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Abstract

We develop an agent-based model in which heterogenous and bound-

edly rational agents interact by trading a risky asset at an endoge-

nously set price. Agents are endowed with balance sheets comprising

the risky asset as well as cash on the asset side and equity capital as

well as debt on the liabilities side. The introduction of balance sheets

and debt into an agent-based setup is relatively new to the litera-

ture and allows us to tackle several research questions that are mostly

inaccessible following conventional methodology, especially represen-

tative agent models. A number of �ndings emerge when simulating

the model. We �nd that the empirically observable log-normal distri-

bution of bank balance sheet size naturally emerges and that higher

levels of leverage lead to a greater inequality among agents. When fur-

ther analyzing the relationship between leverage and balance sheets,

we observe that decreasing credit frictions result in an increasingly

procyclical behavior of leverage, which is typical for investment banks.

We show how decreasing credit frictions increase volatility but decrease

the number of bankruptcies.
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1 Introduction

The past few years have indicated that the understanding of the dynamics
in �nancial markets is far from satisfactory. Economists and regulators often
seem to rely on intuition rather than model-guided comprehension when
pondering and designing new rules for the �nancial system. As a result, most
of the suggested �nancial market regulations are impeded by controversy
about their e�ciency and uncertainty about their impact. One reason why
�nancial market dynamics prove so di�cult to grasp and model is that they
are driven by heterogeneous market participants’ actions and interactions
that feed back into the �nancial system.

We present an uncalibrated agent-based model (ABM) that includes debt
in order to facilitate an analysis of the dynamics ensued by agents’ capital
structure. Each agent in our model is therefore endowed with a highly styl-
ized balance sheet containing a tradable risky asset and cash on the asset side
and equity capital and debt on the liabilities side. Agents trade according to
their price expectations, which they form through either fundamental value
considerations (fundamentalists) or technical analysis (chartists). The price
of the risky asset depends on agents’ transactions and therefore evolves en-
dogenously. Leverage can generally be managed by agents but is constrained
by the debt supply of an exogenous risk managing �nancier. Simulations are
conducted to demonstrate the general working of our model as well as some
of the new possibilities of analysis provided by the model, which are unfeasi-
ble with either standard representative agent models or existing agent-based
�nancial market models focusing predominantly on price dynamics. We can
report several �ndings. Speci�cally we show how credit frictions1 can change
the relationship between leverage and assets and thereby account for the dif-
ferences observed for commercial and investment banks in this context: for
investment banks leverage is procyclical, while no such relation can be ob-
served for commercial banks. By looking at the emergent market structure
of the model, we �nd that balance sheet size is approximately lognormally
distributed and that there is a natural tendency for inequality to increase
over time. Higher leverage intensi�es the evolution towards higher inequality
between agents. Where possible, we compare the outcomes of the simulations
with balance sheet data from a sample of international banks and make ref-
erence to the views expressed in the relevant literature. Policy implications,
especially with regard to �nancial stability, are given where appropriate.

1We de�ne credit frictions as the latency with which agents can acquire and dispose of
debt.
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The remainder of the paper is organized as follows. After reviewing the
related literature and presenting a methodological motivation for our ap-
proach in the next section, Section 3 presents the model. Section 4 then
provides simulation results. Here, we start by showing some basic dynamics
of an exemplary simulation in Section 4.1. We proceed, in Section 4.2, by
looking at the distribution of agents’ balance sheet size and the e�ects of
leverage on balance sheet evolution. The role of credit frictions in our model
market is analyzed in Section 4.3. Section 5 concludes.

2 Literature Review

The majority of agent-based �nancial market models focus on price dynam-
ics, which emerge through the interaction of heterogeneous agents. Such
models have been quite successful in replicating and explaining some intrigu-
ing features of the �nancial market such as endogenous bubbles and crashes
as well as stylized facts of return time series including fat tails and clus-
tered volatility. Compelling reviews of the literature can e.g. be found
in LeBaron (2006), Chiarella et al. (2009), Hommes and Wagener (2009),
and Lux (2009). Incorporating balance sheets containing debt and equity
into �nancial market ABMs is a sensible extension to established models
and is mostly novel. Notable exceptions include Raberto et al. (2011) and
Thurner et al. (2010). While the model introduced in Raberto et al. (2011)
takes a macroeconomic perspective and mainly focuses on the lending chan-
nel of banks, the model presented in Thurner et al. (2010) is closer to our
approach. However Thurner et al. (2010) are less interested in pure balance
sheet dynamics and rather focus on the e�ects of leverage on returns, which
they �nd to produce fat tails and clustered volatility. Furthermore the setups
of the two approaches di�er in many respects, including the portfolio choice
of agents, the separation of investment and leverage strategies as well as the
inclusion of both debt demand and supply.

Although the study of leverage and balance sheet dynamics is novel in the
context of agent-based models, the issue has been addressed by prominent
researchers in other contexts. Early work emphasizing the role of lever-
age and balance sheets can be found in the debt de�ation theory of Fisher
(1933), and in Minsky’s �nancial instability hypothesis (see Minsky, 1986).
In Bernanke and Gertler (1989) and Kiyotaki and Moore (1997) leverage acts
as a �nancial accelerator for non-�nancial borrowers. The resurfacing of re-
search on leverage and balance sheet dynamics in the aftermath of the recent
�nancial crisis suggests its importance for understanding the workings of
the �nancial system and the events precipitating the crisis. Adrian et al.
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(2010) argue that there is an important relation between �nancial interme-
diaries’ balance sheet dynamics and real economic activity. The dynamics
of market and funding liquidity, which reinforce each other and can lead
to destabilizing e�ects on �nancial markets, are analyzed theoretically by
Brunnermeier and Pedersen (2009), while Geanakoplos (2009) shows how
changes to leverage can cause wild �uctuations in asset prices. More gen-
erally, the inclusion of the �nancial sector into new macroeconomic DSGE
models (see e.g. Curdia and Woodford, 2009; Gertler and Kiyotaki, 2010) is
a further indicator for the increasing importance of �nancial markets for eco-
nomic theory. Conversely, the linkage between the real economy and the
�nancial sector is also being addressed in recent agent-based research (see
Lengnick and Wohltmann, 2011; Sche�knecht and Geiger, 2011; Westerho�,
2011).

