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Introduction

My research focuses on the evaluation and design of social programs. I aim to inform

policy makers about the benefits, costs, and relevant trade offs of their considered

policy alternatives. This requires the ex post evaluation and the ex ante design of

policies. Iterating between the two allows to accumulate evidence on the effects

of policies and their underlying mechanisms. It is this understanding that permits

informed policy choices.

Policies target individuals, whose response to the changes in their circumstances

decides upon the success or failure of a policy measure. Effective policy making has

to take this reaction to changes in the incentives and constraints that individuals

face into account. Otherwise, the policy’s objective might not be fulfilled or even

reversed due to unanticipated and unintended effects. With its focus on the indi-

vidual and its actions, economics provides a useful framework for the analysis of a

variety of social programs. Confronting economic theory with data allows to verify,

validate, and quantify its predictions by means of econometric analysis. Again, it

is the underlying economics that determines the choice of the appropriate econo-

metric tools that allows for a valid policy assessment. In particular, differences in

the amount of information available to the individuals and the policy maker require

careful consideration.

By combining economics and econometrics with suitable data sources, I hope to

collect robust evidence on the performance of public policies.

My thesis is a first step in this direction.
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In Chapter 1, I explore several issues in the economics and econometrics of policy

evaluation by an estimation of the returns to college using the National Longitudinal

Survey of Youth of 1979. I report the average returns of a college education, but

also estimate the whole distribution of returns and document considerable hetero-

geneity. My results indicate that agents select their schooling level based on gains

unobservable by the econometrician. In addition, I clarify the difference between the

effect of a treatment and the effect of a policy by showing which margin of agents is

affected by two alternative policy changes. Finally, I unify the abundance of average

effect parameters using the fact that all can be expressed as weighted averages of

the marginal treatment effect.

This essay allowed me to get an overview regarding the open issues in the economics

and econometrics of policy evaluation. After this general perspective, I focused on

two selected topics in this research area.

In Chapter 2, I review the marginal benefit of treatment parameter and develop

the dual cost and surplus parameters. This project is joint work with Prof. James

Heckman (University of Chicago) and Prof. Edward Vytlacil (Yale University).

We derive and apply a nonparametric identification analysis of benefits, costs, and

surpluses of treatment participation. We show how the overall average effect pa-

rameters can be expressed as weighted averages of their marginal counterparts. We

illustrate the empirical content of our analysis with an application to educational

choice. We find that agents select into college based on their idiosyncratic benefits

and perceived costs. The variability in subjective benefits drives college attendance

more than the variation in costs.

In the first two essays I focused on the presence and consequences of observable

and unobservable treatment effect heterogeneity. In both, I presented econometric

strategies that deal with the arising difficulties. Next, I investigated the possibility

to exploit these heterogeneities for an optimal policy design.

In Chapter 3, which is joint work with Edward Sung (University of Chicago), I

explore how alternative assignment mechanisms affect the performance of social

programs. We present a framework that links reallocation policies, i.e. policies that

2



fix the amount of resources and only change their allocation, to the econometrics

of policy evaluation. We argue that this connection is particularly policy relevant

for active labor market programs and illustrate the importance of our contribu-

tion with an application to the National Evaluation of Welfare-to-Work Strategies

dataset. Our results indicate that the assignment rule has a profound impact on the

scale of a program, its overall performance, and the relative effectiveness of alterna-

tive treatments. Thus, our results point to the choice of the assignment mechanism

as an important component of an optimal policy design.
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1 Issues in the Econometrics of

Policy Evaluation

1.1 Introduction

Econometric policy evaluation is important. Policy evaluation informs policy makers

and the general public about the relevant economic trade offs between alternative

policies. Thus, it contributes to informed policy choices. In its context, the effect

of some program on subsequent outcomes is of central importance. For instance,

the impacts of social welfare programs, active labor market policies, and the public

education system are under high scrutiny as these programs consume a considerable

amount of public funds.

Econometric policy evaluation is complicated. A naive comparison of a treated and

untreated sample leads to misleading conclusions. Agents that select into treatment

are fundamentally different from those that do not (Browning et al., 1999; Heckman,

2001). They make different choices and even experience different outcomes given

the same choice. A valid assessment of a policy requires an understanding of the

underlying sources of variation. It is this understanding that determines the set of

applicable econometric tools (Heckman and Vytlacil, 2005; Heckman et al., 2006b).

This chapter profited greatly from comments by James Heckman, Pedro Carneiro, Jing Jing
Hsee, Rémi Piatek, Stefano Mosso, Edward L. Sung, Christian Goldammer, Miriam Gensowski,
Pia Dovern-Pinger, Martin Nybom, Francois Laisney, and Bernd Fitzenberger. I thank George
Yates for his advice regarding the computational implementation.
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1 Issues in the Econometrics of Policy Evaluation

Econometric policy evaluation is multifaceted. The effects of policies are summa-

rized by objects of interest, and different objects answer different policy questions

(Heckman and Vytlacil, 2007a,b). Often, the focus is on the average effect of assign-

ing a random individual from the population to treatment. However, this does not

answer the relevant policy question when policy makers can only affect incentives

for voluntary participation. Moreover, a focus on average effects masks potentially

important treatment effect heterogeneity. A positive effect on average does not rule

out a negative effect for a considerable share of the population. Thus, the whole

distribution of effects is of interest and can provide additional insights into the ef-

fectiveness of a program (Heckman et al., 1997; Abbring and Heckman, 2007).

In this chapter, we combine the generalized Roy model with a factor structure as-

sumption. Together, this allows for a readily accessible discussion of the economics

and econometrics of policy evaluation within a unified framework. In doing so, we

build on the existing work by Carneiro et al. (2003), Cunha et al. (2005) and Cunha

and Heckman (2007). We enrich it with the more recent contributions by Heckman

and Vytlacil (2005) and Carneiro et al. (2011).

We explore several issues by an estimation of the returns to college using the National

Longitudinal Survey of Youth of 1979 (NLSY79). We report the average returns of

a college education. However, we do not stop there. We estimate the whole distribu-

tion of returns and document considerable heterogeneity. We establish that agents

select their schooling level based on gains unobservable by the econometrician. We

show which margin of agents is affected by two alternative policy changes. Finally,

we unify the abundance of average effect parameters using the marginal treatment

effect (Björklund and Moffitt, 1987; Heckman and Vytlacil, 2007b).

The plan of this chapter is as follows. Section 1.2 introduces our conceptual frame-

work and establishes the required notation. We discuss potential sources of agent

heterogeneity and justify the objects of interest. Section 1.3 presents our empirical

illustration. We outline the identification strategy, the dataset, and the estimation

approach. There, we also motivate the factor structure assumption. We discuss our

results as an informative example for comprehensive econometric policy evaluation.

Section 1.4 concludes.

6



1.2 Conceptual Framework

1.2 Conceptual Framework

We now present our conceptual framework to discuss the economics and economet-

rics of policy evaluation. We establish the required notation by introducing the

generalized Roy model as a prototypical model of policy evaluation. We discuss

possible sources of agent heterogeneity and examine their empirical relevance. We

review common objects of interest and motivate them by the policy questions they

address. Going beyond the average effects of treatment, we demonstrate the addi-

tional information provided by the whole distribution of potential outcomes.

In this section, we focus on the definition and motivation of the concepts and objects

of interest. Later, we add the factor structure assumption which allows for their

identification and estimation.

1.2.1 Prototypical Model

We rely on the generalized Roy model (Roy, 1951; Heckman and Vytlacil, 2005)

throughout. We restrict the discussion to the static binary treatment case as this is

the focus of most of the relevant literature.

Let I[·] denote an indicator function that is equal to one if the corresponding con-

dition is true and zero otherwise. Then, the generalized Roy model is characterized

by the following set of equations.

Potential Outcomes: Choice:

Y1 = µ1(X) + U1 D = I[S > 0 ]

Y0 = µ0(X) + U0 S = E[Y1 − Y0 − C | I ]

Observed Outcome: C = µC(Z) + UC

Y = DY1 + (1−D)Y0

(Y1, Y0) are objective outcomes associated with each potential treatment state D

and realized after the treatment decision. Y1 refers to the outcome in the treated

state and Y0 in the untreated state. C denotes the subjective cost of treatment par-

ticipation. Any subjective benefits, e.g. job amenities, are included (as a negative

contribution) in the subjective cost of treatment. Agents take up treatment D if

7



1 Issues in the Econometrics of Policy Evaluation

they expect the objective benefit to outweigh the subjective cost. In that case, their

subjective evaluation, i.e. the expected surplus from participation S, is positive. I
denotes the agent’s information set at the time of the participation decision. The

observed outcome Y is determined in a switching-regime fashion (Quandt, 1958,

1972). If agents take up treatment, then the observed outcome Y corresponds to

the outcome in the presence of treatment Y1. Otherwise, Y0 is observed. The un-

observed potential outcome is referred to as the counterfactual outcome. We ignore

general equilibrium effects and agent interactions in this setup.1 If costs are iden-

tically zero for all agents, there are no observed regressors, and (U1, U0) ∼ N(0,Σ),

then the generalized Roy model corresponds to the original Roy model (Roy, 1951).2

From the perspective of the econometrician, (X,Z) are observable while (U1, U0, UC)

are not. X are the observed determinants of potential outcomes (Y1, Y0), and Z are

the observed determinants of the cost of treatment C. Potential outcomes and cost

are decomposed into their means (µ1(X), µ0(X), µC(Z)) and their deviations from

the mean (U1, U0, UC). (X,Z) might have common elements, and the unobservables

might stochastically depend on the observables. Observables and unobservables

jointly determine program participation D.

If their ex ante surplus S from participation is positive, then agents select into treat-

ment. Yet, this does not require their expected objective returns to be positive as

well. Subjective cost C might be negative such that agents which expect negative

returns still participate. Moreover, in the case of imperfect information, an agent’s

ex ante evaluation of treatment is potentially different from their ex post assessment.

Agents regret their educational choice if they expect a positive surplus ex ante but

the realization turns out to be negative ex post (or vice versa).

In our empirical illustration, we consider an example from educational choice. There,

D takes value one if an agent pursues a higher education and zero otherwise. (Y1, Y0)

1See Heckman et al. (1999b) for simulations that assess the magnitude of potential biases from
such an approach in the context of tax and tuition policy. Manski (2012) provides results for
the identification of treatment responses with social interactions.

2Heckman (2008) presents the relationship of the Roy model to other models of potential out-
comes. Imbens and Wooldrige (2009) discuss the advantages of the potential outcomes frame-
work over a framework based directly on observed outcomes.
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1.2 Conceptual Framework

refer to measures of subsequent labor market success. The subjective cost C of pur-

suing a higher education does not only involve tuition cost but psychic cost as well.

The latter might include expectational error and risk aversion (Cunha et al., 2005).

The realizations of (U1, U0) contain an agent’s unobserved ability but are partly

unknown to the agent at the time of the treatment decision. Therefore, agents po-

tentially regret pursuing a higher education.

The evaluation problem arises because either Y1 or Y0 is observed. Thus, the effect

of treatment cannot be determined on an individual level. If the treatment choice D

depends on the potential outcomes, then there is also a selection problem. If that is

the case, then the treated and untreated differ not only in their treatment status but

in other characteristics as well. A naive comparison of the treated and untreated

leads to misleading conclusions. Jointly, the evaluation and selection problem are

the two fundamental problems of causal inference (Holland, 1986).

Using the setup of the generalized Roy model, we now highlight several important

concepts in the economics and econometrics of policy evaluation. We discuss sources

of agent heterogeneity and motivate alternative objects of interest.

1.2.2 Agent Heterogeneity

What gives rise to variation in choices and outcomes among, from the econometri-

cian’s perspective, otherwise observationally identical agents? This is the central

question in all econometric policy analyses (Browning et al., 1999; Heckman, 2001).

The individual benefit of treatment is defined as B = Y1− Y0 = (µ1(X)− µ0(X)) +

(U1 − U0). From the perspective of the econometrician, differences in benefits are

the result of variation in observable X and unobservable characteristics (U1 − U0).

However, (U1 − U0) might be (at least partly) included in the agent’s information

set I and thus known to the agent at the time of the treatment decision.

As a result, unobservable treatment effect heterogeneity can be distinguished into

private information and uncertainty. Private information is only known to the agent

but not the econometrician; uncertainty refers to variability that is unpredictable

9



1 Issues in the Econometrics of Policy Evaluation

by both.3

In our empirical illustration, agents with the same observable characteristics, in-

cluding their level of schooling, experience very different labor market outcomes.

This variation is in part due to agents’ private information about their own level of

ability. However, productivity shocks in the labor market, unknown to agent and

econometrician at the time of the treatment decision, play a role as well.

Cunha et al. (2005) estimate that about half of all variability in measured lifetime

income is due to uncertainty realized after the decision to go to college. Another half

is due to predictable components known to agents but not the econometrician. This

is in line with Huggett et al. (2011), who estimate a dynamic general equilibrium

model. They attribute about 40% of variation in lifetime earnings to shocks and the

rest to variation in initial conditions known to the agent at age 23. Based on panel

data estimates of the earnings process, Storesletten et al. (2004) assign slightly more

than half of the variation to unforeseen shocks. Looking at the evolution of uncer-

tainty over time, Cunha and Heckman (2007) document an increase in the share of

earnings volatility explained by uncertainty. Nevertheless, they report considerable

differences between skill groups. For less skilled workers, about 60% of the increase

in wage variability is due to uncertainty, while for the higher skilled this is only 8%.

The information available to the econometrician and the agent determines the set of

valid estimation approaches for the evaluation of a policy. The concept of essential

heterogeneity emphasizes this point (Heckman et al., 2006b).

Essential Heterogeneity If agents select their treatment status based on bene-

fits unobserved by the econometrician (selection on unobservables), then there is

no unique effect of a treatment or a policy even after conditioning on observable

characteristics. Average benefits are different from marginal benefits, and different

policies select individuals at different margins. Conventional econometric methods

that only account for selection on observables, like matching (Cochran and Rubin,

1973; Rosenbaum and Rubin, 1983; Heckman et al., 1998), are not able to identify

3See Meghir and Pistaferri (2011) for a recent overview on decomposition strategies.
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1.2 Conceptual Framework

any parameter of interest (Heckman and Vytlacil, 2005; Heckman et al., 2006b).

Carneiro et al. (2011) present evidence on agents selecting their level of education

based on their unobservable gains. They demonstrate the importance of adjusting

the estimation strategy to allow for this fact. Heckman et al. (2010) propose a va-

riety of tests for the presence of essential heterogeneity.

In our empirical illustration, we implement an estimation strategy which allows for

the presence of essential heterogeneity. We show that agents in fact choose their

education level based on their own unobservable returns.

1.2.3 Objects of Interest

Treatment effect heterogeneity requires to be precise about the effect being discussed.

There is no single effect of neither a policy nor a treatment. For each specific policy

question, the object of interest must be carefully defined (Heckman and Vytlacil,

2005, 2007a,b). We present several potential objects of interest and discuss what

question they are suited to answer. We start with the average effect parameters.

However, these neglect possible effect heterogeneity. Therefore, we explore their

distributional counterparts as well.

Conventional Average Treatment Effects It is common to summarize the average

benefits of treatment for different subsets of the population. In general, the focus is

on the average effect in the whole population, the average treatment effect (ATE),

or the average effect on the treated (TT ) or untreated (TUT ).

ATE = E [Y1 − Y0]

TT = E [Y1 − Y0 | D = 1]

TUT = E [Y1 − Y0 | D = 0]

The relationship between these parameters depends on the assignment mechanism

that matches agents to treatment. If agents select their treatment status based on

their own benefits, then agents that take up treatment benefit more than those that

do not and thus TT > TUT . If agents select their treatment status at random, then

all parameters are equal.

11



1 Issues in the Econometrics of Policy Evaluation

The policy relevance of the conventional treatment effect parameters is limited. They

are only informative about extreme policy alternatives. The ATE is of interest to

policy makers if they weigh the possibility of moving a full economy from a baseline

to an alternative state or are able to assign agents to treatment at random. The

TT is informative if the complete elimination of a program already in place is con-

sidered. Conversely, if the same program is examined for compulsory participation,

then the TUT is the policy relevant parameter.

To ensure a tight link between the posed policy question and the parameter of

interest, Heckman and Vytlacil (2001c) propose the policy-relevant treatment effect

(PRTE). They consider policies that do not change potential outcomes, but only

affect individual choices. Thus, they account for voluntary program participation.

Policy-Relevant Average Treatment Effects The PRTE captures the average

change in outcomes per net person shifted by a change from a baseline state B to an

alternative policy A. Let DB and DA denote the choice taken under the baseline and

the alternative policy regime respectively. Then, observed outcomes are determined

as

YB = DBY1 + (1−DB)Y0

YA = DAY1 + (1−DA)Y0.

A policy change induces some agents to change their treatment status (DB 6= DA),

while others are unaffected. More formally, the PRTE is then defined as

PRTE =
1

E [DA]− E [DB]
(E [YA]− E [YB]) .

In our empirical illustration, in which we consider education policies, the lack of pol-

icy relevance of the conventional effect parameters is particularly evident. Rather

than directly assigning individuals a certain level of education, policy makers can

only indirectly affect schooling choices, e.g. by altering tuition cost through sub-

sidies. The individuals drawn into treatment by such a policy will neither be a

random sample of the whole population, nor the whole population of the previously

(un-)treated. That is why we estimate the policy-relevant effects of alternative edu-

12



1.2 Conceptual Framework

cation policies and contrast them with the conventional treatment effect parameters.

We also show how the PRTE varies for alternative policy proposals as different

agents are induced to change their treatment status.

The average effect of a policy and the average effect of a treatment are linked by the

marginal treatment effect (MTE). The MTE was introduced into the literature by

Björklund and Moffitt (1987) and extended in Heckman and Vytlacil (2001b, 2005,

2007b).

Marginal Treatment Effect The MTE is the treatment effect parameter that

conditions on the unobserved desire to select into treatment. Let V = E[UC− (U1−
U0) | I ] summarize the expectations about all unobservables determining treatment

choice and let US = FV (V ). Then, the MTE is defined as

MTE(x, uS) = E [Y1 − Y0 | X = x, US = uS] .

The MTE is the average benefit for persons with observable characteristics X = x

and unobservables US = uS. By construction, US denotes the different quantiles of

V . So, when varying US but keeping X fixed, then the MTE shows how the average

benefit varies along the distribution of V . For uS evaluation points close to zero,

the MTE is the average effect of treatment for individuals with a value of V that

makes them most likely to participate. The opposite is true for high values of uS.

The MTE provides the underlying structure for all average effect parameters previ-

ously discussed. These can be derived as weighted averages of the MTE (Heckman

and Vytlacil, 2005). Parameter j, ∆j(x), can be written as

∆j(x) =

∫ 1

0

MTE(x, uS)hj(x, uS) duS,

where the weights hj(x, uS) are specific to parameter j, integrate to one, and can be

constructed from data.4 All parameters are identical only in the absence of essential

heterogeneity. Then, the MTE(x, uS) is constant across the whole distribution of

V as agents do not select their treatment status based on their unobservable benefits.

4See Table D.1 in Appendix D for a selection of the weights.
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1 Issues in the Econometrics of Policy Evaluation

In our empirical illustration, we estimate the MTE of a college education. We show

how the return varies along the unobservable margin. We also exploit its properties

to organize and interpret the multiplicity of average effect parameters.

So far, we have only discussed average effect parameters. However, these conceal

possible treatment effect heterogeneity, which provides important information about

a treatment. Hence, we now present their distributional counterparts (Aakvik et al.,

2005).

Distribution of Potential Outcomes Several interesting aspects of policies can-

not be evaluated without knowing the joint distribution of potential outcomes (see

Abbring and Heckman (2007) and Heckman et al. (1997)). The joint distribution

of (Y1, Y0) allows to calculate the whole distribution of benefits. Based on it, the

average treatment and policy effects can be constructed just as the median and all

other quantiles. In addition, the portion of people that benefit from treatment can

be calculated for the overall population Pr(Y1 − Y0 > 0) or among any subgroup of

particular interest to policy makers Pr(Y1 − Y0 > 0 | X).5 This is important as a

treatment which is beneficial for agents on average can still be harmful for some.

The absence of an average effect might be the result of part of the population having

a positive effect, which is just offset by a negative effect on the rest of the popula-

tion. This kind of treatment effect heterogeneity is informative as it provides the

starting point for an adaptive research strategy that tries to understand the driving

force behind these differences (Horwitz et al., 1996, 1997).

In our empirical illustration, we estimate the whole distribution of the returns to

education. We show how a focus on average effects masks considerable heterogeneity

in the returns to a college education.

