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This paper proposes several tests of restricted specification in nonparametric
instrumental regression. Based on series estimators, test statistics are estab-
lished that allow for tests of the general model against a parametric or nonpara-
metric specification as well as a test of exogeneity of the vector of regressors.
The tests are asymptotically normally distributed under correct specification
and consistent against any alternative model. Under a sequence of local alter-
native hypotheses, the asymptotic distribution of the tests is derived. Moreover,
uniform consistency is established over a class of alternatives whose distance to
the null hypothesis shrinks appropriately as the sample size increases.
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1. Introduction

While parametric instrumental variables estimators are widely used in econometrics, its
nonparametric extension has not been introduced until the last decade. The study of
nonparametric instrumental regression models was initiated by Darolles et al. [2011] and
Newey and Powell [2003]. In these models, given a scalar dependent variable Y , a vector of
regressors Z, and a vector of instrumental variables W , the structural function ϕ satisfies

Y = ϕ(Z) + U with E[U |W ] = 0 (1.1)

for an error term U . Here, Z contains potentially endogenous entries, i.e., E[U |Z] may
not be zero. Model (1.1) does not involve the a priori assumption that the structural
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function is known up to finitely many parameters. Hence, by considering a nonparametric
model, we minimize the likelihood of misspecification. On the other hand, implementing
the nonparametric instrumental regression model can be challenging.
Nonparametric instrumental regression models have attracted increasing attention in the
econometric literature. For example, Ai and Chen [2003], Blundell et al. [2007], Chen and
Reiß [2011] or Newey and Powell [2003] consider sieve minimum distance estimators of ϕ,
while Darolles et al. [2011], Hall and Horowitz [2005], Gagliardini and Scaillet [2011] or
Florens et al. [2011] study penalized least squares estimators. A linear Galerkin approach
to construct an estimator of ϕ has been proposed by Johannes and Schwarz [2010]. When
the methods of analysis are widened to include nonparametric techniques, one must confront
two mayor challenges. First, identification in model (1.1) requires far stronger assumptions
about the instrumental variables than for the parametric case (cf. Newey and Powell [2003]).
Second, the accuracy of any estimator of ϕ can be low, even for large sample sizes. More
precisely, Chen and Reiß [2011] showed that for a large class of joint distributions of (Z,W )
only logarithmic rates of convergence can be obtained. The reason for this slow convergence
is that model (1.1) leads to an inverse problem which is ill posed in general, i.e., the solution
does not depend continuously on the data.
In light of the difficulties of estimating the nonparametric function ϕ in model (1.1), the
need for statistically justified model simplifications is paramount. We do not face an ill
posed inverse problem if a parametric structure of ϕ or exogeneity of Z can be justified. If
these model simplifications are not supported by the data, one might still be interested in
whether a smooth solution to model (1.1) exists and if some regressors could be omitted
from the structural function ϕ. These model simplifications have important potential since
they might increase the accuracy of estimators of ϕ or lower the required conditions imposed
on the instrumental variables to ensure identification.
In this work we present a new family of goodness-of-fit statistics which allows for several
restricted specification tests of the model (1.1). Our method can be used for testing either
a parametric or nonparametric specification. In addition, we perform a test of exogeneity
and of dimension reduction of the vector of regressors Z, i.e., whether certain regressors
can be omitted from the structural function ϕ. By a withdrawal of regressors which are
only weakly correlated with the instrument, identification in the restricted model might be
possible although ϕ is not identified in the original model (1.1). Note that model (1.1) leads
to the conditional moment equation E[Y − ϕ(Z)|W ] = 0. Multiplying both sides with an
m-dimensional vector of functions fj(W ), 1 6 j 6 m, and taking expectations leads to the
unconditional moment equation E[(Y − ϕ(Z))fj(W )] = 0, 1 6 j 6 m. Our test statistic is
based on the Euclidean norm of the vector E[(Y − ϕ0(Z))fj(W )] = 0, 1 6 j 6 m, where
the hypothesis function ϕ0 is replaced by an estimator under the restriction. So, only the
estimator of ϕ0 differs for the different specification test considered in this paper. It is worth
noting that by our methodology we can omit some assumptions typically found in related
literature, such as smoothness conditions on the joint distribution of (Z,W ).
There is a large literature concerning hypothesis testing of restricted specification of re-
gression. In the context of conditional moment equation, Donald et al. [2003] and Tripathi
and Kitamura [2003] make use of empirical likelihood methods to test parametric restric-
tions of the structural function. In addition, Santos [2012] allows for different hypothesis
tests, such as a test of homogeneity. Based on kernel techniques, Horowitz [2006], Blundell
and Horowitz [2007], and Horowitz [2011] propose test statistics in which an additional
smoothing step (on the exogenous entries of Z) is carried out. Horowitz [2006] considers
a parametric specification test. Blundell and Horowitz [2007] establish a consistent test of
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exogeneity of the vector of regressors Z, whereas Horowitz [2011] tests whether the endoge-
nous part of Z can be omitted from ϕ. Gagliardini and Scaillet [2007] and Horowitz [2012]
develop nonparametric specification tests in an instrumental regression model. We like to
emphasize that their test cannot be applied to model (1.1) where some entries of Z might
be exogenous.
Our method is also applicable when an additional smoothing step is carried out. It is shown
that the asymptotic behavior of our test relies crucially on the behavior of the smoothing
operator. We study the power of the test against a sequence of alternatives that tend to
zero at a certain rate as the sample size increases. If the eigenvalues of this operator have a
sufficiently fast decay, then our test can detect linear alternatives at a distance of n−1/2 (as
in Horowitz [2006], Blundell and Horowitz [2007], Horowitz [2012], and Horowitz [2011]).
In contrast, estimating the structural function ϕ nonparametrically leads to far slower
polynomial or even logarithmic convergence rates (cf. Chen and Reiß [2011]). Applying
the additional smoothing step, however, changes the function class over which uniform
consistency can be obtained.
The paper is organized as follows. In Section 2 we start with a simple hypothesis test,
i.e., whether ϕ coincides with a known function ϕ0. We obtain asymptotic normality and
consistency of our proposed test statistic. Moreover, we judge its power by considering linear
local alternatives and establish uniform consistency over a class of functions. In Sections
3–6 we consider a parametric specification test, a test of exogeneity, and a nonparametric
specification test. The goodness-of-fit statistics are obtained by replacing ϕ0 in the statistic
of Section 2 by an appropriate estimator. Under modified assumptions, the asymptotic
results of Section 2 still remain valid. All proofs can be found in the appendix.

2. A simple hypothesis test

In this section we propose a goodness-of-fit statistic for testing the hypothesis H0 : ϕ = ϕ0,
where ϕ0 is a known function, against the alternative ϕ 6= ϕ0. We develop a test statistic
based on L2 distance. As we will see in the following chapters, it is sufficient to replace ϕ0 by
an appropriate estimator to allow for tests of the general model against other specifications.
We first give basic assumptions, then obtain the asymptotic distribution of the proposed
statistic, and further discuss its power and consistency properties.

2.1. Assumptions and notations.

The model revisited The nonparametric instrumental regression model (1.1) leads to a
linear operator equation. To be more precise, let us introduce the conditional expectation
operator Tφ := E[φ(Z)|W ] mapping L2

Z = {φ : E |φ(Z)|2 <∞} to L2
W = {ψ : E |ψ(W )|2 <

∞} (which are endowed with the usual inner products 〈·, ·〉Z and 〈·, ·〉W , respectively).
Consequently, model (1.1) can be written as

g = Tϕ (2.1)

where the function g := E[Y |W ] belongs to L2
W (which can be assured by assuming E[Y 2] <

∞). Throughout the paper we assume that an iid. n-sample of (Y,Z,W ) from the model
(1.1) is available.
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Moment assumptions. Let us introduce pre-specified orthonormal basis {ej}j>1 and {fl}l>1

in L2
Z and L2

W , respectively. We need moment conditions on the basis, more specific, on the
random variables ej(Z) and fl(W ) for j, l > 1, which we summarize in the next assumption.

Assumption 1. There exists some constant η > 1 such that

(i) supj>1 E |ej(Z)|4 6 η4,

(ii) supl>1 E |fl(W )|4 6 η4.

Assumption 1 holds for sufficiently large η if the basis {ej}j>1 and {fl}l>1 are uniformly
bounded, such as trigonometric bases or B-splines that have been orthogonalized. Moreover,
this assumption is satisfied by the Hermite polynomials.
The results derived below involve assumptions on the conditional moments of the random
variables U given W gathered in the following assumption.

Assumption 2. There exists σ > 0 such that E[U4|W ] 6 σ4.

Mapping properties of the operators We will see below that the power of our test can
be increased by carrying out an additional smoothing step. Therefore, we introduce the
smoothing operator L on L2

W . In contrast to the unknown conditional expectation operator
T , which has to be estimated, the operator L can be chosen by the statistician. The following
assumption ensures identification of ϕ in the model (2.1).

Assumption 3. The conditional expectation operator T is nonsingular.

If Assumption 3 is violated we rather test of the operator equation g = Tϕ0 and hence
consider a conditional moment restriction test. We discuss the implications of our results

also in this case. Let L have an eigenvalue decomposition given by {τ1/2
j , fj}j>1. We allow

in this paper for a wide range of smoothing operators. We also permit for L being the
identity operator, i.e., no smoothing step is carried out. We only require the following
condition on the operator L determined by the sequence of eigenvalues τ = (τj)j>1.

Assumption 4. The weighting sequence τ is positive, nonincreasing, and satisfies τ1 = 1.

Assumption 4 ensures that the operator L is nonsingular.

Remark 2.1. Horowitz [2006], Blundell and Horowitz [2007], and Horowitz [2011] consider
as a smoothing operator a Fredholm integral operator, i.e., Lφ(s) =

∫ 1
0 `(s, t)φ(t)dt for

some function φ ∈ L2[0, 1] and some kernel function ` : [0, 1]2 → R. In order to ensure

Lφ ∈ L2[0, 1] it is typically assumed that
∫ 1

0

∫ 1
0 |`(s, t)|

2dsdt <∞. Let {τ1/2
j , fj}j>1 be the

eigenvalue decomposition of L. By Parseval’s identity∫ 1

0

∫ 1

0
|`(s, t)|2dsdt =

∫ 1

0

∞∑
j=1

τj |fj(s)|2ds =

∞∑
j=1

τj

where the right hand side is only finite if the sequence τ decays sufficiently fast. �

Matrix and operator notations. Given m > 1, Em and Fm denote the subspace of L2
Z and

L2
W spanned by the functions {ej}mj=1 and {fl}ml=1, respectively. Em and E⊥m (resp. Fm and

F⊥m) denote the orthogonal projections on Em (resp. Fm) and its orthogonal complement E⊥m
(resp. F⊥m), respectively. If we restrict a linear operator K : L2

Z → L2
W to an operator from

Em to Fm, then it can be represented by a matrix [K]m with entries [K]l,j = 〈Kej , fl〉W
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for 1 6 j, l 6 m. Its spectral norm is denoted by ‖[K]m‖ and its transposed by [K]tm. The
adjoint operator of K is denoted by K∗. We write Id for the identity operator and ∇υ
for the diagonal operator with singular value decomposition {vj , ej , fj}j>1. Respectively,
given functions φ ∈ L2

Z and ψ ∈ L2
W we define by [φ]m and [ψ]m m-dimensional vectors

with entries [φ]j = 〈φ, ej〉Z and [ψ]l = 〈ψ, fl〉W for 1 6 j, l 6 m. Moreover, em(Z) and
fm(W ) denote random vectors with entries ej(Z) and fj(W ), 1 6 j 6 m, respectively. For
any weighting sequence w we introduce vectors ewm(Z) and fwm(W ) with entries ewj (Z) =√
wjej(Z) and fwj (W ) =

√
wjfj(W ), 1 6 j 6 m. In addition, the weighted norm is denoted

by ‖φ‖2w =
∑∞

j=1wj [φ]2j . In the following we write an . bn when there exists a generic
constant C > 0 such that an 6 Cbn for sufficiently large n and an ∼ bn when an . bn and
bn . an simultaneously.

2.2. The test statistic and its asymptotic distribution

Under Assumptions 3 and 4 the hypothesis H0 is equivalent to Lg = LTϕ0. We project
the function L(g−Tϕ0) on the finite dimensional subspace Fmn for some integer mn which
tends to infinity as the sample size n increases to infinity. Then our test statistic is the
empirical counterpart of ‖FmnL(g − Tϕ0)‖2W , i.e.,

Sn :=
∥∥n−1

n∑
i=1

(Yi − ϕ0(Zi))f
τ
mn(Wi)

∥∥2
. (2.2)

When no additional smoothing is carried out, i.e., L = Id, then τj = 1 for all j > 1. To
achieve asymptotic normality we need to standardize our test statistic Sn by appropriate
mean and variance, which we introduce in the following definition.

Definition 2.1. For all m > 1 let Σm be the covariance matrix of the random vector
Uf τm(W ) with entries ςjj′ = E

[
U2f τj (W )f τj′(W )

]
, 1 6 j, j′ 6 m. Then the trace and the

Frobenius norm of Σm are respectively denoted by

µm := µ(Σm) :=
m∑
j=1

ςjj and ςm := ς(Σm) :=
( m∑
j, j′=1

ς2
jj′

)1/2
.

In addition, if ςm = O(1) as m→∞ we define

V := V(Σm) := 1 +
4

3ς4
∞

∞∑
j,j′,l,l′=1

ςjj′ςll′ςjlςj′l′

where ς∞ = limm→∞ ς(Σm).

Indeed the next result shows that Sn after standardization is asymptotically normally dis-
tributed if mn increases appropriately as the the sample size n tends to infinity.

