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Abstract

When is it optimal for a government to default on its legal repayment oblig-
ations? We answer this question for a small open economy with domestic
production risk in which the government optimally �nances itself by issuing
non-contingent debt. We show that Ramsey optimal policies occasionally devi-
ate from the legal repayment obligation and repay debt only partially, even if
such deviations give rise to signi�cant �default costs�. Optimal default improves
the international diversi�cation of domestic output risk, increases the e¢ ciency
of domestic investment and - for a wide range of default costs - signi�cantly
increases welfare relative to a situation where default is simply ruled out from
Ramsey optimal plans. We show analytically that default is optimal following
adverse shocks to domestic output, especially for very negative international
wealth positions. A quantitative analysis reveals that for empirically plausible
wealth levels, default is optimal only in response to disaster-like shocks to do-
mestic output, and that default can be Ramsey optimal even if the net foreign
asset position is positive.

JEL Class. No.: E62, F34

1 Introduction

When is it optimal for a sovereign to default on its outstanding debt? We analyze this
hotly debated question in a quantitative equilibrium framework in which a country
can borrow and invest internationally to smooth out the consumption implications
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Conference, CREI Barcelona, Sciences Po Paris, London Business School, and to Manuel Amador,
Fernando Broner, Isabel Correia, Jordi Galí, Pierre Olivier Gourinchas, Jonathan Heathcote, Felix
Kuebler, Philippe Martin, Richard Portes, Xavier Ragot, Helene Rey, Chris Sims and Pedro Teles
for their helpful comments and suggestions. Any remaining errors are our own. The views expressed
in this paper are those of the authors and do not necessarily re�ect the opinions of the Deutsche
Bundesbank.
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of domestic productivity shocks. Importantly, we determine the default policies that
maximize the country�s ex ante welfare, i.e. derive the Ramsey optimal policy under
full commitment. We show that Ramsey policies involve sovereign default, i.e. it
is optimal for the government to occasionally repay less than is legally required to
serve its outstanding debt contracts. This is optimal even if default events give rise
to sizeable deadweight costs. A quantitative analysis suggests that optimal default
policies signi�cantly increase ex ante welfare, relative to a situation where sovereign
default is simply ruled out by assumption.
The fact that sizeable welfare gains can arise from sovereign default may appear

surprising, given that policy discussions and also the academic literature tend to
emphasize the ine¢ ciencies associated with sovereign default events. Popular dis-
cussions, for example, tend to focus on the potential ex post costs associated with a
sovereign default, such as the adverse consequences for the functioning of the banking
sector or the economy as a whole. While certainly relevant, we show that sovereign
default can remain optimal, even if default costs of an empirically plausible mag-
nitude arise. Likewise, following the seminal contribution of Eaton and Gersovitz
(1981), the academic literature also tends to emphasize the ine¢ ciencies created by
default decisions: anticipation of default in the future limits the ability to issue debt
today, thereby constraining the ability to smooth out adverse shocks.
Our analysis emphasizes that sovereign default also ful�lls a very useful economic

function, even in a setting with a fully committed government: a default engineers
a resource transfer from lenders to the sovereign debtor in times when resources are
scarce on the sovereign�s side. The option to default thus provides insurance against
adverse economic developments in domestic income. This point has previously been
emphasized by Grossmann and Van Huyck (1988), who coined the term �excusable
default�to capture default events that are the result of an implicit risk sharing agree-
ment between the sovereign borrower and its lenders. Assuming the absence of default
costs, Grossman and Van Huyck (1988) study whether the optimal allocation with
cost-free �excusable default�can be sustained as a reputational equilibrium in a set-
ting without a committed borrower. The present analysis abstracts entirely from
issues related to lack of commitment, and is instead concerned with characterizing
the optimal allocation with �excusable default�, but for the empirically more plausible
setting with non-zero default costs. We do so using a production economy with a
general shock structure, which generalizes the setup with iid endowment shocks ana-
lyzed in Grossman and Van Huyck�seminal work. And as we prove analytically, the
presence of default costs strongly a¤ects optimal allocations and the optimal default
policy, with the default policy being discontinuously a¤ected when moving from zero
to positive default cost levels.
Sovereign default is Ramsey optimal in our setting because government bond mar-

kets are incomplete, such that bond markets do not provide any explicit insurance
against domestic income shocks.1 The incompleteness of government bond markets
thereby emerges endogenously from the presence of contracting frictions, which we

1Moreover, adjustments of the domestic investment margin only partially contribute to smoothing
domestic consumption.

2



describe in detail in section 3 of the paper. These frictions make it optimal for the gov-
ernment to issue debt contracts which - in legal terms - promise a repayment amount
that is not contingent on future events. This is in line with empirical evidence, which
shows that existing government debt consists predominantly of non-contingent debt
instruments.2 The contracting framework represents an important advance over ear-
lier work studying Ramsey optimal government policy under commitment and incom-
plete markets, which simply assumes the incompleteness of government bond markets
(e.g. Sims (2001), Angeletos (2002), Ayiagari et al. (2002), or Adam (2011)). Impor-
tantly, the contracting framework also provides microfoundations for the presence of
�default costs�.
Using this setting with non-contingent sovereign debt and default costs, we extend

the existing Ramsey policy literature by treating repayment of debt as a (continuous)
decision variable in the optimal policy problem. We show analytically that, for a
wide range of empirically plausible default cost speci�cations, the assumption of full
debt repayment is inconsistent with fully optimal behavior. While full repayment is
optimal if the country has accumulated a su¢ cient amount of international wealth,
which then serves as a bu¤er against adverse domestic shocks, full repayment is
suboptimal for su¢ ciently low wealth levels, provided default costs do not take on
prohibitive values.3 The presence of non-zero default costs is key for this �nding, as
with cost-free default the optimal default patterns are independent of the country�s
wealth position.
Besides providing analytical characterizations of the optimal default policies, we

also quantitatively assess the economic conditions under which sovereign default is
part of Ramsey optimal policy. For this purpose, we provide a lower bound estimate
for the costs of default implied by our structural model and use it as an input for our
quantitative analysis. We show that plausible levels of default costs make it optimal
for the government not to default following business cycle sized shocks to productivity,
thereby vindicating the full repayment assumption often entertained in the Ramsey
policy literature with incomplete markets. Only when the country�s net foreign debt
position approaches its maximum sustainable level, does sovereign default become
optimal following an adverse business cycle shock.
Given that reasonably sized default costs largely eliminate sovereign default in

response to business cycle sized shocks, we introduce economic �disaster� risk into
the aggregate productivity process, following Barro and Jin (2011). Default then
reemerges as part of optimal government policy, following the occurrence of a su¢ -
ciently severe disaster shock. This is the case even for sizeable default costs and even
when the country�s net foreign asset position is far from its maximally sustainable

2Most sovereign debt is non-contingent only in nominal terms, and could be made contingent
by adjusting the price level, a point emphasized by Chari, Kehoe and Christiano (1991). As shown
in Schmitt-Grohe and Uribe (2004), however, such price level adjustments are suboptimal in the
presence of even modest nominal rigidities. Morevoer, for countries that are members of a monetary
union, non-contingent nominal debt is e¤ectively non-contingent in real terms, since the country
cannot control the price level.

3Default costs are prohibitive if the costs of default are equal to, or higher than the amount of
resources not repaid to lenders.
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level. Indeed, for a severe output disaster it can be optimal to default even if the
country�s net foreign asset position is positive. For the U.S. net foreign asset position,
which stood at -26,7% of GDP at the end of 2011, our model suggests an optimal de-
fault amount of around 3.16 trn U.S. dollars, should the U.S. economy experience an
economic disaster in which output falls approximately 30% below trend. For smaller
output disasters in the order of 8% of GDP, default remains suboptimal, and this
continues to be true for considerably more negative net foreign asset positions.
We also investigate the welfare consequences of using government default by com-

paring the optimal policy with default to a situation where the government is assumed
to repay debt unconditionally. In the latter setting, adjustments in the international
wealth position and of the domestic investment margin are the only channels available
for smoothing domestic consumption. The consumption equivalent welfare gains asso-
ciated with optimal default decisions easily reach 1 percentage point of consumption
each period and prove surprisingly robust to the level of default costs.
In related work, Sims (2001) discusses �scal insurance in the context of whether or

not Mexico should dollarize its economy. Considering a setting where the government
is assumed to issue only non-contingent nominal debt that is assumed always to be
repaid, he shows how giving up the domestic currency allows for less insurance, as it
deprives the government of the possibility of using price adjustments to alter the real
value of outstanding debt. The present paper considers a model with real bonds that
are optimally non-contingent and allows for outright government debt default. Our
setting could thus be reinterpreted as one where bonds are e¤ectively non-contingent
in nominal terms, but where the country has delegated the control of the price level
to a monetary authority that pursues price stability, say by dollarizing or by joining a
monetary union. As we then show, in such a setting the default option still provides
the country with a possible and quantitatively relevant insurance mechanism.
Angeletos (2002) explores �scal insurance in a closed economy setting with incom-

plete government bond markets, assuming full repayment of debt. He shows how a
government can use the maturity structure of domestic government bonds to insure
against domestic shocks, by exploiting the fact that bond yields of di¤erent maturities
react di¤erently to shocks. This channel is unavailable in our small open economy
setting, since the international yield curve does not react to domestic events.
The remainder of the paper is structured as follows. Section 2 introduces the eco-

nomic environment, formulates the Ramsey policy problem, and derives the necessary
and su¢ cient conditions characterizing optimal policy. In doing so, we also introduce
a new approach for proving concavity of Ramsey problems involving default decisions
and show how to properly impose �natural borrowing limits� in quantitative model
applications. Both issues should be of interest in a variety of other applications. To
simplify the exposition, we assume in this section that the government can issue non-
contingent debt only and that deviations from the legally stated repayment promise
gives rise to proportional default costs. Section 3 then endogenizes the government
debt contract and derives the optimality of non-contingent government debt and the
presence of default costs from a contracting model. Section 4 presents a number of
analytical results characterizing optimal default policies. In sections 5 and 6 we then
quantitatively evaluate the model predictions by studying optimal default policies in
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a setting with business cycle sized shocks and economic disaster shocks, respectively.
Section 7 studies the welfare implications of using the default option and section 8
discusses an extension of the model to bonds with longer maturity. A conclusion
brie�y summarizes. Technical material is contained in a series of appendices.

2 A Small Open Economy Model

Consider a small open economy with shocks to domestic productivity where the
government can borrow and invest internationally to insure domestic consumption
against �uctuations in domestic income.4 The economy is populated by a represen-
tative consumer with expected utility function

E0

1X
t=0

�tu(ct); (1)

where c � 0 denotes consumption and � 2 (0; 1) the discount factor. We assume
u(�) to be twice continuously di¤erentiable with u0 > 0 and u00 < 0, and that Inada
conditions hold. Domestic output is produced by a representative �rm using the
production function

yt = ztk
�
t�1 � c;

where yt denotes output of consumption goods in period t, c � 0 some �xed ex-
penditures, kt�1 the capital stock from the previous period, � 2 (0; 1) the capital
share, and zt > 0 an exogenous stochastic productivity shock. Productivity shocks
are the only source of randomness in the model and cause domestic income to be
risky. Productivity assumes values from some �nite set Z =

�
z1; :::; zN

	
with N 2 N

and the transition probabilities across periods are described by some measure �(z0jz)
for all z0; z 2 Z. Without loss of generality, we order productivity states such that
z1 > z2 > ::: > zN . The �xed expenditures c � 0 can either be interpreted as an
output component that is consumed as a �xed cost in the production process, or - as
we prefer - as a �xed subsistence level for consumption expenditures. In the latter
case, yt denotes output in excess of this subsistence level.5 What is important is that
c is a domestic output component that cannot be transferred to international lenders
to repay outstanding debt. Postulating the existence of such output components
appears natural, given that services and other output components are often not trad-
able. In our quantitative analysis we calibrate c � 0 in a way to obtain reasonably
tight international borrowing limits for the domestic economy. All analytical results
hold independently of the value chosen for c � 0.

2.1 The Government
The government seeks to maximize the utility of the representative domestic house-
hold (1) and is fully committed to its plans. It can insure consumption against

4For the contracting model presented in section 3, it is optimal that the government borrows on
behalf of private agents in the international market. Alternatively, one may assume that domestic
consumers have no access to the international capital market.