Agent-based models constitute a promising method for advancing the un-
derstanding of the �nancial system’s underlying dynamics. In the context of
our model there exists arguably a comparative advantage of the agent-based
methodology over the rational representative agent paradigm.2 In contrast
to the top-down approach of representative agent models, agent-based mod-
els take a bottom-up modeling approach. Thereby they account for the
fallacy of composition (see e.g. Caballero, 1991; Kirman, 1992), i.e. ABMs
follow the assumption that the aggregate behavior of interacting agents does
not have to coincide with the behavior of the individual. By substituting
aggregate individual behavior with the behavior of one, mostly rational,
representative agent, mainstream macroeconomic models are kept analyti-
cally tractable while satisfying the Lucas Critique which demands that mod-
els are microfounded (see Lucas, 1976). This aggregation approach seems
appealing not only to economists but, as Kirman (2010) remarks, also to
politicians and commentators, who, when speaking of �nancial markets, of-
ten refer to "the market" as if it were an individual. Such oversimplifying
assumptions often suppress interesting and important details.3 The event
of a bankruptcy is e.g. not feasible within a representative agent frame-
work. The fact that the possibility of default is mostly neglected in theo-
retical models (cp. Goodhart and Tsomocos, 2011) is unfortunate, not least
when considering the devastating e�ects of the Lehman Brothers default in
2008. Agent-based models, on the other hand, have been used to explic-

2More profound and comprehensive criticisms of mainstream economic models can
e.g. be found in Leijonhufvud (2009); Colander et al. (2009); Kirman (2010); Stiglitz
(2011). Comparisons between agent-based models and DSGE models can e.g. be found in
Farmer and Geanakoplos (2009); Fagiolo and Roventini (2012).

3There are also serious theoretical reservations that adhere to this aggregation ap-
proach. See e.g. Stoker (1993) for a thorough discussion of the issue.
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itly investigate the propagation of bankruptcies in the �nancial system (see
e.g. Battiston et al., 2009; Tedeschi et al., 2011; Lenzu and Tedeschi, 2012;
Markose et al., 2012). When allowing for more than one agent, heterogeneity
enters a model. Heterogeneity leads to interactions which lead to endogenous
developments. Prices e.g. evolve endogenously and bubbles, crashes or return
time series stylized facts emerge. Stiglitz (2011) writes:

Standard Models focused on the wrong questions. They focused
on explaining the small "normal" variations in the economy -
which don’t matter much - and ignored the large variations which
matter a great deal. They asked how the economy responded to
exogenous shocks, while some of the most important disturbances
- the bubbles that periodically occur, and then break - are clearly
endogenous.

When simulating our model we �nd that it exhibits strong path dependence.
Within the same parameter constellation, repeated simulations with di�er-
ing error terms (random numbers drawn from the same distribution) display
highly variant outcomes ranging from relatively e�cient and tranquil markets
to the collapse of the system with all agents defaulting. This emergent prop-
erty of agent-based models makes them seem arbitrary at times, whereas the
existence of countable solutions (unique equilibrium or multiple equilibria)
in most mainstream models seems to tell a clearer story. At best, however,
stable and empirically testable patterns and distributions emerge in simula-
tions of ABMs. The factors that lead to a certain pattern or distribution can
then be analyzed and valuable insights about the workings of the �nancial
system (in our case) may be disclosed. The emergent property inherent to
the agent-based methodology can thus help to advance our knowledge of the
dynamics in the �nancial system.

3 The Model

The model described in the following can be classi�ed as a "few type"
agent-based �nancial market model. While agents cannot produce entirely
new trading strategies, as is possible through evolutionary learning algo-
rithms in some so-called "many type" models, they can choose from a set
of prede�ned trading rules, the rule they deem most pro�table to them un-
der the limitations imposed on their rationality. Speci�cally, in our model
agents can select either a strategy based on fundamentals or a chartist
strategy based on technical analysis. The implied assumption that real
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traders do choose and switch between these two strategies �nds strong sup-
port in the literature (see e.g. Menkho� and Taylor, 2007) and chartist-
fundamentalist-approaches �gure among the most common agent-based �-
nancial market models (see e.g. Lux and Marchesi (2000), Farmer and Joshi
(2002) and Westerho� and Dieci (2006)). Heterogeneity enters the model
not only through the di�ering strategy types, but also through departing
con�gurations within the strategies. Disagreement may prevail on the true
fundamental value of an asset and there may be di�erent methods and time
frames considered by chartists to extrapolate future price movements from
historic ones. In general, heterogeneity is key to any agent-based model. It
is the emergent aggregate behavior ensuing from interacting heterogeneous
agents which lies at the focus of agent-based analysis and embodies a salient
distinction between ABMs and models with a representative agent. In the
context of agent-based �nancial market models, emergent aggregate behavior
e.g. encompasses stylized facts such as fat tails and clustered volatility, as-
set bubbles and crashes. Our model also allows for the analysis of emergent
leverage and balance sheet dynamics, as well as market structure.

