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Abstract

With the growing importance of modeling in software engineer-

ing and knowledge engineering, and the accelerating convergence

of these two disciplines through the confluence of internet-based

software applications, the need for a simple, unified information

modeling framework fulfilling the use cases of both communities

has increased significantly over recent years. These use cases in-

clude switching seamlessly between exploratory and constructive

modes of modeling, representing all objects of relevance to a sys-

tem using a precise engineering-oriented notation, and applying

a wide range of automated checking and reasoning services to

models to enhance their quality.

This thesis lays the foundation for such a framework by formaliz-

ing and extending the multi-level modeling paradigm developed

by Atkinson & Kühne, building a practical prototype tool based

on the widely-used Eclipse EMF toolkit. This paradigm repre-

sents the best foundation for such a framework because it can

capture all objects of relevance to a system, at all levels of clas-

sification (e.g. instances, types, metatypes, metametatypes etc

. . . ), in a uniform and extensible way regardless of when and

how they came into existence. Multi-level models can therefore

accomodate the generation and use of information from the ex-

ploration and discovery phases of a project right through to the

operation and run-time execution phases, seamlessly changing

the way the information is interpreted and processed as needed.



The developed framework and tool (Multi-level modeling and

ontology engineering Environment, Melanie) encompasses all the

typical ingredients of a model-driven development environment:

a (meta) model (the Pan Level Model, PLM), a concrete syntax

(The Level-agnostic Modeling Language, LML) and a formal se-

mantics based on set theory. In addition, the framework supports

the full range of model querying, checking and evolution services

supported by standard software engineering and knowledge en-

gineering tools. This includes full support for the constructive

generation of instances from types and the exploratory discovery

of new information based on existing model content (e.g. sub-

sumption). To demonstrate the practical usability of the tech-

nology, the approach is applied to two well known examples from

the software engineering and knowledge engineering communities

– The Pizza ontology from the Protégé documentation and the

Royal & Loyal example from the OCL documentation.



Zusammenfassung

Durch die wachsende Bedeutung von Modelierung sowohl in der

Softwareentwicklung als auch Knowledge Engineering wuchs der

Bedarf an einem einfachen, einheitlichen Rahmenwerk welches

beide Anwendungsfälle erfüllt erheblich. Diese Entwicklung wird

verstärkt durch die zunehmende Verschmelzung der beiden Diszi-

plinen und die Bedeutung von internetbasierten Anwendungen.

Typische Anwendungsfälle aus beiden Domänen umfassen das

Umschalten zwischen dem schöpferischen und erforschenden Mo-

delierungsmodus, die Darstellung der relevanten Objekte eines

Systems über den gesamten Lebenszyklus mittels einer geeigne-

ten Syntax und einer präzisen Semantik, sowie die Anwendung

von automatisierten Schlussfolgerungen.

Das vorgestellte Rahmenwerk und die zugehörige Anwendung

(Multi-level modeling and ontology engineering Environment,

Melanie) beinhalten die typischen Merkmale einer modelgetrie-

benen Softwareentwicklungsumgebung: Ein Metamodel (Pan Le-

vel Model, PLM), eine konkrete Syntax (Level-agnostic Modeling

Language, LML) und eine auf Mengentheorie basierte formale

Semantik. Zusätzlich unterstützt es die selben Modelanfrage-,

Validierungs- und Evolutionsservices welche sich in Standard-

werkzeugen der Softwareentwicklung bzw. Knowlegde Enginee-

ring wiederfinden. Dies beinhaltet die Erstellung von Instanzen



basierend auf Typdefinitionen sowie das Schlussfolgern von neu-

en Informationen aus dem bestehenden Modelinhalt (z.B. Sub-

sumption). Um die praktische Relevanz des Ansatzes zu unter-

streichen sind zwei Anwendungsbeispiele realisiert – Die Pizza

Ontology aus der Protégé Dokumentation sowie das Royal &

Loyal Beispiel aus der OCL Dokumentation.
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Glossary

artefact a property or a clabject

blueprint the type that has been used to create an the instance. That

instance is therefore by definition

complete type a type of an instance that defines exactly the properties of

that instance and no less. The instance is thus an isonym of that type

computed information is a piece of information that has not been input

into the ontology by the user but has been created by an automated

service

correlation a model element that makes a statement about the relationship

between the sets of instances of two or more clabjects

EMF Eclipse Modeling Framework

expressed information a piece of information that has been explicitly

input into the ontology by the user

hyponym an instance of a type that has more properties than required by

the type

incomplete type a type of an instances that defines less properties than

those possessed by the instance. The instance is this a hyponym of

that type
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Glossary

isonym an instance of a type that has only the necessary properties, and

no more

KE Knowledge Engineering

LML Level Agnostic Modeling Language

Melanie Multi-Level Modeling And Ontology Engineering Environment

MLM Multi-Level modeling

MOF Meta Object Facility

OCA Orthografic Classification Architecture

OCL Object Constraint Language

offspring an instance that was creating by instantiating the type. It is by

definition an isonym of that type

OMG Object Management Group

OWL Web Ontology Language

PLM Pan Level Model

PMLM Potency based Multi-Level Modeling

primary information a piece of information that is assumed to be correct

by definition. Its validity is beyond doubt.

RDFS Resource Description Framework Schema

SE Software Engineering

secondary information a piece of information whose correctness is not

beyond doubt and may be revised
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trait a linguistic building attribute of a model element in an ontology.

UML Unified Modeling Language

XML Extensible Markup Language
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Chapter 1

Introduction

Visual modeling, in various guises, is now an indispensable part of virtually

all modern IT projects, whether it be to visualize requirements, architectures

and designs in software engineering, describe “ontologies” in knowledge en-

gineering, specify data types and relationships in database development or

represent processes in business automation. The quality of models, and the

ease by which human users can create and maintain them, therefore has a

major impact on the success of today’s IT projects.

1.1 Observed Weaknesses

Despite significant advances in the state-of-the-art in modeling over recent

years, the current generation of modeling languages and tools still have some

fundamental weaknesses that often make models more complex than they

need be, and thus more difficult to create, maintain and understand than

necessary.

Fundamental Weakness 1 (Fragmentation): One fundamental weakness is

the traditional fragmentation of modeling technologies into two main blocks

reflecting the two major traditions and user communities in which modeling

evolved. One is the so called “software engineering” tradition of modeling
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which evolved for the purpose of describing the properties and components of

software systems with a view to supporting their construction. This includes

the family of “entity relationship” oriented modeling technologies (26, 27)

(focussing on the construction of information systems driven by relational

databases) and the family of modeling technologies centred on the Unified

Modeling Language (UML)(51, 56) (focusing on the developing of software

systems using third generation, object-oriented programming languages).

We refer to this tradition as the “constructive modeling” tradition. The

other is the so called “knowledge engineering” tradition which evolved for

the purpose of capturing the set theoretic properties of subjects of interest

with a view to supporting computationally efficient reasoning (i.e. infer-

ence) operations underpinning “artificial intelligence”. Today, this mainly

includes the family of ontology and metadata representation language re-

volving around semantic web technologies, such as the Resource Descrip-

tion Framework Schema (RDFS) (72) and Web Ontology Language (OWL)

(1, 18, 49). Since the capturing of knowledge often involves an exploration

of the ideas and facts occurring in a given subject of interest, we refer to

this tradition as the “exploratory modeling” tradition.

Fundamental Weakness 2 (Assumptions & Forced Choices): Although the

visual models developed in the two blocks are essentially made up of the same

conceptual ingredients (i.e. classes, instances, attributes, relationships,. . . ),

the languages used to represent them are founded on different underlying

assumptions and concrete semantic choices which makes their seamless co-

use impossible (7). This was not a problem when the two user communities

were essentially separate and there was little interchange between them.

However, with the growing importance of the Internet and the semantic

web in almost all domains of computing, software engineers are increasingly

having to deal with visual models from both traditions when developing

software systems. Instead of focussing exclusively on the essence of the

problem in hand, software engineers have to waste significant time worrying

about the idiosyncrasies of the model from the two traditions and working

out which of the mix of supported features are available and useful at what
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time.

Fundamental Weakness 3 (Concrete Syntax): In fact, Knowledge Engineer-

ing (KE) and Software Engineering (SE) technologies for modeling also have

opposite strengths and weaknesses. The UML, the main language used in

the SE tradition of modeling, has powerful visualization features (i.e. con-

crete syntax and visualization metaphors) but has not been placed on a solid,

formal foundation with well understood semantics. In contrast, OWL, the

main language used in the KE tradition of modeling, has a strong, solid

formal semantic foundation (based on description logic) but very human

unfriendly native syntax (Extensible Markup Language (XML) (21)) and

visualization conventions (e.g. Protégé bubbles (40, 43)). Many ontology

engineers therefore already informally used UML diagramming notations to

visualize OWL ontologies.

Fundamental Weakness 4 (Linear Modeling Architecture): Another funda-

mental weakness is that visual models from both modeling traditions are

rooted in an approach to language definition and use that evolved from

the hard-wired, text-oriented languages that dominated the previous mil-

lennium. Programming environments from this era typically relied on lan-

guages with a frozen syntax (abstract and concrete) and a strict type/in-

stance view of how software constructs could be abstracted. This is reflected

in the strictly linear approach to modeling that is still supported by the ma-

jority of modeling tools (in both branches of modeling).

Fundamental Weakness 5 (Two Level Modeling): Today’s tools are not only

typically built on a linear modeling architecture where linguistic and onto-

logical classification is tangled up, they also usually only make two levels

accessible to end users – one level containing types and one level contain-

ing instances This forces modelers to use unnatural workarounds or ad hoc

modeling features to represent subjects of interest containing deep char-

acterization scenarios – that is, classification scenarios involving multiple

levels of classification (which is the rule rather than the exception). The

end result, as before, is the raising of the artificial problems encountered

31



1. INTRODUCTION

in creating IT solutions, and an increase in the accidental1 complexity em-

bedded within visual models. This problem is common to both modeling

traditions although it was first identified and comprehensively addressed in

the constructive modeling tradition.

1.2 Research Goals

Users of visual modeling technologies stand to benefit enormously, therefore,

from the introduction of a new, unified modeling framework which:

(a) breaks down the artificial barriers between these modeling traditions

and makes their combined capabilities accessible in a seamless way

with minimal unnecessary impedance and,

(b) provides fundamental and natural support for deep classification with-

out the need for artificial workarounds and modeling constructs.

This is the essential goal of this thesis – to demonstrate the feasibility of

such a framework and develop a prototype environment supporting its

use. More specially, the concrete, high level goals of the research reported

in this thesis were to develop a foundation for a unified modeling framework

which supports -

Research Goal 1 existing SE modeling use cases in a way that makes it

easier to create models with reduced accidental complexity compared to

todays modeling frameworks,

Research Goal 2 existing KE modeling use cases in a way that makes it

easier to create models with reduced accidental complexity compared to

todays leading frameworks,

Research Goal 3 the co-use of SE and KE modeling use cases in as natural

and simple a way as possible, making the uses cases traditionally available

1Accidental complexity is a term coined by Fred Brooks to characterize the complex-

ity in a solution that arises from artificial shortcomings and weaknesses in the chosen

implementation technology rather than from the inherent complexity in the problem.(22)
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only to one of the communities available to the other as well with little if

any impedance or accidental complexity,

Research Goal 4 deep characterization in as clean and natural a way as

possible, facilitating the creation of models of deep classification scenarios

with less accidental complexity than todays leading modeling tools.

1.3 Potency based Multi-Level Modeling

The shortcomings of traditional model frameworks for representing deep

classification scenarios have been discussed for some time in the SE model-

ing community although they have only recently been recognized in the KE

modeling community. There have been numerous approaches aimed at the

unification of the communities (4, 39, 58) or bringing the benefits of one to

the other (19, 35, 41). The pros and cons of the various possible solutions

is the subject of an ongoing lively debate between modeling methodologists,

and various concrete proposals have been put forward, ranging from the ad-

dition of ad hoc modeling features such as stereotypes and powertypes (36)

to more radical restructuring of the underlying modeling infrastructure. One

of the most well known is the potency-based, multi-level modeling approach

proposed by Atkinson & Kühne in a series of papers. This proposes a fun-

damentally different architecture for modeling frameworks in which model

elements are classified within two distinct dimensions – one linguistic dimen-

sion and one ontological dimension. Explicitly separating these two forms of

classification allows tool-oriented classification to be separated from domain-

oriented classification, so that the latter can include as many classification

levels as necessary to best model the subject in hand. The architecture

is therefore known as the Orthographic Classification Architecture (OCA),

and employs the notion of potency to capture the ontological “typeness” of

model elements (i.e. the degree to which they have the properties of types

or instances or both).
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The underlying premise for the research reported in this thesis is that

the potency-based multi-level modeling approach supported by the OCA(10,

12) is not only capable of supporting the goals outlined in the previous

section, it is the best approach for doing so. Various other enhancements

of the original Potency based Multi-Level Modeling (PMLM) approach of

Atkinson & Kühne(5) have been developed in recent years. Asikainen and

Männistö (3) have proposed a formal foundation for the approach. Others,

like Volz and Jablonski (69) or Varró and Pataricza (66) have developed

practical tools to support it. And some like, Gitzel et al. (34) or Aschauer

et al. (2), have adapted it for particular applications domains. However,

they have all been developed exclusively to support the constructive, SE

mode of modeling, and none of them are compatible or interoperable with

another. The work described in this thesis is the first attempt to enhance

and consolidate the PMLM approach of Atkinson & Kühne to support all

the high level goals listed previously, especially the goal of unifying the SE

and KE traditions of modeling.

1.4 Research Hypothesis

To achieve the stated goals, the research reported in this thesis explores the

following hypotheses.

Hypothesis 1 It is feasible to enhance the original potency based multi-level

modeling approach of Atkinson & Kühne to support high-level goals 1, 2, 3

and 4

To explore this hypothesis we developed a new, concrete foundation for

PMLM, enhanced to support the use cases of the two main modeling tradi-

tions identified above. To support the visualization and enhancability use

cases of the constructive modeling tradition the developed foundation is

based on established metamodel technology (Eclipse Modeling Framework

(EMF)(23)), but adapted to support the OCA of Atkinson & Kühne. To
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support the reasoning and formal analysis uses case of the exploratory mod-

eling tradition this foundation has been provided will full, formal semantics

based on first-order predicate logic. This formalism sacrifices the guarantee

of efficient decision problems provided by description logic for a wider range

of possible reasoning services, even if some of these may sometimes not be

efficiently computable. This new platform is accompanied by new notions of

ontology well-formedness, validity and completeness in the context of multi-

level modeling. The realized enhancements to PMLM are explained and

motivated in chapter 2, while the underlying metamodel for the new plat-

form, known as the Pan Level Model (PLM) is described in chapter 4. The

accompanying formal semantics are described in chapter 6 and the enhanced

notion of ontology well-formedness and correctness are elaborated in chapter

7.

Hypothesis 2 A powerful, general purpose modeling tool based on the PMLM

enhancement referred to in Hypothesis 1 can support additional services and

uses cases beyond those supported in the two main existing modeling tradi-

tions.

To explore this hypothesis a new, prototype modeling tool was devel-

oped, based on the Eclipse environment, that makes the capabilities of the

platform developed to explore hypothesis 1 available to end users in a usable

and accessible way. This included:

(a) the definition of a new concrete syntax for the enhanced approach to

PMLM that allows multiple classification levels to be described in a

seamless and uniform way, in accordance with established visualization

metaphors,

(b) the provision of a large number of modeling services which support

the use cases of the two main modeling traditions.
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1.5 Structure

Chapter 2 provides an overview of the introduction to potency-based

multi-level modeling (PMLM) and how it overcomes some of the shortcom-

ings identified in the introduction.

Chapter 3 establishes the modeling use cases of both software and knowl-

edge engineering and what requirements they impose on a foundation aiming

to support them both seamlessly.

Chapter 4 contains the detailed description of the PLM, the linguistic

metamodel developed in this thesis.

Chapter 5 introduces the level agnostic modeling language (Level Ag-

nostic Modeling Language (LML)(16)). The LML is the concrete syntax

developed for the PLM.

Chapter 6 defines the most fundamental building block of all the logic

operations, namely the relation of instance to type, purely based on primary

properties from the domain.

Chapter 7 and 8 use the results of the previous chapters to define pow-

erful and novel end user services with a formal foundation.

Chapter 9 rebuilds and enhances two well known case studies from the

SE and KE community to illustrate the usage and benefits of the results.

Chapter 10 investigates other approaches building on the same theoreti-

cal foundation and compares them against the research goals of this thesis.

Chapter 11 concludes by revisiting the research goals and hypotheses

along with possibilities for future research.
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Chapter 2

Multi-Level Modeling

In the context of software engineering, the term multi-level modeling covers

any approach to modeling that aims to provide systematic support for repre-

senting multiple (i.e. more than two) ontological classification levels within

a single body of model content. The motivation is to overcome fundamental

problems in the traditional, linear, four-level modeling architecture popu-

larised by the UML infrastructure and EMF, especially in the context of

domains involving deep characterization (46). Some of these problems are

immediately evident from the illustrative UML infrastructure diagram used

in all recent version of the UML infrastructure specification to convey the

architecture of the UML modeling framework (see figure 2.1).

2.1 Three Problems

One key problem is the so called dual classification problem which is

highlighted by the model element :Video with value “2001:A Space Odyssey”

for its attribute title, in the M1 level of the figure. In the domain of interest

(i.e. the subject of the model) this entity is conceptually an instance of the

concept Video with attribute title of type String, also at the M1 level in the

diagram. However, in the language used to represent the model, the UML,

the model element :Video is an instance of the linguistic (i.e. abstract
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Class

Attribute Class

Video

+title: String

«instanceOf»«instanceOf»

: Video

title = "2001: A Space Odyssey"

«instanceOf»«instanceOf»

M3 (MOF)

M2 (UML)

M1 (User model)

Instance

«instanceOf»

«instanceOf»

classifier

«instanceOf»

M0 (Run-time instances) aVideo

«instanceOf»

«snapshot»

Figure 2.1: An example of the OMG four-layer metamodel hierarchy, taken

from (51)

syntax) instance represented as a model element at the M2 level. Thus,

:Video, like most model elements in general, is actually an instance of two

types, one “linguistic type” capturing what kind of model element it is, and

one “ontological” type representing the domain concept that characterizes

its properties. However, the UML language and framework is only geared up

to recognize one form of classification, linguistic classification. Ontological

classification consequently has to be “programmed up” using various forms

of workarounds such as stereotyped dependencies or associations (in the

type instance pattern). Thus, in figure 2.1 :Video’s relationship to Video

is modelled as a stereotyped dependency called “snapshot” even though it

conforms to all the basic rules of classification in object-oriented modeling.

The second key problem is the so called replication of concepts prob-

lem which again is highlighted by the class :Video and Video at the M1

level. A fundamental goal of the UML infrastructure is to make all model-
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ing content representable in, and interchangeable through, the Meta Object

Facility (MOF) and derived serialization standards such as XMI(57). In

other words, all model elements stored within the UML infrastructure are

supposed to be classified by the types in the MOF so that they can be stored

and interchanged in a uniform way. However, :Video and Video have no

connection to the MOF model elements and thus cannot be regarded as

being instances of anything in the MOF. Figure 2.1, therefore cannot be a

valid classification based characterization of the UML, despite claiming to

be so.

The third key problem is the class/object duality problem. The UML

metamodel does in fact distinguish between model elements representing

types (e.g. class) and model elements representing instances (e.g. instances)

and therefore goes some way towards supporting the modeling of ontologi-

cal classification relationships within the UML, but it only does so for one

pair of ontological levels. However, many domains contain deep classifica-

tion scenarios that involve more than two ontological classification levels.

Again, the UML has no natural mechanism for handling this situation. Var-

ious artificial modeling constructs have to be used such as stereotypes and

powertypes(52). These all provide some kind of backdoor mechanism for

capturing metaclasses, but in a completely different way from the normal

two level classification mechanisms.

The combined result of these problems is that UML models are usually

more complex than they need to be because of the additional unnecessary

modeling concepts that have to be learned and the awkward workarounds

that have to be used.

2.2 Strict Metamodeling

The underlying reason for the problems in the UML infrastructure outlined

above is the desire of the UML developers to adhere to a strict metamod-
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eling architecture when defining the structure of the UML infrastructure.

Strict metamodeling is the doctrine that results from the use of the classi-

fication relationship to define the levels within a model containing multiple

classification levels.

Definition 1 (Strict Metamodeling): All the types of a model element reside

exactly one level above that model element. Since classification relationships

connect instances to types they have to cross level boundaries. Moreover,

they are the only kinds of relationships crossing level boundaries. All other

kinds of relationship stay within one level.

Although conforming to this doctrine is not always easy (as the UML

infrastructure models shows) doing so brings many benefits. A good analogy

is the discipline of strong typing in programming languages which requires

extra upfront effort to create programs adhering to the typing rules, but

significantly reduces the average overall time involved in creating correct

programs (when the extra debugging and testing time needed to reach the

same level of quality with non-typed programs is taken into account). The

alternative to strict metamodeling is “loose” metamodeling when all kinds

of relationships can be drawn freestyle between all kinds of model elements

in the style of RDFS and OWL Full models from the knowledge engineering

community. Without the discipline of strict metamodeling it is much easier

to create models which have incoherent structure and make many logically

inconsistent statements. Moreover, the typical visualization of such models

in tools such as Protege resemble spaghetti, with an overwhelming num-

ber of connections and fine grained model artefacts. This greatly increases

the effort involved in understanding models and the chances for misunder-

standings. The problems encountered by the UML infrastructure and other

modeling frameworks such as the EMF when attempting to apply the doc-

trine of strict metamodeling stem from their failure to fully recognize and

accommodate the two fundamental forms of classification when applying the

doctrine.

40



2.3 Orthogonal Classification Architecture

Language Definition

instanceOf instanceOf

VideoType
Video

title: String title = "2001 a Space Odyssey"

:Video

ClabjectL0

L1

L2

O0 O1 O2

Figure 2.2: The orthogonal classification architecture

2.3 Orthogonal Classification Architecture

The orthogonal classification architecture (10) represents one of the most

well know attempt to overcome the aforementioned problems whilst staying

faithful to the basic principles of strict metamodel. It does this by basically

separating the two forms of classification and organizing them in two inde-

pendent dimensions, each adhering to the strict modeling tenets. In other

words, it supports strict metamodeling, but in two “orthogonal” dimensions

– hence the name.

As illustrated in figure 2.2, where the vertically arranged levels, L0, L1

and L2 represent the linguistic levels, and the horizontally arranged levels

(within L1) represent the ontological levels, disentangling ontological and

linguistic classification in this way provide the basis for overcoming all the

fundamental problems identified above. From the point of view of Video

and :Video, the organization of the model content is much the same as

in the UML architecture shown in figure 2.1, except that the relationship

between them is given proper recognition as a fully fledged classification

relationship. The bottom level also plays the role of the “real world” whose
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concepts are the subject of the domain model content in level L1. The two

main differences between figure 2.2 and 2.1 are:

1. There is only one linguistic (metamodel) and it spans all ontological

model content at L1 in a uniform and natural way. This solves the dual

classification problem at a single stroke and gives the single underlying

metamodel the correct relationship to all the model content which it

is meant to store.

2. There are three ontological classification levels, all represented and

related in the same, consistent uniform way. Moreover, the number

of levels is not fixed at three. The PLM is completely agnostic to the

number of levels and users can create as many model levels as they

need to best describe the domain in hand. This removes the need for ad

hoc modeling concepts like stereotypes or artificial workarounds using

associations and allows deep classification scenarios to be modelled in

the most natural way with minimum accidental complexity.

Disentangling the two forms of classification into two orthogonal dimensions

is one of the key steps towards multi-level modeling. However, there are two

other important concepts – one is the notion of clabjects and the other is

the notion of potency.

2.4 Clabjects

The key to allowing modelers to include an arbitrary number of ontological

levels in their models is to represent model elements (i.e. define linguistic

classifiers) that are levels agnostic. The generally accepted way of achieving

this is through the notion of clabjects (5). A clabject is the linguistic concept

used to represent domain concepts (i.e. artefacts and connections) from the

domain of interest.
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Type (class) view Instance (object) view

Figure 2.3: Cube Visualization of the two facades, taken from (6)

The key things that distinguish clabjects from traditional model elements

supported in languages like the UML or OWL is that they are both types

and instances at the same time. In other words, in general they have both a

type facet and an instance facet. For example, Video, has both a type and

an instance facet since it is an instance of VideoType on the left hand side

and a type for “2001 a Space Odyssey” on the right hand side. Clabjects

can also have attributes (previously called fields (15, 37)) and participate in

connections. This is an unavoidable consequence of allowing model elements

to be simultaneously instances of model elements at the level above and types

of model elements at the level below.

2.5 Potency-Based Deep Instantiation

The downside of having type/instance agnostic linguistic classifiers like clab-

ject is that some other mechanism is needed to capture the “typeness” of a

clabject – that is, the degree to which it is capable of having instances. To

achieve this Atkinson & Kühne introduced the notion of potency to indicate

how many levels a clabject can have instances over (9). This original notion

of potency is based on the following fundamental concepts -

1. potency is a non-negative integer associated with clabjects and at-

tributes,
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2. a clabject, i, instantiated from another clabject, t, has a potency one

less than t,

3. the potency of an attribute of a clabject must be no greater than that

of the clabject,

4. every attribute of a clabject, i, instantiated from a clabject t, must

have a corresponding attribute in, t, with a potency one higher,

5. a clabject, i, instantiated from another clabject, t, must have an at-

tribute corresponding to every attribute of t, except those that have

potency zero.

“Corresponding” here means an attribute with the same name and datatype.

Since potency values are defined as non-negative integers, it follows that a

clabject of potency zero cannot be instantiated (i.e. represents an object

in classic UML terms) and a clabject of potency one represents a regular

class in classic UML terms. By allowing clabjects to have potencies of

two and higher, new kinds of classification behaviour (spanning more than

immediately adjacent levels) can be supported. This has been referred to as

deep instantiation in (9). This interpretation of potency also lends itself to

a simple definition of abstract and concrete classes. Since abstract classes

cannot be instantiated they have a potency of zero, while concrete classes

which can be instantiated have a potency greater than zero.

2.6 Multi-Level Modeling in Software Engineering

The four key principle outlined above:

1. strict metamodeling,

2. orthogonal classification architecture,

3. clabjets and
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4. potency-based deep instantiation

were developed by Atkinson & Kühne in a series of papers from 1997 to 2003

(5, 6, 8, 9, 10, 11, 12, 14). We refer to this approach as “classic multi-level

modeling”. Other related ideas include powertypes (36) or materialization

(60). Although the authors outlined the basic principles of PLM, they did

not provide:

1. a formal semantics,

2. a comprehensive linguistic metamodel,

3. a comprehensive concrete syntax and

4. a prototype tool or platform.

This thesis extends classis Multi-Level modeling (MLM) in all four areas.

Chapters 6, 7 and 8 provide formal semantics not only for the metamodel

used, but also the end user services the prototype implements. The meta-

model is introduced in chapter 4 and the concrete syntax is the subject of

chapter 5.

Various other authors have also extended classic MLM in various ways to

address some of these deficiencies. For example, Asikainen and Männistö (3)

equip their metamodel with a mapping to an efficient computation language,

while Lara (47) implements a textual concrete syntax and provide at least

a command line tool. Volz and Jablonski (69) have implemented a visual

editor for multi-level modeling. These are discussed further in chapter 10.

2.7 Multi-Level Modeling in Knowledge Engineer-

ing

As already mentioned above, KE languages already support MLM in one

sense, but in a loose non-strict way. For example, Figure 2.4 is a represen-

tation of the Video example in RDF native syntax and the bubble notation
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<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [
    <!ENTITY owl "http://www.w3.org/2002/07/owl#" >
    <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
    <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
    <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
    <!ENTITY Ontology13276853022042 "http://www.semanticweb.org/ontologies/2012/0/Ontology1327685302204.owl#" >
    <!ENTITY Ontology1327685302204 "http://www.semanticweb.org/ontologies/2012/0/Ontology1327685302204.owl#2001" >
]>
<rdf:RDF xmlns="http://www.semanticweb.org/ontologies/2012/0/Ontology1327685302204.owl#"
     xml:base="http://www.semanticweb.org/ontologies/2012/0/Ontology1327685302204.owl"
     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
     xmlns:Ontology13276853022042="http://www.semanticweb.org/ontologies/2012/0/Ontology1327685302204.owl#"
     xmlns:Ontology1327685302204="&Ontology13276853022042;2001"
     xmlns:owl="http://www.w3.org/2002/07/owl#"
     xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
    <owl:Ontology rdf:about="http://www.semanticweb.org/ontologies/2012/0/Ontology1327685302204.owl"/>
    <owl:ObjectProperty rdf:about="&Ontology13276853022042;instanceOf">
        <rdfs:domain rdf:resource="&Ontology13276853022042;Clabject"/>
        <rdfs:range rdf:resource="&Ontology13276853022042;Clabject"/>
    </owl:ObjectProperty>
    <owl:DatatypeProperty rdf:about="&Ontology13276853022042;title">
        <rdfs:domain rdf:resource="&Ontology13276853022042;Video"/>
        <rdfs:range rdf:resource="&xsd;string"/>
    </owl:DatatypeProperty>
    <owl:Class rdf:about="&Ontology13276853022042;Clabject"/>
    <owl:Class rdf:about="&Ontology13276853022042;Video">
        <rdfs:subClassOf rdf:resource="&Ontology13276853022042;Clabject"/>
    </owl:Class>
    <owl:Class rdf:about="&Ontology13276853022042;VideoType">
        <rdfs:subClassOf rdf:resource="&Ontology13276853022042;Clabject"/>
    </owl:Class>
    <owl:NamedIndividual rdf:about="&Ontology13276853022042;2001aSpaceOdyssey">
        <rdf:type rdf:resource="&Ontology13276853022042;Video"/>
    </owl:NamedIndividual>
</rdf:RDF>
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Figure 2.4: A representation of data in rdf and visual syntax

often used for graphical representation. From these diagrams the advantages

of the more disciplined, strict visualizations of MLM should be clear. OWL

Full also allows classification relationships between classes, but again in an

unstructured, non-strict way. OWL DL, which is the flagship language for

KE, and the basis for its attractive reasoning services, is essentially based

on a two-level linear architecture. However, recently members of the KE

community have recognized the potential value of MLM in KE(41).

2.8 Terminology

Enhancing classic MLM not only involves the consolidation of existing con-

cepts and the addition of new ideas it also involves the refinement of ter-

minology. In this section we introduce new terminology for concepts that

exist in classic MLM. The terminology for brand new concepts is introduced

along with the ideas when they are first explained.

Level → Model Previously, the whole collection of elements was called a

model. In the course of time it became clear that the ontological levels

provide the natural bounds to what is classically referred to as a model.

So the set of all the elements residing at one ontological level is called
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the model of that level. This conforms to common UML terminology

since UML class diagrams, which are typically referred to as models,

usually contain just types at one classification level.

Model → Ontology In the classical sense, an ontology embraces individ-

uals, their types, all the properties and datatypes. With multi-level

modeling in the picture, the equivalent is the stack of all levels (now

called models). So an ontology is the union of connected models.

Field → Attribute In Classic MLM publications, the ontological attributes

of clabjects were called fields. However, as the technology was refined

for the wider modeling community it became clear that this name

did not fit well with established terminology. The term attribute is

therefore once again now used to refer to ontological attributes of

model elements, but with a corresponding name change to linguistic

attributes to avoid any confusion. An attribute is thus a triple of

(name, datatype, value) belonging to a clabject.

Linguistic Attribute → Trait In classic MLM there was no special name

for attributes of the linguistic metamodel types, so they were usually

just referred to as linguistic attributes. To reduce the potential for con-

fusion with ontological attributes we now refer to linguistic attributes

as traits.

Feature Potency → Durability Initially, the trait that indicated how

long a feature lasts in an instantiation tree was also called potency

as with clabjects, because it basically means the same thing. When

formalizing the meaning of classification, however, it became clear that

potency plays a major role in classification relationships, but only for

clabjects, not features. The clabject potency is far more important

than the feature potency, and so there was a need to reflect this fact

in the terminology to reduce the potential for confusion.
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Value Potency → Mutability As with feature potency, the lifespan of a

value is also less important than the potency of a clabject and should

be named differently. While durability defines how long a feature

“endures” in the classification tree, mutability defines how often its

value can be changed over this tree.

Level numbering The original level numbering scheme defined by the Ob-

ject Management Group (OMG) starts at the most abstract level with

number three and advances downwards towards the most concrete level

with number zero. Unless one allows negative numbers as level labels,

however, this inherently limits the number of levels that can exist.

Since one of the goals of this work it to remove this constraint, the

traditional numbering scheme is not appropriate. In this thesis, there-

fore, the opposite numbering scheme is adopted with the most abstract

level being labelled zero and the subsequent less abstract levels having

successively higher integer label. The terms “higher” and “lower” are

still used to refer to abstraction level rather than integer labels.
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Chapter 3

Modeling Use Cases

For many years there was little interest in the similarities and differences be-

tween the various structural modelling paradigms, but with the recent con-

fluence of end-user software applications and the Internet, typically driven

by databases, this situation has changed. Understanding the accidental and

essential difference between these paradigms has now assumed great impor-

tance. However, most previous comparison have focused on the idiosyn-

crasies of the languages typically used in each community, such as UML,

OWL or ER diagrams. This chapter investigates the difference from the

perspective of the use-cases of end users, and characterizes these differences

in terms of the distinct modes of modeling. To provide the foundation

and motivation for the concepts presented in the following chapters, in this

chapter we investigate the different use cases predominant in the software

engineering and knowledge engineering communities and explore how they

can understood within a single unifying conceptual framework.

3.1 Traditional Modeling Use Cases

Although the software engineering and knowledge engineering (i.e. artificial

intelligence) communities emerged independently with different priorities

and foci, there has already been a great deal of cross fertilization between
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the two communities, and there are now numerous tools and approaches for

bridging the two technologies and translating between the two types of mod-

els (42, 59, 63). The main difference between them is the chronological order,

or direction, in which the user populates and uses the contents of a model.

In software engineering, the aim is to define new types and create instances

which are constructed from those types. In knowledge engineering, on the

other hand, one of the major goals is to establish new correlations between

existing types by investigating individuals. Thus, software engineering uses

case for models can thus be characterized as constructive whereas knowledge

engineering uses case can be described as exploratory.

3.1.1 Constructive Modeling in Software Engineering

In a traditional software engineering oriented modeling tool, the user starts

with a blank model and a palette showing the linguistic elements (in most

cases UML) he/she can use to populate the model. The created diagram is

called a class diagram. Every time a new element is created, the user has

some options to configure the linguistic attributes (traits) using a context

menu or a side pane of the main window. The elements are rendered in the

concrete syntax of the used linguistic metamodel (again, UML).

Once a model (i.e. class diagram) is complete, the user can either let the

tool create program code from the model or instantiate some types in the

tool. The tool usually generates classes in an object-oriented programming

language, from which the user can then implement some of the method stubs,

adjust the code to the target platform or use the classes to create instances

of the types in a running system. In an object diagram, the user can create

instances of the previously defined types. The resulting instances will have

exactly the properties defined by the types. If the tool does not automate

the process of instantiating types the user must ensure that any instances

have the properties specified. The fact that the instances have that type is a

primary fact that is not challenged. There is no way to instantiate instances
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Figure 3.1: Typical Constructive way of modeling

further, so the classification is limited to one instantiation step. Since tools

are used for visualizing the concepts rather than validating them, there are

usually no reasoning services present. Object Constraint Language (OCL)

constraints may be added to the types, but they cannot be validated against

instances as most of the time there will be no instances present. They will

however be used for code generation. There are mappings from OCL to the

target programming language, so the constraints will result in executable

code against the running instances. So the constraints are more than pure

text labels — they are used to support software construction services such

as code completion.

