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This paper proposes several tests of restricted specification in nonparametric
instrumental regression. Based on series estimators, test statistics are estab-
lished that allow for tests of the general model against a parametric or nonpara-
metric specification as well as a test of exogeneity of the vector of regressors.
The tests are asymptotically normally distributed under correct specification
and consistent against any alternative model. Under a sequence of local alter-
native hypotheses, the asymptotic distribution of the tests is derived. Moreover,
uniform consistency is established over a class of alternatives whose distance to
the null hypothesis shrinks appropriately as the sample size increases.
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1. Introduction

While parametric instrumental variables estimators are widely used in econometrics, its
nonparametric extension has not been introduced until the last decade. The study of
nonparametric instrumental regression models was initiated by Darolles et al. [2011] and
Newey and Powell [2003]. In these models, given a scalar dependent variable Y, a vector of
regressors Z, and a vector of instrumental variables W, the structural function ¢ satisfies

Y =¢(Z)+U with E[UW]=0 (1.1)

for an error term U. Here, Z contains potentially endogenous entries, i.e., E[U|Z] may
not be zero. Model (1.1) does not involve the a priori assumption that the structural
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function is known up to finitely many parameters. Hence, by considering a nonparametric
model, we minimize the likelihood of misspecification. On the other hand, implementing
the nonparametric instrumental regression model can be challenging.

Nonparametric instrumental regression models have attracted increasing attention in the
econometric literature. For example, Ai and Chen [2003], Blundell et al. [2007], Chen and
Reil [2011] or Newey and Powell [2003] consider sieve minimum distance estimators of ¢,
while Darolles et al. [2011], Hall and Horowitz [2005], Gagliardini and Scaillet [2011] or
Florens et al. [2011] study penalized least squares estimators. A linear Galerkin approach
to construct an estimator of ¢ has been proposed by Johannes and Schwarz [2010]. When
the methods of analysis are widened to include nonparametric techniques, one must confront
two mayor challenges. First, identification in model (1.1) requires far stronger assumptions
about the instrumental variables than for the parametric case (cf. Newey and Powell [2003]).
Second, the accuracy of any estimator of ¢ can be low, even for large sample sizes. More
precisely, Chen and Reifl [2011] showed that for a large class of joint distributions of (Z, W)
only logarithmic rates of convergence can be obtained. The reason for this slow convergence
is that model (1.1) leads to an inverse problem which is ill posed in general, i.e., the solution
does not depend continuously on the data.

In light of the difficulties of estimating the nonparametric function ¢ in model (1.1), the
need for statistically justified model simplifications is paramount. We do not face an ill
posed inverse problem if a parametric structure of ¢ or exogeneity of Z can be justified. If
these model simplifications are not supported by the data, one might still be interested in
whether a smooth solution to model (1.1) exists and if some regressors could be omitted
from the structural function ¢. These model simplifications have important potential since
they might increase the accuracy of estimators of ¢ or lower the required conditions imposed
on the instrumental variables to ensure identification.

In this work we present a new family of goodness-of-fit statistics which allows for several
restricted specification tests of the model (1.1). Our method can be used for testing either
a parametric or nonparametric specification. In addition, we perform a test of exogeneity
and of dimension reduction of the vector of regressors Z, i.e., whether certain regressors
can be omitted from the structural function ¢. By a withdrawal of regressors which are
only weakly correlated with the instrument, identification in the restricted model might be
possible although ¢ is not identified in the original model (1.1). Note that model (1.1) leads
to the conditional moment equation E[Y — ¢(Z)|W] = 0. Multiplying both sides with an
m-dimensional vector of functions f;(W), 1 < j < m, and taking expectations leads to the
unconditional moment equation E[(Y — ¢(2))f;(W)] =0, 1 < j < m. Our test statistic is
based on the Euclidean norm of the vector E[(Y — ¢¢(2))f;(W)] =0, 1 < j < m, where
the hypothesis function ¢ is replaced by an estimator under the restriction. So, only the
estimator of g differs for the different specification test considered in this paper. It is worth
noting that by our methodology we can omit some assumptions typically found in related
literature, such as smoothness conditions on the joint distribution of (Z, W).

There is a large literature concerning hypothesis testing of restricted specification of re-
gression. In the context of conditional moment equation, Donald et al. [2003] and Tripathi
and Kitamura [2003] make use of empirical likelihood methods to test parametric restric-
tions of the structural function. In addition, Santos [2012] allows for different hypothesis
tests, such as a test of homogeneity. Based on kernel techniques, Horowitz [2006], Blundell
and Horowitz [2007], and Horowitz [2011] propose test statistics in which an additional
smoothing step (on the exogenous entries of Z) is carried out. Horowitz [2006] considers
a parametric specification test. Blundell and Horowitz [2007] establish a consistent test of



exogeneity of the vector of regressors Z, whereas Horowitz [2011] tests whether the endoge-
nous part of Z can be omitted from ¢. Gagliardini and Scaillet [2007] and Horowitz [2012]
develop nonparametric specification tests in an instrumental regression model. We like to
emphasize that their test cannot be applied to model (1.1) where some entries of Z might
be exogenous.

Our method is also applicable when an additional smoothing step is carried out. It is shown
that the asymptotic behavior of our test relies crucially on the behavior of the smoothing
operator. We study the power of the test against a sequence of alternatives that tend to
zero at a certain rate as the sample size increases. If the eigenvalues of this operator have a
sufficiently fast decay, then our test can detect linear alternatives at a distance of n=1/2 (as
in Horowitz [2006], Blundell and Horowitz [2007]|, Horowitz [2012], and Horowitz [2011]).
In contrast, estimating the structural function ¢ nonparametrically leads to far slower
polynomial or even logarithmic convergence rates (cf. Chen and Reifl [2011]). Applying
the additional smoothing step, however, changes the function class over which uniform
consistency can be obtained.

The paper is organized as follows. In Section 2 we start with a simple hypothesis test,
i.e., whether ¢ coincides with a known function ¢g. We obtain asymptotic normality and
consistency of our proposed test statistic. Moreover, we judge its power by considering linear
local alternatives and establish uniform consistency over a class of functions. In Sections
3-6 we consider a parametric specification test, a test of exogeneity, and a nonparametric
specification test. The goodness-of-fit statistics are obtained by replacing g in the statistic
of Section 2 by an appropriate estimator. Under modified assumptions, the asymptotic
results of Section 2 still remain valid. All proofs can be found in the appendix.

2. A simple hypothesis test

In this section we propose a goodness-of-fit statistic for testing the hypothesis Hy : ¢ = g,
where ¢¢ is a known function, against the alternative ¢ # . We develop a test statistic
based on £2? distance. As we will see in the following chapters, it is sufficient to replace ¢ by
an appropriate estimator to allow for tests of the general model against other specifications.
We first give basic assumptions, then obtain the asymptotic distribution of the proposed
statistic, and further discuss its power and consistency properties.

2.1. Assumptions and notations.

The model revisited The nonparametric instrumental regression model (1.1) leads to a
linear operator equation. To be more precise, let us introduce the conditional expectation
operator T'¢ := E[¢(Z)|W] mapping L% = {¢ : E|p(Z2)|? < oo} to L, = {1 : E[p(W)|? <
oo} (which are endowed with the usual inner products (-,-), and (-,-)},, respectively).
Consequently, model (1.1) can be written as

g="Ty (2.1)

where the function g := E[Y|W] belongs to £%, (which can be assured by assuming E[Y?] <
o0). Throughout the paper we assume that an iid. n-sample of (Y, Z, W) from the model
(1.1) is available.



Moment assumptions. Let us introduce pre-specified orthonormal basis {e;};>1 and { f;};>1
in EQZ and E%V, respectively. We need moment conditions on the basis, more specific, on the
random variables e;(Z) and f;(W) for j,1 > 1, which we summarize in the next assumption.

ASSUMPTION 1. There exists some constant n > 1 such that
(i) supjz Ele;(Z)* < ',
(ii) suppy E|fi(W)[* < .

Assumption 1 holds for sufficiently large 7 if the basis {e;};>1 and {f;};>1 are uniformly
bounded, such as trigonometric bases or B-splines that have been orthogonalized. Moreover,
this assumption is satisfied by the Hermite polynomials.

The results derived below involve assumptions on the conditional moments of the random
variables U given W gathered in the following assumption.

ASSUMPTION 2. There exists o > 0 such that E[U*|W] < o*

Mapping properties of the operators We will see below that the power of our test can
be increased by carrying out an additional smoothing step. Therefore, we introduce the
smoothing operator L on E%V. In contrast to the unknown conditional expectation operator
T, which has to be estimated, the operator L can be chosen by the statistician. The following
assumption ensures identification of ¢ in the model (2.1).

ASSUMPTION 3. The conditional expectation operator T is nonsingular.

If Assumption 3 is violated we rather test of the operator equation g = Ty and hence
consider a conditional moment restriction test. We discuss the implications of our results
also in this case. Let L have an eigenvalue decomposition given by {le/ 2, fitj=1. We allow
in this paper for a wide range of smoothing operators. We also permit for L being the
identity operator, i.e., no smoothing step is carried out. We only require the following
condition on the operator L determined by the sequence of eigenvalues 7 = (75),>1.
ASSUMPTION 4. The weighting sequence T is positive, nonincreasing, and satisfies 7 = 1.

Assumption 4 ensures that the operator L is nonsingular.

REMARK 2.1. Horowitz [2006], Blundell and Horowitz [2007], and Horovvltz [2011] consider
as a smoothing operator a Fredholm integral operator, i.e., fo t)dt for
some function ¢ € £2[0,1] and some kernel function ¢ : [0, 1] —> ]R In order to ensure

L¢ € £2]0,1] it is typically assumed that fol fol [0(s,t)|?dsdt < co. Let {7-].1/2, fi}j=1 be the
eigenvalue decomposition of L. By Parseval’s identity

/Ol/ol\f(s,t)|2dsdt:/ ij\fj |ds_ZTj

where the right hand side is only finite if the sequence 7 decays sufficiently fast. O

Matrix and operator notations. Given m > 1, &, and F,,, denote the subspace of E and
L%, spanned by the functions {e;}™ T, and { fl}l:l? respectively. FE,, and E;- (resp. F, and
F:-) denote the orthogonal projections on &,, (resp. JF,,) and its orthogonal complement &;-
(resp. Fib), respectively. If we restrict a linear operator K : £2 — L2, to an operator from
Em to Fp, then it can be represented by a matrix [K],, with entries [K|;; = (Kej, fi)w



for 1 < 4,1 < m. Its spectral norm is denoted by ||[K],,|| and its transposed by [K]%,. The
adjoint operator of K is denoted by K*. We write Id for the identity operator and V.,
for the diagonal operator with singular value decomposition {vj,e;, fj};>1. Respectively,
given functions ¢ € £% and ¢ € L%, we define by [¢],, and [¢)],, m-dimensional vectors
with entries [¢]; = (¢, ¢e;)z and [¢]; = (¢, fi)yw for 1 < j,I < m. Moreover, e,,(Z) and
fm(W) denote random vectors with entries e;(Z) and f;(W), 1 < j < m, respectively. For
any weighting sequence w we introduce vectors ey, (Z) and f, (W) with entries e (Z) =
Vwie;(Z) and f' (W) = /w;f;(W), 1 <j < m. In addition, the weighted norm is denoted
by [|¢]2 = E;’il wj [qb]? In the following we write a,, < b, when there exists a generic
constant C' > 0 such that a,, < Cb, for sufficiently large n and a,, ~ b, when a,, < b, and
by < ay, simultaneously.