5This is consistent with the utility speci�cation in equation (1) if we set u(c) = �1 for all c < 0,
i.e. whenever consumption falls short of its subsistence level.
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domestic income risk by investing in foreign bonds, i.e. by building up a bu¤er stock
of foreign wealth, and by issuing own bonds, i.e. by borrowing internationally.6

Without loss of generality, we consider a setting in which foreign bonds are zero
coupon bonds with a maturity of one period.7 Foreign bonds are assumed to be risk-
free and the interest rate r on these bonds satis�es 1 + r = 1=�. We let Ft � 0
denote the government�s holdings of foreign bonds in period t. These bonds mature
in period t+ 1 and repay Ft units of consumption at maturity.
We shall assume that the domestic government has a speci�c �technology�avail-

able for issuing domestic bonds, i.e., for borrowing internationally. We provide mi-
crofoundations for our �technology�assumptions in section 3 below using an explicit
contracting framework.
Speci�cally, the government can issue non-contingent zero coupon bonds which

promise - as part of their legally stated payment obligation - to repay unconditionally
one unit of consumption one period after they have been issued. The e¤ects of intro-
ducing domestic bonds with longer maturity will be discussed separately in section 8.
The government can choose to deviate from the legal payment obligation at maturity,
i.e. can choose to default, but such deviations are costly. The �default costs�take the
form of a dead-weight resource cost, capturing the intuitive fact that sizeable ex post
costs can be associated with a sovereign default event.
Let Dt � 0 denote the amount of domestic bonds issued by the government in

period t. These bonds legally promise to repay Dt units of consumption in period
t+1. When issuing these bonds in period t, the government also decides on a default
pro�le �t 2 [0; 1]N , which is a vector determining, for each future productivity state
zn (n = 1; :::; N), what share of the legal payment promise the government will default
on:

�t = (�
1
t ; :::; �

N
t ):

An entry of one indicates a state in which full default occurs, an entry of zero a
state with full repayment, and intermediate values capture partial default events. Let
�t(zt+1) denote the entry in the default pro�le �t pertaining to productivity state
zt+1 2 Z. Total repayment on domestic bonds maturing in period t+ 1 is then given
by

Dt(1� �t(zt+1)) + �Dt�t(zt+1): (2)

The �rst term captures the amount of domestic debt that is repaid to lenders, net
of the default share �t(zt+1); the second terms captures the default costs accruing to
the sovereign borrower, where � � 0 is a cost parameter. Default costs only emerge
if �t(zt+1) > 0, occur in the period in which the default takes place, and are assumed
to be proportional to the default amount Dt�t(zt+1). The analysis would remain

6For the contracting model presented in section 3, it is actually optimal that the government
borrows internationally on behalf of private agents. Alternatively, one may assume that private
agents do not have access to the international capital markets.

7Allowing for a richer maturity structure for foreign bonds makes no di¤erence to the analysis:
the small open economy setting implies that foreign interest rates are independent of domestic
conditions, such that the government cannot use the maturity structure of foreign bonds to insure
against domestic productivity shocks. Foreign bonds thus only serve as a store of value.
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unchanged if default costs were instead spread out over time, as long as the present
value of the costs still sums to �Dt�t(zt+1), when discounting costs at the international
interest rate 1 + r. Proportional default costs are considered mainly for analytical
convenience: such a speci�cation allows us to prove concavity of the Ramsey problem
later on. While it may be plausible that sovereign default events also give rise to
�xed costs that are independent of the default amount, such speci�cations generate
non-convexities in the constraint set of the Ramsey problem, which considerably
complicate the optimal policy analysis. Our proportional speci�cation is furthermore
similar to the speci�cations used in Zame (1993) and Dubey, Geanakoplos and Shubik
(2005), who previously introduced proportional default costs to study default on
private contracts.8

In the setting just described, the government can insure domestic consumption
against productivity risk either by adjusting its holdings of foreign and domestic
bonds, i.e. by adjusting its bu¤er stock of savings or debt, by choosing appropriate
default policies on domestic bonds, or by adjusting domestic investment. The optimal
mix between these insurance mechanisms will depend on the level of the default costs
�.

2.2 The Ramsey Problem
To derive the Ramsey problem determining optimal government policies, it turns out
to be useful to de�ne the amount of resources available to the domestic government
at the beginning of the period, i.e. before issuing new domestic debt, before making
investment decisions, and before paying for �xed expenditures, but after (partial)
repayment of maturing bonds.9 We refer to these resources as beginning-of-period
wealth and de�ne them as

wt � ztk�t�1 + Ft�1 �Dt�1(1� (1� �)�t�1(zt)): (3)

Beginning-of-period wealth is a function of past decisions and of current exogenous
shocks only. The government can raise additional resources in period t by issuing new
domestic bonds, and use the available funds to invest in foreign riskless bonds, in the
domestic capital stock, to �nance consumption, and to pay for the �xed expenditures
c. The economy�s budget constraint is thus given by

wt +
Dt

1 +R(zt;�t)
= ct + c+ kt +

Ft
1 + r

;

where 1= (1 + r) and 1=(1+R(zt;�t)) denote the issue price of the foreign and domes-
tic bond, respectively. The domestic interest rate R(zt;�t) depends on the default

8Default costs in our setting represent a resource cost, while the general equilibrium literature
with incomplete markets referenced above introduces default cost in the form of a direct utility cost,
which enters separably into the borrower�s utility function. The resource cost speci�cation is more
natural given the microfoundations we provide in section 3, but we conjecture that imposing a direct
utility cost would give rise to very similar optimal default implications.

9Below we do not distinguish between the government budget and the household budget, instead
considering the economy wide resources that are available. This implicitly assumes that the gov-
ernment can costlessly transfer resources between these two budgets, for example, via lump sum
taxes.
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pro�le �t chosen by the government and on the current productivity state, as the
latter generally a¤ects the likelihood of entering di¤erent states tomorrow. Due to
the small open economy assumption, the government can take the pricing function
R(�; �) as given in its optimization problem. Assuming that international investors
are risk-neutral, this pricing function is given by

1

1 +R(zt;�t)
=

1

1 + r

NX
n=1

(1� �t(zn)) � �(znjzt); (4)

which equates the expected returns on the domestic bond and the foreign bond.
Using the previous notation, the Ramsey problem characterizing optimal govern-

ment policy is then given by

max
fFt�0;Dt�0;�t2[0;1]N ;kt�0;ct�0g1

t=0

E0

1X
t=0

�tu(ct) (5a)

s:t: :

ct = wt � c� kt +
Dt

1 +R(zt;�t)
� Ft
1 + r

(5b)

wt+1 � NBL(zt+1) 8zt+1 2 Z (5c)

w0; z0 : given:

We impose the natural borrowing limits (5c) on the problem to prevent the possi-
bility of explosive debt dynamics (Ponzi schemes). We allow the natural borrowing
limits to be potentially state contingent and assume that the initial condition satis-
�es w0 � NBL(z0). The time-zero optimal Ramsey policy involves defaulting on all
outstanding debt at time zero, a feature that should be re�ected in the initial value
for w0.
While intuitive, the Ramsey problem (5) is characterized by two features that

complicate its solution. First, the price of the domestic government bond in the con-
straint (5b) depends on the chosen default pro�le, with the result that the constraint
fails to be linear in the government�s choice variables. It is thus unclear whether
problem (5) is concave, which prevents us from working with �rst order conditions.
Second, the presence of the natural borrowing limits (5c) creates problems for nu-
merical solution algorithms. Speci�cally, imposing su¢ ciently lax natural borrowing
limits, as is usually recommended if one wants to rule out Ponzi schemes only, gives
rise to a non-existence problem: su¢ ciently lax borrowing limits imply that there ex-
ist beginning-of-period wealth levels above these limits, for which no policy can insure
that the borrowing limits are respected under all contingencies. This non-existence
of optimal policies creates problems for numerical solution approaches and thus for a
quantitative evaluation of the model. While one could remedy the existence problem
by imposing su¢ ciently tight borrowing limits, this may imply ruling out feasible
and potentially optimal policies that would be consistent with non-explosive debt
dynamics.
The next sections address both of these issues in turn. We �rst prove concavity by

reformulating problem (5) into a speci�c variant of a complete markets model, which
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can be shown to be concave and equivalent to the original problem. This approach
to proving concavity is - to the best of our knowledge - new to the literature and
should be useful in a range of other applications involving default decisions. We then
proceed by showing how to deal properly with the presence of natural borrowing
limits in numerical applications. Again, this approach seems new to the literature
and is of interest for a range of other applications. In a �nal step, we show that the
concave and equivalent formulation of the Ramsey problem has a recursive structure,
which facilitates numerical solution.

2.2.1 Concavity of the Ramsey Problem

We now de�ne an alternative Ramsey problem with a di¤erent asset market structure.
As we show, this alternative problem is equivalent to the original problem (5). Since
the alternative problem is concave, we can work with �rst order conditions.
Consider a setting in which the government can trade each period N Arrow secu-

rities and a single riskless bond. All assets have a maturity of one period. The vector
of Arrow security holdings in period t is denoted by at 2 RN and the n-th Arrow
security pays one unit of output in t+1 if productivity state zn materializes. The as-
sociated price vector is denoted by pt 2 RN . Given the risk-neutrality of international
lenders, the price of the n-th Arrow security in period t is

pt(z
n) =

1

1 + r
�(znjzt): (6)

Let bt denote the country�s holdings of riskless bonds in period t. As before, the
interest rate on riskless instruments is 1+r and these bonds mature in t+1. Beginning-
of-period wealth can then be expressed as

ewt � ztek�t�1 + bt�1 + (1� �)at�1(zt); (7)

where at�1(zt) denotes the amount of Arrow securities purchased for state zt, ekt�1
capital invested in the previous period, bt�1 the bond holdings from the previous
period, and � � 0 the parameter capturing potential default costs in the original
problem (5). Note that the Arrow securities in equation (7) pay out only 1� � units
of consumption to the holder of the asset, but are priced by the issuer in equation (6)
as if they would pay one unit of consumption. This wedge will capture the presence of
default costs. Since Arrow securities can be used to replicate the payout of the riskless
bond, the price system - as perceived by the domestic sovereign - is not arbitrage-free
whenever � > 0. To have a well-de�ned problem, we therefore impose the additional
constraint a � 0, while leaving b unconstrained. Intuitively, the restriction a � 0
insures that the country cannot �create�additional resources in the form of negative
default costs by going short in the Arrow securities.
The Ramsey problem for this alternative asset structure is then given by

9



max
fbt;at�0;ekt�0;ect�0g1

t=0

E0

1X
t=0

�tu(ect) (8a)

s:t:ect = ewt � c� ekt � 1

1 + r
bt � p0tat (8b)ewt+1 � NBL(zt+1) 8zt+1 2 Zew0 = w0; z0 given:

Problem (8) has the same concave objective function as problem (5) and imposes
the same natural borrowing limits. Importantly, however, the constraint (8b) is now
linear in the choice variables, as the price vector pt is independent of domestic policy,
so that �rst order conditions (FOCs) provide necessary and su¢ cient conditions for
optimality.10 The necessary and su¢ cient FOCs of problem (8) can be found in
Appendix A.1. Appendix A.2 then proves the following equivalence result:

Proposition 1 A consumption path fctg1t=0 is feasible in problem (5) if and only if
the consumption path fectg1t=0, with ect = ct for all t � 0, is feasible in problem (8).

The proof of proposition 1 shows how the �nancial market choices fbt; atg support-
ing a consumption allocation in problem (8) can be translated into �nancial market
and default choices fFt; Dt;�tg supporting the same consumption allocation in the
original problem (5), and vice versa. The relationship between these set of choices is
given by

bt=Ft �Dt (9)

at=Dt�t: (10)

The riskless bond position b in problem (8) can thus be interpreted as the net foreign
asset position in problem (5), while the Arrow security holdings a in problem (8) can
be interpreted as the state contingent default decisions on domestic bonds. We will
make use of this interpretation in the latter part of the paper, as we solve the simpler
problem (8), but interpret the solution in terms of the �nancial market choices for
the original problem (5) with default. Moreover, to support the same consumption
allocation in problems (8) and (5) requires identical investment decisions, i.e., ekt = kt
for all t � 0, allowing us to use these variables interchangeably.
2.2.2 Dealing with Natural Borrowing Limits

In our quantitative evaluation of the model, we wish to impose borrowing limits that
insure the existence of optimal policies, but which are su¢ ciently lax to not rule
out policies that would be consistent with non-explosive debt dynamics. We call such

10This follows from the additional observation that future beginning of period wealth, as de�ned
in equation (7), is a linear function of the �nancial market choices (a; b) and a convex function of
investment k.
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borrowing limits the �marginally binding natural borrowing limits�. We explain below
how they can be computed and derive their properties.
Let NBL(zn) denote the marginally binding natural borrowing limit (NBL) in

productivity state zn, n = 1; : : : ; N . It is de�ned by the following optimization
problem11

NBL(zn)= argmin ew(zn) s:t: (11)ew0(zj) � NBL(zj) for j = 1; : : : ; N;
where ew(zn) denotes beginning-of-period wealth in state zn and ew0(zj) the beginning-
of-period wealth in the next period if next period�s productivity is zj. Marginally
binding NBLs can thus be interpreted as a set of state-contingentminimum beginning-
of-period wealth levels, such that beginning-of-period wealth in all future states re-
mains above these same limits.12 Problem (11) shows that the marginally binding
NBLs are implicitly de�ned by a �xed point problem.
The �xed point problem (11) is non-trivial because the optimization problem it

contains admits a considerable number of corner solutions, due to the presence of
linear components in the constraints and objective function, and due to presence of
inequality constraints for the choice variables.13 In numerical solution approaches, it
is possible to check all possible corners, each of which gives rise to a set of possible
borrowing limits NBL(zn) (n = 1; :::; N) solving the �xed point problem implicitly
de�ned by (11). Although we never encountered such a situation in our numerical ap-
plications, it is generally unclear whether there exists a corner solution which provides
the uniformly lowest borrowing limit across all productivity states zn (n = 1; :::; N).
In general, one corner may imply a tighter borrowing limit for one productivity state
but a laxer limit for another productivity state than another corner. In such a situa-
tion it would be unclear which set of marginally binding NBLs should be imposed. To
overcome this potential problem, it is helpful to impose the following mild regularity
condition:

Regularity Condition: The productivity process �(�j�) is such that lower produc-
tivity states are associated with weakly tighter borrowing limits:

NBL(z1) � NBL(z2) � ::: � NBL(zN) (12)

Regularity condition (12) is satis�ed, for example, when productivity states are
iid or for the polar case where productivity states display su¢ ciently high persis-
tence.14 For all of our calibrated productivity processes, we �nd that the regularity

11A more explicit formulation of the problem is provided in (35) in appendix A.3.
12These limits depend only on the current productivity shock because the shock process is Markov

and because beginning-of-period wealth is the only other state variable, as will become clear in section
2.2.3.
13This can be seen from the more explicit formulation of (11) provided in equation (35) in Appendix

A.3.
14In the former case, the optimization problems (11) are identical for all states zn (n = 1; :::N),
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condition (12) holds.15 Overall, the regularity condition (12) is of interest because of
the following important result:

Proposition 2 If regularity condition (12) holds, then there generically exists for all
model parameterizations a unique solution to the �xed point problem implicitly de�ned
by (11).