5For a comprehensive overview on related work see Abbring and Heckman (2007) and the work
they cite. The survey by Fortin et al. (2011) provides an overview about the alternative ap-
proaches to the construction of counterfactual observed outcome distributions. See Firpo (2007),
Abadie et al. (2002), and Chernozhukov and Hansen (2005) for their studies of quantile treatment
effects.
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1.3 Empirical Illustration

1.3 Empirical Illustration

We now illustrate the issues and concepts introduced in the previous section with

an application to the returns to college. Before presenting our results, we provide a

description of our identification strategy, the dataset, and our estimation approach.

The choice of all three is motivated by a factor structure assumption, which we

discuss first.

1.3.1 Factor Structure Assumption

The factor structure assumption postulates that a low dimensional vector of latent

factors θ is the sole source of dependency among the unobservables of a model. Fac-

tor models are widely used to proxy latent measures of ability (see Thurstone (1934)

and the large literature that followed). This motivates their use in our application

as it addresses the empirical regularity that agents select their education level based

on their unobserved ability.

Applied to the case of the generalized Roy model, the unobservable components

determining potential outcomes and treatment choice are decomposed as:

U1 = α1 θ + ε1 U0 = α0 θ + ε0 UC = αC θ + εC .

The factor loadings (α1, α0, αC) may be different and thus, θ may affect choices and

outcomes differently. The disturbances (ε1, ε0, εC) are an additional source of varia-

tion and assumed mutually independent and independent of the factor.

The factor structure assumption allows to solve the selection problem and is es-

sential for the estimation of the joint distribution of potential outcomes. All the

dependencies between the unobservables of the model are driven by θ and condi-

tioning on it allows to construct the agents’ counterfactual state experience. At

the same time, θ provides the link between the two marginal outcome distributions

(FY1|D=1(·), FY0|D=0(·)), which can be constructed from the observed data. Through

this link, the joint distribution of potential outcomes (FY1,Y0(·)) can be recovered.

The factor structure assumption permits asymmetries in the information structure
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1 Issues in the Econometrics of Policy Evaluation

between agent and econometrician. Agents select their treatment status based on

their expected surplus from treatment given the information available to them at

the time of treatment decision I. We allow that (θ, εC) are private information to

the agent while (ε1, ε0) are not. The latter reflect uncertain fluctuations in future

labor market outcomes. The econometrician observes neither θ nor (ε1, ε0, εC).

Discrepancies between an agent’s ex ante and ex post evaluation of treatment par-

ticipation arise due to the realizations of (ε1, ε0). These are unknown to the agent at

the time of the treatment decision but affect potential outcomes. Thus, unexpected

realizations of (ε1, ε0) might lead agents to regret their treatment choice ex post.

1.3.2 Identification

Conditions for nonparametric identification of the generalized Roy model are pre-

sented in Heckman and Vytlacil (2007b).6 They rely on the availability of exclusion

restrictions, i.e. variables that only affect choices but not potential outcomes, and

support conditions. This approach is called “identification at infinity” (e.g. Cham-

berlain (1986) and Heckman (1990)) and requires the existence of limit sets where

the probability of treatment participation is either zero or one. Within these limit

sets there is no selection, and thus FU1(·) and FU0(·) can be recovered. However,

this is not enough to determine the joint distribution of potential outcomes. Im-

posing a factor structure and adding a set of measurement equations on θ permits

identification of the joint dependencies among the unobservables of the model under

the conditions outlined in Cunha et al. (2010). The measurements provide a signal

about θ but also contain noise due to additional disturbances. Nonetheless, orthog-

onality conditions allow to separate the noise from the signal and to identify the

distribution of θ. With this distribution at hand, the joint distribution of (U1, U0)

can be recovered.7

6French and Taber (2011) provide an instructive discussion about alternative identification ap-
proaches to the different versions of the Roy model.

7For a review of the alternative identification strategies of the joint distribution of potential
outcomes, see Abbring and Heckman (2007).
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1.3.3 Data and Estimation Strategy

We use the National Longitudinal Survey of Youth of 1979 (NLSY79) for our empir-

ical illustration. The NLSY79 is a nationally representative sample for the United

States of 12,686 young men and women who were 14 to 22 years of age when first

surveyed in 1979. The cohort was interviewed annually through 1994. Since then,

the survey has been administered biennially.8 We restrict our sample to white males

only. The NLSY79 has an oversample of poor whites and a military sample. We

exclude both from our analysis.

The sample was originally prepared for the analysis in Carneiro et al. (2011). We

extend it to fit the data requirements of a factor structure model by adding a mea-

surement system to identify the distribution of ability θ.

We estimate a simplified version of the generalized Roy model to investigate the re-

turns to college. Our estimation strategy exploits a variety of separability, linearity,

independence, and distributional assumptions. We now present these in detail.

Potential Outcome Model We use the natural logarithm of hourly wages between

1989 and 1993 (individuals are between 28 and 34 years of age in 1991) to determine

the return to a college education. We specify a log-linear model per period t =

1, .., 5 for each education group. Y1t denotes the outcome in the treated state in

period t and Y0t in the untreated state for the same period. Both outcomes are

determined by a vector of observable characteristics X with education group and

period-specific parameter vectors {β1t, β0t}. In addition, outcomes in both states are

affected by cognitive ability θ, but potentially to a different extent as determined

by the factor loadings {α1t, α0t}. The idiosyncratic error terms {ε1t, ε0t} follow a

normal distribution with mean zero and variances {σ2
ε1t
, σ2

ε0t
}.

Y1t = Xβ1t + α1tθ + ε1t with ε1t ∼ N(0, σ2
ε1t

)

Y0t = Xβ0t + α0tθ + ε0t with ε0t ∼ N(0, σ2
ε0t

)

8See Bureau of Labor Statistics (2001) for a detailed description of the NLSY79.
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The unobservables (θ, {ε1t, ε0t}) are independent from the observables X. The id-

iosyncratic components {ε1t, ε0t} are independent within and across time and inde-

pendent of the factor θ. Conditional on the set of control variables X and the factor

θ, the estimation simplifies to a normal linear regression model by treatment status.

As determinants of log earnings, we specify linear and squared terms for years of

true work experience, mother’s years of schooling, number of siblings, as well as

a dummy variable indicating urban residence at age 14, cohort dummies, and a

factor of cognitive ability. We also include linear terms of current (at the time of

the outcome in 1991) local wages and local unemployment as well as their long run

averages between 1973 and 2000. In what follows, we refer to the long run averages

as permanent local wages and permanent local unemployment.

Educational Choice Model We separate individuals in two groups: D = 0 (high

school dropouts and high school graduates) and D = 1 (individuals with some college,

college graduates, and post-graduates). We specify a linear-in-parameters binary

choice model. The schooling decision D depends on the vector XI that also affects

potential outcomes. XI is only a subset of X as not all components of X are known

to the agent at the time of the treatment decision. A vector Z contains a set of

observables that affect the subjective cost of treatment participation. XI and Z

contain common elements. γX parameterizes the marginal effects of XI and γZ of

Z. In addition, the treatment choice depends on cognitive ability θ with loading γθ.

D = I [XIγX − ZγZ + θγθ − εC > 0 ] with εC ∼ N(0, 1)

The unobservables (θ, εc) are independent from the observables (XI , Z). εc follows

a standard normal distribution and is independent of the factor θ. Conditional on

(XI , Z) and θ, the estimation follows a Probit response model.

We include the covariates that determine potential outcomes (excluding actual work

experience and labor market conditions at the time of the outcome realization) in

(XI , Z). We also specify several exclusion restrictions, i.e. variables that only affect

subjective cost and are only part of Z. For this purpose, we include local labor

market conditions, distance to college, and tuition cost. We use past (at the time

of treatment decision at age 17) local wages and local unemployment to capture
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the local labor market conditions, the presence of a four-year college as a measure

of distance to college, and average tuition in public four-year colleges to reflect the

direct financial cost of college attendance. All exclusion restrictions are interacted

with mother’s education and number of siblings.

The validity of the exclusion restrictions hinges on the fact that they are not corre-

lated with the unobservables in the wage equations for the adult years. This is ques-

tionable for the local labor market conditions at the time of treatment choice: they

might be correlated with the long run economic environment. Following Carneiro

et al. (2011), we address this concern as we include measures of permanent local

labor market conditions (e.g. average wages and unemployment between 1973 and

2000 for each location of residence at 17). In this setup, only the innovations in the

local labor market variables are used as exclusions.

Figure 1.1 depicts the density function of average log hourly wages over the five

year period in our data by treatment status. In our final sample, 45% of the agents

pursue a higher education and have on average four more years of schooling. The

high-educated earn on average 2.53, while earnings are lower with 2.24 among the

low educated. Given the average difference of four years of education between the

two groups, this amounts to an annual return of 7.3%. However, this raw difference

is not due to schooling alone. If agents select into treatment based on their returns,

they differ in other important aspects besides their level of schooling.

Furthermore, there is considerable heterogeneity in outcomes within each treatment

group. Among the treated, earnings range from 1.97 at the second decile to 3.06 at

the eighth decile. For the untreated, earnings at the second decile amount to 1.78

and go up to 2.73 at the eighth decile. In fact, 24% of the untreated earn more than

the average among the treated.

Measurement System We take the measurements on θ from the Armed Service

Vocational Aptitude Battery (ASVB), which is described in Deparment of Defense

(1982). We use the Armed Forces Qualification Test (AFQT), which consists of

the following subtests: word knowledge, paragraph comprehension, arithmetic rea-

soning, and mathematics knowledge. The AFQT (sub-) scores are frequently used
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Figure 1.1: Distribution of Observed Outcome
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Notes: Kernel density estimation implemented using a Gaussian kernel with bandwidth selected using Silver-
man’s rule of thumb (Silverman, 1986) with the variation proposed by Scott (1992).

to account for an individual’s ability as a determinant for a variety of economic

and social outcomes (Herrnstein and Murray, 1994; Heckman et al., 2006a; Carneiro

et al., 2011). The subscores are corrected for the fact that individuals have different

amounts of schooling at the time they take the test following the procedure devel-

oped in Hansen et al. (2004).

Measurement Mj on θ with j = 1, ..., 4 is determined by a set of observable char-

acteristics W and cognitive ability θ. Both translate differently into each measure

as parametrized by {ψj, δj}. The unobservables (θ, {νj}) are independent from the

observables W . The idiosyncratic components {νj} are independent of each other

and the cognitive factor θ. These independence assumptions allow to extract the

noise from the signal. Conditional on W the covariation between measurements is
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due to the common factor θ only.

M1 = Wψ1 + δ1θ + ν1 with ν1 ∼ N(0, σ2
ν1

)
...

M4 = Wψ4 + δ4θ + ν4 with ν4 ∼ N(0, σ2
ν4

)

The idiosyncratic error terms {νj} follow a normal distribution. Conditional on

θ and W , the estimation of each measurement equation is carried out as a normal

linear regression model. To set the scale of θ, we fix one of the factor loadings to one.

Borghans et al. (2008) emphasize the need to standardize the incentives for and the

environment of achievement tests. We follow their advice and control for differences

in test-taking behavior by observable characteristics. We model these differences by

linear and squared terms in maternal education and the number of siblings.

Table 1.1: Measurements

Measures All Treated Untreated

Arithmetic Reasoning 0.000 0.355 -0.335

Word Knowledge 0.000 0.287 -0.271

Paragraph Composition 0.000 0.300 -0.284

Math Knowledge 0.000 0.487 -0.460

Notes: Final sample consists of a total of 1,287 white males, where 625 did

receive some college education while 662 do not. Measures standardized

to mean zero and standard deviation one in the final sample.

Table 1.1 shows the average value for each measure by treatment status in our sam-

ple. They are standardized to mean zero and standard deviation one. The averages

of all subscores are at least half a standard deviation higher for the agents with an

advanced level of education. This contrast is most pronounced for math knowledge

and smallest for word knowledge.
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Table 1.2: Specification

Covariates Outcomes Choice Measures

Years of Experience X

Current Local Wages X

Current Local Unemployment X

Permanent Local Unemployment X X

Permanent Local Wages X X

Mother’s Years of Schooling X X X

Number of Siblings X X X

Urban Residence X X

Cohort Dummies X X

Factor of Cognitive Ability X X X

Local Presence of Public College X

Local Tuition at Public College X

Past Local Wages X

Past Local Unemployment X

Notes: Specification includes squared terms in experience, number of siblings, mother’s

education, permanent labor market conditions, and interactions of the exclusion restrictions

with number of siblings and mothers’ education. Final sample consists of a total of 1,287

white males, where 625 did receive some college education while 662 do not.

Distribution of Skills The distribution of cognitive ability is approximated by a

normal finite mixture model (Diebolt and Robert, 1994). Mixtures of normals with a

large enough number of components approximate any distribution (Ferguson, 1983)

and are frequently used as a flexible semiparametric approach to density estimation

(Escobar and West, 1995; Frühwirth-Schnatter, 2006). The unobservable factor θ

is distributed as a univariate mixture of K normals with share parameter πk, mean

µk, and variance σ2
k,

θ ∼
K∑
k=1

πkN
(
µk, σ

2
k

)
,

where
∑K

k=1 πk = 1 and
∑K

k=1 πkµk = 0. We estimate a mixture model for θ with

K = 3 components.
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Table 1.2 summarizes the covariates used in our specification. Additional descriptive

statistics and details about the construction of the dataset are provided in Appendix

B. Next, we outline our estimation strategy.

We collect all parameters of the model in Ψ. Conditional on θ and the relevant

observables, the observed outcome, choice, and measurement equations are all inde-

pendent. Thus, the individual likelihood can be written as

L(Ψ) =

∫
Θ

1∏
d=0

{
Pr(D = d | X,Z, θ; Ψ)

5∏
t=1

f(Ydt | X, θ; Ψ)

}I[D=d]

×
4∏
j=1

f(Mj | W, θ; Ψ)dFθ(θ),

where f(·) denotes a density function, and Fθ(·) is the cumulative distribution func-

tion of the latent factor θ over the support Θ.

θ needs to be integrated out of the individual likelihood, which leads to a complex na-

ture of the likelihood function. That is why we implement a full Bayesian approach

for the estimation of the model and rely on Markov Chain Monte Carlo (MCMC)

techniques.9 The Gibbs sampler, which proceeds by simulating each parameter (or

parameter block) from its conditional distribution, is particularly appropriate for this

kind of problem (Casella and George, 1992). For the model of educational choice,

we rely on the data augmentation approach following Albert and Chib (1993). We

run a chain of 1,030,000 iterations. After a burn-in period of 30,000 iterations, we

save the draws from every 100th iteration. The resulting 10,000 iterations are used

for postestimation inference.

We generate a simulated sample of 100, 000 agents and collect them in the set N .

First, we fix all estimated parameters to their posterior means. Second, we draw a set

9See Chib (2001) for an overview on MCMC techniques and their use in econometrics and Heck-
man et al. (2012) for a broad discussion of their use for the estimation of treatment effect in
factor models. Piatek (2010) provides the required technical details in the framework of a factor
structure model.
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of observable characteristics (X,XI , Z) with replacement from the original dataset.

Third, we simulate the unobservables of the model (θ, {ε1t, ε0t}, εc). Together, this

allows us construct potential outcomes {Y1t, Y0t}, surplus SB and treatment choice

DB in the baseline state, and the individual effect of treatment {Bt}.

We will also consider two policy alternatives j = 1, 2. We construct the counterfac-

tual surplus and choice {SAj, DAj} by modifying Z to ZAj for each policy alternative.

We present our results as the average over the five time periods to reduce the im-

pact of transitory earnings fluctuations. Thus, we drop the t subscript. In addition,

we annualize our estimates of the returns to college by dividing our results by four.

This is the average difference in years of schooling between the treated and untreated.

We end up with the following simulated sample:

{Y1i, Y0i, Bi, Xi, XIi, Zi, {ZAji}, {SAji, DAji}, DBi, θi, ε1i, ε0i, εCi} ∀ i ∈ N.

1.3.4 Results

We now turn to the presentation and discussion of our results. We start by showing

the quality of our model. Then, we establish that agents select their educational

attainment based on returns, which are at least partly unobservable by the econo-

metrician. We report the conventional average treatment effects and contrast them

with the policy-relevant average treatment effects. We exploit the fact that both

these parameters can be expressed as weighted averages of the marginal treatment

effect to interpret their differences. Finally, we go beyond the average effects of a

treatment and a policy by presenting their whole distribution.

Model Quality

Model Fit Table 1.3 compares the distribution of actual earnings to its simulated

counterpart. Mean and median of the two samples are nearly identical. The stan-

dard deviation of the simulated sample is slightly smaller compared to the actual

sample. This is due to the thinner tails of the simulated distribution. Overall, the

model fits the observed data quite well.
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Table 1.3: Model Fit

Outcome

Source Mean Sd. 2. Decile 5. Decile 8. Decile

Data 2.385 0.434 2.013 2.388 2.753

Model 2.393 0.336 2.110 2.393 2.676

Notes: Samples based on 100,000 simulated agents and 1,287 ac-

tual agents, Sd. = Standard Deviation.

Our estimation strategy imposed a variety of functional form and distributional

assumptions. However, as we included several exclusion restrictions in our specifi-

cation, a much more flexible model is still identified. The range of common support

plays a central role in this context.

Common Support Nonparametric identification of the model relies on the exis-

tence of exclusion restrictions and “identification at infinity” arguments. Empir-

ically, the latter requires that some agents select treatment with probability one

or zero. Figure 1.2 displays the support of the estimated probability of treatment

participation, i.e. the propensity score, in the actual sample. Among the treated,

the support ranges from 0.07 to 0.99. For the untreated, the range of support is

slightly shifted to the left. It starts at 0.01 and extends up to 0.95. Thus, the range

of common support is close to the full unit interval. An “identification at infinity”

strategy is valid in our data.

Selection on Unobservables

The factor structure assumption allows for an explicit exposition of selection on

returns that are unobservable by the econometrician. The unobservable returns

(U1−U0) and the unobservable dislike for treatment participation V can be decom-

posed as

U1 − U0 = (α1 − α0)θ + (ε1 − ε0)

V = −γθθ + εC .

Private information θ and uncertainty (ε1 − ε0) jointly generate unobservable vari-

ability in the returns to college. The agent’s private information about θ induces a
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Figure 1.2: Common Support

0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91

Propensity Score

C
ou

nt
s

0
20

40
60

80

Treated

Untreated

Notes: Counts of the choice probabilities in the actual sample.

dependency between V and (U1 − U0) and creates selection on unobservables.

We estimate γθ > 0, so that the likelihood of obtaining a higher education increases

with ability. Thus, the treated and untreated differ systematically in their real-

izations of θ. Figure 1.3 shows the density function of the simulated distribution

of ability by treatment status. On average, unobserved ability is higher among

the treated. Yet, there is considerable heterogeneity within each treatment group.

Among the untreated, about 23% have a higher level of cognitive ability than the

average treated individual.

Figure 1.4 plots the marginal effect (ME) of cognitive ability on average wages and

the probability of a college education along the quantiles qθ of the distribution of θ.

These are computed based on the simulation as follows

MEY1(X = x̄, qθ = q) = x̄β1 + α1F
−1
θ (q)

MEY0(X = x̄, qθ = q) = x̄β0 + α0F
−1
θ (q)

MED(XI = x̄I , Z = z̄, qθ = q) = Φ
(
x̄IγX − z̄γZ + γθF

−1
θ (q)

)
,
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Figure 1.3: Distribution of Cognitive Skills by Treatment Status
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Notes: Sample based on 100,000 simulated agents. Kernel density estimation implemented using a Gaussian
kernel with bandwidth selected using Silverman’s rule of thumb (Silverman, 1986) with the variation proposed
by Scott (1992).

where Φ(·) is the cumulative distribution function of the standard normal distribu-

tion and F−1
θ (·) denotes the quantile function of the distribution of θ. Throughout,

the observable characteristics (X,XI , Z) are fixed at their mean values (x̄, x̄I , z̄).

Cognitive ability affects educational choice and wages in both potential outcome

states. Two patterns emerge. First, the effect of ability on college choice is positive

(γθ > 0) and quite strong. The probability of a college education increases from

10% to 82% when moving an individual from the bottom to the top decile of the

ability distribution. Second, the effect of ability on earnings differs between the

two potential outcome states (α1 6= α0). The returns to ability are higher in the

treated state compared to the untreated state (α1 − α0 > 0). In the treated state,

an increase in ability from the bottom to the top decile yields an increase in wages

by 64%. In the untreated state, wages only increase by 35%. Furthermore, earnings

in the treated state are usually higher when moving along the ability distribution.

This is not the case in the first decile. An individual with such a low level of ability

has, on average, higher earnings in the untreated state.
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Figure 1.4: Marginal Effects of Ability
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(b) Untreated State
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Notes: Sample based on 100,000 simulated agents.