2.2. The test statistic and its asymptotic distribution

Under Assumptions 3 and 4 the hypothesis Hy is equivalent to Lg = LTpo. We project
the function L(g —T¢g) on the finite dimensional subspace F,,, for some integer m,, which
tends to infinity as the sample size n increases to infinity. Then our test statistic is the
empirical counterpart of ||Fy,, L(g — To) |3, i-e.,

2

Sp = ||n7! Z(Yi - SOO(Zi))f@(Wi)H . (2.2)
=1

When no additional smoothing is carried out, i.e., L = Id, then 7; = 1 for all j > 1. To
achieve asymptotic normality we need to standardize our test statistic .S,, by appropriate
mean and variance, which we introduce in the following definition.

DEFINITION 2.1. For all m > 1 let X, be the covariance matriz of the random wvector

U (W) with entries ;0 = E [UZfJT(W)ij,(W)], 1 < 4,7/ < m. Then the trace and the
Frobenius norm of X, are respectively denoted by

m m 5 \1/2
o = (X)) = Z§jj and  Gm = (X)) == ( Z gjj') '
]:1 j:jlzl

In addition, if ¢, = O(1) as m — oo we define

4 oo
Vi=V( ) =1+ E i S SIS
30 .
757 7lvl/:1

where oo = limyy—s00 $(X).-

Indeed the next result shows that 5, after standardization is asymptotically normally dis-
tributed if m,, increases appropriately as the the sample size n tends to infinity.

THEOREM 2.1. Let Assumptions 1—4 hold true. If m, satisfies

gn_%lm =o(l) and mn(in)Q = o(n) (2.3)

=1

then we have for all ¢ € L% under Hy

(V26,) 7" (1 Sn — tm,,) LN N(0,1) as n— oc.



REMARK 2.2. If there exists some constant ¢, > 0 such that E[U?|W] > o2 then we have

2 =0l > 72. Thus, condition ;' = o(1) is satisfied for any positive sequence 7 such

that Z;n:nl sz is unbounded as n increases. When no additional smoothing is carried out,

i.e., L = Id, then condition (2.3) holds if E[U?|W] > ¢2 and m3 = o(n). Moreover, from

condition (2.3) we see that by the choice of a stronger decaying sequence 7 the parameter
2

my, may be chosen larger. From the following theorem we see that if Z;nznl 77 = O(1) only

m, = o(n) is required. O

In the following result we establish asymptotic normality of our test when the sequence
of weights 7 may have a stronger decay than in Theorem 2.1, i.e., we consider the case

where 7 satisfies > 1" 72 = O(1). This condition together with the Assumption 2 implies

Sm, < ot > 72 = O(1) in contrast to condition (2.3) in Theorem 2.1. Still asymptotic
normality can be obtained, but an additional additive term occurs in the variance.

THEOREM 2.2. Let Assumptions 1—4 hold true. If m,, satisfies
ZTJ-Q =0(1) and my, =o(n) (2.4)

then for all p € L2, under Hy we have

(V26m,) 7" (nSn = ftm.,) 4 N(0,V) as n— oc.

REMARK 2.3. Theorem 2.1 and 2.2 continue to hold if we replace ¢,,,, ttm,,, and V by the es-
Mn

. ~9 L ~9 ~ L n o~ 9N _ n ~ o~~~ ~4
timators &, = DTy $i iy, 1= D000 Gy and Vi, = 144370 1y GG [ (36,,)
respectively, where

Gir =0Tt ATV = o(Zi) P 15 (W) £ (W5).
=1

In the following sections where ¢q is unknown and has to be estimated we might simply
replace g in Gj;» by the proposed estimators. [l

2.3. Limiting behavior under local alternatives.

Let us study the power of the test, i.e., the probability to reject a false hypothesis, against
a sequence of linear local alternatives that tends to zero as n — oo. It is shown that the
power of our tests essentially relies on the choice of the weighting sequence 7.

Let us start with the case grjhll = o(1). We consider the following sequence of linear local
alternatives

Y = po(2) + /P V25(Z) + U (2.5)

for some function § € L} := {¢ : E|¢(Z)|* < co}. The next result establishes asymptotic
normality for the standardized test statistic S,.

PROPOSITION 2.3. Given the conditions of Theorem 2.1 it holds under (2.5)

(V26m,) " (0 S = pimy) 2 N (272 T6)2,1)  as n — o



As we see below the test statistic S, has power advantages if > ™ 72 = O(1). Let us

J
consider the sequence of linear local alternatives
Y =¢o(2)+n?5(2) + U (2.6)

for some function § € L%
PROPOSITION 2.4. Given the conditions of Theorem 2.2 it holds under (2.6)

(V26m,) 7" (0. S — pim,,) 4 N((V260) " HITE|2, V) as n— .

REMARK 2.4. Under homoscedasticity, i.e., E[U?|W] = o2, we see from Proposition 2.3 that

our test can detect linear alternatives at a rate (Z;”an 7'-2)1/4n_1/2. On the other hand, if

Z;n:"l 72 = O(1) then S,, can detect local linear alternatives at a rate n~/2. But still our
test with L = Id can have better power against certain smooth classes of alternatives as
illustrated by Hong and White [1995] and Horowitz and Spokoiny [2001]. Indeed, in the
next subsection we show that additional smoothing changes the class of alternatives over

which uniform consistency can be obtained. ([l

2.4. Consistency

In this subsection we establish consistency against a fixed alternative and uniform consis-
tency of our test over appropriate function classes. Let us first consider the case of a fixed
alternative. We assume that Hy does not hold, i.e., P(¢ = ¢p) < 1. The following proposi-
tion shows that our test has the ability to reject a false null hypothesis with probability 1
as the sample size grows to infinity.

PROPOSITION 2.5. Assume that Hy does not hold. Let E|Y — ¢o(Z)|* < co. Consider the
sequence \ satisfying Ay, = o(ng,;}l). Under the conditions of Theorem 2.1 or 2.2 we have

P((\/igmn)*l(nsn ) > )\n) =1+0(1).
In the following we show that our tests are consistent uniformly over the function class

G = {9 € £ IPnT@ = o)t 2 pomn™ and_swp fe(2) = ) <o}
z€Supp(Z)

where Supp(Z) denotes the support of Z. Clearly, if Hy is false then || F,, T(¢ — 0|2 >
0 Sm,n~ ! for n sufficiently large. By Assumption 4 the sequence 7 is nonincreasing sequence
with 71 = 1 and hence || E,,, T(¢—00) |2 < IIT(p—v0) I3 < [lp—p0l|% by Jensen’s inequality.
We conclude that G contains all functions whose L%-distance to the structural function ¢
is at least n~1g,,, within a constant. If the coefficients [T'(¢ —p)]; fluctuate for large j then
¢ does not belong to G, if the decay of 7 is too strong. On the other hand, if [T'(¢ — ¢p)]; is
sufficiently small for j up to a finite constant than ¢ does not necessarily belong to G, with
7 having a slow decay. For the next result let ¢;_, denote the 1 — a quantile of A(0,1) in
case of ¢;;! = o(1) or N'(0,V) in case of > 7 =0(1).

PROPOSITION 2.6. Under the conditions of Theorem 2.1 or 2.2 we have for any € > 0, any
0 < a <1, and any sufficiently large constant p > 0 that

lim inf ]P’((\/igm")*l(n Sy = Hmy,) > q1_a> >1-—c.

n—o00 @Ggfl



3. A parametric specification test

The method of orthogonal series estimation involves the choice of basis functions. Thereby,
the natural question arises whether, given the specified basis {e;};>1, a say k dimensional
vector of generalized Fourier coefficients is sufficient to develop the function ¢. Let {e;};>1
satisfy Assumption 1. Then we consider the hypothesis Hy, : ¢ = ¢ where in this section
Yo = Zf 1leoljej. The alternative hypothesis is that ¢ ¢ &. Under H), standard para-
metric estimation techniques can be used to estimate the unknown k dimensional vector of
coefficients [¢o].

3.1. The test statistic and its asymptotic distribution

Let ¢ be an estimator of the parametric function ¢g. The k dimensional vector of general-
ized Fourier coefficients of ¢y can be estimated /n-consistently by applying, for example,
the generalized method of moments. Thereby, we may assume ||¢r — @ollz = Op(n™1/?).
We obtain our test statistic by replacing ¢ in the definition of S,, given in (2.2) by the
estimator ¢y, i.e.,

SP = ||n~ 12 ) F (W[

The following proposition establishes asymptotic normality of Sh after standardization given
the same conditions as Theorem 2.1 where the function ¢y was assumed to be known.

THEOREM 3.1. Let @), be an estimator of po satisfying ||x — ¢ollz = Op(n=/2). Then
gwen the conditions of Theorem 2.1 it holds under H,

(V26,) "1 (0 SE = fim,,) 4 N0,1)  as n— 0.

In the following theorem we state an asymptotic distribution result for S, when ZT:”l sz
O(1). In this case, we assume that the estimator ¢, satisfies

Va([elk — lpolg) = n~ 12 Z hi(Vi) + op(1) (3.1)

where V; := (Y;, Z;, Wi, o) and hi(V;) = (hi(V3), ..., he(V;)) where hj, 1 < j < k, are real
valued functions. It is well known that this representation holds if [@]x is the generalized
method of moments estimator. In case of ) /™ _1 TJQ = O(1) we have to modify the standard-
ization of the statistic S, as follows. For m > 1 let X%, denote the covariance matrix of the
centered random vector U f7 (W) + E[f5, (W)eg(Z)"|hg(V). Then we define ¢h, = ¢(X%,),
b, = p(Zh), and VP = V(XD where ¢(+), u(-), and V() were introduced in Definition 2.1.
Clearly, ¢h,, = O(1).

THEOREM 3.2. Let ¢y, be an estimator of o satisfying condition (3.1) with Eh;j(V) = 0
and E|h;j(V)|* < oo for 1 < j < k. Then given the conditions of Theorem 2.2 it holds under
Hy

(\@gﬁln)*l(nSﬁ —pb ) 4 N(0,VP)  as n — oo.