The proof of the proposition can be found in appendix A.3. The proof is construc-
tive, i.e., it also explains how the NBLs can actually be computed. The following
proposition then shows that the unique �xed point solution to (11) indeed de�nes the
loosest borrowing limits consistent with non-explosive debt dynamics:

Proposition 3 Suppose regularity condition (12) holds. Given a productivity state
zn (n 2 f1; : : : ; Ng) and a beginning-of-period wealth level ew:
1. If ew � NBL(zn), then there exists a policy that is consistent with non-explosive
debt dynamics along all future contingencies.

2. If ew < NBL(zn) then there exists no policy that does not violate any �nite debt
limit with positive probability.

The proof of proposition 3 can be found in Appendix A.4.

2.2.3 Recursive Formulation of the Ramsey Problem

We now show that the Ramsey problem (8) has a recursive structure. This is of inter-
est because it simpli�es the representation and characterization of optimal policies.
Let V ( ewt; zt) denote the value function associated with optimal continuation policies
when starting with beginning of period wealth ewt and productivity state zt. The
Ramsey problem (8) then has a recursive representation given by

V ( ewt; zt) = max
bt;at�0;ekt�0u( ewt � c� ekt � 1

1 + r
bt � p0tat) + �Et[V ( ewt+1; zt+1)]

s:t: ewt+1= zt+1ek�t + bt + (1� �)at(zt+1)ewt+1�NBL(zt+1) 8zt+1 2 Z;

which shows that optimal policies can be expressed as functions of just two state
variables ( ewt; zt).
such that (12) must hold with strict equality at the �xed point. In the latter case, (12) holds with
strict inequality when states are perfectly persistent, due to assumed ordering z1 > z2 > ::: > zN .
This continues to be true if the likelihood of transiting into other states is su¢ ciently small, as buying
insurance for such states to satisfy the borrowing limits is then extremely cheap, see equation (6),
and will not lead to a reordering of the borrowing limits.
15In our numerical applications we also check for possible alternative solutions to (11) which would

not satisfy (12).

12



3 Endogenously Incomplete Government Debt Markets

We now provide explicit microfoundations for the previously made assumptions that
the government issues only non-contingent debt and that deviations from the legally
stated repayment promise give rise to default costs. We do so by considering a
setting where the government can issue arbitrary state contingent debt contracts, but
where contracting frictions make it optimal for the government to issue debt with
only a non-contingent legal repayment promise. The same frictions also give rise to
default costs. The microfoundations we provide below provide a speci�c example
justifying the setup speci�ed in the previous section, but a range of other conceivable
microfoundations may exist.

3.1 Explicit and Implicit Contract Components
We consider a setting where a government debt contract consists of two contract
components. The �rst component is the explicit contract, which is written down
in the form of a legal text. In its most general form, the legal text consists of a
description of the contingencies zn and of the legal repayment obligations ln � 0
associated with each contingency n 2 f1; :::; Ng.16 We normalize the size of the legal
contract by assuming maxn ln = 1. The second component is an implicit contract
component. This component is not formalized in explicit terms but is commonly
understood by the contracting parties. We capture such implicit contract components
by a state contingent �default pro�le�� = (�1; :::; �N) 2 [0; 1]N , which speci�es for
each possible contingency the share of the legal payment obligation that is not ful�lled
by the government.17 Actual repayment at maturity is then jointly determined by
the explicit and implicit contract components and given by

ln(1� �n)

for each contingency n 2 f1; :::; Ng. If a contingency arises for which �n > 0, the
countries pays back less than the legally (or explicitly) speci�ed amount ln and we
shall say that �the country is in default�. The explicit and implicit contract compo-
nents are perfectly known to agents.
In the setting just described, a desired state-contingent repayment pro�le can be

implemented by incorporating it either into the explicit legal repayment pro�le ln or
into the implicit pro�le �n. In the absence of further frictions, these two components
would be perfect substitutes and the optimal form of the government debt contract
thus indeterminate.
16The fact that ln � 0 can be justi�ed by assuming a lack of commitment on the lenders�side.

Such a lack of commitment appears reasonable, given the existence of secondary markets on which
government debt can be traded.
17The fact that �n � 1 can again be justi�ed by a lack of commitment on the lenders�side, which

makes it impossible to write contracts that specify additional transfers to the borrower at maturity.
The assumption that �n � 0 facilitates interpretation in terms of default, but is never binding in
our numerical applications.
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3.2 Contracting Frictions
We now introduce two simple contracting frictions. First, we assume that explicit
legal contracting is costly. This re�ects the fact that writing down an explicit legal
text describing a �nancial contract requires the input of lawyers and bankers, thus
consuming resources. Second, we assume that implicit contracting, while not creating
similar resource costs, gives rise to the risk that the common understanding about
the implicit contract component may be lost after the maturity date of the contract.
This re�ects the possibility that agents may have di¢ culties recalling the implicit
contract agreements after a long period of time, especially after the maturity date
of the contract. This di¤ers for the explicit contract, where agents can always go
back and read about their contract obligations, such that common understanding is
insured independently of time. The fact that the common understanding about the
implicit contract components may disappear is perfectly and rationally anticipated
by all agents.
We now describe these two frictions in greater detail. We normalize the costs of

writing a non-contingent legal contract (ln = 1 for n = 1; :::; N) to zero and assume
that incorporating a contingency gives rise to a proportional legal fee � � 0 that
is charged against the value of the contingent agreement. This is in line with the
casual empirical observation that lawyers typically charge fees that are proportional
to the value of the agreements they formulate. In particular, legally incorporating a
payment ln � 1 for some contingency zn in the explicit contract, involves the costs

� (1� ln)

per contract issued, where 1� ln denotes the value of the deviation from the baseline
payment of 1.
While incorporating a state contingency in the repayment structure via the im-

plicit contract component �n > 0 does not give rise to costs, it exposes the government
to the risk that the common understanding about a default event may be lost after
the maturity date of the contract. This is relevant for the borrower because in the
absence of a recallable implicit contract component, courts base their decisions on a
comparison of the explicit contract obligation with the actual actions (payments) that
occurred. Default events that are followed by a lack of common understanding about
the implicit contract thus provide strong incentives for lenders to sue the government
for ful�lment of the explicit contract, i.e. to sue the government for repayment of
the legally stated amount.18 Anticipating such behavior, the government will engage
- at the time the default occurs - in a negotiation process with the lender, with the
objective to reach an explicit legal settlement that protects it from being sued in the
future.
18As documented in Panizza, Sturzenegger and Zettelmeyer (2009), legal changes in a range of

countries in the late 1970s and early 1980s eliminated the legal principle of �sovereign immunity�
when it came to sovereign borrowing. Speci�cally, in the U.S. and the U.K. private parties can
sue foreign governments in courts if the complaint relates to a commercial activity, amongst which
courts regularly count the issuance of sovereign bonds. We implicitly assume that lenders cannot
commit to not sue the government. Again, this appears plausible, given that secondary markets
allow initial buyers of government debt to sell the debt instruments to other agents.
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The settlement agreement transforms the previously only implicit contract com-
ponent into an explicit one, by stating that the debt contract is regarded as ful�lled,
even if the actual payment amount fell short of the amount speci�ed in the legal text
of the contract. The threat of going to court to obtain such an explicit settlement via
a court ruling in the period where the default happens and where a common under-
standing about the implicit components still exists, will induce the lender to agree
to such an agreement.19 Since we assume explicit legal contracting to be costly, the
settlement agreement following a default event gives rise to the legal costs (or default
costs)

�ln�n

per contract, where ln�n denotes the value of the settlement agreement, i.e. the
defaulted amount on each contract. For simplicity, we assume here that the same
proportional fee � is charged in the ex-post settlement stage as applies when writing
an explicit contingent contract ex ante. We discuss below the case where the ex-
post settlement costs are higher. While the legal fees associated with writing a legal
contract are assumed to be borne by the government, we allow for the possibility that
the settlement fees are shared between the lender and the borrower, with the lender
paying �l � 0, the borrower paying �b � 0, and �l + �b = �.

3.3 Optimal Government Debt Contract
Consider a government that wishes to implement a contingent payment p(z) � 1 for
some contingency z 2 Z. Specifying the contingency as part of the legal contract
involves the contract writing costs

� (1� p(z))

per contract and no ex post settlement costs in case the default contingency arises in
the future. Alternatively, not specifying the contingent payment as part of the legal
contract gives rise to expected default costs of20

Pr(zjz0)� (1� p(z)) ;

where z0 is the contingency prevailing at the time when the contract is issued. Since
Pr(zjz0) � 1 and since default costs are borne at a later stage, i.e. when the contract
matures, the government will always strictly prefer to issue a non-contingent explicit
contract and to shift contingencies into the implicit contract pro�le. This continues
to be true even in the more general case where the ex post settlement costs are
much higher than the cost associated with incorporating the contingency ex ante into

19The fact that - due to the large number of actors involved - the implicit contract component of
government debt can be veri�ed in court makes government debt contracts special. Implicit com-
ponents of private contracts, for example, are often private information available to the contracting
parties only, and thus cannot be veri�ed in court, not even over the lifetime of the contract. The
optimal form of private contracts, therefore, generally di¤ers from the optimal form of government
debt contracts.
20The expected settlement cost for the lender enters the borrower�s optimization reasoning because

the borrower has to compensate the lender ex ante for the expected costs borne by the lender.
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the legal contract, provided the probability Pr(zjz0) of reaching the default event is
su¢ ciently small.
Summing up, it is optimal for the government to issue debt that is non-contingent

in explicit legal terms. At the same time, the government has the option to deviate
from the legally speci�ed payment amount, but such actions give rise to proportional
default costs �. We thus provided microfoundations for the assumptions entertained
in the previous section.

3.4 Government versus Private Debt
The contracting framework can also be used to justify why the government optimally
borrows on behalf of private agents in the international market. This is highly relevant
because it implies that private and sovereign default cannot be used interchangeably
to insure domestic consumption. The optimality of sovereign borrowing arises because
of a fundamental di¤erence between sovereign and private debt contracts: the implicit
contract components of private contracts are private information to the contracting
parties, and thus cannot be veri�ed in court, not even over the lifetime of the contract.
This is di¤erent for a sovereign debt contract that is widely shared among many
individuals. Achieving state contingency in private contracts thus has to rely on
explicit contracting, which creates costs that dominate those incurred in sovereign
borrowing, as the non-contingency of sovereign bonds is optimal precisely to avoid
the costs of explicit legal contracting.

4 Optimal Sovereign Default: Analytic Results

This section presents a number of analytic results characterizing the optimal default
policies that solve the Ramsey problem (8). We �rst consider - for benchmark pur-
poses - a setting without default costs (� = 0). As we show, the full repayment
assumption is then suboptimal under commitment and sovereign default is optimal
for virtually all productivity realizations. This holds true independently of the coun-
try�s net foreign asset position. We then show that for �prohibitive�default cost levels
with � � 1, default is never optimal. Finally, we present analytic results for the most
relevant case with intermediate levels of default costs (0 < � < 1). Ramsey optimal
default decisions then depend on the country�s wealth level and on the productivity
realization. Interestingly, there exists a discontinuity in the optimal default policies
as one moves from � = 0 to � > 0.

4.1 Zero Default Costs
In the absence of default costs (� = 0) the original Ramsey problem (5) reduces to
a generalized version of the problem analyzed in section II in Grossman and Van
Huyck (1988).21 The proposition below shows that - as in Grossman and Van Huyck
- full consumption smoothing and frequent default are optimal. The proof of the
proposition can be found in Appendix A.5.

