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Abstract

The permanently evolving technical area of communication technology and the presence of

more and more precise sensors and detectors, enable options and solutions to challenges in

science and industry. In high-energy physics, for example, it becomes possible with accu-

rate measurements to observe particles almost at the speed of light in small-sized dimen-

sions. Thereby, the enormous amounts of gathered data require modern high performance

communication networks. Potential and efficient implementation of future readout chains

will depend on new concepts and mechanisms.

The main goals of this dissertation are to create new efficient synchronization mechanisms

and to evolve readout systems for optimization of future sensor and detector systems. This

happens in the context of the Compressed Baryonic Matter experiment, which is a part of

the Facility for Antiproton and Ion Research, an international accelerator facility. It extends

an accelerator complex in Darmstadt at the GSI Helmholtzzentrum für Schwerionenfors-

chung GmbH.

Initially, the challenges are specified and an analysis of the state of the art is presented. The

resulting constraints and requirements influenced the design and development described

within this dissertation. Subsequently, the different design and implementation tasks are dis-

cussed. Starting with the basic detector read system requirements and the definition of an

efficient communication protocol. This protocol delivers all features needed for building of

compact and efficient readout systems. Therefore, it is advantageous to use a single unified

connection for processing all communication traffic. This means not only data, control, and

synchronization messages, but also clock distribution is handled. Furthermore, all links in

this system have a deterministic latency. The deterministic behavior enables establishing a

synchronous network. Emerging problems were solved and the concept was successfully

implemented and tested during several test beam times.
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In addition, the implementation and integration of this communication methodology into

different network devices is described. Therefore, a generic modular approach was created.

This enhances ASIC development by supporting them with proven hardware IPs, reducing

design time, and risk of failure. Furthermore, this approach delivers flexibility concerning

data rate and structure for the network system. Additionally, the design and prototyping for

a data aggregation and concentrator ASIC is described. In conjunction with a dense electri-

cal to optical conversion, this ASIC enables communication with flexible readout structures

for the experiment and delivers the planned capacities and bandwidth.

In the last part of the work, analysis and transfer of the created innovative synchronization

mechanism into the area of high performance computing is discussed. Finally, a conclusion

of all reached results and an outlook of possible future activities and research tasks within

the Compressed Baryonic Matter experiment are presented.
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Zusammenfassung

Mit der sich ständig beschleunigenden technischen Entwicklung im Bereich der Rechner-

kommunikation sowie immer genauer werdenden Sensoren und Detektoren ergeben sich

neue Möglichkeiten und Lösungsansätze für viele Herausforderungen in der Wissenschaft

und Industrie. Im Bereich der Hochenergiephysik beispielsweise wird, es möglich, immer

genauere Messungen von Teilchen mit annähernd Lichtgeschwindigkeit auf engstem Raum

durchzuführen. Die hierbei anfallenden enormen Datenmengen benötigen moderne

Hochleistungsnetzwerke. Die optimale Umsetzung zukünftiger Ausleseketten erfordert

neue Konzepte und Mechanismen.

Diese Arbeit widmet sich dem Ziel, neue effiziente Synchronisationsmechanismen sowie

Auslesesysteme zu entwickeln, um zukünftige Sensor- und Detektorsysteme zu optimieren.

Dies geschieht im Kontext des Compressed-Baryonic-Matter-Experiments, welches ein

Teil der Facility for Antiproton and Ion Research ist, einer internationalen Beschleunigeran-

lage zur Forschung mit Antiprotonen und Ionen. Es handelt sich hierbei um eine Erweite-

rung des in Darmstadt bestehenden Beschleunigers der GSI Helmholtzzentrum für Schwer-

ionenforschung GmbH.

Zunächst befasst sich die Arbeit mit der Beschreibung und Analyse der Problemstellung

sowie dem Stand der Technik. Hieraus ergeben sich Randbedingungen und Erkenntnisse,

die alle folgenden Entwicklungen beeinflusst haben. Anschließend werden die einzelnen

Entwurfs- und Entwicklungsschritte beschrieben. Begonnen wird mit der Analyse der

Grundlagen für ein optimiertes Detektorauslesenetzwerk. Dem schließt sich die Beschrei-

bung des Designs eines effizienten Kommunikationsprotokolls an, welches alle erforderli-

chen Fähigkeiten aufweisen muss. Um kompakte und effiziente Systeme bauen zu können,

sollten alle benötigten Funktionen nur über einen Kommunikationskanal zur Verfügung ste-

hen. Dieser Kanal dient nicht nur zum Austausch von Daten, sondern ermöglicht auch eine

Taktverteilung. Ferner werden Links mit deterministischer Latenz verwendet, da es mit
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einem deterministischen Verhalten möglich ist, eine Synchronisation über diesen Kanal auf-

zubauen. Auf Basis dieser Grundlagen wurde ein Protokoll definiert, das drei virtuelle

Kommunikationsklassen zur Verfügung stellt: die Daten-, Kontroll- und Synchronisations-

kommunikation. Dieses Konzept wurde erfolgreich umgesetzt, aufkommende Probleme

wurden gelöst, und die Tauglichkeit durch zahlreich Teststrahlzeiteinsätz bewiesen.

Darüber hinaus wird auf die Implementation und Integration in unterschiedliche Netzwerk-

komponenten eingegangen. Zunächst wird das generische modulare Konzept erläutert.

Dieses ermöglicht es, vor allem in ASIC-Entwicklungen bereits getestete, funktionierende

Hardwarekomponenten zu verwenden, um Entwicklungszeit und Risiken zu minimieren.

Außerdem erlaubt das Konzept einen flexiblen Einbau von Detektorauslese-ASICs mit ver-

schieden Datenraten in einem Auslesenetzwerk. Ferner werden das Design und die Prototy-

pentwicklung für einen Datenaggregations- und Konzentrator-ASIC diskutiert. Dieser

ASIC ermöglicht in Kombination mit einer dichten räumlichen, elektrisch-optischen Kom-

munikationsumsetzung den Aufbau eines Auslesenetzwerks für das Compressed-Bary-

onic-Matter-Experiment, mit dem sich die volle geplante Kapazität erreichen lässt.

Am Ende wird der erschaffene innovative Synchronisationsmechanismus auf das Gebiet

des Höchstleistungsrechnens übertragen, und seine Vorteile werden erläutert. Die Arbeit

schließt mit einer Zusammenfassung der erreichten Entwicklungen sowie einem Ausblick

auf mögliche zukünftige Forschungsaufgaben und Projekte im Kontext des Compressed-

Baryonic-Matter-Experiments ab.
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Chapter 1

This chapter introduces the subject of sensor and detector

data acquisition systems. Furthermore, the goals and tasks

are described, which are achieved within this research

work. The significance ot the data aquisition system within

the Compressed Baryonic Matter experiment is clarified.

Additionally, facts and challenges concerning required

synchronization within modern sensor and detector data

acquisition networks are presented. An overview of the

Compressed Baryonic Matter Experiment is presented.

Due to the huge amount of captured data and the accuracy

needed, this high-energy physics experiment requires spe-

cial solutions for its data acquisition network. This chapter

ends with a structured overview.

1

Introduction
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1.1   Motivation

Sensor and detector readout networks have become more and more optimized networks.

Due to scientific challenges, like detection of particles traveling near light speed in small-

sized dimensions within high-energy physics, as well as demands in industrial sectors, the

accuracy of measured data and performance concerning its data acquisition (DAQ) [1] sys-

tem has to improve. Improvements can be found regarding sensor control, capability of sen-

sors, DAQ network topologies, synchronization mechanisms, and communication

bandwidth. However, continuous technology enhancements and new conceptual approaches

are the driving factors enabling solutions for upcoming challenges.

One of the most challenging tasks in this context is synchronization. Synchronization is

required to assure that all devices have the same relative time base. Later, it is possible to

correlate measured data for further analysis. Thus, the finer the synchronization precision is,

then the more accurate is the measured data. For standard applications, it is sufficient to use

standard network and protocol systems combined with software synchronization or syn-

chronization on protocol application layer. Thereby, synchronization precision in the order

of µs is reachable. Some systems have been improved with high efforts to reach even better

resolutions using separate special clock distribution and synchronization networks. How-

ever, in future environments, a precise and reliable synchronization in the order of ps is

required. Achieving this magnitude, especially with respect to density and bandwidth

intense future DAQ networks, will require special hardware support for synchronization.

Therefore, new communication concepts using protocols with completely integrated func-

tionalities, compact special DAQ hardware, and efficient synchronization mechanisms,

need to be invented.

This thesis targets the creation of a new synchronization mechanism to fulfill upcoming

requirements for sensor and detector networks. This synchronization mechanism needs to

be capable of supporting different topologies and needs direct integration into communica-

tion streams avoiding additional hardware. Besides this mechanism, within the context of
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the Compressed Baryonic Matter (CBM) Experiment, the goal is to create a complete

CBM DAQ network solution. These solutions need to be optimized for the special require-

ment of CBM.

CBM requirements:

• Precise time synchronization mechanism < 200ps

• Compact hardware, due to limited space

• Dense interconnection solutions

• Radiation tolerance

• Self triggered front-end electronics

• Flexibility to support different DAQ structures

• Reusability of modules and flexible build-up variants

• Efficient data aggregation schemes and rate conversion

• High bandwidth handling up to several TB/s of data

These requirements dictate design constraints for protocol and hardware. The protocol

needs to deliver a high link utilization, to provide efficient interfaces, and to handle traffic

types as slow control messages, data messages, and synchronization. In addition, a clock

distribution needs to be spanned. This provided clock has to be precise enough for avoiding

bit slips. Deterministic latency connections must be established. A deterministic latency

connection guarantees delivery of synchronization messages with a constant runtime.

Therefore, it always takes an identical amount of hardware clock cycles to process them

within devices. This needs to be valid even after power cycles. Due to a guarantee of no

occurring bit slips and deterministic latency connections, device distances in relation to a

master synchronization node can be measured. Then a synchronization mechanism can be

used to adjust all devices to run in a synchronous mode. Additionally, the network devices

should support the same protocol reusing almost identical DAQ network hardware. Thus,

protocol conversion can be avoided. Compatible implementations for various FPGAs and

ASICs need to be available. 
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Furthermore, this thesis focuses on concepts, plans, and the first prototyping of an ASIC for

early data aggregation, rate conversion, synchronization, and control of front-end electron-

ics (FEE) near the detector. This ASIC handles all traffic classes and controls numerous via

electrical links attached FEE boards. It has to combine the FEE data streams and send them

with increased speed to the next network hierarchy level. Due to potential separation and

communication distance, optical fiber connections are required to connect this ASIC to

higher hierarchies. These optical fiber connections need to be constructed with high density,

because of space constraints and build up dependencies. Therefore, an innovative electrical

to optical converter, in close proximity to the ASIC, is required to combine links into dense

fiber connections for delivering sufficient bandwidth.

1.2   Design Challenges

There are different network classifications such as asynchronous, plesiochronous, and syn-

chronous/mesochronous networks. Asynchronous networks do not have any timing relation.

If they are used for data transfer, a separate network for providing synchronization is

required. The plesiochronous networks are almost synchronous networks. They are timed

with clocks having almost the same timing. Due to sophisticated adjustment mechanisms,

they reach accuracies in the order of µs. Nevertheless, synchronous/mesochronous net-

works can achieve the highest precision, because their clocks are completely derived from

one master clock. Thus, synchronization quality strongly depends on the clock distribution

system. They are ideal for achieving the target accuracy requirements, but in order to meet

these requirements the network has to take care of various challenges. In standard literature

[2] jitter and wander, the most important challenges within synchronous systems, are

described. Both jitter and wander are phase variations. Jitter is defined as short-term varia-

tion, including all variations above 10 Hz. It depends on clock quality, common noise, and

noise introduced by circuits. Wander, on the other hand, is a long-term phase variation

below 10 Hz. Wander can be caused by slight frequency variations between oscillators,

transmission fluctuation, or bit stuffing mechanisms. In huge networks, wander can hardly
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be avoided. Thus, from time to time, readjustment must be done. However, jitter and wan-

der may lead to bit slips and should be avoided. A bit slip is caused if a clock cycle is

skipped. This causes errors and affects the system accuracy.

1.3   The Compressed Baryonic Matter Experiment

The Compressed Baryonic Matter (CBM) experiment is a part of the Facility for Antiproton

and Ion Research (FAIR) in Darmstadt at the GSI [3]. FAIR [4] works together with the GSI

[5] for constructing and running the planed FAIR facility. FAIR extends the existing GSI

accelerator and synchrotron. Construction has already begun and the first stage of expan-

sion is currently planned to function in 2018. Figure 1-1 gives an overview of the planned

FAIR facility. It shows the existing GSI accelerator in blue color on the left side and the

FAIR synchrotron extending it in red color on the right side. FAIR focuses on five beam

properties: highest beam intensities, brilliant beam quality, higher beam energies, highest

beam power, and parallel operation. It contains eight different experiments with collabora-

tions.

Figure 1-1: FAIR Area at the GSI in Darmstadt [6]
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The planned extension consists of two high-energy superconducting synchrotrons, SIS100

and SIS300, built on top of each other in a subterranean tunnel, also consisting of five col-

lector, cooler, and storage rings and numerous new detectors serving five fields of physics

[6]. The first expansion stage, the SIS100 will deliver beams with energies up to 11A GeV

for Au, 14A GeV for Ca, and 29 GeV for Protons. The next expansion stage, planned to be

ready two years after initial operation, will deliver up to 35A GeV for Au and 89 GeV for

Protons [7]. The core physics planned for CBM will require the capabilities of SIS300.

The CBM [8] experiment investigates the highly compressed nuclear matter using nucleus-

nucleus collisions. This experiment will examine heavy-ion collisions in fixed target geom-

etry and will be able to measure hadrons, electrons and muons. Key observables are detec-

tion of open charm, phase-space distributions, flow of protons, pions, kaons, hyperons,

hadronic resonances, light vector mesons, charmonium, and heavy vector mesons. The

unique discovery potential of the CBM experiment is the investigation of a very promising

territory of the QCD phase diagram [7]. Detecting this set of particles requires fast, and

radiation-hard detector systems, which are positioned in dense arrangements and readout by

front-end electronics (FEE). In figure 1-2, the CBM detector system is depicted. The main

detectors are:

• Silicon Tracking System (STS)

• Ring Imaging Cherenkov Detector (RICH)

• Transition Radiation Detector (TRD)

• Muon Chamber/Absorber System (MUCH)

• Resistive Plate Chambers (RPC)

• Electromagnetic Calorimeter (ECAL)

• Projectile Spectator Detector (PSD)
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The FEE readout uses a self-triggered approach creating a continuous data stream. Thus, it

requires synchronization for time stamping and a high-speed data acquisition network. The

event selection observes up to 1000 charged particles for each collision at reaction rates of

up to 10 MHz. This event selection is based on full track reconstruction and is done after

event building in a processor farm.

The data acquisition (DAQ) network system is one of the challenging tasks of the ambitious

CBM experiment. There are several special demands on the DAQ System. Due to its self-

triggered approach, a data flow from the detector of up to several TB/s has to be handled.

Additionally, the support of different types of detectors, placement constraints and other

requirements for the DAQ network system lead to a set of features. These are required for

the CBM network such as flexible build-up variants, efficient data aggregation schemes

including link speedup, precise time synchronization, and dense interconnection solutions.

Figure 1-2: The CBM Detector System [5]
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A special mechanism is needed for synchronization of the detectors. Radiation tolerance has

to be provided by the frontend part of the network. The network protocol needs efficient

support of four communication types as clock distribution, time synchronization, control

messages, and data streams. The CBM network has to be capable of using fiber optics solu-

tions to overcome length restrictions and problems concerning different voltage levels at the

detectors. Due to limited budgeting, it is important to analyze and use commercial off-the-

shelf (COTS) parts, like Field Programmable Gate Arrays (FPGAs), and try to integrate

common solutions, for example, concerning control systems [9], [10]. Cost effective COTS

parts usually have better availability, which is an additional important argument for long

term experiments. Nevertheless, for most of the front-end detector parts special solutions,

within FEE ASICs or for optical interconnects, are required. FEE ASICs are not only

needed to readout detectors, but also for data aggregation and FEE controls. These ASICs

need to be radiation tolerant and should combine several detector read-out ASICs. The com-

munication protocol and the physical interface hardware within the network need to be

reusable and has to deliver a modular conception. This reusability in the network creates the

advantage of requiring no protocol conversion within the DAQ system.

1.4   Chapter outline

In chapter two, Design Space, different network topologies and implementation variants are

discussed. Additionally, a state of the art part presents an overview and a detailed analysis

of comparable research implementations and widely used synchronized communication

systems, mainly within the telecommunications industry. The third chapter, Development of

a Synchronous Network for CBM, describes the CBM data acquisition network structure

and development of the CBMnet protocol. Additionally, it focuses on the synchronization

mechanism used within CBMnet. Then in chapter four, Generic Modules for CBM Device

Development, the CBMnet generic modules concept, providing reusable built-in module

blocks for CBM network devices, is presented. Furthermore, it includes the example of a

first ASIC prototype implementing CBMnet and additional modules. The following chapter

five, The HUB CBMnet ASIC Development, a description of the HUB ASIC concepts focus-
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ing on traffic handling and synchronization mechanism is described. In addition, prototype

measurements, opto-converter development, and build-up scenarios are shown. Ideas for

transferring the innovative CBMnet mechanism used for synchronization into modern high

performance computing clusters are presented in chapter six, Networks based on DLM Syn-

chronization. Finally, chapter seven, Conclusion and Outlook, concludes research results

and achieved goals. It gives an outlook on future activities, especially in context of the

CBM experiment.



Chapter 2

This chapter analyzes the CBM DAQ network structure

and provides an overview of synchronization and readout

systems as state of the art examples. It includes general

widely used commercial solutions for computing clusters.

Additionally, specialized scientific solutions are shown,

which fulfill similar requirements as the CBM FAIR

project. It is elaborated, if these solutions can be reused or

if some consequences can be drawn for the CBM specific

developments. This is essential to be able to fulfill the high

requirements for CBM concerning topics like area, syn-

chronization, and bandwidth of the DAQ readout system.

11

Design Space
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2.1   Basic DAQ Structure and Abilities

Before a DAQ network structure can be designed and developed, the basic abilities required

have to be specified. These abilities together with the basic DAQ structure have to be care-

fully tended during selection and design of a DAQ network structure. Figure 2-1 delivers an

overview of the basic DAQ structure. It consists of a detector system acquiring analog mea-

surement and a directly attached, front-end-electronics device. This device is responsible

for control, for analog to digital conversion, and for data synchronization. Still contained in

a near detector region, these front-end electronic requires an aggregation and control stage.

A hierarchical DAQ network connects this stage to an area containing synchronization, con-

trol, data sink and processing, which is attached to the computing cluster. The basic abilities

for selecting an appropriate DAQ network structure are:

• Physically constraining

• Cost and Performance specifications

• Ease of use

• Reusability

• Scalability

• Reliability

Figure 2-1: DAQ Network Structure
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2.2   Network Topology

One of the first decisions to be made before starting creation of a DAQ network system is

about its interconnection network. For interconnection networks, it is crucial to choose the

right type of network and topology. This decision influences the maximum network perfor-

mance and affects the design space for the network protocol and all special hardware. 

In general, networks can be classified as shared-medium networks, direct networks, indirect

networks, and hybrid networks [11]. A DAQ network, which has thousands of end-point

devices such as the CBM network requiring a high constant bandwidth from all front-ends

obviously can not use shared-medium networks like buses. Analyzing the required commu-

nication traffic results in two different communication patterns. Data is only streamed from

front-end devices to the backend direction. Control and synchronization traffic is streamed

between a front-end device and a control node in an intermediate network region. There is

no pattern of communication, which benefits from a hybrid network. The only network

types left are direct and indirect networks, but they both do not fit perfectly onto this appli-

cation specific network. There are no external switching structures in the network and the

connections are more or less from the FEE direct to a control node or data sink. They are

only aggregated on their way between direct device connections. Though it is similar to a

direct network, it really is not a direct network considering the common definition.

In first order, the topology selection depends on traffic patterns of a network. There are two

patterns for communication in CBM, the data traffic and the synchronization/control traffic.

The typically known structure fulfilling this behavior is a tree. Figure 2-2 depicts this CBM

network tree structure. Due to data aggregation, within each stage starting at the front-end

bandwidth and link speed increases. This principle is important for meeting the physical

constraints of CBM, because it enables usage of dense interconnection solutions. In addi-

tion, reducing the number of links and a possible unified connection scheme helps to reduce

cost with regards to performance requirements. However, this concept needs almost identi-

cal logic for network communication in multiple devices. Therefore, it is necessary to focus
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on the ease of use and reusability during development. As long as there is space left, parallel

readout trees can be used to extend this network. This fulfills the scalability needs of the

system. The basic idea regarding reliability is to use as many standard components as possi-

ble in the readout system. Therefore, an analysis of widely used solutions was done. The

results are presented in the following paragraphs.

Figure 2-2: CBM Direct Tree Network Topology
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2.3   State of the Art

2.3.1   SONET / SDH

This subchapter is focused on presenting widely used telecommunication standards. Ana-

lyzing these standards is of interest for the specific networks focused, because they are

widely used and thereby cheap, reliable, flexible and modular concerning their network

structure, and they are well standardized. Recently, the various proprietary telecommunica-

tion networks used were substituted by new standards called [12] the Synchronous Optical

Network (SONET) defined by American National Standards Institute (ANSI) and the Syn-

chronous Digital Hierarchy (SDH) defined by the Comité Consultatif International Télé-

phonique et Télégraphique (CCITT today migrated into International Telecommunication

Union (ITU)). The differences between SONET and SDH are insignificant and they are

largely compatible. Thus, communication between them works reliably. The most interest-

ing benefit delivered by SONET/SDH is a multiplexing scheme that is efficient and sup-

ports high bandwidth optical communication. Additionally, it guarantees a certain level of

performance and is designed to be reliable. It supports services like voice telephony over

PSTN (Public Switched Telephone Networks), FDDI (Fiber Distributed Data Interface),

Fibre Channel, ATM (Asynchronous Transfer Mode), PPP (Point-to-Point Protocol), Ether-

net, and Gigabit Ethernet. SONET/SDH products are used all-around in the telecommunica-

tions industry. There are solutions supporting SONET/SDH as hard or soft intellectual

property (IP) blocks within FPGAs [13], which are widely used for telecommunication pur-

poses because of their flexibility. Additionally, various providers [14] offer multifunctional

chips delivering integrated CDR functionalities, framing, and other SONET/SDH features.

SONET/SDH is a synchronous transport layer protocol having a linear or ring topology. A

SONET/SDH network is structured in layers. The main layer structure consists of Paths

containing multiple Lines or Multiplex Section Layers (for SDH) being aggregations of Sec-

tions or Regenerator Sections (for SDH). A Path is defined as an end-to-end connection.

The Line layer combines Sections and is responsible for the synchronization network func-
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tions. A Section is a connection between two network elements. A Tandem Connection

Layer (TCM) was added later to this standard definition being between Line and Path layer.

A TCM adds some overhead to ease performance monitoring and allows the grouping of

signals on a logical level. Within these layers, fixed frames are transported and multiplexed

through the network. One frame period is 125µsec. Thus, 8000 frames are transported

within a second. The frame unit sizes were adapted to the given environment in North

America and Europe. Thereby they differ in their definition, but in general, they are kept

compatible. SONET uses Synchronous Transport Signal (STS) units as a frame definition.

