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Abstra
tGeneralized elasti
 
urves on S2 are ellipti
 solutions of a di�erential equation on the 
ur-vature of the 
urve. These equations are solved in terms of Weierstrass ellipti
 fun
tionsdepending on the parameters of the di�erential equation. It is investigated whi
h of theseparameters yield 
losed 
urves on S2 and how these 
urves 
an be parametrized. TheHopf �bration h : S3 → S2 lifts 
losed generalized elasti
 
urves to tori in S3. These toriare 
onstrained Willmore surfa
es, i.e. extremal values of the Willmore fun
tional un-der variations preserving the 
onformal stru
ture. They are 
alled 
onstrained WillmoreHopf tori. The 
onformal 
lass and the Willmore energy of su
h tori is 
al
ulated.
ZusammenfassungVerallgemeinerte elastis
he Kurven auf S2 sind elliptis
he Lösungen einer Di�erential-glei
hungen an die Krümmung der Kurve. Diese werden in Abhängigkeit von einigenParametern gelöst, die Lösung wird mit Hilfe von Weierstrass's
hen elliptis
hen Funk-tionen dargestellt. Es wird untersu
ht wel
he Parameter ges
hlossene Kurve liefern, eineParametrisierung dieser Kurven auf S2 wird hergeleitet. Die Hopf-Faserung h : S3 → S2liftet ges
hlosse verallgemeinerte elastis
he Kurven zu Tori in S3. Dies Tori sind 
on-strained Willmore Flä
hen, d.h. sie sind Extremwerte des Willmore-Funktionals unterVariationen, die die konforme Klasse der Flä
he erhalten. Wir nennen diese Flä
hen 
on-strained Willmore Hopf Tori. Es werden die konforme Klasse und die Willmore-Energievon sol
hen Tori bere
hnet.
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1. Introdu
tionOverviewIn this thesis we 
onsider 
onstrained Willmore surfa
es and Hopf tori. These two obje
tswill be interrelated via generalized elasti
 
urves. This relationship will now be explainedin detail.A surfa
e M in R3 is a two-dimensional subset of R3 parametrized by two 
oordinates.The surfa
e should be smooth and immersed, i.e. the surfa
e is the graph of a smoothfun
tion and the derivative of the fun
tion is inje
tive. On the surfa
e M we de�ne ametri
 g, whi
h measures distan
es as well as the volume of areas. At every point p of thesurfa
e there exists in every dire
tion an os
ulating 
ir
le S, whi
h tou
hes the surfa
esin se
ond order, i.e. the �rst and se
ond derivative of the 
ir
le S and the surfa
e M
oin
ide at p. The extremal values of the inverse of the radii of these 
ir
les are 
alledprin
ipal 
urvatures κ1, κ2 of the surfa
e M at the point p. The mean 
urvature at thepoint p is de�ned as H = 1
2 (κ1 + κ2). This mean 
urvature leads to many interestingtypes of surfa
es. For example minimal surfa
es have mean 
urvature H = 0 at everypoint of the surfa
e, 
onstant mean 
urvature surfa
es have mean 
urvature H = c ∈ R atevery point of the surfa
e. In this thesis we are interested in Willmore surfa
es, thereforewe have to de�ne the Willmore fun
tional. It is given by

W(M) =

∫

M

H2 dA.We integrate the square of the mean 
urvature over the whole surfa
e and measure thisquantity with the help of the volume form dA indu
ed by the metri
 g. This Willmorefun
tional 
an also be extended on surfa
es in S3. Willmore surfa
es are extremal valuesof this fun
tional under 
ompa
tly supported variations of the surfa
e. ConstrainedWillmore surfa
es are obtained if we only 
onsider variations whi
h do not 
hange the
onformal 
lass of the surfa
e. The 
onformal 
lass des
ribes the set of equivalent metri
s,1



1. Introdu
tionhere we 
onsider only in�nitesimal 
onformal transformations of the surfa
e and use thede�nition given by [BPP08℄. Sin
e Willmore surfa
es are de�ned by a fun
tional, theyare solutions of an equation of Euler-Lagrange type.Willmore surfa
es have been introdu
ed by Willmore [Wil65℄ in 1965. In the 19th 
enturyDarboux and later in the 1920s Blas
hke [Bla29℄ and Thomsen [Tho23℄ already studied
onformal invariant submanifolds, but they only 
onsidered the lo
al geometry. Willmoreinvestigated the same obje
ts from a global viewpoint and was the �rst to give an expli
itexample. A good survey of the history of Willmore surfa
es 
an be found in [HJ03, 
h.3℄.Willmore also stated the Willmore 
onje
ture, whi
h says that the Willmore fun
tionalof tori in R3 is greater than 2π2 and equality is attained for the Cli�ord torus. TheWillmore 
onje
ture has re
ently be proved by Marques and Neves [MN12℄. The Cli�ordtorus in R3 is de�ned as the stereographi
 proje
tion of the Cli�ord torus in S3, whi
his given by the produ
t of two 
ir
les of the same radii. The Cli�ord torus in S3 ⊂ R4 isgiven by the set
TC :=

{
(x1, x2, x3, x4) ∈ R4 |x21 + x22 = x23 + x24 =

1
2

}
.A good survey over the relationship of the Cli�ord torus to many 
onje
tures in geometry
an be found in [Tai05℄. Regarding 
onstrained Willmore surfa
es the �rst 
al
ulationof an equation of Euler-Lagrange type was given by Bohle, Peters, Pinkall in [BPP08℄.This paper also gives a good survey over many topi
s related to 
onstrained Willmoresurfa
es.Elasti
 
urves are 
urves whi
h are extremal values under the so-
alled bending energy.We mainly 
onsider immersed 
urves on S2 ⊂ R3, that are de�ned by a map γ froman interval (a, b) to R3. The 
urves should be regular, i.e. the derivative of γ is nonvanishing. In general 
urves 
an be des
ribed by their velo
ity (the �rst derivative) andtheir 
urvature κ (the se
ond derivative). The bending energy is de�ned as

b∫

a

κ2(s)ds.We now �x the start and the end point of a 
urve and then minimize the bending energy.The 
urves obtained in this way are 
alled elasti
 
urves. If we add some more 
onstraintson the type of minimization we obtain generalized elasti
 
urves.Elasti
a have been 
onsidered by mathemati
ians for a long time. Levien [Lev08℄ andTruesdell [Tru83℄ have 
olle
ted a lot of fa
ts 
on
erning the history of elasti
a, whi
h willnow be summarized. In the 13th 
entury the mathemati
ian Jordanus de Nemore wrote2



about elasti
a. A

ording to Truesdell [Tru83℄ the ex
hange of two letters between JakobBernoulli and Leibniz, starting on the 15th of De
ember 1687, is the birth date of elasti

urves. The �rst rigorous de�nition was given by Jakob Bernoulli in 1691. He posed thefollowing problem: "What happens to a lamina whi
h is �xed at one end and has a weighton it on the other end?" This question is one instan
e of the problem of elasti
 
urves,this spe
i�
 question 
on
erns re
tangular elasti
a, sin
e one end of the 
urve is �xed.In the following years he partially solved the problem by giving a di�erential equationfor the resulting 
urve. In the following years Daniel Bernoulli and Leonhard Euler alsotried to solve the problem. In 1742 Daniel Bernoulli proposed variational te
hniques inorder to solve the problem. In 1744 Euler gave a 
omplete 
hara
terization of the familyof 
urves known as elasti
a by using variational methods. He des
ribed all possible formsthe elasti
 
urve may take. Elasti
 
urves also lead to the theory of ellipti
 fun
tions (thedi�erential equation found by Jakob Bernoulli 
an be solved by ellipti
 fun
tions). Onthe 23rd of De
ember 1751 (a

ording to Truesdell [Tru83℄) Euler was asked to reviewFagnano's 
olle
ted works (this is set as the birth date of ellipti
 fun
tions by Ja
obi).Euler 
ombined his previous studies about ellipti
 integrals and ellipti
 fun
tions andFagnano's geometri
al investigations to obtain the addition theorem of ellipti
 fun
tionsin the 1770s. The solutions in 
losed form of elasti
a were �rst given by Saals
hütz in1880 by using Ja
obi ellipti
 fun
tions. The �rst plots of elasti
a have been publishedin Max Born's PhD thesis in 1906. So the theory of elasti
 
urves is an old �eld ofmathemati
s, many people have put e�ort into studies of these 
urves.Even nowadays they are subje
t to resear
h. In 1984 Langer and Singer [LS84a℄, [LS84b℄investigated 
losed elasti
 
urves in Rn and gave a 
lassi�
ation of them. They determinedthe knottedness of elasti
 
urves and indexed 
losed elasti
 
urves on S2 one-to-one bypairs of integers, where the integers determine the number of trips around the equatorand the number of periods after whi
h the 
urve 
loses up. Bryant and Gri�ths [BG86℄used Hamiltonian formalism to obtain an Euler-Lagrange equation for elasti
 
urves andadditionally studied elasti
 
urves in the hyperboli
 3-spa
e. Arroyo, Garay, and Men
ía[AGM04℄, [AGM03℄ studied the 
losing 
onditions for elasti
 
urves and generalizations ofelasti
 
urves. Their generalization 
hanges the integral ∫ κ2 to ∫ P (κ) for some smoothfun
tion P (κ) depending on the 
urvature κ. Furthermore they determined the Euler-Lagrange equation for this generalized fun
tionals. Goldstein and Petri
h [GP91℄ relatedgeneralized elasti
 
urves to the modi�ed Korteweg-de Vries (mKdV) hierar
hy, they
onsidered 
urves with �xed length and �xed en
losed area. Musso [Mus09℄ extendedthis relationship and obtained numeri
al examples of generalized elasti
 
urves.
3



1. Introdu
tionIn 1931 Heinz Hopf wrote the very important arti
le [Hop31℄ "Über die Abbildungen derdreidimensionalen Sphäre auf die Kugelober�ä
he". He found a many-to-one 
ontinuousmapping h : S3 → S2 (later 
alled Hopf map), where every point on S2 
omes from a
ir
le on S3. This yields a S1 �ber bundle over S2. This �bration 
an be generalized to amapping from the unit sphere in Cn+1 to PCn where the �bers are again given by 
ir
les.Another important generalization is the S7 �bration with �bers S3 and basis S4. Hopfde�ned an integer number invariant (today 
alled Hopf invariant) for all mappings from
S3 to S2, the Hopf map has invariant 1 and is therefore not null-homotopi
. Variations ofthe Hopf �bration are used in quantum dynami
s, twistor theory, and �uid dynami
s. Agood overview regarding the usage of the Hopf �bration is given by Urbantke in [Urb03℄.The 
onne
tion between Willmore surfa
es and Hopf tori was dis
overed by Pinkall[Pin85℄ in 1985. He studied the preimage of 
losed 
urves on S2 under the Hopf map-ping whi
h are de�ned as Hopf tori. The 
onformal 
lass of a Hopf torus is related to thelength and the en
losed area of the underlying 
urve. Furthermore he 
omputed the mean
urvature of a Hopf torus as the 
urvature of the underlying 
urve on S2. He obtainedin�nitely many embedded Willmore tori in R3 and showed that there exist Willmore toriin R3 whi
h 
annot be obtained by stereographi
 proje
tion of minimal surfa
es in S3.Arroyo and Gar
ia [AG01℄ used this idea to study Hopf vesi
les in S3, whi
h are 
riti
alpoints under the elasti
 energy of surfa
es, hen
e a generalization of elasti
 
urves to elas-ti
 surfa
es. The relation between Hopf tori, generalized elasti
 
urves and 
onstrainedWillmore surfa
es was des
ribed by Bohle, Peters, Pinkall in [BPP08℄. Preissler [Pre03℄investigated the 
onne
tion between Willmore tori and isothermi
 surfa
es (these aresurfa
es where the parameters 
an be 
hosen as 
urvature lines). Musso [Mus09℄ gave a
onformal parametrization of Hopf tori over 
urves on S2 in terms of SU(2,C)-matri
es.Barros and Ferrández [BF11℄ obtained estimates for the Willmore energy in 
onformalBerger spheres. Berger spheres are standard three spheres with an one-parameter familyof metri
s. They investigated isoareal Hopf tori and obtained best possible lower boundsfor the Willmore energy of them.What is done in this workThis thesis is organized as follows. In the se
ond 
hapter we des
ribe the basi
s ofsurfa
e theory. The �rst and se
ond fundamental form of a surfa
e in R3, S3, or R4 arede�ned. The �rst fundamental form des
ribes the intrinsi
 geometry of a surfa
e, these
ond fundamental form des
ribes the position of the surfa
e in the surrounding spa
e.4



Based on these two fundamental forms we de�ne the mean 
urvature H and the Hopfdi�erential Q of a surfa
e. A frame is de�ned as a basis of the tangent spa
e to the surfa
eat a given point p. Given a motion on the 
urve we 
an also de�ne a moving frame. Weintrodu
e the Lax pair formalism whi
h des
ribes di�erential equations ful�lled by themoving frame. The 
ompatibility equation for these di�erential equations is known as theMaurer-Cartan equation. The 
urvature and the torsion of 
urves in R3 are introdu
ed.The frame of a 
urve ful�lls di�erential equations with respe
t to 
urvature and torsion.Then we de�ne the Willmore fun
tional
W(M) =

∫

M

H2dAof a surfa
e M in R3. Willmore surfa
es are extremal values under variations of thesurfa
e. If we only 
onsider 
onformal variations we obtain 
onstrained Willmore surfa
esas extremal values. Willmore surfa
es are invariant under 
onformal mappings. Theyare de�ned via a fun
tional depending on the mean 
urvature H, hen
e we 
an give anequation of Euler-Lagrange type whi
h 
hara
terizes Willmore and 
onstrained Willmoresurfa
es.The third 
hapter deals with elasti
 and generalized elasti
 
urves on S2. First we de�nethem as solutions of the di�erential equation
κ′′(x) +

1

2
κ(x)3 + aκ(x) + b = 0, a, b ∈ Rwith the 
urvature fun
tion κ(x). This di�erential equation 
an be solved in terms ofWeierstrass ellipti
 fun
tions for any initial values. The initial values determine an ellipti

urve Y , whi
h des
ribes the periodi
 solution of the di�erential equation. The next stepis to re
over the 
urve from the 
urvature, therefore we introdu
e the spe
tral 
urve Γof an elasti
 
urve. This 
an be done by examining a 
onne
tion between elasti
 
urvesand the modi�ed Korteweg-de Vries (mKdV) equation. We then follow the standardpro
edure of de�ning the spe
tral 
urve as the eigenvalue 
urve of a matrix. It turnsout, that the spe
tral 
urve Γ is isomorphi
 to the ellipti
 
urve Y of the solution.Transforming the di�erential equations of the frame of the elasti
 
urve to a se
ond orderequation of Lamé type we 
an integrate the frame of the generalized elasti
 
urve andgive a parametrization of the 
urve on S2 ⊂ R3. There are two sets of parameters forthese generalized elasti
 
urves, on the one hand we have the parameters a, b de�ned bythe di�erential equation and one integration 
onstant c. On the other hand we have theparameters g2, g3, w where g2, g3 are the Weierstrass invariants of the ellipti
 
urve Y5



1. Introdu
tionand ℘(w) is a point on the ellipti
 
urve Y with w ∈ iR. The se
ond set of parameters ismore suitable to 
hara
terize 
losed generalized elasti
 
urves. The 
urve is 
losed if andonly if the frame is periodi
, this 
ondition 
an be expressed by a fun
tion whi
h musthave rational values. In the 
onsideration of 
losed 
urve there arise two 
ases, dependingon the dis
riminant of the polynomial 4t3 − g2t − g3 for the real Weierstrass invariants
g2, g3. In the �rst 
ase the dis
riminant is positive and hen
e the polynomial has threereal roots, this 
ase is easy to handle. In the other 
ase with one real root and two
omplex 
onjugate roots, we have to introdu
e deformations of the spe
tral 
urve. Thelast part of this 
hapter deals with 
onstant 
urvature solutions, whi
h are spe
ial 
asesof generalized elasti
 
urves. Here the ellipti
 
urve Y is singular, we study deformationsof this singular ellipti
 
urves to non singular ellipti
 
urves whi
h are the spe
tral 
urvesof non 
onstant generalized elasti
 
urves.In the fourth 
hapter we introdu
e the main 
on
epts of the Hopf �bration h : S3 → S2.It is shown that the preimage of ea
h point on S2 is a 
ir
le in S3. By stereographi
proje
tion of all these 
ir
les we obtain linked 
ir
les and one line passing through all
ir
les. A Hopf torus is the preimage of a 
losed 
urve on S2 under the Hopf �bration.These tori 
an be 
onformally parametrized and all of them are �at. The mean 
urvatureof a Hopf torus 
an be 
al
ulated as being exa
tly the 
urvature of the underlying 
urve.The 
onformal parametrization is used to 
al
ulate the 
onformal 
lass of a Hopf torus.The �fth 
hapter 
ombines the third and fourth 
hapter. We des
ribe how to use gen-eralized elasti
 
urves in order to obtain 
onstrained Willmore surfa
es with the aid ofthe Hopf �bration. The preimages of elasti
 
urves under the Hopf �bration lead toWillmore 
ylinders. If the elasti
 
urve is 
losed we obtain Willmore tori. These ideas
an be generalized by generalized elasti
 
urves. Here the preimages of the 
urve lead to
onstrained Willmore 
ylinders and 
onstrained Willmore tori, if the generalized elasti

urve is 
losed. We 
al
ulate the 
onformal 
lass of the 
onstrained Willmore Hopf torias well as their Willmore energy in terms of the parameters g2, g3, w.The �rst appendix 
ontains the basi
s of ellipti
 fun
tions, espe
ially Weierstrass ellip-ti
 fun
tions. We introdu
e Weierstrass ellipti
 fun
tions and the Weierstrass invariants
g2, g3. The ℘-fun
tion is a periodi
 fun
tion on a latti
e, the ζ- and σ-fun
tions arequasiperiodi
. We examine in detail real latti
es whi
h 
orrespond to real g2, g3 andidentify them in the fundamental domain of the modular group. We show that defor-mations of the spe
tral 
urve preserving the 
onformal 
lass are given by in�nitesimalMöbius transformations. The se
ond appendix deals with quaternions and rotations in
R3 des
ribed by quaternions.6



2. Surfa
e theory and Willmore surfa
es2.1. Basi
s of surfa
e theoryIn this se
tion we introdu
e the basi
 
on
epts of surfa
e theory in R3, R4 and S3 ⊂ R4.We will de�ne the fundamental forms of surfa
es and introdu
e the mean 
urvature ofa surfa
e. Many of the 
on
epts are independent of the surrounding spa
e, we 
onsideronly eu
lidean spa
es (mostly R3 or R4) and we will indi
ate the di�eren
es if needed.Therefore let M be an orientable 2-dimensional manifold and f an C∞-immersion into
R3, R4 or S3. This means f is a mapping with inje
tive derivative. The eu
lidean ve
torspa
es R3 and R4 are endowed with the standard eu
lidean s
alar produ
t 〈·, ·〉 andthe hereby indu
ed norm ‖ · ‖. If we 
onsider immersions into S3 we 
onsider them asimmersions into R4 with ‖f‖ = 1.In R4 we have the standard eu
lidean metri
 indu
ed by the s
alar produ
t. This metri

an be used to de�ne a metri
 on the manifold M . The metri
 on the immersed manifoldleads to new obje
ts, espe
ially the 
onformal fa
tor, whi
h will be important later on.De�nition 2.1. Let f : M → S3 be an immersion equipped with the metri
 h = 〈·, ·〉 of
R4 restri
ted to S3 ⊂ R4. The indu
ed metri


g : TpM × TpM → R,

(v,w) 7→ h(df(v), df(w)) = 〈df(v), df(w)〉is 
alled �rst fundamental form. Here df(v) is the derivative of f in dire
tion of thetangent ve
tor v.Let (x, y) be a 
oordinate of M . Sin
e f is an immersion, a basis for TpM 
an be 
hosenas fx, fy with
fx =

(
∂f

∂x

)

p

, fy =

(
∂f

∂y

)

p

. 7



2. Surfa
e theory and Willmore surfa
esThen the metri
 g 
an be represented as the matrix
g =

(
〈fx, fx〉 〈fx, fy〉
〈fy, fx〉 〈fy, fy〉

)
.An immersion is 
alled 
onformal if and only if there exists a fun
tion u : M → R,whi
h is 
alled 
onformal fa
tor, su
h that

g = 4e2u
(
1 0
0 1

)
. (2.1)A 
onformal immersion is 
alled �at if the 
onformal fa
tor is 
onstant.This de�nition is independent of the surrounding spa
e, all obje
ts have been de�nedjust with the help of the s
alar produ
t. These obje
ts are the intrinsi
 invariants of asurfa
e.Now we 
ome to the extrinsi
 invariants de�ned for an immersed surfa
e. Therefore wede�ne the unit normal ve
tor N to the surfa
e f(M) ⊂ R3 by

NR3 =
fx × fy
‖fx × fy‖

,and we see that N is perpendi
ular to the tangent plane TpM at every point f(p). In S3or R4 we have to use a generalized 
ross produ
t and then de�ne
NR4 =

f × fx × fy
‖f × fx × fy‖

.Here the extended 
ross produ
t is de�ned by
a× b× c =

4∑

i=1

det
(
ei a b c

)
· ei, a, b, c ∈ R4 (2.2)with ei the unit ve
tors in R4. If it is 
lear whi
h normal is used we denote it only by N .De�nition 2.2. The se
ond fundamental form of an immersion f :M → S3 is givenby

b =

(
b11 b12
b21 b22

)
=

(
〈N, fxx〉 〈N, fxy〉
〈N, fyx〉 〈N, fyy〉

)
.8



2.1. Basi
s of surfa
e theoryThe se
ond fundamental form 
an also be written in terms of di�erentials as
b = b11dx

2 + b12dxdy + b21dydx+ b22dy
2.Swit
hing to 
omplex 
oordinates z = x+ iy one obtains

b = Qdz2 + H̃dzdz +Qdz2,where Q is the 
omplex-valued fun
tion
Q :=

1

4
(b11 − b22 − ib12 − ib21)and H̃ is the real-valued fun
tion
H̃ :=

1

2
(b11 + b22).De�nition 2.3. The linear map S : TpM → TpM de�ned by

S := g−1bis 
alled shape operator of the immersion f .The shape operator 
ombines the metri
 and the se
ond fundamental form. It de�neshow to measure the se
ond fundamental form (whi
h is essentially the matrix of se
ondderivatives) in the ambient spa
e.De�nition 2.4. The eigenvalues and the 
orresponding eigenve
tors of the shape operatorare 
alled prin
ipal 
urvatures and prin
ipal 
urvature dire
tions of the surfa
e f(M)at the point f(p). If at a point p the two eigenvalues are equal the point is 
alled umbili
.The symmetri
 2-di�erential Qdz2 is 
alled Hopf di�erential of the immersion f . Thedeterminant of the shape operator
K := detSis 
alled Gauss 
urvature and half of the tra
e of the shape operator
H :=

1

2
trS (2.3)is 
alled mean 
urvature. 9



2. Surfa
e theory and Willmore surfa
esLemma 2.5. Let M be a Riemann surfa
e and f : M → S3 be a 
onformal immersion.Then p ∈M is an umbili
 point if and only if Q = 0.Proof. The shape operator of a 
onformal immersion is given by
S =

1

4e2u

(
H +Q+Q i(Q−Q)

i(Q−Q) H −Q−Q

)with respe
t to the basis fx, fy of the tangent spa
e of f(M). The two prin
ipal 
urva-tures are the eigenvalues of the shape operator and hen
e are solutions of the equation
4e2u det(S − k1) = (H +Q+Q− k)(H −Q−Q− k) + (Q−Q)2

= (H − k)2 − (Q+Q)2 + (Q−Q)2

= (H − k)2 − 4‖Q‖2.Thus we obtain
k1 = H + 2‖Q‖, k2 = H − 2‖Q‖.Finally we have k1 = k2 ⇔ Q = 0 and the assertion follows.Up to now all obje
ts have been des
ribed lo
ally at a point on the surfa
e M . Now weexpand this and de�ne a frame on the surfa
e whi
h helps us to investigate movementson the surfa
e.De�nition 2.6. Let M be a smooth manifold. A frame is a basis of TpM for a givenpoint p ∈ M . A moving frame is a tuple (X1, . . . ,Xn) of ve
tor �elds, su
h that

(X1(p), . . . ,Xn(p)) is a basis of TpM at every point p. The moving frame 
an be 
onsid-ered as 
olle
tion of frames along a motion in M .We now 
onsider the derivatives of frames depending on two parameters. The standardproposition is the following due to Lax [Lax68℄.Proposition 2.7. Let U ⊂ R2 be an open, simply 
onne
ted set 
ontaining (0, 0). For
U, V : U → su(2) we 
all U, V the Lax pair of the frame F = F (x, y) : U → SU(2,C) ifthey ful�ll the equations

