CONSTRAINED WILLMORE
HOPF TORI

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften
der Universitdt Mannheim

vorgelegt von

Dipl.-Math. Jorg Zentgraf
aus Miinchen

Mannheim, 2012



Dekan: Professor Dr. Heinz Jiirgen Miiller, Universitit Mannheim
Referent: Professor Dr. Martin Schmidt, Universitdt Mannheim
Korreferent: Dr. Martin Kilian, University College Cork, Irland

Tag der miindlichen Priifung: 27.September 2012



Abstract

Generalized elastic curves on S? are elliptic solutions of a differential equation on the cur-
vature of the curve. These equations are solved in terms of Weierstrass elliptic functions
depending on the parameters of the differential equation. It is investigated which of these
parameters yield closed curves on S? and how these curves can be parametrized. The
Hopf fibration h : S* — S? lifts closed generalized elastic curves to tori in S3. These tori
are constrained Willmore surfaces, i.e. extremal values of the Willmore functional un-
der variations preserving the conformal structure. They are called constrained Willmore
Hopf tori. The conformal class and the Willmore energy of such tori is calculated.

Zusammenfassung

Verallgemeinerte elastische Kurven auf S? sind elliptische Losungen einer Differential-
gleichungen an die Kriimmung der Kurve. Diese werden in Abhéngigkeit von einigen
Parametern gelost, die Losung wird mit Hilfe von Weierstrass’schen elliptischen Funk-
tionen dargestellt. Es wird untersucht welche Parameter geschlossene Kurve liefern, eine
Parametrisierung dieser Kurven auf S? wird hergeleitet. Die Hopf-Faserung h : S? — S?
liftet geschlosse verallgemeinerte elastische Kurven zu Tori in S?. Dies Tori sind con-
strained Willmore Fliachen, d.h. sie sind Extremwerte des Willmore-Funktionals unter
Variationen, die die konforme Klasse der Fliche erhalten. Wir nennen diese Flachen con-
strained Willmore Hopf Tori. Es werden die konforme Klasse und die Willmore-Energie
von solchen Tori berechnet.
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1. Introduction

Overview

In this thesis we consider constrained Willmore surfaces and Hopf tori. These two objects
will be interrelated via generalized elastic curves. This relationship will now be explained
in detail.

A surface M in R? is a two-dimensional subset of R3 parametrized by two coordinates.
The surface should be smooth and immersed, i.e. the surface is the graph of a smooth
function and the derivative of the function is injective. On the surface M we define a
metric g, which measures distances as well as the volume of areas. At every point p of the
surface there exists in every direction an osculating circle S, which touches the surfaces
in second order, i.e. the first and second derivative of the circle S and the surface M
coincide at p. The extremal values of the inverse of the radii of these circles are called
principal curvatures k1, ko of the surface M at the point p. The mean curvature at the
point p is defined as H = %(/ﬁll + k2). This mean curvature leads to many interesting
types of surfaces. For example minimal surfaces have mean curvature H = 0 at every
point of the surface, constant mean curvature surfaces have mean curvature H = ¢ € R at
every point of the surface. In this thesis we are interested in Willmore surfaces, therefore
we have to define the Willmore functional. It is given by

W(M) = | H?dA.
/

We integrate the square of the mean curvature over the whole surface and measure this
quantity with the help of the volume form dA induced by the metric g. This Willmore
functional can also be extended on surfaces in S?. Willmore surfaces are extremal values
of this functional under compactly supported variations of the surface. Constrained
Willmore surfaces are obtained if we only consider variations which do not change the
conformal class of the surface. The conformal class describes the set of equivalent metrics,
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here we consider only infinitesimal conformal transformations of the surface and use the
definition given by [BPP08]. Since Willmore surfaces are defined by a functional, they
are solutions of an equation of Euler-Lagrange type.

Willmore surfaces have been introduced by Willmore [Wil65] in 1965. In the 19th century
Darboux and later in the 1920s Blaschke [Bla29] and Thomsen [Tho23] already studied
conformal invariant submanifolds, but they only considered the local geometry. Willmore
investigated the same objects from a global viewpoint and was the first to give an explicit
example. A good survey of the history of Willmore surfaces can be found in [HJ03, ch.3].
Willmore also stated the Willmore conjecture, which says that the Willmore functional
of tori in R? is greater than 272 and equality is attained for the Clifford torus. The
Willmore conjecture has recently be proved by Marques and Neves [MN12]. The Clifford
torus in R3 is defined as the stereographic projection of the Clifford torus in S3, which
is given by the product of two circles of the same radii. The Clifford torus in S* C R* is
given by the set

To = {(z1, 2, 3, 24) eR'|af +af =af+a] = 2

A good survey over the relationship of the Clifford torus to many conjectures in geometry
can be found in [Tai05]. Regarding constrained Willmore surfaces the first calculation
of an equation of Euler-Lagrange type was given by Bohle, Peters, Pinkall in [BPP0S|.
This paper also gives a good survey over many topics related to constrained Willmore
surfaces.

Elastic curves are curves which are extremal values under the so-called bending energy.
We mainly consider immersed curves on S? C R3, that are defined by a map v from
an interval (a,b) to R3. The curves should be regular, i.e. the derivative of v is non
vanishing. In general curves can be described by their velocity (the first derivative) and
their curvature x (the second derivative). The bending energy is defined as

b

/nz(s)ds.

a

We now fix the start and the end point of a curve and then minimize the bending energy.
The curves obtained in this way are called elastic curves. If we add some more constraints
on the type of minimization we obtain generalized elastic curves.

Elastica have been considered by mathematicians for a long time. Levien [Lev08| and
Truesdell [Tru83] have collected a lot of facts concerning the history of elastica, which will
now be summarized. In the 13th century the mathematician Jordanus de Nemore wrote




about elastica. According to Truesdell [Tru83| the exchange of two letters between Jakob
Bernoulli and Leibniz, starting on the 15th of December 1687, is the birth date of elastic
curves. The first rigorous definition was given by Jakob Bernoulli in 1691. He posed the
following problem: "What happens to a lamina which is fixed at one end and has a weight
on it on the other end?" This question is one instance of the problem of elastic curves,
this specific question concerns rectangular elastica, since one end of the curve is fixed.
In the following years he partially solved the problem by giving a differential equation
for the resulting curve. In the following years Daniel Bernoulli and Leonhard Euler also
tried to solve the problem. In 1742 Daniel Bernoulli proposed variational techniques in
order to solve the problem. In 1744 Euler gave a complete characterization of the family
of curves known as elastica by using variational methods. He described all possible forms
the elastic curve may take. Elastic curves also lead to the theory of elliptic functions (the
differential equation found by Jakob Bernoulli can be solved by elliptic functions). On
the 23rd of December 1751 (according to Truesdell [Tru83|) Euler was asked to review
Fagnano’s collected works (this is set as the birth date of elliptic functions by Jacobi).
Euler combined his previous studies about elliptic integrals and elliptic functions and
Fagnano’s geometrical investigations to obtain the addition theorem of elliptic functions
in the 1770s. The solutions in closed form of elastica were first given by Saalschiitz in
1880 by using Jacobi elliptic functions. The first plots of elastica have been published
in Max Born’s PhD thesis in 1906. So the theory of elastic curves is an old field of
mathematics, many people have put effort into studies of these curves.

Even nowadays they are subject to research. In 1984 Langer and Singer [LS84a], [LS84b]
investigated closed elastic curves in R™ and gave a classification of them. They determined
the knottedness of elastic curves and indexed closed elastic curves on S? one-to-one by
pairs of integers, where the integers determine the number of trips around the equator
and the number of periods after which the curve closes up. Bryant and Griffiths [BG86|
used Hamiltonian formalism to obtain an Euler-Lagrange equation for elastic curves and
additionally studied elastic curves in the hyperbolic 3-space. Arroyo, Garay, and Mencia
[AGMO04], [AGMO03] studied the closing conditions for elastic curves and generalizations of
elastic curves. Their generalization changes the integral [ K2 to [ P(k) for some smooth
function P(k) depending on the curvature k. Furthermore they determined the Euler-
Lagrange equation for this generalized functionals. Goldstein and Petrich [GP91] related
generalized elastic curves to the modified Korteweg-de Vries (mKdV) hierarchy, they
considered curves with fixed length and fixed enclosed area. Musso [Mus09] extended
this relationship and obtained numerical examples of generalized elastic curves.
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In 1931 Heinz Hopf wrote the very important article [Hop31] "Uber die Abbildungen der
dreidimensionalen Sphére auf die Kugeloberfliche". He found a many-to-one continuous
mapping h : S* — S? (later called Hopf map), where every point on S? comes from a
circle on S3. This yields a S! fiber bundle over S2. This fibration can be generalized to a
mapping from the unit sphere in C"*! to PC™ where the fibers are again given by circles.
Another important generalization is the S” fibration with fibers S* and basis S*. Hopf
defined an integer number invariant (today called Hopf invariant) for all mappings from
S? to S?, the Hopf map has invariant 1 and is therefore not null-homotopic. Variations of
the Hopf fibration are used in quantum dynamics, twistor theory, and fluid dynamics. A
good overview regarding the usage of the Hopf fibration is given by Urbantke in [Urb03].

The connection between Willmore surfaces and Hopf tori was discovered by Pinkall
[Pin85] in 1985. He studied the preimage of closed curves on S? under the Hopf map-
ping which are defined as Hopf tori. The conformal class of a Hopf torus is related to the
length and the enclosed area of the underlying curve. Furthermore he computed the mean
curvature of a Hopf torus as the curvature of the underlying curve on S?. He obtained
infinitely many embedded Willmore tori in R? and showed that there exist Willmore tori
in R? which cannot be obtained by stereographic projection of minimal surfaces in S3.
Arroyo and Garcia [AG01] used this idea to study Hopf vesicles in S*, which are critical
points under the elastic energy of surfaces, hence a generalization of elastic curves to elas-
tic surfaces. The relation between Hopf tori, generalized elastic curves and constrained
Willmore surfaces was described by Bohle, Peters, Pinkall in [BPP08|. Preissler [Pre03|
investigated the connection between Willmore tori and isothermic surfaces (these are
surfaces where the parameters can be chosen as curvature lines). Musso [Mus09] gave a
conformal parametrization of Hopf tori over curves on S? in terms of SU(2, C)-matrices.
Barros and Ferrdndez [BF11] obtained estimates for the Willmore energy in conformal
Berger spheres. Berger spheres are standard three spheres with an one-parameter family
of metrics. They investigated isoareal Hopf tori and obtained best possible lower bounds
for the Willmore energy of them.

What is done in this work

This thesis is organized as follows. In the second chapter we describe the basics of
surface theory. The first and second fundamental form of a surface in R3, S?, or R? are
defined. The first fundamental form describes the intrinsic geometry of a surface, the
second fundamental form describes the position of the surface in the surrounding space.




Based on these two fundamental forms we define the mean curvature H and the Hopf
differential @) of a surface. A frame is defined as a basis of the tangent space to the surface
at a given point p. Given a motion on the curve we can also define a moving frame. We
introduce the Lax pair formalism which describes differential equations fulfilled by the
moving frame. The compatibility equation for these differential equations is known as the
Maurer-Cartan equation. The curvature and the torsion of curves in R? are introduced.
The frame of a curve fulfills differential equations with respect to curvature and torsion.
Then we define the Willmore functional

W(M) = [ H?dA
/

of a surface M in R3. Willmore surfaces are extremal values under variations of the
surface. If we only consider conformal variations we obtain constrained Willmore surfaces
as extremal values. Willmore surfaces are invariant under conformal mappings. They
are defined via a functional depending on the mean curvature H, hence we can give an
equation of Fuler-Lagrange type which characterizes Willmore and constrained Willmore
surfaces.

The third chapter deals with elastic and generalized elastic curves on S?. First we define
them as solutions of the differential equation

1
K" (z) + §K($)3 +ak(z)+b=0, a,beR

with the curvature function k(z). This differential equation can be solved in terms of
Weierstrass elliptic functions for any initial values. The initial values determine an elliptic
curve Y, which describes the periodic solution of the differential equation. The next step
is to recover the curve from the curvature, therefore we introduce the spectral curve I"
of an elastic curve. This can be done by examining a connection between elastic curves
and the modified Korteweg-de Vries (mKdV) equation. We then follow the standard
procedure of defining the spectral curve as the eigenvalue curve of a matrix. It turns
out, that the spectral curve I' is isomorphic to the elliptic curve Y of the solution.
Transforming the differential equations of the frame of the elastic curve to a second order
equation of Lamé type we can integrate the frame of the generalized elastic curve and
give a parametrization of the curve on S? C R3. There are two sets of parameters for
these generalized elastic curves, on the one hand we have the parameters a, b defined by
the differential equation and one integration constant ¢. On the other hand we have the
parameters go, g3, w where gs, g3 are the Weierstrass invariants of the elliptic curve Y
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and p(w) is a point on the elliptic curve Y with w € ¢R. The second set of parameters is
more suitable to characterize closed generalized elastic curves. The curve is closed if and
only if the frame is periodic, this condition can be expressed by a function which must
have rational values. In the consideration of closed curve there arise two cases, depending
on the discriminant of the polynomial 4¢3 — got — g3 for the real Weierstrass invariants
g2,93- In the first case the discriminant is positive and hence the polynomial has three
real roots, this case is easy to handle. In the other case with one real root and two
complex conjugate roots, we have to introduce deformations of the spectral curve. The
last part of this chapter deals with constant curvature solutions, which are special cases
of generalized elastic curves. Here the elliptic curve Y is singular, we study deformations
of this singular elliptic curves to non singular elliptic curves which are the spectral curves
of non constant generalized elastic curves.

In the fourth chapter we introduce the main concepts of the Hopf fibration h : S* — S2.
It is shown that the preimage of each point on S? is a circle in S3. By stereographic
projection of all these circles we obtain linked circles and one line passing through all
circles. A Hopf torus is the preimage of a closed curve on S? under the Hopf fibration.
These tori can be conformally parametrized and all of them are flat. The mean curvature
of a Hopf torus can be calculated as being exactly the curvature of the underlying curve.
The conformal parametrization is used to calculate the conformal class of a Hopf torus.

The fifth chapter combines the third and fourth chapter. We describe how to use gen-
eralized elastic curves in order to obtain constrained Willmore surfaces with the aid of
the Hopf fibration. The preimages of elastic curves under the Hopf fibration lead to
Willmore cylinders. If the elastic curve is closed we obtain Willmore tori. These ideas
can be generalized by generalized elastic curves. Here the preimages of the curve lead to
constrained Willmore cylinders and constrained Willmore tori, if the generalized elastic
curve is closed. We calculate the conformal class of the constrained Willmore Hopf tori
as well as their Willmore energy in terms of the parameters gs, g3, w.

The first appendix contains the basics of elliptic functions, especially Weierstrass ellip-
tic functions. We introduce Weierstrass elliptic functions and the Weierstrass invariants
g2,93. The p-function is a periodic function on a lattice, the (- and o-functions are
quasiperiodic. We examine in detail real lattices which correspond to real go, g3 and
identify them in the fundamental domain of the modular group. We show that defor-
mations of the spectral curve preserving the conformal class are given by infinitesimal
Mobius transformations. The second appendix deals with quaternions and rotations in
R3 described by quaternions.




2. Surface theory and Willmore surfaces

2.1. Basics of surface theory

In this section we introduce the basic concepts of surface theory in R3, R* and S? ¢ R%.
We will define the fundamental forms of surfaces and introduce the mean curvature of
a surface. Many of the concepts are independent of the surrounding space, we consider
only euclidean spaces (mostly R3 or R%) and we will indicate the differences if needed.

Therefore let M be an orientable 2-dimensional manifold and f an C°°-immersion into
R3, R* or S?. This means f is a mapping with injective derivative. The euclidean vector
spaces R? and R* are endowed with the standard euclidean scalar product (-,-) and
the hereby induced norm || - ||. If we consider immersions into S* we consider them as
immersions into R* with ||f|| = 1.

In R* we have the standard euclidean metric induced by the scalar product. This metric
can be used to define a metric on the manifold M. The metric on the immersed manifold
leads to new objects, especially the conformal factor, which will be important later on.

Definition 2.1. Let f : M — S? be an immersion equipped with the metric h = {-,-) of
R* restricted to S® C R*. The induced metric

g:TyM xT,M — R,
(v,w) = h(df (v),df (w)) = (df (v),df (w))

is called first fundamental form. Here df (v) is the derivative of f in direction of the
tangent vector v.

Let (x,y) be a coordinate of M. Since f is an immersion, a basis for T,M can be chosen

as fr, fy with
_(9f _(9f
(5, - (5),
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Then the metric g can be represented as the matriz

_ <f$afx> <fx7fy>
g_<(fy,fx> <fy,fy>>'

An immersion is called conformal if and only if there exists a function u : M — R,
which is called conformal factor, such that

g =4e* (é g) : (2.1)

A conformal immersion is called flat if the conformal factor is constant.

This definition is independent of the surrounding space, all objects have been defined
just with the help of the scalar product. These objects are the intrinsic invariants of a
surface.

Now we come to the extrinsic invariants defined for an immersed surface. Therefore we
define the unit normal vector N to the surface f(M) C R? by

fzxfy
Npsz =
A

and we see that N is perpendicular to the tangent plane T},M at every point f(p). In S3
or R* we have to use a generalized cross product and then define

fxf:vxfy
Nps = ———=2—
T fe <

Here the extended cross product is defined by
4
axbxc:Zdet(ei a b c)-e, a,b,c € R (2.2)
i=1

with e; the unit vectors in R?. If it is clear which normal is used we denote it only by N.

Definition 2.2. The second fundamental form of an immersion f : M — S3 is given

by
= (o o) = () 7))
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The second fundamental form can also be written in terms of differentials as
b = by1dz? + biadrdy + bordydz + baody?.
Switching to complex coordinates z = x + iy one obtains
b = Qdz% + Hdzdz + Qdz>,

where @ is the complex-valued function
1 . .
Q= Z(bn — bag — ibig — ibay)

and H is the real-valued function

1
H = §(b11 + b2).
Definition 2.3. The linear map S : T,M — T,M defined by
S =g b

is called shape operator of the immersion f.

The shape operator combines the metric and the second fundamental form. It defines
how to measure the second fundamental form (which is essentially the matrix of second
derivatives) in the ambient space.

Definition 2.4. The eigenvalues and the corresponding eigenvectors of the shape operator
are called principal curvatures and principal curvature directions of the surface f(M)
at the point f(p). If at a point p the two eigenvalues are equal the point is called umbilic.

The symmetric 2-differential Qdz? is called Hopf differential of the immersion f. The
determinant of the shape operator
K :=detS

is called Gauss curvature and half of the trace of the shape operator

H:= % tr S (2.3)

1s called mean curvature.
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Lemma 2.5. Let M be a Riemann surface and f: M — S? be a conformal immersion.
Then p € M is an umbilic point if and only if Q = 0.

Proof. The shape operator of a conformal immersion is given by

_ 1 (H+Q+Q i(Q-Q)
de? \ i(Q-Q) H-Q-Q

with respect to the basis f, f, of the tangent space of f(M). The two principal curva-

tures are the eigenvalues of the shape operator and hence are solutions of the equation

412 det(S — k1) = (H+Q+ Q- k)(H-Q—Q — k) + (Q — Q)
=H-k)’—(Q+Q)+(Q—-Q)
= (H —k)* —4]Q|*.

Thus we obtain
ki = H+2|Q|, k2= H—2|Q].

