
SOFTWARE COMPONENTS AND

FORMAL METHODS FROM A

COMPUTATIONAL VIEWPOINT

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Christian Lambertz
aus Viersen

Mannheim, 2012

Dekan: Prof. Dr. Heinz Jürgen Müller, Universität Mannheim
Referentin: Prof. Dr. Mila Majster-Cederbaum, Universität Mannheim
Korreferent: Prof. Dr. Jan Friso Groote, Eindhoven University of Technology

Tag der mündlichen Prüfung: 31. Januar 2013

iii

Abstract

Software components and the methodology of component-based development
offer a promising approach to master the design complexity of huge software
products because they separate the concerns of software architecture from
individual component behavior and allow for reusability of components. In
combination with formal methods, the specification of a formal component
model of the later software product or system allows for establishing and
verifying important system properties in an automatic and convenient way,
which positively contributes to the overall correctness of the system. Here,
we study such a combined approach. As similar approaches, we also face
the so-called state space explosion problem which makes property verifica-
tion computationally hard. In order to cope with this problem, we derive
techniques that are guaranteed to work in polynomial time in the size of the
specification of the system under analysis, i.e., we put an emphasis on the
computational viewpoint of verification. As a consequence, we consider in-
teresting subclasses of component-based systems that are amenable to such
analysis. We are particularly interested in ideas that exploit the composition-
ality of the component model and refrain from understanding a system as a
monolithic block. The assumptions that accompany the set of systems that are
verifiable with our techniques can be interpreted as general design rules that
forbid to build systems at will in order to gain efficient verification techniques.
The compositional nature of software components thereby offers development
strategies that lead to systems that are correct by construction. Moreover, this
nature also facilitates compositional reduction techniques that allow to reduce
a given model to the core that is relevant for verification. We consider proper-
ties specified in Computation Tree Logic and put an emphasis on the property
of deadlock-freedom. We use the framework of interaction systems as the
formal component model, but our results carry over to other formal models for
component-based development. We include several examples and evaluate
some ideas with respect to experiments with a prototype implementation.

v

Zusammenfassung

Komponentenbasierte Softwareentwicklung ist ein vielversprechender Ansatz
um die Entwurfskomplexität großer Softwareprodukte zu beherrschen, da die
Anforderungen der Softwarearchitektur und des individuellen Komponen-
tenverhaltens voneinander getrennt werden und die Wiederverwendbarkeit
der Komponenten ermöglicht wird. In Kombination mit formalen Metho-
den wird durch die Spezifikation eines formalen Komponentenmodells des
Softwareprodukts oder Systems die Prüfung und Verifikation von wichtigen
Systemeigenschaften auf automatische Weise durchführbar, was positiv zur
Korrektheit des Systems beiträgt. In dieser Arbeit untersuchen wir einen sol-
chen kombinierten Ansatz. Wie vergleichbare Ansätze begegnen auch wir dem
Problem der Zustandsraumexplosion, das die Verifikation von Eigenschaften
algorithmisch schwer macht. Um dieses Problem zu bewältigen, betrachten
wir Techniken, die eine Eigenschaftsprüfung in Polynomialzeit bezüglich der
Spezifikation des zu analysierenden Systems garantieren, d. h. wir legen Wert
auf die algorithmischen Gesichtspunkte der Verifikation. Als Konsequenz
untersuchen wir Teilklassen von komponentenbasierten Systemen, die für
eine solche Analyse zugänglich sind. Wir sind insbesondere an Techniken in-
teressiert, welche die Kompositionalität des Komponentenmodells ausnutzen,
und betrachten ein System nicht als monolithische Einheit. Die Annahmen, die
durch die Menge der mit unseren Ansätzen verifizierbaren Systeme aufgestellt
werden, können hierbei als allgemeine Entwurfsregeln verstanden werden,
die es verbieten Systeme nach Belieben zu konstruieren um dafür effiziente
Verifikationstechniken zu erhalten. Die kompositionelle Natur der Kompo-
nenten ermöglicht dabei Entwicklungsstrategien, die zu konstruktionsbedingt
korrekten Systemen führen. Des Weiteren werden kompositionelle Redukti-
onstechniken begünstigt, die ein gegebenes Modell auf den für Verifikation
relevanten Teil verkleinern. Wir betrachten in der Logik CTL spezifizierte
Eigenschaften und legen einen Schwerpunkt auf Verklemmungsfreiheit. Wir
benutzen Interaktionssysteme als formales Komponentenmodell, allerdings
sind unsere Ergebnisse auch auf andere formale Modelle der komponen-
tenbasierten Entwicklung übertragbar. Wir geben mehrere Beispiele an und
evaluieren einige Ideen mittels einer Prototyp-Implementierung.

vii

Acknowledgements

I would like to thank all the people who supported me with technical advices
and personal encouragements while I was writing my dissertation.
I thank my advisor, Professor Mila Majster-Cederbaum, for introducing me
to the area of formal methods, for providing research directions and insights,
and for the time she spent reading and discussing preliminary versions of
this work. Furthermore, thanks to Professor Jan Friso Groote for agreeing to
evaluate my dissertation as second examiner and to participate in my defense.
He provided valuable feedback that improved the quality of my dissertation.

ix

Contents

List of Algorithms xvii

List of Definitions xix

List of Figures xxiii

List of Tables xxvii

1 Introduction 1

1.1 What This Thesis Is About . 2

1.1.1 What Are Software Components? 2

1.1.2 Approaching Formal Methods 4

1.1.3 The Computational Viewpoint 7

1.2 Goals and Findings . 8

1.2.1 Problem Statement and Motivation 8

1.2.2 Methodologies . 9

1.2.3 Contributions and Roadmap 10

1.2.4 Related Work . 13

x Contents

1.3 Running Example: Merchandise Management 14

1.4 Conventions . 15

2 Interaction Systems 17

2.1 From Components and Interactions to Interaction Systems . . . 17

2.1.1 Component System . 18

2.1.2 Interaction Model . 19

2.1.3 Interaction System . 22

2.1.4 Remarks and Related Models 24

2.2 Deriving the Behavior of Interaction Systems 29

2.3 Properties of Interaction Systems 34

2.3.1 Freedom from Deadlock 36

2.3.2 Freedom from Livelock 38

2.3.3 Using Logical Formulae for Property Specification . . . 40

2.3.4 Various Known Parametrized Properties 46

2.3.5 Specific Properties . 49

2.4 Behavioral Equivalence in Interaction Systems 50

2.4.1 Choosing an Appropriate Behavioral Equivalence . . . 52

2.4.2 Reducing Behavior: Quotients 56

2.4.3 A Further Equivalence: Isomorphism 58

2.5 Summary . 58

Contents xi

3 Compositionality and Abstraction 59

3.1 Composition of Interaction Systems 60

3.1.1 Preliminaries . 60

3.1.2 The Composition Operator 62

3.1.3 Properties of Composition 66

3.2 Abstraction in Interaction Systems 70

3.2.1 The Closing Operator . 71

3.2.2 Properties of Closing . 72

3.3 Decomposition of Interaction Systems 74

3.3.1 The Subsystem Construction Operator 74

3.3.2 Properties of Subsystem Construction 76

3.4 Correctness by Construction . 81

3.4.1 Deadlock-Freedom Preserving Composition 81

3.5 Algorithmic Treatment of the Operators 83

3.6 Related Work . 84

3.7 Summary and Remarks . 85

4 Architectures 87

4.1 A Further Example Interaction System 88

4.2 Architectures of Interaction Systems 90

4.2.1 Component-Based Architecture 90

4.2.2 Cooperation-Based Architecture 93

xii Contents

4.3 Determining an Interaction System’s Architecture 97

4.3.1 Checking for Star-Like and Tree-Like Architectures . . 98

4.3.2 Checking for Disjoint Circular Wait Free Architectures 98

4.4 Classifying Disjoint Circular Wait Free Architectures 102

4.4.1 Transforming Interaction Systems To Ensure A Disjoint
Circular Wait Free Architecture 103

4.4.2 Complexity Issues . 105

4.5 Classifying Tree- and Star-Like Architectures 106

4.6 Related Work . 107

4.7 Summary and Future Work . 109

5 Compositional Reduction on the Basis of Architectures 111

5.1 The Idea behind Compositional Reduction 112

5.2 Exclusive Communication . 116

5.2.1 Ensuring Exclusive Communication 118

5.3 Exploiting Equivalences in Interaction Systems 119

5.3.1 Star-Like Architectures with Exclusive Communication 119

5.3.2 Tree-Like Architectures with Exclusive Communication 129

5.3.3 Compositional Reduction in Interaction Systems Allows
For Exponential Savings 137

5.4 Getting Rid Of Exclusive Communication 140

5.5 Related Work . 143

5.6 Summary and Future Work . 145

Contents xiii

6 Efficient Deadlock Analysis on the Basis of Architectures 147

6.1 Observations about Deadlocks 148

6.2 Exploiting Disjoint Circular Wait Free Architectures 150

6.2.1 Cooperation Paths . 151

6.2.2 Cooperation Paths and Deadlocks 152

6.2.3 Problematic States and Deadlock-Freedom 153

6.2.4 Algorithmic Treatment of Problematic States 155

6.3 Refinement: Problematic States Reachability 157

6.3.1 Non-Interfering Backward Reachable Set and Entry In-
teractions . 158

6.3.2 Refined Condition for Deadlock-Freedom 161

6.3.3 Algorithmic Treatment of the Refined Condition 162

6.4 Related Work . 167

6.5 Implementation and Experimental Evaluation 170

6.5.1 Parametrized Merchandise Management Interaction Sys-
tem . 172

6.5.2 Database Interaction System 175

6.5.3 Banking Interaction System 176

6.6 Summary and Future Work . 182

7 Gray-Box View and Protocols 183

7.1 Formalization of Protocol Interaction Systems 184

7.1.1 Relating Port Protocols and Component Behavior . . . 188

xiv Contents

7.1.2 Architectures of Protocol Interaction Systems 191

7.2 Deadlock Detection with Port Protocols 192

7.2.1 Potential Savings . 194

7.2.2 Conjectured Extension . 197

7.3 Related Approaches and Discussion 199

7.4 Limitations of the Port Protocols Approach 202

7.5 Summary and Future Work . 204

7.5.1 Partial Specification of Components via Port Protocols 204

8 Conclusion 205

8.1 Related Work . 205

8.2 Future Work . 206

A Preliminaries and Notation 207

A.1 Labeled Transition Systems . 207

A.2 Graph Theory . 208

B Pseudocode Algorithms 211

C Polynomial-Space Algorithms 221

C.1 Freedom from Deadlock . 222

C.2 Freedom from Livelock . 224

D Computation Tree Logic 227

Contents xv

E Bisimilarities 229

E.1 Strong Bisimilarity . 230

E.2 Weak Bisimilarity . 231

E.3 Branching Bisimilarity . 232

E.4 Divergence Sensitive Branching Bisimilarity 234

E.5 Branching Bisimilarity with Explicit Divergence 235

F Formal Proofs 237

F.1 Proofs from Chapter 2 . 237

F.2 Proofs from Chapter 3 . 238

F.3 Proofs from Chapter 4 . 250

F.4 Proofs from Chapter 5 . 254

F.5 Proofs from Chapter 6 . 261

F.6 Proofs from Chapter 7 . 267

Bibliography 269

Index 297

xvii

List of Algorithms

6.1 Initialization for the problematic states computation 155

6.2 Check of the condition of Theorem 6.9 156

6.3 Problematic state decision with respect to Definition 6.8 156

6.4 Computation of the NBRS with respect to Definition 6.10 . . . 163

6.5 Check of the conditions of Theorem 6.12 165

B.1 Initialization for all algorithms based on interaction systems . . 211

B.2 Global behavior traversal . 213

B.3 Livelock detection . 215

B.4 Validity check of the set I+ of a composition information . . . 216

B.5 Computation of the cooperation graph 217

B.6 Check for a disjoint circular wait free architecture 218

B.7 Computation of the cycle components 219

B.8 Ensuring exclusive communication 220

C.2 Global state iterator . 222

C.3 Global initial state iterator . 223

C.4 Polynomial-space reachability analysis 224

xviii List of Algorithms

C.5 Polynomial-space deadlock detection 224

C.6 Polynomial-space τ reachability analysis 225

C.7 Polynomial-space livelock detection 226

xix

List of Definitions

2.1 Component System . 18

2.2 Interaction . 19

2.3 Interaction Model . 19

2.5 Interaction System . 22

2.6 Global Behavior . 30

2.8 Deadlock . 36

2.9 Livelock . 39

2.11 Labeled Transition System to Kripke Struct. Translation 41

2.12 LTS Satisfaction Relation for CTL* 42

2.15 Behavioral Equivalent Interaction Systems 55

2.16 ≈∆
b -Quotient . 57

2.18 Isomorphism up to Transition Relabeling 58

3.1 Disjoint Interaction Systems . 61

3.2 Powerset Interjoin . 61

3.3 Coverage . 61

3.4 Composition . 62

xx List of Definitions

3.13 Closing of Interactions . 71

3.18 Subsystem Construction . 74

4.1 Component Graph . 91

4.2 Star-Like Architecture . 91

4.3 Tree-Like Architecture . 91

4.4 Cooperation Graph . 93

4.6 Disjoint Circular Wait Free Architecture 95

5.1 Exclusive Communication . 116

5.2 Strongly Exclusive Communication 117

5.12 Always Accepting Version . 140

6.1 Performability and Independence 149

6.3 Cooperation Path . 151

6.8 Problematic States . 154

6.10 Non-Interfering Backward Reachable Set 159

6.11 Entry Interactions . 160

7.1 Protocol Component System . 185

7.2 Protocol Interaction System . 185

7.3 Port Conformance . 189

7.4 Port Behavior . 190

7.6 Protocol Component Graph and Architecture 191

A.1 Labeled Transition System . 207

List of Definitions xxi

A.2 Predecessor and Successor . 207

A.3 Path and Maximal Path . 208

A.4 Reachable States . 208

A.5 Graph . 208

A.6 Connected Graph . 209

A.7 Graph Properties . 209

A.8 Simple Cycle . 209

D.1 Syntax of CTL* . 227

D.2 Auxiliary Notation for CTL* . 227

D.3 Kripke Structure . 228

D.4 Satisfaction Relation for CTL* . 228

D.5 Equivalence of CTL* Formulae 228

E.1 Strong Bisimilarity . 230

E.2 Weak Bisimilarity . 231

E.3 Branching Bisimilarity . 233

E.4 Divergence Sensitive Branching Bisimilarity 234

E.5 Branching Bisimilarity with Explicit Divergence 236

xxiii

List of Figures

1.1 The merchandise management example 15

2.1 Component system of the merchandise management example 19

2.2 Interaction model of the merchandise management example . 20

2.3 Behavior of the merchandise management example: manage-
ment component . 23

2.4 Behavior of the merchandise management example: customer
and storage component . 24

2.5 Reachable global behavior of the merchandise management
example . 31

2.6 Behavior of the bit components in the binary counter 32

2.7 Interaction model of the binary counter 33

2.8 Global behavior of the binary counter 33

2.9 Kripke structure of the merchandise management example’s
global behavior . 42

2.10 Global behaviors and corresponding Kripke structures 43

2.11 Differences between the five equivalences 53

3.1 Interaction model of the second merchandise management system 63

3.2 Interaction model of the composed system 65

xxiv List of Figures

3.3 The interaction model of interaction system Sys(4)MMS 71

3.4 The reachable global behavior of interaction system Sys(4)MMS . 72

3.5 Application of the subsystem construction operator 75

3.6 The reachable global behavior of interaction system Sys(5)MMS . 76

3.7 Behavior of the components in Example 3.25 79

3.8 Global behaviors of Sys(1)[C] and Sys(2)[C] in Example 3.25 . . 80

3.9 Example illustrating a false relaxation of Theorem 3.26 82

4.1 Interaction model of the database example SysDB(n) 89

4.2 Behavior of the components of interaction system SysDB(n) . . 90

4.3 Component graph of the merchandise management example . . 91

4.4 Component graph of interaction system SysDB(n) 92

4.5 Cooperation graph of interaction system SysMMS 94

4.6 Cooperation graph of interaction system Sys(3)MMS 94

4.7 Cooperation graph of interaction system SysDB(n) 94

4.8 Component and cooperation graph of interaction system Sysbin(3) 95

4.9 Interaction system SysDB-Sync(n) 97

4.10 Transformation of a cooperation graph into a flow network . . 100

4.11 The cooperation graph after transforming SysDB-Sync(2) 104

5.1 Global behavior of interaction system SysMMS[{m, c}] \\ Îm,c . . 112

5.2 Global behavior of interaction system SysMMS[{m}] \\ Îm,c . . . 113

5.3 Global behavior of interaction system SysMMS[{m, c, s}] \\ Îm,c . 114

List of Figures xxv

5.4 Global behavior of interaction system SysMMS[{m, s}] \\ Îm,c . . 115

5.5 Interaction model of the traffic light example 122

5.6 Behavior of the bulb and the clock component 123

5.7 Behavior of the traffic light component l 124

5.8 Component graph of the traffic light example 124

5.9 The labeled transition system [[Sys[{l, clk}] \\ Î]]≈∆
b

. 125

5.10 Finding an order function f . 128

5.11 Illustration of the eccentricities of a graph 129

5.12 Interaction model of the traffic light street crossing example . 132

5.13 Behavior of the control component C 133

5.14 Component graph of the traffic light street crossing example . 134

5.15 The labeled transition system [[Sys[{C, clk}] \\ Î]]≈∆
b

. 136

5.16 Interaction model of the example in Section 5.3.3 138

5.17 Behavior of component i in the example in Section 5.3.3 138

5.18 The labeled transition system [[Sys[{m, k}] \\ Î]]≈∆
b

. 139

6.1 Illustration of cooperation paths 151

6.2 Evaluation of the parametrized merchandise management system174

6.3 Evaluation of the database system 175

6.4 Interaction model of the banking example 177

6.5 Behavioral model and cooperation graph of SysBanks(n, m) . . 178

6.6 Evaluation of the banking system 181

xxvi List of Figures

7.1 Interaction model based on a protocol component system . . . 186

7.2 Behavior of the components of the protocol interaction system . 187

7.3 Port protocols of the simple management component m 187

7.4 Port protocols of the simple customer and storage components 188

7.5 Alternative port protocols for the protocol merchandise man-
agement example . 189

7.6 Quotients of the behavior of component m 190

7.7 Protocol component graph . 192

7.8 Port behaviors of the connected ports in the protocol merchan-
dise management example . 194

7.9 Interaction model of the example in Section 7.2.1 195

7.10 Component behavior of the example in Section 7.2.1 195

7.11 Port protocols of the example in Section 7.2.1 196

7.12 Component behaviors and port protocols of the counterexample198

7.13 Global behavior and port behaviors of the counterexample . . 198

7.14 Port protocols and port behavior of the protocol merchandise
management example . 200

7.15 Protocol interaction system modeling a mutual blocking situation203

xxvii

List of Tables

2.1 Table summarizing the aspects for choosing an equivalence . . 54

5.1 Demonstrating exclusive communication 117

1

Chapter 1

Introduction

The spread of software continues and has become ubiquitous in many aspects
of our daily lives, e.g., mobile phones becoming smart, the pervasive use of
online services and social networking for daily tasks and duties, or the rise
of embedded systems. We take the availability of such software for granted
and put trust in its correctness, i.e., we become more and more dependent
on reliable software. Moreover, software systems, which typically denote
huge and complex software products, already control many critical industrial
systems ranging from factory robots, that can interact with humans, over
avionics and automotive systems to supervision of nuclear power plants. The
modern stock exchange operates nearly autonomously and driverless trains
emerge in many metros and urban railways. This pervasiveness of software
creates new challenges because the malfunction and unexpected behavior of
software systems can cause effects that are unpleasing such as the annoyance
of users, painful such as financial loss, and unacceptable such as catastrophes
and disasters.

Modern software development has to take these issues into account and mas-
ter the inherent design complexity of software systems. In this direction,
structured and systematic approaches have been successfully applied that de-
compose a system’s specification into various, often heterogeneous parts with
respect to the system’s functionality and first consider a model of the later soft-
ware product, where the initial correctness of this model can be used to support
and guarantee the correctness of further development steps. The advantage of
such an approach is that faulty design decisions become detectable as early as
possible and can be pinpointed exactly in the software development process.
It is well known that the earlier an error is detected, the more inexpensive and
effortless is its revision and mitigation [43, 173, 262]. Furthermore, the model
can be used to correctly integrate already trusted and verified system parts,

2 1 Introduction

which enhances the interoperability and reusability, where missing function-
ality can also be bought as prefabricated components—so-called commercial
off-the-shelf components—on software markets. Such a model also allows to
generate executable code as methodologies known as component-based and
model-driven software development have shown.

In this thesis, we focus on the correctness of the initial model particularly with
regard to the methodology of component-based development. The verification
techniques used to establish this correctness are part of a broader methodology
known as formal methods. Our research question is: How can the particular
features of component-based systems, such as their compositional nature
and the separation of the concerns of software architecture from individual
component behavior, be exploited for the application of formal methods, and
how can we measure this potential benefit from a computational viewpoint. In
the next section, we introduce and discuss these concepts that also constitute
the title of this thesis.

1.1 What This Thesis Is About

By means of the title of this thesis, which is

• Software Components and

• Formal Methods from a

• Computational Viewpoint

we introduce and discuss the thesis’ topic in the following sections.

1.1.1 What Are Software Components?

The word “software” has become everyday language in most countries and
typically denotes everything related to the virtual parts that run a computing
device—having its origins in the word “hardware” which is used to describe
the electrical/physical parts. The word “component” has been used quite dif-
ferently in the literature, e.g., there are electrical components, thermodynamic
components, or graph-theoretical components. The word itself means to put
something together.

Its first occurrence with respect to software dates back to the year 1968 where
McIlroy [191] proposed to change the way software is developed to a more
industrialized way, which he calls mass production techniques. He envisions
a standard catalog of software routines called software components that can

1.1 What This Thesis Is About 3

be applied on different machines, i.e., the components make no assumptions
about their environment and are thus more independent with respect to their
deployment. He compares this approach to the way hardware components
are employed: they are usually interchangeable and cataloged.

However, a more methodical and scientific approach to component-based
software began not until the 1990s, although similar ideas can be found in
paradigms such as object-oriented programming, e.g., Cox’s software inte-
grated circuits [78] in the 1980s, and the importance of the modularity and
structure of software systems was already emphasized by Dijkstra [91], Brooks
and Iverson [52], and Parnas [223] in the 1970s. The work on so-called soft-
ware architectures as a system design pattern, which also distinguishes com-
ponents and their interconnection, was brought forward by Garlan and his
coauthors [3, 7, 109, 110], culminating in a 1996 book on the topic [242]. The
re-use of design patterns was addressed in the seminal book of the so-called
Gang of Four [107] around 1994. The now annual international conference on
component-based software engineering was initially happening as a workshop in
1998. The first textbooks on component-based development appeared around
the millennium, e.g., the books of Heineman and Councill [134], Veryard [260],
and Szyperski [249]. Since then, components have also been successfully used
in the enterprise world, e.g., OMG’s Common Object Request Broker Archi-
tecture (CORBA)1, Microsoft’s Component Object Model (COM)2, or Oracle’s
(formerly Sun’s) Enterprise JavaBeans (EJB)3. Early ideas can also be found
in IBM’s System Object Model (SOM), but it was discontinued in 1997. For a
thorough historical overview, we refer to the work of Barroca et al. [27].

So what is a software component? To quote Szyperski [249, page xxi]: “Soft-
ware components are binary units of independent production, acquisition,
and deployment that interact to form a functioning system.”

Here, we follow this definition and understand a software component as an
entity with a specific but independent behavior that offers so-called ports
to interact and cooperate with its environment, which consists of the other
components. Naturally, this independence and the related properties of inter-
changeability and interoperability are only achievable with a strong separation
of concerns, a principle suggested by Dijkstra [92], that applied here translates
to separating the way the components are put or glued together—which is
thus called the glue code—and their individual behavior. Therefore, each com-
ponent has two layers: One for cooperation that specifies the ports and that
can be referred to in the glue code and an internal one that describes the be-

1http://www.omg.org/spec/CORBA/
2http://www.microsoft.com/com/
3http://www.oracle.com/technetwork/java/javaee/ejb/

http://www.omg.org/spec/CORBA/
http://www.microsoft.com/com/
http://www.oracle.com/technetwork/java/javaee/ejb/

4 1 Introduction

havior and that cannot be accessed by other components or the glue code. This
separation ensures the reusability of the components since no assumptions
are made on the context where a component is deployed in. Furthermore, the
independent production of functionality or its acquisition is supported in this
way which is in accordance with the definition of Szyperski [249].

In the introduction to this thesis, we wrote that a model of the later software
product should be available as early as possible to guarantee the correctness
of further development steps. Thus, a component model needs to be defined
that is compliant with the definition of a software component as above and
that allows for correctness proofs, i.e., enables the usage of formal methods
that we address in the next section.

1.1.2 Approaching Formal Methods

The use of formal methods aims at applying mathematical techniques to the
process of specifying and verifying software and hardware systems [67], i.e.,
the specification stipulates what the system should do by means of formal
properties and how the system behaves by means of a formal model whereas
the verification ensures that the properties are satisfied by the model. More-
over, verification techniques can also be used to show the conformance of
two models where typically one model refines the other other one, e.g., when
parts of an abstract model are substituted by a more concrete implementation.
The level of mathematical rigor makes it possible that all deductions about a
system can be formally proven if the structures and methods are well defined,
i.e., we have a formal syntax and semantics. However, as pointed out by
Clarke and Wing [67], formal methods do not a priori guarantee correctness,
and DeMillo et al. [88] already argued convincingly in 1979 that program veri-
fication will never play the role of proofs in mathematics—which was believed
at this time. Nevertheless, such formal techniques often reveal inconsistencies,
ambiguities, and incompleteness, i.e., faulty design decisions that should be
detected as earlier as possible. This particularly holds for concurrent systems
where such faults are very hard to detect, e.g., unforeseen interleaving or
mutual access to shared resources [23, Example 1.1]. We refer to the book
of Peled [225, Chapter 1] and to Wing [263] for an exhaustive introduction
to formal methods, but address some highlights in the next paragraphs—a
historical overview is given by Baeten [21] and Clarke and Wing [67].

The history of formal specification of software goes back to the design of
programming languages where, e.g., Backus [18] suggested his BNF notation
for the formal syntax of a programming language in 1959. Even earlier, but
not in a software related context, the field of formal language theory offers a

1.1 What This Thesis Is About 5

variety of concepts for formal specification, e.g., the string rewriting system by
Thue [252] around 1914, the Post canonical system [232] published in 1943, or
Chomsky’s work on grammars [64] in the mid of the 1950s. Of course, Turing
machines [254] and the lambda calculus [65] introduced in the 1930s can also
be understood as a formal specification. These formalisms have in common
that they are models for sequential computation. With respect to concurrency,
where software components can be understood as concurrently cooperating
entities, seminal work by Petri [227] and Dijkstra [90] in the 1960s laid the
foundation for a whole research area that is nowadays known as concurrency
theory. In particular, the work on process algebras such as Hoare’s Communi-
cating Sequential Processes (CSP) [141], Milner’s Calculus of Communicating
Systems (CCS) [200], and Bergstra and Klop’s Algebra of Communicating Pro-
cesses (ACP) [37] paved the way for the formal and mathematically rigorous
modeling and analysis of concurrent systems. We refer to Cleaveland and
Smolka [73] for a thorough historical overview of concurrency theory and to
Baeten [20] for a brief history of process algebra.

A rich body of work addresses formal methods with respect to more concrete
implementations. For instance, the Vienna Development Method [42] intro-
duced at IBM around 1972 in work on compiler development, which became
standardized in the 1990s by the International Organization for Standardiza-
tion, provides both a high-level modeling to conduct correctness proofs due
to its formal semantics and a refinement process that allows to turn the model
into executable code. Comparable work was done by Abrial et al. [4] on their
Z notation, which influenced a lot of further work such as the B-Method which
has been used to design the software of the Paris Métro Line 14 which com-
pletely operates automatically [168] and of which it is claimed that there are
no bugs found yet. Another example is the Analytical Software Design (ASD)
method [48] that incorporates formal methods to traditional development of
industrial control software and which has for instance been used to develop
the control components of an interventional X-ray system at the company
Philips Healthcare [215]. The analysis by Groote et al. [132] of the effects of
applying the ASD method in this case shows that not only the quality of the
software is improved, but also the development time is reduced.

The properties of a system can also be described as a model but it is more
convenient and less error-prone to use a formal logic. Here, temporal logic has
proven to be useful and has been put in a program verification context around
1980, e.g., the seminal work by Pnueli [230], Lamport [165], Ben-Ari et al. [33],
Clarke and Emerson [66], and Emerson and Halpern [95]. Interestingly, the use
of logic to assert the correctness of computer programs was already addressed
by Hoare [139] at the end of the 1960—known today as Hoare logic—based
on similar work by Floyd [101] on flowcharts. Here, each program step is

6 1 Introduction

equipped with pre- and postconditions and by means of axioms and interfer-
ence rules the correctness of the program, which in this case corresponds to a
correct input-output behavior, can be deduced. Hence, this formal method is
known as deductive program verification. In this direction, so-called theorem
provers such as PVS [217], Isabelle/HOL [213], or ACL2 [155] can help to
mechanize the deduction process or provide interactive guidance and have
successfully been applied in the context of formal methods. For instance, the
book of Kaufmann et al. [156] contains various industrial case studies that
show how ACL2 helps to “design, build, and maintain hardware and software
systems faster and more reliably” [156].

Nowadays, due to the seminal work of Clarke and Emerson [66] and Queille
and Sifakis [235] from 1982, the property verification process can be carried
out in an automatic way known as model checking, which allows for establish-
ing correctness of systems of realistic size and has been successfully used in
a number of projects [194]—especially due to the advent of symbolic model
checking [57] in the 1990s using binary decision diagrams [55] as the un-
derlying data structure. However, as we discuss in the next section, model
checking can be infeasible if it is applied without further insights. We want
to mention the textbooks of Clarke et al. [72] and Baier and Katoen [23] that
offer a good introduction and exhaustive information on the topic of model
checking.

Now, for a successful marriage of software components and formal meth-
ods, a formal component model needs to be defined, i.e., the behavior of the
components and the cooperation by means of the ports needs to be mathe-
matically specified, which then allows for verification of system properties.
Various formalisms have been suggested to be used as such a model, e.g.,
process algebras [8, 176], channel-based methods [12], interface theories and
automata [47, 81], Petri nets [1, 79], and interaction systems [121–123, 243]—
which we also use as the formal component model in this thesis.

In interaction systems, each component provides a set of actions which are
understood as ports of the associated component and which abstract from data
and input/output operations. These ports are used to glue components to-
gether by so-called interactions, i.e., interactions model the cooperation among
the components. Such an interaction consists of actions of different compo-
nents and is also a step of the global behavior, i.e., it can be executed only if all
participating components are able to execute their appropriate action. Each
component’s ability to execute actions, i.e., the behavior of the component,
is modeled as a labeled transition system, where the set of labels equals the
set of actions. The global behavior of the system is derived by executing the
interactions nondeterministically according to their executability.

1.1 What This Thesis Is About 7

Here, we do not continue to compare this model with the above mentioned
formalisms; we postpone this study to Chapter 2 where we also formally define
interaction systems and show how properties can be verified. Next, we address
the third constituent of the thesis’ title: The computational viewpoint.

1.1.3 The Computational Viewpoint

A computational viewpoint is of course inherent in computer science because
of its nature to approach problems algorithmically under the limitations of
the underlying computing hardware. The success of a more theoretical view,
which was introduced among other concepts with the definition of Turing
machines [254], establishes an abstraction of current computational limitations
and provides a taxonomy known as computational complexity theory that
classifies problems with respect to their computational hardness [108, 220].
Moreover as argued by Karp [154], science in many fields can be seen through
a so-called computational lens, i.e., systems in, say, physical or social science
or in engineering can be classified by their computational requirements, and
an algorithmic worldview offers new ways to understand scientific problems.
Applying this computational view often changes the question of well-defined
problems from “can it be solved” to “can it efficiently be solved” (which is, of
course, only possible if the problem is decidable). We embrace this view in this
thesis and focus on ideas and directions that provide an efficient solution from
the computational perspective. Moreover, we analyze the costs of all our algo-
rithmic approaches and classify problems with respect to their computational
complexity.

In our setting where we apply formal methods to (a model of) software com-
ponents, a well-known problem exists that complicates the quest for efficient
techniques, viz. the state space explosion problem. Here, the combinatorial
possibilities of the interleaved behavior of the components (which we call, as
already mentioned above, the global behavior of an interaction system) are
numerous, i.e., exponential in the number of components. Thus, property
verification is a computationally hard task because a state space analysis of
the global behavior can be infeasible.

We want to mention that several techniques have been developed to mitigate
the explosion of the state space. For instance, partial order reduction [118]
aims at identifying actions whose order of execution (in a sequence) does
not affect the state that is finally reached. It is thus not necessary to analyze
all intermediate states with respect to these sequences of actions since one
execution sequence is sufficient if we are only interested in the final state.
Clearly, the omission of all other execution sequences and the involved in-

8 1 Introduction

termediate states can significantly reduce the state space. Similar ideas are
known as the stubborn set method [255] or model checking using represen-
tatives [224], and the idea behind τ-confluence (together with τ-priorisation
to yield a state space reduction) is also related [127, 128]. Other ideas exploit
symmetries if several identical components constitute the system in question
or if there are structural symmetries in the system’s description in order to
gain a state space reduction [70, 98, 147], or the compositionality of the system
is exploited [69, 125, 126, 150, 167]. The process of abstraction is also helpful in
this direction where a verification question sometimes can be answered on a
small representation of the state space (the abstract model) instead of the orig-
inal, huge one (the concrete model). Here, work by Cousot and Cousot [77]
known as abstract interpretation provides relations between abstract and con-
crete models which allows for establishing properties in the abstract model
that also hold in the concrete one. Such abstraction techniques have also been
applied for model checking [71].

Moreover, there are efficient, tailored approaches with respect to a certain
property that are comparable to a (mathematical) sufficient condition [8, 16,
39, 49, 124, 137, 146, 179, 180]: If certain preconditions hold locally, then we
can conclude that the property in question holds globally, i.e., such conditions
aim at providing efficiently checkable preconditions (“locally”), that ensure
the property’s validity without constructing the system’s overall state space
(“globally”). Seen from a computational viewpoint, such conditions are very
attractive if the satisfiability check of all preconditions can be carried out in
polynomial time (with respect to the input size of the system).

In the next section, we address the connection of the above discussed topics to
this thesis.

1.2 Goals and Findings

We address the goals that we want to achieve in this thesis, i.e., we give the
problem statement, motivation, and the methods we apply, and our findings,
i.e., we give the contribution of this thesis, a short roadmap, and relations to
other work in the literature.

1.2.1 Problem Statement and Motivation

We approach component-based development from a mathematically rigor-
ous and formal point of view including the computational aspects. Based
on work by Gössler and Sifakis [121, 123], we consider a model for software

1.2 Goals and Findings 9

components, called interaction systems, that takes the desired features of
component-based development into account and that allows for the specifica-
tion of complex software systems, but is amenable for the application of formal
methods such as property verification techniques, i.e., proving that a certain
model of a system satisfies a certain property. In particular, we research on
how the features of software components can be exploited to make property
verification an easier job. The goal of our research is that we want to derive
efficient and automatic property verification techniques, i.e., we put an emphasis
on efficiency and practicability in our approaches and establish algorithms
that run in polynomial time in the size of their input, which is the system’s
specification. However, this efficiency cannot be guaranteed for all systems
due to computational complexity results, and we thus consider assumptions
under which we can check whether a certain property holds by means of a
polynomial-time algorithm. These assumptions are derived from the features
of component-based systems, which supports that the component-based idea
allows for the development of tailored formal methods.