Fx = UF, Fy = V F.There exists a solution F (x, y) : U → SU(2,C) for any initial 
onditions F (0, 0) ∈
SU(2,C) if and only if

Uy − Vx + [V,U ] = 0. (2.4)The last equation is 
alled Maurer-Cartan equation.10



2.2. Curves on S2In many 
ases it is also possible to add an extra variable λ ∈ S1, the so 
alled spe
tralparameter to the Lax pair U, V . One now requires that the Maurer-Cartan equation isful�lled for all λ. This theory will be applied in se
tion 3.2.2.2. Curves on S2De�nition 2.8. Let
γ : I → R3,

s 7→ γ(s)be a mapping with I = (a, b) some interval in R. If dγ
ds 6= 0 for all s ∈ I then γ is 
alledregular 
urve.The ar
 length of a 
urve is given by

‖γ‖ar
 := b∫

a

∥∥∥∥
dγ(s)

ds

∥∥∥∥ ds.We 
an always 
hoose a parametrization s̃ su
h that
∥∥∥∥
dγ(s̃)

ds̃

∥∥∥∥ = 1.and therefore ‖γ‖ar
 = b− a. Then the 
urve is 
alled parametrized by ar
 length.The tangent ve
tor of a 
urve parametrized by ar
 length s is given by
T (s) :=

dγ(s)

ds
.In the previous se
tion we de�ned the frame of an immersed surfa
e. We 
an also de�nea frame for 
urves, this frame also ful�lls a di�erential equation. Sin
e 
urves dependonly on one parameter, there exists only one di�erential equation, not two as in the Laxpair formalism. 11



2. Surfa
e theory and Willmore surfa
esLemma 2.9. Let γ(s) be a 
urve on S2 ⊂ R3 parametrized by ar
 length. A frame isgiven by the three ve
tors {e1(s), e2(s), e3(s)} with
e1(s) = γ(s),

e2(s) = T (s) = γ′(s),

e3(s) = γ(s)× γ′(s).These ve
tors satisfy the equations
d

ds



e1(s)
e2(s)
e3(s)


 =




0 1 0
−1 0 κ(s)
0 −κ(s) 0





e1(s)
e2(s)
e3(s)


 (2.5)Proof. The ve
tor e1(s) has length 1 for a 
urve on S2. Sin
e the 
urve is parametrizedby ar
 length the length of e2(s) is also 1. Hen
e we have an orthonormal frame. The
urvature of a 
urve in R3 is de�ned in the Frenet frame setting as s
alar produ
t ofthe derivative of the tangent ve
tor and the normal ve
tor. For 
urves on S2 we de�neanalogously

κ(s) := 〈γ′′(s), γ(s) × γ′(s)〉as the 
urvature of a 
urve. Here γ(s)×γ′(s) is the normal ve
tor on S2. Thus we obtain
〈e′2(s), e3(s)〉 = κ(s).For the following 
al
ulations we need some formulas, they are obtained by di�erentiating

〈e1, e2〉 = 0, 〈e1, e3〉 = 0, 〈e2, e2〉 = 1, 〈e3, e3〉 = 1.Then we obtain
〈e′1, e2〉+ 〈e1, e′2〉 = 0 ⇔ 〈e1, e′2〉 = −〈e′1, e2〉 = −〈e2, e2〉 = −1,

〈e′1, e3〉+ 〈e1, e′3〉 = 0 ⇔ 〈e1, e′3〉 = −〈e3, e′1〉 = −〈e3, e2〉 = 0,

〈e′2, e2〉 = 0,

〈e′3, e3〉 = 0.The ve
tors e1(s), e2(s), e3(s) are an orthonormal basis of R3 for every s, hen
e anyve
tor 
an be written as linear 
ombination of these ve
tors. We use this to obtain the12



2.3. Willmore surfa
esequations
d

ds
e1 = e2,

d

ds
e2 = 〈e′2, e1〉e1 + 〈e′2, e2〉e2 + 〈e′2, e3〉e3

= 〈−e2, e′1〉e1 + 〈e′2, e3〉e3
= −e1 + κ(s)e3,

d

ds
e3 = 〈e′3, e1〉e1 + 〈e′3, e2〉e2 + 〈e′3, e3〉e3

= −〈e3, e′1〉e1 − 〈e3, e′2〉e2
= −κ(s)e2.Putting together these equations in matrix form yields the assertion.2.3. Willmore surfa
esWe have de�ned the mean 
urvature H in (2.3), it 
an be used to 
hara
terize spe
ialsurfa
es. The simplest surfa
es de�ned by the mean 
urvature are minimal surfa
es,whi
h ful�ll H ≡ 0. Another example of surfa
es are 
onstant mean 
urvature surfa
eswith H ≡ c. We are interested in Willmore surfa
es, whi
h have non 
onstant mean
urvature. They are de�ned by the extremal values of a fun
tional under variations,we �rst de�ne the fun
tional and then restri
t the spa
e of allowed variations to obtain
onstrained Willmore surfa
es.De�nition 2.10. The Willmore fun
tional of an immersed surfa
e f : M → R3 isgiven by

W(M) =

∫

M

H2dA,with dA the area 2-form of M indu
ed by the �rst fundamental form. A surfa
e is 
alledWillmore surfa
e if it is a 
riti
al value of the Willmore fun
tional under all variationsof the immersion. A surfa
e is 
alled 
onstrained Willmore surfa
e if we only allowvariations whi
h preserve the 
onformal stru
ture, i.e. the fun
tion u de�ned in (2.1) doesnot 
hange through the variation. The Willmore fun
tional for immersions g : M̃ → S313



2. Surfa
e theory and Willmore surfa
esis given by
W(M̃) =

∫

M̃

(
H2 + 1

)
dA. (2.6)One of the main properties of the Willmore fun
tional is its invarian
e under 
onformalmappings of the surfa
e, whi
h has been proven by White [Whi73℄.Proposition 2.11. The Willmore fun
tional is invariant under 
onformal mappings:Let T :M →M be a 
onformal mapping, then W(M) = W(T (M)).Proof. All 
onformal mappings 
an be written as 
ombination of eu
lidean motions,homotheties and inversions. W is invariant under eu
lidean motions and homothetiessin
e they 
hange the mean 
urvature and the volume form of the surfa
e inverse to ea
hother. So we have to 
he
k the invarian
e under inversions. We 
an assume that the
enter of the inversion is not on M and further, that 0 is the 
enter of the inversion. Ifthe radius of the inversion is c, the inverted ve
tor of x ∈M is given by x̃ = c2 x

‖x2‖ . Let
N be the normal ve
tor at x and set h = x ·N , then the two prin
ipal 
urvatures of theinverted surfa
e 
an be 
omputed to

κ̃1 = −‖x‖κ1 − 2h

c2
, κ̃2 = −‖x‖κ2 − 2h

c2
.Hen
e we 
an 
ompute κ̃1 − κ̃2 = −‖x‖2(κ1 − κ2)/c

2 and
H̃2 − K̃ = ‖x‖4(H2 −K)/c4.The surfa
e form dA 
hanges under the inversion by dÃ = c4dA/‖x‖4. Putting thistogether one obtains
(H̃2 − K̃)dÃ = (H2 −K)dA.So (H2 −K)dA is globally invariant under inversions and

∫

M

(H2 −K)dA =

∫

M

H2dA− 2πχ(M) = W(M)− 2πχ(M)di�ers from the Willmore fun
tional just by 2πχ(M), a multiple of the Euler 
hara
ter-isti
. Sin
e χ(M) is invariant under inversions, the Willmore fun
tional is also invariantunder inversions and the 
laim follows.14



2.3. Willmore surfa
esSin
e we are looking for extremal values of a fun
tional we have to 
al
ulate the �rstvariation of it. The roots of the �rst variation are the possible extremal values of thefun
tional. This has been 
arried out by Weiner [Wei78℄, who derived an equation ofEuler-Lagrange type.Theorem 2.12. Let f : M → R3 be an immersion of an orientable surfa
e withoutboundary su
h that W(M) <∞. Then f is a stationary point of W if and only if
∆H + 2H3 − 2HK = 0.Here ∆ is the Lapla
e operator on the surfa
e M de�ned by

∆f =
∂2f

∂x2
+
∂2f

∂y2
,and K is the Gaussian 
urvature. For immersions g :M → S3 the 
ondition is that σ ◦ f̃satis�es the equation with σ : S3 → R3 being the stereographi
 proje
tion.Another possibility to 
hara
terize Willmore surfa
es is by means of the 
onformal Gaussmap. Therefore let Q be the set of all spheres and planes in R3. For any surfa
e M anda point m ∈M we denote by S2

m the unique element in Q with the following properties:At the point m ∈ M the element S2
m is tangent to M with the same orientation and

S2
m and M have the same mean 
urvature at m ∈ M . The map m 7→ S2

m is 
alled
onformal Gauss map. Bryant [Bry84℄ proved that M is a Willmore surfa
e if and onlyif the 
onformal Gauss map is harmoni
.Regarding 
onstrained Willmore surfa
es there is also an Euler-Lagrange equation. Sin
ewe only 
onsider variations with �xed 
onformal 
lass, we 
an 
onsider this as minimumunder 
onstraints. So there must be some kind of Lagrange multiplier. The Euler-Lagrange equation has been 
al
ulated in general in [BPP08℄.Theorem 2.13. An immersion f : M → S3 of a 
ompa
t Riemann surfa
e M is 
on-strained Willmore if and only if there exists a 2-form δ∗(q) ∈ Ω2(M) whi
h is the deriva-tive of a holomorphi
 quadrati
 di�erential q ∈ H0(K2) su
h that
(∆H + 2H3 − 2HK)dA = δ∗(q).The 2-form δ∗(q) 
an be regarded as Lagrange multiplier, for the exa
t de�nition of thederivative δ∗ see [BPP08℄. 15



2. Surfa
e theory and Willmore surfa
esUsing this theorem Bohle,Peters, and Pinkall [BPP08℄ gave a simple proof of the followingresult.Corollary 2.14. Every 
onstant mean 
urvature surfa
e f : M → R3 is 
onstrainedWillmore.Proof. For 
onstant mean 
urvature surfa
es the gradient of W is given by (2H3 −
2HK)dA and it holds δ∗(Q) = 4(H2 −K)dA. So the holomorphi
 quadrati
 di�erentialneeded in the previous theorem 
an be 
hosen as q = 1

2HQ, the produ
t of the mean
urvature and the Hopf di�erential.

16



3. Elasti
 and generalized elasti
 
urves3.1. Elasti
 
urvesLet γ : R → S2 ⊂ R3 be a 
urve on S2 as introdu
ed in se
tion 2.2. The 
urve should beparametrized by ar
 length, the 
urvature is given by κ : R → R. We 
onsider variationsof the 
urvature κ(x) of the 
urve γ on S2. De�ne the fun
tional
P (γ) =

∫

γ

κ2(s)ds,whi
h des
ribes the bending energy of a 
urve. It is very similar to the Willmore fun
-tional de�ned in de�nition 2.10. We �x the start and the end point of a 
urve and thenminimize the fun
tional P (γ) under these 
onstraints. The Euler-Lagrange equation ofthis fun
tional has been 
al
ulated in [AGM03℄ and is given by
κ′′(x) +

1

2
κ(x)3 + aκ(x) = 0for some a ∈ R. We use this equation to de�ne elasti
 
urves. In the following all 
urveson S2 are parametrized by ar
 length.De�nition 3.1. Let γ be a 
urve on S2. If the 
urvature of γ satis�es the di�erentialequation

κ′′(x) +
1

2
κ(x)3 + aκ(x) + b = 0, a, b ∈ R (3.1)the 
urve is 
alled generalized elasti
 
urve and elasti
 
urve if and only if b = 0.In order to solve this di�erential equation we multiply it with 2κ′(x) and then integrateit. This yields

(κ′(x))2 + 1
4κ(x)

4 + aκ(x)2 + 2bκ(x) = c (3.2)17



3. Elasti
 and generalized elasti
 
urvesfor some integration 
onstant c. First we set the initial 
onditions to be
κ(0) = y,

κ′(0) = 0,with y a real root of the polynomial g(x) := −1
4x

4 − ax2 − 2bx + c. Generalized initial
onditions will be 
onsidered later.The polynomial g(x) = −1
4x

4−ax2−2bx+ c is of degree four. We use a linear fra
tionaltransformation to redu
e it to a polynomial of degree 3. The standard pro
edure forsolving su
h equations is des
ribed in [EMOT53℄. Our aim is to obtain a Weierstrassnormal form η2 = 4ξ3 − g2ξ − g3. We 
onsider the ellipti
 
urve de�ned by w2 = g(x).The transformation now maps one root of g(x) to ∞ and then sets e1 + e2 + e3 = 0with ei the three remaining roots. Therefore let y be a root of g(x), we introdu
e newparameters X and Y by setting x = y − 1
X and w = Y

X . The new ellipti
 
urve is nowde�ned by
Y 2 = g′(y) +

1

2
g′′(y) +

1

6
g′′′(y) +

1

24
g(iv)(y)

= −y3 − 2ay − 2b+
1

2
(−3y2 − 2a)− 1

6
6y − 6

24

= −y3 − 3

2
y2 + y(−2a− 1)− 2b− a− 1

4
.Next we eliminate the quadrati
 term by setting

X =
4ξ − 1

6g
′′(y)

g′(y)
, Y =

4η

g′(y)
.This yields e1 + e2 + e3 = 0 as des
ribed above, and we obtain the 
urve in Weierstrassform η2 = 4ξ3 − g2ξ − g3 with Weierstrass invariants [EMOT53℄

g2 = −1

4
c+

1

12
a2, (3.3)

g3 = det




−1
4 0 −1

6a
0 −1

6a −1
2b

−1
6a −1

2b c




=
1

24
ac+

1

216
a3 +

1

16
b2. (3.4)18



3.1. Elasti
 
urvesThe solution is now x = y − g′(y)

4ξ−1
6g

′′(y)
, so the solution of (3.1) is

κ(x) =
−y3 − 2ay − 2b

4℘(x, g2, g3) +
1
2y

2 + 1
3a

+ y (3.5)for the initial values κ(0) = y and κ′(0) = 0.In order to generalize this to initial values κ(x0) = α and κ′(x0) = β for α, β ∈ R wehave to apply the theory of ellipti
 
urves. At x0 one obtains by (3.2)
β2 = −1

4
α4 − aα2 − 2bα+ c

→ c = β2 +
1

4
α4 + aα2 + 2bα.Now we 
an de�ne an ellipti
 
urve by

Y := {(x,w) ∈ C2 |w2 = g̃(x) := −1

4
x4 − ax2 − 2bx+ β2 +

1

4
α4 + aα2 + 2bα}. (3.6)If we 
onsider real initial values we are at a real subset of this 
urve, where both param-eters are real. We de�ned this 
urve also for 
omplex values in order to have a 
onne
tedellipti
 
urve.

λ0 λ1

(α, β)

αFigure 3.1.: Ellipti
 
urve for generalized initial valuesDue to the initial values the point (α, β) lies on the 
urve. The polynomial g̃(x) satis�es
g̃(x) → −∞ as x → ±∞ and g̃(α) = β2 ≥ 0, so it has at least two real roots and the
urve Y is not empty. Be
ause of the asymptoti
s there is at least one real root smallerthan α and one real root larger than α, we set

λ0 := max {x ∈ R | g̃(x) = 0, x < α}, (3.7)
λ1 := min {x ∈ R | g̃(x) = 0, x > α}. 19



3. Elasti
 and generalized elasti
 
urvesFurthermore we set κ(0) = λ0.Sin
e the Weierstrass invariants depend on the initial value α, the period length of thethe 
urvature fun
tion κ(x) also depends on α. The 
urvature κ(x) has one real periodsin
e the Weierstrass invariants are real, see Appendix A. The period length 
an be
omputed as follows:
p = 2

λ1∫

λ0

1√
g̃(x)

dx. (3.8)So we obtain κ(p2 ) = λ1, see therefore also lemma 3.4. If the period length is 0 the
urvature fun
tion is 
onstant and if the period length is ∞ the 
urvature fun
tion is notperiodi
, this happens only in some degenerate spe
ial 
ases and depends on the positionof the roots of the polynomial g̃(x). The 
ase of 
onstant 
urvature solutions will be
onsidered in se
tion 3.6.Lemma 3.2. The solution κ(x) of the di�erential equation (3.1) has the following prop-erties:(i) κ′(x) = 4(y3 + 2ay + 2b)℘′(x, g2, g3)(
4℘(x, g2, g3) +

1
2y

2 + 1
3a
)2(ii) κ(x) = κ(−x)(iii) κ′(x) = −κ′(−x)(iv) κ([0, p)) = [λ0, λ1]Proof. (i) follows from dire
t 
omputation, (ii) and (iii) from the properties of ℘ and

℘′ des
ribed in appendix A. Sin
e κ(0) = λ0 and κ(p2 ) = λ1 and κ is 
ontinuous (iv)follows.The next lemma shows, that in the non degenerate 
ase there exists an identi�
ationbetween R/pZ and a part of the ellipti
 
urve Y .Lemma 3.3. Let g(x) have no multiple roots and Ỹ be the real part of the ellipti
 
urve
Y with κ(0) ∈ Ỹ . Let p be the period length, then the map

φ : R/pZ → Ỹ ,

x 7→ (κ(x), κ′(x))20



3.1. Elasti
 
urvesis a homeomorphism.Proof. Sin
e g(x) has no multiple roots, 0 < p < ∞. We have to show, that φ is
ontinuous, one-to-one and onto with 
ontinuous inverse mapping.
• φ is 
ontinuous be
ause the fun
tions κ(x) and κ′(x) are 
ontinuous.
• φ is one-to-one. Let x0 and x1 be in [0, p), this is a representative of R/pZ, and set
φ(x0) = φ(x1). Then by (3.5) the equation κ(x0) = κ(x1) implies ℘(x0) = ℘(x1).So x0 ≡ ±x1 mod p, see proposition A.7. Assume x0 ≡ −x1 mod p, then

κ′(x0) = κ′(−x1) = −κ′(x1) = −κ′(x0)by the properties of κ(x) and κ′(x) and furthermore κ′(x0) = κ′(x1). So κ′(x0) = 0and x0 ∈ {0, p2}, see lemma A.6. If already x0 = 0, then also x1 = −0 = 0 and if
x0 =

p
2 , then

x1 ≡ −p
2
mod p ≡ p

2
mod p = x0.So in ea
h 
ase x0 = x1 and φ is one-to-one.

• φ is onto. Let (λ, µ) be some point on Ỹ , without loss of generality µ > 0 sin
e Yis symmetri
 with respe
t to the x-axis. Be
ause the image of κ(x) is [λ0, λ1] thevalue λ satis�es λ0 ≤ λ ≤ λ1. Now κ(x) is 
ontinuous, so there exists ξ ∈ (0, p2) (weare on the upper half of the 
urve) with κ(ξ) = λ. Then κ′(ξ) = µ sin
e (λ, µ) ∈ Ỹ ,so φ is onto.Be
ause of the periodi
ity of κ(x) with period length p it holds φ(0) = φ(p) and R/pZ is
ompa
t, so the inverse mapping must be 
ontinuous too.The solution to the initial values κ(x0) = α, κ′(x0) = β is given by (3.5) repla
ing y by
λ0 sin
e all solutions are given by translations in the argument x. Su
h a translation
orresponds to a movement on the ellipti
 
urve Y . We 
an des
ribe the variable x onthe ellipti
 
urve by the following formula.Lemma 3.4. Let κ(t) be a solution of κ′(t)2 = g(κ(t)). Then the variable x on Y satis�es

x =

κ(x)∫

λ0

1√
g(s)

dsfor x ∈ [0, p2 ). 21



3. Elasti
 and generalized elasti
 
urvesProof. Substitute s = κ(t) in the integral
κ(x)∫

λ0

1√
g(s)

ds =

x∫

0

1√
(g(κ(t))

κ′(t) dt,be
ause κ(0) = λ0 and ds = κ′(t) dt. Now we use the di�erential equation κ′(t)2 = g(κ(t))and obtain
x∫

0

1√
(g(κ(t))

κ′(t) dt =

x∫

0

1 dt = x.

An analogous equation holds for x ∈ [p2 , p), there the value of κ′(x) is smaller than 0 andone obtains
−x =

κ(x)∫

λ0

1√
g(s)

ds.Putting together the above, we have proven the following lemma for randomly 
hoseninitial values α, β ∈ R.Lemma 3.5. The solution of the initial value problem
d2

dx2
κ(x) +

1

2
κ(x)3 + aκ(x) + b = 0,

κ(x0) = α,

κ′(x0) = βis given by
κ(x) =

−y3 − 2ay − 2b

4℘(x, g2, g3) +
1
2y

2 + 1
3a

+ y,with
g2 = −1

4
c+

1

12
a2,

g3 =
1

24
ac+

1

216
a3 +

1

16
b2.Here c = β2 + 1

4α
4 + aα2 +2bα and y is 
hosen as λ0, the largest root smaller than α of

g̃(t) = −1
4t

4 − at2 − 2bt+ β2 + 1
4α

4 + aα2 + 2bα as de�ned in (3.7).22



3.1. Elasti
 
urvesOur next aim is to 
onstru
t a 
urve for a given 
urvature. Sin
e we are only interestedin 
urves on S2 the 
urvature determines the whole 
urve. We now want to write the
urve and the frame as a matrix and therefore introdu
e the following basis for su(2),the antihermitian 2× 2-matri
es with tra
e zero.De�nition 3.6. A basis for
su(2) =

{(
ix1 x2 − ix3

−x2 − ix3 −ix1

)
|x1, x2, x3 ∈ R

}is given by the matri
es
σ1 =

(
i 0
0 −i

)
, σ2 =

(
0 1
−1 0

)
, σ3 =

(
0 −i
−i 0

)
.The s
alar produ
t in su(2) is de�ned by 〈X,Y 〉 := −1

2 tr(X · Y ) for X,Y ∈ su(2).The frame of a 
urve was given in (2.5) by
d

ds



e1(s)
e2(s)
e3(s)


 =




0 1 0
−1 0 κ(s)
0 −κ(s) 0





e1(s)
e2(s)
e3(s)


 .We now sear
h for a moving frame in SU(2,C) of this 
urve. So let F (s) be a matrix in

SU(2,C), the solution of d
dsF (s) = α(s)F (s) with F (0) = 1. We identify the basis ve
tors

e1, e2, e3 with σ1, σ2, σ3 by setting e1 = F−1σ1F , e2 = F−1σ2F and e3 = F−1σ3F . Thenew equations for the frame F (s) are
d

ds
γ(s) =

d

ds
(F−1σ1F ) = F−1σ2F, (3.9)

d

ds
(F−1σ2F ) = F−1(−σ1 + κσ3)F,

d

ds
(F−1σ3F ) = F−1(−κσ2)F.For the �rst equation we obtain

d

ds
(F−1σ1F ) = −F−1(

d

ds
F )F−1σ1F + F−1σ1(

d

ds
F )F−1F

= −F−1αFF−1σ1F + F−1σ1αFF
−1F

= F−1σ1αF − F−1ασ1F

= F−1[α, σ1]F

!
= F−1σ2F. 23



3. Elasti
 and generalized elasti
 
urvesWe 
an 
al
ulate the other equations similarly and have to solve
[σ1, α] = σ2, [σ2, α] = −σ1 + κσ3, [σ3, α] = −κσ2.We now set α =

(
a1i −ia− 2 + a3

−ia2 + a3 −a1i

)
∈ su(2), solve these equations and obtain

α =
1

2

(
iκ(s) −i
−i −iκ(s)

