
CONSTRAINED WILLMOREHOPF TORI
Inauguraldissertationzur Erlangung des akademishen Gradeseines Doktors der Naturwissenshaftender Universität Mannheim

vorgelegt vonDipl.-Math. Jörg Zentgrafaus Münhen
Mannheim, 2012



Dekan: Professor Dr. Heinz Jürgen Müller, Universität MannheimReferent: Professor Dr. Martin Shmidt, Universität MannheimKorreferent: Dr. Martin Kilian, University College Cork, IrlandTag der mündlihen Prüfung: 27.September 2012



AbstratGeneralized elasti urves on S2 are ellipti solutions of a di�erential equation on the ur-vature of the urve. These equations are solved in terms of Weierstrass ellipti funtionsdepending on the parameters of the di�erential equation. It is investigated whih of theseparameters yield losed urves on S2 and how these urves an be parametrized. TheHopf �bration h : S3 → S2 lifts losed generalized elasti urves to tori in S3. These toriare onstrained Willmore surfaes, i.e. extremal values of the Willmore funtional un-der variations preserving the onformal struture. They are alled onstrained WillmoreHopf tori. The onformal lass and the Willmore energy of suh tori is alulated.
ZusammenfassungVerallgemeinerte elastishe Kurven auf S2 sind elliptishe Lösungen einer Di�erential-gleihungen an die Krümmung der Kurve. Diese werden in Abhängigkeit von einigenParametern gelöst, die Lösung wird mit Hilfe von Weierstrass'shen elliptishen Funk-tionen dargestellt. Es wird untersuht welhe Parameter geshlossene Kurve liefern, eineParametrisierung dieser Kurven auf S2 wird hergeleitet. Die Hopf-Faserung h : S3 → S2liftet geshlosse verallgemeinerte elastishe Kurven zu Tori in S3. Dies Tori sind on-strained Willmore Flähen, d.h. sie sind Extremwerte des Willmore-Funktionals unterVariationen, die die konforme Klasse der Flähe erhalten. Wir nennen diese Flähen on-strained Willmore Hopf Tori. Es werden die konforme Klasse und die Willmore-Energievon solhen Tori berehnet.
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1. IntrodutionOverviewIn this thesis we onsider onstrained Willmore surfaes and Hopf tori. These two objetswill be interrelated via generalized elasti urves. This relationship will now be explainedin detail.A surfae M in R3 is a two-dimensional subset of R3 parametrized by two oordinates.The surfae should be smooth and immersed, i.e. the surfae is the graph of a smoothfuntion and the derivative of the funtion is injetive. On the surfae M we de�ne ametri g, whih measures distanes as well as the volume of areas. At every point p of thesurfae there exists in every diretion an osulating irle S, whih touhes the surfaesin seond order, i.e. the �rst and seond derivative of the irle S and the surfae Moinide at p. The extremal values of the inverse of the radii of these irles are alledprinipal urvatures κ1, κ2 of the surfae M at the point p. The mean urvature at thepoint p is de�ned as H = 1
2 (κ1 + κ2). This mean urvature leads to many interestingtypes of surfaes. For example minimal surfaes have mean urvature H = 0 at everypoint of the surfae, onstant mean urvature surfaes have mean urvature H = c ∈ R atevery point of the surfae. In this thesis we are interested in Willmore surfaes, thereforewe have to de�ne the Willmore funtional. It is given by

W(M) =

∫

M

H2 dA.We integrate the square of the mean urvature over the whole surfae and measure thisquantity with the help of the volume form dA indued by the metri g. This Willmorefuntional an also be extended on surfaes in S3. Willmore surfaes are extremal valuesof this funtional under ompatly supported variations of the surfae. ConstrainedWillmore surfaes are obtained if we only onsider variations whih do not hange theonformal lass of the surfae. The onformal lass desribes the set of equivalent metris,1



1. Introdutionhere we onsider only in�nitesimal onformal transformations of the surfae and use thede�nition given by [BPP08℄. Sine Willmore surfaes are de�ned by a funtional, theyare solutions of an equation of Euler-Lagrange type.Willmore surfaes have been introdued by Willmore [Wil65℄ in 1965. In the 19th enturyDarboux and later in the 1920s Blashke [Bla29℄ and Thomsen [Tho23℄ already studiedonformal invariant submanifolds, but they only onsidered the loal geometry. Willmoreinvestigated the same objets from a global viewpoint and was the �rst to give an expliitexample. A good survey of the history of Willmore surfaes an be found in [HJ03, h.3℄.Willmore also stated the Willmore onjeture, whih says that the Willmore funtionalof tori in R3 is greater than 2π2 and equality is attained for the Cli�ord torus. TheWillmore onjeture has reently be proved by Marques and Neves [MN12℄. The Cli�ordtorus in R3 is de�ned as the stereographi projetion of the Cli�ord torus in S3, whihis given by the produt of two irles of the same radii. The Cli�ord torus in S3 ⊂ R4 isgiven by the set
TC :=

{
(x1, x2, x3, x4) ∈ R4 |x21 + x22 = x23 + x24 =

1
2

}
.A good survey over the relationship of the Cli�ord torus to many onjetures in geometryan be found in [Tai05℄. Regarding onstrained Willmore surfaes the �rst alulationof an equation of Euler-Lagrange type was given by Bohle, Peters, Pinkall in [BPP08℄.This paper also gives a good survey over many topis related to onstrained Willmoresurfaes.Elasti urves are urves whih are extremal values under the so-alled bending energy.We mainly onsider immersed urves on S2 ⊂ R3, that are de�ned by a map γ froman interval (a, b) to R3. The urves should be regular, i.e. the derivative of γ is nonvanishing. In general urves an be desribed by their veloity (the �rst derivative) andtheir urvature κ (the seond derivative). The bending energy is de�ned as

b∫

a

κ2(s)ds.We now �x the start and the end point of a urve and then minimize the bending energy.The urves obtained in this way are alled elasti urves. If we add some more onstraintson the type of minimization we obtain generalized elasti urves.Elastia have been onsidered by mathematiians for a long time. Levien [Lev08℄ andTruesdell [Tru83℄ have olleted a lot of fats onerning the history of elastia, whih willnow be summarized. In the 13th entury the mathematiian Jordanus de Nemore wrote2



about elastia. Aording to Truesdell [Tru83℄ the exhange of two letters between JakobBernoulli and Leibniz, starting on the 15th of Deember 1687, is the birth date of elastiurves. The �rst rigorous de�nition was given by Jakob Bernoulli in 1691. He posed thefollowing problem: "What happens to a lamina whih is �xed at one end and has a weighton it on the other end?" This question is one instane of the problem of elasti urves,this spei� question onerns retangular elastia, sine one end of the urve is �xed.In the following years he partially solved the problem by giving a di�erential equationfor the resulting urve. In the following years Daniel Bernoulli and Leonhard Euler alsotried to solve the problem. In 1742 Daniel Bernoulli proposed variational tehniques inorder to solve the problem. In 1744 Euler gave a omplete haraterization of the familyof urves known as elastia by using variational methods. He desribed all possible formsthe elasti urve may take. Elasti urves also lead to the theory of ellipti funtions (thedi�erential equation found by Jakob Bernoulli an be solved by ellipti funtions). Onthe 23rd of Deember 1751 (aording to Truesdell [Tru83℄) Euler was asked to reviewFagnano's olleted works (this is set as the birth date of ellipti funtions by Jaobi).Euler ombined his previous studies about ellipti integrals and ellipti funtions andFagnano's geometrial investigations to obtain the addition theorem of ellipti funtionsin the 1770s. The solutions in losed form of elastia were �rst given by Saalshütz in1880 by using Jaobi ellipti funtions. The �rst plots of elastia have been publishedin Max Born's PhD thesis in 1906. So the theory of elasti urves is an old �eld ofmathematis, many people have put e�ort into studies of these urves.Even nowadays they are subjet to researh. In 1984 Langer and Singer [LS84a℄, [LS84b℄investigated losed elasti urves in Rn and gave a lassi�ation of them. They determinedthe knottedness of elasti urves and indexed losed elasti urves on S2 one-to-one bypairs of integers, where the integers determine the number of trips around the equatorand the number of periods after whih the urve loses up. Bryant and Gri�ths [BG86℄used Hamiltonian formalism to obtain an Euler-Lagrange equation for elasti urves andadditionally studied elasti urves in the hyperboli 3-spae. Arroyo, Garay, and Menía[AGM04℄, [AGM03℄ studied the losing onditions for elasti urves and generalizations ofelasti urves. Their generalization hanges the integral ∫ κ2 to ∫ P (κ) for some smoothfuntion P (κ) depending on the urvature κ. Furthermore they determined the Euler-Lagrange equation for this generalized funtionals. Goldstein and Petrih [GP91℄ relatedgeneralized elasti urves to the modi�ed Korteweg-de Vries (mKdV) hierarhy, theyonsidered urves with �xed length and �xed enlosed area. Musso [Mus09℄ extendedthis relationship and obtained numerial examples of generalized elasti urves.
3



1. IntrodutionIn 1931 Heinz Hopf wrote the very important artile [Hop31℄ "Über die Abbildungen derdreidimensionalen Sphäre auf die Kugelober�ähe". He found a many-to-one ontinuousmapping h : S3 → S2 (later alled Hopf map), where every point on S2 omes from airle on S3. This yields a S1 �ber bundle over S2. This �bration an be generalized to amapping from the unit sphere in Cn+1 to PCn where the �bers are again given by irles.Another important generalization is the S7 �bration with �bers S3 and basis S4. Hopfde�ned an integer number invariant (today alled Hopf invariant) for all mappings from
S3 to S2, the Hopf map has invariant 1 and is therefore not null-homotopi. Variations ofthe Hopf �bration are used in quantum dynamis, twistor theory, and �uid dynamis. Agood overview regarding the usage of the Hopf �bration is given by Urbantke in [Urb03℄.The onnetion between Willmore surfaes and Hopf tori was disovered by Pinkall[Pin85℄ in 1985. He studied the preimage of losed urves on S2 under the Hopf map-ping whih are de�ned as Hopf tori. The onformal lass of a Hopf torus is related to thelength and the enlosed area of the underlying urve. Furthermore he omputed the meanurvature of a Hopf torus as the urvature of the underlying urve on S2. He obtainedin�nitely many embedded Willmore tori in R3 and showed that there exist Willmore toriin R3 whih annot be obtained by stereographi projetion of minimal surfaes in S3.Arroyo and Garia [AG01℄ used this idea to study Hopf vesiles in S3, whih are ritialpoints under the elasti energy of surfaes, hene a generalization of elasti urves to elas-ti surfaes. The relation between Hopf tori, generalized elasti urves and onstrainedWillmore surfaes was desribed by Bohle, Peters, Pinkall in [BPP08℄. Preissler [Pre03℄investigated the onnetion between Willmore tori and isothermi surfaes (these aresurfaes where the parameters an be hosen as urvature lines). Musso [Mus09℄ gave aonformal parametrization of Hopf tori over urves on S2 in terms of SU(2,C)-matries.Barros and Ferrández [BF11℄ obtained estimates for the Willmore energy in onformalBerger spheres. Berger spheres are standard three spheres with an one-parameter familyof metris. They investigated isoareal Hopf tori and obtained best possible lower boundsfor the Willmore energy of them.What is done in this workThis thesis is organized as follows. In the seond hapter we desribe the basis ofsurfae theory. The �rst and seond fundamental form of a surfae in R3, S3, or R4 arede�ned. The �rst fundamental form desribes the intrinsi geometry of a surfae, theseond fundamental form desribes the position of the surfae in the surrounding spae.4



Based on these two fundamental forms we de�ne the mean urvature H and the Hopfdi�erential Q of a surfae. A frame is de�ned as a basis of the tangent spae to the surfaeat a given point p. Given a motion on the urve we an also de�ne a moving frame. Weintrodue the Lax pair formalism whih desribes di�erential equations ful�lled by themoving frame. The ompatibility equation for these di�erential equations is known as theMaurer-Cartan equation. The urvature and the torsion of urves in R3 are introdued.The frame of a urve ful�lls di�erential equations with respet to urvature and torsion.Then we de�ne the Willmore funtional
W(M) =

∫

M

H2dAof a surfae M in R3. Willmore surfaes are extremal values under variations of thesurfae. If we only onsider onformal variations we obtain onstrained Willmore surfaesas extremal values. Willmore surfaes are invariant under onformal mappings. Theyare de�ned via a funtional depending on the mean urvature H, hene we an give anequation of Euler-Lagrange type whih haraterizes Willmore and onstrained Willmoresurfaes.The third hapter deals with elasti and generalized elasti urves on S2. First we de�nethem as solutions of the di�erential equation
κ′′(x) +

1

2
κ(x)3 + aκ(x) + b = 0, a, b ∈ Rwith the urvature funtion κ(x). This di�erential equation an be solved in terms ofWeierstrass ellipti funtions for any initial values. The initial values determine an elliptiurve Y , whih desribes the periodi solution of the di�erential equation. The next stepis to reover the urve from the urvature, therefore we introdue the spetral urve Γof an elasti urve. This an be done by examining a onnetion between elasti urvesand the modi�ed Korteweg-de Vries (mKdV) equation. We then follow the standardproedure of de�ning the spetral urve as the eigenvalue urve of a matrix. It turnsout, that the spetral urve Γ is isomorphi to the ellipti urve Y of the solution.Transforming the di�erential equations of the frame of the elasti urve to a seond orderequation of Lamé type we an integrate the frame of the generalized elasti urve andgive a parametrization of the urve on S2 ⊂ R3. There are two sets of parameters forthese generalized elasti urves, on the one hand we have the parameters a, b de�ned bythe di�erential equation and one integration onstant c. On the other hand we have theparameters g2, g3, w where g2, g3 are the Weierstrass invariants of the ellipti urve Y5



1. Introdutionand ℘(w) is a point on the ellipti urve Y with w ∈ iR. The seond set of parameters ismore suitable to haraterize losed generalized elasti urves. The urve is losed if andonly if the frame is periodi, this ondition an be expressed by a funtion whih musthave rational values. In the onsideration of losed urve there arise two ases, dependingon the disriminant of the polynomial 4t3 − g2t − g3 for the real Weierstrass invariants
g2, g3. In the �rst ase the disriminant is positive and hene the polynomial has threereal roots, this ase is easy to handle. In the other ase with one real root and twoomplex onjugate roots, we have to introdue deformations of the spetral urve. Thelast part of this hapter deals with onstant urvature solutions, whih are speial asesof generalized elasti urves. Here the ellipti urve Y is singular, we study deformationsof this singular ellipti urves to non singular ellipti urves whih are the spetral urvesof non onstant generalized elasti urves.In the fourth hapter we introdue the main onepts of the Hopf �bration h : S3 → S2.It is shown that the preimage of eah point on S2 is a irle in S3. By stereographiprojetion of all these irles we obtain linked irles and one line passing through allirles. A Hopf torus is the preimage of a losed urve on S2 under the Hopf �bration.These tori an be onformally parametrized and all of them are �at. The mean urvatureof a Hopf torus an be alulated as being exatly the urvature of the underlying urve.The onformal parametrization is used to alulate the onformal lass of a Hopf torus.The �fth hapter ombines the third and fourth hapter. We desribe how to use gen-eralized elasti urves in order to obtain onstrained Willmore surfaes with the aid ofthe Hopf �bration. The preimages of elasti urves under the Hopf �bration lead toWillmore ylinders. If the elasti urve is losed we obtain Willmore tori. These ideasan be generalized by generalized elasti urves. Here the preimages of the urve lead toonstrained Willmore ylinders and onstrained Willmore tori, if the generalized elastiurve is losed. We alulate the onformal lass of the onstrained Willmore Hopf torias well as their Willmore energy in terms of the parameters g2, g3, w.The �rst appendix ontains the basis of ellipti funtions, espeially Weierstrass ellip-ti funtions. We introdue Weierstrass ellipti funtions and the Weierstrass invariants
g2, g3. The ℘-funtion is a periodi funtion on a lattie, the ζ- and σ-funtions arequasiperiodi. We examine in detail real latties whih orrespond to real g2, g3 andidentify them in the fundamental domain of the modular group. We show that defor-mations of the spetral urve preserving the onformal lass are given by in�nitesimalMöbius transformations. The seond appendix deals with quaternions and rotations in
R3 desribed by quaternions.6



2. Surfae theory and Willmore surfaes2.1. Basis of surfae theoryIn this setion we introdue the basi onepts of surfae theory in R3, R4 and S3 ⊂ R4.We will de�ne the fundamental forms of surfaes and introdue the mean urvature ofa surfae. Many of the onepts are independent of the surrounding spae, we onsideronly eulidean spaes (mostly R3 or R4) and we will indiate the di�erenes if needed.Therefore let M be an orientable 2-dimensional manifold and f an C∞-immersion into
R3, R4 or S3. This means f is a mapping with injetive derivative. The eulidean vetorspaes R3 and R4 are endowed with the standard eulidean salar produt 〈·, ·〉 andthe hereby indued norm ‖ · ‖. If we onsider immersions into S3 we onsider them asimmersions into R4 with ‖f‖ = 1.In R4 we have the standard eulidean metri indued by the salar produt. This metrian be used to de�ne a metri on the manifold M . The metri on the immersed manifoldleads to new objets, espeially the onformal fator, whih will be important later on.De�nition 2.1. Let f : M → S3 be an immersion equipped with the metri h = 〈·, ·〉 of
R4 restrited to S3 ⊂ R4. The indued metri

g : TpM × TpM → R,

(v,w) 7→ h(df(v), df(w)) = 〈df(v), df(w)〉is alled �rst fundamental form. Here df(v) is the derivative of f in diretion of thetangent vetor v.Let (x, y) be a oordinate of M . Sine f is an immersion, a basis for TpM an be hosenas fx, fy with
fx =

(
∂f

∂x

)

p

, fy =

(
∂f

∂y

)

p

. 7



2. Surfae theory and Willmore surfaesThen the metri g an be represented as the matrix
g =

(
〈fx, fx〉 〈fx, fy〉
〈fy, fx〉 〈fy, fy〉

)
.An immersion is alled onformal if and only if there exists a funtion u : M → R,whih is alled onformal fator, suh that

g = 4e2u
(
1 0
0 1

)
. (2.1)A onformal immersion is alled �at if the onformal fator is onstant.This de�nition is independent of the surrounding spae, all objets have been de�nedjust with the help of the salar produt. These objets are the intrinsi invariants of asurfae.Now we ome to the extrinsi invariants de�ned for an immersed surfae. Therefore wede�ne the unit normal vetor N to the surfae f(M) ⊂ R3 by

NR3 =
fx × fy
‖fx × fy‖

,and we see that N is perpendiular to the tangent plane TpM at every point f(p). In S3or R4 we have to use a generalized ross produt and then de�ne
NR4 =

f × fx × fy
‖f × fx × fy‖

.Here the extended ross produt is de�ned by
a× b× c =

4∑

i=1

det
(
ei a b c

)
· ei, a, b, c ∈ R4 (2.2)with ei the unit vetors in R4. If it is lear whih normal is used we denote it only by N .De�nition 2.2. The seond fundamental form of an immersion f :M → S3 is givenby

b =

(
b11 b12
b21 b22

)
=

(
〈N, fxx〉 〈N, fxy〉
〈N, fyx〉 〈N, fyy〉

)
.8



2.1. Basis of surfae theoryThe seond fundamental form an also be written in terms of di�erentials as
b = b11dx

2 + b12dxdy + b21dydx+ b22dy
2.Swithing to omplex oordinates z = x+ iy one obtains

b = Qdz2 + H̃dzdz +Qdz2,where Q is the omplex-valued funtion
Q :=

1

4
(b11 − b22 − ib12 − ib21)and H̃ is the real-valued funtion
H̃ :=

1

2
(b11 + b22).De�nition 2.3. The linear map S : TpM → TpM de�ned by

S := g−1bis alled shape operator of the immersion f .The shape operator ombines the metri and the seond fundamental form. It de�neshow to measure the seond fundamental form (whih is essentially the matrix of seondderivatives) in the ambient spae.De�nition 2.4. The eigenvalues and the orresponding eigenvetors of the shape operatorare alled prinipal urvatures and prinipal urvature diretions of the surfae f(M)at the point f(p). If at a point p the two eigenvalues are equal the point is alled umbili.The symmetri 2-di�erential Qdz2 is alled Hopf di�erential of the immersion f . Thedeterminant of the shape operator
K := detSis alled Gauss urvature and half of the trae of the shape operator
H :=

1

2
trS (2.3)is alled mean urvature. 9



2. Surfae theory and Willmore surfaesLemma 2.5. Let M be a Riemann surfae and f : M → S3 be a onformal immersion.Then p ∈M is an umbili point if and only if Q = 0.Proof. The shape operator of a onformal immersion is given by
S =

1

4e2u

(
H +Q+Q i(Q−Q)

i(Q−Q) H −Q−Q

)with respet to the basis fx, fy of the tangent spae of f(M). The two prinipal urva-tures are the eigenvalues of the shape operator and hene are solutions of the equation
4e2u det(S − k1) = (H +Q+Q− k)(H −Q−Q− k) + (Q−Q)2

= (H − k)2 − (Q+Q)2 + (Q−Q)2

= (H − k)2 − 4‖Q‖2.Thus we obtain
k1 = H + 2‖Q‖, k2 = H − 2‖Q‖.Finally we have k1 = k2 ⇔ Q = 0 and the assertion follows.Up to now all objets have been desribed loally at a point on the surfae M . Now weexpand this and de�ne a frame on the surfae whih helps us to investigate movementson the surfae.De�nition 2.6. Let M be a smooth manifold. A frame is a basis of TpM for a givenpoint p ∈ M . A moving frame is a tuple (X1, . . . ,Xn) of vetor �elds, suh that

(X1(p), . . . ,Xn(p)) is a basis of TpM at every point p. The moving frame an be onsid-ered as olletion of frames along a motion in M .We now onsider the derivatives of frames depending on two parameters. The standardproposition is the following due to Lax [Lax68℄.Proposition 2.7. Let U ⊂ R2 be an open, simply onneted set ontaining (0, 0). For
U, V : U → su(2) we all U, V the Lax pair of the frame F = F (x, y) : U → SU(2,C) ifthey ful�ll the equations

Fx = UF, Fy = V F.There exists a solution F (x, y) : U → SU(2,C) for any initial onditions F (0, 0) ∈
SU(2,C) if and only if

Uy − Vx + [V,U ] = 0. (2.4)The last equation is alled Maurer-Cartan equation.10



2.2. Curves on S2In many ases it is also possible to add an extra variable λ ∈ S1, the so alled spetralparameter to the Lax pair U, V . One now requires that the Maurer-Cartan equation isful�lled for all λ. This theory will be applied in setion 3.2.2.2. Curves on S2De�nition 2.8. Let
γ : I → R3,

s 7→ γ(s)be a mapping with I = (a, b) some interval in R. If dγ
ds 6= 0 for all s ∈ I then γ is alledregular urve.The ar length of a urve is given by