In constructive multi-level modeling, all elements on consecutive levels

are created by ontological classification of the previously created elements.

As every element is directly constructed from one special type, “its type”,

there is no need for checking or discovering classification relationships. If

the instantiation mechanism works correctly, the created classification rela-

tionships will all be valid by construction.

The creation of the model is an ongoing process. So at any given point

in time, the information contained in the model may not be complete and

therefore any assessments based on the current state of information will
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be limited. If the user enters a potency value to define the lifetime of the

element, its instances are not yet present. A tool displaying a tooltip at that

point telling the user that the potency value does not match the information

in the model is basically useless if not annoying. So in constructive modeling,

the tool can only validate present information against contradictions with

other present information. Figure 3.1 shows a schematic view of a typical

constructive modeling process.

3.1.2 Exploratory Modeling in Knowledge Engineering

The landscape of traditional knowledge engineering tools is much more di-

verse than for software engineering. There is also no standard language for

representing knowledge models. OWL is one of the predominant ones, but

there are other mainly text based representation formats as well. What all

the representations have in common is their lack of sophisticated visual rep-

resentation of model elements. Because they often have to deal with large

quantities of data, they have a very efficient textual syntax, but no concrete

graphical syntax.

The initial step is the creation of (part of) a domain model and the on-

going process is the discovery of correlations between the elements. So the

average use case of modeling is not creating a model from a clean sheet of

paper, but to work on an existing set of data to gain new insight into the

domain. The data can be read in from a variety of data sources: data feeds

crawling the semantic web, database records or other kinds of output data

produced by a running system. New elements are created by instantiating

linguistic metamodel elements at the appropriate ontological level. The ele-

ments are usually not instantiated from an ontological type and therefore do

not have one distinct type. Also, if a classification relationship is discovered,

it is common that the instance has more properties than those required by

the type, as it was not created from that type. For the same reason, there is

a need to check existing classification relationships. The connected elements
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may not be natural instances in the sense that they possess all the properties

required by the type, a case that does not make any sense in constructive

modeling.

Knowledge engineering tools typically offer two main services to the user:

subsumption and classification. Subsumption organizes the classes in a type

hierarchy based on their formal description. A subtype is always a stricter

description than the supertype. In other words, an instance of the subtype

will always be an instance of the supertype, but not vice versa. The second

operation can classify an individual as belonging to the extension of a type,

based on its intention. The types are not modeled in the sense of software

engineering tools, where attributes are added through a GUI, but in a more

formal way by describing rules that an individual has to adhere to in order

to be an instance of the set. The model elements in the model are assumed

to be complete and the task of modeling is to enrich the model with corre-

lations. More specifically, the information is already present in the model,

but implicitly contained in the artefacts and not explicitly shown through

correlations. The creation of these correlations is the primary purpose of

exploratory modeling. A modeling tool can indicate invalid correlations to

the user or offer services such as displaying the full inheritance hierarchy on

a set of elements.

3.1.3 Bounded and Unbounded Modeling

In addtion to the “direction” in which models are populated, the advent of

multilevel modeling gives rise to a second fundamental question related to

the use case in which a model is applied: how many ontological levels are

there?

In UML style modeling there has traditionaly only been one explicit

level under development at a given time, and instanceOf relationships were

modeled inside that level by the use of various ad-hoc mechanisms (e.g.

stereotypes, powertypes etc.). The number of ontological levels was implied
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by the use of those mechanisms. With the concepts of explicit ontological

levels and potency to control a model element’s influence on other levels

there is the need to decide on the number of levels when designing the

domain. A potency of two means that an element can be instantiated over

two consecutive levels. The total number of levels is not constrained by the

potency of the top level, as new elements (without a relation to any higher

level) can be created with any potency.

In principle there is no fundamental reason to stop the user from creating

further clabjects with higher potencies, therefore allowing more levels to

come into existence. However, numeric potencies make a precise statement

about the number of levels the element can influence. If the user does not

want to make such a statement, there is the need for a special potency value,

meaning “unbound”, “unlimited” or “undefined”. The concrete syntax for

this value is “*” in line with the notation for unlimited multiplicity. If a

clabject has * potency it means that the number of instantiation steps that

can be performed from it is not limited. An instantiation of a * potency

clabject can lead to a * potency clabject again or to a clabject with numeric

potency. Once the potency turns numeric, there is no way of going back to

*.

* potencies enable users to leave the scope of the whole model open to

future extension, presenting an unbound dimension of modeling. A model

with * potencies can be used to define a template or framework that can

be instantiated across an unforeseen number of levels. Main applications

include reuse of well-defined levels in various scenarios or the definition of

a framework where the main purpose of the model is to be extended in any

way by future users.

A model containing * potencies is called an unbounded model and a

model without any * potencies is called bounded. If * potency is used,

the scope of the stack of model levels changes. Fixed potencies produce a

bounded model stack, whereas an undefined potency defines an unbounded
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model stack. The dimension determining whether or not the model is

bounded is called the scope dimension.

3.2 Modes of Modeling

Since the “scope” and the “direction” concerns discussed above are essen-

tially independent there are basically four distinct combinations of funda-

mental use cases, giving rise to the two dimensional characterization of mod-

eling modes illustrated in figure 3.2. The following subsections discuss the

implications of these modes on the basic ingredients of multi-level modeling

and explains how they need to be enhanced to support them.

3.2.1 Bounded Constructive Modeling

Bounded constructive modeling means there are only numeric potency values

and that only elements at the top (most abstract) level have no ontological

blueprint. All elements at all lower (less abstract) levels are instantiated

from ontological types). As a consequence, the number of levels is fixed in

the top level and the direction the model elements are populated is strictly

top-down. The potency of a clabject therefore defines the potential depth of

the instantiation tree. Upon instantiation, the potency of an instance is low-

ered by one with respect to its type. The only place were potency is defined

by the user is the top level. All other potencies are correct by construc-

tion as potency assignment is performed automatically by the instantiation

mechanism.

3.2.2 Unbounded Constructive Modeling

Unbounded constructive modeling means that some of the elements have

* potencies, usually at the top level. As a result the number of levels is

not fixed from the beginning, but the creation direction is still top-down.

Potency also still defines the potential depth of the instantiation tree, just
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Figure 3.2: Scope and Direction of modeling

as with bounded constructive mode. The difference is that for * potencies of

the top level, the default is to spawn * potency instances, the user then has

the choice to change these potencies to any numeric value. Once the potency

has a numeric value the normal rule apply for any further instantiations.

3.2.3 Bounded Exploratory Modeling

Bounded exploratory modeling has only numeric potencies but the direction

of model creation is arbitrary. Types can be constructed with or without

ontological types at any level. The total number of levels however is fixed

in the sense that for every clabject its influence down the instantiation tree

is limited. Since most elements are created without an explicit ontological

type, there is no guarantee that type information is available for each clab-

ject. In fact, the record of which clabject another clabject was instantiated

from is historical information that can not be deducted from the properties

of the model elements alone. If an instance possesses exactly the properties

of two types (which need not to be equal) it cannot be judged whether or

which one of the two is the type the clabject was instantiated from. Since

the information in an exploratory model is assumed to be descriptive rather
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than prescriptive, potency specifies the actual and not the potential depth

of the instantiation tree. Together with the fact that instantiation informa-

tion is historical, the instantiation tree is redefined to be the tree of instances

that have exactly the properties required by the type.

3.2.4 Unbounded Exploratory Modeling

Unbounded exploratory modeling behaves exactly like bounded exploratory

modeling except that the last constraint on the lifespan of clabjects on the

instantiation tree is removed. Unbounded exploratory modeling is the most

general modeling mode and has all the features available to the user. As

it is the most general, it is the hardest to define precise use cases for. The

meaning of potency is the same as in bounded exploratory mod but with the

additional possibilities that * brings into the picture. Potency still defines

the actual depth of the tree of possible instantiations, but the * value

overrides the constraint in the sense that it represents any number and

therefore is always valid. In a sense, therefore, it captures the notion that

the exact number of levels is unknown.

3.3 Multi-mode Modeling

Traditionally, the different modeling communities have developed models

using only one of the modeling modes described above. However, this was

due to the limited awareness of the full range of modeling possibilities. The

mode is not defined by the use case, but by the assumptions and actions

performed. As a consequence the mode may switch multiple times through-

out the model life-cycle, often rapidly in short periods of time. The mode

switches are also implicitly triggered by the user and most of the time not

even noticed.

A modeling tool supporting these modes therefore has to be able to

switch between the modes very quickly and without direct user request. For
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example:

1. entering * potency on the top level implies unbounded mode,

2. removing the last * potency implies bounded mode,

3. changing the potency on an element not on the top level implies ex-

ploratory mode,

4. invoking the instantiate operation of an element implies constructive

mode,

5. linguistic creation of classification relationships implies exploratory

mode and

6. linguistic clabject creation not on the top level implies exploratory

mode.

Ideally the tool would provide some visual feedback as to which mode the

model is currently in, but the general operation is not constrained. In other

word, the user is not limited in his actions, but his actions may trigger con-

sequences to the modeling mode (and therefore to the semantics of potency)

that he may not be aware of at first sight. If these semantics do not match

the current user intention, the mode can be switched at any time, but of

course an action can trigger a mode change away from the current mode.

For example if the user wants potency to be the potential depth of the

instantiation tree, i.e. a potency of 1 is not an error on a clabject without

instances, he can set the mode to constructive. If the user then creates a

clabject by linguistic instantiation on the leaf level, the model will switch

back to exploratory and the potency one clabject will be an error. Of course,

the tool can provide a parameter to lock the mode, with the implication that

certain semantic operations are not guaranteed to work.
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3.4 Important Dichotomies

Information in an ontology can be interpreted in different ways depending

on the context and the uses cases which the modeler has in mind. For

example, some model elements can be entered directly by the user, while

others can be added by an inference engine. As another example, when

analysing an ontology, and responding to queries, some information may be

given greater importance than (i.e. may override) other information. Also

of critical importance is the way in which absent information is interpreted.

For example, absent infromation can be interpreted as false (closed world

assumption) or it can be interpreted as unknown (open world assumption).

These concerns give rise to some important dichotomies that govern the

way information in an ontology is interpreted:

Definition 2 (Primary versus Secondary Information): Primary information

Primary information is information whose validity cannot be questioned. If

there is a conflict between two pieces of information in an ontology, one

of which is primary and the other secondary, the secondary information is

automatically assumed to be incorrect. For example, if a modeled classifica-

tion conflicts with a disjoint generalization, and they have different weight,

the primary information is taken to be correct (e.g. the generalization) and

the secondary information incorrect (e.g.the classification).

Definition 3 (Expressed versus Computed Information): Expressed informa-

tion is information that has been input into the model by the user. Com-

puted information, on the other hand, is information that has been added

to the system by some kind of automated reasoning engine or transforma-

tion. In other words, it is information that has been automatically computed

rather than directly expressed by the user. Expressed information is often

primary, and computed information is often secondary, but this is not always

the case.

Definition 4 (Open world versus Closed world): Especially in the knowledge
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engineering community, the distinction between an open or closed world as-

sumption is very important. Open world means that if there is not sufficient

information present to answer a question the answer is undefined. In con-

trast, closed world means that if there is not sufficient information to answer

a question positively it answered negatively. Constructive modeling tradi-

tional takes place under the closed world assumption, whereas exploratory

modeling typically takes place under an open world assumption.

Definition 5 (Ontological versus Linguistic Information): Ontological pieces of

information are statements about observable facts in the subject domain. In

contrast, linguistic pieces of information are statements in the used model-

ing language which do add to the description of the subject domain. For

example, setting the level or potency of a clabject is linguistic information

whereas the creation of an entity is ontological information.
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The Pan Level Model

This chapter informally introduces the PLM in natural language. The pan

level model is the linguistic metamodel at the level L0 of the OCA illustrated

in figure 2.2 on page 41 and defines all the linguistic types used to represent

ontologies at the L1 level. After a detailed description of the model elements

and their relationships the operations for navigating and querying ontologies

are defined.

4.1 Design Goals

The underlying goal of the PLM is to provide the backbone for a modeling

framework that addresses the observed weaknesses (see section 1.1) of the

UML and the UML modeling infrastructure outlined in chapter 2, whilst

retaining their strengths and benefits. More specifically, the PLM was de-

signed to:

Be level agnostic. Many of the problems in the UML originate from the

different representation formats for types and their instances. Classes

have a different representation than objects, as have Associations and

links. For a connection between two types, there are three elements

(one Association and two AssociationEnds) and on the instance level
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only one Link. The PLM tries to overcome these difficulties by repre-

senting elements on different ontological levels in the same way.

Support the OCA. The Orthogonal classification Architecture forms the

theoretical foundation of the PLM. The PLM follows the OCA by

defining an orthogonal linguistic layer spanning all ontological levels.

Deep classification is supported by element traitsfor all relevant ele-

ments.

Enable Reasoning. Knowledge Engineering is one of the uprising disci-

plines in modeling and adds a great deal of value to every model. The

key to enabling reasoning and formal processing of any kind is a formal

specification of all the elements involved. If the knowledge contained

in a model can be expressed by the model framework using set the-

oretic constructs, the user gains access to a large number of mature

computation services working on the knowledge. Therefore every PLM

element has a complete and formal specification not only of its syntax,

but also of its semantics.

Support Constructive and Exploratory Modeling. During the re-

search that lead to the design of the present PLM it came to surface

that the differences in the communities around modeling lie not only

in the questions they want answered, but also in the way the models

comes to life and evolves. Certain parts of the model have a differ-

ent meaning when looking at them from a constructive or exploratory

perspective. The PLM is not only aware of that, but embraces the

different modes by explicitly supporting them and making their differ-

ences visible to the user.

Be as simple as possible. During the design of a language the designer

has to take decisions affecting sometimes contradicting dimensions:
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Easy of use, clean design, efficient implementation, minimal complex-

ity. The PLM tries to have as few elements as possible, therefore

choosing simplicity over efficient implementation.

Be UML like. Despite its weaknesses, the UML is the de facto standard

for general purpose model representation, and with good cause. The

UML way of rendering classes and concepts like generalization or mul-

tiplicity has been very successful. So in the concrete syntax the PLM

tries to reuse as many of these positive concepts as possible. For the

concepts that go beyond the original scope of the UML, like potency

for example, PLM tries to weave the concrete syntax into the UML

style as seamlessly as possible. The general guidelines for concrete

syntax definition follow the UML best practices: straight lines with

minimal junctions and drawable in black and white by humans on

paper/whiteboard with one pen.

4.2 Types

In the following sections there are a lot of statements about types and in-

stances. In the traditional UML style of modeling, the user would model the

types, generate code from the diagram and have the instances created by the

execution of a program. In a multilevel modeling environment, the concepts

of type and instance are expanded as instances are part of the model and

elements in the central ontological level are both instances and types.

4.2.1 Informal Definition

So what is a type? A type is a definition of how an instance has to look like.

In other words it is a set of constraints another element has to satisfy to be

an instance of the type. This definition is not given explicitly by stating it in

a syntax like OCL(54, 73, 74), it is given implicitly by the properties the type

defines. For every feature with potency zero a type possesses, the instance
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has to possess a conforming feature. For every connection with potency

greater than zero and that is mandatory (multiplicity greater than zero)

that the type participates in, the instance has to participate in a connection

which is an instance of the type’s connection. The ontological properties

form the major part of a types definition, but not the complete definition.

The other part of a types definition are the values of its traits.

4.3 Metamodel

The following section contains a listing of all the elements of the PLM with

an informal textual explanation of their syntax and semantics. Every gen-

eralization in the metamodel is disjoint and complete. So in an ontology

there can never be an element which is not a linguistic instance of one of

the concrete types and there can never be an element that is a linguistic

instance of more than one concrete type.

4.3.1 Abstract Metamodel Elements

Abstract elements cannot be instantiated directly, only through subtypes.

4.3.1.1 Element

element is the top of the inheritance hierarchy. Every artefact and corre-

lation inherits from element. The direct subtypes of element are ontology,

model and ownedElement.

Traits

name : String[0..1 ] The general identifier of every element. As there may

be anonymous elements, the name is optional.

expressed : Boolean Boolean switch indicating the origin of the element.

An expressed element was created explicitly by the user. A not-

expressed (a.k.a. computed) element was not been created by the user
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but computed by some kind of inference process. Often the newly cre-

ated element will make information explicit that was implicitly defined

within the model before, but there may also be rule based transforma-

tions introducing new computed information.

4.3.1.2 OwnedElement

An ownedElement is an element that is owned by another element to provide

the natural concept of containment. OwnedElement is a subtype of element

and a supertype of artefact and correlation. It does not introduce any traits

but is used to specify the children types for elements which can be an owner.

4.3.1.3 Artefact

An Artefact is an element that represents a concept/idea of the modeled

domain. Artefact is a subtype of ownedElement and a supertype of clabject

and feature.

4.3.1.4 Property

Property is the supertype of features and roles. As such it is the umbrella for

type definitions and constraints. Every ontological statement a type makes

is a property. Besides its traits, a type can only influence instances with

properties. Property is not an element, but all its concrete subtypes are.

4.3.1.5 Feature

A feature extends a clabject with either data or behaviour. Feature is a

subtype of artefact and property and a supertype of attribute and method.

The key identifier of a feature inside a clabject is its name.

Traits
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durability : Integer or * The durability (or feature potency) of a feature

controls whether or not a feature is passed on to the instance when

the containing clabject is instantiated. If the durability of a feature

is greater than zero when the clabject is instantiated, the feature is

passed on to the instance. If the durability equals zero, it is not

passed on. The durability of a feature can never be negative. * is

interpreted as greater than zero but undefined and bigger than any

numeric value. If a feature with integer durability is passed to an

instance, the resulting feature will have an integer durability that is

exactly one lower than the originating feature. A feature resulting

from a numeric durability can never have * durability. If a feature

with * durability is passed to an instance, the resulting feature can

also have * durability or any (non-negative) integer durability.

4.3.1.6 Clabject

Clabjects are the main building blocks of PLM models. Clabject is a subtype

of artefact and a supertype of entity and connection. Clabjects have the

ability to act both as a type for their ontological instances and as an instance

of their ontological types. Clabjects are the only elements that can be

instantiated or enter correlations. Each concrete clabject defines the set

of its instances. Clabjects can contain other artefacts, so, as clabjects are

artefacts themselves, clabjects can contain clabjects to model ontological

composition. Clabjects also contain the features which provide them with

data and behaviour. Navigations to other clabjects are captured via roles.

Traits

level : Integer The level of a clabject indicates the model (i.e. ontological

level) the clabject resides in. The container around an ontological level

is a model, but the actual level is defined by the contained clabjects.
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potency : Integer or * The potency of a clabject has different meanings

with regards to the modeling mode. In both cases the potency makes

a statement about the depth of the isonym tree of the clabject.

exploratory modeling mode The potency states the actual depth

of the isonym tree.

constructive modeling mode The potency states the potential

depth of the isonym tree.

The * value is the defining characteristic of the unbounded model-

ing mode. When an instance is created from a clabject with numeric

potency, the instance’s potency is one lower than the potency of its

type. If the type has potency *, the user may opt to give the instance

potency * as well. A clabject with numeric potency cannot spawn

instances of * potency. The depth of the current isonym tree is com-

putable and makes up the only valid value for potency in exploratory

mode. In constructive mode, the information in the model is not com-

plete, so the potency value may not be reflected in the current depth

of the isonym tree. This indicates that more instances are expected

some time in the future.

children : Artefact[* ] Clabjects are domain containers, i.e. they can

contain other artefacts. The children of a clabject are the artefacts

owned by the clabject.

4.3.1.7 Correlation

Correlations are the counterpart to artefacts. Correlation is a subtype of

ownedElement and a supertype of generalization, classification and setRe-

lationship.

67



4. THE PAN LEVEL MODEL

4.3.1.8 SetRelationship

SetRelationships indicate correlations between two sets that are represented

by clabjects. SetRelationship is a subtype of correlation and a supertype

of inversion, equality and complement. Each setRelationship makes a state-

ment about a clabject relative to the relationship’s base.

Traits

base : Clabject The base clabject for the relation the setRelationship de-

scribes.

4.3.2 Toplevel Elements

Top level elements are administrative concepts above the actual content of

the ontology. They provide the needed infrastructure to start and maintain

what in the user experience is called an ontology.

4.3.2.1 Ontology

Ontologies are the most general type of elements. Most of the times, the user

will be modeling only one ontology at a time. An ontology is the container

for the ontological levels (models). Ontology is a subtype of element.

Traits

children : Model[* ] The children of an ontology are the models that the

ontology spans

4.3.2.2 Model

Models represent one ontological level. So the number of models present

in an ontology is equivalent to the number of modeled levels. Model is a

subtype of element and ToplevelRenderingContainer. Each model contains

all the elements of its level, either directly as a child or recursively in the
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case of features and possibly clabjects. All Correlations inside a model are

direct children of the model.

Traits

children : OwnedElement[* ] The children of a model are the elements

of the ontological level directly owned by the model.

4.3.3 Concrete Artefacts

Concrete artefacts are the elements the user builds his domain model with.

There are only five, but in combination with ontological classification they

provide the full expressiveness needed to model the domain of interest.

4.3.3.1 Entity

Entities are the main elements of any PLM model. Entity is a subtype of

clabject. Entity does not define any additional traits to those of clabject.

Therefore its existence is justified by having a name for concrete clabjects

that are not connections.

4.3.3.2 Connection

Connections are the counterpart to Entities. Connection is a subtype of

clabject. Connections connect clabjects, but can utilize the full potential

available to clabjects themselves. They can even participate in other connec-

tions. Connections are first-class citizens of a model and therefore can enter

classification and generalization relationships, be instantiated and contain

other elements, even clabjects again. Each connection connects a number k

of clabjects. k is called the order of the connection. For k = 2 the connection

is called binary (k ≥ 2 for all connections).
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Traits

transitive : Boolean[0..1 ] A transitive connection has the constraint

that if a is connected to b and b is connected to c then a is also

connected to c. In the PLM, the statement of transitivity applies to

the instances of the connection. So if a connection is transitive, then

for its instances the rule of the connection from a to c holds. It can be

computed whether or not a claimed transitivity holds in the classified

level, so for any classified level, transitivity is either given or not. If

the information given in the type is primary, the existance of further

instances can also be inferred.

reflexive : Boolean[0..1 ] If a connection is reflexive, not only is the

source connected to the target, but every participating clabject is also

connected to itself. If a connection is not reflexive then a clabject par-

ticipating in the connection can not reach itself via that connection.

symmetric : Boolean[0..1 ] If a connection is symmetric, every naviga-

tion is possible in both ways. So for every navigation enabling a to

navigate to b with the roleName rN, there exists another navigation

connecting b to a with the same roleName rN. The second navigation

cannot be defined within the same connection, as the roleName has to

be unique within one connection and therefore these two roles cannot

exist in the same connection. If a connection is asymmetric, there

must not be such a navigation.

4.3.3.3 Role

Roles are the immediate and mandatory supplements of connections. A

role defines the participation of a clabject in a connection. Furthermore, a

role also defines a navigation possibility for the other participating clabject.

The number of roles equals the number of clabjects participating in the

connection (and therefore the order of the connection).
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Traits

connection : Connection The connection defining this role. A role only

comes into existence with its connection, so each role is contained

within exactly one connection.

destination : Clabject The target of this role. The target is the clabject

playing the role. The destination is reachable (provided the role is

navigable) by all the other participating clabjects of the connection

(i.e. by all the other destinations of the roles of the connection).

navigable : boolean Boolean switch indicating whether or not the role is

navigable. If a role is not navigable the relation still persists, but is

not usable from the source’s side. However it still remains one of the

source’s properties.

roleName : String The roleName the destination can be reached by. Role-

Names are key for navigation. So in order to navigate to a destina-

tion, any source needs to specify the roleName it wants to navigate by.

RoleName identifies the destination in the context of the connection,

which means that in the roles of this connection there can be no other

destination with the same roleName.

lower : int[0..1 ] The lower multiplicity bound.

upper : int[0..1 ] The upper multiplicity bound. The bounds either both

exist or none exists. As multiplicity is a statement about the classified

model of the current role, it exists only at roles which are defined by

a connection with potency greater than zero. Although defined for

the destination, the multiplicity is rather a constraint on whether the

sources can reach the destination, stating that each source has to be

able to reach at least lower and at most upper destinations.
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Figure 4.1: The navigations defined by one connection

When analysing a clabject, determining its roles is not trivial. A clabject

does not store the connections it participates in. The role stores the in-

formation and, as one of the core PLM principles is not to have redundant

information it is not stored again in the participating clabjects. To obtain all

the navigation possibilities of a clabject all the roles inside the model have

to be processed. Each of the connections which the clabject under analysis

does participate in introduces navigations to those other participants.

From the perspective of the properties a type defines it is desirable to

have a shorthand way of finding the navigations possible from a clabject.

The roles of a clabject are made available through the operation naviga-

tions(). So a “navigation possibility”, or just “navigation” for short, is the

occurrence of a role in the result of the navigations() operation.

The number of navigations defined by one Connection Each con-

nection defines a role for every clabject that takes part in it. Every par-

ticipant that is navigable defines a navigation for all the other participants

in the connection. Figure 4.1 shows a schematic example. The connection

is not visible and the four dots represent the participating clabjects. The

top two participants are not navigable. The bottom two participants form

a mesh and the top two have navigations to every member of the mesh. So

for one connection with four roles there are six navigations.

Let s be the order of the connection, n the number of roles which are

not navigable, n < s and k(s, n) the number of navigations the connection
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defines. For n = 0 the connection defines a full mesh:

k(s, 0) := s2 − s

For every connection, there are s − n destinations which each have a

navigation to every other destination, so in every connection, there are

(s− n)2 − s + n (1)

navigations defined.

The non-navigable destinations do not define any navigations between

each other, but each of those n destinations has a navigation for each of the

s− n navigable destinations. That is

n ∗ (s− n) (2)

Navigations between non-navigable destinations and navigable destinations.

The addition of (1) and (2) defines the number k of navigations defined

by any connection depending on its order and the number of non-navigable

destinations.

k(s, n) : = (s− n)2 − s + n + n ∗ (s− n)

= s2 − 2sn + n2 + sn− n2 − s + n

= s2 − sn− s + n

Table 4.1 shows the number of navigations k for connections with order

up to four.

4.3.3.4 Parameter

Parameters encapsulate artefacts or values participating in the body of a

method. Inside the body, any parameter has a name that is local to the

namespace of the method.
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s n k(s, n)

2 0 2

2 1 1

3 0 6

3 1 4

3 2 2

4 0 12

4 1 9

4 2 6

4 3 3

Table 4.1: The number of navigations in relation to the size and number of

non-navigable destinations.

Traits

name : String The name of the parameter in the namespace of the method

body.

expression : Expression The expression evaluating to the value of the

parameter at runtime. This value can be either a number, a boolean,

any other primitive or complex value or a model element.

4.3.3.5 Method

Methods enhance clabjects with behavior. Method is a subtype of feature.

The side effects and even the execution of a method are not defined in the

PLM specification, but are a concern of the system that implements the

PLM.

Traits

body : String The body of a method operates on a set of input parameters

to produce a set of output parameters and possibly changes the state
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of the clabject. Since is provides a textual description of the actions

to be performed by the executing environment it has to be written in

a language that the environment can process.

input : Parameter[* ] A set of input parameters for the execution of the

body.

output : Parameter[* ] A set of output parameters produced or affected

by the execution of the body on the input parameters.

4.3.3.6 Attribute

Attributes enhance clabjects with data. Attribute is a subtype of feature.

Attributes connect a clabject to the value of a datatype via a name (the

name of the attribute). Valid datatypes are primitives like Boolean, String,

Integer, List or Set, but not other clabjects. Relationships to other clabjects

should be modeled with connections.

Traits

datatype : Expression The datatype of the attribute. The expression

evaluates to the datatype, which in most cases will be the name of

the type. Other artefacts are not valid attribute types and have to

be modelled with connections. The implementing environment may

implement more sophisticated conformance rules to enable for example

the conformance of BigInteger to Integer.

value : Expression The actual value of the attribute. The expression

evaluates to the actual value. If values are compared and checked

for equality, it is not the string value that is compared but the result

of its evaluation. For example if one expression is “5” and another

is “owner().features()->size()” those are equal if the owning clabject

holds five features.
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mutability : Integer or * Mutability is another form of potency, namely

value potency. The mutability controls whether or not attributes cre-

ated from the attribute may change their value. If the mutability is

zero, they are not allowed to change their value but must retain the

value given upon creation. In other words, the value is fixed at the

type level and the same for all the created attributes. The mutability

may never be higher than the attribute’s durability. If an attribute is

created, the mutability is lowered, but not below zero. It is possible (in

fact the default use case for mutability) to create an attribute from a

mutability zero attribute. A mutability can only be * if the attribute’s

durability is *.

4.3.4 Concrete Correlations

Concrete correlations are used to enhance the modeled clabjects with logic

information. They always connect two or more clabjects in a logical way so

that the affected clabjects can make use of the information for navigation

on the one hand, and pose a general statement on the other hand.

4.3.4.1 Classification

Classification connects a type to an instance. Classification is a subtype of

Correlation. Classifications are the only PLM elements that cross ontolog-

ical level boundaries. Furthermore, every classification must connect two

clabjects from adjacent ontological levels. For containment purposes a clas-

sification is regarding as residing on the level of the instance and is always

contained by the model of the instance. The terms isonym and hyponym

are used for the first time in the following paragraph. The formal definition

is given in definition 30 on page 134. Informally, an instance of a type is an

isonym if it does define the properties required by the type, and no more.

An instance that does define more than the required properties, is called a

hyponym.
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Traits

type : Clabject The type of the classification.

instance : Clabject The instance of the classification.

kind : ClassificationKind ClassificationKind is an enumeration with four

values

instance the instance is an instance of the type. What kind of in-

stance is not known or not of relevance.

isonym the instance is an isonym of the type

hyponym the instance is a hyponym of the type

instantiation the instance is an isonym of the type and it was created

by instantiation from the type. The type is thus the blueprint of

the instance.

4.3.4.2 Generalization

Generalizations indicate subtype/supertype relationships between clabjects.

Generalization is a subtype of Correlation. The cardinality of the traits

supertype and subtype is dependent in the sense that only one can be greater

than one.

Traits

supertype : Clabject[1..* ] The supertypes (possibly multiple) of the

generalization.

subtype : Clabject[1..* ] The subtypes (possibly multiple) of the gener-

alization.
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disjoint : boolean[0..1 ] Indicates whether or not the generalization di-

vides the subtypes into disjoint subsets. Disjoint can only be true if

there is more than one subtype. The meaning is that any instance

of the supertype can only be an instance of at most one of the sub-

types. If the generalization does have more than one subtype and is

not disjoint it means it is overlapping in the sense that there exists an

instance of the supertype that is an instance of more than one subtype.

complete : boolean[0..1 ] Indicates whether or not the generalization

covers all the instances of the supertype. In a complete generaliza-

tion, any instance of the supertype must be an instance of at least

one of the subtypes. In other words there can be no instance of the

supertype that is not an instance of any of the subtypes.

intersection : boolean[0..1 ] Indicates whether or not the subtypes are

an intersection of the supertype. If the generalization is an intersec-

tion, every clabject that is an instance of all of the subtypes is also an

instance of the supertype. If the generalization is not an intersection,

there exists a clabject that is an instance of all the supertypes, but

not of the subtype.

4.3.4.3 Inversion, Complement and Equality

Inversion, complement and equality are the concrete subtypes of setRelation-

ship. They each connect one clabject to another clabject and make some

kind of statements about how the sets of instances they define are related

to one another.

Inversion

inverse : Connection The inverse connection to a connection.
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Inversion only makes sense for binary connections. An inversion states that

the inverse connection inverses the original connection. In other words, for

every instance of a connection connecting two clabjects from a to b there is

an instance of another inverse connection connecting b to a.

Complement

complement : Clabject The complementary clabject to a clabject.

universe : Clabject The universe in which the one clabject complements

another clabject.

Complement states that the sets defined by two clabjects are complementary

in the set defined by universe. In other words, every instance of the universe

clabject that is not an instance of one of the complementary clabjects is

an instance of the other one. Complement statements are only valid inside

the universe. So a complement has to be a subtype of the universe as

a prerequisite. The original clabject does not need to be a subtype of the

universe, however. If the original clabject is a subtype of the universe as well,

then together with the complement it partitions the universe so an inference

engine could discover a disjoint and complete generalization. Complement

is not symmetric.

Equality

equal : Clabject A clabject equal to another clabject.

The meaning of equality is not well-defined in natural language but a precise

definition needs a context to work in (e.g. ”equal in functionality”). The

context for the equality of PLM clabjects is the defined Properties. Two

clabjects are equal if the Properties they define are equal, so the equality

relation is symmetric.

79



4. THE PAN LEVEL MODEL

C
orrelation

C
lassificatio

n

O
w
n
ed
Elem

en
t

M
eth

od
A
ttrib

u
te

Featu
re

SetR
elatio

n
sh
ip

En
tity

C
om

p
lem

en
t

com
plem

ent : C
labject

In
version

inverse : C
onnection

Eq
u
ality

equal : C
labject

O
n
tology

children:M
odel[*]

M
od
el

A
rtefact

universe : C
labject

in
stan

ce : C
lab

ject
typ

e : C
lab

ject
kin

d
 : C

lassification
Kin

d

G
en
eralizatio

n

su
p

ertyp
e : C

lab
ject[1..*]

su
b

typ
e : C

lab
ject[1..*]

in
tersection

 : b
oolean

[0..1]
d

isjoin
t : b

oolean
[0..1]

com
p

lete : b
oolean

[0..1]

R
ole

con
n

ection
 : C

on
n

ection
d

estin
ation

 : C
lab

ject
roleN

am
e : Strin

g
n

avigab
le : b

oolean
low

er : in
t[0..1]

u
p

p
er : in

[0..1]

d
atatyp

e : Exp
ression

valu
e : Exp

ression
m

u
tab

ility : in
t

b
od

y : Strin
g

in
p

u
t : Param

eter[*]
ou

tp
u

t : Param
eter[*]

d
u

rab
ility : in

t

Prop
erty

b
ase : C

lab
ject

Elem
en
t

exp
ressed

 : b
oolean

n
am

e : Strin
g[0..1]

C
lab

ject
level : in

t
p

oten
cy : in

t
ch

ild
ren

 : D
om

ain
Elem

en
t[*]

n
avigation

s() : R
ole[*]

featu
res() : Featu

re[*]
m

od
el() : M

od
el

m
od

elSu
p

ertyp
es() : C

lab
ject[*]

ch
ild

ren
 : O

n
w

ed
Elem

en
t[*]

level() : in
t

ow
n

er() : M
od

el
level() : in

t

ow
n

er() : C
lab

ject

C
lassificatio

n
K
in
d

instance
isonym
hyponym
instantiation

Param
eter

nam
e : String

body : Expression

C
on
n
ectio

n

ord
er() : in

t
roles() : R

ole[*]

tran
sitive : b

oolean
[0..1]

reflexive : b
oolean

[0..1]
sym

m
etric : b

oolean
[0..1]

F
ig

u
re

4.2:
T

h
e

com
p

lete
P

L
M

m
etam

o
d

el
w

ith
in

h
eritan

ce
an

d
traits

ren
d

ered
in

U
M

L
.

80



4.4 Formalism

4.4 Formalism

The previous sections provided an informal, metamodel-oriented description

of the PLM in the style popularized by the UML. However, to provide a more

rigorous definition of the semantics of the model elements and the operations

that work on them, it is necessary to complement this with a more formal

description. This section introduces the basic concepts that underpin the

formal description of the PLM.

Element symbols Model elements are abbreviated by greek symbols. The

linguistic set of all the elements of a type is shown in sans− serif font.