)
=

1

2
(κσ1 + σ3) ∈ su(2). (3.10)To 
al
ulate the 
urve one now has to solve the di�erential equation d

dsF = αF , the
omponent e1(s) = F−1(s)σ1F (s) is the 
urve γ(s) in SU(2,C). The 
urve γ(s) does notdepend of the sign of the frame F (s), the values F (s) and −F (s) yield the same 
urve
γ(s). The initial values for integrating the frame 
an be 
hosen randomly be
ause our
urve γ(s) is on S2 and other initial values are rea
hed by rotating the sphere.The following lemma des
ribes the 
ondition for any 
urve to be 
losed. It is not su�
ientthat the 
urve returns to one point. As well the di�erentials of the 
urve have to 
oin
ideat the 
orresponding point. The 
urve and its di�erentials are 
olle
ted in the movingframe, hen
e we obtain the following 
orollary.Lemma 3.7. A 
urve is 
losed if and only if F (np) = ±1 for a period p as in (3.8) andsome n ∈ N.The main tools for solving the di�erential equation dF (s) = α(s)F (s) will be developedin the next se
tion.3.2. Spe
tral 
urve of elasti
 
urvesIn the previous se
tion we de�ned generalized elasti
 
urves in de�nition 3.1. This de�-nition 
an be seen as a spe
ial 
ase of the modi�ed Korteweg-de Vries (mKdV) equation.In order to explain this 
onne
tion and to derive a spe
tral 
urve for generalized elasti

urves, we now take a 
loser look at mKdV.De�nition 3.8. Let v : R × R → R, (x, t) 7→ v(x, t) be a fun
tion, then the modi�edKorteweg-de Vries (mKdV) equation is de�ned as

vt +
3

2
v2vx + vxxx = 0,24



3.2. Spe
tral 
urve of elasti
 
urveswhere subs
ript t or x means di�erentiation with respe
t to t or x respe
tively. The fa
tor
3
2 
an be repla
ed by any other positive number by shifting the solutions.The solutions of the mKdV equation are related to the solutions of the KdV equation
ut + 6uux + uxxx by the Miura transformation u = vx − v2 [Miu68℄.Goldstein and Petri
h [GP91℄ related the mKdV equation to dynami
s of 
losed 
urves.They showed that dynami
s of 
urves that preserve area and perimeter 
an be des
ribedby the mKdV equation. The fun
tion v in the mKdV equation is here repla
ed by κ(x, t),the 
urvature of the 
urve. We now 
onsider wavelike solutions of the mKdV equation,in this 
ase the solution κ(x, t) must be a periodi
 solution that forms a traveling wave,i.e. a non-stationary solution of the wave equation. The solutions of the wave equationdepend only on x+ at with a being the wave speed. So we 
an set κ(s) = κ(x+ at) andhave aκs = aκx = κt. Inserting this into the mKdV equation one obtains

aκs +
3

2
κ2κs + κsss = 0,and after integration

κss +
1

2
κ3 + aκ+ b = 0.This is just de�nition 3.1 of a generalized elasti
 
urve.We are now going to 
onstru
t a spe
tral 
urve for generalized elasti
 
urves. Thereforewe introdu
e the Lax pair of the mKdV equation and follow the standard pro
edurefor obtaining a spe
tral 
urve, see [DKN85℄. Our main ingredient is the relationship

aκx = κt. Before we 
an pro
eed we need some more general de�nitions.We look for matri
es α, β ∈ su(2), su
h that the Maurer-Cartan equation is the mKdVequation. This means, that if we have some F : R×R → SU(2,C) with (x, t) 7→ F (x, t)solving the di�erential equations
∂F

∂x
= αF,

∂F

∂t
= βFthe 
ompatibility 
ondition

∂2F

∂x∂t
=

∂2F

∂t∂x 25



3. Elasti
 and generalized elasti
 
urvesis equivalent to the mKdV equation (3.8). We 
an also add a spe
tral parameter λ ∈ C∗su
h that the equation is ful�lled for all λ ∈ C∗.These matri
es are given by
α(x, t, λ) =

1

2

(
iv −i
−iλ −iv

)
,whi
h gives for λ = 1 just the matrix (3.10) and

β(x, t, λ) =
1

2

(
i(λv − vxx − 1

2v
3) vx − iλ+ 1

2 iv
2

−vxλ− iλ2 + 1
2 iv

2λ −i(λv − vxx − 1
2v

3)

)
,with λ ∈ C∗. Both matri
es are in sl(2,C) for general λ and in su(2) for λ = 1. Byintegrating we hen
e obtain a frame in SL(2,C) and SU(2,C) respe
tively.The 
ompatibility equation 
an also be written as

[
∂

∂x
− α,

∂

∂t
− β

]
= 0or

αt − βx + [α, β] = 0. (3.11)The fun
tion F 
an be regarded as frame of solutions of the mKdV equation dependingon the variables x, t, λ. The frame of the previous se
tion for elasti
 
urves 
an beobtained for λ = 1 as F (s) with s = x+ at.De�nition 3.9. [DKN85℄ A solution of mKdV is 
alled �nite-gap or algebro-geometri
if there exists a matrix-valued fun
tion W (x, t, λ) su
h that
[
∂

∂x
− α(x, t, λ),W (x, t, λ)

]
= 0, (3.12)

[
∂

∂t
− β(x, t, λ),W (x, t, λ)

]
= 0, (3.13)and W (x, t, λ) depends meromorphi
ally on λ. These solutions are 
alled �nite-gap be-
ause the resulting spe
tral 
urve will have �nite genus. In the theory of the integrablesystem of the sinh-Gordon equation the fun
tion W (x, t, λ) is 
alled polynomial Killing�eld.26



3.2. Spe
tral 
urve of elasti
 
urvesWe now show, that in our setting of wavelike solutions of the mKdV equation it is possibleto �nd su
h a W (x, t, λ) and then de�ne an algebrai
 
urve, the spe
tral 
urve, as theeigenvalues of the matrix W (x, t, λ). With the help of the spe
tral 
urve we 
an �nd ave
tor-valued fun
tion ψ whi
h solves the di�erential equation d
dxψ = αψ.Lemma 3.10. The matrix valued fun
tion

W (x, t, λ) := aα(x, t, λ) − β(x, t, λ)satis�es equations (3.12) and (3.13) for generalized elasti
 
urves.Proof. Re
all the 
ondition aκx = κt for wavelike solutions. Then the Lax pair matri
esobey aαx = αt and aβx = βt. Equation (3.12) is equivalent to Wx = [α,W ] and (3.13)is equivalent to Wt = [β,W ]. The se
ond one is in our 
ase equivalent to the �rst one,sin
e
Wx = (aα− β)x = aαx − βx = αt − βx,

Wt = (aα− β)t = aαt − βt = a(αt − βx),

[α,W ] = [α, aα − β] = −[α, β],

[β,W ] = [β, aα− β] = −a[α, β].So we have to 
he
k the equation
αt − βx + [α, β] = 0and this is the 
ompatibility 
ondition (3.11).Now we set s = x + at and obtain fun
tions κ(s) = κ(x + at) and W (s, λ) by repla
ing

κ(x, t) = κ(s) therein. We introdu
e the spe
tral 
urve of a generalized elasti
 
urve asthe eigenvalues of the matrix W (s, λ) with s = x+ at. Therefore we use the di�erentialequations κss + 1
2κ

3 + aκ+ b = 0 and (κs)
2 + 1

4κ
4 + aκ2 + 2bκ = c.

W (s, λ) =
1

2

(
aiκ− i(λκ − κss − 1

2κ
3) −ia− κs + iλ− iκ2

−iaλ+ κsλ+ iλ2 − 1
2 iκ

2λ −iaκ+ i(λκ− κss − 1
2κ

3)

)

=
1

2

(
−ib− iλκ −ia− κs + iλ− 1

2 iκ
2

−iaλ+ κsλ+ iλ2 − 1
2 iκ

2λ ib+ iλκ

)

27



3. Elasti
 and generalized elasti
 
urvesSin
e the matrix W (s, λ) has tra
e 0, the eigenvalues are ±
√
det(W (s, λ)). So we haveto 
ompute the determinant of W (s, λ).

det(W (s, λ)) =
1

4
(− λ((i(−a + λ− 1

2
κ2)− κs)(i(−a+ λ− 1

2
κ2) + κs))

+ (b+ κλ)2)
=
1

4

(
b2 + κ2λ2 + 2bκ+ λ(a2 − 2aλ+ aκ2 + λ2 − λκ2 +

1

4
κ4 + κ2s)

)

=
1

4

(
b2 + λ3 − 2aλ2 + λa2 + λ(κ2s +

1

4
κ4 + aκ2 + 2bκ)

)

=
1

4
λ3 − 1

2
aλ2 +

(
1

4
c+

1

4
a2
)
λ+

1

4
b2De�nition 3.11. The spe
tral 
urve of wavelike solutions of the mKdV equation is thealgebrai
 
urve

Γ :=

{
(λ, µ) ∈ C2 |µ2 = −1

4
λ3 +

a

2
λ2 −

(
1

4
a2 +

c

4

)
λ− 1

4
b2
}
. (3.14)Lemma 3.12. The ellipti
 
urves Γ and Y , de�ned in (3.14) and (3.6) are isomorphi
to ea
h other and to the ellipti
 
urve of the Weierstrass ℘-fun
tion

P := {(x, y) ∈ C2|y2 = 4x3 − g2x− g3}.The Weierstrass invariants g2, g3 have been de�ned in (3.3),(3.4). Thus the ellipti
 
urvewhi
h de�nes the solution of the di�erential equation is isomorphi
 to the spe
tral 
urve.Proof. We have to show that they have the same j-invariant, then the assertion followsfrom (A.11). Therefore we transform the ellipti
 
urve Γ to Weierstrass normal form.This 
an be done for any polynomial f(x) = a3x
3 + a2x

2 + a1x + a0 with a3 6= 0 bysetting x =
4t− 1

3
a2

a3
. We obtain a new fun
tion f(t) = t3 + pt + q and after a se
ondtransformation t = 3
√
4s we have the polynomial in Weierstrass normal form with f(s) =

4s3 − 3
√
256 · g2 + 16g3 and

g2 := −1

4

3a3a1 − a22
3a23

, g3 :=
1

16

2a32 − 9a3a2a1 + 27a23a0
27a33

. (3.15)28



3.3. Expli
it parametrization of generalized elasti
 
urvesSo the j-invariant of Γ is given by
jΓ = 1728

( 3
√
256 · g2)3

( 3
√
256 · g2)3 − 27(−16g3)2

= 1728
g32

g32 − 27g23
.The j-invariant of Y 
an be also 
al
ulated by using g2 and g3. During the pro
edure ofsolving the di�erential equation for generalized elasti
 
urves we transformed the 
urve

Y to an ellipti
 
urve in Weierstrass normal form with exa
tly the Weierstrass invariants
g2, g3. Thus

jY = 1728
g32

g32 − 27g23
.The j-invariants are the same, so the 
urves are isomorphi
 to ea
h other.Hen
e we 
an always use the 
urve P as the spe
tral 
urve of a generalized elasti
 
urve.3.3. Expli
it parametrization of generalized elasti
 
urvesWe now integrate the frame to obtain a formula for the immersion of the generalizedelasti
 
urve on S2. Therefore we look for solutions of the di�erential equation

d

dx

(
ψ1

ψ2

)
=

1

2

(
iκ −i
−iλ −iκ

)(
ψ1

ψ2

)
.This system of �rst order di�erential equations 
an be transformed to one se
ond orderequation. We have

d

dx
ψ1(x, z) =

1

2
(iκ(x)ψ1(x, z) − iψ2(x, z)) , (3.16)

d

dx
ψ2(x, z) =

1

2
(−iλψ1(x, z) − iκ(x)ψ2(x, z)) , (3.17)with z some variable related to λ, the relationship will be 
lari�ed later. Di�erentiatingthe �rst equation and then inserting into the se
ond equation we obtain an equation ofS
hrödinger type:

− d2

dx2
ψ1 +

(
1

2
iκ′ − 1

4
κ2
)
ψ1 =

1

4
λψ1 (3.18)29



3. Elasti
 and generalized elasti
 
urveswith potential q(x) = 1
2 iκ

′(x) − 1
4κ(x)

2. We now 
al
ulate the potential q(x) expli
itlyand set
℘(w, g2, g3) = −1

8
y2 − 1

12
afor some w ∈ iR.Using the di�erential equation for ℘

(
℘′(w)

)2
= 4℘(w)3 − g2℘(w) − g3we obtain

℘′(w, g2, g3) = ±1

8
i(y3 + 2ay + 2b).Here we 
hoose the "−"-sign and furthermore we obtain

℘′′(w, g2, g3) = 6℘(w, g2, g3)
2 − 1

2
g2

=
1

8
y
(
y3 + 2ay + 2b

)
.So we see

℘′′(w, g2, g3)
℘′(w, g2, g3)

= iyThen we obtain
κ(x) =

−y3 − 2ay − 2b

4℘(x, g2, g3) +
1
2y

2 + 1
3a

+ y,

=
−2i℘′(w, g2, g3)

℘(x, g2, g3)− ℘(w, g2, g3)
− i

℘′′(w, g2, g3)
℘′(w, g2, g3)This version of the 
urvature fun
tion will be used in the following. Thus we 
an alsoparametrize all generalized elasti
 
urves by g2, g3 ∈ R and w ∈ iR. The expli
it re-lationship to the parameters a, b, c will be 
onsidered in detail in lemma 3.14 We now30



3.3. Expli
it parametrization of generalized elasti
 
urvessuppress g2, g3 and obtain
q(x) =

1

2
iκ′(x)− 1

4
κ(x)2

=
1

2
i
2i℘′(w)℘′(x)

(℘(x)− ℘(w))2
− 1

4

( −2i℘′(w)
℘(x)− ℘(w)

− i
℘′′(w)
℘′(w)

)2

=
−℘′(x)℘′(w)

(℘(x)− ℘(w))2
− 1

4

(−4℘′(w)2 − 4℘′′(w)(℘(x) − ℘(w))

(℘(x)− ℘(w))2

)

+
1

4

℘′′(w)2

℘′(w)2

=
−℘′(x)℘′(w) + 4℘(w)3 − g2℘(w) − g3 + (6℘(w)2 − 1

2g2)(℘(x)− ℘(w))

(℘(x)− ℘(w))2

+
1

4

℘′′(w)2

℘′(w)2

=
−℘′(x)℘′(w)− 2℘(w)3 − 1

2g2℘(w)− 1
2g2℘(x)− g3 + 6℘(w)2℘(x)

(℘(x)− ℘(w))2

+
1

4

℘′′(w)2

℘′(w)2On the other hand we have
2℘(x+ w)− 2℘(w) +

1

4

℘′′(w)2

℘′(w)2

=
1

2

(
℘′(x)− ℘′(w)
℘(x)− ℘(w)

)2

− 2℘(x)− 2℘(w) − 2℘(w) +
1

4

℘′′(w)2

℘′(w)2

=
1

(℘(x)− ℘(w))2
(
1
2 (4℘(x)

3 − g2℘(x)− g3) +
1
2(4℘(w)

3 − g2℘(w)− g3)

−℘′(x)℘′(w) − (2℘(x) + 4℘(w))(℘(x) − ℘(w))2
)
+

1

4

℘′′(w)2

℘′(w)2

=
1

(℘(x)− ℘(w))2
(
−℘′(x)℘′(w) + 2℘(x)3 − 1

2g2℘(x) + 2℘(w)3 − 1
2g2℘(w)− g3

−2℘(x)3 + 4℘(x)2℘(w) − 2℘(x)℘(w)2 − 4℘(w)℘(x)2 + 8℘(w)2℘(x)− 4℘(w)3
)

+
1

4

℘′′(w)2

℘′(w)2

=
−℘′(x)℘′(w) − 2℘(w)3 − 1

2g2℘(w)− 1
2g2℘(x)− g3 + 6℘(w)2℘(x)

(℘(x)− ℘(w))2
+

1

4

℘′′(w)2

℘′(w)231



3. Elasti
 and generalized elasti
 
urvesThis yields
q(x) =

1

2
iκ′(x)− 1

4
κ(x)2 = 2℘(x+ w, g2, g3)− 2℘(w, g2, g3) +

1

4

℘′′(w)2

℘′(w)2Su
h potentials are 
alled Lamé potentials and the S
hrödinger equation with this po-tential is 
alled Lamé equation. This equation is well understood and the solution 
an begiven in terms of Weierstrass σ- and ζ-fun
tions, see [FKT92℄ and [WW79, 
h.23℄. TheWeierstrass ellipti
 fun
tions are introdu
ed in detail in appendix A. We obtain for thesolution of (3.18)
ψ1(x, z) = eζ(z)x

σ(z − x− w)

σ(x+w)
(3.19)with z 
hosen as solution of

−℘(z, g2, g3) =
1

4
λ+ 2℘(w, g2, g3)−

1

4

℘′′(w)2

℘′(w)2
(3.20)The other 
omponent of (3.17) is given by

ψ2(x, z) = 2iψ′
1(x, z) + κ(x)ψ1(x, z), (3.21)and depends on ψ1(x, z) by

ψ2(x, z) = (ζ(z)− ζ(z − x− w)− ζ(x+ w) + κ(x))ψ1(x, z)

=

(
1

2

℘′(z − x− w)− ℘′(x+w)

℘(z − x− w)− ℘(x+ w)
+ κ(x)

)
ψ1(x, z).Starting with these two fun
tions we 
an now build our frame. Therefore we set λ = 1with 
orresponding z1, sin
e this 
hoi
e yields the frame di�erential equations for the
urve. One of the solutions is given by (ψ1(x, z1)

ψ2(x, z1)

), so the other one is (−ψ2(x, z1)

ψ1(x, z1)

).This follows from 
onjugating the di�erential equations (3.16) and (3.17). We now de�ne
Ψ(x, z1) :=

(
ψ1(x, z1) −ψ2(x, z1)

ψ2(x, z1) ψ1(x, z1)

)
,and 
al
ulate the parametrization of the 
urve in terms of the fun
tions ψ1(x, z1) and

ψ2(x, z1).32



3.3. Expli
it parametrization of generalized elasti
 
urvesLemma 3.13. The parametrization of a generalized elasti
 
urve γ(x) on S2 is given by
γ1(x) =

1

D(x)
[ ∣∣∣ψ1(x, z1)ψ1(0, z1) + ψ2(0, z)ψ2(x, z)

∣∣∣
2

−
∣∣∣ψ2(x, z1)ψ1(0, z1)− ψ2(0, z1)ψ1(x, z1)

∣∣∣
2 ℄,

γ2(x) = − 1

D(x)
[(|ψ2(x, z1)|2 − |ψ1(x, z1)|2)(ψ2(0, z1)ψ1(0, z1) + ψ1(0, z1)ψ2(0, z1))

+ ψ1(x, z1)ψ2(x, z1)
(
ψ1(0, z1)

2 − ψ2(0, z1)
2
)

+ ψ1(x, z1)ψ2(x, z1)
(
ψ1(0, z1)

2 − ψ2(0, z1)
2
) ℄,

γ3(x) =
i

D(x)
[(|ψ2(x, z1)|2 − |ψ1(x, z1)|2)(ψ2(0, z1)ψ1(0, z1)− ψ1(0, z1)ψ2(0, z1))

+ ψ1(x, z1)ψ2(x, z1)
(
ψ1(0, z1)

2
+ ψ2(0, z1)

2
)

− ψ1(x, z1)ψ2(x, z1)
(
ψ1(0, z1)

2 + ψ2(0, z1)
2
) ℄,with

D(x) :=
(
|ψ1(x, z1)|2 + |ψ2(x, z1)|2

) (
|ψ1(0, z1)|2 + |ψ2(0, z1)|2

)
.Proof. The 
urve is given by γ(x) = F−1(x, z1)σ1F (x, z1) if we set λ = 1 in α(x, t, λ)to obtain (3.10). The 
orresponding value is z1 with ℘(z1, g2, g3) = 1

4 + 2℘(w, g2, g3) −
1
4
℘′′(w)2

℘′(w)2
. Sin
e our frame has to satisfy F (0, z1) = 1 and F (x, z1) ∈ SU(2,C) we set

F (x, z1) =
Ψ(x, z1)Ψ(0, z1)

−1

√
det(Ψ(x, z1)Ψ(0, z1)−1)

.We have
Ψ(0, z1)

−1 =
1

det(Ψ(0, z1))

(
ψ1(0, z1) ψ2(0, z1)
−ψ2(0, z1) ψ1(0, z1)

)and set Ψ(0, z1)
−1 = 1

detBB. Then the frame is given by
F (x, z1) =

Ψ(x, z1)
1

detBB√
det(Ψ(x, z1)

1
detBB)

=
Ψ(x, z1)B√

det(Ψ(x, z1)) detB
. 33



3. Elasti
 and generalized elasti
 
urvesIn detail we obtain
Ψ(x, z1)B =

(
ψ1(x, z1) −ψ2(x, z1)

ψ2(x, z1) ψ1(x, z1)

)(
ψ1(0, z1) ψ2(0, z1)
−ψ2(0, z1) ψ1(0, z1)

)

=

(
ψ1(x, z1)ψ1(0, z1) + ψ2(0, z1)ψ2(x, z1) ψ1(x, z1)ψ2(0, z1)− ψ1(0, z1)ψ2(x, z1)

−ψ2(x, z1)ψ1(0, z1)− ψ2(0, z1)ψ1(x, z1) ψ2(x, z1)ψ2(0, z1) + ψ1(0, z1)ψ1(x, z1)

)and
det(Ψ(x, z1)B) = det

(
ψ1(x, z1) −ψ2(x, z1)

ψ2(x, z1) ψ1(x, z1)

)
· det

(
ψ1(0, z1) ψ2(0, z1)
−ψ2(0, z1) ψ1(0, z1)

)

=
(
|ψ1(x, z1)|2 + |ψ2(x, z1)|2

) (
|ψ1(0, z1)|2 + |ψ2(0, z1)|2

)
.Sin
e F (x, z1) ∈ SU(2,C) has determinant 1 the inverse 
an also be easily 
al
ulated.

F (x, z1)
−1 =

Ψ(x, z1)B
t

√
det(Ψ(x, z1)) detBThe 
urve is now given by γ(x) = F−1(x, z1)σ1F (x, z1) ∈ su(2) with σ1 = (i 0

0 −i

), see(3.9). Thus γ(x) is given by
γ(x) =

i

(|ψ1(x, z1)|2 + |ψ2(x, z1)|2) (|ψ1(0, z1)|2 + |ψ2(0, z1)|2)


∣∣∣ψ1(x, z1)ψ1(0, z1) + ψ2(0, z)ψ2(x, z)
∣∣∣
2

−2
(
ψ2(x, z1)ψ2(0, z1) + ψ1(0, z1)ψ1(x, z1)

)

−
∣∣∣ψ2(x, z1)ψ1(0, z1)− ψ2(0, z1)ψ1(x, z1)

∣∣∣
2

·
(
ψ1(0, z1)ψ2(x, z1)− ψ1(x, z1)ψ2(0, z1)

)

2
(
ψ2(x, z1)ψ2(0, z1) + ψ1(0, z1)ψ1(x, z1)

) ∣∣∣ψ2(x, z1)ψ1(0, z1)− ψ2(0, z1)ψ1(x, z1)
∣∣∣
2

·
(
ψ1(0, z1)ψ2(x, z1)− ψ1(x, z1)ψ2(0, z1)

)
−
∣∣∣ψ1(x, z1)ψ1(0, z1) + ψ2(0, z)ψ2(x, z1)

∣∣∣
2




34



3.4. Closed generalized elasti
 
urvesand in 
omponents in R3 by
γ1(x) =

1

D(x)
[ ∣∣∣ψ1(x, z1)ψ1(0, z1) + ψ2(0, z)ψ2(x, z)

∣∣∣
2

−
∣∣∣ψ2(x, z1)ψ1(0, z1)− ψ2(0, z1)ψ1(x, z1)

∣∣∣
2 ℄,

γ2(x) = − 1

D(x)
[(|ψ2(x, z1)|2 − |ψ1(x, z1)|2)(ψ2(0, z1)ψ1(0, z1) + ψ1(0, z1)ψ2(0, z1))

+ ψ1(x, z1)ψ2(x, z1)
(
ψ1(0, z1)

2 − ψ2(0, z1)
2
)

+ ψ1(x, z1)ψ2(x, z1)
(
ψ1(0, z1)

2 − ψ2(0, z1)
2
) ℄,

γ3(x) =
i

D(x)
[(|ψ2(x, z1)|2 − |ψ1(x, z1)|2)(ψ2(0, z1)ψ1(0, z1)− ψ1(0, z1)ψ2(0, z1))

+ ψ1(x, z1)ψ2(x, z1)
(
ψ1(0, z1)

2
+ ψ2(0, z1)

2
)

− ψ1(x, z1)ψ2(x, z1)
(
ψ1(0, z1)

2 + ψ2(0, z1)
2
) ℄,with

D(x) :=
(
|ψ1(x, z1)|2 + |ψ2(x, z1)|2

) (
|ψ1(0, z1)|2 + |ψ2(0, z1)|2

)
.