21Grossman and Van Huyck consider an endowment economy with iid income risk, which is a
special case of our setting with production and potentially serially correlated productivity shocks.
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Proposition 4 For � = 0 the solution to the Ramsey problem (8) involves constant
consumption equal to ec = (1� �)(�(z0) + ew0) (13)

where �(�) denotes the maximized expected discounted pro�ts from production, de�ned
as

�(zt) � Et

" 1X
j=0

�j (�k�(zt+j) + �zt+j+1 (k�(zt+j))� � c)
#

with
k�(zt) = (��E(zt+1jzt))

1
1�� (14)

denoting the optimal investment policy. For any period t, the optimal default level
satis�es

at�1(zt) / � (�(zt) + zt (k�(zt�1))�) (15)

Let Nt � f1; :::; Ng denote the number of productivity states in t that can be
reached from zt�1 in t�1, according to the transition matrix �(�j�). Since at�1 � 0, it
follows from equation (15) that the optimal commitment policy generically involves
default for at least Nt � 1 productivity realizations in t.22 Default thereby insures
the domestic economy against two sources of risk: �rst, it insures against a low
realization of current output due to a low value of current productivity, as captured
by the term zt (k�(zt�1))

� in equation (15), a risk that is present in similar form in the
endowment setting of Grossman and Van Huyck (1988); second, it additionally insures
the domestic economy against (adverse) news regarding the expected pro�tability of
future investments, as captured by the term �(zt). As a result of this policy the
�net worth�of the economy, de�ned as the sum of expected future pro�ts �(zt) and
accumulated net wealth ewt; remains constant over time and equal to its initial value
�(z0) + ew0.23 In the absence of default costs, risk sharing thus fully and exclusively
occurs via optimal sovereign default, with net worth remaining constant over time,
and domestic investment being at it expected pro�t-maximizing level (14).
To interpret the optimal default patterns implied by proposition 4, suppose that

expected future pro�ts �(zt) are weakly increasing with current productivity zt. This
is the case whenever zt is a su¢ ciently persistent process, but also if zt is iid so
that expected future pro�ts are independent of current productivity. Equation (15)
then implies that optimal default levels are inversely related to the current level of
productivity, i.e. the amount of non-repaid claims strictly increases with the distance
of current productivity from its maximal level. This pattern is optimal independently
of the wealth level of the economy, i.e. is optimal even if the economy has a positive
net foreign asset position. With a positive net foreign asset position, the sovereign
optimally issues domestic bonds and invests the proceeds into foreign bonds, so as to

22Default is not required for states zt achieving the maximal value for �(zt)+zt(k�(zt�1))� across
all zt 2 Z. For such states, default can be set equal to zero, with default levels being strictly
positive for all other states. This, however, is not the only possible default pattern implementing
full consumption stabilization: it would also be possible to choose strictly positive default levels for
the states zt achieving the maximal value for �(zt) + zt(k�(zt�1))�.
23This follows from the proof of proposition 4 in appendix A.5.
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be able to default on the domestic bonds following adverse shocks, see equations (9)
and (10).

4.2 Prohibitive Default Costs
We now consider the polar case with prohibitive default cost levels � � 1. Default
events then induce deadweight resource costs that (weakly) exceed the amount of
resources that the borrower does not repay to lenders. Net of default costs, the sov-
ereign thus cannot gain resources by defaulting. For the equivalent Ramsey problem
(8) this implies that the payout from Arrow securities is weakly negative, while the
price of Arrow securities for states that can be reached with positive probability is
strictly positive, see equation (6). This leads to the following obvious result:24

Lemma 1 For � � 1 it is optimal to choose at = 0 for all t.

For � � 1 it is thus optimal never to use default to insure domestic consumption.
Instead insurance occurs via the accumulation and decumulation of non-contingent
and non-defaultable bonds and potentially via adjustments of the investment mar-
gin.25 An interesting trade-o¤ between default and the adjustment of non-defaultable
bond positions thus emerges for a plausible range of intermediate cost speci�cations
with 0 < � < 1, as investigated in the next section.

4.3 Intermediate Default Cost Levels
Deriving an analytic solution for the Ramsey policy problem (8) for arbitrary inter-
mediate default cost levels 0 < � < 1 is generally di¢ cult, as the Ramsey problem
is a non-linear dynamic stochastic optimization problem with an endogenous state
variable and a number of occasionally binding inequality constraints. Nevertheless,
it is feasible to derive analytic solutions to the Ramsey problem when beginning-of-
period wealth is either very low or very high. More precisely, we consider below the
case where beginning-of-period wealth level is at its lower bound, i.e. at the mar-
ginally binding natural borrowing limit de�ned in section 2.2.2. In a second step, we
derive an approximation to the Ramsey policy that applies when beginning-of-period
wealth is su¢ ciently high. Our results show that the country�s wealth position is an
important determinant of optimal default policies, in contrast to what is suggested
by the limiting case with zero or prohibitive default costs.

4.3.1 Initial Wealth at Its Lower Limit

Consider �rst a situation where beginning-of-period wealth is at its lower bound
(ewt = NBL(zt)). We can then de�ne a critical productivity state index n�t :

n�t = arg max
n2[1;:::;N ]

n (16)

s:t:
NX
i=n

�(zijzt)� 1� �

24The Arrow security choices for future states that are reached with zero probability do not a¤ect
welfare, which allows us to set them also equal to zero.
25The latter is discussed in detail in the next section.
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The critical index n�t is de�ned as the highest productivity index, such that reaching
states zn tomorrow with n � n�t still has a likelihood larger than 1� �. It turns out
that the index n�t divides states for which default is Ramsey optimal tomorrow from
states for which full repayment is optimal. The critical index also a¤ects the optimal
investment level and the optimal amount of bond holdings. The following proposition
characterizes the optimal policy in period t as a function of the critical index n�t :

26

Proposition 5 Suppose regularity condition (12) holds and ewt = NBL(zt). Then
the optimal policy solving the Ramsey policy problem (8) in period t is given by

ekt= �� Pn�t
n=1 �(z

njzt)� �
1� � zn

�
t +

PN
n=n�t+1

�(znjzt)zn

1� �

!! 1
1��

(17)

bt=NBL(z
n�t )� zn�tek�t (18)ect=0 (19)

at(z
n)= 0 for n � n�t (20)

at(z
n)=

NBL(zn)� znek�t � bt
(1� �) > 0 for n > n�t (21)

The proof of the proposition is given in Appendix A.6.27 Equations (20) and (21)
jointly show that default is suboptimal for all su¢ ciently good productivity states zn

with n � n�t . For n > n�t strictly positive default is optimal and the default amount
is strictly increasing in n, i.e., there is more default the lower is realized productivity.
Consistent with earlier results, it will never be optimal to default as � ! 1, as then
n�t ! N . Conversely, it is optimal to default in all but one states as � ! 0, as then
n�t ! 1. Moreover, it follows from problem (16) that an increase in default costs
(weakly) reduces the set of states for which default is optimal.
Proposition 5 also shows that consumption is at its lower bound once wealth is at

the marginally binding borrowing limit.28 Consumption will stay at its lower bound
in the next period if a su¢ ciently bad productivity state is reached, i.e. a state zn

with index n � n�t . This is so because the Arrow security and bond purchases insure
that tomorrow�s beginning-of-period wealth levels are exactly at their state-contingent
marginally binding natural borrowing limit for all productivity states zn with n � n�t ,
such that proposition 5 applies again in the next period. Yet, if a productivity state
zn with n < n� is reached, then beginning-of-period wealth will strictly exceed the
natural borrowing limit and consumption will move back to strictly positive values.
Obviously, this can happen only if � is su¢ ciently large, as otherwise n�t = 1.

26For � su¢ ciently close to 1 or � > 1we have n�t = N , such that all expressions in proposition 5
remain well-de�ned.
27Note that the proposition determines optimal policy in period t, when beginning-of-period wealth

is at its lower bound, but does not determine the optimal policy for other periods. This is possible,
even if the underlying optimization problem is a dynamic in�nite horizon problem, because the
choice set at the marginally binding natural borrowing limit reduces to a singleton.
28Total consumption can still be positive, as we allow for a positive subsistence level of consumption

expenditures c � 0.
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Equation (17) shows that the presence of default costs also distorts the optimal
investment decision downward relative to the expected pro�t-maximizing investment
level k�(zt) de�ned in (14). This downward distortion is (ceteris paribus) increasing
in n�t and in the default costs �. Since n

�
t is itself an increasing function of �, the

total e¤ect of increased default cost is to decrease investment relative to the e¢ cient
level. Intuitively, lower investment reduces the output risk generated by productivity
shocks, as these a¤ect the existing capital stock multiplicatively, and this helps to
satisfy the marginally binding natural borrowing limits.

4.3.2 Large Wealth Levels

This section derives analytical expressions that approximate the Ramsey optimal
policies for su¢ ciently large beginning-of-period wealth levels. The following position
summarizes the main result:

Proposition 6 Suppose � > 0 and consumption preferences satisfy u00(c) ! 0 as
c!1. Consider a time horizon T <1 and for j = 0; :::; T the policies

ect+j =(1� �)(�(zt+j) + ewt+j)ekt+j = k�(zt+j)
bt+j =(1 + r) ( ewt+j � k�(zt+j)� ect+j � c)

at+j(z
n)= 0 for all n = 1; :::; N

where �(zt+j) and k�(zt+j) are as de�ned in proposition 4. For any � > 0 we can
�nd a wealth level �w < 1 so that for all �nite initial wealth levels ewt � �w, the
Euler equation errors et+j implied by the policies above satisfy et+j < � for all periods
j = 0; :::; T � 1.

The proof of the proposition is contained in Appendix A.7. The fact that the Euler
equation error vanishes for su¢ ciently large initial wealth levels ewt implies that the
policies stated in the proposition approximate the truly optimal policies increasingly
well; see Santos (2000), for example. For a su¢ ciently large wealth level, domestic
investment thus remains undistorted, i.e. maximizes expected discounted pro�ts. In
addition, it is optimal always to fully repay debt. This is in stark contrast to the case
with � = 0 where frequent default is optimal, independently of the wealth level, see
proposition 4. There thus exists a discontinuity of optimal default policies at � = 0.
The discontinuity implies that for su¢ ciently high wealth levels, the presence of even
tiny default costs implies a complete shift from frequent default to no default, such
that risk sharing occurs optimally only via self-insurance, i.e. via the accumulation
and decumulation of international wealth. This result is true as long as u00 decreases
towards zero as consumption increases without bond. This is the case for commonly
used preference speci�cations, e.g. preferences with constant relative risk aversion or
constant absolute risk aversion. Intuitively, vanishing curvature causes the output risk
of given size implied by optimal investment levels to have only negligible in�uence on
consumption utility, whenever consumption (and thus wealth) are su¢ ciently high.
Since default costs are strictly positive, it then becomes suboptimal to use default to
insure against these output �uctuations.
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5 Quantitative Exploration of Optimal Default Policy

This section investigates whether sovereign default can be optimal in a realistically
calibrated version of the model with business cycle sized shocks to domestic produc-
tivity. The theoretical results established in the previous section show that sovereign
default is suboptimal for su¢ ciently high wealth levels, but likely to be optimal for low
wealth levels. This section analyzes optimal default policies for intermediate wealth
levels and determines how high the economy�s net foreign asset position plausibly has
to be, so as to cause sovereign default to be suboptimal. To answer this quantitative
question, we solve for the optimal default policies numerically.29

The next section presents the model calibration, including our estimation of de-
fault costs. The resulting optimal default policies are discussed subsequently.

5.1 Model Calibration
We interpret a model period as one year. For the productivity process we use a
standard parameterization from the business cycles literature and set the annual per-
sistence of technology to (0:9)4 and the annual standard deviation for the innovation
to 1%.30 Using Tauchen�s (1986) procedure to discretize into a process with two
states, one obtains a high productivity state zh = 1:0133, a low productivity state
zl = 0:9868 and a transition matrix

� (�j�) =
�
0:8077 0:1923
0:1923 0:8077

�
: (22)

The capital share parameter in the production function is set to � = 0:34 and the
annual discount factor to � = 0:97. The latter implies an annual real interest rate of
approximately 3% for risk-free debt instruments. We choose consumption preferences
with constant relative risk aversion

u(c) =
c1��

1� � ;

and a moderate degree of risk aversion by setting � = 2. The preference speci�cation
satis�es the assumption in proposition 6. We calibrate the �xed expenditures c that
cannot be transferred to foreign lenders such that, if the government is forced to repay
debt in all contingencies, the marginally binding NBLs imply that the net foreign asset
position of the country cannot fall below �100% of average GDP in any productivity
state.31 We thereby seek to capture the fact that industrialized countries, which
29Determining the Ramsey optimal policies requires solving a non-linear stochastic dynamic op-

timization problem involving occasionally binding inequality constraints. Appendix A.10 explains
how this has been achieved.
30The quantitative results reported below are not very sensitive to the precise numbers used. A

corresponding calibration at a quarterly frequency is employed in Adam (2011).
31Average GDP is de�ned as the average output level associated with e¢ cient investment, i.e.,

when kt = k�(zt) each period, as de�ned in proposition 4. We thereby average over the ergodic
distribution of the z process. For our parameterization, this yields an average output level of 0:5647
before �xed expenditures. Furthermore, at the marginally binding NBLs, government decisions are
exlusivley determined by the desire to prevent debt from exploding, such that the marginally binding
NBL can indeed be used to calibrate the model. The resulting level of �xed expenditures is given
by c = 0:3540.
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default only rarely, virtually never have a net foreign asset position below �100% of
GDP, see �gure 10 in Lane and Milesi-Ferretti (2007).32 It thus appears plausible
to consider a calibration implying that countries cannot sustain higher external debt
levels without running the risk of a sovereign default.
It only remains to determine the default cost parameter �. While default (or con-

tracting) costs are notoriously di¢ cult to estimate, it is possible to exploit restrictions
from our structural model to obtain an estimated lower bound for the costs of default.
The idea underlying our estimation approach is to exploit the fact that default costs
that accrue to the lender (but not those borne by the borrower) can be estimated from
�nancial market prices and information on default events. This is feasible because
the borrower has to compensate the lender ex ante for the default costs arising on the
lender�s side, such that lenders�default costs are re�ected in �nancial market prices
and can thus be backed out from these.
To exploit this idea, we consider a slightly more general setting than that con-

sidered in the Ramsey problem (5), namely one where the lender also bears default
costs (�l > 0). Total default costs are then given by � = �l + �b with �b denoting
the borrower�s default cost. The structure of the Ramsey problem (5) then remains
unchanged, except for the bond pricing equation (4), which has to be adapted so as
to re�ect the presence of the lenders�default costs �l:33,34

