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ABSTRACT

A technique to create High Dynamic Range (HDR) video frames
is to capture Low Dynamic Range (LDR) images at varying shut-
ter speeds. They are then merged into a single image covering the
entire brightness range of the scene. While shutter speeds are often
chosen to vary by a constant factor such as one stop, we propose an
adaptive approach. The scene’s histogram together with functions
judging the contribution of an LDR exposure to the HDR result are
used to compute a sequence of shutter speeds. This sequence allows
for the estimation of the scene’s radiance map with a high degree of
accuracy. We show that, in comparison to the traditional approach,
our algorithm achieves a higher quality of the HDR image for the
same number of captured LDR exposures. Our algorithm is suited
for creating HDR videos of scenes with varying brightness condi-
tions in real-time, which applications like video surveillance benefit
from.

Index Terms— HDR Video, Shutter Speed, Video Surveillance

1. INTRODUCTION

A recurring problem in video surveillance is the monitored scene
having a range of brightness values that exceeds the capabilities of
the capturing device. An example would be a video camera mounted
in a bright outside area, directed at the entrance of a building. Be-
cause of the potentially big brightness difference, it may not be pos-
sible to capture details of the inside of the building and the outside
simultaneously using just one shutter speed setting. This results in
under- and overexposed pixels in the video footage, impeding the use
of algorithms for face recognition and human tracking. See Figure 1
for an example. A low-cost solution to this problem is temporal ex-
posure bracketing, i.e., using a set of LDR images captured in quick
sequence at different shutter settings [1, 2]. Each LDR image then
captures one facet of the scene’s brightness range. When fused to-
gether, an HDR video frame is created that reveals details in dark
and bright regions simultaneously.

The process of creating a frame in an HDR video can be thought
of as a pipeline where the output of each step is the input to the subse-
quent one. It begins by capturing a set of LDR images using varying
exposure settings, e.g., shutter speed or gain. Typically, the shut-
ter speed is doubled or halved with each additional image captured.
Next, the images are aligned with respect to each other to compen-
sate for camera and scene motion during capture. The aligned im-
ages are then merged together to create a single HDR frame contain-
ing accurate brightness values of the entire scene. As a last step, the
HDR frame is tone mapped in order to be displayable on a regular
LDR screen.

In a video surveillance scenario, all these steps must be per-
formed in real-time. One way of speeding up the entire process is to
only capture as few LDR images as necessary, that is, to optimally

Fig. 1. The inside of the building is much darker than the outside.
There is no shutter speed setting that exposes both correctly at the
same time. A solution to this problem is using a sequence of shutter
speeds and merging the images together.

choose shutter speeds at which to capture. The fewer images are
captured, the less time is taken to process them, leading to higher
frame rates. Yet at the same time, the dynamic range of the moni-
tored scene may necessitate a certain minimum number of exposures
so that all detail is captured properly. So the goal is to get the most
out of the recorded exposures. In the surveillance example above,
where a camera is pointed at the entrance of a building, it may be
a sensible choice to use one long shutter speed that suits the inside
of the building and another shorter one adjusted to the outside. This



way, the whole scene can be covered with just two carefully cho-
sen shutter speeds. Such a choice can only be made if the scene’s
brightness histogram is considered.

Barakat et al. [3] focus entirely on minimizing the number of ex-
posures while covering the entire dynamic range of the scene. Only
minimum and maximum of the scene’s irradiance range are taken
into account, and the least possible overlap of exposures is always
chosen. They do not consider the SNR of the HDR result during the
choice of exposure times, that is, each pixel is considered to con-
tribute the same amount to the result regardless of its value. The
algorithm is a fast heuristic suitable for real-time use.

In [4], the authors use a model of shot noise to determine the
sequence of shutter values producing the highest SNR for a given
number of exposures. The shutter speeds are obtained by solving
a constrained optimization problem. For this purpose, a coarse ap-
proximation of the scene irradiance histogram is used. However, the
computation is too costly to be done on-line. The authors do not
employ a pixel weighting scheme, but always use the brightest pixel
before saturation.

An approach to emulate an effective camera with a given re-
sponse function and dynamic range was published in [5]. In an of-
fline process, a static table of exposure times is created that spans
the desired dynamic range. The static table prevents adaptation to
changes in scene brightness distribution, for example when large re-
flective surfaces like cars appear.

A very recent method to determine noise-optimal exposure set-
tings uses varying gain levels [6]. For a given sum of exposure times,
increasing gain also increases the SNR. The authors define SNR as a
function over log radiance values. However, they only consider the
worst-case SNR, i.e., the minimum of the SNR function and ignore
the average SNR of the HDR result. Only the extrema of the scene’s
brightness are considered. Again, computation of the exposure set-
tings is too expensive to be used in a real-time scenario.