Finally we have k1 = ko < @ = 0 and the assertion follows. O

Up to now all objects have been described locally at a point on the surface M. Now we
expand this and define a frame on the surface which helps us to investigate movements
on the surface.

Definition 2.6. Let M be a smooth manifold. A frame is a basis of T,M for a given
point p € M. A moving frame is a tuple (X1,...,X,) of vector fields, such that
(X1(p), ..., Xn(p)) is a basis of T,M at every point p. The moving frame can be consid-
ered as collection of frames along a motion in M.

We now consider the derivatives of frames depending on two parameters. The standard
proposition is the following due to Lax [Lax68].

Proposition 2.7. Let U C R? be an open, simply connected set containing (0,0). For
UV :U — su(2) we call U,V the Lax pair of the frame F = F(z,y) : U — SU(2,C) if
they fulfill the equations

F,=UF, F,=VFE

There exists a solution F(z,y) : U — SU(2,C) for any initial conditions F(0,0) €
SU(2,C) if and only if
U, -V, +[V,U] =0. (2.4)

The last equation is called Maurer-Cartan equation.

10



2.2. Curves on S?

In many cases it is also possible to add an extra variable A € S!, the so called spectral
parameter to the Lax pair U, V. One now requires that the Maurer-Cartan equation is
fulfilled for all A. This theory will be applied in section 3.2.

2.2. Curves on $2

Definition 2.8. Let

v:I — R3,
s = (s)

be a mapping with I = (a,b) some interval in R. If Z—Z %0 for all s € I then v is called
regular curve.

The arc length of a curve is given by

e = /b =

We can always choose a parametrization s such that

o
ds

ds.

-1

and therefore ||v||are = b — a. Then the curve is called parametrized by arc length.

The tangent vector of a curve parametrized by arc length s is given by

In the previous section we defined the frame of an immersed surface. We can also define
a frame for curves, this frame also fulfills a differential equation. Since curves depend
only on one parameter, there exists only one differential equation, not two as in the Lax
pair formalism.

11
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Lemma 2.9. Let v(s) be a curve on S> C R? parametrized by arc length. A frame is
given by the three vectors {e1(s),ea(s),es(s)} with

g (e 0 1 ex(s)
e |=(-1 0 k)| |els) (2.5)
es(s) 0 —r(s) 0 e3(s)

Proof. The vector ej(s) has length 1 for a curve on S2. Since the curve is parametrized
by arc length the length of ey(s) is also 1. Hence we have an orthonormal frame. The
curvature of a curve in R? is defined in the Frenet frame setting as scalar product of
the derivative of the tangent vector and the normal vector. For curves on S? we define
analogously

K(s) = (7" (s),7(s) x 7(s))
as the curvature of a curve. Here v(s) x +/(s) is the normal vector on S2. Thus we obtain
(€h(5), e3(s)) = K(s).
For the following calculations we need some formulas, they are obtained by differentiating
(e1,e2) =0, (e1,e3) =0, (eg,ea) =1, (es,e3)=1.

Then we obtain

(e1,e2) + (e1,e5) =0 & (e1,eg) = — (e}, ea) = —(ez,e2) = —1,
(e1,e3) + (e1,e3) = & (er,e3) = —(es,€)) = —(es, e2) = 0,
(e3,e2) =0,

(€5, e3) = 0.

The vectors e;(s),ea(s), es(s) are an orthonormal basis of R3 for every s, hence any
vector can be written as linear combination of these vectors. We use this to obtain the

12
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equations
d
—e;=e
751 2,
.62 = (eg,e1)e1 + (€5, ea)ea + (€5, e3)es
= (—eg,ep)er + (eg,e3)es
= —ey + Kk(S)es,
d g / /
56T (e3,e1)e1 + (€3, e2)ea + (€3, e3)e3
= —(es, €1)e1 — (e3,en)ez
= —k(s)ea.
Putting together these equations in matrix form yields the assertion. O

2.3. Willmore surfaces

We have defined the mean curvature H in (2.3), it can be used to characterize special
surfaces. The simplest surfaces defined by the mean curvature are minimal surfaces,
which fulfill H = 0. Another example of surfaces are constant mean curvature surfaces
with H = ¢. We are interested in Willmore surfaces, which have non constant mean
curvature. They are defined by the extremal values of a functional under variations,
we first define the functional and then restrict the space of allowed variations to obtain
constrained Willmore surfaces.

Definition 2.10. The Willmore functional of an immersed surface f : M — R3 is
given by

W(M) = [ H?dA,
/

with dA the area 2-form of M induced by the first fundamental form. A surface is called
Willmore surface if it is a critical value of the Willmore functional under all variations
of the immersion. A surface is called constrained Willmore surface if we only allow
variations which preserve the conformal structure, i.e. the function u defined in (2.1) does
not change through the variation. The Willmore functional for immersions g : M —S?

13
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s given by

W(M) = / (H? +1) dA. (2.6)

M

One of the main properties of the Willmore functional is its invariance under conformal
mappings of the surface, which has been proven by White [Whi73|.

Proposition 2.11. The Willmore functional is invariant under conformal mappings:
Let T : M — M be a conformal mapping, then W(M) = W(T(M)).

Proof. All conformal mappings can be written as combination of euclidean motions,
homotheties and inversions. W is invariant under euclidean motions and homotheties
since they change the mean curvature and the volume form of the surface inverse to each
other. So we have to check the invariance under inversions. We can assume that the
center of the inversion is not on M and further, that 0 is the center of the inversion. If
the radius of the inversion is ¢, the inverted vector of x € M is given by = = CZﬁ. Let
N be the normal vector at x and set h = x - N, then the two principal curvatures of the

inverted surface can be computed to

~ ]k —2h [[#2 — 2R
=, k2= .

k1 2 ) 2

C C

Hence we can compute #; — e = —||z||?(k1 — K2)/c? and
H? - K = |z||*(H* - K)/c".

The surface form dA changes under the inversion by dA = c¢*dA/|z||*. Putting this
together one obtains
(H? — K)dA = (H? — K)dA.

So (H? — K)dA is globally invariant under inversions and

/(H2 — K)dA = /H2dA —2mx(M) = W(M) — 2mx(M)
M M
differs from the Willmore functional just by 27x (M), a multiple of the Euler character-

istic. Since x (M) is invariant under inversions, the Willmore functional is also invariant
under inversions and the claim follows. O
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2.3. Willmore surfaces

Since we are looking for extremal values of a functional we have to calculate the first
variation of it. The roots of the first variation are the possible extremal values of the
functional. This has been carried out by Weiner [Wei78], who derived an equation of
Euler-Lagrange type.

Theorem 2.12. Let f : M — R3 be an immersion of an orientable surface without
boundary such that W(M) < co. Then f is a stationary point of W if and only if

AH +2H? —2HK = 0.

Here A is the Laplace operator on the surface M defined by

0%f  O0*f
ap=9 )
/ Ox? * oy?’

and K is the Gaussian curvature. For immersions g : M — S? the condition is that Uof
satisfies the equation with o : S3 — R3 being the stereographic projection.

Another possibility to characterize Willmore surfaces is by means of the conformal Gauss
map. Therefore let Q be the set of all spheres and planes in R3. For any surface M and
a point m € M we denote by S2, the unique element in Q with the following properties:
At the point m € M the element S2, is tangent to M with the same orientation and
S2 and M have the same mean curvature at m € M. The map m +— S2, is called
conformal Gauss map. Bryant [Bry84| proved that M is a Willmore surface if and only
if the conformal Gauss map is harmonic.

Regarding constrained Willmore surfaces there is also an Euler-Lagrange equation. Since
we only consider variations with fixed conformal class, we can consider this as minimum
under constraints. So there must be some kind of Lagrange multiplier. The Euler-
Lagrange equation has been calculated in general in [BPPO0S|.

Theorem 2.13. An immersion f : M — S of a compact Riemann surface M is con-
strained Willmore if and only if there exists a 2-form 6*(q) € Q*(M) which is the deriva-
tive of a holomorphic quadratic differential ¢ € H°(K?) such that

(AH +2H? — 2HK)dA = §*(q).

The 2-form 6*(q) can be regarded as Lagrange multiplier, for the exact definition of the
derivative 0* see [BPP0S].

15



2. Surface theory and Willmore surfaces

Using this theorem Bohle,Peters, and Pinkall [BPP08| gave a simple proof of the following
result.

Corollary 2.14. Every constant mean curvature surface f : M — R3 is constrained
Willmore.

Proof. For constant mean curvature surfaces the gradient of W is given by (2H3 —
2HK)dA and it holds 6*(Q) = 4(H? — K)dA. So the holomorphic quadratic differential
needed in the previous theorem can be chosen as ¢ = %H Q, the product of the mean
curvature and the Hopf differential. O
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3. Elastic and generalized elastic curves

3.1. Elastic curves

Let v: R — S? C R? be a curve on S? as introduced in section 2.2. The curve should be
parametrized by arc length, the curvature is given by x : R — R. We consider variations
of the curvature () of the curve v on S2. Define the functional

which describes the bending energy of a curve. It is very similar to the Willmore func-
tional defined in definition 2.10. We fix the start and the end point of a curve and then
minimize the functional P(y) under these constraints. The Euler-Lagrange equation of
this functional has been calculated in [AGMO03] and is given by

K" (x) + %ﬁ(m)g + ak(z) =0

for some a € R. We use this equation to define elastic curves. In the following all curves
on S? are parametrized by arc length.

Definition 3.1. Let v be a curve on S?. If the curvature of v satisfies the differential
equation

1
K" (x) + 5/{(3:)3 +ak(z) +b=0, a,beR (3.1)

the curve is called generalized elastic curve and elastic curve if and only if b = 0.

In order to solve this differential equation we multiply it with 2x’(x) and then integrate
it. This yields
(K'(2))? + Lr(z)* + ar(z)? + 2bk(2) = ¢ (3.2)

17



3. Elastic and generalized elastic curves

for some integration constant c. First we set the initial conditions to be

r(0) =y,

7 (0) =0,
with y a real root of the polynomial g(x) := —ix‘l — ax? — 2bx + c. Generalized initial
conditions will be considered later.
The polynomial g(x) = —iw‘l —ax? — 2bz + c is of degree four. We use a linear fractional

transformation to reduce it to a polynomial of degree 3. The standard procedure for
solving such equations is described in [EMOT53]. Our aim is to obtain a Weierstrass
normal form 7? = 4£3 — g2 — g3. We consider the elliptic curve defined by w? = g(z).
The transformation now maps one root of g(x) to co and then sets e; + ea + ez = 0
with e; the three remaining roots. Therefore let y be a root of g(x), we introduce new
parameters X and Y by setting z = y — % and w = % The new elliptic curve is now
defined by

1 1 1
Y2=g'(y)+ 59" () + 26" (W) + — g™ (y)

6 24
1 1 6
3 2
— 43— 2ay — 2b+ = (—3y% — 2a) — -6y — —
Yy’ —2ay = 2b+ 5 (=3y" — 2a) — by — o
3 1
:—y3—§y2+y(—2a—1)—2b—a—1.

Next we eliminate the quadratic term by setting

This yields e; + e2 4+ e3 = 0 as described above, and we obtain the curve in Weierstrass
form n? = 4€3 — go€ — g3 with Weierstrass invariants [EMOT53]

11,
92 =—7c¢ + 59 (3.3)
1 1
B N
_ o,
g3 = det 0 ?a 5b
—%a —5b ¢
1 1 1
= —ac+ —a® + —b°. (3.4)

24 216 16
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3.1. Elastic curves

q' )

—+%— 50 the solution of (3.1) is
4—59" ()

The solution is now x =y —

—y3 — 2ay — 2b

= +y (3.5)
4p(x, g2, 93) + 5y* + 3a

K()

for the initial values k(0) = y and £'(0) = 0.

In order to generalize this to initial values k(xo) = « and &/'(zg) = 8 for o, € R we
have to apply the theory of elliptic curves. At zy one obtains by (3.2)

1
g% = —Zo/l—aon —2ba + ¢

1
— c:ﬁg—{—zofl—}—aaQ—i—Qba.
Now we can define an elliptic curve by
1 1
Y = {(z,w) € C*|w? = g(z) := _Zx4 —ax® — 2bx + 5% + Zo/1 +aa® +2ba}.  (3.6)

If we consider real initial values we are at a real subset of this curve, where both param-
eters are real. We defined this curve also for complex values in order to have a connected
elliptic curve.

|
l
|
Ao « A

Figure 3.1.: Elliptic curve for generalized initial values

Due to the initial values the point («, 3) lies on the curve. The polynomial g(x) satisfies
g(r) — —oo as x — o0 and g(a) = B2 > 0, so it has at least two real roots and the
curve Y is not empty. Because of the asymptotics there is at least one real root smaller
than a and one real root larger than «, we set

X =max{z € R|g(zx) =0, z < a}, (3.7)
A :=min{z € R|g(x) =0, z > a}.
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3. Elastic and generalized elastic curves

Furthermore we set x(0) = A.

Since the Weierstrass invariants depend on the initial value «, the period length of the
the curvature function x(z) also depends on a. The curvature x(x) has one real period
since the Weierstrass invariants are real, see Appendix A. The period length can be
computed as follows:

A1
1
p= 2/ dx. (3.8)
Ao

V()

So we obtain x(§) = A1, see therefore also lemma 3.4. If the period length is O the
curvature function is constant and if the period length is oo the curvature function is not
periodic, this happens only in some degenerate special cases and depends on the position
of the roots of the polynomial g(x). The case of constant curvature solutions will be
considered in section 3.6.

Lemma 3.2. The solution r(x) of the differential equation (3.1) has the following prop-
erties:

4(y3 + 2ay + 2b)¢/ (, g2, g3)
2
(4p(z, g2, 93) + 3y% + 1a)

(i) w(x) = n(~)
(iii) K'(z) = —K'(—x)
(w) #([0,p)) = [Ao, M]

(i) K'(x) =

Proof. (i) follows from direct computation, (i) and (éi7) from the properties of p and
@ described in appendix A. Since £(0) = Ag and x(5) = A1 and & is continuous (iv)
follows. O

The next lemma shows, that in the non degenerate case there exists an identification
between R/pZ and a part of the elliptic curve Y.

Lemma 3.3. Let g(x) have no multiple roots and Y be the real part of the elliptic curve
Y with k(0) € Y. Let p be the period length, then the map

¢ :R/pZ — Y,
z = (K(z), K (2))
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3.1. Elastic curves

1s a homeomorphism.

Proof. Since g(x) has no multiple roots, 0 < p < oo. We have to show, that ¢ is
continuous, one-to-one and onto with continuous inverse mapping.

e ¢ is continuous because the functions x(z) and «/'(x) are continuous.

e ¢ is one-to-one. Let xy and x; be in [0, p), this is a representative of R/pZ, and set
#(z0) = ¢(x1). Then by (3.5) the equation x(xp) = k(x1) implies p(z¢) = p(z1).
So xg = +x1 mod p, see proposition A.7. Assume xg = —x1 mod p, then

K (x0) = K/ (—21) = —K'(21) = —K(20)

by the properties of k(x) and £/(x) and furthermore x/(z¢) = £'(x1). So k'(x¢) =0
and zg € {0, 5}, see lemma A.6. If already o = 0, then also z; = —0 = 0 and if
xo = 5, then

wlz—g modngmodp:xo.

So in each case xg = x1 and ¢ is one-to-one.

e ¢ is onto. Let (A, ) be some point on 17, without loss of generality u > 0 since Y
is symmetric with respect to the z-axis. Because the image of k(z) is [Ag, A1] the
value X satisfies Ag < A < A\;. Now k(x) is continuous, so there exists £ € (0, 5) (we
are on the upper half of the curve) with x(¢) = \. Then £/(€) = p since (A, u) € Y,
S0 ¢ is onto.

Because of the periodicity of k(z) with period length p it holds ¢(0) = ¢(p) and R/pZ is
compact, so the inverse mapping must be continuous too. ]

The solution to the initial values k(xo) = a, k' (z¢) = B is given by (3.5) replacing y by
Ao since all solutions are given by translations in the argument x. Such a translation
corresponds to a movement on the elliptic curve Y. We can describe the variable xz on
the elliptic curve by the following formula.

Lemma 3.4. Let x(t) be a solution of k'(t)? = g(k(t)). Then the variable x on'Y satisfies

forxz €[0,5).
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3. Elastic and generalized elastic curves

Proof. Substitute s = k(t) in the integral

xT

ds =

7) 1 1 ,
—F'(t) dt,
Vy(s) V(g(r(t))

Ao 0

because x(0) = \g and ds = #’(t) dt. Now we use the differential equation &/(¢)? = g(x(t))

and obtain .

i 1
— ) dt = dt = x.
O/ O [

0
O

An analogous equation holds for = € [§,p), there the value of #/(x) is smaller than 0 and
one obtains

K(z)

Putting together the above, we have proven the following lemma for randomly chosen
initial values «, 8 € R.

Lemma 3.5. The solution of the initial value problem

d? 1
@n(x) + 5/1(90)3 +ak(xz) +b=0,
/g;(xo) - (X,
K (zo) = B
18 given by
3
—y° — 2ay — 2b
k(z) = t,
4@(1.792793) + %yz + %a’
with
11,
g2 = _Z c—+ E a-,
1 1 1
93 = — ac+ ——a* + —b*.

24 216 16

Here ¢ = (% + %o/1 + aa? + 2ba and y is chosen as Ay, the largest root smaller than o of
g(t) = —3t* —at® — 2bt + B2 + Lot + aa® + 2ba as defined in (3.7).
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3.1. Elastic curves

Our next aim is to construct a curve for a given curvature. Since we are only interested
in curves on S? the curvature determines the whole curve. We now want to write the
curve and the frame as a matrix and therefore introduce the following basis for su(2),
the antihermitian 2 x 2-matrices with trace zero.

Definition 3.6. A basis for

1T To — 1T
5u(2):{< 1. 2 . 3) ’.%'1,1‘2,1‘361@}
—T2 — 13 —1T1

1s given by the matrices

(i 0 (0 1 (0 —i
1=\ —i)> 27\ 1 0)" 7 \=i o)

The scalar product in su(2) is defined by (X,Y) := —3tr(X -Y) for X,Y € su(2).

The frame of a curve was given in (2.5) by

e1(s) 0 1 0 e1(s)
E 62(8) =1 -1 0 K(S) 62(8)
es(s) 0 —k(s) O e3(s)

We now search for a moving frame in SU(2, C) of this curve. So let F'(s) be a matrix in
SU(2,C), the solution of d%F(s) = a(s)F(s) with F'(0) = 1. We identify the basis vectors
e1,ea,e3 with o1, 09,03 by setting e; = F~1o1F, eg = F~looF and e3 = F~'o3F. The
new equations for the frame F(s) are

d d

Efy(s) = E(F—lalF) = FloyF, (3.9)
d
E(F*@F) = F~!(~0y + Ko3)F,
d

E(FflagF) = F!(—ro9)F.

For the first equation we obtain

d d d
—(F'o.F)= - F Y (=P F 'o.F+ F lo)(—F)F'F
ds( o1 I) (dS JE o F + Jl(ds )

= _—F 'aFF 'oyF + F 'oyaFF'F

= F_lalaF - F_localF

= F Ya,01|F

' -1
=F O'QF.
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3. Elastic and generalized elastic curves

We can calculate the other equations similarly and have to solve

[0-1,05] = 02, [0’2,0[] = —01+ KO3, [0'3,04] = —ko2.
We now set aw = < e a2 r a3> € su(2), solve these equations and obtain
—1a9 + ag —ai
1 fik(s) —i ) 1
=g ( _ —im(s)) = 5(/&0’1 +03) € su(2). (3.10)

To calculate the curve one now has to solve the differential equation d%F = aF, the
component e1(s) = F~!(s)o1F(s) is the curve y(s) in SU(2,C). The curve v(s) does not
depend of the sign of the frame F'(s), the values F(s) and —F(s) yield the same curve
v(s). The initial values for integrating the frame can be chosen randomly because our
curve (s) is on S? and other initial values are reached by rotating the sphere.