3.1 Model Structure

While the replication of �nancial market return time series stylized facts has
constituted the aim of many ABMs, much less attention has been directed
towards emergent behavior in the balance sheet dimension of �nancial mar-
kets. For this reason, we endow each agent j in our model with the following
schematic balance sheet at time t:

Assets Liabilities
Qj;tPt Ej;t

Cj;t Oj;t

The assets side of the balance sheet comprises the quantity Qj;t of a risky
asset with price Pt as well as cash Cj;t which can be held without risk. It
will often be useful to consider logarithmic prices, which will be denoted in
lower case (i.e. pt = log(Pt))

4. On the liabilities side, each agent is endowed

4In the following we will make use of lower-case letters for logarithmic values and upper-
case letters for real values. The main rationale for using log prices pt is to ensure that real
prices Pt remain non-negative in the price formation process.
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with equity capital5 Ej;t and outside capital (debt) Oj;t. The balance sheet
total Bj;t is given by:

Bj;t = Qj;tPt + Cj;t = Ej;t + Oj;t (1)

From the beginning of period t to the beginning of period t+1 balance sheets
evolve as sketched below:

Assets Liabilities
(Qj;t + Dj;t) exp(pt + rt+1) Ej;t + �Ej;t+1

Ct + �Ct+1 Oj;t + �Oj;t

where Dj;t is the demand of agent j for the asset in period t and rt+1 is the
logarithmic return, with rt+1 = pt+1 � pt.

6 The debt level Oj;t+1 in period
t + 1 consists of the debt level from the start of period t, i.e. Oj;t, and
a change to outside capital �Oj;t, which depends on the agent’s strategic
demand for debt as well as the available supply of debt. As indicated by the
time index, the change in outside capital �Oj;t already takes place before the
end of period t, so that agents can use the newly acquired debt for trading in
period t. The timing of the model is schematized in Figure 1. Each period
t in the model represents a trading day in which all agents �rst revise and
possibly change their trading strategy (see Section 3.3), forecast the return
of the following period t+ 1 (see next section), make a decision on how much
debt they want to hold and ultimately trade.

Equity capital grows with the returns Rt+1 and RC on the risky and risk
free (cash) asset, respectively, and decreases with the interest i paid on debt.
Both the risk free rate and the interest rate on debt are exogenous in our
model. In a frictionless market we would assume RC = i. The equity capital
(equivalent to an agent’s net worth) evolves endogenously:

�Ej;t+1 = (Qj;tPt)Rt+1 + Cj;tRC � iOj;t+1 (2)

We thereby assume that new assets (i.e. Dj;t) are bought and sold at price
Pt+1 = Pt(1 + Rt+1). In a model with debt there is always the possibility of
bankruptcy, i.e., the equity capital Ej;t of an agent becomes smaller or equal
to zero. This possibility needs to be taken into account by introducing a res-
olution procedure for bankrupt agents. We force bankrupt agents to liquidize
all assets they hold on their balance sheet upon bankruptcy.7 Bankruptcies

5After the initial endowment we assume that agents cannot issue new equity, for in-
stance in the form of a seasoned equity o�ering. Equity capital therefore evolves as the
di�erence between the balance sheet total and debt. Strategic changes to the liabilities
side of the balance sheet can therefore only be incurred by changes to the debt level.

6The relation between logarithmic (r) and real (R) returns is de�ned as r = log(1+R).
7Technically the demand function from Equation (7) changes to Dj;t = �Qj;t when

Ej;t � 0, i.e., all assets of a bankrupt agent are thrown on the market regardless of the
execution price.
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Figure 1: Timing of the model

can thereby impose a �re sale externality on the market. The bankrupt agent
then disappears from the market and all losses are borne by the exogenous
�nancier.

Using the balance sheet equality from Equation (1), the change in cash
amounts to

�Cj;t+1 = �Dj;tPt+1 + Cj;tRC � iOj;t+1 + �Oj;t (3)

We model the agent’s portfolio choice (i.e. the proportion Aj;t+1 of the
balance sheet he wants to hold in the risky asset in the upcoming period t+1)
in dependence of the agent’s forecast of log excess return and his con�dence
in this forecast, which is modeled with a measure of historic forecast errors
�FE

j;t :

Aj;t+1 =
Ej;t[rt+1] � rC

�FE
j;t

(4)

Generally we denote the forecast of agent j made in period t for the variable
x in period t + 1 as Ej;t[xt+1]. The parameter  > 0 can be viewed as a risk
aversion parameter. The forecast error is modeled as the square root of an
exponentially weighted moving average of squared di�erences between return
expectations and return realizations:

�FE

j;t =
r

�FE( E
j;t�1

[rt] � rt)2 + (1 � �FE)(�FE
j;t�1)

2; (5)

with 0 � �FE � 1 being a memory parameter de�ning how much weight
should be assigned to the most recent forecast error.
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Note that for Equation (4) we choose a similar structure as in classi-
cal myopic portfolio choice models with CARA utility functions or models
that maximize a linear combination of return mean and variance (see e.g.
Campbell and Viceira, 2002). The essential di�erence is that here the port-
folio choice variable Aj;t+1 represents the ratio of risky assets to balance sheet
total rather than the ratio of risky assets to net worth. Thus, to implement
the portfolio choice from Equation (4), an agent j must act so that the fol-
lowing relation is satis�ed in the balance sheet dimension:

Aj;t+1 =
Ej;t[Pt+1](Qj;t + Dj;t)

Ej;t[Bj;t+1]
(6)

The proportion of an agent’s balance sheet held in the risky asset is bounded
by [�1; 0] � Aj;t+1 � 1. The upper bound 1 is due to an agent’s budget con-
straint, while the lower bound can take a value between 0 and �1, depending
on the constraints imposed on short selling. The closer to 0 the lower bound
is set, the higher the barriers for going short. By varying the lower bound
we can thus study how short selling constraints of di�erent intensities a�ect
the �nancial market.8

The approach detailed in Equations (4) and (6) allows us to separate
an agent’s leverage strategy from his portfolio choice. In classical myopic
portfolio choice models leverage is linked to investment opportunities - only
when large returns are expected does leverage enter the model (i.e. when
Aj;t > 1). Here, on the other hand, the agent’s debt choice enters the demand
function, which can be obtained by rearranging Equation (6):

Dj;t =
Aj;t+1 Ej;t[Bj;t+1]