The symbols used are shown in table 4.2.

first-order predicate logic The statements are given in first-order logic

using the following symbols:

• quantifier symbols forall ∀ and exists ∃

• negation ¬. Some symbols have a separate negation syntax, e.g.

6=, @

• logical connectives: conjunction ∧ and disjunction ∨

• implication: a =⇒ b, meaning if a then b

• biconditional: a ⇐⇒ b, meaning a if and only if b

• equality: a = b, meaning that a and b are the same

• colon as a selection: a : a 6= b returns false for any a that is not b.

The statement is usally used to select or filter elements ∀a : a 6= b

returns all the a’s that are not b’s.

set notation ∈, /∈,∪, \ and ∩ are used as well as the construction of a set

using curly brackets. {a ∈ A : a 6= b} defines the set off all the elements

in A that are not b.
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pseudocode Where a single expression is not sufficient to express a mean-

ing, the statements are chained in pseudocode. Control flow constructs

used include for-all loops, if-then-else and return statements.

definition := is used to state that the left hand side is defined in terms of

the right hand side.

element traits access If a trait of an element is accessed the trait is sep-

arated from the element by a dot and shown in sans− serif font. a.b

accesses the trait b of the element a.

element operation access If an operation of an element is called, the op-

eration name is separated from the element by a dot and the operation

name is shown in monospace font. Even if the operation does not re-

quire parameters, brackets are shown after the operation name. a.b()

calls the operation b on the element a.
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4.5 Metamodel operations

Symbol Meaning Symbol Meaning

χ an Ontology Σi the model of level i

γ a Clabject Clabject the set of all Clabjects

ε an Entity Entity the set of all Entities

δ a Connection Connection the set of all Connections

ψ a Role Role the set of all Roles

η a Feature Feature the set of all Features

ζ an Attribute Attribute the set of all Attributes

π a Method Method the set of all Methods

λ a Correlation Correlation the set of all Correlations

ξ a Generalization Generalization the set of all Generalizations

φ a Classification Classification the set of all Classifications

υ a SetRelationship SetRelationship the set of all SetRelationships

υi an Inversion Inversion the set of all Inversions

υe an Equality Equality the set of all Equalities

υc a Complement Complement the set of all Complements

µ a SetRelationship SetRelationship the set of all SetRelationships

Table 4.2: The symbols used for abbreviating model elements

4.5 Metamodel operations

The metamodel provides certain operations which do not introduce any new

information into the metamodel, but simplify the use of the elements.

Definition 6 (Model ordering): The order of the models in an ontology is

given by the direction of the classification relationships. Given one model,

the classifying and classified model is obtained by the adjacent levels:

Σi.classifyingModel() := Σi−1

Σi.classifiedModel() := Σi+1

Definition 7 (Border Models): A model is the root model if there are no

models that classify it.

Σi.isRootModel() := @Σi−1
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As a consequence, there cannot be classifications in a root model,

Σi.isRootModel() =⇒ Σi.classifications = ∅.
Analogous to the root model, a leaf model cannot classify any other model.

Σi.isLeafModel() := @Σi+1

As there are no types in a leaf model, generalization does not make sense.

However, the existence of a generalization does not imply the existence of a

classified model (as classifications do for root models).

Definition 8 (Model Inheritance): With the help of generalizations, any clab-

ject can return its supertypes. The generalizations to be processed are ob-

tained from the model the clabject resides in (Operation 1). Analogous to

Operation 1 γ.modeledSupertypes()

result← ∅
domain← Sigmaγ.level.children ∩ Generalization

for ξ ∈ domain do

if γ ∈ ξ.subtype then

result← result ∪ ξ.supertype

for γs ∈ ξ.supertype do

result← result ∪ γs.modeledSupertypes()

return result

the supertypes, there can be an operation to retrieve the modeled suptypes

of a clabject.

γ.modeledSubtypes() := γs : γ ∈ γs.modeledSupertypes()

Modeled generalizations can be filtered for those the subject clabject is a

subtype or supertype in.

γ.modeledGeneralizationsAsSubtype() := ξ : γ ∈ ξ.subtype

γ.modeledGeneralizationsAsSupertype() := ξ : γ ∈ ξ.supertype

Definition 9 (Model children): The elements in a model can be separated

into their linguistic types by intersecting the children with the set of all
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linguistic types:

Σ.generalizations := Σ.children ∩ Generalization

Σ.classifications := Σ.children ∩ Classification

Σ.inversions := Σ.children ∩ Inverse

Σ.equalities := Σ.children ∩ Equality

Σ.complements := Σ.children ∩ Complement

For clabjects the case is a bit more complex since clabjects can recursively

contain themselves. With operation 2, the clabjects in a model can be

Operation 2 Σ.clabjects()

result← ∅
queue← Queue(Σ.children ∩ Clabject)

while |queue| > 0 do

current← queue.pop()

result← result ∪ {current}
queue.enqueue(current.children ∩ Clabject)

return result

further separated:

Σ.entities() := Σ.clabjects() ∩ Entity

Σ.connections() := Σ.clabjects() ∩ Connection

Through the generalizations, the clabjects inside a model form an inher-

itance hierarchy. As there is no circular subtyping, the hierarchies form

directed acyclic graphs. A model offers an operation to retrieve the roots of

these trees, i.e. the clabjects without supertypes.

Σ.inheritanceRoots() :=

{γ ∈ Σ.clabjects() : γ.modeledSupertypes() = ∅}

To access the connection participations in one ontological level a model offers

an operation to retrieve all roles from all the connections.

Σ.roles() := {δ.roles()∀δ ∈ Σ.connections()}

Definition 10 (Ownership): The owner of a feature is the clabject containing

it.
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η.owner() := γ : η ∈ γ.children

The model of a clabject is again determined by the level.

γ.model() := Σi : i = γ.level

The owner of a Correlation is the model containing the element. The model

could also be determined by the level of the clabjects the Correlation con-

nects.

λ.owner() := Σ : λ ∈ Σ.children

Definition 11 (Ontological Level): The level of a model is determined by the

contained clabjects.

Σ.level() := γ.level : γ ∈ Σ.children

Each Correlation determines its level from the connected clabjects.

φ.level() := φ.instance.level

ξ.level() := γ.level : γ ∈ (ξ.subtype ∪ ξ.supertype)

υ.level() := υ.base.level

Definition 12 (Clabject Features): Each clabject gathers its eigenFeatures

from the contained elements. The eigenFeatures comprise all features that

are directly contained in the clabject (and not inherited from supertypes or

recursively included in a contained child clabject).

γ.eigenFeatures() := {η ∈ Feature : η ∈ γ.children}

From its supertypes, a clabject can gather the features it inherits (Operation

3) and finally all the features it offers. Among these features, the clabject of-

Operation 3 γ.modeledFeatures()

result← ∅
for γs ∈ γ.modeledSupertypes() do

result← result ∪ γs.eigenFeatures()

return result

fers an operation to search for a feature by name.

γ.features() := γ.eigenFeatures() ∪ γ.modeledFeatures()

γ.feature(name) := η ∈ γ.features() : η.name = name

86



4.5 Metamodel operations

The features of a clabject can then be further divided into attributes and

methods:

γ.attributes() := {η ∈ γ.features() : η ∈ ATTRIBUTE}
γ.methods() := {η ∈ γ.features() : η ∈ METHOD}

Definition 13 (Connection Operations): The order of a connection is the num-

ber of roles the connection defines.

δ.order() := |{ψ ∈ Role : ψ.connection = δ}|

A connection offers the roles it defines and the clabjects that participate

in the connection as the destination of a role. Note that one clabject can

participate in a connection through more than one role, so the number of

roles does not need to match the number of participants. The full set of

the connection’s roles is comprised of its eigenRoles (i.e. roles not inherited,

but defined directly) and the roles it inherits from supertypes, where the

roleName is the key for overriding. Operation 4 gives the formal definition.

If a connection has more than one direct supertype, there is no information

to judge which role to chose.

Operation 4 δ.roles()

roles← δ.eigenRoles()

for δs ∈ ξ.supertype : δ ∈ ξ.subtype do

for ψs ∈ δs.roles() do

// recursive call to get the facade roles of the supertype

if @ψi ∈ roles : ψi.roleName = ψs.roleName then

roles← roles ∪ {ψs}
return roles

δ.eigenRoles() := {ψ ∈ Role : ψ.connection = δ}
δ.participants() := {ψ.destination : ψ ∈ δ.roles()}

The target defined by one connection and one roleName is given by

δ.navigate(rN) := ψ.destination : ψ ∈ δ.roles() ∧ ψ.roleName = rN

and all the roleNames the connection offers are given by

δ.roleNames() := {ψ.roleName : ψ ∈ δ.roles()}
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and access to one role identified by the roleName is given by

δ.role(rN) := ψ ∈ δ.roles() : ψ.roleName = rN

The navigable domain of a connection is the set of clabjects reachable

through the connection. The domain is agnostic to any particular partici-

pant. The boolean parameter indicates whether or not the domain shall be

limited to the navigable ones.

δ.domain(navigable) :=

ψ.destination : ψ.connection = δ ∧ navigable =⇒ ψ.navigable

Since a clabject may participate in a connection more than once and the

roleNames are unique, the return type of the operation is a set of roleNames

rather than a single one.

δ.roleNamesForParticipant(γ) :=

ψ.roleName : ψ.connection = δ ∧ ψ.destination = γ

he multiplicities are stored in the roles so the operation needs a roleName as

parameter to identify the role with.

δ.lower(roleName) :=

ψ.lower : ψ.connection = δ ∧ ψ.roleName = roleName

The upper multiplicity is retrieved similar to the lower.

δ.upper(roleName) :=

ψ.upper : ψ.connection = δ ∧ ψ.roleName = roleName

As with multiplicity, the navigability is stored in the roles and the operation

needs a roleName to identify the role by.

δ.navigable(roleName) :=

ψ.navigable : ψ.connection = δ ∧ ψ.roleName = roleName

If the user does not input a roleName for a role (it is not mandatory), a

default roleName is constructed for display and access from the destina-

tion clabject. The construction is performed according to the UML and

OCL convention. The name of the destination is the default roleName with

a lowercase first letter. If this roleName conflicts with another roleName

in the connection (violating roleName uniqueness) the user is responsible

for solving the conflict as the engine does not have enough information to
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solve it on its own. The check for a default roleName checks if a value is

set:

ψ.isDefaultRoleName() := ∃ψ.roleName

Definition 14 (Clabject Navigation): The navigation roles of a clabject are

the roles the clabject can navigate by. A clabject can navigate via a role

if the connection has another role the clabject is the destination of (Opera-

tion 5). The navigations a clabject inherits from its supertypes are simply

Operation 5 γ.eigenNavigations()

result← ∅
for δ ∈ Connection : δ.level = γ.level do

if |{ψ ∈ δ.roles() : ψ.destination = γ}| > 0 then

// γ participates in δ

if |{ψ ∈ δ.roles() : ψ.destination = γ}| = 1 then

// one destination, so there is no self reference

result← result ∪ {ψ ∈ δ.roles : ψ.destination 6= γ}
else

// more than one destination, so there is a self reference

result← result∪
{ψ ∈ δ.roles : ψ.destination 6= γ ∨ ψ.navigable = True}

return result

collected. The overriding of inherited navigations for a clabject is discussed

in 11.4.1.

γ.modeledNavigations() :=

{γs.eigenNavigations() : γs ∈ γ.modeledSupertypes()}

The roles of a clabject, i.e. the navigations possible from the clabject is given

by the union of the eigen- and inherited roles.

γ.navigations() := γ.eigenNavigations() ∪ γ.modeledNavigations()

The eigenConnections of a clabject are the connections which define a role

the clabject is the target of:

γ.eigenConnections() := {ψ.connection∀ψ ∈ Role : ψ.destination = γ}
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The model connections are the connections the clabject inherits from super-

types. More precisely, it is not the connection that is inherited, the role with

the supertype as destination is inherited.

γ.modeledConnections() :=

{γs.eigenConnections()∀γs ∈ γ.modeledSupertypes()}

Finally, the connections of a clabject are the union of the eigen- and inherited

ones.

γ.connections() := γ.eigenConnections() ∪ γ.modeledConnections()

With both navigations and connections, overriding in the most general case

is not trivial. See 11.4.1 for details.

As the key for navigation from the view of the navigating clabject is the

roleName to navigate by, the roleNames any clabject can navigate by are

given by

γ.navRoleNames() := {ψ.roleName∀ψ ∈ γ.roles() : ψ.navigable = True}

An actual navigation is defined by the traversal of the involved connec-

tion towards one role, yielding its destination as a result. The roleName

is unique for one connection, but any source clabject may participate in

more connections, thus having more than one navigation for the same role-

Name. So the result of one navigation is not one single clabject, but a set

of clabjects.

γ.nav(rN) := {ψ.destination∀ψ ∈ γ.navigations() : (ψ.navigable = True∧
ψ.roleName = rN)}

The domain of a clabject in a connection are the destinations the clab-

ject can navigate to via the connection. Of course, only a participat-

ing clabject can have a domain in a connection, γ ∈ δ.participants().

γ.domain(δ) := ψ.destination : ψ.connection = δ ∧ ψ.navigable∧
(ψ.destination 6= γ ∨ ∃ψ′ : ψ 6= ψ′ ∧ ψ′.destination = γ)

If a clabject participates more than once in a connection, it itself can be a

part of the domain, exactly if one of the participations is navigable.

Definition 15 (Multiplicity Values): A multiplicity is a tuple
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µ := (lower, upper), lower ∈ N0, upper ∈ N0 ∪ {∗}
where lower is the lower multiplicity bound and upper is the upper multi-

plicity bound. Multiplicity is normally displayed as lower..upper, except for

the special cases

• lower = upper. multiplicity is displayed as lower

• lower = 0 ∧ upper = ∗. multiplicity is displayed as ∗

Multiplicity defines an operation to check the conformance of a single value

to the constraints imposed by the multiplicity:

µ×Integer → {True, False}, (m, i)→ lower ≤ i∧(upper ≥ i∨upper = ∗)

Definition 16 (Modeled Classification): As with generalizations, classifica-

tions also define a tree structure and any clabject can retrieve the types and

instances that are defined by the existence of classification relationships.

With operation 6 it is easy to define the operation for modeled instances by

Operation 6 γ.modeledTypes()

result← ∅
queue← Queue({γ} ∪ γ.modeledSupertypes())

while |queue| > 0 do

current← queue.pop()

for φ ∈ Σγ.level.classifications do

if φ.instance = current then

result← result ∪ (φ.type ∪ φ.type.modeledSupertypes())

return result

inverting the operation.

γ.modeledInstances() := {γ′ ∈ Σγ.level+1 : γ ∈ γ′.modeledTypes()}

γ.isModeledType(γi) := γ ∈ γi.modeledTypes()

As a special case of these operations a clabject can not only retrieve the tar-

get clabjects, but also the classification relationships realizing them:

γ.modeledClassificationsAsInstance() := {φ ∈ Σγ.level.classification :

γ = φ.instance}
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γ.modeledClassificationsAsType() := {φ ∈ Σγ.level+1.classification :

γ = φ.type}
Taking the modeled classifications into consideration (and nothing else), the

clabject may retrieve its modeled types and instances.

γ.isModeledInstance(γt) := γt ∈ γ.modeledTypes()

Although the different notions of types and instances will not be defined

until definition 30, the clabject can retrieve them from the model. Oper-

ations 7 and 8 give the definition of the operations for incomplete types.

Of course, the incomplete types are also obtained by the expression γt ∈

Operation 7 γ.completeModeledTypes()

result← ∅
sources←
{γ} ∪ {γs ∈ γ.modeledSupertypes() : γ.isShallowSubtype(γs)}

for φ : φ.instance ∈ sources ∧ φ.kind ∈ {instantiation, isonym} do

result← result ∪ {φ.type}
result← result∪
{γs ∈ φ.type.modeledSupertypes() : φ.type.isShallowSubtype(γs)}

return result

Σγ.level−1.clabjects() : γ.isHyponym(γt) but the incompleteModelTypes op-

eration cannot rely on reasoning to get its results but only on modeled in-

formation. That means there has to be a classification element between an

instance and a type. Operation 8 gives the formal definition.

The blueprint of a clabject can only be indicated through a classification.

Blueprint information is not inherited and there can only be one blueprint

of a clabject.

γ.blueprint() := φ.type : φ.instace = γ ∧ φ.kind = instantiation

The offspring of a clabject are the instances that have been created from

that clabject as a blueprint. As blueprint information can only be within a

classification, model offspring relies on classifications as well.

γ.modeledOffspring() := φ.instance : φ.type = γ ∧ φ.kind = instantiation
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Operation 8 γ.incompleteModeledTypes()

result← ∅
unsure←
{γ}∪{γs ∈ γ.modeledSupertypes() : γ.isShallowSubtype(γs)} // the

classification sources which are not yet sure to be incomplete

sure ← {γs ∈ γ.modeledSupertypes() : ¬γ.isShallowSubtype(γs)} //

the ones which are already sure to be incomplete

for γsure ∈ sure do

result← result ∪ γsure.modeledTypes() // all types are incomplete

for γunsure ∈ unsure do

for φ ∈ γunsure.modeledClassificationsAsInstance() : φ.kind =

hyponym do

result← result ∪ {φ.type}
result← result ∪ φ.type.modeledSupertypes()

unsure← unsure \ {γunsure} // γunsure is no longer unsure and also

processed

// the clabjects remaining unsure have to find their property on the type

level

for γu ∈ unsure do

for φ ∈ γu.modeledClassificationAsInstance do

// φ.type itself cannot be incomplete or γu would not be unsure

for γt ∈ φ.type.modeledSupertypes() do

if ¬φ.type.isShallowSubtype(γt) then

result← result ∪ {γt}
return unsure
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kind instance type

instance instance type

isonym isonym complete type

hyponym hyponym incomplete type

instantiation offspring blueprint

Table 4.3: type and instance roles depending on the kind of a classification

Definition 17 (Classification Role): Based on the kind of classification, the

type and instance play a distinct role in the relationship. This role can be

used to characterize the kind of the classification. For the navigation of the

classification element itself, the roles type, instance remain valid as they are

unique and not subject to change. Table 4.3 shows the classification kinds

and the respective roles.

4.6 Relationship between Potency and Durability

A clabject’s potency and a feature’s durability do not constrain each other.

The potency limits the overall depth of a clabject’s isonym tree while the

durability defines how deep in that tree the feature will be present (i.e.

will endure). Thus, if the durability is smaller than the potency, there

will be valid isonyms without that feature somewhere down the tree. If

the durability exceeds the potency it means there can be instances of leafs

of the isonym tree which will have a conforming feature. The reason to

allow such constructs is that subtypes of a clabject may have a higher

potency and therefore carry the inherited feature further down their own

isonym tree than the supertype does. Figure 4.3 shows a schematic view

of an attribute that is present in more than one isonym tree. There is

however a relation between the potencies of subtypes and their direct su-

pertypes. If a subtype does not add any feature with durability > 0 or

participate in a connection with potency > 0, the potency of the sub-
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Figure 4.3: The attribute ζt lives longer than its owning clabject γt.

type and the supertype have to be equal. The reason is that any isonym

of the supertype will also be an isonym of the subtype and vice versa.

They share the same isonym tree and therefore their potency has to be

the same.

({η ∈ γ.eigenFeatures() : η.durability > 0} = ∅)∧
({δ ∈ γ.eigenConnections() : δ.potency > 0} = ∅) =⇒

(∀γs ∈ {ξ.supertype∀ξ : γ ∈ ξ.subtype} :

γ.potency = γs.potency)

4.7 Connection Semantics

Connections have traits that impose constraints on the shape and existence

of their instances. This section focusses on the formal consequences of these

traits. As each of the three traits (transitivity, symmetry and reflexiveness)

can have three states (true, false and not defined), setting a trait to false is

just a strict statement as setting it to true. Only undefined traits do not

impose any constraints on the classified domain.
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4.7.1 Transitivity

If a connection is transitive, a connection chain a.b.c implies the existence

of a third instance connecting a to c directly. If the transitivity statement is

negated (i.e. if the not transitive statement is made) then such an instance

cannot exist.

Operation 9 Connection Transitivity. The algorithm assumes the transi-

tivity of the input connection δ is defined to be either true or false. The

case that there is no statement on transitivity is not covered.

domain← {δi ∈ Σδ.level+1.connections() : δi.isInstance(δ)}
shortcuts← ∅
for δi ∈ domain do

// detect the chains starting from δi

for ψ ∈ δi.roles() : ψ.navigable do

// the start of a chain has to be navigable

γ ← ψ.destination // γ is the possible man in the middle

for δi′ ∈ (γ.connections ∩ domain) do

// γ takes part in two instances

if ∃ψ′ ∈ δi′ .roles() : ψ′.destination 6= γ ∧ ψ′.roleName =

ψ.roleName then

// γ is on the right end, so γ is the man in the middle

start ← (ψ′′ ∈ δi.roles() : ψ′′ 6= ψ).destination // the start is

the other end of δi

shortcuts← shortcuts ∪ {(start, ψ′.destination, ψ.roleName)}
if δ.transitive then

for (start, end, rN) ∈ shortcuts do

∃δi ∈ domain : {start, end} ⊂ δi.participants()∧
ψ ∈ (δi.roles() : ψ.roleName = rN).destination = end

else

∀(start, end, rN) ∈ shortcuts :

@δi ∈ domain : {start, end} ⊂ δi.participants()∧
ψ ∈ (δi.roles() : ψ.roleName = rN).destination = end
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The algorithm searches for chains of three consecutive connected clab-

jects. The roles must be navigable and connect to the clabjects with the

same roleName. The domain for this search are the instances of the con-

nection under discussion. For each member of such chains, a shortcut con-

nection from the start to the end (i.e. a direct connection with an equal

navigable role) has to exist. If the connection states it is not transitive, such

a connection must not exist.

4.7.2 Reflexiveness

A reflexive connection is a connection where the existence of an instance

implies the existence of another instance connecting the participant to itself.

A connection can only be reflexive if its order is two. Reflexiveness only

applies to navigable roles and although its semantics remain intact for an

undirected connection (both roles are navigable), it makes most sense for

directed connections (only one role navigable). The domain for the algorithm

is the same as for transitivity.

Operation 10 Connection Reflexiveness. The algorithm assumes the re-

flexiveness of the input connection δ is defined to be either true or false.

The case that there is no statement about it is not covered.

domain← {δi ∈ Σδ.level+1.connections() : δi.isInstance(δ)}
for δi ∈ domain do

for ψ ∈ δi.roles() : ψ.navigable do

ψ′ ← ψ′′ ∈ δi.roles() : ψ′′ 6= ψ

δ.reflexive = true⇐⇒
∃δ′ ∈ domain : δ′.participants = {ψ.destination}∧
δ′.role(ψ′.roleName).navigable =true

4.7.3 Symmetry

A symmetric connection is a connection where each navigation works in

both ways. Only binary (order two) connections can be symmetric. Every
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clabject reachable through a symmetric role is also able to reach the other

clabject via the same roleName (through another instance of the symmetric

role). The algorithm operates in the same way as the algorithm for reflex-

Operation 11 Connection Symmetry. The algorithm assumes the symme-

try of the input connection δ is defined to be either true or false. The case

that there is no statement on it is not covered.

domain← {δi ∈ Σδ.level+1.connections() : δi.isInstance(δ)}
for δi ∈ domain do

for ψ ∈ δi.roles() : ψ.navigable do

ψ′ ← ψ′′ ∈ δi.roles() : ψ′′ 6= ψ

δ.symmetric = true⇐⇒ ∃δ′ ∈ domain :

δ′.participants() = δi.participants()∧
δ′.role(ψ.roleName).navigable∧
δ′.role(ψ.roleName).destination = ψ′.destination

iveness. For each navigable role of an instance connection there has to exist

another instance realizing the same navigation in the opposite direction.

4.8 Correlation Semantics

Correlations are either set relationships, classifications or generalizations.

Classification semantics are covered in chapter 6 and 39 while generalizations

are addressed in 40. They are both very important and too complex to

be dealt with here. The isInstance operation is based on the definitions

presented in this section is also introduced in chapter 6.

4.8.1 Equality

Two clabjects are equal if there is no way to distinguish them apart from

their name. In other words, they are different names for the same thing

and any instance of one will also be an instance of the other and vice versa.

There cannot be a clabject that is an instance of one but not the other.
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(γ, γ′ : ∃υe : γ = υe.base ∧ γ′ = υe.equal ∨ γ′ = υe.base ∧ γ = υe.equal)

=⇒ ∀γi ∈ CLABJECT : γi.isInstance(γ) ⇐⇒ γi.isInstance(γ′)

Equality exists whenever the sets defined by two clabjects are the same.

There need not be an expressed equality relationships between them, but

if there is one, the two clabjects must be equal. Equality is a symmetric

property.

4.8.2 Inversion

If a connection is the inverse of another it inverses all the navigations the first

one introduces. So any clabject reachable from an instance of one clabject

can navigate to that clabject via an instance of the inverse connection. Only

binary connections can be connected by inversions.

(δ, δ′ : ∃υi : δ = υi.base ∧ δ′ = υi.inverse) =⇒

∀δi : δi.isInstance(δ) :

∀ψi ∈ δi.roles() : ψi.navigable = true :

∃ψ′ : ψ′.connection.isInstance(δ′)∧

ψ′.navigable = true ∧ ψ′.destination 6= ψi.destination∧

ψi.destination ∈ δi.participants()

4.8.3 Complement

A complement is a statement about three clabjects. The third ingredient

is the universe in which the complement is defined. So if a complement

exists, every instance of the universe has to be either an instance of the

complement or the original clabject, not both and not none. Also, there can

be no instance of either the base or the complement that is not an instance

of the universe.

υc =⇒ ∀γi : γi.isInstance(υc.universe) ⇐⇒

(γi.isInstance(υc.base) ⇐⇒ ¬γi.isInstance(υc.complement))
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4.9 Overview of Operations & Default Values

This section contains a table of the previously defined operations as well as

a table listing the default values of the PLM traits.

Table 4.4: PLM Operations

Element Operation Return Type Result

Element linguisticType PLM Type the linguistic type of

the element

Ontology isWellFormed Boolean true if the ontology

is well formed

Model level Integer the level of the

model is the level

of the contained

clabjects

Model classifiedModel Model the model classified

by the called model

Model classifyingModel Model the model classifying

the called model

Model clabjects Set(Clabject) all the clabjects con-

tained (recursively)

in the model

Model entities Set(Entity) the entities of the

clabjects()

Model connections Set (Connec-

tion)

the connections of

the clabjects()

Model inheritanceRoots Set(Clabject) the clabjects in the

model without a

model supertpye

Model roles Set(Role) the roles contained

in the connections of

the model

Model isWellFormed Boolean true if the model is

well formed

Model isRootModel Boolean true if there are no

models above
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Model isLeafModel Boolean true if there are no

models below

Feature owner Clabject the clabject owning

the feature

Feature isWellFormed Boolean true if the feature is

well formed

Attribute isWellFormed Boolean true if the attribute

is well formed

Correlation owner Integer the model owning

the correlation

Classification level Integer the level of the own-

ing model

Classification isWellFormed Boolean true if the classifica-

tion is well formed

Generalization level Integer the level of the own-

ing model

Generalization isWellFormed Boolean true if the gener-

alization is well

formed

SetRelationship level Integer the level of the own-

ing model

SetRelationship isWellFormed Boolean true if the set re-

lationship is well

formed

Clabject modeledSupertypes Set(Clabject) the clabjects reach-

able via supertype

generalizations

Clabject modeledSubtypes Set(Clabject) the clabjects reach-

able via subtype

generalizations

Clabject modeledGenerali

zationsAsSubtype

Set (General-

ization)

the generlalizations

the clabject is the

subtype of

Clabject modeledGenerali

zationsAsSupertype

Set (General-

ization)

the generlalizations

the clabject is the

supertype of
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Clabject eigenNavigations Set(Role) the roles the clabject

is the destination of

Clabject modeledNavigations Set(Role) the roles inherited

from supertypes

Clabject navigations Set(Role) the roles the called

clabject can reach

another one with

Clabject eigenConnections Set (Connec-

tion)

the connections the

called clabject par-

ticipates in

Clabject modeledConnections Set (Connec-

tion)

the connections in-

herited from super-

types

Clabject connections Set (Connec-

tion)

the connections the

called clabject can

navigate by

Clabject navRoleNames the roleNames the

called clabject can

reach others with

Clabject nav(roleName) Set(Clabject) the clabjects reach-

able from the called

clabject via the role-

Name

Clabject domain(Connection) Set(Clabject) the clabjects reach-

able from the called

clabject via the con-

nection

Clabject features Set(Feature) all the features in the

facade of the called

clabject

Clabject attributes Set(Attribute) all the attributes in

the facade of the

called clabject

Clabject methods Set(Method) all the methods in

the facade of the

called clabject
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Clabject model Model the model the clab-

ject is recursively

contained in

Clabject eigenFeatures Set(Feature) the features defined

directly by the clab-

ject

Clabject modeledFeatures Set(Feature) the features inher-

ited from supertypes

Clabject feature(name) Feature the feature with the

provided name

Clabject modeledInstances Set(Clabject) the clabjects that

are either directly

connected to the

called clabject or

one of its subtypes

with a classification

or are a subtype of

a directly connected

one

Clabject modeledTypes Set(Clabject) the inverse operation

to modelInstances

Clabject isModeledType

(Clabject)

Boolean true if the called

clabject is a modeled

type of the provided

one

Clabject isModeledInstance

(Clabject)

Boolean true if the called

clabject is a modeled

instance of the pro-

vided one

Clabject modeledClassifi

cationsAsInstance

Set (Classifi-

cation)

the classifications

the clabject is the

instance of

Clabject modeledClassifi

cationsAsType

Set (Classifi-

cation)

the classifications

the clabject is the

type of
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Clabject completeModeled

Types

Set(Clabject) the clabjects which

are a complete mod-

eled type of the

called clabject

Clabject incompleteModeled

Types

Set(Clabject) the clabjects which

are an incomplete

modeled type of the

called clabject

Clabject modeledOffspring Set(Clabject) the clabjects which

the called clabject is

the blueprint of

Clabject blueprint Clabject the clabject the

called clabject was

constructed from

Clabject isWellFormed Boolean true if the clabject is

well formed

Connection order Integer the number of roles

in the connection

Connection eigenRoles Set(Role) the roles directly

contained in the

connection

Connection roles Set(Role) the roles defining the

facade of the connec-

tion

Connection participants Set(Clabject) the clabjects taking

part in the connec-

tion

Connection navigate(roleName) Clabject the clabject that

participated in the

called connection

with the provided

roleName

Connection domain(navigable) Set(Clabject) the clabjects the

connection connects.

If navigable is true

then only those

which are reachable
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Connection roleNames Set(String) all the roleNames

present in the con-

nection

Connection role(roleName) Role retrieves the role

identified by role-

Name

Connection roleNamesForPartic

ipant(Clabject)

Set(String) the roleNames the

participant partici-

pates with

Connection lower(roleName) int the lower multiplic-

ity of the role iden-

tified by roleName

Connection upper(roleName) int the upper multiplic-

ity of the role identi-

fied by roleName

Connection navigable(roleName) Boolean true if the role iden-

tified by the role-

Name is navigable

Connection isWellFormed Boolean true if the connec-

tion is well formed

Role isWellFormed Boolean true if the role is well

formed

Role isDefaultRoleName Boolean false if the user ex-

pressed a roleName

Table 4.5: PLM Default Values

Element Trait Default Description

Element expressed true an engine that created
the element may change
the value

Element relevant true the vast majority of
model elements should
be relevant

Element fix false fixing of model elements
is only feasible for col-
laborative scenarios
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Visualizer durability element durability or
potency or 0

only elements involved
in classification can
have a durability and
it can never be higher
than the classification
potency

Clabject level none the level has to be en-
tered by the user

Clabject potency number of existing clas-
sified models

per default the clabject
potency is adjusted so
that the clabject affects
all the remaining levels

Role navigable true navigation is enabled
per default

Role lower 0 per default the classified
domain does not need to
redefine the role

Role upper * per default the classified
domain is not limited in
the redefinition of the
role

Connection transitive not set per default no state-
ment on transitivity is
given

Feature durability the clabject’s potency per default the feature
lives as long as the clab-
ject

Attribute mutability the feature’s durability per default the at-
tribute value lives as
long as the attribute

Generalization intersection not set per default no state-
ment on intersection is
given

Generalization disjoint not set per default no state-
ment on disjointness is
given
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Generalization complete not set per default no state-
ment on completeness is
given

Classification kind instantiation the default classification
usecase is instantiation
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Chapter 5

The Level Agnostic Modeling

Language

The following chapter introduces the Level Agnostic Modeling Language

(LML)(16, 32) used to render multilevel models in the PLM. After the re-

quirements leading to the chosen design are established, the features of the

language are presented and discussed, followed by the definition of the ren-

dering mechanics and a tour of the concrete syntax of the PLM elements.

The chapter concludes by representing the PLM in the LML (an thus con-

ceptually, using itself).

5.1 Requirements to a level agnostic modeling lan-

guage

The UML was first released by the OMG in 1997 (53) and has been the

subject of research and evolution ever since. Its concrete syntax for class

diagrams has however changed very little. There have been some additions

and tweaks over the years (e.g. stereotypes or powertypes) but the basics

have stayed the same. This stability is a testimony to the success of the

concrete syntax. A general purpose modeling language such as the LML

109



5. THE LEVEL AGNOSTIC MODELING LANGUAGE

ObjectStructure

 visit()

 visit()

ConcreteVisitor1

 visit()

 visit()

ConcreteVisitor2

 visit()

 visit()

«interface»

Visitor

 accept()

«interface»

Element

 accept()

 operation()

ConcreteElementB

 accept()

 operation()

ConcreteElementA

accept (Visitor v) {
v.visit(this);

}

visit (ConcreteElementA a) {
a.operation();

}

visit (ConcreteElementB b) {
b.operation();

}

walk1 () {
for (Element element : structure) {

element.accept(visitor1);
}

}

structure: ObjectStructure

visitor1: Visitor

visitor2: Visitor

 walk1()

 walk2()

Client

 ~ collection

*

«import»

«import»

Figure 5.1: UML class diagram of the Visitor pattern.2

should therefore deviate from the UML visualization conventions to the

smallest extent possible, and only when absolutely necssary.

5.1.1 UML Best Practices

The UML approach (figure 5.1) of representing entities as rectangles and

the connections between them as lines has proven to be very intuitive even

to users not familiar with modeling. The UML style of rendering properties

inside the shape of the containing element not only visualizes the natural

containment order into the model but also gives the model a clean and

tidy look. Last but not least, some of the traits of UML elements such

as navigability and multiplicity are displayed using concrete syntax pieces.

While not full elements on their own, the inclusion of the traits as concrete

syntax (e.g. the absence of an arrowhead if a connection is not navigable)

not only displays the trait in a way that resembles its semantic meaning but

gives the whole model more detail without adding more complexity. The

LML tries to make use of these well-proven and established concepts.
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5.1.2 Support for mainstream modeling paradigms

As shown in 3, there is quite a number of different approaches to modeling

in general and to viewing model content in particular. The main identified

paradigms are

• construction oriented top-down modeling with types where created

first and then instances are created from them,

• data oriented design of only one ontological level (i.e. a type model

(45)) with an explicit focus on attributes.

• analysis oriented modeling starting with a given set of elements and

creating new information or revealing implied information.

The LML is designed in full knowledge of all three paradigms and aims to

be able to support each of them.

5.1.3 Support reasoning services

Reasoning services need explicit support for correlations inside the model to

be on the one hand able to access the information needed for their operation,

and on the other hand to store their results. The LML tries to support

reasoning services by providing model elements representing correlations

and by offering rendering mechanisms for almost all the linguistic traits

that might be interesting to show.