The authors of [7] developed a theoretical model for photons
arriving at a pixel by estimating the parameters of a Gamma distri-
bution. From the model, exposure values are chosen that maximize
a criterion for recoverability of the radiance map. The focus lies on
the impact of saturated pixels on the HDR result.

In [8], an algorithm for estimating optimal exposure parameters
from a single image is presented. The brightness of saturated pixels
is estimated from the unsaturated surrounding. Using this estima-
tion, the expected quality of the rendered HDR image for a given
exposure time is calculated. The exposures leading to the lowest
rendering error are chosen.

In an HDR video, the histogram of scene brightness values is of-
ten a by-product of tone mapping the previous frames [9]. The novel
approach we present in this paper thus uses the entire histogram to
calculate a shutter speed sequence in real-time. The shutter speeds
are chosen in a way, such that frequently occurring brightness values
are well-exposed in at least one of the captured LDR images. This
increases the average SNR for a given number of exposures or min-
imizes the number of exposures required to achieve a desired SNR.
We also give our definition of contribution functions to specify pre-
cisely what we mean by “well-exposed”. An image pixel is a noisy
measurement of physical radiance. The quality of this measurement
is a function of the pixel value, with higher values generally lead-
ing to a more accurate measurement. This circumstance is modeled
by our contribution functions. It is a concept similar to the noise
models used in other methods. In order to be applicable to video, we
consider bootstrapping and convergence to a stable shutter sequence.
Additionally, we introduce a stability criterion for the shutter speeds
to prevent flicker in the video.

Our main contributions presented in this paper are:

• A real-time algorithm for computing shutter speed sequences
according to the scene’s histogram,

• an increase in quality of the HDR result for the same number
of exposures,

• bootstrapping and temporal smoothing of the shutter speed
sequences for the use in HDR video, and

• contribution functions and their relationship to log brightness
histograms to estimate “well-exposedness”.

In the following section, we introduce weighting functions for
LDR pixels and give our definition of contribution functions as a
means of judging an exposure’s impact on the HDR result. Section 3
then defines log radiance histograms and demonstrates a useful rela-
tionship between them and contribution functions which is exploited
by our algorithm. The algorithm for finding optimal shutter speed
sequences itself is described in Section 4. The quality of the HDR
images produced by our optimal shutter sequences and the compu-
tational cost are analyzed in Section 5 of this paper. Section 6 con-
cludes the paper.

2. WEIGHTING FUNCTIONS

An HDR image is a map of radiances contained in a scene. In order
to reconstruct this radiance map from the pixel values of the captured
LDR images, the camera’s response function f must be known [1].
For the duration ∆t that the camera’s shutter is open, a pixel on
the CCD sensor integrates the scene radiance E, resulting in a to-
tal exposure of E∆t. The camera’s response function then maps
the exposure to a pixel value I = f(E∆t), usually in the range of
[0, 255]. When the shutter speeds ∆ti used to capture the LDR im-
ages are known, the inverse of the response function can be used to
make an estimate Ẽi of the original radiance from pixel value Ii in
LDR image i:

Ẽi =
f−1(Ii)

∆ti
. (1)

A good approximation of the radiance value at a pixel in the HDR
image is then obtained by computing a weighted average over all
estimates Ẽi:

E =

P
i w(Ii)ẼiP

i w(Ii)
. (2)

The weighting function w determines how much the radiance es-
timate Ẽi from a pixel Ii contributes to the corresponding HDR
pixel E. In other words, it judges a pixel’s usefulness for recover-
ing a radiance value based on its brightness value. Note that without
prior calibration, radiance values E computed like this only repre-
sent physical quantities up to an unknown scale factor. This is suffi-
cient for our purpose. We thus use the terms radiance and scaled ra-
diance interchangeably to denote the pixel values of an HDR frame.

Weighting functions are usually chosen to reflect noise charac-
teristics of a camera, the derivative of its response function (i.e., the
camera’s sensitivity), and saturation effects. They are often found
in the literature as parts of HDR creation techniques [1, 10, 11].
Even though various weighting functions exist, they often share a
few common properties. Most notably, the extremes of the pixel
range are always assigned zero weight. This means that pixels with
these values contain no useful information about the real radiance.
As an example, a white sheet of paper and a reflection of the sun in a
window can – under certain exposure settings – both be represented
by a pixel value of 255, even though the sun is several orders of mag-
nitude brighter than the paper. The same reasoning applies to very
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Fig. 2. The weighting function we use in our experiments. The
weight of a pixel is its value multiplied by a hat function normalized
to a maximum weight of 1.

dark pixels. Another common attribute of weighting functions is the
location of their maximum. Pixels with a medium to high value are
considered to be more faithful than dark pixels. This is due to the
fact that a large portion of the image noise (e.g., quantization noise,
fixed pattern noise) is independent of the amount of light falling onto
the pixel. A bright pixel thus has a better signal-to-noise ratio than a
dark one. Figure 2 shows an exemplary weighting function. In our
experiments, we found that the function shown in the plot gives the
best results, but our approach also works for any other choice.