Ej;t[Pt+1]
� Qj;t (7)

with

E
j;t

[Bj;t+1] = E
j;t

[Pt+1](Qj;t + Dj;t) + Cj;t + E
j;t

[�Cj;t+1]

= E
j;t

[Pt+1]Qj;t + Cj;t(1 + RC) � i ~Oj;t+1 + � ~Oj;t (8)

The amount of debt ~Oj;t+1 held by the agent in the upcoming period is
subject to negotiations (indicated by the tilde) between agent and �nancier.
It depends on an agent’s demand for debt and the �nancier’s willingness to
supply the desired debt. If both negotiating parties do not wish to make

8 While a lower bound of 0 implies that an agent can sell only as many assets as he
owns (i.e. Dj;t = �Qj;t), a lower bound of �1 implies that an agent cannot go short in
more assets than he has means for repurchasing at any given point in time.
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any changes to the debt level, i.e. � ~Oj;t = 0, the absolute debt volume
Oj;t will need to be rolled over at interest rate i. To determine the trading
price we choose a process that can be described as Walrasian tâtonnement
where all agents trade at the market clearing price p�

t , i.e. the price for which
PJ

j=1
Dj;t = 0. The demand of an agent is thereby contingent on his forecast

of future returns (see Equation (7)), which is, as detailed in the next section,
a function of the current price pt. By means of numerical analysis the current
price is changed until pt = p�

t and markets clear.

3.2 Fundamental, Chartist and Debt Strategies

Agents can choose between a fundamental and a chartist strategy when form-
ing expectations of future returns. When following a fundamental strategy,
agents (i.e. j 2 F) believe that prices will revert to fundamental value. They
therefore compare their perception of fundamental value Ej;t[ft+1] with the
current price in order to obtain a forecast of future returns:

E
j;t

[rt+1] = �F (E
j;t

[ft+1] � pt); 8j 2 F (9)

with �F > 0 being the speed at which the fundamentalist believes prices
converge to fundamental value. The fundamentalist updates his perception
of fundamental value by evaluating relevant fundamental news �ft, which
can be modeled as an arbitrary stochastic process, and by identifying and
correcting past valuation errors:

E
j;t

[ft+1] = E
j;t�1

[ft]

| {z }

past valuation

+ (�ft + �j;t)
| {z }

evaluation of news

+ �F (ft � E
j;t�1

[ft])

| {z }

past error correction

(10)

The error term �j;t � N (0; �2
f) accounts for fundamentalists’ imperfect infor-

mation and limited cognition and implies disagreement about the true value
ft of the risky asset. In the model we assume that disagreement on funda-
mental value may persist for some time, but agents will eventually become
aware of erroneous evaluations and correct for them. The speed of this error
correction is thereby given by 0 � �F � 1.

In order to obtain a forecast of future returns, chartists (j 2 C), in a
�rst step, extrapolate a buy or sell signal. They do so by employing moving
average (MA) rules, which are among the simplest and most popular with
practicing technical analysts.9 The signal is generated by comparing a short-
term MA of prices to a long-term MA of prices. Speci�cally, the chartist

9 Brock et al. (1992) provide evidence for the MA rule’s capability to predict stock re-
turns; in an agent-based context Chiarella et al. (2006) analyze the ensuing price dynamics
when agents employ MA rules.
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identi�es an emerging upward trend and a buy signal (Sj;t = +1) is generated
when the short-term MA is higher than the long-term MA, and vice versa
for a downward trend and a sell signal (Sj;t = �1):

Sj;t = sgn

0

@
1

sj;t

sj;t�1
X

u=0

Pt�u �
1

lj;t

lj;t�1
X

v=0

Pt�v

1

A ; 8j 2 C (11)

The maximum number of lags sj;t and lj;t may di�er from agent to agent as
well as throughout time. Note that in order to allow for additional hetero-
geneity within the chartist strategy we do not specify sj;t < lj;t. A chartist
j will thus follow a contrarian strategy whenever sj;t > lj;t. The forecast of
future returns then depends on the direction in which the extrapolated signal
is pointing, the aggressiveness of the chartist denoted by �C and the absolute
value of a random component �j;t � N (0; &̂2

t ):

Ej;t[rt+1] = �CSj;t j�j;tj (12)

The random component is necessary because the signal Sj;t extrapolated
by chartists does not imply a speci�c return expectation. We assume that
while the moving average rule indicates the direction of the expected return,
chartists randomly choose an absolute value of the expected return, which
is scaled with the perceived price variability calculated as an exponentially
weighted moving average:

&̂2
t = �S(rt � rt�1)2 + (1 � �S)&̂2

t�1; (13)

with �S being a memory parameter specifying how much weight is attributed
to the most recent log return movement. The chartist thus adapts his return
expectation to the prevailing price volatility. Chartists can therefore also
be viewed as volatility traders who take strong positions in times of high
volatility and vice versa.

Generally, we de�ne the change in exposure to outside capital as

� ~Oj;t = �O
�

~Oj;t+1 � Oj;t

�

; (14)

with ~Oj;t+1 being the targeted debt volume after negotiation with the �-
nancier. Since neither the agent nor the �nancier can force the other party
to supply or demand more debt than that party is willing to supply or de-
mand, the debt volume will be set to the lower value of the �nancier’s supply
OS

j;t+1 and the agent’s demand OD
j;t+1:

~Oj;t+1 := minfOD
j;t+1; OS

j;t+1g (15)
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The parameter 0 � �O � 1 in Equation (14) introduces credit friction into the
debt market. When �O < 1 the targeted changes to debt volume take place
more slowly than desired by either agent or �nancier. When the �nancier
is delimitating the debt demand of the agent (i.e. OD

j;t+1 > OS
j;t+1), the

friction may e.g. be interpreted as credit maturity hindering the �nancier to
withdraw his funds at once; when the �nancier is willing to cover the agent’s
full debt demand (i.e. OD

j;t+1 � OS
j;t+1), the friction may e.g. be interpreted as

delays in raising funds from di�erent investors. Furthermore, a very low value
for �O could be interpreted as limited institutional space to actively manage
debt levels. Customer deposits held by commercial banks e.g. constitute
such a limitation: while a commercial bank can invest customer deposits to
a certain extent, it cannot directly increase or decrease them at will.