1

1 +R(zt;�)
=

1

1 + r

NX
n=1

�
1� (1 + �l)�n

�
� �(znjzt) (23)

Appendix A.9 shows how the previous equation can be combined with data on ex
post returns from Klingen, Weder, and Zettelmeyer (2004), who consider 21 countries
over the period 1970-2000, and data on default events for the corresponding set of
countries and years from Cruces and Trebesch (2011), to obtain an estimate of the
lender�s default cost.35 This yields

�l = 6:1%

and suggests that lenders su¤er a loss of about 6% of the default amount in a sovereign
default event. Note that this loss is in addition to the direct losses that result from
incomplete repayment by the sovereign debtor: for every dollar that is not repaid to
the lender, the lender su¤ers an additional loss of 6 cents.
The total costs of default include the costs accruing to the lender and to the

borrower. Therefore, we consider in our quantitative analysis default cost levels �

32Three out of the �ve industrialized countries approaching this boundary in 2004 later faced �scal
solvency problems (Greece, Portugal and Iceland).
33In the de�nition of the beginning of period wealth level (3), � has to replaced by �b, where the

latter captures the borrower�s proportional default costs.
34Appendix A.8 shows that if a consumption allocation is feasible in a setting where default costs

are borne exclusively by the borrower, then it is also feasible if some or all of these costs are borne
by the lender instead, as long as the total amount of default costs � remains unchanged.
35Cruces and Trebesch kindly provided us with required information for the set of countries and

years considered in Klingen, Weder, and Zettelmeyer (2004).
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Figure 1: Optimal Default Policies (top row: �=10%, bottom row: �=20%)

that exceed the estimated value of �l. Speci�cally, we shall consider default cost
levels of 10% and 20%, respectively. A value of � = 10% implies that about 60%
of the overall default costs are borne by the lender. A setting with � = 20% is less
conservative and implies that slightly more than two-thirds of the total default costs
accrue on the borrower�s side.

5.2 Optimal Default with Business Cycle Shocks to Produc-
tivity

This section determines the optimal default policies for our calibrated model from
the previous section. The top and bottom rows of �gure 1 depict the optimal de-
fault policies for � = 10% and � = 20%, respectively. Graphs on the left show the
optimal default policy when current productivity is high (zh), while graphs on the
right depict the policy if current productivity is low (zl). Each graph of the �gure
reports the optimal default amount in the next period if productivity in that period is
low (zl). Default is optimally zero, whenever the high productivity state materializes
tomorrow. To facilitate interpretation, the optimal default policies are depicted as
a function of the net foreign asset position of the country, which is shown on the
x-axis.36 Moreover, the default amounts (y-axis) and the net foreign asset positions
(x-axis) are both normalized by average GDP. A value of �100% on the x-axis, for ex-
ample, corresponds to a situation where the government has issued repayment claims

36The net foreign asset position bt, de�ned in section 2.2.1, is a strictly increasing function of the
state variable ewt, allowing us to substitute ewt by bt in the graphs when depicting optimal policies.
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such that its net foreign asset position equals -100% of average GDP. Since the net
foreign asset position and beginning-of-period wealth commove positively in the op-
timal solution, the lowest value of the net foreign asset position for which policies
are depicted corresponds to the point where the country�s beginning-of-period wealth
level has reached its marginally binding borrowing limit.
Figure 1 shows that default is the more desirable, the lower is the country�s net

foreign asset (or wealth) position and the lower are the default costs. Overall, however,
default is suboptimal over a wide range of net foreign asset positions. For � = 20%,
for example, default is always suboptimal tomorrow, whenever today�s productivity
is low (zl). If today�s productivity is high, then default is optimal tomorrow only if
the net foreign asset position is close to its lowest level, i.e. if wealth is close to its
marginally binding borrowing limit.
For � = 0 the optimal default policies are �at and strictly positively valued func-

tions (this follows from proposition 4, which shows that default policies do not depend
on wealth); �gure 1 thus shows that even moderate levels of default costs cause default
to be suboptimal over a large range of net foreign asset positions. The assumption
of full repayment, standardly entertained in the Ramsey literature with incomplete
markets, appears to provide - at �rst glance - a reasonable approximation to the fully
optimal Ramsey policy.
Yet, as we show next, optimal default decisions have the potential to signi�cantly

increase welfare relative to an economy where default is ruled out by assumption,
especially if the country�s international wealth position is low. To illustrate this
fact, let c1t denote the optimal state contingent consumption path in an economy
where default is ruled out by assumption, and c2t the corresponding consumption
path with (costly) optimal default decisions. We then compute the welfare equivalent
consumption increase !, which causes the path c1t to be welfare equivalent to path c

2
t

over the �rst 500 years37, which is given by

E0

"
500X
t=0

�t
((c1t + !(c

1
t + �c))

1�


1� 


#
= E0

"
500X
t=0

�t
(c2t )

1�


1� 


#
; (24)

where the expectations are evaluated by averaging over 10,000 sample paths. Note
that the consumption increase ! is measured against total domestic expenditures,
which also includes the �xed expenditures c. This leads to a potential understate-
ment of the consumption equivalent welfare gain, but appears sensible given that the
variable consumption component c1t approaches zero as the beginning of period wealth
level approaches the marginally binding natural borrowing limit.
Since default is never optimal for high wealth levels, the achievable welfare gain

depends on the initial net foreign asset position, with lower wealth positions giving rise
to higher welfare gains. Similarly, lower default costs also give rise to higher welfare
gains. An upper bound for the welfare gains can thus be computed by considering
a low value for the plausible range of default costs, say � = 10%, and a low value
for the initial wealth position. The lowest sustainable wealth position, when default

37We choose a �nite horizon to evaluate the welfare implications because the net foreign asset
position is not necessarily stationary under the optimal policy.
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Figure 2: Investment Distortions With and Without Default

is ruled out, is the one for which the net foreign asset position reaches -100% of
GDP. At this point, the welfare gains are sizeable and amount to ! = 1:9% of total
consumption expenditures each period when � = 10%. For a somewhat higher initial
wealth position, for example, the one implying a net foreign asset position of �80%
of GDP, the welfare gains largely disappear: we then have ! = 0:01%.
For three reasons, welfare increases strongly at the marginally binding borrowing

limit of the no-default economy: First, allowing for default relaxes the borrowing
limits, as we show in the next paragraph, thereby allowing a better smoothing of
consumption. Second, default provides - via the conditional resource transfers - ad-
ditional insurance for consumption. Third, the possibility of default increases the
e¢ ciency of investment. Figure 2 illustrates this last point by comparing optimal
investment levels for the case with default (assuming � = 10%) and without de-
fault. Investment is depicted in deviation from the e¢ cient investment level38 and
as a function of the country�s net foreign asset position. The �gure shows that the
investment margin in the no-default economy is strongly distorted as the net foreign
asset position approaches �100% of GDP.39

Figure 2 reveals that the investment distortions are much smaller if default is
chosen optimally. This occurs because the ability to default following low productivity
realizations relaxes the marginally binding natural borrowing limits, as is illustrated
in �gure 3. The �gure depicts - again for both productivity states - how the net
foreign asset position at the marginally binding borrowing constraint depends on the
level of default costs (depicted on the x-axis). For � = 100%, which is a setting where

38The e¢ cient investment level is the expected pro�t-maximizing level de�ned in equation (14).
39Indeed, as shown in proposition 5, at the borrowing limit, investment in the no-default case is

optimally given by the one that would be e¢ cient if the lowest possible productivity state is expected
to materialize for sure tomorrow. Given the persistence of the high and low productivity states, this
explains why the investment distortion is larger in the high productivity state.
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Figure 3: The E¤ect of Default Costs on the Sustainable NFA Positions

default is suboptimal (or simply ruled out), the maximally sustainable net foreign
asset position equals -100%, as implied by our calibration. For more reasonable
default cost levels, say in the range of 10% to 20%, the possibility to default strongly
relaxes the sustainable net foreign asset position. This relaxation allows the economy
to carry more output risk and thus to sustain higher investment levels.40

6 Optimal Default with Economic Disasters

The previous section showed that, for plausible default cost levels, it is suboptimal
to default on government debt in a setting with business cycle shocks, provided the
country is not too close to its borrowing limit. This section quantitatively evaluates
to what extent this conclusion continues to be true in a setting with much larger
economic shocks. Consideration of larger shocks is motivated by the observation that
countries occasionally experience very large negative shocks, as argued by Rietz (1988)
and Barro (2006), and that such shocks tend to be associated with a government
default in the data.41 To capture the possibility of large shocks, we augment the
model by including disaster-like shocks to aggregate productivity and then explore
the quantitative implications of disaster risk for optimal sovereign default decisions.

40The two discontinuities in the net foreign asset positions present in �gure 3 relate to two default
cost thresholds, above which default in the low state tomorrow becomes suboptimal. Speci�cally, the
�rst discontinuity arises at � = 19:23%, which equals one minus the transition probability from zl to
zl. Above this cost level, it becomes suboptimal to default in the next period if current productivity
is low. The second discontinuity arises at � = 80:77% , which equals one minus the probability of
transiting from zh into zl. Above this cost level, it also becomes suboptimal to default if the current
state is high. For our calibrated model, the no-default assumption is thus fully optimal whenever
� � 80:77%. More generally, the no-default assumption is consistent with optimality whenever
default costs exceed a level of one minus the probability of reaching an undesirable state. In settings
where the probability of reaching an undesirable state is very low, default costs thus need to be close
to the prohibitive level of 100% to make full repayment Ramsey optimal in all states.
41Barro (2006) and Gourio (2010) also consider sovereign default in disaster states. Due to the

di¤erent focus of their analysis, default probabilities and default rates are exogenous in their setting.
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6.1 Calibrating Disasters
To capture economic disasters we introduce two disaster-sized productivity levels to
our aggregate productivity process. We add two disaster states rather than a single
state to capture the idea that the size of economic disasters is uncertain ex ante. The
inclusion of two disaster states also allows us to calibrate the disaster shocks in a way
that they match both the mean and the variance of GDP disaster events.
Using a sample of 157 GDP disasters, Barro and Jin (2011) report a mean reduc-

tion in GDP of 20:4% and a standard deviation of 12:64%. Assuming that it is equally
likely to enter both disaster states from the �normal�business cycle states (zh; zl), the
productivity levels zd = 0:9224 and zdd = 0:6696 are obtained for a medium-sized
disaster and for a severe disaster, respectively. Our vector of possible productivity
realizations thus takes the form Z =

�
zh; zl; zd; zdd

	
, where the parameterization of

the business cycle states
�
zh; zl

�
is the same as in section 5.1.

