

Assessing cloud development platforms – What Platform as a Service
offers and what not

Oliver Gaß1, Hendrik Meth2 and Alexander Maedche1,2

1 Chair of Information Systems IV, University of Mannheim
gass@eris.uni-mannheim,de

2 Institute for Enterprise Systems
{meth, maedche}@uni-mannheim.de

Working Paper Series in Information Systems

No. 3

July 26th 2012

University of Mannheim,
Business School,
Area Information Systems

http://bwl.uni-mannheim.de
Chair of Information Systems I, Prof. Dr. A. Heinzl
Chair of Information Systems II, Prof. Dr. C. Becker
Chair of Information Systems III, Prof. Dr. M. Schader
Chair of Information Systems IV, Prof. Dr. A. Mädche
Dieter Schwarz Chair of Business Administration, E-Business and E-Government, Prof. Dr. D. Veit

University of Mannheim,
Institute for Enterprise
Systems (InES)

http://ines.uni-mannheim.de

Working papers are intended to make results of our research promptly available in order to share ideas and encourage discussion and
suggestions for revisions. The authors are solely responsible for the contents.

1

Assessing	cloud	development	platforms	‐	What	Platform	as	a	

service	offers	and	what	not	

John McCarthy, an early pioneer in computer science research, first formulated the vision of

computing as a utility in a speech at the MIT Centennial in 1961: “If computers of the kind I

have advocated become the computers of the future, then computing may someday be

organized as a public utility just as the telephone system is a public utility”. Cloud computing

appears to be the latest and most mature materialization of this dream and has rapidly

become a computing paradigm of great interest to the software research and practitioner

community [1] [2].

Cloud computing promises virtually unlimited computing power and storage capabilities, a

wide variety of application platforms and new service offers. Similar to the software stack on

a local computer, the cloud is usually clustered into three major service levels: infrastructure

as a service (IaaS) provides pure hardware and system software without any application

level service using a pay-per-use pricing model [3]. Platform as a service (PaaS) furnishes a

broad spectrum of elaborated application-level services and offers an execution and

development environment on top of a cloud infrastructure [4]. It thereby enables the delivery

of cloud services without the cost and complexity of buying and managing the underlying

infrastructure. Finally, software as a service (SaaS) provides applications that run in the

cloud and provide a direct service to the end user [5]. Developers can build and deploy

cloud applications directly on IaaS infrastructure or use predefined capabilities of a PaaS

solution (see figure 1) [4].

PaaS e

are acc

grows [6

vendors

promote

product

capabili

the enti

the cor

laboriou

compon

be leve

features

capabili

In the la

of capa

existing

Current

Some p

nables dev

cessible like

6]. While so

s combine t

ed advanta

tivity the sy

ities which

re develop

rresponding

us setup a

nents such

eraged. Thi

s which are

ities are usu

ast years, a

abilities hav

 SaaS pro

ly, the mar

platforms fo

Figure 1

velopers to

e regular w

ome platfor

hem into a

ages of P

ystems are

are assum

ment infras

g patches a

and mainte

as pre-defi

rd, the dev

e supposed

ually provide

a significant

ve appeare

oducts, whi

rket of Paa

ocus on reg

1: Alternative w

implement

web applicat

ms focus o

single prod

PaaS-based

supposed

ed to have

structure inc

are provide

enance ac

ned objects

velopment

d to simplif

ed via web-

t number of

ed. Some P

le others a

aS solutions

ular progra

2

ways to build an

or upload t

tions and a

n either dev

duct offering

d developm

to offer. Pa

e positive ef

cluding hard

ed as a pa

ctivities [7]