For a given shutter speed ∆t, we can thus calculate how well
a radiance value E can be estimated from an image captured at ∆t
by combining the response and the weighting function. A radiance
valueE is mapped to a pixel value using the camera’s response func-
tion f . The weighting function w then assigns a weighting to the
pixel value. We define

c∆t(E) = w(f(E∆t)) (3)

as the contribution of an image captured at ∆t to the estimation of a
radiance value E. In the special case of a linear response function,
c∆t looks like a shifted and scaled version of w. An example for a
contribution function in the log domain is shown in Figure 4.

3. LOG RADIANCE HISTOGRAMS

When creating HDR videos in real-time, the scene’s brightness dis-
tribution is known from the previous frames. Additionally, some
tone mapping operators create histograms of scene radiance values
as a by-product or can be modified to create them with little extra
effort [9]. In this section, we describe how a log radiance histogram
can be used to calculate a sequence of shutter speeds ∆ti which
allows the most accurate estimation of the scene’s radiance. We do
this by choosing the ∆ti such that the peaks of the contribution func-
tions c∆ti(E) of the LDR images coincide with the peaks in the his-
togram. That is, radiance values that occur frequently in the scene
lead to LDR images to be captured which measure these radiance
values accurately. This is illustrated in Figures 3 and 4.

The histogram over the logarithm of scene radiance has M bins.
Each bin with index j = 1, ...,M corresponds to the logarithm of
a discrete radiance value: bj = log(Ej). Bin j counts the number
H(j) of pixels in the HDR image having a log radiance of bj . The
bins have even spacing in the log domain, meaning that for any j,
the log radiance values bj and bj+1 of two neighboring bins differ
by a constant ∆b = bj+1 − bj . The non-logarithmic radiance val-
ues corresponding to two neighboring bins thus differ by a constant

Fig. 3. Example of a tone mapped HDR image.
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Fig. 4. The solid line depicts the log radiance histogram of our ex-
ample scene (Figure 3). The dashed line is the contribution function
in the log domain corresponding to the first shutter speed chosen by
our algorithm. The exposure was chosen such that it captures the
most frequently occurring radiance values best.

factor exp(∆b) = exp(bj+1)/exp(bj) = Ej+1/Ej .
Equation 3 states that, for a given shutter speed ∆t and an LDR

image captured using ∆t, the value of c∆t(exp(bj)) indicates how
accurately log radiance bj is represented in the LDR image. When
considering log radiance histograms, the continuous contribution
function is reduced to a discrete vector of contribution values. It has
one contribution value for each radiance interval of the histogram.
We can now exploit a useful relationship between the log radiance
histogram and our contribution vector: Shifting the contribution
vector by a number of s bins leads to

c∆t(exp(bj + s∆b))

= w(f(exp(bj + s∆b)∆t))

= w(f(exp(bj)exp(∆b)s∆t))

= w(f(exp(bj)∆t′))

= c∆t′(exp(bj)),

where
∆t′ = exp(∆b)s∆t. (4)



This means that the contribution vector corresponding to shutter
speed ∆t′ is identical to a shifted version of the original vector. We
thus easily obtain an entire series of contribution vectors for shutter
speeds that differ by a factor of exp(∆b)s. In other words, only
the shift, but not the shape of the contribution function depends on
the shutter speed in the log domain. This allows us to move the
contribution function over a peak in the histogram and then derive
the corresponding shutter speed using the above formula.

4. OPTIMAL SHUTTER SEQUENCE

In order to compute an optimal shutter speed sequence, we first cal-
culate an initial contribution vector from the known camera response
and a chosen weighting function. Camera response functions can be
estimated as described in [1, 10, 11] The initial shutter speed ∆t
to compute c∆t can be chosen arbitrarily. For ease of implementa-
tion, we choose ∆t such that the first histogram bin is mapped to a
pixel value of 1, that is f(exp(b1)∆t) = 1. Note that f−1(0) is not
uniquely defined in general. The size of the contribution vector de-
pends on the dynamic range of the camera, reflected in its response
function. Reaching a certain scene radiance EN+1 = exp(bN+1),
the camera’s pixels will saturate, resulting in f(exp(bj)∆t) = 255
for j ≥ N + 1 in case of an 8 bit sensor. It is safe to assume that
any reasonable weighting function assigns zero weight to this pixel
value. Hence, the contribution vector c∆t(Ej) = w(f(exp(bj)∆t))
consists of N nonzero values. It can be shifted to M + N − 1 pos-
sible positions in the log radiance histogram. Each shift position s
corresponds to a shutter speed ∆ti, which can be calculated using
Equation 4: ∆ti = exp(∆b)s∆t. This equivalence between shutter
and shift is utilized later.