θ is unobservable by the econometrician and affects returns and treatment choice. As

a result, agents are selecting their treatment status based on unobservable returns.

Thus, essential heterogeneity is present in our data. Any estimation strategy that

does not take this into account results in biased estimates.

Average Effects

Our factor structure implementation of the generalized Roy model allows for ob-

servable and unobservable treatment effect heterogeneity. Thus, different treatment

effect parameters answer different policy questions. At first, we present the conven-

tional effects of treatment and contrast them to the policy relevant effects. After-
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wards, we use the unifying properties of the marginal treatment effect to reconcile

their differences.

Conventional Average Treatment Effects Table 1.4 presents the conventional

average treatment effects. Based on the simulated sample, we can calculate the

average treatment effect as the mean difference in potential outcomes in the full

sample.

ATE =
1

|N |
∑
i∈N

(Y1i − Y0i)

The TT and the TUT are determined by separate calculations among the group of

the treated (DB = 1) and untreated (DB = 0) respectively.

Table 1.4:
Conventional

Average Treatment
Effects

Population Effect

All 0.035

Treated 0.047

Untreated 0.026

Notes: Sample based on

100,000 simulated agents.

On average, the return to education is 3.5% for each additional year of schooling.

Among the treated, returns are higher than average and amount to 4.7%. For the

untreated, returns are considerably lower with only 2.6% on average. Thus, the

agents who pursue a higher education have the most to gain.

Nevertheless, returns for the untreated are positive. But still, they do not pursue

a higher education. Their subjective cost must be so high that the positive returns

are not high enough. As a result, their expected surplus SB remains negative.

The average return is less than half of the 7.3% raw difference in outcomes. So,

systematic differences in observable and unobservable characteristics drive the dif-

ference in raw returns.
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As discussed in Section 1.2, the conventional treatment effects are only informa-

tive about extreme policy alternatives. That is why we turn to the policy-relevant

treatment effects next.

Policy-Relevant Average Treatment Effects We consider two generic policy al-

ternatives:10

� Policy Alternative A: Building public colleges in all counties which do not

yet provide one.

� Policy Alternative B: Equalization of tuition fees in all existing public col-

leges to their mean value.

Table 1.5 presents the PRTE, i.e. the change in the average outcomes per net

person shifted, for each of the two policy alternatives. Let Pj denote the set of

agents which are induced to change their treatment status, i.e. DB 6= DAj, due to

policy j. Then, we can calculate the overall PRTEj for each policy alternative as

the average difference in potential outcomes among the agents in Pj.

PRTEj =
1

|Pj|
∑
i∈Pj

(Y1i − Y0i)

Along the same line, we can separately determine the average effect among the

agents that enter or withdraw from treatment.

Table 1.5: Policy-Relevant
Average Treatment Effects

Population Policy A Policy B

All 0.032 -0.002

Entering 0.032 0.034

Withdrawing — -0.036

Notes: Sample based on 100,000 simulated

agents.

Policy A only affects agents living in counties that do not yet provide a public col-

lege and makes college attendance more likely for this group. Among the whole

10For the purposes of this chapter, we abstract from balanced budget considerations.
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population, 3.5% of agents revise their treatment decision and now intend to pursue

a higher education. On average, these agents realize a return of 3.2%.

Policy B has more heterogeneous impacts. Agents who face a college with costs

higher than average will experience a reduction of tuition fees compared to the base-

line state. However, tuition fees at cheaper colleges will rise. Overall, the impact

of Policy B is less pronounced. Only 1.7% of the population alter their treatment

choice. Among those, about 0.9% enter treatment while another 0.8% withdraw.

Both groups experience very similar returns of about 3.5% on average. Thus, the

overall effect on observed outcomes is negligible as their realized returns just cancel

out.

Both, the conventional and policy relevant treatment effects capture average effects

of treatment and policies. And yet, they differ. The marginal treatment effect

(MTE) allows to investigate these differences further. We start with a discussion

of the MTE itself and then use its unifying properties to explain the differences

between the average effect parameters.

Marginal Treatment Effect Figure 1.5 presents the MTE, which shows the aver-

age benefit of treatment along the distribution of V for fixed X = x̄. Recalling that

V = −γθθ + εC and the definition of US = FV (V ), the MTE can be calculated as

MTE(X = x̄, US = uS) = x̄(β1 − β0)− (α1 − α0)

γθ
F−1
θ (us).

Thus, the MTE allows to examine how the returns to college vary for different

margins of V .

Benefits range from 6.8% at the bottom decile of V to 0.0% at the top decile. Agents

who are most likely to take up treatment, i.e. those with a low level of V , have the

most to gain. Their private information about their relatively high level of ability θ

results in higher expected returns.

The MTE allows to rationalize the differences between the numerous average effect

parameters (Heckman and Vytlacil, 2005, 2001c). All parameters are weighted av-
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1 Issues in the Econometrics of Policy Evaluation

Figure 1.5: Marginal Treatment Effect
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Notes: Sample based on 100,000 simulated agents.

erages of the MTE, but each weighs parts of the distribution of V differently.

Table 1.6 compares the multiple average effects of treatment. The PRTEA for

Policy A is very close to the ATE. For Policy B, the PRTEB is zero as the effects

for those agents induced to change their treatment status cancel out. The average

effects among the affected subgroups by either policy are less pronounced than the

TUT or TT .

Table 1.6: Comparing the Effects of Treatment

Conventional Policy-Relevant

Population Estimand Population Policy A Policy B

All 0.035 All 0.032 -0.002

Treated 0.047 Entering 0.032 0.034

Untreated 0.026 Withdrawing — -0.036

Notes: Sample based on 100,000 simulated agents.
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1.3 Empirical Illustration

Figure 1.6 shows the empirical weights for the average effect parameters.11 First,

we discuss the weights for the conventional parameters. The ATE samples evenly

across the whole distribution of V , whereas the TT oversamples agents with a high

probability of treatment participation. The opposite is true for the TUT , which

puts larger weight on individuals with high values of V . This makes them unlikely

to take up treatment. Second, we turn to the weights for the policy-relevant pa-

rameters. Policy A accentuates the tails of the distribution of V , while Policy B

stresses the middle part. Accordingly, different policies affect different margins of V .

Notably, the weights for the policy-relevant treatment effects are not necessarily pos-

itive. For both policies, some parts of the distribution of V receive a negative weight.

So far, the focus of the discussion has been on average effect parameters. However,

these mask considerable treatment effect heterogeneity. That is why we discuss their

distributional counterparts next.

11The weights vary for different realizations of X and integrate to one by construction. Since x̄ is
a high dimensional vector, it is not computationally feasible to condition on it. Instead, as an
approximation, we condition on the index x̄(β1 − β0).
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Figure 1.6: Weights
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sample of 100,000 simulated agents. The weights are scaled to fit the picture. (c) based on simulation from
the estimates of the model. The observable characteristics X are set to their mean values in the sample.
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Distributional Effects

We are able to recover the joint distribution of potential outcomes due to the factor

structure assumption. With this joint distribution at hand, we can calculate the

marginal distribution of benefits, the joint distribution of benefits and surplus, and

the marginal distribution of policy effects. We discuss each in turn.

Joint Distribution of Potential Outcomes Figure 1.7 presents the results for the

joint distribution of potential outcomes FY1,Y0(y1, y0) in a contour plot.

The surface of the plot is directed at the top right corner. Thus, potential outcomes

are positively correlated. Agents who do well in one of the education groups also

tend to do well in the other. The 45◦ degree line separates the agents with positive

and negative returns. Below the straight line, benefits are positive as the potential

outcome in the treated state Y1 is higher than in the untreated state Y0. Above, the

opposite is true. It becomes clear that there is significant treatment effect hetero-

geneity and a considerable share of agents has negative returns to education.

Next, we investigate this in more detail by looking at the marginal distribution of

benefits directly.

Marginal Distribution of Benefits Figure 1.8 shows the marginal distribution of

benefits FB(b). Benefits range from -7% at the first decile to +14% at the ninth

decile of the distribution. Mean and median benefits are very similar with 3.5%

each. Roughly 34% of agents exhibit negative returns to education. Plotting the

conditional distributions by treatment status reveals only a slight shift between the

two. Nevertheless, the share of agents with a negative return is considerably smaller

among the treated (30%) than the untreated (38%).

Still, even among the treated, a quite considerable share of agents exhibits negative

returns. Among them, there are two groups. First, some agents expected negative

returns but have negative subjective cost of education so that they pursue a higher

education anyway. Second, some agents expected positive returns ex ante but real-

ized unfavorable draws of (ε1, ε0) ex post.

35



1 Issues in the Econometrics of Policy Evaluation

Figure 1.7: Joint Distribution of Potential Outcomes
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Figure 1.8: Distribution of Benefits
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kernel with bandwidth selected using Silverman’s rule of thumb (Silverman, 1986) with the variation proposed
by Scott (1992).
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There is a tight link to the conventional average treatment effects reported in Table

1.4. They correspond to the mean values of the respective distribution. All the

heterogeneity in returns remains unnoticed by a focus on average effects only. But

this heterogeneity requires to be precise about the effect of a treatment and the

effect of a policy. Different policies select agents at different margins with different

benefits from program participation. In this regard, the joint distribution of benefits

and surplus offers some illuminating insights.

Joint Distribution of Benefits and Surplus Recall that the surplus SB from treat-

ment participation is derived as:

SB = XIγX − ZγZ + γθθ − εC .

Figure 1.9 presents a contour plot of the joint distribution FB,SB
(b, s) of benefits

and the surplus in the baseline state (up to the scale normalization).

Figure 1.9: Joint Distribution of Benefits and Surplus
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The graph is separated into four distinct quadrants by the two solid lines. Agents
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with a positive surplus (II + III) take up treatment while those with a negative sur-

plus (I + IV) do not. Among both groups, some show negative returns (III for the

treated and IV for the untreated). Again, there is a direct link to the conventional

average treatment effects. The TT is the mean return among those agents where

SB > 0, the TUT corresponds to the average return where SB < 0.

However, Figure 1.9 is most informative on how different policies affect different

margins. In the baseline state, agents with SB > 0 select into treatment while those

with SB < 0 do not. An alternative policy regime affects the surplus calculation. Let

us consider Policy A as an example. Under the new policy regime, the subjective cost

of treatment is reduced for agents who previously lived in a county without a public

college. Among those, agents with SB > 0 in the baseline state will not change their

treatment choice. However, agents for which SB was only slightly negative might.

In this example, the agents located between the dashed and solid vertical line will

change their treatment status. They do so as under the alternative policy regime

their expected benefits outweigh the reduced subjective cost. The PRTEA reflects

the average returns for this subset of agents. But, by exploiting the factor structure

assumption, we can determine the whole distribution of policy effects.

Marginal Distribution of Policy Effects Figure 1.10 shows the distribution of

benefits among the agents that are affected by the two policies FB|Pj
(b).

For Policy A, the overall average effect was very similar to the ATE. The same

is true for the whole distribution of policy effects. The overall distribution (Figure

1.8) and the distribution of benefits realized due to the policy change are very much

alike. For Policy B this is also the case. There, the shift between the two distribu-

tions results from the switch in sign for agents withdrawing from treatment.

The average values of the distributions yield the PRTEj’s as reported in Table

1.5. A positive average effect is still in line with some agents experiencing negative

returns (Policy A). A negligible overall average effect does not rule out considerable

heterogeneity in the effects of a policy (Policy B).

38
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Figure 1.10: Distribution of Policy Effects
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Notes: Sample based on 100,000 simulated agents. Kernel density estimation implemented using a Gaussian
kernel with bandwidth selected using Silverman’s rule of thumb (Silverman, 1986) with the variation proposed
by Scott (1992).

1.4 Conclusion

The combination of the generalized Roy model with a factor structure assumption

allowed for an instructive discussion of the economics and econometrics of policy

evaluation. We explored sources of agent heterogeneity, examined resulting treat-

ment effect heterogeneity, and clarified the distinction between the effects of a treat-

ment and a policy.

We used an application to the returns to college as an empirical illustration. We

reported average returns but also estimated their whole distribution. We found that

agents select their treatment status based on returns unobservable by the econome-

trician. We also showed how different parameters answer different policy questions.

However, we only provided a discussion within the framework of a factor struc-

ture model. Yet, this is just one element in the econometrician’s toolkit for policy

evaluation. Alternative methods (matching, instrumental variables, regression dis-

continuity design, etc.) differ in their data requirements, assumptions about the

sources of agent heterogeneity, simplifications required for their empirical feasibility,

and policy questions they are suited to answer. Further research should focus on
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a comparison between these alternatives for a given policy questions. Ultimately,

what matters is that empirical researchers are aware of the trade offs involved and

how these affect their conclusions.
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2 Cost-Benefit Analysis of Social

Programs

2.1 Introduction

The classical approach to the evaluation of public policy compares the benefits and

costs of policies and forms net measures of surplus to determine whether policies

should be undertaken (see Tinbergen (1956), Harberger and Jenkins (2002), and

Chetty (2009)). The recent literature on program evaluation or “treatment effects”

focuses on gross benefits of policies at unidentified margins of choice and does not

consider the marginal costs associated with the programs being evaluated.1

In a fundamental paper, Björklund and Moffitt (1987) estimate marginal gains and

surpluses for policies within a parametric normal generalized Roy model. They use

structural econometric methods to identify the components of the cost and benefit

functions. This chapter extends their analysis to a more general setting. It develops

and applies a nonparametric identification analysis of benefits, costs, and surpluses

without the need to identify all of the ingredients of a fully specified structural

model. This approach implements Marschak’s Maxim (Heckman, 2010) by directly

estimating the cost, benefit, and surplus parameters rather than estimating the full

structural model from which the parameters can be constructed. We present ex

ante and ex post analyses of benefits and consider alternative specifications of agent

information sets. Applying our methods to the data on gross benefits analyzed by

Carneiro et al. (2011), we find that within a semiparametric model variability in

1See the discussion in Heckman and Vytlacil (2007b) and Heckman (2010).
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subjective benefits drives much of the observed variability in the net returns to col-

lege and thus the decision to attend college.

In the generalized Roy model, the agent chooses treatment if the perceived benefit

exceeds the perceived subjective cost. This creates a simple relationship between

the cost and benefit parameters that we exploit for identifying the cost and surplus

parameters. Our main analytic result is that cost and surplus parameters in the

generalized Roy model can be identified without direct information on the costs of

treatment. This is valuable for the analysis of the choice of education, where subjec-

tive costs have been estimated to be substantially greater than tuition costs (Cunha

et al., 2005). Our analysis complements and extends the analysis of Björklund and

Moffitt (1987) who first noted the duality between cost and benefit parameters in

the generalized Roy model.

Our analysis is reminiscent of the Heckman (1974) model of female labor supply. In

that analysis, the econometrician observes the offered wage only for the agents who

choose to work, and the economist never observes the reservation wage of any agent.

Yet, the analysis identifies the parameters of both the offered wage equation and

the reservation wage equation by using the information that the agents’ decision to

work is governed by the relationship that the offered wage exceeds the reservation

wage.2 In our analysis, we only observe program outcomes for the agents who select

into treatment, and we observe the no treatment outcome only for the agents who

do not select into treatment. We do not observe the cost of treatment for any agent.

Yet, using the economics of the model, we are able to identify the average benefit

and average cost of treatment parameters by exploiting the agent’s decision rule of

selecting into treatment if the benefit exceeds the cost.

Our analysis is very different from an analysis using a randomized experiment to

infer treatment effects. In many common applications of randomization, it is not

possible to identify the choice probability (Heckman, 1992; Heckman and Smith,

1995). Instead of using randomization to bypass problems of self-selection, we use

the information that agents self-select into treatment to infer information on the cost

2The same methodology applies to search theory (Flinn and Heckman, 1982).
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of the treatment that could not have been recovered by a randomized experiment.

Our identification analysis applies classical exclusion restrictions that shift costs and

benefits from treatment. We use cost shifters to identify the benefit of the treat-

ment, and benefit shifters to identify the cost of the treatment.

This chapter unfolds in the following way. Section 2.2 introduces the generalized

Roy model. Section 2.2.2 reviews the average benefit of treatment parameters from

Heckman and Vytlacil (1999, 2005, 2007b), and develops and analyzes the dual cost

parameters that match the benefit parameters. Section 2.3 presents an identification

analysis of the cost and surplus parameters, based on first identifying the marginal

benefit of treatment parameter using Local Instrumental Variables (LIV) and then

exploiting the duality between cost and benefit parameters in the generalized Roy

model to identify marginal cost and surplus parameters. Section 2.3.2 extends our

analysis to allow agents to have imperfect foresight of future outcomes. In Section

2.4 we apply the analysis to the study of college-going to infer cost and benefit

parameters. Section 2.5 summarizes.

2.2 Conceptual Framework

2.2.1 Prototypical Model

Suppose there are two potential outcomes (Y0, Y1), and a choice indicator D with

D = 1 if the agent selects into treatment so that Y1 is observed and D = 0 if

the agent does not select into treatment so that Y0 is observed. Anticipating our

empirical analysis, Y1 is the annualized flow of income from college, and Y0 is the

annualized flow of income from high school. The observed outcome Y can be written

in switching regression form (Quandt, 1958, 1972)

(2.2.1) Y = DY1 + (1−D)Y0,

where E(Yj | X) = µj and

(2.2.2) Yj = µj(X) + Uj
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for j = 0, 1. X is a vector of regressors observed by the observing economist while

(U0, U1) are not. Combining equations (2.2.1) and (2.2.2),

Y = µ0(X) + {[µ1(X)− µ0(X)] + U1 − U0}D + U0.

The individual gross benefit of treatment associated with moving an otherwise iden-

tical person from zero to one is B = Y1 − Y0 and is defined as the causal effect on

Y of a ceteris paribus move from zero to one. Defining E(C | Z) = µC(Z), the

subjective cost of choosing treatment as perceived by the agent is

(2.2.3) C = µC(Z) + UC ,

where Z is an observed random vector of cost shifters and UC is an unobserved

random variable. Individuals choose treatment if the benefit from treatment is

greater than the subjective cost:

(2.2.4) D = 1 if S ≥ 0 ; D = 0 otherwise,

where S is the surplus, i.e. the net gain, from treatment:

S = (Y1 − Y0)− C

= {[µ1(X)− µ0(X)]− µC(Z)} − [UC − (U1 − U0)]

= µS(X,Z)− V

with µS(X,Z) = [µ1(X) − µ0(X)] − µC(Z) and V = UC − (U1 − U0). We do not

assume any particular functional form for the functions µ0, µ1 and µC , and we do

not assume that the distribution of U0, U1, or UC is a known parametric form. We

maintain equations (2.2.1) – (2.2.4) throughout this chapter.

The original Roy (1951) model assumes that there are no observed X regressors,

that the cost of treatment is identically zero (i.e. µC = 0, UC = 0), and that

(U0, U1) ∼ N(0,Σ). Heckman and Honore (1990) develop a nonparametric version

of the Roy model using variation in regressors and making no parametric assump-

tion on the distribution of (U0, U1). Their version of the Roy model also imposes

that the cost of treatment is identically zero. In contrast, we allow non-zero cost of
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treatment. For our identification analysis we require nondegenerate cost of treat-

ment and observed cost-shifters.

From the point of view of the economist (X,Z) is observed and (U1, U0, UC) is unob-

served. This model supposes that agents know the true gross benefit, B = Y1−Y0, of

the treatment. We extend our results to a broader class of models in which the agents

participate in the program if the expected benefits given the information available

to them is greater than their cost of treatment in Section 2.3.2. This model also

supposes that there is no other aspect of the benefit of the treatment other than

Y1 − Y0. Implicitly, any subjective benefits of the program are incorporated into

the costs of treatment, i.e. the cost function includes the subjective benefits of the

treatment. For example, if job training allows the individual to work in a job with

preferred amenities, this is modeled as a (negative) contribution to the subjective

cost of treatment. To simplify the exposition, we suppose that Z and X do not

contain any common elements. At greater notational cost, all of the analysis of this

chapter can be seen as implicitly conditioning on all common elements of X and Z.

We make the following technical assumptions:

(A-1) (U0, U1, UC) is independent of (X,Z).

(A-2) The distribution of µC(Z) conditional on X is absolutely continuous with

respect to Lebesgue measure.

(A-3) The distribution of V = UC − (U1 − U0) is absolutely continuous with re-

spect to Lebesgue measure and has a cumulative distribution function that is strictly

increasing.

(A-4) The means of E|Y1|, E|Y0| and E|C| are finite.