The following lemma describes the condition for any curve to be closed. It is not sufficient
that the curve returns to one point. As well the differentials of the curve have to coincide
at the corresponding point. The curve and its differentials are collected in the moving
frame, hence we obtain the following corollary.

Lemma 3.7. A curve is closed if and only if F(np) = £1 for a period p as in (3.8) and
somen € N.

The main tools for solving the differential equation dF'(s) = a(s)F(s) will be developed
in the next section.

3.2. Spectral curve of elastic curves

In the previous section we defined generalized elastic curves in definition 3.1. This defi-
nition can be seen as a special case of the modified Korteweg-de Vries (mKdV) equation.
In order to explain this connection and to derive a spectral curve for generalized elastic
curves, we now take a closer look at mKdV.

Definition 3.8. Let v : R xR — R, (x,t) — v(x,t) be a function, then the modified
Korteweg-de Vries (mKdV) equation is defined as

3
vy + §U2UJ: + Vpzx = 07

24



3.2. Spectral curve of elastic curves

where subscript t or x means differentiation with respect to t or x respectively. The factor

% can be replaced by any other positive number by shifting the solutions.

The solutions of the mKdV equation are related to the solutions of the KdV equation
us + 6uty + Ugee by the Miura transformation u = v, — v? [Miu68].

Goldstein and Petrich [GP91] related the mKdV equation to dynamics of closed curves.
They showed that dynamics of curves that preserve area and perimeter can be described
by the mKdV equation. The function v in the mKdV equation is here replaced by x(x,t),
the curvature of the curve. We now consider wavelike solutions of the mKdV equation,
in this case the solution k(x,t) must be a periodic solution that forms a traveling wave,
i.e. a non-stationary solution of the wave equation. The solutions of the wave equation
depend only on z + at with a being the wave speed. So we can set k(s) = k(z + at) and
have aks = ak, = K¢. Inserting this into the mKdV equation one obtains

3
aks + 5/4;2/15 + Kgss = 0,

and after integration

1
/<;85+§n3+a/<;+b:0.
This is just definition 3.1 of a generalized elastic curve.

We are now going to construct a spectral curve for generalized elastic curves. Therefore
we introduce the Lax pair of the mKdV equation and follow the standard procedure
for obtaining a spectral curve, see [DKN85]. Our main ingredient is the relationship
ak, = K¢. Before we can proceed we need some more general definitions.

We look for matrices «, 5 € su(2), such that the Maurer-Cartan equation is the mKdV
equation. This means, that if we have some F': R x R — SU(2,C) with (z,t) — F(x,t)
solving the differential equations

OF

— = afF.
ar
OF
= _B3F
ot p
the compatibility condition
OP’F  O°F
0xdt Otz
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3. Elastic and generalized elastic curves

is equivalent to the mKdV equation (3.8). We can also add a spectral parameter A € C*
such that the equation is fulfilled for all A € C*.

These matrices are given by

1/w —i
amtA) =3 (—m —w> ’

which gives for A = 1 just the matrix (3.10) and

i — vy — %03) Uy — 1A+ %in
pla,t,) =3 (—m =N+ giP A i = vgp — 5%))

with A € C*. Both matrices are in si(2,C) for general A and in su(2) for A = 1. By
integrating we hence obtain a frame in SL(2,C) and SU(2,C) respectively.

The compatibility equation can also be written as
0 0
ERRr e

ar — Bz + [a, 5] = 0. (3.11)

or

The function F' can be regarded as frame of solutions of the mKdV equation depending
on the variables z, ¢, \. The frame of the previous section for elastic curves can be
obtained for A =1 as F(s) with s = = + at.

Definition 3.9. [DKN85] A solution of mKdV is called finite-gap or algebro-geometric
if there exists a matriz-valued function W(x,t, \) such that

[% —afz, t,\), W(x,t, )\)] =0, (3.12)
[% — Bz, t, ), W (x, t, )\)] =0, (3.13)

and W (x,t,\) depends meromorphically on A. These solutions are called finite-gap be-
cause the resulting spectral curve will have finite genus. In the theory of the integrable
system of the sinh-Gordon equation the function W(x,t,\) is called polynomial Killing
field.
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3.2. Spectral curve of elastic curves

We now show, that in our setting of wavelike solutions of the mKdV equation it is possible
to find such a W (x,t,\) and then define an algebraic curve, the spectral curve, as the
eigenvalues of the matrix W (xz,t, A\). With the help of the spectral curve we can find a
vector-valued function 1 which solves the differential equation %1/1 = o).

Lemma 3.10. The matriz valued function
Wz, t,A) := aa(z,t,\) — B(z,t,\)

satisfies equations (3.12) and (3.13) for generalized elastic curves.

Proof. Recall the condition ak, = k; for wavelike solutions. Then the Lax pair matrices
obey aa, = oy and aff; = f;. Equation (3.12) is equivalent to W, = [a, W] and (3.13)
is equivalent to W; = [3, W]. The second one is in our case equivalent to the first one,
since

W, = (ac = B)x = aay — Bz = ar — Bu,
Wi = (aa — B)r = acy — By = a(ay — Be),
[, W] = [, 00 = B] = —[a, ],

(8, W] = [B,ac — B] = —ala, B].

So we have to check the equation

(673 _/8:13 + [C!,,B] = 0
and this is the compatibility condition (3.11). O
Now we set s = x + at and obtain functions k(s) = k(x + at) and W (s, \) by replacing
k(x,t) = k(s) therein. We introduce the spectral curve of a generalized elastic curve as

the eigenvalues of the matrix W (s, A) with s = 2 + at. Therefore we use the differential
equations kKgg + %/43 +ak+b=0and (k)% + il-€4 + ak?® + 2bk = c.

1 [ aik —i(Ak — Kgs — 2K3) —ia — kg + I\ — iK?
Wis A =3 <—mA + KA + A% — gma —iak + i(Ak — Kss — 3K°)
1 —ib — QAR —ia — kg + i\ — §iK?
T2\ —dad + KA + A2 — Jik%A ib+ Ak
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3. Elastic and generalized elastic curves

Since the matrix W (s, \) has trace 0, the eigenvalues are £4/det(W (s, A)). So we have
to compute the determinant of W (s, A).

det(W(s,\)) = ! ( - AM(i(—a+ X — %/12) — ks)(i(—a+ A — %KJQ) + Ks))

b+ KA) )

+(
Lo 22 2 2 L4
=1 b2 4 12\2 + 20k + M(a® — 2a)\ + ak® + N2 — Xk —|—fo + K3)
L2, 3 2 2 o 14 2
=1 b 4+ A% —2a\* + \a +)\(/<;8+Z/<; + ar” + 2bk)
1 , (1 1, 1,

—4)\ —2a)\ +<4c+4a>)\+4b

Definition 3.11. The spectral curve of wavelike solutions of the mKdV equation is the
algebraic curve

_ 22__13 22_122 _12
—{(A,M)E(Cm— 4)\ +2)\ ¢ +4 A 4b . (3.14)

Lemma 3.12. The elliptic curves I and Y, defined in (3.14) and (3.6) are isomorphic
to each other and to the elliptic curve of the Weierstrass p-function

P :={(z,y) € ((:2|y2 = 42% — gox — g3}

The Weierstrass invariants ga, g3 have been defined in (3.3),(3.4). Thus the elliptic curve
which defines the solution of the differential equation is isomorphic to the spectral curve.

Proof. We have to show that they have the same j-invariant, then the assertion follows
from (A.11). Therefore we transform the elliptic curve I' to Weierstrass normal form.
This can be done for any polynomial f(z) = asz® + asz? + ayz + ag with ag # 0 by
1
a2

4:3 . We obtain a new function f(t) = 3 + pt + ¢ and after a second

transformation ¢ = /4s we have the polynomial in Weierstrass normal form with f(s) =
453 — /256 - go + 1693 and

setting x =

1 3asa, — a% 1 2a2 — 9asaqsa; + 27a3a0
=—-———F"* = — 3.15
92 1 ) g3 16 27&3 ( )

2
3a3
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3.3. Explicit parametrization of generalized elastic curves

So the j-invariant of I" is given by

ip = 1798 V256 - 92)° P
(V256 - g2)3 — 27(—16g3)? g5 — 27g3

The j-invariant of Y can be also calculated by using g and g3. During the procedure of
solving the differential equation for generalized elastic curves we transformed the curve
Y to an elliptic curve in Weierstrass normal form with exactly the Weierstrass invariants
g2, 3gs. Thus

9
jy = 1728 ——=—..
95 — 2793
The j-invariants are the same, so the curves are isomorphic to each other. O

Hence we can always use the curve P as the spectral curve of a generalized elastic curve.

3.3. Explicit parametrization of generalized elastic curves

We now integrate the frame to obtain a formula for the immersion of the generalized
elastic curve on S%. Therefore we look for solutions of the differential equation

d (i _1(ik —i U1

dr \o) 2\ =i\ —ix) \a )"~
This system of first order differential equations can be transformed to one second order
equation. We have

(2,2) = 3 (in(o)n(2,2) — W, ), (3.16)
%wg(x,z) _ % (—idin (2, 2) — ik(z) o (z, 2)) | (3.17)

with z some variable related to A, the relationship will be clarified later. Differentiating
the first equation and then inserting into the second equation we obtain an equation of
Schrodinger type:

2
—%wl + (%m - _,g) b1 = 2 (3.18)
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3. Elastic and generalized elastic curves

with potential ¢(z) = Lix'(z) —

2
and set

1

16(x)% We now calculate the potential g(z) explicitly

1, 1

@(w,92,93) = _gy - Ea

for some w € iR.

Using the differential equation for p

we obtain
1.
o' (w,g2,93) = igz(?ﬁ + 2ay + 2b).
Here we choose the "—"-sign and furthermore we obtain
Ui _ 2 1
o (w,g2,93) = 6p(w, g2,93)" — 592
1
=gV (y* + 2ay + 2b) .
So we see
@”(wa 92, 93) —
@I(wa 92, 93)
Then we obtain
3
—y° — 2ay — 2b
k(x) = +,
4@('%'792793) + %yZ + %a
_2ip/(w792793) _ip”(quQag?’)

B p(x7927g3) - p(w7927g3) pl(w7927g3)

This version of the curvature function will be used in the following. Thus we can also
parametrize all generalized elastic curves by ¢2,93 € R and w € ¢R. The explicit re-
lationship to the parameters a,b,c will be considered in detail in lemma 3.14 We now
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3.3. Explicit parametrization of generalized elastic curves

suppress g, g3 and obtain

w) =5in (z) — 7R(z)?
_1L, 2ip(w)g'(x) 1( —2igp (w) _Z.p”(w)>2
2 (p(r) —pw)? 4 \p)-pw) W)
_ (@) (w) __( 4/ (w)? — 49" ( )(@(w)—@(w))>
(@(90)—@(10))2 4 (p(x) — p(w))?
1 p"(w)
4 ¢ (w)?

—¢/(2)p' (w) — 2p(w)? — Lgap(w) — Sg20(x) — g3 + 6p(w)*p(x)
(p(z) — p(w))?

_ o (w)*
2p(z +w) — 2p(w) + (w)2
_1 p'(z) — p/(w) ’ _ ) — w) — w lpﬁ(w)Q
2 (S y) ~2te) 20t =20t + 10
:(p(x) —1p(w))2 (%(4@(56)3 — gop(x) — g3) + %(4@(10)3 — gop(w) — g3)
/! w 2
—¢ ()¢ (w) — (2p(x) + 4p(w))(p(z) — p(w))?) + igfwi
:m (—¢' ()¢ (w) + 2p(2) — $g2p(x) + 2p(w)® — Lg2p(w) — gs
—20(2)” + 4p(2) *p(w) — 2p(z)p(w)* — 4p(w)p(x)® + 8p(w)*p(z) — 4p(w)*)
l@”(w)Q
4 ¢ (w)?
_ 9 @)/ () — 20(w)® — 320(w) — 3920(x) — g3 + Bp(w)*p(x) | 19" (w)*
(p(x) — p(w))? 1/ (w)?
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3. Elastic and generalized elastic curves

This yields

1 1 1 Z 2
q(x) = Fin'(x) - ZI—@(@“P = 20(z +w, 92, 93) — 26(w, 92,93) + Zl((;’j))z

Such potentials are called Lamé potentials and the Schrédinger equation with this po-
tential is called Lamé equation. This equation is well understood and the solution can be
given in terms of Weierstrass o- and (-functions, see [FKT92] and [WW79, ch.23]. The
Weierstrass elliptic functions are introduced in detail in appendix A. We obtain for the
solution of (3.18)

_ C(Z)gﬁa(z —r—w) 1
1(z,z) =e —a(ac ) (3.19)
with z chosen as solution of
1 1 p/l(w)2
- —ZA+2 _ = 2
p(Z,QQ,g?;) 4)‘+ @(w,QQ,QB) 4 p,(w)g (3 0)
The other component of (3.17) is given by
Po(x, 2) = 2 (x, 2) + Kk(x)Y1 (2, 2), (3.21)

and depends on ¥;(z, z) by

Po(2,2) = (C(2) = C(z — 2 —w) = ((z + w) + K(z)) Y1 (2, 2)

_ (19 —z—w) - ¢(z +w) w(x X,z
_<2 plz—x—w) — p(r+ w) + K( )>¢1( ,2).

Starting with these two functions we can now build our frame. Therefore we set A = 1
with corresponding zi, since this choice yields the frame differential equations for the

curve. One of the solutions is given by (ilg’ 21§>, so the other one is <:;’b?($23)>
25 21 1\T, 21

This follows from conjugating the differential equations (3.16) and (3.17). We now define

_ (Vi(m,21)  —a(z,21)
U(z,2):= <1/)2(x,z1) 77[)1(%21) > )

and calculate the parametrization of the curve in terms of the functions ¢;(x,2;) and

¢2($, Zl).
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3.3. Explicit parametrization of generalized elastic curves

Lemma 3.13. The parametrization of a generalized elastic curve ~(x) on S? is given by
1 - 2
(&) = By /[a( 2000 21) + 920,260,

. 2
- ‘¢2($,21)¢1(0,Z1) - 7/)2(0,21)1#1(5'3,21)‘ /,

Yo(w) = —ﬁf(lwz(%zlw — |11 (@, 21)[*) (1h2(0, 21)11 (0, 21) + 1(0, 21 )12 (0, 21))

+ 1w, 21)2(, 21) (1/11(07 21)” — (0, 21)2)

+ 1z, 21)02(, 21) ($1(0, 21)% — 2(0, 21)?) /.
Zﬁﬂ) (oo, 20)F = [ (, 20)[*) (20, 1)1 (0, 21) — 91 (0, 21)¢h2(0, 21))

+ 1w, 21)¥2(, 21) (1/11(07 21) + (0, 21)2)

— r(, z)da(e, 20) (10, 21)° +42(0,21)°) /.

Y3(w) = D

with
D(x) := (|1 (2, 20) [ + [vha(a, 21)[*) ([1(0, 20) + [2(0, 21) 7).

Proof. The curve is given by v(x) = F~Y(z,21)01F(z,21) if we set A = 1 in a(z,t,\)
to obtain (3.10). The corresponding value is 21 with p(z1,92,93) = 1 + 20(w, g2, 93) —

ifd ((w)) Since our frame has to satisfy F'(0,21) = 1 and F(z,2;) € SU(2,C) we set

U(x, zl)\lf(() z1)7!

F(x,z .
(z21) = Vdet(U(x, 21)¥(0,21) 1)
We have
_ 1 $1(0,21)  12(0 Zl))
I O,Z 1 - - ) 9
O™ = @ (o) 0o
and set W(0,21)"! = 515 B. Then the frame is given by
v LB
F(z,z1) =)
\det(U(, 21) 15 B)
\If(:v 21)B

\/det (z,21)) detB.

33



3. Elastic and generalized elastic curves

In detail we obtain

.z 1z, 21) —a(z, 21) P1(0,21)  ¢2(0, 21)
Yo a)B = ( bale, 1) w,zl))(—w(o,zn zm(o,zl))

( 1(x,21)¥1(0, 21) + ¥2(0, 21 )9h2 (2, 21)  Y1(w, 21)¥2(0, 21) — 1(0, 21) Y2 (z, Zl))
Yo(x, 21)91(0, 21) — ¥2(0, 21)P1 (2, 21)  Pa(w, 21)2(0, 21) + ¥1(0, 21)¢1 (2, 21)

and

_ Vi(z,21) —a(z,21) 01(0,21)  12(0,21)
dett¥r,2)B) = det (1/;(%21) 1/112(95721; > et <—7/1)2(0, ;1) ¢i(0, Zi))

= ([1 (@, 20)1* + [pa(@, 21)1?) (110, 21)* + [92(0, 21)]?) -

Since F(z,z1) € SU(2,C) has determinant 1 the inverse can also be easily calculated.

\I’(az zl)Bt
\/det (x,21))det B

F(:U,zl)*l

The curve is now given by v(z) = F~!(x, z1)o1F(x, z1) € su(2) with oy = (é —Oz>’ see
(3.9). Thus () is given by
1) = st 2P + ala 20P) (10, 200 + 4200, 2)P)
2 . .
‘1/11 D10, 21) + ¥2(0, 2)¢s (x, Z)‘ —2 (1/12(9& 21)¥2(0, 21) + 11(0, 21)¥1 (=, Zl))
1 _ -
— [va(@ 2000020 = a0 2)br (20| - (10,20l 20) — v, 2)82(0,21) )

2 (T2, 2062(0, ) + a0 00 n(w,21)) [walr 20000, 20) — (0, 201w, 1)
S - [ [ )
: <¢1(07 z1)¢2(, 21) — Y1 (w, 21)2(0, Zl)) - ‘¢1(9€, 21)11(0, 21) +12(0, 2)1 (2, 21)‘
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3.4. Closed generalized elastic curves

and in components in R? by
")/1(1') = ﬁ[ ‘1/11(1'7 21)1/11(07 Zl) + 1/}2(07 2)1/12(.%', Z)‘
- ‘7,02(33,21)1#1(0, z1) — 2(0, 21)7/)1(%21)‘2],

Yo(z) = —ﬁ[uwz(m)r? — [th1(m, 21)*) (102(0, 21)p1 (0, 21) + ¥1(0, 21)1h2(0, 21))

(221t (@,21) (9100, 21) — 02(0,21). )

(2, 21)2(, 21) (1.0, 21)% = (0, 21)%) |,

ya(z) = ﬁ[uwz(m)ﬁ — 11, 21) %) (@2(0, 21)81.(0, 21) — ¥1(0, 212 (0, 1))
(
(

with
D(x) := ([t (2, 20) [ + [vha(a, 21)[*) ([1(0, 20) + [22(0, 21) 7).

3.4. Closed generalized elastic curves

In the previous section we found a parametrization for generalized elastic curves. We used
the parameters a, b, c € R and then calculated a curve (x), whose curvature satisfies the
differential equation (3.2)

(K (z))? + il‘i($)4 + ar(x)? + 2bk(z) = c.