REMARK 3.1. Santos [2012] gave examples when only partial identification in the nonpara-
metric model (1.1) is possible. We like to emphasize that the asymptotic results remain
valid if Assumption 4 is not satisfied, i.e., T is singular, as long as we replace Hy by the
hypothesis g = T'pg. This test of conditional moment restriction has also been considered
by Donald et al. [2003], Tripathi and Kitamura [2003] and Santos [2012]. O

3.2. Limiting behavior under local alternatives and consistency.

In this section we study the power of the test, i.e., the probability to reject a false hypothesis,
against a sequence of linear local alternatives that tends to zero as n — oo. Moreover, we
establish consistency and uniform consistency over appropriate function classes of our tests.

PROPOSITION 3.3. Given the conditions of Theorem 3.1 it holds under (2.5)

(V26m,) (0 S = pimy)) > N (27V2|T5|2,1)  as n— oo.
Given the conditions of Theorem 3.2 it holds under (2.6)

(V268 )7 (nSE — by ) S N((V262) TS, VP)  as n— oo

REMARK 3.2. Under homoscedasticity, i.e., E[U?|W] = 02, and L = Id we see from Propo-
sition 3.3 that our test has the same power properties as the test of Hong and White [1995].
On the other hand, Z;”:”l 7']-2 = O(1) then our test can detect local linear alternatives at a
rate n~/2 which coincides with the findings of Horowitz [2006]. O

The next proposition establishes consistency of our test against a fixed alternative model.
It is assumed that Hj, is false, i.e., P(p € &) < 1.

PROPOSITION 3.4. Assume that H, does not hold. Let E|Y — @o(Z)|* < co. Consider the
sequence \ satisfying Ay, = o(ng,;hll). Under the conditions of Theorem 3.1 we have

P((ﬁgmn)_l (nSE — i, ) > )\n> =1+o0(1)
Given the conditions of Theorem 3.2 it holds
P((\/igfmvp)_l(n SP—pb ) > )\n) =1+o0(1).
In the following we show that our tests are consistent uniformly over the function class
Ho = {pe Ly il |Fn,T(e—p0)l2 > pom,n ™t and  sup  |o(2)] < p}.
POEEK z€Supp(Z)

If H,, is false then infy eg, | Fm,T(0 — ©0)||2 = psm,n~t for n sufficiently large. Similarly
as in the previous section it can be seen that on H7, it holds infy,eg, || Fm, T(¢ — ¢0)|? <
infyyee, [[9—woll%. Hence, Hf, only contains functions whose L% distance to any function in
& is at least ¢, n ! within a constant. In the next result, g1, denotes the 1 — a quantile
of standard normal distribution.

PROPOSITION 3.5. Let sup;; E[e?(Z)|W] <% Foranye >0, any 0 < a < 1, and any
sufficiently large constant p > 0 we have under the conditions of Theorem 3.1 that

lim inf P((\/§§mn)_1(n Sk — an) > q1_a> >1-—c¢,

n—00 SOGHQ

whereas under the conditions of Theorem 3.2 it holds

lim inf P((\@gﬁmvp)*l (nSE—ub, ) > ql_a) >1-—c

n—o00 goGHfL



4. A test of exogeneity

Endogeneity of regressors is a common problem in econometric applications. Falsely as-
suming exogeneity of the regressors leads to inconsistent estimators and moreover, treating
exogenous regressors as if they were endogenous can lower the accuracy of estimation dra-
matically. In this section we propose a test whether the vector of regressors Z is exogenous,
ie, E[U|Z] = 0. In this section let ¢o(Z) = E[Y'|Z] then the hypothesis under consideration
is given by He : ¢ = ¢g. The alternative hypothesis is that ¢ # ¢q.

4.1. The test statistic and its asymptotic distribution

Since the eigenvalues of [Id] g =n"t3" en(Zi)ex(Z;)! could be arbitrarily close to zero
we propose the following least square estimator of ¢y with additional thresholding, i.e.,

_ ek(Z)t[f(\i]EI% Yo Yiew(Zy), if [ﬂi]k is nonsingular, H[I?i];lH < 2,
Py = | Ty : : Y

otherwise.

In contrast to the parametric case we need to allow for k tending to infinity as n — oo in
order to ensure consistency of the estimator ;. The proposed goodness-of-fit statistic is
given by S, introduced in (2.2) where ¢y is replaced by @, , i.e.,

Se = In"" Y (Vi = Bk, (Z0)) (W) |
=1

where k, and m, tend to infinity as n — oo. Moreover, as typically in nonparametric
statistics it is necessary to make some a prior: assumption on the unknown function .
Let v = (7)1 be a nondecreasing sequence with y; = 1. We assume that ¢g belongs to the
ellipsoid 74 := {¢ € F, : [|¢]12 = djs1 7 [gb]? < p} for some constant p where F, denotes
the completion of £, with respect to the norm | - ||,. Roughly speaking, the sequence of
weights v measures the quality of approximation of ¢ given the pre-specified basis {e;};>1.
THEOREM 4.1. Let Assumptions 1-4 be satisfied. In addition assume E|Y|* < oco. Let
w0 € FY with vy satisfying 32 = o(vy;). If

2
n = 0(Vk,Smn)s kn = 0(Sm,,), and mn<27’]2) = o(n) (4.2)
j=1
then under H, it holds
(V26m,) (1 SE = pim,, ) 4 N(0,1)  as n — oo.

REMARK 4.1. If Z and W are uniformly distributed on [0, 1] and a trigonometric basis is
considered then ¢y belongs to F4 with j2 = o(v;) only if it is differentiable. In contrast
to Blundell and Horowitz [2007] no smoothness assumptions on the joint distribution of
(Z,W) is required here. O

EXAMPLE 4.1. Let Z be continuously distributed with dim(Z) = r and set L = Id. Consider
the polynomial case where 7; ~ 32/ with p > 1 and let m, ~ n” with 0 < v < 1/3. If
E[U%|W] > 02 > 0 then condition (4.2) is satisfied if k,, ~ n* with

r(1—-v/2)/(2p) < kK <v/2. (4.3)
Note that condition (4.3) requires p > (2 — q)/(2q). O
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The next result states an asymptotic distribution result for the statistic S;, after standard-
ization if » 7' 7'j2 = O(1). Let us denote Uz :=Y — E}, ¢o(Z) then clearly Ele;(2)Uz] =0
for all 1 < j < k,. Let X}, be the covariance matrix of the centered vector Uf;, (W) —
Uz Elfy, (W)er,(Z) ek, (Z). Then we define <5, = ¢(X%, ), pS, = p(X¢, ), and V° =

V(X5 ) where ¢(+), u(-), and V(-) are given in Definition 2.1. By imposing moment condi-
tions on Uz we show in the proof of the following theorem that ¢, = O(1).

THEOREM 4.2. Let Assumptions 1-4 be satisfied. In addition assume E[U|Z] < 0. Let
o € FY with vy satisfying v; = o(j%). If

mMn

ZTjQ =0(1), n=0(w,), and m,k> = o(n) (4.4)
j=1

then under H, it holds
(\/ﬁcﬁmn)_l (n S5 — pe,, ) LA N(0,V°)  as n — oc.

ExaMPLE 4.2. Let Z and v be as in in Example 4.1. Here, the eigenvalues of L satisfy
7; ~ j~2. Condition (4.4) is satisfied if m, ~ n” with 0 < v < 1/2 and k, ~ n® with
r/(2p) <k < (1—v)/2. O

REMARK 4.2. If T is singular the asymptotic results of Theorem 4.1 and 4.2 still remain
valid if He is replaced by the hypothesis E[p(Z) — E[Y|Z]|W] = 0. In this case, however,
E[p(Z) —E[Y|Z]|W] might be zero even if Z is endogenous. On the other hand, if E[p(Z) —
E[Y|Z]|W] # 0 then Z cannot be exogenous. O

4.2. Limiting behavior under local alternatives and consistency.

Similar to the previous sections we study the power and consistency properties of our test.

PROPOSITION 4.3. Given the conditions of Theorem 4.1 with E[Y?|Z] < n? for some con-
stant > 1 it holds under (2.5)

(V26m,) (0SS = pimy) > N (27V2|T5|2,1)  as n— oo.
Given the conditions of Theorem 4.2 it holds under (2.6)
(Vas5,) 7 (n S5 = ifn,) 5 N((VRQITS|Z, V) as n— oo,

Let us now establish consistency of our tests when H, does not hold, i.e., P(cp = gpg) <1.

PROPOSITION 4.4. Assume that H, does not hold. Let E|Y — ¢o(Z)|* < co. Consider the
sequence \ satisfying Ay, = o(ng,;i). Under the conditions of Theorem 4.1 we have

P((VZ6n,) " (0S5 = pim,) > M) = 1+ 0(1),
whereas in the setting of Theorem 4.2

P((Vas, V) (085 — pf,) > Mn) = 1+ 0(1).

11



In the following we show that our tests are consistent uniformly over the function classes
where, in contrast to the previous sections, regularity conditions on the function ¢ are
imposed. More precisely, we consider the class

Ih = {90 €L ||Fm, T(p — @o)|I? > p%m‘l}-

Again, ¢, denotes the 1 — a quantile of N'(0,1).

PROPOSITION 4.5. Let sup,>; E[e?(Z)|W] < n?. Under the conditions of Theorem 4.1 we
have for any € > 0, any 0 < a < 1, and any sufficiently large constant p > 0 that

lim inf ]P’((ﬁgmn)*l(n SE— tm,) > q1_a) >1—c¢,

n—00 @Gfﬁ

whereas under the conditions of Theorem 4.2 it holds

lim inf P((\@gﬁlnve)_l(n Se— g, ) > ql,a) >1—e.

n—o00 SOGIg

5. A nonparametric specification test

A solution to the linear operator equation (2.1) only exists if g belongs to the range of T
We refer to Gagliardini and Scaillet [2007] for a detailed discussion when existence of a
solution to (2.1) fails. In many econometric applications the function of interest is smooth,
i.e., belongs to some function class F4 with v being an increasing sequence of weights. We
consider the hypothesis

H,p: there exists a solution g € F4 to (2.1) for some p > 0 and vy with k2 = O(v, ).

The alternative hypothesis is that there exists no function in F4 that solves (2.1) for any
constant p > 0 and any sequence 7 satisfying k2 = O(qy,). In addition, we see in this
section that our results allow for a test of dimension reduction of the vector of regressors Z,
i.e., whether some regressors can be omitted from the structural function ¢. This generalizes
the result of Horowitz [2011] who tests whether the endogenous part of Z can be omitted
from . As we point out further, by omitting regressors that are only weakly correlated to
the instrument identification in the restricted model might be obtained.

