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Abstract

This paper investigates which shocks drive asynchrony of business cycles in the euro area.

Thereby, it unites two strands of literature, those on common features and on structural VAR

analysis. In particular, we show that the presence of a common cycle implies collinearity of

structural impulse responses. Several Wald tests are applied to the latter hypothesis. Results

reveal that differences in the GDP dynamics in several peripheral countries compared to

a euro zone core are triggered by idiosyncratic, and to a lesser extent also world, shocks.

Additionally, real shocks prove relevant rather than nominal ones.
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1 Introduction

The European debt crisis brought the topic of an optimal size of currency unions back to the

agenda. While commentators disagree on the question whether single countries should opt-

out after the crisis has aggravated, there is broad consensus that the union was overstretched

initially, and that subsequent enlargements were premature. Even though economic struc-

tures in some countries were rather distinct from those of the EU core, entry was not post-

poned in favour of reaching a higher degree of real convergence. Thus, national monetary

policy and exchange rate flexibility might have been abandoned too early. For instance, ar-

guments go that common monetary policy provided access to cheap capital in some ”periph-

eral” countries and brought interest rates far below levels that would have been appropriate

in view of the stance of these economies, see e.g. Christodoulakis (2009), amongst others.

Then, domestic absorption and risk taking rose excessively, external deficits lead to debt ac-

cumulation. Doubts about the sustainability of this development have been playing a key

role in the crisis.

Logically, beyond actual crisis management it must be questioned whether all mem-

ber countries fulfil the prerequisites for the success of a common monetary policy within

a homogeneous union. Such optimal currency area (OCA) criteria are well known in the

literature; see Mundell (1961), McKinnon (1963) or, more recently, Dellas & Tavlas (2009).

Among them, economic integration in the sense of synchronization of cyclical fluctuations in

GDPs is of paramount importance. Recently, this was underlined by wide-spread concerns

on unsound overheating in single countries like Spain or Ireland. Regarding their stance

and timing, common policies run into obvious conflicts and structural problems within an

environment marked by such disparities.

Common sense tells that a group of core countries in Europe are likely to share a sim-

ilar business cycle, but that several further union members might fail to do so; within the

academic literature see e.g. Bayoumi & Eichengreen (1997) or the survey of Artis (2003).

While we will confirm this view, our study goes an essential step beyond this stage of merely

analyzing whether business cycles are synchronous: As our main research question, we ask

which structural driving forces underlie the lack of synchronization in economic activity.

Answering this question shows promise to give important insight into the nature of macroe-

conomic heterogeneity within the EMU, in support of policy measures creating a stronger

and more sustainable foundation of the union.

Empirical macroeconomics thinks of such driving forces of economic activity as stochas-

tic shocks. To identify potential sources of asymmetry, we construct small macroeconometric
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models that measure structural innovations to GDPs both of the core union and one of the pe-

ripheral countries. By statistically comparing dynamic reactions on both sides we are able to

separate out those shocks that systematically produce asymmetric cyclical variation. In this

context, we deem a distinction by origin of disturbances especially important. In particular,

we discriminate common (world) shocks, core EMU shocks and idiosyncratic shocks to the

peripheral country. For that purpose we employ a structural vector autoregression (SVAR)

with recursive contemporaneous restrictions; compare also Kim & Chow (2003). We further

dig into the structure within the peripheral economies by additionally distinguishing shocks

to aggregate demand and supply, compare Bayoumi & Eichengreen (1994). Here, we apply

long-run restrictions following Blanchard & Quah (1989).

While much attention has been paid in the literature to the correlation of shocks among

countries, we identify those shocks that trigger asynchronous dynamic reactions and are thus

responsible for business cycle disparities. We define cyclical synchrony as the presence of

common dynamics in national outputs, i.e. shared patterns of recessions and expansions.

In particular, following the literature of serial correlation common features, see Engle &

Kozicki (1993), we speak of a common cycle if there exists a linear combination of GDP

growth rates which eliminates their complete autocorrelation structure. We show that this

criterion implies collinearity of impulse responses in both VARs and structural systems. By

implication, in case of asynchronous cycles the responses to at least one of the innovations

cannot be collinear (or stands in a different ratio than the remaining responses). Proper

identification of the model thus allows singling out economically interpretable shocks driving

cyclical divergence.

We apply Wald tests to the hypotheses of identical (or collinear) impulse responses in

SVARs, see e.g. Jordà (2009). In doing so, bootstrap versions of this test is proposed. Fur-

ther on, we visualize our statistical results by use of conventional confidence intervals and

conditional t-ratios. The economic significance of the shocks for GDP growth is assessed

using variance decompositions.

The paper is organized as follows. The subsequent section introduces our data. Section

3 elaborates on the analytical framework and discusses empirical results. The last section

concludes. Methodological details are presented in the appendix.
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2 Data

We obtained real seasonally adjusted GDPs as well as implicit price deflators for the Euro-

zone members (except Luxembourg) from Eurostat. GDP growth rates and inflation rates

are calculated as first differences of logs. The sample is 1991:1-2011:3, with the exceptions

of Ireland and Spain, where quarterly data is available only from 1997:1 or 1995:1, respec-

tively, as well as Greece, which we address below. The sample choice balances the needs

of stable parameters on the one hand (thus, the German reunification is excluded) and suffi-

cient power of statistical tests on the other hand. We ensure this relatively compact sample

period by chain-linking available data for Belgium, Greece and Portugal in 1995:1, 2000:1

and 1995:1, respectively; data from the early 1990s data for Portugal was obtained from the

National Institute of Statistics. US data was provided by the Bureau of Economic Analysis.

Greece is the country which has been hit hardest in the course of the European debt cri-

sis. In fact, until today (2012) no recovery can be noticed. As is evident from the continuing

public debate, the slump in growth rates is extremely persistent. In contrast, the long period

before the crisis was characterized by negative serial correlation. E.g., the first-order auto-

correlation coefficient in the sample 1991:1 until 2007:4 results as −0.32. When this sample

is combined with the persistent crisis period, measured serial correlation drops to values near

zero. This would create the false impression that transitory dynamics are practically absent

from Greek GDP growth. Obviously, for our research question the full sample is inadequate.

Consequently, we cut the sample in 2007:4 when analyzing Greek data.

3 Empirical Methods and Results

In a first step we analyze business cycle (a)synchrony by exclusively considering GDP

growth rates for the countries or regions of interest. This setup allows to identify the ge-

ographic origin of the economic shocks that have caused the potential business cycle asyn-

chrony.

In the following subsection we briefly describe the vector autoregressive (VAR) model

setup and link the concept of common cycles to this framework. We will use a set of in-

ference procedures based on the VAR setup. Short explanations of these procedures will be

given successively in the subsequent subsections. More details on the model framework and

inference procedures as well as further references are deferred to an econometric appendix.

There, we also discuss drawbacks of some of our inference procedures and present addi-

tional results as part of a robustness analysis. These additional results confirm our empirical
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findings presented in the main body of the paper.

3.1 VAR Model Framework and Common Cycles

Let yt be the K × 1 time series vector that contains the variables of interest. In our case yt

will comprise GDP growth rates of different countries or regions. The vector yt is assumed

to follow a vector autoregressive process of order p, VAR(p), i.e.