‖γ‖ar := b∫

a

∥∥∥∥
dγ(s)

ds

∥∥∥∥ ds.We an always hoose a parametrization s̃ suh that
∥∥∥∥
dγ(s̃)

ds̃

∥∥∥∥ = 1.and therefore ‖γ‖ar = b− a. Then the urve is alled parametrized by ar length.The tangent vetor of a urve parametrized by ar length s is given by
T (s) :=

dγ(s)

ds
.In the previous setion we de�ned the frame of an immersed surfae. We an also de�nea frame for urves, this frame also ful�lls a di�erential equation. Sine urves dependonly on one parameter, there exists only one di�erential equation, not two as in the Laxpair formalism. 11



2. Surfae theory and Willmore surfaesLemma 2.9. Let γ(s) be a urve on S2 ⊂ R3 parametrized by ar length. A frame isgiven by the three vetors {e1(s), e2(s), e3(s)} with
e1(s) = γ(s),

e2(s) = T (s) = γ′(s),

e3(s) = γ(s)× γ′(s).These vetors satisfy the equations
d

ds



e1(s)
e2(s)
e3(s)


 =




0 1 0
−1 0 κ(s)
0 −κ(s) 0





e1(s)
e2(s)
e3(s)


 (2.5)Proof. The vetor e1(s) has length 1 for a urve on S2. Sine the urve is parametrizedby ar length the length of e2(s) is also 1. Hene we have an orthonormal frame. Theurvature of a urve in R3 is de�ned in the Frenet frame setting as salar produt ofthe derivative of the tangent vetor and the normal vetor. For urves on S2 we de�neanalogously

κ(s) := 〈γ′′(s), γ(s) × γ′(s)〉as the urvature of a urve. Here γ(s)×γ′(s) is the normal vetor on S2. Thus we obtain
〈e′2(s), e3(s)〉 = κ(s).For the following alulations we need some formulas, they are obtained by di�erentiating

〈e1, e2〉 = 0, 〈e1, e3〉 = 0, 〈e2, e2〉 = 1, 〈e3, e3〉 = 1.Then we obtain
〈e′1, e2〉+ 〈e1, e′2〉 = 0 ⇔ 〈e1, e′2〉 = −〈e′1, e2〉 = −〈e2, e2〉 = −1,

〈e′1, e3〉+ 〈e1, e′3〉 = 0 ⇔ 〈e1, e′3〉 = −〈e3, e′1〉 = −〈e3, e2〉 = 0,

〈e′2, e2〉 = 0,

〈e′3, e3〉 = 0.The vetors e1(s), e2(s), e3(s) are an orthonormal basis of R3 for every s, hene anyvetor an be written as linear ombination of these vetors. We use this to obtain the12



2.3. Willmore surfaesequations
d

ds
e1 = e2,

d

ds
e2 = 〈e′2, e1〉e1 + 〈e′2, e2〉e2 + 〈e′2, e3〉e3

= 〈−e2, e′1〉e1 + 〈e′2, e3〉e3
= −e1 + κ(s)e3,

d

ds
e3 = 〈e′3, e1〉e1 + 〈e′3, e2〉e2 + 〈e′3, e3〉e3

= −〈e3, e′1〉e1 − 〈e3, e′2〉e2
= −κ(s)e2.Putting together these equations in matrix form yields the assertion.2.3. Willmore surfaesWe have de�ned the mean urvature H in (2.3), it an be used to haraterize speialsurfaes. The simplest surfaes de�ned by the mean urvature are minimal surfaes,whih ful�ll H ≡ 0. Another example of surfaes are onstant mean urvature surfaeswith H ≡ c. We are interested in Willmore surfaes, whih have non onstant meanurvature. They are de�ned by the extremal values of a funtional under variations,we �rst de�ne the funtional and then restrit the spae of allowed variations to obtainonstrained Willmore surfaes.De�nition 2.10. The Willmore funtional of an immersed surfae f : M → R3 isgiven by

W(M) =

∫

M

H2dA,with dA the area 2-form of M indued by the �rst fundamental form. A surfae is alledWillmore surfae if it is a ritial value of the Willmore funtional under all variationsof the immersion. A surfae is alled onstrained Willmore surfae if we only allowvariations whih preserve the onformal struture, i.e. the funtion u de�ned in (2.1) doesnot hange through the variation. The Willmore funtional for immersions g : M̃ → S313



2. Surfae theory and Willmore surfaesis given by
W(M̃) =

∫

M̃

(
H2 + 1

)
dA. (2.6)One of the main properties of the Willmore funtional is its invariane under onformalmappings of the surfae, whih has been proven by White [Whi73℄.Proposition 2.11. The Willmore funtional is invariant under onformal mappings:Let T :M →M be a onformal mapping, then W(M) = W(T (M)).Proof. All onformal mappings an be written as ombination of eulidean motions,homotheties and inversions. W is invariant under eulidean motions and homothetiessine they hange the mean urvature and the volume form of the surfae inverse to eahother. So we have to hek the invariane under inversions. We an assume that theenter of the inversion is not on M and further, that 0 is the enter of the inversion. Ifthe radius of the inversion is c, the inverted vetor of x ∈M is given by x̃ = c2 x

‖x2‖ . Let
N be the normal vetor at x and set h = x ·N , then the two prinipal urvatures of theinverted surfae an be omputed to

κ̃1 = −‖x‖κ1 − 2h

c2
, κ̃2 = −‖x‖κ2 − 2h

c2
.Hene we an ompute κ̃1 − κ̃2 = −‖x‖2(κ1 − κ2)/c

2 and
H̃2 − K̃ = ‖x‖4(H2 −K)/c4.The surfae form dA hanges under the inversion by dÃ = c4dA/‖x‖4. Putting thistogether one obtains
(H̃2 − K̃)dÃ = (H2 −K)dA.So (H2 −K)dA is globally invariant under inversions and

∫

M

(H2 −K)dA =

∫

M

H2dA− 2πχ(M) = W(M)− 2πχ(M)di�ers from the Willmore funtional just by 2πχ(M), a multiple of the Euler harater-isti. Sine χ(M) is invariant under inversions, the Willmore funtional is also invariantunder inversions and the laim follows.14



2.3. Willmore surfaesSine we are looking for extremal values of a funtional we have to alulate the �rstvariation of it. The roots of the �rst variation are the possible extremal values of thefuntional. This has been arried out by Weiner [Wei78℄, who derived an equation ofEuler-Lagrange type.Theorem 2.12. Let f : M → R3 be an immersion of an orientable surfae withoutboundary suh that W(M) <∞. Then f is a stationary point of W if and only if
∆H + 2H3 − 2HK = 0.Here ∆ is the Laplae operator on the surfae M de�ned by

∆f =
∂2f

∂x2
+
∂2f

∂y2
,and K is the Gaussian urvature. For immersions g :M → S3 the ondition is that σ ◦ f̃satis�es the equation with σ : S3 → R3 being the stereographi projetion.Another possibility to haraterize Willmore surfaes is by means of the onformal Gaussmap. Therefore let Q be the set of all spheres and planes in R3. For any surfae M anda point m ∈M we denote by S2

m the unique element in Q with the following properties:At the point m ∈ M the element S2
m is tangent to M with the same orientation and

S2
m and M have the same mean urvature at m ∈ M . The map m 7→ S2

m is alledonformal Gauss map. Bryant [Bry84℄ proved that M is a Willmore surfae if and onlyif the onformal Gauss map is harmoni.Regarding onstrained Willmore surfaes there is also an Euler-Lagrange equation. Sinewe only onsider variations with �xed onformal lass, we an onsider this as minimumunder onstraints. So there must be some kind of Lagrange multiplier. The Euler-Lagrange equation has been alulated in general in [BPP08℄.Theorem 2.13. An immersion f : M → S3 of a ompat Riemann surfae M is on-strained Willmore if and only if there exists a 2-form δ∗(q) ∈ Ω2(M) whih is the deriva-tive of a holomorphi quadrati di�erential q ∈ H0(K2) suh that
(∆H + 2H3 − 2HK)dA = δ∗(q).The 2-form δ∗(q) an be regarded as Lagrange multiplier, for the exat de�nition of thederivative δ∗ see [BPP08℄. 15



2. Surfae theory and Willmore surfaesUsing this theorem Bohle,Peters, and Pinkall [BPP08℄ gave a simple proof of the followingresult.Corollary 2.14. Every onstant mean urvature surfae f : M → R3 is onstrainedWillmore.Proof. For onstant mean urvature surfaes the gradient of W is given by (2H3 −
2HK)dA and it holds δ∗(Q) = 4(H2 −K)dA. So the holomorphi quadrati di�erentialneeded in the previous theorem an be hosen as q = 1

2HQ, the produt of the meanurvature and the Hopf di�erential.

16



3. Elasti and generalized elasti urves3.1. Elasti urvesLet γ : R → S2 ⊂ R3 be a urve on S2 as introdued in setion 2.2. The urve should beparametrized by ar length, the urvature is given by κ : R → R. We onsider variationsof the urvature κ(x) of the urve γ on S2. De�ne the funtional
P (γ) =

∫

γ

κ2(s)ds,whih desribes the bending energy of a urve. It is very similar to the Willmore fun-tional de�ned in de�nition 2.10. We �x the start and the end point of a urve and thenminimize the funtional P (γ) under these onstraints. The Euler-Lagrange equation ofthis funtional has been alulated in [AGM03℄ and is given by
κ′′(x) +

1

2
κ(x)3 + aκ(x) = 0for some a ∈ R. We use this equation to de�ne elasti urves. In the following all urveson S2 are parametrized by ar length.De�nition 3.1. Let γ be a urve on S2. If the urvature of γ satis�es the di�erentialequation

κ′′(x) +
1

2
κ(x)3 + aκ(x) + b = 0, a, b ∈ R (3.1)the urve is alled generalized elasti urve and elasti urve if and only if b = 0.In order to solve this di�erential equation we multiply it with 2κ′(x) and then integrateit. This yields

(κ′(x))2 + 1
4κ(x)

4 + aκ(x)2 + 2bκ(x) = c (3.2)17



3. Elasti and generalized elasti urvesfor some integration onstant c. First we set the initial onditions to be
κ(0) = y,

κ′(0) = 0,with y a real root of the polynomial g(x) := −1
4x

4 − ax2 − 2bx + c. Generalized initialonditions will be onsidered later.The polynomial g(x) = −1
4x

4−ax2−2bx+ c is of degree four. We use a linear frationaltransformation to redue it to a polynomial of degree 3. The standard proedure forsolving suh equations is desribed in [EMOT53℄. Our aim is to obtain a Weierstrassnormal form η2 = 4ξ3 − g2ξ − g3. We onsider the ellipti urve de�ned by w2 = g(x).The transformation now maps one root of g(x) to ∞ and then sets e1 + e2 + e3 = 0with ei the three remaining roots. Therefore let y be a root of g(x), we introdue newparameters X and Y by setting x = y − 1
X and w = Y

X . The new ellipti urve is nowde�ned by
Y 2 = g′(y) +

1

2
g′′(y) +

1

6
g′′′(y) +

1

24
g(iv)(y)

= −y3 − 2ay − 2b+
1

2
(−3y2 − 2a)− 1

6
6y − 6

24

= −y3 − 3

2
y2 + y(−2a− 1)− 2b− a− 1

4
.Next we eliminate the quadrati term by setting

X =
4ξ − 1

6g
′′(y)

g′(y)
, Y =

4η

g′(y)
.This yields e1 + e2 + e3 = 0 as desribed above, and we obtain the urve in Weierstrassform η2 = 4ξ3 − g2ξ − g3 with Weierstrass invariants [EMOT53℄

g2 = −1

4
c+

1

12
a2, (3.3)

g3 = det




−1
4 0 −1

6a
0 −1

6a −1
2b

−1
6a −1

2b c




=
1

24
ac+

1

216
a3 +

1

16
b2. (3.4)18



3.1. Elasti urvesThe solution is now x = y − g′(y)

4ξ−1
6g

′′(y)
, so the solution of (3.1) is

κ(x) =
−y3 − 2ay − 2b

4℘(x, g2, g3) +
1
2y

2 + 1
3a

+ y (3.5)for the initial values κ(0) = y and κ′(0) = 0.In order to generalize this to initial values κ(x0) = α and κ′(x0) = β for α, β ∈ R wehave to apply the theory of ellipti urves. At x0 one obtains by (3.2)
β2 = −1

4
α4 − aα2 − 2bα+ c

→ c = β2 +
1

4
α4 + aα2 + 2bα.Now we an de�ne an ellipti urve by

Y := {(x,w) ∈ C2 |w2 = g̃(x) := −1

4
x4 − ax2 − 2bx+ β2 +

1

4
α4 + aα2 + 2bα}. (3.6)If we onsider real initial values we are at a real subset of this urve, where both param-eters are real. We de�ned this urve also for omplex values in order to have a onnetedellipti urve.

λ0 λ1

(α, β)

αFigure 3.1.: Ellipti urve for generalized initial valuesDue to the initial values the point (α, β) lies on the urve. The polynomial g̃(x) satis�es
g̃(x) → −∞ as x → ±∞ and g̃(α) = β2 ≥ 0, so it has at least two real roots and theurve Y is not empty. Beause of the asymptotis there is at least one real root smallerthan α and one real root larger than α, we set

λ0 := max {x ∈ R | g̃(x) = 0, x < α}, (3.7)
λ1 := min {x ∈ R | g̃(x) = 0, x > α}. 19



3. Elasti and generalized elasti urvesFurthermore we set κ(0) = λ0.Sine the Weierstrass invariants depend on the initial value α, the period length of thethe urvature funtion κ(x) also depends on α. The urvature κ(x) has one real periodsine the Weierstrass invariants are real, see Appendix A. The period length an beomputed as follows:
p = 2

λ1∫

λ0

1√
g̃(x)

dx. (3.8)So we obtain κ(p2 ) = λ1, see therefore also lemma 3.4. If the period length is 0 theurvature funtion is onstant and if the period length is ∞ the urvature funtion is notperiodi, this happens only in some degenerate speial ases and depends on the positionof the roots of the polynomial g̃(x). The ase of onstant urvature solutions will beonsidered in setion 3.6.Lemma 3.2. The solution κ(x) of the di�erential equation (3.1) has the following prop-erties:(i) κ′(x) = 4(y3 + 2ay + 2b)℘′(x, g2, g3)(
4℘(x, g2, g3) +

1
2y

2 + 1
3a
)2(ii) κ(x) = κ(−x)(iii) κ′(x) = −κ′(−x)(iv) κ([0, p)) = [λ0, λ1]Proof. (i) follows from diret omputation, (ii) and (iii) from the properties of ℘ and

℘′ desribed in appendix A. Sine κ(0) = λ0 and κ(p2 ) = λ1 and κ is ontinuous (iv)follows.The next lemma shows, that in the non degenerate ase there exists an identi�ationbetween R/pZ and a part of the ellipti urve Y .Lemma 3.3. Let g(x) have no multiple roots and Ỹ be the real part of the ellipti urve
Y with κ(0) ∈ Ỹ . Let p be the period length, then the map

φ : R/pZ → Ỹ ,

x 7→ (κ(x), κ′(x))20



3.1. Elasti urvesis a homeomorphism.Proof. Sine g(x) has no multiple roots, 0 < p < ∞. We have to show, that φ isontinuous, one-to-one and onto with ontinuous inverse mapping.
• φ is ontinuous beause the funtions κ(x) and κ′(x) are ontinuous.
• φ is one-to-one. Let x0 and x1 be in [0, p), this is a representative of R/pZ, and set
φ(x0) = φ(x1). Then by (3.5) the equation κ(x0) = κ(x1) implies ℘(x0) = ℘(x1).So x0 ≡ ±x1 mod p, see proposition A.7. Assume x0 ≡ −x1 mod p, then

κ′(x0) = κ′(−x1) = −κ′(x1) = −κ′(x0)by the properties of κ(x) and κ′(x) and furthermore κ′(x0) = κ′(x1). So κ′(x0) = 0and x0 ∈ {0, p2}, see lemma A.6. If already x0 = 0, then also x1 = −0 = 0 and if
x0 =

p
2 , then

x1 ≡ −p
2
mod p ≡ p

2
mod p = x0.So in eah ase x0 = x1 and φ is one-to-one.

• φ is onto. Let (λ, µ) be some point on Ỹ , without loss of generality µ > 0 sine Yis symmetri with respet to the x-axis. Beause the image of κ(x) is [λ0, λ1] thevalue λ satis�es λ0 ≤ λ ≤ λ1. Now κ(x) is ontinuous, so there exists ξ ∈ (0, p2) (weare on the upper half of the urve) with κ(ξ) = λ. Then κ′(ξ) = µ sine (λ, µ) ∈ Ỹ ,so φ is onto.Beause of the periodiity of κ(x) with period length p it holds φ(0) = φ(p) and R/pZ isompat, so the inverse mapping must be ontinuous too.The solution to the initial values κ(x0) = α, κ′(x0) = β is given by (3.5) replaing y by
λ0 sine all solutions are given by translations in the argument x. Suh a translationorresponds to a movement on the ellipti urve Y . We an desribe the variable x onthe ellipti urve by the following formula.Lemma 3.4. Let κ(t) be a solution of κ′(t)2 = g(κ(t)). Then the variable x on Y satis�es

x =

κ(x)∫

λ0

1√
g(s)

dsfor x ∈ [0, p2 ). 21



3. Elasti and generalized elasti urvesProof. Substitute s = κ(t) in the integral
κ(x)∫

λ0

1√
g(s)

ds =

x∫

0

1√
(g(κ(t))

κ′(t) dt,beause κ(0) = λ0 and ds = κ′(t) dt. Now we use the di�erential equation κ′(t)2 = g(κ(t))and obtain
x∫

0

1√
(g(κ(t))

κ′(t) dt =

x∫

0

1 dt = x.

An analogous equation holds for x ∈ [p2 , p), there the value of κ′(x) is smaller than 0 andone obtains
−x =

κ(x)∫

λ0

1√
g(s)

ds.Putting together the above, we have proven the following lemma for randomly hoseninitial values α, β ∈ R.Lemma 3.5. The solution of the initial value problem
d2

dx2
κ(x) +

1

2
κ(x)3 + aκ(x) + b = 0,

κ(x0) = α,

κ′(x0) = βis given by
κ(x) =

−y3 − 2ay − 2b

4℘(x, g2, g3) +
1
2y

2 + 1
3a

+ y,with
g2 = −1

4
c+

1

12
a2,

g3 =
1

24
ac+

1

216
a3 +

1

16
b2.Here c = β2 + 1

4α
4 + aα2 +2bα and y is hosen as λ0, the largest root smaller than α of

g̃(t) = −1
4t

4 − at2 − 2bt+ β2 + 1
4α

4 + aα2 + 2bα as de�ned in (3.7).22



3.1. Elasti urvesOur next aim is to onstrut a urve for a given urvature. Sine we are only interestedin urves on S2 the urvature determines the whole urve. We now want to write theurve and the frame as a matrix and therefore introdue the following basis for su(2),the antihermitian 2× 2-matries with trae zero.De�nition 3.6. A basis for
su(2) =

{(
ix1 x2 − ix3

−x2 − ix3 −ix1

)
|x1, x2, x3 ∈ R

}is given by the matries
σ1 =

(
i 0
0 −i

)
, σ2 =

(
0 1
−1 0

)
, σ3 =

(
0 −i
−i 0

)
.The salar produt in su(2) is de�ned by 〈X,Y 〉 := −1

2 tr(X · Y ) for X,Y ∈ su(2).The frame of a urve was given in (2.5) by
d

ds



e1(s)
e2(s)
e3(s)


 =




0 1 0
−1 0 κ(s)
0 −κ(s) 0





e1(s)
e2(s)
e3(s)


 .We now searh for a moving frame in SU(2,C) of this urve. So let F (s) be a matrix in

SU(2,C), the solution of d
dsF (s) = α(s)F (s) with F (0) = 1. We identify the basis vetors

e1, e2, e3 with σ1, σ2, σ3 by setting e1 = F−1σ1F , e2 = F−1σ2F and e3 = F−1σ3F . Thenew equations for the frame F (s) are
d

ds
γ(s) =

d

ds
(F−1σ1F ) = F−1σ2F, (3.9)

d

ds
(F−1σ2F ) = F−1(−σ1 + κσ3)F,

d

ds
(F−1σ3F ) = F−1(−κσ2)F.For the �rst equation we obtain

d

ds
(F−1σ1F ) = −F−1(

d

ds
F )F−1σ1F + F−1σ1(

d

ds
F )F−1F

= −F−1αFF−1σ1F + F−1σ1αFF
−1F

= F−1σ1αF − F−1ασ1F

= F−1[α, σ1]F

!
= F−1σ2F. 23



3. Elasti and generalized elasti urvesWe an alulate the other equations similarly and have to solve
[σ1, α] = σ2, [σ2, α] = −σ1 + κσ3, [σ3, α] = −κσ2.We now set α =

(
a1i −ia− 2 + a3

−ia2 + a3 −a1i

)
∈ su(2), solve these equations and obtain

α =
1

2

(
iκ(s) −i
−i −iκ(s)

)
=

1

2
(κσ1 + σ3) ∈ su(2). (3.10)To alulate the urve one now has to solve the di�erential equation d

dsF = αF , theomponent e1(s) = F−1(s)σ1F (s) is the urve γ(s) in SU(2,C). The urve γ(s) does notdepend of the sign of the frame F (s), the values F (s) and −F (s) yield the same urve
γ(s). The initial values for integrating the frame an be hosen randomly beause oururve γ(s) is on S2 and other initial values are reahed by rotating the sphere.The following lemma desribes the ondition for any urve to be losed. It is not su�ientthat the urve returns to one point. As well the di�erentials of the urve have to oinideat the orresponding point. The urve and its di�erentials are olleted in the movingframe, hene we obtain the following orollary.Lemma 3.7. A urve is losed if and only if F (np) = ±1 for a period p as in (3.8) andsome n ∈ N.The main tools for solving the di�erential equation dF (s) = α(s)F (s) will be developedin the next setion.3.2. Spetral urve of elasti urvesIn the previous setion we de�ned generalized elasti urves in de�nition 3.1. This de�-nition an be seen as a speial ase of the modi�ed Korteweg-de Vries (mKdV) equation.In order to explain this onnetion and to derive a spetral urve for generalized elastiurves, we now take a loser look at mKdV.De�nition 3.8. Let v : R × R → R, (x, t) 7→ v(x, t) be a funtion, then the modi�edKorteweg-de Vries (mKdV) equation is de�ned as

vt +
3

2
v2vx + vxxx = 0,24



3.2. Spetral urve of elasti urveswhere subsript t or x means di�erentiation with respet to t or x respetively. The fator
3
2 an be replaed by any other positive number by shifting the solutions.The solutions of the mKdV equation are related to the solutions of the KdV equation
ut + 6uux + uxxx by the Miura transformation u = vx − v2 [Miu68℄.Goldstein and Petrih [GP91℄ related the mKdV equation to dynamis of losed urves.They showed that dynamis of urves that preserve area and perimeter an be desribedby the mKdV equation. The funtion v in the mKdV equation is here replaed by κ(x, t),the urvature of the urve. We now onsider wavelike solutions of the mKdV equation,in this ase the solution κ(x, t) must be a periodi solution that forms a traveling wave,i.e. a non-stationary solution of the wave equation. The solutions of the wave equationdepend only on x+ at with a being the wave speed. So we an set κ(s) = κ(x+ at) andhave aκs = aκx = κt. Inserting this into the mKdV equation one obtains

aκs +
3

2
κ2κs + κsss = 0,and after integration

κss +
1

2
κ3 + aκ+ b = 0.This is just de�nition 3.1 of a generalized elasti urve.We are now going to onstrut a spetral urve for generalized elasti urves. Thereforewe introdue the Lax pair of the mKdV equation and follow the standard proedurefor obtaining a spetral urve, see [DKN85℄. Our main ingredient is the relationship

aκx = κt. Before we an proeed we need some more general de�nitions.We look for matries α, β ∈ su(2), suh that the Maurer-Cartan equation is the mKdVequation. This means, that if we have some F : R×R → SU(2,C) with (x, t) 7→ F (x, t)solving the di�erential equations
∂F

