paramet-

ric approaches [22–25].

GBLUP approaches are based on a linear model for the

phenotypic values, which encompasses a vector of random genetic

values of individuals whose covariance structure is inferred from

genomic data. The linear model underlying the RRBLUP

approach includes a vector of random marker effects (instead of

a vector of genetic values) which are assumed to be drawn from

the same normal distribution and uncorrelated. The model

primarily provides estimates of SNP effects, but estimated genetic

values of individuals can be derived as linear combinations of the

estimated SNP effects, yielding the same predictions of individual

genotypic or phenotypic values as GBLUP. The BayesB method

[10], on the other hand, fits only a small fraction of the available

markers to conform with the assumption that most loci are

expected to have zero effect on the phenotype, and the remaining

non-zero marker effects are drawn from normal distributions with

random variances.

It has been suggested [26] that differences between prediction

methods will become more pronounced with the availability of full

genome sequence data. According to a study with simulated data

[26], RRBLUP and equivalent GBLUP procedures do not take

full advantage of high-density marker data if the number of causal

SNPs is small, while approaches with an implicit feature selection

such as BayesB might be more accurate. If, on the other hand, the

number of causal loci is large, RRBLUP or GBLUP methods may

yield accurate predictions because the assumption that every SNP

has an effect is closer to reality.

Implementing genomic prediction with full genome sequence

data raises a number of questions. What is the most efficient way

to incorporate the complete genomic information in prediction?

How much predictive ability is gained by using whole genome

sequence data compared to high density SNP panels? Is it possible

to increase predictive ability by a pre-selection of SNPs or models

with an internal feature selection? How comparable are the results

of genomic prediction and genome wide association? Here, we

address these questions empirically based on full genomic

sequences of a population of Drosophila melanogaster inbred lines.

The inbred lines have been sequenced, and constitute the

Drosophila Genetics Reference Panel (DGRP), a new community

resource for genetic studies of complex traits [27].

We report the results of a full sequence based genomic

prediction for two quantitative traits, starvation stress resistance

and locomotor startle response, both of which display considerable

genetic variation in natural populations and respond rapidly to

artificial selection [28–30]. We used whole-genome sequences

determined on the Illumina platform for 157(155) DGRP-lines for

starvation resistance (startle response) [27]. Our reference method

is a GBLUP approach in which ,2.5 million polymorphic SNPs

are used to derive a genomic relationship matrix [8]. We evaluated

predictive ability via cross-validation (CV), and compared

prediction within vs. across sexes, various SNP densities, and

training set sizes. We assessed whether BayesB is superior over

GBLUP given full genome sequence data [26], and compared our

genomic prediction results with those of GWAS conducted on the

same DGRP lines [27].

To our knowledge, this is the first application of genomic

prediction on empirical whole genome sequence in a substantial

sample of a higher organism. However, this study, as well as all

previous association studies, only assesses the effects of common

SNPs, since the effects of rare alleles cannot be estimated due to

the small sample of sequenced lines. The results illustrate both the

potential of the approach and challenges to be addressed in the

future.

Author Summary

The ability to accurately predict values of complex
phenotypes from genotype data will revolutionize plant
and animal breeding, personalized medicine, and evolu-
tionary biology. To date, genomic prediction has utilized
high-density single-nucleotide polymorphism (SNP) geno-
typing arrays, but the availability of sequence data opens
new frontiers for genomic prediction methods. This article
is the first application of genomic phenotype prediction
using whole-genome sequence data in a substantial
sample of a higher eukaryote. We use ,2.5 million SNPs
with minor allele frequency greater than 2.5% derived
from genomic sequences of the ‘‘Drosophila Genetic
Reference Panel’’ to predict phenotypes for two traits,
starvation resistance and startle-induced locomotor be-
havior. We systematically address prediction within versus
across sexes, genomic best linear unbiased prediction
(GBLUP) versus a Bayesian approach, and the effect of SNP
density. We find that (i) genomic prediction can be
efficiently implemented using sequence data via GBLUP,
(ii) there is little gain in predictive ability if the number of
SNPs is increased above 150,000, and (iii) neither implicit
nor explicit marker selection substantially improves the
predictive ability. Although the findings must be seen
against the background of small sample sizes, the results
illustrate both the potential of the approach and the
challenges ahead.

Prediction in D. melanogaster Using Sequence Data
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Results

Genomic Best Linear Unbiased Prediction (GBLUP)
We constructed a genomic relationship matrix [8] from ,2.5

million SNPs for which the minor allele was present in at least four

of the DGRP lines [27]. A histogram of the off-diagonal elements

of this matrix for 157 DGRP lines used in the GBLUP analyses

(Figure 1) and a corresponding heatmap (Figure 2) show that there

were no large blocks of high genomic relationship among the lines.

The average genomic relationship is close to zero, as expected, but

there is considerable variance around this average (Figure 1), as

indicated by two block of lines with average genomic relationships

within each block of 0:25 and 0:34 (Figure 2). We performed

genomic prediction for starvation stress resistance and locomotor

startle response. The phenotypes used were the medians of many

(40{52) individually tested males and females for each line, or the

average of the male and female medians (Table S1). We used

several cross-validation (CV) procedures for each trait (Table 1). In

the 5-fold CV, predictive ability was 0:239+0:008 for starvation

resistance and 0:230+0:012 for startle response. In human studies

the efficiency of a predictor is reported as the squared correlation

r2 rather than r [31], so that in terms of variance explained the

estimates were 0:074+0:005 for starvation resistance and

0:080+0:005 for startle response. The observed accuracy depends

on the size of the training set (Figure 3), with decreasing accuracies

obtained with smaller training sets. Predictive abilities are roughly

halved for both traits when using only 20% instead of 80% of the

data to train the model. Maximum likelihood estimates of narrow-

sense heritabilities based on the GBLUP model using the genomic

relationship matrix were 1:0 in all analyses (Table S2), reflecting

the fact that phenotypes are averages over many replicates and

thus residual variance is minimal. Hence, the phenotypes used

represent the line genotypes with maximum accuracy, which is the

ideal case for training the genomic model.

Using male performance data to train the model and using the

results to predict the female performance (or vice versa) does not

affect the predictive ability for startle response, but substantially

reduces the predictive ability for starvation resistance, reflecting a

higher degree of genotype by sex interaction in this trait ([27], and

see below). Prediction is more accurate in females than in males

(0:254 vs. 0:203) for starvation resistance, while there is little

difference for startle response.