The structure of our model allows for the integration of arbitrary debt
demand and supply functions. A simple debt strategy for an agent could be
to aim for a constant leverage ratio:10

��x =
OD

j;t+1

Ej;t[Ej;t+1]
=

OD
j;t+1

Ej;t[Bj;t+1] � OD
j;t+1

(16)

Note that agents are forward-looking, i.e., their desired debt level depends
on their expectation of the size of their future balance sheet. Following from
the previous equation, debt demand can be derived:

OD
j;t+1 =

��x Ej;t[Bj;t+1]

1 + ��x
(17)

With Equation (8) it can be algebraically deduced that for the period t + 1
agent j demands:

OD
j;t+1 =

Ej;t[Pt+1]Qj;t + Cj;t(1 + RC) � Oj;t

i + 1

��x

: (18)

We assume that �nanciers do not form expectations about future price
movements, but rather try to assess the risk of supplying debt to individual
agents. Due to the seniority of debt over equity the �nancier focuses on the
risk that incurred losses in the subsequent periods fully deplete an agent’s
equity capital (i.e. the agent goes bankrupt). Speci�cally, the �nancier is
willing to supply debt OS

j;t+1 if the probability of default over the next M
periods is lower than !:

Pr
�

(Ej;t + OS
j;t+1)(1 + R

B
j;t)

M � OS
j;t+1(1 + i)M

	
� ! (19)

10We de�ne leverage as the ratio of debt to equity capital (net worth): � = O=E.
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Since the �nancier does not have the expertise to assess an agent’s strategy,
he must solely rely on the agent’s past performance (i.e debt-adjusted balance
sheet growth rB

j;t), which is for the sake of simplicity modeled as a lognormal
random variable with log(1 + R

B
j;t) = r

B
j;t � N (�B

j;t; z2
j;t). Mean and variance

are estimated by the �nancier as exponentially weighted moving averages:

�B
j;t = ��n (log(Bj;t + iOj;t) � log(Bj;t�1 + �Oj;t))

| {z }

rB
j;t

+(1 � ��n)�B
j;t�1

z2

j;t = ��n(rB
j;t � rB

j;t�1)
2 + (1 � ��n)z2

j;t�1 (20)

��n thereby de�nes how much weight is attributed to the respective last
observation. With the risk constraint in Equation (19) and with H�1(�)
being the inverse cumulative distribution function of the random variable
r

B
j;t, the maximum amount of debt the �nancier is willing to supply to agent

j can be derived:

OS
j;t+1 =

Ej;t exp (MH�1(!))

(1 + i)M � exp (MH�1(!))
: (21)

3.3 Choosing a Strategy

Agents in the model try to adapt to the prevailing situation by updating their
trading strategy if it seems to be underperforming. For this purpose, each
agent revises his strategy every �j periods. In order to avoid a synchronized
change in strategy, 1 < �j < n is a random number drawn from a discrete
uniform distribution with n being the maximum number of periods before
an agent revises his strategy. Formally, agent j revises his strategy at time
t 2 Kj := ftjt mod �j = 0g.11 When deciding on whether to keep or change
a strategy, each agent compares a measure of the pro�t �j;t his strategy has
earned to a benchmark ��t. This comparison is modeled by a discrete choice
model pioneered by Manski and McFadden (1981) and popularized in the
context of agent-based models by Brock and Hommes (1998). Speci�cally,
when agent j revises his current strategy he will stick to it with probability

W F
j;t =

exp(��j;t)

exp(��j;t) + exp(� ��t)
8t 2 Kj; (22)

whereby � > 0 can be understood as a (bounded) rationality parameter.
It limits agents’ abilities to identify whether their strategies are performing

11The modulo operator ensures that each agent only trades in a period t which is a
multiple of his trading frequency �j .
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well or poorly in comparison to the benchmark. Low values for � imply poor
identi�cation ability and vice versa.

The pro�tability measure is computed as an exponentially weighted av-
erage of the most recent growth in an agent’s equity capital and past equity
growth:

�j;t =

(
��t if the strategy in t does not equal the strategy in t � 1

��(log(Ej;t) � log(Ej;t�1)) + (1 � ��)�j;t�1 else

(23)
with �� 2 [0; 1] being a memory parameter assigning how much weight is
attributed to the most recent equity growth. Note from Equation (23) that
the pro�tability measure for agent j is set to the benchmark when he changes
his strategy. Thereby ��t is simply the average of all agents’ pro�tability
measures, i.e.:

��t =
1

J

JX

j=1

�j;t (24)

We assume that although agents cannot directly observe the benchmark prof-
itability, they have a notion of whether their own strategy is performing
better or worse than the average strategy. The fact that this notion is not
perfect is re�ected by the rationality parameter � in Equation (22).

Upon opting for a chartist strategy, an agent must choose the speci�ca-
tions for the moving average rule, i.e. he must determine the maximum lags
in Equation (11). In period t 2 Kj agent j 2 C draws sj;t and lj;t randomly
from a triangular distribution with the respective lower limits slow and llow,
the respective upper limits sup and lup and the respective modes cs

j;t and cl
j;t,

with slow � cs
j;t � sup and llow � cl

j;t � lup. The purpose of employing a
triangular distribution with a variable mode is to ensure that chartists grav-
itate to the speci�cations of successful moving average rules. Speci�cally the
modes are chosen so that the expected value of the triangular distribution12

equals the expected value for the lag parameters ŝj;t and l̂j;t computed from
a probability mass function where the respective lags for each chartist is
weighted by its relative pro�tability:

ŝj;t =
X

j2C

 

sj;t

exp(��j;t)
P

j2C
exp(��j;t)

!