Theorem 2.1. Let Assumptions 1–4 hold true. If mn satisfies

ς−1
mn = o(1) and mn

( mn∑
j=1

τ2
j

)2
= o(n) (2.3)

then we have for all ϕ ∈ L2
Z under H0

(
√

2ςmn)−1
(
nSn − µmn

) d→ N (0, 1) as n→∞.
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Remark 2.2. If there exists some constant σo > 0 such that E[U2|W ] > σ2
o then we have

ς2
mn > σ

4
o

∑mn
j=1 τ

2
j . Thus, condition ς−1

mn = o(1) is satisfied for any positive sequence τ such

that
∑mn

j=1 τ
2
j is unbounded as n increases. When no additional smoothing is carried out,

i.e., L = Id, then condition (2.3) holds if E[U2|W ] > σ2
o and m3

n = o(n). Moreover, from
condition (2.3) we see that by the choice of a stronger decaying sequence τ the parameter
mn may be chosen larger. From the following theorem we see that if

∑mn
j=1 τ

2
j = O(1) only

mn = o(n) is required. �

In the following result we establish asymptotic normality of our test when the sequence
of weights τ may have a stronger decay than in Theorem 2.1, i.e., we consider the case
where τ satisfies

∑mn
j=1 τ

2
j = O(1). This condition together with the Assumption 2 implies

ςmn 6 σ4
∑mn

j=1 τ
2
j = O(1) in contrast to condition (2.3) in Theorem 2.1. Still asymptotic

normality can be obtained, but an additional additive term occurs in the variance.

Theorem 2.2. Let Assumptions 1–4 hold true. If mn satisfies

mn∑
j=1

τ2
j = O(1) and mn = o(n) (2.4)

then for all ϕ ∈ L2
Z under H0 we have

(
√

2ςmn)−1
(
nSn − µmn

) d→ N (0,V) as n→∞.

Remark 2.3. Theorem 2.1 and 2.2 continue to hold if we replace ςmn , µmn , and V by the es-
timators ς̂2

mn :=
∑mn

j,j′=1 ς̂
2
jj′ , µ̂mn :=

∑mn
j=1 ς̂jj , and V̂mn = 1+4

∑mn
j,j′,l,l′=1 ς̂jj′ ς̂ll′ ς̂jlς̂j′l′/(3ς̂

4
mn),

respectively, where

ς̂jj′ := n−1
n∑
i=1

√
τjτj′ |Yi − ϕ0(Zi)|2fj(Wi)fj′(Wi).

In the following sections where ϕ0 is unknown and has to be estimated we might simply
replace ϕ0 in ς̂jj′ by the proposed estimators. �

2.3. Limiting behavior under local alternatives.

Let us study the power of the test, i.e., the probability to reject a false hypothesis, against
a sequence of linear local alternatives that tends to zero as n → ∞. It is shown that the
power of our tests essentially relies on the choice of the weighting sequence τ .
Let us start with the case ς−1

mn = o(1). We consider the following sequence of linear local
alternatives

Y = ϕ0(Z) + ς1/2
mn n

−1/2δ(Z) + U (2.5)

for some function δ ∈ L4
Z := {φ : E |φ(Z)|4 < ∞}. The next result establishes asymptotic

normality for the standardized test statistic Sn.

Proposition 2.3. Given the conditions of Theorem 2.1 it holds under (2.5)

(
√

2ςmn)−1
(
nSn − µmn

) d→ N
(
2−1/2‖Tδ‖2τ , 1

)
as n→∞.
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As we see below the test statistic Sn has power advantages if
∑mn

j=1 τ
2
j = O(1). Let us

consider the sequence of linear local alternatives

Y = ϕ0(Z) + n−1/2δ(Z) + U (2.6)

for some function δ ∈ L4
Z .

Proposition 2.4. Given the conditions of Theorem 2.2 it holds under (2.6)

(
√

2ςmn)−1
(
nSn − µmn

) d→ N
(
(
√

2ς∞)−1‖Tδ‖2τ ,V
)

as n→∞.

Remark 2.4. Under homoscedasticity, i.e., E[U2|W ] = σ2
o , we see from Proposition 2.3 that

our test can detect linear alternatives at a rate
(∑mn

j=1 τ
2
j

)1/4
n−1/2. On the other hand, if∑mn

j=1 τ
2
j = O(1) then Sn can detect local linear alternatives at a rate n−1/2. But still our

test with L = Id can have better power against certain smooth classes of alternatives as
illustrated by Hong and White [1995] and Horowitz and Spokoiny [2001]. Indeed, in the
next subsection we show that additional smoothing changes the class of alternatives over
which uniform consistency can be obtained. �

2.4. Consistency

In this subsection we establish consistency against a fixed alternative and uniform consis-
tency of our test over appropriate function classes. Let us first consider the case of a fixed
alternative. We assume that H0 does not hold, i.e., P(ϕ = ϕ0) < 1. The following proposi-
tion shows that our test has the ability to reject a false null hypothesis with probability 1
as the sample size grows to infinity.

Proposition 2.5. Assume that H0 does not hold. Let E |Y − ϕ0(Z)|4 < ∞. Consider the
sequence λ satisfying λn = o(nς−1

mn). Under the conditions of Theorem 2.1 or 2.2 we have

P
(

(
√

2 ςmn)−1
(
nSn − µmn

)
> λn

)
= 1 + o(1).

In the following we show that our tests are consistent uniformly over the function class

Gρn =
{
ϕ ∈ L2

Z : ‖FmnT (ϕ− ϕ0)‖2τ > ρ ςmnn−1 and sup
z∈Supp(Z)

|ϕ(z)− ϕ0(z)|2 6 ρ
}

where Supp(Z) denotes the support of Z. Clearly, if H0 is false then ‖FmnT (ϕ − ϕ0)‖2τ >
ρ ςmnn

−1 for n sufficiently large. By Assumption 4 the sequence τ is nonincreasing sequence
with τ1 = 1 and hence ‖FmnT (ϕ−ϕ0)‖2τ 6 ‖T (ϕ−ϕ0)‖2W 6 ‖ϕ−ϕ0‖2Z by Jensen’s inequality.
We conclude that Gρn contains all functions whose L2

Z-distance to the structural function ϕ
is at least n−1ςmn within a constant. If the coefficients [T (ϕ−ϕ0)]j fluctuate for large j then
ϕ does not belong to Gρn if the decay of τ is too strong. On the other hand, if [T (ϕ−ϕ0)]j is
sufficiently small for j up to a finite constant than ϕ does not necessarily belong to Gρn with
τ having a slow decay. For the next result let q1−α denote the 1− α quantile of N (0, 1) in
case of ς−1

mn = o(1) or N (0,V) in case of
∑mn

j=1 τ
2
j = O(1).

Proposition 2.6. Under the conditions of Theorem 2.1 or 2.2 we have for any ε > 0, any
0 < α < 1, and any sufficiently large constant ρ > 0 that

lim
n→∞

inf
ϕ∈Gρn

P
(

(
√

2 ςmn)−1
(
nSn − µmn

)
> q1−α

)
> 1− ε.
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3. A parametric specification test

The method of orthogonal series estimation involves the choice of basis functions. Thereby,
the natural question arises whether, given the specified basis {ej}j>1, a say k dimensional
vector of generalized Fourier coefficients is sufficient to develop the function ϕ. Let {ej}j>1

satisfy Assumption 1. Then we consider the hypothesis Hp : ϕ = ϕ0 where in this section

ϕ0 =
∑k

j=1[ϕ0]j ej . The alternative hypothesis is that ϕ /∈ Ek. Under Hp standard para-
metric estimation techniques can be used to estimate the unknown k dimensional vector of
coefficients [ϕ0]k.

3.1. The test statistic and its asymptotic distribution

Let ϕ̆k be an estimator of the parametric function ϕ0. The k dimensional vector of general-
ized Fourier coefficients of ϕ0 can be estimated

√
n-consistently by applying, for example,

the generalized method of moments. Thereby, we may assume ‖ϕ̆k − ϕ0‖Z = Op(n
−1/2).

We obtain our test statistic by replacing ϕ0 in the definition of Sn given in (2.2) by the
estimator ϕ̆k, i.e.,

Sp
n :=

∥∥n−1
n∑
i=1

(
Yi − ϕ̆k(Zi)

)
f τmn(Wi)

∥∥2
.

The following proposition establishes asymptotic normality of Sp
n after standardization given

the same conditions as Theorem 2.1 where the function ϕ0 was assumed to be known.

Theorem 3.1. Let ϕ̆k be an estimator of ϕ0 satisfying ‖ϕ̆k − ϕ0‖Z = Op(n
−1/2). Then

given the conditions of Theorem 2.1 it holds under Hp

(
√

2ςmn)−1
(
nSp

n − µmn
) d→ N (0, 1) as n→∞.

In the following theorem we state an asymptotic distribution result for Sp
n when

∑mn
j=1 τ

2
j =

O(1). In this case, we assume that the estimator ϕ̆k satisfies

√
n([ϕ̆k]k − [ϕ0]k) = n−1/2

n∑
i=1

hk(Vi) + op(1) (3.1)

where Vi := (Yi, Zi,Wi, ϕ0) and hk(Vi) = (h1(Vi), . . . , hk(Vi)) where hj , 1 6 j 6 k, are real
valued functions. It is well known that this representation holds if [ϕ̆k]k is the generalized
method of moments estimator. In case of

∑mn
j=1 τ

2
j = O(1) we have to modify the standard-

ization of the statistic Sn as follows. For m > 1 let Σp
m denote the covariance matrix of the

centered random vector Uf τm(W ) + E[f τm(W )ek(Z)t]hk(V ). Then we define ςp
m = ς(Σp

m),
µp
m = µ(Σp

m), and Vp = V(Σp
m) where ς(·), µ(·), and V(·) were introduced in Definition 2.1.

Clearly, ςp
mn = O(1).

Theorem 3.2. Let ϕ̆k be an estimator of ϕ0 satisfying condition (3.1) with Ehj(V ) = 0
and E |hj(V )|4 <∞ for 1 6 j 6 k. Then given the conditions of Theorem 2.2 it holds under
Hp

(
√

2ςpmn)−1
(
nSp

n − µpmn
) d→ N (0,Vp) as n→∞.
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Remark 3.1. Santos [2012] gave examples when only partial identification in the nonpara-
metric model (1.1) is possible. We like to emphasize that the asymptotic results remain
valid if Assumption 4 is not satisfied, i.e., T is singular, as long as we replace H0 by the
hypothesis g = Tϕ0. This test of conditional moment restriction has also been considered
by Donald et al. [2003], Tripathi and Kitamura [2003] and Santos [2012]. �

3.2. Limiting behavior under local alternatives and consistency.

In this section we study the power of the test, i.e., the probability to reject a false hypothesis,
against a sequence of linear local alternatives that tends to zero as n → ∞. Moreover, we
establish consistency and uniform consistency over appropriate function classes of our tests.

Proposition 3.3. Given the conditions of Theorem 3.1 it holds under (2.5)

(
√

2ςmn)−1
(
nSp

n − µmn
) d→ N

(
2−1/2‖Tδ‖2τ , 1

)
as n→∞.

Given the conditions of Theorem 3.2 it holds under (2.6)

(
√

2ςpmn)−1
(
nSp

n − µpmn
) d→ N

(
(
√

2ςp∞)−1‖Tδ‖2τ ,Vp
)

as n→∞.

Remark 3.2. Under homoscedasticity, i.e., E[U2|W ] = σ2
o , and L = Id we see from Propo-

sition 3.3 that our test has the same power properties as the test of Hong and White [1995].
On the other hand,

∑mn
j=1 τ

2
j = O(1) then our test can detect local linear alternatives at a

rate n−1/2 which coincides with the findings of Horowitz [2006]. �

The next proposition establishes consistency of our test against a fixed alternative model.
It is assumed that Hp is false, i.e., P(ϕ ∈ Ek) < 1.

Proposition 3.4. Assume that Hp does not hold. Let E |Y − ϕ0(Z)|4 < ∞. Consider the
sequence λ satisfying λn = o(nς−1

mn). Under the conditions of Theorem 3.1 we have

P
(

(
√

2 ςmn)−1
(
nSp

n − µmn
)
> λn

)
= 1 + o(1)

Given the conditions of Theorem 3.2 it holds

P
(

(
√

2ςpmnV
p)−1

(
nSp

n − µpmn
)
> λn

)
= 1 + o(1).

In the following we show that our tests are consistent uniformly over the function class

Hρn =
{
ϕ ∈ L2

Z : inf
ϕ0∈Ek

‖FmnT (ϕ− ϕ0)‖2τ > ρ ςmnn−1 and sup
z∈Supp(Z)

|ϕ(z)| 6 ρ
}
.

If Hp is false then infϕ0∈Ek ‖FmnT (ϕ− ϕ0)‖2τ > ρ ςmnn
−1 for n sufficiently large. Similarly

as in the previous section it can be seen that on Hρn it holds infϕ0∈Ek ‖FmnT (ϕ − ϕ0)‖2τ 6
infϕ0∈Ek ‖ϕ−ϕ0‖2Z . Hence, Hρn only contains functions whose L2

Z distance to any function in
Ek is at least ςmnn

−1 within a constant. In the next result, q1−α denotes the 1−α quantile
of standard normal distribution.

Proposition 3.5. Let supj>1 E[e2
j (Z)|W ] 6 η2. For any ε > 0, any 0 < α < 1, and any

sufficiently large constant ρ > 0 we have under the conditions of Theorem 3.1 that

lim
n→∞

inf
ϕ∈Hρn

P
(

(
√

2 ςmn)−1
(
nSp

n − µmn
)
> q1−α

)
> 1− ε,

whereas under the conditions of Theorem 3.2 it holds

lim
n→∞

inf
ϕ∈Hρn

P
(

(
√

2ςpmnV
p)−1

(
nSp

n − µpmn
)
> q1−α

)
> 1− ε.
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4. A test of exogeneity

Endogeneity of regressors is a common problem in econometric applications. Falsely as-
suming exogeneity of the regressors leads to inconsistent estimators and moreover, treating
exogenous regressors as if they were endogenous can lower the accuracy of estimation dra-
matically. In this section we propose a test whether the vector of regressors Z is exogenous,
i.e., E[U |Z] = 0. In this section let ϕ0(Z) = E[Y |Z] then the hypothesis under consideration
is given by He : ϕ = ϕ0. The alternative hypothesis is that ϕ 6= ϕ0.