(A-1) assumes that (U0, U1, UC) is independent of (X,Z). Thus, D is endogenous

but other regressors in both the treatment equation and the outcome equation are

exogenous. We implicitly condition on any regressors that enter both the outcome

equations and the cost equation. Thus, this condition should be interpreted as an

independence assumption of the error terms from the unique elements of X and Z

conditional on the regressors that enter both equations. (A-2) requires that there

exists at least one continuous component of Z conditional on X. This assump-

tion will only be required for our identification analysis, and is not needed for our
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definitions or analysis of the cost and surplus parameters. (A-3) is a regularity

condition. It allows for the possibility that UC is degenerate (costs do not vary

conditional on Z) or that U1 − U0 is degenerate (treatment effects do not vary con-

ditional on X), though not both. Assumption (A-4) is needed to satisfy standard

integration conditions. It guarantees that the mean benefit and cost parameters

are well defined. An implication of our model with Assumptions (A-1) and (A-3)

is that 0 < Pr(D = 1 | X,Z) < 1 with probability one, so that there is a control

group for almost all (X,Z). Note that this restriction still allows the support of

Pr(D = 1|X,Z) to be the full unit interval.

Let P (X,Z) denote the probability of selecting into treatment given (X,Z), or

the “propensity score” P (X,Z) ≡ Pr(D = 1 | X,Z) = FV (µS(X,Z)), where

FV (·) denotes the distribution of V .3 We sometimes denote P (X,Z) by P , sup-

pressing the (X,Z) argument. We also work with US, a uniform random variable

(US ∼ Unif[0, 1]) defined by US = FV (V ). Thus different values of US denote differ-

ent quantiles of V . Given our previous assumptions, FV is strictly increasing, and

P (X,Z) is a continuous random variable conditional on X.

The generalized Roy model presented in this chapter is a special case of the model

of Heckman and Vytlacil (1999, 2005). The model of equations (2.2.1)–(2.2.4) under

assumptions (A-1)–(A-4) imply the model and assumptions of Heckman and Vytlacil

(1999, 2005). From analysis of Vytlacil (2002), the more general model is equivalent

to the conditions that justify the Local Average Treatment Effect (LATE) model

of Imbens and Angrist (1994). We impose more restrictions here. In particular,

we impose the generalized Roy model and the corresponding assumptions that will

allow us to exploit the generalized Roy model for identification of subjective cost

parameters. As in the conventional Roy model (Heckman and Sedlacek, 1985),

we assume additive separability in the outcome equations (2.2.2). This additive

separability is not required in Heckman and Vytlacil (1999, 2005), but is required

by our analysis to make additive separability in the latent index equation (2.2.4)

3We will refer to the cumulative distribution function of a random vector A by FA(·) and to
the cumulative distribution function of a random vector A conditional on random vector B
by FA|B(·). We will write the cumulative distribution function of A conditional on B = b by
FA|B(· | b).
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consistent with the generalized Roy model.4 We also assume conditions on X that

are not required by Heckman and Vytlacil (1999, 2005) to identify the gross benefit

parameters. In their analysis, they fully condition on X, and thus do not need to

assume that X is independent of the error vector. In contrast, in order to use the

generalized Roy model to recover subjective cost parameters, we require that the

unique elements X are independent of the error vector.5 We are implicitly fully

conditioning on any common elements of X and Z, and no independence condition

is required for the common elements.

2.2.2 Objects of Interest

This section defines and analyzes the benefit, cost, and surplus parameters. We

maintain the model of equations (2.2.1)–(2.2.4), and invoke assumptions (A-1) and

(A-3)–(A-4). We do not require assumption (A-2) for the definition or analysis of the

parameters, but use this assumption in the next section in our identification analysis.

Standard treatment effect analyses identify averaged parameters of the gross benefit

of treatment, B = Y1−Y0. The most commonly invoked treatment effect parameter

is the average benefit of treatment BATE(x) ≡ E(Y1 − Y0|X = x) = µ1(x)− µ0(x).

This is the effect of assigning treatment randomly to everyone of type X = x assum-

ing full compliance, and ignoring any general equilibrium effects. Another commonly

invoked parameter is the average benefit of treatment on persons who actually take

the treatment, referred to as the benefit of treatment on the treated: BTT (x) ≡
E(Y1 − Y0 | X = x,D = 1) = µ1(x)− µ0(x) + E(U1 − U0|X = x,D = 1). Heckman

and Vytlacil (1999, 2005) unify a broad class of treatment effect parameters includ-

ing the BATE(x) and BTT (x) through the marginal benefit of treatment, defined as

BMTE(x, uS) ≡ E(Y1− Y0|X = x, US = uS) = µ1(x)− µ0(x) +E(U1−U0|US = uS).

BMTE is the treatment effect parameter that conditions on the unobserved desire to

select into treatment.

4Recall again that we are implicitly conditioning on all common elements of (X,Z), so that these
need not be additively separable from the error term.

5In this respect, our analysis is broadly analogous to the identification strategies and conditions
of Yildiz and Vytlacil (2007) and Shaikh and Vytlacil (2011), who also require that there be
exogenous regressors in the outcome equation and exploit variation in such regressors for iden-
tification.
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2 Cost-Benefit Analysis of Social Programs

The conventional treatment analysis does not define, identify, or estimate any aspect

of the cost of the treatment. We define a set of cost parameters parallel to the benefit

of treatment parameters, where cost is the subjective cost as perceived by the agent.

Thus, we define the average cost of treatment, the average cost of treatment on those

treated, and the marginal cost of treatment as follows:

CATE(z) = E(C|Z = z) = µC(z)

CTT (z) = E(C|Z = z,D = 1) = µC(z) + E(UC |Z = z,D = 1)

CMTE(z, uS) = E(C|Z = z, US = uS) = µC(z) + E(UC |US = uS).

Recalling that S = B − C = µS(X,Z) − V , where µS(X,Z) = [µ1(X)− µ0(X)] −
µC(Z) and V = UC−(U1−U0), we now define the corresponding surplus parameters:

SATE(x, z) = E(S|X = x, Z = z) = µS(x, z)

STT (x, z) = E(S|X = x, Z = z,D = 1)

= µS(x, z)− E(V |X = x, Z = z,D = 1)

MTE(x, z, uS) = E(S|X = x, Z = z, US = uS) = µS(x, z)− E(V |US = uS)

With these parameters, we can now ask questions not only about the outcome change

from the treatment but also the subjective cost of the treatment and the net surplus.

Following Heckman and Vytlacil (1999, 2005), we can represent the average treat-

ment effects and treatment on the treated as averaged versions of the marginal effects

of treatment:

BATE(x) =
∫ 1

0
BMTE(x, uS)duS

BTT (x) =
∫ 1

0
BMTE(x, uS)

1−FP |X(uS |x)∫ 1
0 (1−FP |X(t|x))dt

duS.

(2.2.5)

Following the same line of argument as used by Heckman and Vytlacil (1999, 2005),

CATE(z) =
∫ 1

0
CMTE(z, uS)duS

CTT (z) =
∫ 1

0
CMTE(z, uS)

1−FP |Z(uS |z)∫ 1
0 (1−FP |Z(t|z))dt

duS,

(2.2.6)
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and

SATE(x, z) =
∫ 1

0
SMTE(x, z, uS)duS

STT (x, z) = 1
P (x,z)

∫ P (x,z)

0
SMTE(x, z, uS)duS.

(2.2.7)

We now establish some relationships among these marginal effects. First, consider

the marginal surplus parameter. Defining US = FV (V ) with FV strictly increasing,

we have that US = uS is equivalent to V = F−1
V (uS), and thus

SMTE(x, z, uS) = µS(x, z)− E
(
V |V = F−1

V (uS)
)

= µS(x, z)− F−1
V (uS).

F−1
V is strictly increasing, and thus SMTE(x, z, uS) is strictly decreasing in uS. In-

dividuals with low uS want to enter the program the most and are those with the

highest surplus from the program, while individuals with high uS want to enter the

program the least and have the smallest surplus from the program. Again using the

fact that FV is strictly increasing and that P (X,Z) = FV (µS(X,Z)), conditioning

on US = P (x, z) is equivalent to conditioning on V = µS(x, z), and thus

SMTE(x, z, P (x, z)) = µS(x, z)− E (V |V = µS(x, z)) = 0.

An individual with US = P (x, z) is an individual who is indifferent towards treat-

ment if assigned X = x, Z = z. Since SMTE(x, z, uS) is strictly decreasing in uS, we

have SMTE(x, z, uS) is positive for uS < P (x, z), = 0 at uS = P (x, z), and is negative

for uS > P (x, z). If we instead consider holding the uS evaluation point fixed and

consider how SMTE(x, z, uS) varies with (x, z), we have that SMTE(x, z, uS) will be

positive for all (x, z) such that P (x, z) > uS and will be negative for all (x, z) such

that P (x, z) < uS.

We have thus far discussed only the marginal surplus function. Using the relation-

ship SMTE(x, z, uS) = BMTE(x, u)−CMTE(z, uS), we can translate these statements

into relative statements about the marginal benefit and marginal cost functions:

BMTE(x, uS) > CMTE(z, uS) ∀ (x, z, uS) s.t. P (x, z) < uS

BMTE(x, uS) = CMTE(z, uS) ∀ (x, z, uS) s.t. P (x, z) = uS

BMTE(x, uS) < CMTE(z, uS) ∀ (x, z, uS) s.t. P (x, z) > uS.
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2 Cost-Benefit Analysis of Social Programs

The benefit and cost parameters coincide when evaluated at uS = P (x, z), because in

this case marginal cost equals the marginal benefit. The equality between marginal

benefit and marginal cost for people at the margin is used in the next session to

secure identification of cost parameters.

To fix ideas, we show the full set of marginal effects of treatment for a numerical

example in Figure 2.1. Evaluated at fixed values of the observables (X,Z), agents

select their treatment status based on gains that are not observed by the economet-

rican. This numerical example plots the marginal effect curves for fixed (x, z) such

that P (x, z) = 0.55. Individuals with (X,Z) = (x, z) and uS = P (x, z) have the

benefits of treatment just offset by the subjective cost, and so are just indifferent

as to whether they receive treatment or not. Thus, at uS = P (x, z) = 0.55, the

marginal benefit and marginal cost curves intersect, and the marginal surplus of

treatment equals zero. For uS < P (x, z), the marginal benefit curve lies above the

marginal cost curve and thus the marginal surplus curve is strictly positive, while

the opposite is true for uS > P (x, z). In this example, at uS = P (x, z), the benefit

of treatment is still positive, but so is the cost of treatment.

Figure 2.1: Marginal Effects of Treatment

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2
3

uS

M
ar

gi
na

l T
re

at
m

en
t E

ffe
ct

B−MTE(x,uS)

C−MTE(z,uS)

S−MTE(x,z,uS)

P(x, z) = 0.55

50



2.2 Conceptual Framework

This example is constructed to have intuitive properties, with the marginal bene-

fit of treatment BMTE(x, uS) decreasing in uS and the marginal cost of treatment

CMTE(z, uS) increasing in uS. Agents with the greatest unobserved desire to se-

lect into treatment not only have higher benefits, but also have lower costs. These

properties, while intuitive, need not hold in general – individuals with lower values

of uS (and thus greater unobserved desire to take treatment) must necessarily have

higher net surplus than those with higher values of US, but they need not have

higher benefits and lower costs. It is possible, for example, that benefits and costs

are positively correlated. In that case, those with the greatest unobserved desire to

participate have the least benefit but also the least costs with costs so low as to off-

set their low benefit. Alternatively, they have the highest costs but also the highest

benefits with benefits so high as to offset their high costs. However, we show below

that the intuitive properties that BMTE(x, uS) is decreasing in uS and CMTE(z, uS)

is increasing in uS will hold under additional conditions.

Remark 1. Consider some special cases. If benefits do not vary across individuals

conditional on X, i.e. if U1 − U0 is degenerate, than BMTE(x, uS) = BATE(x) =

BTT (x). In addition, if U1 − U0 is degenerate, this implies that V = UC and

US = FUC
(UC) so that

CMTE(z, uS) = µC(z) + E(UC |US = uS)

= µC(z) + E(UC |UC = F−1
UC

(uS)) = µC(z) + F−1
UC

(uS)

which is increasing in uS. In this case, variation in unobserved costs drives selection

conditional on (X,Z) and those who most want to enter the program (have the

lowest US) have the least cost of treatment. Using equation (2.2.6) and the fact

that CMTE(z, uS) is increasing in uS, it follows that CTT (z) < CATE(z) so that,

conditional on Z, those who chose treatment have a lower cost of treatment than

those who did not select into treatment. Symmetrically, if costs do not vary across

individuals conditional on Z, i.e. if UC is degenerate, then heterogeneity in the

benefits of treatment drive selection and (1) CMTE(x, uS) = CATE(x) = CTT (x);

(2) BMTE(x, uS) is decreasing in uS; and (3) BTT (x) > BATE(x).

The marginal surplus parameter is highest for those who most want to participate

in the program. Using equation (2.2.7) we thus have that the average surplus among
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2 Cost-Benefit Analysis of Social Programs

the treated is higher than the unconditional average surplus of treatment. As dis-

cussed in Remark 1, degeneracy of either U1 − U0 or of UC implies that treatment

parameters and cost parameters will have intuitive properties, such as highest ben-

efit or lowest cost for those who most want to participate in the program. We now

show a more general set of conditions under which these properties of the treatment

effect parameters will hold.

Theorem 1. Assume that equations (2.2.1)–(2.2.4) and our assumptions (A-1)–

(A-4) hold.

1. STT (x) > SATE(x), and SMTE(x, uS) is monotonically decreasing in uS.

2. Suppose that UC ⊥⊥ U1 − U0. Then CTT (z) ≤ CATE(z), BTT (x) ≥ BATE(x).

3. Suppose that UC ⊥⊥ U1 − U0, and that UC and U1 − U0 have log concave den-

sities. Then CMTE(z, uS) is monotonically increasing in uS and BMTE(x, uS)

is monotonically decreasing in uS. �

For proof, see Appendix A

The theorem provides intuitive results. If the unobservables related to the cost and

benefit are independent, then the average benefit among those who select into treat-

ment is larger than the unconditional average benefit. At the same time, the average

cost among those who select into treatment is lower than the unconditional average

cost. In other words, under independence of the unobservables related to benefits

and costs, it is the high benefit and low cost individuals who select into treatment

in the generalized Roy model. Parts (2) and (3) of the theorem state that, under

a regularity condition, the expected gain is decreasing while the expected cost is

increasing in US. Note that the normal density as well as many other standard

densities are log concave.6

The numerical example previously introduced in Figure 2.1 is based on unobserved

variables drawn from a normal distribution with unobservable benefits (U1 − U0)

6Heckman and Honore (1990) exploit the restriction of log-concave density functions for the
disturbance terms in a Roy model with zero costs. See Bagnoli and Bergstrom (2005) for a
review of log concave densities and economic applications.
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independent of the observable component of cost UC . The marginal effects of treat-

ment exhibit the shape predicted by Theorem 1, part (3). The BMTE(x, uS) is

decreasing in uS, while the opposite is true for CMTE(z, uS).

2.3 Identification Analysis

2.3.1 General Case

Heckman and Vytlacil (1999, 2005) establish that local instrumental variables (LIV)

identify the marginal benefit of treatment:

(2.3.1)
∂

∂p
E(Y |X = x, P = p) = BMTE(x, p).

We can identify E(Y |X = x, P = p) and its derivative for all (x, p) ∈ Supp(X,P ),

where Supp(X,P ) denotes the support of (X,P (X,Z)).7 We thus have identifica-

tion of BMTE(x, uS) for all values of (x, uS) ∈ Supp(X,P ). For a fixed x, we can

identify BMTE(x, uS) for uS ∈ Supp(P |X = x). The more variation in propen-

sity scores p conditional on X = x, the larger the set of evaluation points uS for

which we identify BMTE(x, uS). Variation in propensity scores conditional on X is

driven by variation in Z, the cost shifters. Thus, if we observe regressors that pro-

duce large variations in costs, we will be able to identify BMTE(x, uS) on a larger set.

We can identify BATE(x) and BTT (x) by identifying BMTE(x, uS) over the appro-

priate support and then integrating the latter with the appropriate weights. By

equation (2.2.5), we identify BATE(x) if Supp(P |X = x) = [0, 1]. For fixed X = x,

this requires that there be enough variation in the cost shifters Z to drive the prob-

abilities P (x, Z) all the way to zero and to one. In other words, holding fixed the

regressors that enter the outcome equation, we must observe costs shifters such that

conditional on some values of those cost shifters, the cost to the agent is so low

that the agent will select into treatment with probability one, and conditional on

other values of the cost shifters, the cost to the agent is so high that the agent

7For any random vectors A and B, we will write the support of the distribution of A as Supp(A),
and the support of distribution of A conditional on B = b as Supp(A|B = b).
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will select into treatment with probability zero. Likewise, we identify BTT (x) if

Supp(P |X = x) = [0, pmaxx ] where pmaxx is the supremum of Supp(P |X = x). This

support requirement in turn requires that, for fixed X = x, there be enough varia-

tion in the cost shifters Z to drive the selection probability to zero.8

Using equation (2.3.1) and the relationship for people on the margin of choice that

BMTE(x, P (x, z)) = CMTE(z, P (x, z)), we have

∂

∂p
E(Y |X = x, P = p)

∣∣
p=P (x,z)

= CMTE(z, P (x, z)).

Using this relationship, we identify CMTE(z, uS) for all values of (z, uS) ∈ Supp(Z, P ).

We thus identify the marginal cost parameter without direct information on the cost

of treatment by using the structure of the Roy model and by identifying the marginal

benefit of treatment for individuals at the margin of participation. For a fixed z, we

identify CMTE(z, uS) for uS ∈ Supp(P |Z = z). The more variation in propensity

scores conditional on Z = z, the larger the set of evaluation points for which we

identify CMTE(z, uS). Variation in propensity scores conditional on Z = z is driven

by variation in X, the regressors that drive the outcome. Thus, if we observe regres-

sors that cause large variations in benefits, we will be able to identify CMTE(z, uS)

at a larger set of uS evaluation points. In contrast, if there are no X regressors,

then P only depends on Z and we can only identify CMTE(z, uS) for uS = P (z).

From equation (2.2.6), we can identify CATE(x) if Supp(P |Z = z) = [0, 1]. This

requires, for fixed Z = z, for there to be enough variation in the outcome shifters X

to drive the probabilities P (X,Z) all the way to zero and to one. In other words,

holding fixed the regressors that enter the cost equation, we must observe outcome

shifters such that conditional on some values of those outcome shifters, the benefit

to the agent is so high that the agent will select into treatment with probability

one; conditional on other values of the outcome shifters, the benefit to the agent

is so low that the agent will select into treatment with probability zero. Likewise,

we identify CTT (x) if Supp(P |Z = z) = [0, pmaxz ] where pmaxz is the supremum of

8As shown by Heckman and Vytlacil (2001a), we can identify BATE(x) and BTT (x) under weaker
conditions than those required to follow this strategy of first identifying BMTE(x, u) over the
appropriate support.
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Supp(P |Z = z). This support requirement in turn requires that, for fixed Z = z,

there is enough variation in the outcome shifters X to drive the probabilities to zero.

Finally, consider identification of the surplus parameters. Using that SMTE(x, z, uS) =

BMTE(x, uS)−CMTE(z, uS), we identify the marginal surplus parameter at (x, z, uS)

such that (x, uS) ∈ Supp(X,P ) and (z, uS) ∈ Supp(Z, P ). By equation (2.2.7), we

can integrate SMTE(x, z, uS) using the appropriate weights to identify SATE(x, z)

and STT (x, z) under the appropriate support conditions. For example, we identify

SATE(x, z) if Supp(P |X = x) = [0, 1] and Supp(P |Z = z) = [0, 1].

Thus, for identification of the benefit parameters we need sufficient variation in cost

shifters conditional on the outcome shifters. For identification of the cost param-

eters, we need sufficient variation in the outcome shifters conditional on the cost

shifters. For identification of the surplus parameters we need sufficient variation in

both sets of regressors. We can thus identify the marginal cost, the average cost,

and the cost of treatment on the treated parameters without direct information on

the cost of treatment. Consequently, we can also identify the corresponding surplus

parameters as well. Our ability to do so is directly related to the extent of variation

in observed regressors that shift the benefit of the treatment.

We summarize our discussion in the form of a theorem:

Theorem 2. Assume that equations (2.2.1)–(2.2.4) and our assumptions (A-1)–

(A-4) hold.

1. BMTE(x, uS) is identified for (x, uS) ∈ Supp(X,P ); CMTE(z, uS) is identified

for (z, uS) ∈ Supp(Z, P ); and SMTE(x, z, uS) is identified for (x, z, uS) such

that (x, uS) ∈ Supp(X,P ) and (z, uS) ∈ Supp(Z, P ).

2. BATE(x) is identified if Supp(P |X = x) = [0, 1]; CATE(z) is identified if

Supp(P |Z = z) = [0, 1]; SATE(x, z) is identified if Supp(P |X = x) = [0, 1] and

Supp(P |Z = z) = [0, 1].