Here, the smallest frame unit is a STS-1 frame, which is 810 bytes. SDH transports Syn-

chronous Transport Modules (STM). STMs have the triple size of STS frames, ergo 2430

bytes. To achieve higher bandwidth these basic elements are multiplexed into frames con-

taining multiple basic frames keeping the frame period identical. Thus, STM-1 is the coun-

terpart for a STS-3 frame. In table 2-1, the different defined frame formats are shown with

their associated data rates. A STS-1 frame [15] has 90 bytes wide columns and 9 byte high

rows. The first three columns of the frame are used for the Transport Overhead (TOH)

bytes consisting of a 3 by 3 bytes field for Section Overhead (SOH) and a 3 by 6 field for

Line Overhead (LOH). The remaining 87 columns are the STS Payload Envelope (SPE),

which contains the Path Overhead (POH) in the fourth column, while columns 30 and 59

are used as the fixed stuff columns. Thus, 84 x 9 bytes stay as raw data delivering a 93.33 %

(84/90) data utilization for the transport layer. STS-N frames are generated by multiplexing

the sub-frames providing an identical utilization. The multiplexing of three STS-1 frames

ELECTRICAL LEVEL OPTICAL LEVEL DATA RATE (MBPS) PAYLOAD RATE (MBPS) SDH EQUIVALENT

STS-1 OC-1 51.84 48.38 STM-0

STS-3 OC-3 155.52 149.76 STM-1

STS-12 OC-12 622.08 599.04 STM-4

STS-48 OC-48 2488.32 2396.16 STM-16

STS-192 OC-192 9953.28 9584.64 STM-64

STS-768 OC-768 39813.12 38486.02 STM-256

Table 2-1: Data Rate definitions for SONET/SDH



Design Space

18

into a STS-3 frame is depicted in figure 2-3. The TOH fields are merged into the first 9 col-

umns of this extended frame and SPE is now 261 bytes wide, delivering 3 x 84 byte-wide

column payload. Howerver, in the SPE some services can be transported directly or

included into the Virtual Tributary (VT). In case of SDH [16], the STM-1 is very similarly

defined as also having a 9 bytes TOH at the start of the frame, but with a 4th row reserved

for Administrative Unit (AU) pointers and the SPE here is called a container. A container

can either transport an AU or an AU Group (AUG), or Virtual Containers (VC). VCs con-

tain a Tributary Unit (TU) or a TU Group (TUG). Within the TUs, the different services are

transported. There are different time slots for sending AU and TU frames. The STM-1 not

Figure 2-3: SONET/SDH Framing STS-1 and STS-3 [16]
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only has a TU-3s mapping that is identical to the STS-3 structure, but also a TU-4 mapping

that has only the 10th column as a POH using the rest as payload. This delivers a utilization

of up to 96.29 % (260/270) for the transport layer. Like STS-N frames, STM-N frames are

generated by multiplexing sub frames.

Synchronizing network links provides many advantages over an asynchronous transmission

mode, especially when the line rate is the same at the sender and the receiver, so that the

transmission of packets does not need any bit stuffing or synchronizing fifos at the data

path. SDH/SONET uses such a scheme, where a high quality clock source is used as the fre-

quency normal for the packet transmission. Links are started with a reference from a local

clock oscillator and then after receiving a higher quality clock signal, they switch to the

line-derived timing. Using high quality VCXOs in each router or concentrator, this synchro-

nous transmission can be preserved. Table 2-2 shows the clock quality standards defined for

SONET. An atomic clock source is required to achieve a quality level of Stratum 1 or 2, but

for the others, a standard oscillator of high quality can be used. However, it is not always

possible to run systems fully synchronous when they become bigger. It leads to having

SONET islands, networks with asynchronous interfaces, connected by network elements

having to handle two clock domains. When sending for example DS1 streams, a telecom-

munication signaling scheme, over SONET, the communication among several islands may

cause slips. Here jitter and wander [17] become important, because their quality defines the

Clock Quality Standard Accuracy (in ppm)

Stratum 1 0,00001

Stratum 2 0,016

Stratum 3 4.6

Sonet Minimum Clock (SMC) 20

Table 2-2: SONET Clock Quality Standards
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number of slips. A wander budget of 10.1 microseconds is defined for the SONET network

element synchronization, which leads to national and local networks with less than an aver-

age of about 2.3 slips in 24 hours.

SONET/SDH is not a protocol, which should be used directly in a custom network to

deliver flexible and high performance communication. However, it shows useful working

principles that should be considered when defining a specific protocol. Analysis shows that

synchronous solution for running timing critical networks seems to be a good solution to

avoid special synchronization hardware and to eliminate the need for bit stuffing. The fixed

framing format does not present the most flexible way to balance network communication

and to consider specific user formats, but SONET/SDH provides an interesting scheme for

data aggregation and increasing data flow speed. This is important for generating compact

and efficient readout solutions.
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2.3.2   Common network timing protocols

The standard protocol used for basic synchronization within the internet, local area net-

works, and even cluster systems is the Network Time Protocol Version 4 (NTPv4) [18].

NTP is an Application Layer protocol based for example on TCP/IP over Ethernet. The goal

of NTP is to synchronize the Coordinated Universal Time (UTC) to all clients. UTC is not

considering time zones or specific changes like daylight saving times. Servers and clients

using NTP are synchronous within a few 10 microseconds. There are three operation modes

it provides, a primary server, a secondary server or a client mode. A primary server uses a

high quality clock source, usually a stratum 1 level clock, and delivers service for synchro-

nization. The secondary server may provide several up-stream and down-stream links. It

may not only provide synchronization for clients, but also for other secondary servers. Typ-

ically, the stratum level increases by one for each synchronization stage. Others are not

capable of inheriting synchronization from a client. There are three synchronization

schemes available within NTP: symmetric, client/server, and broadcast.

Three data types are defined to represent the time within NTP. The date format has 128 bits

that uses 64 bits to represent seconds and 64 bit fractions to resolve in 0.05 attoseconds (as).

64 bits in seconds represent 584 billion years. Thus, they are divided in a 32 bit era field,

starting at 0 hours 1 January 1900 UTC, and a timestamp field, counting 136 years. This

timestamp field is also present in the timestamp format together with a 32 bit fraction, unit-

izing in 232 picoseconds. This format is, for example, used within packet headers. The third

kind, the short format, has a seconds and fractions field reduced to 16 bit. It is used for

delay and dispersion headers. The local time precision depends on the local clock precision.

Quality of synchronization is influenced by jitter and wander. 

During each synchronization sequence, the measured data values for offset, delay, disper-

sion, and jitter are calculated. A standard NTP synchronization sequence for an on-wire

protocol delivering the measurement data is shown in figure 2-4 [19]. Therefore in different

points in time t, time values T are transferred. Starting with the measurement algorithm, a

client sends a time value T1, the send time t1, to a server where it is received at a time t2.



Design Space

22

The server then sends all the values back together with its new send time value T3. A client

can now calculate the required values for offset  and delay  by calculating the formulas

(i) and (ii) with the stored times. However, since it has the basic set of values, all the other

values can now be calculated.

(i)

(ii)

A set of samples of the quad-tuples (offset, delay, dispersion, and arrival time) is periodi-

cally stored. A clock filter algorithm analyzes them and calculates an ideal offset to disci-

pline the system clock.

The Precision Time Protocol (PTP) [20] is also placed in the application layer and is

designed for spatially localized systems achieving accuracy in the order of microseconds

down to sub-microseconds. The time base for PTP is International Atomic Time (TAI). TAI

is the average time derived from several hundred atomic clock sources. PTP is ideal for syn-

chronizing control systems and may be used in larger research experiments [21].

While NTP uses a clearly defined server/client scheme, within PTP a flexible master/slave

scheme is used. The PTP system has to fulfill some requirements like symmetric links and

non-cyclic path forwarding. For each link it is negotiated which side is to provide a clock as

Figure 2-4: NTP - Synchronization Sequence - On-Wire Protocol

 

 1
2
--- T2 T1–  T3 T4– + =

 T4 T1–  T3 T2– –=
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master and synchronizes with it as slave. Therefore, the best master clock (BMC) algorithm

calculates the clock qualities. The master clock delivering the system reference clock is

called the grandmaster clock. Thus, the protocol uses two phases. Phase one sets up the

master/slave hierarchy and phase two synchronizes the clocks. For PTP, it is specified how

to synchronize and syntonize different clocks. Clocks are syntonized, if they advance with

the same rate. Clock are synchronized, if they even share the same epoch and are capable to

sample values with a common tolerance.

The key for enhancing the synchronization quality for PTP is providing precise timestamps

by taking the times as direct as possible on the ingress and egress port, removing all variable

unnecessary elements out of the calculation. Therefore, it is not only defined to use the

application layer for message timestamp generation, but also to use the kernel level or even

direct hardware support to deliver precise time stamps. This scheme to focus on ingress and

egress ports also works for active PTP switches. Here, the switch is treated as full link end-

point being master or slave device.

Figure 2-5 depicts the PTP synchronization sequence. A master sends a Sync message to the

slave. This message may directly include send time value T1. If this is not the case, a

Follow_Up message is sent including T1. The slave stores the arrival time t2 together with

the master send time value T1. Then a Delay_Req is sent by the slave device and its send
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time value T3 is stored. The master calculates the Delay_Req receive time and sends it back

within a Delay_Resp message. Finally, the slave has all four values required for its calcula-

tions.

The standard timing protocols NTP and PTP deliver flexible solutions for application layer

synchronization protocols that are able to run on top of numerous physical implementations.

They are used to synchronize local times in computer networks, but the resolution is far too

low for synchronizing detector electronics. The achievable resolution depends strongly on

the hardware used and the fact that it is used mostly on the application layer increases flexi-

ble processing time and decreases accuracy. Nevertheless, for some specific detectors that

have low timing constraints supported by special hardware, this might be a possible solution

and the mechanisms used are worth keeping in mind when defining timing protocols.

Figure 2-5: PTP - Synchronization Sequence
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2.3.3   White Rabbit

The White Rabbit (WR) project [22] was started with the support of several research groups

and companies to enhance timing and control systems. The goal was to create a solution for

a reliable, fast, and deterministic transmission of control information. This solution should

be feasible for the needs of currently used and possibly tomorrows distributed network sys-

tems. WR mixes two standards: synchronous Ethernet and PTP. It is an open software and

open hardware project hosted on the open hardware repository [23]. With its hardware sup-

port and the precise measured fixed link delays, this protocol is able to achieve sub-nano-

second accuracy. One of the central new designed elements is the WR switch. It is a fully

compatible standard 802.1x switch, however it uses an extended feature set that is capable

of serving as a active clock distribution and a synchronization stage. The WR extension fea-

tures are only activated by passing a WR initialization sequence. The latest development

version of the switch is WRS-3/18. It is a standalone switch with 18 SFP connectors, which

is planned for availability at end of 2012.

Figure 2-6 depicts the extended synchronization sequence used to start-up WR [24] links. A

PTP master periodically sends modified announce messages. A WR device recognizes the

special suffix and uses the modified BMC algorithm to integrate into the network. Then the

slave sends a SLAVE_PRESENT notification. The master sends a LOCK message to indi-

cate the syntonization start for the slave hardware. When the slave syntonization is finished,

it answers with the LOCKED message. After receiving the LOCKED message, the master

then sends a CALIBRATE message to request calibration patterns. All fixed delays for trans-

mission and reception are calculated. As soon as these hardware mechanisms end, the mas-

ter sends the CALIBRATED message. Now, the slave can start the identical calibration for

its side. After this WR initialization is finished, a WR_MODE_ON message is sent by the

master to indicate its completion. Then the standard PTP sequences are performed. Thereby

WR master and slave have become syntonized and synchronized.
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The White Rabbit implementation is a hardware supported PTP implementation based on

Ethernet. One of its advantages is compatibility for Ethernet components, which decreases

all costs. Its synchronization and synthonization features are useful and it is able to establish

a synchronous network. However, mapping a well defined deterministic synchronization

tree onto it to achieve very low precision is not possible. The bandwidth abilities are

restricted to standard Ethernet speeds being reliable, but far away from high performance

systems. Thus, WR is not a readout system for very timing precise or data intense detector

systems, but it seems to be a low cost and easy to handle solution for most commonly used

systems and for standard detector instrumentation.

Figure 2-6: White Rabbit Synchronization Sequence
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2.3.4   Large Hadron Collider

The largest and most famous example for a research detector readout system is the Large

Hadron Collider (LHC) experiment at Conseil Européen pour la Recherche Nucléaire

(CERN), which is described in detail within design reports [25] and illustrated to the public

[26]. It is comparable to FAIR at least in its challenging complexity as well as in some parts

of the requirements. FAIR is a lot smaller versus LHC, as the largest accelerator in the

world with a circumference of more than 26 km. LHC produces, especially with its leading

experiments, huge amounts of data and frequent need for hardware updates. However, the

general problems and tasks are similar even knowing that LHC is not having that strict

placement, data aggregation, and timing constraints. LHC contains six different experiment

setups such as Alice, Atlas, CMS, LHCb, TOTEM, and LHCf. They are all organized by

international collaborations. All of these experiments need a specific developed control and

synchronization system to guarantee a sustainable data acquisition system, because standard

solutions do not fulfill their requirements.

The initial LHC setup implements a dedicated timing, trigger, and control (TTC) network

[27] to distribute the clock, broadcast trigger, and control information over unidirectional

fiber links. TTC has a slow and a fast timing system. The slow timing system delivers the

UTC time in a resolution of 1ms. UTC time is used for data tagging and post mortem appli-

cations. The fast timing system distributes its signals through all experiments and the beam

instrumentation of LHC. Their frequencies are synchronous with the circulating beam

around the standard clock frequency of about 40.07897 MHz and an orbit frequency of

about 11.2455 kHz

The TTC distribution topology is presented in figure 2-7. From the timing generators placed

at the SR4, all signals are sent encoded using one 9.5 km long phase-stabilised singlemode

fiber and standard TTC components to the Prevessin Control Room (PCR). PCR contains

high power transmitters supplying a fanout tree through 1:32 optical tree couplers to mani-

fold the orbit and clock signals. Via optical fibers from here, these signals are distributed to

all experiments, the instrumentation, and other areas. In an experiment area, the TTC
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machine interface crates (TTCmi) are responsible for further processing of signals and

spans the local experiment distribution trees. At the tree leaves a low noise of 160.316 MHz

VCXO in a PLL reduces RMS jitter of the 40.079 MHz clock to 7 ps and further distributes

the clock electrically. To compensate time-of-flight delays in the detector as well as skew in

the TTC network itself, programmable deskew taps with a minimum granularity of 100 ps

are used. Data packets are broadcast using a time-division-multiplexing arbitration. 

Due to higher beam luminosities for the planned LHC upgrade, all electronic components

are required to provide higher data rates and must be capable of sustaining high radiation

doses. Therefore, the GigaBit Transceiver (GBT) project [28] was started at Cern. This

Figure 2-7: LHC TTC Structure [27]
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project is planned to deliver a complete front-end electronics (FEE) readout solution includ-

ing electrical components of a radiation hard optical link enabling usage of a fast versatile

link attached to standard component devices in an Off-Detector region. Figure 2-8 shows

the GBT structure using the concept of a unified communication to transport a Timing &

Trigger, a DAQ, and a Slow Control channel over one optical link. The GBT protocol [29]

uses frames of 120 bits for communication at 40 MHz to reach the 4.8 Gb/s GBT link capa-

bility. The general framing structure includes four bits of header information and 32 Bit

Reed-Solomon forward error correction (FEC) coding resulting in 84/120 = 70 % payload.

The payload contains a four-bit slow control field and an 80 bit data field. It delivers a data

utilization of up to 80/120 = 66.67%. Scrambling is used onto the links. Thus, a link can

transport 3.2 Gb/s data. The TTC system uses a 16 bit field within the data for spanning a

timing tree. These 16 bits are directly used for broadcasting a parallel trigger to the FEE.

The GBT prototype custom ASICs [30] in 130nm technology are a transimpedance ampli-

fier (GBTIA), a laser Driver (GBLD), and a serial transceiver (GBTX).  They are capable of

operating at 4.8 Gb/s using a custom GBT-SERDES. The serializer, as depicted in figure

2-9, first uses three 40 bit shift registers filled by 120 bit input registers. These 40 bits are

then serialized by a factor of 40 before they are division multiplexed 3:1 into the 4.8 Gb/s

stream. Special within the deserializer is the usage of a clock data recovery (CDR). This

CDR uses a pre-calibrated VCO to assure that it can always be locked to the data. Front-end

devices are attached to the GBTX by using two 40 bit double-data-rate (DDR) buses as

input and output structure directly mapped into or from the 80 bit data field. The buses can

Figure 2-8: GBT Structure [30]
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be configured into e-links providing 40 links each with 80 Mb/s, 20 links delivering 160

Mb/s, or 10 links delivering 320 Mb/s data bandwidth. Due to TTC, a maximum of 16 FEE

devices can be attached to one GBT. Additionally to FEE devices, GBT-SCA devices can be

attached to an e-link. A GBT-SCA is used as interface to be compatible to standards like

JTAG or I2C. For easy integration into FEEs and other devices, an e-port macro is supplied.

Having a separate clock distribution is a disadvantage of the LHC solutions because of the

additional space required. However, the GBT project seems to be a very interesting solution

for challenging radiation requirements at a reasonable speed. It provides unified traffic over

one link and delivers fault tolerance. Additionally, the e-port modules, which provide the e-

link implementation in different technologies to other devices, show the interesting feature

of reusability. The connection among FEE devices and the GBT having DDR multiple lanes

of 80 MB bandwidth does not seem to be ideal for all applications. CBM needs more effi-

cient data rates per connection to FEE devices, less radiation tolerance, different synchroni-

zation mechanisms, and additional data aggregation capabilities to achieve significantly

Figure 2-9: GBT Serializer Block Diagram [30]
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more bandwidth and data rates within inner hierarchy levels. Especially concerning band-

width per area capability required within CBM, the ASICs have to concentrate on different

parts to increase read-out bandwidth per FEE device and bandwidth towards the back end.

2.3.5   The HADES DAQ

The High Acceptance Di-Electron Spectrometer (HADES) experiment and collaboration

[31] at the GSI in Darmstadt has developed their own DAQ system [32]. Figure 2-10

depicts the HADES DAQ structure. The two major components in the network are the Trig-

ger and Readout Board (TRB) and the Hub board. The TRB is a FPGA-based board deliver-

ing 128 TDC channels for attaching all timing relevant detector types, a DSP processor, a 2

Gbit/s optical link, and a CPU with attached Ethernet for slow control purposes. A Hub is a

FPGA board containing 20 different 2 Gb/s optical links, one of them used as a Gigabit

Ethernet connected to a computer. It is responsible for network interconnection, not only to

stream the data, but also to attach the central trigger system (CTS) and Slow Control. The

server farm and the control room are integrated using Gigabit Ethernet.

Figure 2-10: HADES DAQ Structure [32]
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TRB has a separate Ethernet Slow Control, but placement constraints require using only the

optical links for communication. Thus, the TRB Network (TrbNet) protocol was created.

TrbNet integrates monitoring, and slow control features as well as readout and trigger distri-

bution into a single network protocol. Only the clock distribution and synchronization is

done through a separate clock tree. In addition, TrbNet is optimized to transfer trigger

events with a latency of less than 5 µs through the hierarchy of the DAQ network. In order

to guarantee low latency, packet length is restricted and arbitration prioritizes the fixed

sized trigger packets. 

TrbNet transports packets of 80 bits protected by an 8 bit CRC. In addition, 8b/10b coding

is used within link level communication. A CRC check searches for erroneous data and an

automatic hardware retransmission is initialized if it is required by sending a request back to

the sender. One packet consists of a 16 bit header, a 64 bit payload for data or control, and

an 8 bit CRC. Thus, TrbNet delivers a data utilization of 64/88 = 73%, considering 8b/10b

coding up to 58% total utilization.

CTS is responsible for the trigger and readout process. Therefore, its trigger decision is first

propagated to the frond-ends by using a dedicated differential signaling. It arrives 500ns

after the event with less than 20 ps jitter and then the readout is started. Then a trigger

packet is sent to inform the front-ends about the type and all required information it has to

know to decide how to proceed with data processing. At the end of a trigger sequence, a

busy release packet is transported back to the CTS and then the next trigger process can be

performed.

All HADES DAQ system features are well-optimized concerning their density and trigger

performance. An advantage of the system is using unified traffic for communication of con-

trol, data, and some trigger information. The disadvantages, compared to CBM, are its use

of a separate clock distribution and trigger connections, and also its bandwidth is restricted

to Gigabit Ethernet and 2 Gb/s optical links. Nevertheless, it is an exemplary custom build

experiment readout system which shows solutions for all essential DAQ parts.
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2.4   Conclusion

All the presented solutions show interesting features and abilities, though unfortunately no

solution directly fits the requirements for CBM. While analyzing requirements and studying

the state of the art technologies, it becomes clear that the final required CBM network pro-

tocol and PHY implementation needs to be modular, support for easy data aggregation,

additional data transfer frequency acceleration features, synchronous network capabilities,

clock distribution from one single source, and a unified traffic including synchronization,

control, and data. Adapting these schemes for CBM detector read-out systems provides the

clock distribution, together with the packet transport, in a well-defined environment over

the same links. This reduces the amount of required lanes to a minimum. In addition to the

frequency lock of all detector endpoints (leaves) in the network, a precise phase alignment

and global time synchronization must be supported. Moreover, the detector electronics need

to be phase synchronous and the latency of the clocks to each leaf must be deterministic and

fixed during the measurement time. This completely synchronized system, with a bit-clock

precise deterministic behavior in a well-defined environment, compensates problems with

wander. All kown components have been analyzed and it is assured that, in respect to the

length and technology constraints together with possible temperature variations, the wander

remains within the tolerance budget. For example, calculating the time variation within the

used fiber having 50 m with a temperature difference of , the fiber refraction index

slightly changes and it results in a time variation of . The priority insertion of

the deterministic latency messages described in the following chapter 3,  Development of a

Synchronous Network for CBM, allows it to precisely time all endpoints and measure link

latencies with resolution on a bit clock accuracy level for the high speed SERDES of up to

200ps.

T 10=

t 1 6678ps=



Design Space

34



Chapter 3

This chapter gives an overview of the CBM DAQ structure

and describes the CBMnet link protocol developed and

used to interconnect devices within the CBM network. An

analysis of the requirements and features concerning this

protocol is presented. It provides high-speed SERDES

functions. Further different communication traffic classes

are supported. In addition, for purposes of synchronization,

deterministic latency communication over each link is

guaranteed. CBMnet delivers point-to-point interconnects

using single SERDES lanes and internal 16bit interfaces.

The features of this protocol are presented, such as system

calibration and fault tolerance. The specialty of CBMnet is

an innovative mechanism for synchronization, providing a

precise synchronization on a bit clock level. The protocol

is developed in the context of the CBM Experiment part of

FAIR located at GSI.
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3.1   The CBM Network Overview

Early analysis of the requirements and special demands of the CBM experiment Data

Acquisition (DAQ) System resulted in designing a hierarchically structured CBM network

[33]. This CBM network used a first version of the CBMnet generic link protocol [34] for

demonstrators and detector readout systems running unified over a single bidirectional fiber

link serving all functions and providing all different traffic classes. The unified links enable

compact and efficient readout structures helping to achieve the CBM network requirements.

When designing the CBMnet and a hierarchical readout structure for CBM, experiment

requirements such as limited space for hardware, radiation tolerance, potential separation,

flexibility for all different types of network traffic, support for various types of hardware,

and delivery of synchronization mechanisms were considered. In addition, for protocol

optimization, data flow behavior received special attention and the user-friendly modular

concept was implemented to assure usability within different devices. The experiment data

flow is unidirectional from detector front-end electronics towards a cluster farm at the back-

end. While control messages are mostly initiated at the backend or a dedicated control node

being exchanged in both directions. A precise clock and synchronization scheme provided

to front-end detector readout systems supports their self-triggered hardware design. The

CBM network guarantees a synchronous deterministic behavior during runtime, otherwise

they could lose their synchronization and correlation of captured data could be lost. All

administration packets are transmitted only on a link level. Thus, they are transparent to all

network users.