4.1. The test statistic and its asymptotic distribution

Since the eigenvalues of [Îd]k := n−1
∑n

i=1 ek(Zi)ek(Zi)
t could be arbitrarily close to zero

we propose the following least square estimator of ϕ0 with additional thresholding, i.e.,

ϕk(·) :=

{
ek(Z)t[Îd]−1

k
1
n

∑n
i=1 Yiek(Zi), if [Îd]k is nonsingular, ‖[Îd]−1

k ‖ 6 2,

0, otherwise.
(4.1)

In contrast to the parametric case we need to allow for k tending to infinity as n → ∞ in
order to ensure consistency of the estimator ϕk. The proposed goodness-of-fit statistic is
given by Sn introduced in (2.2) where ϕ0 is replaced by ϕkn , i.e.,

Se
n = ‖n−1

n∑
i=1

(Yi − ϕkn(Zi))f
τ
mn(Wi)‖2

where kn and mn tend to infinity as n → ∞. Moreover, as typically in nonparametric
statistics it is necessary to make some a priori assumption on the unknown function ϕ0.
Let γ = (γj)j>1 be a nondecreasing sequence with γ1 = 1. We assume that ϕ0 belongs to the
ellipsoid Fργ :=

{
φ ∈ Fγ : ‖φ‖2γ =

∑
j>1 γj [φ]2j 6 ρ

}
for some constant ρ where Fγ denotes

the completion of L2
Z with respect to the norm ‖ · ‖γ . Roughly speaking, the sequence of

weights γ measures the quality of approximation of ϕ0 given the pre-specified basis {ej}j>1.

Theorem 4.1. Let Assumptions 1–4 be satisfied. In addition assume E |Y |4 < ∞. Let
ϕ0 ∈ Fργ with γ satisfying j2 = o(γj). If

n = o(γknςmn), kn = o(ςmn), and mn

( mn∑
j=1

τ2
j

)2
= o(n) (4.2)

then under He it holds

(
√

2ςmn)−1
(
nSe

n − µmn
) d→ N (0, 1) as n→∞.

Remark 4.1. If Z and W are uniformly distributed on [0, 1] and a trigonometric basis is
considered then ϕ0 belongs to Fργ with j2 = o(γj) only if it is differentiable. In contrast
to Blundell and Horowitz [2007] no smoothness assumptions on the joint distribution of
(Z,W ) is required here. �

Example 4.1. Let Z be continuously distributed with dim(Z) = r and set L = Id. Consider
the polynomial case where γj ∼ j2p/r with p > 1 and let mn ∼ nν with 0 < ν < 1/3. If
E[U2|W ] > σ2

o > 0 then condition (4.2) is satisfied if kn ∼ nκ with

r(1− ν/2)/(2p) < κ < ν/2. (4.3)

Note that condition (4.3) requires p > r(2− q)/(2q). �
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The next result states an asymptotic distribution result for the statistic Se
n after standard-

ization if
∑mn

j=1 τ
2
j = O(1). Let us denote UZ := Y −Eknϕ0(Z) then clearly E[ej(Z)UZ ] = 0

for all 1 6 j 6 kn. Let Σe
mn be the covariance matrix of the centered vector Uf τmn(W ) −

UZ E[f τmn(W )ekn(Z)t]ekn(Z). Then we define ςe
mn = ς(Σe

mn), µe
mn = µ(Σe

mn), and Ve =

V(Σe
mn) where ς(·), µ(·), and V(·) are given in Definition 2.1. By imposing moment condi-

tions on UZ we show in the proof of the following theorem that ςe
mn = O(1).

Theorem 4.2. Let Assumptions 1–4 be satisfied. In addition assume E[U4
Z |Z] 6 σ4. Let

ϕ0 ∈ Fργ with γ satisfying γj = o(j2). If

mn∑
j=1

τ2
j = O(1), n = O(γkn), and mnk

2
n = o(n) (4.4)

then under He it holds

(
√

2ςemn)−1
(
nSe

n − µemn
) d→ N (0,Ve) as n→∞.

Example 4.2. Let Z and γ be as in in Example 4.1. Here, the eigenvalues of L satisfy
τj ∼ j−2. Condition (4.4) is satisfied if mn ∼ nν with 0 < ν < 1/2 and kn ∼ nκ with
r/(2p) < κ < (1− ν)/2. �

Remark 4.2. If T is singular the asymptotic results of Theorem 4.1 and 4.2 still remain
valid if He is replaced by the hypothesis E[ϕ(Z) − E[Y |Z]|W ] = 0. In this case, however,
E[ϕ(Z)−E[Y |Z]|W ] might be zero even if Z is endogenous. On the other hand, if E[ϕ(Z)−
E[Y |Z]|W ] 6= 0 then Z cannot be exogenous. �

4.2. Limiting behavior under local alternatives and consistency.

Similar to the previous sections we study the power and consistency properties of our test.

Proposition 4.3. Given the conditions of Theorem 4.1 with E[Y 2|Z] 6 η2 for some con-
stant η > 1 it holds under (2.5)

(
√

2ςmn)−1
(
nSe

n − µmn
) d→ N

(
2−1/2‖Tδ‖2τ , 1

)
as n→∞.

Given the conditions of Theorem 4.2 it holds under (2.6)

(
√

2ςemn)−1
(
nSe

n − µemn
) d→ N

(
(
√

2ςe∞)‖Tδ‖2τ ,Ve
)

as n→∞.

Let us now establish consistency of our tests when He does not hold, i.e., P
(
ϕ = ϕ0

)
< 1.

Proposition 4.4. Assume that He does not hold. Let E |Y − ϕ0(Z)|4 < ∞. Consider the
sequence λ satisfying λn = o(nς−1

mn). Under the conditions of Theorem 4.1 we have

P
(

(
√

2 ςmn)−1
(
nSe

n − µmn
)
> λn

)
= 1 + o(1),

whereas in the setting of Theorem 4.2

P
(

(
√

2ςemnV
e)−1

(
nSe

n − µemn
)
> λn

)
= 1 + o(1).
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In the following we show that our tests are consistent uniformly over the function classes
where, in contrast to the previous sections, regularity conditions on the function ϕ are
imposed. More precisely, we consider the class

Iρn =
{
ϕ ∈ Fργ : ‖FmnT (ϕ− ϕ0)‖2τ > ρ ςmnn−1

}
.

Again, q1−α denotes the 1− α quantile of N (0, 1).

Proposition 4.5. Let supj>1 E[e2
j (Z)|W ] 6 η2. Under the conditions of Theorem 4.1 we

have for any ε > 0, any 0 < α < 1, and any sufficiently large constant ρ > 0 that

lim
n→∞

inf
ϕ∈Iρn

P
(

(
√

2 ςmn)−1
(
nSe

n − µmn
)
> q1−α

)
> 1− ε,

whereas under the conditions of Theorem 4.2 it holds

lim
n→∞

inf
ϕ∈Iρn

P
(

(
√

2ςemnV
e)−1

(
nSe

n − µemn
)
> q1−α

)
> 1− ε.

5. A nonparametric specification test

A solution to the linear operator equation (2.1) only exists if g belongs to the range of T .
We refer to Gagliardini and Scaillet [2007] for a detailed discussion when existence of a
solution to (2.1) fails. In many econometric applications the function of interest is smooth,
i.e., belongs to some function class Fργ with γ being an increasing sequence of weights. We
consider the hypothesis

Hnp: there exists a solution ϕ0 ∈ Fργ to (2.1) for some ρ > 0 and γ with k3
n = O(γkn).

The alternative hypothesis is that there exists no function in Fργ that solves (2.1) for any
constant ρ > 0 and any sequence γ satisfying k3

n = O(γkn). In addition, we see in this
section that our results allow for a test of dimension reduction of the vector of regressors Z,
i.e., whether some regressors can be omitted from the structural function ϕ. This generalizes
the result of Horowitz [2011] who tests whether the endogenous part of Z can be omitted
from ϕ. As we point out further, by omitting regressors that are only weakly correlated to
the instrument identification in the restricted model might be obtained.

5.1. Nonparametric estimation method

The nonparametric estimator. Since [T ]k = E fk(W )ek(Z)t and [g]k = EY fk(W ) we
construct estimators by using their empirical counterparts, i.e.,

[T̂ ]k :=
1

n

n∑
i=1

fk(Wi)ek(Zi)
t and [ĝ]k :=

1

n

n∑
i=1

Yifk(Wi).

Throughout this section [T ]k is assumed to be nonsingular for k sufficiently large, so that
its inverse [T ]−1

k exists. Then the orthogonal series type estimator of Johannes and Schwarz
[2010] for the structural function ϕ is defined for all k > 1 by

ϕ̂k(·) :=

{
ek(·)t[T̂ ]−1

k [ĝ]k, if [T̂ ]k is nonsingular and ‖[T̂ ]−1
k ‖ 6

√
n,

0, otherwise.
(5.1)
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Additional assumptions. As usual in the context of ill-posed inverse problems, we specify
some mapping properties of the operator under consideration. Denote by T the set of
all nonsingular compact operators mapping L2

Z into L2
W . Given a sequence of weights

υ := (υj)j>1 and d > 1 we define the subset T υd of T by

T υd :=
{
T ∈ T : ‖φ‖2υ/d 6 ‖Tφ‖2W 6 d ‖φ‖2υ for all φ ∈ L2

Z

}
. (5.2)

Notice that for all T ∈ T υd it follows that ‖Tej‖2W ∼ υj . In what follows, we introduce
a stronger condition which involves the basis {fl}l>1 in L2

W and thus, extends the link
condition T ∈ T . We denote by T υd,D for some D > d the subset of T υd given by

T υd,D :=
{
T ∈ T υd : sup

k>1
‖[∇υ]

1/2
k [T ]−1

k ‖
2 6 D

}
. (5.3)

If the operator T has a singular value decomposition {υ1/2
j , ej , fj}j>1 then [T ]k is equivalent

to the diagonal matrix [∇υ]
1/2
k for all k > 1 and, hence condition T ∈ T υd is equivalent to

T ∈ T υd,D. Moreover, the class T υd,D only contains operators T whose off-diagonal elements

of [T ]−1
k are sufficiently small for all k > 1. A similar diagonality restriction has been used

by Hall and Horowitz [2005] and Horowitz [2012]. Besides the mapping properties for the
operator T we need a stronger assumption for the basis under consideration.

Assumption 5. There exists η > 1 such that the joint distribution of (Z,W ) satisfies

(i) supj>1 E[e2
j (Z)|W ] 6 η2 and supl∈N E[f4

l (W )] 6 η4;

(ii) supj,l>1 E |ej(Z)fl(W )− E[ej(Z)fl(W )]|k 6 ηkk!, k = 3, 4, . . . .

The following condition gathers conditions on the sequences γ and υ.

Assumption 6. Let γ and υ be strictly positive sequences of weights with γ1 = υ1 = 1
such that γ is nondecreasing with supk>1 k

3/γk < ∞ and both sequences υ and υ/τ are
nonincreasing.

Remark 5.1. Under Assumptions 2–6, Johannes and Schwarz [2010] establish minimax op-
timality of the estimator ϕ̂kn given in (5.1). More precisely, it is shown that mean integrated
squared error loss of ϕ̂kn attains the lower rate of convergenceRn := max

(
γ−1
kn
,
∑kn

j=1(nυj)
−1
)

within a constant if the parameter kn is chosen appropriately. �

5.2. The test statistic and its asymptotic distribution

Our goodness-of-fit statistic for testing nonparametric specifications is given by Sn where
ϕ0 is replaced by the nonparametric estimator ϕ̂kn given in (5.1), i.e.,

Snp
n :=

∥∥n−1
n∑
i=1

(
Yi − ϕ̂kn(Zi)

)
f τmn(Wi)‖2.

The next result establishes asymptotic normality of Snp
n after standardization.

Theorem 5.1. Let Assumptions 2–6 be satisfied. Moreover, T ∈ T υd,D and ϕ0 ∈ Fργ . If

nυkn = o(γknςmn), kn = o(ςmn), kn

( mn∑
j=1

τj

)2
= o(nυkn), and mn

( mn∑
j=1

τ2
j

)2
= o(n) (5.4)
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then it holds under Hnp

(
√

2ςmn)−1
(
nSnp

n − µmn
)

d→ N (0, 1) as n→∞.

Example 5.1. Consider the setting of Example 4.1 where additionally υj ∼ j−2a/r for some
a > 0. Then condition (5.4) holds if kn ∼ nκ with κ < ν/2 and

r(1− ν/2)/(2a+ 2p) < κ < r(1− 2ν)/(2a+ r).

In the severely ill posed case, i.e., υj ∼ exp(−j2a/r), a > 0, condition (5.4) is satisfied if, for

example, mn satisfies mn = o(kpn) and k2
n = o(mn) where kn ∼

(
log n− log(m

3/2
n )

)r/(2a)
. �

The next result states an asymptotic distribution result of our test if
∑mn

j=1 τj = O(1). Let

us denote UW := Y −ekn(Z)t[T ]−1
kn

[g]kn then clearly E[fl(W )UW ] = 0 for all 1 6 l 6 kn. Let

Σnp
mn be the covariance matrix of Uf τmn(W ) +UW E[f τmn(W )ekn(Z)t][T ]−1

kn
fkn(W ). Then we

define ςnp
mn = ς(Σnp

mn), µnp
mn = µ(Σnp

mn), and Vnp = V(Σnp
mn) where ς(·), µ(·), and V(·) are

given in Definition 2.1. In the proof of the following theorem we show by employing the
extended link condition T ∈ T υd,D that ςnp

mn = O(1).

Theorem 5.2. Let Assumptions 2–6 be satisfied. Moreover, T ∈ T υd,D and ϕ0 ∈ Fργ . If

mn∑
j=1

τ2
j = O(1), nυkn = o(γkn), and mnk

2
n = o(nυkn) (5.5)

then it holds under Hnp

(
√

2ςnpmn)−1
(
nSnp

n − µnpmn
) d→ N (0,Vnp) as n→∞.

Example 5.2. Consider the setting of Example 4.2 where additionally υj ∼ j−2a/r for some
a > 0. Condition (5.5) is satisfied if mn ∼ nν with 0 < ν < 1/2 and kn ∼ nκ with

r/(2a+ 2p) < κ < r(1− ν)/(2a+ 2r).