3. BTT (x) is identified if Supp(P |X = x) = [0, pmaxx ]; CTT (z) is identified if

if Supp(P |Z = z) = [0, pmaxz ]; STT(x, z) is identified if Supp(P |X = x) =
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[0, pmaxx ] and Supp(P |Z = z) = [0, pmaxz ].

Remark 2. As discussed in Remark 1, if there is no unobserved heterogeneity in

costs of treatment, UC = 0, then CMTE(z, uS) = CTT (z) = CATE(z). In the case of

no unobserved heterogeneity in costs of treatment, we identify the cost of treatment

on the treated and average cost parameters without the additional support condi-

tions. Likewise, if there is no unobserved heterogeneity in the treatment effects,

U1 − U0 = 0, we have BMTE(z, uS) = BTT (z) = BATE(z) and can thus identify all

of the treatment effect parameters without additional support conditions.

We have thus far considered identification of BATE(x) = µ1(X) − µ0(X), and of

CATE(z) = µC(z). We can identify µ1(X)− µ0(X) and µC(z) up to a location shift

under slightly weaker conditions than those required to fully identify the functions.

From the analysis of the previous section, we identify BMTE(x, p) = µ1(x)−µ0(x)+

E(U1−U0|US = p). By varying x and holding p constant, we trace out µ1(x)−µ0(x)

up to an additive constant. Likewise, consider CMTE(z, p) = µC(z)+E(UC |US = p).

By varying z and holding p fixed for the marginal cost parameter, we identify µC(z)

up to an additive constant. Given the preceding identification analysis, we can

identify BMTE(x, p) over x ∈ Supp(X|P = p) and CMTE(z, p) over z ∈ Supp(Z|P =

p), but not over the unconditional supports of X and Z. Thus, we have identification

of shifts in µ1(x)−µ0(x) for x ∈ Supp(X|P = p) and of µC(z) for z ∈ Supp(Z|P = p)

for some p ∈ Supp(P ). We do not identify µC(z0)−µC(z1) if there does not exist a p

such that z0, z1 ∈ Supp(Z|P = p). However, given a rank condition, we can combine

information across different values of p to identify µC(z) and µ1(x) − µ0(x) up to

an additive constant for all z and x in their unconditional supports. In particular,

consider the following rank assumption:

(A-5) X and P (X,Z) are measurably separated, i.e., any function of X that almost

surely equals a function of P (X,Z) must be almost surely equal to a constant.

Theorem 3. Assume that equations (2.2.1)–(2.2.4) and our assumptions (A-1)–(A-

5) hold. Then µC(·) is identified over the support of Z up to an additive constant,

and µ1(·)− µ0(·) is identified over the support of X up to an additive constant. �
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For proof, see Appendix A

Measurable separability between X and P is a rank condition. As discussed by

Florens et al. (2008), measurable separability is a relatively weak regularity condi-

tion in this context. See their paper for more discussion of this condition, including

sufficient conditions for measurable separability.

Finally, we consider testable implications of E(Y |X = x, P = p) as a function of p

that result from additional restrictions including those considered in Theorem 1.

Theorem 4. Assume that equations (2.2.1)–(2.2.4) and (2.2.4) and our assump-

tions (A-1)–(A-4) hold.

1. Suppose that U1 − U0 is degenerate. Then E(Y |X = x, P = p) is linear in p.

2. Suppose U1 − U0 ⊥⊥ UC. For a fixed x, consider a line a(x) + b(x)p, where

a(x) = E(Y |X = x, P (X,Z) = 0) and b(x) = E(Y |X = x, P (X,Z) = 1) −
E(Y |X = x, P (X,Z) = 0). Then E(Y |X = x, P (X,Z) = p) ≥ a(x) + b(x)p

for all p ∈Supp(P |X = x).

3. Suppose U1−U0 ⊥⊥ UC, and suppose U1−U0 and UC have log concave densities.

Then E(Y |X = x, P (X,Z) = p) is a concave function of p. �

For proof, see Appendix A.

We now return to our numerical example. Recall that the unobservables in the

numerical example are all normal but independently distributed, Figure 2.2 de-

picts the corresponding E (Y |X = x, P (X,Z) = p ). As predicted by Theorem 4,

E (Y |X = x, P (X,Z) = p ) is a concave function of p in this example. This is a

direct consequence of the fact that those agents with a high propensity of treatment

(low values of uS) have the highest gains even after conditioning on observables. As

p increases, the share of individuals participating increases constantly, but at the

same time the gain for agents at the margin decreases. Individuals with high values

of V , who enter treatment only for high values of p, have the least to gain from

treatment.
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Figure 2.2: Testable Implication
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2.3.2 Limited Information

Our analysis thus far has assumed choice equation (2.2.4), that D = 1[S ≥ 0] where

S = (Y1−Y0)−C. This implicitly assumes that agents have perfect foresight of their

gross individual benefit of treatment B = Y1 − Y0 as well as cost C. In this section,

we relax the choice model of equation (2.2.4) to allow limited information on the

part of the agents, while maintaining the model for latent outcomes (Y0, Y1) and cost

C of equations (2.2.2) and (2.2.3). We assume that agents form valid expectations

of their outcomes and costs given the information that they have at the time of

their treatment choice and that they select into treatment if the expected surplus

is positive. We allow agents to know only some elements of (X,Z), and to possibly

have incomplete knowledge of (U0, U1, UC) and thus of their own idiosyncratic ben-

efit and cost of treatment. We now show that the preceding analysis goes through

with minor modifications, though it is now important to distinguish conditioning

sets: what is known to the agent at the time of treatment choice (which might

include some information not known to the econometrician), what is known to the

econometrician (which might include some information not known to the agent at

the time of treatment choice), and what is realized ex post. The essential change

in our procedure in the case of incomplete information is that the marginal benefit
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of treatment identified by LIV must be projected onto the information set when

selecting treatment to form the expected marginal benefit of treatment conditional

on the information available to the agent. It is this coarsened version of BMTE that

is used to identify the marginal cost parameter. In addition, only components of X

that are known to the agent at the time of treatment choice can aid in identifica-

tion of the cost parameters. The exclusion restrictions for identification of the cost

parameter are variables in X that are not in Z and that were known to the agent

at the time of treatment selection.

Let (XI , Z) denote components of (X,Z) that are observed by the agent when

choosing whether to select into treatment.9 Suppose that the agent’s information

set equals (XI , Z, UI).
10 UI is the private information of the agent relevant to their

own benefits and cost of treatment, and it is not observed by the econometrician.

We restate assumption (A-1) in the following way:

(A-6) (U0, U1, UC , UI) is independent of (X,Z), and X is independent of Z condi-

tional on XI .

Assumption (A-6) imposes the requirement that the private information of the agent

is independent of the observed regressors. Note that, under this independence as-

sumption

(U0, U1, UC , UI) ⊥⊥ (XI , Z)

and

E(V |X,Z, UI) = E(V |XI , Z, UI) = E(V |UI),

using the definition V = UC − (U1 − U0). Assumption (A-6) implies that (X,Z) ⊥

9We are assuming that agents know all components of Z, while allowing the agents to be ignorant
of some components ofX, as this restriction simplifies our notation and conforms to our empirical
example of Section 2.4. The analysis directly extends (at the cost of somewhat more cumbersome
notation) to allow agents to know only a subvector of Z as well as only a subvector of X at the
time of selection into treatment.

10In other words, the information set of the agent equals σ(X,Z,UI), the sigma-algebra generated
by (X,Z,UI).
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⊥ UI | (XI , Z), so that UI does not help the agent predict elements of (X,Z) that

are not contained in (XI , Z). Thus, we allow the agents to have private information

about their own idiosyncratic benefits (U1 − U0) and costs UC , though we invoke

the restriction that the agents only know (XI , Z). Furthermore, Assumption (A-6)

requires that, conditional on the components of X known to the agent at the time of

selecting into treatment, Z does not help to predict those elements of X not known

at the time of treatment selection. This restriction is only imposed for notational

convenience and can be easily relaxed.

We restate assumption (A-3) as:

(A-7) The distribution of Ṽ = E(V |UI) is absolutely continuous with respect to

Lebesgue measure, and the cumulative distribution function of Ṽ is strictly increas-

ing.

An implication of (A-7) is that E(V |UI) is a nondegenerate random variable, and

thus that agents have some nontrivial information on their own idiosyncratic cost or

benefit from treatment when deciding whether to select into treatment. We main-

tain assumptions (A-2) and (A-4) as before.

Define µIj (XI) = E(Yj|XI) for j = 0, 1, and µIC(Z) = E(C|Z), and note that

given our independence assumptions and the law of iterated expectations, µIj (XI) =

E(µj(X)|XI), µ
I
C(Z) = E(µC(Z)|Z). Define µIS(XI , Z) = E(S|XI , Z). Under our

assumptions,

E(S|XI , Z, UI) = µIS(XI , Z)− Ṽ = µI1(XI)− µI0(XI)− µIC(Z)− Ṽ .

The previous decision rule under perfect certainty, equation (2.2.4), is now replaced

with

(2.3.2) D = 1 if E(S|XI , Z, UI) ≥ 0 ; D = 0 otherwise,

where E(S|XI , Z, UI) is the expected surplus from treatment, with the expectation

conditional on the agents information set. We thus have

D = 1[µIS(XI , Z)− Ṽ ≥ 0],
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where our independence assumptions imply Ṽ ⊥⊥ (XI , Z), and thus the selection

model is of the same form as that used by Heckman and Vytlacil (1999), which

allows us to use LIV to identify BMTE. Redefining US = FṼ (Ṽ ) and P (XI , Z) =

Pr[D = 1|XI , Z] = FṼ (µIS(XI , Z)), we have

D = 1[P (XI , Z)− US ≥ 0],

with US distributed unit uniform and independent of (X,Z) and thus independent

of (XI , Z).

Define BMTE
I (xI , uS) ≡ E(Y1 − Y0|XI = xI , US = uS), CMTE

I (z, uS) ≡ E(C|Z =

z, US = uS), and SMTE
I (xI , z, uS) ≡ BMTE

I (xI , uS) − CMTE
I (z, uS), the marginal

benefit, cost, and net surplus of treatment conditional on the agent’s information set,

where again by the law of iterated expectations and our independence assumptions

BMTE
I (xI , uS) = E(BMTE(X, uS)|XI = xI , US = uS)

= E(BMTE(X, uS)|XI = xI)

CMTE
I (z, uS) = E(CMTE(Z, uS)|Z = z, US = uS)

= E(CMTE(Z, uS)|Z = z).

Evaluating SMTE
I (xI , z, uS) at uS = P (xI , z), we obtain

SMTE
I (xI , z, P (xI , z)) = µIS(xI , z)− E(V |US = P (xI , z))

= µIS(xI , z)− E(V |Ṽ = µIS(xI , z))

= µIS(xI , z)− E(V |E(V |UI) = µIS(xI , z))

= µIS(xI , z)− E(E(V |UI)|E(V |UI) = µIS(xI , z))

= µIS(xI , z)− µIS(xI , z)

= 0,

where the second equality is obtained by plugging in the definition of US, the third

equality is obtained by plugging in the definition of Ṽ , and the fourth equality

is obtained using the law of iterated expectations and the fact that E(V |UI) is

degenerate given UI . Since SMTE
I (xI , z, uS) = BMTE

I (xI , uS) − CMTE
I (z, uS), we
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have

BMTE
I (xI , uS) = CMTE

I (z, uS) for uS such that uS = P (xI , z).

Thus, identification ofBMTE
I (xI , P (xI , z)) provides identification of CMTE

I (z, P (xI , z)).

Since our model is a special case of Heckman and Vytlacil (1999), we can follow them

in using LIV to identify BMTE(x, uS) for (x, uS) in the support of (X,P (XI , Z)). It is

important to note that LIV does not identify the BMTE that is relevant to the agent’s

decision problem. LIV identifies BMTE(x, uS) = E(Y1 − Y0|X = x, US = uS), not

BMTE
I (xI , uS) = E(Y1 − Y0|XI = xI , US = uS). However, we can project the BMTE

identified by LIV on the information known to the agent at the time of treatment

selection and coarsen the set used to define and identify BMTE, to identify the

BMTE
I relevant to the agent’s decision problem. It is the latter that is relevant for

identifying cost. By the law of iterated expectations (and using that XI is degenerate

given X and that UI is independent of X), we obtain

(2.3.3)

BMTE
I (xI , uS) = E(BMTE(X, uS)|XI = xI) =

∫
BMTE(x, uS)dFX(x|XI = xI),

where FX(·|XI = xI) is the cumulative distribution function of X conditional

on XI = xI . We directly identify FX(·|XI = xI), and thus obtain identifica-

tion of BMTE(x, uS) for all x ∈ Supp(X|XI = xI) which in turn implies identi-

fication of BMTE
I (xI , uS). Since, for a given x, we identify BMTE(x, uS) if uS ∈

Supp(P (XI , Z)|X = x), we thus identify BMTE
I (xI , uS) if

uS ∈
⋂

x∈Supp(X|XI=xI)

Supp(P (XI , Z)|X = x).

In other words, to identify ex ante BMTE
I (xI , uS), we need to identify ex post

BMTE(x, uS) for every value x that X can take given XI = xI , and thus we need

for uS to be an element of Supp(P (XI , Z)|X = x) for each value x that X can take

given XI = xI . However, using the fact that XI is a subvector of X and indepen-

dence Assumption (A-6), it follows that Supp(P (XI , Z)|X) = Supp(P (XI , Z)|XI),

and thus using equation 2.3.3 we identify BMTE
I (xI , uS) for (xI , uS) in the support
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of (XI , P (XI , Z)). Using the fact that BMTE
I (xI , P (xI , z)) = CMTE

I (z, P (xI , z)),

we identify CMTE
I (z, uS) for (z, uS) in the support of (Z, P (XI , Z)). We have thus

identified the marginal cost parameter, and can integrate it to obtain other cost

parameters. We can also combine it with the benefit parameters to identify net

surplus parameters as before. The only elements of X that are useful for identifying

the cost parameters are those elements which are known to the agent at the time of

selection into treatment.

2.4 Empirical Illustration

2.4.1 Data and Estimation Strategy

Carneiro et al. (2011) estimate the marginal benefit of attending college for a sample

of white males from the National Longitudinal Survey of Youth of 1979 (NLSY). We

extend their analysis and apply our methodology to estimate the cost and surplus

of attending college for the same sample and specification. In particular, follow-

ing Carneiro et al. (2011), we separate individuals into two groups: persons with

no college (D = 0) and persons with at least some college (D = 1). The outcome

variable is the natural logarithm of the mean non-missing values of the hourly wage

between 1989 and 1993. Schooling is measured in 1991 when individuals are between

28 and 34 years of age. To complete the setup of the generalized Roy model pre-

sented in Section 2.2, we need to specify the observed regressors that determine an

agent’s expected benefit and cost of treatment. The outcome equation contains all

variable that determine the ex post benefits of treatment. For the choice equation,

we specify the observed variables that are known to the agent at the time of the

treatment decision and that affect either the (ex ante) benefits or costs of treatment.

Table 2.1 provides a full account of the observed variables used in our empirical anal-

ysis. We highlight two types of exclusion restrictions. To identify the BMTE(x, uS),

we require cost-shifters that are excluded from the outcome equations and thus

do not affect the benefits of treatment. Short-run fluctuations in local labor mar-

ket conditions at the time of the educational decision shift the opportunity cost of

schooling, but do not directly affect future wages given permanent local labor mar-

ket conditions. We also include tuition cost and distance to college as shifters that
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2.4 Empirical Illustration

affect the direct cost of going to college. These variables enter the selection equation

but are excluded from the outcome equations. To identify CMTE
I (z, uS), we require

access to variables that shift the benefit of treatment and are known to the agent

at the time of selection but do not affect the cost of treatment. For this, we use

information on the long-run labor market conditions in the location of residence in

adolescence. Again, as we condition on current labor market conditions at the time

of treatment, these regressors should affect the schooling decision only through their

direct affect on future wages.

In addition, three variables are included in the outcome equations but not the se-

lection equation because they are not in the individual’s information set at the time

of the college attendance decision. These are as follows: years of experience, earn-

ings in the county of residence, and unemployment in the state of residence. All

are measured in 1991, which is approximately 12 years after the agents’ schooling

decision is taken. We condition on earlier values of these variables in the selection

equation. With this specification, we follow the analysis of Section 2.3.2 and allow

agents to have imperfect foresight about future benefits. They only pursue a higher

education, if their expected benefits exceed the cost.

As common elements (observables affecting benefits as well as cost of treatment)

we include the Armed Forces Qualifying Test (AFQT) scores, mother’s education,

number of siblings, as well as dummy variables indicating urban residence at age

14, and cohort dummies. However, in what follows we keep this set of observables

in the background to ease notation. Thus X continues to denote the variables that

shift the outcome equations (thus the benefit of treatment) but are excluded from

the cost equation. The opposite is true for Z. XI denotes the subvector of X that is

known to the agent at the time of the decision of whether or not to attend college.

Additional information about the data is provided in Appendix B.

Throughout we impose full independence between all observables and unobservables

(U1, U0, UC) of the model, and specify a linear-in-parameters version of the general-
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2 Cost-Benefit Analysis of Social Programs

ized Roy model:

Y1 = Xβ1 + U1

Y0 = Xβ0 + U0

D = I [XI(α1 − α0)− Zδ > UC − (U1 − U0)] .

Note that (β1 − β0) is potentially different from (α1 − α0) as XI not only affects

the returns to education directly, but also helps to predict the ex post realization of

X \XI . However, we impose E [X(β1 − β0) | XI ] = XI(α1 − α0), thus agents form

valid expectations about their outcomes. We present annualized returns to educa-

tion, obtained by dividing our estimates by four which is the average difference in

years of schooling between those with D = 1 and those with D = 0.

We implement the semiparametric LIV approach proposed in Heckman et al. (2006b).

Given the remaining set of assumptions, the ex post benefit of treatment is given

by BMTE(x, uS) = x(β1 − β0) + E [U1 − U0 | US = uS]. We estimate E [Y | X,P ] =

Xβ0 + PX(β1 − β0) + K(P ) and take its derivative with respect to P . We apply

the partially linear regression method of Robinson (1988) to get an estimate for

(β1, β0). K(·) is estimated using locally quadratic regression. We then project the

estimate for the BMTE(x, uS) on the information set of the agent and use the result-

ing estimate of (α1 − α0) as the scale normalization for the estimation of a Probit

selection model to back out the corresponding marginal surplus and cost parameters.

Throughout, we assume that (U1, U0, UC) is independent of (X,Z). One important

consequence of imposing this assumption is that the marginal effects of treatment

are identified over the marginal support of P (XI , Z). In our sample the range of

support of P (XI , Z) is between 0.03 and 0.97 and does not cover the full unit inter-

val. Thus, the conventional average effect parameters like the ATE are not identified

in our data without additional parametric assumptions.

2.4.2 Results

Figure 2.3 presents our results for the ex ante marginal benefit, marginal cost, and

marginal surplus parameters. We plot them as a function of us and evaluate them
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at the sample mean of (XI , Z).

Figure 2.3: Marginal Effects of Treatment
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Individuals with a high unobserved desire for treatment (low uS) have the highest

surplus and highest benefits from treatment participation. The estimated surplus

is strongly positive for low values of uS and drops rapidly to be strongly negative

for high values of uS. The marginal benefits of treatment range from +43% to

−28% and are strictly decreasing along the margins of V . For the marginal cost,

the picture is more mixed. They are positive across the whole range of V and range

from 1% to 12%. Moving along us, they increase at first and then decline midrange

before picking up again for high values of us. They are highest for those least likely

to pursue a higher education.

Given our point of evaluation, the individuals at the margin are uS = P (xI , z) =

0.49. Individuals at this quantile of V are just indifferent towards treatment. Their

surplus is zero, as benefits are just offset by the cost incurred from participating.

67



2 Cost-Benefit Analysis of Social Programs

2.5 Conclusion

Building on the pioneering analysis of Björklund and Moffitt (1987) this chapter

extends the analysis of the marginal effects of treatment by Heckman and Vytlacil

(1999, 2005, 2007b) using the marginal benefit of treatment BMTE to identify the

subjective cost and surplus of treatment. We consider costs with perfect and imper-

fect foresight. An analysis of college going finds unobserved heterogeneity in both

the benefits and costs of attending college, with agents selecting into college based

on their idiosyncratic expected benefit and perceived cost of attending college. We

find more heterogeneity in benefits than in subjective cost. Thus the variability in

perceived benefits drives college attendance more than the variability in the expected

costs.
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3.1 Introduction

Econometric policy evaluation informs policy makers about the performance of al-

ternative policy interventions. Its findings influence decisions on whether to continue

or abolish a given program. However, exploiting possible effect heterogeneity allows

to improve the current implementation of a program even without an augmentation

of resources. Average outcomes are already affected by their mere reallocation.