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut, t = 1, 2, . . . , T, (3.1)

where ν is a K × 1 parameter vector, Ai, i = 1, . . . , p, are K × K parameter matrices,

and the pre-sample values y0, y−1, . . . , y−p+1 are assumed to be fixed. Moreover, all roots of

det(A(z)) = 0, where A(z) = IK − A1z − · · · − Apz
p, are outside the unit circle to assure

that yt is integrated of order zero, I(0). We further assume ut ∼ iid(0,Σu), where Σu is a

positive definite covariance matrix, and E(u4
t ) < ∞. These assumptions are made in order

to asymptotically justify the application of the bootstrap method.

We define cyclical synchrony as the presence of common dynamics in national outputs,

i.e. shared patterns of recessions and expansions. To be precise, following the literature on

serial correlation common features, see Engle & Kozicki (1993), we speak of a common cy-

cle if there exists a linear combination of GDP growth rates which eliminates their complete

autocorrelation structure. Let yt = ∆xt, such that xt contains the logarithms of the GDP

series of interest which are I(1). Under appropriate assumptions and ignoring deterministic

components, see e.g. Vahid & Engle (1993), xt can be decomposed into xt = rt + ct, where

rt is a random walk part, which is sometimes called the ’trend’, and ct represents the sta-

tionary cyclical part of xt. Vahid & Engle (1993) show that if there exists a K × 1 vector δ

with δ′yt = δ′ut, then δ′ct = 0 and vice versa. In other words, the linear combination δ′yt

does not contain any serial correlation because δ eliminates the cyclical part of xt such that

the variables in xt are said to share a common cycle. Obviously, the conditions δ′Ai = 0,

i = 1, . . . , p, have to hold in the VAR (3.1) in case of a common cycle, i.e. business cy-

cle synchrony. These restrictions can be checked by using a likelihood ratio (LR) test as is

described in the next subsection.

Note that we focus on GDP growth rates without considering so-called cointegration

relations in the GDP levels. In our empirical framework we deem that sensible for two

reasons: First, our sample periods are relatively short due to data availability and the need to

avoid severe structural breaks. Estimating long-run (cointegration) relations in such limited

samples has proven to be notoriously difficult. Second, while cointegration between GDPs
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can appear with regard to real income convergence, see Bernard & Durlauf (1995), this

concept refers to per capita income. However, since our interest lies in business cycles

rather than long-run growth, we do not divide GDP by population.

3.2 Testing for Common Cycles: Core and Periphery

Our concept implies testing for cyclical synchrony of peripheral countries with a Eurozone

core. From the history of the European unification process and taking into account the tra-

ditional strong linkages between their economies, we consider Germany, France, Italy, the

Netherlands, Belgium and Austria as members of the core. It may be disputable to include

Italy given the current situation of the public finances and their perception in the financial

markets. However, the composition of the core, including Italy, proved sensible in tests for

common cycles with Germany as described in the following.

We apply a likelihood ratio (LR) test in the VAR model framework introduced above,

where yt contains GDP growth rates of Germany and one further (potential) core country. To

this end, we determine the restricted log-likelihood of the VAR (3.1) by imposing the restric-

tion δ′Ai = 0, i = 1, . . . , p, via numerical optimization. The unrestricted log-likelihood is

obtained via maximum likelihood (ML) estimation of the unrestricted VAR in the usual way.

This test is equivalently applied by Schleicher (2007) and Paruolo (2003) to the cointegrated

case. The concept of common serial correlation testing with regard to business cycles goes

back to the work of Engle & Kozicki (1993) and Vahid & Engle (1993).

The lag order p is pre-specified using Akaike’s Information criterion (AIC) with a max-

imum lag order of pmax = 4, see e.g. Lütkepohl (2005, Chapter 4). We find p = 1 for all

cases. The restriction of a common cycle with Germany is rejected for none of the core coun-

tries. Even when δ′ = (1,−1) is imposed in the tests, i.e. the common cycles are assumed to

be of common magnitude, all p-values are clearly larger than 0.10. Therefore, we define real

output of the core union by adding up the GDPs of these six countries. Growth rates ycore,t

are calculated from the obtained sum.

Next, we test for common cycles between the core and each of the peripheral countries

Greece, Ireland, Portugal, and Spain. AIC chooses lag lengths of 1, 1, 2, and 4, respectively.

The residuals of the resulting models are not significantly serially correlated. Adjusted Port-

manteau tests, see Lütkepohl (2005, Chapter 4), for no serial correlation up to 16 lags cannot

reject the null hypothesis with p-values of 0.88, 0.30, 0.90, and 0.22, respectively. Thus, the

GDP growth dynamics should be adequately captured by our models.

The LR tests reject the null hypothesis of a common cycle with the EMU core for all
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four peripheral countries. The p-values are 0.01, 0.01, 0.02, and 0.00 for Greece, Ireland,

Portugal, and Spain, respectively. This confirms the conjecture that business cycles in the

more peripheral countries are not synchronized with the core. Given this empirical finding,

we proceed to our main research question: Which economic shocks are driving this disparity?

3.3 Identifying the Shocks Causing Business Cycle Asynchrony

To address this question we consider a three-dimensional system consisting of the GDP

growth rates of the U.S., yus,t, the Euro core countries, ycore,t, and one of the four peripheral

countries, ypc,t. This results in yt = (yus,t, ycore,t, ypc,t)
′. As described below, additionally

considering the US growth rate allows to distinguish between world, EMU core, and periph-

eral country-specific growth shocks. The latter will be labeled as idiosyncratic shock in the

following.

According to the foregoing discussion, the business cycles of the EMU core and the

peripheral country under consideration are synchronous in our extended VAR system if

δ′yt = δ′ut with δ = (0 1 δ3)′ and δ3 6= 0. This implies that the so-called forecast error

impulse responses of ycore,t and ypc,t to shocks in all three error term components in ut are

perfectly collinear starting with the period after the shock. In other words, ycore,t and ypc,t

respond in the same ratio, given by δ3, to all three shocks across all response horizons after

impact. To see this, note first that the forecast error impulse responses of the variables in yt

at horizon h are given by the moving average (MA) parameter matrix Φh =
∑h

j=1 Φh−jAj ,

h = 1, 2, . . ., with Φ0 = IK , see e.g. Lütkepohl (2005, Chapter 2). This follows intuitively

from the fact that yt can be given the MA(∞) representation yt = µ +
∑∞

i=0 Φiut−i with

µ = A(1)−1ν. Hence, the (i, j)-element of Φh, φij,h, describes how the i-th growth rate re-

sponds to a unit shock in the j-th growth rate that has occurred h periods ago. Then, because

of δ′Ai = 0, i = 1, . . . , p, we have δ′Φh = 0, h = 1, 2, . . ., which implies that the forecast

error impulse responses of ycore,t and ypc,t are perfectly collinear.