In the severely ill posed case, i.e., υj ∼ exp(−j2a/r), a > 0, condition (5.5) is satisfied if, for

example, mn satisfies mn = o(kpn) and k2
n = o(mn) where kn ∼

(
log n− log(m2

n)
)r/(2a)

. �

Remark 5.2. Let Z ′ be a vector containing only entries of Z with dim(Z ′) < dim(Z). It
is easy to generalize our previous result for a test of H ′np: there exists a solution ϕ0 ∈ Fργ
to (2.1) only depending on Z ′. To be more precise consider the test statistic

S
′np
n :=

∥∥n−1
n∑
i=1

(
Yi − ϕ̂kn(Z ′i)

)
f τmn(Wi)‖2

where ϕ̂kn is the estimator (5.1) based on an iid. sample (Y1, Z
′
1,W1), . . . , (Yn, Z

′
n,Wn) of

(Y,Z ′,W ). Under H ′np we consider the conditional expectation operator T ′ : L2
Z′ → L2

W

with (T ′φ)(W ) := E[φ(Z ′)|W ]. It is interesting to note that if T is nonsingular then also
T ′ is one to one. Hence, for a test of H ′np we may replace Assumption 3 by the weaker
condition that T ′ is nonsingular. Moreover, under H ′np the results of Theorem 5.1 and 5.2
still hold true if we replace Z by Z ′. �
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In the mildly ill-posed case, i.e., the singular values of T have a polynomial decay, the
estimation precision suffers from the curse of dimensionality. Hence, by the test of dimension
reduction of Z we can increase the accuracy of estimation of ϕ. On the other hand, in the
severely ill-posed case the rate of convergence is independent of the dimension of Z (cf.
Chen and Reiß [2011]). But still our dimension reduction test has an important implication
concerning identification of ϕ. As the next example illustrates identification in the restricted
model can be possible even if the structural function is not identified in the original version.

Example 5.3. Let Z = (Z(1), Z(2)) where both, Z(1) and Z(2) are endogenous vectors of
regressors. But only Z(1) satisfies a sufficiently strong relationship with the instrument W in
the sense that for all φ ∈ L2

Z(1) condition E[φ(Z(1))|W ] = 0 implies φ = 0. In this example,
we do not assume that this completeness condition is fulfilled for the joint distribution of
(Z(2),W ). This can be interpreted as an insufficiency of correlation between Z(2) and W .
Thereby only the operator T (1) : L2

Z(1) → L2
W with T (1) = E[φ(Z(1))|W ] is nonsingular but

T is singular. If our dimension reduction test of Z indicates that Z(2) can be omitted from
the structural function ϕ then we obtain identification in the restricted model. �

5.3. Limiting behavior under local alternatives and consistency.

Similar to the previous sections we study the power and consistency properties of our test.

Proposition 5.3. Given the conditions of Proposition 5.1 it holds under (2.5)

(
√

2ςmn)−1
(
nSnp

n − µmn
) d→ N

(
2−1/2‖Tδ‖2τ , 1

)
as n→∞.

Given the conditions of Proposition 5.2 it holds under (2.6)

(
√

2ςnpmn)−1
(
nSnp

n − µnpmn
) d→ N

(
(
√

2ςnp∞ )−1‖Tδ‖2τ ,Vnp
)

as n→∞.

In the next proposition we establish consistency of our test when Hnp does not hold, i.e.,
there exists no function in Fργ that solves (2.1) for any sequence γ satisfying Assumption 6
and any sufficiently large constant 0 < ρ <∞.

Proposition 5.4. Assume that Hnp does not hold. Let E |Y − ϕ0(Z)|4 < ∞. Consider
a sequence λ such that λn = o(nς−1

mn). Under the conditions of Theorem 5.1 and 5.2,
respectively, we have

P
(

(
√

2 ςmn)−1
(
nSnp

n − µmn
)
> λn

)
= 1 + o(1),

P
(

(
√

2 ςnpmn)−1
(
nSnp

n − µnpmn
)
> λn

)
= 1 + o(1).

In the following we show that our tests are consistent uniformly over the function class

J ρn =
{
ϕ ∈ Fργ′ : inf

ϕ0∈Fργ
‖FmnT (ϕ− ϕ0)‖2τ > ρ ςmnn−1}

where the sequence γ′ := (γ′j)j>1 satisfies γ′j ∼ j2. Hence, under Assumption 6, i.e.,

supk>1 k
3/γk <∞, it holds Fργ ⊂ Fργ′ . Again, q1−α denotes the 1− α quantile of N (0, 1).

Proposition 5.5. For any ε > 0, any 0 < α < 1, and any sufficiently large constant ρ > 0
we have under the conditions of Theorem 5.1

lim
n→∞

inf
ϕ∈J ρn

P
(

(
√

2 ςmn)−1
(
nSnp

n − µmn
)
> q1−α

)
> 1− ε,
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whereas under the conditions of Theorem 5.2 it holds

lim
n→∞

inf
ϕ∈J ρn

P
((√

2 ςnpmnV
np
)−1(

nSnp
n − µnpmn

)
> q1−α

)
> 1− ε.

Remark 5.3. The condition infϕ0∈Fργ ‖FmnT (ϕ − ϕ0)‖2τ > ρ ςmnn
−1 for ϕ ∈ J ρn rules out

alternatives with generalized Fourier coefficients [T (ϕ − ϕ0)]j converging to zero too fast.
Horowitz [2012] gave an example where uniform consistency over these alternatives can not
be achieved. On the other hand, if [T (ϕ − ϕ0)]j oscillates for large j > 1 then one might
chose a weaker decaying sequence τ in order to ensure consistency uniformly over these
alternatives. �

6. Conclusion

Based on the methodology of series estimation, we have developed in this paper a family
of goodness-of-fit statistics and derived their asymptotic properties. We have seen that
the asymptotic results depend crucially on the choice of the smoothing operator L. For
the theory we had to distinguish two cases namely that ς−1

mn = O(1) and
∑mn

j=1 τj = O(1).
By choosing a stronger decaying sequence τ , our test becomes more powerful with respect
to local alternatives but might lose desirable consistency properties. Although our results
hold for any decaying sequence τ , it is of great interest how to choose this sequence in
practice. Moreover, in the case of exogeneity or nonparametric specification, one may also
use estimators for ϕ where the dimension parameter kn adapts to the unknown smoothness
of ϕ as well as to the unknown decay of the singular values of T .

A. Appendix

A.1. Proofs of Section 2.

Proof of Theorem 2.1. Under H0 we have (Yi − ϕ0(Zi))f
τ
m(Wi) = Uif

τ
m(Wi) for all

m > 1 and consequently we observe

ς−1
mn

(
nSn−µmn

)
=

1

ςmnn

n∑
i=1

mn∑
j=1

(
|Uif τj (Wi)|2− ςjj

)
+

1

ςmnn

∑
i 6=i′

mn∑
j=1

UiUi′f
τ
j (Wi)f

τ
j (Wi′)

where the first summand tends in probability to zero as n→∞. Indeed, since E |Ufj(W )|2−
ςjj = 0, j > 1, it holds for all m > 1

1

(ςmn)2
E
∣∣ n∑
i=1

m∑
j=1

|Uif τj (Wi)|2−ςjj
∣∣2 =

1

nς2
m

E
∣∣ m∑
j=1

|Uf τj (W )|2−ςjj
∣∣2 6 1

nς2
m

E ‖Uf τm(W )‖4.

By using Assumptions 1 and 2, i.e., supj∈N E |fj(W )|4 6 η4 and E[U2|W ] 6 σ2, we conclude

E ‖Uf τm(W )‖4 6 m
m∑
j=1

τ2
j E |Ufj(W )|4 6 η4σ4m

m∑
j=1

τ2
j . (A.1)
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Let m = mn satisfy condition (2.3) then E ‖Uf τmn(W )‖4 = o
(
nς2
mn

)
. Therefore, it is

sufficient to prove

√
2(ςmnn)−1

∑
i 6=i′

mn∑
j=1

UiUi′f
τ
j (Wi)f

τ
j (Wi′)

d→ N (0, 1). (A.2)

Since ςmn = o(1) this follows from Lemma A.2 and thus, completes the proof.

Proof of Theorem 2.2. Similarly to the proof of Theorem 2.1 it can be seen that it is
sufficient to show

n−1
∑
i 6=i′

mn∑
j=1

UiUi′f
τ
j (Wi)f

τ
j (Wi′)

d→ N (0,V).

This result is due to Lemma A.2 since
∑mn

j=1 τ
2
j = O(1).

Proof of Proposition 2.3. For ease of notation let δn(·) := ς
1/2
mn n

−1/2δ(·). Under the
sequence of alternatives (2.5) the following decomposition holds true

Sn =
∥∥n−1

n∑
i=1

Uif
τ
mn(Wi)

∥∥2
+ 2〈n−1

n∑
i=1

Uif
τ
mn(Wi), n

−1
n∑
i=1

δn(Zi)f
τ
mn(Wi)〉

+
∥∥n−1

n∑
i=1

δn(Zi)f
τ
mn(Wi)

∥∥2
=: In + 2IIn + IIIn.

Due to Theorem 2.1 we have (
√

2ςmn)−1
(
n In−µmn

) d→ N (0, 1). Consider IIn. We observe

nE |IIn| 6
mn∑
j=1

τj
(
E |Ufj(W )|2 E |δn(Z)fj(W )|2

)1/2
+
(
nE

∣∣∣ mn∑
j=1

τj [Tδn]jUfj(W )
∣∣∣2)1/2

6 σ

mn∑
j=1

τj
(
E |δn(Z)fj(W )|2

)1/2
+ σ
√
n‖Tδn‖τ .

From the definition of δn and condition (2.3) we infer that nE |IIn| = o(ςmn). Consider
IIIn. Employing again the definition of δn yields

nς−1
mnIIIn =

mn∑
j=1

τj
∣∣n−1

n∑
i=1

δ(Zi)fj(Wi)− [Tδ]j
∣∣2

+ 2

mn∑
j=1

τj [Tδ]j
(
n−1

n∑
i=1

δ(Zi)fj(Wi)− [Tδ]j
)

+

mn∑
j=1

τj [Tδ]
2
j =: An1 + 2An2 +An3.

Clearly, EAn1 6 n−1
∑mn

j=1 τj E |δ(Z)fj(W )|2 and EA2
n2 6 n

−1‖Tδ‖2τ
∑mn

j=1 E |δ(Z)f τj (W )|2.

Since E |δ(Z)|4 < ∞ we conclude An1 = op(1) and An2 = op(1). On the other hand, it
holds An3 = ‖Tδ‖2τ + o(1). We conclude (

√
2ςmn)−1nIIIn = (

√
2)−1‖Tδ‖2τ + op(1), which

completes the proof.
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Proof of Proposition 2.4. Let δn(·) := n−1/2δ(·). Similarly to the proof of Theorem
2.1 it is straightforward to see that under the sequence of alternatives (2.6) it holds

(
√

2ςmn)−1
(
nSn−µmn

)
=

1√
2ςmnn

∑
i 6=i′

mn∑
j=1

(Ui+δn(Zi))(Ui′+δn(Zi′))f
τ
j (Wi)f

τ
j (Wi′)+op(1).

In the following we make use of the decomposition∑
i 6=i′

mn∑
j=1

(Ui + δn(Zi))(Ui′ + δn(Zi′))f
τ
j (Wi)f

τ
j (Wi′)

= 2
∑
i′<i

mn∑
j=1

τj(Ui + δn(Zi))fj(Wi)
(
(Ui′ + δn(Zi′))fj(Wi′)− [Tδn]j

)
+

mn∑
j=1

τj [Tδn]j

n∑
i=1

(i− 1)
(
(Ui + δn(Zi))fj(Wi)− [Tδn]j

)
+ ς−1

mn

mn∑
j=1

τj [Tδ]
2
j

= In + IIn + IIIn.

Due to Lemma A.3 it holds (
√

2ςmnn)−1In
d→ N (0,V). In addition, (

√
2ςmnn)−1IIIn =

ς−1
∞ ‖Tδ‖2τ + op(1). Thereby, the result follows from IIn = op(n) since

n−2 E II2
n 6 n

−2
( mn∑
j=1

[Tδn]2j

) mn∑
j=1

τ2
j

n∑
i=1

(i− 1)E
∣∣(Ui + δn(Zi))fj(Wi)− [Tδn]j

∣∣2
6 n−1‖Tδ‖2W

mn∑
j=1

τ2
j

(
E |Ufj(W )|2 + E |δn(Z)fj(W )|2

)
= o(1)

where we used
∑mn

j=1 τ
2
j = O(1), E |Ufj(W )|2 6 σ2, and E |δ(Z)|4 <∞.

Proof of Proposition 2.5. Since ςmnλn + µmn = o(n) it is sufficient to show Sn =
‖T (ϕ− ϕ0)‖2τ + op(1). We make use of the decomposition

Sn =

mn∑
j=1

τj
∣∣n−1

n∑
i=1

(Yi − ϕ0(Zi))fj(Wi)− [T (ϕ− ϕ0)]j
∣∣2

+ 2

mn∑
j=1

τj
(
n−1

n∑
i=1

(Yi−ϕ0(Zi))fj(Wi)− [T (ϕ−ϕ0)]j
)
[T (ϕ−ϕ0)]j +‖FmnT (ϕ−ϕ0)‖2τ

= In + IIn + IIIn.

Due to condition E |Y − ϕ0(Z)|4 <∞ it is easily seen that In + IIn = op(1). On the other
hand IIIn = ‖T (ϕ− ϕ0)‖2τ + o(1), which proves the result.