We want to point out that our research should be understood as being com-
plementary to other formal techniques, i.e., we envision a toolbox of formal
methods from which a software developer can choose or which are applied
automatically in the background during the specification and development of
a software product.

The motivation for such an approach was already mentioned above: The
earlier a fault is detected in a software product, the cheaper and easier is its
correction or mitigation. Since typical development strategies start with a
model of the later product, we need to ensure the correctness of this early
model in order to be able to rely on it in later development steps, e.g., when
we substitute real software code for the components. Moreover, as Groote
et al. [132] discussed convincingly, formal methods not only improve the
quality of software products, but also reduce their development time, i.e.,
there is no good reason to refrain from using formal methods in software
development.

1.2.2 Methodologies

We formalize all ideas in a mathematical notation and build our work solely on
these definitions, i.e., we avoid ambiguities that are typically introduced with
informal texts. This rigorous work enables us to formally prove all statements
of this thesis. Since we are interested in automatic and efficient approaches, we
give pseudocode implementations of all (non-obvious to implement) results
and analyze these algorithms with respect to their computational costs (in

10 1 Introduction

an abstract machine model) and provide upper bounds for their runtime.
Moreover, we experimentally evaluate some of the results by means of a
prototype implementation to support our interpretation of the theoretical
bounds (in a concrete machine model). We give detailed references if we
employ methods from the literature and illustrate our ideas by means of
examples; in particular, we use a running example that follows us through all
chapters and which we introduce in Section 1.3 of this chapter.

1.2.3 Contributions and Roadmap

We give a high-level overview of our contributions and provide a roadmap
that links to the corresponding chapters. We contribute the following:

1. We extend the original model of interaction systems [121] to allow for un-
observable behavior—by means of an advanced interaction model and
an adapted global behavior—and multiple initial states. Furthermore,
we provide a behavioral equivalence for interaction systems that, after a
discussion of suitable equivalences from the literature, corresponds to
branching bisimilarity with explicit divergence [115].

2. We discuss several properties of interaction systems with a focus on
deadlocks and livelocks. Here, deadlocks have been immensely studied
in interaction systems, and particularly the computational complexity
of deadlock detection has been precisely determined, which we review
in detail. We introduce the property of livelock-freedom for interac-
tion systems, which becomes important with the introduction of our
advanced interaction model, and also address its computational com-
plexity. Moreover, we define properties by using formal logic as a means
for specification, which also enables the use of model checkers in inter-
action systems. However, the well-known phenomenon of state space
explosion can render model checking on the overall system behavior
infeasible as discussed in Section 1.1.3. This opens the challenge to find
verification techniques that avoid or mitigate state space explosion.

3. We introduce three operators that allow for compositionality and abstrac-
tion in interaction system in order to support the concepts of correctness
by construction, hierarchical modeling, compositional reduction, and
compositional verification:

• A composition operator that allows for composing arbitrarily many
interaction systems in a flexible way and that is guaranteed to yield
a valid interaction system. We also derive a binary variant and
show its associativity and commutativity.

1.2 Goals and Findings 11

• An abstraction operator that enables the modification of an inter-
action system’s interaction model such that certain interactions
become unobservable in the system’s global behavior and are no
longer available for further composition steps.

• A decomposition operator that projects a given interaction system
to a subset of the set of components. The resulting system is again
an interaction system, and we show how it can be re-composed
with the remaining components to get back to the original system
in an automatic and convenient way.

We discuss the connection of these operators, i.e., how they can be
used together in an algebraic way, and derive various useful properties
such as whether the chosen behavioral equivalence is a congruence
with respect to the operators for interaction systems. Moreover, we
address under which assumptions the composition operator allows for
a correctness-by-construction approach.

4. In order to open up new ways to tackle the above mentioned state space
explosion problem, we introduce architectural constraints for interac-
tion systems that are based on undirected graphs and that restrict the
cooperation structure, i.e., the way the components are allowed to coop-
erate. Here, constraints that postulate the acyclicity of the cooperation
structure have been proven to be useful for the efficient verification of
the property of deadlock-freedom. The intuition behind considering
acyclic cooperation structures is that in such systems, the presence of
circular waiting situations and hence potential deadlocks is reduced.
We define two acyclic constraints, viz. star-like and tree-like architectures.
Moreover, we drop the acyclicity requirement and admit certain cycles
that exclude a circular waiting of three or more components such that
the reasons of the single waits are unrelated. This leads to a novel archi-
tectural constraint called disjoint circular wait free architecture, which is
particularly useful in systems with multiway cooperations when, e.g.,
one component i cooperates with components j1, . . . , jn (individually
and all n + 1 together) but no jk cooperates with a jl without i (for k 6= l).

5. We show that checking whether a given interaction system satisfies one
of our architectural constraints can be carried out in polynomial time in
the number of components and interactions. This time bound is essential
since the check must not be more costly than the verification of a condi-
tion that is based on such a constraint. Here, the procedure is straight-
forward for star-like and tree-like architectures but more involved for
disjoint circular wait free ones. We show that we can nevertheless answer
this question in polynomial time by means of flow networks.

12 1 Introduction

6. We study the classification of interaction systems with a disjoint circular
wait free architecture (and discuss similar classifications for the other
architectures from the literature):

• We show that an arbitrary interaction system can be transformed
in linear time into a system obeying our architectural constraint
of disjoint circular wait freedom and exhibiting nearly identical
behavior, viz. isomorphic up to transition relabeling. Potentially,
this opens the door for more techniques that explicitly rely on our
architectural constraint.

• We give a linear-time many-to-one reduction based on the above
mentioned transformation which allows us to derive various com-
putational complexity results for architecturally constrained interac-
tion systems from results known for arbitrary interaction systems.

7. The introduction of behavioral equivalences in interaction systems al-
lows for a compositional reduction technique. We address how such a
reduction can be employed in interaction systems in a compositional
and efficient way, i.e., without constructing the global behavior and thus
circumventing the state space explosion problem. In this connection,
star-like and tree-like architectures are important in order to identify the
components that are amenable to such a reduction. Furthermore, the
approach allows for an exponential speedup of property verification in
certain scenarios.

8. We show how to use architectural constraints to establish a polynomial-
time checkable condition for deadlock-freedom of interaction systems
that extends an earlier approach by Majster-Cederbaum and Martens
[180]. The class of systems that can be tackled with our condition extends
the class of systems studied by various authors [39, 49, 137, 179, 180]
with respect to the architectural constraints. We evaluate this conditional
approach with respect to global state space analyses.

9. We improve the approach of Majster-Cederbaum and Martens [180] by
avoiding their polynomial-time preprocessing step that establishes a
property of interaction systems called “strongly exclusive communica-
tion”, which is important for the technique presented by the authors.
But, this preprocessing possibly enlarges the behavior of the compo-
nents for the verification process. We show that this step is completely
unnecessary as the required information can already be extracted before-
hand. We demonstrate the effect of this avoidance with an experimental
evaluation of several example systems.

10. We introduce a gray-box view for interaction systems. Such a view

1.2 Goals and Findings 13

typically stipulates that the behavior of the components is not fully
accessible—as in a white-box view—and is reasonable if the complete
behavior should not be disclosed or is still in development. Now, it is
interesting to ask whether we can still verify properties of the whole
system if we do not have access to the full behavior of the components,
or which additional assumptions we need such that property verification
becomes possible. We show that small representatives of the behavior
with respect to a component’s cooperation partners suffice to verify
deadlock-freedom if they comply with a certain equivalence. Moreover,
the small size of these representatives allows for a quadratic speedup of
deadlock detection in some situations.

We introduce and discuss these contributions in detail in the following chap-
ters and in doing so keep to the following roadmap: We formally define
interaction systems and their properties in Chapter 2, discuss the three opera-
tors in Chapter 3, introduce architectural constraints in Chapter 4, show how
these constraints allow for compositional reduction in combination with the
operators in Chapter 5, address the efficient verification of deadlock-freedom
in Chapter 6, establish the gray-box view in Chapter 7, and conclude the thesis
in Chapter 8.

We want to point out that part of the work enumerated above has already been
published. The extensions of the original model (Chapter 2) were presented at
the doctoral symposium of the FM 2009 conference [160] and at the ICE 2010
workshop [161] where the first work also introduced the operators for interac-
tion systems (Chapter 3) and the reduction technique (Chapter 5) and the latter
work the gray-box view for interaction systems (Chapter 7). Our best-paper
award winning work on architectures and deadlock-freedom (Chapters 4
and 6) appeared in the proceedings of the FSEN 2011 conference [162] and
an extended and more detailed version was submitted to Elsevier’s SCP jour-
nal [163].

1.2.4 Related Work

We already mentioned that various authors studied formal models for software
components—such that formal methods become applicable—and addressed
some related work in Section 1.1. Moreover, the notion of an architecture
description language that describes software architectures [110, 192] is related
to the idea of software components, e.g., the separation of behavior and
topology is an important guideline for software architectures [6]. In these
directions, we here exemplarily mention the work on PADL by Bernardo et al.
[39], Java/A by Hennicker et al. [137], SOFA by Plášil et al. [229], Darwin

14 1 Introduction

by Magee et al. [176], and Wright by Allen and Garlan [8]. Since our work is
based on and extends the formalism of interaction systems as introduced by
Gössler and Sifakis [121], we provide a comparison with respect to these (and
further) works; however, we postpone this discussion to Section 2.1.4 of the
next chapter—after we formally introduced interaction systems.

In a similar vein, we deal with related work regarding our contributions that
we enumerated in the previous section: Each chapter has its own related
work section where we discuss and compare our results with approaches from
the literature. Furthermore, we include references in the beginning of some
chapters where we motivate the upcoming ideas, and sometimes directly after
a definition to recognize and acknowledge related ideas.

In the next section, we introduce a running example that follows us through
all subsequent chapters in order to illustrate our definitions and results.

1.3 Running Example: Merchandise Management

We consider a merchandise management system (MMS) for wholesalers which
manages orders of customers and supplies in the wholesaler’s storage. The
MMS offers several modes of operation: A wholesaler may directly deliver
after receiving an order, may demand from a customer to ask for a reserva-
tion before ordering, and may accept direct orders but request nevertheless
a reservation. Additionally, any reservation is printed out for internal use
and all operations can be cancelled with potential reimbursement. This ver-
satile behavior is reasonable if we assume that the MMS is developed by a
software company that wants to sell it as a software component to a variety of
wholesalers with different requirements.

We now take a look at a particular wholesaler that bought this MMS as a
software component and uses a storage system in which goods need to get
reserved before they can be delivered. Additionally, this wholesaler requests
from its customers to ask for a reservation before placing an order. We assume
that the entire software of the wholesaler consists of three parts and is given
as three components, one for each of the customer, merchandise management,
and storage part. These components need to be glued together in order to
form a functioning system that satisfies the needs of the particular wholesaler.
Figure 1.1 on the facing page gives an overview of the components, their
behavior, and their cooperation.

When we formally define the formal component model in the next chapter,
we come back to the merchandise management example to illustrate this

1.4 Conventions 15

MERCHANDISE MANAGEMENT

CUSTOMER STORAGE

ask for reservations
and order goods

reserve and de-
liver goods

only previously
reserved goods
are delivered

demands

customers ask
for reservations
before ordering

demands

ordering with or w/o reservations,
delivering with or w/o reservations,

printing of reservations, reimbursement

allows

Figure 1.1: The merchandise management example

definition. We conclude the introduction with some conventions for the
subsequent chapters.

1.4 Conventions

Throughout this thesis, the following conventions are used for definitions,
mathematical statements, and the notation of algorithms in pseudocode, which
we use as a high-level algorithmic description language because it allows to
neglect unnecessary details of real programming languages such as special
variable declarations and obscure syntaxes. Here, we use a similar notation as
found in the book of Cormen et al. [76].

We adhere to the following rules where we also include all notations that are
used ambiguously in the literature:

• We number all definitions, examples, propositions, lemmata, theorems,
and corollaries in a consecutive order where we use one counter for each
chapter. In our opinion, this makes it much easier to find referenced
entities by browsing through the text.

• Figures, tables, and algorithm listings cannot be included in this num-
bering scheme because they are placed where they fit in the text. We
thus provide a list of figures, tables, and algorithms at pages xxiii, xxvii,
and xvii respectively. Furthermore, we provide a list of definitions on

16 1 Introduction

page xix and an index on page 297, which includes all used symbols.

• The empty set is denoted by the symbol “∅” or by “{}”.

• The powerset of a set S is denoted by “2S”.

• A subset relation is denoted by “⊆” and a strict (or proper) subset
relation by “⊂”. For a superset relation, “⊇” and “⊃” are used.

• A Cartesian product is denoted by “×” whereas multiplication is de-
noted by a centered dot: “·”. A sequence of products is denoted by “∏”
in each case, e.g., ∏i∈{1,2,3} Si = S1 × S2 × S3 for three sets S1, S2, and S3.

• In pseudocode algorithms, we use the symbol “=” as the assignment
operator and “==” for equality comparisons.

• For a binary relationR over a finite set S, i.e.,R ⊆ S× S, we denote its
reflexive closure by “R=”, its transitive closure by “R+”, its reflexive
transitive closure by “R∗”, and its symmetric closure by “R↔”.

• In (predicate) logic formulae, we denote negation by “¬”, conjunction
by “∧”, disjunction by “∨”, and implication by “=⇒”. A universal
quantification is denoted by “∀” and an existential one by “∃”. We
ensure throughout the thesis that the interpretation of such a formula
is clear from the context, and we use the following abbreviations: We
write “∀ x ∈ P : F(x)” for “∀x

(
P(x) =⇒ F(x)

)
” and “∃ x ∈ P : F(x)”

for “∃x
(

P(x) ∧ F(x)
)
” where P is a predicate and F is a formula, i.e.,

the scope of a quantification is extended after the colon to get rid of the
outer parentheses.

• A superscripted “τ” denotes that the symbol τ (which is the only symbol
used as such a superscript) is an element of a set, i.e., Sτ := S ∪ {τ} for
a set S. Similarly, a superscripted slashed τ (“ 6τ ”) denotes that τ is not
part of a set, i.e., S 6τ := S \ {τ} for a set S.

In the next chapter, we provide the formal foundation of this thesis.

17

Chapter 2

Interaction Systems

In this chapter, we formalize the setting of our goals mentioned in the intro-
duction. We give a formal representation of components and their cooperation
called interaction system, derive its overall observable behavior, define generic,
parametrized, and specific properties of this behavior, compare various no-
tions of behavioral equivalence from the literature in this setting, and finally
select one of these notions that matches our goals and which we use in the
subsequent chapters of this thesis.

2.1 From Components and Interactions to Interaction
Systems

As mentioned in Section 1.1 of Chapter 1, the concept of components allows to
separate the concerns of the static and the dynamic part of a system. Clearly,
this separation should also be visible in a formal model for components. We
start out with the static part called component system that models the available
components and their means for cooperation with their environment. After
that, we describe the way the components cooperate which constitutes the
interaction model. These two entities are then combined and equipped with the
dynamic part, which finally results in interaction systems.

The following definitions are based on the original work on interaction systems
by Gössler and Sifakis [121, 123] with adjustments by Majster-Cederbaum
and Minnameier [183, 184], Majster-Cederbaum and Martens [179, 180], and
ourselves [160, 161]. The biggest change to the original model occurs for
the interaction model—we discuss the differences in detail after its formal
definition.

18 2 Interaction Systems

2.1.1 Component System

A component is considered as an entity with a unique name and a unique set
of ports (called actions) that are offered for cooperation to its environment.
Note that the uniqueness is not a restriction at all, since equal names could be
distinguished by additional indices or identifiers.

Definition 2.1 (Component System): A component system CS is defined by
means of a tuple (Comp, {Ai}i∈Comp) where Comp is a finite set of components,
which are referred to as i ∈ Comp, and {Ai}i∈Comp is a family of finite sets
called action sets (one for each component) that are pairwise disjoint, i.e., we
have ∀ i, j ∈ Comp : i 6= j =⇒ Ai ∩ Aj = ∅. An element ai of an action set Ai

is called an action of component i. All actions of CS are contained in the global
action set Act :=

⋃
i∈Comp Ai.

We now successively build up a formal representation of our running example,
the merchandise management system, as introduced in Section 1.3. First, we
specify the set of components:

Comp = {c, m, s} —for customer, merchandise management, and storage.

Then, we use the operations that were described in Section 1.3 to specify the
action set for each component (in alphabetic order):

Ac = {abortc, askc, buyc, refundc},
Am = {cancelm, deliverm, orderm, paym, printm, reimbursem, releasem, reservem},
As = {marks, unmarks, ships}.

We always subscript an action with the name of its corresponding component
in the sequel. On the one hand, this guarantees that all action sets are disjoint—
as required by Definition 2.1—on the other hand, it allows to quickly identify
the corresponding component. Note that the component system of our run-
ning example is completely specified with CS = (Comp, {Ac, Am, As}).

Throughout the thesis, we use a graphical representation to visualize com-
ponent systems. Figure 2.1 on the facing page depicts this representation for
our running example. Here, components are depicted as yellow boxes which
contain the name of the component as an identifier. Actions are depicted
as black semicircles at the border of the component boxes. Next to such a
semicircle, we write the name of the corresponding action.

This completes the static part for the individual components. Next, we define
how the components cooperate.

2.1 From Components and Interactions to Interaction Systems 19

refundc
buyc

askc

abortc

reimbursem printm

reservem

deliverm

cancelm releasem

orderm

paym marks

ships

unmarks

c m s

Figure 2.1: Component system of the merchandise management example

2.1.2 Interaction Model

In a component system, each component offers a set of actions for cooperation.
As already mentioned in Chapter 1, we only model synchronous communica-
tion or rendezvous in this thesis, and thus cooperations among the components
can be defined as sets of actions that have to happen synchronously, i.e., each
element of such a set is dependent on all other elements. Such a set is called
an interaction and defined as follows.

Definition 2.2 (Interaction): Let CS be a component system. An interaction
of CS is a nonempty finite set α ⊆ Act of actions that contains at most one
action of every component, i.e., we require |α ∩ Ai| ≤ 1 for all i ∈ Comp. For
an interaction α and a component i, we define i(α) := Ai ∩ α and say that i
participates in α if i(α) 6= ∅. By compset(α) := {i ∈ Comp | i(α) 6= ∅} we
denote the set of components participating in an interaction α.

We can now use this definition to specify any cooperation or interaction respec-
tively that is possible among the components. This leads us to the definition
of the interaction model that specifies the set of all allowed interactions. For
consistency, we require that each action is contained in at least one interaction.
If no cooperation using a particular action of a component is planned, we have
to include a singleton interaction modeling that this action is independent.
Furthermore, we want to distinguish which of these interactions are visible
to an outside observer. Thus, for any interaction we specify its observability:
If it is a so-called closed interaction, the corresponding synchronization of the
participating components is unobservable for an outside observer, otherwise
the interaction is called an open interaction.

Definition 2.3 (Interaction Model): Let CS be a component system. An inter-
action model IM is a tuple (CS, Int, Intclosed) where interaction set Int is a finite
set of interactions which covers all actions, i.e.,

⋃
α∈Int α = Act, and closed

interaction set Intclosed is a subset of Int. By Intopen := Int \ Intclosed we denote
the set of non-closed interactions which we call open interactions. We say that
a set of components cooperates if an interaction exists where all those com-

20 2 Interaction Systems

ponents participate in, i.e., the components in a set C ⊆ Comp cooperate if
∃ α ∈ Int : C ⊆ compset(α) holds.

Next, we give an example for Definition 2.3 and introduce the interactions of
our running example. We set:

Int =
{
{abortc, cancelm}, {askc, orderm}, {buyc, paym}, {deliverm, ships},

{printm}, {refundc, reimbursem}, {releasem, unmarks}, {reservem, marks}
}

,

Intclosed =
{
{printm}

}
.

The interaction {printm} is defined as a closed interaction, i.e., it is per-
ceived as an internal operation by an outside observer. Observe that IM =

(CS, Int, Intclosed) with CS as defined above (cf. page 18) completely specifies
the interaction model of our running example.

We extend the graphical representation that we introduced for component
systems to also depict the cooperation information. Figure 2.2 depicts the
graphical representation of the interaction model of our running example.
Interactions are depicted as black lines connecting the corresponding actions.
If an interaction is a singleton, we omit any lines if no other interaction exists
where the particular action is part of. Otherwise, we use a loop line connecting
the corresponding action with itself. In case an interaction is closed, we use
gray color (cf. the print (inter-)action of component m in Figure 2.2).

refundc
buyc

askc

abortc

reimbursem printm

reservem

deliverm

cancelm releasem

orderm

paym marks

ships

unmarks

c m s

Figure 2.2: Interaction model of the merchandise management example

We have to admit that our running example does not show the flexibility of
interaction models but its simplicity is more helpful for illustrating our ideas.
But, we give a small example demonstrating this feature.

Example 2.4: Consider a radio station and two listeners modeled as three
components rs, l1, and l2. The radio station has a single action broadcastrs

whereas the listeners have actions listenl1 and listenl2 respectively. Now, an
interaction model for this component system allows for a lot of flexibility in
the specification because the multiway cooperation, that interaction models
allow for, facilitates a very compact and convenient modeling on a certain

2.1 From Components and Interactions to Interaction Systems 21

level of abstraction. For instance, consider the following set of interactions:

Int =
{
{broadcastrs}, {broadcastrs, listenl1}, {broadcastrs, listenl2},
{broadcastrs, listenl1 , listenl2}

}
.

Here, we specify that the radio station is always able to broadcast its signal
independently of the number of listeners but no listener can execute its action
if the station’s signal is unavailable. We can remove the singleton {broadcastrs}
from this set to require that at least one listener is present, or only allow the
interaction of all three components, i.e., Int =

{
{broadcastrs, listenl1 , listenl2}

}
,

to enforce the listening of all available listeners and otherwise block the signal.

We continue with some historical remarks about the interaction model. Origi-
nally, Gössler and Sifakis [121] use the name “connector” for a set of actions
(of different components) that models a synchronization of the involved com-
ponents. They require that the set of all connectors covers all actions and that
any connector is maximal with respect to set inclusion among all connectors.
A special operator “I(·)” is defined that returns for a given connector the set
of all of its subsets, and such a subset is called an interaction. This operator is
extended to also accept a set of connectors such that it returns the union of all
subsets of the contained connectors. Additionally to the set of connectors, a set
of “complete interactions” is specified in their interaction model that contains
some of the possible interactions and any superset of such an interaction that
is also an interaction. These complete interactions represent all partial syn-
chronizations (with respect to a connector) that are possible in the system, e.g.,
if not all components of a connector are ready for synchronization, a subset of
these can proceed if a corresponding complete interaction is defined.

This original interaction model was modified and extended several times; we
shortly highlight some modifications. Majster-Cederbaum and Minnameier
[183] first use the name “Int” for the set of all interactions of the original
model of Gössler and Sifakis [121], i.e., the union of all sets I(C) for all sets
C of connectors. Majster-Cederbaum and Martens [179] modify the original
model and only use a set of maximal connectors, i.e., without the set of
complete interactions. Later, they also drop the maximality requirement
of the connectors as well [180], i.e., any possible synchronization among
the components is modeled as a connector. Similarly, Majster-Cederbaum
and Minnameier [184] and ourselves [160] neglect the requirements of the
original model and additionally drop the now obsolete name “connector”
and simply call a set of actions an interaction—note that we also use this
understanding in Definition 2.3. The presence of closed interactions, that
should be unobservable from an outside view, is introduced to allow for
abstraction by ourselves [160].

22 2 Interaction Systems

The definition of the interaction model completes the static part. We now
add the behavior of the components to the interaction model, which yields
interaction systems.

2.1.3 Interaction System

Several ways of modeling the behavior of an entity in a formal way can be
found in the literature, e.g., flow charts, nets, logic, automata, or mathematical
equations. Typically, all of these notions have in common that several behav-
ioral states can be distinguished and that the information provided by the
current state influences the future behavior, i.e., we have transitions between
the states that model behavioral actions taking place.

Here, we follow this basic observation and use labeled transition systems for any
behavioral description throughout this thesis. According to Baier and Katoen
[23, Section 2.5], labeled transition systems where first used for the verification
of concurrent programs by Keller [157]—under the related name “named
transition systems”—and they can also be used for hardware verification [158,
Chapter 3]. But, these systems have a much older and richer history, since
similarities can be found with many popular computational models such as
Turing machines, finite-state machines, or Petri nets, to mention just a few. For
instance, Brookes and Rounds [50] trace them back to the nondeterministic
automata of Rabin and Scott [236]. We refer to the book of Savage [239] for a
detailed overview of computational models. Lee and Sangiovanni-Vincentelli
[170] provide a comparison of such models in a concurrent setting.

Now, adding a labeled transition system for each component that uses the
corresponding action set as its alphabet, fully specifies the behavior of each
component. Please note that we do not formally define labeled transition sys-
tems at this point, but for convenience, included this definition in Appendix A
and refer the interested reader to Definition A.1.

Definition 2.5 (Interaction System): Let IM be an interaction model. An inter-
action system Sys is defined by means of a tuple (IM, {LTSi}i∈Comp). The behav-
ioral model {LTSi}i∈Comp is a family of labeled transition systems with LTSi =

(Si, Ai, { ai−→i}ai∈Ai , S0
i), i.e., for each component exists a labeled transition sys-

tem over its action set1 which we call the (local) behavior of the component. For
convenience, we write [[i]] instead of LTSi. Further, we assume that the compo-
nents’ sets of states are disjoint, i.e., ∀ i, j ∈ Comp : i 6= j =⇒ Si ∩ Sj = ∅, and
that all sets of states are nonempty, i.e., ∀ i ∈ Comp : |Si| ≥ |S0

i | > 0.

1“Labeled transition system over a set” means that this set is the alphabet of the system.

2.1 From Components and Interactions to Interaction Systems 23

We require that at least one state is present for any component, because this
is the simplest behavior that can be modeled using labeled transition sys-
tems. An empty set of states does not correspond to “no-behavior”, it is an
underspecification of the system—no-behavior is a single initial state with no
outgoing transition.

Historically, the labeled transition systems modeling the behavior of the com-
ponents were only allowed to have one initial state, i.e., |S0

i | = 1 for all
i ∈ Comp. Since this is not an important restriction and other models, e.g., con-
straint automata [24], allow for more than one initial state, we here also use this
more general definition, i.e., we only require |S0

i | ≥ 1 for all i ∈ Comp.

We now complete the specification of our running example by introducing a
labeled transition system for each of the three components. Here, we directly
use the informal description of the behavior of the components given in the
introduction of the example in Section 1.3. For instance, the management
component allows for ordering goods as well as directly paying them, which
we model as transitions leading to different states. Here, it is much more
convenient to use a graphical representation for labeled transition systems
instead of giving the binary relations representing the transitions directly (cf.
Definition A.1). For instance, Figure 2.3 depicts [[m]].

0 5
releasem 3

reimbursem

1
orderm

cancelm

2

cancelm paym

reservem

6

deliverm, reimbursem

paym reservem

4

printmdeliverm

Figure 2.3: Behavior of the management component m

In the graphical representation, we identify a state such as s1
m with a circled,

gray-colored 1: 1 . We omit the name of the component since it is clear from
the context in all our examples. An initial state is represented by a similar
circle but with green color, e.g., state s0

m as 0 , and with a sourceless incoming
arrow. A transition is depicted in the same manner, e.g., s0

m
orderm−−−→m s1

m as
0 1

orderm . Note that different labeled transitions between the same source

24 2 Interaction Systems

and destination state are depicted as one arrow with a comma-separated list
of labels, e.g., consider the deliverm- and reimbursem-transitions between states
s2

m and s0
m in Figure 2.3.

We also have to specify the behavior of the other two components and again
use our graphical representation for this task: [[c]] is given in Figure 2.4 (a) and
[[s]] is given in Figure 2.4 (b).

0

refundc

1

askc

buyc, abortc

(a) Behavior of the customer component c

0 1

marks

ships, unmarks

(b) Behavior of the storage component s

Figure 2.4: Behavior of the customer (a) and the storage component (b)

Observe that the alphabets of the three labeled transition systems [[c]], [[m]],
and [[s]] respectively correspond to the action sets Ac, Am, and As respectively
of the components as defined on page 18, i.e., all labeled transition systems
are valid behaviors with respect to Definition 2.5.

We now completely specified the interaction system for our running example
according to Definition 2.5. As a summary, we have (with Comp, Ac, Am, As

defined on page 18 and Int, Intclosed on page 20):((
(Comp, {Ac, Am, As})︸ ︷︷ ︸

component system

, Int, Intclosed
)

︸ ︷︷ ︸
interaction model

,
{
[[c]], [[m]], [[s]]

})

︸ ︷︷ ︸
interaction system

We refer to this system as SysMMS in the sequel.

2.1.4 Remarks and Related Models

As demonstrated by our example interaction system SysMMS, the formalism of
interaction systems allows for a very convenient and flexible way of specifying
the cooperation among the components. We already discussed the origins
of interaction systems in the previous sections, but want to point out that
interaction systems are used as the theoretical model of the BIP framework [30,
46] and the Prometheus tool [120], and moreover, the model has been used in
the context of the EU project SPEEDS [19, 45]. Next, we take a look at related
work using other formalisms.

2.1 From Components and Interactions to Interaction Systems 25

Various authors have studied ideas that are similar to interaction systems
mostly under the aspect of enhancing and facilitating the specification of
object-oriented, component-based, or service-oriented systems. Typically, the
behavior of the components is specified in a way that distinguishes several
system states in which a component offers some of its ports for cooperation.
In the literature, various formalisms have been used for this task, e.g., process
algebras [5, 8, 39, 176, 206, 207, 212, 228], channel-based methods [12, 13, 24],
interface theories and various automata [31, 47, 81, 82, 94, 137, 237, 253], and
Petri nets [1, 11, 26, 79], to mention just a few. Typically, a labeled transition
system can be seen as a general model for this kind of behavior, i.e., all
formalism distinguish behavioral states and transition relations between these
states.

Furthermore, other formalisms can often be understood as interaction systems
if we abstract from data and input/output (I/O) operations, e.g., the glue
code for I/O transition systems [137] consists of binary interactions among the
I/O labels of the systems and, of course, I/O transition systems are labeled
transition systems. In a similar way, interface automata [80, 82] and constraint
automata [24] can be translated where more complex glueing mechanisms
can be realized by special glue components in interaction systems. Arnold’s
synchronous product of transition systems [14] corresponds to interaction
systems if we interpret his synchronization vectors as interactions and ensure
the disjointness of all alphabets. For 1-safe Petri nets and interaction systems,
a bidirectional translation exists [182]. Approaches where the parallel operator
of a process algebra is used to derive the glue code [8, 39, 207] can also be
regarded as interaction systems by defining appropriate interactions among
the synchronizing processes. Similarly, the multiparty synchronization opera-
tion of action systems [17], that generalize process algebras (since often, only
binary synchronizations are allowed), corresponds to interactions. But, these
operations are not as flexible as interactions since the synchronization happens
over the same action. As a notable exception, we want to mention the work of
Groote et al. [131] on the process algebra mCRL2 where multiactions similar to
interactions are possible and where the parallel composition operator together
with a special allow operator can be used to model interaction systems if a
component’s behavior is regarded as a process and only those multiactions
that correspond to an interaction are allowed.

Interactions in the model of interaction systems are also similar to first-order
multiparty interactions [149] since the set of interactions, that allows to glue
components together, can be used in any context where the involved com-
ponents offer the necessary ports. Furthermore, multiparty rendezvous [59]
can be seen as interactions if we abstract statement blocks into atomic ac-
tions.

26 2 Interaction Systems

We now discuss some of the above mentioned work in more detail, which
shows the similarities to interaction systems. As mentioned in Section 1.2.4 of
Chapter 1, the notion of an architecture description language that describes
software architectures is related to the idea of component-based development.
For instance, Aldini and Bernardo [6]—where similar ideas can be found in
work by Shaw and Garlan [242]—stipulate that an architecture description
language has to adhere to the following guidelines: (1) separating behavior
from topology, (2) specification reuse, (3) interaction elicitation, (4) commu-
nication classification, (5) graphical notation, (6) transparent use of the static
operators, and (7) the support for architectural styles and system families. In
our setting, we do not address all of these items but there are clearly similari-
ties to the model of interaction systems, e.g., we also separate the behavior of
the components from their cooperation, we allow for reuse, we distinguish
open and closed interactions (and thus, elicit interactions architecturally),
support the modeling of many communication scenarios with the flexibility
of our interaction model, and provide a graphical notation. We also address
the support for architectural styles by constraining the ways the components
are allowed to cooperate but postpone this restriction to Chapter 4. For an
overview of architecture description languages, we refer the reader to the
work by Medvidović and Taylor [192]. Thus, with this connection in mind we
also consider formal models for architecture description languages as related
work in the following.

PADL The architecture description language PADL by Bernardo et al. [39]
and Aldini and Bernardo [6] is based on a process algebra similar to CSP [141].
The separation of topology and behavior is achieved by further extending and
structuring the pure usage of the process algebra. In particular, the “double
use” of the parallel operator is avoided, i.e., its usage to specify the behavior of
processes, which can be understood as the components, and their composition,
which is the glue code of the model. The processes, that constitute the build-
ing blocks of a system, are described as so-called architectural types, that are
sub-divided into a set of architectural element types, an architectural topology,
and behavioral variations. Here, an architectural type fixes the name and
parameters of a system. The architectural element types describe the behavior
of the participating components and are thus specified as processes. The archi-
tectural topology specifies the cooperation among the available architectural
elements. Behavioral variations allow for global rules that further restrict
the cooperations. The reuse of architectural element types is supported by
distinguishing between the definition and an instantiation of the architectural
element types, i.e., the types are at first formally specified and later instanti-
ated in the topology description of the system. Unique names are provided in
the instantiation step which thus supports the reuse of the types.

2.1 From Components and Interactions to Interaction Systems 27

The actions of the components are called interactions—not to be confused
with interactions in our setting—and defined on the architectural element
level. They can be distinguished as input, output, and internal actions. On
the topology level, the actions can be connected by so-called architectural at-
tachments. These attachments are directed since input and output interactions
can be distinguished. In order to support a hierarchical modeling approach,
the interactions can be declared to be the interface of the composite system,
i.e., they are distinguished as architectural interactions and local interactions
where local interactions have to be part of at least one attachment. Here, inter-
actions with the same name cause no problems with respect to name clashing
because all interactions are referenced together with the unique element name
that was created in the instantiation step.

Java/A Baumeister et al. [31] introduced Java/A as an architecture descrip-
tion language that is closer related to a real programming language, viz. Java
in this case. This relatedness should mitigate the discrepancy—also called ar-
chitectural erosion by Perry and Wolf [226]—between a formal model specified
in an architecture description language and its implementation that typically
arises if the implementation does not adhere to the rules of the architecture de-
scription language and the load-bearing walls—to use a comparison by Perry
and Wolf [226]—are removed. Since we are interested in the application of
formal methods, we consider in the following only the formal semantic model
on which Java/A is based upon. We use the terminology and extensions of
the work by Hennicker et al. [137].

The behavior of any entity in Java/A is modeled as an I/O transition system,
which is defined similar to interface automata [82]. The I/O operations are
distinguished as input, output, and internal operations and all non-internal
operations are understood as atomic actions that are used for cooperation.
Internal operations are unobservable and only visibly as a special transition of
the behavior.

A Java/A component offers ports as its interface for cooperating with its envi-
ronment. A port consists of a set of required operations and a set of provided
operations which are related by means of an I/O transition system. Further-
more, simple components and composite components are distinguished. A
simple component has, additional to its ports, a local behavior that is specified
as an I/O transition system. A composite component is an encapsulation
of further simple or composite components, binary connectors among these
components, and relay ports which allow for declaring unused ports of the
encapsulated components as the interface of the whole composite component.
If two ports are linked by a connector, then the required operations of one port
must match the provided operations of the other and vice versa.