5.2 LML representation of PLM concepts

The LML provides a visual concrete syntax for every PLM concept. Most

of the renderings reuse the well proven UML style. The details of the LML

2Credit to author Giacomo Ritucci published under Attribution-ShareAlike 3.0 Un-

ported (CC BY-SA 3.0) via Wikimedia Commons (http://de.wikibooks.org/wiki/

Datei:Visitor_UML_class_diagram.svg)
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syntax are covered in (16). Figure 5.5 renders the PLM metamodel using

the LML syntax.

Ontology is the outermost visual container and in any LML diagram there

is only one ontology. So an ontology is rendered as a rounded rectangle

surrounding all the other elements. The ontologies name is displayed

in the top right corner.

Models are the only children of ontologies and every model encapsulates

one ontological level. So visually, models form the layers of the model

stack inside the ontology. Hence a model is rendered as a horizontal

layer inside the ontology rectangle. The model’s name is displayed just

below the horizontal line on the left hand side.

Entities represent the nodes in the model graph and are the visual coun-

terparts to classes in the UML. So the visual notation reuses the well-

known rectangles with the three compartments: The header compart-

ment, the attribute compartment and the method compartment.

Connections realize the edges in the model graph, but are clabjects them-

selves. So in LML every connection is the visual equivalent to associa-

tionClasses in UML. Therefore a connection has a nodal shape as well.

To distinguish connections from entities, the shape for a connection

is a flattened hexagon. Inside the shape the compartments are the

same as for entities. The representation of connections as edges in the

model graph is discussed in the following section.

Roles visualize the participation of a clabject in a connection. Visually,

they are lines connecting the participant to the connection. The traits

are rendered in the same way as in the UML. If the role is navigable,

the line at the participant ends with an arrowhead. The multiplicity

constraint is displayed at the participant end as is the roleName.

112



5.3 Main Innovations in the LML

Attributes are rendered in text inside the attribute compartment of the

owning clabject. The rendered traits are limited to name, datatype,

value, durability and mutability.

Methods are rendered in text inside the method compartment of the own-

ing clabject. The textual representation is the method signature.

Generalizations are rendered as lines between the connected clabjects. At

the supertype end, a triangle arrowhead indicates the supertype. A

generalization can connect multiple subtypes or multiple supertypes.

In that case the lines originate from a virtual center point.

Classifications are the only relationships crossing model boundaries. In

order not to break the visual boundaries between models, they are

rendered as dashed lines. Classifications are always directed from the

instance to the type and the arrowhead at the type is an open triangle

for visual distinction from generalizations. Roles can be displayed at

each end, but their content depends on the kind of the classification.

SetReleationship renderings do not differ between the concrete subtypes.

Each relationship is binary and connects two clabjects. The optional

universe of a complement is shown in text form inside the shape. The

shape at the meeting point of the lines connecting the ends is a rect-

angle with curved long sides. As set relationships do not have names

the type of relation is shown inside the rectangle.

5.3 Main Innovations in the LML

The main enhancement of the LML in comparison to the UML is that LML

is able to epxress the same information with a significantly lowered set of

concepts. Additionally the LML provides several features to enhance the

UML user experience and to foster multi-level modeling.
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5.3.1 Dottability

Many of the PLM elements connect other elements at various levels of ab-

straction. The intuitive way to render them is with a line, but in some graph

definitions, edges are not real elements in their own right but only tuples of

the nodes they connect. In the LML connections do have more semantics

than just the affected nodes, if they are given a shape of their own (like

UML AssociationClasses) the natural paradigm of representing connections

is broken and the shape is perceived as a node in the graph as well. To break

this cycle every conecting PLM element with rich semantics can be rendered

in a visually insignificant, “dotted”, way to resembles edges in the model

graph (see figure 5.2). If the focus is on their semantics as an element in

themselves they can be rendered in an exploded form using a defined shape

to display their content.

Figure 5.2: Example model graph, once dotted on the left hand side and

with exploded rendering on the right hand side.

5.3.2 Clabject Header Compartment

In traditional modeling languages, the header compartment of entity sym-

bols only contains the entity’s identifier. This is arguably the most impor-

tant trait of a classifier (and is omitted only for anonymous instances or to

visualize a model purely as symbols), but over time the space in the header

compartment became too precious to be wasted. Normally the identifier

does not take up the whole horizontal space in an entity symbol since all the
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features have to be rendered within the same bounds, and methods as well

as fields render their own identifier along with other traits in the same line.

In the UML, it is feasible to append the type the clabject was constructed

from with a preceding colon to the clabject’s name. In the constructive

modeling mode this mechanism would be a possibility to render the blueprint

trait, but in exploratory mode the space would be lost. The general idea

of showing correlations to the side of the identifier is a good principle, so

clabject specific information should be shown with its symbols bounds.

5.3.2.1 Proximity Indication

With proximity indication it is possible to include generalization, classi-

fication and containment information in the header compartment. Every

clabject involved is displayed with its identifier. To highlight the identifier

of the clabject, it is rendered in bold font while the others are rendered in

normal font. Viewing engines can opt to render the involved clabjects even

with a smaller font according to user configuration.

Displayed proximity information is not limited to one level in the re-

spective hierarchy as with the UML style used to show blueprints. As an

upper bound, all the information in the clabject’s supertype tree and type

tree can potentially be included in the header compartment. Suppose that

A is a clabject to be rendered.

generalization Any supertype B can be shown in the header compartment

by prepending it to the identifier, separated by a less than sign: B<A.

The less than sign is intended to resemble the arrow head of a gener-

alization relation pointing towards the supertype. Subsequent super-

types can be added to the inheritance path, where C<B<A shows the

clabject C as a supertype of both A and B.

To show the relationhsip between A and C without relying on B, double

less than signs indicate the indirect existence of the relation (indirect
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A

C:A

B<E:A C<D:B

F:(B,C):A

B

Figure 5.3: Exhaustive Proximity Indication Example

in the sense that it is valid but realized by the existence of another

clabject): C<<A.

classification The same mechanism of showing inheritance can be used to

show classification. The type is separated from the instance using a

colon, resembling the UML style of displaying a type. Classification

information is shown to the right of the identifier. Again the principle

can be applied repeatedly covering multiple levels: A:T:TT.

containment Finally, containment is the last ingredient in a fully fleshed

out header compartment. Containment forms the natural hierarchy of

model elements. In the LML the owner is separated from the owned

element by a dot, unlike the double colon in the UML. By applying

the pattern recursively each element receives a unique navigation path

or fullname from the root element. As containment is the closest

relation, it is shown directly in front of the identifier but not in bold

font: B<Example.O2.A:T

While it is theoretically possible to apply the proximity features to displayed

identifiers other than the clabject’s one, it is prohibited by the LML concrete

syntax. Figure 5.3 shows an example of a verbose proximity indication.
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5.3.2.2 Attribute Value Specification

An attribute value specification (AVS) is a way to visualize traits of a clab-

ject in a textual form in the header compartment. The concrete syntax is a

comma separated list of key=value pairs where key is the name of the trait

and value is the value of the trait. The list is enclosed by curly braces.

{key=value,key=value,..,key=value}

Semantically the AVS is a way for the user to either de-clutter the visual

rendering of a clabject or emphasize a certain trait, perhaps one that does

not have a distinct concrete syntax of its own (like relevant for example).

By default, no traits are shown in the AVS. Potentially, the AVS can show

all the traits, including the ones already rendered through special concrete

syntaxes (like name, for example). The AVS is located underneath the string

representing the identifier and proximity indication. It is rendered in smaller

font. The rendering engine may opt to display it in another font (monospace

has proven useful) to distinguish it from the artefact’s name.

Boolean traits are a special case in AVS rendering. In the UML style of

tagged values a boolean key is shown when it is true and not shown when it is

false. The rendering saves horizontal space because the “=true” is omitted,

but as the boolean key has to be shown if it is true the AVS has to include all

positive keys. Given that there are booleans which default to true, the AVS

becomes large by default and the user loses flexibility and control, because

displaying the boolean traits is taken out of his hands. Figure 5.4 shows the

disadvantage of the approach. Even though only the potency trait shall be

rendered, the other ones have to be shown as well. To increase flexibility

the LML does not apply the principle of strict boolean rendering. So if a

boolean trait is not shown, it does not mean it is false. There is no statement

implied. As the LML needs a way to show false boolean traits as well and

the horizontal space shall be preserved as much as possible, a false trait is

rendered with an exclamation mark in front of it.

117



5. THE LEVEL AGNOSTIC MODELING LANGUAGE

Figure 5.4: AVS and boolean traits

Person
{expressed, relevant, potency=1}

Person
{potency=1}

5.3.3 Special Visual Notation for Traits

While all the traits of an element are usually accessible through the context

menu or property panes of the modeling tool and the LML additionally

offers the possibility to display any trait along with its value in the AVS,

some traits are special enough to be given their own distinct concrete syntax.

The goal was to make the rendering of traits as inconspicuous as possible.

Whenever a trait has the default value, the assumption is that the trait does

not have enough significance to be shown. So traits are only shown when

their value differs from the default one. Whenever possible the conventions

conform to the original ones of Atkinson and Kühne (9).

5.3.3.1 Potency

The potency of a clabject can be shown as a superscript after the clabject’s

identifier in the header compartment. Potency does not have a fixed default

value, as there is no global “uninteresting” value for potency. In fact, the

to-be-expected value of potency depends on the maximum number of levels

the ontology is intended to have. A typical model element at L0 will have

offspring all the way to Lmax so the expected potency at L0 would be max.

However, since traditional modelling technologies support only two onto-

logical levels and thus every type modeled had a potency of 1, the default

potency value is 1.

durability and mutability Durability and mutability are also called fea-

ture potency and value potency, especially when talking about potency in

general or in an informal way. The concrete syntax is the same as for po-

tency. The value is shown as a superscript next to the identifier it specifies.
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The default value for durability is the potency value of the owning clabject.

So the durability is shown only when it differs from the clabjects potency,

which makes sense as only then does the feature have a different lifespan to

the clabject.

The default value for the mutability follows the same pattern. The de-

fault value is the features durability, so it is only shown when the mutability

is different than the feature durability.

5.3.3.2 Level

The level trait is only relevant for clabjects. In normal viewing mode it is not

necessary to show each individual clabject’s level trait since this is usually

evident from the model they are contained in. The level trait becomes

important when slices of models or single elements are shown, especially if

elements from different levels are shown in one view alongside each other.

The level is then rendered as a subscript after the clabject identifier. The

level position is the same as the potency’s but it is shown as a subscript

rather than a superscript. Since the editor can not determine when the

level trait is of importance, the rendering of the level is controlled by user

settings.
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5.4 Representing the PLM in PLM rendered with the LML

5.4 Representing the PLM in PLM rendered with

the LML

Now that the abstract and concrete syntax have been established, this final

section shows how the PLM can be represented by itself using the LML as

the concrete syntax. Although the semantics is the same as the UML version

in (figure 4.2) the different visualization emphasizes different properties of

the metamodel:

no complex attributes PLM Attributes are not able to express relation-

ships between metamodel types. So for every relation between two

PLM Elements there has to be a Connection. The motivation is the

strict separation of data and element relations.

dotted notation In PLM, every Connection is displayed either in exploded

or dotted notation. For the metamodel, every Connection looks like

the edge in a graph and not like an AssociationClass, so they are all

rendered dotted. The visual consequence are the little rectangles in

the middle (or at junctions) of the line.

Compared with the UML-like representation, the most obvious change is

that the inheritance hierarchy is not as visible anymore. The reason is

that before the only lines were the Generalization lines and therefore the

layout of the Elements could be hierarchical from top to bottom according to

those Generalizations. With the additional lines in the picture, the modeler

(or a layout engine) is presented with the task of optimizing the layout

according to a some concrete criteria. Most commonly these criteria are

number of line crossings, the sum of all line lengths (possibly weighted) or the

size of the bounding rectangle. In the given figure, these different concerns

were combined to optimize readability. The immediate benefit of the LML

representation is the visualization of the relative importance of elements

based on the number of edges entering or leaving them and their overall
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5. THE LEVEL AGNOSTIC MODELING LANGUAGE

size. The central role Clabject plays in the PLM becomes immediately

visible through the many incoming Connections and the resulting size of the

rectangle that represents it.
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Chapter 6

Clabject Classification

One vital ingredient of a comprehensive multilevel modeling framework is a

formal and complete definition of the semantics of classification. The defi-

nition has to be formal so they it be processed by reasoners, transformation

engines or other kind of information processing systems, and it has to be

complete so all necessary information needed by these systems to make ap-

propriate inferences is available. This chapter presents such a formal and

complete model of classification on top of the PLM. The first step is to

analyse the local conformance of just the two clabjects involved in a clas-

sification relationship (type and instance). The next step then considers

their connected clabjects as well until, finally, every mandatory connection

is analysed. For connections there is more work to do than for entities. A

connection can only be an instance of another connection if the connected

clabjects conform as well. Additionally, multiplicity conformance has to be

checked.

This chapter contains the needed layers of conformance definition, start-

ing with the one without any dependencies (feature conformance) and grad-

ually building up to the isInstance operation. The steps along the way

are the local conformance of two clabjects, neighbourhood conformance and

property conformance.
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6. CLABJECT CLASSIFICATION

6.1 Feature Conformance

Definition 18 (Feature Conformance): As the name is the primary key for

the identification of a Feature within a clabject, the names have to match.

The durability of a feature has to be one lower than the durability of the

feature it conforms to. ∗ durabilities are conformed to by any durabil-

ity.

η.conforms(η′) := (η.name = η′.name)∧
(η′.durability 6= ∗ =⇒ η.durability = η′.durability − 1)∧
(η′ ∈ ATTRIBUTE =⇒ η.conformsa(η

′)

Definition 19 (Attribute Conformance): Given two attributes ζ, ζ ′,

ζ.conformsTo(ζ ′)

is true if ζ fulfils the definition of ζ ′ so that ζ could have been created

from ζ ′. Being created from means that the clabject of ζ ′ is instanti-

ated and as part of this process, ζ ′ creates an attribute for the instance.

ζ.conformsa(ζ
′) :=

(ζ.datatype = ζ ′.datatype)∧
(ζ ′.mutability 6= ∗ =⇒ ζ.mutability = max[ζ ′.mutability − 1, 0])∧
((ζ ′.mutability = 0) =⇒ (ζ.value = ζ ′.value))

The semantics of mutability come into play when the mutability of the to-be

conformed attribute is zero. In that case, the value of the Feature belongs

to the type and cannot be changed by any of the instance clabjects. As a

consequence, for the conformance check of the Features, the value has to

be equal. As mutability can be lower than the durability, it is possible to

conform to a mutability of zero. The conforming mutability then has to be

zero as well. The operation max[. . . ] returns the maximum of the specified

values.

A datatype is a valid type for a primitive data value. Examples include

but are not limited to String,Boolean, Integer, F loat,Double, . . . A formal

definition for these types is not necessary as they are given by the environ-

ment in which the model is implemented in. The semantics of a datatype
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for a PLM model is the static ability to compare two attributes for confor-

mance based on their intended datatype and secondly the ability to validate

the well-formedness of an attribute by comparing the actual type of the

value against its defined datatype. The conformance of datatypes is stated

with the equals sign in the definition. In the implementing environment,

there may be other possibilities than exact equality, for example bigInteger

conforming to Integer.

Definition 20 (Method Conformance): Methods consist of a body containing

the execution information in textual form and the input and output param-

eters. As the runtime semantics and effects are not part of the PLM, but

the concern of the implementing domain, the only static information that

can be processed is the name and durability of the method. It is possible to

judge the number (and name or even the types the expression evaluates to)

of the parameters, but the conformance requirements vary with the imple-

menting platform. So formally, method conformance is the same as feature

conformance.

6.2 Local Conformance

Definition 21 (Clabject Local Conformance): Local conformance for clab-

jects covers a clabject’s traits and features. Roles cannot be a part of

local conformance as the navigations possible from a clabject are defined

by the connection and are therefore outside the scope of local conformance.

γ.localConformsclabject(γ
′) := (γ.level = γ′.level + 1)∧

(∀η′ ∈ γ′.features() : η′.durability > 0 : ∃η ∈ γ.features() :

η.conforms(η′))

Definition 22 (Entity Local Conformance): Entities do not extend the linguis-

tic definition of clabjects other than being a disjoint and complete subtype

(together with connection). While this is important information is not rele-

vant for local conformance, so the operation for entity local conformance del-

egates to clabject local conformance.
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6. CLABJECT CLASSIFICATION

ε.localConforms(ε′) := ε.localConformsclabject(ε
′)

Definition 23 (Connection): The main things connections add to clabjects is

the definition of roles. Roles cannot exist without the defining connection,

so they belong to the local domain of a connection. The links of the role

to the destination are not part of the local domain of the connection as

they touch another clabject. So only the trivial traits of the role can be

checked.

δ.localConforms(δ′) := (δ.localConformsclabject(δ
′))∧

(δ.order() = δ′.order()) ∧ (∀ψ′ ∈ δ′.roles() :

∃ψ ∈ δ.roles() : (

ψ.roleName = ψ′.roleName ∧ ψ.navigable = ψ′.navigable))

6.3 Neighbourhood Conformance

Neighbourhood conformance extends the scope of local conformance to the

connections and destinations of the subjects. Since there should be no recur-

sion at this stage, the property that needs to be checked at the navigation

ends is local conformance.

Definition 24 (Clabject Neighbourhood Conformance): Clabject neighbour-

hood conformance extends the scope of local conformance to the clabject’s

navigations (i.e. the roles) and the destinations reachable through its manda-

tory1 roles. The scope is therefore extended by the immediate neighbour-

hood of the clabject.

γ.neighbourhoodConformsclabject(γ
′) := (γ.localConforms(γ′)) ∧ (

∀ψ′ ∈ γ′.navigations() : (ψ′.connection.potency > 0 ∧ ψ′.lower > 0) :

∃ψ ∈ γ.navigations() :

(ψ′.roleName = ψ.roleName) ∧ (ψ′.navigable = ψ.navigable)∧
(ψ.destination.localConforms(ψ′))∧
(ψ.connection.localConforms(ψ′.connection))

1Informally, a role is mandatory if the connection has potency greater than zero and

any other of its roles has a lower multiplicity greater than zero.
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Only those roles that are navigable and have a positive lower multiplicity

bound are selected as these are the navigations an instance has to define in

order to be a valid instance.

Definition 25 (Entity Neighbourhood Conformance): As with local confor-

mance the neighbourhood conformance of Entities delegates to the clabject

operation.

ε.neighbourhoodConforms(ε′) := ε.neighbourhoodConformsclabject(ε
′)

Definition 26 (Connection Neighbourhood Conformance): The neighbourhood

conformance of connections not only includes the navigations the connection

itself participates in, but also the clabjects reachable through the roles of

the connection.

δ.neighbourhoodConforms(δt) := δ.neighbourhoodConformsclabject(δt)∧
∀rN ∈ δt.roleNames() :

δ.navigate(rN).localConforms(δt.navigate(rN))

The existence and conformance of the roles at δ is already ensured by the

local conformance of the connections, so it does not need to be checked

again.

6.4 Multiplicity Conformance

A connection holds a multiplicity for every destination. As the multiplicity

is a statement about the number of instance connections that can exist in

the classified domain, it does not make sense to define multiplicities on the

lowest ontological level.

The informal meaning of a multiplicity [1..2] for one participant A of a

connection B is that every instance of any other participant of B must be

connected to at least one and at most two instances of A through instances

of B. One connection cannot conform or negate the multiplicity constraint,

only the whole classified domain can. As a consequence, the check operation

does not have a parameter.
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Informally, the instances of both the connection and the participating

instances are counted and checked against the multiplicity. At this point the

set of the instances of a connection and/or clabject is not yet defined. Multi-

plicity conformance is a prerequisite for being considered an instance. So the

set of clabjects that need to checked can be determined by neighbourhood

conformance.

δ.multiplicityConforms() :=

∀ψ ∈ δ.roles() :

∀ψ′ ∈ δ.roles() : ψ 6= ψ′ :

∀γ ∈ Σδ.level+1.clabjects() :

γ.neighbourhoodConforms(ψ′.destination) :

ψ.lower ≤

|{ψ′′ ∈ Σδ.level+1.roles() : (ψ′′.destination 6= γ)∧

(γ ∈ ψ′′.connection.participants())

∧(ψ′′.roleName = ψ.roleName)∧

(ψ′′.connection.neighbourhoodConforms(δ))}|

≤ ψ.upper

The main problem of the multiplicity check is that it is part of the

isInstance check. Combined with the design requirement to avoid recursion

at this level, the consequence is that the multiplicity check cannot rely on

the instances. The set of clabjects that need to have a conforming number of

navigations for the current multiplicity constraint is given by the clabjects

γ that neighbourhood conform to the destination of the current role ψ′

opposite the checked role ψ. The set of roles ψ′′ matching the constraint

cannot point to γ itself but γ has to be a part of the connection. So ψ′′ defines

a navigation for γ. For the navigation to be a valid one its connection has

to neighbourhood conform (the strictest check possible) δ and the roleName

has to be the same.
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6.5 Property Conformance

Property conformance checks that a clabject has all the properties required

to be an instance of a type. The step from property conformance to actual

classification is small and sometimes trivial, but still necessary as property

conformance is required for classification, but not sufficient, so there may be

property conforming clabjects that are not instances. See 6.6.1 for details.

Definition 27 (Clabject Property Conformance): Property conformance takes

the type clabject as input and checks the candidate instance for the presence

of a conforming property for every property of the type.

γi.propertyConformsclabject(γt) := γi.neighbourhoodConforms(γt)∧
(∀ψt ∈ γt.navigations() : ψt.lower > 0 ∧ ψt.connection.potency > 0 :

∃ψi ∈ γi.navigations() :

ψi.connection.propertyConforms(ψt.connection))

∧¬γi.isInstanceOfExcluded(γt)

All Features are included in neighbourhoodConformance as they fit in the

tighter scope. The extra element in property conformance is the recursive

call to the property conformance of the connections connecting the clabjects

(only those which must exist according to the classified domain). With the

definition of connection property conformance, the check quickly spans all

reachable clabjects. As a consequence, inside this closure either all clabjects

are property conforming or none is.

The operation isInstanceOfExcluded ensures that there are no contra-

dictions between expressed generalizations and classifications regarding the

property conformance in question (see 6.5.1 for details). By weighting the

expressed correlations above the ontological properties, they are primary

information for the judgement of the classification question.

The definition of propertyConformance is recursive because it calls the

same operation of the connections the subject takes part in. The resolution

of this recursion is subject to section 6.7.

Definition 28 (Entity Property Conformance): Property conformance for en-
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tities follows the same rule as in the previous definitions in not adding any-

thing to the clabject definition.

εi.propertyConforms(εt) := εi.propertyConformsclabject(εt)

Definition 29 (Connection Property Conformance): Clabject property confor-

mance recursively branches to the connections. The clabject definition alone

would include all the clabjects that participate in a connection (starting from

the source). The addition to the reachable clabjects are the participants of

the connection. Naturally, they are included in connection property confor-

mance.

δi.propertyConforms(δt) := δi.propertyConformsclabject(δt)∧
δt.multiplicityConforms()∧
∀ψ∈δt.roles() :

∃ψi ∈ δi.roles() :

ψi.roleName = ψt.roleName ∧ ψi.navigable = ψt.navigable∧
ψi.destination.propertyConforms(ψt.destination)

Besides clabject property and multiplicity conformance the connection check

branches to the participating clabjects. Together with the propertyConfor-

mance check of these clabjects (regardless of whether they are entities or

connections), the check branches to all the connections they participate in,

thus spanning all clabjects reachable through connections from the source

clabject.

6.5.1 Excluded Types through Generalization

The properties checked by the property conformance operation include one

additional aspect beyond the properties (navigations and features). If the

type takes part in a disjoint generalization, any clabject can only ever be

an instance of one of the subtypes, but not both1. So if there is a classifica-

tion stating that the subject is already an instance of a subtype, the other

subtypes are excluded from the possible types of the subject. It is impor-

1By weighting the disjointness of the generalization over the properties, it is primary

information
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A
a : String

B
b : String

C
c : String

D
a : String
b : String
c : String

expressed

disjoint

(a) Single Exclusion

expressed

disjoint

excluded

(b) Generic Domain

Figure 6.1: The disjoint sibling problem

tant to note that the instanceOf relationship indicated by the classification

does not need to be reanalyzed based on properties. This information is

not questioned in this operation, only processed. Given the model situa-

tion shown in figure 6.1a, there are two observations: First, D has all the

properties to property conform to B. Second, D cannot be an instance of

B as it is already an instance of C and the generalization states that the

two are disjoint. So as a conclusion, there are correlations in the model

prohibiting the classification of D to B but it is neither a feature nor a nav-

igation. Figure 6.1b shows a more general picture. The exclusion is not

limited to single types, but whole subtrees of the inheritance hierarchy can

be excluded from property conformance by disjoint generalizations. The

operation γi.isInstanceOfExcluded(γt) returns true if γi cannot be an in-

stance of γt. Operation 12 gathers all the generalizations classGener on

the type level that are disjoint. The set possibles holds the supertypes of

the type, i.e. all clabjects that could possibly be excluded from the possi-

ble types of γi if there is a classification between γi and γt. The relevant

classifications insts are gathered by searching for those with γi or one of its

supertypes as their instance.

All the classGener are processed. If the subtypes are not disjoint from
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Operation 12 γi.isInstanceOfExcluded(γt)

classGener ← {ξ ∈ Σγt.level : ξ.disjoint}
possibles← {γt} ∪ γt.modelSupertypes()

excluded← ∅
insts← {φ ∈ Σγi.level :

φ.expressed ∧ (φ.instance = γi ∨ φ.instance ∈ γi.modelSupertpyes())}
for ξ ∈ classGener do

if possibles ∩ ξ.subtype 6= ∅ then

excluded← excluded ∪ (ξ.subtype \ possibles)
for φ ∈ insts do

actuals← {φ.type} ∪ φ.type.modelSupertypes()

if actuals ∩ excluded 6= ∅ then

return true

return false

the possibles it means there is a generalization that partitions a supertype of

γt and another clabject and therefore excludes some part of the model from

the possible types of γi, namely the remaining subtypes of the generalization

which are not supertypes of γt (those cannot be excluded, as an instance of

the subtype is always an instance of the supertype as well).

The remaining thing to check is whether there actually exists some clas-

sification between γi and one of the actually excluded types. If the type (or

any of its supertypes) of the classification is one of excluded, the operation

returns True meaning that γi is already an expressed (through a classifi-

cation) instance of a disjoint sibling1 of γt and therefore cannot property

conform to γt.

1two clabjects are siblings if they have a common supertype expressed by generaliza-

tion(s).
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6.6 Classification

After property conformance, all the necessary ingredients to define classifi-

cation are in place. However, classification cannot be defined right away as

classification is an umbrella for two disjoint types of classification that need

to be established first.

6.6.1 Property Conformance and Classification

The delta from property conformance to classification is twofold. Property

conformance is a strict requirement of classification. There never is an in-

stance that is not property conforming.

There are two kinds of classification, hyponymic classification and isonymic

classification. Hyponyms and isonyms completely partition the instances of

a type, so there is no instance of any type that is not either a hyponym or

an isonym.

6.6.2 Additional Property Definition

The distinction between isonyms and hyponyms is based on whether or not

the instance extends the set required by the type or not. To judge the exten-

sion of the type definition, the operation hasAdditionalProperties checks

if the candidate instance defines any properties that are not required to be

an instance of the type.

γi.hasAdditionalProperties(γt) := (∃ηi ∈ γi.features() :

@ηt ∈ γt.features() : ηi.conforms(ηt)

) ∨ (

∃ψi ∈ γi.navigations() : @ψt ∈ γt.navigations() :

ψi.roleName = ψt.roleName)
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6.6.3 Isonyms and Hyponyms

Definition 30 (Isonym): Informally a clabject is an isonym of a type if it

could have been created from that type. An isonym is an instance that has

all the properties required of its type, but no more. “Isonym” is a relative

term to the type the instance is an isonym of (the instance is called an

isonymic instance of the type) If an isonym has been created by instanti-

ating a type, it is called an offspring of that type, and the type is called

the blueprint of the instance. The type of an isonym is called a complete

type of the clabject since it contains a description of all the properties of

the clabject. Besides property conformance, the formal definition requires

potency conformance as well as not adding any properties to those required

by the type.

γi.isIsonym(γt) := γi.propertyConforms(γt)∧
¬γi.hasAdditionalProperties(γt)∧
(γt.potency 6= ∗ =⇒ γt.potency = γi.potency + 1)

Definition 31 (Hyponym): A hyponym is the other kind of instance a clab-

ject can be. A clabject is a hyponym of a type if it is an instance of the

type but could not have been created from it because it does not define

all of the clabject’s properties. A hyponym, or a hyponymic instance of a

type is an instance that defines more properties than needed by the def-

inition of the type. The type of a hyponym is called an incomplete type

because the type does not contain enough properties to produce the in-

stance.

γi.isHyponym(γt) := γi.propertyConforms(γt)∧
γi.hasAdditionalProperties(γt)

Definition 32 (IsInstance): “Instance” is the umbrella term used to describe

either isonyms or hyponyms. With the help of the isInstance operation,

the two can now be described in relation to one another. A hyponym is

an instance that is not an isonym. Every instance is either an isonym or

a hyponym. So the set of isonyms and the set of hyponyms completely

and disjointedly partition the set of instances of a given type. Isonym is
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Figure 6.2: Instances and Property Conformance Partition

Isoynm

Instance

Hyponym
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Property Removal

Offspring

Property
Conformance

the complement of hyponym in the set of instances and hyponym is the

complement of isonym in the set of instances of a type. If an isonym adds

a Feature to its definition it becomes a hyponym and any hyponym is able

to become an isonym by stripping down its properties to the minimal ones

needed to stay an instance of the type. There is no other way to check

whether a clabject is an instance of a type other than checking whether it is

an isonym or a hyponym.

γi.isInstance(γt) := γi.isIsonym(γt) ∨ γi.isHyponym(γt)

However the checks can be broken down to their canonical components and

therefore provide a pseudo independent definition.

γi.isInstance(γt) := γi.propertyConforms(γt)∧
(¬γi.hasAdditionalProperties(γt) =⇒

(γt.potency 6= ∗ =⇒ γt.potency = γi.potency + 1))

6.6.4 Property conforming non-instances

As the definitions show, a clabject can be property conforming and still

not be an instance. If the clabject defines additional properties, it is a

hyponym and thus an instance. If it does not define any additional prop-

erties, it can be an isonym (not a hyponym) but only if its potency is
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correct. So a property conforming clabject that does not define any ad-

ditional properties and has the wrong potency is not an instance of the

type.

(γi.propertyConforms(γt) ∧ ¬γi.hasAdditionalProperties(γt)∧
¬(γt.potency 6= ∗ =⇒ γt.potency = γi.potency + 1)) =⇒
¬γi.isInstance(γt)

When can such quasi-instances occur? The most likely case is when the

modelling mode was switched from constructive to exploratory and the po-

tency does not (yet) match. The potency will probably be higher than the

depth of the existing isonym tree because the isonyms are simply not yet

existent. So the occurrence of a property conforming quasi-instance is most

likely a user error. Regardless of their origin, property conforming quasi-

instances are not desirable and should be corrected immediately when they

appear.

6.6.5 The value of hyponyms

Although it might seem that hyponyms are much less important than isonyms,

this is not the case. Especially in constructive modeling, they are the ba-

sis for the polymorphic assignment and dynamic binding capabilities that

underpin object-oriented programming. The typing rules of object-oriented

programming languages like Java basically ensure that variables of a given

type can have hyponyms as well as isonyms of that type assigned to them.

Consider the following Java statement:

Ant z = new MaleAnt();

z is an isonym of MaleAnt and a hyponym of Ant. Ant is specified as

the static type, so any expression on z can only make use of the Ant-part

of the interface. As MaleAnt is a subtype of Ant, any instance can play

the role of an Ant according to the Liskov substitution principle (48). The

distinction between isonyms and hyponyms provides the formal foundation

for this mechanism.
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Figure 6.3: Recursion and marking of γi.isInstance(γt)

6.7 Recursion Resolution

Property conformance requires the recursive analysis of all connected (and

connecting) clabjects. Without a terminating condition, the execution will

enter an infinite loop, as the analysis process will be immediately passed

back to the calling clabject. The terminating condition is simple: If a pair of

clabjects is analyzed for a second time it means that the analysis process has

not yet terminated to false since no information has been found negating the

claim. There will thus be no discovery of negating information in a second

analysis so true is returned instead.

Upon the first analysis of any pair of clabjects γi.propertyConforms(γt),

the pair can be marked. If the pair is then visited a second time, the mark

is detected and returned.

Figure 6.3 shows the recursion and marking strategy for the computation

of the operation γi.propertyConforms(γt). First

γi.neighbourhoodConforms(γt)

is checked (1). γi.isInstanceOfExcluded(γt) does not hold as there are no

generalizations. The check spans to the connections

δ{i′,i′′}.propertyConforms(δ{t′,t′′})(2).

After δ{t′,t′′}.multiplicityConformance() (not shown in figure 6.3) and
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neighbourhood conformance the check branches to the connections that

δ{t′,t′′} take part in as participants, leading to

δi′′′ .propertyConforms(δt′′′)(3a,3b).

As δt′′′ does not take part in any connections the next check is the classifi-

cation of the participants (4a,4b). Since this is the special case where the

participants are the last analysed clabjects, these two branches terminate to

true as they have reached already analysed clabjects (δ{t′,t′′}) and did not

find contradicting information along the way. (3c-f) originates from (2) as

well. (3e,f) terminate immediately as well as the analysis of the participant

that spawned (2). (3c,d) have no further connections in this example than

δ{t′,t′′} so the checks spawning from (3d,c) terminate as well. The overall

check is then true given that the hidden parts of the example (features and

traits) conform.
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Chapter 7

Ontology Query Services

Now that all the ingredients are ready, the services that are visible to the

end user when modeling or using an ontology can be defined. The services

presented in this chapter comprise all the services that provide information

about the ontology without changing its state in any way. These questions

can range from logical properties to retrieving parts of a model based on

certain criteria. A special kind of query is a boolean query checking for a

certain property. A service qualifies as an ontology query if it does not alter

any data inside the ontology, in other words: if it is side effect free.

7.1 Well Formedness Constraints

Well Formedness constraints are invariants which have to hold at all time

otherwise an ontology is malformed. The well formedness of the whole on-

tology (or a model) recursively includes the well formedness of the contained

elements, so inside a well formed model there are no malformed elements.

Definition 33 (Ontology well formedness): Ontology elements can neither be

computed, nor irrelevant. The concepts only apply to finer grained portions

of the domain. Ontologies and models are both containers for the other

elements and their well formedness depends on the well formedness of their
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contained elements.

χ.isWellFormed() =: χ.expressed ∧ χ.relevant∧
∀Σ : Σ.isWellFormed()

Definition 34 (Model well formedness): Models can only hold clabjects of

the same level, the level that defines the model. Although correlations do

not have a level, they connect clabjects, which in turn define their level and

this level also has to match the model level.