Here, we explain how a new shutter speed is added to an ex-
isting shutter sequence. The first shutter can be determined analo-
gously. So we assume that the sequence already consists of a num-
ber of shutter speeds ∆ti. To each ∆ti belongs a contribution vector
c∆ti(Ej), withEj = exp(bj) being the radiance values represented
by the histogram bins. See Figure 4 for an example. We now need
to decide whether to add another shutter to the sequence or not, and
find out which new shutter brings the biggest gain in image quality.
For this purpose, we define a combined contribution vector C(Ej)
that expresses how well the radiances Ej are captured in the deter-
mined exposures. We make the assumption, that the quality of the
measurement of a radiance value only depends on the highest con-
tribution value any of the exposures achieves for it. The combined
contribution is thus defined as the maximum contribution for each
histogram bin

C(Ej) = max
i

(c∆ti (Ej)) . (5)

This definition can now be used to calculate a single coverage value
C to estimate how well-exposed the pixels in the scene are in the
exposures. C is obtained by multiplying the frequency of occurrence
of a radiance value H(j) by the combined contribution C(Ej) and
summing up the products:

C =

MX
j=1

C(Ej)H(j). (6)

This is essentially the same as the cross correlation between the two.
The algorithm tries out all possible shifts between a new contribution
vector and the log histogram. The shutter speed corresponding to the
shift that leads to the biggest increase of C is added to the sequence.
If the histogram is normalized such that its bins sum up to 1 and the
weighting function has a peak value of 1, then C is in the range of

[0..1] and can be expressed as a percentage. C = 1 then means that
for each radiance value in the scene, there exists an exposure which
captures it perfectly.

Perfect coverage is not achievable in a realistic scenario. It is
more practical to stop adding shutters to the sequence once a softer
stop criterion is met. We came up with three different stop criteria:
the total number of exposures, a threshold for C and a maximum
sum of shutter speeds. The criterion that limits the total number of
exposures is always active. It guarantees that the algorithm termi-
nates after calculating a finite number of shutter speeds. We also use
this criterion to manually choose the number of exposures for our
evaluation for better comparability. This is described in more detail
in Section 5.

The threshold for the coverage value C is a quality criterion. A
threshold closer to 1 allows for a better estimation of scene radiance,
but requires to capture more exposures. We chose C ≥ 0.9 for our
running system.

For the type of camera we employ, the capture time of a frame is
roughly proportional to the exposure time. And since we are inter-
ested in capturing real-time video at 25 frames per second, the sum
of all shutter speeds must not exceed 40 milliseconds. Note that the
camera exposes new frames in parallel to the processing of the pre-
vious ones. So we have indeed nearly the full HDR frame time avail-
able for capturing. Our third stop criterion is an adjustable threshold
for the sum of shutter speeds. However, it should be made clear that
the algorithm has little control over meeting this requirement. In the
example shots we took, only two exceeded the threshold. But they in
turn overshot it by a large factor. We argue that it is the camera oper-
ator’s responsibility to adjust aperture and gain or to use a different
lens to cope with particularly dark scenes.

The algorithm described so far is greedy in that it does not recon-
sider the shutter speeds it already chose. We added a second iteration
over the shutter sequence to allow for some hindsight refinement. All
shutters but the first one are refined in the same way. The first shutter
is treated differently as described in the next paragraph. The shutter
to be refined is first removed from the sequence. The algorithm for
finding the next best shutter according to the maximum increase of
C is then applied again. In most cases, the resulting shutter value is
similar, but slightly better than the previous choice with respect to
coverage. This is because the algorithm is aware of the rest of the
sequence at this point. Our experimental results support this claim.

So far, we described the algorithm to determine a sequence of
shutter speeds for a single HDR frame based on a perfect histogram
of the scene. However, there are two major problems that arise when
applying this algorithm to HDR video directly: imperfect histograms
and flicker.

Perfect histograms are not available in a real video. The avail-
able histograms are created from the previous frame which generally
differs from the current one. Furthermore, the dynamic range cov-
ered by the histogram is only as high as the range covered by the
previous exposure set. For example if the camera pans towards a
window looking outside, the bright outdoor scene may be saturated
even in the darkest exposure. This shows up as a thin peak at the end
of the histogram of the previous frame (see Figure 5). How bright
are these pixels really? To find out, the algorithm needs to produce
a shutter sequence that covers a larger dynamic range than the his-
togram of the previous frame indicates. This allows the sequence to
adapt to changes in the scene.