The state transition matrix for the shock process is described by the matrix

� =

0BB@
0:7770 0:1850 0:019 0:019
0:1850 0:7770 0:019 0:019
0:1429 0:1429 0:3571 0:3571
0:1429 0:1429 0:3571 0:3571

1CCA ;
where the transition probability from the business cycle states into the disaster states
is chosen to match the unconditional disaster probability of 3:8% per year, as reported
in Barro and Jin (2011). We thereby assume that both disaster states are reached
with equal likelihood. The persistence of the disaster states is set to match the average
duration of GDP disasters, which equals 3.5 years. For simplicity, we assume that
conditional on staying in a disaster, the medium and severe disaster states are equally
likely to materialize. Finally, the transition probabilities of the business cycle states
(22) are rescaled to re�ect the transition probability into a disaster state.
We also recalibrate the subsistence level for consumption �c. As in section 5, we

choose c such that, in an economy where bonds must always be repaid, the economy
can sustain a maximum net foreign debt position of 100% of average GDP in the
business cycle states (zh; zl).42

6.2 Optimal Default with Disasters: Quantitative Analysis
Figure 4 depicts the optimal default policies for the economy with disaster shocks
when � = 10%. Each panel in the �gure corresponds to a di¤erent productivity state
today and reports the optimal amount of default for tomorrow�s states zl; zd and zdd,
respectively. As before, default is never optimal if the highest productivity state zh

realizes in the next period. The default amounts (on the y-axis) are depicted as a
function of the country�s net foreign asset position (on the x-axis of each graph), with
both variables being normalized by average GDP.
Figure 4 reveals that, in the presence of large shocks, the introduction of optimal

repayment decisions tremendously relaxes the marginally binding borrowing limits,

42This yields an adjusted value of �c = 0:1899. Choosing tighter limits does not a¤ect the shape
of the optimal default policies but only shifts the policies depicted in �gure 4 �to the right�.
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Figure 4: Optimal Default Policies with Disaster States (� = 10%)

much more than occurs in a setting with small shocks only. For the considered
calibration, the sustainable net foreign asset position at the borrowing limit drops
from -100% of GDP for the case where repayment must always occur to a level of
about -1,000% of GDP. Figure 4 also shows that it is virtually never optimal to default
in the low business cycle state (zl), unless the net foreign asset position is very close
to its maximally sustainable level, similar to section 5 where we considered business
cycle shocks only. Furthermore, for a wide range of values for the net foreign asset
position, it is optimal to default if the economy makes a transition from a business
cycle state to a disaster state; see the top panels in the �gure. Default is optimal
for a transition to the severe disaster state (zdd), even when the country�s net foreign
asset position is positive before the disaster.43 Default is thus optimal even if the
country has su¢ cient resources (holdings of foreign debt) to repay its own debt.
Nevertheless, the optimal default amount increases as the country�s net foreign asset
position worsens.
Once the economy is in a disaster state, a further default in the event that the

economy remains in the disaster state is optimal only if the net foreign asset position
is very low, see the bottom panels of �gure 4. Since the likelihood of staying in a
disaster state is quite high, choosing not to repay if the disaster persists would have
large e¤ects on interest rates ex ante. As a result, serial default in case of a persistent
disaster is optimal only if the net foreign asset position is su¢ ciently negative.
At the end of 2011 the net international investment position of the United States

stood at -26.7% of GDP.44 Assuming that the U.S. was in the low business cycle

43With a positive net foreign asset position, default can occur because the country chooses to
issue su¢ cient amounts of own debt, which are invested in the foreign bond, with the sole purpose
of being able to default on domestic debt if a transition to a severe disaster occurs.
44See data provided by the Bureau of Economic Analysis.
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Figure 5: Net Foreign Asset Dynamics under Optimal Default Policy (� = 10%)

state (zl) and that the net international investment position can be approximated by
the model-implied net foreign asset position, �gure 4 suggests that the U.S. should
default on its outstanding debt to the order of 21% of GDP, if it enters a severe
economic disaster (zdd), which is a situation where its GDP level falls approximately
30% below trend. In dollar terms such a default would amount to 3.16 trn. At
the same time, �gure 4 suggests that a U.S. default is suboptimal in the case of a
medium sized output disaster (zd), which implies an approximate shortfall of GDP of
8% below trend. Default for the medium sized disaster state becomes optimal only for
considerably more negative net foreign asset positions, namely below -83% of GDP
in the high business cycle (zh) and below -147% of GDP in low state (zl).
The overall shape of the optimal default policies is fairly robust to assuming

di¤erent values for the default costs �. Larger default costs, for example, shift the
default policies �towards the left�, i.e. default occurs only for more negative net
foreign asset positions. Larger default costs also tighten the maximally sustainable
net foreign asset positions, thereby reducing the range of net foreign asset positions
over which optimal policies exist.
The top panel of �gure 5 reports a typical sample path for the net foreign asset

position and the amount of default induced by the optimal default policies shown
in �gure 4. The panel on the bottom of �gure 5 depicts the productivity shock
process. The economy starts at a zero net foreign asset position and each model
period corresponds to one year. The �gure shows that it is optimal to improve the
net foreign asset position when the economy is in the business cycle states, with faster
improvements being optimal in the high business cycle state; see, for example, the
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Figure 6: Welfare Gains from Using the Default Option

50-year period without economic disasters starting in year 130. Over this period the
net foreign asset position improves from a value slightly below -100% of GDP to small
positive values.
Figure 5 also shows that a transition to the severe disaster state usually leads to

default, provided the transition does not occur via the medium disaster state �rst
(as is the case for year 20). Also, following a disaster, the net foreign asset position
deteriorates, whenever the disaster persists for more than one period (see for example
year 40), otherwise the net foreign asset position is largely una¤ected or even improves
slightly (see year 86). This shows that, for the considered level of default cost, default
provides only partial insurance against disaster risk. At the same time, default can be
optimal even if the net foreign asset position is positive, see period 186. As a result of
the optimal default policies, the net foreign asset dynamics are typically characterized
by rapid deteriorations during persistent disaster periods and gradual improvements
during normal times, with the latter accelerating during high business cycles states.

7 Welfare Gains from Optimal Default

This section documents that optimal default gives rise to sizeable welfare gains when
the economy is subject to potential output disasters, as considered in section 6. Specif-
ically, we determine the welfare equivalent consumption gains relative to a situation
where repayment of debt is simply assumed always to occur, as de�ned in equation
(24). As we show, the welfare gains are surprisingly robust to the assumed level of
default costs, as long as these do not reach prohibitive levels.
Figure 6 shows how the consumption equivalent welfare gains depend on the de-

fault costs (shown on the x-axis). The �gure depicts these gains for three di¤erent
initial wealth positions at time zero, which imply initial net foreign asset positions
of 0%, -40% and -80% of GDP, respectively. Depending on the initial wealth po-
sition, the welfare gains amount - for a broad range of default costs - to 0.5-1.5%
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Figure 7: Decomposition of the Welfare Gains

of consumption each period, with the welfare gains increasing further at low default
cost levels. Overall, the welfare gains are surprisingly robust over a wide range of
default costs, instead proving more sensitive to the assumed initial net foreign asset
position. For default costs � � 0:5 the welfare gains from default decrease steeply and
for � � 0:7 welfare gains largely disappear. For such default cost levels it becomes
suboptimal to insure against a future disaster state when the economy is already in
a disaster, independently of the country�s net foreign asset position. As a result, the
natural borrowing limits tighten signi�cantly in the disaster states45 and the required
amount of insurance in the business cycle state (zl; zh) increases strongly as the net
foreign asset position deteriorates. While some insurance via default is still optimal
for such high cost levels, it does not give rise to sizeable welfare gains as default is
very costly.
Figure 7 decomposes the welfare gains shown in �gure 6 into three sources.46 In

a �rst step, we compute optimal default policies but impose the borrowing limits
associated with the no-default economy. The solid line in �gure 7 shows that for very
low levels of default costs, we still capture almost all welfare gains, while for higher
default costs, the relaxation of the marginally binding borrowing limits accounts for
the majority of the welfare gains. Intuitively, for su¢ ciently low default costs the
country�s wealth position is rather stable, as default insures against adverse shocks,
which means that it is unlikely that the borrowing limit of the no-default economy
is ever reached. This is di¤erent for higher default cost levels, where the country�s
wealth position �uctuates considerably; see, for example, �gure 5. In a second step,
we impose the borrowing limits from the no-default economy and the investment
policy that is optimal in the no-default regime. The achievable welfare gains are
depicted by the dashed line in �gure 7. The di¤erence between the solid and dashed
lines captures the share of welfare gains associated with improved investment policies

45They reach the levels applying in the economy with non-defaultable bonds.
46We assume an initial net foreign asset position of -80% as implied by the upper line in �gure 6.
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in the default economy. For plausible levels of the default costs, say, in the range of
10-20%, improved investment policies account for about 10-20% of the total welfare
gains, but are relatively small otherwise. Finally, the dashed line in �gure 7 indicates
that insurance via default accounts for the majority of the welfare gains for low
levels of default costs, but that this share decreases as default costs rise. Intuitively,
this happens because default becomes less frequent when default costs rise, with the
relaxation of the borrowing limits then accounting for the majority of the welfare
gains.

8 Long Maturities and Optimal Bond Repurchase Programs

This section brie�y discusses the e¤ects of also considering bonds with longer matu-
rities.
Introducing longer maturities of risk-free foreign debt has no implications for the

prior analysis, as such bonds cannot be used in better ways to insure against domestic
output risk. Like short-dated foreign bonds, they merely provide a store of value.
Issuing long-dated domestic bonds, however, can o¤er an advantage over issuing just
short bonds, whenever the market value of long bonds reacts to domestic conditions
in a way that allows the government to insure more e¢ ciently against domestic shocks
than a default on short-dated bonds. It would be desirable, for example, that the
market value of outstanding long bonds decreases following a disaster shock, so that
the government realizes a capital gain that lowers the overall debt burden. Such
capital gains, however, do not materialize if repayment is assumed to occur in all
future states, e.g., as in Angeletos (2002). The depreciation of the debt�s market
value can thus only be induced via the anticipation of future default on long-dated
bonds.
Issuing long bonds will o¤er an advantage against the outright default on maturing

short bonds, whenever the costs associated with repurchasing outstanding long bonds
at the devaluated market price are lower than the costs induced by a default event
on maturing short bonds. If both costs are identical, i.e. if the repurchase in a
situation where default is anticipated in the future is associated with the same costs
as a default on maturing bonds, then there will be no additional value associated with
issuing long bonds. The same holds true if the costs of a repurchase are higher than
those of an outright default. When these costs are lower, however, there then exists
an advantage from issuing long-dated bonds. Consider, for example, the situation
where a repurchase of long bonds does not give rise to any costs. The government
will then �nd it optimal to fully insure domestic consumption, i.e., achieve the �rst
best allocation, independently of the costs associated with an outright default on
maturing bonds. The optimal bond issuance strategy will then have the feature that
the government issues each period long bonds that (partially) default at maturity,
depending on the productivity realization in some earlier period. The default at
maturity needs to be calibrated such that the interim capital gains which realize fully
insure domestic consumption against domestic productivity shocks, i.e. satisfy the
proportionality restriction (15). The government can then repurchase the existing
stock of long bonds, avoid default costs entirely, and issue new long bonds with a new
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implicit contingent repayment pro�le, so as to insure against future shocks. In this
way outright default on maturing bonds never occurs.

9 Conclusions and Outlook

In a setting with endogenously incomplete government bond markets, debt default
is part of Ramsey optimal policy. Allowing the planner to choose whether or not
to repay maturing debt relaxes the country�s borrowing limits, thereby increasing
international risk sharing and the e¢ ciency of domestic investment. This leads to
signi�cant welfare gains, even when default costs are sizeable.
Interestingly, the normative benchmark derived in the present analysis also has

the potential to o¤er a plausible positive description of the actually observed debt
and default patterns. The present setting with commitment has, for example, no
di¢ culties in rationalizing the existing sovereign debt levels or in generating default
patterns where default occurs following negative output realizations. The present ap-
proach may thus have an advantage relative to limited commitment approaches, which
often face di¢ culties in explaining the existing sovereign debt levels47, and struggle
with the fact that default incentives are strongest following a positive innovation to
domestic income.48 Exploring the positive relevance of the presented normative the-
ory of optimal default thus remains an interesting avenue for future research. This
is especially true because the present analysis shows that Ramsey optimality is en-
tirely consistent with a country choosing not to repay debt in a situation where it has
su¢ cient resources to do so.
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A Appendix

A.1 First Order Equilibrium Conditions
This appendix derives the necessary and su¢ cient �rst order conditions for problem
(8). Using equation (7) to express beginning-of-period wealth, the problem is given
by

max
fbt;at�0;ekt�0;ect�0gE0

1X
t=0

�tu(ect)
s:t: :ect = ztek�t�1 + bt�1 + (1� �)at�1(zt)� c� ekt � 1

1 + r
bt � p0tat

zt+1ek�t + bt + (1� �)at(zt+1) � NBL(zt+1) 8zt+1 2 Zew0 = w0; z0 given;
We now formulate the Lagrangian �, letting �t denote the multiplier on the budget
constraint in period t, �t(zn) the multiplier for the short-selling constraint on the
Arrow security that pays o¤ in state zn in t+1, and !t 2 RN the vector of multipliers
associated with the natural borrowing limits for each possible realization of produc-
tivity in t+1, where wt(zn) denotes the entry of the vector pertaining to productivity
state zn:

�=E0

" 1X
t=0

�tu(ect)
+�t�t

�
�ect + ztek�t�1 + bt�1 + (1� �)at�1(zt)� c� ekt � 1

1 + r
bt � p0tat

�
+�t

NX
i=1

�t(z
n)at(z

n)

+�t
NX
i=1

!t(z
n)
�
znek�t + bt + (1� �)at(zn)�NBL(zn)�

#

We drop the inequality constraints for ekt and ect, as the Inada conditions guarantee an
interior solution for these variables whenever ew0 > NBL(z0).49 Di¤erentiating the

49This assumes that the �xed expenditures c are truly �xed and accrue independently of the
investment level, i.e. even if kt = 0.
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Lagrangian with respect to the choice variables, one obtains

ect : u0(ect)� �t = 0
bt : ��t

1

1 + r
+ �Et�t+1 +

NX
n=1

!t(z
n) = 0

at(z
n) : ��tpt(zn) + ��(znjzt)�t+1(zn)(1� �)

+�t(z
n) + !t(z

n)(1� �) = 0 8n 2 N

ekt : ��t + �ek��1t �Et�t+1zt+1 + �
ek��1t

NX
i=1

!t(z
n)zn = 0

Using the FOC for consumption to replace �t in the last three FOCs, delivers three
Euler equations:

Bond :�u0(ect) 1

1 + r
+ �Etu

0(ect+1) + NX
n=1

!t(z
n) = 0 (26a)

Arrow :�u0(ect)pt(zn) + ��(znjzt)u0(ect+1(zn))(1� �)
+�t (z

n) + !t(z
n)(1� �) = 0 8n 2 N (26b)

Capital :�u0(ect) + �ek��1t �Etu
0(ect+1)zt+1 + �ek��1t

NX
i=1

!t(z
n)zn = 0 (26c)

In addition, we have the following complementarity conditions 8n 2 N :

0� at(zn); �t(zn) � 0; one holds strictly (26d)

0� znek�t + bt + (1� �)at(zn)�NBL(zn); !t+1(zn)) � 0; one holds strictly(26e)
Combined with the budget constraint, the Euler equations and the complementarity
conditions constitute the necessary and su¢ cient optimality conditions for problem
(8).