(25)

l̂j;t =
X

j2C

 

lj;t

exp(��j;t)
P

j2C
exp(��j;t)

!

(26)

12Given the lower and upper limits, the relation between the mode and the expected
value of a triangular distribution amounts to c = 3� � (xup + xlow) (Evans et al., 2000).
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Note that the choice of memory parameter is also dependent on the rational-
ity � of agents.

4 Simulations

In order to simulate the model described in the previous section, we �rst
have to de�ne parameter values and initial conditions. Quite a few parame-
ters including rationality and memory relate to behavioral aspects of market
participants and are therefore not directly observable. Since we mainly aim
at deriving qualitative results and the calibration of complex agent-based
models poses a considerable challenge (cp. Winker et al. (2007)), we refrain
from trying to estimate the behavioral parameters for our model. The choices
for parameter values are therefore often without deeper economic meaning.
In the exemplary simulation presented in the following subsection, we in-
troduce some of the dynamics the model features with the parameters and
initial conditions documented in Tables 1 and 2 in the appendix. For the
simulations in Sections 4.2 and 4.3 we change selected parameters in order to
analyze their qualitative (ceteris paribus) e�ect on the model economy. As
our model incorporates random terms at several instances13, each simulation
result is unique. In fact, simulation outcomes display strong path depen-
dence. In order to ensure that the patterns emerging in our simulations are
not caused by coincidence, we run - if not stated otherwise - 40 simulations14

for each parameter value and plot the median result.

4.1 Exemplary Simulation

We de�ne the process of fundamental value evolution as a noise process with
a trend and - in order to emulate upswings and downturns - mean reversion.15

The initial endowment of all N = 500 agents is the same: the balance sheet

13Speci�cally, this includes noise �t in the expectation process of the fundamental
traders. The exact values for the moving average lags are randomly drawn for each agent
from a speci�c distribution. The same holds true for the value �j;t determining the ab-
solute value of chartists’ return expectations. Moreover, when agents decide whether to
change or stick to their strategy, their pro�tability determines the probability for a change,
which of course implies some randomness. Last but not least, the frequency �j with which
agents revise their strategy is assigned randomly at the beginning of each simulation.

14Simulations where all agents default are repeated. It is thus possible that the results
documented in following subsections contain a sort of survivorship bias.

15Formally, this is modeled by an Ornstein-Uhlenbeck process, where the daily expected
return is arbitrarily set to 0:05

250 (i.e. 5% growth per trading year), volatility to �2
f = 0:01,

and mean reversion speed to � = 0:1. The model is initialized by setting p0 = f0 = 0.
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total of each agent amounts to Bj;0 = 2=N , and each agent holds the amount
of risky assets that leads to an optimal portfolio when expecting the return
to be equal to the trend of the fundamental value process. Agents target a
leverage ratio of � = 25, which means that agents are endowed with equity
that is around 4% of total assets. At t = 0 the passive side of the balance
sheet is constructed in order to satisfy a leverage of � = 25. The constraints
imposed by the credit supply of the �nancier, however, cause the agents’
leverage to drop substantially in the �rst period. We make the simplifying
assumption that i = RC = 0 and thereby completely abstract from the e�ect
of interest rates in this paper. Initially, chartists and fundamentalists each
account for 50% of traders. The speci�c frequency �j with which each agent
revises his strategy is initially drawn from a uniform distribution with the
limits of 1 and 250, which means that agents revise their strategy at least once
every trading year (one simulation period represents one trading day) and at
the most every trading day. For the chartist strategy the boundaries of the
moving average lags lj;t and sj;t, which are initially drawn from a uniform
distribution, are set to 1 and 200, which are common values in business
practice (see e.g. Lo et al., 2000). In the benchmark simulation, we set the
credit friction parameter to its maximum, i.e. �O = 1, allowing agents and
�nanciers to make immediate changes to the amount of debt they hold on
their balance sheet or provide as credit.

Figure 2 shows some results of an exemplary benchmark simulation. It
can be observed that the price diverges from the fundamental value on a
regular basis.16 Nevertheless, the model is stable without a single default.
Periods of strong misevaluation seem to go along with a larger proportion of
chartist traders in the market and, more speci�cally, with a larger proportion
of trend-followers, which we can measure by l̂j;t � ŝj;t > 0. On the other

hand, when contrarians (l̂j;t � ŝj;t < 0) dominate the population of chartists,
the price is closer to the fundamental value. This is the case because a
trend-following strategy ampli�es the prevalent trend, while the contrarian
strategy elicits a negative feedback. Trading volume �uctuates strongly in
the exemplary simulation but also seems to contain a persistent component.

16A shortcoming of the model is the apparent smoothing of the price resulting in �rst-
order autocorrelation. This problem could be tackled by introducing a short-term ar-
bitrageur specialized in trading on this anomaly (LeBaron, 2010). However, since the
analysis of return time series is not a focus of our model, we abstain from introducing
further agent types, which would increase the complexity of the model.
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Time periods of relatively high volume alternate with periods of relatively
little trading.17
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ŝ
j
;
t

t

(d) Di�erence between mean long
moving average and short moving av-
erage

Figure 2: Dynamics in an exemplary simulation

Figure 3 shows the dynamics of the mean balance sheet total as well as
mean leverage. As stated before, all agents are initially equal. However, the
initial homogeneity changes quickly as simulation time progresses. As the
plotted quantiles illustrate, substantial di�erences between agents develop.
The nature of how these di�erences evolve in terms of balance sheet size
will be addressed in the upcoming section. Noteworthy is also the apparent
co-movement of mean leverage and mean balance sheet total, which will be
addressed in Section 4.3.