We accomplish this by treating the first shutter in the sequence
differently. The special treatment is based on the observation that
underexposed images contain more accurate information than over-
exposed ones. The dark pixels in an underexposed image are a noisy
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Fig. 5. Some areas of the scene are overexposed even in the darkest
exposure. It shows up as a peak at the highest radiance value in the
histogram. In the next frame, the algorithm chooses a shutter speed
that covers the peak. By doing so, areas with a higher radiance than
the previous maximum can still be captured faithfully.

estimate of the radiance in the scene. However, this noise is un-
biased. Saturated pixels on the other hand always have the maxi-
mum pixel value, no matter how bright the scene actually is. As
a consequence of this observation, the first shutter is chosen such
that its contribution peak covers the highest radiance bin of the his-
togram. The peak of a weighting function is usually not located at
the highest possible pixel value. This means that radiances beyond
the peak – if existing in the next frame – are still represented by a
non-saturated pixel. See Figure 5 for an example. This allows to
faithfully record radiance values that are a certain percentage higher
than the previous frame’s maximum, and the sequence can adapt to
brighter scenes. Change towards a darker scene is less critical, be-
cause underexposed pixels still contain enough information about
the real radiance to calculate a new longer shutter time. With adap-
tation enabled, bootstrapping becomes straightforward. We can start
with any set of shutter speeds and arrive at the correct values after a
few frames. The speed of adaptation is evaluated in the experimental
results section of this paper.

The second problem to deal with when applying our algorithm
to HDR video is flicker. It is a side effect of changing the shutter
sequence over time. Consider the following scenario: A bright satu-
rated area like a white wall leads to a peak at the highest histogram
bin. This gives rise to a darker exposure taken in the next frame as
shown in Figure 5. The darker exposure causes the histogram peak
to spread out over several bins. It may now cause too little extra cov-
erage to justify the darkest exposure. In this situation, the algorithm
oscillates between including the lowest shutter speed and omitting
it. In the resulting video, the white wall would alternate between
having texture and being completely saturated.

Another reason why stable shutter sequences are desirable is the
way we operate our camera. A sequence of exposure parameters
is sent to the camera. It then repeatedly captures exposures by cy-
cling through the parameter list. This is done asynchronously and
the captured exposures are buffered. Changing the shutter sequence
requires a costly retransmission of the parameters, and the buffers
are used suboptimally.

For these reasons we impose a stability criterion upon the shut-
ter sequence. We begin by defining whether two given shutter speed
sequences are similar. If the number of shutters in the two sequences
differs, then they are not similar. If it is the same, then we calculate

the distance between their shutter values. The distance between two
shutters is expressed as a percentage to model their exponential na-
ture. For each value in the first sequence, the closest shutter speed in
the second one is found. This search is necessary because the order
of the lists is arbitrary. The distance between all closest shutter pairs
is averaged. If the average is greater than a threshold (we use 20%),
the sequences are not similar. Otherwise they are similar.

Using this definition, we achieve temporal stability by distin-
guishing between two states: changing and static. We always run
our algorithm to determine a new shutter sequence. In the changing
state, this new sequence is used directly and new camera parameters
are transmitted. In the static state, the sequence is simply discarded
and the parameters of the previous frame are kept. Change between
the states occurs according to the following rules:
• When in the static state and the newly determined sequence

is not similar to the previous one, increase a counter.
• If more than certain number of non-similar sequences occur

in a row (3 in our system), transition to the changing state.
• A sequence similar to the currently used one always brings

the algorithm back to the static state and resets the counter.
These rules have the effect that small variations in the shutter speeds
are ignored. Once the scene actually changes, it takes three frames
to react. Then the algorithm retains its original flexibility. It is able
to adjust in each frame until a stable shutter speed sequence is found
again. For fast bootstrapping, the system starts in the changing state.

5. EXPERIMENTAL RESULTS

This section presents the evaluation of our algorithm for optimal
shutter speed sequences. Section 5.1 describes a subjective user
study we conducted to assess the HDR image quality our approach
achieves compared to the traditional way of choosing evenly spread
shutters. For reasons described later in the section – most notably the
unavailability of a perfect reference HDR video – only still images
are used in this study. Section 5.2 contains a number of experiments
to investigate the algorithm’s behavior in a live video system. They
include an analysis of the algorithm’s adaptation to changing bright-
ness conditions and of its processing time.