3.4. Closed generalized elasti
 
urvesIn the previous se
tion we found a parametrization for generalized elasti
 
urves. We usedthe parameters a, b, c ∈ R and then 
al
ulated a 
urve γ(x), whose 
urvature satis�es thedi�erential equation (3.2)
(κ′(x))2 + 1

4κ(x)
4 + aκ(x)2 + 2bκ(x) = c.The initial value for this di�erential equation was 
hosen as a value on the ellipti
 
urvede�ned by y2 = g(x) = −1

4x
4 − ax2 − 2bx + c. In this pro
edure we also introdu
ednew parameters g2, g3 ∈ R and w ∈ iR. Not every generalized elasti
 
urve is 
losed, butthere exists a large family of 
losed 
urves. Now we try to determine how to 
hoose theparameters a, b, c in order to obtain 
losed 
urves. It turns out that the se
ond set ofparameters g2, g3, w is more suitable to a
hieve this goal.We will use the Weierstrass invariants g2, g3 and the periods of the latti
e p, τ equivalently,sin
e there exists an isomorphism between them, see lemma A.21. Sin
e the ellipti
 
urve35



3. Elasti
 and generalized elasti
 
urveshas only real 
oe�
ients it has a real latti
e and the latti
e is re
tangular or rhombi
,see lemma A.16 and all real latti
es are of this form, see lemma A.22.Lemma 3.14. Let τ and p be the periods of the ellipti
 
urve de�ned in (3.6). Let
A := {(a, b, c) ∈ R3 | ∃y ∈ R : g(y) = 0 and g(−1

8y
2 − 1

12a) < 0} (3.22)and
B1 := {(w, τ, p) ∈ iR× iR× R | 0 < w < τ

2}
B2 := {(w, τ, p) ∈ iR×H × R | τ = p/2 + iλ, λ ∈ R, 0 < w < ℑ(τ)}with H := {z ∈ C | ℑ(z) > 0} the upper half plane and R = R ∪ ∞. B1 des
ribesre
tangular latti
es and B2 rhombi
 latti
es. The value w ∈ iR is de�ned by

℘(w, τ, p) − 1

8

℘′′(w, τ, p)2

℘′(w, τ, p)2
=

1

12
a.and

y = −i℘
′′(w, τ, p)
℘′(w, τ, p)

.Then the map φ : A→ B1 ∪B2 is 2 : 1.Proof. The �rst 
ondition in (3.22) makes sure that the ellipti
 
urve is not empty andthe se
ond 
ondition ensures that there exists a w ∈ iR with ℘(w, g2, g3) = −1
8y

2 − 1
12a.We have the equations (3.3) and (3.4)

g2 = −1

4
c+

1

12
a2,

g3 =
1

24
ac+

1

216
a3 +

1

16
b2,

℘(w, τ, p)− 1

8

℘′′(w, τ, p)2

℘′(w, τ, p)2
=

1

12
aFor given a, b, c we obtain g2, g3 and therefore w. Be
ause of the 
onditions 0 < w < τ

2and 0 < w < ℑ(τ) respe
tively, there exists only one w whi
h ful�lls the equation. Twovalues of b are mapped onto the same value of g3, this explains the 2 : 1 
hara
ter ofthe mapping. For given g2, g3, w we 
an 
al
ulate a, afterwards c and �nally b. Sin
ethere exists a isomorphism (see lemma A.21) between the Weierstrass invariants g2, g336



3.4. Closed generalized elasti
 
urvesand the periods p, τ we 
an repla
e g2 and g3 in the above 
onsiderations by p and τ . Thetwo 
ases arise sin
e real Weierstrass invariants lead to re
tangular or rhombi
 latti
es.Re
tangular latti
es are spanned by one real period and one pure imaginary period.Rhombi
 latti
es have generators of the form p and p/2 + iR, see lemma A.22.In order to obtain the solution of the Lamé equation we also de�ned a parameter z ∈ iRin (3.20) by
−℘(z, g2, g3) =

1

4
+ 2℘(w, g2, g3)−

1

4

℘′′(w)2

℘′(w)2
,Therefore w ∈ iR has to be 
hosen su
h that we obtain pure imaginary z ∈ iR. Thisparameter z will play an important role in the investigation whi
h generalized elasti

urves are 
losed.Lemma 3.15. A generalized elasti
 
urve is 
losed if and only if the parameters (z, τ, p)satisfy the following equation for some q ∈ Q

pζ(z, τ, p)− 2zζ
(p
2
, τ, p

)
= πiq. (3.23)Proof. The 
urve is 
losed if and only if there exists a p ∈ R su
h that F (np) = ±1,see lemma 3.7. This p is the period length of the 
urvature and the integer n 
ounts thenumber of periods of the 
urvature after whi
h the 
urve 
loses up. We therefore 
al
ulatethe period of the fun
tions ψ1(x, z) and ψ2(x, z), de�ned in (3.19), (3.21). Sin
e ψ2(x, z)is just a linear 
ombination of ψ1(x, z) and its derivative, it has the same period as

ψ1(x, z). In the following we suppress the invariants in the Weierstrass ellipti
 fun
tions,as long they are τ and p. We de�ne η1 and η2 by
η1(τ, p) := 2ζ(p2 , τ, p),

η2(τ, p) := 2ζ( τ2 , τ, p).Using the addition theorems of ellipti
 fun
tions
σ(x+ p, τ, p) = −σ(x, τ, p)eη1(τ,p)·

(
x+

p
2

)

,

σ(−x− p, τ, p) = −σ(−x, τ, p)eη1(τ,p)·
(
x+

p
2

)

,

ζ(x+ p, τ, p) = ζ(x, τ, p) + η1, 37



3. Elasti
 and generalized elasti
 
urveswe obtain
ψ1(x+ p, z) = eζ(z,τ,p)(x+p)σ(z − x− p− w, τ, p)

σ(x+ p+ w, τ, p)

= eζ(z,τ,p)(x+p)−σ((x− z + w, τ, p) + p)

σ((x+ w, τ, p) + p)

= eζ(z,τ,p)(x+p)σ(x− z + w, τ, p)e
η1(τ,p)·

(
x−z+w+

p
2

)

−σ(x+ w, τ, p)e
η1(τ,p)·

(
x+w+

p
2

)

= ψ1(x, z)e
pζ(z,τ,p)e−zη1(τ,p)

= epζ(z,τ,p)−zη1(τ,p)ψ1(x, z).We now de�ne
µ(z, τ, p) := epζ(z,τ,p)−2zζ(p/2,τ,p),this des
ribes the quasiperiodi
y of ψ1(x, z) after one period p. We de�ne the monodromyof the frame as

Mλ := F (p, λ).Then there exists a matrix C, 
omposed of the eigenfun
tions ψ1(x, z) and ψ2(x, z), su
hthat
Mλ = C

(
µ 0
0 1

µ

)
C−1.Here µ ∈ S1 is the eigenvalue of (ψ1(p, z)

ψ2(p, z)

) and hen
e 1
µ is the eigenvalue of (−ψ2(p, z)

ψ1(p, z)

).We have
Mn

λ = F (np, λ),thus we obtain that the 
urve is 
losed if the exponent lnµ is a rational multiple of πi, say
πiq. With q = q1

q2
the the 
urve is 
losed after q2 periods, sin
e then F (q2p) = ±1.We now try to obtain a good parametrization for all 
losed generalized elasti
 
urves.Therefore we use the homogeneity relations of the Weierstrass fun
tions

ζ(z̃, τ̃ , p) =
1

p
ζ

(
z̃

p
,
τ̃

p
, 1

)
.One obtains

η1(τ̃ , p) =
1

p
η1

(
τ̃

p
, 1

)
,38



3.4. Closed generalized elasti
 
urvesand thus
lnµ(z̃, τ̃ , p) = ζ

(
z̃

p
,
τ̃

p
, 1

)
− z̃

p
η1

(
τ̃

p
, 1

)
.If we now 
hoose new parameters z = z̃

p , τ = τ̃
p the 
losing 
ondition is given by

lnµ(z, τ, 1) = ζ(z, τ, 1) − zη1(τ, 1) = πiqand hen
e does not depend on p. In the following we thus 
onsider only solutions withperiod 1 and repla
e the parameters τ̃ , z̃ by the parameters τ and z.We now des
ribe how to obtain 
losed generalized elasti
 
urves. First we only 
onsiderre
tangular latti
es.Lemma 3.16. Let τ ∈ iR and �x some q ∈ Q. Then there exists a fun
tion z(τ) withvalues in [0, τ) ⊂ iR su
h that
ζ(z(τ), τ, 1) − 2z(τ)ζ(12 , τ, 1) = πiq.Proof. We use the impli
it fun
tion theorem, therefore we have to 
al
ulate
∂ lnµ(z, τ, 1)

∂z
= −℘(z, τ, 1) − η1(τ, 1).The fun
tion z(τ) exists for all τ if and only if the partial derivative has no roots on theimaginary axis. Therefore we 
al
ulate two spe
ial values of lnµ.

lnµ
(τ
2
, τ, 1

)
= ζ

(τ
2
, τ, 1

)
− 2

τ

2
η1(τ, 1)

= η2 − τη1 = πi,

lnµ

(
τ

2
+

1

2
, τ, 1

)
= ζ

(
τ

2
+

1

2
, τ, 1

)
− 2

τ + 1

2
η1(τ, 1)

= (η1 + η2)− (τ + 1)η1 = η2 − τη1 = πi.The two values at the points τ1 = τ
2 and τ2 = τ+1

2 
oin
ide and the fun
tion lnµ is not
onstant. Furthermore ∂
∂z lnµ is real on the line R+ τ

2R, see lemma A.15, so the derivativehas one root on the line between τ
2 and τ

2 + 1
2 . Due to the symmetry of the Weierstrass

℘-fun
tion there must be another root of the derivative on the line between τ+1
2 and τ+2

2 .The ℘-fun
tion takes every value exa
tly twi
e, sin
e it is an ellipti
 fun
tion of order 2,hen
e there is no root on the imaginary axis. 39



3. Elasti
 and generalized elasti
 
urves
1

τ

tt j j
τ1 τ2

Figure 3.2.: Possible roots of lnµ in a re
tangular latti
e
We now want to show that the set

M := {τ ∈ iR | ∃z ∈ iR : lnµ(z, τ, 1) = πiq}equals iR. Therefore we show that the set M is open and 
losed.By the impli
it fun
tion theorem there exists lo
ally in a neighborhood of a �xed τ afun
tion z(τ) with the property
ζ(z(τ), τ, 1) − z(τ)ζ(1/2, τ, 1) = πiq.So M is open.Now let τn be a sequen
e inM 
onverging against some τ⋆, the sequen
e z(τn) is boundedby the maximum of all τi, sin
e z ∈ [0, τ). Thus there exists a 
onvergent subsequen
e

zm = z(τm) with limit z⋆ and we have z⋆ = z(τ⋆). Sin
e lnµ is 
ontinuous in thearguments τ and z we have in the limit
πiq = lim

m→∞
lnµ(z(τm), zm, 1)

= lnµ
(

lim
m→∞

z(τm), lim
m→∞

τm, 1
)

= lnµ(z⋆, τ⋆, 1)So the the set M is also 
losed, hen
e it must be equal to iR.40



3.5. Deformation of 
losed generalized elasti
 
urvesSin
e the previous lemma 
an be shown for any q ∈ Q we obtain the following 
orollary.Corollary 3.17. For any
(τ, p, q) ∈ iR× R×Qthere exists z ∈ iR, su
h that the generalized elasti
 
urve parametrized by (z, τ, p) is
losed.The 
ase of τ ∈ 1/2 + iR is a little bit more involved. We therefore study deformationsof 
losed generalized elasti
 
urves in the next se
tion.3.5. Deformation of 
losed generalized elasti
 
urves3.5.1. General deformationsWe now study the deformation of 
losed generalized elasti
 
urves. We add an additionalparameter t ∈ R whi
h shall des
ribe �ows in the set of 
losed generalized elasti
 
urves.The 
losing 
ondition is given by

lnµ(z(t), τ(t), p) = pζ(z(t), τ(t), p) − 2z(t)ζ(p2 , τ(t), p) = πiqand shall be ful�lled for all t. The parameter z is on the ellipti
 
urve de�ned by
Y = {(z, y) | y2 = 4z3 − g2(t)z − g3(t) = g(z)}.and is 
hosen to be independent of t.The following deformation is some kind of Whitham deformation and is explained indetail in [GS95℄. We 
hange the elasti
 
urve via isoperiodi
 deformations, i.e. the valueof the integral ∫

γ

d lnµis preserved during the deformation for all 
losed 
y
les γ.Then the fun
tion lnµ satis�es the following di�erential equation:
d lnµ :=

∂ lnµ

∂z
dz =

−z − η1(t)

y
dz (3.24)41



3. Elasti
 and generalized elasti
 
urvesFurthermore we have
∂

∂t
d lnµ =

∂2 lnµ

∂t∂z
dz =: ωThe right hand side is a meromorphi
 di�erential form ω . We demand this di�erentialform to be 
losed in order to 
onserve all periods. Hen
e ω is the derivative of a meromor-phi
 fun
tion q(z). We 
hoose q(z) = q1(z)

y with a polynomial q1(z). This meromorphi
fun
tion 
an only have poles at the bran
h points, whi
h are the roots of g(z), and at
z = ∞. At the point ∞ it has a pole, hen
e the polynomial q1(z) has a degree of at most
1. We 
hoose

q1(z) = (12η21 − g2)(z − c)for some c ∈ R where η1 is de�ned by
η1(t) = 2ζ(12 , τ(t), 1).Then lnµ satis�es the di�erential equation

∂ lnµ

∂t
= (12η21 − g2)

z − c

y
. (3.25)The fa
tor (12η21 − g2) ensures that there are no poles during the �ow.Instead of varying τ we 
an also vary g2 and g3. Hen
e these di�erential equations yielddi�erential equations for g2, g3, η1.All derivatives with respe
t to t are denoted by a dot, ḟ = d

dtf .Lemma 3.18. The deformation de�ned by equations (3.24), (3.25) 
hanges g2, g3, η1 ofa generalized elasti
 
urve as follows:
ġ2 = 24η1g2 − 36g3, (3.26)
ġ3 = −2g22 + 36η1g3, (3.27)
η̇1 = 6η21 −

1

2
g2. (3.28)Proof. The 
ompatibility equation for the deformation is given by

∂2 lnµ

∂t∂z
=
∂2 lnµ

∂z∂t
.42



3.5. Deformation of 
losed generalized elasti
 
urvesFor the following 
al
ulation we need
∂y

∂z
=

1

2

12z2 − g2√
4z3 − g2z − g3

=
12z2 − g2

2yand
∂y

∂t
=

1

2

−ġ2z − ġ3
y

,the parameter z does not depend on t.Thus the 
ompatibility equation is given by
(12η21 − g2)

y2

(
y2 − 1

2(12z
2 − g2)(z − c)

y

)

=
1

y2

(
−η̇1y −

1

2
(−z − η1)

−ġ2z − ġ3
y

)

⇔ (12η21 − g2)

y3

(
4z3 − g2z − g3 − (6z2 − 1

2
g2)(z − c)

)

=
1

y3

(
−η̇1(4z3 − g2 − g3)−

1

2
(−z − η1)(−ġ2z − ġ3)

)
.This equation 
an also be written as

z3(−2(12η21 − g2) + 4η̇1) + z2(6(12η21 − g2)c+
1

2
ġ2)

+z(−1

2
g2(12η

2
1 − g2)− η̇1g2 +

1

2
η1ġ2 +

1

2
ġ3)

+(−g3 −
1

2
g2c)(12η

2
1 − g2)− η̇1g3 +

1

2
ġ3η1 = 0.Comparing the 
oe�
ients of the polynomial with respe
t to z the last equation yieldsthe assertion.The di�erential equations for g2, g3, η1 are rather 
ompli
ated, we are now looking forsimpler di�erential equations. Therefore we rewrite the equations in terms of e1, e2, e3,whi
h are the three roots of the polynomial 4x3 − g2x − g3. These roots satisfy theequations

0 = e1 + e2 + e3,

g2 = −4(e1e2 + e1e3 + e2e3),

g3 = 4e1e2e3. 43



3. Elasti
 and generalized elasti
 
urvesSo we 
an 
onne
t the deformation of the invariants g2 and g3 to a deformation of theroots of a polynomial. The di�erential equations for e1, e2, η1 are given by
ė1 = −4e21 + 8e1e2 + 12e1η1 + 8e22,

ė2 = 8e21 + 8e1e2 + 12η1e2 − 4e22,

η̇1 = 6η21 − 2e1e2 − 2e21 − 2e22.The last step in obtaining simple di�erential equations des
ribing the deformations is theintrodu
tion of the 
oordinates h1, h2, h3. They are de�ned by
h1 = η1 + e1,

h2 = η1 + e2,

h3 = η1 + e3.Using these 
oordinates the di�erential equations of lemma 3.18 are
ḣ1 = 6(h1h2 + h1h3 − h2h3),

ḣ2 = 6(h1h2 + h2h3 − h1h3), (3.29)
ḣ3 = 6(h1h3 + h2h3 − h1h2).These new 
oordinates are 
hosen in a way that the roots of the ve
tor �eld de�ned bythis di�erential equations are very simple. The roots are exa
tly the 
oordinate axes,where two of the 
oordinates h1, h2, h3 are zero.3.5.2. Deformations of rhombi
 latti
esWe now study the spe
ial 
ase where the dis
riminant of the polynomial 4x3 − g2x− g3is smaller than or equal to zero. If the dis
riminant is smaller than zero, one root is realand the other two are 
omplex 
onjugate to ea
h other. This 
orresponds to the 
ase of arhombi
 latti
e generated by the ve
tors p and p/2 + iλ for p, λ ∈ R. If the dis
riminantis zero two or three roots are 
oin
iding and the 
orresponding latti
e is degenerate.Lemma 3.19. Let γ be a generalized elasti
 
urve with 
orresponding ellipti
 spe
tral
urve with Weierstrass invariants g2, g3. Then the deformation of this ellipti
 
urve withthe aid of (3.24) and (3.25) 
an be des
ribed by a system of di�erential equations for44



3.5. Deformation of 
losed generalized elasti
 
urvesve
tors on S2. The 
oordinates for these ve
tors are
h = η1 + e1,

α = ℜ (η1 + e2) ,

β = ℑ (η1 + e2) .Here e1, e2, e3 are the three roots of the polynomial g(x) = 4x3−g2x−g3. When restri
tingthese 
oordinates to the sphere
S2 = {(h, α, β) |h2 + α2 + β2 = 1},they obey the di�erential equations

ḣ = 12αh − 6α2 − 6β2 − 12αh3 − 6hα3 − 6αhβ2 + 6α2h2 − 6β2h2,

α̇ = 6α2 + 6β2 − 12α2h2 − 6α4 − 6α2β2 + 6hα3 − 6hαβ2, (3.30)
β̇ = 12βh − 12βαh2 − 6βα3 − 6αβ3 + 6βα2h− 6β3h.Proof. Let e1 be the real root, then the 
oordinates h1, h2, h3 have the following proper-ties:

h1 ∈ R, h2 = h3.In order to have only real 
oordinates we set
h2 = α+ iβwith α the real part of h2 and β the imaginary part. So we 
an rewrite (3.29) as asystem of di�erential equations in R3. Using the 
oordinates h, α, β we have three real
oordinates h, α, β ∈ R. The di�erential equations in these 
oordinates are given by

ḣ = 12αh − 6(α2 + β2),

α̇ = 6α2 + 6β2, (3.31)
β̇ = 12βh.The right hand side of the di�erential equations de�nes a ve
tor �eld on R3 whi
h ishomogeneous of degree 2. Thus we 
an restri
t the ve
tor �eld to a ve
tor �eld on S2.For any di�erential equation ẋ = f(x) with a ve
tor �eld f(x) on R3 we have the followingve
tor �eld on S2

d

dt

x

|x| =
ẋ

|x| −
x〈ẋ, x〉
|x|3/2 =

f(x)

|x| − x〈f(x), x〉
|x|3/2 . 45



3. Elasti
 and generalized elasti
 
urvesThus we obtain a ve
tor �eld on S2 and the related di�erential equations are
ḣ = 12αh − 6α2 − 6β2 − 12αh3 − 6hα3 − 6αhβ2 + 6α2h2 − 6β2h2,

α̇ = 6α2 + 6β2 − 12α2h2 − 6α4 − 6α2β2 + 6hα3 − 6hαβ2,

β̇ = 12βh − 12βαh2 − 6βα3 − 6αβ3 + 6βα2h− 6β3h.The roots of the ve
tor �eld (3.30) are the points
p1 = (1, 0, 0),

p2 = (−1, 0, 0),

p3 =

(
1√
2
,
1√
2
, 0

)
,

p4 =

(
− 1√

2
,− 1√

2
, 0

)
.Linearizing the ve
tor �eld at these points and applying the Hartman-Grobman theorem[Ama95℄ we obtain asymptoti
 properties at the points p1, p2, p3, p4 for the �ows de�nedby the system of di�erential equations. The linearization is given by the matrix

L :=




∂ḣ

∂h

∂ḣ

∂α

∂ḣ

∂β
∂α̇

∂h

∂α̇

∂α

∂α̇

∂β
∂β̇

∂h

∂β̇

∂α

∂β̇

∂β


At the points p1, p2, p3, p4 we obtain the matri
es

L1 =



0 0 0
0 0 0
0 0 12


 L2 =



0 0 0
0 0 0
0 0 −12




L3 =
1√
2



−3 −9 0
−9 −3 0
0 0 6


 L4 =

1√
2



3 9 0
9 3 0
0 0 −6



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3.5. Deformation of 
losed generalized elasti
 
urvesThe eigenvalues of the linearization and the stability of the dynami
al system at the
riti
al points of the ve
tor �eld areeigenvalues stability type
p3 3

√
2, 3

√
2,−6

√
2 saddle node

p4 −3
√
2,−3

√
2, 6

√
2 saddle nodeAt the point p1 we obtain an unstable node in β-dire
tion and at the point p2 we obtaina stable node in β-dire
tion.Theorem 3.20. Let τ = p/2 + iλ with λ ∈ R and p = 1 be the periods of a rhombi
latti
e L with 
orresponding Weierstrass invariants g2, g3. Then there exists exa
tly one

λ∗, su
h that
∂ lnµ

∂z

(
1

2
,
1

2
+ iλ∗, 1

)
= −℘

(
1

2
,
1

2
+ iλ∗, 1

)
− 2ζ

(
1

2
,
1

2
+ iλ∗, 1

)
= 0.Proof. The value λ∗ is the root of the 
oordinate h. We have to show, that the line h = 0is passed exa
tly on
e during the �ow from λ = 0 to λ = ∞ and that λ̇ 6= 0 during the�ow. First we show λ̇ 6= 0, hen
e the value λ is monotoni
ally de
reasing or in
reasingduring the �ow. Therefore we assume that there exists a λ1 ∈ R \ {0} with dλ
dt (λ1) = 0,i.e. the �ow does not 
hange the 
onformal 
lass at this point. The spe
tral 
urve isde�ned by

P := {(x, y) ∈ C2 | y2 = a(x) = 4x3 − g2x− g3}and is non degenerate for λ1 ∈ R\{0}. Then the �ow 
an 
hange the spe
tral 
urve onlyby in�nitesimally Möbius transformations, see lemma A.27. The possible deformationsare of the form (A.13)
ȧ(x) = µ1a

′ + µ2(xa
′ − deg(a)a), µ1, µ2 ∈ R.For the given polynomial a(x) the possible deformations are

ȧ(x) = µ1(12x
2 − g2) + µ2(12x

3 − g2x− 3(4x3 − g2x− g3))

= µ1(12x
2 − g2) + µ2(2g2x+ 3g3) (3.32)The deformation has to preserve the highest 
oe�
ient, we additionally demand thatthe sum all of three roots of a(x) remains 0, hen
e the se
ond highest 
oe�
ient is alsopreserved. Therefore the deformation ȧ(x) 
an have degree at most 1. Thus we obtain47



3. Elasti
 and generalized elasti
 
urves
µ1 = 0. On the other hand we 
an di�erentiate the polynomial a(x) with respe
t to t.This yields

ȧ(x) = −ġ2x− ġ3. (3.33)The two equations (3.32) and (3.33) must yield the same equation. Thus we obtain byequating 
oe�
ients
ġ2 = −2µ2g2

ġ3 = −3µ2g3Hen
e the ve
tors (
ġ2
ġ3

) and (2g2
3g3

)are proportional to ea
h other. Inserting the deformation equations of g2 and g3 givenby (3.26) and (3.27) yields
0 = 3g3ġ2 − 2g2ġ3

= 3g3(24η1g2 − 36g3)− 2g2(−2g22 + 36η1g3)

= 4g32 − 108g23

= 4∆(g2, g3)with ∆(g2, g3) the dis
riminant of the polynomial 4x3 − g2x− g3. But the dis
riminant
annot be zero for λ1 ∈ R \ {0}, sin
e both periods are �nite. Thus there exists no in-�nitesimal Möbius transformation of the spe
tral 
urve �xing the 
onformal 
lass. Hen
ewe obtain λ̇ 6= 0.Now we 
al
ulate two spe
ial values of (h, a, b) for λ. Using lemma A.23 we obtain for
λ = ∞ and p = 1:

e1 =
2

3
π2,

e2 = e3 = −1

3
π2,

η1 =
1

3
π2,and hen
e

h = π2,

α = 0,

β = 0.48



3.5. Deformation of 
losed generalized elasti
 
urvesNormalizing to length 1 this is the north pole of S2.In the limit λ→ 0 we use the transformation of τ = 1/2+ iλ in the fundamental domainof the modular group de�ned in equation (A.12). Thus the latti
e generated by τ, 1 isequivalent to the latti
e generated by −1 and 1
4λ i− 1

2 . We 
an also 
al
ulate the valuesof (h, a, b), the roots ei are given by
e1 = −2