A series of 5-fold CVs for starvation resistance using different

SNP densities showed that predictive ability remained almost

constant if every 16th SNP (,150,000 SNPs) was used to construct

the genomic relationship matrix (Figure 4). The predictive ability

began to deteriorate when fewer than 150,000 SNPs were used,

but only vanished completely when as few as ,2,500 SNPs (every

1,024th SNP) were used. The corresponding LD distribution for

SNP neighbors for different SNP densities is shown in Figure 5,

illustrating the extreme short-range extent of LD in the D.

melanogaster genome. The average LD between SNPs (after

imputation) whose distance lay in the interval

10,50½ �( 100,200½ �, 900,1000½ �) bp was r2~0:24(0:14,0:07) for the

autosomes and r2~0:38(0:23,0:10) for the X-chromosome. Long-

range LD between pairs of loci at the opposite ends of

chromosome arms or across different chromosome arms was on

average 0:007 both for the autosomes and the X-chromosome.

For starvation resistance, the influence of the minor allele

frequency of the SNPs used on the predictive ability was assessed

with a series of 5-fold CVs using SNP sets with different average

minor allele frequency. We find that the variability of the

predictive ability increases when the average minor allele

frequency of the SNPs used to construct the genomic relationship

matrix is decreased (Figure S1). In 20 replicates of an additional 5-

fold CV, in which we randomly chose 77,817 SNPs to build the

genomic relationship matrix, an average predictive ability of

0:221+0:009 was obtained, which is in the range obtained when

every 32nd SNP (,77,817 SNPs) was used (0:211+0:008,

Figure 4). Running 20 replicates of a 5-fold CV using 10
randomly chosen blocks of adjacent SNPs (each block consisting of

7,781 SNPs) led to an average predictive ability of 0:210+0:011.

To analyze whether the predictive ability is due to lines which

are more highly related, we ran an additional 5-fold CV with 20
replicates in which the two groups of higher overall relatedness

(Figure 2) were excluded. Here we found an average predictive

ability of 0:290+0:008 for starvation resistance, which is larger

than the average predictive ability we obtained using all lines

(0:239+0:008). For startle response, excluding the two groups led

to a decrease in predictive ability (0:168+0:017 in comparison to

0:230+0:012).

Effective population size derived from empirical
accuracies of genomic prediction

The accuracy of genomic prediction is a function of a number of

quantities, including the size of the training set and the effective

population size Ne [20]. Ne has an effect on the number of

independently segregating chromosome segments, Me, in a

population (the larger Ne, the larger Me); and the predictive

ability of GBLUP is higher when the number of segments is small.

By varying the size of the training set in a series of CVs, we can

estimate Ne by fitting a curve through the empirical accuracies

obtained (Figure 3).

We estimated N̂Ne~8,748 for starvation resistance and

N̂Ne~8,676 for startle response. The coefficient of determination

of the fitted curve was R2~0:70(0:44) for starvation resistance

(startle response). The bias corrected empirical 95% confidence

intervals for the Ne estimates obtained with bootstrapping [32]

were 8,173; 9,474½ � for starvation resistance and 7,716; 9,925½ � for

startle response.

The effective population size in the Raleigh population (from

which the DGRP-lines were drawn) was estimated to be ,19,000

in 1984, with a massive fluctuation between years [33]. Our

Figure 1. Histogram of the offdiagonal elements of the
genomic relationship matrix G. The genomic relationship matrix
G was calculated according to [8] using 157 lines and 2.5 million SNPs.
doi:10.1371/journal.pgen.1002685.g001

Prediction in D. melanogaster Using Sequence Data
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estimates of Ne*8,700 correspond to Me~
NeLf

ln(2NeLf )
*2,000

independently segregating chromosome segments. In this formula

Lf is the length of the female genome in Morgans (there is no

recombination in male Drosophila). Since the sequenced animals

resulted from 20 generations of full sib mating following the

original sampling from the Raleigh population, the DGRP lines

are not expected to have the same Me as the original population

and are consequently expected to have a different Ne.

We can use the curves fitted through the empirical accuracies

(Figure 3), to predict the expected accuracy of prediction for an

arbitrarily large size of the training set: If 1,000 lines were

available in the training set, the curve would predict accuracies of

,0.58 for starvation resistance and startle response. This value

was obtained by using N̂Ne and ĥh2
GBLUP~1 as well as Np~1,000

and Lf ~2:451 in the modified formula of [20].

Effective population size derived directly from linkage
disequilibrium

We also estimated the effective population size based on LD

directly. For a distance bin of 0:02 Morgan we obtained average

Figure 2. Heatmap of the genomic relationship matrix G. The genomic relationship matrix G was calculated according to [8] using 157 lines
and 2.5 million SNPs. The ‘‘S’’ after the line-ID indicates that the line belongs to the set of lines for which phenotypic records for startle response were
also available (in addition to the phenotypic records of starvation resistance).
doi:10.1371/journal.pgen.1002685.g002

Prediction in D. melanogaster Using Sequence Data
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LD-values of 0:010(0:009,0:008,0:011,0:008) for chromosome 2L

(2R, 3L, 3R, X). These values correspond to an estimated effective

population size of N̂Ne~3,415(5,541,10,663,2,811,9,710), approx-

imately 25 generations ago. The average estimated effective

population size is N̂Ne~6,428, which is in the range of the estimates

based on the observed accuracies.

Genomic prediction with SNP selection
Genomic prediction might be improved if we only fit SNPs

which are associated with variance in a trait, because we then

concentrate on the biologically relevant genomic regions, and

excluding SNPs which are not associated with the trait reduces

statistical noise. We tested this hypothesis using the starvation

resistance data. We identified the 5% SNPs with the highest

absolute estimated effect or the highest estimated genetic variance,

respectively, in the training set of the respective 80% of the folds in

a 5-fold CV. We then used these subsets of selected SNPs to

predict the phenotype in the remaining 20% of the fold. Predictive

ability was improved by 3:3% over the reference scenario when

using the 5% SNPs with largest effects (average predictive ability of

0:247+0:008 in comparison to 0:239+0:008). Using the 5%
SNPs with greatest variance explained, predictive ability was

improved by 2:1% (average predictive ability of 0:244+0:008). In

both cases, the improvement is marginal and provides little

support for the idea of SNP pre-selection.

We also compared our GBLUP results to those from a method

which does not assume that all SNP effects are drawn from the

same normal distribution and carries out an internal feature

selection. We ran 20 replicates of a 5-fold CV for starvation

resistance using BayesB [10]. In each round of the Markov Chain

Monte Carlo based procedure (see Methods), 99:5% of the SNPs

were assumed to have no effect and the effects of the remaining

0:5% of the SNPs were drawn from normal distribution with

random variances. In most folds of each single CV and for all

replicates of CV, the observed predictive abilities differed only

marginally between BayesB and GBLUP (Figure 6). The average

predictive ability obtained with BayesB was 0:238+0:008 which is

not appreciably different from the result obtained with GBLUP

(0:239+0:008).