s or built-in

is often su

fy the creat

-based inste

f different P

PaaS offeri

are function

s is charac

amming of a

nd deploy cloud

their applica

are automa

velopment o

g [4]. One of

ment is th

aaS include

ffects on de

dware, data

ayable serv

. Second,

n access an

upported by

tion of app

ead of local

PaaS solutio

ings emerg

nal extensio

cterized by

applications

d applications

ations in the

tically scale

or executio

f the potent

he increase

es several

evelopment

abases, ope

vice, freein

the platfo

nd security

y wizards a

plications. T

 developme

ons with an

ged as exte

ons of form

two develo

s (but in a c

e cloud wh

ed up whe

n capabilitie

tial and also

e in deve

characteris

t productivi

erating sys

g develope

orms offer

features wh

and point a

These confi

ent environm

n overlappin

ensions of

mer IaaS o

opment par

cloud enviro

ere they

n usage

es, most

o heavily

elopment

stics and

ty: First,

tem and

ers from

shared

hich can

and click

iguration

ments.

ng range

already

offerings.

radigms:

onment),

3

e.g., Google apps, while some others promote a configuration-before-coding paradigm

requiring less programming (e.g., force.com).

While potential advantages of PaaS are intensively promoted in marketing brochures, most

vendors provide little guidance about the limitations of their advertised solution. In order to

decide whether to further develop PaaS at all and subsequently pick a specific solution,

developers have to look beyond the shiny marketing brochures and identify the relevant

technological details necessary to make an informed decision. Unfortunately, those details

are often distributed over countless manuals, training tutorials or posts in the developer

community. Finding the important information may become very time-consuming and

frustrating, especially if one has no previous experience with PaaS technology and therefore

does not know what to look for in the first place. PaaS technology, as any other technology,

has its unique characteristics which make developing often easier, sometimes harder and in

some cases even impossible. Developers must be aware of these unique characteristics in

order to quickly identify the technical and non-technical details and make a well-founded

decision whether a particular PaaS solution suits their own needs or not. The findings of this

article help developers to arrive at an informed decision in two ways:

First, we use a real-world software development project to derive a general taxonomy of

functional and nonfunctional characteristics of PaaS technology. Second, we apply this

taxonomy to three contemporary PaaS offers to assess each one individually, but also learn

about the current stage of PaaS technology as a whole. These findings help developers to

create awareness of important characteristics and the strengths and weaknesses of current

product offerings, but also help them to realize what PaaS as a whole can currently offer and

what not.

A	taxonomy	to	assess	PaaS	solutions	

We developed the taxonomy based on data collected during a four month case-study

conducted as part of a master’s course at our university: 19 developer groups comprising

4

three master’s students each were formed and asked to implement a cloud based alumni

network solution. The key requirements for the alumni solution included:

 self-service capabilities to allow each alumni to maintain their own profile

 social network capabilities to connect and communicate with other alumni

 event management functionalities to plan and organize alumni events and manage

the guest list (including RSVPs)

 integration of external web services to provide a variety of additional features, such

as weather forecasts for alumni events or routing information

 tracking of historic data to see the development of an alumni network

Each group was presented with the same set of requirements and randomly assigned to one

out of three commercial PaaS products. The requirements were handed out in the form of

listed features and additive sketches illustrating particular functionalities. Data was collected

at several discrete points during the twelve weeks’ timeframe of the software development

project. At the beginning, we gathered control variables such as existing programming skills

and previous experience with PaaS solutions. During the project, each team had to keep a

developer diary, tracking every implemented requirement, the time needed and any platform-

related obstacles they encountered. After the twelve weeks, the teams were also required to

reflect on the project and hand in a project report. We advised the groups to focus on the

perceived strengths and weaknesses of the used PaaS technology and explicitly track when

a particular characteristic of the platform facilitated or hindered the realization of a

requirement.

Each group submitted a working prototype and delivered a developer diary. In addition, we

collected 19 reports with an average size of 25 pages. In the following qualitative data

analysis, the research team evaluated the prototypes, developer diaries and project reports.

First, we marked positive or negative quotes made in the diaries and reports. In a second

step, we assigned codes of a similar abstraction level to the identified quotes. We then

5

continued with clustering similar codes to derive functional or nonfunctional characteristics.