Hence, a failure in cyclical synchrony of output is due to non-collinear responses of the

GDP growth rates ycore,t and ypc,t to at least one error term shock, i.e. the response ratio is not

constant across horizons. Alternatively, the responses to one shock may stand in a different

ratio than the responses to the other shocks. However, the forecast error impulse response

setup is not suitable to single out economically interpretable shocks that drive cyclical diver-

gence since it is based on contemporaneously correlated residuals.

In order to identify economically interpretable shocks that cause asynchrony we con-

sider the so-called orthogonalized impulse responses. For our GDP growth rate systems, the
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Cholesky decomposition can be used to achieve identification of the structural, i.e. econom-

ically interpretable, error terms. We apply Σu = PP ′, where P is a lower triangular matrix,

to define the structural error term vector εt = (ε1t ε2t ε3t)
′ = P−1ut that has an identity co-

variance matrix. Then, the orthogonalized impulse responses to the shocks in εt are collected

in the matrices Θh = ΦhP , h = 0, 1, . . ., see e.g. Lütkepohl (2005, Chapter 2). Given this

definition we have δ′Θh = 0 if δ′Φh = 0, h = 1, 2, . . .. Hence, collinearity with respect to

the forecast error impulse responses implies collinearity with respect to the orthogonalized

responses from horizon h = 1 onwards. This applies to other structural impulse responses

as well as long as they are obtained by ΦhB, h = 0, 1, . . ., for some matrix B.

If θ2i,h and θ3i,h denote the orthogonalized impulse responses of the EMU core countries

and the peripheral country under consideration after h periods to a unit shock in εit, i =

1, 2, 3, then the common cycle condition can be expressed in more detail by δ′Θh = (θ21,h +

δ3θ31,h, θ22,h + δ3θ32,h, θ23,h + δ3θ33,h) = 0, h = 1, 2, . . ..

Since Θ0 = P , the i-th growth rate in yt can immediately respond to a shock in the

structural error εjt with j ≤ i but not to a shock in εjt with j > i. Hence, the ordering

of the variables matters for identification and should be chosen based on careful economic

reasoning. Our ordering of the growth rates has been derived accordingly. By placing the

U.S. growth rate first, a shock in the first component of εt, ε1t can have an instantaneous

effect on the EMU core and peripheral country growth rates. Therefore, we interpret ε1t as

a common (world) growth shock from the EMU countries’ perspective. Since the peripheral

country’s growth rate is placed last in the system we rule out immediate responses of the

EMU core and U.S. growth rates to a shock in ε3t such that we can identify this shock as

idiosyncratic to the peripheral country. Finally, the second component in εt, ε2t, represents

then a EMU core growth shock.

In the light of missing business cycle synchrony between the EMU core and the four

peripheral countries we now seek to single out the shocks that drive the cyclical divergence.

Ideally, we would like to apply LR tests to test against multiplicity of the impulse responses

of ycore,t and ypc,t to each of the shocks, respectively. To be precise, we are interested in the

null hypotheses H0 : θ2i,h = −δ3iθ3i,h for all h = 1, 2, . . . , for i = 1, 2, 3, respectively. Note

that the multiplicity factors δ3i can be different with respect to the three shocks at this testing

stage. In contrast to the common cycle framework, however, one cannot uniquely impose

multiplicity of impulse responses to a single shock on the VAR model (3.1). This follows

from arguments similar to those in Trenkler & Weber (2012, 2013). Hence, it is not possible

to obtain restricted parameter estimators under H0, including the one for δ3i, i = 1, 2, 3.
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Thus, LR tests cannot be applied.1

Therefore we consider Wald tests which only require to estimate the VAR model under

the alternative hypothesis, i.e. we only need unrestricted estimators. One could then test the

null hypothesis of constant impulse response ratios of ycore,t and ypc,t over a finite number

of horizons with respect to a single shock. Besides being silent about the values of the

response ratios, i.e. about δ3i, i = 1, 2, 3, the main drawback of this approach is that the null

hypothesis involves non-linear parameter restrictions. The Wald test is not invariant to re-

parameterizations of non-linear restrictions in finite samples, see e.g. Greene (2008, Chapter

11). In fact, we found that our test results strongly depend on the specific parameterization.

Therefore, we do not regard this approach as reliable.

Given the aforementioned problems, we decided to apply Wald tests for the equivalence

of the structural impulse responses of ycore,t and ypc,t, i.e. we assume δ3i = −1,i = 1, 2, 3.

This results in linear restrictions in terms of the involved MA parameters. Hence, the null

hypothesis for analyzing whether the i-th structural shock contributes to business cycle asyn-

chrony is

H0 : θ2i,h = θ3i,h for all h = 1, . . . , H. (3.2)

By focussing on the equivalence of the responses we test a stronger requirement than is

needed for the existence of a common cycle. However, a test for equivalence contains the

additional, economically relevant, information that the growth rate responses are of identi-

cal magnitude. This can be regarded as an important support for a common currency area.

In contrast, different response amplitudes may impair the conduct of a consistent monetary

policy for the whole union. Furthermore, the figures below indicate that the empirical im-

pulse response shapes are quite different for the EMU core and the peripheral countries in

the cases of rejections of equivalence. Hence, an economically plausible alternative to the

choice δ3i = −1 is not evident. Finally, equivalence of the impulse responses of the EMU

core and peripheral country growth rates is rejected for at least one structural shock for each

of the four systems considered. Therefore, at least one shock can be identified to be the cause

of business cycle asynchrony. Thus, it is not necessary to analyze whether asynchrony is due

to the fact that the impulse responses of ycore,t and ypc,t stand in a different ratio with respect

to three structural shocks.

We set H = 4 for the test since we want to focus on medium-run responses due to our

interest in business cycle (a)synchrony. Moreover, choosing a large value for H can dilute

1We provide more detailed information on this issue and the WALD tests explained in the following in the

econometric appendix, see section A.2.
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significant response differences given that the individual responses are quite close to zero

after response horizon 4 in our setups. The short samples on which we have to rely would

aggravate this problem.

We use three different versions of a Wald-test to check for the equivalence of the rel-

evant orthogonalized impulse responses. The first test is the usual asymptotic Wald-test.

For convenience, we abbreviate both the test and the corresponding Wald statistic by Ŵ .2

Ŵ requires to apply the asymptotic covariance matrix of the estimated impulse responses

across the H response horizons. Since the impulse response coefficients are smooth func-

tions of the VAR parameters, the asymptotic covariance matrix can be obtained via the Delta

method, compare e.g. Lütkepohl (2005, Chapter 4). The Wald statistic is asymptotically χ2-

distributed with H degrees of freedom. It is known that inference based on the Delta method

can be misleading in the context of impulse response analysis when only small samples are

available, see e.g. Kilian (1998b, 1999), Lütkepohl (1996). Therefore, we have also applied

two bootstrap-based test versions.

Following the proposal of Jordà (2009), we use a bootstrap covariance matrix estimator

in the Wald statistic. The covariance matrix is estimated from 2500 bootstrap realizations of

the orthogonal impulse responses. This approach is, in fact, analogous to the ones used in the

literature for obtaining bootstrap confidence intervals for impulse responses or bootstrap t-

ratios for parameter estimators in (structural) VARs. We implement the test, labeled as ŴB,

by recursively generating the bootstrap data via the VAR model structure. We use parameter

estimators that are bias-corrected according to Pope (1990), as has been recommended by

Kilian (1998a, 1999) for computing bootstrap confidence intervals for impulse responses.