The hierarchically structured network used for the first demonstrator and as a basic concept

for test beam times is shown in figure 3-1. Within the readout system, different types of

detectors are directly connected to the Front-End Boards (FEB). In the first versions, they

were assembled with a varying amount of n-XYTER ASICs [35]. The n-XYTER chips are

self-triggered and data driven detector readout ASICs. A Readout Controller Board (ROC)

[36] located next to the FEBs is responsible for their initialization and control. Data mea-

sured by n-XYTERs is collected by a ROC and subsequently sent through the links of the
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network. Therefore, each ROC interfaces network links. For the first tests, Ethernet links

were used, but they were then exchanged by optical links using the CBMnet protocol to

reach all necessary bandwidth requirements and synchronization needs. In the next hierar-

chy level, Data Combiner Boards (DCB) are used to aggregate data from several ROCs and

deliver clock, synchronization, and control messages to the ROCs. As DCBs, a FPGA pro-

totyping board [37] is used. It delivers six Small Form-factor Pluggable (SFP) connectors to

attach several devices via an optical communication, a FPGA big enough to host a crossbar

and all required hardware structures for CBM, and extension connectors for special purpose

needs. Up to four ROCs can be connected to each DCB, while the other two SFP connec-

tions are used for either a separate clock and synchronization source and a data sink, or one

unified link. Active Buffer Boards (ABB) [38] are then used to interface PCs or DAQ cluster

farms. In addition, an ABB can serve as a clock and synchronization source. During the pro-

cessing of data, an ABB sorts it according to temporal and special information. Immediately

Figure 3-1: CBM DAQ Prototype Structures - Demonstrator I & Optional Extension
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after processing, it is written into specified local buffers. The Data Acquisition Backbone

Core (DABC) [39], [40] software framework is used as a general-purpose control and read-

out software for the DAQ. In addition, it serves as data flow engine in the DAQ backbone

[41].

These prototype structures were the platforms used to develop the CBMnet protocol [42].

The CBMnet features are presented within this chapter with all its demands on the network

and flexibility to support different CBM network readout hierarchies. In addition, prototype

structures were used to verify CBMnet functionalities like precise time synchronization

over a single unified bidirectional link [43]. The reliable, bit clock synchronous message-

based synchronization scheme has proven its functionality and is ideal for synchronous

counter reset in detector FEE. Towards the final experiment, protocol and DAQ network

structure have been refined [44]. A second CBMnet version especially with extension on

data reliability was created. Even if other groups have shown that there are techniques for

using FPGAs in radiation areas [45] to readout some of the detectors, there are still the most

demanding detectors requiring a large data bandwidth with early data aggregation and

higher link speeds, which require a radiation tolerant ASIC capable of these challenging

tasks. Additionally, the data preprocessing and sorting strategies changed. Therefore, a new

DAQ structure is planned to be used in the final setup. Figure 3-2 presents an overview of it,

designed by the project administrators.

The front-end near detector region now includes two variants to control and readout next

generation of specific readout ASICs required for the final experiment setup. One is an

improved readout of FEEs using FEBs directly attached to a new version of ROCs [46].

This new version uses an updated FPGA and can serve as ROC, DCB, or even ABB within

the next prototypes. It has been designed considering all these demands, in addition to the

features required for a final readout FPGA board. The other one used in higher radiation

areas requires an ASIC to fulfill the density and radiation constraints for some of the detec-

tor types. Both variants are closely coupled with opto converters for electrical optical con-

version to enable long distance communication. The subsequent CBM service building
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region contains planned data processing boards (DPB) and the experiment control system

(ECS) are placed. The DPB delivers the unified functions of a DCB providing data combin-

ing and preprocessing together with the detector control system (DCS) responsible for clock

distribution and synchronization. The ECS is used to provide the clock distribution and a

synchronization control network for the DPBs to enable all required features within the

CBM network. The ’Green Cube’ called region is the compute cluster area including a FLes

Interface Board (FLIB) to receive the data and store it in an appropriate way for a first level

event selector (FLES). The FLES is responsible for selection of interesting events and thus

supports the computing cluster concerning data processing. First FLES analyses have

already been done [47]. Additionally, some analysis concerning possible cluster structures

and high performance event building [48] has been performed.

In the following sections, the CBMnet and its features are described, while its device inte-

gration and the HUB ASIC required for the demanding detector readout systems are pre-

sented in the subsequent chapters.

Figure 3-2: CBM DAQ network structure overview [Walter F.J. Mueller, GSI, 2011]
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3.2   CBM Protocol Introduction

The CBM Network Protocol (CBMnet) works using point-to-point network connections.

Point-to-point connections were selected, because they are ideal for CBM. They enable an

efficient readout hierarchy and deliver the fastest possible connection between devices. The

network switching is done within intermediate devices and point-to-point connections are

usable for synchronization. In addition, a clean partitioning into communication layers

within the CBM network simplifies reusability and eases CBMnet integration. Therefore,

CBMnet modules implement the communication layer 2 (data link layer), layer 3 (network

layer), and parts of layer 4 (transport layer) within the layer definition of the Open System

Interconnect (OSI) Reference Model [49]. These CBMnet modules represent the generic

link protocol (GLP) implementation used in all hierarchy stages and on different hardware

platforms. It is always supplemented by a layer 1 (physical layer) implementation for the

used hardware. In its first version, the protocol worked without routing, because specific

communication is restricted and optimized to build-up a first test demonstrator. Therefore it

is certain, that data will only be sent from the detector into the data acquisition (DAQ) Sys-

tem to a specific receiver and control packets are only sent in the opposite direction to all

detectors. Routing information has been added later in the next layer, which is needed to

enable message forwarding into bigger networks and to use a selectable control-node, either

as DCS or as ECS. When the system is started, an automatic sophisticated link initialization

is performed. After initialization is done, the network can be used to send messages. In case

of a link failure, network links are automatically reinitialized. Initialization, packaging,

CRC checking, and handling of special network functions are done within the CBMnet

modules. Figure 3-3 shows a diagram of a network device, including the CBMnet modules

connected to the network via SERDES or MGTs and to a core module. This core module

represents custom modules different for all stages of the CBM network. All link ports in the

network are running with the same CBM link protocol logic, but depending on the function,

they may not use all parts of it. 
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In the following sections, the protocol structure including its functionality, the special char-

acters definition, and the packet format are described. Then the implementation of the

CBMnet, especially in a detail description for the main modules, such as the packet genera-

tor, link in, and link out is presented. Additionally, the definition of the optimized interface

for communication and synchronization with an external Core module is described.

3.3   CBM Protocol

3.3.1   Traffic classes

Four different services have to be delivered by the CBM network in order to enable func-

tionality of the FEEs. These services are a clock distribution, a control message channel, a

data message channel, and a synchronization mechanism. Of course, all these services can

be provided using different nets, but especially due to space and cost constraints, they must

be delivered through the use of one unified bidirectional link connection. Clock data recov-

ery (CDR) mechanisms are used to recover the clock out of a received data stream and sup-

ply the system. All other services could be handled using one message type. One way to

implement this is using fixed frames containing fixed fields for all of them. This is not use-

ful for CBM, because of its inflexibility and the waste of utilization. A second variant is

Figure 3-3: CBMnet Overview
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using one message type, which has to be processed afterwards to find the right service and

makes it difficult to use specific message features. Both of these solutions do not seem to be

efficient enough for CBM. The utilized solution is to use one message type for each service

and run all required services in parallel over the link. Here again different possibilities are

given, for example, fixed slots for each service or usage of virtual channels onto a link.

However, utilization and flexibility are the reasons for preferring a virtual channel solution.

Different traffic classes are provided in order to fit the requirements of the specific message

types in the Network. Each traffic class is assigned to one virtual channel to make these traf-

fic classes independent of each other. Moreover, the classes have different priorities to

access the physical link. The following traffic classes are supported:

• Deterministic Latency Messages (DLM)

• Data Transport Messages (DTM)

• Detector Control Messages (DCM)

The link layer has a special support built-in for time synchronization of large networks

using Deterministic Latency Messages (DLM). This type of message is well defined and

has a fixed length with packet size of only 16 bits. This smallest possible fixed processing

unit is ideal for synchronization. DLMs are more of a special control character than a mes-

sage, because they carry no real payload. Instead, they come in 16 special coded variants,

where one part consists of 8bit values that encode the function and a second set of 8 bit val-

ues to provide a couple of different DLMs. The coding assures fault tolerance at least

against one-bit errors by using a hamming distance. It is described in section 3.3.2. DLMs,

as their name may indicate, must always have a deterministic latency in the entire network.

Therefore, the most important feature provided by the network must be the priority request

insertion. A similar mechanism is part of the HyperTransport protocol [50], but not with the

intention of providing deterministic latency guarantees. The priority request insertion guar-

antees an insertion of DLMs at any given time with a fixed latency into the link even during

data or control packets are sent. This leads to the fact, that there is always a fixed amount of
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clock cycles for processing of DLMs in the link port. In addition, the network physical layer

has to provide a deterministic environment. This must not only be true for a single run, it

must be reproducible at any time a restart is initialized, so that the accumulated round trip

time for DLMs always produces an identical total number of clock cycles in the CBM net-

work. All these requirements assure that DLMs are an ideal vehicle for system synchroniza-

tion or time critical service purposes.

For the traffic class of Data Transport Messages (DTM), the most important ability is high

bandwidth for streaming the data. The variation in the amounts of generated data requires

supporting flexible packet sizes to keep the readout system efficient. These requirements

are reached by usage of an efficient data processing and an optimized packet structure. This

leads to a link utilization for data of about 91.428% (data / (data + CRC + SOP + EOP) =

64/70) leading to 73.142%, considering the 8b/10b coding on the network links. When an

additional routing scheme is used, described within section 3.8, raw data utilization reduces

to around 88.9% (71.1%). In the first version of the CBMnet protocol, it was debilitating to

correct errors in data packets, only detecting errors and marking erroneous packets was

required. This was realized with a CRC and a marking mechanism using special characters.

During the enhancements within the complete CBM system, it became a requirement to

guarantee reliability for data transmission. There are two mechanisms delivering the

required proportion of fault tolerance. One is the usage of a retransmission mechanism and

the other one is the implementation of a forward error correction (FEC) mechanism.

Because of the way CBMnet is designed, both mechanisms have to be used on the link

level. End-to-end approaches deliver too many disadvantages within the CBM network and

would thereby not fulfill all the requirements. In Table 3-1, pro and contra arguments for

both methods are depicted. The CBMnet consists of small messages, because a restricted

message length is necessary for network traffic balancing and for keeping internal buffer

sizes small. Thereby, additional buffer space required for retransmission will only slightly

extend the design size. Since the CBM experiment has a self-triggered approach, it does not

rely on latency and so latency is not of high importance for data capturing and transport.

Thus, higher latency for a retransmitted packet and runtime for FEC calculation is tolerable.
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A major requirement for the CBM network is optimized link utilization and thereby a

higher effective bandwidth for data streams. This is due to late event selection in a self-trig-

gered system, so the amount of data taken is higher as in other experiments. The FEC

reduces utilization by requiring some extra space for additional information to enable error

correction. Retransmission needs less information to detect errors, but it requires additional

administration for retransmission control. However, the administration packets are mostly

flowing into front-end detector direction on an almost empty link, which has no effect on

maximum data bandwidth. Thus, the error free data stream stays almost unaffected. The

general system assumption within the CBM network is that errors rarely occur. This gives

retransmission mechanisms a significant advantage over FEC. Additionally, CBMnet is

used within various hardware devices with different speed requirements and sizes. Thus,

additional complex logic to calculate FEC needs to be tuned for several implementations. In

addition, required logic has to be placed for each link. This leads to a lot of complex logic

placed on data aggregation and collection dies, which easily contain more than 48 CBMnet

module blocks. However, these arguments led to the decision to implement a link based

retransmission, because it fulfills all CBM network requirements. In case of retransmis-

PRO CONTRA

Retransmission - only some new logic

- normal data stream is 

unaffected

- needs more buffer space

- increased latency for retransmit

- additional flow control packets

into backward direction

FEC - corrected data stream arrives in

real-time

- significantly more logic

- higher latency during runtime

operation

- link utilization decreases

because of message overhead

Table 3-1:Retransmission vs. FEC
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sions, data sending restarts at the first erroneous packet and retransmits complete data

streams from this point in time. At the receiver side, all data is rejected until a retransmis-

sion arrives. Thereby, the in order message delivery from each sender is guaranteed.

Detector Control Messages (DCM) as third traffic class is responsible for reliable delivery

of control, monitor, and configuration messages. It required a fault tolerant design even in

the first demonstrators and test beam setups. Here, a retransmission mechanism was also

implemented. However, the first protocol version was resending only erroneous messages

after the detection of an error. Due to the final setup requirement of in order delivery for

control messages, this scheme was changed. The retransmission scheme used for the data

channel, resending everything after an error occurred, is used within CBMnet V2. There

may be some implementation stages supporting viewer credits for control messages than for

data messages, because of the smaller size and total amount of control messages used.

In addition to the traffic classes, service packets like acknowledgements or idles are sent

through the unified links. They are completely handled by link ports and are not visible to

core modules. Service packets are coded as special characters. Thus, they are minimum size

messages. The credit based flow control processing service packets is handled internally in

the link port modules.

3.3.2   Special character coding

Due to the usage of fiber and copper in the CBM network in order to connect different

devices, not only data coding, but also special character coding must be DC free. Therefore,

8b/10b coding [51] is used. There are various special characters required for framing as

message separation and their detection, such as administration packets for credit control for

DCMs and DTMs, also service characters for initialization and link handling including idle

notification, and DLM flagging as a special purpose feature. These characters must be easy

to capture, therefore allowing efficient message handling, switching, and aggregation. Thus,

they must be as small as possible, clearly defined, reliable, easy to decode, and must also

have a well-controlled running disparity.
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For general coding length, 16 bits are used for special characters. This is equal to the width

of processing hardware units and enables efficient hardware structures. The character cod-

ing enables multiple fault detection and a one-bit error correction for all special characters.

The mechanism used to provide these capabilities is the Hamming distance [52] in respect

to 8b/10b coding. Character combinations with ideal hamming distance were chosen [53]

and their coding is presented in Table 3-2. A one-bit error correction should be sufficient in

most of the cases, because single event upsets (SEU) are the most likely errors to occur.

Retransmission logic or higher control levels cover the handling of other errors.

There are framing characters, like start of packet (SOP) characters, for data messages and

start of slow control (SOSC), which are both in multiple versions for credit control and end

of packet (EOP) markers for both message types. Additionally, administration characters

are defined as acknowledgement (ACK), non-acknowledgement (NACK), and retransmis-

sion (RETRANS) for credit flow control. Service characters like INIT, ACK and IDLE are

responsible for link initialization. SLAVE characters assure unbalanced lane handling. In

addition, deterministic latency (DLM) characters are specified as autonomous traffic class.

Usage of all these characters is successively described in the following subchapters and

chapters.
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Name Upper Byte Lower Byte Name Upper Byte Lower Byte

SOP0 K 28.3 D 14.1 DLM9 K 27.7 D 3.1

SOP1 K 28.3 D 20.1 DLM10 K 27.7 D 11.2

SOP2 K 28.3 D 20.6 DLM11 K 27.7 D 17.2

SOP3 K 28.3 D 22.3 DLM12 K 27.7 D 25.3

SOSC0 K 28.3 D 28.2 DLM13 K 27.7 D 17.5

SOSC1 K 28.3 D 28.5 DLM14 K 27.7 D 3.6

SOSC2 K 28.3 D 6.2 DLM15 K 27.7 D 5.3

SOSC3 K 28.3 D 14.6 NACK0 K 28.7 D 10.3

ACK0 K 28.3 D 3.1 NACK1 K 28.7 D 14.1

ACK1 K 28.3 D 11.2 NACK2 K 28.7 D 20.1

ACK2 K 28.3 D 17.2 NACK3 K 28.7 D 20.6

ACK3 K 28.3 D 25.3 NACK00 K 28.7 D 22.3

ACK00 K 28.3 D 17.5 NACK01 K 28.7 D 28.2

ACK01 K 28.3 D 3.6 NACK02 K 28.7 D 28.5

ACK02 K 28.3 D 5.3 NACK03 K 28.7 D 6.2

ACK03 K 28.3 D 10.3 (EOP_ERR) K 28.7 D 3.1

DLM0 K 27.7 D 10.3 EOP_C K 28.7 D 11.2

DLM1 K 27.7 D 14.1 EOP K 28.7 D 17.2

DLM2 K 27.7 D 20.1 RETRANS K 28.7 D 17.5

DLM3 K 27.7 D 20.6 IDLE/SYNC K 28.7 D 3.6

DLM4 K 27.7 D 22.3 INIT K 28.7 D 5.3

DLM5 K 27.7 D 28.2 ACK (INIT) K 29.7 K 28.3

DLM6 K 27.7 D 28.5 SLAVE1 K 28.7 D 14.6

DLM7 K 27.7 D 6.2 SLAVE2 K 28.7 D 25.3

DLM8 K 27.7 D 14.6 SLAVE3 K 30.7 K 28.3

Table 3-2:CBM Link Protocol Characters using 8b/10b Coding



CBM Protocol

49

3.3.3   CBMnet Protocol Structure

A flexible framing has been defined as a packet structure fulfilling the CBM requirements

using different message sizes. It consists of start and end delimiters, the payload, optional

routing characters, and a CRC. The data packet structure is depicted in figure 3-4. As

shown, a data packet starts with a special character for start of packet (SOP). It is followed

by an optional routing character, which is defined as a 16 bit source address of the data.

Then, a data payload secured by a CRC is attached. The end of a packet is marked by an end

of packet character (EOP). The granularity used during processing is optimized for 16 bits,

exactly the size of special characters. Payload size is defined as a value between 8 and 64

bytes in multiples of 2 bytes, the 16 bit processing width.

The structure of control packets depicted in figure 3-5 is similar to the data packet structure.

It differs in special character usage. Instead of SOP and EOP as delimiters, SOSC and

EOP_C are used. In addition, the optional routing proposal is different. It consists of two

routing characters, the destination and the source address. This has the advantage that by

switching these characters, the generation of routing for answers is done.

The CBMnet modules responsible for processing network traffic are implemented within

the CBM link port. The CBM link port consists of four parts such as initialization control,

packet generator, link port in and link port out. The link initialization control module han-

dles for automatically setting up the connections and detection for link failures, with self-

Figure 3-4: Data Packet Structure

Figure 3-5: Control Packet Structure
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triggered integrated reconnect functionality. The next one is the packet generator module,

which is responsible for converting data from the CBMnet interface to packaged messages

and for unpacking data structures into the opposite direction. In addition, there is a link port

in and a link port out module responsible for providing all the previously described special

features for the different virtual channel and for controlling message transmission over the

CBM network. In a different project, an initialization control module has been developed

[54]. It is based on a standard initialization mechanism and its main part is an initialization

control finite state machine (FSM). This initialization control was adapted to the CBM

project needs and was used instead of rewriting it. The other three parts designed for CBM

are described in detail in the following subchapters.

3.4   CBMnet Modules

The CBMnet protocol consists of three internal module blocks such as packet generator,

LP_in and LP_out. Figure 3-6 presents an overview of the CBMnet module structure. As

depicted, the DLM handling is done in separated logic with direct access to the LP_in and

Figure 3-6: CBM Modules Overview
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LP_out modules. Even within these modules, there is a prioritized extra DLM processing

path. These terms are required to guarantee deterministic latency for DLMs. Between LP_in

and LP_out, administration information is exchanged. If flow control permits, data and con-

trol messages are processed and packed or unpacked by the CBMnet modules. The CBM

modules are described in the following sections.

3.4.1   Packet Generator

The packet generator is directly attached to the CBMnet interface. It is responsible for the

conversion of DTM and DCM streams into the link packets used in the CBM network. This

enables efficient message processing for following units. Because of its special perfor-

mance, DLMs are bypassing this unit. They are transferred directly to and from the link

innd link out port modules. Figure 3-7 presents the inner packet generator module structure.

Each path consists of a processing logic and a FSM to control this logic. In the send direc-

tion, its main task is to insert the special framing characters and packetize the data or control

streams transferred through the interface. Thereby, dummy placeholders are also inserted

Figure 3-7: CBM Packet Generator
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for the CRCs, which are calculated in a later stage and can then be exchanged at the right

position. Incoming control flags make sure, that messages do have the right type and pack-

aging information. For incoming messages, special characters and CRCs have to be

removed and control flags for the core module have to be generated. Therefore processing

logic blocks are also used, which are controlled by special FSMs. From this point on, it is

guaranteed in the network that all processed messages can not be interrupted. This means

when processing a message in either direction has been started, this message is always com-

pletely processed, even if a stop event occurs during that time. The hardware is built to

ensure this behavior.

In figure 3-8, the control logic FSMs that process control path messages are shown. The

send FSM depicted to the left, has a sequential flow of states building a message. As long as

there is no stop asserted, data from the CBMnet interface is accepted by the CBM packet

generator. It is internally delayed and processed in parallel to the FSM and controlled by

this FSM. For each special character and the CRC dummy insertion, a one-clock cycle stop

signal is asserted by the FSM for the CBMnet interface, because a wait is required to fill up

the control stream. This is done at the end of each message. A started message is never

interrupted and following modules have to take care that there is always enough buffer

space left to store complete maximum length messages. Because of input stream delay and

FSM behavior having three stop states, a message must have a length of at least four pro-

cessing units. 

Thus, a minimum message was defined with a granularity of 8 bytes, four times a 16 bit

processing width. Message building is controlled by the control send FSM, while the next

available credits are flagged by the link port out module to generate correct framing charac-

ters. The control receive FSM, shown at the left side of  figure 3-8, simply reacts on a stop

signal from the CBMnet interface to start and stop the message flow. It flags the payload as

valid, while the 16 bit stream is handed over to the CBMnet interface. The data path FSMs

work in an analogous manner.
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Figure 3-8: Packet Generator FSMs (control send FSM left, control receive FSM right)
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3.4.2   LP_in

The link port in (LP_in) module is depicted in figure 3-9. The decode module is its main

module. It decodes special characters to separate virtual channels and process all service

characters. Arrival of service characters is flagged to appropriate units to process them as

the link initialization or the link port out module for flow control. All these administration

characters stay transparent to users and are completely handled within the CBMnet mod-

ules. Within the LP_in module, data messages are streamed into a Data Receive Buffer and

control messages are received into a Control Receive Buffer. This is controlled by the sig-

naling of the decode unit. A CRC Checker module processes package payloads in parallel

and indicates its correctness to the decode module for further handling.

Additionally, directly attached to the input stream is a DLM Detect module. It works in par-

allel, detecting DLMs and forwarding them directly towards the CBMnet interface. Due to

the signalization of detected DLMs and a mechanism extracting them out of messages, they

are ignored by the decode module and so messages stay consistent.

Figure 3-9: CBM Link Inport
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3.4.3   LP_out

An overview of the link port out module is shown in figure 3-10. It contains a multiplexer

logic controlled by an arbiter, which inserts different virtual channel messages or service

packets into the link. The arbiter control works via a request grant mechanism to guarantee

correct packet insertion. Due to this special requirement for DLMs, the arbiter controls

DLM delay stages which allows priority request insertion for DLMs. Therefore, all message

channels have an optional path with a one-cycle delay. When a DLM appears, it is directly

inserted into the output stream and afterwards the delayed message stream is sent. Then, the

delay mechanism is reset, which causes a one-cycle pause in this channel. This mechanism

Figure 3-10: CBM Link Outport
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restricts DLM usage to one per message. Two CRC Generator modules are attached to the

data send buffer and control send buffer to exchange all placeholders for CRCs with new

ones calculated on demand. The send buffers contains the complete flow control with

retransmission functionality. All service packets such as link initialization character and

administrative special characters are generated and then inserted by a service module. It

receives the requests for character generation directly through flags either from the link port

in module or the initialization module.

In the send buffer modules, the flow control and retransmission handling for the channels is

done. It includes an administration unit, which keeps track of virtual credit status conditions

for all credits. Messages are sent in order from the buffers as long as there are more credits

available. Even if there are only four start characters used, a user-defined number of credits

are available. This becomes clear considering the fact that a reliable network is used and the

flow mechanism can reuse all four characters at any time. The assumption for the network

reliability is that one-bit errors are corrected and complete characters do not get lost. How-

ever, if this is the case, the link is down and a reinitialization is required. As start characters

for packets, four characters are used counting from for example SOP1 to SOP4, afterwards

it continues again from SOP1. The messages are acknowledged by the appropriate acks, for

example an ACK1 for SOP1 or an ACK01 for SOSC1. In case of an error a non-acknowl-

edgement, for example a NACK1 for SOP1 is sent. A NACK is sent if the CRC check fails

or an order inconsistency is given. Every following message until a retransmission, marked

with a RETRANS char, occurs sends the same NACK. The link administration unit in the

buffer module is responsible for freeing buffer space on ack appearance and initiating

retransmissions starting at erroneous messages. Additionally, there is a timeout imple-

mented for the retransmission mechanism in case of unforeseen errors.
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3.5   Interface

The Interface for using the CBM network protocol represents the communication layers

1 to 4. The CBMnet is identical in all communication devices in the CBM network hierar-

chy. The physical layer implementation is hardware dependent and delivers all required fea-

tures to transport the CBMnet. For optimization purposes, the CBMnet interface, as

depicted in figure 3-11, represents all three virtual input and output channels for the traffic

classes used as Deterministic Latency Message (DLM), Data Transfer Messages (DTM)

and Detector Control Messages (DCM).