Genomic prediction versus GWAS
Although genomic prediction follows a different paradigm than

genome-wide association studies, it is informative to compare

significant SNP positions from the GWAS to areas of large

estimated SNP effects resulting from the GBLUP model.

Previously [27], a GWAS of 168 DGRP lines (of which the

material used here is a subset) identified 115 SNPs associated with

Figure 3. Accuracy of prediction of GBLUP for CVs with different numbers of lines in the training set. Each boxplot illustrates the
average accuracies for 20 replicates of the CV procedure using GBLUP. The left (right) plot shows accuracies for starvation resistance (startle
response). The solid line is the curve of [20] fitted to the empirical data, which results in estimates of Ne~8,747 and Ne~8,676 for starvation
resistance and startle response. All 2.5 million SNPs were used to construct the genomic relationship matrix in the GBLUP model.
doi:10.1371/journal.pgen.1002685.g003

Table 1. Average correlations between predicted genetic
values and observed phenotypes for different CV procedures
with GBLUP and different traits.

type of CV starvation resistance startle response

(4:1)-CV1 all2 0.2393 (0.008) 0.230 (0.012)

(3:2)-CV all 0.213 (0.006) 0.216 (0.011)

(2:3)-CV all 0.176 (0.006) 0.181 (0.010)

(1:4)-CV all 0.124 (0.006) 0.128 (0.006)

(4:1)-CV male - female4 0.164 (0.007) 0.217 (0.011)

(4:1)-CV female - male 0.182 (0.007) 0.235 (0.012)

(4:1)-CV male - male 0.203 (0.008) 0.230 (0.012)

(4:1)-CV female - female 0.254 (0.009) 0.216 (0.011)

1‘‘(t : v)-CV’’ means: t parts are used as training set and v parts are used as
validation set.
2The average of the medians of male and female measurements was used to
predict line phenotypes. Predicted phenotypes were then correlated with the
averages of the medians of male and female measurements.
3Average correlation between predicted genetic values and observed
phenotypes. Results are averages over 20 replicates. Standard errors of the
means in parentheses.
4‘‘CV sex1 sex2 ’’ means: Medians of measurements of sex1 were used in the
training set, medians of sex2 were used in the validation set.
doi:10.1371/journal.pgen.1002685.t001

Prediction in D. melanogaster Using Sequence Data
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starvation resistance and 75 SNPs associated with startle response

at a nominal p-valueƒ10{5 in the analyses of sex-averaged data.

We estimated SNP effects using RRBLUP and compared them to

the significant SNPs from the GWAS study (Figure S2, Figure S3).

There is excellent concordance of signals from both approaches in

some regions (e.g. the genome-wide largest SNP effects on

chromosome 3L for starvation resistance and 2L for startle

response), while concordance is poor in other regions, especially

on the X chromosome.

We further investigated whether the most significant SNPs

detected in the GWAS are reflected by large SNP effects in the

GBLUP study using a different approach. For each significant

SNP position from the GWAS we took the 100 neighboring SNPs

(50 on each side) and calculated the sum of the absolute values of

their estimated effects using the GBLUP model. To avoid an effect

of different sample size, we used the 75 most significant loci from

the GWAS for both traits. We compared these sums to the sums of

the absolute values of estimated SNP effects in *250,000 sliding

windows spanning the whole genome (with each window

containing 100 neighboring SNPs). We observed a clear separa-

Figure 4. Predictive ability of 5-fold CV with GBLUP for starvation resistance using different numbers of SNPs. Each boxplot shows the
average predictive abilities for 20 replicates of 5-fold CV using GBLUP. For the CVs leading to the (kz1)-th boxplot, every 2k-th SNP was used to build
the genomic relationship matrix G according to [8]. This was done for the thinning factors k~0, . . . ,10. The red dots indicate the average predictive
abilities.
doi:10.1371/journal.pgen.1002685.g004

Figure 5. The distribution of r2 between SNP neighbors for
different SNP densities. For the (kz1)-th stacked bar, every 2k-th
SNP was used, k~0, . . . ,10. Then, the distribution of r2 for the resulting
SNP neighbors was calculated.
doi:10.1371/journal.pgen.1002685.g005

Figure 6. Predictive ability for GBLUP versus BayesB using
phenotypic values of starvation resistance. Predictive abilities are
plotted for 20 replicates of a 5-fold CV, each replicate consisting of 5
corresponding folds of CV.
doi:10.1371/journal.pgen.1002685.g006

Prediction in D. melanogaster Using Sequence Data
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tion of the density functions of these sums for both startle response

and starvation resistance (Figure 7).

The density resulting from the sliding window approach reflects

the overall distribution of the suggested statistic in the sample. For

starvation resistance (startle response) a threshold value of

0:0076(0:0046), cf. Figure 7, cuts off the upper 10% of the

respective distribution. Applying the same threshold with the

density function reflecting the statistic for the significant GWAS

positions, 33:3%(25:3%) of the distribution exceeds the threshold,

indicating that signals found in the GWAS are also associated with

large estimates of the SNP effects in the genomic model.

Analyses of individual trait data
In addition to the line means we also analyzed individual

records (104+21 individual flies per line tested for starvation

resistance and 80+7 for startle response) to assess whether the

variance between lines can be fully explained by additive gene

effects or if non-additive mechanisms have an impact. This was

done by modeling the covariance structure between lines based on

the additive and additive|additive genomic relationship matrix

and testing the goodness of fit of the respective models. Most

applications of genomic prediction are for outbred populations, for

which the additive genetic variance and corresponding narrow-

sense heritability determine the extent to which phenotypes in the

next generation can be predicted from information obtained on

the current generation. However, the variance among DGRP lines

is the total genetic variance, and is possibly inflated by additive by

additive epistatic variance [34]. Therefore, we performed several

analyses on measurements of individual flies to determine the nature

of the total genetic variance, especially to what extent the presence

of non-additive genetic variance might have affected predictive

abilities. We fitted three different models to the individual

phenotype data: Model 1 contained a random line effect, and

lines were assumed to be unrelated. In Model 2, a random additive

line effect g was added, whose covariance structure was modeled

via the genomic relationship matrix G. In Model 3, an additional

random additive|additive epistatic effect g|g was included,

whose covariance structure was modeled via the Hadamard

product G0G. Since the between line variance relates to inbred

lines, while the additive and additive|additive variance compo-

nent pertain to the non-inbred base population (or a hypothetical

random mating F2 produced from the inbred lines), the variance

between inbred lines in Model 1 is expected to be twice the

additive genetic variance in Model 2 or 3 under a fully additive

model.