Such considerations are particularly policy relevant in the context of active labor

market programs (ALMP). This is true for several reasons. First, some unemployed

seem to benefit more from treatment than others (Heckman et al., 1999a). Second,

the role of resource constraints is particularly evident due to the large pool of the

unemployed. Third, there are multiple competing approaches, and policy makers

exercise considerable control over the assignment process of the unemployed to the

numerous programs. And fourth, these programs consume a considerable amount

of public funds, are subject to a high level of scrutiny, and feature prominently in

the public debate.

In this chapter, we contribute to the empirical literature on optimal treatment as-

signment of active labor market programs. This literature predicts agents’ outcomes

This chapter profited greatly from comments by James Heckman, Markus Frölich, Andrea We-
ber, Bernd Fitzenberger, Gesine Stephan, Christian Goldammer, Bryan Graham, Jens Mohren-
weiser, Thomas Walter, Holger Stichnoth, Arne Uhlendorff, Stephan L. Thomsen, Steffen Rein-
hold, Stephan Dlugosz, and Hans-Martin von Gaudecker. I thank George Yates and Ben
Skrainka for their advice regarding the computational implementation.

69



3 Optimal Treatment Reallocation

under alternative treatments and counterfactually assigns them according to some

rule. The goal is to compare average benefits between the current and the coun-

terfactual assignment to investigate possible improvements in the efficiency of such

programs by the adoption of alternative assignment rules. Prominent examples in-

clude Lechner and Smith (2007), Staghoej et al. (2010), and the works by Eberts

et al. (2002) and OECD (2002, 1998).

We extend this literature by explicitly linking the assignment mechanism to a cri-

terion of optimality while addressing the presence of resource constraints. These

constraints can take various forms. In the short run, the number of treatment slots

is fixed due to local supply constraints or contractual agreements. In the long run,

budget constraints matter. In this chapter, we focus on short run constraints and

take the number of treatment slots as fixed throughout. When this is the case and

there are multiple competing treatments, then the determination of an optimal as-

signment with respect to a specified criterion is a multidimensional task. Hence,

these constraints fundamentally change the complexity of the assignment problem

as not all agents can be assigned their first best.

We illustrate the relevance of our extensions with an application to the National

Evaluation of Welfare-to-Work Strategies (NEWWS) dataset. NEWWS was an

evaluation of welfare-to-work job training programs in the United States, where two

competing strategies were implemented to determine their relative effectiveness. One

strategy, called human capital development (HCD), focused on basic education and

vocational skills training. The other strategy, labor force attachment (LFA), focused

on job search and quickly finding employment, even at reduced wages. The program

was evaluated by randomized assignment. These results provide us the benchmark

for a comparison against alternative assignment rules.

To preview our main findings, we establish that the selected assignment mechanism

has a significant effect on the scale of the program, its overall impact, and the rel-

ative effectiveness of the HCD and LFA approach. However, all these performance

measures are affected by the choice of the objective function and its implementation.

Resource constraints and limited information by policy makers restrict the feasible

improvements by targeted treatment assignments. Finally, at least in small sam-
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ples, uncertainty about the impact of an LFA or HCD assignment prohibits general

statements regarding the relative performance of alternative assignment algorithms.

Our results confirm that the choice of the assignment mechanism is a powerful

component of an optimal policy design. However, our considerations of resource

constraints and limited information point to important caveats in the context of

active labor market programs.

The plan of this chapter is as follows. Section 3.2 presents our conceptual framework

to explore reallocation policies and links them to the econometrics of policy evalua-

tion. We also discuss reallocation parameters and contrast them to the conventional

treatment effect parameters. Section 3.3 provides a brief review of the related liter-

ature. In Section 3.4, we develop our empirical illustration. Section 3.5 summarizes

our existing work, states its limitations, and previews our future research.

3.2 Conceptual Framework

We start by presenting our conceptual framework. We establish the required nota-

tion, discuss the role of assignment mechanisms for the efficiency of social programs,

and define the objects of interest. We contrast the conventional treatment effects to

reallocation effects by linking both parameters to the policy questions they address.

We follow the notation established in Heckman and Vytlacil (2007a) closely. Let Ω

denote the set of agents ω ∈ Ω and S the set of possible treatments with elements

s ∈ S. We define the outcome for agent ω receiving treatment s as Y (s, ω). The

Y (s, ω) are objective outcomes realized after treatment is selected. In principle,

agent ω could participate in any of the programs in S. Thus, we obtain a collection

of potential outcomes {Y (s, ω)}s∈S for each agent ω. Y (s0, ω) may be the outcome

for agent ω in the absence of any treatment participation, while Y (s1, ω) is the

outcome in treatment state s1. We refer to the mechanisms that allocate agents ω

to treatment s as τ : Ω → S and collect them in T . Applying mechanism τ to the

population Ω results in the allocation α ∈ A. Let Dτ (s, ω) take value one if agent

ω is assigned to treatment s ∈ S under mechanism τ and zero otherwise. Then, the
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observed outcome Y (ω) of agent ω is defined as

Y (ω) =
∑
s∈S

Dτ (s, ω)Y (s, ω).

For each program s there are d̄s slots available. So, the following inequality must

hold for each allocation α resulting from assignment mechanism τ

∑
ω∈Ω

Dτ (s, ω) ≤ d̄s ∀ s ∈ S.

In our setting of active labor market programs, the set of agents corresponds to

a population of unemployed who are potentially subject to alternative treatments

such as job search assistance or public employment. The outcome refers to subse-

quent measures of labor market success, e.g. time unemployed or earnings in the

next job. Possible assignment mechanisms that match agents to programs include

random assignment, caseworker discretion, or self-selection.

Policy relevance of our analysis requires not only that there is treatment effect het-

erogeneity and that resources are scarce, but also that the allocation can be affected

by policy makers. This is true in a variety of settings, but to varying degrees. Often,

this ability is only indirect by affecting the incentives faced by agents when making

their decisions, e.g. in education policy with tuition subsidies. However, in the case

of active labor market programs, policy makers can directly assign the unemployed

into different programs.

Figure 3.1 illustrates the role of alternative assignment mechanisms in matching

agents to alternative treatments. We consider a pool of four unemployed {ωi}i=1,..,4,

four alternative treatments {sj}j=1,..,4, and three alternative assignment mechanisms

{τ ′, τ ′′, τ ′′′}. There are four treatment slots available: job application training (s1),

job training program (s2), subsidized public employment (s3), and job search assis-

tance (s4). The program slots are matched to agents either by random assignment

(τ ′), by caseworker discretion (τ ′′), or by self-selection (τ ′′′).

Under random assignment (τ ′), ω1 receives a job application training, while ω2 takes

up a job training program. A switch to caseworker assignment (τ ′′) has no effect
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Figure 3.1: Assignment Examples

on ω2’s program, but ω1 is now sent to a job search assistance program. However,

self-selection by the unemployed (τ ′′′) leads to an unfeasible allocation as the re-

source constraints are violated. In this case, ω1 and ω2 both opt for the job search

assistance program. Agent ω4 ends up in public employment under any mechanism.

So, different mechanisms lead to agents receiving different treatments. Some mech-

anisms may yield allocations that violate the resource constraints.

So far, we have focused on the assignment mechanisms and the resulting matches

between agents and programs. However, each match affects subsequent outcomes.

Next, we turn to potential parameters of interest that capture this effect.

Individual Effect of Treatment The individual effect of treatment ∆sj ,sk for agent

ω is the difference in objective outcomes across treatments sj and sk

∆sj ,sk = Y (sj, ω)− Y (sk, ω) , sj 6= sk.

This is the individual level causal effect. If treatment affects agents in different ways,

then ∆sj ,sk varies in the population and there is treatment effect heterogeneity.

Unfortunately, we rarely observe the same agent in different states and are thus

not able to identify the causal effect of treatment on an individual level. That is

why econometricians reformulate the parameter of interest and focus on the average

effect of treatment at the population level instead.
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We now present the conventional treatment effect parameters and contrast them to

reallocation effects. For both, we focus on the policy questions they address and the

role of resource constraints.

Conventional Treatment Effects Economists usually focus their attention on the

average treatment effect (ATE), the average treatment effect on the treated (TT),

and the average treatment effect on the untreated (TUT). Comparing treatment sj

to sk, these are

ATE(sj, sk) = E [Y (sj, ω)− Y (sk, ω)]

TT (sj, sk) = E [Y (sj, ω)− Y (sk, ω) | D(sj, ω) = 1]

TUT (sj, sk) = E [Y (sj, ω)− Y (sk, ω) | D(sj, ω) = 0] .

The ATE(sj, sk) captures the average effect of moving a random individual of the

population from base state sk to treatment sj. Moreover, it is also the effect of

moving a whole population from a universal policy sk to a universal regime of sj.

The TT (sj, sk) only considers the subpopulation of those matched with treatment

sj. It measures the average effect of the program among that subpopulation com-

pared to alternative sk. The TUT (sj, sk) is defined analogously. In the presence of

treatment effect heterogeneity these parameters are potentially different depending

on the assignment process. If agents select their treatment status based on their own

gains, then those who choose treatment sj and not sk will profit more from sj, thus

TT (sj, sk) > TUT (sj, sk). If agents are assigned at random, then all parameters are

equal. Identification, inference, and estimation of these parameters are well studied

in the econometrics of policy evaluation.1

However, the conventional treatment effect parameters are of limited policy rele-

vance, and the role of resource constraints remains vague. They are only informative

about extreme policy alternatives. The ATE is of interest to policy makers if they

weigh the possibility of moving a full economy from a baseline to an alternative state

or are able to assign agents to treatments at random. The TT is informative if the

complete elimination of a program already in place is considered. Conversely, if the

1See Heckman and Vytlacil (2007b,a) and Blundell and Costas Dias (2009) for excellent surveys.
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same program is examined for compulsory participation, then the TUT is the policy

relevant parameter. All these scenarios alter the amount of the required resources.

As the role of resource constraints remains unclear, we now present the reallocation

effects. They address this issue directly.

Reallocation Effects Reallocation policies differ from typical policies as the avail-

able resources remain unchanged. It is just the pairing between individuals and

treatments that is varied. If the benefits of treatment are heterogeneous in the rele-

vant population, then differences in the allocation affect the efficiency of treatments.

Two useful parameters have been introduced in the econometrics literature by Gra-

ham et al. (2007, 2009). They define the Average Reallocation Effect and the Max-

imum Reallocation Effect. We adapt both to the context of optimal treatment re-

allocations. The two parameters consider the efficiency of treatment sj compared

to sk among the subpopulation that receives treatment sj under two alternative

assignment mechanisms.

First, we define the ARE as

ARE(sj, sk, τ
′, τ ′′) = E

[
∆sj ,sk | Dτ ′′(sj, ω) = 1

]
− E

[
∆sj ,sk | Dτ ′(sj, ω) = 1

]
s.t.

∑
ω∈Ω

Dτ (sj, ω) ≤ d̄sj ∀ s ∈ S and τ ∈ {τ ′, τ ′′}

, where (τ ′, τ ′′) ∈ T denote any two alternative assignment mechanisms. Parts

of the subpopulations over which the average is taken, might be identical as some

agents are matched with treatment sj under both assignment rules. Returning to

the example of Figure 3.1, the ARE(s1, s4, τ
′, τ ′′) captures the difference in benefits

of assigning the job application training s1 (instead of job search assistance s4) to

agent ω3 and not ω1. The change in the allocation is induced by replacing random

assignment (τ ′) with assignment at a caseworker’s discretion (τ ′′).

Second, the MRE compares the mechanism τmax, which maximizes the average
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3 Optimal Treatment Reallocation

benefits among those who end up in treatment sj, to an alternative τ ′.

MRE(sj, sk, τ
∗, τ ′) = E

[
∆sj ,sk | Dτ∗(sj, ω) = 1

]
− E

[
∆sj ,sk | Dτ ′(sj, ω) = 1

]
s.t.

∑
ω∈Ω

Dτ (sj, ω) ≤ d̄sj ∀ s ∈ S and τ ∈ {τ ∗, τ ′}

, where τ ∗ = argmax τ∈T E
[

∆sj ,sk | Dτ (sj, ω) = 1
]
.

So far, the reallocation effects deal with each treatment s separately. Yet, a social

planner that aims to maximize aggregate overall efficiency has not only to take the

efficiency of each treatment into account separately, but also possible side effects of

assignments. An allocation rule that maximizes the gains among those participating

in treatment sj potentially results in very low gains among the agents who are

assigned to sk. The allocation problem faced by a planner is

max
τ∈T

∑
s∈S

πs E [ ∆s,b | Dτ (s, ω) = 1 ]

(3.2.1)

s.t.
∑
ω∈Ω

Dτ (s, ω) ≤ d̄s ∀ s ∈ S and τ ∈ T

, where πs denotes the share of slots available for program s and the subscript b

denotes the baseline outcome, i.e. the outcome in the absence of any treatment.

The planner’s assignment problem is more complex in the presence of resource con-

straints and multiple treatments as it is now a multidimensional instead of a one-

dimensional task. First, resource constraints lead to some agents not receiving any

treatment even though they would benefit from participation. Second, even if an

agent is assigned to a treatment, this is not necessarily the one where the individual

gains are largest. It is not the absolute advantage but the comparative advantage

that determines the aggregate optimal assignment schedule. In the existing litera-

ture on optimal treatment assignment these two issues are ignored.

In light of these complications, we draw on operations research for solution methods

to assign agents to multiple treatments in the presence of resource constraints. Let
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X = (xi,j) be a binary assignment matrix such that

xi,j =

1 if agent ωi is assigned to treatment sj

0 otherwise.

Now, the planner’s maximization problem can be written as a standard linear sum

assignment problem (LSAP).

max
I∑
i=1

J∑
j=1

E
[
∆sj ,sb

]
xi,j

s.t.

J∑
j=1

xi,j = 1 i = 1, ..., I

I∑
i=1

xi,j = d̄sj j = 1, ..., J

xi,j ∈ {0, 1} i = 1, ..., I, j = 1, ..., J

The maximization constraints ensure that each agent is assigned to only one treat-

ment and that resource constraints are not violated.

Figure 3.2 demonstrates the difference between the existing work on optimal treat-

ment assignment of ALMP and our work on optimal treatment reallocations.

We return to our previous example but now include the individual effect of each

assignment on the agent. We consider the case of four agents {ωi}i=1,..,4 and four

alternative treatment slots {sj}j=1,..,4. The matrix entry (i, j) contains the reem-

ployment probability of agent ωi after participation in treatment sj. Consider Figure

3.2a, in which the light gray indicates each agents’ initial assignment. It might be

the outcome of a random allocation or a caseworker’s assignment. Initially, agent ω2

ends up with treatment slot s4 leading to a reemployment probability of 18%, while

agent ω4 ends up in s2 which yields a reemployment probability of 25%. Now, Fig-

ure 3.2b depicts the allocation resulting from an optimal assignment, while Figure

3.2c shows the allocation from an optimal reallocation. The assignment from each

approach is indicated by the entries shaded in dark gray, while the light gray refers
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Figure 3.2: Contrasting Assignment Mechanisms

to the initial assignment.

In the literature on optimal treatment assignment, each agent is assigned to their

first best program. However, as agents ω3 and ω4 are both assigned to s3, this

violates the resource constraints. In our work on optimal treatment reallocations,

we honor the resource constraints and maximize equation (3.2.1) given the available

resources. This has a considerable effect on the resulting allocation. Only agents

ω2 and ω4 are assigned their first best. For the other two agents this is not possible

as their favored slots are already filled. Instead of s3, agent ω1 is assigned to s1,

and ω3 ends up in s4 instead of s3. Turning to a social planner’s perspective, the

initial assignment produced an average reemployment probability of 15%, while a

first best rule results in an increase to 37%. Imposing resource constraints moderates

the effectiveness and yields an average reemployment probability of 35%.
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3.3 Related Literature

Our focus is on reallocation policies in the context of active labor market programs.

That is why we restrict our literature review to the related work on optimal treat-

ment assignment, the implementation attempts of targeting and profiling systems,

and the limited work on optimal reallocations. We briefly reference work on linear

sum assignment problems as well.

Manski (2004), Dehejia (2005), Hirano and Porter (2009), and Frölich (2008) com-

prise the group of papers that discuss optimal treatment assignment with a method-

ological focus. Manski (2004) considers a utilitarian social planner who must choose

among a set of feasible statistical treatment rules using the minimax-regret criterion.

Dehejia (2005) uses data from a randomized evaluation of the Greater Avenues for

Independence (GAIN) program to study the effect of exploiting treatment effect het-

erogeneity on program performance while considering statistical uncertainty about

potential outcomes. Focusing on asymptotic optimality theory for statistical treat-

ment rules, Hirano and Porter (2009) derive treatment assignment rules that are

asymptotically optimal under different loss functions. Frölich (2008) develops a

method that allows the combination of two datasets to build a statistical treatment

model when the information available about previous clients is partly unavailable

for current assignment decisions due to time delays in data availability. Moreover,

he provides results on statistical inference about a recommended treatment choice.

The empirical literature on optimal assignment predicts the potential outcomes for

the studied subpopulation and hypothetically reassigns people to the program where

they have the best chances of success. All focus is on the efficacy of the allocation,

and there is no role for resource constraints. When large improvements in the aver-

age treatment effects are documented, this is interpreted as an argument in support

of the implementation of a statistical treatment model. For Sweden, Frölich (2008)

finds large gains relative to caseworker assignment in the context of a rehabilitation

program. Turning to Germany, the findings from Caliendo et al. (2008) are more

modest - they only find minor efficiency gains from using an impact-based statistical

treatment rule in the context of job creation schemes. Still for Germany, Biewen

et al. (2007) focus on the effect of public sector sponsored training programs. They
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conclude that better targeting along the lines of gender, region, and unemployment

duration would increase the aggregate impacts.

We go beyond the empirical strand of the literature by considering optimal treat-

ment reallocations, i.e. we account for the presence of resource constraints. In doing

so, we move closer to the assignment problem faced by a job market agency.

Lechner and Smith (2007) and Staghoej et al. (2010) offer the first cautious attempts

in this direction. For Switzerland, Lechner and Smith (2007) account for resource

constraints on a local level by introducing “Need Based” and “Effect Based” as-

signment mechanisms, each motivated by equity and efficiency considerations re-

spectively. They report that the ordering of agents does not matter much for the

performance of a program. They compare the assignment by a caseworker to a

random assignment and do not find any significant differences in employment rates

one year after the start of program participation. For Denmark, Staghoej et al.

(2010) argue that the implementation of a statistical treatment rule (compared to

the current method of caseworker assignment) would decrease the average duration

in unemployment by up to 30%. They impose supply constraints on the national

level.

The limitation of the work by Lechner and Smith (2007) and Staghoej et al. (2010)

is the lack of a clearly articulated link of their proposed assignment rules to an

objective function. In their simulation exercises, they allow for multiple treatment

options. Yet, they construct a one-dimensional ordering of agents and assign each

their first best treatment choice conditional on availability. They determine the

sequencing of agents based on an auxiliary index (Lechner and Smith, 2007) or by

random ordering of the sample (Staghoej et al., 2010). In doing so, both avoid the

combinatorial problem of tackling a multidimensional assignment problem. We take

up this challenge and extend their work in an important way. Nevertheless, we also

implement their proposed algorithms for our empirical illustration to maintain a

close link to their analysis.

The existing work on optimal treatment assignment has already influenced policy

making. A variety of countries have implemented profiling and targeting systems
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(at least for testing purposes).

Profiling systems compute a score for the risk of becoming long-term unemployed.

People with a score above a certain threshold are eligible for intensive assistance

programs. Profiling systems have been implemented on a nationwide basis and

have been evaluated in the United States and Australia. In the United States,

a prominent implementation is the Worker Profiling and Reemployment Services

(WPRS) system (Wandner, 1997). Its goal is to identify unemployment insurance

(UI) claimants likely to exhaust their regular UI entitlement and to offer them job

search assistance during the early weeks of unemployment. The evaluation found

that the statistical model successfully identifies the claimants most in need and that

the attached services reduced most UI outcomes (Dickinson et al., 1997). Building

on this work, O’Leary et al. (2005) claim that a targeted reemployment bonus would

yield net benefits to the unemployment insurance trust fund if targeted at those with

the longest predicted unemployment spells. In Germany and Canada systems are

under development but have not been implemented yet.2

Targeting systems rely on estimates of potential outcomes for all agents and all

programs. The unemployed are assigned to the program in which they are most

likely to succeed. For the case of Switzerland, Behncke et al. (2009) report on a

randomized experiment of a targeting system, the Statistically Assisted Program

Selection (SAPS) system, aimed at assisting caseworkers in choosing an active labor

market program for the unemployed. However, they found that caseworkers mostly

ignored the offered advice and no further development or implementation efforts are

undertaken at this point.