The initial value for this differential equation was chosen as a value on the elliptic curve
defined by 32 = g(z) = —ix‘l — ax? — 2bz + ¢. In this procedure we also introduced
new parameters go, g3 € R and w € iR. Not every generalized elastic curve is closed, but
there exists a large family of closed curves. Now we try to determine how to choose the
parameters a, b, c in order to obtain closed curves. It turns out that the second set of

parameters gs, g3, w is more suitable to achieve this goal.

We will use the Weierstrass invariants go, g3 and the periods of the lattice p, 7 equivalently,
since there exists an isomorphism between them, see lemma A.21. Since the elliptic curve
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3. Elastic and generalized elastic curves

has only real coefficients it has a real lattice and the lattice is rectangular or rhombic,
see lemma A.16 and all real lattices are of this form, see lemma A.22.

Lemma 3.14. Let 7 and p be the periods of the elliptic curve defined in (3.6). Let
A:={(a,b,c) eR¥|Fy eR:g(y) =0 and g(—%y2 — &5a) <0} (3.22)
and

By :={(w,7,p) € RxRxR [0<w< T}
By :={(w,7,p) €iIRx HxR |71 =p/2+i\A€R, 0<w<I(r)}

with H = {z € C|3(z) > 0} the upper half plane and R = R U co. By describes
rectangular lattices and Bo rhombic lattices. The value w € iR is defined by

1¢"(w,,p)? 1

p(w, T,p) — gm — %
and 7 )
w? Y
y =1 / p
¢ (w,7,p)

Then the map ¢ : A — By U By is2: 1.

Proof. The first condition in (3.22) makes sure that the elliptic curve is not empty and
the second condition ensures that there exists a w € iR with p(w, g2,93) = —%y2 — 1—12a.

We have the equations (3.3) and (3.4)

L1
=——c+ —a
92 4 12 )

1 1, 1,
= —ac+ ——a® + —b
93 = 949¢ T 516% T 167
1o"(w,m,p)? 1

p(w,T,p) — 8m = Ea

For given a, b, c we obtain gz, g3 and therefore w. Because of the conditions 0 < w < 3
and 0 < w < (7) respectively, there exists only one w which fulfills the equation. Two
values of b are mapped onto the same value of g3, this explains the 2 : 1 character of
the mapping. For given g¢o, g3, w we can calculate a, afterwards ¢ and finally b. Since
there exists a isomorphism (see lemma A.21) between the Weierstrass invariants go, g3
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3.4. Closed generalized elastic curves

and the periods p, 7 we can replace g2 and g3 in the above considerations by p and 7. The
two cases arise since real Weierstrass invariants lead to rectangular or rhombic lattices.
Rectangular lattices are spanned by one real period and one pure imaginary period.
Rhombic lattices have generators of the form p and p/2 4 iR, see lemma A.22. O

In order to obtain the solution of the Lamé equation we also defined a parameter z € iR
in (3.20) by

1 p//(w)2

4/ (w)?’

Therefore w € R has to be chosen such that we obtain pure imaginary z € ¢R. This
parameter z will play an important role in the investigation which generalized elastic

1
—p(2,92,93) = yi 20(w, g2, 93) —

curves are closed.

Lemma 3.15. A generalized elastic curve is closed if and only if the parameters (z,T,p)
satisfy the following equation for some q € Q

pC(ZaT,p) - 2Z< <ga7—,p) = ﬂ-lq (323)

Proof. The curve is closed if and only if there exists a p € R such that F(np) = £1,
see lemma 3.7. This p is the period length of the curvature and the integer n counts the
number of periods of the curvature after which the curve closes up. We therefore calculate
the period of the functions ;(x, z) and ¥a(z, ), defined in (3.19), (3.21). Since ¥a(z, 2)
is just a linear combination of ¢ (z,z) and its derivative, it has the same period as
Y1(x, z). In the following we suppress the invariants in the Weierstrass elliptic functions,
as long they are 7 and p. We define n; and 1 by

771(7',1)) = 2<(%aT,P),
772(7—’])) = 2((%’7—’1))

Using the addition theorems of elliptic functions
. 4
o(z+p,7,p) = —a(z, 7, p)e™ P (x+2>,

. p
O-(_'I - paT’p) = _O-(_'Ia’r’p)enl(ﬁr’p) ($+2>a

C(m +pa7—’p) = C(,I,’T,p) +771’
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3. Elastic and generalized elastic curves

we obtain

_ et (2 =T —p—w, T, p)
1 (z +p, 2) P

— C(Z 7,p)(z+p) O-(('I —Z+w, T’p) + p)
o((z +w,7,p) +p)
n1 (T,p)-(zferer%)

C(emp)(atp) O(T — 2+ w, T, ple

p
—o(z +w,7,p)e" () (w+u+5)

= i(z, Z)QPC('Z’T’p)e*Z??l (1.p)

= PRI TRy, (g, 7).

We now define
IU’(Z’ T? p) = epC(Z’T7p)_22<(p/277-7p)’

this describes the quasiperiodicy of 11 (z, z) after one period p. We define the monodromy
of the frame as
M)\ = F(p’ >‘)

Then there exists a matrix C, composed of the eigenfunctions 11 (z, z) and ¥ (z, z), such

that
M ZC'('LS 0) oL
m

Here u € S! is the eigenvalue of <¢1 (P Z)> and hence L is the eigenvalue of < Va(p, Z)>
1/}2 (p7 Z) K wl (p7 Z)
We have

M} = F(np, \),

thus we obtain that the curve is closed if the exponent In y is a rational multiple of i, say
wig. With g = ql the the curve is closed after go periods, since then F(gop) = £1. O

We now try to obtain a good parametrization for all closed generalized elastic curves.
Therefore we use the homogeneity relations of the Weierstrass functions

=355

~ 1 T
771(7—7]7) =—-m <_71> )
p p

One obtains
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3.4. Closed generalized elastic curves

and thus

- zZT z T
hl,U,(Z,T,p):C<—,—,1 — =M <_’1>'
pp p

If we now choose new parameters z = %, 7 = I the closing condition is given by

v
ln,u(z, T, 1) - C(Z7 T, 1) - ZT/l(Ta 1) - qu

and hence does not depend on p. In the following we thus consider only solutions with
period 1 and replace the parameters 7,z by the parameters 7 and z.

We now describe how to obtain closed generalized elastic curves. First we only consider
rectangular lattices.

Lemma 3.16. Let 7 € iR and fiz some q € Q. Then there exists a function z(T) with
values in [0,7) C iR such that

C(z(1),1,1) — 22(7’)((%,7’, 1) = mig.

Proof. We use the implicit function theorem, therefore we have to calculate

Oln u(z, 7,1
IHMETD (e 1) = (1),

The function z(7) exists for all 7 if and only if the partial derivative has no roots on the
imaginary axis. Therefore we calculate two special values of In .

In 2 GT 1) —¢ (%T 1) _ 2;71(7,1)

=19 — TN = T,

T 1 T 1 T+1
1 -+ = 1) = — + = 1] -2 1
nu<2+2,77 ) C<2+2,T7 ) 5 m (7, 1)

=(m+m)—(T+1)m =n — 71 = mi.

The two values at the points 7 = % and ™ = TT‘H coincide and the function In p is not
constant. Furthermore % In z1 is real on the line R+3R, see lemma A.15, so the derivative
has one root on the line between 5 and 5 + % Due to the symmetry of the Weierstrass
p-function there must be another root of the derivative on the line between TT“ and TT”
The g-function takes every value exactly twice, since it is an elliptic function of order 2,

hence there is no root on the imaginary axis.
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3. Elastic and generalized elastic curves

T1 T2

?
e

Figure 3.2.: Possible roots of In i in a rectangular lattice

We now want to show that the set
M :={r e iR|3z€iR:Inu(z,7,1) = wiq}
equals iR. Therefore we show that the set M is open and closed.

By the implicit function theorem there exists locally in a neighborhood of a fixed 7 a
function z(7) with the property

C(z(1),1,1) = 2(7)¢(1/2,7,1) = Tig.

So M is open.

Now let 7, be a sequence in M converging against some 7*, the sequence z(7,,) is bounded
by the maximum of all 7;, since z € [0,7). Thus there exists a convergent subsequence
Zm = 2(Tp) with limit z* and we have z* = z(7*). Since Inp is continuous in the
arguments 7 and z we have in the limit

miq = nlgnoo I p(2(Tm)s 2m, 1)

=t (Jim, +(r). T o 1)

=Inp(",7%,1)

So the the set M is also closed, hence it must be equal to ¢R. O
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3.5. Deformation of closed generalized elastic curves

Since the previous lemma can be shown for any g € Q we obtain the following corollary.

Corollary 3.17. For any
(1,p,q) €EIRXRxQ

there exists z € iR, such that the generalized elastic curve parametrized by (z,7,p) is
closed. O

The case of 7 € 1/2 4+ 4R is a little bit more involved. We therefore study deformations
of closed generalized elastic curves in the next section.

3.5. Deformation of closed generalized elastic curves

3.5.1. General deformations

We now study the deformation of closed generalized elastic curves. We add an additional
parameter ¢ € R which shall describe flows in the set of closed generalized elastic curves.
The closing condition is given by

In pu(2(t), 7(t),p) = p¢(2(t), 7(t), p) — 22(t)¢(5, 7(t), p) = miq
and shall be fulfilled for all . The parameter z is on the elliptic curve defined by
Y ={(z9) |y’ =42" — g2()z — g3(t) = 9(2)}.
and is chosen to be independent of ¢.

The following deformation is some kind of Whitham deformation and is explained in
detail in [GS95]. We change the elastic curve via isoperiodic deformations, i.e. the value

of the integral
/dlnu

Y

is preserved during the deformation for all closed cycles +.
Then the function In p satisfies the following differential equation:

Dl | —z—mt)
P dz = " dz (3.24)

dlnp :=
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3. Elastic and generalized elastic curves

Furthermore we have ,
0 0°Inp
—dlnpy =
s otoz

The right hand side is a meromorphic differential form w . We demand this differential
form to be closed in order to conserve all periods. Hence w is the derivative of a meromor-
phic function ¢(z). We choose ¢(z) = qsz) with a polynomial ¢;(z). This meromorphic
function can only have poles at the branch points, which are the roots of g(z), and at
z = 00. At the point co it has a pole, hence the polynomial ¢;(z) has a degree of at most

1. We choose

dz =:w

1(2) = (120} — g2) (2 — ¢)
for some ¢ € R where 7, is defined by
m(t) =2¢(3,7(t). 1).
Then In p satisfies the differential equation

Oln 9 z—c
= (12n] — . 2
it = (120} — )= (3.25)

The factor (121? — go) ensures that there are no poles during the flow.

Instead of varying 7 we can also vary gs and g3. Hence these differential equations yield
differential equations for go, g3, 1.

All derivatives with respect to ¢ are denoted by a dot, f = % f.

Lemma 3.18. The deformation defined by equations (3.24), (3.25) changes g2, 93, m of
a generalized elastic curve as follows:

g2 = 24m g2 — 30693, (3.26)
gs = 293 + 36m s, (3.27)
. 1

i = 6nf — 592 (3.28)

Proof. The compatibility equation for the deformation is given by

0?In p B 0?Inp
otdz 020t
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3.5. Deformation of closed generalized elastic curves

For the following calculation we need

Jy

1222 — g9 _ 1222 — g9

1
0z 2./423 — gyz — g3 2y
Oy _1-g2z—gs
ot 2 Yy ’
the parameter z does not depend on ¢.

and

Thus the compatibility equation is given by

(127 — go) <y — 11222 — go) (2 — c))
Yy

_ 1 <_77-1y _ 1(_27 _ m)ﬂ)
y? Y

1
12— o — g0 — (6~ o)z —0))

- % <_771(4z3 — 92— g3) — %(_Z —m)(=g2z = ‘(j?’)) '

This equation can also be written as

. 1.
22 (=2(12nF — go) + 41j1) 4+ 22(6(12nF — go)c + 592)

1 . 1 . 1.
+Z(—§92(1277% —92) — 1192 + 3Mg2 + 593)

1 9 . 1.
+(—g3 — 5920)(12771 —g2) — 1193 + 393 = 0.

Comparing the coefficients of the polynomial with respect to z the last equation yields
the assertion. O

The differential equations for g¢o, g3, 71 are rather complicated, we are now looking for
simpler differential equations. Therefore we rewrite the equations in terms of ey, es, €3,
which are the three roots of the polynomial 423 — gox — g3. These roots satisfy the
equations

0 = e1t+e+ €3,

92 —4(e1ez + ere3 + ezes),

g3 = 4dejezes.
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3. Elastic and generalized elastic curves

So we can connect the deformation of the invariants g» and g3 to a deformation of the
roots of a polynomial. The differential equations for ey, es,n; are given by

€1 = —46? + 8ereg + 12e1m + 86%,
€9 = 86% + 8eies 4+ 12n1e9 — 46%,
1 = 617 — 2e1es — 2e3 — 2e3.

The last step in obtaining simple differential equations describing the deformations is the
introduction of the coordinates hq, ho, hz. They are defined by

h1 =m +e1,
ha = m + ez,
h3 =m + es.

Using these coordinates the differential equations of lemma 3.18 are

h.l = 6(h1h2 + h1h3 — hghg),
fig = 6(h1h2 + hahs — hlhg), (3.29)

hg = 6(h1h3 + hohs — hlhg).

These new coordinates are chosen in a way that the roots of the vector field defined by
this differential equations are very simple. The roots are exactly the coordinate axes,
where two of the coordinates hq, ho, hg are zero.

3.5.2. Deformations of rhombic lattices

We now study the special case where the discriminant of the polynomial 423 — gox — g3
is smaller than or equal to zero. If the discriminant is smaller than zero, one root is real
and the other two are complex conjugate to each other. This corresponds to the case of a
rhombic lattice generated by the vectors p and p/2 + i\ for p, A € R. If the discriminant
is zero two or three roots are coinciding and the corresponding lattice is degenerate.

Lemma 3.19. Let v be a generalized elastic curve with corresponding elliptic spectral
curve with Weierstrass invariants go, g3. Then the deformation of this elliptic curve with
the aid of (3.24) and (3.25) can be described by a system of differential equations for
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3.5. Deformation of closed generalized elastic curves

vectors on S?. The coordinates for these vectors are

h:771+61,
a=R(m+e2),
B=S(m+e2).

Here e1, ez, e3 are the three roots of the polynomial g(x) = 423 —gox—g3. When restricting
these coordinates to the sphere

§? = {(h,a, B) | h* + ® + % = 1},
they obey the differential equations
h = 12ah — 60 — 68% — 12ah® — 6ha® — 6ahB8% + 602h% — 65212,
& =602 4682 — 12a2h? — 6a* — 60282 + 6ha® — 6ha 52, (3.30)
B =128h — 12Bah® — 680> — 608> + 68a>h — 633h.

Proof. Let ey be the real root, then the coordinates hq, hs, hg have the following proper-
ties:
hy € R, ho = h3.

In order to have only real coordinates we set
hg =+ Zﬂ

with « the real part of he and § the imaginary part. So we can rewrite (3.29) as a
system of differential equations in R3. Using the coordinates h,«, 8 we have three real
coordinates h, a, 5 € R. The differential equations in these coordinates are given by

h =12ah — 6(a? 4 2),
& = 6a® + 6532, (3.31)

8 = 128h.

The right hand side of the differential equations defines a vector field on R? which is
homogeneous of degree 2. Thus we can restrict the vector field to a vector field on S2.

For any differential equation & = f(x) with a vector field f(z) on R? we have the following

vector field on S?
d x T x(&, x) B flz)  x(f(x),x)

dtlel el (2P J2l JaPP?
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3. Elastic and generalized elastic curves

Thus we obtain a vector field on S? and the related differential equations are

h = 12ah — 60 — 6582 — 12ah® — 6ha® — 6ahB% + 602h* — 65212,
& = 6a% + 682 — 12a%h? — 6a* — 60282 + 6ha’® — 6hafS?,
B =128h — 12Bah® — 68a> — 608> + 68a%h — 63°h.

The roots of the vector field (3.30) are the points

pP1 = (1,0,0

P2 = (—1,0,0),
(1

b3 = <_2’E’
_ 1

Linearizing the vector field at these points and applying the Hartman-Grobman theorem
[Ama95| we obtain asymptotic properties at the points py, pa, ps, ps for the flows defined
by the system of differential equations. The linearization is given by the matrix

oh
oh
Oc
oh
op
oh

At the points p1, po2, p3, p4 we obtain the matrices

00 0
Li=({0 0 0 Ly =
0 0 12
-3 -9 0
Ly=2-1-9 -3 0 Ly=
V2
0 0 6

oh
da
Oé
dax
op
da

o O O

S

o O

Ne)

o
0

o0
B
%
95
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3.5. Deformation of closed generalized elastic curves

The eigenvalues of the linearization and the stability of the dynamical system at the
critical points of the vector field are

eigenvalues stability type
P3 3\/5, 3\/5, —6v/2 saddle node
P4 —3\/5, —3\/5, 6v/2 | saddle node

At the point p; we obtain an unstable node in S-direction and at the point ps we obtain
a stable node in S-direction.

Theorem 3.20. Let 7 = p/2 + i\ with A € R and p = 1 be the periods of a rhombic
lattice L with corresponding Weierstrass invariants go, g3. Then there exists exactly one
¥, such that

Olnp (1 1 11 11
SN 1) == i) =20 (=, = +iN 1) =0.
92 <2,2+1)\,> p<2,2+2)\,> C<2,2+2)\,> 0

Proof. The value A* is the root of the coordinate h. We have to show, that the line h =0
is passed exactly once during the flow from A = 0 to A = oo and that A # 0 during the
flow. First we show A # 0, hence the value A is monotonically decreasing or increasing
during the flow. Therefore we assume that there exists a A; € R\ {0} with £()\;) =0,
i.e. the flow does not change the conformal class at this point. The spectral curve is
defined by

P :={(z,y) € C? |y2 =a(x) = 423 — gox — g3}

and is non degenerate for Ay € R\ {0}. Then the flow can change the spectral curve only
by infinitesimally Mobius transformations, see lemma A.27. The possible deformations
are of the form (A.13)

a(z) = pa + po(za’ — deg(a)a), w1, p2 € R.
For the given polynomial a(z) the possible deformations are

a(z) = (1207 — g2) + pa(122° — gow — 3(4” — gaw — g3))
= m(122% — g2) + p2(292 + 3¢3) (3.32)
The deformation has to preserve the highest coefficient, we additionally demand that

the sum all of three roots of a(x) remains 0, hence the second highest coefficient is also
preserved. Therefore the deformation a(x) can have degree at most 1. Thus we obtain
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3. Elastic and generalized elastic curves

1 = 0. On the other hand we can differentiate the polynomial a(x) with respect to t.
This yields
6(z) = —o — ds. (3:33)
The two equations (3.32) and (3.33) must yield the same equation. Thus we obtain by
equating coefficients
g2 = —241292

g3 = —3l2g3

<g2> and <292>
g3 393

are proportional to each other. Inserting the deformation equations of go and g3 given
by (3.26) and (3.27) yields

Hence the vectors

0 = 39392 — 29293
= 3g3(241192 — 36g3) — 292(—2g5 + 367193)
= 495 — 1083
= 4A(g2, g3)

with A(ga, g3) the discriminant of the polynomial 423 — gox — g3. But the discriminant
cannot be zero for A\; € R\ {0}, since both periods are finite. Thus there exists no in-
finitesimal M6bius transformation of the spectral curve fixing the conformal class. Hence
we obtain A # 0.

Now we calculate two special values of (h,a,b) for A. Using lemma A.23 we obtain for
A=ocoand p=1:

and hence
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3.5. Deformation of closed generalized elastic curves

Normalizing to length 1 this is the north pole of S2.