We have adopted this recommendation since the determination of the covariance matrix rep-

resents a strongly related setup. Accordingly, the bootstrap impulse response coefficients are

obtained from the biased-corrected bootstrap VAR parameter estimates.

Finally, we consider a standard bootstrap Wald-test, say Ŵ ∗
b , for which the p-value is

determined based on 2500 bootstrap realizations of the Wald statistic Ŵ . The bootstrap

data are generated like in the previous test setup, i.e. using biased-corrected VAR parameter

estimators.

The lag order p for the VAR models has again been pre-specified using AIC with pmax =

4. The obtained lag orders as well as the sample sizes and results of the adjusted Portmanteau

test are summarized in Table 1. The latter clearly indicate that residuals of the resulting

models contain no significant serial correlation structure.

2The same notational approach will be applied to the other test procedures introduced next.
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Table 1. Summary of Samples, VAR Lag Orders, and Results of Adjusted Portmanteau-Tests

for GDP Growth Rate Systems

Peripheral Country Sample VAR Lag Order Q(16)
p-values

Greece 1991:2-2007:4 p = 2 0.879

Ireland 1997:2-2011:3 p = 1 0.297

Portugal 1991:2-2011:3 p = 2 0.897

Spain 1995:2-2011:3 p = 3 0.218

Note: Q(16) refers to the adjusted Portmanteau test on serial correlation in the residuals up to 16 lags.

The test is described e.g. in Lütkepohl (2005, Chapter 4).

Table 2 summarizes the results of the Wald tests on significant differences in the re-

sponses of the core growth rate and the corresponding growth rate of the peripheral country.

Clearly, there is strong evidence that the responses to the idiosyncratic shocks are signifi-

cantly different in case of all four systems. Only for the Irish system one of the tests indicates

solely borderline significance. While there is only weak evidence for the Spanish system that

also the EMU core shock may cause business cycle asynchrony, the world shock seems to

be more important in causing cycle divergence. We observe a clear rejection of response

equivalence for the Spanish system and p-values close to the 10% significance level for the

Greek system.

Note that the results are quite robust across the three Wald tests considered. Therefore,

we focus on on the test ŴB in the following for two reasons. First, as already mentioned

above, it represents the analogue to the usual bootstrap approaches of obtaining confidence

intervals for impulse responses. Second, ŴB has the additional advantage of being also

applicable in more general VAR model setups as described in the econometric appendix.

We complement the findings obtained by the Wald tests by presenting two further sets

of empirical measures. First, we give a graphical representation of the impulse response

results that allow for a more detailed analysis. Second, we assess the importance of the

shocks causing the business cycle asynchrony by looking at so-called forecast error variance

decompositions.

Figures 1 to 4 show for each system the following information. First, the responses of

the EMU core growth rate (solid line) and of the corresponding peripheral country’s growth

rate (solid line with squares) to the respective shocks are given in the upper panels. In the
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Table 2. Results of Wald-Tests (p-values) on Differences in the Impulse Responses of EMU

Core and Peripheral Countries up to Response Horizon H = 4

Peripheral Country/ Asymptotic Wald-test with Bootstrap
Sample (VAR order) Wald-test Bootstrap Covariance Wald-test

Matrix Estimator

Ŵ ŴB Ŵ ∗
b

Greece: 1991:2-2007:4 (p = 2)

World Shock 0.1193 0.1049 0.1328

EMU Core Shock 0.4535 0.5055 0.4248

Idiosyncratic Shock 0.0000 0.0000 0.0048

Ireland: 1997:2-2011:3 (p = 1)

World Shock 0.2773 0.2104 0.3684

EMU Core Shock 0.7753 0.7914 0.7720

Idiosyncratic Shock 0.0000 0.0002 0.1492

Portugal: 1991:2-2011:3 (p = 2)

World Shock 0.8199 0.8512 0.8236

EMU Core Shock 0.6798 0.7597 0.6648

Idiosyncratic Shock 0.0000 0.0001 0.0180

Spain: 1995:2-2011:3 (p = 3)

World Shock 0.0188 0.0096 0.0388

EMU Core Shock 0.1148 0.1414 0.1188

Idiosyncratic Shock 0.0019 0.0012 0.0228

lower panels, the solid line displays the differences of the responses. The responses and their

differences are depicted up to horizon 12, i.e. we go beyond what is considered in the Wald

tests. Then, we present bootstrap confidence intervals for the response differences (dashed

lines). These are equal-tailed Effron intervals based on biased-corrected parameters that are

computed according to Kilian (1998a). These intervals allow to assess the significance of a

single impulse response difference at a specific horizon h. Note, however, that the intervals

do not take into account the correlation of the impulse response difference estimates across

the horizons, i.e. they should just be interpreted pointwise. Therefore, we also present so-

called conditional t-ratios, say th|h−1,...,1, which have been suggested by Jordà (2009).
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For each horizon h, th|h−1,...,1 is equal to the ratio of the estimated conditional impulse

response difference and its standard error. The conditional impulse response difference at

horizon h represents the response difference at horizon h conditional on the response dif-

ferences at the previous horizons i = 1, . . . , h − 1. Hence, the conditional t-ratios take into

account the correlation of the impulse response differences across the response horizons. The

respective Wald statistic testing the equivalence of the two impulse response sequences can

be written as the sum of the squared conditional t-ratios, i.e. it is equal to
∑H

h=1 t
2
h|h−1,...,1.

Hence, the conditional t-ratios provide a measure of the conditional contribution of the im-

pulse response difference at horizon h to the overall difference measure. In other words, they

describe the importance of horizon h conditional on the contribution that has already built

up until horizon h− 1. The conditional t-ratios can give a quite different impression of sig-

nificance than the conventional (unconditional) confidence intervals in our setup. Moreover,

even the sign of the unconditional and conditional response difference may be different. This

is not only due to the different nature of conditional and unconditional inference but also due

to the fact that the impulse response differences are often negatively correlated across the

response horizons. This is in contrast to individual impulse response estimates which are

typically positively correlated.

The conditional t-ratios are represented by the circles and their values can be read from

the right-hand side vertical axis in the lower panels of the figures 1 to 4. A black circle

indicates that the t-ratio is larger than 1.96 in absolute value. The conditional t-ratios are

computed in relation to the Wald test ŴB, i.e. we have ŴB =
∑H

h=1 t
2
h|h−1,...,1.

Figures 1 to 4 contain a couple of interesting findings. First, the impulse responses typ-

ically go to zero quite quickly. This was one motivation to constrain the Wald test to the

first four responses. In terms of usual bootstrap confidence intervals, not shown here, signifi-

cance beyond H = 4 is only found for the Spanish growth rate responses to the idiosyncratic

shock and for the responses of both the EMU core and Irland to the world shock. Second, the

bootstrap confidence intervals for the impulse response difference are generally quite large

indicating a high degree of overall estimation uncertainty. Third, there is no clear pattern

across the systems regarding the horizons at which the impulse responses are significantly

different. This applies no matter whether the conventional bootstrap confidence intervals or

the conditional t-ratios are considered. Since the conditional t-ratios take account of the cor-

relation of the impulse response difference estimators we focus on them for a more detailed

interpretation.