We are interested in maximizing the impact of a given amount of resources. Thus,

our work is related to the developing literature that tries to add statistical content

to output maximizing reallocation policies.

Graham et al. (2007, 2009) introduce reallocation problems in the econometrics lit-

2Eberts et al. (2002) and OECD (1998, 2002) provide an overview on the different implementations
in a variety of countries. See Stephan et al. (2006) for the Treatment Effect and Prediction
(TrEffeR) project in Germany.
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erature and define estimands that capture their effect. Graham et al. (2009) consider

a class of reallocations that includes the status quo allocation, a random allocation,

and perfect positive (or negative) assortative matching. They do not search for

an optimal assignment rule but compare specific rules. Nevertheless, they provide

asymptotic results for statistical inference about the effect of the considered reallo-

cations. Bhattachary and Dupas (2012) deal with a social planner’s maximization

of mean welfare when a binary treatment can be allocated but is in limited supply.

For this case, they provide consistency and distributional results. In a change of

perspective, they also consider the dual value, i.e. the minimum resources needed

to attain a specific level of welfare via an efficient treatment assignment protocol.

Linking their work to the literature on model selection, they address the issue of

covariate choice for a targeted treatment assignment and show its dependence on

the available (finite) sample. Bhattachary (2009) studies the effect of optimally

assigning individuals to peer groups to maximize social gains from heterogeneous

peer effects. Graham (2011), with a focus on the presence of situations with social

spillovers, provides a recent overview on econometric methods for the analysis of

such reallocation policies.

As illustrated in Section 3.2, the determination of an optimal assignment in the

presence of resource constraints and multiple treatments is a nontrivial task due to

the multidimensionality of the assignment problem. Given the formulation of the

reallocation problem as a linear sum assignment problem (LSAP), we draw on op-

erations research for suitable solution methods.3 Burkard and Cela (2011) provide

a survey on the state of the art of the solution methods. Numerous applications,

ranging from the personnel assignment (Ewashko and Dudding, 1971; Meggido and

Tamir, 1971), production planning (Veinott and Wagner, 1962; Zangwill, 1969), or

tracking moving objects in space (Brogan, 1989), were previously formulated and

solved as a LSAP.4

Despite the existing literature our contribution is clear. We determine an optimal

assignment of agents to multiple ALMP measures in the presence of resource con-

3See Burkard et al. (2009) for an introduction to this line of research and comprehensive overview
of the available solution methods.

4Ahuja et al. (1995) provide an overview on numerous applications.
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straints. In contrast to earlier work, our proposed assignment mechanism is tightly

linked to the adopted objective function that maximizes the efficiency of the allo-

cated resources.

3.4 Empirical Illustration

We now present our empirical illustration. We apply the developed conceptual

framework to the case of an active labor market program. We estimate the conven-

tional average treatment effects, but also document considerable treatment effect

heterogeneity. We exploit this variation and investigate the effect of optimal re-

allocations on program performance under alternative information sets. We link

our work to the existing literature by contrasting the previously proposed assign-

ment mechanisms to an optimal reallocation. We ensure full transparency of our

implementation by publishing and documenting our computational routines online.5

We draw our data from the National Evaluation of Welfare-to-Work Strategies

(NEWWS). NEWWS was a U.S. evaluation, conducted by the MDRC, of different

strategies for welfare-to-work job training programs.6 It was designed to evaluate

the performance of competing strategies. We briefly summarize these below:

� Standard Services (SS): standard local services outside of the NEWWS

programs.

� Human Capital Development (HCD): focus on basic education and vo-

cational skills training.

� Labor Force Attachment (LFA): focus on job search activities to get par-

ticipants employed as quickly as possible, even at reduced wages.

The evaluation was based on a randomized controlled trial (RCT) conducted at three

sites which had specifically implemented both the HCD and the LFA approach for

the participants. Each site conducted a three-way randomization between the two

competing strategies and a control group, which received the standard local ser-

vices. The benefits of the program generated by randomized assignment will serve

5http://www.policy-lab.org/software.html
6Additional information is provided in Freedman et al. (2000) and Hamilton et al. (2001).
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as a benchmark for the results that can be achieved using alternative assignment

rules.

We use data on a total of 5,768 agents from the Atlanta site. Earnings data is

available for each agent for two years (by quarter) prior to treatment, and for five

years (by quarter) post treatment.

We postulate the policy goal of maximizing total earnings over a period of five

years. Table 3.1 shows the raw difference in average outcomes for each treatment

alternative.

Table 3.1: Total Earnings Within Five
Years

Policy Total Earnings vs. SS

SS 19,722 —

HCD 20,979 1,257

LFA 21,778 2,056

Agents assigned to the SS earned a total of $19,722 on average over a period of 5

years, which is less than in either of the alternative states. Under random assign-

ment, the performance of the LFA approach is superior to the HCD alternative.

Compared with SS, the improvement in total earnings is largest for the LFA ap-

proach with $2,056. This is roughly 65% higher than the benefits generated by the

HCD program, where total earnings improved by $1,257 on average.

A focus on average differences only, neglects possible treatment effect heterogeneity

based on observable and unobservable agent characteristics. We model this hetero-

geneity by fitting a linear-in-parameters equation for the earnings dynamics,

Yt = Xβt + Ut

, where Yt denotes realized earnings in period t. From the perspective of the econo-

metrician, X are the observed and Ut the unobserved determinants of earnings.
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Following Cunha et al. (2005), we decompose Ut into a permanent θ and a transi-

tory εt component using a factor structure assumption. More formally,

Ut = αtθ + εt

, where θ denotes the factor common to the unobservable earnings components over

time. The factor loading αt may vary, and thus θ may affect earnings differently in

each period. (θ, εt) are both unobservable components of the variation in Yt. We

refer to θ as the “Permanent Earnings” factor in what follows.

Nonparametric identification of the joint dependencies among the unobservables of

the model Ut can be achieved under the conditions outlined in Cunha et al. (2010).

Each observation on Yt provides a signal on θ but also contains noise due to the dis-

turbances εt. Nonetheless, orthogonality conditions allow to separate the two and

to identify the distribution of θ.

We break the agents’ labor market experiences into four periods. Prior to treat-

ment, we pool earnings into three periods with two quarters each. Post treatment,

we collapse all five years into one period.

Prior treatment, zero earnings are observed for roughly 70% of the sample within

each period. To account for this fact, we specify a normal Tobit model for each

period t = 1, .., 3.

Yt =

Yt if Xβt + αtθ + εt > 0 where εt ∼ N(0, σ2
εt)

0 otherwise

The unobservables (θ, {εt}) are independent of the observables X. The idiosyncratic

components {εt} are independent across time and independent of the factor θ.

Post treatment, we specify a normal linear regression model by treatment status

d = s, h, l. The linear regression specification fits the data better than the Tobit

alternative as only 15% of the sample experience zero earnings over the five years
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post treatment.

Yd = Xβd + αdθ + εd with εd ∼ N(0, σ2
εd

)

(3.4.1)

The unobservables (θ, {εd}) are independent of the observables X. The idiosyncratic

components {εd} are independent across treatment states and independent of θ.

Prior and post treatment earnings are determined by dummy variables indicating

martial status, the presence of more than two children in the household, the presence

of a small child, race, gender, and educational attainment. In addition, earnings are

determined by linear terms in age at random assignment and the “Permanent Earn-

ings” factor. Additional descriptive statistics and more details about the dataset

are provided in Appendix C.

We approximate the distribution of θ by a normal finite mixture model (Diebolt

and Robert, 1994). Mixtures of normals with a large enough number of components

approximate any distribution (Ferguson, 1983) and are frequently used as a flexible

semiparametric approach to density estimation (Escobar and West, 1995; Frühwirth-

Schnatter, 2006). The unobservable θ is distributed as a univariate mixture of K

normals with share parameter πk, mean µk, and variance σ2
k,

θ ∼
K∑
k=1

πkN
(
µk, σ

2
k

)
,

where
∑K

k=1 πk = 1 and
∑K

k=1 πkµk = 0. We estimate a mixture model for θ with

K = 3 components.

We collect all parameters of the model in Ψ. Conditional on θ and the relevant

observables, the observed outcomes are all independent. Thus, the individual likeli-

hood can be written as

L(Ψ) =

∫
Θ

3∏
t=1

f(Yt | X, θ; Ψ)
3∏
d=1

f(Yd | X, θ; Ψ)I[D=d]dFθ(θ)

, where f(·) denotes a density function, and Fθ(·) is the cumulative distribution
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function of θ over its support Θ.

θ needs to be integrated out of the individual likelihood, which leads to a complex

nature of the likelihood function. For this reason, we implement a full Bayesian

approach for the estimation of the model and rely on Markov Chain Monte Carlo

(MCMC) techniques.7 The Gibbs sampler, which proceeds by simulating each pa-

rameter (or parameter block) from its conditional distribution, is particularly ap-

propriate for this kind of problem (Casella and George, 1992). We run a chain of

1,030,000 iterations. After a burn-in period of 30,000 iterations, we save the draws

from every 100th iteration. The resulting M = 10, 000 iterations are used for postes-

timation inference.

We start our analysis with the conventional average treatment effects and the un-

derlying treatment effect heterogeneity.

We sample from the posterior distribution of the conventional average treatment

effects as follows. First, we simulate a sample of N = 3, 000 agents for each of

the m = 1, . . . ,M remaining iterations. We draw a set of observable characteris-

tics X with replacement from the original dataset and simulate the unobservables

(θ, {εd}) from their distributions which are parametrized by ({π(m)
k }, {µ

(m)
k }, {σ

2(m)
k })

and {σ(m)
εd } respectively. Second, we construct potential outcomes {Y (m)

d } based on

({β(m)
d }, {α

(m)
d }) according to equation (3.4.1). Finally, we calculate the ATE

(m)
d for

each iteration and each treatment alternative,

ATE
(m)
d =

1

N

N∑
n=1

(Y
(m)
d,n − Y

(m)
s,n ) for d = h, l.

Table 3.2 reports our results.

7See Chib (2001) for an overview on MCMC techniques and their use in econometrics, and
Heckman et al. (2012) for a broad discussion of their use for the estimation of treatment effect
in factor models. Piatek (2010) provides the required technical details in the framework of a
factor structure model.
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3 Optimal Treatment Reallocation

Table 3.2: Average Effect of
Treatment

Overall

Treatments Estimate 95% Confi.

HCD 1,341∗∗ -155 / 2,847

LFA 1,972∗∗∗ 440 / 3,491

Notes: based on 10,000 simulations of the model;

Estimate = mean of posterior distribution; Confi.

= confidence interval of the posterior distribution;

Level of Significance = ***/**/* if zero lies out-

side the 99%/95%/90% confidence interval of the

posterior distribution.

By virtue of the experimental research design, the estimates are nearly identical to

the reported average differences in Table 3.1. On average and under random as-

signment, the benefits generated by the LFA program are higher than by the HCD

alternative.

The average benefits of treatment mask considerable treatment effect heterogeneity

due to observable and unobservable agent characteristics. This heterogeneity can

be exploited by a targeted treatment assignment. However, for our contribution to

the existing literature to be meaningful, this is not enough. A truly multidimen-

sional assignment problem requires variation in the benefits from the alternative

treatments within agents as well.

In the NEWWS dataset, this is in fact the case - the impact of the HCD and LFA

program varies between and within agents. Table 3.3 provides a detailed account

on the sources of the underlying differential variation. There, we test whether the

determinants of an agent’s post treatment earnings have a differential marginal effect

(ME) on the benefits generated by the HCD or LFA approach.8

8We rescaled the earnings variable to $10,000 units for the purpose of our estimation.
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3.4 Empirical Illustration

Table 3.3: Treatment Effect Heterogeneity

Overall

HCD vs. LFA

Covariate Estimate 95% Confi.

Intercept -0.030 -0.168 / 0.110

Single Parent -0.015 -0.047 / 0.018

Two Children 0.008 -0.024 / 0.039

Small Child -0.010 -0.043 / 0.023

Black -0.003 -0.069 / 0.064

Age 0.001 -0.001 / 0.004

Female 0.001 -0.079 / 0.084

Education 0.019 -0.012 / 0.050

Permanent Earnings -0.047∗∗ -0.094 / 0.000

Variance 0.008∗∗∗ 0.003 / 0.013

Notes: based on 10,000 simulations of the model; Estimate =

mean of posterior distribution; Confi. = confidence interval of

the posterior distribution; Level of Significance = ***/**/* if zero

lies outside the 99%/95%/90% confidence interval of the posterior

distribution.

For each of the M iterations and each covariate c, we calculate the following test

statistic δ
(m)
c ,

δ(m)
c = (β

(m)
h,c − β

(m)
s,c )︸ ︷︷ ︸

ME on ∆h,s

− (β
(m)
l,c − β

(m)
s,c )︸ ︷︷ ︸

ME on ∆l,s

.

Positive values of δ
(m)
c are associated with a higher marginal effect of covariate c

on the benefits in the HCD program than in the case of an LFA assignment. The

opposite is true for negative values. Only “Permanent Earnings” has a significant

negative differential effect. Thus, all else equal, as “Permanent Earnings” increases,

so does the relative benefit of an LFA assignment compared to the HCD approach.

A potential reason is the locking-in effect of the HCD program, which lasts consid-

erably longer than the LFA program. Participants in either program might reduce

their search intensity while participating (e.g. van Ours (2004)). However, agents

with high “Permanent Earnings” tend to have a higher attachment to the labor
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3 Optimal Treatment Reallocation

market. So, at least over a period of five years, the relative benefit of an agent from

participating in the HCD program declines with “Permanent Earnings” due to the

prolonged absence from the labor market.

Now, we start to investigate the effects of alternative assignment mechanisms on

program performance. Throughout, we take an ex post perspective. We study what

benefits could have been realized for alternative assignment rules.

We simulate a random sample of 5,768 agents. First, we fix all estimated parameters

to their posterior means. Second, we draw a set of observable characteristics X with

replacement from the original dataset. Third, we simulate the unobservables of the

model (θ, {εt}, {εd}). Together, this allows to construct observed and potential out-

comes ({Yt}, {Yd}) and calculate individual benefits {∆d,s}. Fourth, we allocate the

simulated agents to the treatment alternatives by applying a variety of assignment

mechanisms.

Most assignment mechanisms exploit information about predicted potential out-

comes {Ŷd}. We calculate them by fixing the parameters ({βd}, {αd}) at their pos-

terior means and plugging in the agents’ characteristics (X, θ̂),

Ŷd = Xβd + αdθ̂ for d = s, h, l.

(3.4.2)

As the “Permanent Earnings” factor is not directly observable, we predict its con-

ditional mean θ̂ for each individual using only the earnings observations prior to

treatment {Yt}. In doing so, we make sure that the information used to predict

potential outcomes resembles that of a social planner at the time of the allocation

decision. In principle, there are two sources for differences between predicted and

realized outcomes. They arise due to the random earnings components {εd} and

prediction error in θ. In the first part of this section, we abstract from uncertainty

due to {εd} and set them to zero. This allows to study the properties of the assign-

ment algorithms free of randomness due to sample size. Later, we study the impact

of uncertainty in small samples for the comparative performance of alternative as-

signments rules in detail.
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3.4 Empirical Illustration

When we impose resource constraints, we designate 1,935 slots for the HCD program

and 1,887 slots for the LFA program. This agrees with the original dataset.

Table 3.4 presents our main results. For each alternative assignment algorithm, we

report the average observed outcomes, the average benefits among those assigned

to each treatment, the slots associated with each alternative, as well as the average

overall benefits.

For the “Optimal” assignment, we draw on the Hungarian algorithm (Kuhn, 1955)

to solve the maximization problem of equation 3.2.1, i.e. to maximize predicted

overall benefits for a limited amount of resources.

In addition, we present the results from a “Random” and a “First Best” assignment.

These are commonly applied in the existing literature on optimal treatment assign-

ment. For the “Random” assignment, we impose resource constraints. We assign

each of the 5,768 generic agents a treatment state at random (among those available)

with equal probability. For the “First Best” assignment, each agent is assigned to

the treatment with the highest predicted potential outcome disregarding resource

constraints. We break potential ties at random.

A “First Best” assignment results in average outcomes of $22,116, which is the high-

est among the three alternatives. However, the scale of the program increases from a

total of 3,822 to 5,376 slots. Thus, only 382 agents have negative predicted benefits

from either program and remain in the SS. Imposing resource constraints moder-

ates average outcomes to $20,897 for the “Random” assignment and to $21,870

for the “Optimal” assignment. Acknowledging resource constraints but exploiting

treatment effect heterogeneity, i.e. moving from a “Random” to an “Optimal” as-

signment, allows to roughly double average overall benefits from $1,595 to $3,062.

Interestingly, the HCD program outperforms the LFA approach under both algo-

rithms that attempt to exploit treatment effect heterogeneity. Only under “Ran-

dom” assignment average benefits among the LFA participants are larger than for

the HCD program. Note also that the average benefits among those assigned to the

LFA are much smaller under the “First Best” than under the “Optimal” assignment.

The marginal agents added to the LFA program experience only small benefits as
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3.4 Empirical Illustration

the scale of the program increases from 1,887 to 3,489 slots under the “First Best”

regime.

In Figure 3.3, we split the simulated sample by the level of the predicted “Permanent

Earnings” component θ̂. We show the “Optimal” assignment to either of the three

alternative states. An arrow represents the assignment, with its thickness indicating

the relative proportions of each group that end up in either of the possible states.

As suggested by Table 3.3, those with a high level of “Permanent Earnings” largely

end up in the LFA program as they are likely to profit the most from it. However,

due to resource constraints and other factors determining an agent’s relative benefit

of treatment, some do end up in the HCD and SS programs as well. Those with a

low level of “Permanent Earnings” mainly end up in the HCD approach.

Figure 3.3: “Permanent Earnings” Assignment

High

Low

HCD

LFA

SS

The results based on “Random” assignment make clear the limited policy relevance

of the conventional treatment effects. They differ, by construction, from the ATE

reported in Table 3.2 only due to finite sample uncertainty. Thus, the ATE is only

of interest to policy makers if the program is applied in the future with random

assignment as the allocation mechanism as well.

We briefly summarize our main results. The assignment mechanism has a profound

impact on the scale of the program, as well as its overall performance and the relative
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3 Optimal Treatment Reallocation

efficiency of treatment alternatives. Thus, the choice of the assignment mechanism

is an important component of an optimal policy design.

Our main contribution is the determination of the optimal assignment, as clearly

defined by equation (3.2.1), of agents to alternative treatments in the presence of

resource constraints. However, as noted in the literature review, Lechner and Smith

(2007) and Staghoej et al. (2010) tentatively address this issue. Yet, they do not

provide a clear link to any well-specified criterion function. This allows them to

avoid the multidimensional assignment problem. We now discuss their approaches

in detail and compare them to our “Optimal” algorithm.

Lechner and Smith (2007) propose a “Need Based” and an “Effect Based” assign-

ment rule. For the “Need Based” assignment, agents are ordered based on an indi-

cator of need. Those in highest need, i.e. those with the lowest predicted outcome

in the absence of any treatment, are assigned their preferred treatment among those

available. They introduce this assignment rule to reflect possible equity concerns.

The “Effect Based” assignment is motivated by efficiency considerations instead.

Agents are ordered by the difference between the most positive and second most

positive benefit from treatment. Those with the highest difference are allocated

first. Once a treatment alternative is filled, the ranking is updated as if that treat-

ment was not available. The intuition is the following: those who benefit the most

from their first best treatment choice are assigned first. Finally, for the “First Come”

procedure implemented in Staghoej et al. (2010), agents are ordered at random and

assigned their first best among the programs still available.

We apply their proposed assignment mechanisms to our simulated sample. Table

3.5 presents the results.

Looking at the “Effect Based” assignment, overall average benefits are reduced to

$2,796 compared to $3,062 based on the “Optimal” assignment. In addition, the

average benefits within each treatment state differ. Following an “Effect Based”

assignment, the benefits among LFA participants are smaller compared to the case

of an “Optimal” assignment. The opposite is true for the HCD program. A “First

Come” assignment performs worst among the rules that try to exploit treatment ef-
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3 Optimal Treatment Reallocation

fect heterogeneity. Overall average benefits are roughly 20% lower when set against

the “Optimal” assignment. In short, an attempt to avoid a multidimensional as-

signment problem leads to worse performances among those algorithms, which have

efficiency as their declared goal.