5.1. Subjective User Study

27 participants took part in our subjective user study. Five of them
were familiar with HDR imaging algorithms. The study was done
over a website that allows to rate the quality of HDR images.1 See
Figure 6 for a screenshot of the website. Its first page contains a
brief introduction to HDR imaging and the problem of choosing suit-
able shutter speeds. The participants were told to base their rating
on: The amount of under- and overexposure present, the amount of
image noise, and quantization effects in color gradients. An exam-
ple for each type of artifact was given. Variations in overall image
brightness, contrast or color saturation were to be ignored as they
may occur as a side-effect of tone mapping. The subjects were then
shown twelve datasets of various scenes (see examples in Figure 7).
Each dataset consisted of three HDR images: a reference image, an
image created using shutter speeds from our approach and one where
evenly spread shutters were used. The reference was always shown
on the left side while the two survey images were shown in random
order to avoid subjective bias. Each of the two images had to be
rated using the five scores (numerical value in parentheses): Very
Good (5), Good (4), Average (3), Poor (2), Very Poor (1).

1http://pi4.informatik.uni-mannheim.de/∼bguthier/survey/



Fig. 6. Screenshot of the website we used for our subjective user
study. A reference image and two survey images are shown and
participants can rate their quality.

We used an AVT Pike F-032C FireWire camera capable of cap-
turing 208 VGA frames per second with an aperture of f/2.8. The
twelve scenes we captured had dynamic ranges exceeding the cam-
era’s capabilities. To attain radiance values with high precision, we
chose static scenes and used a tripod. Each scene was captured as a
set of 79 LDR exposures with shutter speeds varying by a factor of
8
√

2. An exposure set covers the entire range of our camera’s shutter
settings (37 µs to 81.9 ms). All 79 exposures were used to generate
the reference image and the log radiance histogram of each scene.
The reference image is assumed to be an accurate representation of
the scene radiance.

To create our datasets, we manually selected a suitable number
of LDR exposures to be used for the two survey HDR images of each
scene. The number was chosen low enough for a discernible degra-
dation of image quality to facilitate the rating process. For com-
parison, the default stop criterion for total coverage is C ≥ 90%,
while the average coverage achieved for our datasets was 80.4%
for optimal and 75.9% for equidistant shutters. The chosen number
of exposures was used as the only stop criterion of our algorithm;
a sequence of shutter speeds was created accordingly. Out of the
79 saved images of one dataset, those best matching the determined
shutter speeds were merged to create the first HDR image. The sec-
ond image was created using evenly spaced shutter speeds. To de-
termine this sequence, the minimum and maximum scene radiance
were considered, and the same number of exposures were spread
evenly to cover the entire dynamic range. “Evenly” in this context
means that the corresponding shutter speeds vary by a constant fac-
tor, i.e., a constant offset in the log domain. The shortest shutter
speed was chosen in the same way as for our algorithm. The only
exception are equidistant shutter sequences with only two shutters.
For these, we found that choosing them closer to the center of the
histogram gives better results. Due to the way we determined them,
equidistant shutters also benefit from prior knowledge of the scene
radiance, which is an advantage over plain exposure bracketing. This
needs to be considered when comparing the achieved scores.

The main reason to use HDR still images instead of video for
subjective quality assessment is the availability of a perfect refer-
ence image and with it the reproducibility of the results. Capturing
79 LDR exposures at varying shutter speeds allows to reconstruct
the real scene radiance accurately. The shutter values are sufficiently
close together to simulate arbitrary shutter sequences. Capturing the
same amount of exposures for an HDR reference video is not feasi-
ble. Another reason is the difficulty to capture the optimal and the
equidistant shutter video both at once. And lastly, HDR video may
introduce various new artifacts like misalignment of the exposures
or temporally inconsistent tone mapping. These additional artifacts
may mask the difference between the two shutter speed choices.

The 27 participants rating 12 datasets resulted in a total of 324
pairs of scores, one for optimal and one for equidistant shutters.
Seven pairs were invalid because at least one score was not speci-
fied by the subjects. This was explicitly allowed in order to not en-
courage the participants to enter bogus scores when wanting to skip
datasets. Averaging the 317 valid ratings results in a score of 3.73 for
the optimal shutter algorithm and 2.83 for the equidistant approach.
Note that the absolute value of the score is meaningless as the sur-
vey images were intended to be flawed. As a second aggregation of
the results, we counted the instances where either of the approaches
scored better than the other. This leads to our approach achieving
a better score in 70%, the same in 16% and a worse score in 14%
of the ratings. Our approach got rated worse the most often in a
dataset where it created a stronger quantization effect in the clouded
sky. The sky only covers a relatively small area of the scene. It ap-
pears however that human observers pay more attention to it than
its area indicates. We believe that this discrepancy between impact
on the scene histogram and human attention poses a challenge for
our algorithm. Tackling it exhaustively would require a costly visual
attention analysis of the scene.