A.2 Proof of Proposition 1
Consider some state-contingent beginning-of-period wealth pro�le wt arising from
some combination of bond holdings, default decisions and capital investment (Ft�1; Dt�1;�t�1; kt�1)
in problem (5). We show below that one can generate the same state contingent
beginning-of-period wealth pro�le ewt = wt in problem (8) by choosing ekt�1 = kt�1 and
by choosing an appropriate investment pro�le (at�1; bt�1). Moreover, the same amount
of funds are required to purchase (at�1; bt�1) in t � 1 than to purchase (Ft�1; Dt�1)
when the default pro�le is �t�1. With the costs of �nancial investments generating a
particular future payout pro�le being the same in both problems, identical physical
investments, and identical beginning of period wealth pro�les, it then follows from
constraints (5b) and (8b) that a consumption path which is feasible in (5) is also
feasible in (8).
To simplify notation we establish the previous claim for the case with N = 2

productivity states only. The extension to more states is straightforward. Consider
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the following state-contingent initial wealth pro�le�
wt(z

1)

wt(z2)

�
=

�
z1k�t�1 + Ft�1 �Dt�1(1� (1� �)�t�1(z1))
z2k�t�1 + Ft�1 �Dt�1(1� (1� �)�t�1(z2))

�
:

As is easily veri�ed, this beginning-of-period wealth pro�le in problem (8) can be
replicated by choosing ekt�1 = kt�1 and by choosing the portfolio

bt�1=Ft�1 �Dt�1; (27)

at�1=

�
Dt�1�t�1(z

1)
Dt�1�t�1(z

2)

�
(28)

The funds ft�1 required to purchase and issue (Ft�1; Dt�1) under the default pro�le
�t�1 = (�t�1(z

1); �t�1(z
2)) are given by

ft�1 =
1

1 + r
Ft�1 �

1

1 +R(zt�1;�t�1)
Dt�1

where the interest rate satis�es

1

1 +R(zt�1;�t�1)
=

1

1 + r

�
(1� �t�1(z1))�(z1jzt�1) + (1� �t�1(z2))�(z2jzt�1)

�
:

The funds eft�1 required to purchase (bt�1; at�1) are given by
eft�1 = 1

1 + r
(Ft�1 �Dt�1) +

1

1 + r

�
�t�1(z

1)�(z1jzt�1) + �t�1(z2)�(z2jzt�1)
�
GSt�1;

where we used the price of the Arrow security in (6). As can be easily seen eft�1 = ft�1,
as claimed. This completes the proof that a consumption path which is feasible in (5)
is also feasible in (8). Since a � 0, the reverse is also true, because equations (27) and
(28) can then be solved for values (Dt�1; Ft�1;�t�1) satisfying Dt�1 � 0, Ft�1 � 0,
and �t�1 2 [0; 1]N , so that it is possible in problem (5) to obtain a portfolio with the
same contingent payouts.50 Again, this portfolio has the same costs and thus admits
the same consumption choices. This completes the equivalence proof.

A.3 Proof of Proposition 2
Let us de�ne a critical future productivity state n�t

n�t = arg max
n2[1;:::;N ]

n (29)

s:t:
NX
i=n

�(zijzt)� 1� �

50Note that for a < 0, no such choices would exist, which shows that a � 0 is required to obtain
equivalence.
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and choices

ekt= �� Pn�t
n=1 �(z

njzt)� �
1� � zn� +

PN
n=n�t+1

�(znjzt)zn

1� �

!! 1
1��

(30)

bt=NBL(z
n�t )� zn�tek�t (31)

ct=0 (32)

at(z
n
t )= 0 for n � n�t (33)

at(z
n)=

NBL(zn)� znek�t � bt
(1� �) > 0 for n > n�t (34)

We now show that these choices satisfy the necessary and su¢ cient �rst order condi-
tions of problem (11). Problem (11) can more explicitly be written as

min
at;bt;ekt;ect c+ ect + ekt + 1

1 + r
bt +

NX
i=1

at(z
n)pt(z

n) (35)

s:t:

znek�t + bt + (1� �)at(zn)�NBL(zn) � 0 for n = 1; :::; N
at(z

n) � 0 for n = 1; :::; Nect � 0
Obviously, it is optimal to choose ect = 0, so that we can eliminate this variable and the
constraint ect � 0 from the problem. Letting !t(zn) denote the Lagrange multipliers
for the �rst set of constraints in (35) and �t(zn) the multipliers for the second set of
constraints, the �rst order necessary conditions are given by

ekt : 1 + �ek��1t

NX
n=1

!t(z
n)zn = 0 (36)

bt :
1

1 + r
+

NX
n=1

!t(z
n) = 0 (37)

at(z
n) : pt(z

n) + !t(z
n)(1� �) + �t(zn) = 0 (38)

We also have the constraints

znek�t + bt + (1� �)at(zn)�NBL(zn)� 0, !t(zn) � 0, one holding strictly (39)
at(z

n)� 0, �t(zn) � 0, one holding strictly (40)

Conditions (38) and (40) can equivalently be summarized as

pt(z
n) + !t(z

n)(1� �) � 0; at(zn) � 0; one holding strictly (41)

so that the �rst order conditions are given by (36),(37), (39) and (41). Since the ob-
jective is linear and the constraint set convex, the �rst order conditions are necessary
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and su¢ cient. We now show that the postulated solution satis�es these �rst order
conditions.
Since a(zn) > 0 for n > n�t for the conjectured solution, condition (41) implies

!t(z
n)=�pt(z

n)

1� �

=� 1

1 + r

�(znjzt)
1� � < 0 for all n > n�t

We now conjecture (and verify later) that

!t(z
n)= 0 for all n < n�t (42)

!t(z
n�t )=� 1

1 + r
�

NX
n=n�+1

!t(z
n) (43)

For the previous conjecture (37) holds by construction. Also, the second inequality
of (39) holds for all n 2 f1; :::; Ng because we have

NX
n=n�t+1

!t(z
n) =

1

1 + r

PN
n=n�t+1

�(znjzt)
1� � <

1

1 + r

from the de�nition of n�, so that !t(zn
�
t ) < 0. Equations (33) and (34) then imply

that (41) hold. Furthermore, (30) implies that (36) holds. It thus only remains
to show that the �rst inequality for (39) also holds. For n � n�t this follows from
(34). For n < n�t this is also true because �NBL(zn) is increasing as n falls due to
(12), output znek�t is equally increasing as n falls due to the assumed ordering of the
productivity levels, and the �rst inequality of (39) holds with equality for n = n�t due
to (31). As a result, the �rst inequality in (39) holds strictly for n < n�t , justifying our
conjecture (42). This proves that all �rst order conditions hold for the conjectured
solution (30)-(34).
Since the solution (30)-(34) is linear in the NBLs showing up in the constraints of

(11), the minimized objective is also a linear function of these NBLs. The �xed point
problem de�ned by (11) is thus characterized by a system of equations that is linear,
which generically admits a unique solution.

A.4 Proof of Proposition 3
We start by proving point 2 in proposition 3. Suppose that in some period t and for
some productivity state zn (n 2 f1; :::; Ng), beginning-of-period wealth falls short of
the limits implied by the marginally binding NBL, i.e.

ewt(zn) = NBL(zn)� "; (44)

for some " > 0. We then prove below that for at least one contingency zj in t + 1,
which can be reached from zn in t with positive probability, it must hold that

ewt+1(zj) � NBL(zj)� "(1 + r); (45)
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such that along this contingency the distance to the marginally binding NBL is in-
creasing at the rate 1 + r > 1 per period. Since the same reasoning also applies
for future periods, and since the marginally binding NBLs assume �nite values, this
implies the existence of a path of productivity realizations along which wealth far in
the future becomes unboundedly negative, such that any �nite borrowing limit will
be violated with positive probability.
It remains to prove that if (44) holds in period t and contingency zn, this implies

that (45) holds for some contingency zj in t + 1 (j 2 f1; :::; Ng) and that zj can be
reached from zn with positive probability. Suppose for contradiction that

ewt+1(zh) > NBL(zh)� "(1 + r) (46)

for all h 2 f1; :::; Ng that can be reached from zn, i.e. for which �(zhjzn) > 0.
The cost-minimizing way to satisfy the constraints (46) for all h, when replacing
the strict inequality by a weak one, is to choose the solution (30), (32)- (34) and
bt = NBL(z

n�t )� zn�tek�t � ".51 Achieving this requires NBL(zn)� " units of funds in
t, which in turn implies that satisfying constraints (46) with strict inequality requires
strictly more funds than are available in t, whenever the state can be reached with
positive probability. As a result, (45) must hold for at least one j that can be
reached from zn with positive probability. This concludes the proof of point 2 in the
proposition.
The proof of point 1 is relatively straightforward. If ewt(zn) � NBL(zn), then it is

feasible to choose the policies (30), (31), (33), (34) and a non-negative consumption
level in period t. This will give rise to beginning-of-period wealth levels in the future
that are equal to or above the marginally binding NBLs, and this policy can be
repeated in all future periods. Since the marginally binding NBLs assume �nite
values, this proves the existence of a policy with non-explosive debt dynamics.

A.5 Proof of Proposition 4
We �rst show that the proposed consumption solution (13) and investment policy (14)
satisfy the budget constraint, that the inequality constraints a � 0 are not binding,
and that the NBLs are not binding either. Thereafter, we show that the remaining
�rst order conditions of problem (8), as derived in appendix A.1, hold.
We start by showing that the portfolio implementing (13) in period t = 1 is

consistent with the �ow budget constraint and a � 0. The result for subsequent
periods follows by induction. In period t = 1 with productivity state zn, beginning-
of-period wealth under the investment policy (14) is given by

ewn1 � zn (k�(z0))� + b0 + a0(zn) (47)

To insure that consumption can stay constant from t = 1 onwards we again need

ec = (1� �)(�(zn) + ewn1 ) (48)

51To verify this just solve the minimization problem (35) where the constraints on future wealth
are replaced by (46) with the strict inequality repaced by a weak one.
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for all possible productivity realizations n = 1; ::N . This provides N conditions that
can be used to determine the N + 1 variables b0 and a0(zn) for n = 1; :::; N . We also
have the condition a0(zn) � 0 for all n and by choosing minn a0(zn) = 0, we obtain
one more condition that makes it possible to pin down a unique portfolio (b0; a0).
Note that the inequality constraints on a do not bind for the portfolio choice, as we
have one degree of freedom, implying that the multipliers v1(zn) in Appendix A.1 are
zero for all n = 1; :::; N . It remains to be shown that the portfolio achieving (48) is
feasible given the initial wealth ew0. Using (47) to substitute ewn1 in equation (48) we
obtain ec = (1� �)(�(zn) + zn (k�(z0))� + b0 + a0(zn)) 8n = 1; :::N:
Combining with (13) we obtain

�(zn) + zn (k�(z0))
� + b0 + a0(z

n) = �(z0) + ew0
Multiplying the previous equation with �(znjz0) and summing over all n one obtains

E0 [�(z1) + z1 (k
�(z0))

�] + b0 +
NX
n=1

�(znjz0)a0(zn) = �(z0) + ew0:
Using �(z0) = �k�(z0) + �E0 [z1 (k�(zt+j))�] � c + �E0 [�(z1)] and (6) the previous
equation delivers

(1� �)E0 [�(z1) + z1 (k�(z0))�] + b0 + (1 + r)p00a0 = �k�(z0) + ew0 � c
Using � = 1=(1 + r) this can be written as

(1� �)
�
E0 [�(z1) + z1 (k

�(z0))
�] +

1

�
p0a0 + b0

�
+

1

1 + r
b0 + p

0
0a0=�k�(z0) + ew0 (49)

From substituting (47) into (48), multiplying the result with �(znjz0) and summing
over all n, it follows that the terms in the �rst line of the previous equation are equal
to

(1� �)
�
E0 [�(z1) + z1 (k

�(z0))
�] +

1

�
p00a0 + b0

�
= ec� c

where we also used (6) and 1 + r = 1=�. Using this result to substitute the �rst line
in (49) shows that (49) is just the �ow budget equation for period zero. This proves
that the portfolio giving rise to (48) in t = 1 for all n = 1; :::; N satis�es the budget
constraint of period t = 0. The results for t � 1 follow by induction. The result (15)
follows from substituting (47) into (48) and noting that b0 is not state contingent.
From equation (48) and the fact that �(zt) is bounded, it follows that ewt is

bounded so that the process for beginning-of-period wealth automatically satis�es
the marginally binding NBLs. The multipliers !t+1 in appendix A.1 are thus equal
to zero for all t and all contingencies. Using vt(zn) � 0, !t+1 � 0, the fact that
capital investment is given by (14) and that the Arrow security price is (6), the Euler
conditions (26a) - (26c) all hold when consumption is given by (13). This completes
the proof.
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A.6 Proof of proposition 5
Since we start with a beginning-of-period wealth level at the marginally binding NBL,
we necessarily have ect = 0 (otherwise one could a¤ord an even lower initial wealth
level and satisfy all constraints, which would be inconsistent with the de�nition of the
marginally binding NBLs given in (11)). Indeed, the available beginning of period
wealth ewt is just enough to insure that ewt+1 � NBL(zt+1) for all possible future
productivity states zt+1. The optimal choices at 2 RN ; bt; ekt are thus given by the
cost-minimizing choices satisfying at � 0 plus the marginally binding NBLs in t + 1
for all possible future productivity states. Formally,

min
at;bt;ekt ekt + 1

1 + r
bt +

NX
i=1

at(z
n)pt(z

n)

s:t:

znek�t + bt + (1� �)at(zn)�NBL(zn) � 0 for n = 1; :::; N
at(z

n) � 0 for n = 1; :::; N

The optimal choices are thus equivalent to those de�ning the NBLs in Appendix
A.3, see problem (35). As shown in that appendix, the optimal choices are given by
(30)-(34) provided (12) holds.