In the limit A — 0 we use the transformation of 7 = 1/2+4 4\ in the fundamental domain
of the modular group defined in equation (A.12). Thus the lattice generated by 7,1 is
equivalent to the lattice generated by —1 and ﬁz’ — % We can also calculate the values
of (h,a,b), the roots e; are given by

2
€1 = —§7T2,
1
€y — €3 — §7T2,
1
m = _§7T25
and hence
= —7T2’
a=0,
5 =0.

Normalizing to length 1 this is the south pole of S?. Thus the equator h = 0 is passed
at least once during the flow.

We now look at the integral curve starting at the north pole of the sphere. The value of
A is increasing or decreasing during the flow, we assume the time to be chosen in a way,
such that the value of X is decreasing. Then the integral curve starts at the north pole
and as long as it does not flows into the points p3, py it will flow to the south pole of the
sphere. Hence we obtain a global solution of the differential equation 3.30 with initial
value chosen as north pole.

We now take a closer look at the differential equation at the equator h = 0. Inserting
into (3.30) we obtain

h=—6(c” + 5%,
&= 6(a> + ),
B=0.
The derivative in h-direction is always smaller than zero. Thus the southern hemisphere

is a positively invariant set under the flow and there exists only one point in this flow
with h = 0. This point is defined as A*.
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3. Elastic and generalized elastic curves

We still have to exclude the case where the integral curve flows into the points ps, ps4.
There all of the roots are zero and both of the periods of the lattice are infinity. The
value of 77 cannot become zero, because otherwise all of the coordinates are zero, but we
are on S?. We now show, that if the integral curve flows into one of the points we have
1n1 — 0. Thus the integral curve cannot flow into the points ps3, p4.

Let es and e3 be the two complex conjugate roots. We have

/dln,uZO

v

for some cycle around e and eg, since the function dln p is antisymmetric to the real
axis. All of the the integrals of dInu around a cycle are pure imaginary, hence the
function R(dIn u) is harmonic. We defined dIn p by

—z—m(t) ,

dlnpy = Z.

The only possible singularity is at z = co. In order to apply the maximum principle of
harmonic functions, choose a fixed circle 74, around oo. Then the maximum of d1In y is
found at the circle v,,. Now choose a sequence of spectral curves such that the limits are
e1,e2,e3 — 0 and 71 — 0} for some 1] # 0. In this limit the denominator of d In u tends
to zero at z = 0, but the enumerator not. Thus there arises a pole at z = 0, therefore
the values of dlnp increase unbounded in the neighborhood of 0. But the maximum
principle states that the maximum is at the circle 7, this is a contradiction. Thus the
value 7); also tends to zero. But not all three parameters of the differential equation can
be zero, because they define a differential equation on S?. Thus the integral curve does
not flow into the points p3, p4.

O

Using mathematica we obtain numerically as solution of the equation

11 11
- - - ) * 1 - 2 - —_— ) * 1 p—
p<2,2+2)\,> C<2,2+2)\,> 0
the value
A* = 0.3547298925224312.
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3.5. Deformation of closed generalized elastic curves

We have for all 7 =p/2 + i\

o(p/2,7,p) = p(iX, 7, p).

Since 7 is real, the function

dlnp = —p(z,7,p) — 2m

has two roots which are either both on the imaginary axis or both on the real axis. The
value A* is the value where dln p has a double root on the imaginary axis. For A > A\*
there are two roots on the imaginary axis and for A < A* both roots are on the real axis.
Due to the asymptotics

lim In pu(z, 7,p) = oo,
z—0

. (3.34)
lim Inpu(z,7,p) = —c0
Zz—2\

the function In g has a minimum and a maximum on the imaginary axis for A > A*. For
A < A\* the derivative is nonzero and smaller than zero, hence the function is monotoni-
cally decreasing.

With the help of this dynamical system we are now able to prove an assertion similar to
corollary 3.17 for rhombic lattices.

Theorem 3.21. Let 7 = 1/2 + i\ with A\ € R and p = 1 be the periods of a rhombic
lattice L with corresponding Weierstrass invariants go, gs.

Let \* be defined by
11 ., 1 .

Then one of the following two cases occurs:
(i) A< \*

For every q € Q there exists exactly one z € iR with

In pu(z) = mig.
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3. Elastic and generalized elastic curves

(i) A > \*

Let z1 and zo be the two pure imaginary roots of dlnp with z1 < zo. Define the
interval

Q = (Inpu(21), In pu(22)).
For q € Q there are three possible cases: The equation

In pu(z) = mig

has
three solutions q € Q

two solutions  q € {\1, A2}
one solution q¢Q

for z € iR. Here A\ = Inpu(z1) for the local minimum Ay of Inp and Ao = In u(z2)
for the local mazimum of In .

Proof. For A = X* the derivative of Inu with respect to z is negative and for A <
A* strictly negative. Hence the function Inp is strictly decreasing and because of the
asymptotics (3.34) every value is taken once and (i) is proven.

Now let A > A*. Then In p has a local minimum and a local maximum. Let Ay be the
local minimum and Ay the local maximum with Ay, Ao € i{R. Due to the asymptotics we
have Ay < Ag. Thus for every ¢ in the interval Q) there are exactly three z € iR with
In pu(z) = mig, namely

21<)\1<22<)\2<23.

For g € 0Q there are two solutions z1 < zo with z; = A\j or z3 = A9 and for ¢ ¢ Q only
one solution of In pu(z) = miq exists. For a better understanding of this proof see also
figure 3.3.

O

In the limit 7 = 700 we can use lemma A.23. We obtain

2
p(z,i00,1) = —% + 72 sin~2(7z)
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3.5. Deformation of closed generalized elastic curves

-5+

Figure 3.3.: Inpu(z) for 7 =1/2+ 3i

and

2
((z,i00,1) = %z + 7 cot(mz).

The root of
—p(z,100,1) — 2((%,2’0@, 1) = —m?sin?(nz)
is z = 100. The value there is
In pu(ico, ic0, 1) = mi.
For large 7 we can also calculate
Inp(zy +7/2,7,1) =Inp(z1,7,1) + n2 — 7 = Inp(z1) + 2mi

Thus the interval @ is always a subset of the interval (7, 373).
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3. Elastic and generalized elastic curves

3.6. Constant curvature solutions

3.6.1. Frame of constant solutions and closing condition

In order to get a better understanding of the objects of the previous section we consider
now solutions with constant curvature. For a constant solution the parameters a,b,c
must be chosen such that the polynomial g(x) = —ix‘l — az? — 2bx + ¢ has a multiple
root. This is equivalent to a vanishing discriminant of the polynomial g(z). Since the
elliptic curve defining the solutions is isomorphic to the spectral curve this is equivalent
to A = g3 — 2793 = 0 for the Weierstrass invariants go,g3. Then we can choose the
multiple root as initial value of the differential equation (3.2) and the curvature stays
constant x(x) = k*. If we have a multiple root the elliptic curve Y defined in (3.6)
consists of at least one constant part (the point (x*,0)) where two roots of the defining

polynomial coincide.

Lemma 3.22. Let k = x* be the constant curvature of a curve y(x) on S?. Then the
curve can be parametrized by

K* 242 cos(v1z)?—1
14 K*2

v(x) = — 13;1 . sin(z/luv)2

V—ll cos(v1z) sin(v1x)

with v; = %\/1 + Kk*2.

Proof. For constant curvature the differential equation dF'(x,\) = aF(x, ) with

a—l iK* —1
T2\ =i\ —ik*

and initial value F(0,\) = 1 can be solved explicitly. Thus the curve with constant

curvature can be calculated as y(x) = F~(z,1)01 F(z,1) with o1 = <(Z) _02>

In detail one obtains

] * . ] .
Fz ) COS AT + 12)‘;1 sin vz —ﬁ sin vz
TyA) = i IAR*
— gy Sinvz COS VAT — 5= sinvpw
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3.6. Constant curvature solutions

with vy = %\/)\ + k*2. The components of the curve v(z) in R? are obtained by setting
A=1and v; = 31+ x*2 to obtain (3.10) and thus are given by

k*2 4+ 2cos(r1x)? — 1

’71('1:) = 14 H*2 ’
2 *

"YQ((L') = _Tﬁﬁ;w Sil’l(l/lfL')2,

v3(x) = — cos(vyz) sin(v1z).

V1

O

. 271_ _ — 27-‘- — . .
Since F(\/W’ 1) = —1 and ~(0) y(m) (1,0,0) all generalized elastic curves

with constant curvature are closed and the period of the frame is given by

2T

Ve )

3.6.2. Deformations of constant solutions

In section 3.5 we considered isoperiodic deformations described by differential equations
in ey, eg, €3, the roots of the polynomial 423 — gox — g3. In the case of constant solutions
we have multiple roots, i.e. some of the e; coincide. This can only happen if the roots
are all real.

We calculate the spectral curve in this special case by using the matrix W (s, \) as defined
in lemma 3.10. Since the curvature is constant we obtain

W(S’ >‘) = CLO[(S, )‘) - B(S’ >‘)
_afaKt =i i()\/ﬁl*—%lﬁl*3) —i)\—i-%in*Q
2\ =i iR —iA2 4 FiIA K2 =i (A* — 5 KP)
For the spectral curve we have to calculate

det(W (s, \)) = det(a) det(a — a™1p)
= det(a) (a2 —tr(a™1p) + det(oz_lﬂ)) .
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3. Elastic and generalized elastic curves

The determinant of « is given by

det(a) =

(r+52).

]

For the determinant of 5 one obtains

1 * 2 1 * 2 2
det(ﬁ)zz<)\+m )<)\—§/@ >

The trace of a1/ can be calculated to

2 1 1
tr(a ﬁ)_det(a) ( i K ()\ 5 ) z)\<)\ 5 ))
=2 <)\ 1 Ii*2>
2
Putting together the above we obtain for the determinant of W (s, A) the formula

2 Lo L o)’

* 2 Tk I
<)\+I€><a 2<>\ S K )+<>\ 2/.;))
:1<)\+/€*2> )\—1/1*2 —a 2

4 2

Thus the spectral curve contains a double point and hence is singular. It is of the form

det(W (s, \)) =

FN

= —i <)\+ /<&*2) (A= An)?

where the double point is located at A,. The double point has to be chosen in a way,
such that the closing condition is still fulfilled. Therefore we calculate the eigenvalues
w12 of F(p, X). These are solutions of the equation

p? —2cos(vap)u+1=0

and thus
p1,2 = cos(vap) £ isin(vap) = exp(Livyp).

The function In y; depends only on «* and A and is given as

In pq (K%, N) —m’M
(s A) =i
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3.6. Constant curvature solutions

The frame is closed, i.e. F'(p) = 1, if In p; is a integer multiple of 74, since then In po
is also an integer multiple of 7i. This condition can be written as

VAT R
Vit el

Thus for given k* we obtain a sequence of possible double points A, such that the closing
condition for the frame is fulfilled. This sequence can be calculated as

eN.

A=+ 02— k2, nel

Thus the singular spectral curve is defined by the equation

1
y =7+ = M)

The derivative of In y is
i A— A\,
2V1+ k*2 Y

In the previous section we defined In u by

dlnpy = dA.

Inpu(z,7,p) = p((z,7,p) — 22((2, T,D)

with special value
T .
Inp (5,7', 1) = mi.
The double point is situated at the imaginary half period, so in order to have the same
property in this case we replace In ' = 1%‘

I i | A+ K*2
ny =—\| ———~
H m\l 1+ k*2

Since m € Z can be chosen arbitrary, there exists for all k* a ¢ € Q with

Inp/ (k%) = mig.
The denominator of ¢ is given by m, the numerator of ¢ counts the number of periods.
The deformation described in 3.5.1 can also be applied to this special case. Therefore we

calculate ga(An, k%), g3(An, "), and m1(An, £*). These values are then the initial values
for the deformation described in lemma 3.18. We transform the polynomial

) = O B0 = )2
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3. Elastic and generalized elastic curves

to Weierstrass normal form. This transformation has already been carried out in lemma
3.12, the Weierstrass invariants can be calculated with equation (3.15) as

g2( A, K¥) = % <)\n + m*2>2

1 2
= (1+77) 0t

(A *)—i(/\ + *2>3
g3(An, K _216 n K

1 N
- — (1 *) 6
216(+K "

Thus there exists a function

1
a(Ap, k") == E(l + Kk*?)n?

with
g2(An, K*) = 12(1()\”,/4*)2, 93( A, K¥) = 8a()\n,/-i*)3,

and we are in the second case of lemma A.23 for a degenerate lattice. Additionally we

obtain
nr o5
M (An, £7) = % 1+ k*?
and the roots are given by ex(An, k%) = es(An, k") = —a(Ay, k") and e (A, k") =

2a(A,, k*). Hence we have initial values for the differential equations

g2 = 24m g2 — 3693,

gs = —2g5 + 361193,

. !
= 6ni — 592

We now take a closer look at the differential equations (3.31)

h = 12ah — 6(a? + 52),
& = 60’ + 657,

B =128h
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3.6. Constant curvature solutions

with

h:771+€17
a=R(m+e2),
B=S(m+e2).

In the case of multiple roots the initial value of 8 is 0, since all roots are real. We
now linearize the differential equations in order to apply the Hartman-Grobman theorem
[Ama95| and obtain the matrix

1200 12h — 120 —128
0 12a 1283
128 0 12h

At a point (hg, ag,0) with hg > 0 this matrix has a non vanishing eigenvalue 12hy. Hence
there exists at least an one-dimensional unstable manifold in the neighborhood of the
point (hg, ag,0). Moving along this unstable manifold the solution of the differential
equation moves away from g = 0. For hg < 0 we reverse the time and obtain the same
result.

Then the three roots ey, eq, e3 are all different, since e is real, e = €3 and J(e2) # 0.
Thus we can apply a deformation to the case of constant curvature solutions and obtain
solutions without constant curvature.
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4. Hopf Tori

Hopf tori are special surfaces in S?. They stem from curves on S? which are lifted through
the Hopf mapping to S3. These are surfaces, such that everything depends more or less
on the curve on S?. If the curve is closed on S? we obtain Hopf tori, otherwise we obtain
Hopf cylinders.

4.1. Hopf fibration and Hopf tori

The following definition is due to Hopf [Hop31], who defined this special mapping from
S — §2.

Definition 4.1. The mapping

h:S* — §?%
(w,z,y,2) = (2wy +x2),2(xy — wz),w” +2° — y* — 2%

1s called Hopf mapping. Other equivalent definitions are

h:C2oS* — S

(z1,22) = (22173, |21)° — |22]?).
and
h:-H>S* — §?

r — TiT.

Here we used the division ring of the quaternions H spanned by {1, 4, j, k}, the quaternions
are introduced in detail in appendix B.
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4. Hopf Tori

The first definition is the original definition of Hopf [Hop31], the most useful part for the
following is the definition via quaternions. This definition can be regarded as a rotation
of the vector H 5 i = (1,0,0) around the axis (z2,x3,z4) of angle 2arccos(zy). The
relationship between quaternions and rotations in R3 is explained in appendix B.

We now define a special circle in S* ¢ H as
e'? = cos(¢) +isin(¢) € H.

This circle lies in the (1,4,0,0)-plane in H. We now come to the main properties of the
Hopf mapping. Most importantly we obtain, that all points on special circles are mapped
to the same point.

Lemma 4.2. The Hopf mapping h has the following properties:
° h(SB) =S?
o h(ez) = h(x) forallp €eR, z € S3

Proof. The first part follows directly by using the quaternionic definition. Let x € S3,
obviously h(z) € R? and it holds

[h(@)|| = [[ziz|| = [lill[[zz]] = ||Z=]| = 1
since ||z|| = 1. So the image of S? under the Hopf mapping is equal to S2.

Let x = (x1, 22,23, 74) € S? be a quaternion, then

€%z = (cos(p)xy —sin(¢)xa, cos(P)zo+sin(p)x1, cos(P)rs —sin(p)zy, cos(P)zs+sin(p)xs).

Inserting this into the first definition one obtains the second part of the claim. O

Given one point on S? there is a whole S'-family of points on S? being the preimage
of this point. These points are described by circles on S? and have some interesting
properties.

Lemma 4.3. [Lyo03] The preimage h~1(S?) consists of circles in S®. All these circles
are linked and when stereographicly projected to R3 one of these circles is mapped to a
line L and the other circles are mapped to circles C; in R3. The line L passes through
all circles C;. Any pair of circles C;, C; is linked.
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Proof. The stereographic projection is given by the mapping
s:8% - R?

s o ()

1l—w l—w'1l—w

Since the stereographic projection is conformal, all circles on S? are mapped onto circles
in R3, except the circle passing through (1,0,0,0) which is mapped onto a straight line.
To clarify the meaning of the lemma we show that soh~1(1,0,0) is a line, soh~*(—1,0,0)
is the unit circle in the xoz3-plane and for every other point R € S? one obtains a circle
which intersects the xzox3-plane in two points, one inside and one outside the unit circle.
Hence every circle is linked with the unit circle in the zox3-plane.

For P = (1,0,0) one calculates
R (P) = {ie" |0 <t < 2m}
= {(—sin(t),cos(t),0,0) |0 <t < 27}

and so s o h™1(P) = {(1i‘)ssi$f()t),0,0> |0<t< 271} which is equal to the zj-axis. For
@ = (—1,0,0) one obtains
h™H(Q) = {(—sin(t), cos(t),0,0) |0 < ¢ < 27},
soh™HQ) = {(0,sin(t), cos(t)) |0 <t < 27} .
This is exactly the unit circle in the zoxs-plane. For an arbitrary point R = (r1,7r2,73) €
S? with —1 < r; < 1 one calculates

-1 1 71) Sin 71) COS
W) = { o (= (1 ) sine), (L4 ) cos(t),

9 cos(t) + rgsin(t), ro cos(t) — 73 sin(t)) ‘ 0<t< 27‘(‘}.

The circle soh™!(R) intersects the xox3-plane for 21 = 0, so we obtain (1+4171) cos(t) = 0
and since 1 # —1 it holds ¢; = 7/2 or to = 37/2 and the intersection points are

A=|o0 ik 2
20+ + (1 4m) V2O +r) 4+ A +r) )

B= (0, '3 : 12 ) .
2(1+7’1)—(1+T1) 2(1+7“1)—(1+7“1)
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4. Hopf Tori

Calculating the euclidean norms of A and B one obtains ||A|| < 1 and ||B]| > 1, so A is
inside the unit circle of the zoxs-plane and B outside. In this first step we have shown
that all circles are connected with the unit circle in the zoxs-plane. The next step is to
show that the x;-axis goes through every circle. For the unit circle in the xox3-plane this
is trivial, for every other circle we show that the origin is on a line between the points A
and B and so the xj-axis passes through the circle. Consider

1 —24/2r3 24/2
B_A— 0 \/_7“3, V2r; ‘
V147 1—r1 "1—r

* — = * o 1-m : * c
We have A+ t*(B— A) =0 for t ATy and since 0 < t* < 1 the origin is

between A and B. So the xj-axis goes through every circle.

We still have to show that any two fiber circles C' and D are linked. Therefore we define
a continuous one-to-one map 1 : R3 — R? which maps C to the unit circle in the zox3-
plane and D to some other circle E. Since F and the unit circle are linked, so are C
and D, this follows from the one-to-one property of 1. In order to define the map 1 we
set 7 = s~ (P) for some point P on C and consider f : R* — R* with f(x) = kr—lz,
k being the element of the quaternionic basis. Then 1) = so f o s~! has the desired
properties. ]

The next definition is fundamental for everything that follows. It describes how we can
lift a curve on S? to a cylinder or torus in S? via the Hopf mapping.