We estimated variance components for all three models pooled

across sexes and separately for males and females (Table S3, Table

S4). We find little evidence for non-additive genetic variance for

these traits. The estimate of s2
g from Model 2 is *

1

2
s2

line from

Model 1, and Model 2 gave a significantly better fit than Model 1

when applying the likelihood ratio test, again indicating that the

observed between line variance is due to additive gene action.

Inclusion of the g|g component was not significant for either of

the traits. We found significant sex by line interaction variance for

starvation resistance, but not for startle response (Tables S3, S4),

which is in accordance with the findings of the genomic prediction

across sexes (Table 1) and previous analyses of these data [27].

Discussion

We report the first (to our knowledge) application of genomic

prediction to a real set of full genomic sequencing data in a

eukaryotic organism. Although predictive abilities obtained with

starvation resistance and startle behavior are only moderate to

low, and although we limited our analysis to SNPs that are

common due to the small sample size of lines, this study can be

seen as a proof of concept for this approach. There are several

reasons for the limited predictive ability obtained in this study.

First, the training set is small, with a maximum of *120
observations in the 5-fold CV, and the accuracy of genomic

prediction is a function of the size of the training set [20]. Using

the curves fitted through the empirical accuracies (Figure 3), we

predict accuracies of *0:58 for starvation resistance and startle

response, if 1,000 sequenced lines were available for the training

set.

Figure 7. Distribution of absolute SNP effects. The density of the sum of the absolute SNP effects from GBLUP is plotted for sliding windows of
100 adjacent SNPs covering the whole genome (black) and for windows around the 75 most significant SNPs (red) according to the GWAS of [27]. The
left (right) plot shows the densities for starvation resistance (startle response). The blue vertical line indicates the 90% quantile of the black density
function.
doi:10.1371/journal.pgen.1002685.g007
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The second important factor affecting accuracy of prediction is the

number of independently segregating chromosome segments, Me

[20]. In our study we obtained Me*2,000. This is larger than usually

observed for Holstein cattle (Me*640 with Ne*100 and genome

length L*30 Morgans [35]), but is smaller than the corresponding

value in the human genome (Me*14,000 with Ne*3,000; L*30
Morgans, [36]). (Note that in mammalian species, there is

recombination in both sexes and Me~
2NeL

ln(4NeL)
[9].)

Accuracy of genomic prediction is thought to come from two

sources: (i) SNPs in useful LD with causal loci; and (ii) SNPs

reflecting the relationship structure between the training set and

the set to be predicted [37]. Due to the very fast decay of LD in the

D. melanogaster genome, few SNPs are in useful LD with any causal

polymorphism. Even if we define ‘‘useful LD’’ very conservatively

as r2
w0:2, then on average only a region of 120 bp around a

causal polymorphism was in useful LD on an autosome (400 bp on

the X chromosome). This means that on average 3 (6) SNPs were

in useful LD with a causal autosomal (X-linked) polymorphism, as

the average distance between neighboring SNPs was 45 bp (66 bp)

on an autosome (X chromosome). If predictive ability was mainly

driven by SNPs in LD with causal polymorphisms, reducing the

SNP density should lead to a massive decay of predictive ability of

the models, which was not observed. Little decrease in accuracy

was seen, even if every 32nd SNP was used in the model, in which

case hardly any SNP would be in useful LD with causal

polymorphisms. The underlying mechanism therefore seems to

depend on a sufficient number of SNPs being in low LD with

causal polymorphisms, rather than few SNPs in close physical

association and high LD. In the DGRP population, LD

approaches a small but positive baseline level with increasing

physical distance [27], so that even with large physical distances a

minimum level of LD is maintained, which was on average

0:007*
1

n
with n~157 being the sample size.

The number of SNPs for maximal accuracy of genomic

prediction with unrelated individuals has been estimated as

10NeL [38], corresponding to *110,000 SNPs in the present

study.

For starvation resistance, we find that the empirical accuracy

levels off when approximately every 16th SNP is used, which is

equivalent to *155,000 or 7:3NeLf ~14:6NeL SNPs. Adding

more SNPs beyond this value does not lead to any improvement in

the genomic prediction of starvation resistance, but also does not

reduce accuracy, which one might expect when using more SNPs

than actually needed. While fitting large numbers of ‘‘superfluous’’

SNPs may be considered as noise in the RRBLUP model, these

SNPs can also be seen to provide a better basis to estimate the

realized relationship matrix in the GBLUP model, which leads to a

higher accuracy of the estimated realized relationships. Since both

models are fully equivalent [9] no penalty is expected in the

prediction of genomic values.

Since pedigree information for the founders of the inbred lines was

not available, our estimates of heritability and genomic prediction

are based on the actual degree of identity-by-descent sharing

between relatives [39]. There is little pedigree structure in the DGRP

lines, with the exception of two distinct blocks of higher relatedness,

comprising 18 and 13 lines, respectively, with a genomic relationship

within blocks of *0:25 and 0:34. When these blocks were excluded

from the data, predictive accuracy in a 5-fold CV increased

(decreased) for starvation resistance (startle response), suggesting that

prediction in the DGRP population does not rely on distinct family

structures. Given this together with the short-range extent of LD in

the D. melanogaster genome and the robustness of the accuracy of

genomic prediction with reduced marker density, we conclude that

the observed accuracy of prediction for starvation resistance and

startle response is primarily due to the long-range LD in the

population, or equivalently, the subtle relationship structure as

reflected by the genomic relationship matrix.

We restricted our analyses to SNPs for which the minor allele

was present in at least four DGRP lines (a minor allele frequency

of 0:025). We applied this threshold to avoid computational

limitations, especially when applying the BayesB method; and for

consistency with the GWAS in the DGRP [27], which used the

same filtering criterion. Thus, we did not utilize the *2 million

SNPs with minor allele frequencies less than this, nor did we take

other forms of molecular variation into account.

Structural variations such as transposable elements have been

repeatedly reported to be associated with phenotypic variation [40],

therefore we must consider to what extent not including these

variants in the models affected prediction accuracy. Given that we

do not observe an increase in accuracy when increasing the number

of SNPs from *150,000 to 2:5 million, we do not expect that

increasing the marker density by adding more SNPs and other

variants will have a significant effect on predictive ability.