3
π2,

e2 = e3 =
1

3
π2,

η1 = −1

3
π2,and hen
e

h = −π2,
α = 0,

β = 0.Normalizing to length 1 this is the south pole of S2. Thus the equator h = 0 is passedat least on
e during the �ow.We now look at the integral 
urve starting at the north pole of the sphere. The value of
λ is in
reasing or de
reasing during the �ow, we assume the time to be 
hosen in a way,su
h that the value of λ is de
reasing. Then the integral 
urve starts at the north poleand as long as it does not �ows into the points p3, p4 it will �ow to the south pole of thesphere. Hen
e we obtain a global solution of the di�erential equation 3.30 with initialvalue 
hosen as north pole.We now take a 
loser look at the di�erential equation at the equator h = 0. Insertinginto (3.30) we obtain

ḣ = −6(α2 + β2),

α̇ = 6(α2 + β2),

β̇ = 0.The derivative in h-dire
tion is always smaller than zero. Thus the southern hemisphereis a positively invariant set under the �ow and there exists only one point in this �owwith h = 0. This point is de�ned as λ∗. 49



3. Elasti
 and generalized elasti
 
urvesWe still have to ex
lude the 
ase where the integral 
urve �ows into the points p3, p4.There all of the roots are zero and both of the periods of the latti
e are in�nity. Thevalue of η1 
annot be
ome zero, be
ause otherwise all of the 
oordinates are zero, but weare on S2. We now show, that if the integral 
urve �ows into one of the points we have
η1 → 0. Thus the integral 
urve 
annot �ow into the points p3, p4.Let e2 and e3 be the two 
omplex 
onjugate roots. We have

∫

γ

d lnµ = 0for some 
y
le around e2 and e3, sin
e the fun
tion d lnµ is antisymmetri
 to the realaxis. All of the the integrals of d lnµ around a 
y
le are pure imaginary, hen
e thefun
tion ℜ(d lnµ) is harmoni
. We de�ned d lnµ by
d lnµ =

−z − η1(t)

y
dz.The only possible singularity is at z = ∞. In order to apply the maximum prin
iple ofharmoni
 fun
tions, 
hoose a �xed 
ir
le γ∞ around ∞. Then the maximum of d lnµ isfound at the 
ir
le γ∞. Now 
hoose a sequen
e of spe
tral 
urves su
h that the limits are

e1, e2, e3 → 0 and η1 → η∗1 for some η∗1 6= 0. In this limit the denominator of d lnµ tendsto zero at z = 0, but the enumerator not. Thus there arises a pole at z = 0, thereforethe values of d lnµ in
rease unbounded in the neighborhood of 0. But the maximumprin
iple states that the maximum is at the 
ir
le γ∞, this is a 
ontradi
tion. Thus thevalue η1 also tends to zero. But not all three parameters of the di�erential equation 
anbe zero, be
ause they de�ne a di�erential equation on S2. Thus the integral 
urve doesnot �ow into the points p3, p4.Using mathemati
a we obtain numeri
ally as solution of the equation
−℘

(
1

2
,
1

2
+ iλ∗, 1

)
− 2ζ

(
1

2
,
1

2
+ iλ∗, 1

)
= 0the value

λ∗ = 0.3547298925224312.50



3.5. Deformation of 
losed generalized elasti
 
urvesWe have for all τ = p/2 + iλ

℘(p/2, τ, p) = ℘(iλ, τ, p).Sin
e η1 is real, the fun
tion
d lnµ = −℘(z, τ, p) − 2η1has two roots whi
h are either both on the imaginary axis or both on the real axis. Thevalue λ∗ is the value where d lnµ has a double root on the imaginary axis. For λ > λ∗there are two roots on the imaginary axis and for λ < λ∗ both roots are on the real axis.Due to the asymptoti
s
lim
z→0

lnµ(z, τ, p) = ∞,

lim
z→2λ

lnµ(z, τ, p) = −∞
(3.34)the fun
tion lnµ has a minimum and a maximum on the imaginary axis for λ > λ∗. For

λ < λ∗ the derivative is nonzero and smaller than zero, hen
e the fun
tion is monotoni-
ally de
reasing.With the help of this dynami
al system we are now able to prove an assertion similar to
orollary 3.17 for rhombi
 latti
es.Theorem 3.21. Let τ = 1/2 + iλ with λ ∈ R and p = 1 be the periods of a rhombi
latti
e L with 
orresponding Weierstrass invariants g2, g3.Let λ∗ be de�ned by
−℘

(
1

2
,
1

2
+ iλ∗, 1

)
− 2ζ

(
1

2
,
1

2
+ iλ∗, 1

)
= 0.Then one of the following two 
ases o

urs:(i) λ ≤ λ∗For every q ∈ Q there exists exa
tly one z ∈ iR with

lnµ(z) = πiq. 51



3. Elasti
 and generalized elasti
 
urves(ii) λ > λ∗Let z1 and z2 be the two pure imaginary roots of d lnµ with z1 < z2. De�ne theinterval
Q := (lnµ(z1), ln µ(z2)).For q ∈ Q there are three possible 
ases: The equation

lnµ(z) = πiqhas 



three solutions q ∈ Qtwo solutions q ∈ {λ1, λ2}one solution q /∈ Qfor z ∈ iR. Here λ1 = lnµ(z1) for the lo
al minimum λ1 of lnµ and λ2 = lnµ(z2)for the lo
al maximum of lnµ.Proof. For λ = λ∗ the derivative of lnµ with respe
t to z is negative and for λ <
λ∗ stri
tly negative. Hen
e the fun
tion lnµ is stri
tly de
reasing and be
ause of theasymptoti
s (3.34) every value is taken on
e and (i) is proven.Now let λ > λ∗. Then lnµ has a lo
al minimum and a lo
al maximum. Let λ1 be thelo
al minimum and λ2 the lo
al maximum with λ1, λ2 ∈ iR. Due to the asymptoti
s wehave λ1 < λ2. Thus for every q in the interval Q there are exa
tly three z ∈ iR with
lnµ(z) = πiq, namely

z1 < λ1 < z2 < λ2 < z3.For q ∈ ∂Q there are two solutions z1 < z2 with z1 = λ1 or z2 = λ2 and for q /∈ Q onlyone solution of lnµ(z) = πiq exists. For a better understanding of this proof see also�gure 3.3.In the limit τ = i∞ we 
an use lemma A.23. We obtain
℘(z, i∞, 1) = −π

2

3
+ π2 sin−2(πz)52
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urves

1 2 3 4 5 6

-5
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15

Figure 3.3.: lnµ(z) for τ = 1/2 + 3iand
ζ(z, i∞, 1) =

π2

3
z + π cot(πz).The root of

−℘(z, i∞, 1) − 2ζ(
1

2
, i∞, 1) = −π2 sin−2(πz)is z = i∞. The value there is

lnµ(i∞, i∞, 1) = πi.For large τ we 
an also 
al
ulate
lnµ(z1 + τ/2, τ, 1) = lnµ(z1, τ, 1) + η2 − τη1 = lnµ(z1) + 2πiThus the interval Q is always a subset of the interval (πi, 3πi). 53



3. Elasti
 and generalized elasti
 
urves3.6. Constant 
urvature solutions3.6.1. Frame of 
onstant solutions and 
losing 
onditionIn order to get a better understanding of the obje
ts of the previous se
tion we 
onsidernow solutions with 
onstant 
urvature. For a 
onstant solution the parameters a, b, cmust be 
hosen su
h that the polynomial g(x) = −1
4x

4 − ax2 − 2bx + c has a multipleroot. This is equivalent to a vanishing dis
riminant of the polynomial g(x). Sin
e theellipti
 
urve de�ning the solutions is isomorphi
 to the spe
tral 
urve this is equivalentto ∆ = g32 − 27g23 = 0 for the Weierstrass invariants g2, g3. Then we 
an 
hoose themultiple root as initial value of the di�erential equation (3.2) and the 
urvature stays
onstant κ(x) ≡ κ∗. If we have a multiple root the ellipti
 
urve Y de�ned in (3.6)
onsists of at least one 
onstant part (the point (κ∗, 0)) where two roots of the de�ningpolynomial 
oin
ide.Lemma 3.22. Let κ ≡ κ∗ be the 
onstant 
urvature of a 
urve γ(x) on S2. Then the
urve 
an be parametrized by
γ(x) =




κ∗ 2+2 cos(ν1x)2−1
1+κ∗ 2

− 2κ∗

1+κ∗ 2 sin(ν1x)
2

1
ν1

cos(ν1x) sin(ν1x)


with ν1 = 1

2

√
1 + κ∗ 2.Proof. For 
onstant 
urvature the di�erential equation dF (x, λ) = αF (x, λ) with

α =
1

2

(
iκ∗ −i
−iλ −iκ∗

)and initial value F (0, λ) = 1 
an be solved expli
itly. Thus the 
urve with 
onstant
urvature 
an be 
al
ulated as γ(x) = F−1(x, 1)σ1F (x, 1) with σ1 = (i 0
0 −i

).In detail one obtains
F (x, λ) =

(
cos νλx+ iλκ∗

2νλ
sin νλx − i

2νλ
sin νλx

− i
2νλ

sin νλx cos νλx− iλκ∗

2νλ
sin νλx

)
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3.6. Constant 
urvature solutionswith νλ = 1
2

√
λ+ κ∗ 2. The 
omponents of the 
urve γ(x) in R3 are obtained by setting

λ = 1 and ν1 = 1
2

√
1 + κ∗ 2 to obtain (3.10) and thus are given by

γ1(x) =
κ∗ 2 + 2cos(ν1x)

2 − 1

1 + κ∗ 2
,

γ2(x) = − 2κ∗

1 + κ∗ 2 sin(ν1x)
2,

γ3(x) =
1

ν1
cos(ν1x) sin(ν1x).

Sin
e F ( 2π√
1+κ∗ 2

, 1) = −1 and γ(0) = γ( 2π√
1+κ∗ 2

) = (1, 0, 0) all generalized elasti
 
urveswith 
onstant 
urvature are 
losed and the period of the frame is given by
p =

2π√
1 + κ∗ 2

. (3.35)3.6.2. Deformations of 
onstant solutionsIn se
tion 3.5 we 
onsidered isoperiodi
 deformations des
ribed by di�erential equationsin e1, e2, e3, the roots of the polynomial 4x3 − g2x− g3. In the 
ase of 
onstant solutionswe have multiple roots, i.e. some of the ei 
oin
ide. This 
an only happen if the rootsare all real.We 
al
ulate the spe
tral 
urve in this spe
ial 
ase by using the matrixW (s, λ) as de�nedin lemma 3.10. Sin
e the 
urvature is 
onstant we obtain
W (s, λ) = aα(s, λ) − β(s, λ)

=
a

2

(
iκ∗ −i
−iλ −iκ∗

)
−
(
i
(
λκ∗ − 1

2 κ
∗ 3
)

−iλ+ 1
2 i κ

∗ 2

−iλ2 + 1
2 iλ κ

∗ 2 −i
(
λκ∗ − 1

2 κ
∗ 3
)
)For the spe
tral 
urve we have to 
al
ulate

det(W (s, λ)) = det(α) det(a− α−1β)

= det(α)
(
a2 − tr(α−1β) + det(α−1β)

)
. 55



3. Elasti
 and generalized elasti
 
urvesThe determinant of α is given by
det(α) =

1

4

(
λ+ κ∗ 2

)
.For the determinant of β one obtains

det(β) =
1

4

(
λ+ κ∗ 2

)(
λ− 1

2
κ∗ 2

)2The tra
e of α−1β 
an be 
al
ulated totr(α−1β) =
2

det(α)

(
−i κ∗ 2

(
λ− 1

2
κ∗ 2
)
− iλ

(
λ− 1

2
κ∗ 2

))

= 2

(
λ− 1

2
κ∗ 2

)Putting together the above we obtain for the determinant of W (s, λ) the formula
det(W (s, λ)) =

1

4

(
λ+ κ∗ 2

)(
a2 − 2

(
λ− 1

2
κ∗ 2

)
+

(
λ− 1

2
κ∗ 2

)2
)

=
1

4

(
λ+ κ∗ 2

)((
λ− 1

2
κ∗ 2

)
− a

)2Thus the spe
tral 
urve 
ontains a double point and hen
e is singular. It is of the form
y2 = −1

4

(
λ+ κ∗ 2

)
(λ− λn)

2where the double point is lo
ated at λn. The double point has to be 
hosen in a way,su
h that the 
losing 
ondition is still ful�lled. Therefore we 
al
ulate the eigenvalues
µ1,2 of F (p, λ). These are solutions of the equation

µ2 − 2 cos(νλp)µ+ 1 = 0and thus
µ1,2 = cos(νλp)± i sin(νλp) = exp(±iνλp).The fun
tion lnµ1 depends only on κ∗ and λ and is given as

lnµ1(κ
∗, λ) = πi

√
λ+ κ∗ 2

√
1 + κ∗ 2

.56



3.6. Constant 
urvature solutionsThe frame is 
losed, i.e. F (p) = ±1, if lnµ1 is a integer multiple of πi, sin
e then lnµ2is also an integer multiple of πi. This 
ondition 
an be written as
√
λ+ κ∗ 2√
1 + κ∗ 2

∈ N.Thus for given κ∗ we obtain a sequen
e of possible double points λn, su
h that the 
losing
ondition for the frame is ful�lled. This sequen
e 
an be 
al
ulated as
λn = (1 + κ∗ 2)n2 − κ∗ 2 , n ∈ Z.Thus the singular spe
tral 
urve is de�ned by the equation
y2 = −1

4
(λ+ κ∗ 2)(λ− λn)

2.The derivative of lnµ is
d lnµ =

πi

2
√
1 + κ∗ 2

λ− λn
y

dλ.In the previous se
tion we de�ned lnµ by
lnµ(z, τ, p) = pζ(z, τ, p)− 2zζ(

p

2
, τ, p)with spe
ial value

lnµ
(τ
2
, τ, 1

)
= πi.The double point is situated at the imaginary half period, so in order to have the sameproperty in this 
ase we repla
e lnµ′ = lnµ

m .
lnµ′ =

πi

m

√
λ+ κ∗ 2

1 + κ∗ 2Sin
e m ∈ Z 
an be 
hosen arbitrary, there exists for all κ∗ a q ∈ Q with
lnµ′(κ∗) = πiq.The denominator of q is given by m, the numerator of q 
ounts the number of periods.The deformation des
ribed in 3.5.1 
an also be applied to this spe
ial 
ase. Therefore we
al
ulate g2(λn, κ∗), g3(λn, κ∗), and η1(λn, κ∗). These values are then the initial valuesfor the deformation des
ribed in lemma 3.18. We transform the polynomial

f(λ) = −1

4
(λ+ κ∗ 2)(λ− λn)

2 57



3. Elasti
 and generalized elasti
 
urvesto Weierstrass normal form. This transformation has already been 
arried out in lemma3.12, the Weierstrass invariants 
an be 
al
ulated with equation (3.15) as
g2(λn, κ

∗) =
1

12

(
λn + κ∗ 2

)2

=
1

12

(
1 + κ∗ 2

)2
n4

g3(λn, κ
∗) =

1

216

(
λn + κ∗ 2

)3

=
1

216

(
1 + κ∗ 2

)3
n6Thus there exists a fun
tion

a(λn, κ
∗) :=

1

12
(1 + κ∗ 2)n2with

g2(λn, κ
∗) = 12a(λn, κ

∗)2, g3(λn, κ
∗) = 8a(λn, κ

∗)3,and we are in the se
ond 
ase of lemma A.23 for a degenerate latti
e. Additionally weobtain
η1(λn, κ

∗) =
nπ

6

√
1 + κ∗ 2and the roots are given by e2(λn, κ

∗) = e3(λn, κ
∗) = −a(λn, κ∗) and e1(λn, κ

∗) =
2a(λn, κ

∗). Hen
e we have initial values for the di�erential equations
ġ2 = 24η1g2 − 36g3,

ġ3 = −2g22 + 36η1g3,

η̇1 = 6η21 −
1

2
g2.We now take a 
loser look at the di�erential equations (3.31)

ḣ = 12αh − 6(α2 + β2),

α̇ = 6α2 + 6β2,

β̇ = 12βh58



3.6. Constant 
urvature solutionswith
h = η1 + e1,

α = ℜ (η1 + e2) ,

β = ℑ (η1 + e2) .In the 
ase of multiple roots the initial value of β is 0, sin
e all roots are real. Wenow linearize the di�erential equations in order to apply the Hartman-Grobman theorem[Ama95℄ and obtain the matrix


12α 12h − 12α −12β
0 12α 12β

12β 0 12h


At a point (h0, α0, 0) with h0 > 0 this matrix has a non vanishing eigenvalue 12h0. Hen
ethere exists at least an one-dimensional unstable manifold in the neighborhood of thepoint (h0, α0, 0). Moving along this unstable manifold the solution of the di�erentialequation moves away from β = 0. For h0 < 0 we reverse the time and obtain the sameresult.Then the three roots e1, e2, e3 are all di�erent, sin
e e1 is real, e3 = e2 and ℑ(e2) 6= 0.Thus we 
an apply a deformation to the 
ase of 
onstant 
urvature solutions and obtainsolutions without 
onstant 
urvature.
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4. Hopf ToriHopf tori are spe
ial surfa
es in S3. They stem from 
urves on S2 whi
h are lifted throughthe Hopf mapping to S3. These are surfa
es, su
h that everything depends more or lesson the 
urve on S2. If the 
urve is 
losed on S2 we obtain Hopf tori, otherwise we obtainHopf 
ylinders.4.1. Hopf �bration and Hopf toriThe following de�nition is due to Hopf [Hop31℄, who de�ned this spe
ial mapping from
S3 → S2.De�nition 4.1. The mapping

h : S3 → S2,

(w, x, y, z) 7→ (2(wy + xz), 2(xy − wz), w2 + x2 − y2 − z2)is 
alled Hopf mapping. Other equivalent de�nitions are
h : C2 ⊃ S3 → S2,

(z1, z2) 7→ (2z1z2, |z1|2 − |z2|2).and
h : H ⊃ S3 → S2,

x 7→ xix.Here we used the division ring of the quaternions H spanned by {1, i, j, k}, the quaternionsare introdu
ed in detail in appendix B. 61



4. Hopf ToriThe �rst de�nition is the original de�nition of Hopf [Hop31℄, the most useful part for thefollowing is the de�nition via quaternions. This de�nition 
an be regarded as a rotationof the ve
tor H ∋ i = (1, 0, 0) around the axis (x2, x3, x4) of angle 2 arccos(x1). Therelationship between quaternions and rotations in R3 is explained in appendix B.We now de�ne a spe
ial 
ir
le in S3 ⊂ H as
eiφ = cos(φ) + i sin(φ) ∈ H.This 
ir
le lies in the (1, i, 0, 0)-plane in H. We now 
ome to the main properties of theHopf mapping. Most importantly we obtain, that all points on spe
ial 
ir
les are mappedto the same point.Lemma 4.2. The Hopf mapping h has the following properties:

• h(S3) = S2

• h(eiφx) = h(x) for all φ ∈ R, x ∈ S3Proof. The �rst part follows dire
tly by using the quaternioni
 de�nition. Let x ∈ S3,obviously h(x) ∈ R3 and it holds
‖h(x)‖ = ‖xix‖ = ‖i‖‖xx‖ = ‖xx‖ = 1sin
e ‖x‖ = 1. So the image of S3 under the Hopf mapping is equal to S2.Let x = (x1, x2, x3, x4) ∈ S3 be a quaternion, then

eiφx = (cos(φ)x1−sin(φ)x2, cos(φ)x2+sin(φ)x1, cos(φ)x3−sin(φ)x4, cos(φ)x4+sin(φ)x3).Inserting this into the �rst de�nition one obtains the se
ond part of the 
laim.Given one point on S2 there is a whole S1-family of points on S3 being the preimageof this point. These points are des
ribed by 
ir
les on S3 and have some interestingproperties.Lemma 4.3. [Lyo03℄ The preimage h−1(S2) 
onsists of 
ir
les in S3. All these 
ir
lesare linked and when stereographi
ly proje
ted to R3 one of these 
ir
les is mapped to aline L and the other 
ir
les are mapped to 
ir
les Ci in R3. The line L passes throughall 
ir
les Ci. Any pair of 
ir
les Ci, Cj is linked.62



4.1. Hopf �bration and Hopf toriProof. The stereographi
 proje
tion is given by the mapping
s : S3 → R3

(w, x, y, z) 7→
(

x

1− w
,

y

1− w
,

z

1−w

)Sin
e the stereographi
 proje
tion is 
onformal, all 
ir
les on S3 are mapped onto 
ir
lesin R3, ex
ept the 
ir
le passing through (1, 0, 0, 0) whi
h is mapped onto a straight line.To 
larify the meaning of the lemma we show that s◦h−1(1, 0, 0) is a line, s◦h−1(−1, 0, 0)is the unit 
ir
le in the x2x3-plane and for every other point R ∈ S2 one obtains a 
ir
lewhi
h interse
ts the x2x3-plane in two points, one inside and one outside the unit 
ir
le.Hen
e every 
ir
le is linked with the unit 
ir
le in the x2x3-plane.For P = (1, 0, 0) one 
al
ulates
h−1(P ) = {ieit | 0 ≤ t ≤ 2π}

= {(− sin(t), cos(t), 0, 0) | 0 ≤ t ≤ 2π}and so s ◦ h−1(P ) =
{(

cos(t)
1+sin(t) , 0, 0

)
| 0 ≤ t ≤ 2π

} whi
h is equal to the x1-axis. For
Q = (−1, 0, 0) one obtains

h−1(Q) = {(− sin(t), cos(t), 0, 0) | 0 ≤ t ≤ 2π},
s ◦ h−1(Q) = {(0, sin(t), cos(t)) | 0 ≤ t ≤ 2π} .This is exa
tly the unit 
ir
le in the x2x3-plane. For an arbitrary point R = (r1, r2, r3) ∈

S2 with −1 < r1 < 1 one 
al
ulates
h−1(R) =

{ 1√
2(1 + r1)

(
− (1 + r1) sin(t), (1 + r1) cos(t),

r2 cos(t) + r3 sin(t), r2 cos(t)− r3 sin(t)
) ∣∣∣ 0 ≤ t ≤ 2π

}
.The 
ir
le s◦h−1(R) interse
ts the x2x3-plane for x1 = 0, so we obtain (1+r1) cos(t) = 0and sin
e r1 6= −1 it holds t1 = π/2 or t2 = 3π/2 and the interse
tion points are

A =

(
0,

r3√
2(1 + r1) + (1 + r1)

,
−r2√

2(1 + r1) + (1 + r1)

)
,

B =

(
0,

−r3√
2(1 + r1)− (1 + r1)

,
r2√

2(1 + r1)− (1 + r1)

)
.
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4. Hopf ToriCal
ulating the eu
lidean norms of A and B one obtains ‖A‖ < 1 and ‖B‖ > 1, so A isinside the unit 
ir
le of the x2x3-plane and B outside. In this �rst step we have shownthat all 
ir
les are 
onne
ted with the unit 
ir
le in the x2x3-plane. The next step is toshow that the x1-axis goes through every 
ir
le. For the unit 
ir
le in the x2x3-plane thisis trivial, for every other 
ir
le we show that the origin is on a line between the points Aand B and so the x1-axis passes through the 
ir
le. Consider
B −A =

1√
1 + r1

(
0,

−2
√
2r3

1− r1
,
2
√
2r2

1− r1

)
.We have A + t∗(B − A) = 0 for t∗ = 1−r1

4+2
√

2(1+r1)
and sin
e 0 < t∗ < 1 the origin isbetween A and B. So the x1-axis goes through every 
ir
le.We still have to show that any two �ber 
ir
les C and D are linked. Therefore we de�nea 
ontinuous one-to-one map ψ : R3 → R3 whi
h maps C to the unit 
ir
le in the x2x3-plane and D to some other 
ir
le E. Sin
e E and the unit 
ir
le are linked, so are Cand D, this follows from the one-to-one property of ψ. In order to de�ne the map ψ weset r = s−1(P ) for some point P on C and 
onsider f : R4 → R4 with f(x) = kr−1x,

k being the element of the quaternioni
 basis. Then ψ = s ◦ f ◦ s−1 has the desiredproperties.The next de�nition is fundamental for everything that follows. It des
ribes how we 
anlift a 
urve on S2 to a 
ylinder or torus in S3 via the Hopf mapping.De�nition 4.4. Let γ : [a, b] → S2 be a 
urve on S2. Choose a lifted 
urve η on S3 with
h ◦ η = γ, then the immersion

f : [a, b]× S1 → S3,

(t, φ) 7→ eiφη(t)is 
alled Hopf 
ylinder of the 
urve γ. If γ is 
losed f(t, φ) is a Hopf torus.An S1-a
tion on S3 is given by multipli
ation by eiφ for φ ∈ R. The Hopf tori are thosetori whi
h are invariant under this S1-a
tion.64



4.2. Conformal Parametrizations and 
onformal 
lass of Hopf tori4.2. Conformal Parametrizations and 
onformal 
lass ofHopf toriWe now try to use de�nition 4.4 to obtain a good parametrization of Hopf tori. Thereforelet F (s) ∈ SU(2,C) be the frame of some 
urve γ(s) on S2 parametrized by ar
 length.The 
urve 
an then be 
al
ulated as
γ(s) = F−1(s)σ1F (s).We now regard SU(2,C) as subset of C2 ∼= H via