∂x
= αF,

∂F

∂t
= βFthe ompatibility ondition

∂2F

∂x∂t
=

∂2F

∂t∂x 25



3. Elasti and generalized elasti urvesis equivalent to the mKdV equation (3.8). We an also add a spetral parameter λ ∈ C∗suh that the equation is ful�lled for all λ ∈ C∗.These matries are given by
α(x, t, λ) =

1

2

(
iv −i
−iλ −iv

)
,whih gives for λ = 1 just the matrix (3.10) and

β(x, t, λ) =
1

2

(
i(λv − vxx − 1

2v
3) vx − iλ+ 1

2 iv
2

−vxλ− iλ2 + 1
2 iv

2λ −i(λv − vxx − 1
2v

3)

)
,with λ ∈ C∗. Both matries are in sl(2,C) for general λ and in su(2) for λ = 1. Byintegrating we hene obtain a frame in SL(2,C) and SU(2,C) respetively.The ompatibility equation an also be written as

[
∂

∂x
− α,

∂

∂t
− β

]
= 0or

αt − βx + [α, β] = 0. (3.11)The funtion F an be regarded as frame of solutions of the mKdV equation dependingon the variables x, t, λ. The frame of the previous setion for elasti urves an beobtained for λ = 1 as F (s) with s = x+ at.De�nition 3.9. [DKN85℄ A solution of mKdV is alled �nite-gap or algebro-geometriif there exists a matrix-valued funtion W (x, t, λ) suh that
[
∂

∂x
− α(x, t, λ),W (x, t, λ)

]
= 0, (3.12)

[
∂

∂t
− β(x, t, λ),W (x, t, λ)

]
= 0, (3.13)and W (x, t, λ) depends meromorphially on λ. These solutions are alled �nite-gap be-ause the resulting spetral urve will have �nite genus. In the theory of the integrablesystem of the sinh-Gordon equation the funtion W (x, t, λ) is alled polynomial Killing�eld.26



3.2. Spetral urve of elasti urvesWe now show, that in our setting of wavelike solutions of the mKdV equation it is possibleto �nd suh a W (x, t, λ) and then de�ne an algebrai urve, the spetral urve, as theeigenvalues of the matrix W (x, t, λ). With the help of the spetral urve we an �nd avetor-valued funtion ψ whih solves the di�erential equation d
dxψ = αψ.Lemma 3.10. The matrix valued funtion

W (x, t, λ) := aα(x, t, λ) − β(x, t, λ)satis�es equations (3.12) and (3.13) for generalized elasti urves.Proof. Reall the ondition aκx = κt for wavelike solutions. Then the Lax pair matriesobey aαx = αt and aβx = βt. Equation (3.12) is equivalent to Wx = [α,W ] and (3.13)is equivalent to Wt = [β,W ]. The seond one is in our ase equivalent to the �rst one,sine
Wx = (aα− β)x = aαx − βx = αt − βx,

Wt = (aα− β)t = aαt − βt = a(αt − βx),

[α,W ] = [α, aα − β] = −[α, β],

[β,W ] = [β, aα− β] = −a[α, β].So we have to hek the equation
αt − βx + [α, β] = 0and this is the ompatibility ondition (3.11).Now we set s = x + at and obtain funtions κ(s) = κ(x + at) and W (s, λ) by replaing

κ(x, t) = κ(s) therein. We introdue the spetral urve of a generalized elasti urve asthe eigenvalues of the matrix W (s, λ) with s = x+ at. Therefore we use the di�erentialequations κss + 1
2κ

3 + aκ+ b = 0 and (κs)
2 + 1

4κ
4 + aκ2 + 2bκ = c.

W (s, λ) =
1

2

(
aiκ− i(λκ − κss − 1

2κ
3) −ia− κs + iλ− iκ2

−iaλ+ κsλ+ iλ2 − 1
2 iκ

2λ −iaκ+ i(λκ− κss − 1
2κ

3)

)

=
1

2

(
−ib− iλκ −ia− κs + iλ− 1

2 iκ
2

−iaλ+ κsλ+ iλ2 − 1
2 iκ

2λ ib+ iλκ

)

27



3. Elasti and generalized elasti urvesSine the matrix W (s, λ) has trae 0, the eigenvalues are ±
√
det(W (s, λ)). So we haveto ompute the determinant of W (s, λ).

det(W (s, λ)) =
1

4
(− λ((i(−a + λ− 1

2
κ2)− κs)(i(−a+ λ− 1

2
κ2) + κs))

+ (b+ κλ)2)
=
1

4

(
b2 + κ2λ2 + 2bκ+ λ(a2 − 2aλ+ aκ2 + λ2 − λκ2 +

1

4
κ4 + κ2s)

)

=
1

4

(
b2 + λ3 − 2aλ2 + λa2 + λ(κ2s +

1

4
κ4 + aκ2 + 2bκ)

)

=
1

4
λ3 − 1

2
aλ2 +

(
1

4
c+

1

4
a2
)
λ+

1

4
b2De�nition 3.11. The spetral urve of wavelike solutions of the mKdV equation is thealgebrai urve

Γ :=

{
(λ, µ) ∈ C2 |µ2 = −1

4
λ3 +

a

2
λ2 −

(
1

4
a2 +

c

4

)
λ− 1

4
b2
}
. (3.14)Lemma 3.12. The ellipti urves Γ and Y , de�ned in (3.14) and (3.6) are isomorphito eah other and to the ellipti urve of the Weierstrass ℘-funtion

P := {(x, y) ∈ C2|y2 = 4x3 − g2x− g3}.The Weierstrass invariants g2, g3 have been de�ned in (3.3),(3.4). Thus the ellipti urvewhih de�nes the solution of the di�erential equation is isomorphi to the spetral urve.Proof. We have to show that they have the same j-invariant, then the assertion followsfrom (A.11). Therefore we transform the ellipti urve Γ to Weierstrass normal form.This an be done for any polynomial f(x) = a3x
3 + a2x

2 + a1x + a0 with a3 6= 0 bysetting x =
4t− 1

3
a2

a3
. We obtain a new funtion f(t) = t3 + pt + q and after a seondtransformation t = 3
√
4s we have the polynomial in Weierstrass normal form with f(s) =

4s3 − 3
√
256 · g2 + 16g3 and

g2 := −1

4

3a3a1 − a22
3a23

, g3 :=
1

16

2a32 − 9a3a2a1 + 27a23a0
27a33

. (3.15)28



3.3. Expliit parametrization of generalized elasti urvesSo the j-invariant of Γ is given by
jΓ = 1728

( 3
√
256 · g2)3

( 3
√
256 · g2)3 − 27(−16g3)2

= 1728
g32

g32 − 27g23
.The j-invariant of Y an be also alulated by using g2 and g3. During the proedure ofsolving the di�erential equation for generalized elasti urves we transformed the urve

Y to an ellipti urve in Weierstrass normal form with exatly the Weierstrass invariants
g2, g3. Thus

jY = 1728
g32

g32 − 27g23
.The j-invariants are the same, so the urves are isomorphi to eah other.Hene we an always use the urve P as the spetral urve of a generalized elasti urve.3.3. Expliit parametrization of generalized elasti urvesWe now integrate the frame to obtain a formula for the immersion of the generalizedelasti urve on S2. Therefore we look for solutions of the di�erential equation

d

dx

(
ψ1

ψ2

)
=

1

2

(
iκ −i
−iλ −iκ

)(
ψ1

ψ2

)
.This system of �rst order di�erential equations an be transformed to one seond orderequation. We have

d

dx
ψ1(x, z) =

1

2
(iκ(x)ψ1(x, z) − iψ2(x, z)) , (3.16)

d

dx
ψ2(x, z) =

1

2
(−iλψ1(x, z) − iκ(x)ψ2(x, z)) , (3.17)with z some variable related to λ, the relationship will be lari�ed later. Di�erentiatingthe �rst equation and then inserting into the seond equation we obtain an equation ofShrödinger type:

− d2

dx2
ψ1 +

(
1

2
iκ′ − 1

4
κ2
)
ψ1 =

1

4
λψ1 (3.18)29



3. Elasti and generalized elasti urveswith potential q(x) = 1
2 iκ

′(x) − 1
4κ(x)

2. We now alulate the potential q(x) expliitlyand set
℘(w, g2, g3) = −1

8
y2 − 1

12
afor some w ∈ iR.Using the di�erential equation for ℘

(
℘′(w)

)2
= 4℘(w)3 − g2℘(w) − g3we obtain

℘′(w, g2, g3) = ±1

8
i(y3 + 2ay + 2b).Here we hoose the "−"-sign and furthermore we obtain

℘′′(w, g2, g3) = 6℘(w, g2, g3)
2 − 1

2
g2

=
1

8
y
(
y3 + 2ay + 2b

)
.So we see

℘′′(w, g2, g3)
℘′(w, g2, g3)

= iyThen we obtain
κ(x) =

−y3 − 2ay − 2b

4℘(x, g2, g3) +
1
2y

2 + 1
3a

+ y,

=
−2i℘′(w, g2, g3)

℘(x, g2, g3)− ℘(w, g2, g3)
− i

℘′′(w, g2, g3)
℘′(w, g2, g3)This version of the urvature funtion will be used in the following. Thus we an alsoparametrize all generalized elasti urves by g2, g3 ∈ R and w ∈ iR. The expliit re-lationship to the parameters a, b, c will be onsidered in detail in lemma 3.14 We now30



3.3. Expliit parametrization of generalized elasti urvessuppress g2, g3 and obtain
q(x) =

1

2
iκ′(x)− 1

4
κ(x)2

=
1

2
i
2i℘′(w)℘′(x)

(℘(x)− ℘(w))2
− 1

4

( −2i℘′(w)
℘(x)− ℘(w)

− i
℘′′(w)
℘′(w)

)2

=
−℘′(x)℘′(w)

(℘(x)− ℘(w))2
− 1

4

(−4℘′(w)2 − 4℘′′(w)(℘(x) − ℘(w))

(℘(x)− ℘(w))2

)

+
1

4

℘′′(w)2

℘′(w)2

=
−℘′(x)℘′(w) + 4℘(w)3 − g2℘(w) − g3 + (6℘(w)2 − 1

2g2)(℘(x)− ℘(w))

(℘(x)− ℘(w))2

+
1

4

℘′′(w)2

℘′(w)2

=
−℘′(x)℘′(w)− 2℘(w)3 − 1

2g2℘(w)− 1
2g2℘(x)− g3 + 6℘(w)2℘(x)

(℘(x)− ℘(w))2

+
1

4

℘′′(w)2

℘′(w)2On the other hand we have
2℘(x+ w)− 2℘(w) +

1

4

℘′′(w)2

℘′(w)2

=
1

2

(
℘′(x)− ℘′(w)
℘(x)− ℘(w)

)2

− 2℘(x)− 2℘(w) − 2℘(w) +
1

4

℘′′(w)2

℘′(w)2

=
1

(℘(x)− ℘(w))2
(
1
2 (4℘(x)

3 − g2℘(x)− g3) +
1
2(4℘(w)

3 − g2℘(w)− g3)

−℘′(x)℘′(w) − (2℘(x) + 4℘(w))(℘(x) − ℘(w))2
)
+

1

4

℘′′(w)2

℘′(w)2

=
1

(℘(x)− ℘(w))2
(
−℘′(x)℘′(w) + 2℘(x)3 − 1

2g2℘(x) + 2℘(w)3 − 1
2g2℘(w)− g3

−2℘(x)3 + 4℘(x)2℘(w) − 2℘(x)℘(w)2 − 4℘(w)℘(x)2 + 8℘(w)2℘(x)− 4℘(w)3
)

+
1

4

℘′′(w)2

℘′(w)2

=
−℘′(x)℘′(w) − 2℘(w)3 − 1

2g2℘(w)− 1
2g2℘(x)− g3 + 6℘(w)2℘(x)

(℘(x)− ℘(w))2
+

1

4

℘′′(w)2

℘′(w)231



3. Elasti and generalized elasti urvesThis yields
q(x) =

1

2
iκ′(x)− 1

4
κ(x)2 = 2℘(x+ w, g2, g3)− 2℘(w, g2, g3) +

1

4

℘′′(w)2

℘′(w)2Suh potentials are alled Lamé potentials and the Shrödinger equation with this po-tential is alled Lamé equation. This equation is well understood and the solution an begiven in terms of Weierstrass σ- and ζ-funtions, see [FKT92℄ and [WW79, h.23℄. TheWeierstrass ellipti funtions are introdued in detail in appendix A. We obtain for thesolution of (3.18)
ψ1(x, z) = eζ(z)x

σ(z − x− w)

σ(x+w)
(3.19)with z hosen as solution of

−℘(z, g2, g3) =
1

4
λ+ 2℘(w, g2, g3)−

1

4

℘′′(w)2

℘′(w)2
(3.20)The other omponent of (3.17) is given by

ψ2(x, z) = 2iψ′
1(x, z) + κ(x)ψ1(x, z), (3.21)and depends on ψ1(x, z) by

ψ2(x, z) = (ζ(z)− ζ(z − x− w)− ζ(x+ w) + κ(x))ψ1(x, z)

=

(
1

2

℘′(z − x− w)− ℘′(x+w)

℘(z − x− w)− ℘(x+ w)
+ κ(x)

)
ψ1(x, z).Starting with these two funtions we an now build our frame. Therefore we set λ = 1with orresponding z1, sine this hoie yields the frame di�erential equations for theurve. One of the solutions is given by (ψ1(x, z1)

ψ2(x, z1)

), so the other one is (−ψ2(x, z1)

ψ1(x, z1)

).This follows from onjugating the di�erential equations (3.16) and (3.17). We now de�ne
Ψ(x, z1) :=

(
ψ1(x, z1) −ψ2(x, z1)

ψ2(x, z1) ψ1(x, z1)

)
,and alulate the parametrization of the urve in terms of the funtions ψ1(x, z1) and

ψ2(x, z1).32



3.3. Expliit parametrization of generalized elasti urvesLemma 3.13. The parametrization of a generalized elasti urve γ(x) on S2 is given by
γ1(x) =

1

D(x)
[ ∣∣∣ψ1(x, z1)ψ1(0, z1) + ψ2(0, z)ψ2(x, z)

∣∣∣
2

−
∣∣∣ψ2(x, z1)ψ1(0, z1)− ψ2(0, z1)ψ1(x, z1)

∣∣∣
2 ℄,

γ2(x) = − 1

D(x)
[(|ψ2(x, z1)|2 − |ψ1(x, z1)|2)(ψ2(0, z1)ψ1(0, z1) + ψ1(0, z1)ψ2(0, z1))

+ ψ1(x, z1)ψ2(x, z1)
(
ψ1(0, z1)

2 − ψ2(0, z1)
2
)

+ ψ1(x, z1)ψ2(x, z1)
(
ψ1(0, z1)

2 − ψ2(0, z1)
2
) ℄,

γ3(x) =
i

D(x)
[(|ψ2(x, z1)|2 − |ψ1(x, z1)|2)(ψ2(0, z1)ψ1(0, z1)− ψ1(0, z1)ψ2(0, z1))

+ ψ1(x, z1)ψ2(x, z1)
(
ψ1(0, z1)

2
+ ψ2(0, z1)

2
)

− ψ1(x, z1)ψ2(x, z1)
(
ψ1(0, z1)

2 + ψ2(0, z1)
2
) ℄,with

D(x) :=
(
|ψ1(x, z1)|2 + |ψ2(x, z1)|2

) (
|ψ1(0, z1)|2 + |ψ2(0, z1)|2

)
.Proof. The urve is given by γ(x) = F−1(x, z1)σ1F (x, z1) if we set λ = 1 in α(x, t, λ)to obtain (3.10). The orresponding value is z1 with ℘(z1, g2, g3) = 1

4 + 2℘(w, g2, g3) −
1
4
℘′′(w)2

℘′(w)2
. Sine our frame has to satisfy F (0, z1) = 1 and F (x, z1) ∈ SU(2,C) we set

F (x, z1) =
Ψ(x, z1)Ψ(0, z1)

−1

√
det(Ψ(x, z1)Ψ(0, z1)−1)

.We have
Ψ(0, z1)

−1 =
1

det(Ψ(0, z1))

(
ψ1(0, z1) ψ2(0, z1)
−ψ2(0, z1) ψ1(0, z1)

)and set Ψ(0, z1)
−1 = 1

detBB. Then the frame is given by
F (x, z1) =

Ψ(x, z1)
1

detBB√
det(Ψ(x, z1)

1
detBB)

=
Ψ(x, z1)B√

det(Ψ(x, z1)) detB
. 33



3. Elasti and generalized elasti urvesIn detail we obtain
Ψ(x, z1)B =

(
ψ1(x, z1) −ψ2(x, z1)

ψ2(x, z1) ψ1(x, z1)

)(
ψ1(0, z1) ψ2(0, z1)
−ψ2(0, z1) ψ1(0, z1)

)

=

(
ψ1(x, z1)ψ1(0, z1) + ψ2(0, z1)ψ2(x, z1) ψ1(x, z1)ψ2(0, z1)− ψ1(0, z1)ψ2(x, z1)

−ψ2(x, z1)ψ1(0, z1)− ψ2(0, z1)ψ1(x, z1) ψ2(x, z1)ψ2(0, z1) + ψ1(0, z1)ψ1(x, z1)

)and
det(Ψ(x, z1)B) = det

(
ψ1(x, z1) −ψ2(x, z1)

ψ2(x, z1) ψ1(x, z1)

)
· det

(
ψ1(0, z1) ψ2(0, z1)
−ψ2(0, z1) ψ1(0, z1)

)

=
(
|ψ1(x, z1)|2 + |ψ2(x, z1)|2

) (
|ψ1(0, z1)|2 + |ψ2(0, z1)|2

)
.Sine F (x, z1) ∈ SU(2,C) has determinant 1 the inverse an also be easily alulated.

F (x, z1)
−1 =

Ψ(x, z1)B
t

√
det(Ψ(x, z1)) detBThe urve is now given by γ(x) = F−1(x, z1)σ1F (x, z1) ∈ su(2) with σ1 = (i 0

0 −i

), see(3.9). Thus γ(x) is given by
γ(x) =

i

(|ψ1(x, z1)|2 + |ψ2(x, z1)|2) (|ψ1(0, z1)|2 + |ψ2(0, z1)|2)


∣∣∣ψ1(x, z1)ψ1(0, z1) + ψ2(0, z)ψ2(x, z)
∣∣∣
2

−2
(
ψ2(x, z1)ψ2(0, z1) + ψ1(0, z1)ψ1(x, z1)

)

−
∣∣∣ψ2(x, z1)ψ1(0, z1)− ψ2(0, z1)ψ1(x, z1)

∣∣∣
2

·
(
ψ1(0, z1)ψ2(x, z1)− ψ1(x, z1)ψ2(0, z1)

)

2
(
ψ2(x, z1)ψ2(0, z1) + ψ1(0, z1)ψ1(x, z1)

) ∣∣∣ψ2(x, z1)ψ1(0, z1)− ψ2(0, z1)ψ1(x, z1)
∣∣∣
2

·
(
ψ1(0, z1)ψ2(x, z1)− ψ1(x, z1)ψ2(0, z1)

)
−
∣∣∣ψ1(x, z1)ψ1(0, z1) + ψ2(0, z)ψ2(x, z1)

∣∣∣
2
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3.4. Closed generalized elasti urvesand in omponents in R3 by
γ1(x) =

1

D(x)
[ ∣∣∣ψ1(x, z1)ψ1(0, z1) + ψ2(0, z)ψ2(x, z)

∣∣∣
2

−
∣∣∣ψ2(x, z1)ψ1(0, z1)− ψ2(0, z1)ψ1(x, z1)

∣∣∣
2 ℄,

γ2(x) = − 1

D(x)
[(|ψ2(x, z1)|2 − |ψ1(x, z1)|2)(ψ2(0, z1)ψ1(0, z1) + ψ1(0, z1)ψ2(0, z1))

+ ψ1(x, z1)ψ2(x, z1)
(
ψ1(0, z1)

2 − ψ2(0, z1)
2
)

+ ψ1(x, z1)ψ2(x, z1)
(
ψ1(0, z1)

2 − ψ2(0, z1)
2
) ℄,

γ3(x) =
i

D(x)
[(|ψ2(x, z1)|2 − |ψ1(x, z1)|2)(ψ2(0, z1)ψ1(0, z1)− ψ1(0, z1)ψ2(0, z1))

+ ψ1(x, z1)ψ2(x, z1)
(
ψ1(0, z1)

2
+ ψ2(0, z1)

2
)

− ψ1(x, z1)ψ2(x, z1)
(
ψ1(0, z1)

2 + ψ2(0, z1)
2
) ℄,with

D(x) :=
(
|ψ1(x, z1)|2 + |ψ2(x, z1)|2

) (
|ψ1(0, z1)|2 + |ψ2(0, z1)|2

)
.