Σi.isWellFormed() =: (∀γ ∈ Σi.children ∩ Clabject :

(γ.level = i) ∧ clabjectValidSupertypePotency(γ))∧
(∀λ ∈ Σi.children ∩ Correlation : λ.level = i)∧
noCircularGeneralizations(Σi)∧
(∀α ∈ Σi.children : α.isWellFormed())

The potencies of the clabjects have a well-formedness constraint depend-

ing not only on the clabject itself, but on its supertypes. If a clabject does

not add any new Properties to the definition of its supertype, any isonym of

the supertype will also be an isonym of the subtype1. As a consequence the

isonym trees will be the same and so the potencies of the clabjects always

have to be identical. The operation clabjectValidSupertypePotency(γ)

ensures this for γ.

clabjectValidSupertypePotency(γ) :=

({η ∈ γ.eigenFeatures() : η.durability > 0} = ∅
) ∧ (

{ψ ∈ γ.navigations() ∪ γ.modelNavigations() :

ψ.connection.potency > 0} = ∅
) =⇒ (∀γs ∈ {ξ.supertype∀ξ : γ ∈ ξ.subtype} :

γ.potency = γs.potency)

The constraint clabjectValidSupertypePotency may not be satisfiable by

some model constellations. If a subtype does not add any new properties to a

supertype, it does not add any new properties to any of its direct supertypes.

So if γ has more than one direct supertype (i.e. there is more than one

generalization with γ as the subtype) and the supertypes have different

1The details are covered in 6
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Figure 7.1: Unsolvable potency for γ

potencies, the requirement is not satisfiable by γ as it must have two different

potency values. The situation is shown in figure 7.1. While theoretically

possible, the constellation is not very likely to happen in practice as shallow

subtypes (which do not add any properties) are usually used to partition a

well-defined generalization or to introduce a new name. A shallow subtype

of two types with different potency would form the union of two concepts

with a different domain lifespan. However if this situation occurs it has to

be resolved by the user.

Another constraint is that there must not be circular generalizations in

the sense that any clabject can reach itself by navigating only subtype (or su-

pertype) ends of generalizations. The operation

noCircularGeneralizations(Σ)

ensures this for the model Σ.

noCircularGeneralizations(Σ) :=

∀γ ∈ Σ.clabjects() : γ /∈ γ.modelSupertypes()

Definition 35 (Clabject well formedness): A clabject is well-formed if po-

tency and level are not negative (* values always conform). Each clabject is

a namespace for Features, meaning that within the children of a clabject the

name of a Feature is unique.
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γ.isWellFormed() := (γ.potency ≥ 0)∧
(γ.level ≥ 0)∧
∀η ∈ γ.eigenFeatures() : @η′ ∈ γ.eigenFeatures() : η.name = η′.name∧

η 6= η′

For a Feature, the durability must not be negative.

η.isWellFormed() := (η.durability ≥ 0)

An attributes mutability cannot be higher than its durability.

ζ.isWellFormed() := ζ.mutability ≥ 0 ∧ ζ.mutability ≤ ζ.durability

Definition 36 (Connection well formedness): Inside a connection, the role-

Names have to be unique as they are the key for accessing the participants

of a connection. A connection cannot connect clabjects across multiple

levels, i.e. the participants of a connection all have to be on the same

level. Also, the potencies of the participating clabjects cannot be lower

than the potency of the connection. A connection does not necessarily need

to have roles, it can also inherit them from supertypes. As consequence, if

a connection does not have any roles, it has to inherit them. So it is only

valid for a connection to have no roles if there is an outgoing generaliza-

tion.

δ.isWellFormed() := (|{ψ.roleName : ψ ∈ δ.roles()}| = |δ.roles()|)∧
(|{ψ.destination.level : ψ ∈ δ.roles()}| = 1)∧
(∀γ ∈ δ.participants() : γ.potency ≥ δ.potency)∧
|δ.eigenRoles()| = 0 =⇒ ∃ξ : δ ∈ ξ.subtype∧
@ξ : δ ∈ ξ.subtype =⇒ |δ.eigenRoles()| ≥ 2

Definition 37 (Role well formedness): For roles, the multiplicities have to

conform, which means no negative values and the lower bound is never

higher than the upper. Either both multiplicities are present or neither.

If they are not present, the potency of the defining connection has to be

zero.

ψ.isWellFormed() := (¬ψ.lower ⇐⇒ ¬ψ.upper)∧
(ψ.connection.potency = 0 ⇐⇒ ¬ψ.lower ∧ ¬ψ.upper)∧
(ψ.lower ≥ 0 ∧ ψ.upper ≥ ψ.lower)
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Definition 38 (Correlation well formedness): Generalizations and SetRela-

tionships can only connect clabjects at the same level. Generalizations are

not valid between potency zero clabjects. Classifications must connect two

adjacent levels. There can be no inheritance between entities and connec-

tions.

ξ.isWellFormed() := |γ.level : γ ∈ {ξ.subtype ∪ ξ.supertype}| = 1∧
(ξ.disjoint ∨ ξ.complete) =⇒ |ξ.subtype| ≥ 2∧
ξ.intersection =⇒ |ξ.supertype ≥ 2|∧
∀γ ∈ {ξ.subtype ∪ ξ.supertype} : γ.potency > 0∧
|{γ.linguisticType() : γ ∈ (ξ.subtype ∪ ξ.supertype)}| = 1

φ.isWellFormed() := (φ.instance.level + 1 = φ.type.level)

υi.isWellFormed() := (υi.base.level = υi.inverse.level)∧
({υi.base, υi.inverse} ⊂ Connection ∧ υi.base.order() = 2∧
υi.inverse.order() = 2)

υe.isWellFormed() := υe.base.level = υe.equal.level

υc.isWellFormed() :=

υc.base.level = υc.complement.level ∧ υc.base.level = υc.universe.level

7.2 Consistency, Completeness & Validity

With the tools to identify classification through artefacts at hand the path is

clear to define the validity of an ontology. An ontology is valid if it does not

contain any contradictory information and is complete from the perspective

of the modeling mode used.

Contradictory situations occur when the logical meaning of two parts

of an ontology are incompatible. A simple example is an ontology con-

taining an equals correlations between two clabjects which are clearly not

equal. Validity can also be violated by implicit claims about the presence

of artefacts which are not in fact present in the ontology. Such information

incompatibilities usually spans multiple levels, as the claims are statement

on the instances of the types such as a disjoint generalization claiming that

no instance of the supertype is an instance of more than one subtype. From
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Figure 7.2: Consistent Classification
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the type level alone, a claim cannot be refuted as it needs a classified models

to either satisfy or violate the claim.

7.2.1 Consistent Classification

Adjacent pairs of models are consistent with one another if the logical re-

lationships between them are consistent. Classifications and generalizations

are logical relationships between models. Classifications directly link an in-

stance to a type and generalizations impose constraints on the instances of

the involved types with their boolean traits.

Definition 39 (Classification Consistency): A classification is consistent if the

instance actually is an instance of the type and the classification correctly

characterizes the nature of their relationship.

φ.isConsistent() :=

φ.instance.isInstance(φ.type)∧
φ.kind = hyponym ⇐⇒ φ.instance.isHyponym(φ.type)∧
φ.kind ∈ {isonym, instantiation} ⇐⇒ φ.instance.isIsonym(φ.type)

In terms of consistency, instantiation and isonym are the same. It is not

possible to judge retrospectively whether an instance has been created from

a type as long as the information shows that it could have been created

from the type. A classification of kind instance does not make any claim

about the precise nature of the classification (i.e. whether it is isonymic or

hyponymic), juts that it is one or other of them.
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Definition 40 (Generalization Consistency): A generalization as such cannot

be wrong as it states that the subtypes inherit the properties of the super-

types. A generalization introduces new information, whereas a classification

makes already existing implicit information explicit. The boolean traits of a

generalization in contrast can be checked. For example, a disjoint generaliza-

tion must partition the set of instances, an overlapping (not disjoint) gener-

alization must have intersecting sets of instances and an intersection must be

the union of the supertype instances.

ξ.isConsistent() :=

(ξ.disjoint ⇐⇒ ∀γi ∈ Σξ.supertype.level+1.clabjects :

γi.isIsonym(ξ.supertype) :

|{φ ∈ Σξ.supertype.level+1.classifications :

γi = φ.instance ∧ φ.type ∈ ξ.subtype}| ≤ 1

) ∧ (

ξ.complete ⇐⇒ ∀γi ∈ Σξ.supertype.level+1.clabjects :

γi.isIsonym(ξ.supertype) : |{γt ∈ ξ.subtype : γi.isIsonym(γt)}| ≥ 1

) ∧ (

ξ.intersection ⇐⇒ ∀γi ∈ Σξ.supertype.level+1.clabjects :

∀γst ∈ ξ.supertype : γi.isIsonym(γst ) :

γi.isIsonym(ξ.subtype))

A generalization is either disjoint or overlapping (i.e. not disjoint) and

cannot be consistent with a constellation of instances if they do not adhere

to the stated fact. A special case could be when there are no instances at

all, but in this case it becomes clear that then the generalization is actually

disjoint and complete. To be overlapping there needs to be an instance

which is an instance of more than one subtype. If there are no instances,

such a situation does not exists. This is not the case with disjointness -

to be disjoint every instance must be an instance of at most one subtype.

For completeness the case is similar. To be incomplete, there must exists

an instance that is not an instance of any of the subtypes. If there are no

instances, such a situation does not exist. To be complete such an instance

must not exist, and if there are no instances, the constraint holds. For

intersections the case is the same. If a generalization is not an intersection
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there has to be an instance to negate the fact that an instance of all the

supertypes is also an instance of the subtype, meaning there has to be an

instance of all the supertypes that is not an instance of the subtype.

Disjoint generalizations play a special role because their information is

already used in the check for property conformance. If a clabject is an

expressed instance of a subtype in a disjoint generalization it cannot be an

instance of another ones of the subtypes, even if it satisfies all other domain

constraints. If the classification is expressed it is assumed to be user input

and thus given higher weight than other constraints. If the consistency

check for disjoint generalizations used the isIsonym operation like the other

checks, the automatically triggered propertyConformance check would weigh

the disjoint generalization higher than the artefacts that are subject to the

check. In the end, a disjoint generalization would always be consistent as a

clabject can only ever be an isonym of one of the subtypes according to the

definition. Hence, expressed classification is the fall-back to determine the

instances to be checked.

Definition 41 (Consistent Model Classification): The consistent classifica-

tion of a model also involves the classifying model (see figure 7.2). If

the subject model does not have a classifying model, it cannot be con-

sistently classified as it is not classified at all, meaning that its clabjects

do not have any types. A prerequisite for consistent classification (in fact

for any sensible reasoning) is the well formedness of the subject model as

well as its classifying model. Generalizations make statements about in-

stances, so the consistency of the generalizations in the classifying model

is ensured by the clabjects of the subject model. The logical relations

between the subject model and its classifying model comprise the gen-

eralizations of the classifying model and the classifications of the subject

model.

Σi.isConsistentlyClassified() :=

∃Σi−1 ∧ Σi.isWellFormed() ∧ Σi−1.isWellFormed()∧
∀φ ∈ Σi.classifications : (φ.expressed =⇒ φ.isConsistent())∧
(∀ξ ∈ Σi−1.generalization : ξ.isConsistent())
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Definition 42 (Ontology Consistency): The consistency of an ontology re-

quires that all the information inside the ontology is valid, but the ontology

itself does not need to be complete. A piece of information is valid if it does

not conflict with any other statement in the ontology. Formally, consistency

is equivalent to the consistent classification of all the models except the root

model.

χ.isConsistent() := ∀Σi, i > 0 : Σi.isConsistentlyClassified()

Definition 43 (Constructive Ontology Validity): The only claim an ontology

has to satisfy in constructive mode in order to be valid is that it does not con-

tain any logical conflicts.

χ.isValidconstructive() := χ.isConsistent()

Definition 44 (Potency Completeness): The potency of a clabject represents

the actual depth of the isonym tree. So if a clabject has potency > 1, it is not

sufficient that there exists an isonym, but at least one of these isonyms has

to have an isonym as well. Classifications do not make a statement about

potency, they just indicate relations between two adjacent levels, hence they

can only check potencies of value 1.

γ.isPotencyComplete() :=

(γ.potency = 0 =⇒ @γi ∈ Σγ.level+1.clabjects :

(γi.propertyConforms(γ) ∧ ¬γi.hasAdditionalProperties(γ)))∧
((γ.potency 6= ∗ ∧ γ.potency 6= 0) =⇒

(∃γi ∈ Σγ.level+1.clabjects : γi.isIsonym(γ))∧
(∀γi ∈ Σγ.level+1.clabjects : γi.isIsonym(γ) : γi.isPotencyComplete()))

If a clabject has potency 0, it cannot have an isonym. The statement is

trivial as the check for isonyms requires the potency of the isonym to be one

lower and 0 is the lowest possible value for potency. So the check for isonyms

can never be true on a potency 0 clabject. The potency completeness goes

further. If a clabject has potency 0, there must not be an element that

would be an isonym if the potency were 1. The check for isonyms has three

parts: property conformance, no additional property definition and potency

conformance. Denying the isonym property based on potency conformance
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Figure 7.3: Changing of a potency value due to artefacts

is valid, as the isonym property is a statement on the current information in

the ontology, but for potency completeness the potency value has to reflect

the actual situation. In other words if the potency of a clabject should be 1

because there exists an isonym, the potency cannot be 0.

Definition 45 (Ontology Completeness): An ontology is complete if it is not

only consistent but also complete in the sense that all statements about

the ontology are true based on the information currently in it. Formally

the delta to consistency is the potency completeness of all the clabjects.

χ.isComplete() := χ.isConsistent()∧
∀Σi : ∀γ ∈ Σi.clabjects : γ.isPotencyComplete()

Definition 46 (Exploratory Ontology Validity): In the context of ontology

validity the difference between constructive and exploratory modeling mode

is the assumed completeness of the model information. While in constructive
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mode the absence of information cannot be an error (only the presence of

wrong information can be), in exploratory mode the information is assumed

to be complete. So if one statement relies on the presence of other model

elements, exploratory correctness is only satisfied if the element actually

exists (in constructive correctness it is enough if the element can exist in

the future).

χ.isValidexploratory() := χ.isComplete()

7.3 Inheritance

This section focuses on the detection of generalizations based on artefacts.

In the default constructive use case of modeling there is no need to detect

inheritance based on properties as inheritance is used to define those prop-

erties in the subtypes. So detecting generalizations (or subsumption) is an

operation tailored towards the exploratory use case of detecting correlations

based on artefacts.

Inheritance only occurs between clabjects and takes place on one onto-

logical level only. The independence of inheritance from classified or clas-

sifying models makes the formal definition a lot easier. The basic principle

of subtyping is borrowed from set theory. Every instance of a subtype is

also an instance of the supertype. The set of instances of the subtype is a

subset of the instances of the supertype. Processing the actual instances is

not necessary (and also not guaranteed to work as there might not yet be

any) because the type facade of types defines what instances will look like.

The building blocks of the type facade are features and navigations. For

features there are equality operations. As navigations depend on both the

realizing connection and the target clabject, they are processed inside the

main algorithm.

Definition 47 (Attribute equality): For attributes to be equal, every directly

stored piece of information has to be equal. This includes name, durability,
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datatype and mutability. The value has to be equal if the mutability is

zero, because any conforming feature has to have exactly that value. The

ontological level or anything outside the scope of the attribute is not part of

the definition. This means that attributes from different ontological levels

can potentially be equal.

ζ.equals(ζ ′) := ζ.name = ζ ′.name∧
ζ.durability = ζ ′.durability∧
ζ.mutability = ζ ′.mutability∧
ζ.datatype = ζ ′.datatype∧
ζ.mutability = 0 =⇒ ζ.value = ζ ′.value

Definition 48 (Method equality): Name and durability are the same as for

attributes. The input and output definitions have to be equal, and their

equality in turn depends on the equality of the contained parameters. For

primitive data, the equality computation is trivial while for PLM elements

the definitions defined in this section apply. As with the other definitions,

the method body is not part of the equality definition. Static checks cannot

incorporate runtime semantics. All checks regarding methods are limited to

the statically provided data.

η.equals(η′) := η.name = η′.name∧
η.input = η′.input∧
η.output = η′.output

Durability zero features Since generalization is essentially a statement

about the instances of the types, durability zero features do not matter be-

cause the instances will not be affected by them. The same holds for roles of

potency zero clabjects. If they are neglected, equality does not hold for mu-

tual subtypes, only similarity. So the following statement is only universally

true if the durability zero facade is included:

γ.isSubtype(γ′) ∧ γ′.isSubtype(γ) ⇐⇒ γ.equals(γ′).

Formally, it is more effort to filter the properties. In the following the

definitions assume durability zero properties shall be neglected, as it is the
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more complex case. A tool may provide an option to adjust the behaviour.

Subsumption does not need to be built incrementally on the model ele-

ments as in classification. For features, the requirement is already defined.

Features have to be equal. Potency is not a part of subtyping. The facades

of the sub- and supertype still include the inherited properties, but in many

use cases there will be no correlation at all in the ontology. Even within the

level, the conformance dependency remains intact. Subtyping is based on

properties and contains recursion, just like classification.

γ.subsume(γs) := γ.level = γs.level∧
(∀ηs ∈ γs.features() : ηs.durability > 0 : ∃η ∈ γ : η.equals(ηs))∧
(∀ψs ∈ γ′.navigations : ψs.connection.durability > 0 :

∃ψ ∈ γ.navigations : ψ.subtypeConforms(ψs))

The subtype conformance of roles is defined separately as it is reused

in the definition for connections again. A role subtype conforms to another

role if it has the same roleName and navigability. The multiplicity of the

conforming role may be stricter than the conformed to one.

ψ.subtypeConforms(ψs) := ψs.roleName = ψ.roleName∧
ψs.lower ≤ ψ.lower ∧ ψs.upper ≥ ψ.upper ∧ ψs.navigable = ψ.navigable∧
ψ.destination.subsume() ∧ ψ.connection.subsume(ψs.connection)

The addition for connections comes from the participants. The definition

above covers everything that the clabject is connected to, while the addition

covers what it connects.

δ.subsume(δs) := γ.subsume(γs)∧
|δ.roles()| = |δs.roles()| ∧ ∀ψs ∈ δs.roles() :

∃ψ ∈ δ.roles() : ψ.subtypeConforms(ψs)

The inherent recursion can be solved with a marking mechanism similar

to the one applied in classification. If a pair is visited for the second time,

nothing is performed but true is returned instead. The implementing envi-

ronment has to administer the checking and resetting of the marks. See 6.7
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for details.

7.3.1 Shallow Subtyping

A subtype is a shallow subtype if it does not add anything to the type facade

of the subtype. In other words, the clabjects produce the same isonyms.

Formally, they are similar.

γ.isShallowSubtype(γs) := γ.similar(γs)

Referring to well formedness (7.1), shallow subtypes must have the same

potency as their supertypes.

7.4 Ontology Validation Services

Ontology validations attempt to determine whether a whole ontology, or

a part of an ontology, satisfies a certain property and the reason for the

result can be explained by the engine to the user. The validity of the total

ontology or a subset of it is very important to the user both during and after

its creation. The selection of the part of the ontology to validate and the

criteria used depends on the use case in hand:

Well formedness At any given time the well formedness of the ontology

is very important. Well formedness is defined for every single element

type and its definition includes recursion to the contained elements

where necessary. As the check for one element is of constant complexity

and the inclusion of all elements queries every element once at most,

the well formedness can be called frequently. A tool might check every

element every time its contents are changed and the whole ontology

when saving or calling a bigger reasoning service.

Consistency The consistency of an ontology is a prerequisite for ontology

validity and thus for most of the other services. As the consistency

check spans the whole ontology and contains much redundancy if not
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optimized by the implementation, the consistency should not be called

too frequently, but certainly when saving the ontology state and when

part of a bigger service query.

Completeness Completeness builds on consistency and is therefore fairly

complex as well. Furthermore, completeness is of interest in construc-

tive mode, so the trigger to check for ontology completeness upon

saving can be derived either from the mode the ontology was last in

or from a user preference.

Single element consistency As the ontology consistency check affects

the whole ontology, but the consistency not necessarily of a single

element, an engine could offer the user a shorthand way to check any

correlation or provide an option to check any element when it, or any

element connected to it, is changed. For example a classification could

be checked for consistency if either the type or the instance is changed,

as this change may very well affect the classification relationship.

7.5 Ontology Queries

Ontology queries allow users to ask for information about the ontology, such

as selecting a portion of the ontology based on certain criteria or providing

more detailed information about a single model element. Each user request

is based on a question the user seeks to answer. These questions can range

from correctness (validation services) to the retrieval of arbitrary model

information but also questions tailored towards future states of the model

such as the consequences of an operation in terms of a certain property. For

example,

• Will an ontology still be correct if I perform an operation such as

renaming, deletion, addition or the changing of a value.
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• Will a pair of clabjects/a single clabject gain or loose a certain property

if I perform such an operation?

7.5.1 Clabject Introspection Service

The reasoning engine can provide the following information about individual

clabjects.

7.5.1.1 Types

The engine can compute the set of types of the instances in question, and

for each type, can provide additional information such as:

modeled or computed If the type is modeled, there is an expressed clas-

sification element connecting the type and clabject. An optional op-

eration is to check the consistency of this classification. If the type is

computed, there need not exist a classification, but there could. If the

discovery of computed types slows the operation down (especially with

many possible types) it should be optional whether these are to be in-

cluded. However, the supertypes of modeled types can be included at

constant cost.

complete or incomplete Every type, regardless of whether it is computed

or expressed is either complete or incomplete (with regard to an in-

stance) and the engine can show this property for each of them as the

check is not complex and redundant for computed types.

blueprint If blueprint information is present, it can easily be presented.

7.5.1.2 Feature Classification

Every feature of a clabject is either defined directly inside the clabject or is

inherited from a supertype. In the former case it is called an eigenFeature.

The combination is also possible because a feature can override another
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one inherited from a supertype. The user may opt to explicitly render the

inherited features and ask the question: ”What effects does the deletion of a

supertype (or a generalization) have on the features of the clabject?”. Also,

the features can be divided into those that are part of the type facade and

those that are not (only features with a durability > 0 are part of the type

facade).

7.5.1.3 Connection participation

Just like features, participation in a connection is inherited from supertypes.

The reasoning engine can provide a list of pairs (roleName, destination)

with the possible navigations for the source clabject. If desired, the pairs can

be expanded to triples by including the realizing connection. Destination

need not be a single clabject, but can be a set of clabjects as there may be

multiple connections yielding the same roleName. Another customization

is to filter only for navigable roles. Roles that are not navigable are not of

interest to the clabject itself, but are part of its type facade so must not be

neglected.

7.5.1.4 Supertypes

One operation is to compute the total set of supertypes. As with types, the

engine can give information about each of them.

expressed or computed If the supertype is expressed, there is a gener-

alization path between them. Unlike classification detection, general-

ization detection depends only on one model and is therefore faster to

computate.

direct or indirect A supertype is direct if there exists a generalization

connecting the subtype to the supertype. If the supertype is indirect,

there is at least one intermediate supertype between them. Unlike

complete and incomplete types, the direct and indirect supertypes
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are logically equivalent to the clabject, so further properties are not

defined.

7.5.1.5 Instance Facade

The instance facade captures the properties of a clabject. If a complete type

was to be constructed from the clabject, its type facade would be the logical

equivalent of the instance facade. The instance facade is the union of all

features and roles, regardless of whether or not they are inherited.

7.5.1.6 Instances, Subtypes and Type Facade

Inverting the statements above, a clabject introspection service can also

provide the following complementary information:

• All instances can be listed and classified according to whether they are

computed or expressed and isonyms, hyponyms or offspring.

• All subtypes can be listed and classified according to whether they are

computed or expresseds, direct or indirect.

• The type facade is not equivalent to the instance facade since for the

type facade only those properties that would be passed upon instance

creation are of relevance. Durability 0 features are not part of the type

facade, neither are roles originating from potency 0 connections.

7.5.2 Correlation Introspection

An engine trying to discover new correlations should make use of the ones

already present as much as possible. Let γ be the clabject in question and

|Σi.clabjects| the number of clabjects on level i, with the same notation for

the level’s generalizations and classifications as well as the generalization’s

sub- and supertypes.
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7.5.2.1 Generalization Checks

There are (|Σγ.level.clabjects| − 1) ∗ 2 possible generalization relationships

to γ. For each generalization ξi on level γ.level, the number of possible

generalization relationships for γ is lowered by either

• (|ξi.supertype|+ |ξi.supertype| − 1) ∗ 2 if γ is a part of ξi, or

• |ξi.subtype|+ |ξi.supertype| if γ is not a part of ξi.

If γ is a part of ξi, there is no need to investigate these pairs any further, but

as γ can never be a sub- or supertype of itself, one of the participants of ξi

(namely γ) has to be subtracted. If γ is not a part of ξi, all the subtypes will

follow if γ is a supertype of one of the supertypes. Also, all the supertypes

will follow if γ is a subtype of one of the subtypes. This is trivial for the

case that γ is in ξi:

γ ∈ ξi.subtype =⇒ ∀γs ∈ ξi.supertype : γ.isSubtype(γs)

γ ∈ ξi.supertype =⇒ ∀γs ∈ ξi.subtype : γs.isSubtype(γ)

And if γ is not in ξi:

∃γs ∈ ξi.subtype : γ.isSubtype(γs) =⇒
∀γs′ ∈ ξi.supertype : γ.isSubtype(γs′)

∃γs ∈ ξi.supertype : γs.isSubtype(γ) =⇒
∀γs′ ∈ ξi.subtype : γs′ .isSubtype(γs′)

So if γ is not a part of ξi it does not matter if γ is a subtype of one of

the subtypes or a supertype of one of the supertypes. The point is that

when searching for supertypes of γ it is sufficient to check the subtypes of

ξi because if one of the subtypes of ξi is a supertype of γ, all the supertypes

of the subtype in question will also be supertypes. The set of properties

of a supertype is always a subset of the properties of the subtype. If the

subtype’s set of properties is sufficient to be a supertype for γ, a subset will

also be sufficient and therefore the supertypes of ξi need not be checked.
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For the search for subtypes of γ is analogous. If any supertype of ξi is a

subtype of γ, its set of properties comprises the set of γ’s properties. Any

subtype will at least have the same set of properties, if not a larger one. The

set in question will also have a super set of γ’s properties and therefore be

a subtype as well.

7.5.2.2 Classification Checks

There are |Σγ.level+1.clabjects| possible instances of γ on the classified level.

The classifications on Σγ.level+1 contain information that the engine can pro-

cess in order to have less classification pairs to check. The impact of one

classification highly depends on the relations the type and instance are in:

• All the subtypes of the instance will be an instance of γ if the type is

a subtype of γ.

• If the type is a subtype of γ, all the subtypes of the instance will be

an instance of γ.

As the expressiveness of the classifications depends on the generalizations, it

is advisable for the engine to check for inheritance relationships before going

to the classifications of the next level. If the type is a subtype of γ, the type’s

properties are a super set of γ’s properties. Through the existence of the

classification (assuming it is valid) it is known that the instance satisfies the

type properties of the type. As the instance satisfies the type properties

of a super set of the properties of γ, the instance is also an instance of

γ because γ’s type properties are a subset of the type’s properties. Any

subtype of the instance has a super set of the properties of the instance’s

properties, so the subtype will also be an instance of both the type and

γ.

φ.type.isSubtype(γ) =⇒
φ.instance ∪ {γi : γi.isSubtype(φ.instance)} ⊂ {γi : γi.isInstance(γ)}
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If the type is a supertype of γ, there is a chance that the instance is an

instance of γ as well, but no guarantee. The chance high since the set of

type properties of γ is a super set of the type properties which the instance

redefines. What is not guaranteed is that the instance redefines the delta of

the type property sets of γ and the instance. Additional information can be

drawn from the traits of the generalization. If it is complete, the instance

must be an instance of either γ or one of the other subtypes of the type.

If it is disjoint it can be an instance of at most one of the subtypes of the

generalization.

Is there a way to eliminate an instance from the set of possible instances

of γ? If γ and the types are not in an inheritance relationship (which the

engine checks before starting to discover classifications) and the type is a

complete type of the instance, then the instance is not an instance of γ. If the

classification is not isonymic but hyponymic, the statement is not general

because the instance may define all of γ’s type properties in addition to

those of the type. Also, if the type is a disjoint sibling of γ, the instance

cannot be an instance of γ, but again the classification has to be isonymic.

It may seem like a lot of effort to subtract an instance from the

|Σγ.level+1.clabjects|

possible instances, but the checks presented are all independent of recursion

and therefore much faster than the computation of a single classification.

7.5.2.3 potency computation

The potency of a clabject is input by the user but has a close relation to the

artefacts in the ontology, since the potency equals the depth of the isonym

tree. If the mode of modeling is switched from constructive to exploratory,

the meaning of potency changes from the potential depth of the isonym

tree to the actual depth. This is a point of failure as the actual depth may

not always be correctly anticipated by the user or simply overlooked. The

reasoning engine can compute the actual potency of the clabject and even
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offer to correct it as an ontology cannot be complete with wrong potencies

(see operation 13).

Operation 13 γ.actualPotency()

classifiedModel← Σγ.level+1

if ¬classifiedModel then

return 0

isonyms← ∅
for γi ∈ classifiedModel.clabject() do

if γi.isIsonym(γ) then

isonyms← isonyms ∪ {γi}
if isonyms = ∅ then

return 0

else

return 1 +max(γi.actualPotency()∀γi ∈ isonyms)

7.5.3 Clabject Pair Introspection Service

While queries on singles clabjects gives information about all the relation-

ships of a clabject, pair introspection just examines one of them.

7.5.3.1 Boolean Properties

The levels of conformance can be checked one by one. As each new level

requires all of the earlier ones, an engine can break out of the computation

once the answer is false and cache the positive results for later computations.

The chain of checks is:

• Local Conformance

• Neighbourhood Conformance

• Multiplicity Conformance (in case of a pair of connections)

• Property Conformance
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• No Additional Property Definition

• Potency Conformance

• Isonymic Classification

• Hyponymic Classification (here the chain of strict dependency ends.

In fact, it is necessary and sufficient for hyponyms to property conform

and define additional properties)

• Classification

The most interesting part of this chain of conformances is the reason why a

certain part fails. The engine can then provide fixes to restore the property.

These changes are not always possible to define. Table 7.1 gives an overview

of the reasons for failures and possible fixes. Figure 7.4 shows the same

information as a dependency graph.

7.5.4 Services about future states of an ontology

To answer questions about future states of the ontology, the reasoning engine

requires as input:

1. The ontology in the original state,

2. The action to perform to produce the future state,

3. The property to check on the new state.

7.5.4.1 Adding a feature

The addition of a feature to γ will

• make γ a hyponym of all the types it was an isonym of,

• delete all isonymic classifications which γ is the type of, as the in-

stances can no longer be isonyms,

161



7. ONTOLOGY QUERY SERVICES

Instance

Isonym Hyponym

expressed
Classification

Property
Conformance

Neighourhood
Conformance

... Connection

Multiplicity
Conformance

... Connection
Local

Conformance

Feature
Conformance

... Connection

unsolvable Conflict

solvable Conflict

boolean Property

Figure 7.4: Dependencies between properties and ontological data including

their resolvability
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Table 7.1: Property dependencies, failure reasons and possible fixes

Property Dependency Failure Reason Possible Fix

Feature

Conformance

name adjust

datatype adjust

durability adjust

mutability adjust

value adjust

Local

Conformance

Feature Conf.

Feature Conformance adjust

missing feature create

level transfer element

Connection

wrong roleName adjust

wrong navigability adjust

wrong order

Neighbourhood

Conformance Local Conf.

missing roleName

roleName not local adjust

connection not local adjust

connection participant not lo-

cal conforming

adjust

Connection roleName not local adjust

Multiplicity

Conformance
Neighbour Conf.

too many delete

too few raise upper
Expressed

Classification
disjoint sibling un-disjoint

Property Con-

formance

Neighbour Conf.

Expr. Class.

Property Conf.

Connection
Multiplicity Conf.

Property Conf.

isIsonym Property Conf.
potency mismatch adjust

too many features delete

isHyponym Property Conf. too few features

isInstance
isIsonym

isHyponym
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• delete all classifications which a subtype of γ is the type of, as they

too gain a new feature.

7.5.4.2 Deleting a connection

The deletion of a connection δ is followed by the deletion of all its roles as

well. In addition, all connections that δ was a participant of are deleted.

Correlations, which are now meaningless have to be deleted as well. This

includes:

• any set relationships δ was a member of,

• any classification δ was a member of,

• all the generalizations which sub- or supertype set is empty without δ.

7.5.4.3 Marking a generalization disjoint/complete

The marking of a generalization makes a statement about the classified do-

main. So if a generalization ξ is now disjoint the following deadlock possibil-

ity arises: If there exists a clabject γi that holds classifications to ξ.supertype

and γs ∈ ξ.subtype there may not exist another clabject γi′ holding classifi-

cations to ξ.supertype and another γs′ ∈ ξ.subtype. If such a situation is now

present, the engine cannot solve it, but can only indicate that two pieces of

information contradict each other and there is no judgement about which

one is more important. Analogously, if ξ is marked as complete, any γi

holding a classification to ξ.supertype may not hold another classification to

γ′ /∈ ξ.subtype.

After ξ is marked as disjoint or complete, the addition of a classification

φ to a clabject γi already holding a classification to ξ.supertype may not be

valid:

in the case of disjointness, if φ.type ∈ ξ.subtype ∧ (∃φ′ : φ′.instance =

γi ∧ φ′.type ∈ ξ.subtype ∧ φ′.type 6= φ.type).

in the case of completeness, if φ.type /∈ ξ.subtype.
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Chapter 8

Ontology Evolution Services

Ontology evolution services provide mechanisms to automatically populate

an ontology with new elements or to alter the state of the ontology based on

user input. Ontology evolution services differ from the previous category of

reasoning services e.g. by changing an ontologies state, adding new elements

to the ontology or removing existing elements.

8.1 Subsumption

Subsumption means the detection of generalization relationships based on

properties. With the subsume operation for clabjects the basic tool has

already been established. Apart from creating the generalization elements,

the real effort is to deduce the boolean attributes from the classified model.

Boolean generalization traits only make sense if the relation is not binary,

so the subsumption algorithm tries to make as few generalizations connect-

ing as many elements as possible. There may be cases where the desired

behaviour is different, so the implementing tool may provide a preference

to configure the creation of binary generalizations. The deduction of the

boolean traits can be a very slow operation as a lot of classification checks

are involved, so the tool may provide an option to configure that as well.
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Operation 14 gives the formal definition of the subsumption algorithm.

Every possible supertype is checked for all the subtypes that are possible.

In that way, generalizations with one supertype and multiple subtypes will

be created in favour of generalizations with multiple supertypes. The latter

are used less frequently and have a weaker logical standing than the former.

Operation 14 Σi.subsumption()

for γs ∈ Σi.clabjects() do

subtypes← ∅
for γ ∈ Σi.clabjects() \ {γs} do

// exclude γs or every clabject would become its own subtype

if γ.subsume(γs) then

subtypes← subtypes ∪ {γ}
// the subtypes are discovered

if |subtypes| > 0 then

ξ ← Generalization()

ξ.supertype← {γs}
ξ.subtype← subtypes

disjoint← true

complete← true

for γi ∈ Σi+1.clabjects() : γi.isIsonym(γs) do

if @γs′ ∈ ξ.subtype : γi.isIsonym(γs′ then

complete← false

if ∃γs′ , γs′′ ⊂ ξ.subtype : γs′ 6= γs′′ ∧ γi.isIsonym(γs′) ∧
γi.isIsonym(γs′′) then

disjoint← false

ξ.disjoint← disjoint

ξ.complete← complete
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8.2 Refactoring

Refactoring generally means the tracing of a change to the affected artefacts

without changing the semantics of the total concept. Models provide a

suitable environment for general refactoring operations, as research on the

topic shows (62). For potency-based multi-level modeling, the following

concrete refactorings have been implemented:

Feature name If the name of a feature is changed in a type, every isonym

of that type must change its corresponding feature. More specifically,

it must change the feature with the old name to the new name as well.

The isonym will always have a feature with the old name (requirement

to be an instance) and will never have a feature with the new name

(as it is an isonym it defines no more features than needed by the type

and the type can only rename it to a name that is unique within its

namespace).