Proof of Proposition 2.6. We make use of the decomposition

P
(

(
√

2 ςmn)−1
(
nSn − µmn

)
> q1−α

)
> P

(∥∥n−1/2
n∑
i=1

(ϕ(Zi)− ϕ0(Zi))f
τ
mn(Wi)

∥∥2
+
∥∥n−1/2

n∑
i=1

Uif
τ
mn(Wi)

∥∥2 − µmn

>
√

2 ςmnq1−α + 2|〈n−1
n∑
i=1

(ϕ(Zi)− ϕ0(Zi))f
τ
mn(Wi),

n∑
i=1

Uif
τ
mn(Wi)〉|

)
.
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Uniformly over all ϕ ∈ Gρn it holds

〈n−1
n∑
i=1

(ϕ(Zi)−ϕ0(Zi))f
τ
mn(Wi),

n∑
i=1

Uif
τ
mn(Wi)〉 = Op

(√
n‖FmnT (ϕ−ϕ0)‖τ

)
. (A.3)

Indeed, we observe

E
∣∣ mn∑
j=1

τj E[(ϕ(Z)− ϕ0(Z))fj(W )]

n∑
i=1

Uifj(Wi)
∣∣2 6 σ2n‖FmnT (ϕ− ϕ0)‖2τ

which yields (A.3). Thereby, for all 0 < ε′ < 1 there exists some constant C > 0 such that

P
(

(
√

2 ςmn)−1
(
nSn − µmn

)
> q1−α

)
> P

(∥∥n−1/2
n∑
i=1

(ϕ(Zi)− ϕ0(Zi))f
τ
mn(Wi)

∥∥2
+
∥∥n−1/2

n∑
i=1

Uif
τ
mn(Wi)

∥∥2 − µmn

>
√

2 ςmnq1−α + C
√
n‖FmnT (ϕ − ϕ0)‖τ

)
− ε′.

Note that
∥∥n−1/2

∑n
i=1 Uif

τ
mn(Wi)

∥∥2
= µmn +Op(ςmn) due to Theorem 2.1. Moreover,

∥∥n−1/2
n∑
i=1

(ϕ(Zi)− ϕ0(Zi))f
τ
mn(Wi)

∥∥2
> n‖FmnT (ϕ− ϕ0)‖2τ

− 2
∣∣〈 n∑
i=1

(ϕ(Zi)−ϕ0(Zi))f
τ
mn(Wi)− n[LT (ϕ−ϕ0)]mn , [LT (ϕ−ϕ0)]mn〉 = In + IIn.

Consider IIn. For 1 6 j 6 mn let sj = τj [T (ϕ − ϕ0)]j/‖FmnT (ϕ − ϕ0)‖τ then clearly∑mn
j=1 s

2
j = 1 and thus E |

∑mn
j=1 sjfj(W )|2 = 1. Further, since supz∈Supp(Z) |ϕ(z)−ϕ0(z)|2 6

ρ we calculate

E |IIn|2 = nE
∣∣∣ mn∑
j=1

τj
(
(ϕ(Z)− ϕ0(Z))fj(W )− [T (ϕ− ϕ0)]j

)
[T (ϕ− ϕ0)]j

∣∣∣2
6 n‖FmnT (ϕ− ϕ0)‖2τ E

∣∣∣ mn∑
j=1

sj(ϕ(Z)− ϕ0(Z))fj(W )
∣∣∣2 6 ρ ‖FmnT (ϕ− ϕ0)‖2τ

and hence IIn = Op(1). Note that In−C
√
n‖FmnT (ϕ−ϕ0)‖τ > In/2 for n sufficiently large.

Since on Gρn we have In > ρ ςmn we obtain the result by choosing ρ sufficiently large.

A.2. Proofs of Section 3.

Proof of Theorem 3.1. The proof is based on the decomposition under Hp

Sp
n =

∥∥n−1
n∑
i=1

Uif
τ
mn(Wi)

∥∥2
+2〈n−1

n∑
i=1

Uif
τ
mn(Wi), n

−1
n∑
i=1

(ϕ0(Zi)−ϕ̆k(Zi))f τmn(Wi)〉

+ ‖n−1
n∑
i=1

((ϕ0(Zi)− ϕ̆k(Zi))f τmn(Wi)‖2 = In + 2IIn + IIIn. (A.4)
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Due to Theorem 2.1 it holds (
√

2ςmn)−1(nIn−µmn)
d→ N (0, 1). Consider IIIn. We observe

IIIn 6 2‖ϕ0 − ϕ̆k‖2Z
( k∑
l=1

mn∑
j=1

τj [T ]2jl +

k∑
l=1

mn∑
j=1

τj
(
n−1

n∑
i=1

el(Zi)fj(Wi)− [T ]jl
)2)

.

For each 1 6 l 6 k we have
∑mn

j=1[T ]2jl 6 ‖Tel‖2W 6 1 by applying Jensen’s inequality.
Moreover, we calculate

k∑
l=1

mn∑
j=1

E
∣∣n−1

n∑
i=1

el(Zi)fj(Wi)− [T ]jl
∣∣2 6 kmn

n
sup
j,l>1

E |el(Z)fj(W )|2 6 η4kmn

n
. (A.5)

These estimates together with ‖ϕ0 − ϕ̆k‖Z = Op(n
−1/2) imply nIIIn = op(ςmn). We are

left with the proof of nIIn = op(ςmn). We observe for each 1 6 l 6 k

E
∣∣∣ mn∑
j=1

τj

(
ς−1
mnn

−1/2
n∑
i=1

Uifj(Wi)
(
n−1

n∑
i=1

el(Zi)fj(Wi)− [T ]jl
))∣∣∣

6 ς−1
mnn

−1/2
mn∑
j=1

τj
(
E |Ufj(W )|2

)1/2(E |el(Z)fj(W )|2
)1/2
6 ση4ς−1

mnn
−1/2

mn∑
j=1

τj = o(1).

Now since n1/2([ϕ0]k − [ϕ̆k]k) = Op(1) we infer

nIIn = n1/2
k∑
l=1

([ϕ0]l − [ϕ̆k]l)

mn∑
j=1

τj

(
ς−1
mnn

−1/2
n∑
i=1

Uifj(Wi)[T ]jl

)
+ op(1).

We observe for each 1 6 l 6 k

ς−2
mnn

−1 E
∣∣∣ mn∑
j=1

τj

n∑
i=1

Uifj(Wi)[T ]jl

∣∣∣2 6 ς−2
mnσ

2
mn∑
j=1

[T ]2jl 6 ς
−2
mnσ

2

which implies nIIn = op(ςmn) and thus, in light of decomposition (A.4), completes the
proof.

Proof of Theorem 3.2. For 1 6 j 6 mn we make use of the following decomposition

n−1/2
n∑
i=1

fj(Wi)
(
Ui+

k∑
l=1

el(Zi)
(
[ϕ0]l−[ϕ̆k]l

))
= n−1/2

n∑
i=1

(
fj(Wi)Ui+

k∑
l=1

[T ]jlhl(Vi)
)

+
k∑
l=1

(
n−1

n∑
i=1

fj(Wi)el(Zi)− [T ]jl

)(
n−1/2

n∑
i=1

hl(Vi)
)

+
k∑
l=1

n−1
n∑
i=1

fj(Wi)el(Zi)rl = Anj + Bnj + Cnj (A.6)

where rk = (r1, . . . , rk)
t is a stochastic vector satisfying rk = op(1). Consequently, under

Hp we have

nSp
n =

mn∑
j=1

τjA
2
nj + 2

mn∑
j=1

τjAnj(Bnj + Cnj) +

mn∑
j=1

τj(Bnj + Cnj)
2.
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Clearly, for all 1 6 i 6 n the random variables Uif
τ
j (Wi) + E

[
f τj (W )ek(Z)t

]
hk(Vi), 1 6

j 6 mn, are centered with bounded fourth moment. Following line by line the proof

of Lemma A.2 it is easily seen that (
√

2ςp
mn)−1

(∑mn
j=1 τjA

2
nj − µp

mn

) d→ N (0,Vp). Ex-

ploiting inequality (A.5) it is easily seen that
∑mn

j=1B
2
nj = Op(mnn

−1) = op(1). Since∑mn
j=1[T ]2jl 6 1 we have ‖E[fmn(W )ek(Z)t]rk‖2 6

∑mn
j=1

∑k
l=1[T ]2jl‖rk‖2 6 k‖rk‖2 = op(1)

and hence
∑mn

j=1C
2
nj = op(1). Finally, condition

∑mn
j=1 τ

2
j = O(1) implies E

∣∣∑mn
j=1 τ

2
j Anj

∣∣2 6
supj>1

{
EA2

nj

}(∑mn
j=1 τ

2
j

)2
= O(1) and thereby, we have E

∣∣∑mn
j=1 τjAnj(Bnj + Cnj)

∣∣2 6∑mn
j=1 τ

2
j A

2
nj

∑mn
j=1(Bnj + Cnj)

2 = op(1), which completes the proof.

Proof of Proposition 3.3. Consider the case ς−1
mn = o(1). Under the sequence of alter-

natives (2.5) the following decomposition holds true

Sp
n = Sn+ 2〈n−1

n∑
i=1

(Ui+ ς1/2
mn n

−1/2δ(Zi))f
τ
mn(Wi), n

−1
n∑
i=1

(ϕ0(Zi)− ϕ̆k(Zi))f τmn(Wi)〉

+
∥∥n−1

n∑
i=1

(ϕ0(Zi)− ϕ̆k(Zi))f τmn(Wi)
∥∥2
.

Due to Proposition 2.3 and the proof of Theorem 3.1 it is sufficient to show

〈n−1
n∑
i=1

δ(Zi)f
τ
mn(Wi), n

−1/2
n∑
i=1

(ϕ0(Zi)− ϕ̆k(Zi))f τmn(Wi)〉 = op(
√
ςmn). (A.7)

Since
∑mn

j=1[T ]2jl 6 1 we conclude

mn∑
j=1

τj [Tδ]jn
−1/2

n∑
i=1

(ϕ0(Zi)−ϕ̆k(Zi))fj(Wi) =

k∑
l=1

√
n([ϕ0]l−[ϕ̆k]l)

mn∑
j=1

τj [Tδ]j [T ]jl+op(1)

6
√
n‖Tδ‖τ‖ϕ0 − ϕ̆k‖Z + op(1) = Op(1)

and hence (A.7) holds true.
Consider the case

∑mn
j=1 τ

2
j = O(1). We make use of decomposition (A.6) where Ui is

replaced by Ui + n−1/2δ(Zi). Similarly to the proof of Proposition 2.4 it is easily seen that

(
√

2ςp
mn)−1

(∑mn
j=1 τjA

2
nj − µ

p
mn

) d→ N
(
(
√

2ςp
∞)−1‖Tδ‖2τ ,Vp

)
. Thereby, due to the proof of

Theorem 3.2, the assertion follows.

Proof of Proposition 3.4. It is sufficient to prove Sp
n = ‖T (ϕ−ϕ0)‖2τ +op(1). Consider

the case ς−1
mn = o(1). Since ‖n−1

∑n
i=1((ϕ0(Zi) − ϕ̆k(Zi))f τmn(Wi)‖2 = op(1) (cf. proof of

Theorem 3.1) and ‖n−1
∑n

i=1(Yi − ϕ0(Zi))f
τ
mn(Wi)‖2 = ‖T (ϕ− ϕ0)‖2τ + op(1) (cf. proof of

Proposition 2.5) the result follows. In case of
∑mn

j=1 τ
2
j = O(1) we infer from the proof of

Theorem 3.2 that Sp
n =

∑mn
j=1 τj

∣∣n−1
∑n

i=1

(
(Yi−ϕ0(Zi))fj(Wi)+

∑k
l=1[T ]jlhl(Vi)

)∣∣2 +op(1).
Since hl(Vi), 1 6 l 6 k, are centered random variables we obtain, similarly to the proof of
Proposition 2.5, that Sp

n = ‖T (ϕ− ϕ0)‖2τ + op(1).

21



Proof of Proposition 3.5. Consider the case ς−1
mn = o(1). Let ϕ0 ∈ Ek with estimator

ϕ̆k. The basic inequality (a− b)2 > a2/2− b2, a, b ∈ R, yields

P
(

(
√

2 ςmn)−1
(
nSp

n − µmn
)
> q1−α

)
> P

(
1/2
∥∥n−1/2

n∑
i=1

(ϕ(Zi)− ϕ0(Zi))f
τ
mn(Wi)

∥∥2
+
∥∥n−1/2

n∑
i=1

Uif
τ
mn(Wi)

∥∥2 − µmn

>
√

2 ςmnq1−α + 2|〈n−1
n∑
i=1

(ϕ(Zi)− ϕ̆k(Zi))f τmn(Wi),

n∑
i=1

Uif
τ
mn(Wi)〉|

+
∥∥n−1/2

n∑
i=1

(ϕ̆k(Zi) − ϕ0(Zi))f
τ
mn(Wi)

∥∥2
)
. (A.8)

From the proof of Theorem 3.1 we infer
∥∥n−1/2

∑n
i=1(ϕ̆k(Zi)−ϕ0(Zi))f

τ
mn(Wi)

∥∥2
= op(ςmn)

and

〈n−1
n∑
i=1

(ϕ(Zi)− ϕ̆k(Zi))f τmn(Wi),
n∑
i=1

Uif
τ
mn(Wi)〉

= 〈n−1
n∑
i=1

(ϕ(Zi)− ϕ0(Zi))f
τ
mn(Wi),

n∑
i=1

Uif
τ
mn(Wi)〉+ op(ςmn)

uniformly over all ϕ ∈ Hρn. In addition, let sj be as in the proof of Proposition 2.6, then
condition supj>1 E[e2

j (Z)|W ] 6 η2 yields

E
∣∣∣ mn∑
j=1

sj(ϕ(Z)− ϕ0(Z))fj(W )
∣∣∣2 6 2ρ+ 2

k∑
l=1

[ϕ0]2l

k∑
l=1

E
∣∣el(Z)

mn∑
j=1

sjfj(W )|2 = O(1).

Thus, following line by line the proof of Proposition 2.6, the assertion follows. In case of∑mn
j=1 τ

2
j = O(1) the assertion follows similarly.

A.3. Proofs of Section 4.

Let Ak = {‖[Îd]−1
k ‖ 6 2} and Bk = {‖[Îd]k− [Id]k‖ 6 1/2}. Their complements are denoted

by Ack and Bck, respectively. By the usual Neumann series argument we observe on Bk that

‖[Îd]−1
k ‖ 6 (1− ‖[Îd]k − [Id]k‖)−1 6 2 and hence Bk ⊂ Ak.