3.4. Closed generalized elasti urvesIn the previous setion we found a parametrization for generalized elasti urves. We usedthe parameters a, b, c ∈ R and then alulated a urve γ(x), whose urvature satis�es thedi�erential equation (3.2)
(κ′(x))2 + 1

4κ(x)
4 + aκ(x)2 + 2bκ(x) = c.The initial value for this di�erential equation was hosen as a value on the ellipti urvede�ned by y2 = g(x) = −1

4x
4 − ax2 − 2bx + c. In this proedure we also introduednew parameters g2, g3 ∈ R and w ∈ iR. Not every generalized elasti urve is losed, butthere exists a large family of losed urves. Now we try to determine how to hoose theparameters a, b, c in order to obtain losed urves. It turns out that the seond set ofparameters g2, g3, w is more suitable to ahieve this goal.We will use the Weierstrass invariants g2, g3 and the periods of the lattie p, τ equivalently,sine there exists an isomorphism between them, see lemma A.21. Sine the ellipti urve35



3. Elasti and generalized elasti urveshas only real oe�ients it has a real lattie and the lattie is retangular or rhombi,see lemma A.16 and all real latties are of this form, see lemma A.22.Lemma 3.14. Let τ and p be the periods of the ellipti urve de�ned in (3.6). Let
A := {(a, b, c) ∈ R3 | ∃y ∈ R : g(y) = 0 and g(−1

8y
2 − 1

12a) < 0} (3.22)and
B1 := {(w, τ, p) ∈ iR× iR× R | 0 < w < τ

2}
B2 := {(w, τ, p) ∈ iR×H × R | τ = p/2 + iλ, λ ∈ R, 0 < w < ℑ(τ)}with H := {z ∈ C | ℑ(z) > 0} the upper half plane and R = R ∪ ∞. B1 desribesretangular latties and B2 rhombi latties. The value w ∈ iR is de�ned by

℘(w, τ, p) − 1

8

℘′′(w, τ, p)2

℘′(w, τ, p)2
=

1

12
a.and

y = −i℘
′′(w, τ, p)
℘′(w, τ, p)

.Then the map φ : A→ B1 ∪B2 is 2 : 1.Proof. The �rst ondition in (3.22) makes sure that the ellipti urve is not empty andthe seond ondition ensures that there exists a w ∈ iR with ℘(w, g2, g3) = −1
8y

2 − 1
12a.We have the equations (3.3) and (3.4)

g2 = −1

4
c+

1

12
a2,

g3 =
1

24
ac+

1

216
a3 +

1

16
b2,

℘(w, τ, p)− 1

8

℘′′(w, τ, p)2

℘′(w, τ, p)2
=

1

12
aFor given a, b, c we obtain g2, g3 and therefore w. Beause of the onditions 0 < w < τ

2and 0 < w < ℑ(τ) respetively, there exists only one w whih ful�lls the equation. Twovalues of b are mapped onto the same value of g3, this explains the 2 : 1 harater ofthe mapping. For given g2, g3, w we an alulate a, afterwards c and �nally b. Sinethere exists a isomorphism (see lemma A.21) between the Weierstrass invariants g2, g336



3.4. Closed generalized elasti urvesand the periods p, τ we an replae g2 and g3 in the above onsiderations by p and τ . Thetwo ases arise sine real Weierstrass invariants lead to retangular or rhombi latties.Retangular latties are spanned by one real period and one pure imaginary period.Rhombi latties have generators of the form p and p/2 + iR, see lemma A.22.In order to obtain the solution of the Lamé equation we also de�ned a parameter z ∈ iRin (3.20) by
−℘(z, g2, g3) =

1

4
+ 2℘(w, g2, g3)−

1

4

℘′′(w)2

℘′(w)2
,Therefore w ∈ iR has to be hosen suh that we obtain pure imaginary z ∈ iR. Thisparameter z will play an important role in the investigation whih generalized elastiurves are losed.Lemma 3.15. A generalized elasti urve is losed if and only if the parameters (z, τ, p)satisfy the following equation for some q ∈ Q

pζ(z, τ, p)− 2zζ
(p
2
, τ, p

)
= πiq. (3.23)Proof. The urve is losed if and only if there exists a p ∈ R suh that F (np) = ±1,see lemma 3.7. This p is the period length of the urvature and the integer n ounts thenumber of periods of the urvature after whih the urve loses up. We therefore alulatethe period of the funtions ψ1(x, z) and ψ2(x, z), de�ned in (3.19), (3.21). Sine ψ2(x, z)is just a linear ombination of ψ1(x, z) and its derivative, it has the same period as

ψ1(x, z). In the following we suppress the invariants in the Weierstrass ellipti funtions,as long they are τ and p. We de�ne η1 and η2 by
η1(τ, p) := 2ζ(p2 , τ, p),

η2(τ, p) := 2ζ( τ2 , τ, p).Using the addition theorems of ellipti funtions
σ(x+ p, τ, p) = −σ(x, τ, p)eη1(τ,p)·

(
x+

p
2

)

,

σ(−x− p, τ, p) = −σ(−x, τ, p)eη1(τ,p)·
(
x+

p
2

)

,

ζ(x+ p, τ, p) = ζ(x, τ, p) + η1, 37



3. Elasti and generalized elasti urveswe obtain
ψ1(x+ p, z) = eζ(z,τ,p)(x+p)σ(z − x− p− w, τ, p)

σ(x+ p+ w, τ, p)

= eζ(z,τ,p)(x+p)−σ((x− z + w, τ, p) + p)

σ((x+ w, τ, p) + p)

= eζ(z,τ,p)(x+p)σ(x− z + w, τ, p)e
η1(τ,p)·

(
x−z+w+

p
2

)

−σ(x+ w, τ, p)e
η1(τ,p)·

(
x+w+

p
2

)

= ψ1(x, z)e
pζ(z,τ,p)e−zη1(τ,p)

= epζ(z,τ,p)−zη1(τ,p)ψ1(x, z).We now de�ne
µ(z, τ, p) := epζ(z,τ,p)−2zζ(p/2,τ,p),this desribes the quasiperiodiy of ψ1(x, z) after one period p. We de�ne the monodromyof the frame as

Mλ := F (p, λ).Then there exists a matrix C, omposed of the eigenfuntions ψ1(x, z) and ψ2(x, z), suhthat
Mλ = C

(
µ 0
0 1

µ

)
C−1.Here µ ∈ S1 is the eigenvalue of (ψ1(p, z)

ψ2(p, z)

) and hene 1
µ is the eigenvalue of (−ψ2(p, z)

ψ1(p, z)

).We have
Mn

λ = F (np, λ),thus we obtain that the urve is losed if the exponent lnµ is a rational multiple of πi, say
πiq. With q = q1

q2
the the urve is losed after q2 periods, sine then F (q2p) = ±1.We now try to obtain a good parametrization for all losed generalized elasti urves.Therefore we use the homogeneity relations of the Weierstrass funtions

ζ(z̃, τ̃ , p) =
1

p
ζ

(
z̃

p
,
τ̃

p
, 1

)
.One obtains

η1(τ̃ , p) =
1

p
η1

(
τ̃

p
, 1

)
,38



3.4. Closed generalized elasti urvesand thus
lnµ(z̃, τ̃ , p) = ζ

(
z̃

p
,
τ̃

p
, 1

)
− z̃

p
η1

(
τ̃

p
, 1

)
.If we now hoose new parameters z = z̃

p , τ = τ̃
p the losing ondition is given by

lnµ(z, τ, 1) = ζ(z, τ, 1) − zη1(τ, 1) = πiqand hene does not depend on p. In the following we thus onsider only solutions withperiod 1 and replae the parameters τ̃ , z̃ by the parameters τ and z.We now desribe how to obtain losed generalized elasti urves. First we only onsiderretangular latties.Lemma 3.16. Let τ ∈ iR and �x some q ∈ Q. Then there exists a funtion z(τ) withvalues in [0, τ) ⊂ iR suh that
ζ(z(τ), τ, 1) − 2z(τ)ζ(12 , τ, 1) = πiq.Proof. We use the impliit funtion theorem, therefore we have to alulate
∂ lnµ(z, τ, 1)

∂z
= −℘(z, τ, 1) − η1(τ, 1).The funtion z(τ) exists for all τ if and only if the partial derivative has no roots on theimaginary axis. Therefore we alulate two speial values of lnµ.

lnµ
(τ
2
, τ, 1

)
= ζ

(τ
2
, τ, 1

)
− 2

τ

2
η1(τ, 1)

= η2 − τη1 = πi,

lnµ

(
τ

2
+

1

2
, τ, 1

)
= ζ

(
τ

2
+

1

2
, τ, 1

)
− 2

τ + 1

2
η1(τ, 1)

= (η1 + η2)− (τ + 1)η1 = η2 − τη1 = πi.The two values at the points τ1 = τ
2 and τ2 = τ+1

2 oinide and the funtion lnµ is notonstant. Furthermore ∂
∂z lnµ is real on the line R+ τ

2R, see lemma A.15, so the derivativehas one root on the line between τ
2 and τ

2 + 1
2 . Due to the symmetry of the Weierstrass

℘-funtion there must be another root of the derivative on the line between τ+1
2 and τ+2

2 .The ℘-funtion takes every value exatly twie, sine it is an ellipti funtion of order 2,hene there is no root on the imaginary axis. 39



3. Elasti and generalized elasti urves
1

τ

tt j j
τ1 τ2

Figure 3.2.: Possible roots of lnµ in a retangular lattie
We now want to show that the set

M := {τ ∈ iR | ∃z ∈ iR : lnµ(z, τ, 1) = πiq}equals iR. Therefore we show that the set M is open and losed.By the impliit funtion theorem there exists loally in a neighborhood of a �xed τ afuntion z(τ) with the property
ζ(z(τ), τ, 1) − z(τ)ζ(1/2, τ, 1) = πiq.So M is open.Now let τn be a sequene inM onverging against some τ⋆, the sequene z(τn) is boundedby the maximum of all τi, sine z ∈ [0, τ). Thus there exists a onvergent subsequene

zm = z(τm) with limit z⋆ and we have z⋆ = z(τ⋆). Sine lnµ is ontinuous in thearguments τ and z we have in the limit
πiq = lim

m→∞
lnµ(z(τm), zm, 1)

= lnµ
(

lim
m→∞

z(τm), lim
m→∞

τm, 1
)

= lnµ(z⋆, τ⋆, 1)So the the set M is also losed, hene it must be equal to iR.40



3.5. Deformation of losed generalized elasti urvesSine the previous lemma an be shown for any q ∈ Q we obtain the following orollary.Corollary 3.17. For any
(τ, p, q) ∈ iR× R×Qthere exists z ∈ iR, suh that the generalized elasti urve parametrized by (z, τ, p) islosed.The ase of τ ∈ 1/2 + iR is a little bit more involved. We therefore study deformationsof losed generalized elasti urves in the next setion.3.5. Deformation of losed generalized elasti urves3.5.1. General deformationsWe now study the deformation of losed generalized elasti urves. We add an additionalparameter t ∈ R whih shall desribe �ows in the set of losed generalized elasti urves.The losing ondition is given by

lnµ(z(t), τ(t), p) = pζ(z(t), τ(t), p) − 2z(t)ζ(p2 , τ(t), p) = πiqand shall be ful�lled for all t. The parameter z is on the ellipti urve de�ned by
Y = {(z, y) | y2 = 4z3 − g2(t)z − g3(t) = g(z)}.and is hosen to be independent of t.The following deformation is some kind of Whitham deformation and is explained indetail in [GS95℄. We hange the elasti urve via isoperiodi deformations, i.e. the valueof the integral ∫

γ

d lnµis preserved during the deformation for all losed yles γ.Then the funtion lnµ satis�es the following di�erential equation:
d lnµ :=

∂ lnµ

∂z
dz =

−z − η1(t)

y
dz (3.24)41



3. Elasti and generalized elasti urvesFurthermore we have
∂

∂t
d lnµ =

∂2 lnµ

∂t∂z
dz =: ωThe right hand side is a meromorphi di�erential form ω . We demand this di�erentialform to be losed in order to onserve all periods. Hene ω is the derivative of a meromor-phi funtion q(z). We hoose q(z) = q1(z)

y with a polynomial q1(z). This meromorphifuntion an only have poles at the branh points, whih are the roots of g(z), and at
z = ∞. At the point ∞ it has a pole, hene the polynomial q1(z) has a degree of at most
1. We hoose

q1(z) = (12η21 − g2)(z − c)for some c ∈ R where η1 is de�ned by
η1(t) = 2ζ(12 , τ(t), 1).Then lnµ satis�es the di�erential equation

∂ lnµ

∂t
= (12η21 − g2)

z − c

y
. (3.25)The fator (12η21 − g2) ensures that there are no poles during the �ow.Instead of varying τ we an also vary g2 and g3. Hene these di�erential equations yielddi�erential equations for g2, g3, η1.All derivatives with respet to t are denoted by a dot, ḟ = d

dtf .Lemma 3.18. The deformation de�ned by equations (3.24), (3.25) hanges g2, g3, η1 ofa generalized elasti urve as follows:
ġ2 = 24η1g2 − 36g3, (3.26)
ġ3 = −2g22 + 36η1g3, (3.27)
η̇1 = 6η21 −

1

2
g2. (3.28)Proof. The ompatibility equation for the deformation is given by

∂2 lnµ

∂t∂z
=
∂2 lnµ

∂z∂t
.42



3.5. Deformation of losed generalized elasti urvesFor the following alulation we need
∂y

∂z
=

1

2

12z2 − g2√
4z3 − g2z − g3

=
12z2 − g2

2yand
∂y

∂t
=

1

2

−ġ2z − ġ3
y

,the parameter z does not depend on t.Thus the ompatibility equation is given by
(12η21 − g2)

y2

(
y2 − 1

2(12z
2 − g2)(z − c)

y

)

=
1

y2

(
−η̇1y −

1

2
(−z − η1)

−ġ2z − ġ3
y

)

⇔ (12η21 − g2)

y3

(
4z3 − g2z − g3 − (6z2 − 1

2
g2)(z − c)

)

=
1

y3

(
−η̇1(4z3 − g2 − g3)−

1

2
(−z − η1)(−ġ2z − ġ3)

)
.This equation an also be written as

z3(−2(12η21 − g2) + 4η̇1) + z2(6(12η21 − g2)c+
1

2
ġ2)

+z(−1

2
g2(12η

2
1 − g2)− η̇1g2 +

1

2
η1ġ2 +

1

2
ġ3)

+(−g3 −
1

2
g2c)(12η

2
1 − g2)− η̇1g3 +

1

2
ġ3η1 = 0.Comparing the oe�ients of the polynomial with respet to z the last equation yieldsthe assertion.The di�erential equations for g2, g3, η1 are rather ompliated, we are now looking forsimpler di�erential equations. Therefore we rewrite the equations in terms of e1, e2, e3,whih are the three roots of the polynomial 4x3 − g2x − g3. These roots satisfy theequations

0 = e1 + e2 + e3,

g2 = −4(e1e2 + e1e3 + e2e3),

g3 = 4e1e2e3. 43



3. Elasti and generalized elasti urvesSo we an onnet the deformation of the invariants g2 and g3 to a deformation of theroots of a polynomial. The di�erential equations for e1, e2, η1 are given by
ė1 = −4e21 + 8e1e2 + 12e1η1 + 8e22,

ė2 = 8e21 + 8e1e2 + 12η1e2 − 4e22,

η̇1 = 6η21 − 2e1e2 − 2e21 − 2e22.The last step in obtaining simple di�erential equations desribing the deformations is theintrodution of the oordinates h1, h2, h3. They are de�ned by
h1 = η1 + e1,

h2 = η1 + e2,

h3 = η1 + e3.Using these oordinates the di�erential equations of lemma 3.18 are
ḣ1 = 6(h1h2 + h1h3 − h2h3),

ḣ2 = 6(h1h2 + h2h3 − h1h3), (3.29)
ḣ3 = 6(h1h3 + h2h3 − h1h2).These new oordinates are hosen in a way that the roots of the vetor �eld de�ned bythis di�erential equations are very simple. The roots are exatly the oordinate axes,where two of the oordinates h1, h2, h3 are zero.3.5.2. Deformations of rhombi lattiesWe now study the speial ase where the disriminant of the polynomial 4x3 − g2x− g3is smaller than or equal to zero. If the disriminant is smaller than zero, one root is realand the other two are omplex onjugate to eah other. This orresponds to the ase of arhombi lattie generated by the vetors p and p/2 + iλ for p, λ ∈ R. If the disriminantis zero two or three roots are oiniding and the orresponding lattie is degenerate.Lemma 3.19. Let γ be a generalized elasti urve with orresponding ellipti spetralurve with Weierstrass invariants g2, g3. Then the deformation of this ellipti urve withthe aid of (3.24) and (3.25) an be desribed by a system of di�erential equations for44



3.5. Deformation of losed generalized elasti urvesvetors on S2. The oordinates for these vetors are
h = η1 + e1,

α = ℜ (η1 + e2) ,

β = ℑ (η1 + e2) .Here e1, e2, e3 are the three roots of the polynomial g(x) = 4x3−g2x−g3. When restritingthese oordinates to the sphere
S2 = {(h, α, β) |h2 + α2 + β2 = 1},they obey the di�erential equations

ḣ = 12αh − 6α2 − 6β2 − 12αh3 − 6hα3 − 6αhβ2 + 6α2h2 − 6β2h2,

α̇ = 6α2 + 6β2 − 12α2h2 − 6α4 − 6α2β2 + 6hα3 − 6hαβ2, (3.30)
β̇ = 12βh − 12βαh2 − 6βα3 − 6αβ3 + 6βα2h− 6β3h.Proof. Let e1 be the real root, then the oordinates h1, h2, h3 have the following proper-ties:

h1 ∈ R, h2 = h3.In order to have only real oordinates we set
h2 = α+ iβwith α the real part of h2 and β the imaginary part. So we an rewrite (3.29) as asystem of di�erential equations in R3. Using the oordinates h, α, β we have three realoordinates h, α, β ∈ R. The di�erential equations in these oordinates are given by

ḣ = 12αh − 6(α2 + β2),

α̇ = 6α2 + 6β2, (3.31)
β̇ = 12βh.The right hand side of the di�erential equations de�nes a vetor �eld on R3 whih ishomogeneous of degree 2. Thus we an restrit the vetor �eld to a vetor �eld on S2.For any di�erential equation ẋ = f(x) with a vetor �eld f(x) on R3 we have the followingvetor �eld on S2

d

dt

x

|x| =
ẋ

|x| −
x〈ẋ, x〉
|x|3/2 =

f(x)

|x| − x〈f(x), x〉
|x|3/2 . 45



3. Elasti and generalized elasti urvesThus we obtain a vetor �eld on S2 and the related di�erential equations are
ḣ = 12αh − 6α2 − 6β2 − 12αh3 − 6hα3 − 6αhβ2 + 6α2h2 − 6β2h2,

α̇ = 6α2 + 6β2 − 12α2h2 − 6α4 − 6α2β2 + 6hα3 − 6hαβ2,

β̇ = 12βh − 12βαh2 − 6βα3 − 6αβ3 + 6βα2h− 6β3h.The roots of the vetor �eld (3.30) are the points
p1 = (1, 0, 0),

p2 = (−1, 0, 0),

p3 =

(
1√
2
,
1√
2
, 0

)
,

p4 =

(
− 1√

2
,− 1√

2
, 0

)
.Linearizing the vetor �eld at these points and applying the Hartman-Grobman theorem[Ama95℄ we obtain asymptoti properties at the points p1, p2, p3, p4 for the �ows de�nedby the system of di�erential equations. The linearization is given by the matrix

L :=




∂ḣ

∂h

∂ḣ

∂α

∂ḣ

∂β
∂α̇

∂h

∂α̇

∂α

∂α̇

∂β
∂β̇

∂h

∂β̇

∂α

∂β̇

∂β


At the points p1, p2, p3, p4 we obtain the matries

L1 =



0 0 0
0 0 0
0 0 12


 L2 =



0 0 0
0 0 0
0 0 −12




L3 =
1√
2



−3 −9 0
−9 −3 0
0 0 6


 L4 =

1√
2



3 9 0
9 3 0
0 0 −6




46



3.5. Deformation of losed generalized elasti urvesThe eigenvalues of the linearization and the stability of the dynamial system at theritial points of the vetor �eld areeigenvalues stability type
p3 3

√
2, 3

√
2,−6

√
2 saddle node

p4 −3
√
2,−3

√
2, 6

√
2 saddle nodeAt the point p1 we obtain an unstable node in β-diretion and at the point p2 we obtaina stable node in β-diretion.Theorem 3.20. Let τ = p/2 + iλ with λ ∈ R and p = 1 be the periods of a rhombilattie L with orresponding Weierstrass invariants g2, g3. Then there exists exatly one

λ∗, suh that
∂ lnµ

∂z

(
1

2
,
1

2
+ iλ∗, 1

)
= −℘

(
1

2
,
1

2
+ iλ∗, 1

)
− 2ζ

(
1

2
,
1

2
+ iλ∗, 1

)
= 0.Proof. The value λ∗ is the root of the oordinate h. We have to show, that the line h = 0is passed exatly one during the �ow from λ = 0 to λ = ∞ and that λ̇ 6= 0 during the�ow. First we show λ̇ 6= 0, hene the value λ is monotonially dereasing or inreasingduring the �ow. Therefore we assume that there exists a λ1 ∈ R \ {0} with dλ
dt (λ1) = 0,i.e. the �ow does not hange the onformal lass at this point. The spetral urve isde�ned by

P := {(x, y) ∈ C2 | y2 = a(x) = 4x3 − g2x− g3}and is non degenerate for λ1 ∈ R\{0}. Then the �ow an hange the spetral urve onlyby in�nitesimally Möbius transformations, see lemma A.27. The possible deformationsare of the form (A.13)
ȧ(x) = µ1a

′ + µ2(xa
′ − deg(a)a), µ1, µ2 ∈ R.For the given polynomial a(x) the possible deformations are

ȧ(x) = µ1(12x
2 − g2) + µ2(12x

3 − g2x− 3(4x3 − g2x− g3))

= µ1(12x
2 − g2) + µ2(2g2x+ 3g3) (3.32)The deformation has to preserve the highest oe�ient, we additionally demand thatthe sum all of three roots of a(x) remains 0, hene the seond highest oe�ient is alsopreserved. Therefore the deformation ȧ(x) an have degree at most 1. Thus we obtain47



3. Elasti and generalized elasti urves
µ1 = 0. On the other hand we an di�erentiate the polynomial a(x) with respet to t.This yields

ȧ(x) = −ġ2x− ġ3. (3.33)The two equations (3.32) and (3.33) must yield the same equation. Thus we obtain byequating oe�ients
ġ2 = −2µ2g2

ġ3 = −3µ2g3Hene the vetors (
ġ2
ġ3

) and (2g2
3g3

)are proportional to eah other. Inserting the deformation equations of g2 and g3 givenby (3.26) and (3.27) yields
0 = 3g3ġ2 − 2g2ġ3

= 3g3(24η1g2 − 36g3)− 2g2(−2g22 + 36η1g3)

= 4g32 − 108g23

= 4∆(g2, g3)with ∆(g2, g3) the disriminant of the polynomial 4x3 − g2x− g3. But the disriminantannot be zero for λ1 ∈ R \ {0}, sine both periods are �nite. Thus there exists no in-�nitesimal Möbius transformation of the spetral urve �xing the onformal lass. Henewe obtain λ̇ 6= 0.Now we alulate two speial values of (h, a, b) for λ. Using lemma A.23 we obtain for
λ = ∞ and p = 1:

e1 =
2

3
π2,

e2 = e3 = −1

3
π2,

η1 =
1

3
π2,and hene

h = π2,

α = 0,

β = 0.48



3.5. Deformation of losed generalized elasti urvesNormalizing to length 1 this is the north pole of S2.In the limit λ→ 0 we use the transformation of τ = 1/2+ iλ in the fundamental domainof the modular group de�ned in equation (A.12). Thus the lattie generated by τ, 1 isequivalent to the lattie generated by −1 and 1
4λ i− 1