SU(2,C) ∋
(
α −β
β α

)
=

(
α1 + iα2 β1 − iβ2
β1 + iβ2 α1 − iα2

)as des
ribed in (B.1). Then we obtain for the frame of the 
urve F (s)−1 = F (s). Fur-thermore σ1 ∈ SU(2,C) 
orresponds to i ∈ H. We obtain
γ(s) = F−1(s)σ1F (s) = F (s)iF (s).Thus we 
an de�ne the lift of the 
urve γ(s). In the de�nition 4.4 one possible de�nitionof the Hopf mapping was given by

h : H ⊃ S3 → S2,

x 7→ xix.We repla
e x by F (s) herein and obtain that a parametrization of a Hopf torus is givenby
z(t, φ) = eiφF (t).In order to get a better parametrization we seek for a 
onformal one. Then it is easy to
al
ulate the �rst and se
ond fundamental form and the mean 
urvature of the surfa
e in

S3. We need to 
hange the parametrization of the 
ir
le eiφ, the following lemma showshow. This parametrization was given by Musso [Mus09℄.Lemma 4.5. Let F (s) be the frame of a 
urve on S2. A 
onformal parametrization of aHopf 
ylinder is given by
f : R× R → S3 ∼= SU(2,C),

(s, θ) 7→
(
e

i
2
(θ−

∫ s

0
κ(t) dt) 0

0 e−
i
2
(θ−

∫ s

0
κ(t) dt)

)
F (s). (4.1)65



4. Hopf ToriThe �rst and se
ond fundamental form are
g(s) =

(
1/4 0
0 1/4

)
, b(s) =

(
1/2κ(s) −1/8
−1/8 0

)
.Proof. The derivatives of f are :

fs :=
∂f

∂s
=

(
− i

2κe
i
2
(θ−

∫ s

0
κ(t) dt) 0

0 i
2e

− i
2
(θ−

∫ s

0
κ(t) dt)

)
F (s)

+

(
e

i
2
(θ−

∫ s

0
κ(t) dt) 0

0 e−
i
2
(θ−

∫ s

0
κ(t) dt)

)
1

2

(
iκ i
i −iκ

)
F (s)

=
1

2

(
0 iei(θ−

∫ s

0
κ(t) dt)

ie−i(θ−
∫ s

0
κ(t) dt) 0

)
f(s, θ),

fθ :=
∂f

∂θ
=

1

2

(
i 0
0 −i

)
· f(s, θ),

fss =

(
−1

4
1
2κe

i(θ−
∫ s

0
κ(t) dt)

−1
2κe

−i(θ−
∫ s

0
κ(t) dt) −1

4

)
f(s, θ),

fsθ =

(
0 −1

4e
i(θ−

∫ s

0
κ(t) dt)

1
4e

−i(θ−
∫ s

0
κ(t) dt) 0

)
f(s, θ),

fθθ = −1

4
f(s, θ).The inner produ
t for two matri
es A,B ∈ SU(2,C) is de�ned by 〈A,B〉 = tr(ABt

) andsin
e f(s, θ) ∈ SU(2,C) we have f(s, θ)−1 = f(s, θ)
t. Then we obtain

〈fs, fs〉 =
1

4
,

〈fs, fθ〉 = 0,

〈fθ, fθ〉 =
1

4
.So the parametrization is 
onformal and the �rst fundamental form is 
onstant

g(s) =

(
1
4 0
0 1

4

)
. (4.2)66



4.2. Conformal Parametrizations and 
onformal 
lass of Hopf toriA frame of the immersion is given by {f(s, θ), fs(s, θ), fθ(s, θ)}. In order to 
al
ulate these
ond fundamental form one needs an extended frame, so we additionally need a normal
N . In the SU(2,C)-setting we have

f = FG−1for some matri
es F,G. The derivatives of f are then given by
fs = Fσ1G

−1

fθ = Fσ2G
−1The normal is thus given by

N = Fσ3G
−1and 
an be 
al
ulated as N = f [f−1fs, f

−1fθ] = fsf
−1fθ−fθf−1fs. It is given in matrixform as

N =
1

2

(
0 ei(θ−

∫ s

0
κ(t) dt)

−e−i(θ−
∫ s

0
κ(t) dt) 0

)
f(s, θ).The inner produ
ts needed for the se
ond fundamental form are

〈N, fss〉 =
1

2
κ(s),

〈N, fsθ〉 = −1

8
,

〈N, fθθ〉 = 0.Hen
e the se
ond fundamental form is given by
b(s) =

(
1/2κ(s) −1/8
−1/8 0

)
.

Now we 
an 
al
ulate the mean 
urvature H(s, θ) and the Hopf di�erential Q(s, θ) of theimmersion f(s, θ).Corollary 4.6. The mean 
urvature of a Hopf 
ylinder is given by
H(s, θ) =

1

2
tr (g−1b) = κ(s) (4.3)67



4. Hopf Toriand the Hopf di�erential is given by
Q(s, θ) =

1

4
(12κ(s)− i(−1

8 − 1
8)) =

1

8
κ(s) +

1

16
i.Sin
e κ(s) is real for all s the Hopf di�erential Q is never 0 and so the surfa
e has noumbili
s, see lemma 2.5. The 
onformal fa
tor of the surfa
e is 
onstant u ≡ − log 4, sothe surfa
e is �at. These 
onsiderations do not depend on properties of κ(s), so everyHopf 
ylinder is �at.Ea
h torus 
an be identi�ed with R2 modulo a latti
e. The 
onformal 
lass of a torus isgiven by the ratio of the two generators of the latti
e. Equivalently we 
an �x one latti
eve
tor, then the 
onformal 
lass is given by the other latti
e ve
tor. They are 
hosensu
h that the 
onformal 
lass is a 
omplex number in the upper half plane, see thereforealso appendix A.4.Now we 
onsider Hopf tori, therefore the 
urve on S2 de�ning the Hopf 
ylinder must be
losed.Lemma 4.7. The 
onformal 
lass of a Hopf torus 
orresponds to the parallelogram gen-erated by the ve
tors

(0, 4π) and p, p∫

0

κ(t)dt mod 4π


with p the period length of the generalized elasti
 
urve de�ned in (3.8) by

p = 2

λ1∫

λ0

1√
g̃(x)

dx.The value ∫ p
0 κ(t)dt must be 
al
ulated modulo 4π, sin
e we 
an subtra
t a multiple of theother generating ve
tor.Proof. We have to 
al
ulate the periods in s and θ dire
tions. We obtain

f(0, 0) = 1,
f(0, 4π) = 1,

f(p,

p∫

0

κ(t)dt) = 1.
68



4.2. Conformal Parametrizations and 
onformal 
lass of Hopf toriThese are the smallest values, su
h that f(x, y) = 1, so the Hopf torus is isometri
 to
R2/Γ, the latti
e Γ generated by the ve
tors (0, 4π) and (p,

∫ p
0 κ(t)dt mod 4π). Thevalue p 
an be regarded as length L of the 
urve, the value ∫ p

0 κ(t)dt as en
losed area on
S2. This fa
t was already dis
overed by Pinkall [Pin85℄. The value ∫ p

0 κ(t)dt is just themean value of the 
urvature along one period.In the 
ase of 
urves with 
onstant 
urvature we obtain a spe
ial 
lass of surfa
es.Lemma 4.8. Let γ(s) be a 
urve on S2 parametrized by ar
 length with given 
onstant
urvature κ∗. Then the 
orresponding Hopf torus is 
onformally equivalent to a toruswith re
tangular 
onformal 
lass generated by the ve
tors
π√

κ∗ 2 + 1

(
1,
√
κ∗ 2 + 1 + κ∗

) and π√
κ∗ 2 + 1

(
−1,

√
κ∗ 2 + 1− κ∗

)
.Proof. For 
onstant 
urvature κ∗ the generating ve
tors are given by

(0, 4π) and ( 2π√
κ∗ 2 + 1

,
2πκ∗√
κ∗ 2 + 1

)sin
e p = 2π√
κ∗ 2+1

, see (3.35). These ve
tors have the same length
(
2

π√
κ∗ 2 + 1

)2

+

(
2πκ∗√
κ∗ 2 + 1

)2

= 16π2.For any two ve
tors x, y ∈ R2 with ‖x‖ = ‖y‖ the two ve
tors x+y, x−y form a re
tangle.In our 
ase we 
onformally transform the generating ve
tors by the matrix (1 1
1 −1

) andobtain the ve
tors
2π√
κ∗ 2 + 1

(
1,
√
κ∗ 2 + 1 + κ∗

) and 2π√
κ∗ 2 + 1

(
−1,

√
κ∗ 2 + 1− κ∗

)
.

So all Hopf tori with 
onstant mean 
urvature have a re
tangular 
onformal 
lass. TheCli�ord torus is the minimal torus 
orresponding to H = κ∗ = 0. In our setting the
onformal 
lass of the Cli�ord torus is the re
tangle spanned by (2π, 2π) and (−2π, 2π).
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5. Hopf tori as 
onstrained Willmore toriIn the previous 
hapters we examined generalized elasti
 
urves and Hopf tori. Now we
ombine these to obtain 
onstrained Willmore Hopf tori. We will 
al
ulate the 
onformal
lass of a 
onstrained Willmore Hopf torus and its Willmore energy.5.1. Constrained Willmore Hopf toriLemma 5.1. [BPP08℄ Let γ be a 
losed 
urve on S2 parametrized by ar
 length. If the
urvature of γ satis�es the di�erential equation
κ′′ +

1

2
κ3 + aκ+ b = 0 (5.1)then the Hopf torus h−1(γ) is a 
onstrained Willmore surfa
e. If the 
urvature solves theequation for b = 0 it is a Willmore surfa
e.Proof. The mean 
urvature of a Hopf torus is given by H(s, θ) = κ(s). The Lapla
e-Beltrami operator ∆ then yields

∆(H(s, θ)) =
1

|g|κ
′′(s)

= 4κ′′(s)sin
e the metri
 g is 
onstant 1
4 as 
al
ulated in (4.2). In theorem 2.13 the Euler-Lagrangeequation for 
onstrained Willmore surfa
es was 
al
ulated as

(∆H + 2H3 − 2HK)dA = δ∗(q).Now we 
hoose a = −K
2 and b = −1

4δ
∗(q) and obtain the equation

κ′′(s) +
1

2
κ(s)3 + aκ(s) + b = 0. 71



5. Hopf tori as 
onstrained Willmore toriHen
e the Euler-Lagrange equation for 
onstrained Willmore surfa
es is equivalent tothe 
ondition that a Hopf torus is the preimage of a generalized elasti
 
urve. For b = 0we obtain Willmore surfa
es and elasti
 
urves respe
tively.Thus we have a 
onne
tion between 
onstrained Willmore surfa
es and generalized elasti

urves. We now 
ome to the main de�nition.De�nition 5.2. Let γ(s) be a 
losed (generalized) elasti
 
urve on S2. The 
orrespondingHopf torus is 
alled (
onstrained) Willmore Hopf torus.5.2. Willmore energy of 
onstrained Willmore Hopf toriIn 
hapter 3 we proved expli
it formulas for the solutions of (5.1). These will now beused to 
al
ulate expli
itly the Willmore energy of 
onstrained Willmore Hopf tori. Themain ingredient is (4.3)
H(s, θ) = κ(s).In the following let γ(s) be a generalized elasti
 
urve on S2 with parameters (w, τ, p).First we 
onsider 
urves with 
onstant 
urvature and use the results of se
tion 3.6.Lemma 5.3. Let γ(s) be a 
urve on S2 with 
onstant 
urvature κ∗. The Willmorefun
tional of the 
orresponding Hopf torus Mγ is given by

W(Mγ) = 2π2
√
κ∗ 2 + 1.Proof. The Willmore fun
tional on S3, de�ned in (2.6) is given by

W(Mγ) =

∫

Mγ

(H2 + 1)dA.The metri
 on the surfa
e was 
al
ulated in (4.2) as
g(s, θ) =

(
1
4 0
0 1

4

)
.72



5.2. Willmore energy of 
onstrained Willmore Hopf toriHen
e the volume form is given by
dA =

1

4
ds dθ.So we have to integrate the mean 
urvature H = κ∗ along the generating ve
tors of thelatti
e 
orresponding to the torus. These generating ve
tors have been 
al
ulated in (4.8)as

(0, 4π) and (p = 2π√
κ∗ 2 + 1

,
2πκ∗√
κ∗ 2 + 1

)
.Sin
e H is 
onstant the Willmore fun
tional is

W (Mγ) =
1

4

4π∫

0

p∫

0

(
κ∗ 2 + 1

)
ds dθ

= π
2π√
κ∗ 2 + 1

(κ∗ 2 + 1)

= 2π2
√
κ∗ 2 + 1.For κ∗ = 0 this yields exa
tly the Cli�ord torus with Willmore energy 2π2 and all othervalues of κ∗ lead to Willmore energies greater than 2π2.Now we 
ome to the 
ase of generalized elasti
 
urves without 
onstant 
urvature. The
onformal 
lasses of all Hopf tori have been 
al
ulated in lemma 4.7. Now we determinethe 
onformal 
lass of 
onstrained Willmore Hopf tori. Therefore we need the followingproposition.Proposition 5.4. Let (w, τ, p) be the parameters of a generalized elasti
 
urve. Then

p∫

0

ζ(t− w, τ, p)dt−
p∫

0

ζ(t+ w, τ, p)dt = 2πi− 4wη1.Proof. We suppress the generators τ and p of the latti
e for simpli
ity. The Weierstrass
ζ-fun
tion is a meromorphi
 fun
tion with a single pole in 0 and has residuum 1 there.We integrate a single loop around 0 and therefore obtain 2πi. Let α : [0, 1] → C be a73
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Figure 5.1.: Integration path around 0path joining w and −w as shown in �gure 5.1 with α(0) = w,α(1) = −w. Furthermorelet α+ p be the same path shifted by p. Then
∫

−α+p

ζ(t)dt =

∫

−α

ζ(t+ p)dt =

∫

−α

ζ(t) + 2η1dt = −
∫

α

ζ(t)dt+ 4wη1and therefore
p∫

0

ζ(t−w)dt −
p∫

0

ζ(t+w)dt

=

p−w∫

−w

ζ(t)dt+

w∫

p+w

ζ(t)dt+

∫

−α+p

ζ(t)dt+

∫

α

ζ(t)dt− 4wη1

= 2πi− 4wη1.Theorem 5.5. Let γ(s) be a 
losed generalized elasti
 
urve with parameters (w, p, τ).The ve
tors generating the latti
e of the 
orresponding Hopf torus are given by
(0, 4π) and (

p,−4wη1 + 2pζ(w)− ip
℘′′(w, τ, p)
℘′(w, τ, p)

mod 4π

)
.Proof. The ve
tors generating the latti
e of a Hopf torus have been 
al
ulated in lemma74



5.2. Willmore energy of 
onstrained Willmore Hopf tori4.7 as
(0, 4π) and p, p∫

0

κ(t)dt mod 4π


 .So we have to 
al
ulate ∫ p

0 κ(t)dt for
κ(t) =

−2i℘′(w, τ, p)
℘(t, τ, p)− ℘(w, τ, p)

− i
℘′′(w, τ, p)
℘′(w, τ, p)

.We use the addition theorem (A.9) for the ζ-fun
tion
ζ(u+ v) = ζ(u) + ζ(v) +

1

2

℘′(u)− ℘′(v)
℘(u)− ℘(v)

.Repla
ing v by −v we obtain
ζ(u− v) = ζ(u) + ζ(−v) + 1

2

℘′(u)− ℘′(−v)
℘(u)− ℘(−v) .Subtra
ting these two equations and using ℘(v) = ℘(−v) and ℘′(v) = −℘′(v) yields

℘′(v)
℘(u)− ℘(v)

= ζ(u− v)− ζ(u+ v) + 2ζ(v)Applying this to κ(t) we have
κ(t) = −2i (ζ(t− w)− ζ(t+ w) + 2ζ(w)) − i

℘′′(w, τ, p)
℘′(w, τ, p)

.Now it is easy to 
al
ulate the integral, we use proposition 5.4 and ζ ′(t) = −℘(t).
p∫

0

κ(t)dt = −
p∫

0

2i (ζ(t− w)− ζ(t+ w) + 2ζ(w)) − i
℘′′(w, τ, p)
℘′(w, τ, p)

dt

= −2i




p∫

0

ζ(t− w)dt−
p∫

0

ζ(t+ w)dt+ 2pζ(w)


 − ip

℘′′(w, τ, p)
℘′(w, τ, p)

= −2i(2πi − 4η1w)− 4ipζ(w)− ip
℘′′(w, τ, p)
℘′(w, τ, p)

= 4π + 8wiη1 − 4ipζ(w)− ip
℘′′(w, τ, p)
℘′(w, τ, p)
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5. Hopf tori as 
onstrained Willmore toriThus we obtained the generating ve
tors for the latti
e of a 
onstrained Willmore Hopftorus. Hen
e we 
an 
al
ulate the Willmore energy of a 
onstrained Willmore Hopf torus.First we need a proposition whi
h will be used in the next theorem.Proposition 5.6. Let (w, τ, p) be the parameters of a generalized elasti
 
urve. Then
p∫

0

(
− ℘′′(t)
℘(t)− ℘(w)

+
℘′(t)2

(℘(t)− ℘(w))2
+ 2℘(t)

)
dt = −4η1Proof. We set

f(t) = − ℘′(t)
℘(t)− ℘(w)

− 2ζ(t).Then
df =

(
− ℘′′(t)
℘(t)− ℘(w)

+
℘′(t)2

(℘(t)− ℘(w))2
+ 2℘(t)

)
dt,so f(t) is a primitive of the 
onsidered integral. The only possible singularities of f(t)are lo
ated in the latti
e points and in w. The Laurent series in the latti
e points havethe leading terms

℘(t) = t−2, ℘′(t) = −2t−3, ζ(t) = t−1.Combining these terms we see, that f(t) has no poles at the latti
e points. Hen
e df isa meromorphi
 di�erential form with double poles in ±w. In total df has no residuum,sin
e there is no pole of �rst order. So the integral of df along any path does not dependon the starting point of the path. Thus
p∫

0

df =

p+x0∫

x0

dffor some x0 ∈ iR, su
h that there exists no pole on the path between x0 and x0 + p.Then the fun
tion
℘′(t)

℘(t)− ℘(w)is periodi
 with period length p. Finally we obtain
p∫

0

df =

x0+p∫

x0

df = − ℘′(t)
℘(t)− ℘(w)

∣∣∣∣
x0+p

x0

+ −2ζ(t)|x0+p
x0

= −4η1
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5.2. Willmore energy of 
onstrained Willmore Hopf toriTheorem 5.7. Let γ(t) be a generalized elasti
 
urve with parameters (w, τ, p) and zgiven by (3.20). The Willmore energy of the 
orresponding Hopf torus Mγ is given by
W(Mγ) = (4η1 − p℘(z))

(
4π + 8wiη1 − 4ipζ(w) − ip

℘′′(w, τ, p)
℘′(w, τ, p)

)Proof. The Hopf torusMγ = f(t, θ) is periodi
 with periods p in t-dire
tion and ∫ p
0 κ(t)dtin θ-dire
tion. The mean 
urvature is given by κ(t). The Willmore energy in S3 is givenby

W(M) =

∫

M

(H2 + 1)dAThus we obtain
W(Mγ) =

1

4

∫ p

0
κ(s)ds∫

0

p∫

0

(κ2(t) + 1)dt dθ

=
1

4




p∫

0

(κ2(t) + 1)dt




p∫

0

κ(t)dt

=
1

4




p∫

0

κ2(t)dt+ p




p∫

0

κ(t)dtsin
e κ(t) is 
onstant in θ-dire
tion. So we have to 
al
ulate ∫ p
0 κ

2(t)dt.
p∫

0

κ(t)2dt =

p∫

0

(
− 2i℘′(w)
℘(t)− ℘(w)

− i
℘′′(w)
℘′(w)

)2

=

p∫

0

−4℘′(w)2

(℘(t)− ℘(w))2
dt− 4

p∫

0

℘′′(w)
℘(t)− ℘(w)

dt− p
℘′′(w)2

℘′(w)2We still have to 
al
ulate the integral
p∫

0

−4℘′(w)2

(℘(t)− ℘(w))2
dt. 77



5. Hopf tori as 
onstrained Willmore toriTherefore we use the addition theorem (A.4)
℘′(u)2 − ℘′(v)2

(℘(u)− ℘(v))2
=
℘′′(u) + ℘′′(v)
℘(u)− ℘(v)

− 2℘(u) + 2℘(v).and obtain
℘′(w)2

(℘(t)− ℘(w))2
=

℘′(t)2

(℘(t)− ℘(w))2
− ℘′′(t) + ℘′′(w)

℘(t)− ℘(w)
+ 2℘(t)− 2℘(w)

=
℘′(t)2

(℘(t)− ℘(w))2
− ℘′′(t)
℘(t)− ℘(w)

− 1

2

℘′′(w)
℘(t)− ℘(w)

+ 2℘(t)− 2℘(w)and by using proposition 5.6
p∫

0

℘′(w)2

(℘(t)− ℘(w))2
dt = −4η1 −

p∫

0

℘′′(w)
℘(t)− ℘(w)

+ 2℘(w)dt.Thus
p∫

0

κ(t)2dt =− 4


−4η1 −

p∫

0

℘′′(w)
℘(t)− ℘(w)

+ 2℘(w)dt




− 4

p∫

0

℘′′(w)
℘(t)− ℘(w)

dt− p
℘′′(w)2

℘′(w)2

=16η1 + 8p℘(w)− p
℘′′(w)2

℘′(w)2
.Using formula (3.20) we obtain

8p℘(w) − p
℘′′(w)2

℘′(w)2
+ p = −4p℘(z)− p+ p = −4p℘(z, g2, g3).Thus the Willmore energy is given by

W(Mγ) = (4η1 − p℘(z))

(
4π + 8wiη1 − 4ipζ(w)− ip

℘′′(w, τ, p)
℘′(w, τ, p)

)
.
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6. Summary and OutlookSummaryIn this thesis we studied 
onstrained Willmore Hopf tori. Therefore we introdu
ed thebasi
 
on
epts of surfa
e theory and de�ned Willmore surfa
es. They are extremal valuesunder variations of the Willmore fun
tional
W(M) =

∫

M

H2 dAfor surfa
es M in R3. For surfa
es in S3 we had to repla
e H2 by H2 + 1. The mainwork has been done in the third 
hapter dealing with elasti
 
urves on S2. We solved thedi�erential equation for the 
urvature fun
tion κ(x)
κ′(x)2 +

1

4
κ(x)4 + aκ(x) + bκ(x) = cde�ning generalized elasti
 
urves for arbitrary parameters a, b, c. The initial values

(κ(0), κ′(0)) are lying on the ellipti
 
urve
Y = {(x, y) ∈ C2 | y2 = −1

4
x4 − ax2 − 2bx+ c}.The solution of the di�erential equation is given in terms of Weierstrass ellipti
 fun
tions.Using the 
onne
tion between elasti
 
urves and the modi�ed Korteweg-de Vries equationwe obtained a spe
tral 
urve for elasti
 
urves. We transformed the di�erential equationsof the frame a 
urve on S2 to an equation of Lamé type, then we solved this Laméequation and �nally obtained a parametrization of a generalized elasti
 
urve on S2 ⊂ R3.Therefore we 
hanged the parameters a, b, c to new parameters g2, g3, w with g2, g3 beingthe Weierstrass invariants of the ellipti
 
urve Y and w a point on the imaginary part ofthe 
urve Y . These other parameters are also more suitable in order to determine 
losedgeneralized elasti
 
urves. We de�ned a fun
tion lnµ(z, τ, p) on the spe
tral 
urve with z79



6. Summary and Outlookbeing expressed by g2, g3, w and τ , p being the periods of the ellipti
 
urve Y . It followedthat the generalized elasti
 
urve is 
losed if and only if there exists a q ∈ Q su
h that
lnµ(z, τ, p) = πiqholds. Depending on the dis
riminant of the polynomial 4t3 − g2t − g3 we obtainedre
tangular or rhombi
 latti
es for the Weierstrass ℘-fun
tion. In the 
ase of a re
tangularlatti
e the des
ription of 
losed 
urves is the following. For every q ∈ Q there exists afun
tion z(τ) with lnµ(z(τ), τ, p) = πiq. In order to obtain a similar result for rhombi
latti
es we introdu
ed deformations of the spe
tral 
urve. These deformations are 
hosento be non-isospe
tral but isoperiodi
. Using these deformations we showed that thereexists exa
tly one λ∗ su
h that the fun
tion z 7→ lnµ(z, 12+iλ