28 2 Interaction Systems

SOFA - SOFtware Appliances SOFA is a component model developed by
Plášil et al. [229] and extended by Bureš et al. [58] to allow for new features
such as dynamic re-configuration. Here, we only focus on the formal part
of SOFA but we want to point out that also an implementational part exists
and all in the following described entities are available as Java code frag-
ments.

SOFA distinguishes between primitive and composite components where
a composite component consists of several sub-components which again
can be composite or primitive components. Every component is described
with a so-called frame and its architecture. A frame can be understood as
a black-box view of the component, i.e., it only defines the provided and
required interfaces of the component. The architecture is a gray-box view:
On this level, the frame is extended by defining the sub-components and the
connections among these under the restriction that only the frames of the
sub-components are accessible. The cooperation of the components is realized
as special connectors that link the interfaces.

The behavior of a component is specified as so-called behavior protocols [228].
A behavior protocol extends a SOFA component with a regular expression
like protocol, which represents traces of the component’s behavior that can be
observed on the interface of the component. For instance, a component that
models a read-only file server which processes open, read, and close requests
can ensure by the use of a behavior protocol that any read request of a client
component is preceded by an open request. Such a regular expression can, of
course, also be understood as a labeled transition system.

Darwin Magee et al. [176] developed Darwin as an architecture description
language for distributed software architectures. Each component has a set of
services which are distinguished as “required” and “provided” by the compo-
nent. The name of the service is context independent, i.e., it is not important
for the composition. The services are connected by so-called binds which
model the cooperation among the components. Hierarchical composition is
supported by encapsulation of the components where such an encapsulation
is also understood as a component which indicates which of its services are
offered to the outside world and which are linked internally. The authors give
a model in the π-calculus [202, 203] where services are described as agents.
These agents do not specify the behavior, instead they relay requests to the
underlying component whose behavior is specified as a further agent or as
a finite state process [175, 177]. This separates the services from the local
behavior of the components.

Wright Allen and Garlan [8] proposed Wright for the description of a sys-

2.2 Deriving the Behavior of Interaction Systems 29

tem’s architecture in three parts. First, they describe the available component-
and connector-types where a component-type is defined as a set of ports with a
so-called protocol together with the specification of the whole component-type
behavior. The ports are the interface of a component-type for its cooperation
with the environment and the protocol specifies the behavior of the component-
type at the port. A connector-type links cooperation partners by means of a
glue code where the particular links to the ports are described in the third
part. At this part, the connector-type facilitates the specification of so-called
roles which fix the behavior of the participating cooperation partners, i.e., the
expected behavior is specified. Now, the glue code specifies how these roles
should cooperate. Here, any behavior is modeled as a CSP process [141], i.e.,
the behavioral specification of the component-types, the protocols of the ports,
the roles of the connector-types, and the glue code.

The second part describes the instances of the previously specified types. This
instantiation supports the reuse of components and connectors where every
instance gets a unique name. Finally, the third part specifies which ports of
instantiated components are attached to which roles of instantiated connectors.
This attachment ensures the independence from the used CSP actions since
they are prefixed with the unique names of the instances. Furthermore, a
whole architectural description can be encapsulated as a component where
architectural and internal ports can be distinguished.

From the descriptions of the related models, we see that if we abstract from
data and I/O operations we often can translate the specification of a given
system into an interaction system. For the behavior of the components this is
possible since the semantics of process algebraic expressions is usually inter-
preted as a labeled transition system, e.g., the transitional semantics of CCS
[200, Section 2.5]. Several of the above discussed models allow for hierarchi-
cal modeling which we have not addressed yet for interaction systems—but
discuss in Chapter 3.

In the next section, we show how the overall observable behavior of an inter-
action system can be derived.

2.2 Deriving the Behavior of Interaction Systems

From the local parts of an interaction system, viz. the behavior of the compo-
nents, and its interactions we can now derive its overall behavior as a labeled
transition system over the interactions. Here, the important distinction be-
tween open and closed interactions becomes clear, since we require that closed

30 2 Interaction Systems

interactions are unobservable. In the literature, several names for unobserv-
able labels can be found, e.g., hidden, silent, invisible, or internal. Milner [195]
was the first to introduce the Greek letter τ as a result of synchronization in
the composition of processes in his research preceding his famous process
algebra CCS [197]. Various authors followed this direction since behavior
becoming unobservable is an useful way for abstraction, e.g., Bergstra and
Klop [37] added silent steps to their process algebra ACP and introduced an
abstraction operator that turns visible steps into silent ones. Related ideas can
be found in Hoare’s CSP [141, Section 3.5]. Such silent steps were also studied
for nondeterministic finite automata where special ε-transitions correspond
to a state change of an automaton without reading an input character, i.e.,
without an observable state change. As said in Section 1.4 of Chapter 1, we use
the following abbreviation to deal with the possibility of unobservable labels:
By a superscripted τ we stress the requirement that τ is an element of an
alphabet, i.e., Στ := Σ ∪ {τ} for any alphabet Σ. Similarly, by a superscripted
slashed τ (“ 6τ ”) we denote that τ is not part of a set, i.e., Σ 6τ := Σ \ {τ} for any
alphabet Σ.

Here, we proceed with formally defining the global behavior of an interac-
tion system. As already mentioned in Chapter 1, this behavior is derived by
executing the interactions nondeterministically according to their executabil-
ity.

Definition 2.6 (Global Behavior): The global behavior of an interaction system
Sys is a labeled transition system [[Sys]] := (S, Intτ

open, { α−→}α∈Intτ
open

, S0) where
the set of global states S = ∏i∈Comp Si is given by the Cartesian product of the
components’ sets of states, which we consider to be order independent. Global
states are denoted by tuples s = (s1, . . . , sn) with n = |Comp|, i.e., si denotes
for i ∈ Comp component i’s state in a global state. The set of global initial states
is S0 = ∏i∈Comp S0

i . The family of global transition relations { α−→}α∈Intτ
open

is
defined canonically where for all α ∈ Int and all s, t ∈ S we have

• s α−→ t if and only if α ∈ Intopen and for all i ∈ Comp either i(α) = {ai}
for an ai ∈ Ai and si

ai−→i ti or i(α) = ∅ and si = ti and

• s τ−→ t if and only if α ∈ Intclosed and for all i ∈ Comp either i(α) = {ai}
for an ai ∈ Ai and si

ai−→i ti or i(α) = ∅ and si = ti.

Typically, we are not interested in the whole labeled transition system that
models the global behavior. We are only interested in the set of global states
that can be reached from a global initial state (cf. Definition A.4 in Appendix A
where we give a formal definition of reachable states in a labeled transition
system), which constitutes the reachable part of the global behavior—for
convenience, simply called the reachable global behavior in the following.

2.2 Deriving the Behavior of Interaction Systems 31

From an algorithmic perspective, we thus want to avoid the construction of the
Cartesian product of the components’ state spaces to obtain [[Sys]] as specified
in Definition 2.6. Instead, we use the following straightforward idea: We
only compute the Cartesian product of the components’ initial state spaces to
obtain the set of global initial states, which are marked as unprocessed. Now,
as long as there is an unprocessed global state, we check which interactions are
enabled in this global state. The local execution of the corresponding actions
of these enabled interactions in the components’ labeled transition systems
then yields the set of successor states which we add as global states. If such a
successors has not been seen before, we also mark it as unprocessed. This idea
is known as forward traversal and corresponds to a depth-first or breadth-first
search depending on the order in which we process the global states. Here,
we do not give an algorithm for this idea but refer to Algorithm B.2 given in
Appendix B. In the following, we refer to such an algorithm that computes
the reachable part of the global behavior as BEHAVIOR-TRAVERSAL(Sys) (for
a given interaction system Sys).

Figure 2.5 depicts the labeled transition system that is computed by calling this
algorithm for our running example, i.e., BEHAVIOR-TRAVERSAL(SysMMS).

0 1

{askc, orderm}

{abortc, cancelm}

2
{reservem, marks}

3
{buyc, paym}

4 τ{deliverm, ships}

5

{abortc, cancelm}

{refundc, reimbursem}{releasem, unmarks}

Figure 2.5: Reachable global behavior of the running example SysMMS. Note
that the states represent global states, e.g., a circled 1 corresponds to state s1.

Apparently, the global states convey more information than visible in Fig-
ure 2.5, i.e., we have:

s0 = (s0
c , s0

m, s0
s)

s1 = (s1
c , s1

m, s0
s)

s2 = (s1
c , s2

m, s1
s)

s3 = (s0
c , s3

m, s1
s)

s4 = (s0
c , s4

m, s1
s)

s5 = (s0
c , s5

m, s1
s)

However, as we discuss in the next section, this additional information is not
needed for the properties of interaction systems that we want to study.

32 2 Interaction Systems

For an arbitrary interaction system Sys, the labeled transition system yielded
by BEHAVIOR-TRAVERSAL(Sys) is typically different from [[Sys]] as given by
Definition 2.6 because the former contains only the global states that are
reachable from an global initial state. For instance, the number of reachable
global states, as depicted in Figure 2.5, is six, whereas the number of possible
global states of the labeled transition system [[SysMMS]] is 28 (|Sc| · |Sm| · |Ss| =
2 · 7 · 2). However in general, every possible combination of the components’
local states could be reachable. Thus, if we estimate the size of the global state
space S, we get:

|S| = | ∏
i∈Comp

Si| = ∏
i∈Comp

|Si| ≤ ∏
i∈Comp

|Smax| = |Smax||Comp|

where |Smax| denotes the size of the largest local state space, i.e., |Smax| =
max{|Si| | i ∈ Comp}. Here, the reachable global behavior can be exponential
in the number of components, and its computation is thus only feasible for
small parameters such as our running example SysMMS.

Note that this phenomenon is, as already mentioned in Chapter 1, well-known
as the state space explosion problem [23, 72, 256] since the number of global
states is exponential in the number of components. This explosion typically
arises in settings where combinatorial many behavioral possibilities exist. We
demonstrate this effect for interaction systems by means of an example.

Example 2.7: We model a binary counter as an interaction system in order
to demonstrate the effect of state space explosion. Consider the interaction
system Sysbin(n) where for n ∈N, the system consists of n components each
modeling a binary variable called “bit” in the following. Each bit is initially
set to zero, can be increased to one, and can then be decreased to zero. From
this behavioral description, we derive for each component a labeled transition
system [[i]] with 1 ≤ i ≤ n that is depicted in Figure 2.6.

0 1

inci

deci

Figure 2.6: Behavior [[i]] of component i representing the ith bit for 1 ≤ i ≤ n

We glue the components together such that the interactions model the steps of
a binary counter. Figure 2.7 on the facing page depicts the resulting interaction
model. For the first bit, a singleton interaction exists, viz. {inc1}, because in
a binary counter, the first bit can always be increased (if it is zero) to get to
the next value of the counter. Observe that any other bit increment depends

2.2 Deriving the Behavior of Interaction Systems 33

on the possibility of being able to decrease all lower bits, e.g., consider the
interaction {inc3, dec2, dec1} where bit 3 can only be increased if bit 2 and bit 1
are decreased. Finally, if the counter reaches its maximum value, i.e., all bits
are set to one, we model the next value, as usual, as an overflow, i.e., the next
value is again the lowest one.

. . .

..
.

inc1

dec1

inc2

dec2

inc3

dec3

incn

decn

1 2 3 n

Figure 2.7: Interaction model of the binary counter

Summarizing, we build the following interaction system (where n ∈N):

Sysbin(n) = (((Comp, {Ai}i∈Comp), Int, Intclosed), {[[i]]}i∈Comp)

with Comp = {1, . . . , n}, Ai = {inci, deci} for i ∈ Comp, Intclosed = ∅, and

Int =
⋃

2≤i≤n

{
{inci, deci−1, . . . , dec1}

}
∪
{
{inc1}

}
∪
{
{decn, . . . , dec1}

}
.

In order to illustrate the effect of state space explosion, we now consider the
global behavior of Sysbin(n). Since a binary counter with n bits can represent
2n different numbers, viz. 0 to 2n − 1, the global state space S of [[Sysbin(n)]]
consists of 2n reachable global states. Figure 2.8 depicts (a part of) the global
behavior of the binary counter system.

0

1

{inc1}

2
{inc2, dec1}

3
{inc1}

4
{inc3, dec2, dec1}

5

{inc1}

6
{inc2, dec1}{decn, . . . , dec1}

m

m = 2n − 1

Figure 2.8: Global behavior of the binary counter. Observe that the decimal
number of each global state corresponds to a bit string where each bit repre-
sents the state of the corresponding bit component, e.g., for n = 3 we have
s6 = (s1

3, s1
2, s0

1) and 610 = 1102.

34 2 Interaction Systems

If we now want to compare the size of the global behavior with the size of
the input, we first have to compute the size of Sysbin(n). For each i ∈ Comp
we have |Ai| = 2, |Si| = 2, and ∑a∈Ai

| a−→| = 2, i.e., each component requires
constant space. We have |Comp| = n and |Int| = ∑α∈Int|α| = (∑2≤k≤n k) +
1 + n = n(n+3)

2 . Thus, the size of Sysbin(n) is bounded by O(n2) whereas
|[[Sysbin(n)]]| = |S| + ∑α∈Int| α−→| = 2n + 2n is exponentially large in n, i.e.,
bounded by O(2n).

The binary counter example shows that even simple interaction systems suffer
from state space explosion because the reachable global state space may corre-
spond to the whole (combinatorial) global state space. Since we are interested
in properties of interaction system that address the global behavior, we have
to use more sophisticated ways if we want to guarantee polynomial bounds
for property verification.

But before that, we have to formally define what properties we have in mind,
i.e., we next consider properties of interaction systems more precisely.

2.3 Properties of Interaction Systems

We distinguish three kinds of properties for interaction systems. The first
kind, generic properties, refers to interaction systems as a whole, i.e., there is
no dependence on any particular element of the system (such as a particular
component or interaction): The whole system either satisfies the property or
not. We consider the properties of deadlock- and livelock-freedom as examples
for generic properties.

The second kind, parametrized properties, allows for addressing parts of an inter-
action system for which the property should hold. For instance, we consider
the property of progress of a component, i.e., whether the component in ques-
tion executes transitions locally in any possible execution of the whole system.
Characterizing for this kind of properties is that they do not refer to specific
elements of an interaction system such as, e.g., the presence of the customer
component of our running example SysMMS. Such properties are only allowed
to refer to parameters; hence their name parametrized properties.

The third and last kind, specific properties, addresses this issue. These properties
are tailored for a specific interaction system and are allowed to refer to its
elements. An example for this kind of properties is the question in our running
example SysMMS, whether an interaction modeling a deliver/ship operation is
always preceded by a reserve/mark operation.

2.3 Properties of Interaction Systems 35

As we can see from the paragraphs above, the specification of properties in
plain text such as the English language is often cumbersome, error-prone,
and imprecise, e.g., what is meant by “always preceded”? Therefore, this
specification problem has been addressed by many authors and several ways
for a formal specification can be found in the literature on program verification
such as, e.g., logic, automata, and transition systems. Here, we use a temporal
logic called Computation Tree Logic that was introduced by Emerson and
Halpern [95] after work by Pnueli [230], Lamport [165], Ben-Ari et al. [33], and
Clarke and Emerson [66] that put the original work on temporal logic by Prior
[233, 234] in a program verification context. Vardi [258] gives an exhaustive
overview on the development of temporal logic for program verification.
The use of temporal logic is also interesting for automatic verification since
so-called model checking algorithms, which were independently discovered
by Clarke and Emerson [66] and Queille and Sifakis [235], are known that
algorithmically check whether a given logical formula holds in a certain model
of the system under analysis.

Before we formally introduce properties for interaction systems, we want to
mention the seminal work of distinguishing system properties as safety and
liveness properties originally by Lamport [164] and extended by Alpern and
Schneider [9], and also the theorem of the latter authors that every property
can be understood as an intersection of a safety and a liveness property [9].
Roughly speaking, a safety property stipulates that something bad never hap-
pens, and a liveness property that something good should eventually happen.
This distinction has also been adopted for temporal logic [245], and Büchi
automata [56] have been used to recognize safety and liveness properties [10].
Pnueli et al. [231] present a compositional proof system addressing safety and
liveness properties of synchronous specifications. Often, one can benefit from
this distinction and use different approaches for safety and liveness proper-
ties, e.g., proof lattices for liveness properties [216], the different strategies for
safety and liveness property verification using compositional reachability anal-
ysis [62, 63], or the techniques in the model checker SPIN [142]. Biere et al. [41]
consider how liveness checking can be understood as safety checking.

However, as pointed out by Naumovich and Clarke [210], this distinction is a
tough task that can require deep mathematical insight. Similar observations
lead to work on extensions [133] and on new characterizations [87, 210] of the
original one by Alpern and Schneider [9]. Here, we do not go further into the
details of distinguishing properties but we refer to this characterization when
we deal with properties of interaction systems in the following. We want to
mention the following alternative (rough but intuitive) characterization: Safety
properties are satisfied in infinite time and violated in finite time whereas for
liveness properties it is the other way round [23, Sections 3.3 and 3.4].

36 2 Interaction Systems

Next, we introduce the properties freedom from deadlock and freedom from livelock
of interaction systems. Afterwards, we take a closer look at Computation Tree
Logic and some of its weaker variants, formally define the logic in our setting,
and show how properties of interaction systems can be expressed and verified.
Here, livelock- and deadlock-freedom are of special interest for some of the
logic’s variants, and hence they are introduced beforehand.

2.3.1 Freedom from Deadlock

Deadlocks are well-known throughout all areas of computer science. For in-
stance in the area of operating systems, the two classic introductory books, the
one by Tanenbaum [250, Chapter 6] and by Silberschatz et al. [244, Chapter 7],
both contain own chapters about deadlocks. Recall the classic example for
a deadlock: Processes are waiting for each other because each process holds
a resource that another one needs to continue and no process releases its
resource.

Here, we consider a similar situation but in the context of interaction systems.
Of course, the components can be understood as the processes. However, the
components do not hold resources that others need, instead they potentially
do not provide needed “resources”, viz. actions that are needed to execute
interactions, which other components potentially are waiting for. For instance,
if a component i wants to execute an action ai in its current state that is
contained in an interaction α = {ai, bj} where bj is an action of a component j
(distinct from i), but component j is unable to execute bj in its current state,
then j does not provide the “resource” that is needed by i, i.e., interaction α is
not enabled in the corresponding global state (cf. Definition A.1). Thus, if each
component has to wait for other components because all actions that it wants
to execute are contained in interactions that are not enabled (with respect to
a global state), we have a deadlock. Next, we formally define this situation
where, as formally introduced in Definition A.2 in Appendix A, Suc(s) denotes
the set of successors of a state s.

Definition 2.8 (Deadlock): A deadlock in an interaction system Sys is a global
state s ∈ S of the global behavior [[Sys]] such that no interaction is enabled in s,
i.e., Suc(s) = ∅. If no such state is reachable in [[Sys]], we call Sys deadlock-free.

The property of deadlock-freedom is an important system property in itself,
since deadlocks clearly correspond to faulty design decisions. Moreover, if
a previously undetected deadlock occurs in a later software product, the
consequences can range from annoyance of users, over financial losses, to
catastrophes and disasters.

2.3 Properties of Interaction Systems 37

Note that deadlock-freedom itself is a safety property [216] because it stip-
ulates that a state without a successor must not occur, i.e., something bad
never happens, which clearly can be violated in finite time. Furthermore, the
verification of safety properties can be reduced to deadlock detection [119]
which emphasizes the importance of this property.

Now, we turn to the question of how we can detect a reachable deadlock in
an interaction system in an automatic (but naive) way. We use the following
idea: While we compute the reachable global behavior of a given interaction
system Sys with a call to BEHAVIOR-TRAVERSAL(Sys) (cf. Algorithm B.2), we
can mark the currently considered global state as a deadlock (or output a
deadlock warning) if we find no successors. However, the runtime of such
an algorithm can be exponential in the number of components because, as
we discussed in Section 2.2, the reachable global state space may contain an
exponential number of global states. Remember that we already constructed
the global behavior of our running example SysMMS (cf. Figure 2.5), i.e., we
already know that SysMMS is deadlock-free since all reachable global states
have at least one successor.

An interesting question that arises now is whether we can do (asymptotically)
any better than this naive approach. This research direction typically leads to
the question of the computational complexity of a (decision) problem which
has been addressed for interaction systems as well. We want to mention the
books of Garey and Johnson [108] and Papadimitriou [220] as excellent refer-
ences for computational complexity, and we use their definitions of complexity
classes here. As discussed above, we can assume that the problem of deciding
whether an interaction system is deadlock-free (called deadlock detection for
short in the following paragraphs) is contained in the class EXPTIME.

The first result regarding interaction system and deadlock-freedom was given
by Minnameier [204] where the author presents a polynomial-time reduction
of the well-known 3-satisfiability problem, which is NP-complete [74], to
deadlock detection. This establishes the NP-hardness of deadlock detection
but also opens the possibility that we can find an algorithm which only needs
nondeterministic polynomial time. However, this complexity gap was later
closed by Majster-Cederbaum and Minnameier [182] which show that dead-
lock detection is PSPACE-hard by a polynomial-time reduction of the decision
problem of deadlock-freedom in 1-safe Petri nets to deadlock detection. Since
the former problem was shown to be PSPACE-hard by Cheng et al. [60], the
PSPACE-hardness of deadlock detection follows. Later, Majster-Cederbaum
and Minnameier [183] addressed the question whether deadlock detection
is also contained in the complexity class PSPACE, and since they answer
this question affirmative (via a sequence of a polynomial-time reductions to a

38 2 Interaction Systems

problem that is shown to be in PSPACE), we can finally state that deadlock
detection is PSPACE-complete. A more detailed discussion can be found in
the dissertation of Minnameier [205].

For our naive deadlock detection approach, the PSPACE-completeness result
shows that its strategy is not space-optimal, since it uses the whole represen-
tation of the reachable part of the corresponding labeled transition system
for investigation. Clearly, this representation possibly uses more than poly-
nomial space. However, as pointed out by Valmari [256, Section 5.4] in the
context of Petri nets, the result that a problem can be solved theoretically in
polynomial space often sacrifices a significant amount of time for this space
bound, and in practice, the exponential-time algorithms are much faster. The
reason for this much worse time bound lies in the usual way to show that
the problem is contained in PSPACE: To give an algorithm that decides the
problem in polynomial space, authors typically give a nondeterministic al-
gorithm that occupies only a polynomial amount of space, which proves the
problem is in NPSPACE, and apply the famous result of Savitch [240] that
PSPACE = NPSPACE. This way is also used by Majster-Cederbaum and
Minnameier [183] to show that a certain problem, to which deadlock detec-
tion is reducible, can be decided in polynomial space. However, Savitch’s
translation does not yield an algorithm that is useful in practice.

We do not want to continue here with a space-optimal algorithm for deadlock-
freedom in interaction systems, since its runtime would still not be polynomial
in the size of the input—which is just the representation of the interaction
system—unless the complexity classes mentioned above collapse. However, in
order to demonstrate the above mentioned issues, we give a polynomial-space
algorithm for deadlock-freedom in Section C.1 of Appendix C and refer the
interested reader to this section. Next, we take a look at a similar problem,
viz. freedom from livelocks, that was—to the best of our knowledge—not
considered in the context of interaction systems before.

2.3.2 Freedom from Livelock

Livelocks are conceptually related to deadlocks but typically describe a dif-
ferent situation: A livelocked system is not stuck at a specific point (or global
state in interaction systems); however, there is some internal activity that
keeps the system going but an outside observer cannot perceive a change
in behavior. According to Kwong [159], the term “livelock” was coined by
Ashcroft [15] in work about an airline reservation system where a booking
is never finished although the system is proven to be deadlock-free. In the
literature, there are many definitions of a livelock, even inconsistent ones [138].

2.3 Properties of Interaction Systems 39

For instance, Tanenbaum [250, Section 6.7.3] gives an example where two
processes use busy-waiting to acquire two resources, and although no one suc-
ceeds in getting both resources (the first process always precedes the second
one in requesting one of the resources and vice versa), the processes do not
block each other since their restart their polling requests over and over again.
Hoare [141, Section 4.4.3] considers livelocks as situations where processes
communicate with each other but never with the external world. Here, we
define a livelock and the notion of livelock-freedom as follows.

Definition 2.9 (Livelock): A livelock in an interaction system Sys is a global
state s ∈ S such that no open interaction is enabled in s and in any global state
t ∈ S that is reachable from s by the execution of closed interactions and such
that s itself is reachable (again) by the execution of closed interactions, i.e.,
s τ−→+ s and ∀ t ∈ S : s τ−→∗ t =⇒ Suc(t, Intopen) = ∅. If no such state is
reachable in [[Sys]], we call Sys livelock-free.

Contrary to deadlocks, livelock-freedom is a liveness property [216] because
in a livelock-free system it is always possible that something good happens
eventually which here is the occurrence of an open interaction, i.e., the prop-
erty can be satisfied in finite time. We want to point out that in an interaction
system’s reachable global state which has a τ-self-loop and an outgoing non-
τ-transition, a path or global execution fragment is observable that merely
consists of τ-transitions. However, it is always possible to leave this path and
continue with an open interaction, i.e., the system is not prevented from per-
forming particular actions [171], which here are the open interactions. Manna
and Pnueli [189, pages 325–326] describe this property as follows: The system
does not stay constrained forever within a given range of locations. Thus, in
Definition 2.9 we took a similar view, i.e., the (always given) possibility of the
occurrence of an open interaction renders a system livelock-free.

For our running example SysMMS, we again take a look at the reachable global
behavior depicted in Figure 2.5 (cf. page 31). Since state number 3 is the only
one with an outgoing τ-transition but its successor, state number 4, has an
outgoing non-τ-transition, the livelock-freedom follows. However, for more
complex systems an automatic investigation procedure is needed. We can
use the following idea: We compute the reachable global behavior, remove all
states in which a non-τ-transition is enabled, and check for a (directed) cycle
among the remaining states. Here, we do not give a detailed algorithm but
included one in Appendix B as Algorithm B.3. Clearly, the runtime of this
algorithm is not polynomial because we compute the global behavior.

As for the question of deadlock-freedom in Section 2.3.1, we are interested
in the optimality of algorithms for livelock-freedom, i.e., whether we can do

40 2 Interaction Systems

better than computing the global behavior beforehand. This again leads us
to the computational complexity of the associated decision problem. Next,
we show that we can reduce the question of deadlock-freedom in interaction
systems to livelock-freedom, which implies the PSPACE-hardness of the
problem.

Lemma 2.10 (Deadlock-Livelock Mapping): Let Sys be an interaction sys-
tem. Sys is deadlock-free if and only if Sys′ is livelock-free where Sys′ is
constructed in constant time as follows. Let x be a fresh component (not con-
tained in Sys) with a single action livex and a local behavior that consists of one
initial state with a self-loop labeled by the action. We set Comp′ = Comp∪ {x},
and we keep all action sets and local behaviors of the components for Sys′.
We also keep the set of interactions and add x’s action as a singleton, i.e.,
Int′ = Int∪

{
{livex}

}
, but set Int′closed =

{
{livex}

}
—only the new interaction

is closed in Sys′.

A formal proof of Lemma 2.10 can be found in Appendix F on page 237.

Lemma 2.10 shows that if we were able to answer the question of livelock-
freedom efficiently, we can use this technique to decide the question of
deadlock-freedom for a given interaction system in an efficient way. Since we
learned in the previous section that the latter question already is PSPACE-
hard (as proven by Majster-Cederbaum and Minnameier [183]), this result
carries over to livelock-freedom, i.e., the reduction implied by Lemma 2.10
establishes the PSPACE-hardness of livelock detection.

Moreover, we know from Algorithm B.3, which we shortly discussed above,
that the problem of livelock-freedom is contained in the class EXPTIME. So
the next natural question is—as we discussed for the property of deadlock-
freedom in Section 2.3.1—whether we can also check for livelocks in polyno-
mial space, which would establish the PSPACE-completeness of the problem.
We answer this question affirmative but refer the interested reader to Sec-
tion C.2 of Appendix C for the details and the corresponding algorithm.

Now, after discussing a safety and a liveness property, we turn to a better way
of specifying properties by means of logical formulae.

2.3.3 Using Logical Formulae for Property Specification

As mentioned in the introduction to Section 2.3, we want to use Computation
Tree Logic (CTL) to specify properties of interaction systems. For conve-
nience, we skip here a formal definition of the logic and refer the reader to
Appendix D where we define the syntax (cf. Definition D.1) and semantics (cf.

2.3 Properties of Interaction Systems 41

Definition D.4) of CTL*. Note that the superscripted star denotes the extended
version of Computation Tree Logic as defined in Appendix D. For a more
detailed introduction to CTL*, we refer the reader to the books of Baier and
Katoen [23, Chapter 6] and Clarke et al. [72, Chapter 3].

One important aspect of CTL* is its interpretation in a model called Kripke
structure, which is similar to a labeled transition system but instead of label-
ing the transitions, states are equipped with labels. We refer the reader to
Definition D.3 where we formally define Kripke structures.

Since we want to use the logic CTL* in our setting, we now need a way to
interpret CTL* formulae in labeled transition systems. De Nicola and Vaan-
drager [84] show such a way that allows for this interpretation: A translation
between Kripke structures and labeled transition systems. Here, we use their
linear version [85] and “condense” the translation which originally introduced
an intermediate step to allow a translation in both directions. Historically, the
translation was first proposed by Emerson and Lei [96], modified to deal with
unobservable actions by De Nicola and Vaandrager [84], and later refined by
the latter authors to be linear in the number of states and transitions [85]—to
be precise, the translation originally only allows for the interpretation of a
fragment of CTL* but results by Browne et al. [53] (that equivalent2 Kripke
structures satisfy the same CTL* formulae) and by Reniers and Willemse [238]
(that this equivalence is preserved by the translation) show that the translation
is also useful for the interpretation of all CTL* formulae.

Next, we define the one-way translation as discussed above (cf. Definition A.1
for labeled transition systems and Definition D.3 for Kripke structures).

Definition 2.11 (Labeled Transition System to Kripke Struct. Translation):
A given labeled transition system LTS = (S, Σ, { a−→}a∈Σ, S0) is translated via
the function K(·) into a Kripke structure K(LTS) := (S′,−→, S0, Στ,L) with:

S′ = S ∪ {(s, a, t) ∈ S× Σ× S | s a−→ t ∧ a 6= τ},

−→ = {(s, t) ∈ S× S | τ ∈ Σ ∧ s τ−→ t}
∪ {(s, (s, a, t)) ∈ S× (S× Σ× S) | s a−→ t ∧ a 6= τ}
∪ {((s, a, t), t) ∈ (S× Σ× S)× S | s a−→ t ∧ a 6= τ},

L(s) = {τ} for all s ∈ S, and

L((s, a, t)) = {a} for all s, t ∈ S and all a ∈ Σ with s a−→ t and a 6= τ.

We refer the reader to the above mentioned work [84, 85, 96, 238] for a more
detailed discussion of the translation. We want to point out that also an
action based version of CTL* exist—discussed in the work of De Nicola and

2This equivalence is known as bisimilarity which we introduce in Section 2.4.

42 2 Interaction Systems

Vaandrager [83]—but here stick to the state-based interpretation as it is more
common, used in references that we cite in the following, and can efficiently
be applied to interaction systems with the translation of Definition 2.11 as
we address now by an extension of the satisfaction relation for CTL* (cf.
Definition D.4).

Definition 2.12 (LTS Satisfaction Relation for CTL*): For a labeled transi-
tion system LTS and a CTL* state formula Φ, we write LTS ∀|= Φ if and
only if ∀ s0 ∈ S0 : K(LTS), s0 |= Φ, and we write LTS ∃|= Φ if and only if
∃ s0 ∈ S0 : K(LTS), s0 |= Φ. In the case of only (exactly) one initial state, i.e.,
|S0| = 1, the two relations coincide and we simply write LTS |= Φ.

As an example for the translation, we consider our running example SysMMS.
Figure 2.9 depicts the transformation applied to SysMMS’s reachable global
behavior (cf. Figure 2.5 on page 31).

0
τ

1
τ

{askc, orderm}

{abortc, cancelm}

2
τ{reservem, marks}

3 τ
{buyc, paym}

4
τ{deliverm, ships}

5
τ

{abortc, cancelm}

{refundc, reimbursem}{releasem, unmarks}

Figure 2.9: The labeled transition system to Kripke structure transformation
applied to our running example SysMMS. Note that the original states kept their
naming and the new (intermediate) states are numbered with their source,
label, and destination information. Every state has exactly one label (actually
this should be a singleton at every state, but we omitted the set braces).

Now, we take a look at how to encode freedom from deadlock and freedom
from livelock as CTL* formulae. We define:

Ψdlf := AGEX> and Ψllf := AG
(
EX> ⇒ EF(

∨
α∈Intopen

α)
)
.

Note that we omit the small space (cf. Definition D.1) between the quantifiers
and the temporal operators for better readability in the sequel.3 The formula

3This omission becomes particularly relevant for an important fragment of CTL*, called
CTL, that we discuss in the next paragraph.

2.3 Properties of Interaction Systems 43

Ψdlf states that all reachable states on all maximal paths have a direct suc-
cessors. Similarly, formula Ψllf states that all reachable states on all maximal
paths that have a direct successor also have a (not necessarily direct) successor
that is labeled with an open interaction. Observe that these formulae corre-
spond to deadlock- and livelock-freedom as given by Definitions 2.8 and 2.9
respectively. We already showed that this is the case for our running example,
we can thus conclude that [[SysMMS]] |= Ψdlf and [[SysMMS]] |= Ψllf holds (cf.
Definition 2.12).

In the next paragraph, we deal with the question of how to algorithmically
check whether a formula holds in a system—this procedure is known as model
checking. We also introduce important fragments of the logic from the literature
that are interesting in our setting.

Important Fragments of CTL* and Model Checking

The fragment CTL*–X of CTL* is defined by omitting the (next) temporal
operator “X” in Definition D.1. This fragment is important for abstraction
because the “X”-operator is incompatible with abstraction from internal activ-
ity [116, Section 1]. Lamport [166, Section 2.3] discussed this issue in detail;
the following quote pinpoints his critique: “When one talks about the next
state, one really means the next state in which a significant change occurs—
where significant means visible at the level of detail of the specification.” We
illustrate this issue by a small example.

Example 2.13: We consider the two labeled transition systems depicted in
Figure 2.10 (a) and Figure 2.10 (b) that represent the global behaviors of two
interaction systems Sys(1) and Sys(2) with closed interactions where α denotes
the single open interaction in each case. We do not specify these interaction
systems here, since the point we want to illustrate only affects the global
behaviors and properties specified in CTL*.

0 1 ατ

(a) Global behavior [[Sys(1)]]

0 1
τ 2 ατ

(b) Global behavior [[Sys(2)]]

0
τ

1
τ α

(c) Kripke structure K([[Sys(1)]])

0
τ

1
τ

2
τ α

(d) Kripke structure K([[Sys(2)]])

Figure 2.10: Global behaviors and corresponding Kripke structures

Now, we consider the CTL* formula Ψ = EXX α stating that a maximal path

44 2 Interaction Systems

exists where α holds for the second element (cf. Definition D.4). We find
out that Sys(1) |= Ψ and Sys(2) 6|= Ψ holds—the corresponding Kripke struc-
tures (cf. Definition 2.11) are depicted in Figure 2.10 (c) and Figure 2.10 (d)
respectively. Clearly, both systems satisfy the CTL* formula EF α stating that
a maximal path exists where α holds eventually. However from a property
specification point of view, the exact point or the number of steps when/be-
fore α holds should be irrelevant since we cannot foresee how the system
is constructed such that it satisfies relevant or meaningful properties, e.g.,
both systems Sys(1) and Sys(2) satisfy the same set of CTL*–X properties, i.e.,
properties specified in Extended Computational Tree Logic without the next
temporal operator. This relevance is also the main critique of the next temporal
operator by Lamport [166].