Identified characteristics were only considered if they were sufficiently grounded in the

documents via multiple instances (at least by half of the groups). Discrepancies among the

groups, e.g., differing comments on platform capabilities, were analyzed and resolved. If

groups reported missing capabilities, we cross-checked their statements with the official

platform documentation and, if necessary, dismissed faulty claims. In summary, data analysis

identified ten final functional and nonfunctional characteristics of PaaS technology which

were either perceived as beneficial or hindering in a software development project. The

identified characteristics refer to four major questions which arise whenever the decision

whether or not to use PaaS has to be made (see table 1).

First, what shared components are provided by the platform? This question strongly relates

to the degree developers can save effort by reusing existing components shared among all

applications running on the platform. Four platform components were identified as relevant

for developers: Access and Security Controls, which are functionalities to control access of

users and the access to data (e.g., platform-wide user-management or discretionary,

mandatory and role-based access controls). Capabilities which are related to the

management of data, including predefined data models or automatically provided create,

read, update and delete (CRUD) queries. Such capabilities are often characterized by

restrictions regarding the modeling of data or missing capabilities of the supported query

language (e.g., no JOIN operator). Platform connectivity functionalities assist in establishing

inbound and outbound connections to other applications on the same platform or external

web services. Typical aspects that need to be considered in this context are the availability of

API access, support of protocols (e.g., SOAP) and connectors to popular web services (e.g.,

Google or Facebook). Templates and reusable building blocks summarize all elements

provided by the platform which can be adjusted and used for individual applications. Such

building blocks are application templates for particular use-cases (e.g., for a CRM use-case),

6

user-interface components (e.g., calendar widgets), predefined object types (e.g., objects to

store contact information) or workflow templates (e.g., order processing).

Second, how well can the shared functionality be adjusted to one’s own needs and, if

necessary, extended? The answer to this question is defined by the configuration and

programming capabilities of the platform. Configuration characteristics relate to the

capabilities of developers to adjust a platform just by customizing the parameters of existing

functionalities. A very important aspect in this matter is the degree of flexibility the platform

supports. For example, does a platform allow adjustments to core components of its

architecture (e.g., relations between core business objects) or does it restrict changes to only

secondary parameters (e.g., layout of elements of a form, help texts, etc.)? Programming

capabilities describe the possibilities of developers to complement the functionalities of the

platform with custom code. This is often necessary when requirements exceed the flexibility

of existing components and developers have to use custom code to extend or even replace

some components. Two aspects are important in this matter: First, what are the possibilities

to add custom code? Are there predefined exits for custom code, e.g. exits for server-side

validity checks, or does the platform build on a modularized architecture which allows the

replacement of core components such as the complete front-end or CRUD methods? Also,

what are the capabilities of the programming languages supported to implement custom

code? Some platforms support established programming languages such as JavaScript or

Java to implement extensions; other vendors however promote their own proprietary

programming language with only limited functionalities. Also, most configuration-centric

platforms offer several, yet less comprehensive, ways to include custom code.

Third, w

relates

develop

as the m

that the

what tools a

to one ke

ped in a bro

major devel

e latter still

Table 1: Tax

are provide

ey characte

owser based

opment too

l has some

xonomy of fun

d for devel

eristic of P

d IDE. Even

ol, previous

e conceptu
7

nctional and no

lopment an

PaaS, name

n though mo

experience

ual disadva

nfunctional ch

d how well

ely that ap

ost vendors

e with web-b

ntages com

aracteristics

 do they w

pplications

s promote th

based user

mpared to

work? This q

are predo

heir web-ba

interfaces i

local solut

question

minantly

ased IDE

ndicates

ions [8].

8

Therefore, the availability and the capabilities of additional local tools, for example Eclipse

based IDEs or tools for data management, also need to be considered.