∗, p) has a double root. Thisvalue λ∗ determines the number of possible z for given q ∈ Q su
h that lnµ(z) = πiq.The 
ase of a singular spe
tral 
urve Y leads to 
onstant 
urvature solutions. It wasstraight forward to obtain the parametrization of the 
urve on S2 in that 
ase. Thedeformation theory of the spe
tral 
urve 
an also be applied to the singular 
ase. Thedeformation starts from a singular 
urve and deforms it into a non-singular 
urve.In the fourth 
hapter we des
ribed the main properties of the Hopf mapping h : S3 → S2.It is a S1-�bration over S2, hen
e for a 
losed 
urve on S2 we obtained as preimage underthe Hopf mapping a torus in S3. We gave a 
onformal parametrization of these Hopftori and 
al
ulated the mean 
urvature as the 
urvature of the underlying 
urve on S2.Using the 
onformal parametrization we furthermore obtained the 
onformal 
lass of aHopf torus.The �fth 
hapter 
ombined the third and fourth 
hapter. We noti
ed that the preimageof a 
losed (generalized) elasti
 
urve on S2 leads to a (
onstrained) Willmore torus in
S3. Sin
e we have detailed formulas for the mean 
urvature of the Hopf torus we wereable to expli
itly 
al
ulate the 
onformal 
lass of a Hopf torus. Finally we 
al
ulated theWillmore fun
tional of a Hopf torus stemming from an elasti
 
urve. The value of theWillmore fun
tional was given in terms of the parameters g2, g3, w.The main new results of this thesis are given in 
hapters 3 and 5. We expli
itly solved thedi�erential equation des
ribing generalized elasti
 
urves for arbitrary initial values inlemma 3.5. A spe
tral 
urve for generalized elasti
 
urves was de�ned in de�nition 3.11,here we used the 
onne
tion between generalized elasti
 
urves and wavelike solutions ofthe mKdV equation. It was shown in lemma 3.12 that the spe
tral 
urve is isomorphi
 tothe ellipti
 
urve stemming from the di�erential equation for generalized elasti
 
urves.We obtained a parametrization of generalized elasti
 
urves on S2 for arbitrary parameters80



a, b, c in lemma 3.13. The 
losing 
ondition was investigated in detail, we obtainedfor every real latti
e 
orresponding to the spe
tral 
urve a 
hara
terization of 
losedgeneralized elasti
 
urves. The 
losed 
urves are parametrized by a rational number qwhi
h des
ribes after how many periods of the 
urvature the 
urve 
loses up. For every
q we were able to 
hoose initial values su
h that the 
urve 
loses up with exa
tly thisgiven q. In the 
ase of a re
tangular latti
e this was shown in 
orollary 3.17. The 
aseof rhombi
 latti
es was more involved, therefore we studied isoperiodi
 deformations ofthe spe
tral 
urve in lemma 3.18 and the spe
ial 
ase of rhombi
 latti
es in lemma 3.19.Therefore we studied the integral 
urves of �ows on S2 deforming the spe
tral 
urvein theorem 3.20. With the help of this deformation theory we were able to obtain a
hara
terization of the 
losing 
ondition in theorem 3.21. We extended the deformationtheory to the 
ase of 
onstant 
urvature solutions. The spe
tral 
urve is degenerateand there exists a sequen
e of possible double points. Depending on the 
hosen doublepoint we 
an split the double point into two regular points during the deformation andobtain a non-degenerate spe
tral 
urve. Hen
e we 
an de
ide for every set of parameters
(g2, g3, w) ⊂ R2 × iR whether the indu
ed generalized elasti
 
urve is 
losed. Converselywe 
an 
hose a parameter w depending on g2, g3 su
h that the generalized elasti
 
urve is
losed. By using the Hopf mapping we 
onne
ted ea
h 
losed generalized elasti
 
urve toa torus in S3. We expli
itly 
al
ulated the 
onformal 
lass of this 
onstrained WillmoreHopf torus in theorem 5.5. Furthermore we were able to 
al
ulate the Willmore energyof su
h an 
onstrained Willmore Hopf torus in theorem 5.7.OutlookThere are some dire
tions in whi
h further resear
h 
an be done. Re
ently Marques andNeves [MN12℄ proved the Willmore 
onje
ture by using the min-max theory of minimalsurfa
es. Thus there exists a minimum of the Willmore energy of tori in R3. But whatabout 
onstrained Willmore surfa
es, Kuwert and S
hätzle [KS10℄ proved that thereexists a a minimum in ea
h 
onformal 
lass. The 
onstrained Willmore Hopf tori are
andidates for being the minimum in ea
h 
onformal 
lass. The re
tangular 
onformal
lasses 
orrespond to 
m
 surfa
es and they minimize the Willmore fun
tional in their
onformal 
lass, so one has to extend this to general 
onformal 
lasses in the fundamentaldomain of the modular group. Barros and Ferrández [BF11℄ obtained best possibleestimates for the Willmore energy in the 
lass of Hopf tori with same en
losed areaof the underlying 
urve (they 
all them isoareal). The en
losed area determines halfof the 
onformal 
lass of a Hopf torus, the other half is given by the length of the81



6. Summary and Outlook
urve. The deformation theory of tori with 
onstant 
urvature κ∗ 
an be extended, one
an look at the Willmore energy during the deformation, whi
h should be in
reasing.The question arises whi
h 
onformal 
lasses are rea
hed during the deformation. These
onformal 
lasses should be di�erent for di�erent values of κ∗. They also depend on thedouble point λn whi
h is split during the deformation. Is the set of 
onformal 
lassesopen? For every λn one obtains a di�erent family of 
onformal 
lasses. For whi
h ndo we obtain the smallest Willmore energy in the neighborhood of the Cli�ord torus,i.e. small values of κ∗. For every given 
onformal 
lass there should be a κ∗ su
h thatthe deformation of the 
orresponding spe
tral 
urve �ows through the given 
onformal
lass. On
e this relationship between given 
onformal 
lass and 
onstant 
urvature κ∗ isknown, it is possible to plot the Willmore energy as a fun
tion of the 
onformal 
lass inthe fundamental domain. Whi
h κ∗ and whi
h λn yield global �ows and whi
h only lo
al�ows? The possibility of a lo
al �ow limits the set of 
onformal 
lasses rea
hed duringthe deformation. So one 
an determine the set of 
onformal 
lasses whi
h 
an be realizedby 
onstrained Willmore Hopf tori.
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A. Ellipti
 Fun
tionsA.1. Introdu
tion to the theory of ellipti
 fun
tionsEllipti
 fun
tions are a very old subje
t in mathemati
s. They have been 
onsidered byJa
obi, Weierstrass and many more. Ellipti
 fun
tions 
ome from ellipti
 integrals, whi
hhave been 
onsidered in studying the length of ellipsoids. In 1718 Fagnano studied thear
 length of the lemnis
ate, whi
h 
an be 
al
ulated by the integral
E(x) =

x∫

0

1√
1− t4

dt.

E(x) is stri
tly in
reasing in the interval (0, 1) and has therefore an inverse fun
tion
f . In 1827 Abel extended this inverse fun
tion f to a meromorphi
 fun
tion in the
omplex plane and found an additional 
omplex period. So the theory of double periodi
meromorphi
 fun
tions was born. Nowadays these fun
tions are 
alled ellipti
 fun
tions.In general ellipti
 integrals are de�ned as

∫
1√
R(t)

dt,where R(t) is some polynomial of degree three or four without multiple roots. Ellipti
fun
tions are the inverse fun
tions of ellipti
 integrals.We now de�ne ellipti
 fun
tions in detail. A good introdu
tion into the theory of ellipti
fun
tions 
an be found in [FB00℄ and [WW79℄.De�nition A.1. Let ω1, ω2 ∈ C be two 
omplex ve
tors, su
h that they are R-linearlyindependent. Then the set
L := {nω1 +mω2 |n,m ∈ Z} 83



A. Ellipti
 Fun
tionsis 
alled latti
e generated by the two ve
tors ω1, ω2. For any point Nω1 +Mω2 ∈ L theset
{(N + s)ω1 + (M + t)ω2 | 0 ≤ s, t ≤ 1}is 
alled primitive 
ell of the latti
e.De�nition A.2. An ellipti
 fun
tion for a latti
e L is a meromorphi
 fun
tion

f : C → C = C ∪ {∞},su
h that
f(z + ω) = f(z) (A.1)for all z ∈ C and ω ∈ L. The order of an ellipti
 fun
tion is the number of poles on

C/L.We 
an repla
e the 
ondition (A.1) by the 
ondition
f(z + ω1) = f(z + ω2) = f(z)for the generators ω1, ω2 of the latti
e L, sin
e every ω ∈ L is an integer linear 
ombinationof ω1, ω2. It has been shown by Liouville, that the order of an ellipti
 fun
tion is thenumber of roots of the equation f(z) = c for any c ∈ C (see [FB00℄). Hen
e every valueof an ellipti
 fun
tion has the same number of preimages.De�nition A.3. Let f : R → R be a polynomial of degree 3 or 4. Then the set
Y := {(x, y) ∈ R2 | y2 = f(x)}is 
alled ellipti
 
urve if the graph is non-singular, i.e. there exist no multiple roots of

f(x). If the polynomial has degree greater than 4 the set is 
alled algebrai
 
urve. Wealso 
onsider ellipti
 
urves extended to the 
omplex plane and then regard Y as subsetof C2.Let f be an ellipti
 fun
tion with latti
e L. For two points z, w ∈ C with z − w ∈ L wehave f(z) = f(w). So we 
an introdu
e the group C/L with equivalen
e relation
z ≡ w mod L ⇔ z − w ∈ L.and the proje
tion π : C → C/L. The equivalen
e 
lass [z] of an element z is given by

z + L and we 
an add two elements by the formula [z] + [w] = [z + w]. Thus we obtainan additive abelian group stru
ture on C/L. We now 
an �nd an unique fun
tion
f̂ : C/L → C84



A.2. Weierstrass ellipti
 fun
tionssu
h that the following diagram 
ommutes
C

π
��

f

!!C
C

C

C

C

C

C

C

C

C/L
f̂

//
CTherefore we 
an 
onsider an ellipti
 fun
tion f as a fun
tion on the torus C/L. Anylatti
e L 
an be regarded as the generator of a torus by identifying opposite sides of thelatti
e.A.2. Weierstrass ellipti
 fun
tionsWe now de�ne a simple ellipti
 fun
tion. It has been shown by Liouville, that there existsno ellipti
 fun
tion of order 1. So the next possible order is 2. Sin
e every value is takentwi
e, we have two poles, here we require a double pole in 0. This yields the de�nitionof the Weierstrass ℘-fun
tion whi
h is exa
tly su
h a fun
tion.De�nition A.4. Let L be a latti
e in C. The fun
tion ℘ de�ned by the Laurent series

℘(z, L) =
1

z2
+

∑

ω∈L\{0}

(
1

(z − ω)2
− 1

ω2

) for z 6∈ L,

℘(z, L) = ∞ for z ∈ Lis 
alled Weierstrass ℘-fun
tion.The series de�ning the ℘-fun
tion is uniformly 
onvergent ex
ept at the poles, so the
℘-fun
tion is everywhere analyti
 ex
ept at the poles, whi
h are lo
ated at the points ofthe latti
e. We 
an 
al
ulate the derivative term by term and obtain

℘′(z) = −2
∑

ω∈L

1

(z − ω)3
.This is an ellipti
 fun
tion of order 3 sin
e it has a triple pole in the latti
e points.We now 
olle
t some properties of the ℘-fun
tion. They 
an be found in many books,e.g. [FB00℄ and [WW79℄. 85



A. Ellipti
 Fun
tionsLemma A.5. For the Weierstrass ℘-fun
tion with the latti
e L holds1. ℘(−z, L) = ℘(z, L),2. ℘′(z, L) = −℘′(−z, L).Hen
e ℘ is an even fun
tion and ℘′ is an odd fun
tion.Lemma A.6. It holds
℘′(a) = 0for some a ∈ C if and only if

a 6∈ L, 2a ∈ L.The ℘′-fun
tion has exa
tly three roots in C/L and ea
h of them is a simple root.Proof. For a ∈ C with a 6∈ L, 2a ∈ L we have
℘′(a, L) = ℘′(a− 2a, L) = ℘′(−a, L) = −℘′(a, L)and so ℘′(a, L) = 0. We have therefore found three di�erent roots of ℘′: The points

ω1

2 ,
ω2

2 ,
ω1+ω2

2 are all di�erent. Sin
e ℘′ is an ellipti
 fun
tion of order 3 it 
an have atmost three roots. Thus we have found all roots of ℘′.The three roots of ℘′ are exa
tly at the half periods of the latti
e, the values of ℘ thereare 
alled e1, e2, e3 :
e1 = ℘

(ω1

2

)

e2 = ℘
(ω2

2

)

e3 = ℘

(
ω1 + ω2

2

)Proposition A.7. Let z, w ∈ C. It holds
℘(z, L) = ℘(w,L)if and only if
z ≡ ±w mod L.86



A.2. Weierstrass ellipti
 fun
tionsProof. The fun
tion z 7→ ℘(z, L)− ℘(w,L) is for given w an ellipti
 fun
tion of degree 2and has mod L exa
tly 2 roots. These are z = w and z = −w.Using the Laurent series one 
an show the following theorem, see [WW79, p.437℄.Theorem A.8. The Weierstrass ℘-fun
tion satis�es the following di�erential equation:
(
℘′(z, L)

)2
= 4℘(z, L)3 − g2℘(z, L)− g3 (A.2)with
g2 =

∑

ω∈L\{0}

1

ω4
,

g3 =
∑

ω∈L\{0}

1

ω6
.Di�erentiating both sides of the di�erential equation and dividing by ℘′(z, L) one obtains

2℘′′(z, L) = 12℘(z, L)2 − g2. (A.3)The values g2, g3 are 
alled Weierstrass invariants sin
e they only depend on thelatti
e. Furthermore g2 and g3 
an be used to uniquely determine the latti
e L, seelemma A.21, so we 
an also write
℘(z, L) = ℘(z, g2, g3).This is the most 
ommonly used notation for the Weierstrass ℘-fun
tion. We often alsosuppress the Weierstrass invariants g2, g3 for simpli
ity, if it is 
lear whi
h invariants areused.Using g2 and g3 there exists another Laurent series for the ℘-fun
tion

℘(z, g2, g3) = z−2 +
∞∑

n=1

G2nz
2nwith Gn the so 
alled Eisenstein series de�ned by

Gn(L) =
∑

ω∈L\{0}

1

ωn
. 87



A. Ellipti
 Fun
tionsUsing the di�erential equation (A.2) we obtain, that the Eisenstein series is a polynomialin g2, g3 with rational 
oe�
ients.We obtain a new 
hara
terization of the values e1, e2, e3. Sin
e they are the roots of the
℘′-fun
tion, they satisfy

4℘(ei)
3 − g2℘(ei)− g3 = 0, i = 1, 2, 3.Thus they are the three roots of the polynomial

4t3 − g2t− g3and by relating the roots of the polynomial to the 
oe�
ients of the polynomial we obtain
e1 + e2 + e3 = 0,

e2e3 + e1e3 + e1e2 = −1

4
g2,

e1e2e3 =
1

4
g3.The di�erential equation (A.2) 
an be used to show the 
onne
tion between ellipti
 
urvesand ellipti
 fun
tions.De�nition A.9. Let g2, g3 ∈ C be two 
omplex numbers. We de�ne an ellipti
 
urve Xby

X(g2, g3) := {(z1, z2) ∈ C2 | z22 = 4z31 − g2z1 − g3}.The di�erential equation (A.2) shows, that for some z ∈ C, z 6∈ L the point (℘(z), ℘′(z))lies on the 
urve X(g2, g3). So we obtain a mapping
C/L \ {0} → X(g2, g3),

z 7→ (℘(z), ℘′(z)).It 
an be shown, that this mapping is bije
tive, see e.g. [FB00℄. We had a similar proofin lemma 3.3.Lemma A.10. The ℘-fun
tion obeys the addition theorem
℘(z + w) =

1

4

(
℘′(z)− ℘′(w)
℘(z)− ℘(w)

)2

− ℘(z)− ℘(w).88



A.2. Weierstrass ellipti
 fun
tionsA proof 
an be found in [WW79, p.441℄. We also used in 
hapter 5 the addition theorem
℘′(u)2 − ℘′(v)2

(℘(u)− ℘(v))2
=
℘′′(u) + ℘′′(v)
℘(u)− ℘(v)

− 2℘(u) + 2℘(v). (A.4)This 
an be proved by using the the di�erential equations for ℘′ and ℘′′.There exist two other Weierstrass ellipti
 fun
tions, the σ- and the ζ-fun
tion. They arenot really ellipti
 fun
tions be
ause they are not periodi
, but one often refers to ℘(z),
σ(z), and ζ(z) as the Weierstrass ellipti
 fun
tions.De�nition A.11. The Weierstrass ζ-fun
tion is de�ned by

dζ(z)

dz
= −℘(z)with integration 
onstant de�ned by

lim
z→0

(ζ(z)− z−1) = 0.The Weierstrass σ-fun
tion is de�ned by
d log σ(z)

dz
= ζ(z)with integration 
onstant de�ned by

lim
z→0

(
σ(z)

z

)
= 1.Using the Laurent series of the ℘-fun
tion we also obtain Laurent series of ζ(z) and anin�nite produ
t for σ(z)

ζ(z) =
1

z
+

∑

ω∈L\{0}

(
1

z − ω
+

1

ω
+

z

ω2

)
, (A.5)

σ(z) = z
∏

ω∈L\{0}

((
1− z

ω

)
exp

(
z

ω
+

z2

2ω2

))
. (A.6)Hen
e ζ(z) is an odd fun
tion and has a simple pole (with residue 1) at every point ofthe latti
e. Next we show some properties of these fun
tions, the most important is thatthey are quasiperiodi
, i.e. there exist fun
tions f(z) and g(z) su
h that

σ(z + ω) = f(z)σ(z), ω ∈ L,

ζ(z + ω) = g(z)ζ(z), ω ∈ L.

89



A. Ellipti
 Fun
tionsProposition A.12. The Weierstrass σ- and ζ-fun
tions on a latti
e generated by ω1, ω2are quasiperiodi
. They satisfy
ζ(z + ω1) = ζ(z) + η1,

ζ(z + ω2) = ζ(z) + η2,

σ(z + ω1) = − exp
(
η1(z +

ω1

2
)
)
σ(z),

σ(z + ω2) = − exp
(
η2(z +

ω2

2
)
)
σ(z),with

η1 := 2ζ
(ω1

2

)
, (A.7)

η2 := 2ζ
(ω2

2

)
. (A.8)Proof. We integrate the equation

℘(z + ω1) = ℘(z)and obtain
ζ(z + ω1) = ζ(z) + η1with η1 being the 
onstant of integration. Now we set z = −ω1

2 and use the fa
t, that ζis an odd fun
tion. Then we obtain
η1 = 2ζ

(ω1

2

)and the 
onstant of integration is determined. For the quasiperiodi
y of σ we integratethe equation
ζ(z + ω1) = ζ(z) + η1and obtain
σ(z + ω1) = ceη1zσ(z)with c being the 
onstant of integration. To determine this 
onstant we again set z = −ω1

2and obtain
σ
(ω1

2

)
= −ce−η1ω1σ

(ω1

2

)
.Thus

c = −eη1ω1 .A similar argument applies for ω2.90



A.2. Weierstrass ellipti
 fun
tionsLemma A.13. The values η1, η2 de�ned in (A.7),(A.8) obey the relation
η1ω2 − η2ω1 = 2πi.This relation is often 
alled Legendre relation.Proof. We take the integral of ζ(z) around the boundary C of one primitive 
ell. Thereis exa
tly one pole in ea
h primitive 
ell and the residue is 1. Hen
e
∫

C

ζ(z)dz = 2πi.We split up the integral 
ontour C to a path along the latti
e. Let therefore be t, t +
ω1, t+ ω2, t+ ω1 + ω2 be the 
orners of a primitive 
ell. Then

∫

C

ζ(z)dz =

t+ω1∫

t

ζ(z)dz +

t+ω1+ω2∫

t+ω1

ζ(z)dz +

t+ω2∫

t+ω1+ω2

ζ(z)dz +

t∫

t+ω2

ζ(z)dz.We now rewrite the se
ond integral using substitution
t+ω1+ω2∫

t+ω1

ζ(z)dz =

t+ω2∫

t

ζ(z + ω1)dzand analogously the fourth integral. Thus we obtain
2πi =

t+ω1∫

t

ζ(z)− ζ(z + ω2)dz −
t+ω2∫

t

ζ(z)− ζ(z + ω1)dz

= −η2
t+ω1∫

t

dz + η1

t+ω2∫

t

dz

= −η2ω1 + η1ω2and the 
laim follows.The σ- and ζ-fun
tion also obey addition theorems [EMOT53, p.333℄.
ζ(u+ v) = ζ(u) + ζ(v) +

1

2

℘′(u)− ℘′(v)
℘(u)− ℘(v)

(A.9)
σ(u+ v)σ(u − v) = −σ2(u)σ2(v) (℘(u)− ℘(v)) (A.10)This addition theorem will be used in 
hapter 5. 91



A. Ellipti
 Fun
tionsA.3. Real latti
esWe are mostly interested in the 
ase of real Weierstrass invariants. So we take a 
loserlook at spe
ial properties of the latti
e for su
h invariants. These latti
es are 
alledreal and the ℘-fun
tion is a real fun
tion on spe
ial lines. Furthermore we obtain a
lassi�
ation of real latti
es.De�nition A.14. Let f : C → C be a meromorphi
 fun
tion. It is 
alled real if f(z) =
f(z) holds for all z ∈ C. A latti
e L ⊂ C is 
alled real, if for ω ∈ L also ω ∈ L.Lemma A.15. Let L be a latti
e in C generated by ω1 and ω1. Then the followingassertions are equivalent:(a) g2, g3 are real.(b) ℘ is a real fun
tion.(
) L is a real latti
e.Proof. (a) ⇒ (b) For real g2, g3 the Eisenstein series are real, so all 
oe�
ients in theLaurent series of ℘ are real, hen
e ℘ is a real fun
tion.
(b) ⇒ (c) Let ℘ be a real fun
tion, ℘(x) = ℘(x) for all x ∈ C. For every pole ω of ℘ thepoint ω is also a pole. The poles are exa
tly the latti
e points, so the latti
e is real.
(c) ⇒ (a) The Weierstrass invariants g2, g3 are given by

g2 =
∑

ω∈L\{0}

1

ω4
,

g3 =
∑

ω∈L\{0}

1

ω6
.For abbreviation we write L∗ or Z2

∗ when we omit 0 in the summation. Then we 
anwrite
g2 =

∑

ω∈L∗

1

ω4
=
∑

Z2
∗

1

(mω1 + nω1)4For any point of the latti
e Nω1+Mω1 the point Nω1+Mω1 is also on the latti
e, thus92



A.3. Real latti
eswe 
an split the sum
g2 =

∑

(n,m)∈Z2
∗

1

(mω1 + nω1)4

=
∑

(n,m)∈(N×Z)∗

(
1

(mω1 + nω1)4
+

1

(mω1 − nω1)4

)
.All summands are real, so g2 is real and analogously g3 is real.Lemma A.16. A latti
e L is real if and only if it is re
tangular or rhombi
.Proof. [FB00℄ Re
tangular and real latti
es are obviously real by the de�nition of thelatti
es. So we have to show that a real latti
e must be re
tangular or rhombi
. Lettherefore be ω ∈ C a generating ve
tor of the latti
e L , then ω + ω, ω − ω ∈ L. So inevery real latti
e there exist nonzero ve
tors on the real and on the imaginary axis. Thelatti
e generated by the real and imaginary points of the latti
e is a sublatti
e L0 of thelatti
e L. It is generated by one real ve
tor ω1 and one pure imaginary ve
tor ω2. If

L = L0 we are done, so let L 6= L0. There exists ω ∈ L − L0, we 
an assume that ω isin the primitive 
ell generated by ω1 and ω2. Then
2ω = (ω + ω) + (ω − ω)yields 2ω ∈ L0. Sin
e 2ω is neither real nor pure imaginary it holds 2ω = ω1 + ω2. Thelatti
e L is then generated by

ω =
1

2
(ω1 + ω2) and ω =

1

2
(ω1 − ω2)and therefore is rhombi
.Now we analyze the 
ases of re
tangular and rhombi
 latti
es separately and in parti
ularlook for real values of the ℘-fun
tion de�ned on su
h latti
es.Lemma A.17. Let L be a re
tangular latti
e generated by p ∈ R and τ ∈ iR. Then theWeierstrass ℘-fun
tion is real on both axes and on the half lines p/2 + iR and τ/2 + R.Proof. [FB00℄ Let t ∈ R. Then

℘(t) = ℘(t) = ℘(t) 93



A. Ellipti
 Fun
tionsand
℘(it) = ℘(it) = −℘(t) = ℘(t).Thus ℘ is real on both axes.On the half line p/2 + iR we obtain

℘(p/2 + it) = ℘(p/2 + it) = ℘(p/2− it)

= ℘(−p/2− it) = ℘(p/2 + it).The other half line 
an be 
onsidered analogously. Hen
e ℘ is real on the all the linesindi
ated in �gure A.1.