A further advantage identified by Lamport [166, Section 4.2] of omitting a
next temporal operator (interpreted as the next point in time) is that it does
not matter for property specification by means of temporal logic whether time
is considered as discrete or continuous in the underlying models. However,
since we only consider discrete event systems in this thesis—note that steps
of a labeled transition system, e.g., states on execution paths, are discrete
events—we do not further discuss this issue here. But, we also omit the next
temporal operator of CTL* for the reasons mentioned in Example 2.13.

Another important fragment of CTL* is simply called CTL (without the su-
perscripted star) and can be defined such that every temporal operator is
quantified by exactly one path quantifier, e.g., AFΦ is a valid CTL formula
whereas AFGΦ is not—for an arbitrary CTL formula Φ. Similarly, the frag-
ment CTL–X of CTL*–X can be defined. Observe that we said “can be defined”
since this fragment was invented by Clarke and Emerson [66] previously to
CTL*, which was introduced by Emerson and Halpern [95]. The fragment CTL
is of special interest because the question wether a given Kripke structure KS
and a state s ∈ S of this structure satisfy a given CTL formula Φ, i.e., whether
KS, s ?|= Φ holds (cf. Definition D.4), is decidable with an algorithm by Clarke
et al. [68] in linear time in the product of the sizes of the parameters, i.e., in
O(|KS| · |Φ|) where |KS| is the sum of the number of states and transitions
of the Kripke structure KS (cf. Definition D.3) and |Φ| is the number of op-
erators in the formula Φ (cf. Definition D.1). Note that if we are interested
in the asymptotic length O(|Φ|) of a CTL* formula Φ, the occurrence of the
additional CTL* operators of Definition D.2 does not play a role because they
add only constant length, i.e., we can count them as one instead of considering
their expansion [23, Remark 5.5, page 235].

The above discussed satisfiability question and the way to answer it algo-
rithmically was independently invented by Clarke and Emerson [66] and

2.3 Properties of Interaction Systems 45

Queille and Sifakis [235] and has become famous as model checking, which now
generally refers to the automatic verification technique that checks whether a
certain model, which is the specification of a system, satisfies a certain logical
formula, which is a property of the system. A model checking algorithm for
CTL* was derived by Emerson and Lei [97] with running time O(|KS| · 2|Φ|)
and, together with a complexity result by Sistla and Clarke [246] that shows
(as a consequence of a weaker logic) that CTL* model checking is PSPACE-
complete, no efficient algorithm (as in the case for CTL) can be expected.
However from a practical perspective and in our setting, the formulae are not
the problem for the efficiency of model checking algorithms: The problem is
the size of the Kripke structure.

This problem is directly connected to the state space explosion problem that
also occurs in interaction system as we illustrated in Example 2.7. Thus in the
following, we pay attention to the direct application of model checking, i.e., if
we want to verify a CTL*–X property for an interaction system, we search for
ways that avoid constructing the global behavior.

When we introduced logical formulae for deadlock- and livelock-freedom
above (cf. page 42), we used the next temporal operator for both formulae. As
we stated in this section, we want to avoid its usage and thus have to take a
look at an alternative characterization.

Freedom from Deadlock and Livelock as CTL*–X Formulae

Consider the following CTL–X formula:

Ψlock := AGEF(
∨

α∈Intopen
α).

The formula stipulates that in all reachable states there is a maximal path
starting in this state where eventually an open interaction occurs—more pre-
cisely where a state can be reached that is labeled with an open interaction.
What does this formula mean? Clearly, a system whose global initial state
is a deadlock does not satisfy Ψlock. However, we know that starting from a
livelock only τ-transitions are observable and thus no open interaction occurs,
i.e., a system whose global initial state is a livelock also does not satisfy Ψlock.
Thus, the formula cannot distinguish deadlocks and livelocks in interaction
systems.

Interestingly as pointed out by Van Glabbeek et al. [117], there is no CTL*–X
formula that is able to provide this distinction. A similar observation was
made by Kaivola and Valmari [151, Definition 3.3] for another temporal logic
that in the absence of a next temporal operator one needs to define a new
operator for the task of distinguishing a finite sequence from an infinite one,

46 2 Interaction Systems

which boils down to distinguishing deadlocks and livelocks. Note that the
fact that deadlock-freedom cannot be distinguished from livelock-freedom
in CTL*–X is not caused by the fact that τ is not an atomic proposition. The
problem is caused by the absence of the next operator “X”.

Here, we avoid this drawback by stressing the importance of deadlock-
freedom in interaction systems. This means that we always establish the
deadlock-freedom of an interaction system before we apply model checking
of CTL*–X formulae. This avoids the drawback and moreover, we can then
use the formula Ψlock to express livelock-freedom in CTL*–X for deadlock-free
interaction systems since we have (cf. Definition D.5):

Ψdlf ∧ Ψllf ≡ AGEX> ∧ AG
(
EX> ⇒ EF(

∨
α∈Intopen

α)
)

≡ AGEX> ∧ AGEF(
∨

α∈Intopen
α)

≡ Ψdlf ∧ Ψlock.

Next, we continue with parametrized properties of interaction systems.

2.3.4 Various Known Parametrized Properties

In this section, we consider properties of interaction systems that refer to
certain parts of a system such as components or interactions. However, these
properties have in common that they do not refer to a specific component
such as the presence of the management component of our running example
SysMMS. Instead, they offer a parameter that can be set for any valid interaction
system.

Majster-Cederbaum and Minnameier [183, Section 2.2] introduce various such
properties for interaction systems and study the computational complexity of
their decision procedures. For instance, the property of progress of a certain
component in an interaction system stipulates that actions of the component
occur infinitely often in every run starting from a global initial state where a
run is an infinite transition sequence. Martens [190, Definition 2.2.2] defines
this property as: Actions of the component in question participate in every run
starting from any reachable state where participation means that an interaction
occurs where one of the actions is contained in [190, Definition 2.1.2]. A similar
definition is given by Majster-Cederbaum et al. [188, Definition 3.4] under the
name “liveness” (not to be confused with the more general liveness in liveness
properties by Alpern and Schneider [9]). Gössler et al. [124, Definition 7] define
that a component may progress if any run can be continued in a way such that
the component participates in an occurring interaction, although as admitted
later [190, Section 2.3], the name “may progress” should not be confused with

2.3 Properties of Interaction Systems 47

the other definitions of progress in interaction systems. All authors require
that the interaction system in question is deadlock-free. Since systems with
unobservable transitions are not considered in the referenced work, we now
could adjust these definitions and give extended definitions that are compliant
with our setting and derive a notion of observable progress.

However here, as already mentioned at the beginning of Section 2.3, we want
to get rid of informal text descriptions serving as property specifications, but
also want to avoid several definitions that are needed to precisely fix the
meaning of a property. Moreover, it is interesting to ask why we need to
explicitly require the deadlock-freedom in the definition of progress, although,
as we pointed out at the end of the previous section, we should establish the
deadlock-freedom of a system before we apply model checking. We express
(observable) progress as the following CTL–X formula where i is a component
parameter:

Ψprogress(i) := AGAF(
∨

α∈Intopen ∧ i(α) 6=∅ α).

Now, a component i of an interaction system Sys makes (observable) progress
if [[Sys]] ∀|= Ψprogress(i) (cf. Definition 2.12). Note that this completes the defini-
tion of progress with respect to the work referenced above, which shows the
power of using a temporal logic. Nevertheless, we explain the idea behind
the property. The formula stipulates that in all reachable global states it holds
for all maximal paths starting in this state that eventually an open interaction
occurs where component i participates in. Note that a system whose global
initial state is a deadlock (or similarly, if a deadlock is reachable in an interac-
tion system) does not satisfy this property because on the single maximal path
of the corresponding Kripke structure, that merely consists of the deadlocked
state, no state is reached that is labeled with an open interaction. Moreover, if
all interactions in which component i participates in are closed interactions,
the disjunction in the formula Ψprogress(i) is empty which corresponds to ⊥
(cf. Definition D.2), i.e., in this case the whole formula is not satisfied by any
interaction system since we required that at least one global (initial) state is
present.

We want to point out that the formulae for properties that refer to a component
of an interaction system, e.g., progress, are first completely generated, i.e., the
disjunction of the corresponding interactions is first carried out before the
property is checked. This is important since the property may only consist of
atomic propositions that are open interactions of the underlying interaction
system.

But, this is not a restriction since we can also add special atomic propositions
that refer to, e.g., the participation of a certain component. For instance

48 2 Interaction Systems

regarding the progress property above, we can modify the translation to a
Kripke structure (cf. Definition 2.11) and add for each global state the set of
components that participate in the corresponding interaction, i.e., the label
function becomes L((s, α, t)) = {α} ∪ compset(α) (for a global state s it stays
the same). Then, the progress property simply becomes Ψ′progress(i) := AGAF i
for i ∈ Comp. However, this syntactical sugar only shortens formulae and we
thus stick to our original definition/translation of CTL*.

We continue with two further known parametrized properties. First, we
consider the availability of a component. Majster-Cederbaum and Minnameier
[183, Section 2.2] define it as: On every run starting in a global initial state
of a deadlock-free interaction system—where a run is, as mentioned above,
an infinite sequence of transitions—actions of the component in question are
contained in an enabled interaction infinitely often, which means that the
next global state could be a state that is reached via an interaction where the
component participates in. Actually, here we have to say the next observable
global state since we cannot directly address the next global state if we use
CTL*–X. We thus express (observable) availability as the following CTL–X
formula where i is a component parameter:

Ψavailable(i) := AGAFE
(
(
∧

α∈Intopen
¬α)U (

∨
α∈Intopen ∧ i(α) 6=∅ α)

)
.

Now, a component i of an interaction system Sys is (observable) available if
[[Sys]] ∀|= Ψavailable(i). The formula stipulates that in all reachable global states it
holds for all maximal paths starting in this state that eventually a global state is
reached in which a maximal path starts on which only closed interactions, i.e.,
τ-labels, occur until an open interaction occurs where component i participates
in.

Second, we consider whether a component is live where we use the definition
of Minnameier [205, Definition 2.25]. Note that this property is also specified
by Gössler et al. [124, Definition 7] under the misleading name “progress”. The
property states for a component of an interaction system that we can always
execute a sequence of interactions from every reachable global state such that
eventually an interaction is executed where the component participates in.
Again, we have to adjust this idea to be conform with unobservable behavior,
and thus express whether is a component is (observable) live as the as the
following CTL–X formula:

Ψlive(i) := AGEF(
∨

α∈Intopen ∧ i(α) 6=∅ α).

Now, a component i of an interaction system Sys is (observable) live if [[Sys]] ∀|=
Ψlive(i). The formula stipulates that in all reachable global states there is a
maximal path starting in this state where eventually an open interaction occurs
where component i participates in.

2.3 Properties of Interaction Systems 49

We want to mention that all three formulae Ψprogress(i), Ψavailable(i), and Ψlive(i)
(where i ∈ Comp) are CTL–X formulae, i.e., we did not need the whole expres-
sive power of Extended Computational Tree Logic without the next temporal
operator. This means for model checking these properties, that the check
can be carried out, as mentioned in the previous section, in O(|KS| · |Φ|)
[68]. Since the translation of the global behavior into a Kripke structure is
linear (cf. Definition 2.11) and we have |Ψprogress(i)| ∈ O(|Intopen|) for a com-
ponent i ∈ Comp (the same holds for Ψavailable(i) and Ψlive(i)), the driving
parameter for checking these properties is the size of the global behavior. We
already know that the construction of this global behavior is exponential in
the size of the input, which means that we cannot hope for a naive verification
approach in polynomial time. This is supported by the results of Majster-
Cederbaum and Minnameier [183] and Minnameier [205] who show that the
corresponding decision problems for the three above discussed properties are
PSPACE-hard.

Next, we take a look at specific properties, i.e., properties that refer to a specific
interaction system.

2.3.5 Specific Properties

Specific properties are tailored for a particular interaction system, i.e., the
atomic propositions are the set of open interactions of this particular system.
For instance, we can ask for our running example SysMMS: Is it possible that
the management component m executes its action deliverm before its action
reservem as corresponding interactions seen from the global initial state? In
other words, is the interaction {deliverm, ships} preceded by the interaction
{reservem, marks}? For this question, we can verify the following CTL*–X
property in [[SysMMS]]:

Ψ = A(F {deliverm, ships} ⇒ ¬{deliverm, ships}U {reservem, marks}).

The formula stipulates that in all maximal paths if eventually the interaction
{deliverm, ships} occurs, then {deliverm, ships} does not occur on the path be-
fore {reservem, marks} occurs. Now, we can use a model checker which yields
[[SysMMS]] |= Ψ, i.e., interaction {deliverm, ships} is preceded by interaction
{reservem, marks} as seen from the global initial state of the system. However,
as mentioned above, the model checker needs to construct the global behav-
ior of the interaction systems and this construction potentially exceeds the
available memory because of the state space explosion problem.

We come back to this issue in later chapters and show how to avoid this con-
struction. But before, we introduce equivalences for interaction systems.

50 2 Interaction Systems

2.4 Behavioral Equivalence in Interaction Systems

We already mentioned several times that we need a notion to compare the
behavior of interaction systems, i.e., something like a behavioral equivalence.
In this section, we address this issue.

The identification of equivalent behavior is beneficial in many aspects. For
instance, once a set of properties is verified for a certain system, we expect that
this set also holds for systems that exhibit an equivalent behavior. A similar
aspect is the question of abstraction, i.e., whether we can safely abstract from
system parts that are not of interest in our current verification step and prove
that properties that hold in the abstracted version also hold in the original
system—since the abstraction and the original are behavioral equivalent. The
key question here is: What is exactly meant by equivalent behavior?

Typically, by equivalence we mean an equivalence relation on the behavior.
Here, this boils down to which states of given labeled transition systems—
which we use to describe behavior—can be related such that they cannot be
distinguished by observation. These kind of relations were addressed in many
fields of research, e.g., equivalence of regular languages in automata theory
[145, Section 4.4] or bisimilarity in Milner’s process algebra CCS [197, Chapter
4]—in fact, Milner was the first to use equivalences to compare models of
concurrency at different levels of abstraction [141, Section 7.4.1].

In the context of sequential systems and concurrency semantics (which also
applies here), Van Glabbeek [112, 113] studied suitable relations in an exhaus-
tive manner. In his work, one can find several different semantics and dozens
of behavioral equivalences. Here, we focus on five of these equivalences that
are important for our considerations and are compliant with our following
goals: We want to pick a behavioral equivalence that preserves an interesting
set of properties, abstracts from negligible parts of the behavior (especially
unobservable parts, i.e., τ-transitions), and can be computed efficiently, i.e.,
in polynomial time. The last point excludes all trace equivalences, which
typically correspond to language equivalence in automata theory, e.g., the
one by Hoare [140], since they are PSPACE-complete as shown by Kanellakis
and Smolka [152]—following the corresponding PSPACE-completeness result
for language equivalence by Meyer and Stockmeyer [193]. As pointed out
by Van Glabbeek [113, Section 5], it is a good strategy to start the selection
process for an equivalence with the finest one available and later step down
to coarser ones since previous verification steps usually remain valid if a
coarser equivalence is used later. We thus begin our selection process with the
finest one available [112], viz. strong bisimilarity, and descend to four coarser
ones since strong bisimilarity does not distinguish between observable and

2.4 Behavioral Equivalence in Interaction Systems 51

unobservable actions, i.e., all actions are observable, and one of our goals is to
neglect unobservable parts as much as possible.

We consider the following well-known equivalences in a selection process for
a behavioral equivalence of interaction systems, ordered by their appearance
in the literature. The formal definitions in the setting of this thesis can be
found in Appendix E (cf. the pointers in the following list).

1. Strong bisimilarity: ≈s (cf. Definition E.1)

2. Weak bisimilarity: ≈w (cf. Definition E.2)

3. Branching bisimilarity: ≈b (cf. Definition E.3)

4. Divergence sensitive branching bisimilarity: ≈λ
b (cf. Definition E.4)

5. Branching bisimilarity with explicit divergence: ≈∆
b (cf. Definition E.5)

We want to point out that weak bisimilarity has been used heavily in models
comparable to interaction systems (cf. Section 2.1.4), e.g., in the approaches
by Hennicker et al. [137] and by Bernardo et al. [39]. We have used branching
bisimilarity in the context of interaction systems [160]. It is thus natural
to include these equivalences in our selection process here. The other two
equivalences are finer versions of branching bisimilarity. Note that all five
equivalences can be computed in polynomial time (cf. Appendix E).

We want to shortly mention the origins of these bisimilarities, we refer the
reader to Appendix E and the work of Van Glabbeek [113] for a more detailed
discussion. In particular, we focus on logical characterizations since these
provide a measure for the kind of properties that are preserved. The origins of
strong bisimilarity go back to Park [222] and Milner [197] where the notation
of Park is the one that is typically used today (and which was also adopted by
Milner [198]). Browne et al. [53] provide a logical characterization of strong
bisimilarity where satisfaction of the same CTL* formulae coincides with
strong bisimilarity. Hennessy-Milner logic [135] also logically characterizes
strong bisimilarity [136]. Milner was also involved in the introduction of
the first variant that deals with unobservable behavior, i.e., τ-transitions,
leading to the notion of weak bisimilarity by Hennessy and Milner [135, 136]—
back then, they used the name observational equivalence (in the presence
of unobservable actions) although Milner [198] also used the name weak
bisimilarity. Bergstra and Klop [37] use the name τ-bisimilarity for a similar
notion, and later Milner [201] uses the name bisimilarity for the coarsest
relation satisfying his observational equivalence—to avoid confusion, we
here only use the names strong and weak bisimilarity. In his book on CCS
[200, Chapter 10], Milner introduces a weak variant of Hennessy-Milner logic,
which is called PL≈ (Process logic restricted to weak possibility), that logically

52 2 Interaction Systems

characterizes weak bisimilarity.

Van Glabbeek and Weijland [114] observe that weak bisimilarity does not
preserve the branching structure of behavior, which led to the introduction
of branching bisimilarity. Logical characterizations of branching bisimilarity
are provided by De Nicola and Vaandrager [85], where the authors prove that
CTL*–X interpreted over all paths instead of maximal ones—as originally de-
fined by Emerson and Halpern [95]—logically characterizes branching bisimi-
larity (based on stuttering equivalence of Kripke structures [53]). In order to
overcome this “all path interpretation”, De Nicola and Vaandrager [85] intro-
duce divergence sensitive branching bisimilarity to establish an equivalence
that is logically characterized by CTL*–X (as defined here, cf. Appendix D).
Van Glabbeek et al. [117] note that divergence sensitive branching bisimilarity
is not suitable in compositional settings since it fails to be a congruence for
a process algebraic parallel operator. The reason for this behavior is that
CTL*–X cannot distinguish between deadlocks and livelocks as we discussed
on page 45, and indeed, deadlocks and livelocks are equivalent under diver-
gence sensitive branching bisimilarity. In the spirit of Bergstra et al. [38], a
notion called branching bisimilarity with explicit divergence is introduced
(which was already mentioned in earlier work by Van Glabbeek and Weij-
land [115]) that overcomes this problem. However, Van Glabbeek et al. [117]
also need to adjust CTL*–X such that it characterizes this new bisimilarity, or
alternatively, apply the characterization only for deadlock-free systems.

In the next section, we compare the five equivalences by means of a small
example, summarize the pros and cons, and finish the selection process.

2.4.1 Choosing an Appropriate Behavioral Equivalence

The following example illustrates the differences of the equivalences with
respect to the global behaviors of interaction systems.

Example 2.14: We compare five labeled transition systems that correspond
to the global behaviors of interaction systems. We introduce five interac-
tion systems Sys(k) = ((({i}, {{ai, bi, ci}}), {{ai}, {bi}, {ci}}, {{ci}}), {[[i]]})
for 1 ≤ k ≤ 5 with different local behavior of component i in each case (which
therefore results in a different global behavior since i is the only component).
Observe that action ci is only contained in a closed interaction, thus becomes
unobservable in the global behavior, i.e., each τ corresponds to ci in the local
behavior of the component. Figure 2.11 on the facing page shows the global
behaviors of the five systems. We do not specify the local behavior of compo-
nent i in each case since it is the same as the global behavior if we exchange
the interactions with the corresponding actions.

2.4 Behavioral Equivalence in Interaction Systems 53

0

2

τ

τ

3

τ

β

1

α

4

τ

0

2

τ

τ

3

τ

β

1

α

0

2

τ

τ

3

β

1

α

0

2

τ

3

β

1

α

0

2

τ

3

β

1

α

4

β

≈w

6≈b

≈b

6≈λ
b

≈λ
b

6≈∆
b

≈∆
b

6≈s

[[Sys(1)]] [[Sys(2)]] [[Sys(3)]] [[Sys(4)]] [[Sys(5)]]

Figure 2.11: Five different behaviors of component i result in the five depicted
global behaviors of the corresponding interaction systems, that can be distin-
guished by the introduced equivalences. The equivalences that identify and
distinguish respectively each system are depicted between the initial states,
where in each case this holds for all following systems from the left to the
right, e.g., the first one is also weak bisimilar to the last one. We use the
abbreviations α = {ai} and β = {bi} for the open interactions.

These labeled transition systems are based on an example of Van Glabbeek
and Weijland [115, Figure 7] where more examples that distinguish weak and
branching bisimilarity can be found. Van Glabbeek et al. [117] have other
examples that distinguish the different kinds branching bisimilarity.

We shortly demonstrate how the equivalences in Figure 2.11 are established.
For instance, in order to show why the systems are weak bisimilar, we have
to give an appropriate relation R≈w on the states (cf. Definition E.2): We set
R≈w = {(s0, t0), (s1, t1), (s2, t2), (s3, t3), (s4, t3)}↔ where s denotes the states
of [[Sys(1)]] and t of [[Sys(2)]], [[Sys(3)]], or [[Sys(4)]]. Clearly, this shows the weak
bisimilarity of the systems. If we want to establish the weak bisimilarity be-
tween [[Sys(1)]] and [[Sys(5)]], we have to add the tuples (s1, t4) and (t4, s1) to
R≈w —again, if s denotes the states of [[Sys(1)]] and t of [[Sys(5)]]. We do not ex-
plicitly address all combinations here, we just point out that, e.g., [[Sys(4)]] and
[[Sys(5)]] can be distinguished by the CTL* formula Φ = AG

(
α⇒ XX>

)
, i.e.,

[[Sys(4)]] 6|= Φ and [[Sys(5)]] |= Φ, and thus they cannot be strongly bisimilar.
The other cases can be settled in an analogous way by either giving an appro-
priate relation to establish the equivalence or a formula in the corresponding
characterization to refute it.

Example 2.14 shows the differences in the five equivalence relations with
respect to which behavior is considered as equivalent. Next, we provide an
overview of these differences in Table 2.1 on the following page.

54 2 Interaction Systems

Equiv. Logical Char. Pros and Cons Runtime

≈s CTL* compresses identical branches,
treats unobservable behavior as
observable

O(m · log n)

≈w PL≈ compresses branches with the
same observable behavior, dis-
cards divergence, cannot distin-
guish dead- and livelock

O(n2.3727)

≈b CTL*–X inter-
preted over all
paths instead
of max. ones

compresses unobservable se-
quences & identical branches,
discards divergence, cannot
distinguish dead- and livelock

O(m · n)

≈λ
b CTL*–X compresses unobservable se-

quences & identical branches,
preserves divergence in non-
deadlocks, cannot distinguish
dead- and livelock

O(m · n)

≈∆
b CTL*–X if free

of deadlocks
compresses unobservable se-
quences & identical branches,
preserves divergence

O(m · n)

Table 2.1: Table summarizing the aspects for choosing an equivalence

We compare the logical characterizations, several pros and cons under the
aspect of which behavior is considered equivalent, and the runtimes to check
whether two systems are equivalent. For the runtimes, we use the abbrevi-
ations n = |S1|+ |S2| and m = ∑a∈Σ(| a−→1|+ |

a−→2|) for the sake of better
readability—where LTSi = (Si, Σ, { a−→i}a∈Σ, S0

i), i = 1, 2 are the two labeled
transition systems under consideration (cf. Appendix E). Moreover, we as-
sume that m > n holds and consider the set of labels to be fixed, i.e., the
number of labels is a constant, which yields the usual bounds found in the
literature. For a more detailed discussion of the runtimes, we refer the reader
to Appendix E.

This brings us back to our selection process: Which of the five equivalences is
best suited as an equivalence for interaction systems based on the aspects in
Table 2.1? We want to point out that at different occasions, different equiva-
lences work well and that, if in doubt, starting off with a finer equivalence is a
better choice since one can “fall back” to a coarser one if a certain verification
step does not succeed—and all previous steps remain valid.

2.4 Behavioral Equivalence in Interaction Systems 55

Clearly, we want to neglect some of the unobservable parts of a behavior,
which means that strong bisimilarity is not suited. Although weak bisimilarity
has a better runtime in Table 2.1 than the remaining bisimilarities, we know
that the bound is dominated by the runtime of a sub-cubic fast matrix multi-
plication algorithm (cf. Appendix E) which is only reasonable for very large
systems. As pointed out by Groote and Vaandrager [130, Section 6.2], this
bound is only valid if the number of labels is a constant and otherwise, the run-
time for branching bisimilarity is faster than for weak bisimilarity (again, we
refer the interested reader to Appendix E for a more detailed discussion). Thus,
we conclude that from a runtime point of view, there is no difference (since we
aim for polynomial costs). However, there is a difference in the preservation
of properties since CTL*–X is more expressive than PL≈. Since we already
introduced properties with respect to CTL*–X in Section 2.3, we narrow our
selection process to one of the branching bisimilarities. Now, since the “all
path interpretation” of CTL*–X is only natural in a setting where deadlocks
are excluded beforehand [85, Example 3.2.8], divergence sensitive branching
bisimilarity fails to be a congruence for a process algebraic parallel operator
[117], and, as mentioned in Section 2.3, the distinction between deadlocks and
livelocks is important, we choose branching bisimilarity with explicit diver-
gence as our “working” equivalence for interaction systems. Again, we want
to mention that a more detailed discussion can be found in Appendix E.

Next, we repeat the definition of branching bisimilarity with explicit diver-
gence but extend it to interaction systems. This allows us to use the notion
interchangeable for interaction systems and labeled transition systems, where
the former case uses the global behavior and thus, the two coincide.

Definition 2.15 (Behavioral Equivalent Interaction Systems): Let Sys(1) and
Sys(2) be two interaction systems with the same set of open interactions, i.e.,
Int(1)open = Int(2)open := Σ. Let [[Sys(i)]] = (Si, Στ, { α−→i}α∈Στ , S0

i), i = 1, 2, denote
their global behaviors. The systems are behavioral equivalent or branching
bisimilar with explicit divergence, denoted by Sys(1) ≈∆

b Sys(2), if [[Sys(1)]] ≈∆
b

[[Sys(2)]] holds, i.e., if a symmetric relationR ⊆ S1 × S2 ∪ S2 × S1 exists such
that for i = 1, 2 and j = (i mod 2) + 1 holds

1. for all states s0
i ∈ S0

i exists a state s0
j ∈ S0

j such that (s0
i , s0

j) ∈ R and

2. for all (si, sj) ∈ R with si ∈ Si and sj ∈ Sj it holds that

2.1. for all ti ∈ Si and all α ∈ Στ, if si
α−→i ti then

(a) either α = τ and (ti, sj) ∈ R

(b) or there are states rj, tj ∈ Sj with sj
τ−→∗j rj, rj

α−→j tj, (si, rj) ∈
R, and (ti, tj) ∈ R and

56 2 Interaction Systems

2.2. if there is an infinite path π over (Si, τ−→i) such that π[0] = si, then
there exists a state tj ∈ Sj such that sj

τ−→j tj and (ti, tj) ∈ R where
ti = π[k] for some k ∈N.

We want to point out one important aspect that goes along with the choice of
branching bisimilarity with explicit divergence. As mentioned in Table 2.1,
two interaction systems that are behavioral equivalent with respect to Defi-
nition 2.15, i.e., their global behaviors are branching bisimilar with explicit
divergence, satisfy the same set of properties only if they are deadlock-free.
This emphasizes the importance of this property and we thus address this
issue in an own chapter (cf. Chapter 6).

It is important to realize that this does not mean that branching bisimilar-
ity with explicit divergence cannot distinguish between dead- and livelocks.
Clearly, a deadlock cannot be related to a livelock since it has no infinite path
of τ-transitions—as opposed to divergence sensitive branching bisimilarity
where this is the case (cf. Definition E.4). Thus, the requirement of deadlock-
freedom only refers to the logical characterization in CTL*–X, although free-
dom from deadlocks is in general a desired property of any system.

This ends the discussion and search for a behavioral equivalence for interaction
systems that matches our goals. In the following sections, we address some
further notions and useful ideas.

2.4.2 Reducing Behavior: Quotients

Since a relation that establishes branching bisimilarity with explicit divergence
can be turned into an equivalence relation (see the work by Van Glabbeek
et al. [116, Section 3] for a proof idea that adapts the proof of Basten [29] that
branching bisimilarity (cf. Definition E.3) is an equivalence relation), a natural
question is whether a labeled transition system can be reduced with the help
of the equivalence classes that are induced by the relation. Similar approaches
are well known in automata theory where deterministic finite automata can
be minimized by computing the equivalence classes of the famous relation by
Myhill [209] and Nerode [211] (see the book of Hopcroft et al. [145, Section 4.4]
for an overview).

In the case of labeled transition systems, this reduced version (with respect
to bisimilarity) is usually called the quotient labeled transition system—we sim-
ply call it quotient in the following—but works along the lines of automata
minimization. In order to obtain the smallest quotient, one has to consider
the coarsest equivalence relation, i.e., the one that relates as many states as
possible, that still guarantees to establish bisimilarity. We refer the reader to

2.4 Behavioral Equivalence in Interaction Systems 57

Section 7.1.1 in the book of Baier and Katoen [23] for an introduction to the
concept of quotients and coarsest relations.

Now, we give a formal definition of the quotient with respect to branching
bisimilarity with explicit divergence. Admittedly, such a definition is straight-
forward along the lines of the definition of the equivalence itself; however, we
use this quotient in subsequent chapters and thus define it here for the sake of
self-containedness and for introducing our notation.

Please note that we define the quotient with respect to labeled transition
system and thus use Definition E.5 as the underlying definition of branching
bisimilarity with explicit divergence and not Definition 2.15 that introduced
this notion for interaction systems.

Definition 2.16 (≈∆
b -Quotient): Let LTS = (S, Στ, { a−→}a∈Στ , S0) be a labeled

transition system. Let R ⊆ S × S be a symmetric relation that establishes
the branching bisimilarity with explicit divergence of LTS with itself, i.e.,
LTS ≈∆

b LTS, that is the coarsest among all suitable relations, i.e., for all
R′ ⊆ S× S it holds that ifR′ establishes LTS ≈∆

b LTS, thenR′ ⊆ R holds. The
≈∆

b -quotient of LTS with respect toR is the labeled transition system LTS≈∆
b
=

(S′, Στ, { a−→′}a∈Στ , S0′) with S′ = {[s]R | s ∈ S} and S0′ = {[s0]R | s0 ∈ S0}
where [s]R = {t ∈ S | (s, t) ∈ R} denotes the equivalence class of a state s ∈ S
with respect to R. The family of transition relations { a−→′}a∈Στ is defined
according to the cases in Definition E.5: For all s, t ∈ S and all a ∈ Στ: If a 6= τ,
we have [s]R a−→′ [t]R if and only if s a−→ t holds, and if a = τ, we have
[s]R τ−→′ [t]R if and only if [s]R 6= [t]R and s τ−→ t or [s]R = [t]R and there is
a r ∈ [s]R with r τ−→+ r.

The quotient of a labeled transition system introduced in Definition 2.16 is only
useful if we can safely consider the quotient instead of the original system. In
the following lemma, we formally establish this usefulness.

Lemma 2.17 (Validity of the ≈∆
b -Quotient): Let LTS = (S, Στ, { a−→}a∈Στ , S0)

be a labeled transition system. We have:

LTS≈∆
b
≈∆

b LTS.

A formal proof of Lemma 2.17 can be found in Appendix F on page 237.

Lemma 2.17 ensures the validity of our definition of the quotient with respect
to branching bisimilarity with explicit divergence. Here, we do not address
how the quotient can be computed, but give a detailed discussion in Ap-
pendix E. Instead, we introduce a further, very useful equivalence that we
need in the following chapters.

58 2 Interaction Systems

2.4.3 A Further Equivalence: Isomorphism

We introduce a further equivalence that is stronger than the variants presented
above, viz. isomorphism. In our context, isomorphism is understood similarly
as in graph theory [89, Chapter 1]. Interestingly, graph isomorphism is one
of the problems that can be solved in nondeterministic polynomial time,
i.e., the corresponding decision problem belongs to NP, but it is unknown
whether is is NP-complete [108, Section 7.1]. However, this does not guarantee
that isomorphism can be established in polynomial time and we thus use
this notion not for computations, but rather in situations where we want to
establish that two systems are “nearly identical”. Since in our setting we have
labeled edges, we adjust the usual definition of isomorphism and derive a
notion called isomorphism up to transition relabeling. Next, we define what
we mean by this notion.

Definition 2.18 (Isomorphism up to Transition Relabeling): Let LTSi = (Si,
Σi, { a−→i}a∈Σi , S0

i), i = 1, 2, be labeled transition systems. The systems are
isomorphic up to transition relabeling if two bijective functions f : S1 → S2 and
g : Σ1 → Σ2 exist such that for all s1 ∈ S1 it holds that s1 ∈ S0

1 holds if and only
if f (s1) ∈ S0

2 holds and for all s1, t1 ∈ S1 and a ∈ Σ1 it holds that s1
a−→1 t1

holds if and only if f (s1) b−→2 f (t1) with b = g(a) holds.

This ends our discussion of equivalences. Next, we summarize the chap-
ter.

2.5 Summary

We introduced the model of interaction systems as a means for the specifica-
tion of component-based systems. We discussed a variety of properties and
showed how temporal logic can be used to specify properties precisely. The
combinatorial explosion, that can arise when constructing the global behavior
of an interaction system, opens the challenge of verification techniques that
are guaranteed to run in polynomial time in the size of the original input,
viz. the specification of the interaction system in question. We address this
challenge in the subsequent chapters of this thesis where one way uses the
behavioral equivalences that we introduced in this chapter.

In the next chapter, we study how the concepts of compositionality and ab-
straction can be employed in interaction systems.

59

Chapter 3

Compositionality & Abstraction

In the previous chapter, we considered one interaction system and its proper-
ties. An important extension to this consideration is the treatment of several
interaction systems and their composition, e.g., the building blocks of a soft-
ware product under development are not exclusively given as components but
also as systems. This compositional aspect is very natural and often called the
key concept of successful software engineering. It can thus be found in many
formalisms such as the composition operators of process algebras. Moreover,
the approach of component-based development is not only enriched by divid-
ing functionality among the components but also by combining some of these
components and using a resulting composite component in future systems. As
we saw in the previous chapter (cf. Section 2.1.4), many related models allow
for such composite components. Here, we treat such composite components
as interaction systems.

The above described compositional way is known as hierarchical modeling
and allows to organize the development of software products on multiple
levels and fosters the reuse of system parts that have been verified as correct.
The ultimate goal for software engineers following this way in combination
with formal methods is to compose only verified system parts in order to
automatically derive a correct system by construction. This approach, known
as correctness by construction, enables software engineers to create complex
and correct systems right from the beginning. One important aspect of this
approach is the abstraction of information or functionality that is not needed
on higher levels. For instance, consider two components that should be
treated as a (composed) interaction system but only one of them should be
used in further composition steps, i.e., the other component is only needed for
internal cooperation in this interaction system. From a hierarchical modeling
perspective, we now have to make sure that only the relevant information is

60 3 Compositionality and Abstraction

visible for composition, i.e., there has to be a way of hiding the components
and interactions of a system that should not be visible. For this purpose,
we already introduced closed interactions in Chapter 2 that provide this
functionality in interaction systems, but we need an operator that allows us to
declare interactions as closed.