Figure 3-11: CBM Link Interface
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The Interface synchronization for all three traffic classes is done with a common valid and

stop implementation. The flow control between the CBM protocol module and the user

logic module, a free definable user module for sending data streams, contains a start signal

and a end signal for forward flow control and a stop signal for reverse flow control. The

interface might be asynchronous and therefore could need a separate synchronization mech-

anism like a synchronizing FIFO between the source synchronous networks including the

CBMnet protocol modules.

The signal description for the CBM network interface is presented in Figure 3-11. The

link_active signal shows if the network is ready to send and receive data. When this signal is

set, the initialization sequence has been successfully completed and from this point in time,

it is possible to transport data through the network. The initialization sequence needs a

clock signal link_clk of the corresponding receiver link. It starts after a link clock is stable.

The source synchronous CBM protocol module runs with 125 MHz for usage of 2.5 Gbit/s

link and scales linear for higher frequencies. If user logic is not running with the recovered

receive clock delivered by the interface, the data and control messages must be synchro-

nized before insertion into send streams.

All three virtual input channels are presented internally as complete separate streams and an

arbitration mechanism assigns them onto the link. Due to its priority request insertion,

DLMs always have the highest priority if inserted. For the virtual channel of DLMs, there

are the signals dlm2send_va and a 4 bit wide dlm2send_type to show if there is a DLM,

which has to be sent and has to depict its number in binary coding. The receive path signals

for DLMs work analogously with the signals dlm_rec_va and dlm_rec_type. 

Data flow synchronization is performed with a variant of the valid-stop synchronization on

a granularity of packets. Information on general functionality and ideas of the valid-stop

synchronization mechanism can be found in [55]. For a send path all special characters are

inserted automatically in the CBM protocol module, for example start of packet (SOP),

CRC, and end of packet (EOP). This is the reason for using a variant of the pure valid-stop

synchronization mechanism for passing the 16 bit width data payload data2send or control
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payload ctrl2send through the interface. It is realized by using the data2send_stop and the

ctrl2send_stop signals as common stop signalizations and a flag data2send_start together

with a data2send_end respectively, and a ctrl2send_start together with a ctrl2send_end to

implement a more detailed valid signalization. These tags are required for optimal data

delivery at the interface and for a more time efficient and proper data processing in follow-

ing units. While the data2send_end and ctrl2send_end signals are exactly one clock cycle

active to indicate the end of a packet, the data2send_start and ctrl2send_start signals stay

active until the first data is accepted. If an error occurs within the CBM network, and a data

or control stream is erroneous, a retransmission mechanism is activated and the erroneous

stream is retransmitted exactly after the last received correct message. This is transparent to

the user and the interface will continue delivering messages after successful retransmission.

All received messages before the retransmission are discarded. This guarantees a correct

order of messages for each virtual channel. Because of the use of different virtual channels,

in case of a retransmission, all other channels stay unaffected. Thus, for data and control

streams it is guaranteed that they are always valid and free of errors when received through

the CBM interface. When a message is passed through the interface, as soon as the start flag

is asserted and there is no stop, it is guaranteed that the complete data message is accepted.

Thus, it must be delivered in a continuous stream until it ends. This must also be guaranteed

by the receive part of the user logic module. Internally there must be enough time for one

additional clock cycle before a packet to insert a SOP and two additional clock cycles after

the end of a packet to give the CBM protocol module a chance to insert a CRC and an EOP.

Therefore, after each packet there are three stop cycles, which are appropriately flagged to a

user send logic. The user logic module must take care that data packets and control packets

have at least 8 bytes and at most a 64 byte payload.

The signaling for data and control transfers at the receive path works analogously to the

send path. The valid-stop synchronization at the receive path uses data2rec_stop,

ctrl2rec_stop, data2rec_start, data2rec_end, ctrl2rec_start, and ctrl2rec_end to realize

flow control. Because only complete packets can be streamed through the network, the

data2rec_stop signal or the ctrl2rec_stop signal affect only following packets. Thus, it must
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be assured that enough puffer space is left in a user logic module for receiving the rest of an

already started packet, when a stop is performed. The next packet is always stalled in the

last puffer stage respectively the complete stream is stalled within the CBM Network.

A timing diagram of a data throughput example for a send stream at the interface is given in

figure 3-12. It shows the hand over of several data packets with the length of 64 bits to the

CBM Protocol Module. This example is simplified, because possible routing extensions are

ignored and due to identical interface signaling, the usage of larger packets is not presented.

All invalid data parts are marked gray in the data2send stream. When the link_ative signal

is set and the data2send_stop signal is inactive, a packet can be sent. To send a packet, the

valid signalization data2send_start has to be set to active. Then data can be sent over the

data2send bus. Each clock cycle 16 bit of new data are accepted. During the last 16 bit of a

packet, its end is indicated by setting the data2send_end signal one clock cycle to active.

The CBM protocol module then sets the data2send_stop signal to active for receiving time

slots to insert all required special characters for proper network communication.

The second packet of the example shows what happens, if the next packet is ready to be sent

before the CBM protocol module is able to accept it. The data2send_stop signal is asserted

and the next packet is available, indicated by the data2send_start in active state and the D0

16 bit value visible at the data2send bus. Then, the output of a user logic module remains in

this state. As soon as the data2send_stop is released, data can be delivered and at the next

Figure 3-12: Interface Example for Send
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clock cycle, packet processing starts and continues until a data2send_end appears. With this

method, it is possible that after a packet is completed, the next packet is already allowed to

be prepared to send without being bound to any restrictions.

An example for a data throughput at the receive path is presented in Figure 3-13. It shows

three received packets of minimum length. The start of a packet is indicated by a

data_rec_start pulse and the end of it by a data_rec_end pulse. Each packet produces one

NOP before and two NOPs after its delivery. This overhead is size independent and for the

maximum packet size of 64 byte, it results in less than nine percent overhead. This amount

of overhead is acceptable. During the second arriving packet within the example, a stop is

flagged. It is depicted that this flag has no effect on the currently processed packet. Only the

subsequent coming packets may be affected, if they occur.

In general, there are only complete packets streamed through the interface and the network.

It is not possible to interrupt a packet with a stop. If a stop is set as active during packet

streaming, it only affects the next packet when it is still active. Therefore, it is necessary

that all involved modules have at least enough buffer space left to accept a complete packet,

which could be a maximum size of 64 bytes with additional routing. The complete error

handling of the link is done by the CBM protocol module and is transparent to the user logic

module. Erroneous data or control messages are automatically retransmitted. CRCs are

automatically attached, detached, and checked. As long as there is no valid data available,

IDLE characters are inserted. IDLE characters and all network flow control or management

Figure 3-13: Interface Example for Receive
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characters are not visible at the interface. Therefore, a user logic module does not have to

care about the lowest layers of communication. Its only concern should be to deliver enough

data to utilize the bandwidth.

3.6   CBMnet Synchronization

3.6.1   Requirements

Following the main concept of the CBMnet protocol, all kinds of communication have to be

transported over unified links. Thus, a synchronization mechanism working through the

entire network must be derived by them. As a basis for providing synchronization, the

deterministic behavior of the network must be guaranteed. It must be precise enough for

experiment requirements. This leads to the need of having bit cycle accuracy. It does not

work directly with different clock oscillators, because over time even if they were only

slightly different they would drift apart. One way of solving this problem is to recalibrate

occasionally. Another way is that all clocks used within the network must be derived from a

master clock. The second variant is implemented. Therefore, the clock is propagated over

the links by recovering it out of the data stream. After clock recovery, jitter can be too high

at least for some parts of the system, especially for data acquisition or in particular for its

usage as reference clock for sending. Then jitter cleaning is necessary. This was already

successfully done in FPGAs for enabling MGTs/GTPs usage during beam time readout with

the CBMnet. A reliable deterministic behavior then delivers the platform for synchronizing

the CBM network using the special DLM messages.

3.6.2   Deterministic Latency Messages

DLMs are sent through the CBMnet from the synchronization source, the ECS, down to the

leaves, the detector front-end. They appear exactly at the right clock cycle in the front-ends,

for example to reset readout counter. This guarantees that the correlation of measurement

data taken by front-end detectors are kept. However, it requires special working principles
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to ensure its reliability. Special deterministic hardware had to be built or configured and its

most important ability, the priority request insertion, had to be implemented. This feature

makes sure that DLM characters are always inserted with highest priority onto a link. Not

only for standard arbitration, but also for direct insertion into data streams at any time, no

matter if there is a control or a data message currently in process. Implementing this feature,

of course, requires extra hardware and can result in a huge complexity. Therefore, it is

restricted to a maximum insertion of one DLM per packet. This value is clearly enough,

because the frequency of DLM usage for all algorithms is not very high. To ensure proper

behavior, only every 35 clock cycles a DLM can be inserted. Especially for FPGAs, deter-

ministic configuration mechanisms are necessary to assure that after a new initialization, the

deterministic latency is still provided.

In table 3-3, all DLMs with their functionality are listed. The DLM0 is used for the initial-

ization procedure. This DLM must be directly reflected with a known clock cycle value for

the reflection within devices. This enables the length measurement of all cables in the net-

work and delivers a basis for start-up calibrations. The DLM0 might be used during service

times within running experiments, however it is usually unused during actual data acquisi-

tion. After link calibration, the DLM2 is used for counter reset within the front-end by set-

ting a system rest value for the most significant global epoch counter part. Then, the arrival

of the first DLM1 typically resets the lower part of the counter. Normally, a global epoch

counter defines a time for collecting detector data in the order of microseconds. This global

counter has a most significant part, the epoch counter and a least significant part, the time-

stamp. After the system is once setup and the epochs are synchronized due to its determinis-

tic behavior, it should not lose its proper correlation. However, with every new epoch a

DLM1 may arrive at the front-end for checking that it is still in sync. The granularity for

sending DLM1 markers may differ among different systems and they might be skipped

when another DLM is sent due to minimum sending distance of DLMs, but they should

always arrive on wrap around of the counter. This event can cause a time-stamp reset when

the counter is out of sync. In this case, usually an error is flagged in a register file or it is

directly communicated to a control node. The control node, which is checking the status of
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front-end devices periodically, will then be responsible for further actions. The radiation

environment can of course lead to temporary failure of front-end chips or devices. In that

case, a device has to be restarted and resynchronized. Otherwise, more and more devices

could fail during a beam time and measured data would lose its value. Therefore, after link

reinitialization and a recalibration of the restarted device, an additional mechanism is

required. Its first step after a link reinitialization is to send a control message to the front-

end delivering the value of an epoch, in which the device should resynchronize, to a local

device register file. After this value has been stored, the DLM2 is sent to the device. It sets

the next epoch into the device epoch counter. Simultaneously, all error flags and counters

should be reset and if necessary, FIFOs should be cleared. This guarantees that the control

DLM Number 1.Char 2.Char Comment

DLM0 K 27.7 D 10.3 Initialization and Measurement

DLM1 K 27.7 D 14.1 Periodic time counter reset

DLM2 K 27.7 D 20.1 Set new counter value

DLM3 K 27.7 D 20.6 Reserved

DLM4 K 27.7 D 22.3 Reserved

DLM5 K 27.7 D 28.2 Reserved

DLM6 K 27.7 D 28.5 Reserved

DLM7 K 27.7 D 6.2 Reserved

DLM8 K 27.7 D 14.6 Start DAQ

DLM9 K 27.7 D 3.1 Stop DAQ

DLM10 K 27.7 D 11.2 Command List 0

DLM11 K 27.7 D 17.2 Command List 1

DLM12 K 27.7 D 25.3 Command List 2

DLM13 K 27.7 D 17.5 Command List 3

DLM14 K 27.7 D 3.6 Command List 4

DLM15 K 27.7 D 5.3 Command List 5

Table 3-3:DLM Coding and Functionality
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node can read all status information until a DLM2 is sent and afterwards the status registers

may capture future error conditions. Then the next coming DLM1 validates this new epoch

value as valid. The following data is then again in the right epoch and data collection can

continue. Future DLM1 markers which arrive occasionally, check on the synchronicity. A

mechanism to support data acquisition uses of a DLM8 as a Start Data taking command and

a DLM9 as a Stop Data command. This delivers the ability to start and stop the complete

system at a defined time. A variant for this feature is using specific group masks to enables

starting or stopping of data streams for defined groups within the CBM network. The

DLM3 - DLM7 are reserved for future use. The DLM10 - DLM15 are user defined DLMs.

They enable usage of specific user command lists to be started at front-ends. A command

list can be used to run a user defined sequence of commands to deliver features like initial-

ization, calibration, or to run service routines. Command lists can not only be hardcoded,

but also be filled with commands by sending DCMs to front-ends placing new commands

within a list. Thereby, this gives the user a powerful instrument to run tasks at specially

defined deterministic times.

3.6.3   DLM Synchronization Sequence Example

A complete initialization and synchronization sequence is presented in figure 3-14. It shows

different initialization and calibration phases, which must be successfully passed before

standard communication traffic can occur.

At the start of link initialization, a first phase low-level initialization is performed. It is

implemented in the SERDES parts of the PHY and assures that barrel shifter positions are

correct, received words are aligned, and communication is stable. Therefore, SERDES

modules use two different ready characters READY0 and READY1. While sending and

receiving READY0, barrel shifter adjustment and word alignment is done. Because of

deterministic latency, the barrel shifter position within all devices must be well controlled.

After successful alignment, each device sends READY1 char to signal its readiness. In case

both sides receive READY1 within a defined time, the low-level initialization is finished.

Otherwise, the sequence and calibration is restarted by sending READY0.
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Figure 3-14: DLM Initial Synchronization and Resynchronization Sequence
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In addition, an optional alignment mechanism for proper phase alignment within FEEs is

provided. This mechanism is required for front-end device connections not running CDR.

They are using data streams, which are sampled with the synchronous system clock, but not

a recovered one from its data. Thus, received communication streams must not be phase

aligned. The phase alignment is calibrated by sending an ALIGN_CHAR to the front-end

and receiving an ALIGN_DET detection signaling. It flags if the char was successfully

received or not. The algorithm runs through different delay tabs and remembers transitions

while detecting a stream. Then it configures the alignment to use the delay tab, which is in

the middle of a correct detection area. This guarantees a perfect detection within the signal

eye.

The next initialization phase is responsible for measuring link length and defining distances

of attached devices. Therefore, DLM0 messages are sent and become directly reflected by

the devices, which have to be synchronized. This is repeated three times and the correct

measured value is stored within the register file. In case of an error, the link is restarted. The

synchronization unit analyzes all front-end distances and calculates an ideal delay values

for each device. Then, the appropriate delays are set within all transmit modules. However,

after running this initialization sequence, it is assured that all devices have their word clock

and thereby, the DLM arriving within an identical link clock cycle. Finally, the PHY layer

initialization and calibration is done. CBMnet initialization, which runs a standard hand-

shake protocol, is performed and then the link is ready to be used and at the CBMnet inter-

face, the link_active signal is asserted.

Now actual synchronization can take effect. A DLM2 is sent to the FEE devices and they

set their epoch counters due to the current given value in the register file. Its default value

after an initialization is zero. In case of a reinitialization, a DCM is sent to a device before

the DLM2 sets a valid resynchronization epoch counter value for resynchronization. Then,

the periodic send DLM1, usually from an ECS, arrives and validates the new epoch. From

time to time, there are additional DLM1 messages sent within the communication streams

to check front-end synchronization. However, DLM8 and DLM9 can be used to start and
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stop data acquisition from the synchronized FEEs. For accessing only parts of the FEE

devices, the masking mechanism is suggested. Here a masking bit for each FEE device is

given in the register file. Via DCMs, the mask is set and only chosen FEEs are addressed by

an appropriate DLM. In the CBM network, the occurrence of errors is flagged in the FEE

register files and a DCS or ECS can decide whether to restart or recalibrate devices.

3.7   Jitter Cleaner Device

The system wide clock distribution over the links using CDR requires that recovered clocks

have an appropriate quality. This is required to assure that no bit slips appear in the commu-

nication chain, which would breach the deterministic latency. Additionally, the recovered

clock is used as reference clock for sending. FPGA transceivers have minimum jitter

requirements of less than 40 ps RMS jitter for their reference clocks. The recovered clock

jitter was between 80 - 100 ps RMS, so these requirements were not fulfilled for the recov-

ered clocks received in the used FPGAs. Thus, a jitter cleaner device had to be used, prefer-

ably with COTS parts, which cleans the clock and feeds it back into the FPGAs as a usable

reference clock for their transceivers.

Figure 3-15: Jitter Cleaner Device (top side left, bottom side right)
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Figure 3-15 shows the developed jitter cleaner board in its second version. It uses a

LMK3000 Family [56] device for cleaning a recovered clock and can be attached to a DCB

via a mezzanine connector. MMCX connectors are used for clock outputs. They are con-

nected to a MMCX input on the DCB supplying a reference clock to its MGTs. Performance

measurements with the first jitter cleaner board version are presented in figure 3-16. It

shows that using this device reaches a peak-to-peak jitter below 40 ps, which is required for

MGTs. A RMS jitter at least below 10 ps can be reached. This enables reliable communica-

tion. Additionally, the jitter cleaner board is assembled with an oscillator, so it can be used

as a clock source. A platform useful for clock testing, with several MMCX configured as

clock inputs and clock output and additionally direct onboard jitter cleaner integration, was

built [57]. This development was based on a student thesis [58] done in the context of a

research project with Altera [59]. Prototyping and measurements using this platform helped

in the understanding of possible solutions for clock distribution, onboard jitter cleaning, and

separate synchronization distribution. Furthermore, designing with an Altera FPGA was

beneficial, because comparing these experiences with the Xilinx [60] FPGAs, it became

clear that Altera devices could be an adequate substitution. Due to usage of Xilinx devices

Figure 3-16: Jitter Histogram of Cleaned Clock
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in various parts of CBM, it does not make sense to use a different FPGA. Nevertheless, the

experiences gained helped in supporting the design of the ROC3 FPGA as future FEE read-

out controller, with onboard usage of LMK3200 Family device.

3.8   CBMnet Routing

A routing scheme for the CBM network has requirements like minimality, efficiency, and

flexibility. Minimality is necessary for integration into numerous devices in the system,

especially within large crossbars. Data utilization is important for achieving high data rates.

Thus, efficient address coding, switching structure, and aggregation methods have to be

considered while developing a CBMnet routing scheme. The various different detectors

have their own readout structures and partitions. Therefore, flexibility is required to support

them. All different parts within the protocol definition are separated and modular imple-

mented. The processing width is 16 bits. Thus, an address can be either 16 bits or a multiple

of 16 bits. However, Table 3-4 compares these two approaches. Analyzing the utilization of

messages shows that for minimum message utilization for data is around 6 % better using

the 16 bit addressing scheme and for control about 8 % it is even about better. Regarding

maximum messages, difference is around 2.5 % for data and circa 4.5 % for control. These

numbers considered together with the facts of faster routing calculations and smaller hard-

ware seems to make 16 bit addressing superior to 32 bit addressing for the CBM network.

The handicap of partitioning into different detectors or setups with more than 32K devices

is of little significance, due to existing differences between detector types and the lack of

clarity for huge systems.

Thus, CBMnet uses 16 bit routing addresses. Routing addresses are inserted before each

payload. In case of data messages, only the FEE identifier is inserted to make sure that a

data source is known and available at the beginning of each payload for fast processing.

There is a fixed data sink for each data source and the FEE identifier delivers enough infor-

mation for a source path routing. Later, this FEE identifier can additionally be used to sort

data packets before it is removed. All control messages have two addresses, first a destina-
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tion address followed by a source address. DTM and DCM addresses are transported in dif-

ferent virtual channels. Thus, they use a different routing interpreter, which simplifies their

processing. 

It is useful to partition the address space and use special routing fields to enable routing

decisions based on parts to accelerate this process. Figure 3-17 presents the CBMnet

address space. It is divided into two regions, the Endpoint device space and other network

devices. Endpoint devices are partitioned into 1024 blocks of four device groups, contain-

ing up to eight endpoint devices. Other network devices are subdivided into intermediate

network devices close to a detector, and processing and control devices in the service

region.

PRO Contra

16 bit address • address processing in one 
word clock cycle after 
arrival

• utilization of packets

• efficient packet switching

• small hardware

• partitioning into differ-
ent detectors

• needs partioning within a 
detector at the root node for 
more than 32K detector 
ASICs

• restricted address space

32 bit address • freehanded partioning for 
all device types

• all detectors in the same 
address space

• larger table structures and 
hardware requirements

• management of experi-
ment address space

• a lot of unused address 
space

Table 3-4:Small vs. Large Addressing
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Figure 3-18 shows the unique address of a detector endpoint like a readout ASIC or a ROC

depending on the setup, called the Front-end Device Identifier. The Identifier has an address

space ID in the most significant bit. A zero within this field defines that this is an endpoint

address. The rest of the 15 address bits spans the FEE address space. Thus, up to = 32K

endpoint can be reached. A high ID field is used for routing in upper hierarchies. The device

group (DG) together with the low ID field is used to select attached endpoint devices. The

partitioning may differ among detectors. Therefore, an intermediate device can contain

either one, two, or four device groups, and DGs are used for selecting intermediate devices

or endpoint devices.

Figure 3-17: Address Space

Figure 3-18: Front-end Device Identifier
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The scheme of routing towards the endpoints is presented in figure 3-19. In some cases,

checking the address space ID is enough to find a routing decision, which eases processing.

If this is not the case, routing in intermediate hierarchies is done through using the high ID

address field for a setup with four virtual device groups aggregated in an intermediate

device. When less DGs are integrated into an intermediate device, the appropriate DG field

information has to be considered for routing. The final routing destination decision is then

done by checking the low ID field and so far unused DG field information.

Figure 3-20 shows the Node Addressing Identifier necessary to address all non-FEE

devices. A one in the address space ID field flags that a message is routed to non front-end

devices. It is possible to address a maximum of = 32K inner nodes. The intermediate

device ID marks if it is a detector area device or not. The devices directly attached to the

FEEs, for example HUB ASICs, are flagged with a zero in this field. Then, they are

addressed by using the network ID field, which is identical to the high ID part of its attached

endpoint devices plus the DG field. All other network nodes as ECS or DPBs are reached

Figure 3-19: Routing Scheme
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using a one as an intermediate device ID and may use a 14 bit address space. Routing in the

inner network part might use interval routing due to small number of connections and the

large size of a table based routing.

3.9   Measurements

Directly within the first test environments [61] using prototype boards and a first version of

the protocol, proof of concept for the CBMnet design and readout chain was done. There-

fore, reduced test setups were used connecting an ABB to two ROCs or connecting a single

chain ABB - DCB - ROC. The first tests were performed using test pattern generators creat-

ing random sized data and control packets with periodically included DLMs. This had the

advantage of generating enough data to fill up the links and perform testing under stressful

test conditions. These tests have been successful. Nevertheless, testing with a real detector

readout chain has an additional quality. Thus, further testing was done together with other

development groups [62] and integrated ROC and ABB user logic. In this setup, readout

and control functions were successfully tested. The optical links were configured to use 2.5

Gb/s, which is sufficient for test beam readout systems. Some evaluations have been done

using 5 Gb/s or 6.24 Gb/s and as soon as it becomes necessary, link bandwidth can be

adapted. The theoretical peak bandwidth utilization of the CBMnet V2 protocol is about

228.56 MB/s (73.142 % of 312.5 MB/s) of the maximum bandwidth of 250 MB/s with 8b/

10b coding for a 2.5Gb/s link. The test setup was using CBMnet V1 with slightly lower the-

oretical peak bandwidth and the DMA engine implemented in the ABB to transfer data

from the event buffer to the host node. Measurements for data bandwidth utilization

Figure 3-20: Node Addressing Identifier
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resulted in about 224.55 MB/s. In addition to bandwidth testing, the system synchronization

[43] was tested. The deterministic latency of links has been proven in several long time tests

of up to 168 hours without errors. At random times, a peak-to-peak clock jitter measure-

ment resulted in jitter below 40 ps. MGTs being sensitive to jitter did not lose their link

locks during these tests. The CBMnet approach guarantees synchronization accuracy

between two ROCs of one-bit clock cycle. This results for the used link speed of 2.5 GHz in

at least 400ps accuracy. This means that time difference between two different ROCs, con-

sidering jitter between clock source and ROC, is never greater. However, there has been no

loss of synchronization seen during the tests. The latest jitter measurement test of RMS jit-

ter presented in figure 3-21 shows a mean RMS jitter of around 4.77 ps. The noise in the

figure having a roundabout 3µs periodically peaks can be ignored. This is due to the

assumption is that this noise comes from the DC/DC converters. Furthermore, it does not

affect the transmission quality and it has not been measured in a similar setup, which is only

capable of lower clock rates. 