Definition 4.4. Let v : [a,b] — S? be a curve on S%. Choose a lifted curve n on S® with
hon =, then the immersion

fila,b] xSt — S3,
(t,¢) ~— €n(t)

is called Hopf cylinder of the curve ~y. If v is closed f(t,¢) is a Hopf torus.

An Sl-action on S3 is given by multiplication by e’ for ¢ € R. The Hopf tori are those
tori which are invariant under this S'-action.
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4.2. Conformal Parametrizations and conformal class of
Hopf tori

We now try to use definition 4.4 to obtain a good parametrization of Hopf tori. Therefore
let F(s) € SU(2,C) be the frame of some curve v(s) on S? parametrized by arc length.
The curve can then be calculated as

v(s) = F71(s)o1 F(s).

We now regard SU(2,C) as subset of C? = H via

a —B\ _ [ar+ics B —ifBs
SU(Q,C)B(/B a)_<ﬁl+iﬁ2 al—z'oz2>

as described in (B.1). Then we obtain for the frame of the curve F(s)~! = F(s). Fur-
thermore o1 € SU(2,C) corresponds to i € H. We obtain

v(s) = F~Y(s)o1 F(s) = F(s)iF(s).

Thus we can define the lift of the curve y(s). In the definition 4.4 one possible definition
of the Hopf mapping was given by
h:HD>S* — §2
T = TiT.
We replace z by F(s) herein and obtain that a parametrization of a Hopf torus is given

by ‘
2(t, ) = e F(t).

In order to get a better parametrization we seek for a conformal one. Then it is easy to
calculate the first and second fundamental form and the mean curvature of the surface in
S3. We need to change the parametrization of the circle €, the following lemma shows
how. This parametrization was given by Musso [Mus09].

Lemma 4.5. Let F(s) be the frame of a curve on S?. A conformal parametrization of a
Hopf cylinder is given by

f:RxR — §*=SU(2,C),

£(0—J3 w(t) dt) 0
e2 0
(5,0) ( . e%(@fﬁ(t)dt)) F(s). (4.1)
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4. Hopf Tori

The first and second fundamental form are
_(1/4 0 ~ (1/2k(s) —1/8
9(s) = ( 0 1/4)’ bs) = ( -1/8 0 )
Proof. The derivatives of f are :

i O [ () dt)
fs:=ﬁ=< gheal 0 o0 )>F<s)

s i 7% (0—J w(t)dt
2¢

o3 (0—J5 K(t)d) 1
* 0 e 2(9 fo K(t) dt) 5
1 0 jet(— fO 0),
T 9 | jemilo—f5 w(t) dt) (s,
_of 1 0
f9 . _0 5 0 — : f(87 9)7

l _Kel(e fO dt)
fss:< Lei0-fin0a) © 1 f(s.0),

") F(s)

—i/<;

4

0 _%ei(effos K(t) dt)
st = e_i(g_fos K (t) dt) 0 f(S, 6)7

foo = —

The inner product for two matrices A, B € SU(2,C) is defined by (A, B) = tr(AFt) and
since f(s,0) € SU(2,C) we have f(s,0)"! = f(s,@)t. Then we obtain

1

<f87 fs> = Z’

<f87 f9> = 07
1

(fo, fo) =

So the parametrization is conformal and the first fundamental form is constant
10
o= (5 9) (1.2

1
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4.2. Conformal Parametrizations and conformal class of Hopf tori

A frame of the immersion is given by {f(s,8), fs(s,0), fo(s,0)}. In order to calculate the
second fundamental form one needs an extended frame, so we additionally need a normal
N. In the SU(2,C)-setting we have

f=FG!

for some matrices F,G. The derivatives of f are then given by

fs= Ejalai1

fo = FO’QGil
The normal is thus given by

N = Fo3G™*
and can be calculated as N = f[f = fs, f 1 fo] = fof "L fo— fof ' fs. It is given in matrix
form as

1 0 ei(G—fos K (t) dt)
N = ) (_ei(ef; K(t) dt) 0 f(s,0).

The inner products needed for the second fundamental form are

1
<N’ fss> = 5’{(8),
(N, fu) = —3,
(N, foa) = 0.

Hence the second fundamental form is given by

b(s) = (1/_ 2;(5) —t/8> |

O

Now we can calculate the mean curvature H(s,#) and the Hopf differential Q(s,6) of the
immersion f(s,#).

Corollary 4.6. The mean curvature of a Hopf cylinder is given by

H(s,0) = % tr(g~1b) = k(s) (4.3)
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4. Hopf Tori

and the Hopf differential is given by

Q(s.0) = 7 (ba(s) — (=L~ 1) = £rls) + 1.
Since k(s) is real for all s the Hopf differential @) is never 0 and so the surface has no
umbilics, see lemma 2.5. The conformal factor of the surface is constant u = — log 4, so
the surface is flat. These considerations do not depend on properties of k(s), so every
Hopf cylinder is flat.

Each torus can be identified with R? modulo a lattice. The conformal class of a torus is
given by the ratio of the two generators of the lattice. Equivalently we can fix one lattice
vector, then the conformal class is given by the other lattice vector. They are chosen
such that the conformal class is a complex number in the upper half plane, see therefore
also appendix A.4.

Now we consider Hopf tori, therefore the curve on S? defining the Hopf cylinder must be
closed.

Lemma 4.7. The conformal class of a Hopf torus corresponds to the parallelogram gen-
erated by the vectors

P
(0,4m) and p,//{(t)dt mod 47w
0

with p the period length of the generalized elastic curve defined in (3.8) by

A1
1
=2 dz.
! ] V@)

The value fg’ k(t)dt must be calculated modulo 4w, since we can subtract a multiple of the
other generating vector.

Proof. We have to calculate the periods in s and 6 directions. We obtain

f(070) = ]17
f(0,47) =1,

£, / w(t)dt) = 1.
0
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4.2. Conformal Parametrizations and conformal class of Hopf tori

These are the smallest values, such that f(z,y) = 1, so the Hopf torus is isometric to
R2/T, the lattice I generated by the vectors (0,4w) and (p, [} x(t)dt mod 4r). The
value p can be regarded as length L of the curve, the value fé) k(t)dt as enclosed area on
S?. This fact was already discovered by Pinkall [Pin85]. The value [} x(¢)dt is just the
mean value of the curvature along one period. O

In the case of curves with constant curvature we obtain a special class of surfaces.

Lemma 4.8. Let v(s) be a curve on S? parametrized by arc length with given constant
curvature K*. Then the corresponding Hopf torus is conformally equivalent to a torus
with rectangular conformal class generated by the vectors

™

2 *
7\/14*27—{—1(1, K* —{—1—{—/-{) and

e (VR
K* %+

Proof. For constant curvature k* the generating vectors are given by

2 2mk*
(0,4m) and ( T i >

V241 V241

: _ s
since p = T see (3.35). These vectors have the same length

T 2 2mK* 2
(27> +<7> 1672,
5*2_}_1 5*2_}_1

For any two vectors z,y € R? with ||z|| = ||y|| the two vectors z+y, x—y form a rectangle.

. (1 1
In our case we conformally transform the generating vectors by the matrix <1 _1> and

obtain the vectors

2

2
S <1, n*2+1+/<;*> and i
+1

(/R TT T,

K* 2 K

O
So all Hopf tori with constant mean curvature have a rectangular conformal class. The

Clifford torus is the minimal torus corresponding to H = k* = 0. In our setting the
conformal class of the Clifford torus is the rectangle spanned by (27, 27) and (—2m, 27).
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5. Hopf tori as constrained Willmore tori

In the previous chapters we examined generalized elastic curves and Hopf tori. Now we
combine these to obtain constrained Willmore Hopf tori. We will calculate the conformal
class of a constrained Willmore Hopf torus and its Willmore energy.

5.1. Constrained Willmore Hopf tori

Lemma 5.1. [BPP08] Let v be a closed curve on S* parametrized by arc length. If the
curvature of v satisfies the differential equation

1
/i”—i-ilﬁg—i-ali—i-b:() (5.1)

then the Hopf torus h=1(v) is a constrained Willmore surface. If the curvature solves the
equation for b =0 it is a Willmore surface.

Proof. The mean curvature of a Hopf torus is given by H(s,0) = k(s). The Laplace-
Beltrami operator A then yields

A(H(s,0)) = éws)

= 4x"(s)

since the metric g is constant i as calculated in (4.2). In theorem 2.13 the Euler-Lagrange
equation for constrained Willmore surfaces was calculated as

(AH +2H? — 2HK)dA = §*(q).

Now we choose a = —& and b = —16%(¢) and obtain the equation
1
K" (s) + 5%(3)3 +ak(s) +b=0.
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5. Hopf tori as constrained Willmore tori

Hence the Euler-Lagrange equation for constrained Willmore surfaces is equivalent to
the condition that a Hopf torus is the preimage of a generalized elastic curve. For b =0
we obtain Willmore surfaces and elastic curves respectively. O

Thus we have a connection between constrained Willmore surfaces and generalized elastic
curves. We now come to the main definition.

Definition 5.2. Let y(s) be a closed (generalized) elastic curve on S®. The corresponding
Hopf torus is called (constrained) Willmore Hopf torus.

5.2. Willmore energy of constrained Willmore Hopf tori

In chapter 3 we proved explicit formulas for the solutions of (5.1). These will now be
used to calculate explicitly the Willmore energy of constrained Willmore Hopf tori. The
main ingredient is (4.3)

H(s,0) = k(s).
In the following let v(s) be a generalized elastic curve on S? with parameters (w, 7, p).

First we consider curves with constant curvature and use the results of section 3.6.

Lemma 5.3. Let y(s) be a curve on S? with constant curvature k*. The Willmore
Junctional of the corresponding Hopf torus M., is given by

W(M,) =27/ k*2 + 1.
Proof. The Willmore functional on S3, defined in (2.6) is given by

W(M,) = / (H? + 1)dA.

My

The metric on the surface was calculated in (4.2) as

0
1]-
4

[@sRTNTE

9(s,0) = (
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5.2. Willmore energy of constrained Willmore Hopf tori

Hence the volume form is given by

1
dA = stdﬂ.

So we have to integrate the mean curvature H = k* along the generating vectors of the
lattice corresponding to the torus. These generating vectors have been calculated in (4.8)
as

2 2mK*
(0,47) and <p = T i )

V211 Ve 1
Since H is constant the Willmore functional is

A7 p
// dsd@
0 0

2T

= *—1-1( 211)

= 2772\/ K*2 4+ 1.

»Jkl»—‘

O

For k* = 0 this yields exactly the Clifford torus with Willmore energy 272 and all other
values of x* lead to Willmore energies greater than 272,

Now we come to the case of generalized elastic curves without constant curvature. The
conformal classes of all Hopf tori have been calculated in lemma 4.7. Now we determine
the conformal class of constrained Willmore Hopf tori. Therefore we need the following
proposition.

Proposition 5.4. Let (w,7,p) be the parameters of a generalized elastic curve. Then

P p
/C(t—w,T,p)dt—/C(t—i—w,T,p)dt:2711'—410771.
0 0

Proof. We suppress the generators 7 and p of the lattice for simplicity. The Weierstrass
(-function is a meromorphic function with a single pole in 0 and has residuum 1 there.
We integrate a single loop around 0 and therefore obtain 27mi. Let o : [0,1] — C be a
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5. Hopf tori as constrained Willmore tori

..........................................................................

—w:

—w+p
Figure 5.1.: Integration path around 0

path joining w and —w as shown in figure 5.1 with «(0) = w, a(1) = —w. Furthermore
let o + p be the same path shifted by p. Then

[ cwie= [ crpar= [ oo+ mar=- [ oo+ awn

—a+p a

and therefore

C(t + w)dt

C(t)dt + / C(t)dt —{—/C(t)dt — dwm

—a+p @

O

Theorem 5.5. Let v(s) be a closed generalized elastic curve with parameters (w,p,T).
The vectors generating the lattice of the corresponding Hopf torus are given by

//
(0,47) and <p, —4dwn; + 2p¢(w) — ipw mod 471') .
¢ (w, T, p)

Proof. The vectors generating the lattice of a Hopf torus have been calculated in lemma
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5.2. Willmore energy of constrained Willmore Hopf tori

4.7 as

p
(0,47) and p,/n(t)dt mod 47
0

So we have to calculate [} x(t)dt for

p(taT,p) - p(waT’p) pl(w,Tap) ‘
We use the addition theorem (A.9) for the (-function
19'(uw) = ¢'(v)
2 p(u) - p(v)

H(t) — _2i60/(w’7’p) Z-Soll(waT’p)

Cu+v) =¢u) +¢(v) +
Replacing v by —v we obtain

1p'(u) = ¢'(=v)
((u—v)=C((u) +{(—v) + -—/FF7—=.
(u—v) = ((u) +¢(-v) 3 o(u) = p(—0)
Subtracting these two equations and using p(v) = p(—v) and ¢'(v) = —p'(v) yields
¢'(v)
p(u) — p(v)
Applying this to x(t) we have

= ((u—=v) = ((u+v) +2((v)

(el — ) — ) 4 2 ) £ T D)
k() = —2i (C(¢ ) — C(t 4+ w) + 2¢(w)) o' (w,7,p)

Now it is easy to calculate the integral, we use proposition 5.4 and ¢'(t) = —p(¢).

p P
O//f(t)dt =- 0/22‘ (¢t = w) = C(t +w) +2¢(w)) — i%dt
P p /!
— 9 (0/g(t — w)dt — O/C(t+w)dt + 2p<(w)) - ip%
o o Pwr)
= —2i(2mi — 4mw) — 4ip{(w) — me
= 4m + 8win; — 4ipl(w) — ipw
p,(wﬂ',p)
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5. Hopf tori as constrained Willmore tori

Thus we obtained the generating vectors for the lattice of a constrained Willmore Hopf
torus. Hence we can calculate the Willmore energy of a constrained Willmore Hopf torus.
First we need a proposition which will be used in the next theorem.

Proposition 5.6. Let (w,7,p) be the parameters of a generalized elastic curve. Then

(_ (1) ¢ (t)?
p(t

+

) —pw)  (p(t) — p(w))? + 2@(t)> dt = —4dm

Ot~

Proof. We set

Then " (02
p (¢ p(t
df = (— + + 2@(1&)) dt,
p(t) —pw)  (p(t) — p(w))?
so f(t) is a primitive of the considered integral. The only possible singularities of f(t)

are located in the lattice points and in w. The Laurent series in the lattice points have
the leading terms

p(t) =172, ¢'(t)=-2t7% (@) =t"
Combining these terms we see, that f(¢) has no poles at the lattice points. Hence df is
a meromorphic differential form with double poles in +w. In total df has no residuum,
since there is no pole of first order. So the integral of df along any path does not depend
on the starting point of the path. Thus

p p+xo
Jo- T
0 0

for some xg € <R, such that there exists no pole on the path between zg and xy + p.
Then the function

o' (t)
p(t) — p(w)
is periodic with period length p. Finally we obtain
P zo+p
gl(t) | s+
df:/df:—i + —2¢(t)[;0TP = —4m
0/ o0 o], Xk
Zo
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5.2. Willmore energy of constrained Willmore Hopf tori

Theorem 5.7. Let y(t) be a generalized elastic curve with parameters (w,T,p) and z
gwen by (3.20). The Willmore energy of the corresponding Hopf torus M., is given by

o (w, T, p)>

W(M,) = (41 —pp(2)) <4ﬂ + 8win —4ipQ(w) =iy Zo

Proof. The Hopf torus M, = f(t, ) is periodic with periods p in t-direction and fop K(t)dt
in 6-direction. The mean curvature is given by x(¢). The Willmore energy in S? is given
by

Thus we obtain

since k(t) is constant in 6-direction. So we have to calculate [ x?(t)dt.

O/,«;(t)zdt =

(_ 2ig (w) p/’(w))2
p(t) —pw) @' (w)

it A )
(p(t) — p(w))th 40/ p(t) — p(w)

O —x T —x

We still have to calculate the integral

/ A G
s (p(t) — p(w))
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5. Hopf tori as constrained Willmore tori

Therefore we use the addition theorem (A.4)

Pl — /() _ "W+ 0) v
(p(u) — p(v))? o(w) — p(v) 2p(u) + 2p(v).

and obtain

pw? g ¢ +e"(w) — 2p(w
o) — o) o) —p)? o) —plw) 200~ 20w)
v 1 o)

(p(t) — p(w))?  ot) —pw) 2 p(t) — p(w) + 2p(t) — 2p(w)

and by using proposition 5.6

0

pw? [ o'(w)
[ o= [ oy 2

Thus

Using formula (3.20) we obtain

" W 2
8pp(w) — pZ,((w))Q +p = —dpp(z) -

p+p=—4pp(z,92,93).
Thus the Willmore energy is given by

W(M,) = (dm1 — pp(=)) <4ﬂ + Swin — dipG(w) —ip Zfzf:ﬁf) '
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6. Summary and Outlook

Summary

In this thesis we studied constrained Willmore Hopf tori. Therefore we introduced the
basic concepts of surface theory and defined Willmore surfaces. They are extremal values
under variations of the Willmore functional

W(M) = AZ H?dA

for surfaces M in R3. For surfaces in S* we had to replace H? by H? + 1. The main
work has been done in the third chapter dealing with elastic curves on S?. We solved the
differential equation for the curvature function (z)

1
K (z)? + Zm(m)4 + ak(z) + br(x) = ¢
defining generalized elastic curves for arbitrary parameters a,b,c. The initial values
((0), £'(0)) are lying on the elliptic curve

1
Y = {(z,y) € C*|y* = —Zx4 — ax? — 2bx + c}.

The solution of the differential equation is given in terms of Weierstrass elliptic functions.
Using the connection between elastic curves and the modified Korteweg-de Vries equation
we obtained a spectral curve for elastic curves. We transformed the differential equations
of the frame a curve on S? to an equation of Lamé type, then we solved this Lamé
equation and finally obtained a parametrization of a generalized elastic curve on S? C R3.
Therefore we changed the parameters a, b, ¢ to new parameters go, g3, w with go, g3 being
the Weierstrass invariants of the elliptic curve Y and w a point on the imaginary part of
the curve Y. These other parameters are also more suitable in order to determine closed
generalized elastic curves. We defined a function In u(z, 7, p) on the spectral curve with z
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6. Summary and Outlook

being expressed by gs, g3, w and 7, p being the periods of the elliptic curve Y. It followed
that the generalized elastic curve is closed if and only if there exists a ¢ € Q such that

Inp(z, 7, p) = miq

holds. Depending on the discriminant of the polynomial 4¢3 — got — g3 we obtained
rectangular or rhombic lattices for the Weierstrass gp-function. In the case of a rectangular
lattice the description of closed curves is the following. For every g € Q there exists a
function z(7) with In u(z(7),7,p) = mig. In order to obtain a similar result for rhombic
lattices we introduced deformations of the spectral curve. These deformations are chosen
to be non-isospectral but isoperiodic. Using these deformations we showed that there
exists exactly one \* such that the function z — In pu(z, %—i—z’)\*,p) has a double root. This
value A* determines the number of possible z for given ¢ € Q such that In u(z) = mig.
The case of a singular spectral curve Y leads to constant curvature solutions. It was
straight forward to obtain the parametrization of the curve on S? in that case. The
deformation theory of the spectral curve can also be applied to the singular case. The
deformation starts from a singular curve and deforms it into a non-singular curve.