Fourth, how much knowledge is necessary for development and how easy can this

knowledge be acquired? The last question relates to the learnability of the platform. The

learnability addresses the issue of how much pre-existing knowledge, or previous

experience, applies in the context of the platform. If the required knowledge is not available,

either because the developer is inexperienced or because the platform is unique apart from

common customizing or developing paradigms, the aspect of how the necessary knowledge

can be acquired arises. Typically vendors provide documentation material in the form of

manuals and tutorials. Developers also benefit greatly from available developer communities

which help solve specific problems which are not addressed by the official documentation.

A	review	of	three	commercial	PaaS	products

Having the general taxonomy on hand, we were eager to determine the current state of

practice in PaaS technology. In order to do that we looked at each platform separately and

calculated how well developers assessed the implementation of a particular functional or

nonfunctional characteristic. This was done for each group and characteristic by weighing the

negative and positive comments. The resulting values were then normalized to a discrete

scale with -1 for predominantly negative comments, 0 for balanced comments and 1 for

predominantly positive comments. The normalized opinion values of the groups were then

summed up to calculate the average opinion value for a given characteristic and a given

platform. Afterwards, we mapped the resulting averages to a 5 point scale (++, +, o, -, --) to

emphasize that our values merely represent a general tendency rather than a particular

number value. The industry average was calculated based on the averages of the three

platforms in each characteristic and then mapped to the same point scale.

9

Table 2 displays the value of each platform and the average for each characteristic. In

summary, the table reveals significant differences in particular characteristics among the

platforms (e.g., reusable building blocks), but also unveils common strengths and

weaknesses across all three solutions (e.g., DBMS). However, what are the reasons for

these significant differences in developer evaluation? The next few paragraphs look into

each characteristic and each platform separately to determine the design decisions which

lead to a positive or negative evaluation.

As described earlier, all three platforms provide ready-to use, shared components to speed

up the development process. One of these components is access and security controls. For

applications which do not have very elaborate access and security requirements, the

features provided by PaaS applications are often sufficient. In contrast, if an application is

built from scratch without using a platform, the provision of according features is a

standardized activity, which nevertheless requires significant development efforts. In the

case of PaaS usage, these kinds of commodity features are already sufficiently provided by

the platforms, allowing developers to concentrate their efforts on more challenging and

differentiating functionality. Respectively, developers graded those capabilities overall

positively. All platforms apply well-known concepts from enterprise solutions by regulating

access based on user profiles, user roles and user accounts. Differences exist in the level of

detail of how access can be restricted. Platform 1, which received the best feedback, allows

the regulation of access down to particular attributes of business objects. In contrast,

platform 3 regulates user rights at the level of business objects. Even though this simplified

approach reduces complexity, it was overall perceived negatively by developers since the

restrictions overweighed the positives. In particular, platform 1 exemplified that a well

thought-through concept for access and security controls can limit complexity without

reducing functionality and achieves a high appreciation among developers.

PaaS te

accesse

reduce

Our stu

perceive

weakne

accessi

the mod

These w

and req

particula

platform

to use w

some o

and flex

scenario

DBMS c

echnology

ed with a s

the comple

udy reveals

ed negative

ess: the re

ng of data

deling of da

workaround

quired the im

ar amount

ms did not s

workaround

f them may

xibility whe

os, just as

characterist

replaces th

standardize

exity of man

s that the

ely. It see

educed com

also comes

ata. N:M rel

ds prevente

mplementat

of data se

support a JO

s. The desc

y not be im

en modeling

the observ

tics turned o

Table 2:

he complex

d approach

naging data

current cap

ms that th

mplexity wh

s with many

ations, for

ed the use

tion of cust

ets or restri

OIN operato

cribed restr

portant for

g or acces

ved alumni

out negative

10

 Score of asses

x of proble

h. Therefore

a are of grea

pabilities o

he greatest

hich is the

y constraint

example, w

of preexist

tom queries

icted in run

or in custom

rictions were

simpler bu

ssing data

network ca

e for all thre

ssed platforms

em how da

e, capabilit

at importan

f platforms

t strength

e result of

s. All three

were only po

ting CRUD

s. Custom q

n-time. To

m queries, w

e systemati

siness case

is of high

ase. Conse

ee platforms

ata is mode

ies of the

ce for the e

 to manag

of PaaS is

standardiz

evaluated

ossible by u

methods o

queries wer

make thing

which again

c for all thre

es, a great

relevance

quently, the

s.