Figure 3-21: Jitter Measurement
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Figure 3-22 shows a hierarchical setup successfully used during several beam times and it is

used as prototyping platform [63]. It consists of up to eight ROCs, using blue fiber in the

figure, collecting data from different detectors, attached in groups of 4 to 2 DCBs. In some

setups, DCBs were used as DPB prototypes.  The DCBs are connected to an ABB responsi-

ble for clock distribution and system synchronization using DLMs.  Here, the ABB may

serve as an emulation platform for an ECS. Additionally, each DCB used an ABB as a data

sink. In this system, the DCBs aggregate the incoming data from ROCs and sends it to an

ABB plugged into a workstation that runs DABC software for data collection. Directly the

first beam setup using this hierarchical readout [64] ran problem-free. ECS emulation pro-

viding a control system using DCMs and clock distribution also worked reliably. All DTMs

coming from four data-streams were correctly merged into a single stream within the DCB.

No data transmission errors or data flow problems occurred. All epoch counters values were

reset synchronous and synchronization using DLMs showed no problems. 

CBMnet synchronization achieved one-bit clock synchronization and the concept of using

unified links providing DLMs for synchronization is proven as a working solution for

CBM. The existing prototype systems are a good basis for future development towards the

final readout chain.
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Figure 3-22: Beam Time Measurement Setup
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3.10   Conclusion

Analysis of CBM requirements and prototyping setups led to the decision to development a

new network protocol for the CBM DAQ. CBMnet combines three different traffic classes

onto the same unified network. In addition, an integrated clock distribution using CDR sup-

plemented the CBMnet concept. The CBMnet delivers all required network features and the

unified link saves cost and space.  It achieves one-bit clock cycle accuracy on link level for

the synchronization of devices. The modular concept guarantees usability within different

devices by enabling easy adaptions and updates. A summary of all CBMnet features is pre-

sented in the list below. CBMnet presents a working and scalable solution to readout self-

triggered front-ends.

• Communication over one optical link supporting Data Transport Messages (DTM), 
Detector Control Messages (DCM) and Deterministic Latency Messages (DLM)

• Early stage data aggregation 

• Optimized data utilization and efficient rate conversion

• Reusability assured by an easy to use interface and a modular structure

• User transparent link administration

• Fault tolerance using retransmission for DCMs and DTMs

• Different physical layer support

• Deterministic latency for bidirectional FPGA (Xilinx V4, V5, V6, S6) links

• Deterministic latency for unbalanced links

• System wide clock recovery and synchronization using DLMs

• Flexible high bandwidth front-end electronics attachment

• Network scalability

All FSMs within the design have been developed using an Electronic Design Automation

(EDA) FSM designer tool that was previously developed [65]. This tool became an open

source project [66] and has been successively supplemented with new features [67]. Due to

the good experiences [68] using this EDA tool, it is and will be highly used to design all

used FSMs.



Chapter 4

An overview of the generic module concept for CBMnet

devices is presented within this chapter. The goal is to sup-

ply users with generic code blocks that have efficient inter-

faces for easy integration. Therefore, it implements not

only the CBMnet protocol, but also adds several functional

blocks to create a generic built-in environment for users. It

shows solutions for FEE detector devices and FPGA solu-

tions. An advantage is gained by reusability of modules

and usage of preexisting tools to improve the design. By

using the generic built-in support blocks, it then becomes

easier to integrate CBMnet into new designs, shortens

design time, and reduces production risk.
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4.1   Generic Modules

4.1.1   Concept

The CBMnet protocol will be used within FPGA and ASIC devices in the CBM network.

The goal is to avoid protocol conversions in the readout chain, especially for the bandwidth

intense readouts. Therefore, various users are supplied with CBMnet modules to integrate

them into their designs. This integration is supported by the Computer Architecture Group

(CAG) and was done for different FPGAs in the first CBM project phase. The devices have

different tasks requiring special hardware or firmware, but there are always some module

blocks, which are identical among devices. Thus, there is a potential to share module

blocks. Furthermore, the concept of sharing modules avoids multiple implementations of

identical functions. This not only saves design time and additional effort, but also avoids

Figure 4-1: Generic Modules Diagram
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having different implementations of similar functions. It helps software reusing code bases

to control multiple kinds of readout hardware and delivers a homogeneous system. Thus,

the generic module concept was created with the goal to supply all users with a set of

generic modules, and not only the CBMnet. Figure 4-1 depicts the generic module concept

delivering CBMnet and SERDES/PHY implementations together with optional parts such

as test structures, configuration, and special purpose functions. Besides other advantages,

the most valuable one was to reduce design time for generic module users

4.1.2   Generic Modules

The main modules within the generic module concept are the CBMnet V2 modules. These

modules are responsible for all actions concerning the protocol as described in chapter 3,

Development of a Synchronous Network for CBM. They deliver three virtual channels for

communication and handle the link administration. Its link speed scales according to the

reference frequency. These CBMnet V2 modules were extended for the generic module

concept. Because of special usage for front-end devices, a master and slave concept was

created. It supports unbalanced links. This means there is one bidirectional link and up to

three additional unidirectional links. Thus, the data bandwidth for detector readout can be

increased. This can, for example, be used with one up-stream link with 500MB/s for the

current 180nm implementation and up to four down-stream links with 2Gb/s for endpoint

devices. A CBMnet V2 master is completely compatible with a CBMnet V2 standard

implementation, but it may support slave handling.

Besides CBMnet, there is one other essential module required for implementations using

CBMnet. This module is the SERDES module. The most important ability this module has

to guarantee is the deterministic latency over the link. This must be assured at any time,

even after a power cycle or a link reinitialization. There are currently two different kinds of

SERDES modules supported. One kind is based on FPGA SERDES modules [69]. Multi-

Gigabit Transceivers (MGTs) as well as GTP transceivers were used for Xilinx FPGAs. Dif-

ferent control logic parts of MGTs and GTPs have to be configured to guarantee a reproduc-

ible, deterministic latency. The basic configuration is derived from the MGT user guide
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[70]. The fabric interface had to be chosen with a width of 32 bits to guarantee the determin-

istic behavior at the interface. This is required because internal MGT width is 32 bits and

multiplexing must be avoided. In addition, the wrapper generated by the RocketIO Wizard

had to be modified to have access to the barrel shifter position signal RXLOSSOFSYNC of

the alignment block to read out deserialized data. A derived parallel clock generated by

clock data recovery (CDR) can lead to different barrel shifter positions. To obtain determin-

istic latency, the CDR can be reset for altering barrel shifter position of alignment until the

predefined value is reached. Right alignment will always be achieved after a number of

resets. Thus, this configuration method with a reproducible and deterministic latency is

achieved after link initialization, while the same bit file is used for all FPGAs.

The second kind of SERDES is the standard cell based SERDES. The first implementation

of this SERDES was done in the context of a research cooperation with the RWTH Aachen

[71], combining innovative analog and digital design blocks. Different hardware versions

have been successfully produced in a 65nm ASIC [72] and can therefore be labeled as ASIC

proven. This SERDES includes input and output delay adjustment and an automatic link

initialization. A second implementation has been done for the CBM SPADIC ASIC

described in Section 4.3. Here a design without delay cells was chosen. Thus, link delay

adjustment is completely done by the attached higher-level device. This SERDES is tested

and can be labeled as ASIC proven. However, there are currently two standard cell based

SERDES implementations available, one in a 65nm ASIC TSMC process and the other one

in an 180nm UMC.

Special resets are required for the SERDES and a word clock must be provided. Thus,

within the generic modules block, there are modules integrated which create reset signals

and generate the word clock out of the received bit clock and system reset. These modules

were extended to provide the complete set of clocks and resets to supply all ASIC blocks.

Furthermore, a synchronization pulse generator was added which provide these pulses for

the analog detector readout logic.
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A module kind required in multiple designs is a register file (RF). It contains a general part

and a user specific part. The general part is required in all devices. It includes the device

address and other general data. The user specific part contains configuration, status, and

error registers for a device. In addition, it must provide an external interface to attach either

sub register files or special building blocks within the analog design. As a special building

block, an analog shift chain support module is provided. However, similar RFs are used in

different devices. The idea was to generate them with a tool to reuse already designed parts

and take advantage of similar structures. An EDA tool to generate RFs was developed in a

PhD thesis at CAG [73]. It uses human readable XML code for fast defining registers and

structures. The XML is used for automatic generation of RFs. It uses a standardized access

interface and supports sub register files. Thus, this tool fulfills all the requirements and is

used to support the generic module concept.

A control decode unit was implemented to access the RF through the CBMnet protocol. In

addition, an I2C slave development was completed. This I2C slave module can be attached

to the RF. This widely used standard is assumed useful for most of the generic module

users. It is ideal for first tests and bring up. When the design is running, it will stay in

standby and can still be used for testing or service access. 

The modules provided until now as built-in blocks are listed below.

• CBMnet modules with Master/Slave support

• Deterministic MGT/GTP implementation

• ASIC proven standard cell based deterministic SERDES in 65nm and 180nm

• Clock, reset, and synchronization pulse generators

• Register File

• Shift register chain support for analog designed ASIC parts

• CTRL decode for CBMnet ctrl messages interacting with RF

• I2C support for RF access
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This appears to be a good starting set of generic modules and will enhance the CBM net-

work device development. The modules can easily be adapted and integrated into new

devices. The set will be further extended and multiple integration processes will be sup-

ported by the CAG.

4.2   FPGA modules

4.2.1   Common FPGA devices

Currently used common FPGA devices utilize MGT/GTP deterministic latency implementa-

tion attached to SFPs for fiber-based communication. The MGT/GTPs are connected to

CBMnet modules which unpack the messages and transfer them through the CBMnet inter-

face to user logic blocks. Some implementations use multiple MGTs in parallel supported

by multiplexing and transformation structures. Current firmware versions using the CBM-

net V2 and the special MGT/GTPs exhibit reliable and efficient communication abilities.

4.2.2   Data Combiner Board

The DCB is a special implementation, because it differs from other FPGA implementations

concerning CBMnet message handling. It is a passive device that routes messages to the

right receivers. Therefore, messages are not processed and unpacked by the complete CBM-

net module block. They stay in the message format and are streamed through the DCB. In

figure 4-2, the DCB structure is presented. It shows the five-port crossbar design. There is

an additional six-port crossbar design implemented that supports a separate back-end con-

nection for control and synchronization to enable an ECS. The figure shows the DCB input

on the left where the incoming messages are transferred from the SERDES/MGT modules

to CBM_lp_in modules. The CBM input modules have their own separated fifo structures.

Directly attached crossbars pull the messages out if the routing channel is free. There are

separated crossbars used for data and control to avoid deadlock situations. Due to link credit

handling, output CBM_lp_out modules are used together with replacer units. These units
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replace framing characters, which are assigned to credit numbers, with the next valid fol-

lowing framing character. DLMs are received from the back-end at CBM_lp_in_I4 and are

forwarded to the FEE out ports with deterministic latency. This is a special implementation,

but it is useful as a basis for future development of switching devices.

Figure 4-2: DCB Modules Block Diagram
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4.3   SPADIC as Prototype

4.3.1   SPADIC Overview

Within the scope of the CBM, a research group of the Chair of Circuit Design at the Univer-

sity of Heidelberg developed a self-triggered amplification and digitization chip [74]. It was

a candidate for different detectors to be used as readout ASICs. Tests worked fine and it was

chosen as the TRD readout ASIC. Then the Self-triggered Pulse Amplification and Digiti-

zation asIC (SPADIC) project [75] was started. A first SPADIC prototype [76] was devel-

oped in 2010. This SPADIC Version 0.3 was successfully tested in 2011. After these

successful tests, the next ASIC version SPADIC 1.0 [77] was designed and implemented

together with the Computer Architecture Group (CAG) for direct integration into the CBM-

net readout chain. This was necessary because of bandwidth requirements and the advan-

tages of a protocol conversion free setup for the final experiment. Its integration and tape

out is described in the following paragraphs.

4.3.2   Integration

As modules integrated into the SPADIC, a complete generic module block including as

main parts the RF, CBMnet, SERDES, and I2C were used. A structure diagram of the

SPADIC is presented in figure 4-3. 

The RF was designed using the RF generator tool. It includes configuration registers, status

registers, control registers, error registers, and a sub register interface. This sub register

interface is used to access a shift chain of the analog SPADIC part. Therefore, a specially

implemented module translates RF queries to the shift chain interface. There are two ways

to access the RF from outside of the ASIC. The first one is an I2C module working as a I2C

slave device to access the RF for bring up and first tests. The second access path is through

the CBMnet protocol. Here, a control decode unit interprets control messages and operates

the RF. In addition, it is responsible for generating control message answers. A simple mul-

tiplexer is sufficient to connect them to the RF.
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The LVDS links connected to the CBM network are analog designed blocks that are directly

attached to standard cell based SERDES modules with synchronization and link adjustment

features. These SERDES modules and low-level initialization are working in conjunction

with connected devices, e.g. a HUB ASIC, and assure physical communication, character

alignment, and clock alignment. This guarantees deterministic latency through the link. In

addition, within the SERDES modules, there is a clock generator and a synchronization

pulse generator implemented. The clock generator derives a word clock with 25 MHz and a

125MHz reference clock for the SPADIC analog blocks from an incoming 250 MHz system

clock. These clocks have a special relationship and start up sequence. The pulse generator is

Figure 4-3: SPADIC Structure Diagram
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required to generate various resets for the clock domains and special data synchronization

(dataSync), and analog digital converter synchronization (adcSync) pulses required for

proper reset and synchronization for the digital channels.

The CBMnet V2 module, which connects the SERDES with the RF and the analog SPADIC

part, is the main logic block within the generic modules block. It handles the CBMnet pro-

tocol. After protocol initialization, it provides two data channels for sending captured data,

a DLM interface for synchronization, and the control interface as the RF access path. A spe-

cialty of this block is the enabling of unbalanced communication. Therefore, a master slave

concept has been developed. In this concept, the master is responsible for the link adminis-

tration of slave channels. This means it decodes incoming ACKs and NACKs for a slave

channel and flags them to the slave module. Thus, the slave module requires less modules

and the number of incoming lanes can be reduced. This helps to overcome the space prob-

lems.

4.3.3   Tape-out

The SPADIC version 1.0 [77], the first detector ASIC in 180nm which implements the

CBMnet with a 2x interface has been produced. On the left picture in figure 4-4, the floor-

plan of the SPADIC V1.0 before the tape out is shown and the right picture shows a

received ASIC after this first tape out. This device will be used for the testing of integrated

generic modules, proving synchronization, testing detectors in beam times, analyzing ana-

log logic controlling detectors, and proving control mechanisms. However, the SPADIC

device has been tested in conjunction with a Virtex 5 FPGA board which shows correct link

initialization and working operations like RF access. There are newly developed readout

boards, FEBs and adapter boards available to attach the SPADIC to existing Spartan 6
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FPGA boards. This integrates the SPADIC into the CBMnet based, fast, optical beam time

readout chains. The first results seem very promising and within the beam times of the next

few years, the SPADIC and integrated CBMnet modules will show their potential.

Figure 4-4: SPADIC Tapeout (left) and ASIC (right) pictures
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4.4   STSXYTER concept

4.4.1   STSXYTER Overview

The front-end readout ASICs for the silicon strip detectors within the STS detector of CBM

will be built by a collaboration group of the AGH University of Science and Technology in

Krakow Poland. They are planning a time-over-threshold based readout chip. Their first

prototype TOT01 [78] has been produced in an 180µm CMOS process as mini@sic with

Europractice. After it was successfully tested, an improved version called the TOT02 [79]

was produced. The final STS readout ASIC will produce a high amount of data and needs to

be integrated into existing readout chains. Thus, the new version now called STSXYTER

will have an integrated CBMnet protocol and will use the generic module concept. This

ASIC can then use the standard readout chain within beam times and does not need a proto-

col conversion. Due to reusability of I2C, the control path, and the standard cell based SER-

DES this development will have enough readout bandwidth and can be tested in already

existing test environments. In addition, using the generic module concept will save develop-

ment time for the STSXYTER.

4.4.2   Integration

The STSXYTER integration concept, presented as a block diagram in figure 4-5 is similar

to the SPADIC. STSXYTER includes the same and now hardware proven built-in blocks as

I2C implementation, RF, CBMnet modules and standard cell based SERDES. There are

mainly three differences. The STSXYTER requires more bandwidth. Thus, instead of two

outgoing 500 Mb/s lanes, four lanes with a total bandwidth of 2 Gb/s are implemented.

These new lanes are automatically managed and administrated by the hardware modules of

the incoming data link. The delivered clocks for the STSXYTER differ. There is only the

250 MHz bit-clock and the 25 MHz word-clock required. The last difference is the analog

control interface directly attached to the RF. Here sub register files in the analog part are

used and connected via sub register file interfaces to the main RF. Due to the innovative
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modular concept most of the source code was reused. New blocks were simply attached to

the interfaces and thereby integrated into the design. Additionally, this reduces fabrication

risk, because of the well-tested hardware blocks.

The CBMnet generic modules are already prepared and development of the analog ASIC

part integrating it is ongoing. Concerning the LVDS cells, it is planned to use the same cells,

which are used in the SPADIC. As for the SPADIC integration and tape out, this will be

done in close cooperation between both development groups. After successful post place

and route simulations, tape out is planned for the last quarter of 2012.

Figure 4-5: STSXYTER Structure Diagram
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4.5   Conclusion

The generic module concept has been implemented and has shown its value to the CBM

project. The goals have been achieved through generating a set of modules to supply CBM-

net users. Besides delivering a synthesizable code base, it delivers complete simulation

environments with testbenches and automated tool flow support. The generic modules are

integrated into various supported FPGAs. Additionally, there are two FEE detector readout

ASICs with direct integration of generic modules. One of them will be used during beam

times at the end of 2012. It is assumable that additional groups will want to benefit from this

approach and will join the user community. In addition, this concept will be useful for the

HUB ASIC development described in chapter 5,  The HUB CBMnet ASIC Development. It

has shown that it saves design time and is useful in achieving the goals of the CBM net-

work.
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Chapter 5

This chapter describes the design analysis and required

functionality for the CBM HUB ASIC. It is responsible for

combining multiple front-end electronic detector ASICs

and transfers their messages to a data processing board.

Therefore, it contains CBMnet interface modules, a RF, a

crossbar structure, buffers, and two types of serializers and

deserializers. Clock distribution and synchronization are

special features within this ASIC, because synchronous

data detection for FEE detector ASICs must be assured.

Implementation of the HUB ASIC is discussed together

with corresponding tasks and challenges. In addition, a

concept concerning the opto-converter transforming high-

speed electrical signals of the HUB into optical signals for

long distance communication is presented.
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5.1   Toplevel Concepts and Design

The development and analysis of the hierarchical readout structures for the CBM network

[80] based on FPGA technology and successfully used in several beam times together with

requirements for the final experiment setup led to concepts for a HUB ASIC [81] to

improve the CBM network structure. This HUB ASIC needs to efficiently provide early

data aggregation, radiation tolerance features, clock distribution mechanisms, synchroniza-

tion capabilities, and reasonable link bandwidth. The overview regarding a portion of the

planned CBM data acquisition (DAQ) network structure, including the HUB ASIC, is

shown in figure 5-1. The hierarchical CBM network structure is typically divided into three

network regions.

A near detector region including front-end electronic (FEE) detector ASICs assembled onto

front-end electronic boards (FEB). These front-ends use HUB ASICs for read-out because

of bandwidth and link-speed requirements. Additionally, it is responsible for FEE initializa-

tion, control and data streaming, clock distribution, synchronization, FEE control, data

aggregation and link speedup. Especially for the TRD and STS detectors, the HUB ASIC is

required to enable the read-out, because they generate the highest amounts of data within

the CBM experiment. Current statistics show that for TRD readout, up to 30000 TRD detec-

tor ASICs are needed, each having 2x lanes connected to around 1800 HUB ASICs. The

STS requires readout for around 17000 detector ASICs connected to more than 2000 HUB

ASICs. These numbers show the importance of an efficient read-out ASIC that fulfills all

requirements. The HUB ASICs are closely coupled together with opto-converter boards for

an electrical optical conversion to enable long distance communication. Due to density and

radiation, the HUB implementation can not be done using FPGAs. The complexity of this

ASIC depends a lot on the amount of supported FEE devices. Because crossbar structures

become more and more complex and must thereby be hierarchical, thus especially timing

and area become critical. In addition, synchronization effort for front-end devices increases

in complexity and the start-up time of the network increases. Thus, the amount of FEE

devices supported for each HUB must be carefully considered.
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The middle region of the CBM network includes a service area represented by the planned

data processing boards (DPB) which presents the unified functions of the data combiner

board (DCB), providing data combining and preprocessing features with the detector con-

trol system (DCS) responsible for clock distribution and synchronization. An experiment

control system (ECS) is used to provide the clock distribution, synchronization, and net-

work control to enable all required features within the CBM network.

The third region is the compute cluster area including a FLES Interface Board (FLIB) to

receive the data and appropriately store it for a First Level Event Selector (FLES). The

FLES is responsible for the selection of interesting events and thus supports the computing

cluster concerning data processing.

Figure 5-1: CBM DAQ Structure with HUB
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In the following section, the planned usage of HUB ASICs will be described. It focuses on

its responsibility for bundling multiple FEBs with relatively low data rates together to sus-

tain higher bandwidth connections. This is done by supporting FEBs with an adaptive num-

ber of low data rate channels for sending its detector data. Due to technological constraints,

the FEE ASICs use a data rate of 500Mbits/s. Coming from the CBM network using fast,

unified, and balanced bidirectional communication links supporting clock data recovery

(CDR), for front-end communication, the possibility for unbalanced communication must

be provided with a separate connection for clock transmission to FEE detector ASICs. This

simplifies the FEE detector ASICs, because they do not have to implement CDR. Then, the

task of synchronization and clock distribution among FEBs is presented. The electrical to

optical conversion is done in a separate converter board using as many commercial off the

shelf (COTs) components as possible in order to reduce cost and guarantee availability.

Active optical cables (AOC) are another interesting variant for delivering high efficiency

and flexibility within this concept are also shown. Finally, flexible HUB ASICs build-up

structures supporting different types of detector systems are presented.

5.2   Hub ASIC

5.2.1   Interfaces

The interface of the Hub ASIC will consist of multiple 500 Mb/s electrical connections to

the FEE detector ASICs and a small number of 5 Gb/s optical connections into the back-end

direction. Depending on the technologies used, the speed of serial links may be increased up

to 7.5 Gb/s, which would reduce the number of fibers and link inports at the concentrator

and processing level (DPB). However, the 5 - 7.5 Gb/s link needs an electrical to optical

conversion, because of communication distance. This is done on a separate opto-converter

board. 
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At the FEE detector side, the challenge is supporting FEBs with the flexibility to choose

between an x1, x2 or x4 connection for detector data transport that provides enough band-

width for different kind of FEE ASICs. This is necessary, because FEE ASICs currently use

180nm technology that already works close to the edge concerning their clock frequency

per channel bandwidth. It can not increase any further. Due to the fact that there is only a

small amount of traffic streaming into the detector, multiple lanes can be used in an unbal-

anced setup for communication. This means only one control channel with an additional

clock lane to an FEE is required, while up to four lanes away from each front-end are possi-

ble. However, using balanced links, with their own clock lane or a CDR for each link with a

bidirectional implementation, consists of too many unnecessary lanes and increases logic

complexity within an ASIC. In case of multiple clock lanes, it is responsible for the syn-

chronization of multiple jittering clocks. Thus, only one clock lane is used as the master

clock. Using a separate link for the clock simplifies the FEE ASICs significantly, because

there is no CDR in FEEs necessary. Of course, this increases complexity for link control

and initialization within the HUB ASIC, but overall this proves to be less effort. Further-

more, a solution must be found for skew alignment among multiple lanes without any

embedded clock. Phase shifter at an input path or probably even on an output path of each

lane would be one solution. Such delay elements have been developed for TSMC’s 65nm

technology and have tested successfully. Nevertheless, always finding the right sampling

points while guaranteeing deterministic behavior at all times and among parallel lanes is a

challenging task. There need to be training patterns, automatic alignment mechanisms, and

non-trivial mechanisms to setup deterministic latency. Another task is to analyze the config-

ured links to find out if a static configuration is stable or if dynamic adjustments have to be

done. In addition, the behavior concerning temperature variations, radiation, and power sup-

ply changes have to be checked and a proper operation has to be assured.