Additionally, SNPs with low minor allele frequencies were shown

to be highly variable in predictive ability, so that the potential

amount of information possibly added by the 2 million low

frequency SNPs is limited. However, accounting for all polymor-

phisms in the model means that some fraction of the genetic variants

must causally affect the trait. Simulations [26] including the causal

polymorphism in the model improves the predictive ability over

models based only on neutral SNPs in LD with the causal variants.

Further research is needed to understand these mechanisms in the

context of genomic prediction based on empirical data.

The accuracy of BayesB has outperformed that of GBLUP in

several simulation studies [10,37]. Simulation results have

suggested that GBLUP did not take full advantage of genome

sequence data, suggesting that Bayesian methods are needed to

obtain maximum accuracy [26]. The superiority of BayesB over

GBLUP is expected to increase with marker density, and decrease

when the size of the training data set is increased [38]. However,

we did not find that BayesB yielded a significantly higher

predictive ability than GBLUP in the 20 replicates of 5-fold CV

with starvation resistance implemented in the present study. We

used a very high marker density and a small training set, and yet

GBLUP performed as well as BayesB. These conclusions should be

taken with caution, since the available size of the training set was

extremely small in our study due to the limited availability of fully

sequenced lines. In [20], BayesB yielded a higher accuracy than

GBLUP, when the number of simulated QTL was low; but

GBLUP slightly outperformed BayesB, when the number of QTL

became large, since the GBLUP model is equivalent to RRBLUP,

in which all SNPs are assumed to have an effect drawn from the

same normal distribution. Although this model may not seem

biologically plausible, it performed as well as BayesB in the present

study, consistent with several studies on real data from dairy cattle

for different traits [4,41].

The finding that BayesB did not outperform GBLUP in the

present study is consistent with a quasi-infinitesimal genetic

architecture; and results indicate that starvation resistance and

startle response are complex traits with a highly polygenic genetic

architecture rather than being driven by a few major causal genes.

This is in agreement with previous studies stating that starvation

resistance and startle response can be considered to be model traits

with a complex (i.e. quasi-infinitesimal) genetic background [28–

30]; and it is also in line with the results from the GWAS [27].

One reasonable conclusion might be that there are so many causal
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polymorphisms, each with a small effect, that the *2,000 effective

chromosome segments are saturated with causal variants and the

effects of segments follow a normal distribution. Under this

circumstance, GBLUP is expected to perform as well as BayesB.

However, these hypotheses clearly need further investigation.

More systematic model comparisons based on the available data

were not considered here due to the prohibitive computing time

required for BayesB.

Previously, gene centered multiple regression and partial least

square (PLS) regression models were used to predict starvation

resistance and startle response phenotypes from genotypic data

[27]. In both cases only SNPs that had nominal significance levels

of Pv10{5 from the GWAS were used. The gene centered

prediction models found that a few SNPs explained a large fraction

of the genetic and phenotypic variance of the traits, while the PLS

models found that the significant SNPs explained a high fraction of

the phenotypic variance. The purpose of these studies was a

comparison with human association studies, in which the faction of

the variance explained by significant variants in the entire sample

is commonly quoted. These approaches are fundamentally

different from the BLUP approach used in this study. The BLUP

approach includes random components and their covariance

structure in the model, whereas regression models do not

incorporate random terms except from the residuals; and the

BLUP approach does not rely on a pre-selection of SNPs based on

a GWAS. Most critically, we evaluated the robustness of the

BLUP predictions using 5-fold cross-validation; whereas the

previous analyses only tested the explanatory power of the most

significant associated SNPs using the entire sample. Had we done

the same analysis using GBLUP, we would be able to predict

100% of the variance.

The imperfect concordance of the positions of the most

significant SNPs from the GWAS and the largest estimates of

SNP effects from RRBLUP is a consequence of the different

objectives of the two approaches. A sequence-based GWAS is

conducted to identify causal polymorphisms and provide estimates

of allelic effects and frequencies. Also, the GWAS suffers from

estimating one effect at a time and so does not necessarily position

the QTL accurately. The goal of RRBLUP is to predict the

phenotype using all available SNP information simultaneously.

Here, estimated SNP effects are a by-product and mapping causal

variants is not the primary objective. Given that the number of

SNP effects to estimate is much larger than the number of

observations, effects are estimated using penalized multiple

regression approaches, shrinking estimated effect sizes towards

zero. In addition, the magnitude of estimated SNP effects from

RRBLUP is a function of the marker density. The higher the

marker density, the more SNPs will be in LD with a causal

mutation; therefore, the true allele substitution effect of a causal

polymorphism will be split up and assigned in parts to a series of

SNPs in the respective haplotype block. This can mask both the

effect size, because one large effect may come in many small

pieces; and the mapping position, because any SNP in LD with the

causal polymorphism may have a substantial estimated effect.

Nevertheless, some of the largest SNP effects from RRBLUP are in

the proximity of prominent SNPs identified in the GWAS, so that

to some extent positional information can still be retrieved from

the RRBLUP results.

A methodology combining the strengths of both approaches –

unbiased effect estimates and high positional resolution of GWAS

with the simultaneous analysis of all SNPs, high predictive power

and quality control via CV of genomic approaches – still needs to

be developed. Results obtained in our study cannot be directly

compared to predictive abilities in human studies due to the

extremely small training set size (120 in CV), and Drosophila has

much larger Ne and rapid decline of LD compared to humans.

When genomic prediction in human studies was based on large

training sets (thousands), substantial SNP panels (400k) and a

highly heritable trait (h2~0:80), predictive ability of genomic

models was found to exceed what has been previously reported

using a reduced number of markers pre-selected based on GWAS

[31] and genomic prediction based on pre-selected SNPs was

found to be of limited use in human studies of height [42].

In the near future individual whole genome sequences will

become increasingly available for large numbers of individuals in

many species [17,18]. Sequence-based predictions will therefore

be relevant for prediction of risk disease and individualized

medicine in humans, and for genome-based selection in farm

animals and crops. The main findings of our study are: (i) genomic

prediction can be efficiently implemented via GBLUP with full

genome sequence data; (ii) there is little, if any, gain in predictive

ability if the number of SNPs is increased above 14:6NeL
(equivalent to *43,000 in Holstein cattle and 1,300,000 in

humans); and (iii) approaches based on external or internal

(BayesB) selection of subsets of SNPs were not found to provide a

substantial gain in accuracy of prediction compared to GBLUP.

All findings must be seen against the background of the small

sample size and the specific genetic constellation, with almost

unrelated inbred lines and highly accurate phenotypes. Neverthe-

less, these results provide a realistic assessment of the potential

benefits of sequenced-based prediction applied to non-model

organisms and indicate avenues for future research.