17Note that the unusually high trading volume in the �rst 200 periods can be attributed
to the fact that chartist traders do not have enough memory to correctly employ their
moving average method with a maximum time horizon of 200 periods.
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(b) Leverage

Figure 3: Mean and quantiles of agents’ balance sheet total and leverage for
the exemplary simulation

4.2 Distribution and Leverage

Distributions of e.g. wealth, income or output constitute an emergent prop-
erty of an economy and can reveal valuable information about its state. Since
redistribution is often an explicit goal of economic policy, it is important to
understand the process leading to the observable distribution. Agent-based
models can be helpful in this regard. In the following, we will take a look
at the distribution of agents’ balance sheet size, which endogenously evolves
when simulating our model.

As stated, we initially assume that all agents are of equal size and thereby
homogeneous. In the simulation, however, the distribution converges to a
stable log-normal distribution. This result is presented in Figure 4, show-
ing that the Jarque-Bera statistic (testing for the normality of logarithmic
balance sheet size) converges to a value lower than the critical value given
a 5% signi�cance level.18 The most convincing argument for the emergence
of a log-normal distribution for balance sheet size in our model is given by
Gibrat’s law, which states that convergence to log-normality occurs when
balance sheet growth is normally distributed and independent from size.19

Figure 5(a) shows the emerging distribution for the exemplary simulation of
the previous subsection. For comparison, Figure 5(b) depicts the distribution

18Note that we suppressed the �rst 200 periods due to the fact that we initially assume
all agents to be equal, leading to extremely high test statistics. Furthermore, we take the
median of the simulation results to control for extreme outliers.

19If we assume xt � xt�1 = gtxt�1 for small values for growth rate gt, the function
converges to log xt = log x0+g1+g2+ � � �+gt, implying a log-normal distribution (Sutton,
1997).
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Figure 4: Jarque-Bera test statistics for the log-balance sheet size distribution
(median results after 40 simulation runs)

of an international sample of investment banks.20 The distributions qualita-
tively resemble each other as is also con�rmed by the Jarque-Bera test for
log-normality. The test statistics are provided in Table 3 in the appendix.21

-12 -10 -8 -6 -4 -2
0

10

20

30

40

50

60

A
b

so
lu

te
fr

e
q

u
e
n

c
y

Log-balance sheet size

(a) Histogram of an exemplary simu-
lation at t = 1000

8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

A
b

so
lu

te
fr

e
q

u
e
n

c
y

Log-balance sheet size

(b) Histogram of investment banks in
2009

Figure 5: Histogram for simulations and empirical data

20Here we use annual balance sheet data of international investment banks from the
Bankscope database.

21As presented in Janicki and Prescott (2006) this result does not hold for commercial
banks, which can rather be described by a Pareto distribution. A theoretical rationale
can be found in their business model and in a product di�erentiation argument: regional
banks provide credit to regional small and medium-sized enterprises. The non-log-normal
distribution of non-�nancial �rms (cp. Axtell (2001)) therefore is also re�ected in the
distribution of commercial banks (Ennis, 2001).
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When looking at the average evolution of balance sheets throughout sim-
ulations (see Figure 6), we observe a decreasing trend of mean (log) balance
sheet size while the variance steadily increases. Furthermore, the size disper-
sion of balance sheets, which we measure with the coe�cient of variation (i.e.
�=�), increases, which is indicative of an endogenous increase of inequality22

with progressing simulation time. E�ectively, our model suggests that the
�nancial system naturally generates a large number of small institutions and
a small number of very large institutions. There is thus a natural tendency
for the system to produce institutions that are too big to fail.
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Figure 6: Endogenous average evolution of balance sheets (median results
after 40 simulation runs)

Leverage seems to play an interesting role in the evolution of balance
sheet distribution. In order to analyze this role we replace the debt supply
function of the risk-managing �nancier with unlimited debt supply, while
agents keep aiming for a constant leverage �. By varying the target leverage
for all agents from � = 0-15, we can now control for the overall leverage in
the model economy. Note that we only provide simulations up to a leverage

22The coe�cient of variation provides an inequality measure insensitive to changes in
the mean (Cowell, 2000).
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target of � = 15 rather than the more realistic target value of � = 25 in the
benchmark simulation. In the framework without the stabilizing �nancier
the model market becomes highly fragile for large values of �, with frequent
breakdowns of the entire �nancial system.

As shown in Figure 7(a), our model displays a positive relationship be-
tween leverage and size dispersion. Theoretical studies discussing the e�ects
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Figure 7: Size inequality for variation of target leverage � in simulations
(median results after 40 simulation runs)

of distribution functions frequently argue with the entry and exit mechanisms
in markets. In our simple model, we do not account for entries, and exits
are only possible through bankruptcies (as opposed to mergers or voluntary
liquidation). In this regard, the extreme ascent of inequality observed in our
model for values of � > 13 may be attributed to the e�ect of bankruptcies.
The linear trend for low values of � (see Figure 7(b)) is followed by a strong
non-linear behavior, especially for � > 13. Possibly, this is brought about
by defaulting agents and the associated complex market dynamics resulting
from �re sales. As shown in Figure 10(c), bankruptcies strongly increase for
values of � > 13.

Despite the irregularities observed for high values of � in the model,
the quintessence of Figure 7(a) is that leverage seems to foster the natural
evolution towards higher inequality described above. This conclusion may
be of importance for policy makers. In this context, the introduction of a
maximum leverage ratio into �nancial market regulation may not only help
to stabilize the �nancial system in a more traditional sense (lower leverage
decreases the probability of default), but could also decrease the speed with
which inequality increases. Lower size dispersion arguably generates less
institutions that classify as too big to fail.
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A �rst glance at our sample of international investment banks seems to
support the notion that high leverage increases inequality. In Figure 8 we plot
the average leverage of investment banks from the end of the Dot-Com crisis
in 2002 up to 2009. The average increase of leverage between 2002 and 2008
is accompanied by an increase in size dispersion, as predicted by our model.
The signi�cant drop in average leverage from 2008 to 2009, on the other
hand, is re�ected by a sharp decline in size dispersion. Note, however, that
with the data available to us we cannot make inferences about the causality
of the observed relationship.
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Figure 8: Mean leverage and size inequality for international investment
banks (Bankscope data)

Although there exists some empirical evidence suggesting that banks, as
the agents in our model, do target a constant leverage (cp. Gropp and Heider,
2010), an unlimited supply of debt is certainly not a realistic assumption.
When looking at the following e�ects of leverage on our model �nancial
market, it should be kept in mind that a constrained debt supply may lead
to less clear or even di�erent results. Nevertheless, we brie�y want to show
some interesting patterns emerging in simulations in the context of varying
leverage targets. As most of these patterns are empirically untested, further
research is needed before meaningful conclusions can be reached.