The idiosyncratic shocks create (conditionally) significant response difference in the

quarter immediately following the shock in case of Greece and Ireland but with a delay
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of two or three quarters in the cases of Portugal and Spain. Interestingly, for the Irish and

Portuguese systems we observe both significant (conditional) positive and negative response

differences. These findings result from the zigzag response patterns of the Irish and Por-

tuguese growth rates. Furthermore, the usual confidence intervals indicate significant differ-

ences for the Spanish and Portuguese systems beyond horizon 4. However, the conditional

t-ratios do not regard the respective horizons as relevant if usual 5% or 10% critical val-

ues are considered. Hence, once the information up to horizon 4 is taken into account the

more remote horizons would not substantially contribute to the overall measure of response

differences.

As regards the world shock, we observe some individual significant response differences

for the Spanish, Irish, and Greek systems. For Ireland, the only significant difference is not

strong enough to generate a rejection of the null hypothesis by the Wald test. Similarly, the

significant difference at horizon 2 for the Greek system only translates into borderline signif-

icance of the Wald test statistic. The same comment applies to the effect of the EMU-shock

for the Spanish system. To summarize, although there is no clear pattern across the systems,

a significant difference in the responses is typically only observed for single horizons but not

persistently for all considered response horizons.

We now turn to the forecast error variance decomposition. This tool allows to analyze the

importance of the three identified shocks for the h-step forecast error variance of each vari-

able of the system. For a description on how to obtain the decomposition and on the relevant

inference methods we refer to Lütkepohl (2005, Chapters 2 and 3). Figure 5 summarizes

the proportion of the h-step forecast error variances, h = 1, . . . , 12, of the growth rate of

the peripheral country accounted for by the world, EMU-core, and idiosyncratic shocks,

respectively.

The idiosyncratic shock that causes business cycle divergence plays a crucial role for the

growth rate variations in all four peripheral countries. The proportion of the forecast error

variances accounted for by this shock lies between approximately 50% and 95% depending

on the specific country and horizon. Hence, the business cycle asynchrony detected is clearly

of relevance. Not surprisingly, the idiosyncratic shocks in Greece, Ireland, and Portugal are

of no importance for the EMU core growth rate. By contrast, the Spanish shock matters to

some extent. We do not show these results here to conserve space.

We further note that the world shock is relevant for Spain. Hence, this shock also sub-

stantially contributes to the asynchrony we have found for the Spanish case. Interestingly, the

EMU core shock is of much lower importance for Spain than the world shock. For the Greek

system the response differences to the world shock were close to the 10% significance level.
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However, the world shock does not play a crucial role for the Greek growth rate. Hence,

one would not attribute much importance of this shock when explaining the sources of the

business cycle divergence between Greece and the EMU core countries.

3.4 Real and Nominal Idiosyncratic Shocks

While the previous analysis has focused on the regional origin of the impulses, we now dig

deeper into the main driver of cyclical disparity: the idiosyncratic shocks. In detail, we seek

to decompose these shocks into their real and nominal parts. This should give further insight

into the nature and causes of non-synchronous development.

We distinguish between real and nominal shocks based on their long-run impacts. Specif-

ically, we define that a nominal (or demand) shock has no long-run impact on real GDP. This

standard assumption can be seen in the context of stylized AD-AS models, where changes

in supply affect both production and the price level in the long run, but the income effects

of demand shocks can only be transitory.3 This framework was empirically implemented by

Bayoumi & Eichengreen (1994), amongst others, based on the methodology of Blanchard &

Quah (1989).

We extend the system with three GDP growth rates by the inflation rate of the peripheral

country πpc,t in order to capture nominal effects: yt = (yus,t, ycore,t, ypc,t, πpc,t)
′. We maintain

the short-run assumption from the previous section, i.e. the periphery shocks (both real and

nominal) have no contemporaneous impact on EMU core and US economic growth. To

capture these restrictions, we define the matrix PΞ which is lower triangular apart from the

3,4-element that is not restricted to zero. The latter means that ypc,t can immediately respond

to a shock in the fourth error term component.

We employ the long-run restriction introduced in the previous paragraph within the block

of the periphery variables GDP growth and inflation. Formally, the matrix of long-run effects

is given by Ξ =
∑∞

i=0 Θi = (IK−A1−· · ·−Ap)−1PΞ. We assume Ξ34 = 0 to assure that the

nominal (the fourth) shock has no long-run impact on GDP growth in the peripheral country.

Thereby, we can distinguish the nominal from the real (the third) shock to the periphery.

In the three-dimensional systems we chose the lag length by AIC in order to ensure that

the model captures the complex dynamics. Now we add further complexity by introducing

3Of course, this theoretical framework is not meant to provide a realistic description of the economy, but

rather to fix ideas on the broad interpretation of our empirical results. By the same token, the terms ”demand”

and ”nominal” as well as ”supply” and ”real” are used synonymously, even if they are not necessarily identical

with regard to more detailed models.
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Table 3. Results of Adjusted Portmanteau-Tests on Residual Autocorrelation and Wald-Test

(p-values) on Differences in the Impulse Responses of EMU Core and Peripheral Countries

up to Response Horizon H = 4

Peripheral Country/ Q(16) Wald-test with Bootstrap
Sample (VAR order) Covariance Matrix Estimator

ŴB

Greece: 1991:2-1997:4 (p = 1) 0.4592

Idiosyncratic Real Shock 0.0103

Idiosyncratic Nominal Shock 0.8823

Ireland: 1997:2-2011:3 (p = 1) 0.1121

Idiosyncratic Real Shock 0.0131

Idiosyncratic Nominal Shock 0.9702

Portugal: 1991:2-2011:3 (p = 1) 0.9564

Idiosyncratic Real Shock 0.6369

Idiosyncratic Nominal Shock 0.3915

Spain: 1995:2-2011:3 (p = 3) 0.2397

Idiosyncratic Real Shock 0.0172

Idiosyncratic Nominal Shock 0.6792

Note: Q(16) refers to the adjusted Portmanteau test on serial correlation in the residuals up to 16 lags.

The test is described e.g. in Lütkepohl (2005, Chapter 4).

a fourth variable, the inflation rate of the peripheral country. In view of the limited number

of observations we must ensure that model complexity does not overstrain the potentialities

of the empirical basis. Indeed, using AIC leads to lag specifications allowing hardly any

conclusions based on statistical significance. However, clearly separating the effects of the

two peripheral shocks is key in this part of the analysis. Therefore, we decided to follow the

more parsimonious Bayesian information criterion (BIC), see e.g. Lütkepohl (2005, Chapter

4). Results concerning serial correlation of the errors were still satisfactory, see below. Only

for Spain we had to increase the chosen lag order from p = 1 to p = 3 to avoid highly sig-

nificant residual autocorrelation. Information on the final models considered and the results

of the adjusted Portmanteau test are given in the first two columns of Table 3.