p

τ

t t

t t

Figure A.1.: Primitive 
ell of a re
tangular latti
eLemma A.18. Let L be a rhombi
 latti
e generated by p ∈ R and τ = p
2 + iλ, see lemmaA.22. Then the Weierstrass ℘-fun
tion is real on both axes. The period length on thereal axis is p and the period length on the imaginary axis is 2λ.Proof. Sin
e L is a real latti
e, the Eisenstein series are all real, see lemma A.15. Hen
ethe 
oe�
ients of the Laurent series

℘(z, g2, g3) = z−2 +

∞∑

n=1

G2nz
2n
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A.3. Real latti
esare real. There are only even powers in the series, so for real z or pure imaginary zwe obtain ℘(z, g2, g3) ∈ R. The period length on the real axis is obviously p. On theimaginary axis we have τ − τ = 2iλ, this is the �rst point of the latti
e in imaginarydire
tion, hen
e the period length on the imaginary axis is 2λ.
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 latti
eFor a latti
e generated by p and τ we also write ℘(z, τ, p) to emphasize the dependen
eon the two periods.We now want to determine whi
h values of g2, g3 yield a latti
e and under whi
h 
ondi-tions these latti
es are di�erent. Therefore we �rst introdu
e the dis
riminant and the
j-invariant, whi
h are very helpful in this 
ontext.De�nition A.19. The dis
riminant of the ℘-fun
tion is de�ned by

∆ = g32 − 27g23where g2, g3 are the Weierstrass invariants. This is exa
tly the dis
riminant of the poly-nomial 4t3 − g2t− g3. The j-invariant is given by
j := 1728

g32
∆
.If the dis
riminant is zero, the polynomial 4t3− g2t− g3 has multiple roots and thereforesome of the values e1, e2, e3 
oin
ide, in this 
ase the latti
e is degenerate. 95



A. Ellipti
 Fun
tionsDe�nition A.20. Let L and L′ be two latti
es. They are 
alled equivalent
L ∼= L′if and only if there exists a 
omplex number a ∈ C∗ with
L = aL′.To every latti
e L′ there exists an equivalent latti
e L of the form

L = Z+ τZ, τ ∈ {z ∈ C | ℑ(z) > 0}.The transformation of a latti
e L to an equivalent latti
e aL with a ∈ C∗ 
hanges theWeierstrass invariants g2 and g3 as follows:
g2(aL) = a−4g2(L),

g3(aL) = a−6g3(L).Hen
e the dis
riminant and the j-invariant transform as follows:
∆(aL) = a−12∆(L),

j(aL) = j(L). (A.11)Thus we 
an parametrize equivalent latti
es by the j-invariant. In general the followinglemma 
an be shown, see [FB00℄ or [Lan73℄.Lemma A.21. Let j ∈ C and g2, g3 ∈ C with ∆(g2, g3) = g32 − 27g23 6= 0. Then1. There exists a latti
e L with given j-invariant jL = j.2. There exists a latti
e L with g2 = g2(L) and g3 = g3(L).3. For real g2, g3 the latti
e is a re
tangular or rhombi
 latti
e (see also Lemma A.15).4. Let A and B be two ellipti
 
urves with 
orresponding latti
es L and L̃. Then thetwo ellipti
 
urves are isomorphi
 if and only if jL = jL̃.Lemma A.22. Let L be a real latti
e. Then there exists an equivalent latti
e with basis
1 and τ in the upper half plane. The real part of τ is 0 for re
tangular latti
es and 1/2for rhombi
 latti
es.96



A.3. Real latti
esProof. Let ω1 and ω2 be the generators of L. Then τ = ω1

ω2
(or ω2

ω1
) is in the upper halfplane. Thus the latti
e L′ with generators τ and 1 is equivalent to L. So we only haveto 
onsider latti
es of this type and must show, that the real part of τ is 0 or 1/2. Inaddition we have for τ ∈ L also τ ∈ L, sin
e the latti
e is real.

τ + τ ∈ L and τ + τ ∈ RAll real ve
tors of the latti
e are integer multiples of 1. So τ+τ = a ∈ Z and the real partof τ is a/2. For any integer n we 
an 
hange the generator of the latti
e to τ ′ = τ +n. Sothe real part is either 0 or 1/2. Real part 0 is just the de�nition of re
tangular latti
es,and real part 1/2 
orresponds to rhombi
 latti
es.If two or more of the roots ei 
oin
ide the dis
riminant is zero. This leads to a degeneratelatti
e, where one of the periods is in�nity. We 
olle
t some fa
ts about this 
ase, whi
h
an be found in [EMOT53, p.339℄.Lemma A.23. Let g2, g3 be the Weierstrass invariants of a latti
e L and ei the threeroots of 4t3−g2t−g3 with e1 ≥ e2 ≥ e3. For ∆(L) = 0 we have the following three 
ases.(i) The two bigger roots 
oin
ide.
p =∞

τ =
2πi√
12a

e1 =e2 = a

e3 =− 2a

g2 =12a2

g3 =− 8a3

℘(z, 12a2,−8a3) =a+ 3a
1

sinh2(
√
3az)

ζ(z, 12a2,−8a3) =− az +
√
3a coth

(√
3az
)
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A. Ellipti
 Fun
tions(ii) The two smaller roots 
oin
ide.
τ =i∞

p =
2√
12a

e1 =2a

e2 =e3 = −a
g2 =12a2

g3 =8a3

℘(z, 12a2, 8a3) =− a+ 3a
1

sin2(
√
3az)

ζ(z, 12a2, 8a3) =az +
√
3a cot

(√
3az
)(iii) All roots 
oin
ide.

p =∞
τ =i∞
e1 =e2 = e3 = 0

g2 =0

g3 =0

℘(z, 0, 0) =z−2

ζ(z, 0, 0) =z−1A.4. Fundamental domain for the modular groupIn the previous se
tion we de�ned an equivalen
e relation on the set of latti
es. Twolatti
es are equivalent, if and only if there exists a 
omplex number a ∈ C∗ with
L = aL′.One of the generators of the latti
e 
an be 
hosen as 1, the other one is given by some

τ ∈ H with H ⊂ C the upper half plane. The equivalen
e of two latti
es generated by
(1, τ) and (1, τ ′) 
an be rewritten in terms of matri
es.98



A.4. Fundamental domain for the modular groupDe�nition A.24. The ellipti
 modular group
SL(2,Z) :=

{
M =

(
α β
γ δ

)
|α, β, γ, δ ∈ Z, detM = 1

}is the set of integer 2× 2-matri
es with determinant 1.Lemma A.25. Two latti
es of the type
Z+ Zτ and Z+ Zτ ′ τ, τ ′ ∈ Hare equivalent if and only if there exists a matrix M ∈ SL(2,Z) su
h that τ ′ =Mτ .The proof of this and the next assertion 
an be found in [FB00℄.Theorem A.26. For every τ ∈ H there exists aM ∈ SL(2,Z) su
h thatMτ is 
ontainedin the fundamental domain

F := {τ ∈ H | |τ | ≥ 1, |ℜ(τ)| ≤ 1/2}.

Figure A.3.: Fundamental domain for the modular groupThe ellipti
 modular group SL(2,Z) is generated by the two matri
es
T :=

(
1 1
0 1

)
, S :=

(
0 −1
1 0

)
. 99



A. Ellipti
 Fun
tionsThere are two spe
ial points in the fundamental domain, the lower right 
orner ρ := eπi/3
orresponds to the Weierstrass invariant g2 = 0 and the point i 
orresponds to g3 = 0.Re
tangular latti
es are situated on the imaginary axis, sin
e there the two generatorsare orthogonal to ea
h other. Rhombi
 latti
es are situated at the boundary of thefundamental domain. They 
an be parametrized by
τ =

1

2
+ iλ.The right side of the boundary 
an be identi�ed with the left side with the aid of thematrix T whi
h is just the translation of τ by 1. The latti
e generated by τ = 1

2 + iλand 1 is also generated by τ and τ . We now use the generators τ, τ and map them tothe upper half plane by setting
τ ′ =

τ

τ
=

1
2 + iλ
1
2 − iλThe new generators are τ ′ ∈ S1 and 1. In order to have τ ′ ∈ F the angle of τ ′ in polar
oordinates must be in the interval [π6 , π3 ]. Thus τ ′ lies in the fundamental domain for

λ ∈ [
√
3
6 ,

√
3
2 ]. Hen
e we mapped a part of the line 1/2 + iλ to the 
ir
ular border of thefundamental domain. For λ < √

3
6 we use the transformation
(
1 −1
2 −1

)(
τ
1

)
=

(
iλ− 1

2
2iλ

) (A.12)and obtain
τ ′′ =

iλ− 1
2

2iλ
=

1

2
+

1

4λ
i.This τ ′′ has real part 1

2 and imaginary part 1
4λ . The imaginary part is greater than √

3
2for λ < √

3
6 and hen
e we obtain τ ′′ ∈ F . So we 
an also map τ in the limit λ → 0 intothe fundamental domain. Thus the line τ = 1

2 + iλ whi
h des
ribes all rhombi
 latti
esby lemma A.22 is equivalent to the border of the fundamental domain.In se
tion 3.5 we 
onsidered deformations of the spe
tral 
urve. The next lemma shows,that deformations preserving the 
onformal 
lass 
an only be realized by in�nitesimallyMöbius transformations.Lemma A.27. Let Y be an ellipti
 
urve de�ned by
Y :=

{
(x, y) ∈ C2 | y2 = a(x)

}100



A.4. Fundamental domain for the modular groupfor some polynomial a(x) of degree 3 or 4 without multiple roots. Let A and B be twogenerators of the �rst homology group of Y . We de�ne the ellipti
 modulus τ of theellipti
 
urve by
τ =

∫
B ω∫
A ωfor the meromorphi
 di�erential

ω =
dx

y
.Let t be the parameter of a �ow deforming the spe
tral 
urve, the parameter x is 
hosen insu
h a way, that it does not 
hange during the �ow. Additionally let ȧ(x) be a deformationof the polynomial a(x) de�ning the ellipti
 
urve. Then every deformation preserving thehighest 
oe�
ient of a(x) with τ̇ = 0 is of the form

ȧ(x) = µ1a
′(x) + µ2(xa

′(x)− deg(a)a(x)), µ1, µ2 ∈ R (A.13)and hen
e an in�nitesimal Möbius deformation. These are the deformations whi
h donot 
hange the 
onformal 
lass of the ellipti
 
urve.Proof. The meromorphi
 di�erential form ω is de�ned as
ω :=

dx

y
.Thus the deformation of ω is given by

ω̇ = − ȧ dx
2y3

= − ȧ

2a
ω.The derivative of the ellipti
 modulus τ with respe
t to t 
an be 
al
ulated as to

d

dt
τ =

d

dt

∫
B ω∫
A ω

.The derivative is zero if and only if

 d

dt

∫

B

ω



∫

A

ω −


 d

dt

∫

A

ω



∫

B

ω = 0 101



A. Ellipti
 Fun
tionsholds. This equation is equivalent to
∫

A

(ω̇ + αω) =

∫

B

(ω̇ + αω) = 0for some α ∈ C. The 1-form ω̇ has only poles of se
ond order and these are only lo
atedat the bran
hing points of the ellipti
 
urve (the roots of the polynomial a(x)). Wenow 
onsider the hyperellipti
 involution (x, y) 7→ (x,−y). The 1-form ω̇ is mapped toits negative under the hyperellipti
 involution. Let z be a lo
al parametrization of thesurfa
e around a bran
h point of Y with z = 0 at the bran
h point. A 
ir
le γ aroundthe bran
h point is mapped onto itself under the hyperellipti
 involution with the sameorientation. Thus we obtain ∫

γ

ω̇ =

∫

γ

−ω̇and therefore the 1-form ω̇ has no residuum. Thus there exists a meromorphi
 fun
tion
f su
h that

ω̇ + αω = dfholds. The fun
tion f has simple poles only at the bran
hing points and hen
e is of theform
f(x) =

1

y
p(x)with p(x) a polynomial of degree at most 2 (there is no pole at in�nity). The polynomialsof degree at most 2 are linear 
ombinations of 1, x, x2. Thus we have to 
al
ulate

d

(
1

y

)
d

(
x

y

)
d

(
x2

y

)
.We obtain

d

(
1

y

)
= − a′

2ya
dx = − a′

2a
ω,

d

(
x

y

)
=
dx

y
− xa′

2y3
dx = ω − xa′

2a
ω,

d

(
x2

y

)
=

2xdx

y
− x2a′

2y3
dx = 2xω − x2a′

2a
ω.Comparing this to

ω̇ = − ȧ

2a
ω102



A.4. Fundamental domain for the modular groupwe obtain possible formulas for ȧ(x). They are given by
ȧ(x) = a′(x),

ȧ(x) = −2a(x) + xa′(x),

ȧ(x) = x2a′(x)− 4xa(x),where we 
an add multiples of a(x) to every term. The deformations ȧ(x) 
an havedegree at most deg(a)− 1 in order to preserve the highest 
oe�
ient. Hen
e all possibledeformations are of the form
ȧ(x) = µ1a

′(x) + µ2(xa
′(x)− deg(a)a(x)), µ1, µ2 ∈ R.
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B. QuaternionsThe problem of determining a simple and appropriate method to des
ribe rotations in
R3, lead William Rowan Hamilton to invent the quaternions in the midth of the 19th
entury.He was inspired by the des
ription of rotations in R2, su
h rotations 
an be des
ribedby a 
omplex number z of norm 1. The angle of the rotation 
an be regarded as anglebetween the 
omplex number zs in the 
omplex plane and the real axis. A 
ompositionof two rotations is given by the multipli
ation of the 
orresponding 
omplex numbers.Hamilton tried a long time to �nd an analogue in R3 with the aid of 3-tuples. The ideaof using 4-tuples instead lead to the quaternions.De�nition B.1. The division ring of the quaternions is de�ned by

H = {a0 + ia1 + ja2 + ka3 | a0, a1, a2, a3 ∈ R}.The elements i, j, k satisfy the rules
i2 = j2 = k2 = −1and

ij = k, jk = i, ki = j.We 
an de�ne a multipli
ation and an addition on the quaternions. The multipli
ationis not 
ommutative (this will be shown later), so we only obtain a division ring. Thequaternions 
an be 
onsidered as a generalization of the 
omplex numbers. So we de�nefor a quaternion
a := a0 + a1i+ a2j + a3kthe real part as a0 and the imaginary part as a1i + a2j + a3k. The 
onjugation isde�ned by
a := a0 − a1i− a2j − a3k. 105



B. QuaternionsThe norm of a quaternion is the standard eu
lidean norm of R4 if we identify a with theve
tor (a0, a1, a2, a3),i.e.
‖a‖ =

√
a20 + a21 + a22 + a23. (B.1)We 
an write the quaternions also as matri
es. Therefore we use the following isomor-phism into 
omplex 2× 2-matri
es

H ∋ 1 =

(
1 0
0 1

)
,

H ∋ i =

(
i 0
0 −i

)
∈ su(2),

H ∋ j =

(
0 1
−1 0

)
∈ su(2),

H ∋ k =

(
0 −i
−i 0

)
∈ su(2).We regard the matri
es of su(2) as the imaginary quaternions. We 
an generalize this toarbitrary quaternions with

a = a0 + a1i+ a2j + a3k =̂

(
a0 + a1i a2 − a3i
−a2 − a3i a0 − ia1

)
.The norm of a quaternion in this notation is given by the determinant of the matrix.The inverse of a quaternion 
an be 
omputed like the inverse of a 
omplex number

a−1 =
a

‖a‖2 .We identify ve
tors in R3 with the imaginary quaternions and therefore write
R3 ∋ (p1, p2, p3) = p =̂ 0 + p1i+ p2j + p3k ∈ H.Now we 
an write any quaternion a ∈ H as the sum of a ve
tor in R3 and a s
alar

a = a0 + a.106



With this abbreviation the multipli
ation of two quaternions p and q 
an be 
al
ulatedas
pq = (p0 + ip1 + jp2 + kp3) (q0 + iq1 + jq2 + kq3)

= p0 (q0 + iq1 + jq2 + kq3) + ip1 (q0 + iq1 + jq2 + kq3) + jp2 (q0 + iq1 + jq2 + kq3)

+ kp3 (q0 + iq1 + jq2 + kq3)

= (p0q0 + ip0q1 + jp0q2 + kp0q3) + (ip1q0 + iip1q1 + ijp1q2 + ikp1q3)

+ (jp2q0 + jip2q1 + jjp2q2 + jkp2q3) + (kp3q0 + kip3q1 + kjp3q2 + kkp3q3)

= (p0q0 + ip0q1 + jp0q2 + kp0q3) + (ip1q0 − p1q1 + kp1q2 − jp1q3)

+ (jp2q0 − kp2q1 − p2q2 + ip2q3) + (kp3q0 + jp3q1 − ip3q2 − p3q3)

= p0q0 − p1q1 − p2q2 − p3q3 + i (p0q1 + p1q0 + p2q3 − p3q2)

+ j (p0q2 − p1q3 + p2q0 + p3q1) + k (p0q3 + p1q2 − p2q1 + p3q0) .This 
an be written in short as
pq = p0q0 − 〈p,q〉+ p0q+ q0p+ p× q. (B.2)The ve
tor produ
t p×q is not 
ommutative, hen
e the multipli
ation is not 
ommuta-tive. So the de�nition of the quaternions as a division ring makes sense.As already mentioned the history of quaternions has a deep 
onne
tion to rotations in

R3. We now des
ribe this 
onne
tion, we follow [Lyo03℄.Theorem B.2. Let r = r0 + r1i+ r2j + r3k = r0 + r ∈ H be an unit quaternion. Then
Rr : R

3 → R3

v 7→ rvrdes
ribes a rotation of the ve
tor v with rotation axis (r1, r2, r3) and rotation angle
2 arccos r0. Here we again identify the ve
tor v ∈ R3 with the imaginary quaternion
v1i+ v2j + v3k.Proof. First we show that the produ
t rxr also determines an imaginary quaternion. We107



B. Quaternionsuse formula (B.2) and obtain
Rr (v) = rvr =(r0 − r) (0 + v) (r0 + r)

= (r0 · 0 + 〈r,v〉 − 0 · r+ r0v− r× v) (r0 + r)
= (〈r,v〉+ r0v− r× v) (r0 + r)
=〈r,v〉r0 − 〈r0v− r× v, r〉+ 〈r,v〉r

+ r0 (r0v− r× v) + (r0v− r× v)× r
=〈r,v〉r0 − 〈r0v, r〉+ 〈r× v, r〉+ 〈r,v〉r

+
(
r20v)− r0 (r× v) + (r0v)× r

− (r× v)× r
=〈r× v, r〉+ 〈r,v〉r+ r20v− r0 (r× v)

+ r0 (v× r)− (r× v)× r
=〈r× v, r〉+ 〈r,v〉r+ r20v− 2r0 (r× v)
=2〈r,v〉r− 〈r,v〉r+ r20v− 2r0 (r× v)
=2〈r,v〉r− |r|2 v+ r20v− 2r0 (r× v)
=
(
r20 − |r|2)v+ 2〈r,v〉r− 2r0 (r× v) . (B.3)There is no real part in the last equation (B.3), so the mapping Rr is well de�ned.The quaternion r has norm 1, hen
e we 
an write

r20 + ‖r‖2 = 1.This is very similar to cos(θ)2+sin(θ)2 = 1, so we 
an identify r0 with cos(θ). We 
hoose
−π < θ ≤ π for the uniqueness of θ. Therefore we 
an write the quaternion r as

r = r0 + r1i+ r2j + r3k = cos(θ) + u sin θwith
u =

r

‖r‖ ,a pure imaginary quaternion.Now we take the followings steps to prove the assertion.(i) Rr preserves the length of the ve
tor v.108



(ii) u is the rotation axis regarded as ve
tor in R3.(iii) Rr is a linear map.We have
‖Rr(v) = ‖rvr‖ = ‖r‖ ‖v‖ ‖r‖

= ‖v‖,sin
e r is an unit quaternion. Hen
e Rr preserves the norm and (i) is proven.Next we have to show, that Rr(u) = u, so u = λr with λ = ‖r‖−1 is �xed under therotation and therefore the rotation axis.
Rr(u) = Rr (λr) = r (λr) r = (r20 − |r|2) (λr) + 2〈r, λr〉r+−2r0 (r× (λr))

= r20λr− λ |r|2 r+ 2λ |r|2 r
= λr(r20 − |r|2 + 2 |r|2)
= λr(r20 + |r|2)
= λr · 1
= λr
= uSo u 
an be regarded as rotation axis and (ii) follows.For the linearity of Rr let a,b ∈ R3 and λ ∈ R. Then

Rr(a+ λb) = r(a+ λb)r

= rar + r(λb)r

= rar + λrbr

= Rr(a) + λRr(b).Thus the map Rr is linear and (iii) is proven.We 
ome ba
k to the proof of the theorem. We split the ve
tor v, whi
h we want torotate, in two orthogonal parts. One part in dire
tion of the rotation axis u = λr andone ve
tor orthogonal to the axis
v = λr+ n, 〈u,n〉 = 0. 109



B. QuaternionsWe now 
al
ulate Rr(n) using formula (B.3)
Rr(n) =

(
r20 − ‖r‖2

)
n+ 2〈r,n〉r − 2r0(r× n)

=
(
r20 − ‖r‖2

)
n− 2r0(r× n)

=
(
r20 − ‖r‖2

)
n− 2r0(u‖r‖ × n)

=
(
r20 − ‖r‖2

)
n− 2r0‖r‖(u × n).Setting u× n = n⊥ we obtain

Rr(n) =
(
cos2(θ)− sin2(θ)

)
n− 2 cos(θ) sin θn⊥

= cos(2θ)n− sin(2θ)n⊥.The part u of v lies on the rotation axis and hen
e is invariant under Rr. We use thelinearity of Rr and obtain
Rr(v) = Rr(u+ n) = Rr(u) +Rr(n)

= u+ cos(2θ)n− sin(2θ)n⊥
:= u+m.Thus m is the ve
tor obtained by rotating n around the axis u with angle −2θ. Weobtain a rotation as des
ribed in the assertion.Now we 
ome to the 
omposition of two rotations. Sin
e the quaternioni
 multipli
ationis not 
ommutative the order of the appli
ation of rotations is important.Lemma B.3. Let p and q be two unit quaternions with 
orresponding rotations

Rp(a) = pap and Rq(b) = qbq.Then the multipli
ation of the quaternions p and q de�nes a rotation Rpq whi
h 
orre-sponds to the 
omposition of the rotations Rp and Rq. Angle and rotation axis of the
omposed rotation 
an be 
al
ulated in terms of the quaternion pq.Proof. Let u ∈ R3 be a ve
tor and v ∈ R3 be its image under Rq

v = Rq(u)

= quq.110



Now we rotate v with the rotation Rp and hen
e 
onsider the 
omposition of Rq and Rp,written as Rp ◦Rq and obtain
w = Rp(v)

= pvp

= p(quq)p

= (qp)u(qp) = Rqp(u).The produ
t qp is an unit quaternion, sin
e p and q are. Hen
e Rqp is a rotation and thequaternion de�ning this rotation is exa
tly the produ
t of q and p.The set S3 ⊂ H of unitary quaternions together with the quaternioni
 multipli
ationful�lls all group axioms. The elements of S3 have norm 1 and the multipli
ation preservesthe norm. The group ist not abelian, only the multipli
ation with 1 or −1 
ommutes(these are the only real quaternions of S3).The set of rotations in R3 together with the 
omposition of rotations as group operation isalso a group, this group is 
alled SO(3). But we have de�ned rotations in R3 with the aidof unitary quaternions, the 
omposition of two rotations 
orresponds to the multipli
ationof two unitary quaternions. Hen
e there exists a group homomorphism
ϕ : S3 → SO(3),

r 7→ Rr.Ea
h rotation in SO(3) 
an be written as Rr for some r ∈ S3. Ea
h rotation has twopreimages in S3, namely r and −r. This follows from
R−r(v) = (−r)v(−r)

= (−r)v(−r)
= (−1)rv(−1)r

= rvr = Rr(v).Hen
e the subgroup {1,−1} is the kernel of the map ϕ, sin
e R1 and R−1 are the identity.We obtain the group isomorphism
S3/{1,−1} ∼= SO(3). (B.4)111



B. QuaternionsAdditionally we have an isomorphism S3 ∼= SU(2,C), given by the matrix des
ription ofquaternions and the fa
t, that the norm of a quaternion in this situation is the determi-nant. So we 
an write an unit quaternion a ∈ S3 ⊂ H as
a = a0 + a1i+ a2j + a3k =̂

(
a0 + a1i a2 − a3i
−a2 − a3i a0 − ia1

)
.and the matrix has determinant 1. This is exa
tly the de�nition of SU(2,C). Thus weobtain an isomorphism

SU(2,C)/{1,−1} ∼= S3/{1,−1} ∼= SO(3).
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