Figure 7 shows the reference images of all twelve scenes. The
plot next to each image contains the log radiance histogram of the
reference HDR image. It is normalized so that its bins sum up to 1.
The plot also displays the combined contribution functions created
by the two algorithms. It is calculated according to Equation 5. It
can be seen, that the equidistant shutters disregard the brightness
distribution of the scene and sometimes exposures are captured that
add little to the coverage value. The achieved coverage values and
the calculated shutter speeds are presented in Table 1. Due to the
special treatment of the first shutter in our algorithm, its achieved
coverage can be lower than for equidistant shutters. This effect is
most prominent in scenes where only two exposures are used.

5.2. Objective Measurements

The experiments presented in this section were all conducted in a
real-time HDR video system. Our shutter speed sequence algorithm
uses the histogram of the current HDR frame as input. The histogram
was created during tone mapping of the frame. The calculated shut-
ter values are then used to capture the LDR exposures for the next
frame. An appropriate subset of the following three scenarios was
used for the measurements.

1. Mostly static indoor scene with no camera motion.

2. A busy road with moving cars but no camera motion.

3. Moving scene with many camera pans between dark indoor
and very bright outdoor areas.

Unless stated otherwise, the measurements were taken over a period
of 15 seconds (≈ 375 HDR frames).
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Fig. 7. The left column shows the reference images of the example scenes used in our subjective evaluation. The plots contain the corre-
sponding normalized log radiance histogram. The dashed lines are the maximum of the contribution functions belonging to the shutter speeds
determined by our algorithm and to the equidistant shutters.
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Scene COPT CEQ Shutters (OPT) Shutters (EQ)
(a) 84.0% 77.2% 0.26 2.36 0.87 0.26 2.07 16.5
(b) 92.9% 83.8% 0.02 12 3.8 21 0.02 0.18 1.5 13
(c) 77.3% 69.8% 0.02 17.4 0.34 0.02 0.67 21.8
(d) 68.5% 53.0% 0.06 12.1 1.70 0.06 1.90 57.2
(e) 86.1% 77.0% 0.96 3.45 2.60 7.06
(f) 90.9% 81.9% 0.64 1.20 2.47 0.64 3.04 14.5
(g) 88.8% 82.0% 0.78 4.40 10.4 0.78 3.88 19.3
(h) 74.7% 64.8% 0.03 1.59 17.4 0.03 0.85 23.8
(i) 72.4% 82.0% 0.68 4.19 2.40 8.46
(j) 77.9% 83.2% 1.81 11.7 5.25 15.3
(k) 66.4% 73.0% 1.26 18.4 6.41 32.7
(l) 85.0% 83.9% 0.61 37.4 2.92 0.61 4.33 30.8

Table 1. The second and third column contains the coverage values
C for the twelve scenes as achieved by the two algorithms: optimal
shutters (OPT) and equidistant shutters (EQ). The third and fourth
column show the calculated shutter speeds in milliseconds.

Scenario Size Differs Average Distance Std. Dev.
1 0% 1.00% 0.89%
2 3.75% 2.79% 1.74%
3 18.87% 8.08% 9.11%

Table 2. Percentage of sequences with differing number of shutters,
average distance between the sequences and the standard deviation
of the distance. They were obtained from 15 second shots in the
three aforementioned scenarios.

As described in Section 4, the shutters that were determined
greedily are being refined in a second pass over the sequence. The
goal of this is to improve the coverage value C which describes
how well the chosen exposures overlap with the scene histogram.
In order to evaluate the additional gain from the refinement step, we
measured C before and after the refinement. This was done in the
third (dynamic) scenario. Averaged over 15 seconds of video, the
refinement achieved a 1.5% increase of C. To judge this result, one
must consider two things: Firstly, the algorithm usually stops adding
shutters to the sequence once C ≥ 0.9. Because the maximum cov-
erage is 1.0, there is not much room for improvement. Secondly,
refinement does not add new shutters to the sequence, but adjusts
the existing ones. Compared to capturing an extra frame to obtain a
higher coverage, it is thus a rather cheap operation. We decided to
include the refinement step into our running system, but omitting it
is a viable option when processing time needs to be saved.

For our stability criterion, we defined the percentual distance be-
tween two shutter speed sequences. In order to get an understanding
of this quantity and to decide upon a similarity threshold, we mea-
sured the distances between two sequences computed in two consec-
utive frames. This was done in all three scenarios and the stability
criterion was ignored. The results are listed in Table 2. When the size
of two sequences differs, they are always classified as non-similar.
So the first column of the table counts how often the size changed
during the 15 seconds of the video. It is given as a percentage of the
frames. The second column contains the average distance between
two consecutive sequences. The standard deviation is given in the
third column.