5.1. Nonparametric estimation method

The nonparametric estimator. Since [T]; = E fi(W)ep(Z)! and [g]y = EY fr,(W) we
construct estimators by using their empirical counterparts, i.e.,

Tle= S felWer(Z) and [gle =+ > Vifi(W).
i=1 i=1

S

Throughout this section [Ty is assumed to be nonsingular for k sufficiently large, so that
its inverse [T],;l exists. Then the orthogonal series type estimator of Johannes and Schwarz
[2010] for the structural function ¢ is defined for all £ > 1 by

) exOT); Gl if [T]g is nonsingular and ||[T], ]| < v/, (5.1)
’ 0, otherwise. '
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Additional assumptions. As usual in the context of ill-posed inverse problems, we specify
some mapping properties of the operator under consideration. Denote by T the set of
all nonsingular compact operators mapping EQZ into E%V. Given a sequence of weights
v := (vj);j>1 and d > 1 we define the subset 7 of T by

To={TeT: Jol2/a<IToll <dlol foralg ey}, (52)

Notice that for all T € 77 it follows that ||Te;||%, ~ vj. In what follows, we introduce
a stronger condition which involves the basis {f;};>1 in £%, and thus, extends the link
condition T' € T. We denote by 7, for some D > d the subset of 7} given by

Tip={TeTy: swlv.)/ [, < D}. (5.3)
k>1

If the operator T" has a singular value decomposition {v;/ 2, €j, fj}j=1 then [Ty is equivalent

to the diagonal matrix [VU]}C/ % for all k > 1 and, hence condition T' € T, is equivalent to
T € T/p. Moreover, the class ’7:;7’[) only contains operators T whose off-diagonal elements

of [T];! are sufficiently small for all k£ > 1. A similar diagonality restriction has been used
by Hall and Horowitz [2005] and Horowitz [2012]. Besides the mapping properties for the
operator T we need a stronger assumption for the basis under consideration.

ASSUMPTION 5. There exists n > 1 such that the joint distribution of (Z, W) satisfies
(i) sup;=1 E[e3(Z)|W] < n? and sup;en E[fH(W)] < n;

(i) sup; 21 Elej(Z) fi(W) = Ele; (2) i(W)]I* < 0"kl k=3,4,....
The following condition gathers conditions on the sequences v and v.

ASSUMPTION 6. Let v and v be strictly positive sequences of weights with vy = vy = 1
such that 7y is nondecreasing with supys, k3 /v, < 0o and both sequences v and v/T are
nonIncreasing.

REMARK 5.1. Under Assumptions 26, Johannes and Schwarz [2010] establish minimax op-
timality of the estimator @y, given in (5.1). More precisely, it is shown that mean integrated

squared error loss of ¢y, attains the lower rate of convergence R, := max ('yk_nl, Z?ll (nvj)*l)

within a constant if the parameter k,, is chosen appropriately. O

5.2. The test statistic and its asymptotic distribution

Our goodness-of-fit statistic for testing nonparametric specifications is given by S, where
¢ is replaced by the nonparametric estimator @y, given in (5.1), i.e.,

n
S = {In D (Vi = B (20)) f, (W)
i=1
The next result establishes asymptotic normality of Sp" after standardization.
THEOREM 5.1. Let Assumptions 2-6 be satisfied. Moreover, T € T}, and @o € FY. If

nuk, = 0(Vk, Smn)s kn = 0(Sm,,), kn<§57j>2 = o(nvy, ), and mn<§n:rj2>2 =o(n) (5.4)

j=1 J=1

13



then it holds under Hpy,

(V26m,) 7" (nSﬁp — ,umn) 4 N©0,1)  as n— 0.

ExAMPLE 5.1. Consider the setting of Example 4.1 where additionally v; ~ j —2a/r

a > 0. Then condition (5.4) holds if k,, ~ n"® with x < /2 and

for some

r(1—-v/2)/(2a+2p) <k <r(1—-2v)/(2a+r).

In the severely ill posed case, i.e., v; ~ exp(—42%/"), a > 0, condition (5.4) is satisfied if, for

example, my, satisfies m,, = o(kh) and k2 = o(m,,) where k,, ~ (logn — log(miﬂ))r/@a). O

The next result states an asymptotic distribution result of our test if >0 7; = O(1). Let
us denote Uy := Y—eki(Z)t[T};: [9]k,, then clearly E[f;(W)Uw]| =0 forall 1 <1 < ky. Let
Ym, be the covariance matrix ofiUf,%n (W) + Uw E[f7,.. (W)ew, (Z)[T1;. fr,(W). Then we
define ¢, = <(Xnn), e, = ((Z5), and VPP = V(S ) where <(-), u(-), and V() are
given in Definition 2.1. In the proof of the following theorem we show by employing the
extended link condition T" € 7}, that Sm = O(1).

THEOREM 5.2. Let Assumptions 2-6 be satisfied. Moreover, T' € T, and o € FL.If
Z Tj2 =O0(1), nug, =o(,), and mpk? = o(nuy,) (5.5)

then it holds under Hpy,

(\@gﬁf;)fl (nSpP — pun? ) 4 N(0,V™)  as n — .

ExAMPLE 5.2. Consider the setting of Example 4.2 where additionally v; ~ j —2a/r

a > 0. Condition (5.5) is satisfied if m,, ~ n” with 0 < v < 1/2 and k,, ~ n" with

for some

r/(2a+2p) <k <r(l—v)/(2a+ 2r).

In the severely ill posed case, i.e., v; ~ exp(—j2%/"), a > 0, condition (5.5) is satisfied if, for
example, my, satisfies my, = o(kh) and k2 = o(m,,) where k, ~ (logn — log(mi))r/@a). O
REMARK 5.2. Let Z' be a vector containing only entries of Z with dim(Z’) < dim(Z). It
is easy to generalize our previous result for a test of Hr/1p3 there exists a solution g € FY
to (2.1) only depending on Z’. To be more precise consider the test statistic

S = (|0t (Vi = @ (Z2) f (W) 1P
=1

where @y, is the estimator (5.1) based on an iid. sample (Y1,Z2], Wh),..., (Y, Z],W,) of
(Y, Z',W). Under H}, we consider the conditional expectation operator 7" : L2 — L3,
with (T'¢)(W) := E[¢(Z")|W]. It is interesting to note that if 7" is nonsingular then also
T’ is one to one. Hence, for a test of HI’lp we may replace Assumption 3 by the weaker
condition that T" is nonsingular. Moreover, under Hj, the results of Theorem 5.1 and 5.2
still hold true if we replace Z by Z'. O
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In the mildly ill-posed case, i.e., the singular values of T" have a polynomial decay, the
estimation precision suffers from the curse of dimensionality. Hence, by the test of dimension
reduction of Z we can increase the accuracy of estimation of ¢. On the other hand, in the
severely ill-posed case the rate of convergence is independent of the dimension of Z (cf.
Chen and Reif [2011]). But still our dimension reduction test has an important implication
concerning identification of ¢. As the next example illustrates identification in the restricted
model can be possible even if the structural function is not identified in the original version.

EXAMPLE 5.3. Let Z = (Z(l),Z(Q)) where both, Z(1) and Z® are endogenous vectors of
regressors. But only Z(1) satisfies a sufficiently strong relationship with the instrument W in

the sense that for all ¢ € £2z<1) condition E[¢(Z(1)|W] = 0 implies ¢ = 0. In this example,

we do not assume that this completeness condition is fulfilled for the joint distribution of
(Z®),W). This can be interpreted as an insufficiency of correlation between Z(3) and W.

Thereby only the operator T(1) : £2Z<1> — L2, with T = E[¢(Z™M)|W] is nonsingular but

T is singular. If our dimension reduction test of Z indicates that Z(?) can be omitted from
the structural function ¢ then we obtain identification in the restricted model. O

5.3. Limiting behavior under local alternatives and consistency.

Similar to the previous sections we study the power and consistency properties of our test.
PROPOSITION 5.3. Given the conditions of Proposition 5.1 it holds under (2.5)

(V26,) (n S — pim,,) 4 /\/'(2_1/2||T5H3, 1) as n— oo

Given the conditions of Proposition 5.2 it holds under (2.6)

(V252 ) (n S — ) S N (V2s22)Y|TS)I2, V™) as n — oo

In the next proposition we establish consistency of our test when H,, does not hold, i.e.,
there exists no function in F% that solves (2.1) for any sequence v satisfying Assumption 6
and any sufficiently large constant 0 < p < oc.

PROPOSITION 5.4. Assume that H,, does not hold. Let E|Y — ¢o(Z)[* < co. Consider
a sequence \ such that A\, = o(ngnzi). Under the conditions of Theorem 5.1 and 5.2,
respectively, we have

P((V250,) 7 (RS2 = tim,) > An) = 1+ 0(1),
(Vo) (nS3 — i) > An) =1+ 0(1).
In the following we show that our tests are consistent uniformly over the function class

TP = {¢ eF: inf [ Fn T~ 02 = pem,n '}
PoEFY

where the sequence 7' := (7;);>1 satisfies 7} ~ j2. Hence, under Assumption 6, i.e.,
supgs1 k% /v < oo, it holds F{ C .7-"5,. Again, ¢;_, denotes the 1 — a quantile of A(0,1).

PROPOSITION 5.5. For any e > 0, any 0 < o < 1, and any sufficiently large constant p > 0
we have under the conditions of Theorem 5.1

lim inf ]P’((\/igmn)_l(nsgp — an) > ql_a) >1-—c¢,

n—o0 Lpejﬁ
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whereas under the conditions of Theorem 5.2 it holds

lim inf P((ﬁg&ivn”)_l(n SpP— P ) > ql_a) >1—e.

n—o00 <p€\7/;
REMARK 5.3. The condition inf ez || Fm, T(¢ — ©0o)|I2 = pem,nt for ¢ € J¥ rules out
alternatives with generalized Fourier coefficients [T'(¢ — ¢g)]; converging to zero too fast.
Horowitz [2012] gave an example where uniform consistency over these alternatives can not
be achieved. On the other hand, if [T'(¢ — ¢o)]; oscillates for large j > 1 then one might
chose a weaker decaying sequence 7 in order to ensure consistency uniformly over these
alternatives. ([l

6. Conclusion

Based on the methodology of series estimation, we have developed in this paper a family
of goodness-of-fit statistics and derived their asymptotic properties. We have seen that
the asymptotic results depend crucially on the choice of the smoothing operator L. For
the theory we had to distinguish two cases namely that ;! = O(1) and > = 0(1).
By choosing a stronger decaying sequence 7, our test becomes more powerful with respect
to local alternatives but might lose desirable consistency properties. Although our results
hold for any decaying sequence 7, it is of great interest how to choose this sequence in
practice. Moreover, in the case of exogeneity or nonparametric specification, one may also
use estimators for ¢ where the dimension parameter k, adapts to the unknown smoothness
of ¢ as well as to the unknown decay of the singular values of T'.