2 . We an also alulate the valuesof (h, a, b), the roots ei are given by
e1 = −2

3
π2,

e2 = e3 =
1

3
π2,

η1 = −1

3
π2,and hene

h = −π2,
α = 0,

β = 0.Normalizing to length 1 this is the south pole of S2. Thus the equator h = 0 is passedat least one during the �ow.We now look at the integral urve starting at the north pole of the sphere. The value of
λ is inreasing or dereasing during the �ow, we assume the time to be hosen in a way,suh that the value of λ is dereasing. Then the integral urve starts at the north poleand as long as it does not �ows into the points p3, p4 it will �ow to the south pole of thesphere. Hene we obtain a global solution of the di�erential equation 3.30 with initialvalue hosen as north pole.We now take a loser look at the di�erential equation at the equator h = 0. Insertinginto (3.30) we obtain

ḣ = −6(α2 + β2),

α̇ = 6(α2 + β2),

β̇ = 0.The derivative in h-diretion is always smaller than zero. Thus the southern hemisphereis a positively invariant set under the �ow and there exists only one point in this �owwith h = 0. This point is de�ned as λ∗. 49



3. Elasti and generalized elasti urvesWe still have to exlude the ase where the integral urve �ows into the points p3, p4.There all of the roots are zero and both of the periods of the lattie are in�nity. Thevalue of η1 annot beome zero, beause otherwise all of the oordinates are zero, but weare on S2. We now show, that if the integral urve �ows into one of the points we have
η1 → 0. Thus the integral urve annot �ow into the points p3, p4.Let e2 and e3 be the two omplex onjugate roots. We have

∫

γ

d lnµ = 0for some yle around e2 and e3, sine the funtion d lnµ is antisymmetri to the realaxis. All of the the integrals of d lnµ around a yle are pure imaginary, hene thefuntion ℜ(d lnµ) is harmoni. We de�ned d lnµ by
d lnµ =

−z − η1(t)

y
dz.The only possible singularity is at z = ∞. In order to apply the maximum priniple ofharmoni funtions, hoose a �xed irle γ∞ around ∞. Then the maximum of d lnµ isfound at the irle γ∞. Now hoose a sequene of spetral urves suh that the limits are

e1, e2, e3 → 0 and η1 → η∗1 for some η∗1 6= 0. In this limit the denominator of d lnµ tendsto zero at z = 0, but the enumerator not. Thus there arises a pole at z = 0, thereforethe values of d lnµ inrease unbounded in the neighborhood of 0. But the maximumpriniple states that the maximum is at the irle γ∞, this is a ontradition. Thus thevalue η1 also tends to zero. But not all three parameters of the di�erential equation anbe zero, beause they de�ne a di�erential equation on S2. Thus the integral urve doesnot �ow into the points p3, p4.Using mathematia we obtain numerially as solution of the equation
−℘

(
1

2
,
1

2
+ iλ∗, 1

)
− 2ζ

(
1

2
,
1

2
+ iλ∗, 1

)
= 0the value

λ∗ = 0.3547298925224312.50



3.5. Deformation of losed generalized elasti urvesWe have for all τ = p/2 + iλ

℘(p/2, τ, p) = ℘(iλ, τ, p).Sine η1 is real, the funtion
d lnµ = −℘(z, τ, p) − 2η1has two roots whih are either both on the imaginary axis or both on the real axis. Thevalue λ∗ is the value where d lnµ has a double root on the imaginary axis. For λ > λ∗there are two roots on the imaginary axis and for λ < λ∗ both roots are on the real axis.Due to the asymptotis
lim
z→0

lnµ(z, τ, p) = ∞,

lim
z→2λ

lnµ(z, τ, p) = −∞
(3.34)the funtion lnµ has a minimum and a maximum on the imaginary axis for λ > λ∗. For

λ < λ∗ the derivative is nonzero and smaller than zero, hene the funtion is monotoni-ally dereasing.With the help of this dynamial system we are now able to prove an assertion similar toorollary 3.17 for rhombi latties.Theorem 3.21. Let τ = 1/2 + iλ with λ ∈ R and p = 1 be the periods of a rhombilattie L with orresponding Weierstrass invariants g2, g3.Let λ∗ be de�ned by
−℘

(
1

2
,
1

2
+ iλ∗, 1

)
− 2ζ

(
1

2
,
1

2
+ iλ∗, 1

)
= 0.Then one of the following two ases ours:(i) λ ≤ λ∗For every q ∈ Q there exists exatly one z ∈ iR with

lnµ(z) = πiq. 51



3. Elasti and generalized elasti urves(ii) λ > λ∗Let z1 and z2 be the two pure imaginary roots of d lnµ with z1 < z2. De�ne theinterval
Q := (lnµ(z1), ln µ(z2)).For q ∈ Q there are three possible ases: The equation

lnµ(z) = πiqhas 



three solutions q ∈ Qtwo solutions q ∈ {λ1, λ2}one solution q /∈ Qfor z ∈ iR. Here λ1 = lnµ(z1) for the loal minimum λ1 of lnµ and λ2 = lnµ(z2)for the loal maximum of lnµ.Proof. For λ = λ∗ the derivative of lnµ with respet to z is negative and for λ <
λ∗ stritly negative. Hene the funtion lnµ is stritly dereasing and beause of theasymptotis (3.34) every value is taken one and (i) is proven.Now let λ > λ∗. Then lnµ has a loal minimum and a loal maximum. Let λ1 be theloal minimum and λ2 the loal maximum with λ1, λ2 ∈ iR. Due to the asymptotis wehave λ1 < λ2. Thus for every q in the interval Q there are exatly three z ∈ iR with
lnµ(z) = πiq, namely

z1 < λ1 < z2 < λ2 < z3.For q ∈ ∂Q there are two solutions z1 < z2 with z1 = λ1 or z2 = λ2 and for q /∈ Q onlyone solution of lnµ(z) = πiq exists. For a better understanding of this proof see also�gure 3.3.In the limit τ = i∞ we an use lemma A.23. We obtain
℘(z, i∞, 1) = −π

2

3
+ π2 sin−2(πz)52



3.5. Deformation of losed generalized elasti urves

1 2 3 4 5 6
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Figure 3.3.: lnµ(z) for τ = 1/2 + 3iand
ζ(z, i∞, 1) =

π2

3
z + π cot(πz).The root of

−℘(z, i∞, 1) − 2ζ(
1

2
, i∞, 1) = −π2 sin−2(πz)is z = i∞. The value there is

lnµ(i∞, i∞, 1) = πi.For large τ we an also alulate
lnµ(z1 + τ/2, τ, 1) = lnµ(z1, τ, 1) + η2 − τη1 = lnµ(z1) + 2πiThus the interval Q is always a subset of the interval (πi, 3πi). 53



3. Elasti and generalized elasti urves3.6. Constant urvature solutions3.6.1. Frame of onstant solutions and losing onditionIn order to get a better understanding of the objets of the previous setion we onsidernow solutions with onstant urvature. For a onstant solution the parameters a, b, cmust be hosen suh that the polynomial g(x) = −1
4x

4 − ax2 − 2bx + c has a multipleroot. This is equivalent to a vanishing disriminant of the polynomial g(x). Sine theellipti urve de�ning the solutions is isomorphi to the spetral urve this is equivalentto ∆ = g32 − 27g23 = 0 for the Weierstrass invariants g2, g3. Then we an hoose themultiple root as initial value of the di�erential equation (3.2) and the urvature staysonstant κ(x) ≡ κ∗. If we have a multiple root the ellipti urve Y de�ned in (3.6)onsists of at least one onstant part (the point (κ∗, 0)) where two roots of the de�ningpolynomial oinide.Lemma 3.22. Let κ ≡ κ∗ be the onstant urvature of a urve γ(x) on S2. Then theurve an be parametrized by
γ(x) =




κ∗ 2+2 cos(ν1x)2−1
1+κ∗ 2

− 2κ∗

1+κ∗ 2 sin(ν1x)
2

1
ν1

cos(ν1x) sin(ν1x)


with ν1 = 1

2

√
1 + κ∗ 2.Proof. For onstant urvature the di�erential equation dF (x, λ) = αF (x, λ) with

α =
1

2

(
iκ∗ −i
−iλ −iκ∗

)and initial value F (0, λ) = 1 an be solved expliitly. Thus the urve with onstanturvature an be alulated as γ(x) = F−1(x, 1)σ1F (x, 1) with σ1 = (i 0
0 −i

).In detail one obtains
F (x, λ) =

(
cos νλx+ iλκ∗

2νλ
sin νλx − i

2νλ
sin νλx

− i
2νλ

sin νλx cos νλx− iλκ∗

2νλ
sin νλx

)
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3.6. Constant urvature solutionswith νλ = 1
2

√
λ+ κ∗ 2. The omponents of the urve γ(x) in R3 are obtained by setting

λ = 1 and ν1 = 1
2

√
1 + κ∗ 2 to obtain (3.10) and thus are given by

γ1(x) =
κ∗ 2 + 2cos(ν1x)

2 − 1

1 + κ∗ 2
,

γ2(x) = − 2κ∗

1 + κ∗ 2 sin(ν1x)
2,

γ3(x) =
1

ν1
cos(ν1x) sin(ν1x).

Sine F ( 2π√
1+κ∗ 2

, 1) = −1 and γ(0) = γ( 2π√
1+κ∗ 2

) = (1, 0, 0) all generalized elasti urveswith onstant urvature are losed and the period of the frame is given by
p =

2π√
1 + κ∗ 2

. (3.35)3.6.2. Deformations of onstant solutionsIn setion 3.5 we onsidered isoperiodi deformations desribed by di�erential equationsin e1, e2, e3, the roots of the polynomial 4x3 − g2x− g3. In the ase of onstant solutionswe have multiple roots, i.e. some of the ei oinide. This an only happen if the rootsare all real.We alulate the spetral urve in this speial ase by using the matrixW (s, λ) as de�nedin lemma 3.10. Sine the urvature is onstant we obtain
W (s, λ) = aα(s, λ) − β(s, λ)

=
a

2

(
iκ∗ −i
−iλ −iκ∗

)
−
(
i
(
λκ∗ − 1

2 κ
∗ 3
)

−iλ+ 1
2 i κ

∗ 2

−iλ2 + 1
2 iλ κ

∗ 2 −i
(
λκ∗ − 1

2 κ
∗ 3
)
)For the spetral urve we have to alulate

det(W (s, λ)) = det(α) det(a− α−1β)

= det(α)
(
a2 − tr(α−1β) + det(α−1β)

)
. 55



3. Elasti and generalized elasti urvesThe determinant of α is given by
det(α) =

1

4

(
λ+ κ∗ 2

)
.For the determinant of β one obtains

det(β) =
1

4

(
λ+ κ∗ 2

)(
λ− 1

2
κ∗ 2

)2The trae of α−1β an be alulated totr(α−1β) =
2

det(α)

(
−i κ∗ 2

(
λ− 1

2
κ∗ 2
)
− iλ

(
λ− 1

2
κ∗ 2

))

= 2

(
λ− 1

2
κ∗ 2

)Putting together the above we obtain for the determinant of W (s, λ) the formula
det(W (s, λ)) =

1

4

(
λ+ κ∗ 2

)(
a2 − 2

(
λ− 1

2
κ∗ 2

)
+

(
λ− 1

2
κ∗ 2

)2
)

=
1

4

(
λ+ κ∗ 2

)((
λ− 1

2
κ∗ 2

)
− a

)2Thus the spetral urve ontains a double point and hene is singular. It is of the form
y2 = −1

4

(
λ+ κ∗ 2

)
(λ− λn)

2where the double point is loated at λn. The double point has to be hosen in a way,suh that the losing ondition is still ful�lled. Therefore we alulate the eigenvalues
µ1,2 of F (p, λ). These are solutions of the equation

µ2 − 2 cos(νλp)µ+ 1 = 0and thus
µ1,2 = cos(νλp)± i sin(νλp) = exp(±iνλp).The funtion lnµ1 depends only on κ∗ and λ and is given as

lnµ1(κ
∗, λ) = πi

√
λ+ κ∗ 2

√
1 + κ∗ 2

.56



3.6. Constant urvature solutionsThe frame is losed, i.e. F (p) = ±1, if lnµ1 is a integer multiple of πi, sine then lnµ2is also an integer multiple of πi. This ondition an be written as
√
λ+ κ∗ 2√
1 + κ∗ 2

∈ N.Thus for given κ∗ we obtain a sequene of possible double points λn, suh that the losingondition for the frame is ful�lled. This sequene an be alulated as
λn = (1 + κ∗ 2)n2 − κ∗ 2 , n ∈ Z.Thus the singular spetral urve is de�ned by the equation
y2 = −1

4
(λ+ κ∗ 2)(λ− λn)

2.The derivative of lnµ is
d lnµ =

πi

2
√
1 + κ∗ 2

λ− λn
y

dλ.In the previous setion we de�ned lnµ by
lnµ(z, τ, p) = pζ(z, τ, p)− 2zζ(

p

2
, τ, p)with speial value

lnµ
(τ
2
, τ, 1

)
= πi.The double point is situated at the imaginary half period, so in order to have the sameproperty in this ase we replae lnµ′ = lnµ

m .
lnµ′ =

πi

m

√
λ+ κ∗ 2

1 + κ∗ 2Sine m ∈ Z an be hosen arbitrary, there exists for all κ∗ a q ∈ Q with
lnµ′(κ∗) = πiq.The denominator of q is given by m, the numerator of q ounts the number of periods.The deformation desribed in 3.5.1 an also be applied to this speial ase. Therefore wealulate g2(λn, κ∗), g3(λn, κ∗), and η1(λn, κ∗). These values are then the initial valuesfor the deformation desribed in lemma 3.18. We transform the polynomial

f(λ) = −1

4
(λ+ κ∗ 2)(λ− λn)

2 57



3. Elasti and generalized elasti urvesto Weierstrass normal form. This transformation has already been arried out in lemma3.12, the Weierstrass invariants an be alulated with equation (3.15) as
g2(λn, κ

∗) =
1

12

(
λn + κ∗ 2

)2

=
1

12

(
1 + κ∗ 2

)2
n4

g3(λn, κ
∗) =

1

216

(
λn + κ∗ 2

)3

=
1

216

(
1 + κ∗ 2

)3
n6Thus there exists a funtion

a(λn, κ
∗) :=

1

12
(1 + κ∗ 2)n2with

g2(λn, κ
∗) = 12a(λn, κ

∗)2, g3(λn, κ
∗) = 8a(λn, κ

∗)3,and we are in the seond ase of lemma A.23 for a degenerate lattie. Additionally weobtain
η1(λn, κ

∗) =
nπ

6

√
1 + κ∗ 2and the roots are given by e2(λn, κ

∗) = e3(λn, κ
∗) = −a(λn, κ∗) and e1(λn, κ

∗) =
2a(λn, κ

∗). Hene we have initial values for the di�erential equations
ġ2 = 24η1g2 − 36g3,

ġ3 = −2g22 + 36η1g3,

η̇1 = 6η21 −
1

2
g2.We now take a loser look at the di�erential equations (3.31)

ḣ = 12αh − 6(α2 + β2),

α̇ = 6α2 + 6β2,

β̇ = 12βh58



3.6. Constant urvature solutionswith
h = η1 + e1,

α = ℜ (η1 + e2) ,

β = ℑ (η1 + e2) .In the ase of multiple roots the initial value of β is 0, sine all roots are real. Wenow linearize the di�erential equations in order to apply the Hartman-Grobman theorem[Ama95℄ and obtain the matrix


12α 12h − 12α −12β
0 12α 12β

12β 0 12h


At a point (h0, α0, 0) with h0 > 0 this matrix has a non vanishing eigenvalue 12h0. Henethere exists at least an one-dimensional unstable manifold in the neighborhood of thepoint (h0, α0, 0). Moving along this unstable manifold the solution of the di�erentialequation moves away from β = 0. For h0 < 0 we reverse the time and obtain the sameresult.Then the three roots e1, e2, e3 are all di�erent, sine e1 is real, e3 = e2 and ℑ(e2) 6= 0.Thus we an apply a deformation to the ase of onstant urvature solutions and obtainsolutions without onstant urvature.
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4. Hopf ToriHopf tori are speial surfaes in S3. They stem from urves on S2 whih are lifted throughthe Hopf mapping to S3. These are surfaes, suh that everything depends more or lesson the urve on S2. If the urve is losed on S2 we obtain Hopf tori, otherwise we obtainHopf ylinders.4.1. Hopf �bration and Hopf toriThe following de�nition is due to Hopf [Hop31℄, who de�ned this speial mapping from
S3 → S2.De�nition 4.1. The mapping

h : S3 → S2,

(w, x, y, z) 7→ (2(wy + xz), 2(xy − wz), w2 + x2 − y2 − z2)is alled Hopf mapping. Other equivalent de�nitions are
h : C2 ⊃ S3 → S2,

(z1, z2) 7→ (2z1z2, |z1|2 − |z2|2).and
h : H ⊃ S3 → S2,

x 7→ xix.Here we used the division ring of the quaternions H spanned by {1, i, j, k}, the quaternionsare introdued in detail in appendix B. 61



4. Hopf ToriThe �rst de�nition is the original de�nition of Hopf [Hop31℄, the most useful part for thefollowing is the de�nition via quaternions. This de�nition an be regarded as a rotationof the vetor H ∋ i = (1, 0, 0) around the axis (x2, x3, x4) of angle 2 arccos(x1). Therelationship between quaternions and rotations in R3 is explained in appendix B.We now de�ne a speial irle in S3 ⊂ H as
eiφ = cos(φ) + i sin(φ) ∈ H.This irle lies in the (1, i, 0, 0)-plane in H. We now ome to the main properties of theHopf mapping. Most importantly we obtain, that all points on speial irles are mappedto the same point.Lemma 4.2. The Hopf mapping h has the following properties:

• h(S3) = S2

• h(eiφx) = h(x) for all φ ∈ R, x ∈ S3Proof. The �rst part follows diretly by using the quaternioni de�nition. Let x ∈ S3,obviously h(x) ∈ R3 and it holds
‖h(x)‖ = ‖xix‖ = ‖i‖‖xx‖ = ‖xx‖ = 1sine ‖x‖ = 1. So the image of S3 under the Hopf mapping is equal to S2.Let x = (x1, x2, x3, x4) ∈ S3 be a quaternion, then

eiφx = (cos(φ)x1−sin(φ)x2, cos(φ)x2+sin(φ)x1, cos(φ)x3−sin(φ)x4, cos(φ)x4+sin(φ)x3).Inserting this into the �rst de�nition one obtains the seond part of the laim.Given one point on S2 there is a whole S1-family of points on S3 being the preimageof this point. These points are desribed by irles on S3 and have some interestingproperties.Lemma 4.3. [Lyo03℄ The preimage h−1(S2) onsists of irles in S3. All these irlesare linked and when stereographily projeted to R3 one of these irles is mapped to aline L and the other irles are mapped to irles Ci in R3. The line L passes throughall irles Ci. Any pair of irles Ci, Cj is linked.62



4.1. Hopf �bration and Hopf toriProof. The stereographi projetion is given by the mapping
s : S3 → R3

(w, x, y, z) 7→
(

x

1− w
,

y

1− w
,

z

1−w

)Sine the stereographi projetion is onformal, all irles on S3 are mapped onto irlesin R3, exept the irle passing through (1, 0, 0, 0) whih is mapped onto a straight line.To larify the meaning of the lemma we show that s◦h−1(1, 0, 0) is a line, s◦h−1(−1, 0, 0)is the unit irle in the x2x3-plane and for every other point R ∈ S2 one obtains a irlewhih intersets the x2x3-plane in two points, one inside and one outside the unit irle.Hene every irle is linked with the unit irle in the x2x3-plane.For P = (1, 0, 0) one alulates
h−1(P ) = {ieit | 0 ≤ t ≤ 2π}

= {(− sin(t), cos(t), 0, 0) | 0 ≤ t ≤ 2π}and so s ◦ h−1(P ) =
{(

cos(t)
1+sin(t) , 0, 0

)
| 0 ≤ t ≤ 2π

} whih is equal to the x1-axis. For
Q = (−1, 0, 0) one obtains

h−1(Q) = {(− sin(t), cos(t), 0, 0) | 0 ≤ t ≤ 2π},
s ◦ h−1(Q) = {(0, sin(t), cos(t)) | 0 ≤ t ≤ 2π} .This is exatly the unit irle in the x2x3-plane. For an arbitrary point R = (r1, r2, r3) ∈

S2 with −1 < r1 < 1 one alulates
h−1(R) =

{ 1√
2(1 + r1)

(
− (1 + r1) sin(t), (1 + r1) cos(t),

r2 cos(t) + r3 sin(t), r2 cos(t)− r3 sin(t)
) ∣∣∣ 0 ≤ t ≤ 2π

}
.The irle s◦h−1(R) intersets the x2x3-plane for x1 = 0, so we obtain (1+r1) cos(t) = 0and sine r1 6= −1 it holds t1 = π/2 or t2 = 3π/2 and the intersetion points are

A =

(
0,

r3√
2(1 + r1) + (1 + r1)

,
−r2√

2(1 + r1) + (1 + r1)

)
,

B =

(
0,

−r3√
2(1 + r1)− (1 + r1)

,
r2√

2(1 + r1)− (1 + r1)

)
.