Proof of Theorem 4.1. The proof is based on the decomposition (A.4) where the esti-
mator ϕ̆k is replaced by ϕkn given in (4.1). It holds nIIIn = op(ςmn), which can be seen as
follows. We make use of

IIIn/2 6
∥∥ 1

n

n∑
i=1

(Eknϕ0(Zi)−ϕkn(Zi))f
τ
mn(Wi)

∥∥2
+
∥∥ 1

n

n∑
i=1

(
E⊥knϕ0

)
(Zi)f

τ
mn(Wi)

∥∥2
=: An1+An2.

Consider An1. We observe

An1 6 2‖T (Eknϕ0−ϕkn)‖2W+2‖Eknϕ0−ϕkn‖
2
Z

mn∑
j=1

τj

kn∑
l=1

|n−1
n∑
i=1

el(Zi)fj(Wi)−[T ]jl|2

=: 2Bn1 + 2Bn2. (A.9)
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We have E ekn(Z)ekn(Z)t = [Id]kn . For Bn1 we evaluate due to Jensen’s inequality

Bn1 6 ‖Eknϕ0 − ϕkn‖
2
Z 6 2

∥∥[Îd]kn [ϕ0]kn − n−1
n∑
i=1

Yiekn(Zi)
∥∥2
1Akn

+ 8
∥∥[Îd]kn − [Id]kn

∥∥2∥∥[Îd]kn [ϕ0]kn − n−1
n∑
i=1

Yiekn(Zi)
∥∥2

+ ‖Eknϕ0‖2Z 1Ackn .

Since the spectral norm of a matrix is bounded by its Frobenius norm it holds

E
∥∥[Îd]kn − [Id]kn

∥∥2
6 n−1

kn∑
l,l′=1

E |el(Z)el′(Z)|2 6 η4n−1k2
n

and condition ϕ ∈ Fργ together with
∑kn

l=1 γ
−1
l 6 π

2/6 for n sufficiently large yields

E
∥∥[Îd]kn [ϕ0]kn − n−1

n∑
i=1

Yiekn(Zi)
∥∥2
6 n−1

kn∑
j=1

E
∣∣ej(Z)

kn∑
l=1

[ϕ0]lel(Z)− Y ej(Z)|2

6 2n−1‖ϕ0‖2γ
kn∑
j=1

E
[
e2
j (Z)

kn∑
l=1

γ−1
l e2

l (Z)
]
+2n−1knη

2 E[Y 4] 6 2η2
(π2η2ρ

6
+E[Y 4]

)
n−1kn.

Moreover, 1Ackn
= op(1) since P(Bckn) 6 4E ‖[Îd]kn − [Id]kn‖2 = o(1) and Bkn ⊂ Akn .

Consequently,

n‖Eknϕ0 − ϕkn‖
2
Z = Op(kn) (A.10)

and since kn = o(ςmn) we proved nBn1 = op(ςmn). In addition, applying inequality (A.5)
together with equation (A.10) yields nBn2 = op(ςmn). Consequently, nAn1 = o(ςmn). Con-
sider An2. Jensen’s inequality gives

E
∥∥n−1

n∑
i=1

(
E⊥knϕ0

)
(Zi)f

τ
mn(Wi)

∥∥2
6 2‖E⊥knϕ0‖2Z + 2n−1

mn∑
j=1

E |E⊥knϕ0(Z)fj(W )|2.

Note that condition (4.2) implies k2
n < σ2

mn 6 σ4mn for n sufficiently large. Due to the
Cauchy Schwarz inequality

mn∑
j=1

E |E⊥knϕ0(Z)fj(W )|2 6
mn∑
j=1

∑
l>kn

l2[ϕ0]2l
∑
l>kn

l−2 E |el(Z)fj(W )|2

6 η4π
2

6

mnk
2
n

γkn
‖E⊥knϕ0‖2γ = o(ςmn) (A.11)

and n‖E⊥knϕ0‖2Z 6 nγ−1
kn
‖E⊥knϕ0‖2γ = o(ςmn). Hence, nIIIn = op(ςmn). Consider IIn. We
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calculate

nIIn 6
∣∣∣ mn∑
j=1

τj

n∑
i=1

Uifj(Wi)([ϕ0]kn−[ϕ]kn)t
(
n−1

n∑
i=1

ekn(Zi)fj(Wi)−E
[
ekn(Z)fj(W )

])∣∣∣
+
∣∣∣ mn∑
j=1

τj

kn∑
l=1

([ϕ0]l − [ϕ]l)
( n∑
i=1

Uifj(Wi)[T ]jl

)∣∣∣
+
∣∣∣ mn∑
j=1

τj

( n∑
i=1

Uifj(Wi)
)(
n−1

n∑
i=1

E⊥knϕ0(Zi)fj(Wi)− E[E⊥knϕ0(Z)fj(W )]
)∣∣∣

+
∣∣∣ mn∑
j=1

τj

( n∑
i=1

Uifj(Wi)
)
E[E⊥knϕ0(Z)fj(W )]

∣∣∣ = Cn1 + Cn2 + Cn3 + Cn4. (A.12)

Consider Cn1. Applying twice the Cauchy Schwarz inequality gives

Cn1 6
( mn∑
j=1

τ2
j

∣∣ n∑
i=1

Uifj(Wi)
∣∣2)1/2

‖Eknϕ0 − ϕkn‖Z

×
( mn∑
j=1

kn∑
l=1

|n−1
n∑
i=1

el(Zi)fj(Wi)− E[el(Z)fj(W )]|2
)1/2

.

From E |
∑n

i=1 Uifj(Wi)|2 6 nσ2, relation (A.10), and inequality (A.5) we infer Cn1 =
op(ςmn) due to condition (4.2). For Cn2 we evaluate

Cn2 6 ‖Eknϕ0 − ϕkn‖Z
( kn∑
l=1

∣∣ mn∑
j=1

n∑
i=1

Uifj(Wi)[T ]jl
∣∣2)1/2

Estimate
∑mn

j=1

∑kn
l=1[T ]2jl 6 kn together with (A.10) yields Cn2 = op(1). Consider Cn3.

Since E[U2|W ] 6 σ2 we conclude similarly as in inequality (A.11) that

ECn3 6
mn∑
j=1

τj
(
E |Ufj(W )|2

)1/2(E |E⊥knϕ0(Z)fj(W )|2
)1/2

6 η2 πσ√
6

kn√
γkn
‖E⊥knϕ0‖γ

mn∑
j=1

τj = o(ςmn)

where we used
∑mn

j=1 τj 6
√
mn

(∑mn
j=1 τ

2
j

)1/2
. Consider Cn4. We calculate

E |Cn4|2 6 nσ2
mn∑
j=1

[TE⊥knϕ0]2j 6 nσ
2‖TE⊥knϕ0‖2W 6 nγ−1

kn
σ2‖E⊥knϕ0‖2γ = o(ςmn).

Consequently, in light of decomposition (A.12) we obtain nIIn = o(ςmn), which completes
the proof.
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Proof of Theorem 4.2. Employing [Îd]−1
kn

= [Id]kn−[Îd]−1
kn

([Îd]kn−[Id]kn) and [Îd]kn [ϕ0]kn−
n−1

∑n
i=1 Yiekn(Zi) = n−1

∑n
i=1 ekn(Zi)(Eknϕ(Zi)− Yi) we obtain for all 1 6 j 6 mn

n−1/2
n∑
i=1

fj(Wi)
(
Ui + ekn(Zi)

t
(
[ϕ0]kn − [Îd]−1

kn

1

n

n∑
i=1

Yiekn(Zi)
)

+ E⊥knϕ0(Zi)
)

= n−1/2
n∑
i=1

(
fj(Wi)Ui + E

[
fj(W )ekn(Z)t

]
ekn(Zi)

(
Eknϕ0(Zi)− Yi

))
+ n−1/2

n∑
i=1

E
[
fj(W )ekn(Z)t

]
[Îd]−1

kn
([Îd]kn − [Id]kn)ekn(Zi)

(
Eknϕ0(Zi)− Yi

)
+
(
n−1

n∑
i=1

fj(Wi)el(Zi)− E
[
fj(W )ekn(Z)t

])√
n
(
[ϕ0]kn − [Îd]−1

kn

1

n

n∑
i=1

Yiekn(Zi)
)

+ n−1/2
n∑
i=1

E⊥knϕ0(Zi)fj(Wi) = Anj + Bnj + Cnj + Dnj . (A.13)

For all 1 6 i 6 n the random variables Uif
τ
j (Wi)+

(
Eknϕ0(Zi)−Yi

)
E
[
f τj (W )ekn(Z)t

]
ekn(Zi),

1 6 j 6 mn, are centered under Hp with bounded fourth moment. More precisely, due to
condition E[U4

Z |Z] 6 σ4 where UZ = Eknϕ0(Z)− Y we calculate for all 1 6 j 6 mn

E
∣∣Ufj(W ) +

kn∑
l=1

[T ]jlel(Z)UZ
∣∣4 6 8E

∣∣Ufj(W )
∣∣4 + 8E |(EknT ∗fj)(Z)UZ

∣∣4
6 8σ4η4 + 8σ4 E |(EknT ∗fj)(Z)|4

which is bounded since E |(EknT ∗fj)(Z)|4 6 E |(T ∗fj)(Z)|4 6 E |fj(W )|4 6 η4 by using well
known properties of projections on Banach spaces. Now following line by line the proof of

Lemma A.2 it is easily seen that (
√

2ςe
mn)−1

(∑mn
j=1 τjA

2
nj − µe

mn

) d→ N (0,Ve). Moreover,

similarly to the proof of Theorem 4.1 it is easily seen that
∑mn

j=1B
2
nj = Op

(
n−1mnk

2
n

)
=

op(1),
∑mn

j=1C
2
nj = op(1) and

∑mn
j=1D

2
nj = op(1). Since 1Akn = 1 + op(1) the result follows

similarly to the proof of Theorem 3.2.

Proof of Proposition 4.3. Consider the case ς−1
mn = o(1). Similar to the proof of Propo-

sition 3.3 it is sufficient to show

〈n−1
n∑
i=1

δ(Zi)f
τ
mn(Wi), n

−1/2
n∑
i=1

(ϕ0(Zi)− ϕkn(Zi))f
τ
mn(Wi)〉 = op(

√
ςmn). (A.14)

By employing Jensen’s inequality and estimate (A.10) we obtain

mn∑
j=1

τj [Tδ]j
1√
n

n∑
i=1

(Eknϕ0(Zi)− ϕkn(Zi))fj(Wi)

6
√
n‖Tδ‖τ‖T (Eknϕ0 − ϕkn)‖W + op(1) = op(ςmn).

Similarly to the upper bounds of Cn3 and Cn4 in the proof of Theorem 4.1 it is straightfor-
ward to see that

∑mn
j=1 τj [Tδ]jn

−1/2
∑n

i=1E
⊥
kn
ϕ0(Zi)fj(Wi) = op(ςmn) and, hence equation

(A.14) holds true. Consider the case
∑mn

j=1 τ
2
j = O(1). We make use of decomposition

25



(A.13) where Ui is replaced by Ui + n−1/2δ(Zi). Similarly to the proof of Proposition 2.4

it is easily seen that (
√

2ςe
mn)−1

(∑mn
j=1 τjA

2
nj − µe

mn

) d→ N
(
(
√

2ςp
∞)−1‖Tδ‖2τ ,Ve

)
. Thereby,

due to the proof of Theorem 4.2, the assertion follows.

Proof of Proposition 4.4. Similar to the proof of Proposition 3.4.

Proof of Proposition 4.5. We make use of inequality (A.8) where ϕ̆k is replaced by

ϕkn . From the proof of Proposition 4.1 we infer
∥∥n−1/2

∑n
i=1(ϕkn(Zi)−ϕ0(Zi))f

τ
mn(Wi)

∥∥2
=

op(ςmn) and

〈n−1
n∑
i=1

(ϕ(Zi)− ϕkn(Zi))f
τ
mn(Wi),

n∑
i=1

Uif
τ
mn(Wi)〉

= 〈n−1
n∑
i=1

(ϕ(Zi)− ϕ0(Zi))f
τ
mn(Wi),

n∑
i=1

Uif
τ
mn(Wi)〉+ op(ςmn)

uniformly over all ϕ ∈ Iρn. In addition, let sj be as in the proof of Proposition 2.6 then
condition supj>1 E[e2

j (Z)|W ] 6 η2 yields

E
∣∣∣ mn∑
j=1

sj(ϕ(Z)−ϕ0(Z))fj(W )
∣∣∣2 6 ‖ϕ−ϕ0‖2γ

∞∑
l=1

γ−1
l E

∣∣el(Z)

mn∑
j=1

sjfj(W )|2 = O(1). (A.15)

Thus, following line by line the proof of Proposition 2.6, the assertion follows. In case of∑mn
j=1 τ

2
j = O(1) the assertion follows similarly.

A.4. Proofs of Section 5.

Proof of Theorem 5.1. For the proof we make use of decomposition (A.4) where the
estimator ϕ̆k is replaced by ϕ̂kn given in (5.1). Consider IIIn. Observe

IIIn 6 2‖n−1
n∑
i=1

(ϕkn(Zi)− ϕ̂kn(Zi))f
τ
mn(Wi)‖2

+ 2‖n−1
n∑
i=1

(
ϕkn(Zi)− ϕ0(Zi)

)
f τmn(Wi)‖2 = 2An1 + 2An2. (A.16)

Consider An1. We evaluate by applying Cauchy Schwarz inequality

An1 6 2‖T (ϕkn − ϕ̂kn)‖2W + 2‖ϕkn − ϕ̂kn‖2υ
mn∑
j=1

τj

kn∑
l=1

υ−1
l |n

−1
n∑
i=1

el(Zi)fj(Wi)− [T ]jl|2.