A. Appendix

A.1l. Proofs of Section 2.

PrOOF OF THEOREM 2.1. Under Hy we have (Y; — @o(Z;))fr,(Wi) = Usfj,(W;) for all
m > 1 and consequently we observe

n my
St (NS — ) :—ZZ U] (Wi)? =< +—ZZUUf 7 (W)
ma T i=1 j=1 i#i j=1

where the first summand tends in probability to zero as n — oo. Indeed, since E |U f;(W)|*—
Gj; = 0,7 =1, it holds for all m > 1

1 . 1
e DI CAHUA ST B NP =gl < o5 BIU L W)

i=1 j=1 m j=1 m

By using Assumptions 1 and 2, i.e., sup ey E | f;(W )* < n* and E[U?|W] < 02, we conclude

E|lUfn(W)]* < mZT EUS(W) <nlotm) 77 (A.1)
j=1

j=1
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Let m = m,, satisfy condition (2.3) then E[|Uf7 (W)|* = o(nc?, ). Therefore, it is
sufficient to prove o

V2(sm,m 1ZZUUJ‘" [ (Wir) 5 N(0,1). (A.2)
£ g=1
Since G, = o(1) this follows from Lemma A.2 and thus, completes the proof. O

PROOF OF THEOREM 2.2. Similarly to the proof of Theorem 2.1 it can be seen that it is
sufficient to show

0V U T (W) ] (W) S N0, V).

i#i! j=1
This result is due to Lemma A.2 since > 7 =0(1). O

PROOF OF PROPOSITION 2.3. For ease of notation let d0,(:) := an/fn_l/Q&(-). Under the
sequence of alternatives (2.5) the following decomposition holds true

Sn = |In Uiz, (W) |* + 2007y Ui, (W) —125 ) fmn (W)
=1 =1
+ 0t 0u(Z0) £, W) =2 L + 210, + 111,
=1

Due to Theorem 2.1 we have (v/26y,,) ! (n I, — fim,, ) 4 N(0,1). Consider I1I,,. We observe

zo

nE L] <3 (B Uf(W)PE[8.(2) f;(W)2) "+ (nE ‘ i 7j [Tdn]jUfj(W)F)l/Q
j=1 =t

<o S (B I5(2) FW)R) 7 + ov/n| T6 .
j=1

From the definition of §,, and condition (2.3) we infer that nE|Il,| = o(¢p, ). Consider
I111,. Employing again the definition of 4,, yields

N I11, = Zmn—l Za<zi>fj<wi> — 3], [?
+2ZTJ T3] —125 — [T68);) + 3 75[T0]% = Ay + 2An2 + Ans.
j=1

Clearly, E Ay < n~' 30 7 EI6(Z) f;(W)[? and E AZy < 0| T6|12 377 E6(Z) £ (W)
Since E|6(Z)[* < oo we conclude A,; = 0p(1) and A n2 = 0p(1). On the other hand,

holds A, = ||T6|2 + o(1). We conclude (v26,,,) " tnlll, = (v/2)71||T6|2 + 0,(1), which
completes the proof. O
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PROOF OF PROPOSITION 2.4. Let &,(-) := n~'/2§(-). Similarly to the proof of Theorem
2.1 it is straightforward to see that under the sequence of alternatives (2.6) it holds

(V26m,,) " (0 Sn—pim, ) = \Rm ZZ Ui+0n(Z:)) (U +00(Zi)) fT (W) fT(Wir) +0p(1).

£ j=1

In the following we make use of the decomposition

ZZ Ui + 6n(Zi)) Uy + 6n(Zsr)) [T (Wi) T (Wir)

£ j=1
=23 S U+ B ZD V(U +6.(Z0) (W) — [T3,])
i'<i j=1
3SRy S = D+ 0 ZV V) — [T,1) + 6 S (T
Jj=1 i=1 =

= I, 4+ II, + III,.

Due to Lemma A.3 it holds (v/2¢,,n) 1, 4 N(0,V). In addition, (v26y,n) I, =
S HIT6]|2 + 0,(1). Thereby, the result follows from I1,, = o,(n) since

n2EII2<n” (Z )Z Z’—l E|(Us 4 6n(Z0)f5(W3) = (18]

7j=1

_1||T5sz (E|Uf;(W)I? + E8.(2) £;(W)[?) = o(1)

where we used 37" 7'2— O(1), E|U f;(W )|2 o2, and E[6(2)|* < . O

PROOF OF PROPOSITION 2.5. Since G, An + fm, = o(n) it is sufficient to show S, =
1T (¢ — o) |2 + 0p(1). We make use of the decomposition

ZTJ|nIZY 0o(Z) 1 (W3) = [T(e — o)l

7=1
+2 Z 7i(n”! Z(Yz’ —00(Z:)) f;(Wi) = [T (¢ — 0)];) [T (¢ — ¢0); + | Fn, T — 0) |2

=1I,+1I,+1II,.

Due to condition E [V — ¢o(Z)|* < oo it is easily seen that I, + I1,, = 0,(1). On the other
hand IT1,, = |T(¢ — ¢o)||? + o(1), which proves the result. O

PROOF OF PROPOSITION 2.6. We make use of the decomposition

P((ﬁgm )t (n Sn — umn) > Q1—a)
(Hnil/2z fmn H +H 71/22Ufmn )H - HUm,

=1
n

Vot + 2 P(Z) — p0(Z) f (W ZUfmn -

=1
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Uniformly over all ¢ € Gf it holds

n

(0™ (0(Zi) = 90(Z0)) (W, Z Ui fr (W) = Oy (V12| i, T(0 = 20) 7). (A.3)

i=1

Indeed, we observe
E| %Tj E[(¢(2) = #0(2)) f;(W)] zn: Ui (Wi)|* < o®nl|Fn, T(i0 = 90) 12
i—1 i=1
which yields (A.3). Thereby, for all 0 < &’ < 1 there exists some constant C' > 0 such that
P((\@gmn)*l(n Sy = tmy,) > q1_a>
> P[0 3 (0(2:) — ol 2 s W + 02 3 Uuf (W = pim,
i=1

i=1

> V26m,a1-a + OVl Fn, T(6 = 90)ll7 ) -

Note that Hn*1/2 Yoy UJ@(WJW = lm,, + Op(Sm, ) due to Theorem 2.1. Moreover,
e - 2
™23 " (0(Zi) = 20(Zi)) fns WiII” = 2l B, T (0 = 00) 17

—2| <Z<90(Zi) = 0(Zi)) fin, (Wi) = n[LT (¢ = 0)]my,, [LT (¢ = 0)]my) = In + L.

Consider II,. For 1 < j < my let s5 = 75[T(¢ — ¢0)lj/ || Em, T (@ — @o)|l+ then clearly
Z;””l 7 =1 and thus E | Z 1 555 (W)[? = 1. Further, since sup,cgupp(z) 19(2) —0(2)]* <

p we calculate

E 1L = nE| Y 7((6(2) ~ o) 1(W) ~ [T — o)) [T~ o)li|

j=1
mn 2

<l En, (9 = 90) IZE | S 55(0(2) = 902N 50| < plIFm, T (o = 90)|I2
j=1

and hence I, = O,(1). Note that I,,—C/n|| F,,, T (¢—¢o)||+ = In/2 for n sufficiently large.
Since on G}, we have I, > pg,, we obtain the result by choosing p sufficiently large. O

A.2. Proofs of Section 3.

Proor or THEOREM 3.1. The proof is based on the decomposition under H,,

SE = |ln > Uit (W[ +2(n~1 > Uiy, (W) 12900 Z) f, (W)
=1 =1

+InmY C((po(Zi) = Be(Z) fr WillP = I + 211, + ITT,,. (A4)
i=1
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Due to Theorem 2.1 it holds (v/26,,,) ™ H(ndy, — fim,,) 4 N(0,1). Consider I11I,,. We observe

k mnp k. mnp n
ITI, < 2[jpo — ¢k||2Z(ZZTj[T]32‘l YD Y ez fi(Wi) - [T]jz)2).
=1 j—1 =1 j—1 i—1

For each 1 < I < k we have » U™ [T]?l < ||Tell?, < 1 by applying Jensen’s inequality.
Moreover, we calculate

kK m n

- o km kmy,
> D Eln' > alZ)fi(Wi) = [Tla]” < =7 sup Ble(2) f(W)P <n' =7 (A5)
=1 j=1 =1 Itz

These estimates together with |po — @llz = Op(n=/2) imply nIIl, = 0y(sm,). We are
left with the proof of nll,, = 0,(<m,, ). We observe for each 1 <1<k

E| S (sl 2 SO W) (073 enlZ0) f3(W3) = [T))|
Jj=1 i=1 i=1
< n 123 (RO 0)P) (Bl 2) 150 ) 2 < ot 1/227 — o(1).

7=1

Now since 1/ ([po]x — [Br]r) = Op(1) we infer

3

n

nill, —nl/zz <P01—[90k]) ( 1/2z:UJ"} )—l—op(l).

=1 1

<.
Il

We observe for each 1 <1<k
mn n
T B[S n S UL < <lo 22 5 <Gl
j=1 =1

which implies nll, = 0,(Gn,) and thus, in light of decomposition (A.4), completes the
proof. O

PrROOF OF THEOREM 3.2. For 1 < j < m,, we make use of the following decomposition

_1/zzf <U +Z er(Zi) ([poli—[@rli ) = n—1/2z (fj U+Z itha (Vi )

(™ X S (Wi i) = [T);0) ("2 Z m(v))

1 i=1

M=

_l’_

M= ¢

+ nt Z fj(Wi)el(Zi)Tl = Anj + an + an (A.ﬁ)

l

1

t

where ry = (r1,...,7r,)" is a stochastic vector satisfying r, = o0,(1). Consequently, under

H, we have

Mn Mn
”SE:ZTJ +2ZTJ nj(Bnj + Chnj) +ZTJ Bpj + Cnj)*.
j= 7=1 7=1
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Clearly, for all 1 < i < n the random variables U; f7 (W;) + E [f7 (W)er(Z2) [he(Vi), 1 <
j < my, are centered with bounded fourth moment. Following line by line the proof

of Lemma A.2 it is easily seen that (v2¢h,)~" (27 7542, — fiin,) 4 N(0,VP). Ex-
ploiting inequality (A.5) it is easily seen that > 7™ 32 = Op(mpn~1) = 0p(1). Since
ST < 1 we have || Elfm, (W)ew(Z)]re)l* < 27 Zz Tl l? < kH?“kH2 = Op(
and hence » 7™ C2 = 0p(1). Finally, condition 7' T] =0(1 )1mphesE|Z] | ] m’

)
<
2
SUp;>q {EAW}( s} ]) = O(1) and thereby, we have E’ijl 5Anj(Bnj + Crj)|” <
S TEAZ S (B + Cnj)® = 0p(1), which completes the proof. O