63



4. Hopf ToriCalulating the eulidean norms of A and B one obtains ‖A‖ < 1 and ‖B‖ > 1, so A isinside the unit irle of the x2x3-plane and B outside. In this �rst step we have shownthat all irles are onneted with the unit irle in the x2x3-plane. The next step is toshow that the x1-axis goes through every irle. For the unit irle in the x2x3-plane thisis trivial, for every other irle we show that the origin is on a line between the points Aand B and so the x1-axis passes through the irle. Consider
B −A =

1√
1 + r1

(
0,

−2
√
2r3

1− r1
,
2
√
2r2

1− r1

)
.We have A + t∗(B − A) = 0 for t∗ = 1−r1

4+2
√

2(1+r1)
and sine 0 < t∗ < 1 the origin isbetween A and B. So the x1-axis goes through every irle.We still have to show that any two �ber irles C and D are linked. Therefore we de�nea ontinuous one-to-one map ψ : R3 → R3 whih maps C to the unit irle in the x2x3-plane and D to some other irle E. Sine E and the unit irle are linked, so are Cand D, this follows from the one-to-one property of ψ. In order to de�ne the map ψ weset r = s−1(P ) for some point P on C and onsider f : R4 → R4 with f(x) = kr−1x,

k being the element of the quaternioni basis. Then ψ = s ◦ f ◦ s−1 has the desiredproperties.The next de�nition is fundamental for everything that follows. It desribes how we anlift a urve on S2 to a ylinder or torus in S3 via the Hopf mapping.De�nition 4.4. Let γ : [a, b] → S2 be a urve on S2. Choose a lifted urve η on S3 with
h ◦ η = γ, then the immersion

f : [a, b]× S1 → S3,

(t, φ) 7→ eiφη(t)is alled Hopf ylinder of the urve γ. If γ is losed f(t, φ) is a Hopf torus.An S1-ation on S3 is given by multipliation by eiφ for φ ∈ R. The Hopf tori are thosetori whih are invariant under this S1-ation.64



4.2. Conformal Parametrizations and onformal lass of Hopf tori4.2. Conformal Parametrizations and onformal lass ofHopf toriWe now try to use de�nition 4.4 to obtain a good parametrization of Hopf tori. Thereforelet F (s) ∈ SU(2,C) be the frame of some urve γ(s) on S2 parametrized by ar length.The urve an then be alulated as
γ(s) = F−1(s)σ1F (s).We now regard SU(2,C) as subset of C2 ∼= H via

SU(2,C) ∋
(
α −β
β α

)
=

(
α1 + iα2 β1 − iβ2
β1 + iβ2 α1 − iα2

)as desribed in (B.1). Then we obtain for the frame of the urve F (s)−1 = F (s). Fur-thermore σ1 ∈ SU(2,C) orresponds to i ∈ H. We obtain
γ(s) = F−1(s)σ1F (s) = F (s)iF (s).Thus we an de�ne the lift of the urve γ(s). In the de�nition 4.4 one possible de�nitionof the Hopf mapping was given by

h : H ⊃ S3 → S2,

x 7→ xix.We replae x by F (s) herein and obtain that a parametrization of a Hopf torus is givenby
z(t, φ) = eiφF (t).In order to get a better parametrization we seek for a onformal one. Then it is easy toalulate the �rst and seond fundamental form and the mean urvature of the surfae in

S3. We need to hange the parametrization of the irle eiφ, the following lemma showshow. This parametrization was given by Musso [Mus09℄.Lemma 4.5. Let F (s) be the frame of a urve on S2. A onformal parametrization of aHopf ylinder is given by
f : R× R → S3 ∼= SU(2,C),

(s, θ) 7→
(
e

i
2
(θ−

∫ s

0
κ(t) dt) 0

0 e−
i
2
(θ−

∫ s

0
κ(t) dt)

)
F (s). (4.1)65



4. Hopf ToriThe �rst and seond fundamental form are
g(s) =

(
1/4 0
0 1/4

)
, b(s) =

(
1/2κ(s) −1/8
−1/8 0

)
.Proof. The derivatives of f are :

fs :=
∂f

∂s
=

(
− i

2κe
i
2
(θ−

∫ s

0
κ(t) dt) 0

0 i
2e

− i
2
(θ−

∫ s

0
κ(t) dt)

)
F (s)

+

(
e

i
2
(θ−

∫ s

0
κ(t) dt) 0

0 e−
i
2
(θ−

∫ s

0
κ(t) dt)

)
1

2

(
iκ i
i −iκ

)
F (s)

=
1

2

(
0 iei(θ−

∫ s

0
κ(t) dt)

ie−i(θ−
∫ s

0
κ(t) dt) 0

)
f(s, θ),

fθ :=
∂f

∂θ
=

1

2

(
i 0
0 −i

)
· f(s, θ),

fss =

(
−1

4
1
2κe

i(θ−
∫ s

0
κ(t) dt)

−1
2κe

−i(θ−
∫ s

0
κ(t) dt) −1

4

)
f(s, θ),

fsθ =

(
0 −1

4e
i(θ−

∫ s

0
κ(t) dt)

1
4e

−i(θ−
∫ s

0
κ(t) dt) 0

)
f(s, θ),

fθθ = −1

4
f(s, θ).The inner produt for two matries A,B ∈ SU(2,C) is de�ned by 〈A,B〉 = tr(ABt

) andsine f(s, θ) ∈ SU(2,C) we have f(s, θ)−1 = f(s, θ)
t. Then we obtain

〈fs, fs〉 =
1

4
,

〈fs, fθ〉 = 0,

〈fθ, fθ〉 =
1

4
.So the parametrization is onformal and the �rst fundamental form is onstant

g(s) =

(
1
4 0
0 1

4

)
. (4.2)66



4.2. Conformal Parametrizations and onformal lass of Hopf toriA frame of the immersion is given by {f(s, θ), fs(s, θ), fθ(s, θ)}. In order to alulate theseond fundamental form one needs an extended frame, so we additionally need a normal
N . In the SU(2,C)-setting we have

f = FG−1for some matries F,G. The derivatives of f are then given by
fs = Fσ1G

−1

fθ = Fσ2G
−1The normal is thus given by

N = Fσ3G
−1and an be alulated as N = f [f−1fs, f

−1fθ] = fsf
−1fθ−fθf−1fs. It is given in matrixform as

N =
1

2

(
0 ei(θ−

∫ s

0
κ(t) dt)

−e−i(θ−
∫ s

0
κ(t) dt) 0

)
f(s, θ).The inner produts needed for the seond fundamental form are

〈N, fss〉 =
1

2
κ(s),

〈N, fsθ〉 = −1

8
,

〈N, fθθ〉 = 0.Hene the seond fundamental form is given by
b(s) =

(
1/2κ(s) −1/8
−1/8 0

)
.

Now we an alulate the mean urvature H(s, θ) and the Hopf di�erential Q(s, θ) of theimmersion f(s, θ).Corollary 4.6. The mean urvature of a Hopf ylinder is given by
H(s, θ) =

1

2
tr (g−1b) = κ(s) (4.3)67



4. Hopf Toriand the Hopf di�erential is given by
Q(s, θ) =

1

4
(12κ(s)− i(−1

8 − 1
8)) =

1

8
κ(s) +

1

16
i.Sine κ(s) is real for all s the Hopf di�erential Q is never 0 and so the surfae has noumbilis, see lemma 2.5. The onformal fator of the surfae is onstant u ≡ − log 4, sothe surfae is �at. These onsiderations do not depend on properties of κ(s), so everyHopf ylinder is �at.Eah torus an be identi�ed with R2 modulo a lattie. The onformal lass of a torus isgiven by the ratio of the two generators of the lattie. Equivalently we an �x one lattievetor, then the onformal lass is given by the other lattie vetor. They are hosensuh that the onformal lass is a omplex number in the upper half plane, see thereforealso appendix A.4.Now we onsider Hopf tori, therefore the urve on S2 de�ning the Hopf ylinder must belosed.Lemma 4.7. The onformal lass of a Hopf torus orresponds to the parallelogram gen-erated by the vetors

(0, 4π) and p, p∫

0

κ(t)dt mod 4π


with p the period length of the generalized elasti urve de�ned in (3.8) by

p = 2

λ1∫

λ0

1√
g̃(x)

dx.The value ∫ p
0 κ(t)dt must be alulated modulo 4π, sine we an subtrat a multiple of theother generating vetor.Proof. We have to alulate the periods in s and θ diretions. We obtain

f(0, 0) = 1,
f(0, 4π) = 1,

f(p,

p∫

0

κ(t)dt) = 1.
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4.2. Conformal Parametrizations and onformal lass of Hopf toriThese are the smallest values, suh that f(x, y) = 1, so the Hopf torus is isometri to
R2/Γ, the lattie Γ generated by the vetors (0, 4π) and (p,

∫ p
0 κ(t)dt mod 4π). Thevalue p an be regarded as length L of the urve, the value ∫ p

0 κ(t)dt as enlosed area on
S2. This fat was already disovered by Pinkall [Pin85℄. The value ∫ p

0 κ(t)dt is just themean value of the urvature along one period.In the ase of urves with onstant urvature we obtain a speial lass of surfaes.Lemma 4.8. Let γ(s) be a urve on S2 parametrized by ar length with given onstanturvature κ∗. Then the orresponding Hopf torus is onformally equivalent to a toruswith retangular onformal lass generated by the vetors
π√

κ∗ 2 + 1

(
1,
√
κ∗ 2 + 1 + κ∗

) and π√
κ∗ 2 + 1

(
−1,

√
κ∗ 2 + 1− κ∗

)
.Proof. For onstant urvature κ∗ the generating vetors are given by

(0, 4π) and ( 2π√
κ∗ 2 + 1

,
2πκ∗√
κ∗ 2 + 1

)sine p = 2π√
κ∗ 2+1

, see (3.35). These vetors have the same length
(
2

π√
κ∗ 2 + 1

)2

+

(
2πκ∗√
κ∗ 2 + 1

)2

= 16π2.For any two vetors x, y ∈ R2 with ‖x‖ = ‖y‖ the two vetors x+y, x−y form a retangle.In our ase we onformally transform the generating vetors by the matrix (1 1
1 −1

) andobtain the vetors
2π√
κ∗ 2 + 1

(
1,
√
κ∗ 2 + 1 + κ∗

) and 2π√
κ∗ 2 + 1

(
−1,

√
κ∗ 2 + 1− κ∗

)
.

So all Hopf tori with onstant mean urvature have a retangular onformal lass. TheCli�ord torus is the minimal torus orresponding to H = κ∗ = 0. In our setting theonformal lass of the Cli�ord torus is the retangle spanned by (2π, 2π) and (−2π, 2π).
69





5. Hopf tori as onstrained Willmore toriIn the previous hapters we examined generalized elasti urves and Hopf tori. Now weombine these to obtain onstrained Willmore Hopf tori. We will alulate the onformallass of a onstrained Willmore Hopf torus and its Willmore energy.5.1. Constrained Willmore Hopf toriLemma 5.1. [BPP08℄ Let γ be a losed urve on S2 parametrized by ar length. If theurvature of γ satis�es the di�erential equation
κ′′ +

1

2
κ3 + aκ+ b = 0 (5.1)then the Hopf torus h−1(γ) is a onstrained Willmore surfae. If the urvature solves theequation for b = 0 it is a Willmore surfae.Proof. The mean urvature of a Hopf torus is given by H(s, θ) = κ(s). The Laplae-Beltrami operator ∆ then yields

∆(H(s, θ)) =
1

|g|κ
′′(s)

= 4κ′′(s)sine the metri g is onstant 1
4 as alulated in (4.2). In theorem 2.13 the Euler-Lagrangeequation for onstrained Willmore surfaes was alulated as

(∆H + 2H3 − 2HK)dA = δ∗(q).Now we hoose a = −K
2 and b = −1

4δ
∗(q) and obtain the equation

κ′′(s) +
1

2
κ(s)3 + aκ(s) + b = 0. 71



5. Hopf tori as onstrained Willmore toriHene the Euler-Lagrange equation for onstrained Willmore surfaes is equivalent tothe ondition that a Hopf torus is the preimage of a generalized elasti urve. For b = 0we obtain Willmore surfaes and elasti urves respetively.Thus we have a onnetion between onstrained Willmore surfaes and generalized elastiurves. We now ome to the main de�nition.De�nition 5.2. Let γ(s) be a losed (generalized) elasti urve on S2. The orrespondingHopf torus is alled (onstrained) Willmore Hopf torus.5.2. Willmore energy of onstrained Willmore Hopf toriIn hapter 3 we proved expliit formulas for the solutions of (5.1). These will now beused to alulate expliitly the Willmore energy of onstrained Willmore Hopf tori. Themain ingredient is (4.3)
H(s, θ) = κ(s).In the following let γ(s) be a generalized elasti urve on S2 with parameters (w, τ, p).First we onsider urves with onstant urvature and use the results of setion 3.6.Lemma 5.3. Let γ(s) be a urve on S2 with onstant urvature κ∗. The Willmorefuntional of the orresponding Hopf torus Mγ is given by

W(Mγ) = 2π2
√
κ∗ 2 + 1.Proof. The Willmore funtional on S3, de�ned in (2.6) is given by

W(Mγ) =

∫

Mγ

(H2 + 1)dA.The metri on the surfae was alulated in (4.2) as
g(s, θ) =

(
1
4 0
0 1

4

)
.72



5.2. Willmore energy of onstrained Willmore Hopf toriHene the volume form is given by
dA =

1

4
ds dθ.So we have to integrate the mean urvature H = κ∗ along the generating vetors of thelattie orresponding to the torus. These generating vetors have been alulated in (4.8)as

(0, 4π) and (p = 2π√
κ∗ 2 + 1

,
2πκ∗√
κ∗ 2 + 1

)
.Sine H is onstant the Willmore funtional is

W (Mγ) =
1

4

4π∫

0

p∫

0

(
κ∗ 2 + 1

)
ds dθ

= π
2π√
κ∗ 2 + 1

(κ∗ 2 + 1)

= 2π2
√
κ∗ 2 + 1.For κ∗ = 0 this yields exatly the Cli�ord torus with Willmore energy 2π2 and all othervalues of κ∗ lead to Willmore energies greater than 2π2.Now we ome to the ase of generalized elasti urves without onstant urvature. Theonformal lasses of all Hopf tori have been alulated in lemma 4.7. Now we determinethe onformal lass of onstrained Willmore Hopf tori. Therefore we need the followingproposition.Proposition 5.4. Let (w, τ, p) be the parameters of a generalized elasti urve. Then

p∫

0

ζ(t− w, τ, p)dt−
p∫

0

ζ(t+ w, τ, p)dt = 2πi− 4wη1.Proof. We suppress the generators τ and p of the lattie for simpliity. The Weierstrass
ζ-funtion is a meromorphi funtion with a single pole in 0 and has residuum 1 there.We integrate a single loop around 0 and therefore obtain 2πi. Let α : [0, 1] → C be a73



5. Hopf tori as onstrained Willmore tori
'
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q
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6

Figure 5.1.: Integration path around 0path joining w and −w as shown in �gure 5.1 with α(0) = w,α(1) = −w. Furthermorelet α+ p be the same path shifted by p. Then
∫

−α+p

ζ(t)dt =

∫

−α

ζ(t+ p)dt =

∫

−α

ζ(t) + 2η1dt = −
∫

α

ζ(t)dt+ 4wη1and therefore
p∫

0

ζ(t−w)dt −
p∫

0

ζ(t+w)dt

=

p−w∫

−w

ζ(t)dt+

w∫

p+w

ζ(t)dt+

∫

−α+p

ζ(t)dt+

∫

α

ζ(t)dt− 4wη1

= 2πi− 4wη1.Theorem 5.5. Let γ(s) be a losed generalized elasti urve with parameters (w, p, τ).The vetors generating the lattie of the orresponding Hopf torus are given by
(0, 4π) and (

p,−4wη1 + 2pζ(w)− ip
℘′′(w, τ, p)
℘′(w, τ, p)

mod 4π

)
.Proof. The vetors generating the lattie of a Hopf torus have been alulated in lemma74



5.2. Willmore energy of onstrained Willmore Hopf tori4.7 as
(0, 4π) and p, p∫

0

κ(t)dt mod 4π


 .So we have to alulate ∫ p

0 κ(t)dt for
κ(t) =

−2i℘′(w, τ, p)
℘(t, τ, p)− ℘(w, τ, p)

− i
℘′′(w, τ, p)
℘′(w, τ, p)

.We use the addition theorem (A.9) for the ζ-funtion
ζ(u+ v) = ζ(u) + ζ(v) +

1

2

℘′(u)− ℘′(v)
℘(u)− ℘(v)

.Replaing v by −v we obtain
ζ(u− v) = ζ(u) + ζ(−v) + 1

2

℘′(u)− ℘′(−v)
℘(u)− ℘(−v) .Subtrating these two equations and using ℘(v) = ℘(−v) and ℘′(v) = −℘′(v) yields

℘′(v)
℘(u)− ℘(v)

= ζ(u− v)− ζ(u+ v) + 2ζ(v)Applying this to κ(t) we have
κ(t) = −2i (ζ(t− w)− ζ(t+ w) + 2ζ(w)) − i

℘′′(w, τ, p)
℘′(w, τ, p)

.Now it is easy to alulate the integral, we use proposition 5.4 and ζ ′(t) = −℘(t).
p∫

0

κ(t)dt = −
p∫

0

2i (ζ(t− w)− ζ(t+ w) + 2ζ(w)) − i
℘′′(w, τ, p)
℘′(w, τ, p)

dt

= −2i




p∫

0

ζ(t− w)dt−
p∫

0

ζ(t+ w)dt+ 2pζ(w)


 − ip

℘′′(w, τ, p)
℘′(w, τ, p)

= −2i(2πi − 4η1w)− 4ipζ(w)− ip
℘′′(w, τ, p)
℘′(w, τ, p)

= 4π + 8wiη1 − 4ipζ(w)− ip
℘′′(w, τ, p)
℘′(w, τ, p)
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5. Hopf tori as onstrained Willmore toriThus we obtained the generating vetors for the lattie of a onstrained Willmore Hopftorus. Hene we an alulate the Willmore energy of a onstrained Willmore Hopf torus.First we need a proposition whih will be used in the next theorem.Proposition 5.6. Let (w, τ, p) be the parameters of a generalized elasti urve. Then
p∫

0

(
− ℘′′(t)
℘(t)− ℘(w)

+
℘′(t)2

(℘(t)− ℘(w))2
+ 2℘(t)

)
dt = −4η1Proof. We set

f(t) = − ℘′(t)
℘(t)− ℘(w)

− 2ζ(t).Then
df =

(
− ℘′′(t)
℘(t)− ℘(w)

+
℘′(t)2

(℘(t)− ℘(w))2
+ 2℘(t)

)
dt,so f(t) is a primitive of the onsidered integral. The only possible singularities of f(t)are loated in the lattie points and in w. The Laurent series in the lattie points havethe leading terms

℘(t) = t−2, ℘′(t) = −2t−3, ζ(t) = t−1.Combining these terms we see, that f(t) has no poles at the lattie points. Hene df isa meromorphi di�erential form with double poles in ±w. In total df has no residuum,sine there is no pole of �rst order. So the integral of df along any path does not dependon the starting point of the path. Thus
p∫

0

df =

p+x0∫

x0

dffor some x0 ∈ iR, suh that there exists no pole on the path between x0 and x0 + p.Then the funtion
℘′(t)

℘(t)− ℘(w)is periodi with period length p. Finally we obtain
p∫

0

df =

x0+p∫

x0

df = − ℘′(t)
℘(t)− ℘(w)

∣∣∣∣
x0+p

x0

+ −2ζ(t)|x0+p
x0

= −4η1
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5.2. Willmore energy of onstrained Willmore Hopf toriTheorem 5.7. Let γ(t) be a generalized elasti urve with parameters (w, τ, p) and zgiven by (3.20). The Willmore energy of the orresponding Hopf torus Mγ is given by
W(Mγ) = (4η1 − p℘(z))

(
4π + 8wiη1 − 4ipζ(w) − ip

℘′′(w, τ, p)
℘′(w, τ, p)

)Proof. The Hopf torusMγ = f(t, θ) is periodi with periods p in t-diretion and ∫ p
0 κ(t)dtin θ-diretion. The mean urvature is given by κ(t). The Willmore energy in S3 is givenby

W(M) =

∫

M

(H2 + 1)dAThus we obtain
W(Mγ) =

1

4

∫ p

0
κ(s)ds∫

0

p∫

0

(κ2(t) + 1)dt dθ

=
1

4




p∫

0

(κ2(t) + 1)dt




p∫

0

κ(t)dt

=
1

4




p∫

0

κ2(t)dt+ p




p∫

0

κ(t)dtsine κ(t) is onstant in θ-diretion. So we have to alulate ∫ p
0 κ

2(t)dt.
p∫

0

κ(t)2dt =

p∫

0

(
− 2i℘′(w)
℘(t)− ℘(w)

− i
℘′′(w)
℘′(w)

)2

=

p∫

0

−4℘′(w)2

(℘(t)− ℘(w))2
dt− 4

p∫

0

℘′′(w)
℘(t)− ℘(w)

dt− p
℘′′(w)2

℘′(w)2We still have to alulate the integral
p∫

0

−4℘′(w)2

(℘(t)− ℘(w))2
dt. 77



5. Hopf tori as onstrained Willmore toriTherefore we use the addition theorem (A.4)
℘′(u)2 − ℘′(v)2

(℘(u)− ℘(v))2
=
℘′′(u) + ℘′′(v)
℘(u)− ℘(v)

− 2℘(u) + 2℘(v).and obtain
℘′(w)2

(℘(t)− ℘(w))2
=

℘′(t)2

(℘(t)− ℘(w))2
− ℘′′(t) + ℘′′(w)

℘(t)− ℘(w)
+ 2℘(t)− 2℘(w)

=
℘′(t)2

(℘(t)− ℘(w))2
− ℘′′(t)
℘(t)− ℘(w)

− 1

2

℘′′(w)
℘(t)− ℘(w)

+ 2℘(t)− 2℘(w)and by using proposition 5.6
p∫

0

℘′(w)2

(℘(t)− ℘(w))2
dt = −4η1 −

p∫

0

℘′′(w)
℘(t)− ℘(w)

+ 2℘(w)dt.Thus
p∫

0

κ(t)2dt =− 4


−4η1 −

p∫

0

℘′′(w)
℘(t)− ℘(w)

+ 2℘(w)dt




− 4

p∫

0

℘′′(w)
℘(t)− ℘(w)

dt− p
℘′′(w)2

℘′(w)2

=16η1 + 8p℘(w)− p
℘′′(w)2

℘′(w)2
.Using formula (3.20) we obtain

8p℘(w) − p
℘′′(w)2

℘′(w)2
+ p = −4p℘(z)− p+ p = −4p℘(z, g2, g3).Thus the Willmore energy is given by

W(Mγ) = (4η1 − p℘(z))

(
4π + 8wiη1 − 4ipζ(w)− ip

℘′′(w, τ, p)
℘′(w, τ, p)

)
.
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6. Summary and OutlookSummaryIn this thesis we studied onstrained Willmore Hopf tori. Therefore we introdued thebasi onepts of surfae theory and de�ned Willmore surfaes. They are extremal valuesunder variations of the Willmore funtional
W(M) =

∫

M

H2 dAfor surfaes M in R3. For surfaes in S3 we had to replae H2 by H2 + 1. The mainwork has been done in the third hapter dealing with elasti urves on S2. We solved thedi�erential equation for the urvature funtion κ(x)
κ′(x)2 +

1

4
κ(x)4 + aκ(x) + bκ(x) = cde�ning generalized elasti urves for arbitrary parameters a, b, c. The initial values

(κ(0), κ′(0)) are lying on the ellipti urve
Y = {(x, y) ∈ C2 | y2 = −1

4
x4 − ax2 − 2bx+ c}.The solution of the di�erential equation is given in terms of Weierstrass ellipti funtions.Using the onnetion between elasti urves and the modi�ed Korteweg-de Vries equationwe obtained a spetral urve for elasti urves. We transformed the di�erential equationsof the frame a urve on S2 to an equation of Lamé type, then we solved this Laméequation and �nally obtained a parametrization of a generalized elasti urve on S2 ⊂ R3.Therefore we hanged the parameters a, b, c to new parameters g2, g3, w with g2, g3 beingthe Weierstrass invariants of the ellipti urve Y and w a point on the imaginary part ofthe urve Y . These other parameters are also more suitable in order to determine losedgeneralized elasti urves. We de�ned a funtion lnµ(z, τ, p) on the spetral urve with z79



6. Summary and Outlookbeing expressed by g2, g3, w and τ , p being the periods of the ellipti urve Y . It followedthat the generalized elasti urve is losed if and only if there exists a q ∈ Q suh that
lnµ(z, τ, p) = πiqholds. Depending on the disriminant of the polynomial 4t3 − g2t − g3 we obtainedretangular or rhombi latties for the Weierstrass ℘-funtion. In the ase of a retangularlattie the desription of losed urves is the following. For every q ∈ Q there exists afuntion z(τ) with lnµ(z(τ), τ, p) = πiq. In order to obtain a similar result for rhombilatties we introdued deformations of the spetral urve. These deformations are hosento be non-isospetral but isoperiodi. Using these deformations we showed that thereexists exatly one λ∗ suh that the funtion z 7→ lnµ(z, 12+iλ