Thus in the sequel, we define several operators for interaction systems that en-
able us to realize compositionality and abstraction in interaction systems. The
key compositional concepts developed in this chapter become important in
later chapters, where we make additional assumptions about the architecture
of interaction systems. We start out with combining interaction systems in the
next section.

3.1 Composition of Interaction Systems

We want to mention that there already is a composition operator for interac-
tion systems, viz. the one defined in the work by Gössler and Sifakis [121].
However as we pointed out in Chapter 2, the concept of complete interactions
that have to be closed with respect to set inclusion in the set of all possible in-
teractions render the operator incompatible with our definition of interaction
systems. Moreover, the operator is defined with a rule that prioritizes the exe-
cution of the largest interaction, and it does not allow to remove interactions
that should not occur in the composite system. The advantage of these rules is
that they automatically imply deadlock-freedom of a composite system if its
constituting parts are deadlock-free but under strong restrictions such as the
preserved executability of all interactions of the single parts. Our concept of
closed interactions, that naturally should not be available for composition, can-
not directly be added to this operator. Thus, we define a new operator that is
compatible with our definition and allows for a more expressive composition
at the price of not implying deadlock-freedom automatically.

But before we introduce our composition operator, we need three auxiliary
definitions that ease the definition of our operator.

3.1.1 Preliminaries

We have to make one assumption before we start combining interaction sys-
tems, namely that their provided information does not overlap, i.e., we have
to make sure that we can identify the origin of every component or action. For
this purpose, we define the notion of disjoint interaction systems.

3.1 Composition of Interaction Systems 61

Definition 3.1 (Disjoint Interaction Systems): Let Sys(1) and Sys(2) be two
interaction systems. Sys(1) and Sys(2) are called disjoint, if their component
systems are disjoint, i.e., Comp(1) ∩Comp(2) = ∅ and Act(1) ∩Act(2) = ∅ holds,
and all components’ sets of states are disjoint, i.e., Si ∩ Sj = ∅ holds for all
i ∈ Comp(1) and j ∈ Comp(2).

Please note that the disjointness of the sets of states within a single interaction
system is already guaranteed by Definition 2.5 (cf. page 22).

The next definition introduces a notation that we need for our composition
operator. This notation is not tied to interaction systems, we thus define it
over arbitrary sets.

Definition 3.2 (Powerset Interjoin): Let {Xi}i∈{1,...,n} be a family of sets of
sets with n ≥ 2 and each Xi = {Xi1 , . . . , Xim} with im ≥ 1 for 1 ≤ i ≤ n.
The powerset interjoin of these sets is defined by X1 ./X2 .//Xn := {ξ1 ∪
ξ2 ∪ . . . ∪ ξn | ξ1 ∈

⋃
X∈X1

2X ∧ ξ2 ∈
⋃

X∈X2
2X ∧ . . . ∧ ξn ∈

⋃
X∈Xn

2X} \
(
⋃

1≤i≤n
⋃

X∈Xi
2X), i.e., the powerset interjoin contains only new (nonempty)

sets that are not contained in any
⋃

X∈Xi
2X for 1 ≤ i ≤ n.

We demonstrate the powerset interjoin by a small example. Consider the two
sets of sets X1 = {{a1, a2}} and X2 = {{a3}, {a4}}. We build their powerset
interjoin which yields:

X1 ./X2 = {ξ1 ∪ ξ2 | ξ1 ∈
⋃

X∈X1

2X ∧ ξ2 ∈
⋃

X∈X2

2X} \ (
⋃

1≤i≤2

⋃
X∈Xi

2X)

=
{

ξ1 ∪ ξ2 | ξ1 ∈ {∅, {a1}, {a2}, {a1, a2}} ∧ ξ2 ∈ {∅, {a3}, {a4}}}\{
∅, {a1}, {a2}, {a3}, {a4}, {a1, a2}

}
=
{
{a1, a3}, {a1, a4}, {a2, a3}, {a2, a4}, {a1, a2, a3}, {a1, a2, a4}

}
.

The last preliminary definition also introduces a notation that we need in the
following. Again, the notation is not tied to interaction systems and thus
defined with respect to arbitrary sets.

Definition 3.3 (Coverage): A set of sets X is said to be covered by a set of sets
Y , denoted by X v Y , if ∀X ∈ X ∃Y ∈ Y : X ⊆ Y.

As an example, take a look at the sets X = {{1, 2}, {2, 3}}, Y = {{1, 2, 3}},
and Z = {{1, 3}}. Both X and Z are covered by Y , i.e., X v Y and Z v Y
holds, but the sets X and Z are not covered by each other, i.e., X 6v Z and
Z 6v X holds.

Next, we introduce our composition operator for interaction systems.

62 3 Compositionality and Abstraction

3.1.2 The Composition Operator

We define the composition operator as follows.

Definition 3.4 (Composition): Let Sys(1), . . . , Sys(n) be n pairwise disjoint in-
teraction systems with n ≥ 2, and let (I+, I−) be their composition information
with I+ ⊆ Int(1)open .// Int(n)open being a set of new interactions that are added

to the composite system and I− ⊆ Int(1)open ∪ . . . ∪ Int(n)open being a set of old in-
teractions that are removed from the composite system. Let I− v I+ hold, i.e.,
any old interaction is contained in at least one new interaction. The composition
of Sys(1), . . . , Sys(n) with respect to (I+, I−) is the tuple⊗
(I+,I−)

{Sys(1), . . . , Sys(n)} :=
(⊗
(I+,I−)

{IM(1), . . . , IM(n)}, {[[i]]}i∈Comp(1)∪...∪Comp(n)
)

with

•
⊗

(I+,I−){IM(1), . . . , IM(n)} :=
(⊗{CS(1), . . . , CS(n)},

(
I+ ∪ Int(1) ∪ . . . ∪

Int(n)
)
\ I−, Int(1)closed ∪ . . . ∪ Int(n)closed

)
and

•
⊗{CS(1), . . . , CS(n)} :=

(
Comp(1) ∪ . . . ∪ Comp(n), {Ai}i∈Comp(1)∪...∪Comp(n)

)
.

For the case n = 2, called binary composition, we also write Sys(1)⊗(I+,I−) Sys(2).
Finally, we write

⊗
(I+ ,I−)
1≤ i≤ n

Sys(i) if the numbering of the systems is unambiguous.

Please note that the sets I+ and I− in Definition 3.4 allow for modeling arbi-
trary composition situations as the following example shows.

Example 3.5: Consider two disjoint interaction systems Sys(1) and Sys(2), each
with two components, the interaction sets Int(1) =

{
{a1, a2}

}
and Int(2) ={

{a3, a4}
}

, and empty sets of closed interactions. We want to compose these
systems, i.e., we have to provide their composition information (I+, I−). If
we now put I+ =

{
{a1, a2, a3, a4}

}
, the set I− allows us to control whether

we still allow the interactions {a1, a2} and {a3, a4} to occur in the composite
system, i.e., we put I− = ∅, or we only want the interaction {a1, a2, a3, a4}
to be possible, i.e., we put I− =

{
{a1, a2}, {a3, a4}

}
. Note that in either case

I− v I+ holds because {a1, a2} ⊆ {a1, a2, a3, a4} and {a3, a4} ⊆ {a1, a2, a3, a4}.

In the definition of the composition operator, we only stated that the composite
system is a tuple that has the same build-up as an interaction system, i.e., we
can identify a component system and an interaction model. Next, we show
that this tuple is indeed a valid interaction system with respect to its formal
definition (cf. Definition 2.5).

3.1 Composition of Interaction Systems 63

Proposition 3.6 (Composition Operator Validity): The tuple constructed by
the composition operator of Definition 3.4 is an interaction system.

A formal proof of Proposition 3.6 can be found in Appendix F on page 238.

We use our running example SysMMS to demonstrate the usage of the compo-
sition operator. We introduce a second customer and a second management
component that build a second merchandise management system which we
compose with our running example in order to access its storage component,
i.e., the two systems share the storage component. This situation can occur
when a wholesaler owns a retail shop and also runs an online shop where the
prices differ in the two merchandise management systems and the wholesaler
uses its storage for both shops.

We assume that the new merchandise management system is already modeled,
i.e., given is the following interaction system:

Sys(2)MMS = (((Comp(2), {Ac2 , Am2}), Int(2), Int(2)closed), {[[c2]], [[m2]]})

where the elements of the component system and interaction model respec-
tively are given by:

Comp(2) = {c2, m2},

Ac2 = {abortc2 , askc2 , buyc2 , refundc2},

Am2 = {cancelm2 , deliverm2 , orderm2 , paym2 , printm2 , reimbursem2 , releasem2 ,

reservem2},

Int(2) =
{
{abortc2 , cancelm2}, {askc2 , orderm2}, {buyc2 , paym2}, {deliverm2},
{printm2}, {refundc2 , reimbursem2}, {releasem2}, {reservem2}

}
, and

Int(2)closed =
{
{printm2}

}
.

Figure 3.1 depicts the interaction model of Sys(2).

refundc2

buyc2

askc2

abortc2

reimbursem2 printm2

reservem2

deliverm2

cancelm2 releasem2

orderm2

paym2

c2 m2

Figure 3.1: Interaction model of the second merchandise management system

64 3 Compositionality and Abstraction

For the behavior of the components in Comp(2), we assume that a labeled
transition system equal to [[m]] up to label renaming is given for the second
management component m2, i.e., every label of [[m]] is replaced by the corre-
sponding label in Am2 to obtain [[m2]] (cf. Figure 2.3 on page 23 for [[m]]). The
behavior of the second customer component c2 is given as:

[[c2]] = ({s0
c2
}, Ac2 , {{}abortc2

, {}askc2
, {(s0

c2
, s0

c2
)}buyc2

, {(s0
c2

, s0
c2
)}refundc2

}, {s0
c2
}).

Thus, this labeled transition system only consists of one initial state and two
self-loops labeled by buyc2 and refundc2 respectively, i.e., this customer can
only directly buy items which is the case for a typical retail store.

Next, we compose the original merchandise management system SysMMS with
the second system Sys(2)MMS. We combine the actions of the second management
component m2 that are used to access a storage component with the storage
component s, i.e., we get the following set of new interactions:

I+ =
{
{deliverm2 , ships}, {releasem2 , unmarks}, {reservem2 , marks}

}
.

Observe that I+ ⊆ Intopen ./ Int(2)open holds, i.e., the set is valid for the com-
position operator according to Definition 3.4. Since component m2 should
use the storage component s for any request, we have to remove the storage-
cooperation singletons of Int(2) in the composite system, i.e., we get the fol-
lowing set of old interactions:

I− =
{
{deliverm2}, {releasem2}, {reservem2}

}
.

Observe that I− ⊆ Intopen ∪ Int(2)open holds, i.e., the set is valid for the composi-
tion operator according to Definition 3.4. Finally, observe that I− v I+ holds,
since any old interaction is contained in a new interaction.

We now set Sys(3)MMS :=
⊗

(I+,I−){SysMMS, Sys(2)MMS}, which results in:

Sys(3)MMS = (((Comp(3), {Ai}i∈Comp(3)), Int(3), Int(3)closed), {[[i]]}i∈Comp(3))

where the new elements—the action sets and labeled transition systems were
already specified above—are given by:

Comp(3) = Comp∪ Comp(2) = {c, c2, m, m2, s},

Int(3) =
(

I+ ∪ Int∪ Int(2)
)
\ I− =

{
{abortc, cancelm}, {abortc2 , cancelm2},

{askc, orderm}, {askc2 , orderm2}, {buyc, paym}, {buyc2 , paym2},
{deliverm, ships}, {deliverm2 , ships}, {printm}, {printm2},
{refundc, reimbursem}, {refundc2 , reimbursem2}, {releasem, unmarks},
{releasem2 , unmarks}, {reservem, marks}, {reservem2 , marks}

}
, and

Int(3)closed = Intclosed ∪ Int(2)closed =
{
{printm}, {printm2}

}
.

3.1 Composition of Interaction Systems 65

We use our graphical representation to illustrate this composition process.
Figure 3.2 depicts the composite interaction model, where we colored the new
and old interactions (cf. the caption of the figure).

refundc
buyc

askc

abortc

reimbursem printm

reservem

deliverm

cancelm releasem

orderm

paym marks

ships

unmarks

refundc2

buyc2

askc2

abortc2

reimbursem2 printm2

reservem2

deliverm2

cancelm2 releasem2

orderm2

paym2

c m s

c2 m2

Figure 3.2: The interaction model of the composed system Sys(3)MMS. New
interactions (I+) are colored in green and old interactions (I−) are colored in
red where a completely red colored action illustrates that the corresponding
singleton interaction is contained in I−.

Now, it is interesting to verify properties of our composition, e.g., does the
storage component answer any reservation request from the second manage-
ment component before the first management component interacts with the
storage, i.e., we want to verify [[Sys(3)]] ?|= Ψ with:

Ψ = AG
(
{reservem2 , marks} ⇒ A(¬∨

α∈Int(3)open∧{m,s}⊆compset(α)
α)U

({deliverm2 , ships} ∨ {releasem2 , unmarks})
)
.

Indeed, this property holds but for its verification we have to construct the
global behavior [[Sys(3)MMS]], i.e., execute BEHAVIOR-TRAVERSAL(Sys(3)MMS) (cf.
Algorithm B.2), and run a model checker, which is very efficient for this
small system—the reachable part of [[Sys(3)MMS]] returned by Algorithm B.2
consists of 44 states and 117 transitions—but not for a large composition, e.g.,
imagine more management and customer components attached to the storage
component. However, we do not depict the global behavior here, because the
number of states and transitions is already too large.

Thus, we first establish properties of our composition operator that together
with a means of abstraction allows us to verify properties on a reduced version

66 3 Compositionality and Abstraction

of a system and imply the property validity for the original system. However,
we postpone this reduction approach to Chapter 5.

In the next section, we establish important properties of our composition
operator such as its commutativity and associativity.

3.1.3 Properties of Composition

It is a useful property of composition operators that they are associative
and commutative. Note that associativity is important for compositionality
since it allows to compose several systems incrementally without paying
attention to the order in which the systems are composed. However, we
introduced our composition operator as a multi-ary variant, and associativity
and commutativity are usually defined for binary operators. In order to
overcome this “arity problem”, we next show how we can expand a multi-ary
composition to a sequence of binary composition steps.

Proposition 3.7 (Expansion to Binary Composition): Let Sys(1), . . . , Sys(n) be
n pairwise disjoint interaction systems with n ≥ 2, and let (I+, I−) be their
composition information with I+ ⊆ Int(1)open .// Int(n)open, I− ⊆ Int(1)open ∪
. . . ∪ Int(n)open, and I− v I+. The composition of these systems can be expanded
to n− 1 binary compositions as follows:⊗

(I+ ,I−)
1≤ i≤ n

Sys(i) =
(

. . .
(︸ ︷︷ ︸

n−2 times

Sys(1) ⊗
I1,2

Sys(2)
)
⊗
I1,2,3

Sys(3)
)

. . .
)
⊗
I1,...,n

Sys(n)

with I1,...,i := (I+1,...,i, I−1,...,i) for 2 ≤ i ≤ n and

I+1,...,i :=
{

α ∈ 2Act(1)∪...∪Act(i) | ∃ β ∈ I+ : α = β ∩
(
Act(1) ∪ . . . ∪Act(i)

)
∧ α ∩Act(i) 6= ∅ ∧ α * Act(i)}
and

I−1,...,i :=
{

α ∈ 2Act(1)∪...∪Act(i) | ∃ β ∈ I+1,...,i :(
α = β \Act(i) ∧ α /∈ I+

∧
(
∀ γ ∈ I+ : α ⊆ γ =⇒ β ⊆ γ

)
∧
(
∀ j ∈ {1, . . . , i− 1} : α ⊆ Act(j) =⇒ α ∈ I−

))
∨
(
α = β ∩Act(i) ∧ α ∈ I−

)}
.

A formal proof of Proposition 3.7 can be found in Appendix F on page 239.

3.1 Composition of Interaction Systems 67

We demonstrate the use of Proposition 3.7 by means of an example. Here,
we do not use our running example because the system gets too big to be
reasonable depicted.

Example 3.8: We consider the interaction systems Sys(1), Sys(2), and Sys(3)

where for k = 1, 2, 3 the system Sys(k) consists of a component k with a single
action ak, i.e., Ak = {ak}. Observe that the systems are pairwise disjoint. The
behavior of each component is a labeled transition system [[k]] consisting of
a single initial state and a self-loop labeled with the single action, and there
is only one interaction consisting of the action as a singleton in each system,
i.e., Int(k) =

{
{ak}

}
for k = 1, 2, 3. No interaction is closed. Thus, we have

Sys(k) = ((({k}, {Ak}), Int(k), ∅), {[[k]]}) for k = 1, 2, 3.

We want to compose these systems into one interaction system with a single
interaction build from the individual singleton interactions, i.e., we set

Sys =
⊗

(I+,I−)

{Sys(1), Sys(2), Sys(3)}

with I+ =
{
{a1, a2, a3}

}
and I− =

{
{a1}, {a2}, {a3}

}
. Observe that I+ ⊆

Int(1)open ./ Int(2)open ./ Int(3)open, I− ⊆ Int(1)open ∪ Int(2)open ∪ Int(3)open, and I− v I+ holds,
i.e., the composition is valid (cf. Definition 3.4).

Since we want to demonstrate the expansion of the composition to a sequence
of binary compositions as stated in Proposition 3.7, we apply this proposition
and get

Sys =
⊗

(I+ ,I−)
1≤ i≤ 3

Sys(i) =
(
Sys(1) ⊗

I1,2

Sys(2)
)
⊗
I1,2,3

Sys(3)

where the composition information is given by

I1,2 = (I+1,2, I−1,2) with I+1,2 =
{
{a1, a2}

}
and I−1,2 =

{
{a1}, {a2}

}
,

I1,2,3 = (I+1,2,3, I−1,2,3) with I+1,2,3 =
{
{a1, a2, a3}

}
and I−1,2,3 =

{
{a1, a2}, {a3}

}
.

Observe that any new interaction occurring in a binary composition step
corresponds to a set union of an interaction of the system of the left-hand
side of the operator with an interaction of the system of the right-hand side
with respect to a superset interaction contained in I+. Some of these new
interactions are temporary, i.e., they are needed for a subsequent composition
in the sequence of steps. For instance, the interaction {a1, a2} is needed in the
composition step with Sys(3) in order to obtain the interaction {a1, a2, a3}. But,
these interactions need to be removed after they fulfilled their purpose which
is achieved by an appropriate set of old interactions in each composition step,
e.g., {a1, a2} is contained in I−1,2,3.

68 3 Compositionality and Abstraction

As we already mentioned above, important features for a binary operator
are its commutativity and associativity. The commutativity of our operator
directly follows from the commutativity of the powerset interjoin and set
union operators that are used to build the composition information. We
formalize this by the following proposition.

Proposition 3.9 (Commutativity of the Binary Composition Operator): Let
Sys(1) and Sys(2) be two disjoint interaction systems, and let (I+, I−) be their
composition information with I+ ⊆ Int(1)open ./ Int(2)open, I− ⊆ Int(1)open ∪ Int(2)open,
and I− v I+. The composition is commutative, i.e., it holds that

Sys(1) ⊗
(I+,I−)

Sys(2) = Sys(2) ⊗
(I+,I−)

Sys(1).

A formal proof of Proposition 3.9 can be found in Appendix F on page 242.

However, if we now take a look at the associativity, we cannot simply rely on
the associativity of the underlying operators as for commutativity because
our composition operator is parametrized. Thus, we have to adjust this
parameter and reorganize the composition information. Fortunately, for this
reorganization we can use the expansion of a composition into binary steps.
We formalize this idea and the associativity in the following proposition.

Proposition 3.10 (Associativity of the Binary Composition Operator): Let
Sys(1), Sys(2), and Sys(3) be three pairwise disjoint interaction systems, and
let (I+1,2, I−1,2) be the composition information of Sys(1) and Sys(2) with I+1,2 ⊆
Int(1)open ./ Int(2)open, I−1,2 ⊆ Int(1)open ∪ Int(2)open, and I−1,2 v I+1,2. Furthermore, let
(I+1,2,3, I−1,2,3) be the composition information of the system resulting from the

first composition and Sys(3) with I+1,2,3 ⊆ Int(1,2)
open ./ Int(3)open, I−1,2,3 ⊆ Int(1,2)

open ∪
Int(3)open, and I−1,2,3 v I+1,2,3 where Int(1,2)

open = (I+1,2 ∪ Int(1)open ∪ Int(2)open) \ I−1,2 (cf.
Definition 3.4).

The composition of these systems is associative, i.e., it holds that(
Sys(1) ⊗

(I+1,2,I−1,2)
Sys(2)

)
⊗

(I+1,2,3,I−1,2,3)
Sys(3) = Sys(1) ⊗

I1′ ,2′ ,3′

(
Sys(2) ⊗

I1′ ,2′
Sys(3)

)
where 1′ = 2, 2′ = 3, and 3′ = 1 and the composition information I1′,2′

and I1′,2′,3′ are defined as in Proposition 3.7 with respect to the sets I+ =

(I+1,2 ∪ I+1,2,3) \ I−1,2,3 and I− = (I−1,2 ∪ I−1,2,3) \ I+1,2 and with primed indices in the
definition of the parametrized composition information.

A formal proof of Proposition 3.10 can be found in Appendix F on page 242.

The key point of this proposition is that the order of the interaction systems
that is induced on the single composition by the parentheses of the expansion

3.1 Composition of Interaction Systems 69

in Proposition 3.7 is not important. In fact, which system is numbered as
system one, i.e., Sys(1), can be changed with an index transformation in an
automatic way as shown by Proposition 3.10. We demonstrate the associativity
by the following example.

Example 3.11: We use the same interaction systems as introduced in Exam-
ple 3.8 on page 67, i.e., we consider for k = 1, 2, 3 the interaction systems
Sys(k), each with a component k, one action ak, and one interaction {ak}.
We compose Sys(1) and Sys(2) with (I+1,2, I−1,2) where I+1,2 =

{
{a1, a2}

}
and

I−1,2 =
{
{a1}, {a2}

}
. Afterwards, we compose the resulting system and Sys(3)

with (I+1,2,3, I−1,2,3) where I+1,2,3 =
{
{a1, a2, a3}

}
and I−1,2,3 =

{
{a1, a2}, {a3}

}
.

Thus, we have:(
Sys(1) ⊗

({{a1,a2}},{{a1},{a2}})
Sys(2)

)
⊗

({{a1,a2,a3}},{{a1,a2},{a3}})
Sys(3).

Now, according to Proposition 3.10, the composition information can be rear-
ranged as the operator is associative, i.e., we get

Sys(1) ⊗
({{a1,a2,a3}},{{a1},{a2,a3}})

(
Sys(2) ⊗

({{a2,a3}},{{a2},{a3}})
Sys(3)

)
because for the composition information

I+ = (I+1,2 ∪ I+1,2,3) \ I−1,2,3 =
({
{a1, a2}

}
∪
{
{a1, a2, a3}

})
\
{
{a1, a2}, {a3}

}
=
{
{a1, a2, a3}

}
and

I− = (I−1,2 ∪ I−1,2,3) \ I+1,2 =
({
{a1}, {a2}

}
∪
{
{a1, a2}, {a3}

})
\
{
{a1, a2}

}
=
{
{a1}, {a2}, {a3}

}
the sets I1′,2′ and I1′,2′,3′ with 1′ = 2, 2′ = 3, and 3′ = 1 are defined as I1′,2′ =

(I+1′,2′ , I−1′,2′) with I+1′,2′ =
{
{a2, a3}

}
and I−1′,2′ =

{
{a2}, {a3}

}
and I1′,2′,3′ =

(I+1′,2′,3′ , I−1′,2′,3′) with I+1′,2′,3′ =
{
{a1, a2, a3}

}
and I−1′,2′,3′ =

{
{a2, a3}, {a1}

}
.

We established the important properties of commutativity and associativity
for the binary version of our composition operator. Furthermore, the expan-
sion property allows us to roll out a composition step into a sequence of
binary ones. In Chapter 2, we examined several equivalence relations for
interaction systems. There, we chose branching bisimilarity with explicit di-
vergence, denoted by ≈∆

b , as a suitable equivalence for interaction systems
(cf. Section 2.4.1). Now, an important question for any operator on interac-
tion systems is whether the chosen equivalence relation is a congruence with
respect to the operator. The property of being a congruence is essential in
order to use the operator in algebraic reasoning. For instance, if we have a
composition of several interaction systems and want to replace one of these
system with an additional one whose global behavior is branching bisimilar

70 3 Compositionality and Abstraction

(with explicit divergence) to the one to be replaced, then we expect that the
global behaviors of the overall composition before and after the replacement
are branching bisimilar (with explicit divergence). However, such a property
is only valid if the equivalence is a congruence with respect to the composition
operator.

We want to mention that such a claim is not obvious and does not easily follow
from the definition. For instance, Van Glabbeek et al. [117, Section 5] show
that divergence sensitive branching bisimilarity (cf. Section 2.4) fails to be a
congruence for a basic parallel composition operator for labeled transition
systems. Here, we answer the congruence question for our composition
operator affirmative in the following proposition.

Proposition 3.12 (≈∆
b is a Congruence w.r.t. Composition): Let Sys(1), Sys(2),

and Sys(3) be three interaction systems, where Sys(3) is disjoint from both
Sys(1) and Sys(2). Let either I+ ⊆ Int(1)open ./ Int(3)open and I− ⊆ Int(1)open ∪ Int(3)open,

or I+ ⊆ Int(2)open ./ Int(3)open and I− ⊆ Int(2)open ∪ Int(3)open with I− v I+ in both
cases.

If Sys(1) ≈∆
b Sys(2) then Sys(1) ⊗

(I+,I−)
Sys(3) ≈∆

b Sys(2) ⊗
(I+,I−)

Sys(3).

A formal proof of Proposition 3.12 can be found in Appendix F on page 243.

We summarize the properties of the composition operator for interaction
systems as given by Definition 3.4. We showed that the operator

• yields a valid interaction system (cf. Proposition 3.6),

• can be expanded to binary composition steps (cf. Proposition 3.7),

• is commutative in its binary variant (cf. Proposition 3.9),

• is associative in its binary variant (cf. Proposition 3.10), and

• ensures that branching bisimilarity with explicit divergence is a congru-
ence (cf. Proposition 3.12).

In the following section, we introduce an operator that allows for abstraction
in interaction systems.

3.2 Abstraction in Interaction Systems

As we mentioned in the introduction to this chapter, from a hierarchical
modeling perspective, an important aspect is the abstraction of information or
functionality that is not needed on higher levels. Here, we exploit the closed

3.2 Abstraction in Interaction Systems 71

interactions (cf. Definition 2.3) for this purpose as such interactions become
unobservable in the global behavior and are not available for composition
because we required that only open interactions can be used as new and old
interactions (cf. Definition 3.4).

Thus, we use, similarly to a process algebra such as CSP [141] or CCS [200],
the concealment or hiding of interactions as a means of abstraction.

3.2.1 The Closing Operator

We define the closing operator as follows.

Definition 3.13 (Closing of Interactions): Let Sys be an interaction system
and Î be an arbitrary set. The closing of the interactions over Sys’s compo-
nent system contained in Î in Sys, denoted by Sys \\ Î, is the tuple Sys \\ Î :=(
IM \\ Î, {[[i]]}i∈Comp

)
with IM \\ Î :=

(
CS, Int, Intclosed ∪ (Î ∩ Int)

)
.

Observe that only those elements of Î that are also interactions over Sys’s
component system are relevant for the closing operation. In Definition 3.13,
we stated that the new operator yields a tuple. Next, we show that this tuple
is an interaction system.

Proposition 3.14 (Closing Operator Validity): The tuple constructed by the
closing operator of Definition 3.13 is an interaction system.

A formal proof of Proposition 3.14 can be found in Appendix F on page 245.

As an example for the closing operator, we close the interactions that are
used between the customer and the management component of our running
example SysMMS. We set:

Î =
{
{abortc, cancelm}, {askc, orderm}, {buyc, paym}, {refundc, reimbursem}

}
and SysMMS \\ Î =: Sys(4)MMS. Figure 3.3 depicts the new interaction model.

refundc
buyc

askc

abortc

reimbursem printm

reservem

deliverm

cancelm releasem

orderm

paym marks

ships

unmarks

c m s

Figure 3.3: The interaction model of interaction system Sys(4)MMS

72 3 Compositionality and Abstraction

0 1

τ

τ

2
{reservem, marks}

3τ

4 τ{deliverm, ships}

5

τ

τ{releasem, unmarks}

Figure 3.4: The reachable global behavior of interaction system Sys(4)MMS

From Sys(4)MMS’s global behavior, which is depicted in Figure 3.4, we see why
the closing operator is a means for abstraction: An outside observer cannot dis-
tinguish the (now) internal cooperation of the customer and management com-
ponent anymore. Observe that the composition with Sys(2)MMS (cf. page 63) is
still possible since the interactions needed for this composition are open.

Next, we establish important properties of our closing operator.

3.2.2 Properties of Closing

First, we consider the interplay of the composition and closing operator, i.e.,
whether they can be used in combination. This question typically arises
when we have a composition of two interaction system and afterwards close
some of the interactions. Now, we want to know which of these to be closed
interactions can be handed over as a closing operation to the systems before
their composition, and how these interactions can be identified.

Proposition 3.15 (Localization of Closed Interactions): Let Sys(1) and Sys(2)

be two disjoint interaction systems, and let (I+, I−) be their composition
information with I+ ⊆ Int(1)open ./ Int(2)open, I− ⊆ Int(1)open ∪ Int(2)open, and I− v I+.
Further let Î be an arbitrary set whose elements, that are interactions over the
composed component system, should become closed after the composition.
For all subsets Î(1), Î(2) of Î with Î(i) ∩ {α ∈ 2Act(i) | α ∈ I− ∨ (∃ β ∈ I+ : α =

β ∩Act(i) ∧ α 6= ∅)} = ∅ for i = 1, 2 holds(
Sys(1) ⊗

(I+,I−)
Sys(2)

)
\\ Î =

(
Sys(1) \\ Î(1) ⊗

(I+,I−)
Sys(2) \\ Î(2)

)
\\ Î.

A formal proof of Proposition 3.15 can be found in Appendix F on page 245.

3.2 Abstraction in Interaction Systems 73

We demonstrate the use of Proposition 3.15 by means of an example.

Example 3.16: Consider two disjoint interaction systems Sys(1) and Sys(2),
each with two components, the interaction sets Int(1) =

{
{a1}, {a1, a2}

}
and

Int(2) =
{
{a3}, {a3, a4}

}
, and empty sets of closed interactions. The compo-

sition information of these systems is given by I+ =
{
{a1, a2, a3, a4}

}
and

I− = ∅, i.e., (I+, I−) is a valid composition information as required by Defini-
tion 3.4. Suppose that we now want to close all singleton interactions, i.e., we
set Î =

{
{a1}, {a3}

}
. According to Proposition 3.15, we now have for the two

subsets Î(1) =
{
{a1}

}
and Î(2) =

{
{a3}

}
of Î that

Î(i) ∩ {α ∈ 2Act(i) | α ∈ I− ∨ (∃ β ∈ I+ : α = β ∩Act(i) ∧ α 6= ∅)} = ∅

holds for i = 1, 2 since the latter set of the intersection equals
{
{a1, a2}

}
for

Sys(1) and
{
{a3, a4}

}
for Sys(2). Thus, we can already close these interactions

in the respective subsystems before the composition step, i.e., we have (as
stated in Proposition 3.15):(

Sys(1) ⊗
(I+,I−)

Sys(2)
)
\\ Î =

(
Sys(1) \\ Î(1) ⊗

(I+,I−)
Sys(2) \\ Î(2)

)
\\ Î.

Next, we address the question whether branching bisimilarity with explicit
divergence is a congruence with respect to the closing operator. As mentioned
above for the similar question in case of the composition operator, such a
property is essential if we want to use the operator in reasoning about systems,
e.g., substitute behavioral equivalent system parts.

Proposition 3.17 (≈∆
b is a Congruence w.r.t. Closing): Let Sys(1) and Sys(2) be

two interaction systems, and let Î be an arbitrary set whose elements, that are
interactions over one of the component systems, should become closed.

If Sys(1) ≈∆
b Sys(2) then Sys(1) \\ Î ≈∆

b Sys(2) \\ Î.

A formal proof of Proposition 3.17 can be found in Appendix F on page 245.

We summarize the properties of the closing operator for interaction systems as
given by Definition 3.13. We showed about the closing operator that it

• yields a valid interaction system (cf. Proposition 3.14),

• integrates well with the composition operator (cf. Proposition 3.15), and

• ensures that branching bisimilarity with explicit divergence is a congru-
ence (cf. Proposition 3.17).

In the next section, we introduce an operator that allows to decompose an
interaction systems.

74 3 Compositionality and Abstraction

3.3 Decomposition of Interaction Systems

The complement of a composition operator is a disassembling or decomposi-
tion operator. For interaction systems, such an operator has been defined by
several authors in order to consider a partial system or subsystem of a given
interaction system.

Historically, Gössler and Sifakis [121] define a so-called set of interacting com-
ponents in their original work that introduced interaction systems, which
restricts the interaction model to the components in the set by intersecting
all interactions with the action sets of the chosen components (and some ad-
ditional technical requirements). We find similar definitions for interaction
systems under a variety of notions such as an induced system [124, Defi-
nition 13], a projection operator for the global behavior [187, Section 2.2], a
projection operator for interaction systems [179, Definition 2], subsystems [184,
Definition 6], subsystem construction [160, Definition 4], or partial behavior
[162, Definition 3].

Here, we also introduce such an operator that allows for decomposing an
interaction system with respect to a set of components, which yields a sub-
system of the original system, hence the name subsystem construction operator.
It is important that such a subsystem is also a valid interaction system (with
respect to Definition 2.5). Furthermore, the operator should be usable in com-
bination with our composition and closing operator, i.e., the decomposition of
a system into two interaction systems should be re-composable to the original
system. We start out with formally defining our operator.

3.3.1 The Subsystem Construction Operator

We define the subsystem construction operator as follows.

Definition 3.18 (Subsystem Construction): Let Sys be an interaction system
and let C ⊆ Comp be a nonempty set of components. The subsystem of Sys
obtained by only considering the components in C, denoted by Sys[C], is the
tuple Sys[C] := (IM[C], {[[i]]}i∈C) with

• IM[C] := (CS[C], Int[C], Intclosed[C]),

• CS[C] := (C, {Ai}i∈C) and Act[C] :=
⋃

i∈C Ai,

• Int[C] := {α ∈ 2Act[C] | ∃ β ∈ Int : α = β ∩Act[C] ∧ α 6= ∅}, and

• Intclosed[C] := {α ∈ Intclosed | ∀ β ∈ Int : α ⊆ β =⇒ compset(β) ⊆ C}.

The set of open interactions is defined as Intopen[C] := Int[C] \ Intclosed[C].

3.3 Decomposition of Interaction Systems 75

In Definition 3.18, we stated that the new operator yields a tuple. Next, we
show that this tuple is also an interaction system.

Proposition 3.19 (Subsystem Construction Operator Validity): The subsys-
tem construction operator of Definition 3.18 yields a tuple that is an interaction
system.

A formal proof of Proposition 3.19 can be found in Appendix F on page 246.