PrOOF OF PROPOSITION 3.3. Consider the case g;li = 0(1). Under the sequence of alter-
natives (2.5) the following decomposition holds true

n

Sp = Sn+2( ‘IZUH%Q T26(Z0)) e (Wi)sn ™Y (00(Zi) = $1(Z0) frm (W)

i=1 i—
+[In Y (wo(Zi) = (20 f, (W1
=1

Due to Proposition 2.3 and the proof of Theorem 3.1 it is sufficient to show

_125 i) fin, (Wi I/QZ (o(Z Zi)) i Wi)) = 0p(\/Smy,)- (A.7)
Since » 0 [T ] < 1 we conclude
mn k My,
> 7T Z (po(Z NSV = valleoli—[@rl) > 75(T6][T]+0p(1)
j=1 =1 j=1

< V|| Tz lleo — Gkllz + 0p(1) = Op(1)

and hence (A.7) holds true

Consider the case 7' ] = O(1). We make use of decomposition (A.6) where U; is
replaced by U; + n~1/2§(Z;). Similarly to the proof of Proposition 2.4 it is easily seen that
(\/ﬁgﬁln)*l(zgﬁﬁ T A% — i) LN N ((V265%) 7| T6]|2,VP). Thereby, due to the proof of
Theorem 3.2, the assertion follows. ]

PROOF OF PROPOSITION 3.4. It is sufficient to prove Sh = ||T(» — ¢0)||% + 0p(1). Consider
the case ¢, = o(1). Since [[n~t 37" ((po(Z;) — gbk(ZZ))f@(VVl)HQ = 0p(1) (cf. proof of
Theorem 3.1) and ! S, (Y; — p0(Z:)) f, (Wi) |2 = IT( — 90) 12 + 0p(1) (cf. proof of

Proposition 2.5) the result follows. In case of 3 7' 7'] = O(1) we infer from the proof of
Theorem 3.2 that S5 = 377 75|~ S50, ((Yi—00(Z0)) £ (Wa) + Sk [T]h (Vi) |* 0, (1).
Since hy(V;), 1 <1 < k are centered random variables we obtain, similarly to the proof of
Proposition 2.5, that Sp = |IT (¢ — w0)||2 + 0p(1). O
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PROOF OF PROPOSITION 3.5. Consider the case ¢} = o(1). Let ¢y € &, with estimator
@r. The basic inequality (a — b)? > a?/2 — b%, a,b € R, yields

P((V26m) " (0S8 = im) > @10

> B(1/27 4 Y6t - A W + 72 S S 09 =
=1

> V26, q1—a + 2|(n Z (Z)) g W), Y Ui f, (W)

i=1
423 02 - o(Z) (W)
=1

From the proof of Theorem 3.1 we infer Hn 1250 (Br(Zi) — ©0(Z:)) fi, (Wi) H2 = 0p(Smn)
and o

(n~! Z(@(Zi) — B(Zi)) frny ( Z Ui f, (W

= (n7! Z(S"(Zi) — o Z Ui [, (Wi)) + 0p(Sm,,)
=1

uniformly over all ¢ € Hy. In addition, let s; be as in the proof of Proposition 2.6, then
condition sup;; ]E[e?(Z W] < n? yields

mMn Mn

k k
E\Zsj (NG| <20+ 23 leolf 3E[6(2) 3 5,50V = O

Thus, following line by line the proof of Proposition 2.6, the assertion follows. In case of

Z;n”l 72 = O(1) the assertion follows similarly. O

A.3. Proofs of Section 4.

Let Ay = {H[Id] Yl <2} and By, = {H[Id]k — [Id]x|| < 1/2}. Their complements are denoted
by A{ and B, respectively. By the usual Neumann series argument we observe on By, that
ITd] < (1= [[[ld]g — [d]g[)) ™ < 2 and hence By C Ay.

PROOF OF THEOREM 4.1. The proof is based on the decomposition (A.4) where the esti-
mator ¢y, is replaced by @, given in (4.1). It holds nl11, = o0,(sm, ), which can be seen as
follows. We make use of

IT1,/2 < ufz (B 00(Z) -1, (Z0) P W) P4 S (B 00) (20 3, ()| =2 Auat A
i=1

Consider A,,1. We observe

Mmn kn n
A1 < 2| T(Eg, 00—2k, )3+ 21 Br, 00—21, 17 D 75 D In™" Y e Za) (W)~ [T
j=1 =1 i=1

=: 2B,1 + 2B)9. (Ag)
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We have E ey, (Z)ex, (Z)" = [Id]y,. For By1 we evaluate due to Jensen’s inequality

< | Bk 00 — @i, 17 < 2| 1]k [00), — 1™ ZYekn Z)I 14,

A~ 2 A~
+ 8||[Id]k, — [d], ||| Mk [0) . — 2™ Zyekn W+ 1Bk, ol% Tag
Since the spectral norm of a matrix is bounded by its Frobenius norm it holds

E||[fd]g, — [d]g, > <n ™t Z Ele)(Z)er(Z)? < n*n k2
LI'=1

and condition ¢ € FY together with ngl v L<n? /6 for n sufficiently large yields

EH Id En[P0lk, — 717 ZY@kn _IZE‘e] Zg@o liel(Z) = Yej(Z))?
i=1 =1

kn kn 2,,2
_ _ _ ™n _
< Yeol2 S E[2(2) S 4 'R (2)] +2n han® Y] < 2772( : p+E[Y4]>n .

Moreover, 14c = op(1) since P(B} ) < 4EH[IH];€J — [Id]g, > = o(1) and By, C Ag,.
Consequently,

1| Er, 0 — Pk, 17 = Op(kn) (A.10)

and since k, = 0(Sm,,) we proved nBpi = 0p(Gm, ). In addition, applying inequality (A.5)
together with equation (A.10) yields nBp2 = 0p(Sm,, ). Consequently, nA,; = 0(¢y,, ). Con-
sider Ays. Jensen’s inequality gives

E[n™" Y (B, 20) (Zi) fa (WD|)” < 201E, wol% + 2071 DO EIEL 00(2) £ ().
i=1 j=1

Note that condition (4.2) implies k2 < o2, < o*m,, for n sufficiently large. Due to the
Cauchy Schwarz inequality

SCEIBE o2 L <S03 Rlool? S I2E |(2) £(W)
j=1

§=11>kn I>kn

AT mpk?

ST B, polly = ol6m,) (A11)

and n||EL <,00||Z < ||Ekln<p0\|2 = 0(Sm,,). Hence, nlII, = 0,(n, ). Consider I1,. We
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calculate

il \ZT]ZUfJ (o=l (11 3 05,2005 (W)=E [es, (2) 7))
= i=1
o kZ (oo — [ (S U (W) T)|
‘7 1 =1 =1

mMn

| S n (S Un ) (03 B ea(Z0 £,07)  BlEE 25500
j=1 i=1 i=1

+] i i i Usfi(W3)) BB 20(Z) f(W)]| = Cat + Cuz + Cug + s (A.12)
j= i=1

Consider Cp1. Applying twice the Cauchy Schwarz inequality gives

1S (ZTJZ‘ ZUifj(Wi)‘z)l 2HEkn%Do — @, |z

j=1 i=1

Mn kn

(D Zel E[el(Z)fj(W)]y2)l/2.

7j=11=1

From E|>° 0, Uif;(W:)|? < no?, relation (A.10), and inequality (A.5) we infer C,; =
0p(Sm,,) due to condition (4.2). For Cpy we evaluate

kn Mmn

B -zl (3135 S vt ov )

=1 j=11i=1

Estimate 0™ Zf’zl[T]?l < ky together with (A.10) yields Cha = op(1). Consider Chs.
Since E[U%|W] < 02 we conclude similarly as in inequality (A.11) that

el 1/2 2
ECys < Y (EULW)P) Y (BIEEw0(2) [(W)[2)"
7j=1

mn
27TO' kny, o
kn‘POH 7 = 0(Sm,)
S R
where we used Z;nznl T; < w/mn(zgl:’ll 732)1/ % Consider Cra. We calculate
Mn
E|Cpal* < no® Y [TEj; ¢olf < no®|TER, eollfy < ny; o? | Eis ol = olm,)-
j=1

Consequently, in light of decomposition (A.12) we obtain nll, = 0(<y,, ), which completes
the proof. 0
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PROOF OF THEOREM 4.2. Employing [Id]_ = [Id]g, —[Id] ([Id]k —[Id], ) and [ﬂi]ki[wo]kl—
ntY N Yiew, (Zi) =n Y ey (Zi) (B, 0(Z:) — Vi) we obtaln forall 1 <j<my,

_1/2Zf (U + ey (20! ([2olk ZY@kn ) + Bitp0l(Z)
n 1 Z (£ (W)U + B [£5(W)e, (2)]ew, (Z:) (Er, 00(Z) = i)
n~t/? ZE (2)[1d), ([d]k,, — (1], )ex, (Z:) (Er,p0(Zi) — Vi)

( - Z fi(W. E [f;(W )ekn(Z)tD\/ﬁ([‘PO kn - ZYekn

+n 2N B 00(Zi) £ (Wi) = Apj + Buj + Crj + Drj. (A13)
i=1
For all 1 < i < n the random variables U f] (W;)+(E, v0(Zi)=Y:) E [f7 (W )ex, (2)"] ex, (Zi),

1 < j < my, are centered under Hp w1th bounded fourth moment. More precisely, due to
condition E[U2|Z] < o* where Uz = E},, p0(Z) — Y we calculate for all 1 < j < my,

kn
E|Uf(W) + Z[T]jlel(Z)UZ|4 < 8E \Ufj(W)|4 +8E |(EknT*fj)(Z)UZ}4
=1
< 8ot + 8o E|(Ey, T f;)(Z)|*

which is bounded since E |(Ey, T* f;)(2)[* < E|[(T*f;)(2)|* < E|f;(W)[* < n* by using well
known properties of projections on Banach spaces. Now following line by line the proof of
Lemma A.2 it is easily seen that (v/2¢, )_1(27”1 TjA2 1, ) 4 N(0,V¢). Moreover,
similarly to the proof of Theorem 4.1 it is easily seen that Zm” B2 =0 (n mnk:Q) =

op(1), 20 Cr; = 0p(1) and > D2 = 0p(1). Since 14, =1+ op( ) the result follows
similarly to the proof of Theorem 3.2. O

PROOF OF PROPOSITION 4.3. Consider the case g} = o(1). Similar to the proof of Propo-
sition 3.3 it is sufficient to show

(0™ 8(Z0) s (Wi),n ™2 Y (00(Z0) = P, (Z0)) fna W) = 0p(vGm)- (AL14)
i=1 i=1

By employing Jensen’s inequality and estimate (A.10) we obtain

Z Téjfz B, 00(Zi) — Pr, (Zi)) [;(W5)