The link condition T ∈ T υd,D yields ‖T (ϕ̂kn − ϕkn)‖2W 6 d‖ϕ̂kn − ϕkn‖2υ. From Theo-

rem 2.6 of Johannes and Schwarz [2010] and condition (5.4) we infer n‖ϕ̂kn − ϕkn‖2υ =
Op
(

max(nυknγ
−1
kn
, kn)

)
= op(ςmn). This together with estimate (A.5) implies nAn1 =

26



op(ςmn). Consider An2. We observe

EAn2 6 2‖T (ϕkn − ϕ0)‖2W + 2n−1 E ‖
(
ϕkn(Z)− ϕ0(Z)

)
f τmn(W )‖2

6 2d‖ϕkn − ϕ0‖2υ + 2n−1
∑
l>1

l2([ϕkn ]l − [ϕ0]l)
2
mn∑
j=1

τj
∑
l>1

l−2 E |el(Z)fj(W )|2

6 8Dd2ρ
(υkn
γkn
‖ϕkn − ϕ0‖2γ +

π2

6
η4‖ϕkn − ϕ0‖2γ

k2
n

nγkn

mn∑
j=1

τj

)
. (A.17)

where we used Lemma A.2 of Johannes and Schwarz [2010], i.e., ‖ϕkn−ϕ0‖2w 6 4Ddρwknγ
−1
kn

for a nondecreasing sequence w. Condition (5.4) together with the estimate k2
n 6 σ

4
∑mn

j=1 τj
for n sufficiently large implies nAn2 = op(ςmn). Consequently, due to (A.16) we have shown
nIIIn = op(ςmn). The proof of nIIn = op(ςmn) is based on decomposition (A.12) where ϕkn
and E⊥knϕ0 are replaced by ϕ̂kn and ϕkn − ϕ0, respectively. Consider Cn1. We calculate

Cn1 6 ‖ϕ̂kn − ϕkn‖υ
mn∑
j=1

τj
∣∣ n∑
i=1

Uifj(Wi)
∣∣( kn∑

l=1

υ−1
l

∣∣n−1
n∑
i=1

el(Zi)fj(Wi)− [T ]jl
∣∣2)1/2

Since
√
n‖ϕ̂kn − ϕkn‖υ = op(ς

1/2
mn ) we obtain, similarly as in the proof of Theorem 4.1,

Cn1 = op(ςmn). Consider Cn2. Again similarly to the proof of Theorem 4.1 we observe

ECn2 = E
∣∣∣ mn∑
j=1

τj

kn∑
l=1

[T ]jl([ϕ̂kn ]l − [ϕkn ]l)
( n∑
i=1

Uifj(Wi)
)∣∣∣

6
(
nE ‖ϕ̂kn − ϕkn‖2υ

)1/2(
σ2

kn∑
l=1

υ−1
l

mn∑
j=1

[T ]2jl

)1/2
= o(ςmn)

by exploiting
∑mn

j=1[T ]2jl = ‖Tel‖2W 6 dυl. Consider Cn3. Since E[U2|W ] 6 σ2 we conclude
similarly as in inequality (A.11) using Lemma A.2 of Johannes and Schwarz [2010]

ECn3 6 σ
mn∑
j=1

τj
(
E |(ϕkn(Z)−ϕ0(Z))fj(W )|2

)1/2
6 η2 πσ√

6

kn√
γkn
‖ϕkn−ϕ0‖γ

mn∑
j=1

τj = o(ςmn).

Consider Cn4. Again exploring the link condition T ∈ T υd,D and Lemma A.2 of Johannes
and Schwarz [2010] we calculate

E |Cn4|2 6 nσ
mn∑
j=1

[T (ϕkn − ϕ0)]2j 6 nσ‖T (ϕkn − ϕ0)‖2W

6 nσd‖ϕkn − ϕ0‖2υ 6 4Ddρσ
nυkn
γkn
‖ϕkn − ϕ0‖2γ = o(ςmn).

Consequently, the estimates for Cn1, Cn2, Cn3, and Cn4 imply nIIn = op(ςmn), which
completes the proof.

Proof of Theorem 5.2. For all k > 1 let us denote Ωk := {‖[T̂ ]−1
k ‖ 6

√
n} and fk :=

{‖Qk‖‖[T ]−1
k ‖ 6 1/2} where Qk = [T̂ ]k − [T ]k. Let ϕkn(·) := ekn(·)t[T ]−1

kn
[g]kn . Observe
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[T̂ ]kn [ϕkn ]kn − [ĝ]kn = n−1
∑n

i=1 fkn(Wi)(ϕkn(Zi)− Yi) and hence, for all 1 6 j 6 mn

n−1/2
n∑
i=1

fj(Wi)
(
Ui + ekn(Zi)

t
(
[ϕkn ]kn − [T̂ ]−1

kn
[ĝ]kn

)
+ ϕ0(Zi)− ϕkn(Zi)

)
= n−1/2

n∑
i=1

(
fj(Wi)Ui + E

[
fj(W )ekn(Z)t

]
[T ]−1

kn
fkn(Wi)

(
ϕkn(Zi)− Yi

))
− n−1/2

n∑
i=1

E
[
fj(W )ekn(Z)t

]
[T ]−1

kn
Qkn [T̂ ]−1

kn
fkn(Wi)

(
ϕkn(Zi)− Yi

)
+
(
n−1

n∑
i=1

fj(Wi)ekn(Zi)
t−E

[
fj(W )ekn(Z)t

])
[T̂ ]−1

kn

(
n−1/2

n∑
i=1

fkn(Wi)
(
ϕkn(Zi)−Yi

))
+ n−1/2

n∑
i=1

(
ϕ0(Zi)− ϕkn(Zi)

)
fj(Wi) = Anj + Bnj + Cnj +Dnj . (A.18)

Consider Anj . The random variables Uif
τ
j (Wi)+E

[
f τj (W )ekn(Z)t

]
[T ]−1

kn
fkn(Wi)

(
ϕkn(Zi)−

Yi
)
, 1 6 j 6 mn, are centered with bounded second moment. More precisely, condition

T ∈ T υd,D together with Lemma A.1 of Breunig and Johannes [2011] yields

E
∣∣E[fj(W )ekn(Z)t][T ]−1

kn
fkn(W )

(
ϕkn(Z)−Y

)∣∣2 6 2D

kn∑
l=1

υ−1
l [T ]2jl(σ

2+C(γ)η2‖ϕ−ϕkn‖2γ).

Moreover, exploiting condition T ∈ T υd,D yields
∑kn

l=1 υ
−1
l [T ]2jl = ‖Fkn

√
∇1/υT

∗fj‖2W 6

‖T
√
∇∗1/υ‖

2 6 d. In addition we calculate for all 1 6 j 6 mn

E
∣∣Uf τj (W ) + E

[
f τj (W )ekn(Z)t

]
[T ]−1

kn
fkn(W )(ϕkn(Z)− Y )

∣∣4 = O(kn)

since ‖E[f τj (W )ekn(Z)t][∇υ]
−1/2
kn
‖4 =

(∑kn
l=1 υ

−1
l [T ]2jl

)2
6 d4 and E |fj(W )(Y −ϕkn(Z))|4 =

O(1) (cf. Lemma A.1 of Breunig and Johannes [2011]). Thus, with the fourth moment
growing only at rate kn, by following line by line the proof of Lemma A.2 it is easily seen

that (
√

2ςnp
mn)

(∑mn
j=1 τjA

2
nj − µ

np
mn

) d→ N (0,Vnp). Note that E1Ωckn
= P(Ωc

kn
) = o(1) (cf.

proof of Proposition 3.1 of Breunig and Johannes [2011]) and, hence 1Ωkn
= 1 + op(1).

Consider Bnj . By employing ‖[T̂ ]−1
k ‖1fk 6 2‖[T ]−1

k ‖ and ‖[T̂ ]−1
k ‖

2
1Ωk 6 n for all k > 1 it

follows

mn∑
j=1

B2
nj 1Ωkn

=

mn∑
j=1

B2
nj 1Ωkn

(1fkn +1fckn
)

6
∥∥E[fmn(W )ekn(Z)t][T ]−1

kn

∥∥2
(

4‖[T ]−1
kn
‖2‖Qkn‖2‖n−1/2

n∑
i=1

fkn(Wi)
(
ϕkn(Zi)− Yi

)
‖2

+ n‖Qkn‖2‖n−1/2
n∑
i=1

fkn(Wi)
(
ϕkn(Zi) − Yi

)
‖2 1fckn

)
Condition T ∈ T υd,D implies ‖E f τmn(W )ekn(Z)t[T ]−1

kn
‖2 6 D‖E f τmn(W )ekn(Z)t[∇υ]

−1/2
kn
‖2.

Moreover, let K be a linear operator on L2
Z with eigenvalue decomposition {υ1/2

j , ej}j>1
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and let Skn = {φ ∈ Ekn , ‖φ‖Z = 1}, then by the spectral theorem

‖E fmn(W )ekn(Z)t[∇υ]
−1/2
kn
‖2 = sup

φ∈Skn

mn∑
j=1

∣∣ kn∑
l=1

[T ]jlυ
−1/2
l [φ]l

∣∣2
= sup

φ∈Skn

mn∑
j=1

[TK−1φ]2j 6 sup
φ∈Skn

‖TK−1φ‖2W 6 d sup
φ∈Skn

‖K−1φ‖2υ = d.

Now n‖Qkn‖2 = Op(k
2
n) and ‖n−1/2

∑n
i=1 fkn(Wi)

(
ϕkn(Zi)−Yi

)
‖2 = Op(kn) due to Lemma

A.1 of Breunig and Johannes [2011]. In addition similarly to their proof of Proposition
3.1 it can be seen that n‖Qkn‖2‖n−1/2

∑n
i=1 fkn(Wi)

(
ϕkn(Zi) − Yi

)
‖2 1fckn = op(1). Con-

sequently,
∑mn

j=1B
2
nj 1Ωkn

= op(1). Similarly, it is easily seen that
∑mn

j=1C
2
nj 1Ωkn

= op(1)

and
∑mn

j=1D
2
nj = op(1). Hence, since 1Ωkn

= 1 + op(1) the result follows similarly to the
proof of Theorem 3.2.

Proof of Proposition 5.3. Consider the case ς−1
mn = o(1). Similar to the proof of Propo-

sition 3.3 it is sufficient to show

〈n−1
n∑
i=1

δ(Zi)f
τ
mn(Wi), n

−1/2
n∑
i=1

(ϕ0(Zi)− ϕ̂kn(Zi))f
τ
mn(Wi)〉 = op(

√
ςmn). (A.19)

Due to the link condition T ∈ T υd,D we obtain

mn∑
j=1

τj [Tδ]j
1√
n

n∑
i=1

(ϕkn(Zi)−ϕ̂kn(Zi))fj(Wi) 6
√
dn‖Tδ‖τ‖ϕkn−ϕ̂kn‖υ+op(1) = op(ςmn).

As in the proof of Theorem 5.1 it can be seen
∑mn

j=1 τj [Tδ]j
∑n

i=1(ϕ0(Zi)−ϕkn(Zi))fj(Wi) =

op(
√
nςmn) and, hence equation (A.19) holds true. Consider the case

∑mn
j=1 τ

2
j = O(1).

We make use of decomposition (A.18) where Ui is replaced by Ui + n−1/2δ(Zi). Simi-

larly to the proof of Proposition 2.4 it is seen that (
√

2ςnp
mn)−1

(∑mn
j=1 τjA

2
nj − µnp

mn

) d→
N
(
(
√

2ςnp
∞ )−1‖Tδ‖2τ ,Vnp

)
. Thereby, due to the proof of Theorem 3.2, the assertion fol-

lows.

Proof of Proposition 5.4. Similar to the proof of Proposition 3.4.

Proof of Proposition 5.5. We make use of inequality (A.8) where ϕ̆k is replaced by

ϕ̂kn . From the proof of Proposition 5.1 we infer
∥∥n−1/2

∑n
i=1(ϕ̂kn(Zi)−ϕ0(Zi))f

τ
mn(Wi)

∥∥2
=

op(ςmn) and

〈n−1
n∑
i=1

(ϕ(Zi)− ϕ̂kn(Zi))f
τ
mn(Wi),

n∑
i=1

Uif
τ
mn(Wi)〉

= 〈n−1
n∑
i=1

(ϕ(Zi)− ϕ0(Zi))f
τ
mn(Wi),

n∑
i=1

Uif
τ
mn(Wi)〉+ op(ςmn)

uniformly over all ϕ ∈ J ρn . Consequently, by using inequality (A.15) and following line
by line the proof of Proposition 2.6, the assertion follows. In case of

∑mn
j=1 τ

2
j = O(1) the

assertion follows similarly.
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A.5. Technical assertions.

Let us introduce Xii′ :=
√

2(ςmnn)−1
∑mn

j=1 UiUi′f
τ
j (Wi)f

τ
j (Wi′) and

Qni :=

{ ∑i−1
l=1 Xli, for i = 2, . . . , n,

0, for i = 1 and i > n.
(A.20)

Then clearly

(
√

2ςmnn)−1
∑
i 6=i′

mn∑
j=1

UiUi′f
τ
j (Wi)f

τ
j (Wi′) =

√
2(ςmnn)−1

∑
i<i′

mn∑
j=1

UiUi′f
τ
j (Wi)f

τ
j (Wi′)

=
∑
i<i′

Xii′ =

n∑
i=1

Qni.

Let Bni := B((Z1, Y1,W1), . . . , (Zi, Yi,Wi)), 1 6 i 6 n, n > 1, be the σ-algebra generated
by (Z1, Y1,W1), . . . , (Zi, Yi,Wi). Since Uif

τ
j (Wi), 1 6 i 6 n, are centered random vari-

ables it follows that {(
∑i

i′=1Qni′ ,Bni), i > 1} is a Martingale for each n > 1 and hence
{(Qni,Bni), i > 1} is a Martingale difference array for each n > 1. Moreover, it satisfies the
conditions of Proposition A.1 as shown in the following technical result.

Proposition A.1. If {(Qni,Bni), i > 1} is a Martingale difference array for each n > 1
satisfying conditions

∞∑
i=1

E |Qni|2 6 1 for all n > 1, (A.21)

∞∑
i=1

Q2
ni = ν + op(1) for some constant ν > 0, (A.22)

sup
i>1
|Qni| = op(1) (A.23)

then
∞∑
i=1

Qni
d→ N(0, ν).