We test for equivalence of the responses of the core and peripheral GDP growth rates
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using the Wald test ŴB introduced in the previous subsection. The results of ŴB are pro-

vided in Table 3. We focus on the real and nominal idiosyncratic shocks given our interest

in decomposing the effects found for the idiosyncratic shocks in the growth rate systems.

The findings of the previous subsection suggest that idiosyncratic shocks are the most

important drivers of the lack of synchronization of business cycle dynamics. This is also the

case for the four-dimensional systems including the inflation rate. Moreover, we see in this

respect from Table 3 that supply shocks tend to be relevant rather than demand shocks with

long-run effects restricted to zero. To be precise, with the exception of Portugal, the GDP

growth rates of the EMU core and the respective peripheral country significantly respond

differently to the idiosyncratic real shock. In contrast, the idiosyncratic nominal shock does

not cause significantly different responses for any of the systems.

4 Conclusion

The underlying paper explored the origins of non-synchronized business cycles in the euro

area. In a monetary union, such asymmetries can be seen as a lack of economic integration.

In the light of the OCA theory, difficulties in the course of the conduct of a common monetary

policy come as a logical consequence. Therefore, shedding light on the drivers of diverging

behavior is of high interest for deciding about the enlargement of existing currency areas,

for managing the European debt crisis and for dealing with the structural impediments that

became manifest in the euro zone.

We developed an approach suitable for identifying the deep economic shocks that trigger

asymmetry in GDP dynamics. We state that the presence of a common cycle implies collinear

impulse responses in dynamic systems and show that the same holds for structural models.

By implication, the absence of common serial correlation must result from the GDP reactions

to at least one structural innovation. We detect the concerned shocks by identifying structural

VARs and applying different Wald tests to the hypotheses of collinear impulse responses.

In line with previous studies we find a core of European countries sharing a common

business cycle. However, the more peripheral countries Greece, Ireland, Portugal, and Spain

reveal systematic deviations from the core cycle. Tellingly, this group coincides with those

countries which are most severely affected by the European debt crisis.

The analysis of impulse responses shows that idiosyncratic shocks to the periphery coun-

tries are the most important drivers of the lack of synchronization of business cycles. Evi-

dently, dissipating these disturbances is still a sluggish process, so that persistent deviations
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from growth dynamics of the EMU core remain. Beyond, in some cases we find asymmet-

ric reactions to world shocks. In contrast, impulses originating in the EMU core trigger

comparable dynamic reactions through the whole union. Regarding this direction, economic

integration already seems to be well advanced. However, in the opposite direction strong

idiosyncrasies are still in place. Among the latter, local real shocks tend to be relevant rather

than local nominal shocks with long-run effects restricted to zero. This implies that aggre-

gate demand, even if in some cases considerably different from the euro zone average, is

unlikely to be behind the deviating cyclical behavior in Europe. Instead, structural reasons

come to the fore. In the light of the experience from the European debt crisis this does not

seem implausible: fundamental problems in structurally critical fields such as the labor mar-

ket, the real estate market and the state sector have been identified as key issues in the severe

decline of the peripheral countries.

On the one hand, this conclusion seems to draw a pessimistic picture: idiosyncratic struc-

tural impediments affect the performance of the periphery and hinder deeper integration in

the monetary union. However, on the other hand it offers a clear prospect for further progress:

structural reforms, some of which are already underway, are likely to help seize control of

the problem of excessive debt – but they also bear the potential to remove obstacles to con-

vergence of business cycles. For the functioning of the monetary union, both aspects are of

paramount importance.

The concept of common cycles is well established in the literature. The current paper

demonstrated how to connect this framework to structural analysis in order to gain insights

into the fundamental driving forces of cyclical asynchrony. Thereby, it is obvious that our

model choice only sets the stage for further advancement in this field. Applying additional

identification schemes and considering different country constellations provides promising

lines of future research.

A Econometric Appendix

In this appendix we present details on the inference procedures applied in the paper. More-

over, we provide some additional empirical results as part of a robustness analysis using

alternative test versions.
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A.1 Impulse Responses

We are interested in testing hypotheses on the orthogonalized impulse response coefficients

defined in section 3.3, i.e. on the coefficients in Θh, h = 1, 2, . . . , H , using the Wald test

framework. To this end, it is helpful to define4

ΘH = vec(Θ(1, H)) = vec(Θ1,Θ2, . . . ,ΘH).

For setting up the Wald statistic we need an appropriate estimator of ΘH and its (asymptotic)

covariance matrix. First let α = vec(A1, . . . , Ap). Then, α̂ = vec(YM1Z
′(ZM1Z

′)−1)

is the OLS estimator of α, where Y = (y1, . . . , yT ), Z = (Z0, . . . , ZT−1) with Zt =

(1, y′t, . . . , y
′
t−p+1)′, and M1 = IT − 1T (1′T 1T )−11′T with 1T being a T × 1 vector of ones.

From Lütkepohl (2005, Proposition 3.1), it follows that

√
T (α̂−α)

d→ N(0,Σα), (A.1)

where Σα = (plim(ZM1Z
′)/T )−1 ⊗ Σu. We obtain Σ̂α = T (ZM1Z

′)−1 ⊗ Σ̂u with Σ̂u =

(T − p)−1
∑T

t=1 ûtû
′
t as the corresponding residual covariance matrix estimator.

Next, we have Φ̂h =
∑h

j=1 Φ̂h−jÂj with Φ̂0 = IK . Define ΦH = vec(Φ1,Φ2, . . . ,ΦH)

and Φ̂H = vec(Φ̂1, Φ̂2, . . . , Φ̂H). Then, from Lütkepohl (2005, Proposition 3.6, Remark 7)

we obtain the following limit result

√
T (Φ̂H −ΦH)

d→ N
(
0,ΩΦ̂H

)
, (A.2)

where ΩΦ̂H
= GΣαG

′ withG = (G′1, . . . , G
′
H)′ and

Gh =
h−1∑
i=0

J (A′)
h−1−i ⊗ Φi, h = 1, . . . , H,

where J = [IK : 0 : · · · : 0] is a (K ×Kp) matrix and

A =



A1 A2 · · · Ap−1 Ap

IK 0 · · · 0 0

0 IK · · · 0 0
... . . . ...

...

0 0 · · · IK 0


.

4The following framework is adopted from Jordà (2009) to our specific testing setup. Note, that some of the

involved quantities differ from Jordà (2009) due to the use of a finite-order VAR model and a different ordering

of the matrices in Θ(1, H).

19



We need the estimator Ω̂Φ̂H
= ĜΣ̂αĜ

′, where Ĝ is obtained by replacing the unknown

quantities with the obvious estimators defined beforehand.