< VT[T (B, p0 — i, )llw + 0p(1) = 0p(sim,)-

Similarly to the upper bounds of C),3 and C},4 in the proof of Theorem 4.1 it is straightfor-
ward to see that Y7 75[T0];n -zsn EkLngpg( i) fi(W;) = op(Sm,,) and, hence equation

(A.14) holds true. Consider the case > " = O(1). We make use of decomposition

31]
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(A.13) where U; is replaced by U; + n~/2§(Z;). Similarly to the proof of Proposition 2.4

it is easily seen that (ﬂgﬁnn)_l(zygl TjA%j — e, ) 4 N((V26%) 7Y T6]|2, V°). Thereby,
due to the proof of Theorem 4.2, the assertion follows. O

PROOF OF PROPOSITION 4.4. Similar to the proof of Proposition 3.4. 0

PROOF OF PROPOSITION 4.5. We make use of inequality (A.8) where gok is replaced by
Py, - From the proof of Proposition 4.1 we infer Hn V2 (@, (Zi)—po(Z H
0p(Sm,,) and

(071 3 _(0(Z) = P, (2) ZUf#m

*12 ) Frn (W, ZUfmn ) + 0p(Sm,,)

uniformly over all ¢ € Zf;. In addition, let s; be as in the proof of Proposition 2.6 then
condition sup,; E[e?(Z )W) < n? yields

E’is] N5 < le=pol2 AT Ele(2) S 58502 = 0(1). (A15)
=1 j=1

Thus, following line by line the proof of Proposition 2.6, the assertion follows. In case of

Z;ﬂ”l 72 = O(1) the assertion follows similarly. O

A.4. Proofs of Section 5.

PROOF OF THEOREM 5.1. For the proof we make use of decomposition (A.4) where the
estimator @y, is replaced by @y, given in (5.1). Consider I11,. Observe

n

111, < 2|07t Y (0, (Zi) = P (Z0)) fa WP
=1

+2[n > (0 (Zi) = 00(Z0)) fry (Wi I? = 2401 + 2402, (A.16)

Consider A,1. We evaluate by applying Cauchy Schwarz inequality

n

A1 <2/|T(#k, — Pr) iy + 2l 080 — Pre ZT] Zvl n el Zi) (W) — [Tl

=1

The link condition T' € Ty, yields |T($r, — w5y < dllPk, — ¢r, 7. From Theo-
rem 2.6 of Johannes and Schwarz [2010] and condition (5.4) we infer n||gg, — vk, |2 =

Op(max(nvkn%;nl,kn)) = 0p(Sm,, ). This together with estimate (A.5) implies nd,; =
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0p(Sm,,). Consider A,». We observe

E Anz < 2||T(0r, = @0)lliy + 20 E|l(¢r,(2) = ¢0(2)) fr, (W)

Mn
< 2d||pr, — @ollZ + 207> Pk, )i — [pol)? Y 1 > 1P Ele(Z) (W)
I>1 j=1 =1
2 (Vk 2 ? 4 2 727, -
< 8Dd (7” k, — Yolly + = kn, — 0 7"). A.17
5, low, = olly + g llen, — ”kan ; ). (A7)

where we used Lemma A.2 of Johannes and Schwarz [2010], i.e., ||¢k, —wol|?, < 4dewkn7,;n1
for a nondecreasing sequence w. Condition (5.4) together with the estimate k2 < o > T
for n sufficiently large implies nAy,2 = 0p(spm,, ). Consequently, due to (A.16) we have shown
nlIl, = 0y(Sm, ). The proof of nll, = 0,(¢m, ) is based on decomposition (A.12) where @y,
and E - o are replaced by @k, and ¢k, — o, respectively. Consider C,;. We calculate

/
”(’Okn—(pkn” ZTAZU']Z (Zyl_l‘n 126[ ]jl‘2>12

Since /n||@k, — @k, llo = op(c,%l/f) we obtain, similarly as in the proof of Theorem 4.1,

Cn1 = 0p(Sm,, ). Consider Cpa. Again similarly to the proof of Theorem 4.1 we observe

EChs = E’Zn:T]Z gl [Phen 1 — [0k, ] (ZUf] >’
j=1 =1
<WM%—%HW(§)ﬂZ 713)" = ofsm)

by exploiting > 7" [T]?l = ||Te;||}, < dvuy. Consider Cy3. Since E[U?|W] < 02 we conclude
similarly as in inequality (A.11) using Lemma A.2 of Johannes and Schwarz [2010]

Mn

5 7'- B ‘ on1/2 2 MO kn,
E Cp3 < ; i (El(¢n, (2)=po(2)) f;(W)[F) " < n 5 e

Mn
—polly Z 7 = 0(Gm,)-
j=1

Consider Cpns. Again exploring the link condition T € 7', and Lemma A.2 of Johannes
and Schwarz [2010] we calculate

E Cpa? mz ¢k, — 90)I2 < nol|T (o1, — o)l

nvg,
< nod||er, — eollk < 4de0,YTH<Pkn — o2 = o(Sm,)-

Consequently, the estimates for Cp1, Cpa, Cp3, and Cypyg imply nll, = 0,(Sn, ), which
completes the proof. ]

PROOF OF THEOREM 5.2. For all k£ > 1 let us denote ), := {||[T\]£1|| < /n} and Uy :=
{IQuNITIL I < 1/2} where Qp = [Tl — [Tl Let ¢, () := ex, ()'[T1y, [glk, Observe
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~

[Tk [P0 ke = 191k = 771 3000 fin (Wi (00, (Zi) — V3) and hence, for all 1 < j < mp,

‘I/QZf (Ui + en (2! ([on ) — (T Ga) + 00(20) = 0, (20)
=12 2 (£ (Wa)Us + E [£5(W)ew, (2)]TTg i, (W) (01, (Z0) = Vi)
n=1/2 ZE [fi(W)ex, (2)"] [T];;nl@kn[ Jew L fro, (W) (0, (Zi) = Y5)
=1
+ (n‘l > F(Wier, (Z:)'=E [£;(W)eg, (2)'] ) ik (n_1/2 > Frn(Wi) (cpkn(Zi)—Yi))
] 1=1
+ 77,71/2 i ((PO(Zz) — (Pkn(Zz))f](Wz) == Anj + an + an + Dnj- (A18)

Consider Ap;. The random variables U; f7(W;) +E [ f] (W )ey, (2)] (T }kn Siew (Wi) (1, (Zi) —

Y;-), 1 7 < my, are centered with bounded second moment. More precisely, condition
T € T} together with Lemma A.1 of Breunig and Johannes [2011] yields

E|E[f;(W)er, (2) [T, frn (W) (0, (2) — 2DZU (@ +C P llo=pralI3)-

Moreover, exploiting condition 7' € T 4.D yields Zl 1Uz
T, IV 0 |? < d. In addition we calculate for all 1 < j < my,

[T = 1Pk, / Vi TSl <

E|Uf] (W) +E [f](W)ew, (2)'][T], fr,(W)(¢r,(Z) — V)[* = O(kn)

. - —1/2 S 2

since || E[f] (W)ex, (2)1Vu], ?I1* = (X5, v [T12)* < d* and E|f5(W)(Y =1, (2))]* =
O(1) (cf. Lemma A.1 of Breunig and Johannes [2011]). Thus, with the fourth moment
growing only at rate ky, by following line by line the proof of Lemma A.2 it is easily seen

that (v20,) (2272 75 A% — e, ) %4 N(0,V"P). Note that E log = P(Q,) = o(1) (cf.
proof of Proposition 3.1 of Breunig and Johannes [2011]) and, hence 1o, = 1+ o0p(1).
Consider By;. By employing H[f];lH 1w, < 2[|[77];; ]| and H[f],;lHQ lo, <nforall k>1it
follows B B a

Mn
Z BnJ Loy, Z B721j Loy, (Lo, + L, )
=1

< Bl (W)ery (2T (AN IR0 Q 002 3 i (W) (0, (Z0) = Vi)

=1

+ )| Q|0 Wkan D (r (Z0) = Vi) 2 1o, )

=1

Condition T' € T, implies | E £, (W)ex, (2)'[T],MI* < DI E f7,, (W)ex, (2)! [vy] 1/2”2.

Moreover, let K be a linear operator on £2Z with eigenvalue decomposition {Uj ,e] Fiz1
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and let Sk, = {¢ € &, ||¢]|z = 1}, then by the spectral theorem

I F W e, (2) (V51 = s i!Z Lo 2l

ekn]l —

= sup ZTK Yo} < sup [TE Yol <d sup ||[K7'9[f = d.
$€Sk, 21 $ESk, $ESk,

Now n||Qp, |> = Op(k2) and |n= /23" Jiew Wi) (@h, (Zi) = Y5)|I* = Op(kn) due to Lemma
A.1 of Breunig and Johannes [2011]. In addition similarly to their proof of Proposition
3.1 it can be seen that n||Qg, ||*[In Y2 1" fi, (Wi) (¢, (Zs) — Vi) |I? lo;, = 0p(1). Con-
sequently, 7" B} 1g,, = op(1). Similarly, it is easily seen that > C2 Lo, = op(1)
and UM D2 = op(l). Hence, since 1o, = 1+ 0p(1) the result follows snnilarly to the
proof of Theorem 3.2. O

PROOF OF PROPOSITION 5.3. Consider the case g} = o(1). Similar to the proof of Propo-
sition 3.3 it is sufficient to show

(S 02 3 (W) ™2 S (00(Z0) = B (Z0)) Fs (W) = 0p( V). (AL19)
=1 i=1

Due to the link condition T" € 7} 4.p Wwe obtain
Mn 1 n
D T8l =D Lk, (20) =B, (Z)f5(W3) < Vanl Tl o, =Pl +0(1) = 0p(sim.)
j=1 i=1

As in the proof of Theorem 5.1 it can be seen 3 7" 75[T'0]; > 21 (w0(Zi) — ¢, (Z; ))f] (W) =

op(v/NSm,,) and, hence equation (A.19) holds true. Consider the case 7" J = 0O(1).
We make use of decomposition (A.18) where U; is replaced by U; + n~'/25(Z;). Simi-
larly to the proof of Proposition 2.4 it is seen that (v/2¢,5)~ (ZT:"I TjA%j — ,u?,{’n) S

N((V28)H|T5||2, V™). Thereby, due to the proof of Theorem 3.2, the assertion fol-
lows. O

PROOF OF PROPOSITION 5.4. Similar to the proof of Proposition 3.4. O

PROOF OF PROPOSITION 5.5. We make use of inequality (A.8) where gok is replaced by
Pk,- From the proof of Proposition 5.1 we infer ||n~ 1250 (@B, (Zi)— i) fin, W, H

0p(Sm,,) and
n”! Z — B (Z0)) F (W, Z Ui f i, (W,
= (n! Z(@(Zi) — 00(Z:)) f ( Z Ui (Wi)) + 0p(Sm,,)
=1

uniformly over all ¢ € J. Consequently, by using inequality (A.15) and following line
by line the proof of Proposition 2.6, the assertion follows. In case of 3 7' 7']2 = 0(1) the
assertion follows similarly. O

29



A.5. Technical assertions.