A.7 Proof of proposition 6
Using the assumed policies, 1

1+r
= �, pt(zn) =

�(znjzt)
1+r

, and the fact that the NBLs
are not binding for su¢ ciently high wealth levels, the Euler equations (26a)-(26c) for
j = 0 imply

u0(ect)=Etu0(ect+1) (50a)

�t(z
n)= ��(znjzt) (u0(ect)� u0(ect+1(zn))(1� �)) 8n 2 N (50b)

0=�u0(ect) + �ek��1t �Etu
0(ect+1)zt+1 (50c)

We show below that the Euler equation errors for j = 0 converge to zero and that
vt(z

n
t ) � 0 as the wealth ewt increases without bound. Under the assumed policies

wealth evolves according to

ewt+1= zt+1k�(zt)� + bt
= zt+1k

�(zt)
� +

1

�
( ewt � k�(zt)� (1� �)(�(zt) + ewt)� c)

= ewt + zt+1k�(zt)� � 1

�
k�(zt)�

(1� �)
�

�(zt)�
1

�
c

= ewt +�(zt) + zt+1k�(zt)� � 1

�
k�(zt)�

1

�
(�(zt))�

1

�
c

= ewt +�(zt)� Et[�(zt+1)] + (zt+1 � Etzt+1)k�(zt)�
Since the �uctuations in zt; k�(zt) and �(zt) are all bounded, �uctuations in wealth are
also bounded over any �nite number of periods. Moreover, the �uctuations in wealth
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are independent of the initial wealth level. As a result, �uctuations in consumption
are also bounded and of a size that is not dependent on the wealth level under the
proposed consumption policy.
We now show that for j = 0 and a su¢ ciently high wealth level the Euler equation

residuals remains below �. Using the assumed consumption policy and the result from
the previous equation, we have

Et[ect+1] = (1� �)Et [(�(zt+1) + ewt+1)]
= (1� �) ( ewt +�(zt))
= ct

i.e. consumption follows a random walk. Now consider equation (50a), which requires

u0(ect)=Etu0(ect+1)
=

NX
n=1

�(znjzt)u0(ect+1(zn)) (51)

From Taylor�s theorem we have

u0(ect+1(zn)) = u0(ect) + u00(cn)(ect+1(zn)� ect)
where cn can be chosen from the bounded interval

[minfect;min
n
ect+1(zn)g;maxfect;max

n
ect+1(zn)g]

whose width is independent of the wealth level ewt (as �uctuations in consumption do
not depend on wealth as shown above). Moreover, under the assumed consumption
policy, the lower bound of this interval - and thus also cn increases without bound,
as ewt increases without bound. Using the earlier result, (51) can be rewritten as

0 =

NX
n=1

�(zn) (u00(cn)(ect+1(zn)� ect))
where the sum on the right-hand side of the equation denotes the Euler equation
residual whenever it is not equal to zero. For the considered consumption policies, we
have that ect+1(zn)� ect is bounded and invariant to wealth. Moreover, for su¢ ciently
large wealth, cn increases without bound, therefore u00(cn)! 0 under the maintained
assumption about preferences. This implies that for any given � > 0 we can �nd a
wealth level w� so that the Euler equation residual falls below �. Since the �uctuations
in wealth are bounded over the �nite horizon T and do not depend on the initial wealth
level, we can �nd an initial wealth level �w high enough such that over the next T
periods wealth stays above w�. The Euler equation errors then remain below " over
the next T � 1 periods, as claimed.
Similar arguments can be made to show that (50c) holds and that (50b) implies

vt(z
n
t ) � 0 for a su¢ ciently large initial wealth level. We omit the proof here for the

sake of brevity.
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A.8 Default Costs Born by Lender
This appendix shows that if a consumption allocation is feasible in a setting in which
default costs are borne by the borrower, then it is also feasible in a setting in which
some or all of these costs are borne by the lender instead. For simplicity, we only
consider the extreme alternative where all costs are born by the lender. Intermediate
cases can be covered at the cost of some more cumbersome notation.
Consider a feasible choice fFt � 0; Dt � 0; �t 2 [0; 1]N ; kt � 0; ct � 0g1t=0, i.e. a

choice that satis�es the constraints of the government�s problem (5), which assumes
�l = 0 and �b = �. Let variables with a hat denote the corresponding choices in a
setting in which the lender bears all default costs, i.e., where �l = � and �b = 0. We
show below that it is then feasible to choose the same real allocation, i.e., to choosebkt = kt and bct = ct, provided one selects appropriate values for bFt, bDt and b�t.
First, note that in a setting where foreign investors bear all settlement costs, the

interest rate bR(zt; b�t) on domestic bonds satis�es

1 + r =

1� (1 + �)
nX
n=1

b�nt�(znjzt)
1

1+ bR(zt;b�t)
(52)

where the denominator on the right-hand side denotes the issuance price of the bond
and the numerator the expected repayment net of the lender�s settlement cost. The
previous equation thus equates the expected returns of the domestic bonds with the
expected return on the foreign bond.
Next, consider the following �nancial policies:52

b�t=(1� �)�t
DtbDt

(53a)

bDt=
1 + eR(zt; b�t)eR(zt; b�t)

R(zt;�t)

1 +R(zt;�t)
Dt (53b)

bFt=Ft + bDt �Dt (53c)

As we show below, in a setting in which settlement costs are borne by the lender,
the �nancial policies f bFt; bDt; b�tg1t=0 give rise to the same state-contingent �nancial
payo¤s as generated by the policies fFt; Dt;�tg1t=0 in a setting in which settlement
cost are borne by the borrower. Therefore, as claimed, the former policies allow the
implementation of the same real allocations.
Consider the �nancial �ows generated by the policy component ( bFt; bDt; b�t). In

period t, the �nancial in�ows are given bybDt

1 + bR(zt; b�t)
� bFt

52Lengthy but straightforward calcucations, which are available upon request, show that these
policies satisfy b�t 2 [0; 1]N , although they may imply bFt < 0, which requires the government also
to issue safe bonds, i.e. bonds that promise full repayment in the explicit and implicit component
of their contract.
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Using the de�nitions (53), it is straightforward to show that these in�ows are equal
to

1

1 +R(zt;�t)
Dt � Ft

which are the in�ows under the policy (Ft; Dt;�t) in a setting where settlement costs
are borne by the lender.
We show next that the �nancial �ows in t + 1 are also identical under the two

policies. The �nancial in�ows generated by the policy choices ( bFt; bDt; b�t) in some
future contingency n 2 f1; :::Ng in period t+ 1 are given by

� bDt(1� b�nt ) + bFt
From the �rst and last equation in (53), we determine that these �ows are equal to

�(1� (1� �)�nt )Dt + Ft

which are the in�ows generated by the policy (Ft; Dt;�t) in a setting where settlement
costs are borne by the lender.
Finally, since the policies fFt; Dt;�tg1t=0 satisfy the marginally binding natural

borrowing limits in the government�s problem (5), it must generate bounded �nancial
�ows, with the same therefore also applying for the policies f bFt; bDt; b�tg1t=0. These
policies thus also satisfy the marginally binding natural borrowing limits, which com-
pletes the proof.

A.9 Estimation of Lender�s Default Costs
Consider a non-contingent one period bond that in explicit legal terms promises to
repay one unit and that has an associated implicit default pro�le � = (�1; :::; �n) 2
[0; 1]n. A risk-neutral foreign lender, who bears proportional default costs �b in the
event of default and can earn the gross return 1 + r on alternative safe investments,
will price this bond according to equation (23). As explained below, the asset pricing
equation (23) can be used to obtain an estimate for �l.
We start by de�ning the ex post return eprt on a government bond

1 + eprt =

1�
NX
n=1

�n�(znjzt)

1
1+R(zt;�)

;

which is the bond return that accounts for losses due to non-repayment but not
for potential default costs. Ex post returns can be measured from �nancial market

data. Using the previous equation to substitute
NX
n=1

(1� �n) ��(znjzt) on the r.h.s. of

equation (23) and applying the unconditional expectations operator53, one obtains

53The expectations operator integrates over the set of possible histories zt = fzt; zt�1; :::g.
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�l =
E [eprt � r]

E

"
(1 +R(zt;�))

NX
n=1

�n�(znjzt)
# : (54)

Information about the average excess return, which shows up in the numerator of the
previous equation, can be obtained from Klingen, Weder, and Zettelmeyer (2004),
who consider 21 emerging market economies over the period 1970-2000. Using data
from table 3 in Klingen, Weder, and Zettelmeyer (2004), the average excess return
varies between -0.2% and +0.5% for publicly guaranteed debt, depending on the
estimation method used.54 ;55 We use the average of the estimated values and set
E[eprt � r] = 0:15%.
We now turn to the denominator on the r.h.s. of equation (54). Using a �rst order

approximation we obtain

E

"
(1 +R(zt;�))

NX
n=1

�n�(znjzt)
#
� E [1 +R(zt;�)]E

"
NX
n=1

�n�(znjzt)
#
; (55)

where the last term equals (again to a �rst order approximation)

E

"
NX
n=1

�n�(znjzt)
#
� Pr(� > 0)E[�j� > 0):

Using data compiled by Cruces and Trebesch (2011), who kindly provided us with
the required information, we observe for the 21 countries considered in Klingen et
al. (2004) and for the period 1970-2000 a total of 58 default events, thus the average
yearly default probability equals 8:9%. The average haircut conditional on a default
was 25%; these �gures therefore imply

E

"
NX
n=1

�n�(znjzt)
#
� 2:22%:

The average ex ante interest rateR(zt;�) appearing in equation (55) can be computed
by adding to the average ex post return of 8:8% reported in table 3 in Klingen, Weder,
and Zettelmeyer (2004) for publicly guaranteed debt, the average loss due to default,
which equals 2:22% to �rst order, such that R(zt;�) � 11:02%. Combining these
results to evaluate �l in equation (54) delivers our estimate for the default costs
accruing to lenders reported in the main text.

54As suggested in Klingen, Weder, and Zettelmeyer (2004), we use the return on a three-year US
government debt instrument as the safe asset, since it approximately has the same maturity as the
considered emerging market debt.
55The fact that ex post excess returns on risky sovereign debt are relatively small or sometimes

even negative is con�rmed by data provided in Eichengreen and Portes (1986) who compute ex
post excess returns using interwar data. The negative ex post excess returns likely arise due to the
presence of sampling uncertainty: the high volatility of the nominal exchange rate makes it di¢ cult
to estimate the mean ex post excess returns.
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A.10 Numerical Solution Approach
We solve the recursive version of the Ramsey problem from section 2.2.3 using global
solution methods, so as to account for the non-linear nature of the optimal policies.
The state space S of the problem is given by

S =
�
z1 �

�
NBL(z1); wmax

�
; :::; zN �

�
NBL(zN); wmax

�	
where NBL(zn) denotes the marginally binding natural borrowing limits and wmax
is a suitably chosen and su¢ ciently large upper bound for the country�s wealth level.
We want to describe equilibrium in terms of time-invariant policy functions that

map the current state into current policies. Hence, we want to compute policies

ef : (zt; wt)! (fct; kt; bt; atg) ;

where their values (approximately) satisfy the optimality conditions derived in A.1.
We use a time iteration algorithm where equilibrium policy functions are approx-
imated iteratively. In a time iteration procedure, tomorrow�s policy (denoted by
fnext) is taken as given and solves for the optimal policy f today, which in turn
is used to update the guess for tomorrow�s policy. Convergence is achieved once
jjf � fnextjj < �, where we set � = 10�5. We then set ef = f . In each time iteration
step we solve for optimal policies on a su¢ cient number of grid points distributed over
the continuous part of the state space. Between grid points we use linear splines to in-
terpolate tomorrow�s policy. Following Garcia and Zangwill (1981), we can transform
the complementarity conditions of our �rst order equilibrium conditions into equa-
tions. For more details on the time iteration procedure and how complementarity
conditions are transformed into equations, see, for example, Brumm and Grill (2010).
To come up with a starting guess for the consumption policy, we use the fact that
at the NBLs optimal consumption equals the subsistence level. We therefore guess
a convex, monotonically increasing function g which satis�es g(zi; NBL(zi)) = �c 8i
and use a reasonable guess for g(zi; wmax).
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