In addition, an important design decision to be considered is the methode of splitting mes-

sages over different lanes, when the usage of multiple lanes is required to increase band-

width for FEE ASICs. The separation could be a 16-bitwise split over multiple lanes, or a

message based kind of separating lanes using them autonomously. Flow diagrams showing
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the difference between a split and a separated solution are depicted in figure 5-2. Figure (a)

shows the common 1x data flow having one message after another onto a single link. In the

following figure (b), a 2x split flow delivering each message on both lanes is presented. All

arriving messages do not have a 16 bit width anymore, as the per lane deserialization width.

For a 2x lane, they are now 32 bits and for a 4x lane, the width would even be 64 bits. Due

to an increased bit width, all protocol processing modules have to be rewritten to enable

processing of new data width in an efficient way. Below in figure (c), a separated solution

using a 2x connection depicts data flow handling of complete messages on each of the

lanes. Thus, increasing bandwidth using additional lanes leads to the parallel sending of

multiple messages. This multiplies the amount of used hardware modules in the receive

stage for message processing, but identical modules can be used. Furthermore, out of the

data flow perspective for a lane, it makes no difference whether it is within a 1x, 2x, or 4x

lane bundle.

Figure 5-2: Spilt and Separated Data Flow
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The support for 1x, 2x, and 4x would lead to three different kinds of input structures. In

addition, the link initialization sequence must be enhanced to support multiple lanes in a

split mode. A block diagram showing a data flow structure example for a separated solution

within the HUB is shown in figure 5-3. It presents the structure for processing data and

needs only two different clock domains using the same data width. This configuration type

referring to a first assumption shows flexibility for free assignment of frontend devices

using different lane counts. The required rate conversion increasing the frequency can be

handled in the crossbar part. 

On the other hand, split data flow requires completely different input structures for support-

ing all the possible input configurations. This leads to three input levels with different pro-

cessing modules with different processing widths. Either within the next HUB part, a direct

rate conversion is required or different crossbars have to be used to merge data streams. The

direct rate conversion would lead to one additional module for each non 1x link. Additional

changes in the arbiter to guarantee a fair arbitration are required. Thus, it needs some addi-

tional hardware and it is not a clean implementation. The most likely alternative using dif-

ferent crossbars and merging them afterwards is shown in figure 5-4. This solution is a

clean straightforward solution, but requires three crossbars. The incoming data channels

Figure 5-3: Separated Data Flow HUB Structure
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with different data widths are marked in green for 1x, red for 2x, and blue for 4x. There is

still a lot more hardware required, but there are only three rate conversion modules, one for

each crossbar. A problem here is fair arbitration between different speeds. 

Table 5-1 compares pros and cons between both possible ways of implementation. The

working assumption emerging out of the arguments is that supporting the separated mes-

sage based methode results in the only feasible implementation, because of the enormous

additional complexity and the high risk of optimization problems will lead to significantly

more development effort. This leads to multiple lane connections being completely separate

link connects. Then epoch markers must be sent on all lanes, because message order can

only be guaranteed for separate lanes. Due to the very high complexity of a free configura-

tion between 1x, 2x, and 4x links to FEBs, the additional required logic for implementing

links sending each message on all four lanes of a 4x link seems to demand a lot more effort.

Figure 5-4: Split Data Flow HUB Structure
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The other interface connecting DPBs consists of balanced bidirectional 5 Gb/s or 7.5 Gb/s

links. The difficulty here is that fast serializers are required which include CDR and have to

be radiation tolerant. The recovered clock has to be good enough to be used for sending and

processing communication streams, because the complete system runs with deterministic

latency which enables synchronization over common links. This deterministic latency is not

only required during runtime, it must also be given over power cycles. The recovered clock

must have a good enough jitter to be used for further clock distributing and it must be usable

PRO CONTRA

Split - Only one wide interface required - Extra training pattern required
- Complex lane synchronization
concerning deterministic latency
message detection 
- Needs three different receive
structures
- Two extra clock domains
- Crossbar structure becomes
hierarchical and needs two more
clock domain crossings
- Increased crossbar complexity
will lead to optimization and
speed problems
- Two different clock domains for
TX and RX on FEE side

=> Configuration options must be
restricted

Separated - Standard initialization for CBMnet
V2.0 usable
- Only one receive structure type
required (replicated structures)
- Efficient crossbar structure within
HUB possible
- High flexibility for user defined
front-end configurations
- Hub chip stays with two
clock domains

- Epoch markers have to be sent
on all lanes
- Possible additional overhead in
case of bad utilization
- Requires the handling of up to
four message interfaces within
FEE ASICs

Table 5-1: Split over Multiple Lanes vs. Separated Messages
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as send reference clock for all sending structures. Otherwise, a cleaner device like the one

used in the demonstrator I with DCBs has to be considered. The CBM protocol V2.0 will be

used for both interfaces. The separated clock to the FEE does not affect the usage of the

CBM protocol at all. Figure 5-5 shows the structure of a HUB ASIC having up to 4x lanes

per link from the FEE detector devices, using only one clock and one control lane towards

them. This configuration delivers sufficient bandwidth to the FEE of 500 Mb/s for control

messages and a variable bandwidth for the FEE data between 0.5 Gb/s and 2 Gb/s, support-

ing different bandwidth requirements for the FEE ASICs.

Figure 5-5: Hub ASIC Interfaces
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5.2.2   Integration of CBM Protocol Modules

A toplevel block diagram of the HUB ASIC is presented in figure 5-6. Its structure shows

three different logical blocks representing different possible clock domains. The front-end

device interface includes 500Mb/s serializers/deserializers, logic blocks for initialization

and bundling, a clock distribution mechanism, a synchronization and delay adjustment

mechanism, and CBMnet protocol modules. The DPB interface block requires radiation tol-

erant high-speed serializers/deserializers, an integrated CDR, and CBMnet link modules.

Figure 5-6: HUB ASIC Structure
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The inner module consists of a hierarchical crossbar structure supporting different output

link speeds, including synchronization FIFOs arbitrating communication between front-end

devices and the DPB stage. The internal width for data and control streams should be 16

bits, as defined in the standard for the protocol. This results in a moderate internal clock

speed of 250MHz at 5Gb/s or 375MHz at 7.5Gb/s. The crossbar design runs at the same fre-

quency as the DPB interface generating enough utilization for faster links and ease synchro-

nization at this point. The optimal design would use one clock domain for the complete

chip, but due to the reduced speed for the front-end devices, this does not seem achievable

Analyzing the crossbar structure for the HUB ASIC in more detail leads to some basic

requirements as a separate path for DLMs in order to guarantee determinism and priority

request insertion. In addition, the fact that virtual channels for data and control can not be

handled within one crossbar because of deadlocks and starvation has to be considered.

Additionally, the different types of traffic have to be analyzed. Data is only sent towards

backend stages. This eases crossbar requirements for data messages. Control messages

come from arbitrary points within the network like a DCS or an ECS. These control nodes

are permanently fixed nodes during runtime. Thus, a control crossbar must support mes-

sages in all directions. Fault tolerance features are necessary to guarantee permanent usabil-

ity for a HUB ASIC design. There are different implementation variants for the crossbar

message flow of data and control traffic classes connecting multiple slower FEE device

links with faster 4x links. Figure 5-7 shows the most interesting ones. The first implementa-

tion, (a) direct mapping, merges 8 to 10 FEE links into one link towards the DPB. This vari-

ant has the advantage of being a compact modular design, which could be replicated in

parallel within an ASIC to save design time. In this case it is clearly defined how each FEE

link is statically connected, which might help handling data in the following processing

stages. Nevertheless, there is no fault tolerance included in this system and a link failure

leads to losing a complete read-out tree. Additionally, for control traffic connecting a DCS

or an ECS it is less than optimal, because all control messages need to be routed on fixed

lanes over the right DPB links. Thus, there is a lot of overhead and inflexibility in the fol-

lowing stages. The second variant, (b) partially connected, considers fault tolerance by add-
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ing a crossbar structure. A DPB link failure would reduce bandwidth, but would not lead to

losing a complete read-out tree of detector ASICs. It still does not solve the problem of con-

trol flexibility. The last implementation type (c) delivers a full connectivity. Ideal for control

flow, because no matter where a control message comes from, it can just be routed every-

where using its address. In addition, data message flow shows an interesting feature, with

the possibility of balancing the data flow over all outgoing links. This could lead to a still

sufficient data capturing in case of link failure and non-full utilization of all basic links.

This approach seems promising and needs further analysis to achieve an optimal solution

which considers similar implementations like Clos [82], Benes, and Banyan [83] switch

networks. Due to high complexity, using one huge crossbar for the design seems to be out of

the question. Upon analysis, using a multi-hierarchical crossbar seems to be a good deci-

Figure 5-7: XBar Structures
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sion. Only for control messages, a full connectivity is required, so further analysis during

implementation may lead to different crossbar variants used for the control and data traffic

classes.

Figure 5-8 shows a block diagram depicting the data flow structures of the HUB ASIC. It

presents one of the possible arrangements for FEE links and back-end connections. Even if

the HUB receives and transmits unified traffic streams, internally they need to be handled

separately. Of course, it would be easier to aggregate unified streams, but then deadlocks

could occur and synchronization over the CBMnet would not be possible. DLMs need a

separate deterministic path between the two deterministic link regions. Especially for the

special synchronization mechanism used to adjust front-end device links and insert DLMs

at the right time to guarantee detector device synchronism. The data and control traffic

classes processed by crossbar structures need to be virtually separated at the crossbar stage

or else two disjoint crossbars have to be used. Thereby it is assured that a data message can

not block a control message or vice versa. The crossbar implementation needs to fulfill spe-

cial requirements. There are many front-end links attached to the HUB ASIC. They require

fair arbitration, because in case of a throttling effect on the back-end link, starvation of

detector endpoints is not tolerable. Directly attached to the crossbar, synchronizing FIFOs

need to assure that only complete messages received from the front-end are processed,

because of the different clock speeds. In case of a back-end link failure, the crossbar must

be able to reroute the messages. Thus, the required fault tolerance is achieved. There are a

lot more issues which have to be handled. In other projects concepts for efficient data pro-

cessing within crossbars [84] and a special networks-on-chip framework HTAX [85] have

been developed. These concepts and all requirements on the final structure must be further

analyzed and an efficient CBM crossbar solution must be found during the HUB ASIC

implementation. This is important, because a significant part of the HUB ASIC perfor-

mance depends on the crossbar structure used.
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5.2.3   Dimensions and Partitioning

One design option of the HUB ASIC is to implement 12 high-speed SERDES per chip. This

would match directly with a high-density AOC cable, which carries 12 lanes into each

direction. It could be adapted to the needs of CBM by using x12 lanes downstream and only

1 lane upstream. It will be analyzed if this is necessary to reduce costs or if symmetrical

AOCs can be used without significant cost increase. 12 SERDES can support 12x 5Gb/s

which results in 12 x 2 x 4 x (4+2) (4 channel to FEEs or FEBs per lane, all together 96

channels per chip) differential LVDS pairs with 576 pins. Depending on the configuration,

some of the LVDS lanes stay unused in the later setup, but the HUB ASIC requires the full

setup flexibility. A 12x SERDES requires 135 pins, and control and test at least around 20

Figure 5-8: Block Diagram of HUB Structures with Traffic Flows
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pins each. The estimation for the additional power pins needed is 240. All together, this

results in 971 pins for a 5Gb/s 65nm implementation. Analyzing this pin amount leads to

the fact that the ASIC will be pin limited. The package will be a BGA with flip chip attach-

ment of the die. Flip-chipping is required due to the high frequency signals of the SERDES.

The 971 pins require a 31x32 bump array. Assuming an 180µm pitch, chip size is 5580µm x

5760µm = 32.14 .

Due to the high density of 96 connected FEE/FEB channels and the calculated chip size, it

makes sense to split the 12x SERDES into three parts. This size delivers more flexibility for

build-ups and a better yield due to smaller ASIC size. SERDES IP is typically partitioned

into 4x blocks anyways. This results in a HUB ASIC implementation having 32 channels

connected to one x4 SERDES using 361 pins/bumps (19x19). Up to three chips will then be

connected to one 12x AOC. Figure 5-9 shows a true to scale picture of this 65nm HUB

ASIC including a 4x SERDES, a realistic amount of SRAMs, and LVDS IOs.

However, assuming that the proposed chip size provides enough pins for a 32 link to 4x

conversion, it is ideal for current production possibilities, and a 4x lane fits to the read-out

concept. Further analysis can be done to find other solutions under these basic conditions.

Thus, a different variant for an HUB ASIC Type2 could be the use of 20 times 2x connec-

Figure 5-9: HUB ASIC 65nm version (3420 x 3420um)
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tions instead of 32 times a 1x. This requires only 80 differential LVDS pairs (20 x {clk,

data_out, data_in0, data_in1}) instead of 96 (32 x {clk, data_in, data_out}). It provides the

same flexibility for 4x and 2x connections, but for each 1x connection one data_in LVDS

remains unused and only 20 1x connects are possible. It also restricts the flexibility of

attachment permutations. Nevertheless, more 2x or 4x connects are accessible, which

increases the maximum bandwidth from detector chips. It leads to a utilization of the back-

end links of up to 100% concerning the FEE data. However in the previous proposal, leav-

ing some additional space in the back-end links had a purpose. There was space left for

hardware fault tolerance and for retransmission. With the HUB Type2 concept, retransmis-

sion during data capturing with full utilization would lead to buffer overflow and there is no

space left for hardware fault tolerance. Additionally, sending and receiving control mes-

sages between the HUB ASIC and a DCS or an ECS for controlling FEE endpoint devices

and the HUB itself would lead immediately to backpressure and then to buffer overflow.

Thus, using the HUB Type2 design requires clear data and control times. Furthermore, it

needs frequent system dead times together with additional buffer space to absorb retrans-

mission events and allow at least some fault tolerance. This might be reasonable for some

detector systems, but will decrease flexibility and can lead to less useful solutions for oth-

ers. Nevertheless, a final design decision requires further analysis, because both proposed

variants define a realistic basis.

5.2.4   HUB Challenges

While designing the HUB ASICs there are many tasks to be handled for problems, which

should be solved like dynamic configuration between 1x, 2x, 4x lane support for data

streams from FEE endpoint devices. Therefore, low-level initialization and hub configura-

tion need to support optional disabling of clock and data-out within each group of clock,

data-out, and data-in. This enables implementation of 2x or x4 links. In addition, lanes from

a FEE device should be mapped into the same high-speed SERDES lane towards back-end,

for example, two 4x input streams mapped into one SERDES running with 5Gb/s mode.

This must be supported to ease data handling in following stages. The clock distribution
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will use a 250 MHz clock, because of the standard cell SERDES using a 500Mb/s LVDS

interface with DDR between HUB and FEE devices. This clock recovered in the CDR part

of the fast SERDES must achieve reasonable jitter values to be used as a reference clock for

detector endpoints.

The CBMnet uses an 8B/10B coded data transfer and the receive data must be phase aligned

at hub receive path, because there is no clock data recovery within FEE devices. Therefore,

delay cells for phase adjustment at HUB ASIC chip are required and during initialization,

an automatic alignment has to be performed. For data aggregation and correct distribution

towards the back-end, a special crossbar structure must be built. This crossbar must retain

package order and specific bypass structures must assure the DLM functionalities to enable

the synchronization mechanisms using priority request insertion.

The high speed serializer deserializer with clock data recovery (CDR) provides at least

5Gbit/s @ 65nm technology, but it may be targeting 7.5 Gbit/s. It must either be designed

and produced by CBM Collaboration partners from India who are specialists for SERDES

analog designs or bought if available on the market. They must provide a deterministic

behavior and concerning CDR, it must be analyzed, if a jitter cleaner integrated into the

HUB is required. PLL supporting such features was designed together with RWTH Aachen.

All this functionality must be heavily tested and verified.

All preexisting modules and building blocks have to be adapted and integrated into the

design. Together with the integration of an external IP, as for example SRAM, PLL and I/O-

cells, the high amount of new code in the design will exceed a critical size. Thus, a complete

implementation that uses a professional verification environment using universal verifica-

tion methodology (UVM) [86] is required to have a realistic chance of not requiring endless

reruns for such a complex chip. In addition, a detailed analysis for a fault tolerant design,

fault recovery features, and link failure recovery needs to be done. Fault tolerance exten-

sions adding redundancies are required to provide a radiation tolerant design. Single event

effects (SEE) [87] must be handled as single event upsets (SEU), single event transients

(SET), and single event latchup (SEL). Therefore, FSMs could be implemented using ham-



The HUB CBMnet ASIC Development

114

ming coding [88], SRAMs with error-correcting code (ECC) correction and triple modular

redundancy (TMR) structures must be used. This needs further evaluation and requires reli-

able solutions.

5.2.5   Initialization, Control and Synchronization

A complex device like the HUB ASIC requires a link initialization that starts automatically

as soon as a physical connection is detected. This initialization procedure needs to establish

a physical link connection. However, the most important task of the HUB ASIC, besides

data transportation, is synchronization. Therefore, running on a deterministic network,

CBMnet protocol provides the ability of synchronization through its unified traffic links by

using DLMs. Thus, during automatic initialization, additionally the synchronization mecha-

nism has to be calibrated and deterministic latency on each link must be guaranteed. It is not

only required to implement deterministic hardware, but also necessary to derive all clocks

from one master clock. Otherwise, deterministic behavior can not be assured at all times.

There are two ways to distribute this clock. One way is using a clock tree that provides a

clock to each stage within the network. This requires additional hardware and space for a

clock net. The second way is to use an embedded clock within a data stream, recover it at a

receiver and use it as reference clock. The HUB ASIC implements both methodologies. The

high-speed lanes connected towards the detector control system (DCS) use CDR, delivering

the reference clock for running local logic blocks and sending data. The initialization and

synchronization of these lanes run with the standard CBMnet algorithms. On the other

hand, for FEE device clock distribution a separate clock lane is used in parallel to the data

stream. This clock is then used for sampling data, deriving clocks for internal logic, and

sending data back to the HUB. This simplifies FEE endpoint links on both sides running

without CDR, but received data at HUB ASICs has to be specially adjusted for reliable and

deterministic sampling. Furthermore, clock edges of FEE endpoint link bit-clock and word

clock need a well-defined relationship that leads to bit clock accuracy on the links.

Figure 5-10 depicts the bit-clock synchronization, which has to be achieved at the front-

ends. A synchronization sequence measures the FEE endpoint device distance and adjusts
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all the devices to the same arrival point for DLMs. The mechanism used to adjust devices is

to delay all links to the first joined synchronization point. Synchronization can then be

achieved by sending DLMs to FEE devices which use the standard synchronization algo-

rithms developed. DLMs arrive exactly at the same time. Then timing counters can be set to

a common time or other special purpose actions can be performed. Thus, within the HUB

hierarchy level, all HUBs assure a common synchronization view for their attached devices.

The HUB clearly shows how to set up synchronization for the CBM network system. Each

hierarchy level guarantees the synchronization for its sub trees, which leads to an exact

arrival of DLMs, sent by the DCS. This runs automatically and is planned as basic initial-

ization. All configuration values are stored within the RFs. However, this gives the user the

ability to change them. This is required to support different detector types in one chain hav-

ing different data preparation times for sampled data. It does not know about device-spe-

cific behavior, because time adjustment is only done on link-based network information. If

e.g. due to a power cycle a sub tree loses synchronization, a resynchronization sequence is

performed. Then after a well-defined epoch, the sub tree is synchronous again.
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The synchronization algorithm used for synchronizing devices attached to the HUB is sub-

divided into different phases.

Phase 1: Special characters are sent to FEE detector ASICs. These characters are detected

and an acknowledgement (ack) or a non-acknowledgement (nack) character is sent back to

the HUB. In case of a nack, the output delay is adjusted until a certain number of acks is

received. This may require using different input tabs. Correct sampling for FEE detector

ASICs is now assured.

Phase 2: The HUB uses its send clock to sample incoming bit-streams. Because of different

cable lengths, changing input delay adjustment settings are required. An automatic mecha-

nism runs through all delay tabs and an eye detection algorithm is performed. It samples the

Figure 5-10: Synchronization Mechanism
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ack character for a certain time on each tab and marks the tabs with non-stable values. Then

a tab is chosen with the highest distance to marked tabs delivering a stable value. A reliable

point for sampling input streams is found.

Phase 3: A DLM0 is sent to the FEE devices and clock cycles required for a roundtrip are

measured. Then together with hardware clock cycle information, a distance is calculated.

Afterwards, all FEE device connections are balanced out by delaying them to the level of

the slowest device. Now all devices receive their DLMs on an equal arrival time. 

Phase 4: Deterministic latency is guaranteed and the standard initialization and synchroni-

zation sequence can be performed. 

In addition to all the standard synchronization with DLMs, a masking for FEEs to receive

only specific DLMs is possible. Therefore, masking registers are available for each HUB

configuring the FEE connections. These registers are read and write accessible by control

messages. Thus, registers of delay values for DLMs to FEEs can be modified. This enables

a manual adaption using some specific FEE hardware with different delay behavior and

multiple chip types can be supported and synchronized within one setup.
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5.2.6   Prototype Measurements

Before HUB ASIC prototypes become manufactured, a simulation environment for detailed

simulations and a FPGA platform for firmware prototyping are required. These platforms

will be used for developing, simulating, and testing of the different digitally designed parts.

The HUB ASIC is structured into logical blocks for delivering automatic initialization for

links, setting up the synchronization system, managing crossbar structures, and providing

capabilities to stream data, control, and synchronization traffic over unified deterministic

links. Crossbar structure, CBMnet modules, and SFP link control can be used from the DCB

firmware for first prototyping. Additionally, all the link tester modules for simulation and

traffic generators developed for the last generation of beam time readouts can be reused.

Thus, prototyping starts focusing on the front-end link initialization and synchronization.

Especially, the unbalanced communication using 500Mb/s standard cell based SERDES

together with delay cells for link alignment and the master-slave CBMnet protocol modules

for communication, need to be simulated and tested. In addition, Tests for the data flow

designed to generate back pressure on a data path when data cannot be delivered properly

have to be performed.

In the context of a Bachelor thesis [89], successful simulations running the front-end device

synchronization with different emulated cable length values were performed. Figure 5-11

depicts a successful synchronization that receives DLMs in all four simulated FEE devices

within a bit clock cycle. This simulation has been enhanced and extended by some more

tasks of the HUB. Additionally, successful simulations concerning read and write access to

front-end detector device RFs have been done. First simulations focus on required parts for

beam time readout implementations, but will be extended until a complete working simula-

tion environment for all HUB logic blocks is available.
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In addition to these simulations, FPGA prototyping was started first with emulations of

front-end detector devices. Then prototyping setups for beam time readout usage was

designed and tested. Therefore, Xilinx SP605 evaluation boards [90] were used, because the

ROC3 boards planned for prototyping and as device for lab and test beam time readouts

were not yet available. For connecting devices with the 500Mb/s links and as first cable to

connect them within beam times, HDMI was used as the widely available standard. There-

fore, FMC extender boards were built capable of connecting up to four HDMI cables for

each SP605 device. The first front-end ASIC including the CBMnet, the SPADIC was ini-

tially tested while directly attached to the SUCIBO, a Virtex 5 based readout board. With

this setup, link initialization and RF access tests were successfully performed. First Syn-

chronization tests using two connected SP605 that emulate four front-end devices within

one of the FPGAs shows that the synchronization mechanism should work technically.