eled and h

platform he

evaluation o

ge data are

s also its

zed model

platforms re

using worka

of business

re often lim

gs worse, a

n forced dev

ree platform

degree of

for more

e evaluatio

how it is

elping to

of PaaS.

e widely

greatest

ing and

estricted

arounds.

s objects

ited to a

all three

velopers

ms. While

freedom

complex

on of the

11

In the context of an ever-growing heterogeneity of infrastructures, the question also arises,

whether or not PaaS systems provide sufficient connectivity capabilities to integrate with the

existing non-cloud IS landscapes. The provisioning of mature connectivity features can be a

distinctive success factor for a cloud-based platform especially in the context of applications

working on large data volumes (e.g., analytical solutions). Growing IT landscapes require API

access to integrate processes and data. In particular, less powerful solutions are also very

dependent on the possibility to complement existing features with external services since

they do not provide sufficient functionality on their own. However, more comprehensive

products may also benefit from connectivity since they may also lack the functionality for a

particular use-case. Our results indicate that not every vendor is aware of the importance of

connectivity. Less powerful platforms (e.g., platform 2 and 3) in particular lack connectivity,

even though they would benefit the most from it. Platform 1, superior in functionality, also

provides superior connectivity. An obvious explanation for this could be that connectivity

features are equally prioritized by vendors as other PaaS features, resulting in extensive

connectivity features within powerful platforms and vice-versa. Alternatively, limited

connectivity can also be a strategic choice forcing developers to implement as much as

possible (from scratch) on the same platform. However, for developers mindfully considering

different PaaS alternatives, this potential lock-in may be an additional reason to decide on a

larger and more powerful platform in the first place. Hence, the strategic decision made to

chain developers to a particular product can easily backfire and prevent that developers pick

the product in the first place.

Templates and Reusable building blocks of the tested platforms include entire applications

(e.g., through a market place, application templates), reusable object types (e.g., for contact

management), user-interface elements (e.g., ready-made calendar widget) and business

logic (e.g., approval workflows). Similarly to the usage of patterns or templates in other

developments contexts, reusable elements can improve developer productivity, when new

applications can leverage the work done in previous developments. This capability seems to

12

have reached a considerable maturity in the investigated platforms, showing a positive

overall rating by the developers. Remainders of the former SaaS application manifest mostly

in the reusable objects (e.g., data model of core business objects). In summary, reusable

building blocks are one of the distinctive characteristics of PaaS since they are responsible

for a major part of the benefits of PaaS technology. Therefore developers on the one side

should thoroughly assess the extent and quality of reusable building blocks of a platform

while, on the other side, vendors should lay extra focus on these characteristics of their

product.

At least as important as the available buildings blocks, are the capabilities of a platform to

adjust those building blocks to one’s own requirements. In general, developers positively

assessed the configuration capabilities and the underlying paradigm promoting configuration

before programming. However, the diverting results achieved by the three platforms can be

traced back to the different configuration approaches followed. Platform 1, on the one hand,

promotes a bottom-up configuration approach starting with the data model of an object.

Platform 3, on the other hand, centers all configurations around the user-interface of an

object from which a data model is derived. According to the qualitative data, this makes the

configuration process more complicated than necessary. With regard to their flexibility, the

data indicates that all three platforms have not found a satisfying solution for the question to

which degree a developer should be able to adjust reusable objects. Even though all three

platforms allow the configuration of particular attributes of reusable objects, some attributes

are not changeable due to non-obvious reasons. Even more frustrating is the lack of

consistency in this context, manifesting, for example, in the fact that a similar attribute can be

easily changed in one reusable object but not in another one.