From Σ̂u we obtain P̂ via a Cholesky decomposition. This results in the estimator Θ̂h =

Φ̂hP̂ , h = 1, 2 . . . H , summarized in Θ̂H = vec(Θ̂(1, H)) = vec(Θ̂1, Θ̂2, . . . , Θ̂H). We then

have from Lütkepohl (2005, Proposition 3.6) analogously to Jordà (2009, Section IV)

√
T (Θ̂H −ΘH)

d→ N
(
0,ΩΘ̂H

)
, (A.3)

where

ΩΘ̂H
= (IH ⊗ (P ′ ⊗ IK))ΩΦ̂H

(IH ⊗ (P ⊗ IK)) + 2Φ̄HCD
+
K(Σu ⊗ Σu)D+′

K C
′Φ̄′H (A.4)

with Φ̄H = [(IK ⊗ Φ′1), (IK ⊗ Φ′2), . . . , (IK ⊗ Φ′H)]′,C = L′k{LK(IK2+KKK)(P⊗IK)L′K}−1,

D+
K = (D′KDK)−1D′K , where DK is the duplication matrix such that for any square K ×K

matrix B, vec(B′) = DKvech(B), LK is the elimination matrix such that vech(A) =

LKvec(A), and KKK is the commutation matrix such that vech(B′) = KKKvec(B). Plug-

ging Φ̂1, . . . , Φ̂H ,Ω̂Φ̂H
, P̂ , and Σ̂u into the expression for ΩΘ̂H

yields the estimator Ω̂Θ̂H
.

A.2 Wald Statistics

As pointed out in section 3.3 it is not possible to uniquely impose the null hypotheses H0 :

θ2i,h = −δ3iθ3i,h for all h = 1, 2, . . . , for i = 1, 2, 3, respectively, on the VAR model (3.1).

This is the case whether or not δ3i is pre-specified. Our setup is related to the framework of

codependence considered in Trenkler & Weber (2012, 2013). From their results one can see

that if δi = (0 1 δ3i), i = 1, 2, 3, imposes additional restrictions on the MA parameters to the

ones tested under H0, then one cannot uniquely impose the restrictions of interest. Hence,

restricted ML estimation and, therefore, LR testing is not possible.

A potential alternative would be to consider WALD tests on the null hypothesis

H0 : θ2i,1/θ3i,1 = θ2i,h/θ3i,h for all h = 2, . . . , H, (A.5)

for some pre-specified upper bound H . One has to use such a finite upper bound for the re-

sponse horizons when applying the WALD test setup, because the corresponding test statistic

will be directly expressed in terms of the relevant MA parameters in Θi, i = 1, 2, . . .. The

null hypothesis (A.5) involves non-linear parameter restrictions such that the Wald test is not

invariant to re-parameterizations of the considered restrictions in finite samples. In fact, we

can re-express (A.5) in many different ways. Unfortunately, the test results strongly depend

on the specific parameterization such that rejections and non-rejections may occur for the
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same set of restrictions tested. One likely reason is that some of the impulse response coeffi-

cients are relatively close to zero, while others are clearly different from zero. In connection

with our small sample sizes, this may be critical since ratios (or products) are involved in

the test statistics in our setup. Moreover, the approach of testing (A.5) does not deliver

information about the multiplicity factors δ3i, i = 1, 2, 3. Therefore, we rely on WALD

tests with linear restrictions in terms of the relevant MA parameters. This is achieved by

pre-specifiying δ3i. In our case we set δ3i = −1, i = 1, 2, 3.

Define the selector matrix Sij = IH ⊗ e′j ⊗ ei, i, j = 1, . . . , K, where em is the m-th

column of IK for m = i, j. Thus, SijΘH contains the responses of the i-th variable in

yt, yit, to a shock in the j-th component of the structural error term vector εt, εjt, over the

response horizons h = 1, . . . , H . Setting S = (IH : −IH)(S ′ij : S ′mj)
′, the equivalence of the

orthogonal impulse responses of yit and ymt to a shock in εjt over the horizons h = 1, . . . , H

is represented by the null hypothesis

H0 : SΘH = 0. (A.6)

Note that (A.6) just re-states the hypothesis (3.2) using general matrix algebra. We consider

the usual Wald statistic

Ŵ = T
(
SΘ̂H

)′ (
SΩ̂Θ̂H

S ′
)−1 (

SΘ̂H

)
. (A.7)

Given our assumptions, Ŵ is asymptotically χ2 distributed with H degrees of freedom if the

null hypothesis (A.6) is true.

Jordà (2009) suggested to replace T−1Ω̂Θ̂H
in (A.7) by a bootstrap-based covariance

matrix estimator, say Ω̂B
Θ̂H

. We follow his proposal by adopting the bootstrap framework

of Kilian (1998a). We generate B = 2500 sets of bootstrap data of size T , the sample

size available for the respective country. The bootstrap data are recursively obtained via

the VAR model structure exactly as in Kilian (1998a), i.e. we use bias-corrected estimators

of the VAR parameters A1, . . . , Ap, which are computed according to Pope (1990). For

each bootstrap data set the orthogonalized impulse response coefficients estimates Θ̂b
H , b =

1, 2, . . . , B, are obtained as for the observed data but using again bias-corrected estimates

of the VAR parameter estimators. Thereby, the related framework of Kilian (1998a) for

computing bootstrap confidence intervals is matched. Accordingly, we have

Ω̂B
Θ̂H

=
1

B − 1

B∑
b=1

(Θ̂b
H −

¯̂
Θ

b

H)(Θ̂b
H −

¯̂
Θ

b

H)′, (A.8)

where ¯̂
Θ

b

H = B−1
∑B

b=1 Θ̂b
H . Inserting (A.8) instead of T−1Ω̂Θ̂H

into (A.7) gives the Wald

statistic ŴB. As mentioned in subsection 3.3, ŴB represents the analogue to the usual
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bootstrap approaches of obtaining confidence intervals for impulse responses or bootstrap

t-ratios for parameter estimators in (structural) VARs.

Finally, we consider a standard bootstrap Wald test. To this end, bootstrap data are gen-

erated as described before. Then, a bootstrap Wald test statistic, say Ŵ ∗
b , b = 1, . . . , B, is

computed for each bootstrap data set. However, the null hypothesis for the bootstrap Wald

statistics is H0 : SΘH = SΘ̂H such that the bootstrap statistic is defined by

Ŵ ∗
b = T

[
S
(
Θ̂∗H,b − Θ̂H

)]′ [
SΩ̂∗

Θ̂H,b
S ′
]−1 [

S(Θ̂∗H,b − Θ̂H)
]
,

where Θ̂∗H,b and Ω̂∗
Θ̂H,b

represent the counterparts of Θ̂H and Ω̂Θ̂H
estimated from the b-th

bootstrap data set, respectively. These adjustments are necessary since the null hypothesis

(A.6) cannot be imposed when generating the bootstrap data in our VAR setup, compare e.g.

Horowitz (2001). The p-value for the bootstrap Wald test is obtained in the usual way by

p∗(Ŵ ) =
1

B

B∑
b=1

I(Ŵ ∗
b > Ŵ ),

where I(·) is the indicator function.

A.3 Bootstrap Confidence Intervals and Conditional t-ratios

The bootstrap confidence intervals presented in Figures 1 to 4 for the impulse response dif-

ferences are computed according to Kilian (1998a). To be precise, the percentile intervals

are derived from the empirical bootstrap distribution of the differences of the two respective

impulse responses at a specific horizon h.