After hardware for attaching SPADICs to SP605 devices was available, tests showed that

some adaptions had to be done to achieve the correct link lock. The algorithm detecting ini-

tial synchronization patterns sent by front-ends had to be slightly changed. The first imple-

Figure 5-11: Simulation Results [89]
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mentation locking on stable signals had to be changed to lock on stable patterns [89]. This

was the original idea, but it was adapted after successful simulation and emulation of the

stable signal algorithm. Figure 5-12 shows a laboratory setup. This setup shows a SPADIC

FEB attached to a SP605 test board. It runs successfully with an adapted implementation.

The red lights at the SPADIC PCB depict that the SERDES modules are ready and the link

is up and running. The third board, also a SP605, was used for emulation and was not part of

this test.

In addition to this front-end part of a beam time read-out, the formerly used optical readout

chain containing ABB and DCB devices was updated. The implementation for the SP605

fast SFP link connected to these boards was derived from a DCB implementation. This

readout chain works reliable like in earlier used beam time setups.

Figure 5-12: Laboratory Test Setup
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This beam time prototype will be incrementally extended until it has all features of a HUB

concerning basic functionalities. It will help to increase the value and success probability

for test ASICs. Hopefully this will also reduce the amount of required test ASICs. These are

the first steps within the progressive development of the HUB ASIC.

5.3   Opto-Converter Board

5.3.1   Design

The HUB ASIC must be complemented by an electrical to optical conversion stage to

enable middle-range communication distance. This is necessary for transporting data in a

concentrated way with high data rates. Therefore, an Opto-Converter has to be designed

providing a possibility to gather multiple HUBs connected via copper together and perform

conversion. The Opto-Converter can be on a separate Board or right next to HUB ASICs.

The required optical components are more sensitive to radiation. Thus, the general assump-

tion is that there will be a separate Opto-Converter Board. Achieving the high density and

the possibility of adding a patch panel stage between build-up stages, a pigtail solution is

one way to implement it. However, there are different implementations attaching fiber to

VCSELs and photodiodes using pigtails, but the disadvantage of pigtails is that one has to

replace the complete board with pigtails in case of damage. A different solution delivering a

high density for fiber connections using multiple fiber lanes are Active Optical Cables

(AOC). An AOC delivers an electrical connector performing the conversion within the

cable. Thus it can easily be replaced by just changing the cable. Enabling a patch panel

stage can be done by inserting optical connectors like MPOs/MTPs into the cable. Then, it

is not a real AOC anymore, but due to efficient optical couplers, transmission quality will

not significantly decrease. There are multiple variants of AOCs in the market, some with 4x

and 12x connections. Because of higher density, 12x AOCs are preferred within first tests.

Until all variants for implementing an Opto-Converter have been tested and the radiation

tolerance is assured, there will be no final decision. However, all interim solutions should be
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good enough for beam times. Most likely, the assembly of final solutions will be a combina-

tion of a special solution and COTs parts, so that there is a good availability and a high reli-

ability guaranteed.

5.3.2   Prototype

The first decision concerning the Opto-Converter prototype was picking the right connector

for the AOC. Therefore, the most important requirement for the CBM is density, due to

restricted space within the detector region. A project at the Computer Architecture Group

University of Heidelberg is HD-AOC [91]. This AOC is based on a high-density, 12x con-

nector from Samtec and is 2.5 times denser than the best currently available market partici-

pant called CXP. HD-AOC uses special fiber attachment structures and optimized COTs

components to achieve an ideal build-up height. The connector has been developed together

with Samtec and became a standard connector defined by the HyperTransport™ Consor-

tium (HTC) [92]. Samtec offers a male HDLSP Series Copper Cable and a female HDI6

connector with HDC Case [93]. The HDI6 connector delivers a double stacked build-up,

with two levels, each 12x bidirectional. It is qualified for a bandwidth of above 10Gbit/s for

each lane. This is enough for the target use of 5 to 10 Gb/s and results in an overall bidirec-

tional maximum bandwidth of 240Gbit/s per HDI6 unit.

As basic components besides communication connectors, the board needs a power connec-

tor for usage of HD-AOCs and must deliver access to their I2C bus for status readout, test,

and the configuration optimization of the AOCs. As the power supply, a sata power connec-

tor seems useful, because it is a widely used standard and directly delivers 3.3V supply volt-

age which is required for powering the AOC. For measurement and analysis of differential

signals, test pads should be added for being able to probe them directly. Because of avail-

ability, usage of the Ventoux FPGA board is proposed for testing with three HDI6 connec-

tors, each using 4x lanes for communication. Thus, a board structure using three 4x HDI6

merged into one 12x HDI6 turns out as a useful configuration. Figure 5-13 shows the sug-

gested Opto-Converter prototype as block diagram. PCB design, production and assembly

can be supported with the available H-Spice models for high-speed simulation. Addition-
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ally, existing library parts within the Cadence environment were reused and experiences

with the HDI6 connector within formerly developed high-speed designs were useful during

design phase and in the assembly process.

This board enables various usage scenarios. One important scenario for CBM is radiation

testing of HD-AOC. The HD-AOC is under full assembly control, so testing includes the

possibility of exchanging parts among several suppliers for VCSELs, photodiodes, and their

control chips. Additionally it serves as the Opto-Converter prototype for Hub testing and

might be useful to aggregate Hubs within test beam times. 

In figure 5-14, the planned test setup for radiation beam time tests is presented. There are

two Opto prototype boards within the proposed test setup connected with one unidirectional

12x cable. This is ideal for radiation tests, because an identical setup can be used to analyze

the send and receive part of the cable assembly without interference and only by reposition-

ing. As platform for pattern generation and analysis, the Ventoux FPGA Board in combina-

tion with the HDLSP Samtec copper cables can be used. The Ventoux board is a FPGA

Figure 5-13: Opto-Board Structure
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based board developed by CAG for lab testing. It uses three HDI6 connectors. Each 12x

connection is only assembled with a 4x lane connection due to SERDES availability of the

FPGA. For testing either two separate Ventouxs for send and receive, or one Ventoux using

both HDI6 connector levels to separate send and receive are usable. FPGAs can be used

here, because due to copper connections with Opto-Converters, they can be placed securely

out of a beam. The Ventoux board can be used as a stand alone or within a standard PC,

including drivers and API. However, the complete environment is available and like for

used COTs components, the technology is well known and reliable. As new hardware built

for the test setup, besides the Opto-Converter prototype, some specially assembled unidi-

rectional AOCs with different VCSEL and photodiodes are required. Implementation of

firmware for analysis can focus on analysis and pattern generation, because all basic mod-

ules already exist and they can be reused. In addition, software can be built directly on top

of a well functioning API. 

Figure 5-14: Radiation Test Setup
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5.3.3   AOC Prototyping

Development of AOC prototypes using the high density HDI6 connector, based on the

HDLSP Series Copper Cable design, have been done. The first with our concept designed

AOC [94], using the special fiber attachment meachnism and a high density connector,

already showed satisfying results.

PCB conception for AOC has multiple design possibilities. The first decision was con-

cerned with the PCB connector. Here, either a thin PCB having an extra soldered connector

can be used or a plated footprint on the PCB with ideal direct plugging thickness. Both solu-

tions were designed and tested. Because AOC cables are rarely plugged, the direct PCB

method was preferred. This solution causes fewer costs and requires no extra assembly

steps. For the assembling of driver, transimpedance amplifier (TIA), photodiode arrays, and

VCSEL arrays, there are two techniques. Bonding them onto the PCB or using a flip-chip

technique for directly attaching them onto PCB pads. Due to signal integrity reasons, the

flip-chip variant was chosen, but availability and costs for the arrays were too high. Thus, a

wire bond variant has been developed. However, for future designs having higher speeds

flip-chip is still of interest. The HDLSP connector has 12 send channels on the top and 12

receive channels on the bottom side. Signal integrity led to a design without vias. Thus,

PCB was assembled on both sides, top for driver and VCSELs and bottom for TIA and pho-

todiodes. Difficult assembly of bonding structure on both sides and the production yield for

send and receive structures led to an innovative split design that has two thin PCBs, one for

sending and one for receiving. In addition to easier assembly, yield increases by joining

only working structures.

Figure 5-15 presents the latest so far developed version 3 HD-AOC design. On the left, the

PCB uses a cavity for the chip is shown. This is the split version having one flat PCB for

send and one for receive. These PCBs are then either screwed or soldered together. The I2C

buses of both PCBs are connected via these screwed connections. This current PCB design

works reliably. On the right of the figure, a PCB with a bonded chip and VCSEL of this

pure wire bonded solution is depicted. Because of the cavity, all bonds between chip and
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VCSEL array are almost straight and thereby optimal for signal quality. Below the arrays, a

copper plane was added to assure assembling quality. The chip bonding structure has opti-

mized power and ground rings and bondfinger structures to enable efficient automatic

bonding. Finally, experiences from the various AOC designs led to a well-optimized PCB

structure for the AOC fulfilling all required features.

The fiber attachment mechanism is based on work done in the context of a PhD thesis [95].

This mechanism is based on a direct replication process using a UV adhesive. This adhesive

is stamped onto the assembled PCB and is UV cured. Therefore, an alignment is required to

place the structure directly in µm precision on top of a VCSEL or photodiode. The resulting

exactly placed structure contains fiber funnels, fiber guiding structures, and a mirror. The

fibers are directly attached in a 90° angle and light is deflected by the mirror using total

internal reflection. For keeping the fibers in the funnels, a glas substrate is placed on top of

them. Once fibers are inserted, they are glued by a UV adhesive into the structure. Since the

complete fiber front surface is engulfed with UV adhesive no polishing is required. This is

an efficient repeatable concept of coupling fibers on top of active components. Due to min-

Figure 5-15: AOC PCB (left) and Bonded Structure (right)
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imum distance between fibers and components, a high efficiency for light coupling is

achieved. In figure 5-16, an assembled AOC PCB is presented with stamped fiber attach-

ment structure and inserted fibers. In the picture, a glas plate is visible. It was used to assure

that all fibers stay in the insertion structure until they are glued. The concept and manual

prototypes were successful and now development is focused on automation of stamping and

fiber insertion. For the stamp alignment and stamping process, a half-automated environ-

ment is already running. Thus, optimizing the fiber insertion mechanism and increasing the

yield are the main topics for future investigations.

Figure 5-16: Fully Assembled AOC
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5.3.4   AOC Prototype Measurement

Before the opto-converter prototype began, the HD-AOC V3 had to be tested and the AOC

transmitter and receiver cable parts for opto-converter testing required qualification. There-

fore, a Ventoux board starting with 4x lanes was connected to an AOC as pattern source.

The target opt-converter speed of 5 Gb/s was selected for testing together with a pseudo-

random bit stream (PRBS) pattern. First, an optical power meter was used for measurement,

which resulted in 2.8 mW optical power for four lanes. The goal was to measure optical eye

diagrams and electrical receive eye diagrams at the opto-converter prototype board. Then

within this measurement setup, each of the 12x lanes can get a qualification.

The AOC prototypes have 12x ribbon fiber cables with MPO connectors and the optical

probe has a FC single fiber connector. Thus, coupling structures had to be used for the trans-

formation from MPO to FC. Figure 5-17 depicts the measurement setup with these coupling

structures. The optical power meter was used to measure the coupling loss in between clas-

sifying the resulting optical eye diagram. As shown in the figure, three measure points were

taken. The first one at the female MPO was directly attached to the AOC transmitter. Here,

a value around 0.8 mW for a single lane was measured. Then, the optical signal was coupled

into a MPO-to-LC transformer and the second measurement result of 0.7 mW was taken.

Up to this point, 50 µm multimode fiber was used. A LC-to-SC 62.5 µm multimode fiber

cable was attached. The SC connector showed a value around 0.5 mW. This was then

attached to the oscilloscope and optical waveforms were measured.

Figure 5-17: AOC Optical Measurement Setup



Opto-Converter Board

129

Figure 5-18 presents the obtained eye diagrams from this setup. On the left of the figure, the

electrical eye diagram is shown at the Ventoux sender side with a scale of 500mV/div and

100ps/div. It is measured at point (a) in figure 5-17. This eye diagram is detectable but not

perfect. There are two PCBs and one connector in between the FPGA and the measurement

point. Additionally, the FPGA outputs run almost at full speed, which might be one of the

reasons for the noise visible in the diagram. It can be assumed that there is the visible inter

symbol interference, because of non-optimized configurations, e.g. pre-equalization can be

refined. This leaves room for further optimization. The optical eye diagram, to the right of

the figure, shows a detectable open eye with an optical power almost at 0.5 mW, which fits

with the optical power tests. Its scale is 100µW/div and 50 ps/div and its measure point is

shown as (b) in figure 5-17. It still shows inter symbol interference. 

The measurement setup for electrical receive signals is depicted in figure 5-19. It shows the

Ventoux as a pattern source and an AOC connected to the opto-converter board. In some

tests, the AOC was replaced by a HDLSP series copper cable to have a reference. The elec-

trical measurement point is a termination on a PCB plugged into the outgoing HDI6 con-

nector of the opto-converter. Thus, between the AOC receiver and the measure point are

three PCBs and two HDI6 connectors.

Figure 5-18: AOC Eye Diagram, Electrical (left) - Optical (right)
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At the receiver side, the opto-converter board was directly used to measure the electrical

signal. In figure 5-20, these measurement results are presented with a scale of 200mV/div

and 100ps/div. The left picture shows the received eye diagram of the AOC having a detect-

able but noisy eye. The picture to the right is done using a 0.7 meter copper cable showing

even more inter symbol interference. The eyes are detectable and the best channels achieve

an error rate of . This depicts that the opto-converter prototype quality is good enough

for testing, but for final solutions during design, more attention should be paid to signal

integrity design and the used FR4 should be as short as possible. Using this measurement

setup, the AOC test cables were qualified for opto-converter beam time tests.

Figure 5-19: AOC Electrical Measurement Setup

Figure 5-20: Opto-Converter Eye Measurement, AOC (left) - Copper Cable (right)
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5.3.5   Opto-Converter Prototype Measurement

The Opto-Converter prototype has been designed, developed, and assembled in cooperation

between GSI and CAG. Additionally, a firmware for the Ventoux FPGA was prepared for

testing AOCs using PRBS patterns. Figure 5-21 shows the setup used during beam time

AOC radiation tests and for laboratory testing. For beam time testing, unidirectional 12x

cables were assembled using IPtronics [96] driver and TIA chips having ULM [97] photo-

diodes and three kinds of VCSELs attached. As 12x array VCSEL, parts from VI-Systems

[98], GigOptix [99], and ULM Photonics were deployed. This enabled four different tests

for the beam time, one test for a photodiode and three for the VCSELs located directly

within the beam.

First the results showed no significant increase of error rates compared to the laboratory

tests. There were differences among the channels measured, but the best error rates were at

least . These differences are most likely due to tolerances of the coupling structure and

fiber insertion process. An optimized hardware enhancing fiber insertion handling is in pro-

Figure 5-21: Lab Setup for Opto-converter Board Prototype and AOC Prototype Tests
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duction. It is assumed that after optimizing the insertion technique, all 12 channels will

show reasonable error rates. However, after a successful test time of about 6 minutes being

in the beam, either the transmitter or receiver stopped working. After a power cycle, the set-

ups worked again. Because of all channels stopping simultaneously, it is assumed that a

total dose effect did affect the IPtronics control chips. The beam time tests were successful,

but further more detailed analysis is required.
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5.4   HUB and Opto-converter System Integration

5.4.1   Technical Data

The HUB ASIC is planned in a 65nm technology version. Its currently planned structure

supports 32 FEE CBMnet lanes to the front-end and a 4x lane to the next hierarchical stage.

Adding the required LVDS pins, some service pins, the estimated number of SERDES pins,

and the power-ground pins, the resulting ASIC requires a 19 x 19 bump array. This 361

bumps in total lead to an approximate ASIC size of 3420 x 3420 µm using 180 µm pitch. Its

package will be around 19 x 19, which has about 361pins and a size of 2 cm. A 1.0 V or 1.2

V core voltage depending on LP or GP process and a 1.8 V I/O voltage are required.

Between 2 - 4 routing layers are required to fanout the connections. The power dissipation

is approximately around 5 - 7 W. LVDS connections between detector ASICs and HUBs,

considering the 500 Mb/s data lanes and the 250 DDR MHz clock lane, should not be longer

than 2 meters. The fast 4x lanes attached to the Opto-converter supporting a minimum data

rate of 5 Gb/s. The CML output drivers are planned to be capable of driving approximately

10 cm FR4, a connector and the attached Opto-converter connection. Due to equalization,

there is a 100 cm twinax cable as a connection to the Opto-converter, but the maximum

length is under evaluation.

The Opto-converter, as a component for electrical-optical conversion for the diff CML out-

put signal of the HUB, needs to be compact and has to combine at least three of the above

described hub devices. Because ribbon fiber cables will be used to reach the required den-

sity, which leads to the direct use of 12 x connectors to reduce the number of components.

The HDI6, as the most compact connector for 12x as COT available, has a width of 23.9

mm a height of 13.4 mm and a depth of 19.8 mm without a shell. For the connector fanout,

a multilayer stackup should be used supporting four breakout layers for an optimal design

regarding the HyperTransport Node Connector 1.0 Specification. The counterpart has a

width of 29.9 mm, a heigth of 6.1 mm, and a length of 27 mm before it becomes a 12x rib-
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bon fiber. There are two power supply pins for 3.3 V in each 12x connector defined. For

currently used COTs parts, the AOC using this connector has a power dissipation of around

1100 mW. Typical is 500 mW for the VCSEL driver, and 600 mW for the TIA. 

Other COTs components could also be used after radiation testing to deliver the capability

for the electrical to optical conversion, but there has been no final decision yet. Due to the

fact that all of the above used components are the most compact ones for a reasonable price

in the market, these components are used as a working assumption in the following ana-

lyzes.

5.4.2   DAQ Read-out Structure Scenarios

In the case of the STS, front-end detector ASICs are using 4x channels for data transmission

to get the required 2 Gb/s data bandwidth per chip. It is planned to integrate eight of these

ASICs onto a FEB. This would exactly deliver 32 lanes for one HUB ASIC, which fits a

suggested form factor estimated in a first design analysis. Thus, it probably makes sense to

Figure 5-22: STS Readout Chain using HUBs (Standard Structure)
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assemble a HUB ASIC directly onto the FEB. An advantage of this approach is a controlled

relatively short connection from the detector ASICs to the HUB ASIC. The Opto-converter

may then be placed into the same assembly box as the FEBs in an area with the lowest pos-

sible radiation to keep the distance as short as possible, having the 5 Gb/s data stream in

mind. Figure 5-22 shows this default setup having an optimal data concentration of three

FEBs per HUB ASIC and three HUB ASICs for each AOC. The proposed double stacked

connector leads to an Opto-converter board that provides at least two AOCs. In case of a

reduced data generation, because of placement and detector specific reasons, it makes sense

to use less then four lanes connecting a HUB ASIC to a DPB in the next hierarchy level.

Due to its crossbar, designed with fault tolerance and reconfiguration kept in mind, it is pos-

sible to decrease bandwidth by using, for example, only two lanes towards a DPB. A possi-

ble configuration is presented in figure 5-23 attaching up to six HUBs onto one 12x

connector from an Opto-Converter. This example shows the flexibility of the fully free con-

figurable approach followed within the HUB HW concepts.

Figure 5-23: STS Readout Chain using HUBs that have reduced Data Generation
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The TRD setup using SPADIC ASICs as FEE detector chips requires two data links from

each device to provide a 1 Gb/s bandwidth. The detector build-up scenario includes mod-

ules using two different FEB types. One is a FEB containing five SPADICs and the other

contains four. A TRD module is readout by one identical FEB type and Opto converters

supply only one FEB type at a time. Figure 5-24 shows a feasible standard setup with three

FEBs connected to one HUB, using only three high-speed lanes with 5 Gb/s at the top part

and a standard setup that uses four high-speed lanes at the bottom. With up to 10 lanes per

FEB delivering 500 Mb/s, each of the fast lanes towards the DPB can be filled up to 100%.

Thus, theoretically three links can be enough to provide a sustainable bandwidth to support

three FEBs. In case of errors, causing a retransmission or some control messages interacting

between HUB and DPB, this will lead to backpressure and stall the data acquisition. Thus

for this scenario there must be a time separation between collecting data and controlling

devices.

Figure 5-24: TRD Readout Chain for Special Usage and Standard Setups
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This will only work with a non-continuous data stream. However, the standard read-out

chain should use the complete 4x link to stay with the higher flexibility and fault tolerance

features.

A different solution would be to adapt the planned HUB ASIC design in a way to support

both main read-out scenarios, but with a slightly different concept, which would remove a

lot of the flexibility provided by the suggested design. When the hub provides 20 x 2x con-

nections (80 LVDS pairs) instead of 32 x 1x (96 LVDS pairs), then the full 4x link could

theoretically be used to 100%. Of course, the stall problematic will not change, so the sys-

tem has to be used in a special way. For the native 1x connection, there would always be a

waste of one LVDS pair and only 20 x 1x connects would be possible. The 4x scenario of

the STS stays identical. Figure 5-25 depicts a setup using the Type2 HUB. Here, either four

8x or four 10x connections could be used. Fault tolerance and control message support

remains the main problem in this scenario. After considering the different scenarios, it is

clear that a suggested structure of 32 channels and a 4x connection to the DPB is a useful

solution. It provides flexibility, fault tolerance, and controllability.

Figure 5-25: TRD Read-out using the Type2 HUB Design
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5.5   Conclusion

This chapter described the analysis and the prototyping for the HUB ASIC. It started with

the requirements and analyzed the data flow strategies. A concept was presented to bundle

multiple 500Mbits/s FEBs together to sustain higher bandwidth connections like 5Gb/s. The

HUB ASIC concept includes the complete handling of FEB frontend data flow, the slow

control and the synchronization mechanisms. An analysis of possible packages and dimen-

sions for HUB ASIC production was done. In addition, a solution for the electrical to opti-

cal conversion was presented using the HD-AOC and an opto-converter prototype. Finally,

build up structures for detector readout were analyzed to assure usability. Successful proto-

typing has been done for the AOC, the opto-converter, and the HUB ASIC itself, using a

SP605. The feasibility of the HUB ASIC solution was shown.



Chapter 6

In previous chapters, the innovative DLM based network

synchronization was presented. The focus of this chapter is

on transferring this methodology onto high performance

computing interconnection networks. These networks

profit from efficient synchronization mechanisms and

deterministic latency link behavior, for example, by run-

ning synchronous in order to be able to reduce communica-

tion latency. In addition to the CBM like DLM operation,

other sub variants using synchronization messages are

described. They are based on similar ideas, but they work

without priority request insertion hardware support.
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6.1   Overview

This chapter intends to show that the invented synchronization mechanism using DLMs for

synchronization is useful for high performance computing (HPC). The deterministic latency

scheme requires the network to run in a fully synchronous mode. Upon first impression, this

seems to be challenging for a potentially multi-thousand node HPC cluster systems, but

does lead to several advantages required in future systems. Besides enabling DLMs as an

efficient mechanism for synchronization, deterministic latency based systems allow bypass-

ing of all synchronization buffers at least within network links. Thus, communication

latency is reduced by a few clock cycles for each node. This seems useful in the latency sen-

sitive, more and more growing HPC clusters, and might become a special feature. Neverthe-

less, it remains challenging especially due to guarantees provided by clock distribution.

After adjustment and initialization of a deterministic latency based synchronization system,

DLMs itself can be used for counter synchronization like in CBM. This seems primarily

useful for sensor and detector systems, but the synchronous arrival of DLMs can trigger a

start and stop functionality. Even more, it can trigger an action at the exact same time all

over the system. This might cause command lists or a special feature to be initiated. Supple-

mented with a multicast like usage of DLMs suggested for CBM, which only addresses

nodes of special groups, DLMs become a powerful utility for HPC computing clusters.