These values can be used to determine a suitable threshold for
the distance to distinguish similar and non-similar sequences. We
make the following observations. The first scene is completely static.
Therefore, the shutter speed sequence should remain the same at all

times. All measured distances should be considered as being simi-
lar. The second scene contains moving cars and the shutter sequence
needs to adapt occasionally. In the third scenario, the sequence needs
to change a lot to accommodate the varying brightness conditions.
To meet these requirements, we set the threshold to 20%. Activat-
ing the stability criterion with this threshold, we repeated the ex-
periments. During the 15 seconds, the algorithm was in the chang-
ing state 0% of the time in the first scenario, 0% in scenario 2, and
11.49% of the time in scenario 3. We found that these results were
rather insensitive to changes in the threshold as long as it is high
enough for a stable sequence most of the time. Once the scene’s
brightness actually changes noticeably, the size of the sequence of-
ten changes too and the distance between the sequences becomes
very large.

In the experiment described in the following, we investigated the
time it takes for our algorithm to adapt to changes in the scene. We
did this by keeping the scene and the camera static, choosing ex-
treme shutter speed sequences and measuring the number of frames
it takes to stabilize. The scene and aperture of the camera were cho-
sen such that the optimal shutter sequence consisted of four shutter
values around the center of the camera’s shutter range. By center,
we mean the middle value in the log domain with the same factor to
the lowest as to the highest shutter. For our camera, the shutter value
of 1.74 ms is a factor of 47 higher than the minimum and lower than
the maximum shutter. The algorithm was set to the changing state
and three different starting sequences were set: the sequence con-
sisting of only the shortest possible shutter, the longest shutter and
a sequence covering the full shutter range with one stop between
the shutters. We then measured the number of frames the algorithm
stayed in the changing state. The values are averaged over 375 runs
for each of the three starting sequences.

As expected, the full coverage sequence adjusted the fastest. It
took 2.07 frames to stabilize. This means that the stable sequence
could be directly calculated from the first HDR frame in almost all
of the iterations. From only the shortest shutter value, it took exactly
3 frames to stabilize. The algorithm already calculated three shut-
ters in the second frame and reached the final sequence in the third.
It then switched to the stable state in the fourth frame, because the
calculated sequence was similar. The worst adaptation speed was
achieved when starting from only the longest shutter value, that is,
from the brightest image. The lowest shutter in the sequence was
approximately halved in every frame. In the average, the algorithm
was in the changing state for 8.20 frames. This confirms our pre-
vious statement that convergence towards darker scenes (i.e., higher
shutter values) is easier. It also justifies the special treatment of the
first shutter in the sequence as described earlier.

Since it is our goal to perform shutter sequence computations in
real-time to create HDR videos, we measured the processing time
taken by our algorithm. As mentioned earlier, we assume that the
histogram of the previous HDR frame was computed during tone
mapping (e.g., Ward’s histogram normalization technique [9]). His-
togram creation is thus not included in these measurements. The
system we used for this experiment has an AMD Athlon II X2 250
dual-core CPU. The scenario with dynamic camera and scene was
used to cover a large variety of shutter sequence lengths. The exper-
iment showed that 96.5% of our algorithm’s processing time is spent
for trying out all possible shifts between contribution vector and his-
togram to find the next shutter speed with the best coverage value.
As a consequence, the processing time is roughly proportional to the
number of shutters in the sequence. We measured 0.30 ms per shut-
ter value including refinement. For comparison, the entire process of
creating a displayable HDR frame from 2 to 8 base exposures takes



6 to 15 ms on a GPU. In a 25 fps real-time HDR video system, there
are 40 ms available for processing each frame. Our algorithm is thus
fast enough to be used in this application.

6. CONCLUSIONS AND OUTLOOK

We presented an approach to computing shutter speed sequences for
temporally bracketed HDR videos. Our goal is to maximize the
achieved HDR image quality for a given number of LDR exposures.
This is done by consecutively adding shutters to the sequence that
contribute to the image quality the most. Choosing evenly spread
shutters wastes too much time for capturing exposures which con-
tribute little to the HDR result. We are thus able to save capturing and
processing time over the traditional approach by being able to reduce
the number of LDR exposures without impairing quality. Analysis
of the algorithm’s behavior in a real-time HDR video system showed
that it is suitable for such a scenario and can be employed in video
surveillance.

Using the histogram coverage as our criterion for optimization
means focusing on the largest image areas first. We believe that be-
ing able to see as much as possible in a video is the main focus in
surveillance. However, the user study showed that in certain situa-
tions, HDR images are also judged by where in the image the quality
is achieved. We would like to take this into account in our future
work.
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