We demonstrate the subsystem construction operator by an application to our
running example. Consider again Sys(4)MMS (cf. page 71), which we obtained
from the original merchandise management system SysMMS by closing all
interactions between the management and the customer component. We now
apply our new operator with respect to the set C = {m, s}, i.e., we want to
construct the subsystem consisting of the management and storage component,
which we call Sys(5)MMS. According to Definition 3.18, we get:

Sys(5)MMS := Sys(4)MMS[{m, s}] =
(
IM(4)[{m, s}], {[[i]]}i∈{m,s}

)
with IM(4)[{m, s}] =

(
CS(4)[{m, s}], Int(4)[{m, s}], Int(4)closed[{m, s}]

)
.

Here, the interaction model of the subsystem consists of the following items
and is depicted in the red box in Figure 3.5:

CS(4)[{m, s}] =
(
{m, s}, {Am, As}

)
,

Int(4)[{m, s}] =
{
{cancelm}, {orderm}, {paym}, {printm}, {reimbursem},
{deliverm, ships}, {releasem, unmarks}, {reservem, marks}

}
,

Int(4)closed[{m, s}] =
{
{printm}

}
.

refundc
buyc

askc

abortc

reimbursem printm

reservem

deliverm

cancelm releasem

orderm

paym marks

ships

unmarks

c m s

Figure 3.5: The red box surrounds the components of the subsystem that corre-
sponds to the interaction system Sys(5)MMS. Observe that an interaction crossing
the border of the box needs to be modified for the subsystem. Particularly,
if such an interaction is closed (depicted as a dashed line in the figure), the
modified version needs to be open in the subsystem.

76 3 Compositionality and Abstraction

The reachable global behavior of Sys(5)MMS is depicted in Figure 3.6. Interestingly,
the behavior of this interaction system, which is yielded by the subsystem
construction operator, seems to “contain” the behavior of the original system
up to relabeling (cf. Figure 2.5 on page 31), i.e., the behavior that is observable
in the original system is also observable in the subsystem.

0

1

{orderm}

{cancelm}
2

{reservem, marks}
3{paym}

4 τ{deliverm, ships}

5

{cancelm}

{reimbursem}{releasem, unmarks}

6

{paym}

{reimbursem}
{reservem, marks}

Figure 3.6: The reachable global behavior of interaction system Sys(5)MMS

This “containedness” is sometimes referred to as being an over-approximation,
i.e., the behavior of the original system is approximated but additional be-
havioral branches are possible hence the name over-approximation. This
observation paved the way for several verification approaches that aim for ef-
ficiency, i.e., avoid the construction of the global behavior of the whole system.
As we already mentioned, we address such approaches in later chapters and
thus do not discuss the observation further at this point.

As for the previous operators, we continue with useful properties of subsystem
construction in the following section.

3.3.2 Properties of Subsystem Construction

First, we show that an interaction system is equal to the interaction system
yielded by the subsystem construction operator with respect to the set of
components contained in its component system. This proposition allows to
introduce subsystems when reasoning about a given interaction system.

Proposition 3.20 (Identity of Subsystems): Let Sys be an interaction system.
It holds that

Sys = Sys[Comp].

A formal proof of Proposition 3.20 can be found in Appendix F on page 247.

3.3 Decomposition of Interaction Systems 77

We now want to relate the subsystem construction operator to the composition
operator. Interestingly, we only used the fact that all components participating
in a closed interaction are contained in the components of the subsystem
for the proof of Proposition 3.19. But, in the definition of the subsystem
construction operator (cf. Definition 3.18) we required that no interaction is
closed in a subsystem that is a subset of an interaction where components not
contained in the subsystem, i.e., they are contained in the original interaction
system, participate in. This requirement becomes important if we want to
compose subsystems of an interaction system and ensure that the composed
system is equal to an appropriate subsystem consisting of the union of the set
of components in the subsystems to be composed. The following proposition
establishes this idea.

Proposition 3.21 (Expansion of Subsystems): Let Sys be an interaction sys-
tem and let C1, C2 ⊆ Comp be nonempty sets of components with C1 ∩C2 = ∅.
Further let IC1,C2 := (I+C1,C2

, I−C1,C2
) be the composition information between

the subsystems with I+C1,C2
:= {α ∈ Int[C1 ∪ C2] | ∃ i ∈ C1 ∃ j ∈ C2 : {i, j} ⊆

compset(α)} and I−C1,C2
:= {α ∈ Int[C1] ∪ Int[C2] | α /∈ Int[C1 ∪ C2]}. It holds

that

Sys[C1 ∪ C2] =
(
Sys[C1] ⊗

IC1,C2

Sys[C2]
)
\\ Intclosed[C1 ∪ C2].

A formal proof of Proposition 3.21 can be found in Appendix F on page 247.

We demonstrate the use of Proposition 3.21 by means of an example.

Example 3.22: Consider an interaction system Sys consisting of four com-
ponents each with a single action, i.e., Comp = {1, 2, 3, 4} and Ai = {ai}
for all i ∈ Comp, and the interaction set Int =

{
{a1, a3}, {a2, a4}

}
and the

closed interaction set Intclosed =
{
{a2, a4}

}
. Suppose we set C1 = {1, 2}

and C2 = {3, 4}, i.e., we consider the case Sys = Sys[C1 ∪ C2]. According
to Proposition 3.21, we now have I+C1,C2

=
{
{a1, a3}, {a2, a4}

}
and I−C1,C2

={
{a1}, {a2}, {a3}, {a4}

}
. Observe that this composition information allows

us to reconstruct the original system but the set of closed interactions needs
to be adjusted since the sets of closed interactions of the subsystems Sys[C1]

and Sys[C2] are empty (cf. Definition 3.18). Here, we have Intclosed[C1 ∪ C2] ={
{a2, a4}

}
which illustrates the correctness of the equation Sys[C1 ∪ C2] =(

Sys[C1]⊗IC1,C2
Sys[C2]

)
\\ Intclosed[C1 ∪ C2] as in Proposition 3.21.

We further refine Proposition 3.21 such that the composition information
between the two subsystems after expansion is as small as possible, i.e., that
only components that cooperate with a counterpart in the other subsystem
are considered in the composition information.

78 3 Compositionality and Abstraction

Proposition 3.23 (Identification of Cooperating Components): Let Sys be an
interaction system and let C1, C2 ⊆ Comp be nonempty sets of components
with C1 ∩ C2 = ∅. According to Proposition 3.21, the system can be expanded
as follows:

Sys[C1 ∪ C2] =
(
Sys[C1] ⊗

IC1,C2

Sys[C2]
)
\\ Intclosed[C1 ∪ C2].

For any subsets C′1 ⊆ C1 and C′2 ⊆ C2 of components that are only cooperating
with their corresponding superset—i.e., for the sets holds ∀ i, j ∈ Comp ∀ α ∈
Int :

(
i ∈ C′1 ∧ j ∈ C2 =⇒ {i, j} * compset(α)

)
∧
(
i ∈ C′2 ∧ j ∈ C1 =⇒

{i, j} * compset(α)
)
—holds

Sys[C1 ∪ C2] =
(
Sys[C1] ⊗

IC1\C′1,C2\C′2

Sys[C2]
)
\\ Intclosed[C1 ∪ C2].

where IC1\C′1,C2\C′2 is defined as in Proposition 3.21.

A formal proof of Proposition 3.23 can be found in Appendix F on page 248.

For the previous two operators, we established that branching bisimilarity
with explicit divergence is a congruence with respect to them. As we already
mentioned, this is important in order to allow for the usage of these operators
in algebraic reasoning. However, for the subsystem construction operator we
cannot state a similar result, i.e., in general, branching bisimilarity with explicit
divergence is not a congruence with respect to the operator. The following
counterexample illustrates this issue.

Example 3.24: Consider the interaction systems Sys(1) and Sys(2), both con-
sisting of the following component system: CS = (Comp, {Ai}i∈Comp) with
Comp = {1, 2}, A1 = {a1}, and A2 = {a2}. The behavioral models of the
systems are also equal and consist for each component of a single initial state
and a self-loop labeled with the single action in each case, i.e., we have:

{[[i]]}i∈Comp where [[i]] = ({s0
i }, Ai, {{(s0

i , s0
i)}ai}, {s0

i }) for i = 1, 2.

The interaction models of the two systems are different. Here, we have:

IM(1) = (CS, Int(1), Int(1)closed) with Int(1) =
{
{a1, a2}

}
and Int(1)closed = Int(1),

IM(2) = (CS, Int(2), Int(2)closed) with Int(2) =
{
{a1}, {a2}

}
and Int(2)closed = Int(2).

Thus, we have Sys(1) = (IM(1), {[[i]]}i∈Comp) and Sys(2) = (IM(2), {[[i]]}i∈Comp).

Now, consider the global behaviors of the systems. Clearly, we have Sys(1) ≈∆
b

Sys(2) since all interactions are closed and thus only a τ-self-loop is observable.
However, if we now construct the subsystems with respect to component 1,
i.e., Sys(1)[{1}] and Sys(2)[{1}], we get Sys(1)[{1}] 6≈∆

b Sys(2)[{1}] because in
the former system we can observe an {a1}-self-loop and in the latter we still

3.3 Decomposition of Interaction Systems 79

observe only a τ-self-loop. The reason for this behavioral difference clearly
lies in the different interaction models, where in Sys(1) the closed interaction
where both components participate in cannot be closed in Sys(1)[{1}] since
the corresponding subsystem interaction {a1} is needed as an open interac-
tion if we want to compose the subsystems Sys(1)[{1}] and Sys(1)[{2}] to get
Sys(1)[{1} ∪ {2}] = Sys(1) (cf. Proposition 3.20).

Example 3.24 shows that in general, we cannot construct subsystems of arbi-
trary but branching bisimilar (with explicit divergence) interaction systems
and hope for equivalent subsystems. However, an interesting question is
whether additional requirements on the decomposition process exist such
that the equivalence becomes a congruence with respect to the decomposition
operator. From Example 3.24 we learned that we have to require at least
equal alphabets of the global behaviors of the corresponding subsystems, i.e.,
Int(1)open[{1}] = Int(2)open[{1}] in Example 3.24. Is this additional requirement
sufficient to show that branching bisimilar with explicit divergence is a con-
gruence with respect to the subsystem construction operator? Unfortunately,
the answer is negative as the following example shows.

Example 3.25: Consider the interaction systems Sys(1) and Sys(2), both con-
sisting of the following component system: CS = (Comp, {Ai}i∈Comp) with
Comp = {1, 2, 3}, A1 = {a1, b1}, A2 = {a2, b2}, and A3 = {b3}. The behavioral
models of the systems are equal and the labeled transition systems of the
components are depicted in Figure 3.7: [[1]] is given in Figure 3.7 (a), [[2]] is
given in Figure 3.7 (b), and [[3]] is given in Figure 3.7 (c).

0

a1

1

a1

b1

(a) Behavior of component 1

0 1

a2

b2

(b) Behavior of component 2

0 b3

(c) Beh. of comp. 3

Figure 3.7: Behavior of the components 1, 2, and 3

The interaction models of the two systems are different:

IM(1) = (CS, Int(1), Int(1)closed) with Int(1) =
{
{a1, a2}, {b1, b2, b3}

}
and

IM(2) = (CS, Int(2), Int(2)closed) with Int(2) =
{
{a1}, {a2}, {b1, b2, b3}

}
.

In both cases, all interactions are closed, i.e., we have Int(1)closed = Int(1) and

Int(2)closed = Int(2). Thus, we have Sys(1) = (IM(1), {[[i]]}i∈Comp) and Sys(2) =

(IM(2), {[[i]]}i∈Comp).

80 3 Compositionality and Abstraction

Now, consider the global behaviors of the systems. Clearly, we have Sys(1) ≈∆
b

Sys(2) since all interactions are closed and thus only a τ-self-loop is observable
if we compare the quotients. But, if we now construct subsystems with
respect to the set C = {1, 2}, we get the following sets of interactions (cf.
Definition 3.18):

Int(1)[C] =
{
{a1, a2}, {b1, b2}

}
and Int(1)closed[C] =

{
{a1, a2}

}
and

Int(2)[C] =
{
{a1}, {a2}, {b1, b2}

}
and Int(2)closed[C] =

{
{a1}, {a2}

}
.

Observe that in both subsystems, the interaction {b1, b2} is not closed be-
cause its openness is needed for the re-composition with respect to compo-
nent 3. Now, although the labeled transition systems that correspond to the
global behaviors [[Sys(1)[C]]] and [[Sys(2)[C]]] are over the same alphabet, i.e.,
Int(1)open[C] = Int(2)open[C] holds, the two subsystems are not branching bisim-
ilar with explicit divergence. Figure 3.8 depicts the corresponding labeled
transition systems.

0 1

τ

{b1, b2}
(a) Global behavior of Sys(1)[C]

0

τ

1

τ

{b1, b2}
(b) Global behavior of Sys(2)[C]

Figure 3.8: Global behaviors of Sys(1)[C] and Sys(2)[C]

Clearly, there is an infinite path of τ-transitions—formally, an infinite path
over (S(2), τ−→(2))—in [[Sys(2)[C]]] (cf. Figure 3.8 (b)) which does not exist in
[[Sys(1)[C]]] (cf. Figure 3.8 (a)), i.e., no relation over the state spaces can satisfy
Part 2.2 of Definition 2.15. Thus, we have Sys(1)[C] 6≈∆

b Sys(2)[C].

Thus, it is not sufficient to require that Int(1)open[C] = Int(2)open[C] holds as an
additional requirement in order to show that branching bisimilarity with ex-
plicit divergence is a congruence with respect to the subsystem construction
operator. In order to establish this property, we have to strengthen the ad-
ditional requirements even more. But, Example 3.24 shows that requiring
Int(1)[C] = Int(2)[C] is also not sufficient. Thus, we have to use the strongest
requirement, i.e., that the two subsystems are in fact equal, which we do not
formally state here.

We summarize the properties of the subsystem construction operator for
interaction systems as given by Definition 3.18. We showed about subsystem
construction that it

3.4 Correctness by Construction 81

• yields a valid interaction system (cf. Proposition 3.19),

• yields an identical interaction system with respect to the set of all com-
ponents (cf. Proposition 3.20),

• integrates well with the composition and closing operator (cf. Proposi-
tions 3.21 and 3.23), and

• fails to ensure that branching bisimilarity with explicit divergence is a
congruence (cf. Examples 3.24 and 3.25).

This ends the introduction of our operators for interaction systems. In the next
section, we take a first look at correctness by construction.

3.4 Correctness by Construction

We already stressed the importance of approaches that support correctness
by construction. An interesting question for our composition operator with
respect to this approach is: Under which assumptions is the composition of
two interactions systems automatically correct if the two systems are correct?
Here, we derive a first result regarding deadlock-freedom.

3.4.1 Deadlock-Freedom Preserving Composition

We show that the composition of two deadlock-free interaction systems yields
a deadlock-free (composite) interaction system if we restrict the composition
information in a certain way. However, a simple relaxation of this result
already fails as we discuss in the following.

But first, we motivate the idea behind this result. If we have two interaction
systems that are both deadlock-free, we know that in all reachable states of
these systems at least one interaction is enabled. Thus, if we compose the
systems and want to preserve the property of deadlock-freedom, we have
to ensure that the original interactions are still enabled in the corresponding
composite states. The following theorem formalizes this idea.

Theorem 3.26: Let Sys(1) and Sys(2) be two disjoint interaction systems, and
let (I+, I−) be their composition information with I+ ⊆ Int(1)open ./ Int(2)open and
I− = ∅. If both Sys(1) and Sys(2) are deadlock-free and ∀ α ∈ I+ ∃ β ∈
Int(1) ∃ γ ∈ Int(2) : α = β ∪ γ, then Sys(1)⊗(I+,I−) Sys(2) is deadlock-free.

A formal proof of Theorem 3.26 can be found in Appendix F on page 249.

82 3 Compositionality and Abstraction

An important consequence of the above result is that if we can decompose a
system in such a way that the recomposition only contains new interactions
(with the additional assumption of Theorem 3.26), then we can also verify only
the subsystems with respect to deadlock-freedom and the deadlock-freedom
of the composed system follows. For instance, if there are interactions {ai},
{bj}, and {ai, bj} of components i and j, then we can consider the subsystems
Sys[{i}] and Sys[{j}] since for their composition, the set I− is empty and
all new interactions in the composition can be split into two interactions
contained the subsystems.

However, a simple relaxation of the assumptions already fails, e.g., if we allow
that interactions are removed or the new interactions are not restricted as in
Theorem 3.26. We show the failure of the latter idea by a small example.

Example 3.27: We consider two interaction systems Sys(1) and Sys(2) that
both consist of two components, i.e., we have Comp(1) = {1, 2} and Comp(2) =
{3, 4}. For all components i, where 1 ≤ i ≤ 4, we have Ai = {ai, bi}. The
interaction models of the systems are depicted in Figure 3.9 (a) (without the
green-colored new interaction between components 2 and 3), i.e., we have
Int(1) =

{
{a1, a2}, {b1, b2}

}
and Int(2) =

{
{a3, a4}, {b3, b4}

}
. The local behav-

ior of all components is depicted in Figure 3.9 (b): Each component first wants
to execute its a-action and then its b-action.

a1 b1 b2 a2 a3 b3 b4 a4

1 2 3 4

(a) Interaction models and the composition information

0 1

ai

bi

(b) Beh. of i, 1 ≤ i ≤ 4

Figure 3.9: Example illustrating a false relaxation of Theorem 3.26

Obviously, both systems are deadlock-free. Now, we compose the systems
with the following composition information: We set I+ =

{
{a2, a3}

}
and

I− = ∅. The new interaction is also depicted in Figure 3.9 (a) as a green line.
Observe that the tuple (I+, I−) is a valid composition information with respect
to Definition 3.4.

However, if the composed interaction system now executes the new interaction
{a2, a3} in its global initial state (s0

1, s0
2, s0

3, s0
4)—observe that the new interaction

is enabled—the next global state is (s0
1, s1

2, s1
3, s0

4). But now, we reached a
deadlock because each component wants to execute a different interaction in
this global state.

Thus, the composition introduced a deadlock although the two systems were

3.5 Algorithmic Treatment of the Operators 83

originally deadlock-free. This explains the additional requirement about the
new interactions that is included in Theorem 3.26. Note that this requirement
does not hold for this example since the new interaction cannot be split into
two interactions that were originally present in the systems.

Example 3.27 shows that more sophisticated methods are needed if the coop-
eration of the components is complex. We already mentioned that we consider
such methods in following chapters of the thesis.

In the next section, we discuss how the operators can be used in algorithms
and whether their application can be carried out in polynomial time.

3.5 Algorithmic Treatment of the Operators

Algorithms that construct new interaction systems with respect to an applica-
tion of one of our three operators can be implemented straightforwardly: We
only need to adjust the sets that define an interaction system (cf. Definition 2.5).
Clearly, these operations can be carried out in polynomial time in the size of
the input interaction system or the sum of the systems’ sizes in case of the
composition operator.

However, there is one task that we need to address before a composition,
viz. the question whether the provided composition information is valid.
Remember that for n given pairwise disjoint interaction systems Sys(i) where
1 ≤ i ≤ n a tuple (I+, I−) is provided and we need to check, as required
by Definition 3.4, whether I+ ⊆ Int(1)open .// Int(n)open, I− ⊆ Int(1)open ∪ . . . ∪
Int(n)open, and I− v I+ holds. The latter two questions can be answered in
polynomial time by looping trough the corresponding sets and checking for
inclusion. The first one is a little bit more involved because if we compute
the whole powerset interjoin with respect to Definition 3.2 and check for set
inclusion, the check is not guaranteed to be polynomial in the size of the input,
which here are the n interaction systems and the composition information.
But, we can analyze the set I+ in a more direct way: We partition each new
interaction with respect to the global action sets of the n interaction systems
and check for each partition whether it is a subset of an interaction of the
corresponding interaction system. We give an algorithm for this procedure in
Appendix B and here refer to Algorithm B.4, which shows that the validity of
set I+ can be checked in polynomial time.

Thus, we can use the three operators without the danger of a hidden exponen-
tial explosion such as a global behavior computation, which is, e.g., hidden in
the property checks of Chapter 2. Next, we take a look at related work.

84 3 Compositionality and Abstraction

3.6 Related Work

In the previous sections, we already mentioned the related work regarding
interaction systems, e.g., the composition operator of Gössler and Sifakis [121]
that we discussed at the beginning of Section 3.1. A similar operator is defined
by Gössler et al. [124, Definition 15] that we shortly discuss and compare with
our operator (cf. Definition 3.4), although the authors also use the concept
of complete interactions, which, as discussed at the beginning of Section 3.1,
renders the operator incompatible with our definition of interaction systems.
First, the binary operator of Gössler et al. [124] only allows to introduce new
interactions that are the union of interactions already present in one of the
two systems given as the parameter. Second, all interactions that are already
present in one of the systems remain available. This allows to establish a
correctness-by-construction approach that is similar to our Theorem 3.26 but
makes the operator incompatible with any decomposition technique where a
decomposition operator is introduced by the authors under the name induced
system [124, Definition 13], i.e., if a system is decomposed into two distinct
parts with respect to a partition of the set of components, then the composition
operator of Gössler et al. [124] cannot be used to (re-)construct the original
system. Thus, if we neglect the complete interactions as discussed at the end
of Section 2.1.2, our composition is a generalization of the one proposed by
the authors.

We take a look at other models of concurrency and component-based systems.
In the work on process algebra we can find some similarities, although the
operators are typically binary, i.e., only allow for the composition of two
systems/processes. The composition operator of CCS [200] is only defined for
binary synchronizations that become unobservable after the composition step,
i.e., it cannot be extended to allow for multiway synchronizations. In CSP [141],
this problem is overcome by allowing multiway synchronizations but over
actions with the same name which yields an inflexible approach with respect
to component-based development. In ACP [37], there is a communication
function that maps the pairs of actions that can interact to a certain action, i.e.,
the function also allows multiway synchronizations. Although this function
solves the naming problem of the CSP operator, the operator is still binary
with respect to the number of processes. Similar observations have been made
by Aldini and Bernardo [6]. As we mentioned in Section 2.1.4 of Chapter 2,
the concept of multiactions and the combination of the composition and allow
operator in the process algebra mCRL2 [131] is an exception to this list.

Some authors build on top of a process algebra a more component-oriented
way of composition. For instance, Bernardo et al. [39] define a composition

3.7 Summary and Remarks 85

operator in the process algebra associated to their PADL architecture descrip-
tion language. The operator is parametrized with a set of actions that happen
synchronously in two systems, i.e., the same name is used to identify these
parts. However, this operator is not used directly, i.e., in PADL the whole
specification is translated into a process (cf. our discussion in Section 2.1.4)
where the binary, left-associate composition operator of the process algebra
is used to describe the overall system. However, many fresh labels need to
be introduced since synchronization takes place over actions with the same
name, similarly to CSP as mentioned above.

Similarly, in the formal semantic model of Java/A [137], a composition of two
I/O transition systems takes place by a synchronization on identical input and
output labels. Here, the composition operator is associative which allows for
an extension to multi-ary composition, but again relabeling has to take place
to synchronize on the ports. In this setting, similar properties as addressed for
our operators are provided for I/O transition system [137, Section 2.2].

We already mentioned several related works regarding our subsystem con-
struction operator at the beginning of Section 3.3. These further operators for
interaction systems mainly differ with respect to the underlying interaction
model. Similarly, our closing operator is comparable to hiding operators of
process algebras such as, for instance, concealment in CSP [141]. Moreover,
other component-based formalisms provide related ideas, e.g., in PADL [39],
as already mentioned in Section 2.1.4 of Chapter 2, interactions can be declared
as architectural interactions or local interactions where the latter are no longer
available for further compositions.

In the next section, we summarize the chapter and give some additional
remarks.

3.7 Summary and Remarks

In this chapter, we saw how interaction systems allow for hierarchical model-
ing and that correctness by construction can be achieved under strong require-
ments. We introduced three operators that are similar to operators typical
found in process algebra and showed that these operators play well together
and are reasonably defined, e.g., branching bisimilarity with explicit diver-
gence, which is our chosen equivalence relation for interaction systems (cf.
Definition 2.15), is a congruence with respect to the composition and the
closing operator.

We want to point out that we did not address hierarchical modeling over
several levels, i.e., we did not introduce an encapsulation technique that

86 3 Compositionality and Abstraction

allows to consider an interaction system as a component which looses the
build-up of the underlying system. However, our operator also allows for
such multiple levels if the composition information of each step is recorded
and kept during following composition steps, i.e., the system is not considered
as a whole interaction system but as several applications of our composition
operator with hierarchical levels of parentheses, e.g., we always keep the
left-hand side of Definition 3.4 instead of only the right-hand one.

Finally, we can also interpret the set of all interaction systems together with
our composition operator (in its binary version) as a mathematical algebraic
structure, viz. a semigroup, because our composition operator is associa-
tive (cf. Proposition 3.10)—if we neglect the automatic parameter adjust-
ment. We can also turn this semigroup into a monoid by defining an ap-
propriate identity element Sysid such that for all valid interaction systems
Sys holds: Sys⊗(I+,I−) Sysid = Sys with I+ = ∅ and I− = ∅. This iden-
tity or neutral element corresponds to the empty interaction system, i.e.,
Sysid = (((∅, ∅), ∅, ∅), ∅), which is valid with respect to Definitions 2.1, 2.3,
and 2.5 because we allow an empty set of components. However here, we
do not formally define and prove the above claims; instead, we take a look at
architectures for interaction systems in the next chapter.

87

Chapter 4

Architectures

In this chapter, we introduce restrictions on the way the components in an
interaction system are allowed to cooperate, which we call architectural con-
straints or simply architectures. Historically, such architectures in interaction
systems were introduced by Majster-Cederbaum and Martens [179] as a line
of attack to overcome the complexity of deadlock detection that arises if we
have to analyze the global behavior of an interaction system—remember the
PSPACE-completeness of the decision problem whether a system is deadlock-
free discussed in Section 2.3.1—and were successfully exploited to establish
the property of deadlock-freedom in polynomial time in several works on
interaction systems [160–162, 179, 180].

The idea behind such constraints for deadlock detection can be illustrated as
follows: If we have three components client1, client2, and server, and the clients
cooperate only with the server and never directly with each other, it could be
sufficient to analyze the cooperation of the components server and client1 and,
independently of the first analysis, the cooperation of server and client2. Since
the two clients do not cooperate directly, we potentially can then conclude the
deadlock-freedom of the whole system by the analysis of the cooperation of
small system parts. In doing so, the overall architecture enables us to find the
systems parts we have to analyze.

We want to point out that authors working with other formalisms also ad-
dressed architectural constraints [39, 49, 137], which we also discuss in this
chapter. Often, architectures arise naturally when client-server situations as
mentioned above or hierarchical structures are studied [2, 146, 221], e.g., the
connection diagram of processes constructed with the subordination operator
in CSP always forms a certain architecture [141, Section 4.5.2]. Related ideas
can be found in the concept of architectural styles of architecture description
languages [3, 6, 110, 242] that employ design patterns to maintain flexibility

88 4 Architectures

and comprehensibility of a software system—early approaches can be traced
back to work by Dijkstra [91], Brooks and Iverson [52], and Parnas [223], see
the book of Bass et al. [28, Section 2.7] for an overview.

In the following sections, we want to take a closer look at how such architec-
tural constraints can be defined and checked in an automatic way. We want
to focus on their formal definition, the question of how efficiently a given
interaction system can be inspected, and the computational complexity of the
decision problems discussed in Chapter 2 restricted to the class of interaction
systems satisfying a certain architectural constraint.

In general, such constraints or restrictions are a well-known line of attack
in the world of computational complexity and sometimes even allow for
tremendous reductions of complexity, e.g., if we restrict the clauses in the
3-satisfiability problem, which is NP-complete [74], to be of length two, we
get the 2-satisfiability problem which is known to be solvable in linear time
[99]. However, although such restrictions do not always guarantee a reduction
of complexity, they still offer new lines of attacking a computationally hard
problem. For instance in graph theory, a lot of problems are NP-complete, e.g.,
existence of a Hamiltonian path or finding a maximum independent set [108,
pages 199–200 respectively 194–195], but the restriction to a certain class allows
for the application of clever approximation algorithms although the problem
remains NP-complete in this class, e.g., Baker [25] derives an approximation
algorithm for finding a maximum independent set in planar graphs but the
problem in this class is still NP-complete [108, pages 194–195].

As we learn in this chapter, this is also the case for the architectural constraints
considered in this thesis. But, these constraints allow for new lines of attack,
whose discussion is presented in Chapters 5 and 6.

Before we formally define what we mean by an architecture and architectural
constraints, we introduce a further example interaction system that follows us
through the remainder of the thesis as our second running example.

4.1 A Further Example Interaction System

We introduce an interaction system SysDB(n) representing a database and
n users, i.e., the system models a database server and a fixed number of
clients that are allowed to read and write to the database. In order to avoid
inconsistencies if one of the clients wants to write, the database provides a
locking mechanism that ensures that read requests are not answered once a
client is granted writing access and starts to write. Additionally, all clients

4.1 A Further Example Interaction System 89

are informed about the data change and a global commit among the clients
ensures the consistency with any local data. After this commit, the database
performs an internal backup step; however, an appropriate backup component
is not part of the example. Here, we consider n clients with the property that
client i with 1 ≤ i ≤ n is able to write up to wi times in a row (because of local
memory constraints), i.e., the client can decide how many times it wants to
write to the database as long as this number does not exceed wi. Thus, the
database, which we call d, allows for an arbitrary number of write operations
but at least one has to be performed if a client is granted write access.

We define the interaction system SysDB(n) where n ∈N \ {0} as:

Comp = {d, 1, . . . , n},

Ad = {backupd, commitd, grantd, informd, selectd, updated},
Ai = {commiti, processi, readi, requesti, waiti, writei} for 1 ≤ i ≤ n,

Int =
⋃

1≤i≤n

{
{grantd, requesti}, {informd, waiti}, {processi}, {selectd, readi},

{updated, writei}
}
∪
{
{backupd}, {commitd, commit1, . . . , commitn}

}
,

Intclosed =
{}

.

Observe that we fully specified SysDB(n)’s interaction model with respect to
Definition 2.3. Figure 4.1 depicts this model for n = 2.

read1 process1

request1

write1

wait1 commit1

selectd
grantd

backupd

updated

informd commitd

read2process2

request2

write2

wait2commit2

1 d 2

Figure 4.1: Interaction model of the database example SysDB(n), depicted for
n = 2. Overlapping interactions are not connected by default, only if there is a
tiny connection dot as for the commit interaction.

We complete SysDB(n)’s specification by giving its behavioral model (cf. Def-
inition 2.5). The labeled transition systems for the components are given in
Figure 4.2 on the following page where Figure 4.2 (a) depicts the behavior
[[d]] of the database component d and Figure 4.2 (b) the behavior [[i]] of client
component i with 1 ≤ i ≤ n. Note that we assume for each labeled transition
system [[i]] that the maximal number of consecutive write operations of client i

90 4 Architectures

is known as wi ∈ N and that wi ≥ 1 holds for all 1 ≤ i ≤ n. Furthermore,
for each [[i]] as depicted in Figure 4.2 (b) we assume that if wi = 1, then the
depicted states swi

i and s1
i coincide and the depicted state swi+1

i is not contained
in the set of states (although state s2

i is still contained in spite of wi + 1 = 2).
Similarly for wi = 2, the depicted states swi

i and s2
i coincide as well as the states

swi+1
i and s3

i . Finally, for wi = 3 the depicted states swi
i and s3

i coincide.

0

selectd

1
grantd

selectd

2

up
da

te
d

informd, updated

3
commitd

ba
ck

up
d

(a) Behavior of component d

0

processi, readi

1

waiti

commiti

2

re
qu

es
t i

writ
e i

3

w
ri

te
i

writei

writei

wi

w
ritei w

ri
te

i

writei wi
+1

(wi − 3) times writei

(b) Behavior of component i with 1 ≤ i ≤ n

Figure 4.2: Behavior of the components of interaction system SysDB(n)

We postpone a detailed analysis of SysDB(n). We only want to mentioned that
the reachable global behavior of the example already contains more than one
million states and roughly fifteen times more transitions for n = 15 clients1

and each wi = i. Thus, even this simple example suffers from state space
explosion as discussed in Section 2.2 for relatively small parameters.

We continue with the formal definition of architectural constraints.

4.2 Architectures of Interaction Systems

Typically, architectural constraints are based on graphs that represent the un-
derlying cooperation structure of an interaction systems. In the following, we
use common notation from graph-theory which we included in Appendix A
for convenience.

4.2.1 Component-Based Architecture

We already mentioned in the introduction of this chapter that various authors
studied architectural constraints that are based on the underlying cooperation

1The exact numbers are 1 753 104 states and 27 787 745 transitions. Note that for n ≥ 23 there
are more than one billion reachable states and over 25 billion transitions.

4.2 Architectures of Interaction Systems 91

structure. This cooperation structure is typically defined by means of an
undirected graph where the vertices represent the components and edges
exist between any cooperating components, e.g., the architecture of Majster-
Cederbaum and Martens [179] is defined this way and also the notion of an
architectural topology by Hennicker et al. [137]. Here, we define the component
graph of an interaction system in the same way.

Definition 4.1 (Component Graph): The component graph Gcomp := (V, E) of
an interaction system Sys is defined by the set of vertices V = Comp and the
set of edges E =

{
{i, j} ∈ 2Comp | ∃ α ∈ Int : {i, j} ⊆ compset(α)

}
.

As an example for the component graph of an interaction system, we consider
again our running example SysMMS and its extended version Sys(3)MMS (defined
on page 24 and page 64 respectively). The corresponding component graphs
of the systems are depicted in Figure 4.3.

c m s

(a) Component graph of SysMMS

c m s

m2c2

(b) Component graph of Sys(3)MMS

Figure 4.3: Component graph of the merchandise management example

Since we are interested in considering interaction systems that have a particu-
lar architecture, we now define two constraints by means of the component
graph: the star-like and the tree-like architecture. First, we define star-like
architectures as follows.

Definition 4.2 (Star-Like Architecture): An interaction system Sys has a star-
like architecture if its component graph Gcomp = (V, E) is a star in the graph-
theoretical sense, i.e., it is connected and ∃m ∈ Comp ∀C ∈ 2Comp : C ∈
E =⇒ m ∈ C holds. Component m of the existential quantification is
called the middle component of Sys and all other components are called border
components of Sys.

Second, we define tree-like architectures.

Definition 4.3 (Tree-Like Architecture): An interaction system Sys has a tree-
like architecture if its component graph Gcomp = (V, E) is a tree in the graph-
theoretical sense, i.e., it is connected and |E| = |V| − 1 holds. The components
whose vertex representation is contained in the center of the component graph,
i.e., all i ∈ Comp with i ∈ center(Gcomp), are called central components of Sys.

92 4 Architectures

Observe that SysMMS has a star-like architecture (cf. Figure 4.3 (a)) where
component m is the middle component and components c and s are border
components. Moreover, Sys(3)MMS has a tree-like architecture (cf. Figure 4.3 (b))
where component s is the only central component. But, Sys(3)MMS’s architecture
is not star-like. Obviously, any interaction system with a star-like architecture
also has a tree-like architecture, e.g., SysMMS’s architecture is also tree-like
where component m is the central component. Thus, a tree-like architecture
can be seen as a generalization of a star-like architecture.

Both definitions imply that the cooperation structure is acyclic. The intuition
behind considering acyclic structures is that in such systems, the presence of
circular waiting situations and hence potential deadlocks is reduced. Such
requirements of acyclicity exist for many formalisms under various names,
e.g., acyclic topologies [137], acyclic architectural types [39], tree networks [49],
or tree-like architectures [179]. As mentioned in the introduction, we postpone
the exploitation of these architectures to the following chapters.

We want to point out that a tree-like architecture can only be present if all
interactions are binary. Otherwise, we find at least three components such
that the corresponding vertices in the component graph form a triangle in
the graph-theoretical sense, i.e., a simple cycle of length four according to
Definition A.8. The database example introduced at the beginning of this
chapter illustrates this issue: Figure 4.4 (a) depicts its component graph for
an arbitrary number of clients and Figure 4.4 (b) for two clients. Observe that
every vertex lies on a simple cycle.

n

d

1

2 . .
.