Figure 6-1: BlueGene/L (left) and 3D-Torus (right) [101]



Networks based on DLM Synchronization

142

The synchronization has to be transferred and analyzed onto HPC systems. Therefore,

examining parallel and scalable architectures [100] in literature a 3D torus as a typical use

case scenario appears reasonable for evaluating DLM usage for HPC. A 3-D torus is a direct

interconnection network. Each node in this network has six links, two for each dimension in

plus and minus direction. Its structure is a 3D grid having wraparounds at the edges. It has

typically a  structure. The wraparounds as special ability half their diameter compared

to a 3-D grid to . It is a popular structure in HPC, because the wraparounds reduce

the average number of hops within a network for reaching a goal significantly with only a

few additional links. Figure 6-1 shows the BlueGene/L [101] as an example system and the

3D-Torus topology used in its interconnection network. In the following subchapters, the

usefulness of the new synchronization mechanism concepts will be shown for 3-D torus

networks.

6.2   Synchronization concepts

6.2.1   Priority request insertion

Before using a DLM based synchronization on a 3D-torus HPC network system, there are

two basic abilities to be guaranteed. The first required ability is a reliable system wide clock

distribution. This could be done by a separate clock distribution tree or network, but using

recovered link clocks as shown in CBM is preferable. Therefore, a clock master has to be

defined. A master can be anywhere in the network, but has to provide a high quality clock.

The master clock quality directly affects synchronization performance, because it should be

guaranteed that no bit slip occurs. At least they must be firmly avoided. In case of a bit slip,

it must be detected and a readjustment has to be performed. The second ability is determin-

istic link behavior at least concerning synchronization messages. The stable system refer-

ence clock is used to clock the synchronization message processing logic. This logic must

be designed with a deterministic behavior that results in the identical clock cycle processing

time for each DLM received. The mechanism to guarantee this deterministic behavior of

sending DLMs is priority request insertion (PRI). PRI besides the identical processing time

n n

2 n 2
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assures that DLMs are directly in a fixed time inserted into the send channel. This can even

be in the middle of messages. On a receiver, they are filtered out of the stream and split

messages are rejoined. This mechanism requires additional hardware, but provides deter-

ministic latency.

On this basis of a synchronous network with integrated clock distribution, the suggested

unified communication scheme can be used. It provides all communication classes includ-

ing DLMs enabling synchronous actions and thereby collective operations. Of course, for

the different communication types and tasks separate network structures can be used. How-

ever, emerging development shows that a unified connection scheme is advantageous and a

target for industry, especially valuable since it concerns cost and complexity. In the Blue

Gene/L [102] and Blue Gene/P [103], [104] architectures, there are multiple networks pro-

viding these functionalities. They include, besides some other networks, a separate network

collective for barrier & interrupts and a clock distribution network. With a unified concept,

the Blue Gene/Q [105], connected as 5D-torus, is operated. It uses unified connections for

most of the earlier networks used, but it still has a separate clock distribution.

In case of an error, e.g. a clock master failure, another node can take over and become the

clock master. The latency in the system defines the time a take over requires and depending

on local clock quality this may work without a bit slip and synchronization may be pre-

served. Otherwise, synchronization has to be recalibrated. Alternatively, with high effort, a

backup system could be used, which can take over and guarantee persistent synchroniza-

tion. Another clock master, that permanently checks and calibrates it to be synchronous and

ready for take over, could provide this system.

These preconditions enable the mapping of a synchronization mechanism onto a network,

e.g. a 3-D torus. Similar to a clock master, as synchronization master (sync root) somewhere

in the network a node can be selected. Starting at the sync root, a synchronization system

can be established by initialization routines measuring and adjusting network links. All the

required information must be stored. Therefore, either extra RAM structures or RFs can be

used. After calibration, the synchronization hierarchy is mapped as a tree in a kind of 3D
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wave structure onto the network. Figure 6-2 depicts this wave based synchronization struc-

ture in a simplified 2D view. The sync root is defined as synchronization level zero. Every

further link hop defines the next synchronization level. Thus, synchronization messages

spread like a 3D wave through the network. The amount of synchronization levels is equiv-

alent to the diameter of the 3D-torus. There are two kinds of usage for synchronization in

this system. The first one is to fully synchronize all nodes. Therefore, the precalibration

assured that all nodes have the clock cycle values stored for triggering a synchronous action

exactly at the time a DLM arrives at the highest synchronization level. Thus, the time a syn-

chronous event takes is equivalent to communication latency from the master to the most

distant node. The second possible synchronization scheme is to have synchronous groups.

A group could be one or more synchronization levels. This gives the advantage of faster

triggering, but depending on the running applications, post processing for time corrections

has to be done.

Figure 6-2: Synchronization Wave Scheme
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The full synchronization allows the usage of DLMs for running a global counter scheme,

thus synchronizing local counters with DLMs similar to CBM. Another important applica-

tion area for DLMs is gang scheduling [106]. Gang scheduling as scheduling policy

requires a fine-grain synchronization to be efficient. For gang scheduling, interacting

threads running in parallel on a compute cluster use a busy waiting scheme. This avoids

context switches and assures that participating nodes are not in sleeping mode and thereby

depending on the application, the performance increases. Thus, gang scheduling can benefit

from efficient fine-grain DLM synchronization and the synchronous actions started. All

processes can be started at the same point time, which supports busy wait implementations.

Furthermore, it is possible to schedule or reschedule all processes simultaneously on a clus-

ter or a partition.

This system approach requires additional hardware for the PRI and storage for calculated

values and adjustment parameters, but it is of interest for HPC because of a mechanism

delivered to reach synchronization with the minimum possible amount of synchronization

latency. It only depends on interconnection network quality constraints. Some sub variants

requiring less hardware are described in the following sub sections. These variants are only

discussed for a full system synchronization scheme.

6.2.2   Fixed Slot insertion

Based on identical system requirements, fixed slot insertion is an alternative to the PRI

DLM insertion mechanism. This solution needs less hardware resources and is easier to

implement. It simply works by having fixed slots in time where DLMs can be inserted into

the data stream. Thus, they can not be integrated within other messages. These fixed slots

waste bandwidth and decrease link utilization, because long messages always have to wait

until they do not block a DLM slot. In addition, the deterministic latency for each link

increases, which affects the synchronization latency and thereby, a time lag of full synchro-

nous system actions.
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6.2.3   Fixed max delay insertion

A sub variant of fixed slot insertion is fixed delay insertion. This mechanism creates its

insertion slots as soon as the DLMs arrive instead of having reserved slots. The availability

of a slot is thereby guaranteed by reserving it in the future after a maximum packet length.

Thus, link utilization and bandwidth are less affected than for fixed slot insertion, but the

link latency maximizes to the standard value plus the maximum packet length. However, it

is a disadvantage for the network, because maximum delays accumulate in regards to sys-

tem synchronization latency.

6.2.4   Balance counter concept 

An interesting alternative to PRI is the balance counter concept. DLMs have to be extended

by a counter in order to enable this mechanism. The counter may work with minus and plus

values. The final triggered DLM action is done slightly in the future after theoretical DLM

minimum system synchronization latency for creating a margin to balance insertion inaccu-

racies. Whenever a DLM is inserted into a link and has to wait, this wait time then accumu-

lates onto the counter. At the end, the counter value is subtracted from the margin which

resulted in a wait time to synchronize. When allowing minus values, each link has a small

amount of increased latency. This may decrease the counter on successful early insertion.

The plus and minus counter concepts are equivalent, but the use of minus values reduces the

required counter bits.

This Balance counter concept has the disadvantage that in a worst-case scenario a DLM

arrives and its counter value is too high to stay in the allowed margin. Therefore, if a

counter has already reached its allowed maximum, one solution is to terminate currently

running messages, insert the DLM, and then resend the message. Thus, synchronization

functionality can be preserved, but it affects utilization.
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However, this mechanism has, on average, a latency better than with fixed slot insertion and

fixed delay insertion. It does not affect the bandwidth too much, but its disadvantage is

higher complexity and implementation effort.

6.2.5   Conclusion

The new message based synchronization mechanisms using DLMs can be mapped onto a

3D-torus structures representing a HPC use case scenario. PRI allows reaching theoretical

minimum values for system synchronization latency. This first analysis concludes that it is

worth further effort to implement a prototype and analyze advantages of triggering system

wide synchronous actions. The sub variants without PRI, which are easier to implement,

may be used for first prototyping, but PRI is a superior algorithm and its usage should be the

goal. Nodes with the largest distance to a synchronization root define minimum synchroni-

zation pulse time granularity. Thus, the primary optimization target for a network system

evaluating DLM synchronization is the reduction of communication latency for each link. 
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Chapter 7

This chapter concludes the dissertation with a discussion of

the goals achieved. It summarizes the research work done

in the context of the CBM experiment focusing on the mes-

sage based synchronization mechanism, the CBMnet pro-

tocol, ASIC development, and the CBM DAQ network

solution. Finally, an outlook on plans and future is given

including possible activities within the CBM experiment.

149
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7.1   Conclusion

This work started with analyzing requirements and possible features for the DAQ readout

network for the CBM experiment. Therefore, an initial analysis of the state of the art and

possible solutions available for direct usage within CBM was discussed. However, there

was no appropriate candidate delivering required features and performance. This led to the

decision of creating a specialized CBM solution, because otherwise the required perfor-

mance seemed to be out of reach. However, even during ongoing research and development,

steady results and development of other groups or companies were reviewed.

In the context of research work done to find reasonable solutions for the CBM DAQ net-

work synchronization, a new synchronization mechanism based on synchronization mes-

sages was created. This synchronization mechanism is usable within different topology

structures and is directly integrated into communication traffic streams, avoiding separate

synchronization network structures. The innovative message based synchronization

approach has not only shown its usefulness for CBM, it seems also beneficial for applica-

tions in the area of HPC.

Furthermore, for the CBM DAQ network, a unified interconnection network with precise

time synchronization was created. Therefore, the CBMnet protocol implementing all

required features for this unified interconnection network was designed and developed. It

can be used either on copper connections or for fiber communication. At the front-end for

possible copper connections, some of the features may run on separate nets. But for stan-

dard communication, unified communication on bidirectional links is used. This enables

running a DAQ readout network without protocol conversions. Therefore, compatible

implementations for different FPGAs and ASICs were implemented. In addition to standard

CBMnet protocol modules, for ASIC developers, a set of generic modules is supplied to

enhance future ASIC developments. This generic module conception decreases ASIC

development time and reduces the risk through the use of hardware proven IP. A CBM

DAQ network interconnection supports four types of communication as clock distribution,
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slow control messages, data messages, and precise synchronization. The clock distribution

is done using clock recovery mechanisms and is supported by jitter cleaning strategies.

Thus, it is precise enough, around 5ps RMS jitter, to avoid bit slips and in conjunction with

the deterministic latency hardware implementation, it guarantees a basis for synchroniza-

tion. The CBMnet protocol handles all other three communication types with its traffic

classes: DCM, DTM, and DLM. This solution provides all special requirement of CBM. It

supplies hardware with reusable modules and enables flexible build-up variants to support

different DAQ structures. The protocol includes single bit error correction mechanisms to

complement standard methods used as triple redundancy for delivering radiation tolerance.

A continuous data stream is produced by the self-triggered front-end electronics. CBMnet is

designed to ease data aggregation and rate conversion. This enables the handling of high

data bandwidth of up to several TB/s generated in the CBM DAQ network. Due to opti-

mized implementation and advantageous concepts, compact hardware was created and the

limited space restrictions for CBM can be met. The DLM based CBMnet synchronization

mechanism delivers synchronization on a link bit clock level and guarantees precise timing

for CBM.

In addition, the design of a first HUB ASIC version and its FPGA prototyping has been

completed. It delivers features such as data aggregation, rate conversion, synchronization,

and control of front-end electronics (FEE) in the near detector region. This ASIC can handle

all traffic classes such as DLM, DCM, and DTM. Furthermore, it controls numerous with

electrical links attached FEE boards. It combines FEE detector ASIC data streams at low

speed. Afterwards, it sends the data with increased speed to the next hierarchy level. An

electrical to optical conversion is required to work close in conjunction with the HUB

ASIC. Ideal COTs components have been selected and together with an innovative fiber

attachment principle, an AOC based solution was created. This solution was successfully

prototyped. It delivers high density, helps in regards to potential separation, and provides

the communication distance capability. Thus, a solution with sufficient bandwidth and com-

pact hardware setups can be provided for CBM.
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The main goal of creating a new synchronization mechanism has been reached. The

invented DLM based synchronization mechanism was successfully tested. Additionally, a

unified precise synchronization protocol has been created for the CBM experiment. Numer-

ous occurring problems have been solved. Various firmware and hardware implementation

have been accomplished. Specific dense solutions enabling efficient data aggregation and

readout structures have been successfully designed and prototyped. In the end, not only

concepts and developments have been done within this research, but furthermore, an inno-

vatively complete readout network solution fulfilling all CBM requirements was designed

and created. This solution is capable for use in the final CBM experiment detector setup

allowing the planned experiment performance to unfold.

7.2   Outlook

The construction work for FAIR began this past summer and the groundwork is currently

ongoing. Status of CBM shows progress for all parts and much prototyping has been done.

Current plans for CBM and FAIR define it as partially running operational with SIS100 in

2018. In this time frame, a lot of further hardware revisions for all parts are required and

numerous test beam times will be done. The well-proven CBMnet optical readout chain will

be used in upcoming beam times for testing and improving various hardware and software

components. Thus, test beam times have to be supported. Integraton of CBMnet generic

modules into various additional FPGA boards, as e.g. the ROC3, and support for numerous

FEE detector ASIC developments is required.

Provided that all administrative circumstances permit, the HUB ASIC presented in this dis-

sertation will be designed and developed. The HUB ASIC is planned as a 65nm ASIC and

will show a significant impact on quality and potential for the CBM DAQ readout network.

The basic design concepts are suggested and successful prototyping has been done, but

there is still a long way to go for a complex and challenging ASIC like this. However, the

chip development can now be started, but besides the digital design for the high-speed SER-

DES development, an external full custom design IP is required. For achieving an integra-
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tion of this SERDES, a very promising collaboration has been started with the Advanced

VLSI Design Laboratory at the Indian Institute of Technology Kharagpur. All preconditions

are set up to enable a successful development of the HUB ASIC in the future.

An additional task is DPB integration for CBMnet modules. However, this is not the only

task in this context, because DCS components are integrated into the DPB and must be sup-

ported. Finally, a control and synchronization system, concerning the detector attached via

CBMnet, for the ECS in the service building region of CBM needs to be designed and

developed. This control system is completely separated from the environment control sys-

tem where COTs components can be used. All these tasks are in strong correlation to the

presented work.

Last but not least, the new innovative synchronization mechanism using DLMs needs to be

implemented onto a HPC 3D-torus for further analysis. It has the potential to show signifi-

cant impact for future HPC applications.
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A    Abbreviations

ABB Active Buffer Board

ACK Acknowledgement

ADC Analog Digital Converter

AOC Active Optical Cable

ASIC Application-Specific Integrated Circuit

CAG Computer Architecture Group

CBM Compressed Baryonic Matter

CBMnet CBM Network Protocol

CDR Clock Data Recovery

CERN Conseil Européen pour la Recherche Nucléaire

CMOS Complementary Metal Oxide Semiconductor

CRC Cyclic Redundancy Check

DAQ Data Aquisition

DABC Data Acquisition Backbone Core

DCB Data Combiner Board

DCM Detector Control Message

DCS Detector Control System

DDR Double Data Rate

DLM Deterministic Latency Message



Abbreviations

156

DPB Data Processing Board

DTM Data Transport Message

EDA Electronic Design Automation

ECC Error-Correcting Code

ECS Experiment Control System

EOP End of Packet

FAIR Facility for Antiproton and Ion Research

FEC Forward Error Correction

FIFO First In First Out

FLES First Level Event Selector

FLIB FLes Interface Board

FPGA Field Programmable Gate Array

FSM Finite State Machine

GLP Generic Link Protocol

GSI GSI Helmholtzzentrum für Schwerionenforschung GmbH

HADES High Acceptance Di-Electron Spectrometer

HDL Hardware Description Language

HPC High Performance Computing

IP Intellectual Property

LHC Large Hadron Collider

MGT Multi-Gigabit Transceivers

NACK Non-Acknowledgement

NTP Network Time Protocol

OSI Open System Interconnect

PCB Printed Circuit Board
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RMS Root Mean Square

PTP Precision Time Protocol

PRI Priority Request Insertion

RF Register File

SDH Synchronous Digital Hierarchy

SEE Single Event Effect

SEL Single Event Latchup

SERDES Serializer-Deserializer

SET Single Event Transient

SEU Single Event Upset

SFP Small Form-factor Pluggable

SONET Synchronous Optical Network

SOP Start of Packet

SOSC Start of Slow Control

SPADIC Self-triggered Pulse Amplification and Digitization asIC

PRBS Pseudo-Random Bit Stream

STS Silicon Tracking System

STSXYTER Silicon Tracking System XYTER

TAI International Atomic Time

TIA Transimpedance Amplifier

TMR Triple Modular Redundancy

TRD Transition Radiation Detector

TTC Timing, Trigger, and Control

RF Register File

UTC Coordinated Universal Time
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UVM Universal Verification Methodology

WR White Rabbit



Appendix

159

B    Appendix

Generic Modul interface

In the following, a generic module interface example is given showing the SPADIC interface

code. It starts with an interface for clocks and resets. It delivers all SPADIC system clocks

derived from the received clock and all resets derived from an external reset. The next part is

the i2c interface. These wires have to be connected directly to appropriate IO cells. Then the

direct RF access is presented. It includes directly used registers for controlling and configuring

the SPADIC. In addition, the shift chain interface delivers control connections for the analog

shift chain. It is internally attached to a sub RF interface. In the next two blocks, the special

CBMnet interface providing data send channels and a DLM interface are shown. Followed by

synchronization signals especially created for the SPADIC and some test pins for external

LEDs. A link connection interface is the last part of the generic module interface. It must be

connected to the LVDS IO cells.

module spadic_lsra_top

 #( parameter SIMULATION = 1'b0

  ) (

// Interface for clocks and resets

output wire clk2,

output wire clk10,

output wire clk2_res_n,

output wire clk10_res_n,

output wire bclk_res_n,

input wire pin_res_n,

    

// Interface for I2C external device

input wire scl,

input wire sda_in,

output wire sda_out,
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// Direct RF access

output wire [15:0] REG_CbmNetAddr,             

output wire [15:0] REG_EpochCounter,           

output wire [8:0] REG_threshold1,              

output wire [8:0] REG_threshold2,              

output wire  REG_compDiffMode,                 

output wire [5:0] REG_hitWindowLength,         

output wire [31:0] REG_selectMask,             

output wire [4:0] REG_bypassFilterStage,       

output wire [17:0] REG_aCoeffFilter,           

output wire [23:0] REG_bCoeffFilter,

output wire [8:0] REG_scalingFilter,           

output wire [8:0] REG_offsetFilter,            

output wire [7:0] REG_groupIdA,                

output wire [7:0] REG_groupIdB,                

output wire [483:0] REG_neighborSelectMatrixA, 

output wire [483:0] REG_neighborSelectMatrixB, 

output wire [15:0] REG_disableChannelA,        

output wire [15:0] REG_disableChannelB,        

output wire  REG_disableEpochChannelA,          

output wire  REG_disableEpochChannelB,          

output wire  REG_enableTestOutput,              

output wire  REG_testOutputSelGroup,            

output wire  REG_enableTestInput,               

output wire [20:0] REG_enableAdcDec,       

output wire [15:0] REG_triggerMaskA,

output wire [15:0] REG_triggerMaskB,

output wire REG_enableAnalogTrigger,

output wire REG_enableTriggerOutput,

    

//Analog shift chain interface

output wire bitinShiftReg,

output wire writeShiftReg,

output wire lastShiftReg,

output wire initreadShiftReg,

output wire readShiftReg,

input wire  bitoutShiftReg,

// Interface to CBMnet to send data

output wire data2send_stopA,

input wire data2send_startA,

input wire data2send_endA,

input wire [15:0] data2sendA,

output wire data2send_stopB,

input wire data2send_startB,

input wire data2send_endB,

input wire [15:0] data2sendB,

output wire link_active,

// Interface to CBMnet for DLM control  

input wire dlm2send_va,

input wire [3:0] dlm2send,
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output wire [3:0] dlm_rec_type,

output wire dlm_rec_va,

//Sync signals

output wire dataSync,

output wire [1:0] adcSync1,

output wire [1:0] adcSync2,

output wire [1:0] adcSync3,

output wire [1:0] adcSync4,

//Test outport Pins (to be checked)

output wire SERDES_ready,

output wire user_pin1,

output wire user_pin2,

    

//Connection to Link

input wire serial_clk_in,

input wire data_in,

output wire dataA_P,

output wire dataA_N,

output wire dataB_P,

output wire dataB_N

      );
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Altera Stratix IV Board

The Altera prototyping board described in Section 3.7 is presented in figure B-1. Technical

specifications:

• HTX Connector with 8bit transceiver based bidirectional interface

• Altera Stratix IV GX 230 (or larger) speed grade -2, -3 or -4

(For more details, please refer to the Stratix IV user manual)

• 256 MB onboard DDR3-1066 memory

• 2 CX4 connectors routed to FPGA transceivers

• Marvel 88E1111 Ethernet solution

• USB2 connectivity via Mini-USB connector and Cypress CY7C68013A High-Speed

USB Peripheral Controller

• Additional external connectivity with Stratix LVDS interface 

using Samtec connectors

Figure B-1: Altera Stratix IV Board
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Tests have been done using the Altera board with an integrated jitter cleaner. The cleaned clock

was required as the HTX reference clock during system boot. At the beginning, these tests

were not successful. In following measurements, a power problem was found. It is shown in

figure B-2. The problem was that the 3.3V power (purple) needed to supply the LMK03033

was not stable early enough, compared to the main FPGA power (light blue). Then system

reset was too early and the FPGA tried to program the LMK. After a wait counter was inserted,

this sequencing problem was fixed. This was a useful hint for ROC3 development, which has

an integrated LMK03033.

Figure B-2: Altera Board LMK03033 Power Sequence
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AOC I2C Problem

During bring up of the AOC PCB V3 a problem occurred. It was not possible to program the

ICs over I2C. The measurements showed, as depicted in figure B-3, that the VCSEL driver and

TIA ICs were not capable of pulling down the I2C bus to acknowledge the transfer. The solu-

tion for first tests of the AOCs was to use an I2C master ignoring acknowledgements. This test

worked. Further analysis showed that the ICs were not completely I2C specification conform

and were only able to pull down the signal level below a required threshold for a pull-up of

4.7 KOhm attached to the bus. The test systems used up until now have to be adapted.

Figure B-3: AOC I2C Sequence with Pull-Down Error
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Additional Jitter Measurements

In figure B-4 and figure B-5 screenshots for 250 MHz and 125 MHz jitter measurements are

presented. In both jitter measurement diagrams, the upper waveform shows the measured clock

and the lower waveform the track of jitter between pairs of clock cycles. The clock frequency

measurement values are calculated in P2, below the waveforms. The track is visualized using

the -period level changes resulting from P5. The RMS jitter values are calculated in P6. The

250MHz cleaned clock shows a mean RMS jitter of 4.7788ps. Due to test setup noise, there is

a periodic peak every roundabout three µs. This can be ignored, because the other test setup for

125 MHz did not show this effect. The 125 MHz cleaned clock shows a mean RMS jitter of

5.5093ps.


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Figure B-4: Jitter cleaned clock at 250 MHz
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Figure B-5: Jitter cleaned clock at 125 MHz
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HUB SERDES concepts

The HUB ASIC development requires an external High-speed SERDES IP. Therefore, a direct

collaboration with Prof. Bhattacharyya from the Advanced VLSI Design Laboratory at the

Indian Institute of Technology Kharagpur was started. In figure B-6, the SERDES block dia-

gram designed together with this Indian group is presented. It shows the incoming and outgo-

ing LVDS serial data streams to the left, transformed from or into standard CMOS signals with

the 20 bit processing width, before the 8b/10b coding stage. Additionally, this path includes

eye detection logic. Further from the incoming data stream, a recovered reference clock is gen-

erated by the CDR analog block. From the reference clock, the word clock is derived. This

word clock will be adjusted by the digital logic implementation to guarantee the right relation

between the clocks. All used registers are placed within a RF in the digital part of the design

for easy control and test access using standard interfaces like I2C. The first conceptions are

done and this is only a promising starting point, but exact details, simulations and models, and

prototype mini ASICs will soon appear.
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Figure B-6: SERDES Blockdiagram
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