Figure 9(a) shows an emerging positive relationship between leverage and
trading volume. Here leverage acts as a multiplier to trades: A higher lever-
age target causes agents to acquire or dispose of larger sums of nominal debt
in order to meet their target as the value of the risky asset on their balance
sheet rises or falls, respectively. Since debt is obtained and repaid in cash, any
change in agents’ nominal debt also changes the composition of agents’ bal-
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ance sheets. The rebalancing of portfolios generates trading volume, which
therefore increases as the leverage target is raised.
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Figure 9: Trading volume and price volatility for variation of target leverage
ratio � (median results after 40 simulation runs)

Increased trading activity translates into a higher return volatility as can
be observed in Figure 9(b). Somewhat of a surprise, however, is that the
increased volatility goes along with higher price e�ciency (Figure 10(a)),
meaning that prices are more closely connected to their underlying funda-
mentals.23 The reason for this counterintuitive link is depicted in Figure
10(b): higher leverage leads to a greater average proportion of fundamental
traders in the model market. Higher leverage means that agents operate
with less relative equity capital, which is quickly depleted in downturns. In
order to survive, it becomes increasingly important for agents to anticipate
price movements. Here fundamentalists are at an advantage. Figure 10(c)
shows the number of bankruptcies for both fundamentalists and chartists.
The number of defaulting chartists24 is always higher than the number of
defaulting fundamentalists. The losses incurred by chartists have a larger
impact with increasing leverage. Leverage, in our model, may thus help to
stabilize the market. This emergent behavior of the model is reminiscent of
the classical argument for the existence of e�cient markets. Friedman (1953)
already argued that in the long run, speculative trading is not pro�table and
therefore eventually disappears. On the other hand, the observed e�ciency

23As proposed in Westerho� (2008), we measure ine�ciency as the median absolute dif-
ference between log-fundamental value and price: ME = median(jft�ptj). In a �rst-order
approximation, this can be interpreted as the percentage point deviation from fundamental
value.

24More precisely, those agents who form expectations using technical analysis prior to
defaulting.
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gain is deceptive. Leverage strongly increases the risk of a breakdown of the
entire model market. When too many agents default or experience losses at
the same time, the �re sale of assets can lead to a positive feedback pro-
cess triggering a debt de�ation spiral as �rst described by Fisher (1933). In
essence, falling prices call for agents to deleverage, which further suppresses
prices and eventually leads to the collapse of the market. When conducting
simulations we observe an increase in systemic risk with increasing leverage
through the rising frequency of model breakdowns due to the default of all
agents.

0 5 10 15
0.014

0.015

0.016

0.017

0.018

0.019

0.02

M
a

rk
e
t

in
e
�

c
ie

n
c
y

�

(a) Market ine�ciency

0 5 10 15
50

50.5

51

51.5

52

52.5

53

53.5

54

54.5

F
u

n
d

a
m

e
n

ta
li

st
s

[%
]

�

(b) Proportion of fundamentalists

0 5 10 15
0

10

20

30

40

50

60

70

80

90

100

 

 

Fundamentalists
Chartists

N
u

m
b

e
r

o
f

in
so

lv
e
n

c
ie

s

�

(c) Number of insolvencies for funda-
mental and chartist traders

Figure 10: Market e�ciency, composition, and stability for variation of target
leverage ratio � (median results after 40 simulation runs)

4.3 Credit Frictions

Agents and �nanciers in our model actively manage their demand or supply
of debt. The immediacy with which desired changes to debt can occur is con-
strained by the credit friction parameter �O in Equation (14), with a low value
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for �O implying high friction and vice versa. Frictions arise from the maturity
structure of debt or from institutional characteristics of di�erent bank types,
which both restrict deliberate and immediate changes to the capital structure
of agents. Credit frictions thus have the potential to a�ect the behavior of
the �nancial system as a whole. To analyze the e�ects of credit frictions we
�rst show how they a�ect the relationship between leverage and balance sheet
size. Following the method of Adrian and Shin (2010), we scatter-plot the
logarithmic changes of leverage against the logarithmic changes of balance
sheet size.25 Setting �O = 0 means that agents and �nanciers have passive
leverage strategies. The nominal debt agents are endowed with at the be-
ginning of a simulation stays on their balance sheets while changes to the
value of agents’ assets lead to a negative relation between leverage and total
assets.26 This negative relationship, as plotted in Figure 11, can typically be
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Figure 11: The relationship between balance sheet total and leverage for the
passive agent

observed in household data (see Adrian and Shin, 2010). It seems however
very unlikely that (professional) �nancial market participants would follow
a completely passive leverage strategy. If we allow for slight leverage ad-
justment, the relationship between leverage and balance sheet size changes.
A low value for �O implies that adjustments to agents’ debt levels are con-
strained and take time. Commercial banks e.g. face such constraints, as
customer deposits, which they cannot raise nor reduce at will, �gure promi-
nently on the liabilities side of their balance sheets. Figure 12(a) shows the

25More precisely, logarithmic changes of balance sheet size are changes in logarithmic
balance sheet size after 50 periods, i.e. log(Bj;t) � log(Bj;t�50). The same applies for
leverage.

26 @�
@B

= � O
(B�O)2 < 0, with O being the constant nominal value of debt, B the balance

sheet total and leverage being de�ned as � = O
B�O

.
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