(a) Component graph for arbitrary n

1 2

d

(b) The same graph for n = 2

Figure 4.4: Component graph of interaction system SysDB(n)

This drawback clearly lies in the definition of the component graph. Note
that, for instance, the tree networks of Brookes and Roscoe [49] face the same
problem.

Thus, in order to allow for multi-ary interactions on the one side, but still be
able to constrain the architecture, we take a look at the cooperation structure
of the components.

4.2 Architectures of Interaction Systems 93

4.2.2 Cooperation-Based Architecture

We already mentioned the typical drawback of acyclic architectures in the
previous section: All cooperations must be binary. However, interaction
systems allow for multiway cooperation, which facilitates a very compact and
more convenient modeling in many situations since the restriction to binary
cooperations typically blows a concrete modeling up in an unnecessary way,
e.g., intermediate coordination states are introduced to mimic a multiway
synchronization in a binary way.

For this reason, Majster-Cederbaum and Martens [180] extended their notion
of a tree-like architecture to be able to deal with multiway cooperations in the
setting of interaction systems. They defined a special graph—called cooperation
graph2 in the following—in which vertices represent all sets of components
that are able to cooperate and whose graph-theoretical property of being a tree
defines tree-like interaction systems [180]. To be more precise, the cooperation
graph consists of two types of vertices where one type represents each compo-
nent as a singleton. The other type models any (partial) cooperation situation
among the components, i.e., for any two interactions there is a vertex repre-
senting the set of components participating in both of them. Thus, all vertices
are sets of components, and now, the edges correspond to a set containment
relation among these sets, i.e., possible cooperation situations that are related
with respect to the set of participating components. Furthermore, two vertices
u and v where one set is contained in the other, say u ⊂ v, are only adjacent if
there is no further vertex w that lies in between, i.e., u ⊂ w ⊂ v does not hold.
The intuition behind this requirement is that as few edges as possible should
be contained in the graph for the following reason: Multiway cooperations can
be dealt with as long as the graph stays acyclic. Indeed, if we have u ⊂ w ⊂ v
for three vertices (and no further set represented as a vertex lies in between)
the edges connecting u with w and w with v already contain the information
which cooperation situations are related and a further edge between u and v
would introduce a cycle without adding useful information. Now, we define
the cooperation graph as follows.

Definition 4.4 (Cooperation Graph): The cooperation graph Gcoop := (V, E) of
an interaction system Sys is defined by the set of vertices V = V1 ∪V2 where
V1 = {C ∈ 2Comp | |C| = 1} and V2 = {C ∈ 2Comp | ∃ α, β ∈ Int : C =

compset(α) ∩ compset(β) ∧ C 6= ∅} and the set of edges E = {{u, v} ∈ 2V |
u ⊂ v ∧ (∀w ∈ V : u ⊂ w =⇒ w 6⊂ v)}, i.e., there is an edge between
two vertices if one is a proper subset of the other and no other vertex lies in
between these two sets with respect to set containment.

2The graph is called “interaction graph” by Majster-Cederbaum and Martens [180].

94 4 Architectures

As an example for the cooperation graph of an interaction system, we consider
again our running example SysMMS, its extended version Sys(3)MMS, and the
database example SysDB(n). The corresponding cooperation graphs of the
systems are depicted in Figures 4.5, 4.6, and 4.7 respectively. Please note that
component and cooperation graphs can be distinguished in our graphical
representation by the vertices: In the former, the vertices correspond to the
components, and in the latter, they are sets of components.

{c} {c, m} {m} {m, s} {s}

Figure 4.5: Cooperation graph of interaction system SysMMS

{c} {c, m} {m} {m, s} {s}

{m2, s}{m2}{c2, m2}{c2}

Figure 4.6: Cooperation graph of interaction system Sys(3)MMS

{d} {d, 1, 2, . . . , n}

{d, 1} {1}

{d, 2}
{2}..

.

{d, n} {n}

(a) Cooperation graph for arbitrary n

{1} {d} {2}

{d, 1} {d, 2}

{d, 1, 2}

(b) The same graph for n = 2

Figure 4.7: Cooperation graph of interaction system SysDB(n)

Observe that the graph-theoretical structure of the architecture has not changed
much for SysMMS and Sys(3)MMS, they both still have a tree-like architecture (if
we define a corresponding architectural constraint based on the cooperation
graph). However, the architecture of SysDB(n) is now more structured (if we
compare Figure 4.4 (a) with Figure 4.7 (a)), and it is striking that the vertex rep-
resenting component d is the only one that lies on a simple cycle—remember
that previously every vertex (or component respectively) lay on a simple
cycle.

As mentioned above, Majster-Cederbaum and Martens [180] required that the
cooperation graph is acyclic, and they call interaction systems satisfying this

4.2 Architectures of Interaction Systems 95

architectural constraint “tree-like”. Before we formally define an architectural
constraint on the basis of the cooperation graph, we give an example that
illustrates a tree-like interaction system as understood by Majster-Cederbaum
and Martens [180].

Example 4.5: We consider interaction system Sysbin(n) for n = 3, that was
introduced in Example 2.7 on page 32. Here, the three components 1, 2, and 3
represent the three bits of a binary counter. We construct the system’s com-
ponent graph (cf. Definition 4.1) and its cooperation graph (cf. Definition 4.4).
These graphs are depicted in Figure 4.8.

1 3

2

(a) The component graph

{1} {1, 2}

{2}

{3}

{1, 2, 3}

(b) The cooperation graph

Figure 4.8: Component and cooperation graph of interaction system Sysbin(3)

Observe that Sysbin(3)’s component graph is not acyclic and thus the interac-
tion system does not have a tree-like architecture as required by Definition 4.3.
However, its cooperation graph is acyclic and the interaction system is hence
tree-like in the sense of Majster-Cederbaum and Martens [180].

We continue with a novel architecture that is based on the cooperation graph.
As already mentioned in Chapter 1, we drop the acyclicity requirement and ad-
mit certain cycles. We define this new architectural constraint as follows.

Definition 4.6 (Disjoint Circular Wait Free Architecture): An interaction sys-
tem Sys has a disjoint circular wait free architecture if its cooperation graph
Gcoop = (V, E) is connected and if it holds that on all simple cycles in Gcoop at
most one vertex v ∈ V correspond to a singleton, i.e., |v| = 1, or is an element
of V1 respectively. The components whose vertex representation lies on such a
simple cycle are called cycle components of Sys, i.e., the components i ∈ Comp
with {i} ∈ cycle(Gcoop) (cf. Definition A.8).

Definition 4.6 can be motivated in the following way with respect to deadlock-
freedom: For ensuring freedom from deadlock, we have to consider any way
the components are able to cooperate. Clearly, the possibility of deadlocks
involving several components is reduced if circular waiting situations among

96 4 Architectures

the components are reduced. Since the components are also related in the
cooperation graph, the superimposition of potential waiting situations and the
cooperation information could allow us to exclude those waiting situations
where the reason of each single wait is completely independent from the other
ones, and hence reduce the possibility that deadlocks exist. Here, the vertices
of the graph represent all possible cooperation sets, i.e., any vertex whose size
is greater than one indicates a possible (partial) cooperation. For instance,
consider interaction system SysDB(2) and its cooperation graph depicted in
Figure 4.7 (b): If component 1 waits for component d, d waits for 2, and
2 waits for 1, the graph tells us that no cooperation situation exists that is
independent of d, i.e., we cannot find three waiting situations where the reason
of each single wait is completely independent from the other ones. As we see
in Chapter 6, the exclusion of the above mentioned waiting situations then
allows for the establishment of a condition for deadlock-freedom of the whole
system by an analysis of only small system parts.

But, let us return to the architecture of our example interaction systems.
Clearly, SysMMS and Sys(3)MMS have a disjoint circular wait free architecture
since no simple cycle is contained in the corresponding cooperation graphs
(cf. Figure 4.5 and Figure 4.6 respectively). The set of cycle components is
therefore empty for both systems. Obviously, any interaction system with a
tree-like architecture also has a disjoint circular wait free architecture. Thus,
a disjoint circular wait free architecture can be seen as a generalization of a
tree-like architecture. For the database example SysDB(n), we already men-
tioned above that component d is the only one that lies on a simple cycle (cf.
Figure 4.7 (a)). Thus, on all simple cycles in the cooperation graph at most
one vertex corresponds to a singleton and the system has a disjoint circular
wait free architecture. Note that the database example is not tree-like in the
sense of Majster-Cederbaum and Martens [180] because its cooperation graph
contains a simple cycle.

We give an additional example in order to further illustrate disjoint circular
wait free architectures.

Example 4.7: We modify our running example SysDB(n) and allow for an
additional synchronization among all clients, which yields interaction system
SysDB-Sync(n) that is depicted in Figure 4.9 on the facing page. Each client
component i is equipped with a further action synci that is employed as a self-
loop in the initial state (cf. Figure 4.9 (a) where we depicted the case wi = 1
for convenience). The additional interaction {sync1, . . . , syncn} models the
synchronization among all clients and is added to SysDB(n)’s interaction set—
which we call IntDB in Figure 4.9. The behavior of the database component d
is not modified, i.e., we use the same behavior as depicted in Figure 4.2 (a).

4.3 Determining an Interaction System’s Architecture 97

0

processi, readi, synci

1

waiti

commiti

2

re
qu

es
t i

writ
e i

(a) Behavior of component i, 1 ≤ i ≤ n

{1} {d} {2}

{d, 1} {d, 2}

{d, 1, 2}

{1, 2}

(b) Cooperation graph for n = 2

Figure 4.9: Inter. system SysDB-Sync(n) with Int =
{
{sync1, . . . , syncn}

}
∪ IntDB

Now, consider SysDB-Sync(n) with n = 2 and its cooperation graph depicted
in Figure 4.9 (b): If component 1 waits for component d, d waits for 2, and
2 waits for 1, the graph tells us that the components could be waiting in a
row such that the reason of each single wait is completely independent from
the other ones. As discussed above, such a situation is excluded by a disjoint
circular wait free architecture—which is not present in SysDB-Sync(2) because
its cooperation graph contains a simple cycle where more than one vertex
representing a component lies on (cf. Definition 4.6).

This ends our introduction of architectures for interaction systems. In the next
section, we consider how the architecture of a given interaction system can be
determined in an automatic and efficient way.

4.3 Determining an Interaction System’s Architecture

Architectural constraints are only useful if we can determine whether a given
interaction system satisfies the constraint in an efficient way, i.e., in our case
in polynomial time. If this inspection is more costly and we plan to exploit
it for property verification, it should not be the case that a direct approach
as, for instance, discussed in Chapter 2 is more efficient than the check for an
architecture.

We omit here to give algorithms for computing the component and cooperation
graphs since they can be straightforwardly implemented. For the latter one,
we give an algorithm in Appendix B (cf. Algorithm B.5) for self-containedness
because we need to refer to this algorithm in the sequel.

However, we shortly want to discuss the sizes of the two graphs with respect
to a given interaction system Sys (because we need them as input in the

98 4 Architectures

following). The size of a component graph Gcomp = (V, E) is |V| = |Comp| and
|E| ≤ (|Comp|

2) ≤ |Comp|2 because it is possible that every pair of components
cooperates. For the cooperation graph Gcoop = (V, E) with V = V1 ∪ V2 (cf.
Definition 4.4) we have: |V1| = |Comp| and |V2| ≤ (|Int|

2) ≤ |Int|2 since the
vertices in V2 are constructed by considering all pairs of interactions (and their
sets of participating components). Thus, we have |V| ∈ O(|Int|2 + |Comp|).
Since an undirected graph consists of at most (|V|2) edges, we can conclude that
|E| ∈ O(|Int|4 + |Comp|2) holds. Thus, both graphs have a polynomial number
of vertices and edges with respect to the given interaction system.

4.3.1 Checking for Star-Like and Tree-Like Architectures

Star- and tree-like architectures can be detected very efficiently. For checking
whether an architecture is star-like, we simply have to compute the union and
the intersection of all edges of the component graph. The union has to be equal
to the set of vertices and the intersection has to contain a single vertex, which
is the middle component, if there are more than two components, otherwise
the intersection can contain two components if there is one edge.

For checking whether an architecture is tree-like, we have to check whether
the component graph is connected and whether the number of edges minus
one equals the number of vertices [89, Corollary 1.5.3]. This can be carried out
in linear time by a depth-first search starting at an arbitrary vertex [76, Sec-
tion 22.3]. The central components (cf. Definition 4.3) can also be computed in
linear time if the graph is a tree in the graph-theoretical sense, cf. Section 7.2.1
of the book of Wu and Chao [264].

Summarizing, both the check for a star-like and a tree-like architecture can be
carried out in polynomial time in the number of components and interactions.
The check for a disjoint circular wait free architecture is a little bit more
involved but can still be checked efficiently as we discuss in the following
section.

4.3.2 Checking for Disjoint Circular Wait Free Architectures

In the following, we show how we can determine whether a given interaction
system has a disjoint circular wait free architecture in polynomial time in the
number of components and interactions.

Let Gcoop = (V, E) be the cooperation graph of an arbitrary interaction system
Sys. We assume that Gcoop is connected which can efficiently be determined as
discussed in the previous section—otherwise, i.e., if Gcoop is not connected, the

4.3 Determining an Interaction System’s Architecture 99

architecture cannot be disjoint circular wait free (cf. Definition 4.6). In order to
check whether Gcoop satisfies our architectural constraint of disjoint circular
wait freedom—recall that on every simple cycle in Gcoop at most one vertex v
with |v| = 1 may occur—we model this question as a network flow problem.
Such a network is usually build upon a directed graph which is similar to an
undirected graph (cf. Definition A.5) but the edges are tuples contained in
the Cartesian product of the set of vertices, i.e., for the set of edges E′ holds
E′ ⊆ V ′ ×V ′ where V ′ denotes the set of vertices. We refer the reader to the
book of Ford and Fulkerson [104, Chapter 1] or to the book of Cormen et al.
[76, Section 26.1] for a formal definition of flow networks.

Now, we define the directed graph G′ = (V ′, E′) on the basis of Gcoop with

V ′ = {vin | v ∈ V} ∪ {vout | v ∈ V}
E′ = {(vin, vout) | v ∈ V} ∪ {(vout, win), (wout, vin) | {v, w} ∈ E}

and the capacity function c : E′ →N with c(e) = 1 for all e ∈ E′.

For a pair of vertices s, t ∈ V with |s| = |t| = 1, i.e., the vertices represent
two of Sys’s components in the cooperation graph, we now consider the flow
network Ns,t = (G′, sin, tin, cs,t) where sin is the source, tin is the sink, and cs,t

is the same capacity function as c except that the capacity of the edge (sin, sout)

is increased by one, i.e., cs,t((sin, sout)) = 2.

The idea behind this flow network is that if we find a certain maximum flow
in Ns,t, we can conclude the existence of a certain simple cycle in Gcoop. This is
formalized in the following lemma.

Lemma 4.8: Let Gcoop be a cooperation graph of an interaction system Sys and
let i, j ∈ Comp be two components. There is a simple cycle in Gcoop on which
the corresponding vertices {i} = s and {j} = t lie if and only if a maximum
flow of value 2 exists in the associated flow network Ns,t = (G′, sin, tin, cs,t).

A formal proof of Lemma 4.8 can be found in Appendix F on page 250.

Lemma 4.8 offers a convenient way to determine whether a given interaction
system obeys to our architectural constraint. We proceed with our database
example to demonstrate this way. Figure 4.10 on the following page depicts
the primed version of the cooperation graph of SysDB(n) for two clients (cf.
Figure 4.7 (b) for the original graph).

In order to check for a disjoint circular wait free architecture, we now need to
consider the source-sink pairs ({d}in, {1}in), ({d}in, {2}in), and ({1}in, {2}in)

in each case in an appropriate network where the capacity between the source
and the (unique) successor vertex is set to two. Running these network flow

100 4 Architectures

{1}in{1}out {d}in {d}out {2}in {2}out

{d, 1}in {d, 1}out {d, 2}in{d, 2}out

{d, 1, 2}in {d, 1, 2}out

Figure 4.10: The transformation of the cooperation graph of the database
example SysDB(n) for n = 2 (cf. Figure 4.7 (b)) into a flow network. All edges
have the capacity of 1. For a particular check, two “in” vertices are designated
as source and sink respectively and the capacity of the edge connecting the
source with the corresponding “out” vertex is increased by one.

computations yields that our example has a disjoint circular wait free architec-
ture since we can refute the existence of any simple cycle where two vertices
representing components lie on.

Of course, not all pairs have to be considered as described above. Any com-
ponent vertex that has only one neighbor in the cooperation graph cannot
be part of a simple cycle, e.g., for SysDB(n) we do not need to compute any
network flows since all vertices representing components except the vertex
representing d have only one neighbor (cf. Figure 4.7 (a)). Thus, no appropriate
simple cycle can be found in this cooperation graph.

We summarize our findings and the procedure for an arbitrary interaction
system in the following theorem.

Theorem 4.9: Let Sys be an interaction system and let Gcoop be its cooperation
graph. Sys has a disjoint circular wait free architecture if and only if for all
unordered pairs of components i, j ∈ Comp, whose vertex representations in
Gcoop have at least two neighbors, it holds that no maximum flow of value 2
exists in the associated flow network N{i},{j}.

A formal proof of Theorem 4.9 can be found in Appendix F on page 251.

Thus, we can also apply Theorem 4.9 for interaction system SysDB(n) and con-
clude that it has a disjoint circular wait free architecture without any network
flow computation. Nevertheless, we provide a heuristic if the situation is
not as simple as for SysDB(n). In the treatment of pairs, we should start with
vertices that have many neighbors since these are more likely to be part of
simple cycles. This is helpful, since once we identified such a pair, we can

4.3 Determining an Interaction System’s Architecture 101

stop the search for any other pairs of vertices representing components and
report that the interaction system in question does not satisfy our architectural
constraint.

We analyze the costs of an application of Theorem 4.9. Here, we omit to
give an algorithm that implements this application but refer the interested
reader to Algorithm B.6 given in Appendix B. In the following, let n = |V|
denote the number of vertices of the cooperation graph Gcoop and m = |E| the
number of its edges. Since every vertex is doubled for the directed version
G′ = (V ′, E′) of Gcoop, we get |V ′| = 2n, and thus |V ′| ∈ O(n). Similarly, since
every edge is also doubled and an edge between the “in” and “out” version of
a vertex is introduced, we get |E′| = 2m+ n. Because we assumed that Gcoop is
connected, we know that m ≥ n− 1 holds. Thus, we have |E′| ∈ O(m).

Since all edges in the flow network have integral capacities, we can use the
well-known Ford–Fulkerson algorithm [103] to find a maximum flow. Its
runtime is O(M · F) where M is the number of edges in the network and F
is the value of a maximum flow, since an augmenting path can be found in
time O(M) and such a path increases the flow by at least one. A proof of this
upper bound can be found in Section 26.2 of the book of Cormen et al. [76].
Best to our knowledge, this bound is still optimal if the flow value is treated
as a parameter. We want to mention work by Karger and Levine [153] that
show how the augmenting path computation can be speeded up in case the
network is based on a sparse undirected graph. But for our application of flow
networks, we currently do not know how we can show the existence of the
two distinct paths in the proof of Lemma 4.8 in an undirected network.

Here, this yields an upper bound for a maximum flow determination of O(m)

for a particular network Ns,t because | f | ≤ 2 for any flow f in Ns,t—cf. the
proof of Lemma 4.8. Since there are maximal (|Comp|

2) unordered pairs of
vertices representing components in a cooperation graph, the total running
time is bounded by O(|Comp|2 ·m).

In order to express this bound in terms of the input size, we need to determine
the maximal number of edges that a cooperation graph can have, which we
already did above at the beginning of Section 4.3. There, we found out that
the number of edges is bounded by O(|Int|4 + |Comp|2). Thus, a rough upper
bound of the check for disjoint circular wait free architectures is O(|Comp|2 ×
|Int|4 + |Comp|4), which is polynomial in the size of the input (which is our aim
throughout the thesis). Although this bound seems very high, the cooperation
graph is much smaller in case the interaction system has a disjoint circular
wait free architecture and we have to perform a flow computation for all pairs
of components that have more than one neighbor. Otherwise, i.e., if the system
does not have a disjoint circular wait free architecture, one flow computation

102 4 Architectures

finding a flow of value two is sufficient which is reasonable if we start with
pairs of components that have many neighbors.

Finally, we take a look at how the cycle components of the architecture can be
determined (cf. Definition 4.6). We use the concept of “bridges” of a graph,
which are edges whose removal destroys the connectivity of a given connected
graph. An important observation with respect to cycles is that an edge is a
bridge if and only if it does not lie on a simple cycle (cf. [76, Chapter 22] or [89,
Section 1.4]). Thus, to get to know the cycle components, we simply need to
remove all bridges in the cooperation graph and then look for all vertices that
represent a component and still have more than one incident edge. Fortunately,
Tarjan [251] gives an algorithm for finding all bridges in time O(|V|+ |E|).
Here, we refer to Appendix B where we give an algorithm that computes the
set of cycle components in linear time (cf. Algorithm B.7).

This completes the algorithmic treatment of our architectural constraints. We
are now ready to use these constraints as requirements for interaction sys-
tems in order to exploit the additional structure, that is introduced among the
cooperations, to derive efficient verification techniques. Before we dive into
such techniques, which we postpone to the following chapters, we examine
whether an architectural constraint has an effect on the computational com-
plexity of a decision problem as mentioned in the beginning of this chapter.
We begin with our coarsest architectural constraint, viz. disjoint circular wait
free architectures.

4.4 Classifying Disjoint Circular Wait Free Architectures

In the previous sections, we learned that the determination of the architecture
of an interaction system can be carried out very efficiently. A natural question
that arises now is whether non-constrained or arbitrary interaction systems
are more powerful or more computationally complex than, e.g., systems with
a disjoint circular wait free architecture?

In this section, we provide a linear-time transformation for arbitrary interac-
tion systems that modifies the cooperations in such a way that the resulting
interaction system has a disjoint circular wait free architecture and exhibits
isomorphic behavior (up to transition relabeling, cf. Definition 2.18), i.e., the
behavior is in fact identical from a verification point of view.

The existence of such a transformation has two important consequences. On
the one hand, it shows that the class of interaction systems with a disjoint
circular wait free architecture provides a starting point for new verification

4.4 Classifying Disjoint Circular Wait Free Architectures 103

techniques since if we want to verify a property of an arbitrary interaction
system and only know ways to tackle this problem by constructing the global
state space, then we can transform the system into one with a disjoint circular
wait free architecture, and potentially, the new cooperation structure offers a
line of a attack that does not rely on constructing the global state space.

On the other hand, the transformation allows us to show that computational
complexity results for arbitrary interaction systems also hold in systems hav-
ing a disjoint circular wait free architecture. For instance, Majster-Cederbaum
and Minnameier [183] provide various complexity results for decision proce-
dures of properties of interaction systems and, as we discuss in the following,
all of them also hold for the class of systems with a disjoint circular wait free
architecture.

We proceed as follows: First, we present the transformation and show that
it can be performed in linear time and that it yields an interaction system
which has a disjoint circular wait free architecture and which has isomorphic
behavior up to transition relabeling. Second, we deal with the complexity
issues implied by this result.

4.4.1 Transforming Interaction Systems To Ensure A Disjoint Cir-
cular Wait Free Architecture

Let Sys be an arbitrary interaction system. Assume that x is a component
that is not part of Sys, i.e., x /∈ Comp and Ax ∩ Act = ∅, and that has one
action freshx, i.e., Ax = {freshx}. Further, we choose for each component i of
Sys a fresh action that we denote by freshi in each case, i.e., we require that
freshi /∈ Ai for all i ∈ Comp.

We construct an interaction system Sys′ in the following way: We set Comp′ =
Comp∪ {x}, A′i = Ai ∪ {freshi} for all components i ∈ Comp, A′x = Ax, Int′ =
{α ∪ {freshx} | α ∈ Int} ∪ {{freshx, freshi} | i ∈ Comp}, and Int′closed = {α ∪
{freshx} | α ∈ Intclosed}, i.e., we add x and its action set as a new component,
add a fresh action to the action set of every component in Comp, add x’s
action freshx to every interaction, introduce new interactions that consist of the
action freshx of the new component and the fresh action freshi of a component
i ∈ Comp in each case, and adjust the set of closed interactions. Similarly, we
take over all labeled transition systems for the behavioral model of Sys′ and
add for component x a labeled transition system that consists of one initial
state s0

x with a self-loop labeled by freshx. In particular, a new action freshi is
not employed in the local behavior [[i]] for all i ∈ Comp.

As an example for the transformation, consider interaction system SysDB-Sync(n)

104 4 Architectures

that was specified in Example 4.7 on page 96. The cooperation graph of this
system is depicted in Figure 4.9 (b) for n = 2 (cf. page 97) and shows that
SysDB-Sync(2) does not have a disjoint circular wait free architecture. If we now
apply our transformation, the cooperation graph becomes the one depicted in
Figure 4.11, which shows that the transformed system has a disjoint circular
wait free architecture.

{1, x} {d, x} {2, x}

{d, 1, x} {d, 2, x}

{d, 1, 2, x}

{1, 2, x}

{d}

{1} {x} {2}

Figure 4.11: The cooperation graph after transforming SysDB-Sync(2)

Next, we show that this result holds for all interaction systems, i.e., the trans-
formation always yields a systems with a disjoint circular wait free architecture.
In the following, we denote a transformed interaction system as the primed
version of the original one, e.g., Sys becomes Sys′.

Lemma 4.10: Let Sys be an arbitrary interaction system. Applying our trans-
formation yields an interaction system Sys′ that has a disjoint circular wait
free architecture.

A formal proof of Lemma 4.10 can be found in Appendix F on page 251.

We proceed by showing that our transformation yields isomorphic (up to
transition relabeling) global behavior (cf. Definition 2.18). Since our trans-
formation also introduces new interactions that do not occur in the original
interaction system, we have to restrict the alphabet of the global behavior of
the transformed system. We provide an argument in the proof of the following
lemma that this restriction does not affect the isomorphism.

Lemma 4.11: Let Sys be an arbitrary interaction system. Applying our trans-
formation yields an interaction system Sys′ such that the global behavior [[Sys]]
is isomorphic up to transition relabeling to [[Sys′]] if we restrict the alphabet of
[[Sys′]] to those interactions that do not merely consist of fresh actions.

A formal proof of Lemma 4.11 can be found in Appendix F on page 252.

4.4 Classifying Disjoint Circular Wait Free Architectures 105

We summarize the properties of our transformation in the following theorem
and also prove that the transformation can be performed in linear time.

Theorem 4.12: An arbitrary interaction system can be transformed in linear
time into an interaction system with a disjoint circular wait free architec-
ture such that the behavior of the new system is isomorphic up to transition
relabeling to the behavior of the original one.

A formal proof of Theorem 4.12 can be found in Appendix F on page 253.

In the next section, we discuss complexity issues that are implied by the above
result.

4.4.2 Complexity Issues

An important consequence of the existence of the transformation presented
above is that most decision problems have the same complexity for the class of
arbitrary interaction systems and the class of systems with a disjoint circular
wait free architecture. For instance, Majster-Cederbaum and Minnameier
[183] entitled their paper “Everything Is PSPACE-Complete in Interaction
Systems”, and with our transformation, we can extend their various results to
the class of interaction systems with a disjoint circular wait free architecture.
Note that also the problems of detecting deadlocks and livelocks as introduced
in Chapter 2 fall into this category.

We formalize this consequence in the following corollary where we assume
that a decision problem in question is closed under the isomorphism of Defi-
nition 2.18. For the interesting properties such as deadlock-freedom, this is
no restriction at all since those are closed under isomorphism up to transition
relabeling.

Corollary 4.13: Let a decision problem for the class of (arbitrary) interaction
systems be given that is closed under isomorphism up to transition relabel-
ing. The problem is linear-time many-to-one reducible to the same decision
problem for the class of interaction systems with a disjoint circular wait free
architecture. Thus, these problems belong to the same complexity class (if the
class is closed under linear-time many-to-one reducibility).

A formal proof of Corollary 4.13 can be found in Appendix F on page 253.

Corollary 4.13 allows us to determine the complexity of several decision
problems for interaction systems with a disjoint circular wait free architecture.
Since the complexity class PSPACE is closed under linear-time many-to-one

106 4 Architectures

reductions, we can state that, e.g., deadlock-freedom is PSPACE-complete
for interaction systems with a disjoint circular wait free architecture because
deadlock-freedom is PSPACE-complete in (arbitrary) interaction systems as
discussed in Section 2.3.1. For more decision problems in interaction systems,
we refer the reader to the work of Majster-Cederbaum and Minnameier [183]
and to Section 2.3 of this thesis.

Finally, we conclude that ‘everything’ is PSPACE-complete in interaction
systems obeying to the architectural constraint of disjoint circular wait free-
dom. In the next section, we take a similar look at the other two architectural
constraints, viz. tree- and star-like architectures.

4.5 Classifying Tree- and Star-Like Architectures

We can naturally ask whether we can also classify tree- and star-like archi-
tectures in a similar way as in the previous section. Unfortunately, a strong
classification as for interaction systems with a disjoint circular wait free ar-
chitecture is not known, i.e., we do not know whether the verification of all
reasonable properties in, say, interaction systems with a tree-like architecture
has the same computational complexity as in systems with a non-constrained
or disjoint circular wait free architecture.

However, some work has been done in this direction. Majster-Cederbaum
and Semmelrock [185] discuss a reduction from deciding whether a quantified
boolean formula is true (or not) to the question whether a certain global
state is reachable in a specially crafted interaction system that has a tree-
like architecture. Since the former problem is PSPACE-complete [108, pages
171–172], this reduction establishes the PSPACE-hardness of the reachability
question. Now, this reachability question can be used to also show that
the decision problem of deadlock detection is PSPACE-hard in interaction
system with a tree-like architecture, although this is not explicitly shown in the
cited paper. In order to prove this claim, one has to show that the presented
construction yields a deadlock-free interaction system, which can be ensured
by adding a singleton interaction containing an action that is added as a self-
loop to each state of one of the components, and then add a deadlock—which,
of course, also involves the previously modified component—that is reachable
if and only if the quantified boolean formula in question is false, i.e., the
deadlock is only present in the reachable part of the global behavior if the
formula does not hold. Then, if one can decide the deadlock-freedom of this
system, one can also decide the satisfiability of the formula. Together with the
algorithm that decides deadlock-freedom in polynomial space in interaction

4.6 Related Work 107

system (cf. Section C.1), the PSPACE-completeness of deadlock detection in
interaction systems with a tree-like architecture follows. Moreover, the authors
show that the computational complexity of the decision problem whether a
certain component is able to make progress (cf. Section 2.3.4) is PSPACE-com-
plete in interaction systems with a tree-like architecture by adjusting their
reduction for reachability that we mentioned above.

We want to point out that this illustrates the benefit of our isomorphism result
(cf. Theorem 4.12 and Corollary 4.13) for disjoint circular wait free architec-
tures, since otherwise, we have to search for reductions for each property
in question as it is currently the case for interaction systems with a tree-like
architecture. It is thus a challenging and interesting question whether a similar
isomorphism result—or a weaker one with respect to, say, bisimilarity—can
be derived for the other architectural constraints as well.

Another way of attacking this question is to identify the finest architecture and
prove complexity results for this case—where it is not clear what is considered
to be the finest architecture. Nevertheless, this idea can be justified as follows:
Clearly, a system with a star-like architecture also has a tree-like architecture
and also a disjoint circular wait free one. Thus, if the decision problem for
a certain property is, say, PSPACE-complete for interaction systems with a
star-like architecture, then this result carries over to the other architectures
because the respective classes of interaction systems are strictly included
in each other. In this direction, Majster-Cederbaum and Semmelrock [186]
show that the decision problem whether a certain global state is reachable is
PSPACE-complete in interaction systems with a star-like architecture, which
then also shows (or supports) the corresponding decision problems for the
other architectures. However, one still has to find suitable reductions for each
property in question.

Here, we do not further address these complexity issues because we want to
continue with the exploitation of architectural constraints to derive efficient
verification techniques. But before that, we take a look at related work on
architectures.

4.6 Related Work

We already mentioned above that several authors defined architectural con-
straints with respect to their formalisms similarly to our component graph
(cf. Definition 4.1), e.g., acyclic topologies in the semantic model of Java/A by
Hennicker et al. [137], acyclic architectural types in the architecture description
language PADL by Bernardo et al. [39], or tree networks in the context of the

108 4 Architectures

process algebra CSP by Brookes and Roscoe [49]. For interaction systems, we
already discussed the tree-like interaction systems of Majster-Cederbaum and
Martens [179, 180].

As mentioned in Chapter 1, the importance of the modularity and structure
of software systems was already emphasized by Dijkstra [91], Brooks and
Iverson [52], and Parnas [223] in the 1970s. Some of these ideas are similar
to our interpretation of architecture, for instance, Brooks and Iverson [52]
consider the notion of architecture as the “conceptual structure of a computer
. . . as seen by the programmer.” The work on software architectures as de-
sign patterns for structured software development such as the concept of
architectural styles in architecture description languages [3, 6, 110, 242] go
beyond our interpretation but have the same foundation on a certain level
of abstraction. For instance, Garlan and Shaw [110, Section 3] write that a
common framework to view architectural styles graphically leads to “a view
of an abstract architectural description as a graph in which the nodes represent
the components and the arcs represent the connectors” which is similar to
our component graph. But, these styles go beyond stipulating topological
constraints, such as being acyclic, on a system’s architecture, e.g., they also
allow for assigning roles to the component. As an example, in the blackboard
architectural style [110, Section 3.5] a central component has the task to col-
lect knowledge from computing entities called knowledge sources that do
not interact directly. While this corresponds to a star-like architecture in our
setting, this style also requires that the blackboard triggers the computing
entities if new data is collected, i.e., it can be clearly distinguished from a
traditional database. Here, the architectural style also assigns special roles to
the components which we did not address in our treatment of the architecture
of interaction systems.

Thus, software architecture can embrace more than the cooperation structure.
We conclude with the definition of software architecture by Bass et al. [28,
Chapter 3] who write: “The software architecture of a program or computing
system is the structure or structures of the system, which comprise software
elements, the externally visible properties of those elements, and the relation-
ships among them.” This definition is at the level of our interaction system, i.e.,
it also includes the components which are called software elements. However,
if we consider interaction systems together with the architectural constraints
of this chapter, we have a formal model for software architectures that is in
line with this definition.

This ends our discussion of architectures for interaction systems. In the
next section, we summarize the chapter and address some ideas for future
work.

4.7 Summary and Future Work 109

4.7 Summary and Future Work

In this chapter, we introduced the concept of architectures for interaction
systems by means of architectural constraints. We showed that detecting
whether a certain constraint holds for a given interaction system can be carried
out efficiently, i.e., we can use the detection algorithms as a pre-processing
step in the following without loosing our goal of polynomial-time approaches.
Moreover, we learned that restricting interaction systems to satisfy one of
our constraints does not affect the computational complexity of property
verification, in particular for the property of deadlock-freedom. However, as
we see in the following chapters, the architectural constraints offer lines of
attacking these hard problems by means of sufficient conditions that imply the
property under additional assumptions that can be checked efficiently.

We already pointed out some directions for future work, e.g., the classification
of star- and tree-like architectures should be more researched on: Maybe there
is a way of transforming an arbitrary interaction system into one with a tree-
like architecture in a behavior preserving way. We can also extend the idea
of a disjoint circular wait free architecture: Currently, we require that on each
simple cycle at most one component vertex occurs. This could be extended
to a notion of k-disjoint circular wait freedom such that we allow for up to k
component vertices to be present on simple cycles. Then, we can potentially
exploit this situation by only needing to analyze the global behavior of sets of
components of size k.