∗, p) has a double root. Thisvalue λ∗ determines the number of possible z for given q ∈ Q suh that lnµ(z) = πiq.The ase of a singular spetral urve Y leads to onstant urvature solutions. It wasstraight forward to obtain the parametrization of the urve on S2 in that ase. Thedeformation theory of the spetral urve an also be applied to the singular ase. Thedeformation starts from a singular urve and deforms it into a non-singular urve.In the fourth hapter we desribed the main properties of the Hopf mapping h : S3 → S2.It is a S1-�bration over S2, hene for a losed urve on S2 we obtained as preimage underthe Hopf mapping a torus in S3. We gave a onformal parametrization of these Hopftori and alulated the mean urvature as the urvature of the underlying urve on S2.Using the onformal parametrization we furthermore obtained the onformal lass of aHopf torus.The �fth hapter ombined the third and fourth hapter. We notied that the preimageof a losed (generalized) elasti urve on S2 leads to a (onstrained) Willmore torus in
S3. Sine we have detailed formulas for the mean urvature of the Hopf torus we wereable to expliitly alulate the onformal lass of a Hopf torus. Finally we alulated theWillmore funtional of a Hopf torus stemming from an elasti urve. The value of theWillmore funtional was given in terms of the parameters g2, g3, w.The main new results of this thesis are given in hapters 3 and 5. We expliitly solved thedi�erential equation desribing generalized elasti urves for arbitrary initial values inlemma 3.5. A spetral urve for generalized elasti urves was de�ned in de�nition 3.11,here we used the onnetion between generalized elasti urves and wavelike solutions ofthe mKdV equation. It was shown in lemma 3.12 that the spetral urve is isomorphi tothe ellipti urve stemming from the di�erential equation for generalized elasti urves.We obtained a parametrization of generalized elasti urves on S2 for arbitrary parameters80



a, b, c in lemma 3.13. The losing ondition was investigated in detail, we obtainedfor every real lattie orresponding to the spetral urve a haraterization of losedgeneralized elasti urves. The losed urves are parametrized by a rational number qwhih desribes after how many periods of the urvature the urve loses up. For every
q we were able to hoose initial values suh that the urve loses up with exatly thisgiven q. In the ase of a retangular lattie this was shown in orollary 3.17. The aseof rhombi latties was more involved, therefore we studied isoperiodi deformations ofthe spetral urve in lemma 3.18 and the speial ase of rhombi latties in lemma 3.19.Therefore we studied the integral urves of �ows on S2 deforming the spetral urvein theorem 3.20. With the help of this deformation theory we were able to obtain aharaterization of the losing ondition in theorem 3.21. We extended the deformationtheory to the ase of onstant urvature solutions. The spetral urve is degenerateand there exists a sequene of possible double points. Depending on the hosen doublepoint we an split the double point into two regular points during the deformation andobtain a non-degenerate spetral urve. Hene we an deide for every set of parameters
(g2, g3, w) ⊂ R2 × iR whether the indued generalized elasti urve is losed. Converselywe an hose a parameter w depending on g2, g3 suh that the generalized elasti urve islosed. By using the Hopf mapping we onneted eah losed generalized elasti urve toa torus in S3. We expliitly alulated the onformal lass of this onstrained WillmoreHopf torus in theorem 5.5. Furthermore we were able to alulate the Willmore energyof suh an onstrained Willmore Hopf torus in theorem 5.7.OutlookThere are some diretions in whih further researh an be done. Reently Marques andNeves [MN12℄ proved the Willmore onjeture by using the min-max theory of minimalsurfaes. Thus there exists a minimum of the Willmore energy of tori in R3. But whatabout onstrained Willmore surfaes, Kuwert and Shätzle [KS10℄ proved that thereexists a a minimum in eah onformal lass. The onstrained Willmore Hopf tori areandidates for being the minimum in eah onformal lass. The retangular onformallasses orrespond to m surfaes and they minimize the Willmore funtional in theironformal lass, so one has to extend this to general onformal lasses in the fundamentaldomain of the modular group. Barros and Ferrández [BF11℄ obtained best possibleestimates for the Willmore energy in the lass of Hopf tori with same enlosed areaof the underlying urve (they all them isoareal). The enlosed area determines halfof the onformal lass of a Hopf torus, the other half is given by the length of the81



6. Summary and Outlookurve. The deformation theory of tori with onstant urvature κ∗ an be extended, onean look at the Willmore energy during the deformation, whih should be inreasing.The question arises whih onformal lasses are reahed during the deformation. Theseonformal lasses should be di�erent for di�erent values of κ∗. They also depend on thedouble point λn whih is split during the deformation. Is the set of onformal lassesopen? For every λn one obtains a di�erent family of onformal lasses. For whih ndo we obtain the smallest Willmore energy in the neighborhood of the Cli�ord torus,i.e. small values of κ∗. For every given onformal lass there should be a κ∗ suh thatthe deformation of the orresponding spetral urve �ows through the given onformallass. One this relationship between given onformal lass and onstant urvature κ∗ isknown, it is possible to plot the Willmore energy as a funtion of the onformal lass inthe fundamental domain. Whih κ∗ and whih λn yield global �ows and whih only loal�ows? The possibility of a loal �ow limits the set of onformal lasses reahed duringthe deformation. So one an determine the set of onformal lasses whih an be realizedby onstrained Willmore Hopf tori.
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A. Ellipti FuntionsA.1. Introdution to the theory of ellipti funtionsEllipti funtions are a very old subjet in mathematis. They have been onsidered byJaobi, Weierstrass and many more. Ellipti funtions ome from ellipti integrals, whihhave been onsidered in studying the length of ellipsoids. In 1718 Fagnano studied thear length of the lemnisate, whih an be alulated by the integral
E(x) =

x∫

0

1√
1− t4

dt.

E(x) is stritly inreasing in the interval (0, 1) and has therefore an inverse funtion
f . In 1827 Abel extended this inverse funtion f to a meromorphi funtion in theomplex plane and found an additional omplex period. So the theory of double periodimeromorphi funtions was born. Nowadays these funtions are alled ellipti funtions.In general ellipti integrals are de�ned as

∫
1√
R(t)

dt,where R(t) is some polynomial of degree three or four without multiple roots. Elliptifuntions are the inverse funtions of ellipti integrals.We now de�ne ellipti funtions in detail. A good introdution into the theory of elliptifuntions an be found in [FB00℄ and [WW79℄.De�nition A.1. Let ω1, ω2 ∈ C be two omplex vetors, suh that they are R-linearlyindependent. Then the set
L := {nω1 +mω2 |n,m ∈ Z} 83



A. Ellipti Funtionsis alled lattie generated by the two vetors ω1, ω2. For any point Nω1 +Mω2 ∈ L theset
{(N + s)ω1 + (M + t)ω2 | 0 ≤ s, t ≤ 1}is alled primitive ell of the lattie.De�nition A.2. An ellipti funtion for a lattie L is a meromorphi funtion

f : C → C = C ∪ {∞},suh that
f(z + ω) = f(z) (A.1)for all z ∈ C and ω ∈ L. The order of an ellipti funtion is the number of poles on

C/L.We an replae the ondition (A.1) by the ondition
f(z + ω1) = f(z + ω2) = f(z)for the generators ω1, ω2 of the lattie L, sine every ω ∈ L is an integer linear ombinationof ω1, ω2. It has been shown by Liouville, that the order of an ellipti funtion is thenumber of roots of the equation f(z) = c for any c ∈ C (see [FB00℄). Hene every valueof an ellipti funtion has the same number of preimages.De�nition A.3. Let f : R → R be a polynomial of degree 3 or 4. Then the set
Y := {(x, y) ∈ R2 | y2 = f(x)}is alled ellipti urve if the graph is non-singular, i.e. there exist no multiple roots of

f(x). If the polynomial has degree greater than 4 the set is alled algebrai urve. Wealso onsider ellipti urves extended to the omplex plane and then regard Y as subsetof C2.Let f be an ellipti funtion with lattie L. For two points z, w ∈ C with z − w ∈ L wehave f(z) = f(w). So we an introdue the group C/L with equivalene relation
z ≡ w mod L ⇔ z − w ∈ L.and the projetion π : C → C/L. The equivalene lass [z] of an element z is given by

z + L and we an add two elements by the formula [z] + [w] = [z + w]. Thus we obtainan additive abelian group struture on C/L. We now an �nd an unique funtion
f̂ : C/L → C84



A.2. Weierstrass ellipti funtionssuh that the following diagram ommutes
C

π
��

f

!!C
C

C

C

C

C

C

C

C

C/L
f̂

//
CTherefore we an onsider an ellipti funtion f as a funtion on the torus C/L. Anylattie L an be regarded as the generator of a torus by identifying opposite sides of thelattie.A.2. Weierstrass ellipti funtionsWe now de�ne a simple ellipti funtion. It has been shown by Liouville, that there existsno ellipti funtion of order 1. So the next possible order is 2. Sine every value is takentwie, we have two poles, here we require a double pole in 0. This yields the de�nitionof the Weierstrass ℘-funtion whih is exatly suh a funtion.De�nition A.4. Let L be a lattie in C. The funtion ℘ de�ned by the Laurent series

℘(z, L) =
1

z2
+

∑

ω∈L\{0}

(
1

(z − ω)2
− 1

ω2

) for z 6∈ L,

℘(z, L) = ∞ for z ∈ Lis alled Weierstrass ℘-funtion.The series de�ning the ℘-funtion is uniformly onvergent exept at the poles, so the
℘-funtion is everywhere analyti exept at the poles, whih are loated at the points ofthe lattie. We an alulate the derivative term by term and obtain

℘′(z) = −2
∑

ω∈L

1

(z − ω)3
.This is an ellipti funtion of order 3 sine it has a triple pole in the lattie points.We now ollet some properties of the ℘-funtion. They an be found in many books,e.g. [FB00℄ and [WW79℄. 85



A. Ellipti FuntionsLemma A.5. For the Weierstrass ℘-funtion with the lattie L holds1. ℘(−z, L) = ℘(z, L),2. ℘′(z, L) = −℘′(−z, L).Hene ℘ is an even funtion and ℘′ is an odd funtion.Lemma A.6. It holds
℘′(a) = 0for some a ∈ C if and only if

a 6∈ L, 2a ∈ L.The ℘′-funtion has exatly three roots in C/L and eah of them is a simple root.Proof. For a ∈ C with a 6∈ L, 2a ∈ L we have
℘′(a, L) = ℘′(a− 2a, L) = ℘′(−a, L) = −℘′(a, L)and so ℘′(a, L) = 0. We have therefore found three di�erent roots of ℘′: The points

ω1

2 ,
ω2

2 ,
ω1+ω2

2 are all di�erent. Sine ℘′ is an ellipti funtion of order 3 it an have atmost three roots. Thus we have found all roots of ℘′.The three roots of ℘′ are exatly at the half periods of the lattie, the values of ℘ thereare alled e1, e2, e3 :
e1 = ℘

(ω1

2

)

e2 = ℘
(ω2

2

)

e3 = ℘

(
ω1 + ω2

2

)Proposition A.7. Let z, w ∈ C. It holds
℘(z, L) = ℘(w,L)if and only if
z ≡ ±w mod L.86



A.2. Weierstrass ellipti funtionsProof. The funtion z 7→ ℘(z, L)− ℘(w,L) is for given w an ellipti funtion of degree 2and has mod L exatly 2 roots. These are z = w and z = −w.Using the Laurent series one an show the following theorem, see [WW79, p.437℄.Theorem A.8. The Weierstrass ℘-funtion satis�es the following di�erential equation:
(
℘′(z, L)

)2
= 4℘(z, L)3 − g2℘(z, L)− g3 (A.2)with
g2 =

∑

ω∈L\{0}

1

ω4
,

g3 =
∑

ω∈L\{0}

1

ω6
.Di�erentiating both sides of the di�erential equation and dividing by ℘′(z, L) one obtains

2℘′′(z, L) = 12℘(z, L)2 − g2. (A.3)The values g2, g3 are alled Weierstrass invariants sine they only depend on thelattie. Furthermore g2 and g3 an be used to uniquely determine the lattie L, seelemma A.21, so we an also write
℘(z, L) = ℘(z, g2, g3).This is the most ommonly used notation for the Weierstrass ℘-funtion. We often alsosuppress the Weierstrass invariants g2, g3 for simpliity, if it is lear whih invariants areused.Using g2 and g3 there exists another Laurent series for the ℘-funtion

℘(z, g2, g3) = z−2 +
∞∑

n=1

G2nz
2nwith Gn the so alled Eisenstein series de�ned by

Gn(L) =
∑

ω∈L\{0}

1

ωn
. 87



A. Ellipti FuntionsUsing the di�erential equation (A.2) we obtain, that the Eisenstein series is a polynomialin g2, g3 with rational oe�ients.We obtain a new haraterization of the values e1, e2, e3. Sine they are the roots of the
℘′-funtion, they satisfy

4℘(ei)
3 − g2℘(ei)− g3 = 0, i = 1, 2, 3.Thus they are the three roots of the polynomial

4t3 − g2t− g3and by relating the roots of the polynomial to the oe�ients of the polynomial we obtain
e1 + e2 + e3 = 0,

e2e3 + e1e3 + e1e2 = −1

4
g2,

e1e2e3 =
1

4
g3.The di�erential equation (A.2) an be used to show the onnetion between ellipti urvesand ellipti funtions.De�nition A.9. Let g2, g3 ∈ C be two omplex numbers. We de�ne an ellipti urve Xby

X(g2, g3) := {(z1, z2) ∈ C2 | z22 = 4z31 − g2z1 − g3}.The di�erential equation (A.2) shows, that for some z ∈ C, z 6∈ L the point (℘(z), ℘′(z))lies on the urve X(g2, g3). So we obtain a mapping
C/L \ {0} → X(g2, g3),

z 7→ (℘(z), ℘′(z)).It an be shown, that this mapping is bijetive, see e.g. [FB00℄. We had a similar proofin lemma 3.3.Lemma A.10. The ℘-funtion obeys the addition theorem
℘(z + w) =

1

4

(
℘′(z)− ℘′(w)
℘(z)− ℘(w)

)2

− ℘(z)− ℘(w).88



A.2. Weierstrass ellipti funtionsA proof an be found in [WW79, p.441℄. We also used in hapter 5 the addition theorem
℘′(u)2 − ℘′(v)2

(℘(u)− ℘(v))2
=
℘′′(u) + ℘′′(v)
℘(u)− ℘(v)

− 2℘(u) + 2℘(v). (A.4)This an be proved by using the the di�erential equations for ℘′ and ℘′′.There exist two other Weierstrass ellipti funtions, the σ- and the ζ-funtion. They arenot really ellipti funtions beause they are not periodi, but one often refers to ℘(z),
σ(z), and ζ(z) as the Weierstrass ellipti funtions.De�nition A.11. The Weierstrass ζ-funtion is de�ned by

dζ(z)

dz
= −℘(z)with integration onstant de�ned by

lim
z→0

(ζ(z)− z−1) = 0.The Weierstrass σ-funtion is de�ned by
d log σ(z)

dz
= ζ(z)with integration onstant de�ned by

lim
z→0

(
σ(z)

z

)
= 1.Using the Laurent series of the ℘-funtion we also obtain Laurent series of ζ(z) and anin�nite produt for σ(z)

ζ(z) =
1

z
+

∑

ω∈L\{0}

(
1

z − ω
+

1

ω
+

z

ω2

)
, (A.5)

σ(z) = z
∏

ω∈L\{0}

((
1− z

ω

)
exp

(
z

ω
+

z2

2ω2

))
. (A.6)Hene ζ(z) is an odd funtion and has a simple pole (with residue 1) at every point ofthe lattie. Next we show some properties of these funtions, the most important is thatthey are quasiperiodi, i.e. there exist funtions f(z) and g(z) suh that

σ(z + ω) = f(z)σ(z), ω ∈ L,

ζ(z + ω) = g(z)ζ(z), ω ∈ L.
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A. Ellipti FuntionsProposition A.12. The Weierstrass σ- and ζ-funtions on a lattie generated by ω1, ω2are quasiperiodi. They satisfy
ζ(z + ω1) = ζ(z) + η1,

ζ(z + ω2) = ζ(z) + η2,

σ(z + ω1) = − exp
(
η1(z +

ω1

2
)
)
σ(z),

σ(z + ω2) = − exp
(
η2(z +

ω2

2
)
)
σ(z),with

η1 := 2ζ
(ω1

2

)
, (A.7)

η2 := 2ζ
(ω2

2

)
. (A.8)Proof. We integrate the equation

℘(z + ω1) = ℘(z)and obtain
ζ(z + ω1) = ζ(z) + η1with η1 being the onstant of integration. Now we set z = −ω1

2 and use the fat, that ζis an odd funtion. Then we obtain
η1 = 2ζ

(ω1

2

)and the onstant of integration is determined. For the quasiperiodiy of σ we integratethe equation
ζ(z + ω1) = ζ(z) + η1and obtain
σ(z + ω1) = ceη1zσ(z)with c being the onstant of integration. To determine this onstant we again set z = −ω1

2and obtain
σ
(ω1

2

)
= −ce−η1ω1σ

(ω1

2

)
.Thus

c = −eη1ω1 .A similar argument applies for ω2.90



A.2. Weierstrass ellipti funtionsLemma A.13. The values η1, η2 de�ned in (A.7),(A.8) obey the relation
η1ω2 − η2ω1 = 2πi.This relation is often alled Legendre relation.Proof. We take the integral of ζ(z) around the boundary C of one primitive ell. Thereis exatly one pole in eah primitive ell and the residue is 1. Hene
∫

C

ζ(z)dz = 2πi.We split up the integral ontour C to a path along the lattie. Let therefore be t, t +
ω1, t+ ω2, t+ ω1 + ω2 be the orners of a primitive ell. Then

∫

C

ζ(z)dz =

t+ω1∫

t

ζ(z)dz +

t+ω1+ω2∫

t+ω1

ζ(z)dz +

t+ω2∫

t+ω1+ω2

ζ(z)dz +

t∫

t+ω2

ζ(z)dz.We now rewrite the seond integral using substitution
t+ω1+ω2∫

t+ω1

ζ(z)dz =

t+ω2∫

t

ζ(z + ω1)dzand analogously the fourth integral. Thus we obtain
2πi =

t+ω1∫

t

ζ(z)− ζ(z + ω2)dz −
t+ω2∫

t

ζ(z)− ζ(z + ω1)dz

= −η2
t+ω1∫

t

dz + η1

t+ω2∫

t

dz

= −η2ω1 + η1ω2and the laim follows.The σ- and ζ-funtion also obey addition theorems [EMOT53, p.333℄.
ζ(u+ v) = ζ(u) + ζ(v) +

1

2

℘′(u)− ℘′(v)
℘(u)− ℘(v)

(A.9)
σ(u+ v)σ(u − v) = −σ2(u)σ2(v) (℘(u)− ℘(v)) (A.10)This addition theorem will be used in hapter 5. 91



A. Ellipti FuntionsA.3. Real lattiesWe are mostly interested in the ase of real Weierstrass invariants. So we take a loserlook at speial properties of the lattie for suh invariants. These latties are alledreal and the ℘-funtion is a real funtion on speial lines. Furthermore we obtain alassi�ation of real latties.De�nition A.14. Let f : C → C be a meromorphi funtion. It is alled real if f(z) =
f(z) holds for all z ∈ C. A lattie L ⊂ C is alled real, if for ω ∈ L also ω ∈ L.Lemma A.15. Let L be a lattie in C generated by ω1 and ω1. Then the followingassertions are equivalent:(a) g2, g3 are real.(b) ℘ is a real funtion.() L is a real lattie.Proof. (a) ⇒ (b) For real g2, g3 the Eisenstein series are real, so all oe�ients in theLaurent series of ℘ are real, hene ℘ is a real funtion.
(b) ⇒ (c) Let ℘ be a real funtion, ℘(x) = ℘(x) for all x ∈ C. For every pole ω of ℘ thepoint ω is also a pole. The poles are exatly the lattie points, so the lattie is real.
(c) ⇒ (a) The Weierstrass invariants g2, g3 are given by

g2 =
∑

ω∈L\{0}

1

ω4
,

g3 =
∑

ω∈L\{0}

1

ω6
.For abbreviation we write L∗ or Z2

∗ when we omit 0 in the summation. Then we anwrite
g2 =

∑

ω∈L∗

1

ω4
=
∑

Z2
∗

1

(mω1 + nω1)4For any point of the lattie Nω1+Mω1 the point Nω1+Mω1 is also on the lattie, thus92



A.3. Real lattieswe an split the sum
g2 =

∑

(n,m)∈Z2
∗

1

(mω1 + nω1)4

=
∑

(n,m)∈(N×Z)∗

(
1

(mω1 + nω1)4
+

1

(mω1 − nω1)4

)
.All summands are real, so g2 is real and analogously g3 is real.Lemma A.16. A lattie L is real if and only if it is retangular or rhombi.Proof. [FB00℄ Retangular and real latties are obviously real by the de�nition of thelatties. So we have to show that a real lattie must be retangular or rhombi. Lettherefore be ω ∈ C a generating vetor of the lattie L , then ω + ω, ω − ω ∈ L. So inevery real lattie there exist nonzero vetors on the real and on the imaginary axis. Thelattie generated by the real and imaginary points of the lattie is a sublattie L0 of thelattie L. It is generated by one real vetor ω1 and one pure imaginary vetor ω2. If

L = L0 we are done, so let L 6= L0. There exists ω ∈ L − L0, we an assume that ω isin the primitive ell generated by ω1 and ω2. Then
2ω = (ω + ω) + (ω − ω)yields 2ω ∈ L0. Sine 2ω is neither real nor pure imaginary it holds 2ω = ω1 + ω2. Thelattie L is then generated by

ω =
1

2
(ω1 + ω2) and ω =

1

2
(ω1 − ω2)and therefore is rhombi.Now we analyze the ases of retangular and rhombi latties separately and in partiularlook for real values of the ℘-funtion de�ned on suh latties.Lemma A.17. Let L be a retangular lattie generated by p ∈ R and τ ∈ iR. Then theWeierstrass ℘-funtion is real on both axes and on the half lines p/2 + iR and τ/2 + R.Proof. [FB00℄ Let t ∈ R. Then

℘(t) = ℘(t) = ℘(t) 93



A. Ellipti Funtionsand
℘(it) = ℘(it) = −℘(t) = ℘(t).Thus ℘ is real on both axes.On the half line p/2 + iR we obtain

℘(p/2 + it) = ℘(p/2 + it) = ℘(p/2− it)

= ℘(−p/2− it) = ℘(p/2 + it).The other half line an be onsidered analogously. Hene ℘ is real on the all the linesindiated in �gure A.1.

p

τ

t t

t t

Figure A.1.: Primitive ell of a retangular lattieLemma A.18. Let L be a rhombi lattie generated by p ∈ R and τ = p
2 + iλ, see lemmaA.22. Then the Weierstrass ℘-funtion is real on both axes. The period length on thereal axis is p and the period length on the imaginary axis is 2λ.Proof. Sine L is a real lattie, the Eisenstein series are all real, see lemma A.15. Henethe oe�ients of the Laurent series

℘(z, g2, g3) = z−2 +

∞∑

n=1

G2nz
2n

94



A.3. Real lattiesare real. There are only even powers in the series, so for real z or pure imaginary zwe obtain ℘(z, g2, g3) ∈ R. The period length on the real axis is obviously p. On theimaginary axis we have τ − τ = 2iλ, this is the �rst point of the lattie in imaginarydiretion, hene the period length on the imaginary axis is 2λ.
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.................................................. ..................................................Figure A.2.: Rhombi lattieFor a lattie generated by p and τ we also write ℘(z, τ, p) to emphasize the dependeneon the two periods.We now want to determine whih values of g2, g3 yield a lattie and under whih ondi-tions these latties are di�erent. Therefore we �rst introdue the disriminant and the
j-invariant, whih are very helpful in this ontext.De�nition A.19. The disriminant of the ℘-funtion is de�ned by

∆ = g32 − 27g23where g2, g3 are the Weierstrass invariants. This is exatly the disriminant of the poly-nomial 4t3 − g2t− g3. The j-invariant is given by
j := 1728

g32
∆
.If the disriminant is zero, the polynomial 4t3− g2t− g3 has multiple roots and thereforesome of the values e1, e2, e3 oinide, in this ase the lattie is degenerate. 95



A. Ellipti FuntionsDe�nition A.20. Let L and L′ be two latties. They are alled equivalent
L ∼= L′if and only if there exists a omplex number a ∈ C∗ with
L = aL′.To every lattie L′ there exists an equivalent lattie L of the form

L = Z+ τZ, τ ∈ {z ∈ C | ℑ(z) > 0}.The transformation of a lattie L to an equivalent lattie aL with a ∈ C∗ hanges theWeierstrass invariants g2 and g3 as follows:
g2(aL) = a−4g2(L),

g3(aL) = a−6g3(L).Hene the disriminant and the j-invariant transform as follows:
∆(aL) = a−12∆(L),

j(aL) = j(L). (A.11)Thus we an parametrize equivalent latties by the j-invariant. In general the followinglemma an be shown, see [FB00℄ or [Lan73℄.Lemma A.21. Let j ∈ C and g2, g3 ∈ C with ∆(g2, g3) = g32 − 27g23 6= 0. Then1. There exists a lattie L with given j-invariant jL = j.2. There exists a lattie L with g2 = g2(L) and g3 = g3(L).3. For real g2, g3 the lattie is a retangular or rhombi lattie (see also Lemma A.15).4. Let A and B be two ellipti urves with orresponding latties L and L̃. Then thetwo ellipti urves are isomorphi if and only if jL = jL̃.Lemma A.22. Let L be a real lattie. Then there exists an equivalent lattie with basis
1 and τ in the upper half plane. The real part of τ is 0 for retangular latties and 1/2for rhombi latties.96



A.3. Real lattiesProof. Let ω1 and ω2 be the generators of L. Then τ = ω1

ω2
(or ω2

ω1
) is in the upper halfplane. Thus the lattie L′ with generators τ and 1 is equivalent to L. So we only haveto onsider latties of this type and must show, that the real part of τ is 0 or 1/2. Inaddition we have for τ ∈ L also τ ∈ L, sine the lattie is real.