Let us introduce Xy := v/2(gm, n)~ Z  UiUs ] (W3) f7 (W) and

i—1 .
=1 Xt fori=2,...,n,

@ni 1= { 0, for i =1 and ¢ > n. (A-20)

Then clearly

(V26,1 IZZUU@ FT(Wy) = V2(Gn,n IZZUU@ f7 (W)

i#i j=1 i<i! j=1

- ZX’L’L/ - ZQ’H/L

1<’
Let B, := B((Zl,Yl,Wl), oy (ZiyYi,W5)), 1 < i < nyn > 1, be the o-algebra generated
by (Z1,Y1,Wh),. (Zi,YZ,Wl) Since U;f](W;), 1 < i < n, are centered random vari-
ables it follows that {(>°5_; Qnir, Bni), @ = 1} is a Martingale for each n > 1 and hence
{(Qni, Bni), i > 1} is a Martingale difference array for each n > 1. Moreover, it satisfies the
conditions of Proposition A.1 as shown in the following technical result.

PROPOSITION A.1. If {(Qni, Bni), i = 1} is a Martingale difference array for each n > 1
satisfying conditions

ZIE|Qm~|2 <1 foralln>1, (A.21)
Z Q% =v+o,(1) for some constant v > 0, (A.22)
sup |Qni| = op(1) (A.23)
i>1

then

i Qni 5 N(0,v).

i=1
Proof. See Awad [1981]. O

Note that this result has been also applied by Ghorai [1980] to establish asymptotic nor-
mality of an orthogonal series type density estimator.

LEMMA A.2. Let Qp; be defined as in (A.20). Let Assumptions 1—4 be satisfied and assume
mn(Z;nz"l Tj2)2 = o(n). Then the conditions (A.21)—(A. 23) hold true where v =1 if g1 =
o(l) andv =1+ (4/3§§0) Z] L1 =1 S’ S SIS Zfz 7' =0(1).

Proof. Proof of (A.21). Observe that E[X71;X1#] = 0 for ¢ # i’ and thus, for i = 2,...,n we
have

, 20— 1) <=2, .. i
E|Quil® = E| X1t +Xi 14> = (i—1) E | Xp|* = 752 3 \g | > UL W)Uz f] (We)|?
Mn le
2<Z — 1) — 2 T T 2 2<Z B 1)
= 2 BUFW) W) = =5
M jjl=1
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by the definition of ¢,,,. Thereby, we conclude

- 2« n(n—1) 1 1
> E|Quil’ = 72 =1 (A.24)
=1 =1

n

which proves (A.21).
Proof of (A.22). We make use of the decomposition

Y QA =30k + Y QL% = I, + 11, (A.25)
=1 =1

£
Consider I,,. Observe that

i—1
E|Qni‘4:E|ZXi/i4:E)ng ZT]UfJ ZUfJ
i'=1

n n i—1
< %(Zﬁ)iwmwwﬁ S v

Smn N2 j=1 i'=1

_ (Z 3 ZE!UJ'} (6= DEUL 436 - 1) - 2)<3)

T onAch

where we used that E[U f;(W)] = 0. Since y ;" ; 3(i — 1)(i — 2) = n(n — 1)(n — 2) (proof by
induction) and 7 is nonincreasing with 7 = 1 we conclude

ZIEQM\ ‘ff’i” (ir) ( iwaj N2y n(n—1)(n—2 chjElUf]( )y)
j=1 j=1

nten, =

By using Assumptions (1) and (2), i.e., SupjeNE[f;l(W)] < 0t and E[UYW] < of, we
get maxi<j<m, E|Uf(W)|* < nlot and thus, Y0 | E|Qnl* = o(1). Consider II,. We
calculate for ¢ < ¢’

i—1 i'—1 i—1 i'—1
k=1 k=1 k=1 ktk!
i—1 i'—1 i'—1
+ ( 3 inXk/i) (Z X,%) ( Z X X ) ( 3 Xka>
k£k! k=1 KAk k£k!

== Aii’ + Bii’ + Cii’ + D”/
Consider A;;. By exploiting relation (A.24) we have

n i—1

E[N" N x2-1 = Z EA“/—QZ i—1)E|[ X +1= Z E Ay —1+0(1). (A.26)

i=1 k=1 i,4'=1 i,1'=1

It is easily seen that E A;y = 2(i — 1) E X2, X2, + (i — 1)(¢ — 3)(E X%,)?. Moreover, since
Yico(i—1) = o 35 (- 1) = i~ D ~2)/2 = n(n — 1)(n — 2)/6 and
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Yico (i =V =3) =250, (1" = 3)(' =2)(i' = 1)/2 = n(n —1)(n — 2)(n — 3)/8 (proof by

induction) we obtain

23 EAiy =4EX{5X3 > (i—1)+2EXT)*> (i—1)( —3)
i<d! 1<d! 1<d!

_Snln D) (S BUL W) £ 05 V) £5(0)

3nd
S =1

n(n—1)(n —2)(n — 3)'

+

A
Moreover, by applying Cauchy Schwarz’s inequality twice
mn
> s EUS (W)W (W) FW) < max EUS0)( S 3
j)jlyl’llzl \] ] j/—l
4174;%% My, Z 7']-2.

Thereby, since my, 3 7™ 7'] =o(n)itholds 23", , EA;» = 140(1). Obviously > | E Ay =
o(1). Hence decomposmon (A.26) yields 23, ;s Ajir = 1 4 0p(1). Now consider B;y. Since

(> gll) <mp Y0 6h < mpc?, and g0 =E UQfJT(W)ij, (W) we conclude

i—1

|E Biv| = [2) B X7 Xpir Xt
=1
8(i—1) <=

Y lw BUPFTW) (W)L (W)EUP FT (W) f7(W) f7 (W)

Sma 33 0L=1

< (zw cugw)(ZE\UQfT £ (W)P)

L=1 =1

 — /2 [ - 8(i — 1)y/mn
< 85441)( S @) (Sw) Bl s, ) < WE||Uf;n(W)||4.

S Li'=1 =1 mn

Estimate (A.1), i.e., IEHUf@(VV)H4 < ntotmy, > 77, yields 37, i |[EBi| = o(1) as
n — 00. Also it is easily seen that ECjy = 0 and hence ), _;, ECj» = 0. For D; we treat
two cases seperately. First consider the case g;li = 0(1). Using twice the law of iterated

32



expectation gives

i—1 i'—1
EDiy = (> XX ) (D Koo X ) =4 5 B X X X Xy
k#k' k#k’ k<k'
1—1
=4 Z E [ Xk Xpi B[ X Xirir| (Ve Zies W), Vi, Zir, W), (Yi, Zs, W5)]]
k<k'

i—1
8
= ZE {E Xpei Xnri| Yies Zi, Wi), Yir s Ziy, Wit )] Z S Uk f] W)U £, (W)

gm" k<K’ j,3'=1

- E‘ Z Sy ULFT (W) Us 7 (WQ)‘ (i —1)(i — 2)

7.] _1
8 Un
T oAk Z Sjjrauwsjsir (i — 1) (1 — 2).
Smn gl T=1

Since Z;”’]?}’lyl,:l it SIS < gfnn and g,;i = 0(1) we obtain

ZEDW < Z(l —1)(i-2) = 2n(n —1)(n —2)(n —3) — o(1)

362 nt
<3/ gm" <3/ gm"

and hence 23", EQ2,Q%,, = 1+0(1). Second, consider the case > 7']2 = 0O(1). Tt holds

n n.o Mn i—1
> Dy = (2(ngmn)*2z Sy UkUk/f]T(Wk)ij,(Wk/))Q + 0p(1). (A.27)

ii'=1 i=1j,j/=1  k#k'

Indeed, condition 3 7™, ’7' = O(1) yields

n 1—1
\ o 7 2 Z (U2 FT V)30 = 5i50) . Ui £7 (W) £ (W[
") i=1j,j'=1 k#k!
1—1
<o S 22 E ) 1 (WP E| S Ui £5Wi) 15 (Wie)|
n mn =1 j,5'=1 k#k!
8,8 Mn n
< (iz ”)4 (372) 36— 16 -2 = o)
mn j=1 i=1

which proves (A.27). Moreover, since
n 2
2y 3 o ¥ v
m" i=1j,5/=1 kK
4

n 2
= 4221[‘3‘ ZCJ]'UkUk/ Wi [FWi)| = o= > syrswsusyu+o(1)

n
)t S i S =1
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and

n mMn

’ (nSm,,) 22 > ZU’ka’ Wi) fj: (Wk’)4

1=1 j,57/'=1 k#k!

n i—14—1

=g S 3 E| 3 G U0

Sm

noii=1k£k 1A jil=1 =
16 < e 2\ 2
= o 2 (== =)~ (E[ilz Y oy fFW)FW2)[F) +o(1)
St i,'=1 =1
16 o 2
= 98 Z ij/Cll/CjKj/l/) +o(1)
mn gL =1
it holds
2 4 mn 2
’( (nom. )2 Z Z i’ Z UrUp f7 (Wi) fjr (Wi )> 3 > spswspsir| = o(1).
i=1jj'=1  k#k mn gLl =1

In light of equality (A.27) we have shown
Mn

Z Djy = Z Sjj s sjisjv + op(1).

i,1/=1 m"]j’ll’ 1

Consequently, 2, E Q%iQii, =1+ (4/3¢%) Z?Z”,l,l’:l Sjiswsiisjr + o(1) which, in light
of decomposition (A.25), completes the proof (A.22).

Proof of (A.23). Note that P(sup;>; |Qnil > €) < Y11 P(Q2%;, > €?) and, hence the
assertion follows from the Markov inequality. O

Consider the function § € L‘é introduced in Subsection 2.3. Let us denote

i—1 mnp

Qus = V2w 303Uk PO 080 (Um0 2D W)= (L),

=1j=1

LEMMA A.3. Under the conditions of Theorem 2.2 the process {(@m,[)’m), i > 1} satisfies
the conditions of Proposition A.1.

Proof. From the definition of Qn; we infer that {(3.%_, Qnir, Bni), i@ > 1} is a Martin-
gale and, in particular {(Qni, Bni), ¢ = 1} forms a Martingale difference array. More-
over, following line by line the proof of Lemma A.2 it is easy to see that @Q,; satis-

fies conditions (A.21)-(A.23). Now Proposition A.1 yields I, 4 N(0,v) where v =
1+ (4/3g§o) Z;’},’l’l,:l Sjj’Sws;isjr, which completes the proof. ]
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