To derive the conditional t-ratios used in the empirical analysis we adapt the framework

of Jordà (2009, Section II.B) to our specific situation of impulse response differences. First,

we need the triangular factorization of Ω̂D
H , the (estimated) covariance matrix of the impulse

response differences contained in SΘ̂H . Hence we consider Ω̂D
H = SΩ̂B

Θ̂H
S ′ = L̂D̂L̂′,

where L̂ is a lower triangular matrix having a unit principal diagonal and D̂ is a diagonal

matrix. Then, the conditional orthogonal impulse response differences of yit and ymt to a

shock in εjt over the horizons h = 1, . . . H are collected in Ψ̂H = L̂−1SΘ̂H . Hence, we

directly determine the conditional impulse response differences. That is, we do not consider

the differences of individual conditional impulse responses. This is important to note since

the latter approach would not appropriately take into account the correlation structure of

the impulse response differences across the H response horizons. The correlation structure,

however, is appropriately captured by directly applying the triangular factorization to Ω̂D
H .
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Accordingly, the h-th element of the vector Ψ̂H , say ψ̂h, is the impulse response difference

conditional on the impulse response differences ψ̂h−1, . . . , ψ1.

Denoting the h-th diagonal element of D̂ by d̂h, we obtain the conditional t-ratio at

horizon h by th|h−1,...,1 = ψ̂h/d̂h, h = 1, . . . , H . It is straightforward to show that ŴB =∑H
h=1 t

2
h|h−1,...,1.

A.4 VAR(∞) Representation: Robustness Analysis

As has been mentioned in the literature, the asymptotic covariance matrix of the orthogonale

impulse responses ΩΘ̂H
can be singular for a subset of the VAR parameter space, see e.g.

Lütkepohl (2005, Chapter 4). If that is the case for the true VAR model (3.1), then the Wald

statistic (A.7) is not asymptotically χ2(H) distributed.

A way to circumvent this problem is to allow the VAR process to be of infinite order and

increase the fitted order with growing sample size, see e.g. Lütkepohl (2005, Chapters 4 and

15), Lütkepohl (1996), and Lütkepohl & Poskitt (1996). To be precise, the model (3.1) is

generalized to

yt = ν +
∞∑
i=1

Aiyt−i + ut.

The MA coefficient matrices Φh, h = 0, 1, . . ., are still obtained via the recursion intro-

duced in section 3.3 such that we further have Θh = ΦhP . It is assumed that a finite-order

VAR process of order pT is fitted to yt with pT = o(T 1/3). The latter condition is satisfied if

the AIC criterion is used in connection with with pmax,T = o(T 1/3), see e.g. Poskitt (2003).

Based on the estimated VAR(pT ), the estimators Φ̂H and Θ̂H are obtained as described in

subsection A.1. Then, under some further regularity conditions, it follows from Lütkepohl

(2005, Proposition 15.4)

√
T (Φ̂H −ΦH)

d→ N
(

0,Ω∞
Φ̂H

)
,

√
T (Θ̂H −ΘH)

d→ N
(

0,Ω∞
Θ̂H

)
,

where, using the representation of Lütkepohl (1996),

Ω∞
Φ̂H

=

[
Σ−1

u ⊗
k−l∑
j=0

ΦjΣuΦ′j+l−k

]
k,l=1,...,H

and Ω∞
Θ̂H

is obtained by replacing ΩΦ̂H
in (A.4) with Ω∞

Φ̂H
. The estimator Ω̂∞

Θ̂H
is obtained

by replacing the unknown quantities with the respective estimators that are obtained in the
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Table 4. Results of Wald-Tests (p-values) on Differences in the Impulse Responses of EMU

Core and Peripheral Countries up to Response Horizon H = 4

Peripheral Country/ Asymptotic Bootstrap Wald-test with
Sample (VAR order) Wald-test Wald-test Bootstrap Covariance

Matrix Estimator

Ŵ∞ Ŵ ∗,∞
b ŴB

Greece: 1991:2-2007:4 (p = 2)

World Shock 0.1183 0.0428 0.1049

EMU Core Shock 0.5700 0.3236 0.5055

Idiosyncratic Shock 0.0003 0.0000 0.0000

Ireland: 1997:2-2011:3 (p = 1)

World Shock 0.3014 0.0368 0.2104

EMU Core Shock 0.9814 0.5832 0.7914

Idiosyncratic Shock 0.0950 0.0116 0.0002

Portugal: 1991:2-2011:3 (p = 2)

World Shock 0.9819 0.9056 0.8512

EMU Core Shock 0.7367 0.4364 0.6648

Idiosyncratic Shock 0.0693 0.0228 0.0001

Spain: 1995:2-2011:3 (p = 3)

World Shock 0.0621 0.0340 0.0096

EMU Core Shock 0.5413 0.4180 0.1414

Idiosyncratic Shock 0.1144 0.0608 0.0228

usual way. We can then define the Wald statistic for the null hypothesis (A.6) as

Ŵ∞ = T
(
SΘ̂H

)′ (
SΩ̂∞

Θ̂H
S ′
)−1 (

SΘ̂H

)
,

which is asymptotically χ2 distributed with H degrees.

Some comments are in order. First, from an applied point of view, the assumption of an

infinite-order VAR does not affect model selection and estimation. One only has to use a dif-

ferent covariance matrix estimator for the impulse response coefficient estimators. Second,

we present the results for Ŵ∞ for the four GDP growth rate systems in the second column

of Table 4. We keep on using AIC in connection with pmax,T = 4 to determine the lag order.
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The maximum lag order was chosen following Lütkepohl (1996) such that pmax,T is approx-

imately equal to T 1/3 for our samples sizes. From Table 4, we see that the p-values of the

Wald statistics Ŵ∞ fall compared to the ones associated with Ŵ , compare Table 2. This

is not surprising since the use of Ω̂∞
Θ̂H

instead of Ω̂Θ̂H
leads to larger variance expressions

in the Wald statistic. In other words, the use of Ω̂∞
Θ̂H

robustifies inference at the expense of

efficiency. This is also obvious from the simulation results of Lütkepohl (1996).

Third, the simulation results of Lütkepohl (1996) show that the asymptotic Wald test

based on the infinite-order assumption can perform quite poorly in finite samples. There-

fore, we have also considered a bootstrap Wald test version for the current framework. The

corresponding bootstrap test statistics Ŵ ∗,∞
b are obtained analogously to Ŵ ∗

b . Fourth, the

Wald statistic ŴB obtained using the bootstrap covariance matrix estimator Ω̂B
Θ̂H

is asymp-

totically valid independent of whether a finite- or infinite-order VAR framework is assumed.

This follows from Inoue & Kilian (2002) since the bootstrap scheme does not need to be

adjusted due to the VAR(∞) assumption as pointed out by Kilian & Kim (2011). The results

of ŴB are reproduced in 4 to simplify the comparison.

Obviously, our main conclusions continue to hold with respect to the asymptotic and the

bootstrap tests. Hence, generalizing the VAR setup to an infinite-order framework is not

crucial for our empirical analysis. Interestingly, the p-values of the bootstrap test Ŵ ∗,∞
b are

smaller than those associated with Ŵ∞. Thus, the empirical distribution of the bootstrap test

statistics W ∗,∞
b , b = 1, . . . , 2500, is shifted to the left compared to the χ2 distribution with

four degrees of freedom.
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