Attribute durability/mutability The durability and mutability must be

traced to the isonyms to maintain attribute conformance. If the dura-

bility and mutability is changed to * nothing needs to happen but the

tool may be configured to change the isonyms attributes to * as well.

Clabject potency In the default use case, the potency of a clabject should

only be lowered, as increasing the potency will most likely result in

an incomplete ontology. The exception (also the default use case for

manually increasing the potency) is that a new isonym has been cre-

ated in the leaf model (the isonym tree is now deeper) and this change

has been reflected in the artefacts. A tool can however provide an

operation to update the potency to the actual depth of the isonym

tree. Increasing a potency will be reflected in the isonyms in the same

way as decreasing it will. In the default use case, the isonym tree will

not have potency 0 clabjects when the potency is lowered. If it does,
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those potencies cannot be decreased and will stay at 0. The classifi-

cation between the already-zero clabject and the newly-zero clabject

will be invalid and cannot revert to being a hyponym or an instance

as it is not a hyponym (does not define additional properties) and is

not an instance (neither hyponym nor isonym), so it has to be deleted.

The tool should provide an undo operation in case such undesired side

effects occur.

Role roleName/navigability As the role can be related to the (old) role-

Name in every isonym of the connection the change can be propagated.

In general, the goal is to restore any property of the ontology that might have

been lost through the performed operation. In the type facade of a clabject,

the changes need to be populated to the instances that would otherwise lose

an isonymic relationship. In the instance facade the same principle would

requires a change to a clabject’s type. Although this may be desired, it is

not the default use case. The default use case is to update the relationship

to the type according to the new artefact. A tool may provide an option

to define the desired behaviour. In the default use case, the recommended

option to change the type facet as well would be to change the type directly,

which would in turn trigger the change in the instance.

The direction for migrating refactoring changes is from types to isonyms.

In a complete ontology it is to be expected that every instance has a complete

type. More specifically, every clabject that is an instance has a complete

type. So any hyponym is also an isonym of another type. If changes were also

passed on to hyponyms as well, it is very likely that they would no longer

be isonyms. Since isonymic classification is a stronger relationship than

hyponymic classification the tool tries to preserve isonymic classification

relationships. The problem only arises in the very rare case that the change

comes from an incomplete type that does not affect the complete type.
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If a type γcomplete is a complete type of an instance γinstance and an-

other type γincomplete is an incomplete type, then γcomplete is a subtype of

γincomplete. As there exists an isonym of γcomplete that is a hyponym of

γincomplete the type properties of γincomplete must be a proper subset of the

type properties of γcomplete. So the only case where a change coming from

an incomplete type would not affect the complete type as well is when the

complete type redefines or overrides the property, making it incompatible

with the property after the refactoring change.

8.3 Model Instantiation

In constructive modeling mode, the instantiate operation is arguably the

most important one. It is used to create new instances from the previously

defined elements and recursively builds the whole model once the most ab-

stract model is defined completely. If the top most model is sufficient, the

instantiate operation is the only other operation used for element creation.

This constructional power has non-trivial formal requirements attached.

As the name of the operation already implies, the resulting element has to

be an instance of the type it has been constructed from. For traits and

features, the definition is straightforward, but for roles it is not. Let γ′ be

the instance that resulted from the “instantiate” call to the type γ. For

γ′ to be an instance, γ′ has to hold a role ψ′ for every role ψ of γ. As

roles cannot be defined directly but are derived from the existence of the

defining connections, the “success” of the instantiation operation depends

on the existence of an instance δ′ : δ′.isInstance(δ) for all the δ in the roles

ψ of γ.

Clearly the requirement cannot be ensured by an operation that only

creates one new element. Of course, the operation could create an instance

δ′ for every δ, but then the operation would not only create an instance γ′
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of γ but would instantiate possibly the whole model. While this might be

desirable in some cases it can certainly not be the standard case.

8.3.1 Local Offspring

For this reason, the standard instantiate operation does not ensure that the

check γ′.instance(γ) evaluates to true after finishing the operation. Rather,

it ensures that none of its actions negate a type/instance relationship. For-

mally, the instantiate operation can only ensure local conformance, as neigh-

bourhood conformance already takes the connected clabjects into account

and after the completion of the instantiate operation, γ′ will not be con-

nected to any other clabject. When instantiating a connection, the resulting

connection will not even have participants. A tool could guess possible or

even probable participants, but the automatic connection of elements un-

related to the executed operations would introduce new artefacts into the

model. As the automatic creation of artefacts should in this case be avoided

whenever possible, the instantiate operation will not connect any clabjects.

Let γ, γ′ be two clabjects

γ′ := γ.instantiate(. . . ) =⇒ γ′.potency <p γ.potency∧
γ′.level = γ.level + 1∧
∀η ∈ γ.features() : ∃η′ ∈ γ′.features() :

η′.conforms(η)

The definition does not differ between entities and connections, so there is

no need to distinguish between the two. The above specification only shows

the post conditions that the operation ensures in terms of describing the re-

sulting instance. The definition of the instantiate algorithm is given below.

A prerequisite for the instantiation of a clabject is the creation of conforming

features. First, for attributes ζ := ζt.create(γ):

Input: ζt.durability > 0

ζ ← Attribute
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γ.children← γ.children ∪ {ζ}
ζ.name← ζt.name

ζ.expressed← true// default explicit creation

ζ.datatype← ζt.datatype

ζ.value← ζt.value

if ζt.durability = ∗ then

ζ.durability← γ.potency

else

ζ.durability← ζt.durability − 1

if ζt.mutability = ∗ then

ζ.mutability← ζ.durability

else

ζ.mutability← ζt.mutability − 1

return ζ

The equivalent for methods is alike π := πt.create(γ):

Input: πt.durability > 0

π ←Method

γ.children← γ.children ∪ {π}
π.name← πt.name

π.expressed← true// default explicit creation

π.body← πt.body

if πt.durability = ∗ then

π.durability← γ.potency

else

π.durability← πt.durability − 1

return π

Now with the create operations for the features defined, the instantiate oper-

ation for clabjects can be defined as well. As input parameters, the operation

needs the model or clabject that will become the owner of the newly created

one and the name to identify the instance. In case the instantiated clabject
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is of potency * the tool can ask the user whether the instance shall be * as

well or any given number. By default, a * potency will be passed on to the

instance. γ := γt.instantiate(Σi, name))

Input: γt.potency > 0

Input: γt.level = i− 1

γ ← Entity/Connection

γ.name← name

Σi.children← Σi.children ∪ {γ}
γ.expressed← true// default explicit creation

γ.level← i

for η ∈ γt.features() : η.durability > 0 do

η.create(γ))

if γt.potency = ∗ then

γ.potency← ∗
else

γ.potency← γt.potency − 1

return γ

The algorithm also creates a classification between the two new elements,

which may be configured by the user. There may be anonymous instances,

so the name parameter is optional.

8.3.2 Participant Connection

After all the local offspring have been created, the roles can be created too.

As a prerequisite for this operation, there has to exist a local offspring for

every clabject model.

Let localOffspring(γ) be the operation to retrieve the local offspring

created from γ and Σi be the model subject to the operation. The algorithm

to create the roles is as follows:

for δ ∈ Σi.connections() do
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for ψ ∈ δ.roles() do

ψ′ ← Role()

ψ′.roleName← ψ.roleName

ψ′.navigable← ψ.navigable

if localOffspring(δ).potency > 0 then

ψ′.lower← ψ.lower

ψ′.upper← ψ.upper

ψ′.destination← localOffspring(ψ.destination)

8.3.3 Populating the new Model

Now that the algorithms to create the artefacts and connect them are avail-

able, a valid classified model can be created.

localOffspring← ∅ // the data structure to store the new elements

for γ ∈ Σi do

if γ /∈ localOffspring then

// γ does not yet have a local offspring

localOffspring.add(γ → γ.instantiate(Σi+1)) // whether or not

the whole set or just γ is created doesn’t matter as long as localOffspring

is administered

connectParticipants // as described in 8.3.2

After the connection of the participants, the artefacts are complete. The

creation of correlations is therefore optional.

8.3.4 Multiplicity Satisfaction

After the participants have been connected the classified model is complete

except for multiplicity conformance. A complete model would required that

the instances pass the test they have been designed to pass, namely to be

offspring of the types they were created from.

173



8. ONTOLOGY EVOLUTION SERVICES

After each type has been instantiated, there are exactly as many clab-

jects in the classified model as in the classifying model. Depending on the

multiplicities of the present connections, the created domain might not be

able to satisfy these constraints. If the constraints are not met, additional

clabjects are required to define and participate in the connections. Existing

clabjects can participate in connections as well. The tool cannot automati-

cally decide how many clabjects to create and which ones to connect. The

only operation which is possible and may be configured is to create the local

offspring of the connections, so that the user knows how many connections

are needed to fulfil the constraints.

8.3.5 Correlation Creation

By definition, the local offspring operation creates a classification between

each created clabjects and its blueprint. If the clabjects in the classified

model have potency zero, generalizations cannot exist in the model. Even if

the potency is greater than zero, generalizations are not necessary as the lo-

cal offspring creation creates all the necessary properties within the clabjects

that require them. This does not mean generalizations are meaningless. The

operation to detect generalization and delete redundant properties can still

be executed. The set relationships can simply be copied from the classifying

model to the classified model.

8.3.6 Classifying Model Creation

Once the instantiation of types has been addressed, the complementary op-

eration to construct a type from a given instance needs to be addressed as

well. The process is essentially the same, just the direction is inverted: from

the instance facade of a clabject a locally complete type is created. The big

difference is that the number of types is usually smaller than the number of

instances. So, creating a type for every instance clabject will probably lead
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to some redundant types. Formally, a type is redundant if there is another

equal one. Multiple equalities can be avoided in one of two ways:

1) prior to creating a new type, the tool checks if the type has already

been created from a clabject with the same instance facet,

2) after all the types have been created, redundant ones are deleted.

Each of the two approaches has its pros and cons. With 1) the overall com-

putational complexity is lower as searching for equal clabjects is expensive.

The downside is that the checking for an equal instance facade can be just

as expensive and the instance domain is usually larger than the type do-

main. 2) has the benefit of a straightforward implementation as the notion

of clabject equality is established. However, it has to do some extra work

to receive the correct multiplicity values from the connections which can

simply be counted in the other scenario.

8.3.6.1 Local Complete Type

Input: γ

γt ← Entity/Connection

γt.potency← γ.potency + 1

γt.level← γ.level− 1

γt.expressed← true

if γ ∈ Connection then

γt.transitive← false

for η ∈ γ.features() do

ηt ← Attribute/Connection

ηt.name← η.name

ηt.durability← η.durability + 1

γt.children← γt.children ∪ {ηt}
if η ∈ Method then

ηt.body← η.body
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ηt.input← η.input

ηt.output← η.output

else

ηt.datatype← η.datatype

ηt.value← η.value

ηt.mutability← η.mutability + 1

For potency and mutability values, the tool can only handle the standard

case. If the mutability of a type attribute needs to be zero, the user has to

manually set this feature. The same goes for star potencies.

8.3.7 Connection participation and multiplicities

Connecting participants is handled in the same way as with the instantiation

of types. From a map of the newly created elements the destinations are

registered with their roles. Navigability is copied accordingly (as well as the

roleName). The interesting part is the multiplicities of the roles. After all

the connections have been processed the multiplicities of the roles can be

determined based on various criteria. These include but are not limited to:

Always [0..* ] The loosest possible multiplicity. In fact, in this case there

does not need to be any adjustment from the default. The only benefit

of the operation is to remove redundant connections. Here it is possible

to add/remove as many connection instances as desired.

[0..actual ] There can be no connections added but removal is possible.

[actual..actual ] No connection instance can be added or removed.

The following algorithm checks for redundant connections, removes them

and administers the map of instances to types accordingly. The destination

of the roles have already been linked to the types.

Input: localOffspring // map of a type to isonyms

Input: Σi // the model the types reside on
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for γ ∈ Σi.clabjects() do

for γ′ ∈ Σi.clabjects() do

if γ.equals(γ′) then

localOffspring[γ]← localOffspring[γ] ∪ localOffspring[γ′]

// now the redundant connections are removed

for δ ∈ Σi.connections() do

for ψ ∈ δ.roles() do

min←∞
max← 0

for γi ∈ localOffspring[ψ.destination] do

actual← |{ψ′ : ψ′.connection ∈ localOffspring[δ]

∧ψ′.roleName = ψ.roleName

∧ψ′.destination = γi}|
if actual < min then

min = actual

if actual > max then

max = actual

// assuming the strictest multiplicity possible

ψ.lower← min

ψ.upper← max

8.4 Establishing a property

As table 7.1 shows, there can many reasons why a particular property might

not apply to a clabject and various strategies exist for making the property

hold. If a certain property does not hold, a tool can try to alter the clabject

to satisfy that property. The tool can neither invent artefacts nor guarantee

the property, but it usually can indicate where the problem lies and identify

what needs to be changed. Each algorithm follows the same schema: It
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looks for possible reasons preventing the property from holding if it finds

any 1 it applies the corresponding changes or identifies the reason for the

problem.

The side effects of the performed changes are neither monitored nor

considered. The operation cannot ensure that changes to one feature does

not cause other relationships to become invalid.

8.4.1 Feature Conformance

Normally feature conformance is defined between two features, but in terms

of boolean properties feature conformance means that an instance does not

redefine a feature required by the type.

Input: ηt, γi // the type feature that is not found at γi

for η ∈ γi.features() do

if η.name = ηt.name then

// the feature is present, check why it does not conform

if η.datatype 6= ηt.datatype then

η.datatype← ηt.datatype

if ηt.durability 6= ∗ ∧ ηt.durability − 1 6= η.durability then

η.durability← ηt.durability − 1

if ηt.mutability 6= ∗ ∧ ηt.mutability − 1 6= η.mutability then

η.mutability← max(0, ηt.mutability − 1)

if ηt.mutability = 0 ∧ ηt.value 6= η.value then

η.value← ηt.value

return

ηi ← newFeature // the feature is not present, create it

etai.name← ηt.name

ηi.datatype← ηt.datatype

ηi.durability← ηt.durability − 1

ηi.mutability← max(0, ηt.mutability − 1)

1which may not always be possible
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ηi.value← ηt.value

return

This algorithm is for attributes, but the name and durability of methods

can be handles in the same way.

8.4.2 Local Conformance

Missing feature conformance is already covered in the previous paragraph.

For entities the only thing left is level mismatches. Connections can cor-

rect false role information at one end. If more than one role has misleading

information, the tool will work out which one to adjust using which pat-

tern.

Input: γt, γi // γi shall local conform to γt

if γt.level + 1 6= γi.level then

return Elements need to be moved to different levels // no element

moves across levels

// The following only applies to connections

if γi.order() 6= γt.order() then

return connections are not of same order // no actions on different

orders

for ψt ∈ γt.roles() do

if @ψi ∈ γi.roles() : ψt.roleName = ψi.roleName then

if ¬wrongRole then

wrongRole← (ψt, ψi)

else

return more than one roleName mismatch // too little common

information

else

if ψt.navigable 6= ψi.navigable then

ψi.navigable← ψt.navigable // navigability adjusted

if wrongRole then
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wrongRole[1].roleName← wrongRole[0].roleName

wrongRole[1].navigable ← wrongRole[0].navigable // wrong role up-

dated

8.4.3 Neighbourhood Conformance

Neighbourhood conformance depends on local conformance and introduces

few additional requirements other than requiring local conformances. So the

possible strategies for ensuring neighbourhood conformance are based on en-

suring local conformance.

Input: γt, γi // γi shall neighbourhood conform γt

if ¬γi.localConforms(γt) then

try to ensure γi.localConforms(γt)

for ψt ∈ γt.navigations() do

if @ψi ∈ γi.navigations() : ψi.roleName = ψt.roleName then

missing roleName // cannot be fixed automatically

else

ψi ← γi.navigations() : ψi.roleName = ψt.roleName

if ¬ψi.destination.localConforms(ψt.destination) then

try to ensure ψi.destination.localConforms(ψt.destination) // nav-

igation not local

if ¬ψi.connection.localConforms(ψt.connection) then

try to ensure ψi.connection.localConforms(ψt.connection) // con-

nection not local

// the rest applies only to connections

for ψt ∈ γt.roles() do

ψi ← γi.roles() : ψi.roleName = ψt.roleName

if ¬ψi.destination.localConforms(ψt.destination) then

try to ensure ψi.destination.localConforms(ψt.destination) // partic-

ipant not local
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8.4.4 Multiplicity Conformance

Multiplicity conformance only applies to connections. It depends on neigh-

bourhood conformance, but cannot fix it automatically. The set of con-

nections which validate the multiplicity is determined through neighbour-

hood conformance, but if the set does not satisfy the constraint, it is up

to the user to decide whether the model or the constraint needs to be ad-

justed.

Input: δt // the connection to process the multiplicity constraint for

model← Σδt.level+1

domain← model.clabjects()

actualLower ←∞

actualUpper ← 0

// construct the actual multiplicity, see 6.4

for ψ ∈ δ.roles() do

for ψ′ ∈ δ.roles() : ψ 6= ψ′ do

for γ ∈ domain : γ.neighbourhoodConforms(ψ′.destination) do

actuals← ψ′′ ∈ model.roles() :

(ψ′′.destination 6= γ)∧

(γ ∈ ψ′′.connection.participants())∧

(ψ′′.roleName = ψ.roleName)∧

(ψ′′.connection.neighbourhoodConforms(δ))

actualLower ← min(actualLower, |actuals|)

actualUpper ← max(actualUpper, |actuals|)

// adjust ψ’s bounds if necessary

ψ.lower← min(actualLower, ψ.lower)

ψ.upper← min(actualUpper, ψ.upper)
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8.4.5 Expressed Classification

Expressed classification does not depend on any of the previous proper-

ties. Expressed classification is easy to achieve since the only statement

that needs to be changed is the boolean trait of the generalization. If this

boolean trait is the only thing preventing property conformance, it proba-

bly is the right choice to change the generalization (as there are artefacts

indicating it is wrong). Generally, only the user can decide which piece of

information is more important: the trait of the generalization or the arte-

facts in the classified domain. It is quite possible that the trait is there to

prevent the property conformance the tool is trying to enable by changing

the generalization.

Input: γi, γt // After the operation, γi shall not be an expressed instance

of a disjoint sibling of γt

classGener ← {ξ ∈ Σγt.level : ξ.disjoint} // all disjoint generalizations on

the type level

possibles← {γt} ∪ γt.modelSupertypes() // the types that any instance

of γt is an instance of

excluded← ∅
insts← {φ ∈ Σγi.level : φ.expressed ∧ φ.instance = γi} // all the expressed

classifications γi is the instance of

for ξ ∈ classGener do

if possibles ∩ ξ.subtype 6= ∅ then

// if now any of the classifications has one of the subtypes (not one

of possibles) as type, ξ ensures expressed classification

for φ ∈ insts do

if (φ.type /∈ possibles)∧
((φ.type ∈ ξ.subtype)

∨(φ.type.getModelSupertypes() ∩ ξ.subtype 6= ∅)) then

ξ.disjoint← false// ξ has to be switched
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Formally, the algorithm is very similar to the one for detecting expressed

classification (see operation 12), and if it is detected, the reason for it is

negated. So this algorithm does neither check that afterwards γi property

conformsto γt nor does it weigh the generalization trait against the artefacts.

The only thing it does is ensure that afterwards the check for expressed

classification will return false. All other decisions have to be taken before

running the operation.

8.4.6 Property Conformance

Property conformance not only depends on the two subject clabjects, but

all connected clabjects as well. An automated attempt to ensure property

conformance does not process all the connected clabjects, but only the two

subject ones. The reason is that the operation should not have any side

effects on portions of the model other than what the user selected.

As a consequence, the operation cannot ensure property conformance,

because only a portion of the defining clabjects can be altered. What the

operation can ensure is that these two subject clabjects do not prevent

property conformance.

Input: γi, γt // the (possible) instance-type pair to check

if ¬γi.neighbourhoodConforms(γt) then

fix neighbourhood conformance

if γi.isInstanceOfExcluded(γt) then

fix expressed classification

// the following applies only to connections

if ¬γt.multiplicityConformance() then

fix multiplicity conformance

8.4.7 Isonymic Classification

Ensuring that a clabject is an isonymic instance of a type is relatively

straightforward once property conformance has been attained for each of
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the types attributes. The only two things that can then stand in the way

of isonymic classification is that there is a potency mismatch or the clabject

has more attributes than are required by the type. Again, if there is such a

mismatch it is up to the user to decide which attributes to delete or which

potency to change.

Input: γi, γt // γi shall be the isonym of γt

if ¬γi.propertyConforms(γt) then

fix property conformance

if (γt.potency 6= ∗) ∧ (γi.potency + 1 6= γt.potency) then

if γt.potency = 0 then

// (assumed) wrong type potency

γt.potency← 1

γi.potency← 0

else

γi.potency← γt.potency − 1 // (assumed) wrong instance potency

// from now on property conformance is assumed

for ηi ∈ γi.features() do

if @ηt ∈ γt.features() : ηi.name = ηt.name then

// if γt has a feature of the same name, they conform

delete ηi

for ψi ∈ γi.navigations() do

if @ψt ∈ γt.navigations() : ψt.roleName = ψi.roleName then

// a single role cannot be deleted, the connection has to be deleted

delete ψi.connection

8.4.8 Hyponymic Classification

As with isonymic classification, ensuring that a clabject is an isonymic in-

stance of a type is relatively straightforward once property conformance

has been attained for each of the type’s properties. In fact, since po-

tency conformance is not required for hyponymic classification, if prop-
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erty conformance hold for each of the properties of the type, the only

thing that can stop a clabject from being a hyponym of it is that it is

an isonym. The change needed to make it a hyponym is therefore simply

to add another property. In general it does not make sense for the tool to

do this, but for the user. The tool can however indicate what change is

needed.

Input: γi, γt // γi shall become a hyponym of γt

if ¬γi.propertyConforms(γt) then

try to fix property conformance

// property conformance is assumed

if ¬γi.hasAdditionalProperties(γt) then

define additional property // isonym?

8.4.9 Instance Relationship

Instance is an umbrella concept for isonymic and hyponymic classification.

As a consequence, the things that can stop a property conforming clabject

from being an instance of a type is that it is an “isonym with the wrong po-

tency”. A tool cannot decide whether the most appropriate solution is to add

an additional property (to make it a hyponym) or to correct the potency (to

make is a proper isonym).

Input: γi, γt // γi shall become an instance of γt

if ¬γi.propertyConforms(γt) then

try to fix property conformance

// property conformance is assumed

if ¬γi.hasAdditionalProperties(γt) then

return fix potency by trying to fix isonym

else

return true// property conformance was the problem. γi is now a

hyponym
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8.4.10 Remove redundant Generalizations

A redundant generalization is a generalization that does not introduce any

new information except for its boolean traits. All properties of the super-

type(s) are inherited by the subtype(s). If the generalization does not define

any new properties for the subtypes, it is redundant because all the infor-

mation it brings to the subtypes is already there. If the generalization does

not hold any boolean traits under such circumstances it is completely re-

dundant and can be deleted. If it holds boolean traits it does add some

information to the ontology. A tool may provide an option to delete all

redundant generalizations or delete them on a case-by-case basis accord-

ing to the wishes of the user. A generalization can also be redundant the

inheritance it defines is already defined by (one or more) other generaliza-

tions — that is, if all the subtypes can reach all the supertypes via other

generalizations. The following algorithm detects this second kind of redun-

dancy.

Input: ξ // the generalization to be checked for redundancy

toF ind← ξ.supertype

source← ξ.subtype

edges← Σξ.level().generalizations() \ {ξ}
for γs ∈ source do

found← ∅
queue← {γs}
while queue 6= ∅ do

current← queue.pop()

for edge ∈ edges : current ∈ edge.subtype do

queue← queue+ edge.supertype

found← found ∪ {current}
if toF ind 6⊂ found then

return false// ξ contains unique information
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return true// every inheritance is also found through other generaliza-

tions

The algorithm does not check for inherited properties, just inheritance in

general.

8.4.11 Remove redundant Features

Features that are inherited from supertypes can also be directly modeled at

the levelof the subtype. The complementary operation is to remove directly

defined features that are not needed as they are already implied through in-

heritance. While performing this check it is important not to delete features

that override the inherited ones.

Input: γ // the clabject to remove the redundant features from

donors← γ.getModelSupertypes()

for ηi ∈ γ.eigenFeatures() do

for donor ∈ donors do

if ∃ηt ∈ donor.eigenFeatures() : ηi.equals(ηt) then

delete ηi
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Chapter 9

Case Studies

The case studies presented in this chapter serve two purposes. First, they

illustrate the concepts presented in the earlier chapters with well known ex-

amples from the realms of software engineering and knowledge engineering.

Secondly, they demonstrate that the introduced formalisms are able to sup-

port the same operations that these examples were designed to illustrate.

The case studies have been carefully chosen to include well known examples

from the software engineering community and the knowledge engineering

community.

9.1 The Pizza Ontology

The Pizza ontology is a very famous example taken from the tutorial(40)

of the OWL flagship tool Protégé(43). It features different ingredients of

the famous dish and explains the capabilities of the tool through various

examples. Part of the example’s success is its relation to an everyday domain

that everybody immediately can relate with.
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Thing

PizzaTypePizzaBase PizzaToppingType

CheeseToppingType MeatToppingType SeafoodToppingTypeVegetableToppingType

DeepPanBase ThinAndCrispyBase

MozzarellaTopping

ParmezanTopping

HamTopping

PepperoniTopping

SalamiTopping

SpicyBeefTopping

AnchovyTopping

PrawnToppingTunaTopping

CaperTopping

MushroomTopping OliveTopping

OnionTopping

GreenPepperTopping

JalapenoPepperTopping

RedPepperToppingTomatoTopping

O
O

1

2

disjoint

disjoint

Figure 9.1: The asserted class hierarchy of the pizza ontology

9.1.1 Defining the Toplevel Classes

Initially the top level classes are defined: Pizza, PizzaBase and PizzaTop-

ping. PizzaBase and Topping are superclasses for more special types, like

CheeseTopping, TunaTopping or DeepPanBase. In multi-level modeling we

can distribute those concepts over two ontological levels. CheeseTopping

and MeatTopping are different kinds of toppings, MozarellaTopping is one

instance of the topping kind (or type) CheeseTopping. PizzaToppingType is

the common supertype for the different topping kinds. The same holds for

PizzaBase, except there is no further distinction of the base kinds and the

direct subclasses (here in multi-level modeling instances) are the concrete

kinds DeepPanBase and ThinAndCrispyBase. The basic ontology is shown

in figure 9.1.(13)

The naming of the clabjects in O1 differs from the tutorial in that the

word type is appended to some of the concepts. This has been done to

better reflect the correct level of ontological ordering between the concepts.

If a new clabject in O2, MargharitaPizza is introduced the natural language

construct “Margharita is a PizzaType” works well. If now on O3 a clabject
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called ExampleMargharita is created, the sentence “ExampleMargharita is

a Margharita” still works well while the sentence “ExampleMargharita is a

PizzaType” does not work.

As the concept of generalization is not present and the inheritance is

woven into the definition of classes in a subclass-tree, there are no general-

ization elements to carry disjointness information. This information has to

be entered in the window of the class. In PMLM the subtypes of toppings

are made disjoint by setting the generalization to disjoint.

9.1.2 OWL Object Properties

Object properties are relationships between objects. Protégé defines these

properties independently from the objects they connect. This is very much

the same behavior as with connections. They can be created independently

from their participating clabjects. The ends of the properties are called

domain and range in OWL. These directly map to the participating clabjects

in PMLM. In OWL, every object property is binary and the direction goes

always from the domain to the range. Therefore, the name of the property

is rather the roleName identifying the destination for the source. So an

equivalent PMLM connection would be anonymous with the property name

as the navigable destination roleName. OWL Properties can have certain

specific properties:

Inverse Rather than a special label to one property, a property can be

named to be the inverse property of another. The PMLM equivalent

is to create an inversion between the two inverse clabjects.

Functional A functional property can connect an individual only to one

other individual. The equivalent in PMLM is to have a multiplicity of

1 at the destination role.
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hasBirthMother

hasParent

Matthew JeanhasChild

Inverse Property: Figure  4.16 from page 28
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inverse Functional Property: Figure  4.19 from page 31

Transitive Property: Figure  4.20 from page 31

Symmetric Property: Figure  4.21 from page 31

Asymmetric Property: Figure  4.23 from page 33

Reflexive Property: Figure  4.24 from page 34

Irreflexive Property: Figure  4.25 from page 34
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Figure 9.2: OWL property characteristics and their counterpart representa-

tion in PMLM. The pictures on the left are screenshots taken from (40).
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Transitive A transitive property can infer the existence of other instances

from a certain pattern of already present instances. The PMLM sup-

ports transitive connections as well with the same semantics.

Symmetry A symmetric property is a property that is implicitly always

a pair of directed properties connecting the source to the target and

vice versa. The PMLM equivalent is a connection with two navigable

roles. As the roleNames have to be unique in PMLM the mapping

is not exact. It is however possible to also define two directed con-

nections with the same navigable roleName. If the symmetric trait of

the connection is set, the classified domain has to ensure symmetry,

whether it be by multiple connections or a naming convention for the

roleName.

Asymmetry An asymmetric property states that if A.B is true then B.A

cannot be true. The statement is quite strict as it states what is not

possible. In a closed world assumption, everything that is not asserted

does not exist. But even for a closed world ontology the negation of

symmetry holds information, namely what is not possible to define.

As the PLM supports three values for the symmetry trait (true, false

and unset), the negation of symmetry states that for every navigation

the counter navigation from the target back to the source cannot exist.

Reflexion A reflexive property always connects to itself. So every individ-

ual in the domain is also in the range of the property. If a connection

is reflexive, the classified domain is only consistently classified if it

contains all the required connections.

Irreflexive An irreflexive property states that no individual can be con-

nected to itself via the property. In PMLM it is the same as with

symmetry. If reflexive is set to false, the classified domain must not

contain any reflexivity.
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Thing

PizzaType

PizzaBase

PizzaToppingType

hasIngredient

isIngredientOf

*

*

hasTopping

isToppingOf *

*

isBaseOf

hasBase

*

1

Figure 9.3: The object properties of the pizza ontology in the multi-level

modeling representation.

Figure 9.2 shows the different characteristics and their respective represen-

tation in PMLM.

The pizza ontology defines three object properties: hasIngredient, hasTop-

ping and hasBase each of which has inverse properties isIngredientOf, is-

BaseOf and isToppingOf. The hasIngredient and hasTopping property are

many-to-many relations, the hasBase is many-to-one. The hasTopping and

hasBase properties are subtypes of the hasIngredient property. As subtypes

can only get stricter in their multiplicities, the hasIngredient property has

to have many to many multiplicity. In PMLM, the domain and range of

the properties have to be specified. The domain for all of the properties is

PizzaType. The range of hasBase is PizzaBase, for hasTopping it is Piz-

zaToppingType. So the range for the common supertype hasIngredient has

to be a supertype of PizzaBase and PizzaToppingType. As there is no such

class as PizzaIngredient, the only valid supertype is Thing. The inverse

properties can be achieved by making the connections navigable in both

directions and reflecting the property names with the roleNames of the par-

ticipants. Figure 9.3 shows the connections presented in PMLM that show

the facts expressed in the tutorial.
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9.1.3 Defining classes through property restrictions

A class can be described through property and/or existential restrictions.

These classes can either be anonymous or then given a name based on their

definition. The characteristic feature of these classes is that the set of its

instances depends on the formal description and will change according to it.

While the current prototype tool does not support the definition of clab-

jects by entering restrictive expressions, the evaluation of expressions is sup-

ported. What is missing therefore to support this feature is to allow the def-

inition of a type by evaluating the set of its instances based on a selection

expression. Going further, this type can then be described in terms of its

domain properties. What is already supported, however, is modeling new

types. So the restrictions are not input via an expression, but are expressed

through artefacts.

9.1.4 Named pizzas

MargharitaPizza is modelled as a Pizza with two connections: One hasTop-

ping to TomatoTopping and one hasTopping to MozzarellaTopping. The

inference engine will then infer that MargharitaPizza is an instance of Piz-

zaType as the connections are instances of the hasTopping connection. By

the same principle, AmericanPizza, HotAmericanPizza and SohoPizza can

be modelled. Figure 9.4 shows the model of the named pizzas.

9.1.5 Special types of pizza.

After the named pizzas there are some more specializations of the types a

pizza can be an instance of:

VegetarianPizzaType is a pizza with only Cheese and Vegetable top-

ping. Vegetarian pizza cannot be a subtype of PizzaType, because the

hasTopping connection from PizzaType to PizzaToppingType allows

MeatToppingTypes. As any subtype would inherit that connection,
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Figure 9.4: The named pizzas from the pizza ontology

vegetarian pizza would also inherit that possibility. Of course, the

connection could also be constrained at the subtype.

InterestingPizzaType is a pizza with at least three toppings. This new

type has to override the connection and be more strict on the multi-

plicities.

CheesyPizzaType is any pizza with a cheese topping.

High/Low Calorie Pizza is a pizza that does not exceed low or high calo-

rie thresholds. The modeling is achieved through the mutability fea-

ture. The types set the value of the attribute to an expression that

evaluates to true or false. Its mutability is then set to zero, meaning

instances cannot redefine that feature. This definition is extended so

that the instances may not redefine the value to a value that evaluated

the expression to false. The calorie attribute is introduced at level 2

and not 1. On level 1, the corresponding type would by PizzaType.

But a PizzaType does not have a discriminable calorie value. Neither

do pizza types on level 2, but they can constrain the value of their
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Figure 9.5: The special pizza types in the pizza ontology

instances (like low/high calorie pizza) or just state that it exists at

level 3 (the other types inheriting the attribute).

SpicyPizza is a pizza with at least one spicy topping. Prior to defining

the type, each topping has to be classified according to its spiciness.

The SpicyPizza type can then define an additional requirement to

have a hot topping. This hot topping will also satisfy the inherited

hasTopping constraint.
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Figure 9.5 shows the model focussed on the special pizza types. It stands

out that both SpicyPizza and HighCaloriePizza are defined on O2 and not

O1 as are the vegetarian and interesting pizza. The reason is that their

definition takes place on a more concrete level of abstraction. Whether or

not a pizza is spicy cannot be determined on the types of topping, because

for every type of topping there can be spicy and non spicy variants. Only

the instances carry the trait of being spicy or not.

Of course, each ToppingType could define a subtype SpicySeafoodTop-

pingType, SpicyMeatToppingType etc. and there could be a common sub-

type SpicyToppingType of all those spicy subtypes. This would raise the

need to classify each topping type to either have a spicy subtype or not, ex-

pressing it through a clabject and a generalization. The second alternative

would be to model SpicyToppingType and a subtype of PizzaToppingType

as a sibling of all the other topping types. A SpicyPizzaType could then

have at least one of those toppings. In that approach, every topping in-

stance would need to specify whether or not it is spicy through a second

classification (besides the one pointing to the seafood, meat, . . . type).

The reason the high calorie pizza is defined on O2 is slightly different.

The commonality is that the definition of the domain concept cannot be

completed on O1. The deriving question is: Can it be completed on O2? The

answer is still not strictly “yes” or “no”. One could argue that the calorie

value of a pizza differs with each individual, depending for example on which

brand of cheese is used by the manufacturing pizzeria. According to that

line of argument, the level to specify that on would be O3. The opposing

argument would assume that the calorie value of each individual pizza of

one type is the same because their manufacturing process and ingredients

are identical. Such a pizza would be manufactured in a factory. In that

line of argument, the correct level would be O2. In each case, the definition

of the criterion has to be one level above where it is specified. The multi-

level modeling example takes the same viewpoint as the OWL tutorial in
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assuming each individual has its own calorie value. So the Pizza clabject

on O2 has a trait stating that each instance has to provide its calorie value,

otherwise it won’t be a pizza. The subtype HighCaloriePizza then sets the

value and states that no instance may change that value. As the fixed value

is not a single one but a range, a range of calorie values will be sufficient to

satisfy the mutability constraint.