In the fourth chapter we described the main properties of the Hopf mapping h : S* — S2.
It is a S'-fibration over S?, hence for a closed curve on S? we obtained as preimage under
the Hopf mapping a torus in S?. We gave a conformal parametrization of these Hopf
tori and calculated the mean curvature as the curvature of the underlying curve on S2.
Using the conformal parametrization we furthermore obtained the conformal class of a
Hopf torus.

The fifth chapter combined the third and fourth chapter. We noticed that the preimage
of a closed (generalized) elastic curve on S? leads to a (constrained) Willmore torus in
S3. Since we have detailed formulas for the mean curvature of the Hopf torus we were
able to explicitly calculate the conformal class of a Hopf torus. Finally we calculated the
Willmore functional of a Hopf torus stemming from an elastic curve. The value of the
Willmore functional was given in terms of the parameters gs, g3, w.

The main new results of this thesis are given in chapters 3 and 5. We explicitly solved the
differential equation describing generalized elastic curves for arbitrary initial values in
lemma 3.5. A spectral curve for generalized elastic curves was defined in definition 3.11,
here we used the connection between generalized elastic curves and wavelike solutions of
the mKdV equation. It was shown in lemma 3.12 that the spectral curve is isomorphic to
the elliptic curve stemming from the differential equation for generalized elastic curves.
We obtained a parametrization of generalized elastic curves on S? for arbitrary parameters
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a,b,c in lemma 3.13. The closing condition was investigated in detail, we obtained
for every real lattice corresponding to the spectral curve a characterization of closed
generalized elastic curves. The closed curves are parametrized by a rational number ¢
which describes after how many periods of the curvature the curve closes up. For every
q we were able to choose initial values such that the curve closes up with exactly this
given ¢. In the case of a rectangular lattice this was shown in corollary 3.17. The case
of rhombic lattices was more involved, therefore we studied isoperiodic deformations of
the spectral curve in lemma 3.18 and the special case of rhombic lattices in lemma, 3.19.
Therefore we studied the integral curves of flows on S? deforming the spectral curve
in theorem 3.20. With the help of this deformation theory we were able to obtain a
characterization of the closing condition in theorem 3.21. We extended the deformation
theory to the case of constant curvature solutions. The spectral curve is degenerate
and there exists a sequence of possible double points. Depending on the chosen double
point we can split the double point into two regular points during the deformation and
obtain a non-degenerate spectral curve. Hence we can decide for every set of parameters
(g2, 93, w) C R? x iR whether the induced generalized elastic curve is closed. Conversely
we can chose a parameter w depending on gs, g3 such that the generalized elastic curve is
closed. By using the Hopf mapping we connected each closed generalized elastic curve to
a torus in S3. We explicitly calculated the conformal class of this constrained Willmore
Hopf torus in theorem 5.5. Furthermore we were able to calculate the Willmore energy
of such an constrained Willmore Hopf torus in theorem 5.7.

Outlook

There are some directions in which further research can be done. Recently Marques and
Neves [MN12| proved the Willmore conjecture by using the min-max theory of minimal
surfaces. Thus there exists a minimum of the Willmore energy of tori in R3. But what
about constrained Willmore surfaces, Kuwert and Schitzle [KS10] proved that there
exists a a minimum in each conformal class. The constrained Willmore Hopf tori are
candidates for being the minimum in each conformal class. The rectangular conformal
classes correspond to CMC surfaces and they minimize the Willmore functional in their
conformal class, so one has to extend this to general conformal classes in the fundamental
domain of the modular group. Barros and Ferrandez [BF11] obtained best possible
estimates for the Willmore energy in the class of Hopf tori with same enclosed area
of the underlying curve (they call them isoareal). The enclosed area determines half
of the conformal class of a Hopf torus, the other half is given by the length of the
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curve. The deformation theory of tori with constant curvature x* can be extended, one
can look at the Willmore energy during the deformation, which should be increasing.
The question arises which conformal classes are reached during the deformation. These
conformal classes should be different for different values of x*. They also depend on the
double point A, which is split during the deformation. Is the set of conformal classes
open? For every )\, one obtains a different family of conformal classes. For which n
do we obtain the smallest Willmore energy in the neighborhood of the Clifford torus,
i.e. small values of k*. For every given conformal class there should be a x* such that
the deformation of the corresponding spectral curve flows through the given conformal
class. Once this relationship between given conformal class and constant curvature x* is
known, it is possible to plot the Willmore energy as a function of the conformal class in
the fundamental domain. Which x* and which A, yield global flows and which only local
flows? The possibility of a local flow limits the set of conformal classes reached during
the deformation. So one can determine the set of conformal classes which can be realized
by constrained Willmore Hopf tori.
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A. Elliptic Functions

A.l. Introduction to the theory of elliptic functions

Elliptic functions are a very old subject in mathematics. They have been considered by
Jacobi, Weierstrass and many more. Elliptic functions come from elliptic integrals, which
have been considered in studying the length of ellipsoids. In 1718 Fagnano studied the
arc length of the lemniscate, which can be calculated by the integral

i 1
E(x) zo/ﬁdt.

E(z) is strictly increasing in the interval (0,1) and has therefore an inverse function
f- In 1827 Abel extended this inverse function f to a meromorphic function in the
complex plane and found an additional complex period. So the theory of double periodic
meromorphic functions was born. Nowadays these functions are called elliptic functions.
In general elliptic integrals are defined as

/ \/]%dt,

where R(t) is some polynomial of degree three or four without multiple roots. Elliptic
functions are the inverse functions of elliptic integrals.

We now define elliptic functions in detail. A good introduction into the theory of elliptic
functions can be found in [FB00] and [WWT79].

Definition A.1. Let wy,ws € C be two complex vectors, such that they are R-linearly
independent. Then the set

L := {nwy + mws | n,m € Z}
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1s called lattice generated by the two vectors wi,ws. For any point Nwi + Mwy € L the
set
{(N +s)w1 + (M +t)w2 |0 <s,t <1}

is called primitive cell of the lattice.
Definition A.2. An elliptic function for a lattice L is a meromorphic function
f:C— C=CuU/{oco},
such that
flz+w) = f(2) (A1)

for all z € C and w € L. The order of an elliptic function is the number of poles on
C/L.

We can replace the condition (A.1) by the condition
flz+w) = flz+w2) = [(2)

for the generators wy, wo of the lattice L, since every w € L is an integer linear combination
of wy,ws. It has been shown by Liouville, that the order of an elliptic function is the
number of roots of the equation f(z) = ¢ for any ¢ € C (see [FB00|). Hence every value
of an elliptic function has the same number of preimages.

Definition A.3. Let f : R — R be a polynomial of degree 3 or 4. Then the set
Y= {(z,y) € R*[y* = f()}

1s called elliptic curve if the graph is non-singular, i.e. there exist no multiple roots of
f(x). If the polynomial has degree greater than 4 the set is called algebraic curve. We
also consider elliptic curves extended to the complex plane and then regard Y as subset

of C2.

Let f be an elliptic function with lattice L. For two points z,w € C with z —w € L we

have f(z) = f(w). So we can introduce the group C/L with equivalence relation
z=wmod L & z—we L.

and the projection 7 : C — C/L. The equivalence class [z] of an element z is given by

z 4+ L and we can add two elements by the formula [z] + [w] = [z + w]. Thus we obtain
an additive abelian group structure on C/L. We now can find an unique function
f:c /L —C
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A.2. Weierstrass elliptic functions

such that the following diagram commutes

N
/LT)(C

C

Therefore we can consider an elliptic function f as a function on the torus C/L. Any
lattice L can be regarded as the generator of a torus by identifying opposite sides of the
lattice.

A.2. Weierstrass elliptic functions

We now define a simple elliptic function. It has been shown by Liouville, that there exists
no elliptic function of order 1. So the next possible order is 2. Since every value is taken
twice, we have two poles, here we require a double pole in 0. This yields the definition
of the Weierstrass p-function which is exactly such a function.

Definition A.4. Let L be a lattice in C. The function g defined by the Laurent series

1 1 1
p(Z,L) = ?—F Z (m—ﬁ> f07"2¢L,
weL\{0}
p(z,L) = oo forzelL

15 called Weierstrass p-function.

The series defining the g-function is uniformly convergent except at the poles, so the
p-function is everywhere analytic except at the poles, which are located at the points of
the lattice. We can calculate the derivative term by term and obtain

o (2) = —2 Z ﬁ

This is an elliptic function of order 3 since it has a triple pole in the lattice points.

We now collect some properties of the p-function. They can be found in many books,
e.g. [FB0OO| and [WWT9].
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A. Elliptic Functions

Lemma A.5. For the Weierstrass p-function with the lattice L holds

1. p(_Z’L) = SO(Z’L)a

2. ¢'(2,L) = —¢/(—2,L).

Hence g is an even function and ¢’ is an odd function.

Lemma A.6. It holds
¢'(a) =0
for some a € C if and only if
a¢ L, 2a€l.

The @' -function has exactly three roots in C/L and each of them is a simple root.

Proof. For a € C with a & L,2a € L we have
©(a,L)=¢'(a —2a,L) = ¢'(—a,L) = —¢'(a, L)

and so ¢'(a,L) = 0. We have therefore found three different roots of ©’: The points
R % are all different. Since g’ is an elliptic function of order 3 it can have at
most three roots. Thus we have found all roots of g’. O

The three roots of ¢’ are exactly at the half periods of the lattice, the values of o there
are called e, eq, €3 :

Proposition A.7. Let z,w € C. It holds

@(Z’ L) = @(w’ L)

if and only if
z=24w mod L.
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A.2. Weierstrass elliptic functions

Proof. The function z — p(z, L) — p(w, L) is for given w an elliptic function of degree 2
and has mod L exactly 2 roots. These are z = w and z = —w. O

Using the Laurent series one can show the following theorem, see [WW79, p.437|.

Theorem A.8. The Weierstrass p-function satisfies the following differential equation:
2
(¢'(2,1))" = 4p(2, L)’ = g2p(2, L) — g3 (A:2)
with

1
g2 = Z E’

weL\{0}

g3 = Z E-

w€eL\{0}

Differentiating both sides of the differential equation and dividing by ¢’(z, L) one obtains

20" (2, L) = 12p(z, L) — ga. (A.3)

The values g, g3 are called Weierstrass invariants since they only depend on the
lattice. Furthermore g2 and g3 can be used to uniquely determine the lattice L, see
lemma A.21, so we can also write

p(Z7L) = p(2792793)-

This is the most commonly used notation for the Weierstrass p-function. We often also
suppress the Weierstrass invariants g, g3 for simplicity, if it is clear which invariants are
used.

Using g2 and g3 there exists another Laurent series for the p-function

o0
p(z7927g3) = 272 + Z G2n22n

n=1

with G, the so called Eisenstein series defined by

87



A. Elliptic Functions

Using the differential equation (A.2) we obtain, that the Eisenstein series is a polynomial
in g9, g3 with rational coefficients.

We obtain a new characterization of the values ey, es, e3. Since they are the roots of the
¢'-function, they satisfy

4p(e)® — gople)) —g3 =0, i=1,2,3.
Thus they are the three roots of the polynomial
4t? — got — g3
and by relating the roots of the polynomial to the coefficients of the polynomial we obtain
e1+ex+e3 =0,

1
ege3 +ej1e3 + ejex = —192,

1
€jege3 = 193-

The differential equation (A.2) can be used to show the connection between elliptic curves
and elliptic functions.

Definition A.9. Let g2, g3 € C be two complex numbers. We define an elliptic curve X
by
X(g2,93) = {(21,22) € C*| 25 = 42} — go21 — g3}

The differential equation (A.2) shows, that for some z € C, z ¢ L the point (p(2), ¢’(2))
lies on the curve X (ga,93). So we obtain a mapping

C/L\{0} — X(g2,93),
z = (p(2),9'(2))

It can be shown, that this mapping is bijective, see e.g. [FB00]. We had a similar proof
in lemma 3.3.

Lemma A.10. The p-function obeys the addition theorem

1 (p’(?«*) — ¢'(w)

ol tw) =10 —etw)

)2 — p(2) - plw).
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A.2. Weierstrass elliptic functions

A proof can be found in [WW79, p.441]. We also used in chapter 5 the addition theorem

p/u2—plv2 o' (w) + ¢ (v

(w) ( )2 = (u) ) —2p(u) + 2p(v). (A4)
(p(u) — p(v)) p(u) — p(v)

This can be proved by using the the differential equations for ¢’ and .

There exist two other Weierstrass elliptic functions, the o- and the {-function. They are
not really elliptic functions because they are not periodic, but one often refers to p(z),
o(z), and ((z) as the Weierstrass elliptic functions.

Definition A.11. The Weierstrass -function is defined by

di?z—ﬂ@

with integration constant defined by

lim(¢(z) —2z7') =0.
z—0
The Weierstrass o-function is defined by
dlogo(z)
27— (2)

with integration constant defined by
lim <M> =1.
z—0 z

Using the Laurent series of the p-function we also obtain Laurent series of ((z) and an
infinite product for o(2)

qa:%+ &%;+£+§>, (A.5)
weL\{0}
z z 22
o(z) =z H ((1—;) exp <;+ﬁ)> . (A.6)
weL\{0}

Hence ((z) is an odd function and has a simple pole (with residue 1) at every point of
the lattice. Next we show some properties of these functions, the most important is that
they are quasiperiodic, i.e. there exist functions f(z) and g(z) such that

o(z+w) = f(z2)o(z), welL,

(= +w) = g(2)C(), wel
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A. Elliptic Functions

Proposition A.12. The Weierstrass o- and (-functions on a lattice generated by w1, ws
are quasiperiodic. They satisfy

C(z +w1) = C(2) +m,
(= +w2) = C(2) + 1,
oz +wi) = —exp (m(z+5)) o (2),
oz +ws) = —exp (m(z + ) 0 (2),
with
m=2¢(5), (A7)
1 = 2C (%) . (A.8)

Proof. We integrate the equation

p(z +wi) = p(2)
and obtain
((z4+w1) =¢(z) +m

with 77 being the constant of integration. Now we set z = —< and use the fact, that ¢
is an odd function. Then we obtain
w1
m=2¢ (—)

2

and the constant of integration is determined. For the quasiperiodicy of o we integrate
the equation

((z+wi) =<(2) +m

and obtain
o(z+wy) =ce™o(z)

with ¢ being the constant of integration. To determine this constant we again set z = —t
and obtain
o (ﬂ) = —ce M¥g (ﬂ) .
2 2
Thus
c=—eh“t
A similar argument applies for wo. O
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A.2. Weierstrass elliptic functions

Lemma A.13. The values n1,m2 defined in (A.7),(A.8) obey the relation
Mwsz — Nowi = 27i.

This relation is often called Legendre relation.

Proof. We take the integral of ((z) around the boundary C' of one primitive cell. There
is exactly one pole in each primitive cell and the residue is 1. Hence

/C(z)dz = 2mi.
c

We split up the integral contour C' to a path along the lattice. Let therefore be ¢,t +
w1,t 4+ wa,t + wy + we be the corners of a primitive cell. Then

t+w1 tHwitw2 t+w2 t
/C(z)dz = / C(z)dz + / C(z)dz + / ((z)dz + / ((z)dz.
C t t+wi t+wi+wa2 t+wa
We now rewrite the second integral using substitution
t+wi+wa t+w2
((z)dz = / C(z+wy)dz
t+wq t

and analogously the fourth integral. Thus we obtain

t+wi t+wa
2mi= [ 6= etz [ Gl2) = (Gt unds
t t
t+wi t+w2
= —n / dz+m / dz
t t
= —Naw1 + Mmiw2
and the claim follows. O

The o- and (-function also obey addition theorems [EMOT53, p.333].

Glu+) = ) + (o) + 5 2 =2 (A9

o(u+v)a(u—wv) = —o*(u)o?(v) (p(u) - p(v)) (A.10)

This addition theorem will be used in chapter 5.
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A. Elliptic Functions

A.3. Real lattices

We are mostly interested in the case of real Weierstrass invariants. So we take a closer
look at special properties of the lattice for such invariants. These lattices are called
real and the p-function is a real function on special lines. Furthermore we obtain a
classification of real lattices.

Definition A.14. Let f : C — C be a meromorphic function. It is called real if f(Z) =
f(2) holds for all z € C. A lattice L C C is called real, if for w € L also @ € L.

Lemma A.15. Let L be a lattice in C generated by wi and wy. Then the following
assertions are equivalent:

(a) g2,93 are real.

(b) ¢ is a real function.

(¢) L is a real lattice.

Proof. (a) = (b) For real gq,g3 the Eisenstein series are real, so all coefficients in the
Laurent series of g are real, hence g is a real function.

(b) = (c¢) Let p be a real function, p(x) = p(T) for all z € C. For every pole w of @ the
point w is also a pole. The poles are exactly the lattice points, so the lattice is real.

(c) = (a) The Weierstrass invariants go, g3 are given by

1
92 = Z o

weL\{0}

1
gs = Z Gk

weL\{0}
For abbreviation we write L, or Z2? when we omit 0 in the summation. Then we can

write . .
92 = — = 7
w;* w ZZE (mwy + nwq)

For any point of the lattice Nwi + Mw the point Nwy + Mw is also on the lattice, thus
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A.3. Real lattices

we can split the sum

1
g2 = T —a
2, T

= > <(mw1inwl)4+m>'

(n,m)e(NXZ)«

All summands are real, so go is real and analogously g3 is real. O

Lemma A.16. A lattice L is real if and only if it is rectangular or rhombic.

Proof. [FB00] Rectangular and real lattices are obviously real by the definition of the
lattices. So we have to show that a real lattice must be rectangular or rhombic. Let
therefore be w € C a generating vector of the lattice L , then w +w,w —w € L. So in
every real lattice there exist nonzero vectors on the real and on the imaginary axis. The
lattice generated by the real and imaginary points of the lattice is a sublattice Lg of the
lattice L. It is generated by one real vector w; and one pure imaginary vector ws. If
L = Ly we are done, so let L # Lg. There exists w € L — Ly, we can assume that w is
in the primitive cell generated by w; and wy. Then

w=w+w)+ (w—w)

yields 2w € Lg. Since 2w is neither real nor pure imaginary it holds 2w = w; + wo. The
lattice L is then generated by

1 1
w= §(w1 + wsy) and W = §(w1 — wy)

and therefore is rhombic. O

Now we analyze the cases of rectangular and rhombic lattices separately and in particular
look for real values of the p-function defined on such lattices.

Lemma A.17. Let L be a rectangular lattice generated by p € R and 7 € iR. Then the
Weierstrass o-function is real on both azes and on the half lines p/2 + iR and 7/2 + R.

Proof. [FB0O] Let ¢t € R. Then
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A. Elliptic Functions

and

p(it) = p(it) = —p(t) = p(t).

Thus p is real on both axes.

On the half line p/2 + iR we obtain

p(p/2 +it) = p(p/2 + it) = p(p/2 — it)
= p(—p/2 —it) = p(p/2 + it).

The other half line can be considered analogously. Hence g is real on the all the lines
indicated in figure A.1. O

e

p

Figure A.1.: Primitive cell of a rectangular lattice

Lemma A.18. Let L be a rhombic lattice generated by p € R and 7 = &+, see lemma
A.22. Then the Weierstrass p-function is real on both axes. The period length on the
real azis is p and the period length on the imaginary azis is 2.

Proof. Since L is a real lattice, the Fisenstein series are all real, see lemma A.15. Hence
the coefficients of the Laurent series

(o]
9(2792793) = Z_2 + Z G2n22n

n=1
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are real. There are only even powers in the series, so for real z or pure imaginary z
we obtain p(z,g2,93) € R. The period length on the real axis is obviously p. On the
imaginary axis we have 7 — 7 = 2¢), this is the first point of the lattice in imaginary
direction, hence the period length on the imaginary axis is 2. O

Figure A.2.: Rhombic lattice

For a lattice generated by p and 7 we also write p(z,7,p) to emphasize the dependence
on the two periods.