In addition to pure configuration, most platforms also provide classical programming

capabilities to define the user-interface or implement scripts on the client or server side.

Here, the qualitative data reveals two important points: First, developers appreciate the

functionality to implement custom code since it strongly increases flexibility and is also

13

necessary for most use-cases. From our sample, only platform 1 followed a holistic approach

to embed custom user-interfaces, client-side code and server-side scripts. Second,

developers seem to appreciate if a platform supports well- known programming / mark-up

languages such as HTML, XML, CSS, JavaScript or JAVA. Platform 1, which promotes a

proprietary language to implement server side scripts, received some critical comments on

this point.

Usually, the inherent tasks and characteristics of a development process on PaaS remain

similar. Consequently, developers in our study seemed to transfer their experiences and

expectations from traditional integrated development environments to the platforms in

use. This resulted in rather negative evaluations of the web development environment, e.g.,

developers which were used to automatic source code highlighting missed equivalent

functionality in the platforms. This and other deficits lead to an overall negative evaluation of

these capabilities. In addition to missing development functionality, the results of the study

suggest that there are still usability constraints of web-based development environments in

comparison to local IDEs. Although web-based applications often have difficulties to cope

with the usability of local IDEs, one of the platforms (platform 1) surprisingly received an

overall positive assessment. Its web development environment matched the functionality and

usability of local solutions. The source code editor supported code highlighting and auto-

completion. Yet, also for platform 1, developers missed the flexibility to arrange windows and

criticized the higher lag when clicking at buttons or jumping back and forth between two

screens.

In general, developers recognize any additional local development tools available, e.g., for

batch uploads of data or to implement in a local eclipse environment. Qualitative data

indicates a strong negative correlation between the quality of the web development

environment and the concept of additional tools: when a platform received negative marks for

its web development environment, developers criticized the absence of additional local

development tools which would fix the shortcomings of the web-based environment.

14

For developers who are about to move from a (traditional) local development environment to

PaaS, the learnability of the platform is an important factor. Our study indicates that

developers acknowledge the steep learning curve when it comes to the implementation of

simple functionalities using customization, e.g., creating a business object and its attributes.

However, regarding more complex functionalities, such as implementing business logic,

users criticize that the required knowledge is disproportionately higher since it requires a

holistic understanding of the platform and its peculiarity. Furthermore, the tested PaaS are

built on proprietary architectures which do not follow accepted standards and often fail to

maintain consistency. Platform 1, for example, distinguishes between standard objects, going

back to the original SaaS solution, and custom objects. Different rules and regulations

regarding configuration apply, making it harder for developers to acquire the necessary

knowledge. In order to be able to determine the best solution for a development task, it is

necessary to have all the knowledge about the platform available.

One important aspect of acquiring this knowledge is through the provided documentation

material. The results of our study show that platform vendors address this issue only

partially. The vendor of platform 1 offers comprehensive training material. All major features

are covered by dedicated manuals. In addition, a huge developer community exists which

can give very specific help. Developers however, complained about the lacking ease of

access to required information. Platform 2 and 3 lack both sufficient documentation material

as well as big a developer community. Therefore, competent help is very hard to get. The

main reason for the bad scores of platform 2 and 3 was however that some central features

of the platform remain completely unaddressed by the provided manuals.

Key	Learnings

Returning to the initial problem, our article results in two major contributions: first, we have

used a qualitative case-study to derive a taxonomy of ten functional and nonfunctional

characteristics which can be helpful to come to a well-informed decision. Second, we applied

15

this taxonomy to assess three current PaaS solutions and derive general statements about

the current stage of development of this new kind of technology. Although the case study

was conducted by students, the qualitative data indicates a deep and thorough analysis of

the assigned platform. We therefore think that the findings also apply in a professional setting

and constitute valuable help for developers.