Materials and Methods

The Drosophila Genetic Reference Panel (DGRP)
The full Drosophila Genetic Reference Panel (DGRP) [27], a

recently developed new community resource for genetic studies of

complex traits, consists of 192 D. melanogaster lines derived by 20
generations of full sib mating from wild-caught females from the

Raleigh, North Carolina population. Whole genome sequence

data of 168 DGRP lines (Freeze 1.0) have been obtained using a

combination of Illumina and 454 next generation sequencing

technology, which are available from the Baylor College of

Medicine, http://www.hgsc.bcm.tmc.edu/project-species-i-

DGRP_lines.hgsc. We used the Illumina sequences for 157 DGRP

lines in this study.

Data preprocessing
SNPs were called from the raw sequence data as described

previously [27]. We used SNPs with a coverage greater than 2X

but less than 30X, for which the minor allele frequency was

present in at least four lines, and for which SNPs were called in at

least 60 lines. This series of filters gave a total of 2,490,165 SNPs

for this analysis; 582,024 on 2L, 478,218 on 2R, 563,094 on 3L,

534,979 on 3R and 331,850 on the X chromosome. We did not

consider the few SNPs on the very short chromosome 4. In total

there were 18,077,784 missing SNP genotypes (4:6%), which we

imputed using Beagle Version 3.3.1 software [43].

Phenotypic values
Phenotypic measurements for starvation resistance were avail-

able for all 157 DGRP lines, and for startle response on 155 lines

[27]. We used the average of the medians of measurements for

each trait in males and females as the phenotypic value yi of the ith

line, i.e. yi~0:5((zf )iz(zm)i), where (zf )i and (zm)i are the

medians of the measurements for female and male individuals of

the ith line. We used medians because of the skewed distribution of
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traits; however, medians are highly correlated with line means. For

starvation resistance (startle response) there were on average

52+11(40+4) measurements for females, and 52+11(40+4)
measurements for males (Table S1). Measurements were taken in

several replicates for each trait [27].

Cross-validation
We used different cross-validation (CV) procedures [44–46] to

assess the predictive ability of different methods. In one replicate of

a CV, the lines are randomly divided into a training set, which is

used for parameter estimation; and a validation set, for which

genetic values are predicted. The CV procedures differ in the

ratios of the numbers of lines belonging to the training and

validation sets: In a (t : v)-CV (with integers t and v), the lines are

randomly divided into (tzv) groups. The t groups build the

training set, and the remaining v groups build the validation set.

For this classification, there are
tzv

t

� �
possibilities. For each of

these possibilities (‘‘folds’’), total genetic values for the lines of the

validation set are predicted and the corresponding predictive

ability is calculated. The
tzv

t

� �
predictive abilities are then

averaged to obtain one average correlation per CV replicate. For

example, one (3:2)-CV, consists of
3z2

3

� �
~10 CV folds, over

which predictive abilities are averaged. A (t : 1)-CV is also called

(tz1)-fold CV.

We used (4:1)-, (3:2)-, (2:3)- and (1:4)-CVs to analyze the effect

of decreasing training set size. The CVs also differed in the

constellations of phenotypic records used for the training and

validation set. For example, the notation ‘‘(4:1) male – female’’

indicates that only the medians of male records were used in the

training set, and that the predicted genetic values were correlated

with the medians of female records of the validation set to obtain

the predictive ability in a (4:1)-CV. CVs were also run for different

marker densities, using every 2k-th SNP (k~0,1, . . . ,10). Addi-

tionally, 5-fold CVs using only the 5% SNPs with the largest

absolute values of estimated effects (obtained in the training set), or

using only the 5% SNPs with the largest SNP variances (obtained

in the training set) were performed. The additive genetic variance

marked by the ith SNP was calculated as 4pi(1{pi )̂ss
2
i with allele

frequency pi and estimated SNP effect ŝsi. In another series of 5-

fold CVs we randomly chose 77,817 SNPs to build the genomic

relationship matrix or we randomly chose 10 blocks of adjacent

SNPs (each block consisting of 7,781 SNPs). In an additional 5-

fold CV we excluded the lines in the two blocks of higher

relatedness (Figure 2) from the data. Each type of CV was

replicated 20 times, resulting in 20 average predictive abilities.

We also analyzed the influence of minor allele frequency on the

predictive ability by another series of 5-fold CV. For this, we

sorted all SNPs by their minor allele frequency and divided the

sorted vector into 32 blocks. For each block we ran 20 replicates of

a 5-fold CV using GBLUP and the corresponding *78,000 SNPs.

Predictive ability and accuracy
Predictive ability was measured in terms of correlation between

predicted genetic values and observed phenotypic values. The

corresponding accuracy r, defined as the correlation between true

and predicted genetic value, was obtained by dividing the

observed predictive ability by the square root of the observed

heritability h2 [47]. The heritability was based on the GBLUP

model (see below).

Genomic prediction with GBLUP
The underlying statistical model is

y~WmzZgze: ð1Þ

In this model, the ith component of the q-vector y is the

phenotypic value of the ith line that is used for prediction, i.e. the

average of the medians of the phenotypic measurements for males

and females for this line. Moreover, W~(1, . . . ,1)T ,m is the

overall mean; g*N (0,s2
gG) is assumed to be multivariate normal,

with G the genomic relationship matrix of all n lines [8] and s2
g the

additive genetic variance among lines. The matrix Z is an (q|n)-
incidence matrix, whose rows consist of unit vectors with one

component being 1 and all the others zero, indicating the

respective positions of lines used for prediction in the g-vector of

genetic values of all lines. e*N (0,s2
eI) is the residual term, where

s2
e is the residual variance. Following the approach of [8], G was

defined as

G~
(M{P)(M{P)T

2
Xs

j~1
pj(1{pj)

,

where M is the (n|s)-matrix of SNP genotype vectors for the n

lines with the s SNPs coded as {1,1 and the jth column of P is

(2(pj{0:5), . . . ,2(pj{0:5))T , where pj is the frequency of the

second allele at locus j.