Proof. See Awad [1981].

Note that this result has been also applied by Ghorai [1980] to establish asymptotic nor-
mality of an orthogonal series type density estimator.

Lemma A.2. Let Qni be defined as in (A.20). Let Assumptions 1–4 be satisfied and assume

mn

(∑mn
j=1 τ

2
j

)2
= o(n). Then the conditions (A.21)–(A.23) hold true where ν = 1 if ς−1

mn =

o(1) and ν = 1 +
(
4/3ς4

∞
)∑∞

j,j′,l,l′=1 ςjj′ςll′ςjlςj′l′ if
∑mn

j=1 τ
2
j = O(1).

Proof. Proof of (A.21). Observe that E[X1iX1i′ ] = 0 for i 6= i′ and thus, for i = 2, . . . , n we
have

E |Qni|2 = E |X1i+· · ·+Xi−1,i|2 = (i−1)E |X12|2 =
2(i− 1)

n2ς2
mn

E |
mn∑
j=1

U1f
τ
j (W1)U2f

τ
j (W2)|2

=
2(i− 1)

n2ς2
mn

mn∑
j,j′=1

(EU2f τj (W )f τj′(W ))2 =
2(i− 1)

n2
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by the definition of ςmn . Thereby, we conclude

n∑
i=1

E |Qni|2 =
2

n2

n−1∑
i=1

i =
n(n− 1)

n2
= 1− 1

n
(A.24)

which proves (A.21).
Proof of (A.22). We make use of the decomposition

∣∣ n∑
i=1

Q2
ni

∣∣2 =
n∑
i=1

Q4
ni +

∑
i 6=i′

Q2
niQ

2
ni′ =: In + IIn. (A.25)

Consider In. Observe that

E |Qni|4 = E
∣∣ i−1∑
i′=1

Xi′i

∣∣4 = E
∣∣∣ √2

nςmn

mn∑
j=1

τjUifj(Wi)

i−1∑
i′=1

Ui′fj(Wi′)
∣∣∣4

6
4mn

n4ς4
mn

( mn∑
j=1

τ2
j

)2
mn∑
j=1

E |Ufj(W )|4 E
∣∣∣ i−1∑
i′=1

Ui′fj(Wi′)
∣∣∣4

=
4mn

n4ς4
mn

( mn∑
j=1

τ2
j

)2
mn∑
j=1

E |Ufj(W )|4
(

(i− 1)E |Ufj(W )|4 + 3(i− 1)(i− 2)ς2
jj

)
where we used that E[Ufj(W )] = 0. Since

∑n
i=1 3(i− 1)(i− 2) = n(n− 1)(n− 2) (proof by

induction) and τ is nonincreasing with τ1 = 1 we conclude

n∑
i=1

EQ4
ni 6

4mn

n4ς4
mn

( mn∑
j=1

τ2
j

)2(n(n− 1)

2

mn∑
j=1

(E |Ufj(W )|4)2+n(n−1)(n−2)

mn∑
j=1

ς2
jj E |Ufj(W )|4

)
By using Assumptions (1) and (2), i.e., supj∈N E[f4

j (W )] 6 η4 and E[U4|W ] 6 σ4, we

get max16j6mn E |Ufj(W )|4 6 η4σ4 and thus,
∑n

i=1 E |Qni|4 = o(1). Consider IIn. We
calculate for i < i′

Q2
niQ

2
ni′ =

( i−1∑
k=1

X2
ki

)( i′−1∑
k=1

X2
ki′

)
+
( i−1∑
k=1

X2
ki

)( i′−1∑
k 6=k′

Xki′Xk′i′

)

+
( i−1∑
k 6=k′

XkiXk′i

)( i′−1∑
k=1

X2
ki′

)
+
( i−1∑
k 6=k′

XkiXk′i

)( i′−1∑
k 6=k′

Xki′Xk′i′

)
=: Aii′ + Bii′ + Cii′ + Dii′ .

Consider Aii′ . By exploiting relation (A.24) we have

E
∣∣ n∑
i=1

i−1∑
k=1

X2
ki−1

∣∣2 =

n∑
i,i′=1

EAii′−2

n∑
i=1

(i−1)E |X12|2 +1 =

n∑
i,i′=1

EAii′−1+o(1). (A.26)

It is easily seen that EAii′ = 2(i − 1)EX2
12X

2
23 + (i − 1)(i′ − 3)(EX2

12)2. Moreover, since∑
i<i′(i − 1) =

∑n
i′=1

∑i′−1
i=1 (i − 1) =

∑n
i′=1(i′ − 1)(i′ − 2)/2 = n(n − 1)(n − 2)/6 and
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∑
i<i′(i− 1)(i′ − 3) =

∑n
i′=1(i′ − 3)(i′ − 2)(i′ − 1)/2 = n(n− 1)(n− 2)(n− 3)/8 (proof by

induction) we obtain

2
∑
i<i′

EAii′ = 4EX2
12X

2
23

∑
i<i′

(i− 1) + 2(EX2
12)2

∑
i<i′

(i− 1)(i′ − 3)

=
8n(n− 1)(n− 2)

3n4ς4
mn

( mn∑
j,j′,l,l′=1

ςjj′ςll′ EU4f τj (W )f τj′(W )f τl (W )f τl′ (W )
)

+
n(n− 1)(n− 2)(n− 3)

n4
.

Moreover, by applying Cauchy Schwarz’s inequality twice

mn∑
j,j′,l,l′=1

ςjj′ςll′ EU4f τj (W )f τj′(W )f τl (W )f τl′ (W ) 6 max
16j6mn

E |Ufj(W )|4
( mn∑
j, j′=1

√
τjτj′ςjj′

)2

6 σ4η4ς2
mnmn

mn∑
j=1

τ2
j .

Thereby, since mn
∑mn

j=1 τ
2
j = o(n) it holds 2

∑
i<i′ EAii′ = 1+o(1). Obviously

∑n
i=1 EAii =

o(1). Hence decomposition (A.26) yields 2
∑

i<i′ Aii′ = 1 + op(1). Now consider Bii′ . Since(∑mn
l=1 ςll

)2
6 mn

∑mn
l=1 ς

2
ll 6 mnς

2
mn and ςjj′ = EU2f τj (W )f τj′(W ) we conclude

|EBii′ | =
∣∣2 i−1∑
k=1

EX2
kiXki′Xii′

∣∣
6

8(i− 1)

n4ς4
mn

mn∑
j,j′,l,l′=1

|ςll′ EU3f τj (W )f τj′(W )f τl (W )EU3f τj (W )f τj′(W )f τl′ (W )|

6
8(i− 1)

n4ς4
mn

( mn∑
l,l′=1

ςll′
√
ςllςl′l′

)( mn∑
j,j′=1

E |U2f τj (W )f τj′(W )|2
)

6
8(i− 1)

n4ς4
mn

( mn∑
l,l′=1

ς2
ll′

)1/2( mn∑
l=1

ςll

)
E ‖Uf τmn(W )‖4 6

8(i− 1)
√
mn

n4ς2
mn

E ‖Uf τmn(W )‖4.

Estimate (A.1), i.e., E ‖Uf τmn(W )‖4 6 η4σ4mn
∑mn

j=1 τ
2
j , yields

∑
i<i′ |EBii′ | = o(1) as

n→∞. Also it is easily seen that ECii′ = 0 and hence
∑

i<i′ ECii′ = 0. For Dii′ we treat
two cases seperately. First consider the case ς−1

mn = o(1). Using twice the law of iterated
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expectation gives

EDii′ = E
( i−1∑
k 6=k′

XkiXk′i

)( i′−1∑
k 6=k′

Xki′Xk′i′

)
= 4

i−1∑
k<k′

EXkiXk′iXki′Xk′i′

= 4

i−1∑
k<k′

E
[
XkiXk′i E[Xki′Xk′i′ |(Yk, Zk,Wk), (Yk′ , Zk′ ,Wk′), (Yi, Zi,Wi)]

]
=

8

n2ς2
mn

i−1∑
k<k′

E
[
E[XkiXk′i|(Yk, Zk,Wk), (Yk′ , Zk′ ,Wk′)]

mn∑
j,j′=1

ςjj′Ukf
τ
j (Wk)Uk′f

τ
j′(Wk′)

]
=

8

n4ς4
mn

E
∣∣∣ mn∑
j,j′=1

ςjj′U1f
τ
j (W1)U2f

τ
j′(W2)

∣∣∣2(i− 1)(i− 2)

=
8

n4ς4
mn

mn∑
j,j′,l,l′=1

ςjj′ςll′ςjlςj′l′(i − 1)(i − 2).

Since
∑mn

j,j′,l,l′=1 ςjj′ςll′ςjlςj′l′ 6 ς
2
mn and ς−1

mn = o(1) we obtain

∑
i<i′

EDii′ 6
8

n4ς2
mn

∑
i<i′

(i− 1)(i− 2) =
2n(n− 1)(n− 2)(n− 3)

3ς2
mnn

4
= o(1)

and hence 2
∑

i<i′ EQ2
niQ

2
ni′ = 1+o(1). Second, consider the case

∑mn
j=1 τ

2
j = O(1). It holds

n∑
i,i′=1

Dii′ =
(

2(nςmn)−2
n∑
i=1

mn∑
j,j′=1

ςjj′
i−1∑
k 6=k′

UkUk′f
τ
j (Wk)f

τ
j′(Wk′)

)2
+ op(1). (A.27)

Indeed, condition
∑mn

j=1 τ
2
j = O(1) yields

E
∣∣∣ 2

(nςmn)2

n∑
i=1

mn∑
j,j′=1

(
U2
i f

τ
j (Wi)f

τ
j′(Wi)− ςjj′

) i−1∑
k 6=k′

UkUk′f
τ
j (Wk)f

τ
j′(Wk′)

∣∣∣2
6

4

(nςmn)4

n∑
i=1

mn∑
j,j′=1

τ2
j τ

2
j′ E |U2fj(W )fj′(W )|2 E

∣∣∣ i−1∑
k 6=k′

UkUk′fj(Wk)fj′(Wk′)
∣∣∣2

6
4σ8η8

(nςmn)4

( mn∑
j=1

τ2
j

)2
n∑
i=1

(i − 1)(i − 2) = o(1)

which proves (A.27). Moreover, since

E
∣∣∣ 2

(nςmn)2

n∑
i=1

mn∑
j,j′=1

ςjj′
i−1∑
k 6=k′

UkUk′f
τ
j (Wk)f

τ
j′(Wk′)

∣∣∣2
=

4n

(nςmn)4

n∑
i=1

i−1∑
k 6=k′

E
∣∣∣ mn∑
j,j′=1

ςjj′UkUk′f
τ
j (Wk)f

τ
j′(Wk′)

∣∣∣2 =
4

3 ς4
mn

mn∑
j,j′,l,l′=1

ςjj′ςll′ςjlςj′l′+o(1)
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and

E
∣∣∣ 2

(nςmn)2

n∑
i=1

mn∑
j,j′=1

ςjj′
i−1∑
k 6=k′

UkUk′f
τ
j (Wk)f

τ
j′(Wk′)

∣∣∣4
=

16

n6ς8
mn

n∑
i,i′=1

i−1∑
k 6=k′

i′−1∑
l 6=l′

E
∣∣∣ mn∑
j,j′=1

ςjj′UkUk′f
τ
j (Wk)f

τ
j′(Wk′)

∣∣∣2∣∣∣ mn∑
j,j′=1

ςjj′UlUl′f
τ
j (Wl)f

τ
j′(Wl′)

∣∣∣2
=

16

n6ς8
mn

n∑
i,i′=1

(i− 1)(i− 2)(i′− 3)(i′− 4)
(
E
∣∣U1U2

mn∑
j,j′=1

ςjj′f
τ
j (W1)f τj′(W2)

∣∣2)2
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=
16

9ς8
mn

( mn∑
j,j′,l,l′=1

ςjj′ςll′ςjlςj′l′
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+ o(1)

it holds

E
∣∣∣( 2

(nςmn)2

n∑
i=1

mn∑
j,j′=1

ςjj′
i−1∑
k 6=k′

UkUk′f
τ
j (Wk)f

τ
j′(Wk′)

)2
− 4

3 ς4
mn

mn∑
j,j′,l,l′=1

ςjj′ςll′ςjlςj′l′
∣∣∣2 = o(1).

In light of equality (A.27) we have shown

n∑
i,i′=1

Dii′ =
4

3 ς4
mn

mn∑
j,j′,l,l′=1

ςjj′ςll′ςjlςj′l′ + op(1).

Consequently, 2
∑

i<i′ EQ2
niQ

2
ni′ = 1 + (4/3ς4

∞)
∑∞

j,j′,l,l′=1 ςjj′ςll′ςjlςj′l′ + o(1) which, in light
of decomposition (A.25), completes the proof (A.22).
Proof of (A.23). Note that P

(
supi>1 |Qni| > ε

)
6
∑n

i=1 P
(
Q2
ni > ε2

)
and, hence the

assertion follows from the Markov inequality.

Consider the function δ ∈ L4
Z introduced in Subsection 2.3. Let us denote

Q̃ni =
√

2(ςmnn)−1
i−1∑
i′=1

mn∑
j=1

τj(Ui+n
−1/2δ(Zi))fj(Wi)

(
(Ui′+n

−1/2δ(Zi′))fj(Wi′)−n−1/2[Tδ]j
)
.

Lemma A.3. Under the conditions of Theorem 2.2 the process {(Q̃ni,Bni), i > 1} satisfies
the conditions of Proposition A.1.

Proof. From the definition of Q̃ni we infer that {(
∑i

i′=1 Q̃ni′ ,Bni), i > 1} is a Martin-

gale and, in particular {(Q̃ni,Bni), i > 1} forms a Martingale difference array. More-
over, following line by line the proof of Lemma A.2 it is easy to see that Q̃ni satis-

fies conditions (A.21)–(A.23). Now Proposition A.1 yields In
d→ N (0, ν) where ν =

1 +
(
4/3ς4

∞
)∑∞

j,j′,l,l′=1 ςjj′ςll′ςjlςj′l′ , which completes the proof.
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