τ + τ ∈ L and τ + τ ∈ RAll real vetors of the lattie are integer multiples of 1. So τ+τ = a ∈ Z and the real partof τ is a/2. For any integer n we an hange the generator of the lattie to τ ′ = τ +n. Sothe real part is either 0 or 1/2. Real part 0 is just the de�nition of retangular latties,and real part 1/2 orresponds to rhombi latties.If two or more of the roots ei oinide the disriminant is zero. This leads to a degeneratelattie, where one of the periods is in�nity. We ollet some fats about this ase, whihan be found in [EMOT53, p.339℄.Lemma A.23. Let g2, g3 be the Weierstrass invariants of a lattie L and ei the threeroots of 4t3−g2t−g3 with e1 ≥ e2 ≥ e3. For ∆(L) = 0 we have the following three ases.(i) The two bigger roots oinide.
p =∞

τ =
2πi√
12a

e1 =e2 = a

e3 =− 2a

g2 =12a2

g3 =− 8a3

℘(z, 12a2,−8a3) =a+ 3a
1

sinh2(
√
3az)

ζ(z, 12a2,−8a3) =− az +
√
3a coth

(√
3az
)
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A. Ellipti Funtions(ii) The two smaller roots oinide.
τ =i∞

p =
2√
12a

e1 =2a

e2 =e3 = −a
g2 =12a2

g3 =8a3

℘(z, 12a2, 8a3) =− a+ 3a
1

sin2(
√
3az)

ζ(z, 12a2, 8a3) =az +
√
3a cot

(√
3az
)(iii) All roots oinide.

p =∞
τ =i∞
e1 =e2 = e3 = 0

g2 =0

g3 =0

℘(z, 0, 0) =z−2

ζ(z, 0, 0) =z−1A.4. Fundamental domain for the modular groupIn the previous setion we de�ned an equivalene relation on the set of latties. Twolatties are equivalent, if and only if there exists a omplex number a ∈ C∗ with
L = aL′.One of the generators of the lattie an be hosen as 1, the other one is given by some

τ ∈ H with H ⊂ C the upper half plane. The equivalene of two latties generated by
(1, τ) and (1, τ ′) an be rewritten in terms of matries.98



A.4. Fundamental domain for the modular groupDe�nition A.24. The ellipti modular group
SL(2,Z) :=

{
M =

(
α β
γ δ

)
|α, β, γ, δ ∈ Z, detM = 1

}is the set of integer 2× 2-matries with determinant 1.Lemma A.25. Two latties of the type
Z+ Zτ and Z+ Zτ ′ τ, τ ′ ∈ Hare equivalent if and only if there exists a matrix M ∈ SL(2,Z) suh that τ ′ =Mτ .The proof of this and the next assertion an be found in [FB00℄.Theorem A.26. For every τ ∈ H there exists aM ∈ SL(2,Z) suh thatMτ is ontainedin the fundamental domain

F := {τ ∈ H | |τ | ≥ 1, |ℜ(τ)| ≤ 1/2}.

Figure A.3.: Fundamental domain for the modular groupThe ellipti modular group SL(2,Z) is generated by the two matries
T :=

(
1 1
0 1

)
, S :=

(
0 −1
1 0

)
. 99



A. Ellipti FuntionsThere are two speial points in the fundamental domain, the lower right orner ρ := eπi/3orresponds to the Weierstrass invariant g2 = 0 and the point i orresponds to g3 = 0.Retangular latties are situated on the imaginary axis, sine there the two generatorsare orthogonal to eah other. Rhombi latties are situated at the boundary of thefundamental domain. They an be parametrized by
τ =

1

2
+ iλ.The right side of the boundary an be identi�ed with the left side with the aid of thematrix T whih is just the translation of τ by 1. The lattie generated by τ = 1

2 + iλand 1 is also generated by τ and τ . We now use the generators τ, τ and map them tothe upper half plane by setting
τ ′ =

τ

τ
=

1
2 + iλ
1
2 − iλThe new generators are τ ′ ∈ S1 and 1. In order to have τ ′ ∈ F the angle of τ ′ in polaroordinates must be in the interval [π6 , π3 ]. Thus τ ′ lies in the fundamental domain for

λ ∈ [
√
3
6 ,

√
3
2 ]. Hene we mapped a part of the line 1/2 + iλ to the irular border of thefundamental domain. For λ < √

3
6 we use the transformation
(
1 −1
2 −1

)(
τ
1

)
=

(
iλ− 1

2
2iλ

) (A.12)and obtain
τ ′′ =

iλ− 1
2

2iλ
=

1

2
+

1

4λ
i.This τ ′′ has real part 1

2 and imaginary part 1
4λ . The imaginary part is greater than √

3
2for λ < √

3
6 and hene we obtain τ ′′ ∈ F . So we an also map τ in the limit λ → 0 intothe fundamental domain. Thus the line τ = 1

2 + iλ whih desribes all rhombi lattiesby lemma A.22 is equivalent to the border of the fundamental domain.In setion 3.5 we onsidered deformations of the spetral urve. The next lemma shows,that deformations preserving the onformal lass an only be realized by in�nitesimallyMöbius transformations.Lemma A.27. Let Y be an ellipti urve de�ned by
Y :=

{
(x, y) ∈ C2 | y2 = a(x)

}100



A.4. Fundamental domain for the modular groupfor some polynomial a(x) of degree 3 or 4 without multiple roots. Let A and B be twogenerators of the �rst homology group of Y . We de�ne the ellipti modulus τ of theellipti urve by
τ =

∫
B ω∫
A ωfor the meromorphi di�erential

ω =
dx

y
.Let t be the parameter of a �ow deforming the spetral urve, the parameter x is hosen insuh a way, that it does not hange during the �ow. Additionally let ȧ(x) be a deformationof the polynomial a(x) de�ning the ellipti urve. Then every deformation preserving thehighest oe�ient of a(x) with τ̇ = 0 is of the form

ȧ(x) = µ1a
′(x) + µ2(xa

′(x)− deg(a)a(x)), µ1, µ2 ∈ R (A.13)and hene an in�nitesimal Möbius deformation. These are the deformations whih donot hange the onformal lass of the ellipti urve.Proof. The meromorphi di�erential form ω is de�ned as
ω :=

dx

y
.Thus the deformation of ω is given by

ω̇ = − ȧ dx
2y3

= − ȧ

2a
ω.The derivative of the ellipti modulus τ with respet to t an be alulated as to

d

dt
τ =

d

dt

∫
B ω∫
A ω

.The derivative is zero if and only if

 d

dt

∫

B

ω



∫

A

ω −


 d

dt

∫

A

ω



∫

B

ω = 0 101



A. Ellipti Funtionsholds. This equation is equivalent to
∫

A

(ω̇ + αω) =

∫

B

(ω̇ + αω) = 0for some α ∈ C. The 1-form ω̇ has only poles of seond order and these are only loatedat the branhing points of the ellipti urve (the roots of the polynomial a(x)). Wenow onsider the hyperellipti involution (x, y) 7→ (x,−y). The 1-form ω̇ is mapped toits negative under the hyperellipti involution. Let z be a loal parametrization of thesurfae around a branh point of Y with z = 0 at the branh point. A irle γ aroundthe branh point is mapped onto itself under the hyperellipti involution with the sameorientation. Thus we obtain ∫

γ

ω̇ =

∫

γ

−ω̇and therefore the 1-form ω̇ has no residuum. Thus there exists a meromorphi funtion
f suh that

ω̇ + αω = dfholds. The funtion f has simple poles only at the branhing points and hene is of theform
f(x) =

1

y
p(x)with p(x) a polynomial of degree at most 2 (there is no pole at in�nity). The polynomialsof degree at most 2 are linear ombinations of 1, x, x2. Thus we have to alulate

d

(
1

y

)
d

(
x

y

)
d

(
x2

y

)
.We obtain

d

(
1

y

)
= − a′

2ya
dx = − a′

2a
ω,

d

(
x

y

)
=
dx

y
− xa′

2y3
dx = ω − xa′

2a
ω,

d

(
x2

y

)
=

2xdx

y
− x2a′

2y3
dx = 2xω − x2a′

2a
ω.Comparing this to

ω̇ = − ȧ

2a
ω102



A.4. Fundamental domain for the modular groupwe obtain possible formulas for ȧ(x). They are given by
ȧ(x) = a′(x),

ȧ(x) = −2a(x) + xa′(x),

ȧ(x) = x2a′(x)− 4xa(x),where we an add multiples of a(x) to every term. The deformations ȧ(x) an havedegree at most deg(a)− 1 in order to preserve the highest oe�ient. Hene all possibledeformations are of the form
ȧ(x) = µ1a

′(x) + µ2(xa
′(x)− deg(a)a(x)), µ1, µ2 ∈ R.
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B. QuaternionsThe problem of determining a simple and appropriate method to desribe rotations in
R3, lead William Rowan Hamilton to invent the quaternions in the midth of the 19thentury.He was inspired by the desription of rotations in R2, suh rotations an be desribedby a omplex number z of norm 1. The angle of the rotation an be regarded as anglebetween the omplex number zs in the omplex plane and the real axis. A ompositionof two rotations is given by the multipliation of the orresponding omplex numbers.Hamilton tried a long time to �nd an analogue in R3 with the aid of 3-tuples. The ideaof using 4-tuples instead lead to the quaternions.De�nition B.1. The division ring of the quaternions is de�ned by

H = {a0 + ia1 + ja2 + ka3 | a0, a1, a2, a3 ∈ R}.The elements i, j, k satisfy the rules
i2 = j2 = k2 = −1and

ij = k, jk = i, ki = j.We an de�ne a multipliation and an addition on the quaternions. The multipliationis not ommutative (this will be shown later), so we only obtain a division ring. Thequaternions an be onsidered as a generalization of the omplex numbers. So we de�nefor a quaternion
a := a0 + a1i+ a2j + a3kthe real part as a0 and the imaginary part as a1i + a2j + a3k. The onjugation isde�ned by
a := a0 − a1i− a2j − a3k. 105



B. QuaternionsThe norm of a quaternion is the standard eulidean norm of R4 if we identify a with thevetor (a0, a1, a2, a3),i.e.
‖a‖ =

√
a20 + a21 + a22 + a23. (B.1)We an write the quaternions also as matries. Therefore we use the following isomor-phism into omplex 2× 2-matries

H ∋ 1 =

(
1 0
0 1

)
,

H ∋ i =

(
i 0
0 −i

)
∈ su(2),

H ∋ j =

(
0 1
−1 0

)
∈ su(2),

H ∋ k =

(
0 −i
−i 0

)
∈ su(2).We regard the matries of su(2) as the imaginary quaternions. We an generalize this toarbitrary quaternions with

a = a0 + a1i+ a2j + a3k =̂

(
a0 + a1i a2 − a3i
−a2 − a3i a0 − ia1

)
.The norm of a quaternion in this notation is given by the determinant of the matrix.The inverse of a quaternion an be omputed like the inverse of a omplex number

a−1 =
a

‖a‖2 .We identify vetors in R3 with the imaginary quaternions and therefore write
R3 ∋ (p1, p2, p3) = p =̂ 0 + p1i+ p2j + p3k ∈ H.Now we an write any quaternion a ∈ H as the sum of a vetor in R3 and a salar

a = a0 + a.106



With this abbreviation the multipliation of two quaternions p and q an be alulatedas
pq = (p0 + ip1 + jp2 + kp3) (q0 + iq1 + jq2 + kq3)

= p0 (q0 + iq1 + jq2 + kq3) + ip1 (q0 + iq1 + jq2 + kq3) + jp2 (q0 + iq1 + jq2 + kq3)

+ kp3 (q0 + iq1 + jq2 + kq3)

= (p0q0 + ip0q1 + jp0q2 + kp0q3) + (ip1q0 + iip1q1 + ijp1q2 + ikp1q3)

+ (jp2q0 + jip2q1 + jjp2q2 + jkp2q3) + (kp3q0 + kip3q1 + kjp3q2 + kkp3q3)

= (p0q0 + ip0q1 + jp0q2 + kp0q3) + (ip1q0 − p1q1 + kp1q2 − jp1q3)

+ (jp2q0 − kp2q1 − p2q2 + ip2q3) + (kp3q0 + jp3q1 − ip3q2 − p3q3)

= p0q0 − p1q1 − p2q2 − p3q3 + i (p0q1 + p1q0 + p2q3 − p3q2)

+ j (p0q2 − p1q3 + p2q0 + p3q1) + k (p0q3 + p1q2 − p2q1 + p3q0) .This an be written in short as
pq = p0q0 − 〈p,q〉+ p0q+ q0p+ p× q. (B.2)The vetor produt p×q is not ommutative, hene the multipliation is not ommuta-tive. So the de�nition of the quaternions as a division ring makes sense.As already mentioned the history of quaternions has a deep onnetion to rotations in

R3. We now desribe this onnetion, we follow [Lyo03℄.Theorem B.2. Let r = r0 + r1i+ r2j + r3k = r0 + r ∈ H be an unit quaternion. Then
Rr : R

3 → R3

v 7→ rvrdesribes a rotation of the vetor v with rotation axis (r1, r2, r3) and rotation angle
2 arccos r0. Here we again identify the vetor v ∈ R3 with the imaginary quaternion
v1i+ v2j + v3k.Proof. First we show that the produt rxr also determines an imaginary quaternion. We107



B. Quaternionsuse formula (B.2) and obtain
Rr (v) = rvr =(r0 − r) (0 + v) (r0 + r)

= (r0 · 0 + 〈r,v〉 − 0 · r+ r0v− r× v) (r0 + r)
= (〈r,v〉+ r0v− r× v) (r0 + r)
=〈r,v〉r0 − 〈r0v− r× v, r〉+ 〈r,v〉r

+ r0 (r0v− r× v) + (r0v− r× v)× r
=〈r,v〉r0 − 〈r0v, r〉+ 〈r× v, r〉+ 〈r,v〉r

+
(
r20v)− r0 (r× v) + (r0v)× r

− (r× v)× r
=〈r× v, r〉+ 〈r,v〉r+ r20v− r0 (r× v)

+ r0 (v× r)− (r× v)× r
=〈r× v, r〉+ 〈r,v〉r+ r20v− 2r0 (r× v)
=2〈r,v〉r− 〈r,v〉r+ r20v− 2r0 (r× v)
=2〈r,v〉r− |r|2 v+ r20v− 2r0 (r× v)
=
(
r20 − |r|2)v+ 2〈r,v〉r− 2r0 (r× v) . (B.3)There is no real part in the last equation (B.3), so the mapping Rr is well de�ned.The quaternion r has norm 1, hene we an write

r20 + ‖r‖2 = 1.This is very similar to cos(θ)2+sin(θ)2 = 1, so we an identify r0 with cos(θ). We hoose
−π < θ ≤ π for the uniqueness of θ. Therefore we an write the quaternion r as

r = r0 + r1i+ r2j + r3k = cos(θ) + u sin θwith
u =

r

‖r‖ ,a pure imaginary quaternion.Now we take the followings steps to prove the assertion.(i) Rr preserves the length of the vetor v.108



(ii) u is the rotation axis regarded as vetor in R3.(iii) Rr is a linear map.We have
‖Rr(v) = ‖rvr‖ = ‖r‖ ‖v‖ ‖r‖

= ‖v‖,sine r is an unit quaternion. Hene Rr preserves the norm and (i) is proven.Next we have to show, that Rr(u) = u, so u = λr with λ = ‖r‖−1 is �xed under therotation and therefore the rotation axis.
Rr(u) = Rr (λr) = r (λr) r = (r20 − |r|2) (λr) + 2〈r, λr〉r+−2r0 (r× (λr))

= r20λr− λ |r|2 r+ 2λ |r|2 r
= λr(r20 − |r|2 + 2 |r|2)
= λr(r20 + |r|2)
= λr · 1
= λr
= uSo u an be regarded as rotation axis and (ii) follows.For the linearity of Rr let a,b ∈ R3 and λ ∈ R. Then

Rr(a+ λb) = r(a+ λb)r

= rar + r(λb)r

= rar + λrbr

= Rr(a) + λRr(b).Thus the map Rr is linear and (iii) is proven.We ome bak to the proof of the theorem. We split the vetor v, whih we want torotate, in two orthogonal parts. One part in diretion of the rotation axis u = λr andone vetor orthogonal to the axis
v = λr+ n, 〈u,n〉 = 0. 109



B. QuaternionsWe now alulate Rr(n) using formula (B.3)
Rr(n) =

(
r20 − ‖r‖2

)
n+ 2〈r,n〉r − 2r0(r× n)

=
(
r20 − ‖r‖2

)
n− 2r0(r× n)

=
(
r20 − ‖r‖2

)
n− 2r0(u‖r‖ × n)

=
(
r20 − ‖r‖2

)
n− 2r0‖r‖(u × n).Setting u× n = n⊥ we obtain

Rr(n) =
(
cos2(θ)− sin2(θ)

)
n− 2 cos(θ) sin θn⊥

= cos(2θ)n− sin(2θ)n⊥.The part u of v lies on the rotation axis and hene is invariant under Rr. We use thelinearity of Rr and obtain
Rr(v) = Rr(u+ n) = Rr(u) +Rr(n)

= u+ cos(2θ)n− sin(2θ)n⊥
:= u+m.Thus m is the vetor obtained by rotating n around the axis u with angle −2θ. Weobtain a rotation as desribed in the assertion.Now we ome to the omposition of two rotations. Sine the quaternioni multipliationis not ommutative the order of the appliation of rotations is important.Lemma B.3. Let p and q be two unit quaternions with orresponding rotations

Rp(a) = pap and Rq(b) = qbq.Then the multipliation of the quaternions p and q de�nes a rotation Rpq whih orre-sponds to the omposition of the rotations Rp and Rq. Angle and rotation axis of theomposed rotation an be alulated in terms of the quaternion pq.Proof. Let u ∈ R3 be a vetor and v ∈ R3 be its image under Rq

v = Rq(u)

= quq.110



Now we rotate v with the rotation Rp and hene onsider the omposition of Rq and Rp,written as Rp ◦Rq and obtain
w = Rp(v)

= pvp

= p(quq)p

= (qp)u(qp) = Rqp(u).The produt qp is an unit quaternion, sine p and q are. Hene Rqp is a rotation and thequaternion de�ning this rotation is exatly the produt of q and p.The set S3 ⊂ H of unitary quaternions together with the quaternioni multipliationful�lls all group axioms. The elements of S3 have norm 1 and the multipliation preservesthe norm. The group ist not abelian, only the multipliation with 1 or −1 ommutes(these are the only real quaternions of S3).The set of rotations in R3 together with the omposition of rotations as group operation isalso a group, this group is alled SO(3). But we have de�ned rotations in R3 with the aidof unitary quaternions, the omposition of two rotations orresponds to the multipliationof two unitary quaternions. Hene there exists a group homomorphism
ϕ : S3 → SO(3),

r 7→ Rr.Eah rotation in SO(3) an be written as Rr for some r ∈ S3. Eah rotation has twopreimages in S3, namely r and −r. This follows from
R−r(v) = (−r)v(−r)

= (−r)v(−r)
= (−1)rv(−1)r

= rvr = Rr(v).Hene the subgroup {1,−1} is the kernel of the map ϕ, sine R1 and R−1 are the identity.We obtain the group isomorphism
S3/{1,−1} ∼= SO(3). (B.4)111



B. QuaternionsAdditionally we have an isomorphism S3 ∼= SU(2,C), given by the matrix desription ofquaternions and the fat, that the norm of a quaternion in this situation is the determi-nant. So we an write an unit quaternion a ∈ S3 ⊂ H as
a = a0 + a1i+ a2j + a3k =̂

(
a0 + a1i a2 − a3i
−a2 − a3i a0 − ia1

)
.and the matrix has determinant 1. This is exatly the de�nition of SU(2,C). Thus weobtain an isomorphism

SU(2,C)/{1,−1} ∼= S3/{1,−1} ∼= SO(3).
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