9.1.6 Reasoning

Reasoning on this ontology can both validate expressed classification and

discover new ones from artefacts. MargharitaPizza will be classified as a

VegetarianPizzaType as well as a CheesyPizzaType. As the current pro-

totype tool defaults to the closed world assumption the classification will

succeed. Because the entered information is considered to be complete, it is

assumed that MargharitaPizza cannot have any toppings other than tomato

and mozzarella.

The main use case for classification is of course classifying individuals

as instances of one or more types. Figure 9.6 shows the individual pizza

instances. All four pizzas are instances of MargharitaPizza, as all of them

have a tomato and mozzarella topping. The individual toppings are explic-

itly classified as instances of one topping type. As they are all disjoint, the

inference engine will not classify them as instances of another. If the types

were not disjoint, one individual topping would be an instance of any top-

ping, as the name cannot be processed by the tool. This principle separates

the potential types for the individuals up to the generic type “Thing”. It

is therefore advisable to always have all the types in an inheritance hierar-

chy. SpicyPizza and HighCaloriePizza are not disjoint, because one pizza

instance can be both, spicy and high calorie.

In the OWL tutorial the requirements for a type can be switched from

necessary to sufficient. In the case of MargharitaPizza this would mean
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that an individual not only has to have exactly one tomato and one moz-

zarella topping but also no other topping. In multi-level modeling the way to

express this would be to model a supertype of the two connections “hasTop-

ping” with a multiplicity of 2..2, allowing no other toppings than those two.

The consequence however would be that the other named pizzas could no

longer be modelled as subtypes of margharita because it would be impossi-

ble for an instance of americanaHot to be an instance of margharita. In the

OWL guide there is no explicit subtyping used, the superclasses are always

inferred by the tool according to the actual properties. The mechanism

of copying is used upon the creation of a named pizza to avoid redundant

definition of object properties. The subsumption service can provide the

information, but the current mode of operation would be to create general-

ization elements, thereby making the information explicit. If the alterations

to the margharita type were made afterwards, it would result in an erroneous

model that would have to be corrected by the user.

9.1.7 Advantages of Multi-Level Modeling

The previous section focussed on rebuilding the example from the OWL

Tutorial (40) and explaining the differences that still exist with multi-level

modeling. Up till now, it does not illustrate most of the novel features that

PMLM provides:

Potencies help to state the intended number of ontological levels in the

beginning of the process and can define the lifespan of model elements.

Property durability can do the same for properties that are suitable only

up to a certain level of concreteness.

Type instantiation can create types or individuals from the template of

another clabject, bringing the constructive use-case to the ontology.
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Explicit classification somewhat contradicts the inference paradigm of

OWL but can help to distinguish and classify the elements. In other

words, it is information that can be used in the inference process as

well.

Figure 9.7 shows the complete ontology. Notice that potencies vary inside

one level. The reason is that the respective types do not all have isonyms

on the next level. Many of the toppings are not used in the individual

pizzas. So these toppings have potency zero on O1 because they do not

have any instances. Seafood- and MeatToppingTypes are not used at all,

so these types have potency one as none of their instances has a potency

greater than zero. The other concepts all still endure until O3 which is not

surprising as they were described in the example.

So the main contribution of multi-level modeling is a concise, compre-

hensive and semantically well founded concrete syntax which enriches the

user experience when working with the data.
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Figure 9.7: The complete pizza ontology.
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9.2 The Royal & Loyal Example

The royal & loyal example is taken from the book by Warmer & Kleppe (73)

and is the classic example for illustrating OCL expressions and constraints.

The model is not so much focussed on inheritance and subsumption but on

connections and model navigation. It has fewer generalizations and many

more features. The total number of clabjects is lower but each clabject is

described in more detail. The model from the book is shown in figure 9.8.

account

transactions

memAcc

availabe
Services

level

partner

partner

delivered
Services

programs

partners

1..*
1..*

level

levels 1..*

program

currLev

programs

participants

currentLevel

account0..1

owner

owner

cardscard

generatedBy

transactions

card

transactions

numberOfCustomers: Integer
name: String

ProgramPartner
LoyaltyProgram

name: String
enroll (c: Customer)
getServices(): Set(Services)

Transaction
points: Integer
date: Date
amount: Real
program(): LoyaltyProgram

Service
condition: Boolean
pointsEarned: Integer
pointsBurned: Integer
description: String
serviceNr: Integer

calcPoints(): Integer

EarningBurningBurningEarning

partProg

Customer
name: String
title: String
isMale: Boolean
dateOfBirth: Date
/age: Integer

age(): Integer

CustomerCard
valid: Boolean
validFrom: Date
goodThru: Date
color: Color
/printedName: String

LoyaltyAccount
points: Integer
Number: Integer
earn( i: Integer)
burn( i: Integer)
isEmpty(): Boolean

Membership

ServiceLevel
name: String

levels

1

1

1

1

memCard

1

1

1

trans

1

cardTrans
servTrans

1

1

disjoint, complete

Figure 9.8: The royal & loyal model rendered in LML

The ontology in figure 9.8 is only one level (hence it can also be called

model). In the example there are several small object diagrams which are

then validated against OCL invariants or other constraints placed at the

respective types. Most of the constraints cannot be modeled with PLM

elements. They can be entered as OCL constraints with the respective

clabjects, but that is not a contribution of multi-level modeling. PMLM can
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contributes two things:

• Depending on the properties of the modeled domain more than two

ontological levels can be introduced

• With the constructive user services defined on single clabjects the

whole model can even be instantiatied.

The first step is to analyse the modeled domain with regards to involved

concepts and their position in the stack of ontological levels. Afterwards,

the leaf model can be instantiated.

9.2.1 Analysing the model

Before the domain is divided into separate ontological levels it is important

to analyse the relationships between the clabjects. The interdependencies

often form the basis for identifying parts that are inseparable. Even if there

are no independent subparts of the model the analysis provides valuable

domain insight.

9.2.1.1 Classification dependencies between the entities

Another question is the minimal set of instances that is needed so that any

classification can be correct. Without connections, no entity need exist in or-

der for another entity to be able to enter a classification. If connections exist,

their multiplicity is interesting. If the lower multiplicity of each role in a con-

nection δ is zero, the destinations can be types of clabjects without the pres-

ence of an instance of δ.

for ψ : ψ.connection = δ do

if ψ.lower > 0 then

return δ is necessary

return δ is not necessary
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If all the lower multiplicities of the roles one clabject γ is the destination of

are zero, it means that all the entities can be instantiated without an instance

of γ being present.

for ψ : γ = ψ.destination do

if ψ.lower > 0 then

return γ is necessary

return γ is not necessary

In the royal & loyal model, there is one unnecessary connection and three

unnecessary entities. Transaction participates in three connections, but ev-

ery time with multiplicity *. The subtypes Earning and Burning add only

the complete partitioning of transactions, so they are unnecessary as well.

Transactions are not required for the system to be well defined. They are

the variables that operate the programs but every entity may exist without

being linked to them.

The connection Membership has two roles, and both have multiplicity

*. So neither of the participants (LoyaltyProgram and Customer) need a

membership. The statement is that customers do not need to be a member

of a LoyaltyProgram (it is not mandatory). Accordingly, a loyaltyProgram

does not need any participants. In reality, while this might be quite frequent,

a loyaltyProgram with no customer is not very useful. Interestingly enough,

membership participates in connections itself. Each LoyaltyAccount needs a

membership to exist and so does a CustomerCard. A customer cannot have

an account without being a member of a program. So earning or burning

points without being in a program is impossible1. Also, no customer can

have a card without being in a program2. So, despite being unnecessary for

the participants, the membership connection is crucial for other connections

1Interestingly, being a member without having an account is possible. As each trans-

action requires an account, it could be possible to become a member, but the account

would be created upon the first transaction.
2Does a customer have to give back his/her card upon terminating his/her last mem-

bership? Is a check mechanism implemented in the program?
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Figure 9.9: Royal & Loyal model with connections as classification depen-

dencies

and therefore also entities. Formally, the connection check says membership

is unnecessary, but the clabject definition overrules it.

9.2.1.2 Modeling classification dependencies

Figure 9.9 shows connections modeled in a slightly different way to show

their consequence for correct classification. If a role has a lower multiplicity

greater than zero, a “must have” dependency is established. If the lower

multiplicity is zero, a “can have” dependency is drawn instead.

No other clabject must have a transaction. A Service can have a Pro-

gramPartner, but a Service must have a ServiceLevel, a ServiceLevel must

have a LoyaltyProgram and a LoyaltyProgram must have a ProgramPart-

ner. As a consequence, there can never be a valid Service without there

being a valid ProgramPartner. The requirement is that they are connected.

Table 9.1 gives an overview of the dependencies in the whole model.
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Figure 9.10: Royal & Loyal dependencies in set notation

Source Dependencies

Transaction Service, ServiceLevel, LoyaltyProgram, ProgramPartner,

LoyaltyAccount, CustomerCard, Customer

ProgramPartner LoyaltyProgram, ServiceLevel

LoyaltyProgram ProgramPartner, ServiceLevel

ServiceLevel LoyaltyProgram, ProgramPartner

Service ServiceLevel, LoyaltyPrograM, ProgramPartner

Customer

CustomerCard Customer, ServiceLevel, LoyaltyProgram, ProgramPartner

LoyaltyAccount ServiceLevel, LoyaltyProgram, ProgramPartner

Table 9.1: Classification dependencies of the royal & loyal model

Customer is the only entity without dependencies. A transaction de-

pends on the whole model. ProgramPartner, LoyaltyProgram and Ser-

viceLevel form a clique. LoyaltyAccount depends on this clique, but is not

a part of it. With this information, the dependencies can also be rendered

in set notation, as shown in figure 9.10.
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9.2.2 Introducing Multiple Ontological levels

Based on the analysis of the dependencies of the clabjects, the model can be

separated into two ontological levels. It seems odd that none of the entities

needs transactions, and they in turn depend on everything else. Customers

are only needed by CustomerCards, but the removal of customers would

remove memberships as well, and they have many dependencies.

This can be resolved by considering different possible forms of acceptable

clabjects. A ProgramPartner could be a company or concern, a LoyaltyPro-

gram some program they choose to offer and a Service a building block to

implement it. Can there be instances of these as well? One LoyaltyProgram

may be offered by a branch of the company (a ProgramPartner instance)

and the concrete service in operation would be an instance of the service

(instance) offered by the company.

At which level do transactions and customers come into play? An indi-

vidual (having a name and a birthday) clearly is on the same level as the

branch of the company offering the concrete service. So the type describing

that individual must be one level above, together with the company. Con-

crete transactions also take place between individual customers and concrete

services offered by one branch of the offering company.

Figure 9.11 shows the two level version of the original model. The choices

giving rise to this ontology have several consequences: The membership con-

nection can only be introduced at O1, not O0. The enroll operation of a

LoyaltyProgram can also only be introduced at O1. That makes the in-

stances in O1 hyponyms of their types. If the objective is to create isonyms,

the concept of a customer (and customerCard, transactions and accounts)

have to be abstracted to O0.
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9.2 The Royal & Loyal Example

9.2.2.1 Potencies

At first sight the potencies in figure 9.11 seem odd. All the connections

on O0 have potency zero. In fact, the only clabject with potency two (the

value one would expect at O0) is ProgramPartner. The defining concept for

potency are the type properties and the resulting partition of the instances

into isonyms and hyponyms. A ServiceType isonym can only have three

features: condition, description and serviceNr. The services FreeItemSer-

vice, RebateService and FreeUpgradeService have six — the two they define

themselves and the four they inherit from Service. Without the inheritance

from Service, they would neither have the features required to be an in-

stance of ServiceType nor would they define the required point features for

O2. So they cannot be isonyms of ServiceType and hence the potency of

ServiceType is zero. This immediately explains why the potencies of the

connections ServiceType takes part in cannot have a potency other than

zero. A connection potency can never be higher than the minimum of the

potencies of the participating clabjects. For the other participants (Pro-

gramPartner and ServiceLevel in this case) it means that isonyms do not

need to redefine the connection as its existence on the next level is not

mandatory1. LP cannot be an isonym of LoyaltyProgram because it de-

fines a connection not required by the type: the newly introduced concept

of Membership. The ProgramPartner instances on the other hand define

only connections where there are types (not complete ones) on O0. As Bic-

Concern and SmallCompany do not define any other connections, they are

isonyms of ProgramPartner. PartProg can only have potency zero because

of LoyaltyProgram.

The potency definition on O0 leads to the insight that the domain setup

is very complicated and incomplete. Since all the clabjects on O1 except the

ServiceLevel instances (which have potency zero on purpose) have potency

1That is the reason why there are no multiplicities on O0
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1, the domain of O2 is very tightly constrained. The multiplicities of the

connections on O1 are the same as in the original example and the object

diagrams used in the example represent valid snippets of a consistently clas-

sified model for O1. The resulting model looks much like the original one

(figure 9.8). If some of the choices were made differently there could be

obvious potencies but the link to the original would be lost.

9.2.3 Instantiating O1

The instantiation of O1 follows the principle of creating the smallest possible

model that is a consistent classification of O1. Only if the created instan-

tiations are consistent, do the potencies in O1 become valid and the whole

ontology is complete. By instantiating O1 into O2, the mode can then also

switch as the ontology is not complete at the moment, only consistent. The

transition into exploratory mode requires complete potencies and therefore

isonyms on O2.

9.2.3.1 Creating Local Offspring

Local offspring have to be created for all the clabjects with potency one in

O1. These are:

BigConcern, SmallCompany, FreeItemService, RebateService, FreeUp-

gradeService, LP, Transaction, Burning, Earning, LoyaltyAccount, Cus-

tomer, CustomerCard, Membership, memAcc, memCard, cardTrans, owner,

trans, partner and partProg.

Initially, there will only be one offspring for each connection. The missing

required connections to resolve the multiplicities have to be added later

on. It is apparent that servTrans does not obtain a local offspring in this

approach because its potency is zero. Its potency has to be zero as the

participant Service is also of potency zero. That does, of course, not mean

that there cannot be any instances on O2, just that the engine will not build

them on its own as they are not strictly required.
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Figure 9.12 shows the newly created offspring clabjects on O2. The

mutability of the name of the program partner does not need to be shown

any more as it is now the default value as it equals the attributes durability

(and the clabjects potency). Many of the clabjects are basically meaningless.

That is because their properties are still missing and also the traits with

domain relevance (like name) have not yet been added by the user. The roles

are not present and the attributes have the standard value of the datatype

unless the value is fixed from the type.

name = "BigMart Inc."

BM#345760

name = "Rightsize Ltd."

SC#78900

condition = True
description = "Free Item
with every 10th purchase!"
pointsEarned = 0
pointsBurned = 0
serviceNr = 2345789

FIS#23457890

calcPoints() : Integer

condition = False
description = "5% discount
on all purchases > 50 €!"
pointsEarned = 0
pointsBurned = 0
serviceNr = 752348

RS#7523480

calcPoints() : Integer

condition = True
description = "Upgrade your
ticket on long distance flights!"
pointsEarned = 0
pointsBurned = 0
serviceNr = 1486

FUS#14860

calcPoints() : Integer

name = ""
getServices(): Set(ServiceType)

LP#4758690

enroll (c: Customer)

points = 0
date = 
amount = 0.0
program(): LP

E#46840

points = 0
date = 
amount = 0.0
program(): LP

T#48690

points = 0
date = 
amount = 0.0
program(): LP

B#46810

points = 0
Number = 457689
earn( i: Integer)
burn( i: Integer)
isEmpty(): Boolean

LA#14869
0

name = ""
title = ""
isMale = True
dateOfBirth = 
/age = 0

age(): Integer

C#4560

valid = True
validFrom = 
goodThru = 
color = 
/printedName = ""

CC#145836 0

M#4839
level = ""

0 mA#470

mC#150

o#15450

cT#1540t#3579 0 p#15540 pP#1740

Figure 9.12: The created offspring of the royal & loyal ontology

9.2.3.2 Connecting the Participants

An engine’s first first attempt to connect the participants will only create

the roles for the present connections. The user can already guess from the

look of O1 that some missing connections still need to be added to complete

the ontology.
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name = "BigMart Inc."

BM#345760

name = "Rightsize Ltd."

SC#78900

condition = True
description = "Free Item
with every 10th purchase!"
pointsEarned = 0
pointsBurned = 0
serviceNr = 2345789

FIS#23457890

calcPoints() : Integer

condition = False
description = "5% discount
on all purchases > 50 €!"
pointsEarned = 0
pointsBurned = 0
serviceNr = 752348

RS#7523480

calcPoints() : Integer

condition = True
description = "Upgrade your
ticket on long distance flights!"
pointsEarned = 0
pointsBurned = 0
serviceNr = 1486

FUS#14860

calcPoints() : Integer

name = ""
getServices(): Set(ServiceType)

LP#4758690

enroll (c: Customer)

points = 0
date = 
amount = 0.0
program(): LP

E#46840

points = 0
date = 
amount = 0.0
program(): LP

T#48690

points = 0
date = 
amount = 0.0
program(): LP

B#46810

points = 0
Number = 457689
earn( i: Integer)
burn( i: Integer)
isEmpty(): Boolean

LA#14869
0

name = ""
title = ""
isMale = True
dateOfBirth = 
/age = 0

age(): Integer

C#4560

valid = True
validFrom = 
goodThru = 
color = 
/printedName = ""

CC#145836 0

M#4839
level = ""

0

mA#470 mC#150

o#15450cT#1540

p#15540 pP#1740

delivered
Services

partner

partners

programs

programs

participants

cardaccount

cards ownercard

transactionstransactions

t#3579 0

account

Figure 9.13: The connected offspring of the royal & loyal ontology

As the link between blueprint and the offspring is maintained it is not

a problem to find the participating clabject and roleName for each role of

O1. Figure 9.13 shows the ontology after the creation of the roles. The

transaction type has been chosen as the participant, despite the fact that

only earning and burning transactions will every be valid. The transaction

type itself would be abstract, but the potency is correct as every earning

and/or burning isonym will always be an isonym of transaction as well. If the

model is created from scratch it is most likely that the loyalty program will be

empty in the sense that no transactions have taken place yet. The existence

of a loyalty account and its connection to a membership is mandatory given

its potency.
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9.2.3.3 Checking the multiplicities

After the roles have been created1 the number of missing connections can be

determined by checking the multiplicity of the connections in O1. Once the

multiplicity is complete, the ontology will be as well. The resulting model

will of course be a small one. If all the lower multiplicities in a connection

in O1 are zero, there is no need for any instance (except for the one required

by the potency), so the check for ontology completeness will not require it.

The user is of course free to expand any model as needed to best capture

the domain in hand. Figure 9.14 shows the complete model.

name = "BigMart Inc."

BM#345760

name = "Rightsize Ltd."

SC#78900

condition = True
description = "Free Item
with every 10th purchase!"
pointsEarned = 0
pointsBurned = 0
serviceNr = 2345789

FIS#23457890

calcPoints() : Integer

condition = False
description = "5% discount
on all purchases > 50 €!"
pointsEarned = 0
pointsBurned = 0
serviceNr = 752348

RS#7523480

calcPoints() : Integer

condition = True
description = "Upgrade your
ticket on long distance flights!"
pointsEarned = 0
pointsBurned = 0
serviceNr = 1486

FUS#14860

calcPoints() : Integer

name = "Royal & Loyal Program"
getServices(): Set(ServiceType)

LP#4758690

enroll (c: Customer)

points = 0
Number = 457689
earn( i: Integer)
burn( i: Integer)
isEmpty(): Boolean

LA#14869
0

name = "Dennis"
title = "Dr."
isMale = True
dateOfBirth = 9.9.1941 
/age = 70

age(): Integer

C#4560

valid = True
validFrom = 
goodThru = 
color = 
/printedName = ""

CC#145836 0

M#4839
level = "bronze"

0

mA#470 mC#150

o#15450

p#15540 pP#1740
delivered
Services

partner

partners

programs

programs

participants

cardaccount

cards owner

p#15550

p#15570

p#15560

pP#1750 programspartners

delivered
Services

delivered
Services

delivered
Services

partner

partner
partner

Figure 9.14: The complete model O2 of the royal & loyal ontology

1and there is no need for correlations since all the clabjects have potency zero
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Chapter 10

Related Work

Now that the main contributions of the thesis have been presented, anal-

ysed and shown in practice on two case studies, it is now time to compare

it against other work in this field. Wherever possible, the differences be-

tween the approaches is explained in the terms established earlier and the

possibilities for collaboration and cross fertilization are discussed. The pre-

sented approaches all deal with multiple levels of modeling in any aspect.

However, there have been numerous modeling-based approaches to enhanc-

ing the state of the art that shall not go unmentioned. Model-based energy

testing(75) establishes static analysis of the energy consumption of software

components.

10.1 Metamodel Semantics

Prior to the advent of multi-level modeling, there has already been research

on metamodel semantics. When analysing the semantics of any language,

there needs to be both a language definition and instances of that language

definition to validate the semantics against. So there needs to be at least

two levels of abstraction for semantic discussion to take place. The OMG

four layer architecture (55) provides even three of these instantiation steps
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and has been subject to extensive semantic research. Apart from the con-

crete metamodel semantics presented in the following paragraphs, reference

attribute grammars (RAG(38)) provide a promising approach to metamodel

semantics(25).

(61) analyses the MOF semantics through constructive type theory while

staying agnostic to the actual instances of the MOF used. So the work is

applicable but not limited to the UML metamodel as an instance of the

MOF. Comparable work (20) uses algebra to define semantics and also lower

level languages like UML metamodels (64) are covered. These approaches

follow the same principle. A formally defined system is used to represent the

MOF and instances of the MOF are then expressed with the formal system

so that their adherence to the MOF’s constraints can be formally ensured.

Although a new formalism of semantics for potency based multi-level

modeling might seem redundant to the already presented work, as the rep-

resentation of a metamodel in a formal system and the classification of in-

stances is already covered there is one important difference.

In the OMG four layer hierarchy (55), the classification applied between

MOF and the UML metamodel is linguistic and not ontological. That ar-

gument is easy to state, but not so easy to prove because there is not yet

a formal distinction between ontological and linguistic classification. The

MOF defines concepts such as classifier, attribute, datatype and associa-

tion. The concepts defined in the UML metamodel are basically the same:

class, attribute and association. Apart from the names of the types being

the same, the definitions of the concepts are also very similar. In fact, since

UML 2.0 the MOF is supposed to be a subset of the UML metamodel defin-

tion. So the UML metamodel is not an ontological instance in the sense that

its building blocks are used to construct information about a target domain,

but it is a linguistic specialization in the sense that the defined concepts are

enriched, reused and extended.
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M3

M2

M1

M0

MOF

UML

class Diagram

instance Objects

linguistic

linguistic

ontological

M3M2M1

M0

M
O

F

U
M

L
class Diagram

instance Objects

ontological

linguistic

linguistic

O0 PLM
domain level 0

O1

O2

domain level 1

domain level 2

ontological

ontological

linguistic

linguistic

linguistic

1 2

3

Figure 10.1: Different kinds of classification in the OMG four layer hierarchy

The classification between the UML class diagram and the UML Meta-

model is again linguistic. This is the classification step equivalent to the

creation of PLM instances. Only the classification between the UML class

diagram and the instances of it is ontological (compare (1) in figure 10.1).

If we arrange the visualization schema of linguistic classification horizon-

tally and ontological classification vertically, we get (2) in figure 10.1. The

end user (the person using a modeling tool) will not be aware of the linguis-

tic levels other than the one he/she uses to create the model elements from.

So with multiple ontological levels of classification being present, there is no

need to have multiple linguistic levels as well, as the user will only ever use

one. In fact the goal is to ensure that the single linguistic level is sufficient

to represent all the ontological ones and the user does not need to resort

to different languages depending on the ontological level of abstraction. For

this reason, there is only one linguistic metamodel in potency based multi-
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level modeling, the PLM. The evolution of different model layers is shown

in figure 10.1.

If the semantics of multiple linguistic levels are viewed from the per-

spective of a person using a modeling tool, these semantics are hidden in

the implementation of the tool. If the implementation of the metamodel is

correct, the produced models will be valid according to the semantics of the

(UML) metamodel. If the tool violates the semantics of the metamodel, the

resulting models will probably not be processable by other tools using the

same standard. For the end user, such semantics do not provide any benefit,

but are a necessity for usable tools. The semantics for ontological classifica-

tion on the other hand can give immediate feedback on the information the

user expressed about the modeled domain. If inconsistencies arise in such

situations, the user can process the feedback and refine the model (or the

view on the problem domain).

10.2 MetaDepth

MetaDepth(47) is a multi-level modeling kernel building on the foundations

set out by Atkinson and Kühne (9, 12) as well as the early PLM publications

(15). The authors adopt most of the basic concepts and realize them in a

state-of-the-art modelling framework.

10.2.1 The main characteristics of MetaDepth

Constraints MetaDepth features linguistic support for constraints using

the Epsilon Languages (44).

derived Attributes The metamodel has a subclass of Field for derived

attributes whose value is not set by the user but derived via a computed

expression.
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transactions the core API calls are recorded in an event list and by per-

sisting this list not only are the results reproducible, the steps can be

re/un-done and grouped into transactions.

MetaDepth features two modeling modes, strict and extensible, which con-

trol whether or not the definition of a type can be extended by the

ontological instances.

Code Generation By default the MetaDepth kernel runs in interpreted

mode as intended by the model driven development paradigm, but in

case more efficient but fixed Java code is needed the kernel is able to

produce it.

MetaDepth has three modes for entering data to the model kernel: a Java

API, a command shell and a textual syntax. The latter is a particularly

useful way of representing small (multi-level) models. A graphical con-

crete syntax is not one of the primary design goals for the MetaDepth

kernel.

Model Store@2 {
Node ProductType {

VAT@1 : double = 7 . 5 ;
p r i c e : double = 10 ;
d i scount : double = 0 ;
minVAT@1 : $se l f .VAT>0$
minPrice@2 : $se l f . p r i c e>0$
}
}
Store Library {
ProductType Book { VAT = 7 ; }
}
Library MyLibrary {
Book mobyDick { p r i c e = 10 ; }
}

Listing 1: MetaDepth Model stack example
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Clabject

−potency:int
−name:String
−strict:boolean
−minimum:int
−maximum:int

QualifiedElement

Classifier

Node

−isAbstract:boolean

Edge

Model

container+

children+

*

type+

instance+
*

specific+
*

general+
*

Field

−isOrdered:boolean
−isUnique:boolean
−isReadOnly:boolean
−isID:boolean

owner+

fields+

*
{ordered}

DerivedField

<< from DataTypes >>
FieldValue

* fieldValue+

0..1

memberEnd+ 2..*

<< from DataTypes >>
DerivedValue

* fieldValue+

0..1

<< from Constraints >>
Constraint

*

context+

1..*

imports+ *

*

ModelFactory

VirtualMachine models+

*

metamodel+

factory+

0..1

Figure 10.2: The MetaDepth (partial) metamodel.(47, p.6)

10.2.2 What MetaDepth and the PLM have in common

Model MetaDepth uses the same notion of Model (the logical set of all the

elements of one ontological level) as the PLM.

modeling modes The strict and extensible modeling modes proposed by

MetaDepth are similar to constructive and exploratory modeling modes

of PLM. In strict mode, there can only by isonyms, never hyponyms,

and the reason for making a model extensible is the same, enabling

hyponymic instances.

Undefined/Unlimited Potencies MetaDepth features unlimited poten-

cies like PLM. The concrete syntax * is also the same.

default values The default values for feature potency (and potency in gen-

eral) is the same as well as the understanding about the visual impact

of a default value: They need only be shown if the value differs from

the default.

Read-only fields and the accessibility of a fields implicitly addresses the

issue of value potency (mutability). If a constraint includes several

222



10.2 MetaDepth

ontological levels and uses fields from those levels, the field from the

higher levels is treated as a “field of the type” (a static field) which is

the same intention as assigning default values to attributes in PLM.

Together with read-only, a field could be read-only and have potency

> 0, which would be equivalent to an attribute with durability 1 and

mutability 0.

The connections between nodes are first-class citizens of the model. They

are clabjects, they can hold fields and participate in other connections

themselves.

n-ary associations Associations can have an unlimited number of partic-

ipants, just like PLM connections.

whi l e ( Trans i t i on . a l l I n s t a n c e s ( )−>e x i s t s ( t | t . enabled
( ) and t . f i r e ( ) ) ) {}

opera t ion Trans i t i on enabled ( ) : Boolean {
re turn s e l f . ArctPT−>f o r A l l ( arc | arc . i nP la c e s . tokens>=

arc . weight ) ;
}
opera t ion Trans i t i on f i r e ( ) : Boolean {

f o r ( arc in s e l f . ArcPT)
arc . i nP la c e s . tokens := arc . i nP la c e s . tokens − arc .

weight ;
f o r ( arc in s e l f . ArcTP)

arc . outPlaces . tokens := arc . outPlaces . tokens + arc .
weight ;

r e turn true ;
}

Listing 2: Epsilon Object Language simulator for Petri nets

10.2.3 What Distinguishes MetaDepth and the PLM

Clabject multiplicity MetaDepth clabjects define multiplicity bounds to

control the number of instances that can exist in the instance model.
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Such a trait is not present in the PLM and would require further

research as the PLM differentiates between different kinds of instances

which are not fixed through the lifecycle of the model.

Model nesting MetaDepth models can import other models and therefore

effectively nest them inside. Currently no such interaction feature

between models of similar ontological levels is implemented in PLM.

Model potency MetaDepth models are clabjects themselves. As such,

they have a potency, can hold fields, define their mode and multiplic-

ity. The potency of a model is utilized in a model factory to instantiate

the whole model. The modeling mode decides whether or not an in-

stance model can add new clabjects to it. Some of the implied features

are realized in the PLM in a different manner: The modeling mode is

globally derived. Fore example, if a model contains * potency clab-

jects, it cannot be exploratory. In the current design the PLM authors

do not see the need for the level of detail a mode per model offers. The

potency of a model defines whether or not the model as a whole can be

instantiated in one batch. While the question remains whether a con-

tained clabject can have a higher potency than the surrounding model

(and what the semantics of such a setup would be), the PLM authors

again see no benefit at this level of detail as the batch instantiation

of a model is the sequential instantiation of the contained clabjects

and each Instantiatability is defined by the individual potency. The

situation is the same for model fields.

Ontology In MetaDepth, the VirtualMachine is the top level container for

model elements. It is a singleton element containing all the models. In

the PLM one stack of ontological models is contained in one Ontology.

There may be more Ontologies in one system and interoperability is

defined on the ontology level rather than on the model level.
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Exploratory mode In MetaDepth the extensible modeling mode allows

instances to define more properties than required. Nevertheless the

basic paradigm of modeling only in descending potency remains. True

exploratory modeling also covers the use case of deriving types from

instances or examining given levels of elements without any prior po-

tency constraints.

association traits MetaDepth utilizes fields to define association ends, re-

sulting in a very concise linguistic definition because the information

about participation is stored in the field of the participating clabject.

PLM chose to follow a different path and stores the linguistic infor-

mation in the connection itself. The main difference however is that

MetaDepth chooses the same fields as for data storage. So the connec-

tion participation does not have a separate roleName or a configurable

navigability. Multiplicity is implemented naturally through the fields

multiplicity.

Fields are Clabjects In MetaDepth, clabject is an element very high up

in the meta model inheritance tree. In PLM the only Clabjects are

model nodes and edges, in MetaDepth basically everything except a

constraint is a clabject. The main consequence of this difference is

that the element is a clabject in MetaDepth, but not in the PLM. For

fields, the difference sounds bigger than it is. In the PLM a feature

is not a clabject because it a) cannot contain other artefacts and b)

cannot have instances or types on its own. In MetaDepth recursive

containment of artefacts is not possible and the concept of instantia-

tion is defined in a lightweight way so the implications for fields having

instances are not as far reaching as they would be in the PLM.

linguistic support for methods In the PLM, methods are features in the

same way as attributes/fields are. In MetaDepth, methods are defined
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through an expression in the action language pinning them to a con-

text. So in the PLM methods are artefacts used to indicate that a

model element has to offer an operation and in MetaDepth operations

are attached to an element indicating the ability to perform a computa-

tion. The difference is subtle and perhaps originates from the absence

of an expression language like Epsilon in the early design phase of the

PLM.

linguistic support for correlations Correlations like classification or gen-

eralization are realized in MetaDepth in a very lightweight way: A lin-

guistic link in the metamodel. The information itself is not represented

by a distinct element in its own right as with PLM classifications or

generalizations. The PLM elements can hold information themselves

(disjointness, completeness etc.). The motivation for embracing corre-

lations in the metamodel (PLM also features SetRelationships which

are not present in MetaDepth) is to enable reasoning on those ele-

ments. Checking whether or not a generalization relationship exists is

in theory also possible in MetaDepth, but not to the same extent as

in the PLM. The information contained in the artefacts of the model

may be discovered as well (after all, it is there), but it can not be

shown in the model in the form of computed elements as in the PLM.

linguistic support for rendering information The use case of MetaDepth

does not cover the modeling of the rendering of an element, only the

artefacts the element represents. The PLM defines linguistic meta-

model elements for rendering that control how the elements are ren-

dered in a graphical way. This would be achievable in MetaDepth but

is not yet built into the metamodel.
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10.2.4 Conclusion

With regard to the research goals it is safe to say that MetaDepth does

not focus on Research Goal 2 and Research Goal 3. As such, it also can-

not fulfil these goals or any of the related hypotheses. The main goal of

MetaDepth clearly is Research Goal 4. Research Goal 1 is not in scope for

MetaDepth either as it does not provide a visual editor. In terms of the

observed weaknesses, MetaDepth clearly solves the two level (Fundamental

Weakness 5) and linear modeling (Fundamental Weakness 4) weaknesses,

but fails to overcome any of the others (fragmentation, assumptions and

concrete syntax). Nevertheless the textual notation proposed in MetaDepth

is very efficient and human readable.

10.3 OMME

The Open Meta Modeling Environment (67, 68, 69, 70, 71) was developed

in the group of Jablonski at the university of Bayreuth. It aims to provide

a foundation for integrating different languages within the same model to

combine their strengths and use them alongside each other in the devel-

opment process. The theoretical foundations are the same ones as for the

PLM: The orthogonal classification architecture, clabjects, deep instantia-

tion and the separation of linguistic from domain specific classification. The

implementation of the tool also follows the same principle as the Multi-Level

Modeling And Ontology Engineering Environment (Melanie) (33): eclipse

plugins based on Ecore. The tool will1 be presented by the group at the

world’s largest computer fair, CeBIT in 2012.

10.3.1 Metamodel

Just like the PLM, OMME features an orthogonal metamodel called the

Linguistic Meta Model (LMM, figure 10.3). The design goals for defining

1at the time of writing
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Figure 10.3: The Linguistic Meta Model (LMM) of the Open Meta

Modeling Environment, taken from (70)

the LMM were not only to support advanced modeling concepts but to

maintain flexibility in terms of a special modeling paradigm. The structure

of the produced models shall not be constrained in any unnecessary way,

including a strict semantic for classification (as in the PLM), making way

for non-linear model stacks and arbitrary references between models. The

top level (in the sense that there is no level above it) breaks with the self

defining nature of the OMG MOF (55) and the names used in the metamodel

are kept intentionally neutral, trying to avoid any bias towards any domain,

even computer science.