A conflict between efficiency and equity arises if those in greatest need do not have

the most to gain from treatment participation. The overall average benefits are

smaller when following the “Need Based” assignment ($2,686) compared to an “Op-

timal” assignment ($3,062). In contrast to Lechner and Smith (2007), there is a

trade-off in our sample.

Next, we turn to the crucial role of information that is available to the policy maker

at the time of the treatment assignment. We start with the additional value of

information provided by the factor structure assumption. Afterwards, we study the

relative performance of alternative assignment rules in small samples.

Again, we apply the main assignment algorithms to our simulated sample. This

time, however, we only use the observable characteristics X for the prediction of

potential outcomes {Ŷd} and neglect the information about θ. Thus,

Ŷd = Xβd for d = s, h, l.

(3.4.3)

Table 3.6 presents the results. For comparison, we repeat our previous results in the

bottom half of the table.

The “Optimal” assignment algorithm exploits the additional information most effec-

tively. Adding “Permanent Earnings” to the prediction step allows for an increase in

overall average benefits by $375 from $2,687 to $3,062. For the “First Best” assign-

ment the increase is more moderate with $194. The performance of both algorithms

improves when using more information. In this case, the predicted benefits provide a

more accurate picture of the realized benefits. Turning to the case of “Random” as-

signment, the results are very similar by construction as no information is exploited

anyway. Interestingly, in the case of an “Optimal” assignment and when only the

observables are used in the prediction step, then the LFA program outperforms the
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HCD approach. Just as under “Random” assignment. However, adding the infor-

mation about “Permanent Earnings” turns this ranking around. So, the available

information about treatment effect heterogeneities not only determines the magni-

tude of the improvements that can be achieved by targeted assignment rules. It also

affects the relative performance of alternative programs for a given assignment rule.

At last, we investigate the behavior of the assignment mechanisms in small samples.

More precisely, we study what sample size is required for the “Optimal” assignment

to reliably outperform the “Random” allocation. After the prediction of potential

outcomes, there is still considerable uncertainty about the actual benefits due to the

unknown realization of (θ, {εd}). So, at least in small samples, the realized overall

average benefits resulting from an “Optimal” assignment might turn out to be lower

than in the case of a “Random” allocation.

We simulate samples of varying size with replacement from the original dataset.

We impose resource constraints by keeping the relative share of the HCD and LFA

slots in the same proportion as in the original dataset. For each of the samples,

we predict potential outcomes using equation (3.4.2) and (3.4.3) and determine the

assignment schedule for a “Random” and “Optimal” rule. In the next step, we

draw {εd} for all agents in the random samples and construct the difference in aver-

age overall benefits between the two algorithms. We repeat the last step 1,000 times.

Figure 3.4 reports the results for the two alternative information sets. The thick

line marks the average difference between the two assignments, whereas the dashed

line indicates the 0.025 and 0.975 quantiles. The vertical line emphasizes the sample

size which is required so that the “Optimal” assignment outperforms the “Random”

alternative at least 95% of the time.

On average, the “Optimal” assignment outperforms the “Random” allocation for

each sample size. This is true regardless of the information set used. The average

performance difference is unaffected by increases in sample size, but the variation

in observed differences declines. However, all this is true by construction of the

model. The prediction error washes out due to the independence and mean zero

assumptions. What is interesting, however, is that it takes a sample of roughly
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Figure 3.4: Algorithm Performance and Uncertainty
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(a) Observables Only
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(b) Observables and Predicted Factor

Notes: benefits in $100,000.

3,500 agents for the “Optimal” assignment to reliably outperform the “Random”

assignment when predicted “Permanent Earnings” are included. If only observable

characteristics are used, then this number increases to 5,000 agents. The increase

in the required sample size results from the additional source of uncertainty due to

the omission of the “Permanent Earnings” factor.

The last set of results both emphasize the key role of the information available to

the policy maker at the time of the assignment decision. The available information

determines not only whether there is the possibility to exploit any treatment effect

heterogeneity at all, but also the required sample size that allows for any meaningful

improvements in program performance by an optimal assignment rule.

3.5 Conclusion

We presented a framework that links reallocation policies to the econometrics of

policy evaluation and argued that this connection is particularly policy relevant for

active labor market programs. We extended the existing literature on optimal treat-

ment assignment by acknowledging the presence of resource constraints and linking

the assignment mechanism to a criterion of optimality.
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We illustrated the relevance of our contribution by an application to the National

Evaluation of Welfare-to-Work Strategies (NEWWS) dataset. The assignment mech-

anism matters for the scope and the performance of the program. Overall average

benefits could have been doubled by an optimal reallocation - all this without an

augmentation of resources. However, the available information mattered for the

magnitude of possible improvements.

There are several limitations to our current approach. First, our analysis is limited

by the ex post focus on fixed program capacities. Yet, the design of an optimal pol-

icy demands an ex ante perspective where budgetary constraints are more relevant.

Second, policy relevance of our research requires that the statistical treatment model

used to predict the potential outcomes remains valid over time and when applied to

a new population.

We intend to address both these issues using administrative data from the German

Federal Employment Agency. Germany has a long tradition of extensive active labor

market programs covering a wide range of approaches (job creation in the public

sector, public training programs, etc.). Thus, it offers a promising opportunity to

investigate the economic relevance of the issues raised in this chapter on a large scale.

We interpret our contribution as a starting point that motivates a more elaborate

investigation into the assignment problem faced by a job market agency. Additional

information about our research agenda is provided online.9

9http://www.policy-lab.org/researchprojects.html
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A Technical Appendix

A.1 Proofs of Theorems

Theorem 1

Proof. Assertion (1) was proven in the text. For Assertion (2), first consider the cost

parameters. CATE(z) − CTT (z) = E(UC) − E(UC |Z = z,D = 1), and E(UC |Z =

z,D = 1) =
∫
E(UC |Z = z,X = x, US ≤ P (x, z))dFX|Z,D(x|z, 1) =

∫
E(UC |US ≤

P (x, z))dFX|Z,D(x|z, 1) using (X,Z) ⊥⊥ (UC , US). Thus, using that US = FV (V ), it

will be sufficient to show that E(UC |V ≤ t) ≤ E(UC) for all t, and thus sufficient

to show that Pr[UC ≤ s|UC − (U1 − U0) ≤ t] ≥ Pr[UC ≤ s] for all s. Using Bayes’

rule, this is equivalent to Pr[UC − (U1 − U0) ≤ t|UC ≤ s] ≥ Pr[UC − (U1 − U0) ≤ t],

and this last assertion can now easily be shown using UC ⊥⊥ (U1 − U0). We can

thus conclude that CATE(z) − CTT (z) ≥ 0. The same argument mutatis mutandis

shows that BATE(x)−BTT (x) ≤ 0. Now consider assertion (3). The densities of UC

and U1−U0 being log concave is equivalent to their densities being Polya frequency

functions of order two (Karlin, 1968). Using that U1 − U0 ⊥⊥ UC , one can now

easily verify that (UC , UC − (U1−U0)) and (−(U1−U0), UC − (U1−U0)) have joint

densities that are totally positive of order 2 (TP2). By Joe (1997) (Theorems 2.2,

2.3), (UC , UC − (U1 − U0)) and (−(U1 − U0), UC − (U1 − U0)) having TP2 densities

implies that UC and −(U1−U0) are stochastically increasing in UC − (U1−U0) and

thus stochastically increasing in US using that US is a strictly monotonic function of

UC − (U1−U0). Thus E(UC |US = uS) is increasing in uS while E(U1−U0|US = uS)

is decreasing in uS, establishing the assertion.

Theorem 3

Proof. Consider part (i) of the theorem. Let µ10(·) = µ1(·)− µ0(·), and let Υ(p) =

E(U1 − U0 | US = p). From our previous analysis, we have

(A.1.1)
∂

∂p
E(Y |X = x, P = p) = µ10(x) + Υ(p) a.e. (x, p).

Let (µ∗10,Υ
∗) denote candidate functions that also satisfy equation (A.1.1). We then

have µ∗10(x)−µ10(x) = Υ(p)−Υ∗(p) for a.e. (x, p). By the rank condition (A-5), we

have that, for some constant C: µ∗10(x)−µ10(x) = C for a.e. x, and Υ∗(p)−Υ(p) =

−C for a.e. p. We thus have that µ∗10(x) + Υ∗(p) = µ10(x) + Υ(p) = BMTE(x, p) for

a.e. x and a.e. p. We have thus established identification of BMTE(x, p) for (x, p) ∈

IV



A.1 Proofs of Theorems

Supp(X)× Supp(P ). The same argument mutatis mutandis shows identification of

CMTE(z, uS) for (z, uS) ∈ Supp(Z) × Supp(P ), and we thus have identification of

SMTE(x, z, uS) for (x, z, uS) ∈ Supp(X) × Supp(Z) × Supp(P ). Parts (ii) and (iii)

of the theorem now follow using part (i) of the theorem and the representation of

the ATE and TT parameters as integrals of the MTE parameters.

Theorem 4

Proof. Assertion (1) follows from equation (2.3.1) and BMTE(x, uS) = µ1(x)−µ0(x)

if U1 − U0 is degenerate. Assertion (2) follows from E(Y |X = x, P (X,Z) = 1) −
E(Y |X = x, P (X,Z) = 0) = BATE(x), [E(Y |X = x, P (X,Z) = p) − E(Y |X =

x, P (X,Z) = 0)]/p = E(B|X = x, P (X,Z) = p,D = 1), and that BATE(x) ≤
E(B|X = x, P (X,Z) = p,D = 1) by the arguments used to prove Assertion (2) of

Theorem 1. Assertion (3) follows from equation (2.3.1) and Assertion (3) of Theorem

1.
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B NLSY Data

The dataset is based on the National Longitudinal Survey of Youth of 1979 (NLSY79).1

The NLSY79 is a nationally representative sample for the United States of 12,686

young men and women who were 14 to 22 years of age when first surveyed in 1979.

The cohort was interviewed annually through 1994. Since 1994, the survey has been

administered biennially. The sample is restricted to white males only. The over-

sample of poor whites and the military sample are excluded. The raw data contains

2,439 observations before addressing missing values and reporting errors. We present

details on the construction of the variables and the resulting descriptive statistics

below.

Individual Characteristics The data includes mothers’s years of education, number

of siblings, dummy variables indicating urban residence at age 14, dummies for year

of birth, and labor market experience. Labor market experience is actual work

experience in weeks (divided by 52 to express it as a fraction of a year) accumulated

from 1979 to 1991 (annual weeks worked are imputed to be zero if they are missing

in any given year).

Labor Market Conditions Current (time of outcome measure), past (time of edu-

cational choice) as well as permanent labor market conditions are part of the dataset.

For the current economic environment, the local average wages in the county of res-

idence in 1991, and the average unemployment rate in the state of residence in 1991

are included. Reflecting past economic circumstances, local average wages in the

county of residence at 17 and local unemployment rate in state of residence at age

17 are available. To account for long-run economic conditions, measures of perma-

nent local labor market conditions, i.e. average wages and unemployment between

1973 and 2000 for each location of residence at 17, are included.

Educational Opportunities The presence of a four-year college in the county of

residence at age 14, average tuition in public four-year colleges in the county of

residence at age 17 (deflated to 1993) are part of the dataset.

Educational Choice Individuals are separated into two groups. The first com-

prises high school dropouts and high school graduates, while the second is made up

1See Bureau of Labor Statistics (2001) for a detailed description of the NLSY79.
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of individuals with some college education, college graduates and post-graduates.

Schooling is measured in 1991 (individuals are between 28 and 34 years of age in

1991). Those with a higher level of educational attainment have on average four

more years of education.

Table B.1: Covariates

Individual Characteristics All Treated Untreated

Years of Experience 7.963 6.468 9.308

Mother’s Years of Schooling 12.042 12.848 11.258

Number of Siblings 2.983 2.637 3.295

AFQT Score 0.393 0.918 -0.095

Urban Residence 0.744 0.787 0.705

Labor Market Conditions All Treated Untreated

Current Local Wages 10.291 10.317 10.267

Current Local Unemployment 6.869 6.873 6.865

Past Local Wages 10.280 10.279 10.282

Past Local Unemployment 7.140 7.144 7.136

Permanent Local Wages 10.286 10.301 10.272

Permanent Local Unemployment 6.272 6.222 6.316

Educational Opportunities All Treated Untreated

Local Presence of Public College 0.521 0.576 0.471

Local Tuition at Public College 19.745 19.360 20.090

Educational Choice All Treated Untreated

Treatment 0.473 1.000 0.000

Notes: based on nonmissing values in the raw data.

Measurements on Cognitive Ability The measurements are taken from the Armed

Service Vocational Aptitude Battery (ASVB), which are described in Deparment of
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Defense (1982). It includes the Armed Forces Qualification Test (AFQT), which

consists of the subtests word knowledge, paragraph comprehension, arithmetic rea-

soning, and mathematics knowledge. These subscores are corrected for the fact that

different individuals have different amounts of schooling at the time they take the

test following the procedure developed in Hansen et al. (2004).

Table B.2: Measurements

All Treated Untreated

Arithmetic Reasoning 0.000 0.364 -0.340

Word Knowledge 0.000 0.268 -0.251

Paragraph Composition 0.000 0.285 -0.266

Math Knowledge 0.000 0.466 -0.436

Notes: based on nonmissing values in the raw data; measures standardized to mean

zero and standard deviation one in the whole overall sample.

Outcome The wage variable that is included are hourly wages reported in 1989,

1990, 1991, 1992, and 1993. All wage observations that are below 1 or above 100

are deleted.

Table B.3: Outcome

Period All Treated Untreated

1 11.884 13.666 10.180

2 11.754 13.726 9.915

3 11.903 13.803 10.111

4 12.603 14.836 10.399

5 13.409 16.110 10.735

Notes: based on nonmissing values in the raw data.
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Additional Data Sources and Local Averages Local wages and unemployment

rates are averages across all individuals in the population residing in a given area

(county for wages, state for unemployment), independent of age, gender, race, and

skill level. For each location, permanent local wages and unemployment are based

on the average of each variable between 1973 and 2000 are computed by location of

residence at 17 (county for wages, state for unemployment). County wages corre-

spond to the average wage per job in the county, constructed using data from the

Bureau of Economic Analysis (BES) and deflated to 2000. The state unemployment

rate data come from the Bureau of Labor Statistics (BLS) website. However, from

the BLS website it is not possible to get state unemployment data for all states in

all years. Data are available for all states from 1976 on, and for 29 states for 1973,

1974 and 1975. Therefore, for some of the individuals the unemployment rate in the

state of residence in 1976 (which will correspond to age 19 for those born in 1957

and age 18 for those born in 1958) is assigned.

Annual records on tuition, enrollment, and location of all public four-year colleges

in the United States were constructed from the Department of Education’s annual

“Higher Education General Information Survey (HEGIS)” and Integrated Postsec-

ondary Education Data System’s “Institutional Characteristics Surveys (IPES)”.

By matching location with county of residence, the presence of four-year colleges

is determined. The distance variable used is the one used in Kling (2001), avail-

able at the Journal of Business and Economics Statistics website. Tuition measures

are taken as enrollment weighted averages of all public four-year colleges in a per-

son’s county of residence (if available) or at the state level if no college is available.

County and state of residence at 17 are not available for everyone in the NLSY, but

only for the cohorts born in 1962, 1963, and 1964 (age 17 in 1979, 1980, and 1981).

However, county and state of residence at age 14 are available for most respondents.

Therefore, location at 17 to be equal to location at 14 for cohorts born between 1957

and 1962 is imputed unless location at 14 is missing, in which case location in 1979

is used for the imputation. Many individuals report having obtained a bachelors

degree or more and, at the same time, having attended only 15 years of schooling

(or less). Years of schooling for these individuals are recoded to be 16.
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C NEWWS Data

We present a brief description of the Nation Evaluation of Welfare-to-Work Strate-

gies (NEWWS) dataset. The following paragraphs are directly from various docu-

mentation sources including the webpage which is available at http://aspe.hhs.

gov/hsp/NEWWS. Additional information is provided in Freedman et al. (2000) and

Hamilton et al. (2001).

The Department of Health and Human Services (HHS) undertook a study of the ef-

fectiveness of welfare-to-work programs. The NEWWS evaluation is a study of the

effectiveness of eleven mandatory welfare-to-work programs in seven locales: At-

lanta, Georgia; Columbus, Ohio; Detroit and Grand Rapids, Michigan; Oklahoma

City, Oklahoma; Portland, Oregon; and Riverside, California. Program impacts

were evaluated by comparing outcomes for a randomly assigned experimental group

subject to program requirements with outcomes for control groups. As part of the

National Evaluation of Welfare-to-Work Strategies (NEWWS), the effects of two

approaches to preparing welfare recipients for employment were compared in three

sites (Atlanta, Grand Rapids, and Riverside). In one approach, the human capi-

tal development approach (HCD), individuals were directed to avail themselves of

education services and, to a lesser extent, occupational training before they sought

work, under the theory that they would then be able to get better jobs and keep

them longer. In the other approach, the labor force attachment approach (LFA),

individuals were encouraged to gain quick entry into the labor market, even at low

wages, under the theory that their work habits and skills would improve on the job

and they would thereby be able to advance themselves.

The evaluation used a random assignment design to get reliable results. Sample

members were followed for five years from the time they entered the study. Com-

prehensive data on economic outcomes, including information on quarterly Unem-

ployment Insurance-reported earnings and monthly Temporary Assistance for Needy

Families (TANF) and Food Stamp payments was collected. A broad range of data

was collected through surveys including data on educational attainment, family com-

position, housing status, wage progression, employment, child care, depression, and

total family income. In addition, effects on the well-being of the children of the

mothers in the study was evaluated. Four types of child outcomes were measured:

cognitive development and academic achievement; safety and health; problem be-
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havior and emotional well-being; and social development. Assessments in each of

these areas will be compared across research groups two and five years after the

mothers entered the survey sample. An overview on the research using this dataset

is provided online.

Some sample members have missing values for these measures. These must be im-

puted prior to calculating impacts. The public use file contains imputed values for

these measures based on mean substitution by site and the sample member’s edu-

cational attainment at random assignment.

Next, we present the descriptive statistics for the sample used in the analysis.

Individual Characteristics

Table C.1: Covariates

Atlanta

Individual Characteristics SS HCD LFA

Single Parent, Ever Married 0.401 0.414 0.391

Two Children 0.337 0.334 0.318

Three or More Children 0.299 0.288 0.298

Any Child 0-5 Years Old 0.427 0.417 0.430

Black 0.939 0.958 0.951

Age 33.062 33.144 33.018

Female 0.965 0.962 0.965

High School Diploma, GED 0.609 0.606 0.609

Observations 1,946 1,935 1,887

Outcome
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Table C.2: Outcomes

Atlanta

Earnings SS HCD LFA

prior treatment, 6 - 5 quarters 1,041 1,013 976

prior treatment, 4 - 3 quarters 755 710 738

prior treatment, 2 - 1 quarters 561 481 573

post treatment, 2 - 21 quarters 19,722 20,979 21,778

Observations 1,946 1,935 1,887

Notes: in units of $1.
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Table D.1: MTE Weights

hATE(x, uS) = 1

hTT (x, uS) =
[∫ 1

uS
f(P | X = x)dp

]
1

E[P |X=x]

hTUT (x, uS) =
[∫ uS

0
f(P | X = x)dp

]
1

E[(1−P )|X=x]

hPRTE(x, uS) =
[
FP∗,X(uS)−FP,X(uS)

∆P

]
Source: Heckman and Vytlacil (2005).
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Table E.1: Model Fit

Period 1

Source Mean Sd. 2. Decile 5. Decile 8. Decile

Data 2.360 0.476 1.975 2.400 2.740

Model 2.376 0.543 1.921 2.377 2.834

Period 2

Source Mean Sd. 2. Decile 5. Decile 8. Decile

Data 2.358 0.483 1.975 2.370 2.740

Model 2.371 0.564 1.895 2.375 2.846

Period 3

Source Mean Sd. 2. Decile 5. Decile 8. Decile

Data 2.374 0.502 2.006 2.400 2.775

Model 2.392 0.581 1.903 2.391 2.882

Period 4

Source Mean Sd. 2. Decile 5. Decile 8. Decile

Data 2.399 0.489 2.035 2.405 2.809

Model 2.385 0.556 1.918 2.383 2.853

Period 5

Source Mean Sd. 2. Decile 5. Decile 8. Decile

Data 2.437 0.523 2.026 2.435 2.839

Model 2.438 0.601 1.931 2.439 2.945

Average

Source Mean Sd. 2. Decile 5. Decile 8. Decile

Data 2.385 0.434 2.013 2.388 2.753

Model 2.393 0.336 2.110 2.393 2.676

Notes: based on 100,000 simulated agents and 1,287 actual agents,

Sd. = Standard Deviation.
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