Variance components were estimated via maximum likelihood

(ML) using the R-package ‘‘RandomFields’’, Version 2.0.46

(http://CRAN.R-project.org/package = RandomFields), and its

function ‘‘fitvario’’. The BLUP approach to obtain the vector of

genetic values is equivalent to solving the so-called Mixed Model

Equations (MME):

WT W WT Z

ZT W ZT Zz
s2

e

s2
g

G{1

2
64

3
75: m̂m

ĝg

� �
~

WT y

ZT y

" #
:

A narrow-sense heritability based on the GBLUP model (1) was

calculated as

ĥh2
GBLUP~

ŝs2
g

ŝs2
gzŝs2

e

:

Estimation of SNP effects
The GBLUP model (1) is equivalent to the following linear

model in which all SNPs are assumed to have an effect drawn from

the same normal distribution [9]:

y~WmzZ(M{P)sze,

where Z,M and P are as described above and s*N (0,s2
s I) is the

vector of SNP effects with s2
s ~

s2
g

2
Xs

j~1
pj(1{pj)

. Using this

equivalence, the SNP effects can be predicted as
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ŝs~ŝs2
s I(M{P)T ZT (ŝs2

s Z(M{P)(M{P)T ZTzŝs2
eI){1(y{Wm̂m)

~
ŝs2

g

2
Ps

j~1 pj(1{pj)
(M{P)T ZT (ŝs2

gZGZTzŝs2
eI){1(y{Wm̂m):

To estimate the SNP effects resulting from GBLUP for a single

trait, we used all of the available lines, i.e. y in model (1) contained

the phenotypic values of all lines so that Z~I in the corresponding

formulas. Note that only the inversion of a matrix of size equal to

the number of sequenced lines is required.

Distribution of linkage disequilibrium
We used r2 [48] as a measure of LD between a pair of loci. With

two biallelic loci A and B with alleles A1,A2,B1, and B2 and

frequencies fA1
,fA2

,fB1
, and fB2

, we denote the frequencies of the

genotypes A1B1,A1B2,A2B1, and A2B2 as f11,f12,f21, and f22

respectively. Then,

r2~
(f11f22{f12f21)2

fA1
fA2

fB1
fB2

:

We performed the LD analyses using the imputed SNP matrix of

2:5 million SNPs for the 157 lines. We calculated the distribution

of LD between all pairs of neighboring SNPs for different marker

densities, using every 2k-th SNP (k~0,1, . . . ,10). The extent of

long-range LD was calculated for 20,000 pairs of SNPs randomly

sampled from the first and the last 50,000 SNPs per chromosome

arm. Moreover, the average LD was calculated between SNPs on

different chromosome arms, by sampling 10,000 pairs of SNPs for

each combination of chromosome arms.

Effective population size derived from empirical
accuracies of genomic prediction

We modified the formula [20] for the expected accuracy, E(r),
of GBLUP given different population parameters (see Text S1 for

more details on the derivation in the case of D. melanogaster):

E(r)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nph2

Nph2z
NeLf

ln(2NeLf )

vuuut ð2Þ

Ne is the effective population size, Np is the size of the training set,

Lf is the length of the female genome in Morgans and h2 is the

narrow-sense heritability of the trait estimated from model (1). The

term Me~
NeLf

ln(2NeLf )
describes the number of independently

segregating genome segments [9].

We ran CVs with different numbers of lines (Np,1~31:4,
Np,2~62:8,Np,3~94:2,Np,4~125:6 for starvation resistance and

Np,1~31,Np,2~62,Np,3~93,Np,4~124 for startle response) in

the training set (20 replicates each). Average numbers of lines in

the training set are reported, which are non-integer values for

starvation resistance because in a (tzv)-CV, division of 157 lines

into tzv groups may give unequal numbers of lines in the

different partitions. Given the corresponding average accuracies

rij ,i~1, . . . ,4,j~1, . . . ,20 for the CV replicates, we estimated Ne

by fitting a curve to the points (Np,i,rij). To fit the curve, we

chose Ne such that the sum of the squared differences of the

observed accuracies and the accuracies obtained by (2) was

minimized:

N̂Ne~ argmin
Ne

X
i,j

rij{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np,ih

2

Np,ih2z
NeLf

ln(2NeLf )

vuuut
0
BB@

1
CCA

2
2
6664

3
7775,

using ĥh2~ĥh2
GBLUP~1 and Lf ~2:451 Morgan. We calculated the

length of the female genome in Morgans by summing the lengths

of the chromosomes in base-pairs (23:0 (21:4, 24:4, 28:0, 21:8)

Mbp for chromosome 2L (2R, 3L, 3R, X), [49]) and multiplying

by the average recombination rates of females for the different

chromosomes in Morgans per base-pair [50].

After performing bootstrapping (1,000 replicates), the bias

corrected empirical 95% confidence intervals (2:5% error in each

tail) for the Ne estimates [32,51] were calculated as

ĜG{1(W(2z0zz(a)),ĜG{1(W(2z0zz(1{a))
h i

,

where ĜG{1(a) is the 100a-percentile of the bootstrap cumulative

distribution function, z(a) is the 100a-percentile of the standard

normal distribution function W, a~0:025 and z0~W{1(ĜG(N̂Ne)).

Effective population size derived directly from linkage
disequilibrium

To estimate the effective population size based on LD, the

following formula was used [52]:

E(r2)~
1

1z2Necf

z
1

n
u Ne~

1

E(r2){
1

n

{1

2cf

,

where n is the number of lines and cf is the recombination rate in

female individuals, cf. Text S1 for more details on this formula.

Genomic prediction with BayesB
The underlying model for the Markov Chain Monte Carlo

based BayesB [10] method is

y~WmzMsze,

where y,W,m,M and e are as defined previously and s is the vector

of normally distributed and independent SNP effects. The

variance of the ith SNP effect, s2
si

, is assigned an informative

prior. The prior distribution of the genetic variances aims to

resemble a situation where there are many loci with zero variance

and only some loci with variance not equal to zero. Therefore, the

prior distribution of the variance of a marker effect is a mixture of

distributions which is given by

s2
si

~ 0 with probabiliy p

* x{2 n,Sð Þ with probability 1{pð Þ

�

Note that this implies that the unconditional distribution of each

single marker effect is a mixture of a point mass at 0 (with

probability 1{p) and of a t-distribution with zero mean, n degrees

of freedom and scale parameter S [21], i.e. BayesB assigns the

same unconditional prior distribution to each marker effect.

In our studies, we used n~4 and the scale parameter S was

calibrated as
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S~
(n{2)s2

genetic

(1{p)n
Xs

j~1
2pj(1{pj)

:

We chose p~0:995, such that approximately 125,000 markers

were contributing to the additive genetic variance. For the residual

variance, s2
e , the prior distribution was x{2(nres,Sres), with

nres~10 and

Sres~
(nres{2)s2

res

nres
:

Values for s2
genetic and s2

res were chosen in the order of magnitude of

the variance components of the GBLUP model (1), which were

estimated using all lines and ‘‘fitvario’’. The BayesB procedure is

described in detail in [10]. It consists of running a Gibbs chain,

where additionally a Metropolis-Hastings algorithm (10 iterations) is

used to sample from p(s2
si
Dy�), where y� denotes the data y corrected

for the mean m and all genetic effects other than the marker effect si.