The central part of the metamodel is the concept. Concepts hold at-

tributes, assignments and references and are contained in Packages which

are contained in Levels which are contained in models. Levels can refer-

ence other levels with three reference types: instanceOf for classification,

references for a coupling that allows generalization between the levels and

alignedWith for a link with little semantics. Concepts can reference each

other with four types: instanceOf for classification, extends for generaliza-

tion, partitions for powertype references and concreteUseOf for specializing
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EMF / Ecore

LinguisticMetaModel
(LMM)

Low-Level
LMM API

Dynamic
LMM APIGraphical

Model
Editor

Model Designer Framework
Textual

Model Editor

Graphics Editor POJO

Model
Query

Team
Support

Model
Transformation

Model
Matching

Model
Repository

Figure 10.4: The implementation architecture of OMME, taken from (70).

Only the white boxes with solid lines are operational at the time of writing.

the instance facet. The powertype pattern is a first class citizen of the meta-

model and is defined on attributes. Other extensions like deep classification

are defined in the Extensions package with a MDeepInstantiationExtend,

which basically is a container for a potency value. The deep instantiation

can be defined on attributes and concepts, so attributes can have a potency

as well. Connections are missing from the meta model and are modeled as

attributes where the value is another concept. Thus connections are not

first class citizens in the sense that they can not be specialized and cannot

have attributes.

The implementation structure (shown in figure 10.4) of OMME builds

on EMF (24) and the connected frameworks for graphical editor creation

(GMF(30), GEF(29) and Xtext(31)). The meta model is implemented as an

Ecore model and the other services are built on that foundation. An LMM

API provides access to the LMM Elements of all levels. The models can be

edited in both a textual editor and a graphical one. The appearance in the

graphical editor can be customized with either predefined shapes or custom

java implementations. If these definitions became a part of the model itself

(and could at least be configured through the model), the mechanism would

represent a step towards the same goal as the LML in providing the basis for
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Figure 10.5: A screenshot of OMME, taken from (69)

defining domain specific languages inside the domain model. OMME further

provides a SQL like query language for accessing their model repository.

Melanie uses the EMF OCL implementation to access and navigate through

the model graph, both in the editor via a context console and also through

the model API in java code. Figure 10.5 shows a screenshot from the editor.

10.3.2 OMME Approach

The OMME approach builds on exactly the same fundamental insights

and technology as the work presented in this thesis and the resulting tool

Melanie. OMME tries to stay neutral in the naming of the elements and the

implementation also tries to hide the names in favour of the domain specific

ones. In that sense the LMM is not promoted as a common vehicle for dif-

ferent model stakeholders to fall back on for communication. The PLM is

meant to do so. We believe that the Tower of Babel problem can be solved

by providing a joint language for all of the stakeholders to communicate

with. More importantly, the PLM is intended to be the common ground for

both domain and technical experts to express their knowledge in.
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The levels in OMME do not need to be in a linear ordering. In PLM, the

levels are defined to correspond to the linear order of domain abstraction.

In other words, the PLM levels are defined implicitly through the level traits

of the clabjects (and therefore their level of domain abstraction), and the

OMME levels are user defined containers for model content1. This allows

a few constructs that are prohibited in PLM, such as generalization across

level boundaries, clabjects of the same level in different models and classi-

fication within one model. In OMME, powertypes are a first-class citizen

of the model and are explicitly supported through a metamodel element.

For the development of the PLM, powertypes were a motivation because

they are a prime example of the awkward workarounds the UML resorts in

order to capture deep classification. So the PLM does not try to mimic or

support powertypes, it aims to provide mechanisms to express what power-

types were invented for, but not as an ad hoc addon but as a fundamental

design element. With multiple levels of classification, a powertype can sim-

ply be modeled using classification and generalization. An attribute and

its value assignment are separated in OMME into different metamodel ele-

ments to mimic the type and instance facet of the owning concept. In the

PLM, the affiliation of an attribute to either the type or the instance facet

is determined by its durability (in OMME DeepInstantiationExtend.value).

Furthermore, the type and instance facet are not exclusive. An attribute can

belong to both and if it does, it does so as the triple (name,datatype,value).

For the type facet, the value acts as a default value or in case of lowered

mutability even as a type constraint for the instances. Also, in OMME the

datatypes are contained within the metamodel to limit the possible “types”

of attributes. While this proves beneficial for implementation on the eclipse

platform it limits the datatypes the user can apply. For example, to repre-

sent a date, in OMME there needs to be a concept for it and this concept has

1It is difficult to not mix up terminology, as an OMME level is a PLM model, and a

OMME model is a PLM ontology
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to be referenced. The impact is not so big, as references between concepts

and between literals are realized in the same way, but still the user is left

with the task of providing the datatypes suitable for the domain. Melanie

makes use of the dynamic evaluation features of the expression languages

defined for the eclipse and EMF environment. On the downside, the static

type checking of attributes becomes harder, but the user is given the extreme

power to not only use all of the supported datatypes, but also to provide

expressions as values which then evaluate to a valid value.

The definition of the LMM is lightweight with respect to correlations. Gen-

eralization relationships can be modeled as one kind of ConceptReference,

but these references do not hold any traits and because of their setup can

only ever connect one concept to n others. This combined with the fact that

generalization are specified as a reference from the subtype to the supertype,

makes it impossible to model one element that indicates that one concept

is the supertype of several others. It is only possible to model several ele-

ments that state that one concept is the supertype of one other. The subtle

difference is that concepts such as disjointness or completeness cannot be

modeled. Intersection can be modeled (from the setup of the metamodel)

but is never mentioned in the literature. Classification kinds are also not

present.

The potency values (called DeepInstantiationExtend values) cannot be *.

The lack of * potencies forces the user to always fix the number of classi-

fications when using a concept. Even with the loose coupling of levels, in-

stantiation of a potency zero concept or attribute is not possible in OMME

(since this is the very meaning of deep instantiation). So although the con-

tainment concepts are designed with maximum flexibility in mind, potencies

are strict.

The environment (again, at the time of writing) does not provide any seman-

tics or formal definitions of classification. Thus, the modeling mode is ulti-

mately limited to constructive modeling. Exploratory questions cannot be
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answered. The SQL like model query language and several implementation

blocks in the OMME architecture 10.4 indicate that exploratory questions

are in the scope of the framework (Model matching, Model transformation),

but as long as fundamental pieces of information can only be given by user

input and not challenged, the provision of services present in the ontology

world of modeling will be difficult.

10.3.3 Conclusion

The only research goal that is clearly achieved by OMME is Research Goal 4.

While Research Goal 1 is one of the starting points as well, the reduction

of accidental complexity has not really been acheived. The separation of

attribute names and values, the explicit datatypes, the various ways to group

model elements and the strictly binary generalizations mean that a lot more

elements have to be created than are actually needed.

In terms of the observed weaknesses, OMME tackles Fundamental Weak-

ness 3 even in a domain specific manner. Fundamental Weakness 4 and

Fundamental Weakness 5 are clearly solved by OMME, but Fundamental

Weakness 1 and Fundamental Weakness 2 are not covered.

10.4 OMEGA

The Ontological Metamodel Extension for Generative Architectures

(OMEGA) (34) differs from the approach proposed in this thesis in two main

ways:

1. It is realized as en extension to the MOF(55)

2. Its main purpose is code generation

The motivation to chose the MOF as a basis for extension seems legitimate

as the MOF has proven effective in practice as a meta object facility. For

PLM, MelAniE and the LML, the MOF is not suitable as it embodies many
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of the shortcomings which are the motivation for the design choices made.

A good example is the distinction of ontological levels in the usage of lin-

guistical elements. The instances of attributes are slots. The PLM treats

all levels uniformly in the sense that the linguistical elements used are all

the same. Obviously that was not the goal for OMEGA, as the concept is

even extended with the concept of a meta attribute, extending the possible

linguistic meta elements to three. “Attributes” in intermediate levels have

to be realized by two linguistic elements, one attribute as the instance of

a meta attribute and one meta attribute as the type of the next attribute

(or slot). Figure 10.6 shows the portion of the metamodel that is new or

changed compared to the original MOF. The concept of having explicit lin-

guistic types for both the type and the instance facet of a concept is applied

also to Association, AssociationEnd and Class. This is perhaps the most

fundamental difference to the PLM as one fundamental building block of

the PLM is to treat ontological levels uniformly.

The second main difference shows that the purpose for creating the

frameworks is totally different. As OMEGA is tailored towards the gen-

eration of source code, exploratory questions are totally out of scope. It

provides valuable additions for creating source code which can then be en-

hanced. MelAniE, in contrast, tries to execute a model directly in the sense

that the running system is a part of the model.

Potency is not realized as an integer in OMEGA but as a boolean attribute

canSpawnMeta which determines whether or not the instances can

be again MetaElements or must be instances. In that way, the sole

purpose of potency is missed. Potency is meant to control the instances

of the instances at the current level. With a boolean attribute, the

choice has to be remade at every level.

Strict Metamodeling The inital definition “every model element must be

an instance of exactly one element from exactly one level above” has
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Figure 10.6: The OMEGA meta model overview. The grey classes have

either been changed or are supertypes of newly introduced classes (shown

in white), taken from (34)

been relaxed by OMEGA to “every model element must be an instance

of exactly one element from a higher level”. This definition still only

allows exactly one type, but that type does not need to be on the level

immediately above but can be at a higher level, allowing classifications

to cross more than one level boundary. This relaxes the definition of

strictness in the opposite direction to the PLM: “if a model element is

an instance, the type has to be exactly one level above”. Classifications

that cross more than one level boundary go against the fundamental

principles underlying PLM. Also, OMEGA allows only one type. The

different possibilities for typing are not considered. This comes as no

surprise, as the main purpose is code generation, a purely constructive
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usecase.

The theoretical background for OMEGA and PLM is clearly the same as

evidenced by their similar references. However, the elaboration of the initial

ideas has progressed in almost completely opposite directions. OMEGA

is intentionally not a metamodel for ontologies. PLM strives to produce

ontologies which offer the same end user services as knowledge engineering

technologies. OMEGA builds on top of the MOF which is not compatible

with the design rationale behind PLM. So the many small differences mainly

go back to the fundamentally different philosophy applied when starting

from the generally equivalent base.

The research goal most completely covered by OMEGA is Research

Goal 1. Goals 2 and 3 are clearly not in scope and in order to reach Re-

search Goal 4 the realization of potency through a boolean is not sufficient.

Regarding the observed weaknesses, the extension of the MOF adds more el-

ements then there were before, so the complexity has increased rather than

decreased, making Fundamental Weakness 5 the only completely covered

weakness.

10.5 Nivel

Nivel(3) is a modeling language with formal semantics. The authors build on

the foundations in the area of meta and multi-level modeling (9), (12), (14)

or (10) shared by this work and base their language design on the principles

of

• strict meta modeling,

• ontological and linguistic classification,

• unified modeling elements and

• deep classification.
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Association

Class

name:string [0..1]
/level:natural
potency:natural
isAbstact:Boolean
/mayDefineAttributes:Boolean
instancesMayHaveAttributes:Boolean
/superclassing:{none,single,multiple}
instanceSuperclassing:{none,single,multiple}

1

instancetype

(direct)
instanceOf

name:string
Role

hasRole

1

11..*

hasAttr

superclass subclass

Value
name:string
value

1hasValue

(direct)
subclassOf

0..1

Attribute
name:string
potency:natural
cardinality:Cardinality
domain:Domain

Model
numberOfLevels:natural
multipleClassification:Boolean

topLevel 1..*

Cardinality
lower:natural
upper:natural [0..1]

CardinalityConstraint
cardinality:Cardinality
potency:natural

GeneralisationSet
name:string
isCovering:Boolean
isDisjoint:Boolean

playsRoleIn

Domain
name:string
value [*]

Figure 10.7: The Nivel Metamodel.(3, p.528)

The goal of Nivel is provide formal semantics for the modeling language to

enable reasoning on the models. The formal semantics of Nivel is given in

the

“weight constraint rule language (WCRL), a general purpose

knowledge representation language for which efficient, decidable

reasoning procedures are available.”(3, p. 522)

The information is input by expressing constraints. These constraints can

be universally true, universally false or to be satisfied by a lower and upper

cardinality. The semantics is given by defining predicates and expressing

their meaning through the constraints that are sufficient. The model itself

is also expressed through constraints. The total set of constraints then

defines a solution space representing the valid instances of the input model
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data. The WCRL interpreter (50) then finds those models and presents the

output of the execution.

10.5.1 What Nivel and PLM have in common

Foundation Nivel builds on the same foundations as the PLM. Obvious

proof are the properties of strict meta modeling, dual classification

and potency.

Level numbering The numbering direction of the ontological levels is not

just a matter of choosing to enumerate the items in a different manner.

It also capture the direction by which the information is added by the

user.

Association generalization Nivel treats Associations as first-class citi-

zens of the model in the sense that they can have attributes and even

enter generalization relationships. According to the Nivel metamodel

(Figure 10.7) roles in Associations are played by Class which is a su-

pertype of Association, so in Nivel, like in PLM, Associations can

themselves participate in other Associations.

10.5.2 What Distinguishes Nivel and the PLM

Modeling Mode Nivel clearly takes a constructive viewpoint. The seman-

tic definitions do not take the actual artefacts into account but take

the information input as universal facts. Classification and general-

ization are not deduced from domain knowledge but only input in the

model without verification. There are no operations to either validate

statements, nor deduce statements that are not expressed but correct.

Bounded and Unbounded All the potencies in Nivel are bounded. So

there is no way to express an unbound possibility for extension. To-

gether with the rules for multiplicity and potency, many of the crucial

design decisions are drawn focussed on the top level.
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Limitations on ontological extension Multiplicities can only be speci-

fied at the top level. Classification is not distinguished between com-

plete and incomplete typing.

Association participation Participating in an association in Nivel is equiv-

alent to playing the role an association defines. Thus, the participant

in an association end is not distinct. The PLM equivalent would be

to have a common supertype of the clabjects playing the roles and

let that be the destination of the role. However, Nivel supports roles

as an independent concept in its own right. It remains unclear what

the implications on the type definition of the role are. What are the

properties that can be expected from the destination of the role? Are

there any at all? In the example in figure 10.8, RadioPlay and Video

have the same facade, but it remains unclear if only instances of the

same type can play a role and whether or not they can add individual

attributes to it (What if only Video added “length”?).

Multiplicity potency By assigning a potency to multiplicities, the valid

number of association instances can be defined at a higher ontological

level. With that mechanism, multiplicity becomes a first class citizen

of the multi-level architecture as it is able to span multiple levels. In

PLM, the valid number of instances can only be influenced on the

directly adjacent level.

10.5.3 Conclusion

Nivel focuses on providing formal semantics to a multilevel modeling lan-

guage backed by an efficient computation engine. Based on the foundations

it is built on, the goal has been very well satisfied. However the goals of

Nivel are even stricter than Research Goal 1. The full SE use case is not

even in scope, only the formal creation of models and their translation to
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1
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2

RadioPlay2

taxRate=0%
title
owner2 [0..1]
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Book2

taxRate=7%
title
owner2 [0..1]
nrOfPages

0..12original adaptation
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IvanhoeTheFilm
title=Ivanhoe
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IvanhoeTheBook
title=Ivanhoe
nrOfPages=527
owner [0..1]

IvanhoeTheRadioPlay
title=Ivanhoe
length=143
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original
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{covering,disjoint}style

Novel2 Anthology2

:IvanhoeTheBook
owner=Tom

0..1

Video2

taxRate=22%
title
owner2 [0..1]
length

Figure 10.8: The nivel example model from (3, p. 530)

a weighted constraint language is. While this touches the use case of KE

as well, it does not fully cover it. Nivel performs well in reducing acciden-

tal complexity, although not all the aspects of Research Goal 4 are solved.

Especially the weaknesses 3 and 2 are not covered by Nivel.

In some of the aspects on the other hand Nivel exceeds the scope of the

PLM. The playing of association roles or multiplicity potency are interesting

concepts that offer expressive possibilities the current PLM does not. In the

future work section in the next chapter these possibilities for the PLM are

discussed.
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Conclusion

The goal of the research reported in this thesis was to explore and prove

the validity of two hypotheses related to the use of PMLM to advance the

state-of-the-art in visual modelling for software and knowledge engineering.

In this chapter we summarise the outcome of this research in relation to

these two hypothesis and describe the contributions that the research has

made to the state-of-the-art. We also present some suggestions for further

enhancements and applications of the developed technology.

11.1 Hypothesis 1

The research performed as part of this thesis has demonstrated the validity

of Hypothesis 1, namely that it is feasible to enhance the original potency

based multi-level modelling approach of Atkinson & Kühne in a way that:

1. supports existing SE modeling use cases by making it easier to cre-

ate models with reduced accidental complexity compared to today’s

modelling frameworks,

2. supports existing KE modeling use cases by making it easier to cre-

ate models with reduced accidental complexity compared to today’s

leading frameworks,
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3. supports the co-use of SE and KE modelling use cases in a natural

and simple way, making the uses cases traditionally available only to

one of the communities available to the other as well with little if any

impedance or accidental complexity,

4. supports a simple and natural approach to deep characterization, fa-

cilitating the creation of models of deep classification scenarios with

less accidental complexity than today’s leading modelling tools.

The key to developing a framework with the desired properties was to the

combine the flexibility and visualization capabilities offered by a metamodel

based modelling platform with the reasoning and analysis capabilities af-

forded by a formal semantics based on first-order predicate logic, using

the principles laid down by the OCA(10) for PMLM. The new platform

elaborated and implemented in this thesis fulfils all these requirements. In

particular, it:

1. supports all the core capabilities of the leading constructive modelling

technologies centred around the UML /OCL and ER(65) modelling

languages,

2. supports all the core capabilities of the leading exploratory modelling

technologies centred around OWL(1), including all the basic reasoning

services offered by OWL based tools such as Protégé(43),

3. Allows the same model content to be leveraged in a constructive or ex-

ploratory model without any transformations or platform interchanges.

Swapping between exploratory and constructive modes of modelling on

the same content is therefore completely impedance free,

4. Supports an arbitrary number of ontological classification levels in a

natural, level agnostic way.
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11.2 Hypothesis 2

The research performed as part of this thesis has demonstrated the valid-

ity of Hypothesis 2, namely a powerful, general-purpose modelling tool on

the aforementioned platform can provide additional services and uses cases

beyond those supported in the two main existing modelling traditions.

The key challenge involved in exploring this hypothesis was to develop a

practical modelling tool based on the aforementioned platform that makes

the combined use cases of the SE and KE modelling traditions, as well as

the use case cases of deep characterization, available in a and user friendly

way. To meet this challenge a new multi-level modelling tool, Melanie,

was developed. The PLM was implemented in EMF(24) with the help of

GEF(29), GMF(30) and various other Eclipse frameworks (32, 33). This

work included the definition of an enhanced concrete syntax for PMLM

which seamlessly and uniformly supports all the use cases above, as well as

a full implementation of all the visualization, reasoning and analysis services

typically provided by tools from both modelling traditions.

From this starting point, it was possible to incorporate various new ca-

pabilities in the Melanie tool which support services and use cases that to

our knowledge are not yet available anywhere else. These range from fun-

damental new modelling modes such as unbounded modelling (where the

number of classification levels is left unspecified in a complete ontology) to

very concrete model improvement and development services such as support

for:

1. Instantiation from ontological types,

2. Instantiation of a complete model,

3. Validating classifications based on properties,

4. Establishing ontology properties,
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5. Introspection of clabjects,

6. Refactoring of properties,

7. Removal of redundant correlations.

11.3 Contribution

In a general sense, the contribution of the thesis is to provide the foundations

for a new generation of modelling tools that

(a) fulfil all the high-level goals outlined in chapter 1, namely they support

all the use cases of the SE and KE modelling traditions and of deep

classification within a single, unified environment and ,

(b) provide new use cases and services that are not found in any main-

stream modelling tool today from either modelling tradition.

In short, it supports all existing and envisaged modelling uses cases and

demonstrates the feasibility of several more.

At a more detailed level, the contributions of the research reported in the-

sis can best be explained from the perspective of three main constituencies –

the traditional software engineering constituency, the traditional knowledge

engineering constituency and the multi-level modelling research community.

11.3.1 Software Engineering

From the perspective of the SE community the work performed in this thesis

makes four main significant contributions to the state of the art:

1. It supports all the main services and uses case supported by main-

stream SE tools, but places them on a solid basis thanks to the devel-

oped underlying formal basis for PMLM.
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2. This formal foundation allows software engineers to also leverage KE

oriented use cases and services which have traditionally been unavail-

able to them.

3. It allows software engineers to represent deep classification scenarios in

a clean, natural and uniform way, with all the traditional SE services

still available to them.

4. It allows software engineers to benefit from new services that have

hitherto not been available in any modelling tools.

11.3.2 Knowledge Engineering

From the perspective of the KE community the work performed in this thesis

makes four main contributions to the state of the art:

1. It supports all main services and uses case supported by mainstream

KE tools, but allows them to be used and leveraged with a new

user-friendly engineering oriented concrete syntax akin to the UML.

In short, it let’s user visualize ontologies though a user friendly yet

engineering-oriented modeling notation.

2. It allows knowledge engineers to also leverage SE oriented use cases

and service which have traditionally been unavailable to them without

prohibitive artificial complexity.

3. It allows knowledge engineers to represent deep classification scenar-

ios in a clean, natural and uniform way, with all the traditional KE

services.

4. It allows knowledge engineers to benefit from new services that have

hitherto not been available in any modelling tools.
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11.3.3 Multi-Level Modeling

From the perspective of the PMLM community the work performed in this

thesis makes four main significant contributions to the state of the art:

1. It extends the original PMLM approach of Atkinson & Kühne to sup-

port all the main uses cases of the SE and KE modelling communities

as well as PMLM and new hitherto unknown modelling use cases.

More specially, the key enhancements to the original PMLM approach

of Atkinson & Kühne that enable this are:

Star potencies to enable the new dimension of unbounded modeling,

Isonyms and Hyponyms to refine the notion of classification and

its role in exploratory and constructive modeling,

Formal Correlations to validate asserted information and discover

correlations based on user input,

Value potency to introduce multi-level control not only for clabjects

and features, but also for values,

Multi-level Correlations To formalize the semantics of correlations

with their meaning for the classified domain and can be validated

and enforced by the modeling tool,

Level spanning reasoning Now that the multi-level traits and con-

cepts are formalized, there are ontology properties (consistency,

completeness) that span multiple levels and thus bring logical

reasoning to the multi-level world.

2. It has provided one of the first comprehensive formal foundations for

PMLM along with a comprehensive, complementary set of reasoning

services that encompass those of traditional modelling environments,
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3. It has developed the first comprehensive, visual concrete syntax to

support PMLM as well as the new use cases and services mentioned

above,

4. It has developed one of the first practical tools for PMLM, featur-

ing all the aforementioned innovations, that is compatible with the

most widespread open source modeling frameworks available today

(i.e. Eclipse, EMF).

11.3.4 Prototype Implementation – Melanie

The ideas presented in this thesis have been implemented in a modeling

tool that strives to fulfil the research goals formulated in chapter 1. The

tool is called Melanie for “Multi-Level Modeling and Ontology Engineering

Environment”(33), (32).

The tool is implemented on top of the Eclipse framework and makes

heavy use of the provided plugins to benefit as much as possible from pre-

vious work. The metamodel is realized in EMF(28). The metamodel opera-

tions are implemented in the metamodel as OCL(54) operations. Therefore

they are also accessible in the interactive OCL console for live queries to the

ontology (see figure 11.1, 11.2). The editor is implemented in GMF(30).

The editor features a palette from which concrete metamodel elements

can be instantiated. Connections can be drawn between the entities. For

types the palette is extended by domain specific elements. The appearance

of these elements can be configured. Figure 11.1 shows the editor with an

almost empty ontology. On the left hand side is the project explorer were the

ontologies can be organized into projects. The outline below makes it easier

to navigate through large ontologies. At the bottom is the properties view

displaying all the traits, but also ontological and visualization information.

In the bottom-right corner there is an open interactive OCL console where

the user can query the model and get immediate feedback.
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Figure 11.1: Screenshot of an almost empty ontolgoy in Melanie

The second screenshot (figure 11.2) shows the result of a reasoning query

in Melanie. In O1 there is an anonymous entity without a type and the user

has requested the tool to check whether it is an instance of Person via the

context menu of the elements. The result can be seen on the left hand

side in the reasoning view. The result is not just a boolean answer (“yes”

or “no”) but a detailed trail of the checks performed in order to obtain

the result. In this example the entity is a person because it is an isonym

(i.e. it property conforms, potency conforms and does not add any new

properties). The reasoning view provides valuable feedback about the origin

of the overall result, especially when the overall check fails and the user

wants to investigate the cause of the failure.
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Figure 11.2: Screenshot of a reasoning result in Melanie

The third screenshot (figure 11.3) shows a larger ontology. The left

hand side and the bottom panel have been minimized to provide an editor

centric working environment. In the lower ontological level, a domain specific

rendering of one of the entities has been selected. One of the main features of

Melanie is the symbiotic usage of both domain specific and general purpose

rendering, as shown in O2. The elements in O2 were created by ontological

instantiation of previously defined types. Melanie offers those types in the

DSL Palette (shown on the right hand side in figure 11.3) as soon as the

lower level is selected. The rendering and domain specific capabilities are

the focus of another branch of research ongoing at the group of software

engineering (17).
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Figure 11.3: Screenshot of a larger ontology in Melanie containing domain

specific rendering.

Despite the effort put into the development of Melanie, it is still a prototype

implementation. As such it is not optimized for fast computation but to

show the power and possibilities of the technology. While the current version

is certainly usable, it cannot operate on large ontologies of the kind found on

the semantic web. The bottleneck is the visual rendering of the clabjects.

The EMF technology is able to operate on large models, as are all the

introduced services.

With the recursive nature of many of the introduced definitions (mainly

property conformance), the execution time of a reasoning operation such as

subsumption or ontology validation rises rapidly with the number of involved

clabjects. Analyses of the implementation shows that the worst case runtime
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for exploratory ontology validation is O(n8). The actual runtime is highly

dependent on the shape of the ontology. The tighter the integration of the

clabjects through connections, the more checks need to be executed.

11.4 Future Work

Beyond the benefits just described, the presented work also opens up a lot

of potential for further research. The proposed research can be divided into

enhancing the present solution to resolve shortcomings and enhancements

to add new features.

11.4.1 Evolutionary Enhancements

The enhancements presented in this subsection are called evolutionary be-

cause they build on the present solution and present only an incremental

improvement.

Composition and Containment in general The current version of PLM

does not have a distinct metamodel element for containment in gen-

eral or composition in particular. The two possible alternatives are: a

subtype of connection or a correlation.

Packages The current version of the PLM metamodel already combines el-

ements of three different dimensions: Rendering information, artefacts

and correlations. If these were separated by packages, they could be

imported and exported, making metamodel development and refine-

ment much more structured.

Mutability for Methods Mutability does a good job of fixing the value

of attributes from being overridden on classified levels. The equivalent

to attribute values for methods is their body. A similar concept for

the body does not exist but would be very powerful.
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Separation of correlations and artefacts Generalizations carry ontolog-

ical information because the properties are not passed on to the sub-

types. That makes generalization a part of the domain definitions

which may not be desirable. If generalization would be processed in a

way that the properties are created in the subtypes upon the creation

of the generalization, all artefacts would be present in the namespace

of any clabject.

Connection Transitivity The transitivity trait of connections is not used

in reasoning at the moment. If a connection δ is transitive and two

isonyms δ1, δ2 have the participants γ1, γ2 and γ3 such that γ1 ~δ1γ2

and γ2 ~δ2γ3 then there must exist a third isonym γ1 ~δ3γ3. The current

version of the engine does support the detection or the enforcement of

transitivity.

Overriding of Navigations and Connections Each clabject can partic-

ipate in connections. Connection participation is a property that is

passed on to the subtypes. There is no formalization for identifying

overridden navigations. The following approach in operation 15 could

provide a method to identify one kind of redefined roles, but has not

been implemented or tested.

Operation 15 γ.redefinedNavigations()

result← ∅
for ψ ∈ γ.inheritedNavigations() do

δ ← ξ.connection

γs ← ξ.destination

for ψ′ ∈ γ.eigenNavigations() : ψ.roleName = ψ′.roleName do

if ψ′.connection.subsume(δ) ∧ ψ′.destination.subsume(γs) then

result← result ∪ {ψ}
return result
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Playing of association roles The current semantics for roles is that if a

clabject participates in a connection, its instances have to participate

in an instance of that connection as well. If a role could define several

clabjects that are valid types for connection participants, the semantic

would change to: An instance of one of the types that play that role

has to participate in any instance of the connection.

Multiplicity potency Among the traits that are multi-level unaware is

the name of clabjects and multiplicity. If multiplicity had a potency

like features, there would be two consequences: Σi connections could

influence the shape of Σi+2 directly and Σi+1 could be actively flagged

as an intermediate level not subject to multiplicity constraints.

Textual syntax The EMF modeling framework(28) has an internal rep-

resentation supporting a textual syntax, but the models are far from

human readable, meaning the model loses the benefit of the graphical

simplicity. Ideally, a model would be human readable in both textual

and graphical syntax.

11.4.2 Ontology Properties

As well as consistency, completeness and validity ontologies can be assigned

other properties that show their maturity or logical soundness.

Contained Ontology Consistency and completeness both judge top-down

that every declared type actually is a type and that the offspring con-

forms to the claims made. A self contained ontology is an ontology that

contains all the information necessary to produce itself. So every model

except the root model can be created from its classifying model. For-

mally, in a self contained ontology every clabject has a complete type.

χ.isSelfContained() := χ.isComplete() ∧ ∀γ : γ.level 6= imin :
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∃γt : γt.isCompleteType(γ)

Minimal Ontology Ideally, the upper ontological levels server the pur-

pose of specifying the lower levels. Of course there may be clabjects not

on the leaf model that have no relationships to lower levels, but then these

clabjects are either not necessary for the specification of the most concrete

domain or the ontology is not complete. In a minimal ontology, every ele-

ment is necessary for the classification of the lower ontological levels. For-

mally it means that every clabject (except for the leaf model) has a potency

greater than zero.

χ.isMinimal() := χ.isComplete() ∧ ∀γ : γ.level 6= imax :

γ.potency > 0

Permeated Ontology Even with a minimal ontology, it is still possi-

ble that some concepts are not introduced in the root model but further

down the classification hierarchy. To describe an ontology where every

concept is present on all levels, a permeated ontology is introduced. Ev-

ery clabject permeates the whole ontology in the sense that its classifi-

cation path goes from the root to the leaf model. Formally, every po-

tency at the top level is equivalent to the number of classified models.

χ.isPermeated() := χ.isComplete() ∧ ∀γ :

γ.potency = χ.levels()− γ.level

In a permeated ontology, the models can still be of different size. It is

even possible for a classified model to be smaller in size than the classifying

model, but the most likely case is that the size of the models increases with

the level.

Status These properties are not yet implemented in Melanie but are tar-

geted for future versions. Although the properties form a sequence of strict-
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Figure 11.4: Landscape of ontology properties

self contained

minimal

permeated

ness in their requirements, they are not complete specializations. Figure

11.4 gives an overview of the property implications. Every permeated on-

tology is self contained and minimal. There can be not permeated minimal

ontologies as well as not permeated self contained ones. An ontology can be

minimal and not self contained and vice versa, but once it is minimal and

self contained, it is permeated.

11.4.3 Open World and Closed World

If the information in the model is not meant to be complete, the LML (16)

is already able to reflect this fact in the concrete syntax by applying elision.

The elided part in the open world context stands for the unknown part of

the information.

With the possibility of [0..1] multiplicities for PLM traits, the infrastruc-

ture supports undefined traits. This lack of definition can be interpreted as

“unspecified” rather than “missing” or “universally true” instead of “tied

to one value”. These measures aim at supporting open world reasoning at

some point in the future. Supporting open world reasoning is not as easy as

switching from binary to ternary logic. The whole semantics of the model
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element (may) differ in the open world. The challenge comprises

a) model repository representation(e.g. using non-mandatory traits),

b) visual rendering (e.g. using elision) and

c) semantic operation definition both in terms of open and closed world

semantics.

While there is still a lot of work to be done to lay the ground for the last

part, the PLM tries to be compatible with an implementation of open and

closed world distinction in the future.

The presentation of these opportunities for future work brings the thesis to

its conclusion. Hopefully the technology described in the preceding chapters

will help lay the foundation for a new generation of tools that are able

to bridge the barrier that currently divides the software engineering and

knowledge engineering communities and will lower the artificial complexity

that modelers currently have to contend with when developing models. At

the very least, the ideas and discussions will hopefully stimulate further PhD

students to push forward the state-of-the-art in modeling, so that one day

modeling will become the only important activity in software and knowledge

engineering.
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ing M0, M1, M2, and M3 into a single object diagram, 2005.

URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.

1.103.806. 33

[36] Cesar Gonzalez-Perez and Brian Henderson-Sellers. A powertype-

based metamodelling framework. Software and Systems Modeling, 5

(1):72–90, 2006. ISSN 1619-1366. URL http://dx.doi.org/10.1007/

s10270-005-0099-9. 33, 45

[37] Matthias Gutheil, Bastian Kennel, and Colin Atkinson. A Systematic

Approach to Connectors in a Multi-level Modeling Environment. Model

Driven Engineering Languages and Systems, pages 843–857, 2008. URL

http://www.springerlink.com/index/B64168K41LX862WX.pdf. 43
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[42] Juan A. Recio-Garćıa. OntoBridge, 2008. URL http://gaia.fdi.

ucm.es/research/ontobridge. 50

[43] H Knublauch, R Fergerson, N Noy, and M Musen. The Protege OWL

plugin: An open development environment for semantic web applica-

tions. The Semantic Web–ISWC 2004, pages 229–243, 2004. 31, 189,

242

[44] D Kolovos, R Paige, and F Polack. The epsilon object language (eol). In

Model Driven Architecture–Foundations and Applications, pages 128–

142. Springer, 2006. 220

[45] Thomas Kühne. Matters of (Meta-) Modeling. Software Sys-

tems Modeling, 5(4):369–385, 2006. ISSN 16191366. doi: 10.1007/

s10270-006-0017-9. URL http://www.springerlink.com/index/10.

1007/s10270-006-0017-9. 111

[46] Thomas Kühne and F. Steimann. Tiefe charakterisierung. In Mod-

ellierung 2004, pages 121–133. Ges. für Informatik, 2004. ISBN

3885793741. URL http://deposit.fernuni-hagen.de/2248/. 37

[47] Juan De Lara. Deep meta-modelling with METADEPTH. Objects,

Models, Components, Patterns, pages 1–18, 2010. URL http://www.

springerlink.com/index/1034254L64508344.pdf. 45, 220, 222

[48] Barbara Liskov. Data abstraction and hierarchy. In Addendum to the

proceedings on Object-oriented programming systems, languages and ap-

plications (Addendum), OOPSLA ’87, pages 17–34, New York, NY,

USA, 1987. ACM. ISBN 0-89791-266-7. doi: http://doi.acm.org/

263

http://www.uni-koblenz.de/~groener/documents/SWESE2010_OWLFA.pdf
http://www.uni-koblenz.de/~groener/documents/SWESE2010_OWLFA.pdf
http://gaia.fdi.ucm.es/research/ontobridge
http://gaia.fdi.ucm.es/research/ontobridge
http://www.springerlink.com/index/10.1007/s10270-006-0017-9
http://www.springerlink.com/index/10.1007/s10270-006-0017-9
http://deposit.fernuni-hagen.de/2248/
http://www.springerlink.com/index/1034254L64508344.pdf
http://www.springerlink.com/index/1034254L64508344.pdf


BIBLIOGRAPHY

10.1145/62138.62141. URL http://doi.acm.org/10.1145/62138.

62141. 136

[49] D L McGuinness, F Van Harmelen, and Others. OWL web ontology

language overview. W3C recommendation, 10:2003–2004, 2004. 30
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