We now want to determine which values of g9, g3 yield a lattice and under which condi-
tions these lattices are different. Therefore we first introduce the discriminant and the
j-invariant, which are very helpful in this context.

Definition A.19. The discriminant of the o-function is defined by
A = g3 — 273

where go, g3 are the Weierstrass invariants. This is ezactly the discriminant of the poly-
nomial 4t3 — got — g3. The j-invariant is given by

3

. 93
= 1728==.
J A

If the discriminant is zero, the polynomial 4¢3 — got — g3 has multiple roots and therefore
some of the values ej, e9, e3 coincide, in this case the lattice is degenerate.
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A. Elliptic Functions

Definition A.20. Let L and L' be two lattices. They are called equivalent
L=r
if and only if there exists a compler number a € C* with

L=al.

To every lattice L’ there exists an equivalent lattice L of the form
L=7Z+"7Z, Te{ze C|¥(z) > 0}.

The transformation of a lattice L to an equivalent lattice aL with a € C* changes the
Weierstrass invariants go and g3 as follows:

Hence the discriminant and the j-invariant transform as follows:

A(aLl) = a"A(L),
jlaL) = §(T). (A1)

Thus we can parametrize equivalent lattices by the j-invariant. In general the following
lemma can be shown, see [FB00| or [Lan73].

Lemma A.21. Let j € C and go, g3 € C with A(ga,g3) = g5 — 2793 # 0. Then
1. There exists a lattice L with given j-invariant jp = j.
2. There exists a lattice L with go = g2(L) and g3 = g3(L).
3. For real ga, g3 the lattice is a rectangular or rhombic lattice (see also Lemma A.15).

4. Let A and B be two elliptic curves with corresponding lattices L and L. Then the
two elliptic curves are isomorphic if and only if jr = j5.

Lemma A.22. Let L be a real lattice. Then there exists an equivalent lattice with basis
1 and 7 in the upper half plane. The real part of T is 0 for rectangular lattices and 1/2
for rhombic lattices.
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A.3. Real lattices

Proof. Let wy and wy be the generators of L. Then 7 = &L (or ‘;—?) is in the upper half
plane. Thus the lattice L’ with generators 7 and 1 is equivalent to L. So we only have
to consider lattices of this type and must show, that the real part of 7 is 0 or 1/2. In

addition we have for 7 € L also T € L, since the lattice is real.
T+7€Land74+7T€R

All real vectors of the lattice are integer multiples of 1. So 7+7 = a € Z and the real part
of 7 is a/2. For any integer n we can change the generator of the lattice to 7/ = 74+n. So
the real part is either 0 or 1/2. Real part 0 is just the definition of rectangular lattices,
and real part 1/2 corresponds to rhombic lattices. ]

If two or more of the roots e; coincide the discriminant is zero. This leads to a degenerate
lattice, where one of the periods is infinity. We collect some facts about this case, which
can be found in [EMOT53, p.339].

Lemma A.23. Let g2, g3 be the Weierstrass invariants of a lattice L and e; the three
roots of 413 — gat — g3 with e; > e3 > e3. For A(L) = 0 we have the following three cases.

(i) The two bigger roots coincide.

e3 = — 2a
go =12a°
g3 = — 8a®

sinh?(v/3az)
¢(2,12a%, —8a®) = — az + V/3a coth (\/ 3az>
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(i) The two smaller roots coincide.

T =100
2
P= e
e1 =2a
eg =€3 = —a
g2 =124>
g3 =8a3
2 .3 1
o(z,12a%,8a”) :—a+3am

((2,12a%,8a%) =az 4+ V/3a cot (\/ 3az>

(13i) All roots coincide.
p =00
T =100

61262:63:0

g2 =0

g3 =0
©(2,0,0) =72
¢(2,0,0) =21

A.4. Fundamental domain for the modular group

In the previous section we defined an equivalence relation on the set of lattices. Two
lattices are equivalent, if and only if there exists a complex number a € C* with

L=al

One of the generators of the lattice can be chosen as 1, the other one is given by some
7 € H with H C C the upper half plane. The equivalence of two lattices generated by
(1,7) and (1,7') can be rewritten in terms of matrices.
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Definition A.24. The elliptic modular group

SL(2,7) := {M - (j ?) |, B,7,0 € Z, det M = 1}
1s the set of integer 2 X 2-matrices with determinant 1.
Lemma A.25. Two lattices of the type
7+ 7t and 7.+ Z7' .7 € H

are equivalent if and only if there exists a matriz M € SL(2,7) such that 7/ = M.

The proof of this and the next assertion can be found in [FB00].

Theorem A.26. For every T € H there exists a M € SL(2,7) such that M is contained
in the fundamental domain

F:={reH||r| > 1,|R(1)|] <1/2}.

Figure A.3.: Fundamental domain for the modular group

The elliptic modular group SL(2,Z) is generated by the two matrices

r=(o 1) =01 %)
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There are two special points in the fundamental domain, the lower right corner p := e™/3

corresponds to the Weierstrass invariant go = 0 and the point ¢ corresponds to g3 = 0.

Rectangular lattices are situated on the imaginary axis, since there the two generators
are orthogonal to each other. Rhombic lattices are situated at the boundary of the
fundamental domain. They can be parametrized by

T= % + @A
The right side of the boundary can be identified with the left side with the aid of the
matrix 7" which is just the translation of 7 by 1. The lattice generated by 7 = % + 1A
and 1 is also generated by 7 and 7. We now use the generators 7,7 and map them to
the upper half plane by setting
+ A
— i\

N[

/
T =

AN
N[

The new generators are 7 € S' and 1. In order to have 7/ € F the angle of 7/ in polar

coordinates must be in the interval [%,Z]. Thus 7’ lies in the fundamental domain for

63
A€ [?, @] Hence we mapped a part of the line 1/2 + i\ to the circular border of the

3

fundamental domain. For \ < ?3 we use the transformation

@ j) G) - <M2i_>\%> (A.12)

_iA—%_1+1,
T Toixn 2T

and obtain

"

V3
2

for \ < % and hence we obtain 7’ € F. So we can also map 7 in the limit A — 0 into
the fundamental domain. Thus the line 7 = % 4+ ¢\ which describes all rthombic lattices
by lemma A.22 is equivalent to the border of the fundamental domain.

This 7" has real part % and imaginary part ﬁ. The imaginary part is greater than

In section 3.5 we considered deformations of the spectral curve. The next lemma shows,
that deformations preserving the conformal class can only be realized by infinitesimally
Mébius transformations.

Lemma A.27. Let Y be an elliptic curve defined by

Y = {(x,y) eC?|y? = a(m)}
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for some polynomial a(x) of degree 3 or 4 without multiple roots. Let A and B be two
generators of the first homology group of Y. We define the elliptic modulus T of the
elliptic curve by

_ Jpw

;— B~
Jaw
for the meromorphic differential
dx
w=—.
Yy

Let t be the parameter of a flow deforming the spectral curve, the parameter x is chosen in
such a way, that it does not change during the flow. Additionally let a(x) be a deformation
of the polynomial a(x) defining the elliptic curve. Then every deformation preserving the
highest coefficient of a(x) with 7 =0 is of the form

a(x) = ma'(x) + pa(zd(z) — deg(a)a(z)), i, p2 €R (A.13)

and hence an infinitesimal Mdbius deformation. These are the deformations which do
not change the conformal class of the elliptic curve.

Proof. The meromorphic differential form w is defined as

dx
W= —.
)
Thus the deformation of w is given by
adx a
= == —— W
293 2a

The derivative of the elliptic modulus 7 with respect to ¢ can be calculated as to

d _iwa

it~ dt e
The derivative is zero if and only if

ale) oG /[e) [o=0
T e N e 70 el Y
A B

B A
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holds. This equation is equivalent to

/(w—i-ozw):/(w—i-aw):o
B

A

for some a € C. The 1-form w has only poles of second order and these are only located
at the branching points of the elliptic curve (the roots of the polynomial a(x)). We
now consider the hyperelliptic involution (x,y) — (z,—y). The 1-form w is mapped to
its negative under the hyperelliptic involution. Let z be a local parametrization of the
surface around a branch point of Y with z = 0 at the branch point. A circle v around
the branch point is mapped onto itself under the hyperelliptic involution with the same

orientation. Thus we obtain
fo= [
¥ ¥

and therefore the 1-form w has no residuum. Thus there exists a meromorphic function
f such that

W+ aw = df
holds. The function f has simple poles only at the branching points and hence is of the
form 1

flz) = ;p(a?)

with p(x) a polynomial of degree at most 2 (there is no pole at infinity). The polynomials
of degree at most 2 are linear combinations of 1, z, 2. Thus we have to calculate

G) G) (%)

We obtain
1 /! /
d<—> =L =2y,
Y 2ya 2a
d z :d—x—x—a,daz—w—xa/w,
y y 2y 2
2 22d 2 ./ 2 1/
d(x—>: xw—%dw—?xw—w w
Yy Yy 2y 2
Comparing this to .
w = —iw
2a
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we obtain possible formulas for a(x). They are given by

—2a(x) + zad' (x),

a(x) = 22d (z) — 4za(z),

2
&
I

where we can add multiples of a(x) to every term. The deformations a(z) can have
degree at most deg(a) — 1 in order to preserve the highest coefficient. Hence all possible
deformations are of the form

a(z) = pra (z) + pe(zd (z) — deg(a)a(z)), H1, 12 € R.
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The problem of determining a simple and appropriate method to describe rotations in
R3, lead William Rowan Hamilton to invent the quaternions in the midth of the 19th
century.

He was inspired by the description of rotations in R?, such rotations can be described
by a complex number z of norm 1. The angle of the rotation can be regarded as angle
between the complex number zs in the complex plane and the real axis. A composition
of two rotations is given by the multiplication of the corresponding complex numbers.
Hamilton tried a long time to find an analogue in R? with the aid of 3-tuples. The idea
of using 4-tuples instead lead to the quaternions.

Definition B.1. The division ring of the quaternions is defined by
H = {ag +ia1 + jaz + kaz | ao, a1, az,a3 € R}.

The elements i, j, k satisfy the rules

and

ij=k, jk=1i, ki=j.
We can define a multiplication and an addition on the quaternions. The multiplication
is mot commutative (this will be shown later), so we only obtain a division ring. The

quaternions can be considered as a generalization of the complex numbers. So we define
for a quaternion

a:=ag+ a1i+ asj + agk

the real part as ag and the tmaginary part as ai1i + asj + ask. The conjugation is
defined by

a:=ag— ait — asj — asgk.
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The norm of a quaternion is the standard euclidean norm of R* if we identify a with the
vector (ag, a1, ag,as),i.e.

lall = /a3 + a3 + a3 + a3, (B.1)

We can write the quaternions also as matrices. Therefore we use the following isomor-
phism into complex 2 x 2-matrices

Y
Hsi= (é _02> € su(2),
H>j= <_01 (1)> € su(2),
Hs k= (_02 BZ> € su(2).

We regard the matrices of su(2) as the imaginary quaternions. We can generalize this to
arbitrary quaternions with

. . ~ ap + alz' as — agi
a=ag+aii+ay]+ask = ( ) . .
—ag2 —ast ag— tay

The norm of a quaternion in this notation is given by the determinant of the matrix.
The inverse of a quaternion can be computed like the inverse of a complex number

-1 _ a
lal[?
We identify vectors in R? with the imaginary quaternions and therefore write
R® 3 (p1,p2,p3) =P = 0+ p1i + paj + psk € H.
Now we can write any quaternion a € H as the sum of a vector in R? and a scalar

a = ag + a.
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With this abbreviation the multiplication of two quaternions p and ¢ can be calculated
as

pq = (po + ip1 + jp2 + kps) (qo + iq1 + jgz + kqs3)

=po (qo +iq1 + jq2 + kq3) +ip1 (qo + iq1 + jq2 + kq3) + jp2 (o + iq1 + jg2 + kq3)
+ kp3 (qo +iq1 + jgz + kq3)

= (Pogo + ipoq1 + jpogz + kpogs) + (ip1go + iip1qr + ijp1ge + ikp1gs)
+ (4p2qo + Jip2q1 + Jip2ge + jkp2qs) + (kpsqo + kipsq1 + kjpsqe + kkpsqs)

= (poqo + ipoq1 + Jpoge + kpogs) + (ip1go — p1q1 + kp1g2 — jp1g3)
+ (Jp2go — kp2q1 — p2q2 + ip2q3) + (kpsqo + jpsq1 — ip3qe — P3qs)

= pogo — P1q1 — P2G2 — P3G3 + i (Poq1 + P1qo + P2q3 — P3q2)
+j (Poq2 — 193 + p2qo + p3q1) + k (Pogs + p1g2 — P2q1 + P3qo) -

This can be written in short as

Pq = pogo — (P,q) + pod + P + P X g. (B.2)

The vector product p X q is not commutative, hence the multiplication is not commuta-
tive. So the definition of the quaternions as a division ring makes sense.

As already mentioned the history of quaternions has a deep connection to rotations in
R3. We now describe this connection, we follow [Lyo03].

Theorem B.2. Let r =1g+rii +roj +r3k =19+ 1 € H be an unit quaternion. Then

R,:R?> — R3

vV = TVr

describes a rotation of the wvector v with rotation axis (r1,7r2,73) and rotation angle
2arccosrg. Here we again identify the vector v € R3 with the imaginary quaternion
V11 + ’Ugj + ngi.

Proof. First we show that the product 7xr also determines an imaginary quaternion. We
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B. Quaternions

use formula (B.2) and obtain

Ry (v) = 7vr = (ro — 1) (04 v) (ro + 1)
=(ro-0+(r,v) —0-r+7rov—rxv)(ro+r)
={r,v)+rov—rxVv)(ro+r)
=(r,v)rg — (rov —r x v,r) + (r, v)r
+7ro(rov—rXxv)+ (rov—rxv) xr
=(r,v)rg — (rov,r) + (r x v,r) + (r,v)r
+ (rgv) — 7o (r x v) + (rov) x r
—(rxv)xr
=(r x v,r) + (r,v)r + 73v — 10 (r X V)
+ro(vxr)—(rxv)xr
=(r x v,r) + (r,v)r + r3v — 2ry (r x V)
=2(r, v)r — (r, v)r + 713v — 2rg (r X V)

=2(r,v)r — [r|? v+ rdv — 2rg (r x V)

= (rg = ItP) v+ 20, v)r = 200 (£ x V). (B.3)
There is no real part in the last equation (B.3), so the mapping R, is well defined.
The quaternion r has norm 1, hence we can write
78+ Il =

This is very similar to cos(#)? +sin(6)? = 1, so we can identify ro with cos(d). We choose
—m < 0 < for the uniqueness of §. Therefore we can write the quaternion r as

r =19+ 714 + 1r2j + r3k = cos(f) + usin 6
with
_r
x|’

a pure imaginary quaternion.
Now we take the followings steps to prove the assertion.

(i) R, preserves the length of the vector v.
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(ii) u is the rotation axis regarded as vector in R3,
(iii) R, is a linear map.
We have
1By (v) = [[Fvrll = (7l [l 7]
= [Ivll;

since 7 is an unit quaternion. Hence R, preserves the norm and (i) is proven.

Next we have to show, that R,.(u) = u, so u = Ar with A\ = |r||~! is fixed under the
rotation and therefore the rotation axis.

R.(u) = R, (Ar) =7 (Ar)r = (7"8 - ]r[2> (Ar) + 2(r, A\r)r + —2r¢ (r X (Ar))
= r¢r = Arf*r 4+ 2\ |r]*r
= Ar <rg 242 \r\z)
= Ar <r§ + |r|2>
=Ar-1
=Ar

=u
So u can be regarded as rotation axis and (ii) follows.
For the linearity of R, let a,b € R? and A € R. Then

R,(a+ Ab) =T(a+ Ab)r
=Tar +7(Ab)r
=Trar + A\rbr
= R,(a) + AR, (b).

Thus the map R, is linear and (iii) is proven.

We come back to the proof of the theorem. We split the vector v, which we want to
rotate, in two orthogonal parts. One part in direction of the rotation axis u = Ar and
one vector orthogonal to the axis

v = Ar +n, (u,n) =0.
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B. Quaternions

We now calculate R, (n) using formula (B.3)

(

Ry(n) = (r§ — [I[)
(7”0 — |l )n — 2ry(r x n)

= (r§ — [Ir[*)

= (r§ — [Ir[*)

n+ 2(r,n)r — 2ro(r x n)

n — 2ro(u|r|| X n)

n — 2rg|r||(u x n).
Setting u X n = n | we obtain
R,(n) = (cos®(f) — sin*(#)) n — 2 cos(#) sinfn ;.
= cos(20)n — sin(20)n | .

The part u of v lies on the rotation axis and hence is invariant under R,.. We use the
linearity of R, and obtain

R.(v) = R,(u+n) = R.(u) + R,(n)
=u+ cos(260)n — sin(20)n |

=u-+m.
Thus m is the vector obtained by rotating n around the axis u with angle —26. We
obtain a rotation as described in the assertion. U
Now we come to the composition of two rotations. Since the quaternionic multiplication
is not commutative the order of the application of rotations is important.
Lemma B.3. Let p and q be two unit quaternions with corresponding rotations
R,(a) = pap and R,(b) = gbg.

Then the multiplication of the quaternions p and q defines a rotation R,y which corre-
sponds to the composition of the rotations R, and R,. Angle and rotation azis of the
composed rotation can be calculated in terms of the quaternion pq.

Proof. Let u € R? be a vector and v € R3 be its image under R,
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Now we rotate v with the rotation R, and hence consider the composition of R, and R,,
written as R, o R, and obtain

The product gp is an unit quaternion, since p and g are. Hence R, is a rotation and the
quaternion defining this rotation is exactly the product of ¢ and p. U

The set S? € H of unitary quaternions together with the quaternionic multiplication
fulfills all group axioms. The elements of S? have norm 1 and the multiplication preserves
the norm. The group ist not abelian, only the multiplication with 1 or —1 commutes
(these are the only real quaternions of S3).

The set of rotations in R3 together with the composition of rotations as group operation is
also a group, this group is called SO(3). But we have defined rotations in R? with the aid
of unitary quaternions, the composition of two rotations corresponds to the multiplication
of two unitary quaternions. Hence there exists a group homomorphism

0:S* — SO(3),
r — R,

Each rotation in SO(3) can be written as R, for some r € S3. Each rotation has two
preimages in S, namely  and —r. This follows from

R_y(v) = (=r)v(-r)
r)v(=r)
Drv(=1)r
R.(v).

o~ o~

Il
=l
<
I

Hence the subgroup {1, —1} is the kernel of the map ¢, since R; and R_; are the identity.
We obtain the group isomorphism

S3/{1, -1} = SO(3). (B.4)
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B. Quaternions

Additionally we have an isomorphism S 2 SU(2,C), given by the matrix description of
quaternions and the fact, that the norm of a quaternion in this situation is the determi-
nant. So we can write an unit quaternion a € S* C H as

. . ~ a a1t ag — ast
a:ao—i—an—i—azj—i—agk:( 0+ a1 2 3).

—ag — agi ag — ial

and the matrix has determinant 1. This is exactly the definition of SU(2,C). Thus we
obtain an isomorphism

SU(2,C)/{1, -1} = S3/{1,-1} = SO(3).
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