Following graphical inspection, we ran BayesB with a chain length of

40,000 iterations including a burn in of 5,000 iterations that were

discarded. To perform the BayesB approach, we used the software

‘‘GenSel’’, Version 2.36, by R. Fernando and D. Garrick (cf. http://

taurus.ansci.iastate.edu/Site/Welcome.html), which is implemented

in C++. BayesB is computationally very intensive. The analyses were

run on a Mac Pro 26 2.93 GHz 6-Core Intel Xeon with 64 GB

RAM running Mac OS X Server 10.6.7. One fold of a 5-fold CV for

starvation resistance took approximately 70 hours.

Comparing areas with large SNP effects with significant
SNP positions

A genome-wide association study (GWAS) revealed 203(90)
significant SNP positions for starvation resistance (startle response)

[27], where a SNP position was considered significant if at least

one of the three p-values, obtained using only male, only female or

sex-pooled phenotypic records, was ƒ10{5. We considered the

subset of SNPs for which p-values of SNP effects of pooled data

were ƒ10{5, to be more conservative and to be consistent with

the previous analyses, leading to 115(75) significant SNPs for

starvation resistance (startle response).

We compared genomic regions for which GBLUP estimated

large SNP effects to these significant SNP positions of the GWAS.

To avoid an effect of different sample sizes, we chose the 75 most

significant SNPs from the GWAS analysis for each trait. For each

of these SNPs, we chose the 100 closest (neighboring) SNPs (50 on

each side) and calculated the sums of absolute values of the

corresponding 100 SNP effects (resulting from the GBLUP model).

We compared the distribution of these sums to the distribution of

the sums of the absolute values of estimated SNP effects in

*250,000 windows of 100 neighboring SNPs covering the whole

genome by plotting the corresponding density functions. To obtain

the sums of the absolute values of estimated SNP effects covering

the whole genome, the windows were overlapping, displaced by 10
SNP positions. If the genomic regions for which GBLUP estimated

large SNP effects coincide with the significant SNP positions of the

GWAS, we expect the density functions to be separated.

Variance component estimation using ASReml and
individual trait records

For each trait, we fitted three different models using individual

trait records. The first model included a fixed sex effect, a random

line effect, a random line-sex-interaction term and a random term

accounting for the different replicates in which measurements of

the traits were taken:

phenotype~mzsexzlinezsex � line

zreplicate(sex � line)zresidual (Model 1)

In the second model, an additional random genetic effect g was

added for each line. The variance-covariance matrix of the vector

of these genetic effects was assumed to be given by the genomic

relationship matrix G of [8]:

phenotype~mzsexzlinezsex � line

zreplicate(sex � line)zgzresidual (Model 2)

In the third model, an additional random additive|additive

epistatic effect g|g was included for each line. The variance-

covariance matrix of the vector of these genetic effects was given

by the Hadamard product G0G [53] of the genomic relationship

matrix G of [8]:

phenotype~mzsexzlinezsex � line

zreplicate(sex � line)zgz(g|g)zresidual (Model 3)

Other two-way epistatic interactions, like additive|dominance or

dominance|dominance, should not exist in inbred lines, provided

inbreeding is complete. Variance components and their standard

errors were estimated using ASReml 2.0 [54]. The analyses were

done pooled across sexes as well as separately for males and females.

The analyses of separate sexes did not include the sex term, and the

replicate(sex�line) term was reduced to replicate(line).

Heritabilities
The broad-sense heritability for Model 1 was calculated as

ĤH2
Model1~

ŝs2
linezŝs2

sex�line

ŝs2
linezŝs2

sex�linezŝs2
residual

,

cf. [28]. Narrow sense heritabilities for Models 2 and 3 were

calculated as

ĥh2
Model2~

ŝs2
g

ŝs2
linezs2

sex�linezŝs2
gzŝs2

residual

and

ĥh2
Model3~

ŝs2
g

ŝs2
linezs2

sex�linezŝs2
gzŝs2

g|gzŝs2
residual

:

These heritabilities are based on individual trait records.

Unless stated otherwise, all statistical analyses were performed

using R software [55]. The R-package ‘‘ff’’, Version 2.2-1 (http://

CRAN.R-project.org/package = ff), was used to handle the large

amount of SNP data efficiently in terms of memory capacity.

Supporting Information

Figure S1 Predictive ability of 5-fold CV with GBLUP for

starvation resistance using different set of SNPs with different

average minor allele frequencies. Each boxplot shows the average
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predictive abilities for 20 replicates of 5-fold CV using GBLUP and

SNPs with different average minor allele frequencies. The different

average minor allele frequencies are plotted as green dots. To

choose the SNPs for each bin of minor allele frequency the SNPs

were sorted by minor allele frequency and then divided into 32
blocks, i.e. each bin contained *77,817 SNPs. The horizontal green

line indicates the average accuracy obtained using every 32nd SNP

(resulting in 77,817 SNPs as well), which was 0:212+0:008.

(PDF)

Figure S2 Manhattan plot of the estimated SNP effects for

starvation resistance for different chromosomes. The SNP effects

were estimated using the GBLUP approach and sex-averaged

phenotypic values of 157 lines. Vertical lines indicate the 115
significant SNP positions according to the GWAS of [27] using

sex-pooled records.

(PDF)

Figure S3 Manhattan plot of the estimated SNP effects for startle

response for different chromosomes. The SNP effects were

estimated using the GBLUP approach and sex-averaged phenotypic

values of 155 lines. Vertical lines indicate the 75 significant SNP

positions according to the GWAS of [27] using sex-pooled records.

(PDF)

Table S1 Mean and standard deviation of phenotypic values

and of the number of individual records per line.

(PDF)

Table S2 Variance components and heritabilities estimated

from GBLUP using all lines. Variance components were estimated

by maximum likelihood using the R-package ‘‘RandomFields’’

and its function ‘‘fitvario.’’

(PDF)

Table S3 Results of variance component estimation using

ASReml for starvation resistance. Different linear models for

individual trait records were investigated.

(PDF)

Table S4 Results of variance component estimation using

ASReml for startle response. Different linear models for individual

trait records were investigated.

(PDF)

Text S1 We give more details on the formula of [52] for the

expected linkage disequilibrium as well as the derivation of the

number of independently segregating chromosome segments Me

[9] and the expected accuracy of prediction E(r) [20] in the case

of D. melanogaster. We also derive the expected value of the genomic

relationship matrix G of [8] and show that E(G)~A, where A is

the numerator relationship matrix.

(PDF)
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