With regards to the current situation on the market for PaaS technology, we come to the

following conclusion: Current offers diverge significantly, both in quantity and quality of the

implemented features. Developers should thoroughly consider those differences to make a

well-informed decision. The taxonomy poses a sharp contrast to the marketing brochures of

platform vendors. It allows developers to focus on the essential characteristics when

assessing PaaS technology. In particular, they need to find answers to the four important

questions:

1. What shared components are offered by the platform?

2. How extensible are these functionalities?

3. Which development tools are provided?

4. What knowledge is necessary to develop on the platform and how can this knowledge

be acquired?

Summarizing our analysis, we are confident to make the following statements which

capture some key characteristics of PaaS technology at its current stage of development:

 Shared components offered by platforms are probably the key benefit of PaaS. They

can lead to significant increases in developer productivity since they remove the need

to reinvent the wheel over and over again. Furthermore, the provided components

provide structure along which developers can create their own applications reducing

complexity and cognitive load in the development process.

 Developers cannot expect the same degree of flexibility as regular programming

frameworks provide. Whether or not PaaS applies to this is a question of the

complexity of the use case, but also if the platform follows a configuration-centric

16

instead of a programming-centric approach. Not surprisingly, the platforms that turned

out to be more flexible are those which follow a holistic coding-centric approach.

 The ideal of rapid application development partly applies with regards to minor

adjustments or extensions. Configuration-centric platforms offer a great selection of

reusable components while still maintaining some extensibility. Yet, with regards to

major changes, application development is not much more efficient than local

development. On the contrary, the limited functionality and usability of the web-based

IDEs can turn developing into a painful, slow and frustrating activity. Developers are

therefore advised to look for a PaaS that also provides local tools.

 Current PaaS solutions are extremely diverse. Every vendor follows a proprietary

approach. Proprietary approaches are contradictory to the promise of rapid

application development since they prevent the reuse of existing knowledge and

experience. Developers must expect a significant period of adjustment when

switching to a PaaS solution. Vendors are well advised to respect industry standards

and practice for their products.

 Smaller vendors seem to lack the capabilities to provide sufficient training material.

This contradicts their efforts to generalize their SaaS to a platform and allows other

developers to use shared functionality. After all, the best available functionality is

useless if developers have no way to learn how to use it.

In conclusion, from the point of view of developers, PaaS systems can be seen as a first step

to provide a development environment as a utility as envisioned by McCarthy. Our study

shows that use cases of easy-to-moderate complexity can be successfully implemented

based on PaaS technology. However, to be able to use utility development environments to

develop more than utility applications, existing PaaS sytems still need to advance

significantly.

17

References	

[1] M. Armbrust et al., “A view of cloud computing,” Communications of the ACM, vol. 53, no.
4, pp. 50-58, 2010.

[2] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing and

emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility,”
Future Generation Computer Systems, vol. 25, no. 6, pp. 599-616, Jun. 2009.

[3] I.Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid Computing 360-Degree

Compared,” in 2008 Grid Computing Environments Workshop, 2008, pp. 1-10.

[4] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm, “What’s inside the Cloud? An

architectural map of the Cloud landscape,” in 2009 ICSE Workshop on Software
Engineering Challenges of Cloud Computing, 2009, pp. 23-31.

[5] W. Sun, X. Zhang, C. J. Guo, P. Sun, and H. Su, “Software as a Service: Configuration

and Customization Perspectives,” in 2008 IEEE Congress on Services Part II (services-2
2008), 2008, pp. 18-25.

[6] C. Weinhardt et al., “Cloud Computing – A Classification, Business Models, and Research

Directions,” Business & Information Systems Engineering, vol. 1, no. 5, pp. 391-399, Sep.
2009.

[7] G. Lawton, “Developing Software Online With Platform-as-a-Service Technology,”

Computer, vol. 41, no. 6, pp. 13-15, Jun. 2008.

[8] M. Sakal, “GUI vs. WUI Through the Prism of Characteristics and Postures,”

Management, 2010.