Furthermore, we can extend our composition operator of Chapter 3 to be
sensitive for architectures. For instance, if we have two interaction systems
with a tree-like architecture and require that their composition with respect
to a given composition information also has a tree-like architecture, special
composition rules could establish this property in a convenient way, i.e.,
without constructing the component graph of the composite interaction system.
Such rules could, e.g., restrict the composition information by only allowing
new interactions that are compliant to the architectural constraint.

In the next chapter, we consider how we can use the structure implied by
architectural constraints for efficient property verification in interaction sys-
tems.

111

Chapter 5

Compositional Reduction

In the previous chapter, we introduced architectural constraints for interaction
systems, viz. star-like, tree-like, and disjoint circular wait free architectures.
However, we also learned that these architectural constraints do not affect
the computational complexity of property verification in general (although
their presence can be checked in polynomial time), e.g., only requiring that
an interaction system has a tree-like architecture does not help to show its
deadlock-freedom efficiently without additional assumptions, because decid-
ing whether an interaction system is deadlock-free is PSPACE-complete for
both, interaction systems with a tree-like architecture and non-constrained
interaction systems (cf. Section 4.5).

In this chapter, we consider such additional assumptions. Here, we do not
focus on a certain property, instead we are interested in—as the title of this
chapter already reveals—compositional reduction. The idea can be summa-
rized as follows: We want to identify certain components in a given interaction
system that we can safely ignore in future verification steps because they nei-
ther affect the global behavior of the system, nor do they alter the validity
of system properties in question, i.e., they are non-interfering for the given
interaction system. In order to identify such components, we require that
the interaction systems satisfies one of our architectural constraints and that
certain equivalences between the behavior of certain system parts, which are
accessible with our subsystem construction operator, hold. In Chapter 2, we
chose branching bisimilarity with explicit divergence as our “working” equiv-
alence for interaction systems (cf. Definition 2.15) and thus any equivalence of
this chapter is also of this type.

We proceed with a discussion of our running example SysMMS, the merchan-
dise management system, in order to illustrate the main idea for such a reduc-
tion approach.

112 5 Compositional Reduction

0 1

τ

τ

2
{reservem}

3τ

4 τ{deliverm}

5

τ

τ{releasem}

Figure 5.1: Global behavior of interaction system SysMMS[{m, c}] \\ Îm,c

5.1 The Idea behind Compositional Reduction

Consider again our running example SysMMS and suppose we want to reduce
the system by exploiting equivalences to identify non-interfering components
as mentioned above. The reduction should ensure that if a property (such
as deadlock-freedom) holds in the reduced version, then it also holds in the
original system. We showed in the previous chapter that the architecture
of SysMMS is star-like (cf. Definition 4.2 and Figure 4.3 (a)), i.e., we have the
management component as the middle component and the customer and
storage component as two border components.

A first idea to identify non-interfering components is to check whether the joint
behavior—that can be obtained via subsystem construction—of the middle
component and a border component affects the behavior of the middle compo-
nent, i.e., we want to check whether the border component is non-interfering
and can be ignored. Of course, we have to abstract from the cooperation of the
middle and the border component since in the system that consists only of the
middle component, no such cooperation can be observed—simply because
the cooperation partner is not part of this system.

Regarding our running example, we thus build the two interaction systems
SysMMS[{m, c}] \\ Îm,c and SysMMS[{m}] \\ Îm,c where the set Îm,c contains all
interactions that are used for cooperation of m and c and all actions of m that
are used in such an interaction as singletons, i.e., we have:

Îm,c :=
(
Int[{m, c}] \ Int[{m}]

)
∪
{

α ∈ Int[{m}] | ∃ β ∈ Int[{m, c}] : α ⊂ β
}

=
{
{abortc, cancelm}, {askc, orderm}, {buyc, paym}, {refundc, reimbursem},
{cancelm}, {orderm}, {paym}, {reimbursem}

}
.

5.1 The Idea behind Compositional Reduction 113

0

1

τ

τ

2
{reservem}

3
τ

4 τ{deliverm}

5

τ

τ{releasem}

6

τ

τ, {deliverm}
{reservem}

Figure 5.2: Global behavior of interaction system SysMMS[{m}] \\ Îm,c

The global behaviors of the two systems are depicted in Figure 5.1 and Fig-
ure 5.2 respectively. If we now want to get rid of the border component rep-
resenting the customer in a property preserving way, we can check whether
these two systems are equivalent, i.e., whether

SysMMS[{m, c}] \\ Îm,c
?≈∆

b SysMMS[{m}] \\ Îm,c

holds. Note that if this equivalence holds, any property that is preserved by
branching bisimilarity with explicit divergence and that holds in the system
of the left-hand side also holds in the system of the right-hand side, i.e., the
customer component does not influence the “interesting” behavior of the
management component.

But, from the comparison of the labeled transition system in the figures, we al-
ready see that this is not the case because we cannot find an equivalent state for
the sixth state of [[SysMMS[{m}] \\ Îm,c]] (cf. Figure 5.2). To put it differently, the
global behavior of the interaction system that consists of only the management
component satisfies the CTL*–X formula Φ = E(¬{reservem}U {deliverm}), i.e.,
[[SysMMS[{m}] \\ Îm,c]] |= Φ, but the other system that consists of the manage-
ment and the customer component does not, i.e., [[SysMMS[{m, c}] \\ Îm,c]] 6|= Φ.
Note that we found a CTL*–X formula that separates the systems and accord-
ing to De Nicola and Vaandrager [85], they thus cannot be divergence sensitive
branching bisimilar which implies that they are also not branching bisimilar
with explicit divergence (cf. Section 2.4), i.e., we have

SysMMS[{m, c}] \\ Îm,c 6≈∆
b SysMMS[{m}] \\ Îm,c.

Thus for our running example, the first idea does not yield a reduction of the
system. But, let us examine why the idea failed. We learned above that the
customer component influences the observable behavior of the management

114 5 Compositional Reduction

0 1

τ

τ

2
{reservem, marks}

3τ

4 τ{deliverm, ships}

5

τ

τ{releasem, unmarks}

Figure 5.3: Global behavior of interaction system SysMMS[{m, c, s}] \\ Îm,c

component (in their joint behavior) such that it is unable to offer its deliver
action before offering its reserve action. Interestingly, this restriction is not
a restriction at all when we take a look at the cooperation partner for these
actions: the storage component indeed requires that its mark action is used
before it offers its ship action (cf. Figure 2.4 (b)). Since the corresponding
interactions are exactly {deliverm, ships} and {reservem, marks}, we can try to
further exploit this situation by checking whether the customer component
has an influence on the cooperation of the management component and the
storage component.

Here, we combine the above constructed systems SysMMS[{m, c}] \\ Îm,c and
SysMMS[{m}] \\ Îm,c with the storage component via our composition operator
and re-check their equivalence, i.e., we check whether

SysMMS[{m, c}] \\ Îm,c ⊗
Im,s

SysMMS[{s}]
?≈∆

b SysMMS[{m}] \\ Îm,c ⊗
Im,s

SysMMS[{s}]

holds where Im,s = (I+m,s, I−m,s) is the composition information between the
management and the storage component with

I+m,s :=
{

α ∈ Int[{m, s}] | {m, s} ⊆ compset(α)
}

=
{
{deliverm, ships}, {releasem, unmarks}, {reservem, marks}

}
and

I−m,s :=
{

α ∈ Int[{m}] ∪ Int[{s}] | α /∈ Int[{m, s}]
}

=
{
{deliverm}, {marks}, {releasem}, {reservem}, {ships}, {unmarks}

}
.

Observe that the sets I+m,s and I−m,s are defined as the sets I+C1,C2
and I−C1,C2

respectively for C1 = {m} and C2 = {s} of Proposition 3.21. We can thus
apply this proposition—since the sets of closed interactions of the two systems

5.1 The Idea behind Compositional Reduction 115

0

1

τ

τ

2
{reservem, marks}

3
τ

4 τ{deliverm, ships}

5

τ

τ{releasem, unmarks}

6

τ

τ

{reservem, marks}

Figure 5.4: Global behavior of interaction system SysMMS[{m, s}] \\ Îm,c

are equal—and check whether the equivalence

SysMMS[{m, c, s}] \\ Îm,c
?≈∆

b SysMMS[{m, s}] \\ Îm,c

holds, which is equal to the check where we use the composition operator.
The global behaviors of the two systems are depicted in Figure 5.3 and Fig-
ure 5.4 respectively. Observe that in the sixth state of [[SysMMS[{m, s}] \\ Îm,c]],
the management component is unable to execute its deliver action since its
cooperation partner, viz. the storage component, does not offer the corre-
sponding ship action, i.e., the interaction {deliverm, ships} is not enabled in this
state—which was the reason why our first idea failed.

Now, these systems are branching bisimilar with explicit divergence, which is
established by the following equivalence relation (cf. Definition 2.15):

R = {(r0, t0), (r1, t1), (r2, t2), (r3, t3), (r4, t4), (r5, t5), (r1, t6)}↔

where r denotes the states of [[SysMMS[{m, c, s}] \\ Îm,c]] (cf. Figure 5.3) and t of
[[SysMMS[{m, s}] \\ Îm,c]] (cf. Figure 5.4), i.e., we have

SysMMS[{m, c, s}] \\ Îm,c ≈∆
b SysMMS[{m, s}] \\ Îm,c.

Note that this behavioral equivalence can be understood as a reduction of the
system, since for any property regarding SysMMS \\ Îm,c we can now answer the
validity question by looking at SysMMS[{m, s}] \\ Îm,c as long as the property is
preserved by branching bisimilarity with explicit divergence, e.g., all CTL*–X
formulae.

For instance, if we want to ensure that the management component does not
execute its deliver action before its reserve action (as corresponding interac-

116 5 Compositional Reduction

tions seen from an initial state), we can verify the CTL*–X property

Ψ = A(F {deliverm, ships} ⇒ ¬{deliverm, ships}U {reservem, marks})

in the system SysMMS[{m, s}] \\ Îm,c. Since [[SysMMS[{m, s}] \\ Îm,c]] |= Ψ holds,
we can conclude that also [[SysMMS \\ Îm,c]] |= Ψ holds.

Of course, we have to admit that by checking the equivalence that leads to the
reduction, we computed the global behavior of our running example since
SysMMS = SysMMS[{m, c, s}] (cf. Proposition 3.20). As mentioned throughout
this thesis, this computational should be avoided if we aim for efficient verifi-
cation algorithms. But, as we elaborate in this chapter, we use this idea, viz.
to check whether a border component influences the behavior of the middle
component with respect to any other border component, to establish a compo-
sitional reduction technique that can be applied efficiently, i.e., we restrict the
equivalence checks to systems consisting of at most three components.

Furthermore, we also have to admit that we silently assumed that for all ac-
tions of the middle component it holds that they are only used for cooperating
with one border component, i.e., all actions are used exclusively with respect to
one cooperation partner. This assumption is satisfied by our running example
but before we generalize the approach sketched above, we define this special
property, which we call exclusive communication, in the next section.

5.2 Exclusive Communication

As mentioned in the previous section, the partition of the set of actions of a
component with respect to its cooperation partners is a feature that allows for
compositional reduction, i.e., the actions of the middle component that are
used for cooperation with a certain border component can only be abstracted
if such an action is not used for cooperation with other border components. In
other words, every action of every component is only contained in interactions
where exactly the same set of components participates in.

Regarding interaction systems, such a property was introduced by Majster-
Cederbaum and Martens [179] and called “exclusive communication”. Their
definition is dependent on the architecture of the system, viz. a tree-like one,
but this dependence is not really needed and therefore, we re-define their
notion in an architecture-independent way as follows.

Definition 5.1 (Exclusive Communication): Let Sys be an interaction system.
Sys is said to have exclusive communication if for all α, β ∈ Int with α ∩ β 6= ∅
we have compset(α) = compset(β).

5.2 Exclusive Communication 117

Note that Majster-Cederbaum and Martens [180] also changed their version in
an architecture-independent variant, but strengthened the requirement such
that every action of every component is only used in exactly one interaction.
This variant is called “strongly exclusive communication” and defined as
follows.

Definition 5.2 (Strongly Exclusive Communication): Let Sys be an interac-
tion system. Sys is said to have strongly exclusive communication if for all
α, β ∈ Int with α 6= β we have α ∩ β = ∅.

As we already mentioned in the previous section, the running example interac-
tion system SysMMS has exclusive communication and since all actions occur in
exactly one interaction, the system also has strongly exclusive communication.
Next, we illustrate the difference between these two notions of exclusiveness
by an example.

Example 5.3: Consider an interaction system Sys consisting of three compo-
nents, i.e., Comp = {1, 2, 3}, each with an arbitrary local behavior, and the
following action sets: A1 = {a1}, A2 = {a2, b2}, and A3 = {a3}. We now
consider six different interaction models for this system where the interaction
sets are given in Table 5.1 and the set of closed interactions is empty in each
case.

No. Interaction Set Int Excl. Comm. Strongly Excl. Comm.

1
{
{a1, a2}, {a1, a3}, {b2}

}
no no

2
{
{a1, a2}, {a1}, {b2, a3}

}
no no

3
{
{a1, a2, a3}, {a1, b2, a3}

}
yes no

4
{
{a1, a2}, {a1, b2}, {a3}

}
yes no

5
{
{a1, a2}, {b2, a3}

}
yes yes

6
{
{a1}, {a2}, {b2}, {a3}

}
yes yes

Table 5.1: Demonstrating exclusive communication: The six different sets of
interactions show different cooperation scenarios of the three components.

First, note that each interaction model is valid with respect to Definition 2.3.
For each model, we have determined whether the respective system satisfies
exclusive communication and/or the strong variant. If a system does not
satisfy one of the notions, i.e., there is a “no” in the corresponding cell of
the table, the first two interactions can be set as the interactions α and β of
Definitions 5.1 and 5.2 respectively.

118 5 Compositional Reduction

From Example 5.3, we already see that if we have strongly exclusive communi-
cation, we also have exclusive communication. Of course, this directly follows
from the definition, but we nevertheless fix this observation as the following
proposition.

Proposition 5.4: Let Sys be an interaction system. If Sys has strongly exclusive
communication, then Sys also has exclusive communication.

A formal proof of Proposition 5.4 can be found in Appendix F on page 254.

Next, we deal with the issue of absence of exclusive communication.

5.2.1 Ensuring Exclusive Communication

Example 5.3 shows that interaction systems exist that do not satisfy exclusive
communication initially. It is thus an interesting question how we can en-
sure this property for arbitrary interaction systems. Majster-Cederbaum and
Martens [179, 180] illustrate such techniques for their variants of exclusive
and strongly exclusive communication.

Since the variant of (non-strongly) exclusive communication is defined in an
architecture dependent way, i.e., Definition 5.1 does not occur in the literature,
we here elaborate on the technique to ensure exclusive communication as
required by Definition 5.1.

The main idea to ensure exclusive communication of an interaction system is
to replace all actions in a certain interaction by actions that are superscripted
with the set of components that participate in the interaction (similar to the
technique presented by Majster-Cederbaum and Martens [179]). Addition-
ally, all transitions where those actions occur must be modified in the local
behavior of the components. In the following, we refer to such an algorithm
as EXCLUSIVE(Sys) for a given interaction system Sys. A pseudocode imple-
mentation can be found in Appendix B as Algorithm B.8 which shows that we
can ensure the property in polynomial time.

Next, we show that the result of the algorithm is indeed an interaction system
with exclusive communication.

Lemma 5.5: Let Sys be an interaction system. Applying Algorithm B.8 yields
an interaction system EXCLUSIVE(Sys) that has exclusive communication.

A formal proof of Lemma 5.5 can be found in Appendix F on page 254.

For the same reasons as the transformation presented in Section 4.4.1, the

5.3 Exploiting Equivalences in Interaction Systems 119

transformation induced by an application of Algorithm B.8 is only useful if
properties of the original system are preserved. The following lemma deals
with this issue.

Lemma 5.6: Let Sys be an interaction system. Applying Algorithm B.8 yields
an interaction system EXCLUSIVE(Sys) such that the global behavior [[Sys]] is
isomorphic up to transition relabeling to [[EXCLUSIVE(Sys)]].

A formal proof of Lemma 5.6 can be found in Appendix F on page 255.

For strongly exclusive communication, a similar idea can be used to ensure this
property: Instead of superscripting each action with the set of components, we
simply use an unique interaction identifier, e.g., each action a ∈ α becomes aα

in line 10 of Algorithm B.8. This idea was introduced by Majster-Cederbaum
and Martens [180] where a detailed proof and a lemma that can be used to
derive a similar isomorphism result as Lemma 5.6 was later given by Martens
[190, Lemma 3.2.1]. Note that Majster-Cederbaum and Martens [179, 180]
and Martens [190] derive only results for reachability of certain states and for
deadlock-freedom, but our proof of isomorphism can be applied with a few
adjustments in all cases as well (in fact, the authors use a similar lemma in all
cases but did not address property preserving isomorphisms).

Thus, we can now assume that an interaction system has exclusive communi-
cation without loss of generality since otherwise, we can apply Algorithm B.8
to ensure this property in polynomial time in the size of the input.

5.3 Exploiting Equivalences in Interaction Systems

In this section, we want to generalize the idea for reducing interaction system
as introduced in Section 5.1. We start with the situation as given by our
running example: An interaction system with a star-like architecture which
has exclusive communication. Note that this situation was researched on in
our work [160]. Afterwards, we take a look at other architectures.

5.3.1 Star-Like Architectures with Exclusive Communication

We summarize the idea behind a generalization of the reduction approach
presented in Section 5.1: Consider an interaction system with a star-like ar-
chitecture, i.e., a middle component m is surrounded by border components
b1, . . . , bn for an n ∈N, that has exclusive communication. If border compo-
nent b1 does influence the behavior of m but this influence is not important

120 5 Compositional Reduction

for border component b2, i.e., b2 serves as a witness of the harmlessness of
this influence with respect to the global behavior of the system, then we can
safely ignore b1 if we abstract from the cooperation of m and b1 (which does
not affect any other component because we have exclusive communication).
In the same vein, if now border component b2 influences m but again we
find a witness, say b3, we can further reduce the system by ignoring b2 and
abstracting from the cooperation between m and b2. Now, if we can proceed
this way, we finally arrive at the situation where only the middle component
m and border component bn are left and any cooperation between m and
other border components is abstracted away. Thus, we can conclude that the
behavior of the resulting system is equivalent to the global behavior of the
original system (with the same abstractions applied). The important point is
that we can derive this equivalence without computing the global behavior
of the original system, and since we only computed the equivalence of small
systems on the way, this approach is very efficient.

We formalize this idea in the following theorem. There, we introduce a special
function that serves as an oracle for the order of the border components
that we called b1, . . . , bn above. After the proof of the theorem and a further
example, we discuss how such an order can be obtained. But for the theorem,
we assume that it is already known. We also give the proof at this point (and
do not refer to an appendix) because it illustrates an application of the results
from Chapter 3.

Theorem 5.7: Let Sys be an interaction system with a star-like architecture,
exclusive communication, and at least three components, i.e., |Comp| ≥ 3. Let
an arbitrary numbering of the components be given, i.e., a bijective function
f : Comp → {1, . . . , n} is given with n = |Comp|. Let number 1 denote the
middle component, viz. f−1(1), of the star-like architecture. For convenience,
we identify a component with respect to its unique number in the following.
If for all i with 2 ≤ i < n it holds that

Sys[{1, i, i + 1}] \\ Î1,i ≈∆
b Sys[{1, i + 1}] \\ Î1,i

with Î1,i :=
(
Int[{1, i}] \ Int[{1}]

)
∪
{

α ∈ Int[{1}] | ∃ β ∈ Int[{1, i}] : α ⊂ β
}

,

Sys \\ Î ≈∆
b Sys[{1, n}] \\ Î

holds with Î :=
⋃

i∈{2,...,n−1} Î1,i.

Proof of Theorem 5.7: Assume that the premise of the theorem holds. We
show Sys \\ Î = Sys[{1, . . . , n}] \\ Î ≈∆

b Sys[{1, n}] \\ Î by an inductive argu-
ment over the components. The first equality follows from Proposition 3.20.
For n = 3 holds Sys[{1, 2, 3}] \\ Î1,2 ≈∆

b Sys[{1, 3}] \\ Î1,2—because of the
premise—and since Î1,2 = Î for n = 3 and branching bisimilarity with explicit

5.3 Exploiting Equivalences in Interaction Systems 121

divergence is a congruence with respect to closing (cf. Proposition 3.17), the
claim follows. Now, for all components i with 2 ≤ i < n holds:

Sys[{1, i, . . . , n}] \\ Î ≈∆
b Sys[{1, i + 1, . . . , n}] \\ Î

because (the used proposition is listed in parentheses at the end of each line):

Sys[{1, i, . . . , n}] \\ Î

=
(

Sys[{1, i, i + 1}] ⊗
I{1,i,i+1},{i+2,...,n}

Sys[{i + 2, . . . , n}]
)
\\ Î ∪ Intclosed︸ ︷︷ ︸

Î′

(3.21)

=
(

Sys[{1, i, i + 1}] ⊗
I{1,i+1},{i+2,...,n}

Sys[{i + 2, . . . , n}]
)
\\ Î′ (3.23)

=
(

Sys[{1, i, i + 1}] \\ Î1,i ⊗
I{1,i+1},{i+2,...,n}

Sys[{i + 2, . . . , n}]
)
\\ Î′ (3.15)

≈∆
b

(
Sys[{1, i + 1}] \\ Î1,i ⊗

I{1,i+1},{i+2,...,n}
Sys[{i + 2, . . . , n}]

)
\\ Î′ (premise)

=
(

Sys[{1, i + 1}] ⊗
I{1,i+1},{i+2,...,n}

Sys[{i + 2, . . . , n}]
)
\\ Î ∪ Intclosed (3.15)

= Sys[{1, i + 1, . . . , n}] \\ Î (3.21)

Thus, the argument shows that the theorem holds for all components. Note
that when we applied the premise in the reasoning above, we also used
Propositions 3.12 and 3.17. In the last step, we can drop the set Intclosed from the
closing operator because all interactions of Int[{1}] that are a subset of a closed
interaction of the whole system Sys are also contained in Î or Intclosed[{1, i +
1, . . . , n}] respectively. This is ensured by the exclusive communication of the
system. �

We illustrate the application of Theorem 5.7 by means of the following exam-
ple.

Example 5.8: We consider a traffic light system. The system consists of three
bulb controllers which can be turned on and off and which relay this request
to connected electric bulbs or LED grids in the colors red, yellow, and green.
The bulb controllers are operated by a traffic light controller that organizes
the (four-state) order of light combinations or traffic signals, i.e., signal red
for stopping of the traffic, then red and yellow for informing the drivers to
start their engines, then green for driving, and then yellow for signaling that
the drivers have to stop shortly. Here, a clock is used to initiate the change of
each signal, i.e., the clock sends a trigger after waiting a sequence of internal
ticks. Furthermore, the traffic light controller is designed to output the current
traffic signal and to ensure that when the system is switched on, the red signal
is the first one and all other bulb controllers are turned off.

122 5 Compositional Reduction

We model this description as an interaction system Sys where each controller
corresponds to a component of the system. We omit the modeling of electric
bulbs or LED grids and only model the controllers which we simply call bulbs
in the following. Thus, we have:

Comp = {l, clk, 1, 2, 3} —for traffic light, clock, and bulbs 1, 2, and 3,

Al = {signal redl , signal redyellowl , signal greenl , signal yellowl , waitl ,

red onl , red offl , yellow onl , yellow offl , green onl , green offl},
Aclk = {tickclk, triggerclk}, and

Ai = {oni, offi, poweroni, poweroffi} for 1 ≤ i ≤ 3.

Next, we have to specify the interaction model, which is illustrated in Fig-
ure 5.5: Bulb 1 corresponds to the red one, 2 to the yellow, and 3 to the green.

red onl red offl

green onl green offl

yellow onl

yellow offl

waitl
signal redl
signal redyellowl
signal greenl
signal yellowl

on1 off1

power on1 power off1

on2

off2

power on2

power off2

on3 off3

power on3 power off3

triggerclk

tickclk

l

1

2

3

clk

Figure 5.5: Interaction model of the traffic light example

Thus, we have the following interactions:

Int =
{
{signal redl}, {signal redyellowl}, {signal greenl}, {signal yellowl},
{waitl , triggerclk}, {red onl , on1}, {red offl , off1}, {yellow onl , on2},
{yellow offl , off2}, {green onl , on3}, {green offl , off3}, {tickclk}

}
∪
{
{poweroni}, {poweroffi} | 1 ≤ i ≤ 3

}
and

Intclosed =
{
{tickclk}

}
.

Please note that we model the ticks of the clock as closed interactions since
these are usually internal.

5.3 Exploiting Equivalences in Interaction Systems 123

The behavior of the bulb components is given by the labeled transition system
depicted in Figure 5.6 (a) and the behavior of the clock component by the one
in Figure 5.6 (b). Here, we simplify the clock component such that it only waits
for one tick before offering the next trigger.

0

1

oni

2power oni

3

offi
power offi

(a) Behavior of the bulb comp. i, 1 ≤ i ≤ 3

0 1

tickclk

triggerclk

(b) Behavior of the clock component clk

Figure 5.6: Behavior of the bulb (a) and the clock component (b)

More complex is the behavior of the traffic light component which is depicted
in Figure 5.7 on the following page. Every horizontal layer of the labeled
transition system corresponds to a sequence of operations that enable the next
traffic signal, which is output by the connection of theses layers (the signal
actions). The system is able to turn the green signal off initially (and also other
non-initial signals) as requested by the specification.

Observe that the interaction system is now completely specified (with respect
to Definition 2.5).

We now apply Theorem 5.7 to this interaction system, i.e., we want to verify
properties such as deadlock-freedom of the system but avoid to construct
the global behavior. First, we need to check the assumptions of the theorem.
Observe that Sys has exclusive communication, which can easily be concluded
from the interaction model depicted in Figure 5.5 because no action is used
in interactions with different sets of participating components. We also have
|Comp| ≥ 3, i.e., at least three components are part of Sys. Next, we have to
check the architecture of the interaction system. We compute the component
graph (cf. Definition 4.1) which is depicted in Figure 5.8 on the following page.

Since it is a star in the graph-theoretical sense, we conclude that Sys has a
star-like architecture (cf. Definition 4.2) where component l is the middle
component and components 1, 2, 3, and clk are the border components. Thus,
the assumptions of the theorem are satisfied and we can now take a look at
the equivalences.

We assume that the following function f : Comp → {1, 2, 3, 4, 5} is given:
f (l) = 1, f (3) = 2, f (2) = 3, f (1) = 4, and f (clk) = 5.

We check for all i with 2 ≤ i < 5 whether (where Î′i = Î f−1(1), f−1(i))

Sys[{ f−1(1), f−1(i), f−1(i + 1)}] \\ Î′i ≈∆
b Sys[{ f−1(1), f−1(i + 1)}] \\ Î′i

124 5 Compositional Reduction

0
red onl 1

signal redl

2
waitl 3

yellow onl
4

signal redyellowl

5
waitl 6

red offl
7

yellow offl
8

green onl
9

signal greenl

10
waitl 11

green offl
12

yellow onl
13

signal yellowl

14
waitl 15

yellow offl

gr
ee

n
of

f l red on
l

16
yellow offl

red
on l

17
red offl

red onl 18

Figure 5.7: Behavior of the traffic light component l

2 l clk

3

1

Figure 5.8: Component graph of the traffic light example

holds where the parameter of the closing operator is defined as in Theorem 5.7.
Here, we check whether the light component together with the green bulb
component influences the observable behavior of the light and yellow bulb
components, then wether this is the case for the light and yellow bulb compo-
nents with respect to the red bulb component, and finally wether the light and
red bulb component influence the observable behavior of the light and clock
component. We omit to depict the single systems and to give the equivalence
relations. But, all equivalences specified in the equation above hold.

5.3 Exploiting Equivalences in Interaction Systems 125

We can thus conclude that

Sys \\ Î ≈∆
b Sys[{l, clk}] \\ Î

holds where Î, as defined in the theorem, closes all interactions between the
omitted components and the light component.

We want to determine the savings that this reduction allows for. The reachable
global behavior of Sys consists of 256 states and 672 transitions. If we now
compute the behavior of Sys[{l, clk}] \\ Î, we see that this system only consists
of 38 states and 59 transitions, i.e., the system is much smaller. However,
we can further reduce the system. We compute the quotient of the labeled
transition system representing the reachable global behavior, i.e., we have:

[[Sys[{l, clk}] \\ Î]] ≈∆
b [[Sys[{l, clk}] \\ Î]]≈∆

b
.

The resulting system consists of only 8 states and 8 transitions and is depicted
in Figure 5.9.

0
{signal redl}

1
{waitl , triggerclk}

2
{signal redyellowl}

3

{waitl , triggerclk}

4
{signal greenl}

5
{waitl , triggerclk}

6
{signal yellowl}

{waitl , triggerclk}

7

Figure 5.9: The labeled transition system [[Sys[{l, clk}] \\ Î]]≈∆
b

Since the labeled transition system [[Sys[{l, clk}] \\ Î]]≈∆
b

contains no state with-
out outgoing transitions, we can conclude that the interaction system Sys \\ Î is
deadlock-free and also that Sys is deadlock-free since deadlocks are preserved
by closing.

This ends the discussion of the example.

An important assumption of Theorem 5.7 is that the components can be
ordered as stated in the lemma. Since such an order is not automatically
given, we overcome this problem by demanding that certain equivalences
hold for all border components of the star-like architecture, i.e., an order of the
components is not needed previously. We formalize this idea in the following
corollary.

Corollary 5.9: Let Sys be an interaction system with a star-like architecture
and exclusive communication. Let m denote the middle component and k an
arbitrary border component. If for all distinct pairs of border components

126 5 Compositional Reduction

i, j ∈ Comp \ {m} holds

Sys[{m, i, j}] \\ Îm,i ≈∆
b Sys[{m, j}] \\ Îm,i

where Îm,i :=
(
Int[{m, i}] \ Int[{m}]

)
∪
{

α ∈ Int[{m}] | ∃ β ∈ Int[{m, i}] : α ⊂
β
}

, then it holds with Î :=
⋃

i∈Comp\{m,k} Îm,i that

Sys \\ Î ≈∆
b Sys[{m, k}] \\ Î.

A formal proof of Corollary 5.9 can be found in Appendix F on page 256.

We repeat our intuitive argument for this corollary: The composition of an
arbitrary border component i with the middle component m does not interfere
the composition of m with any other border component j. This compositional
invariant exploits the branching bisimilarity (with explicit divergence) of the
composed subsystems, i.e., the non-interference is modeled by equivalent
behavior. If this invariant holds for all pairs of components i, j and component
m, the behavior of the whole system is already modeled (up to branching
bisimilarity with explicit divergence) by the middle component composed
with one of the border components.

Here, we do not give a detailed algorithm that implements the approach
of Corollary 5.9 because we just have to check whether the architecture is
star-like and determine the middle and border components (cf. Section 4.3.1).
Afterwards, we need to loop through the set of border components and build
the respective subsystems (cf. Definition 3.18) and check their branching
bisimilarity with explicit divergence (cf. Section E.5). The sets Îm,i of closed
interactions can clearly be computed in linear time by computing the set
Int[{m, i}] \ Int[{m}] and looping through the sets Int[{m}] and Int[{m, i}] in
each case which are already available from the subsystem construction.

However, we are interested in the computational costs of the application of
Corollary 5.9. With the algorithm of Groote and Vaandrager [130], we can
establish whether two labeled transition systems are branching bisimilar (with
explicit divergence) in time proportional to the product of the number of states
and the number of transitions in both systems (cf. Appendix E). If Smax denotes
the largest local state space, i.e., |Smax| = max{|Si| | i ∈ Comp}, we know
that the subsystems can be determined in O(|Smax|3 · |Int|) time. The number
of states of the resulting global behaviors of these subsystems is bounded
by O(|Smax|3) whereas the size of the largest possible family of transition
relations is bounded by O(|Smax|3 · |Int| · |Smax|3). Thus, each computation
of the subsystems and the branching bisimilarity (with explicit divergence)
check can be carried out in time polynomial in the size of the input interaction
system.

5.3 Exploiting Equivalences in Interaction Systems 127

Now, we carry out this computation at most (|Comp| − 1) · (|Comp| − 2)
times (each border component together with each other border component)
which results in an overall polynomial time bound of the approach of Corol-
lary 5.9.

A further interesting question is whether Corollary 5.9 and Theorem 5.7 are
equivalent. Clearly, if the assumptions of the corollary hold, then also the
theorem holds (cf. the proof of Corollary 5.9). However, is it the case that if
we can find an order function f such that the equivalences of Theorem 5.7
hold, then also the corollary holds? In other words, the order in which the
components are treated is not relevant for the reduction approach.

Unfortunately, this is not the case as can be seen by Example 5.8. In the
example, we assumed that a particular order function f is given, and indeed,
the equivalences of Theorem 5.7 hold with this function. But for Corollary 5.9,
we need to check (among other subsystems) whether

Sys[{l, 2, clk}] \\ Îl,2
?≈∆

b Sys[{l, clk}] \\ Îl,2

holds where the parameter of the closing operator is defined as in Theorem 5.7
and Corollary 5.9 respectively. Here, we need to check whether the light
component together with the yellow bulb component influences the observ-
able behavior of the light and clock component where the interactions of the
light and yellow bulb component are closed in each system. We do not de-
pict the corresponding labeled transition systems here, but observe that in
the system of the right-hand side, we can execute the interaction sequence
{green offl}, τ, {red offl} which directly corresponds to the action sequence
green offl , yellow offl , red offl of the light component’s behavior (cf. Figure 5.7).
However, in the system of the left-hand side this interaction sequence is not
executable because the yellow bulb component does not offer its off2-action
before its on2-action (cf. Figure 5.6 (a)), i.e., the interaction {yellow offl , off2} is
not executable (as a closed interaction) after the {green offl}-interaction in the
system of the left-hand side. Thus, the systems cannot be branching bisimilar
with explicit divergence and the assumptions of Corollary 5.9 are not satisfied.
More precisely, we established that the systems are not trace equivalent [23,
Section 3.2.4] which is a coarser equivalence than branching bisimilarity with
explicit divergence [113, Section 2].

Summarizing, we conclude that Theorem 5.7 implies Corollary 5.9 but not the
other way round. We finish with a remark about finding an order function f
as required for Theorem 5.7.

Remark on Finding an Order Function f : Since we already compute all pos-
sible equivalences in Corollary 5.9, we only need to exploit this information ac-
cordingly. We define a (directed, bipartite) graph G = (V, E) with V = V1 ∪V2

128 5 Compositional Reduction

and V1 ∩V2 = ∅ where the set V1 of vertices consists of the tuples (m, i, j) and
the set V2 of the tuples (m, i) where m is the middle component and i, j range
over all distinct pairs of border components, i.e., i 6= j except m. We introduce
a directed edge between all tuples that share the first two components, i.e.,(
(m, i), (m, i, j)

)
∈ E for all i, j ∈ Comp \ {m} with i 6= j. Next, we consider

the equivalences computed in the corollary: For all distinct pairs of bor-
der components i, j ∈ Comp \ {m} if Sys[{m, i, j}] \\ Îm,i ≈∆

b Sys[{m, j}] \\ Îm,i

holds where Îm,i is defined as in the corollary, we add the directed edge(
(m, i, j), (m, j)

)
to E. Now, if there is a simple path that contains all vertices

in V2, starts at an arbitrary vertex v ∈ V2, and ends at another vertex w ∈ V2,
we found an order function f for Theorem 5.7. Figure 5.10 illustrates this idea
with respect to the traffic light interaction system introduced in Example 5.8
where the four vertices in the middle belong to the set V2 and the others to V1.

(l, 1, 2) (l, 1, 3) (l, 1, clk) (l, 2, 1) (l, 2, 3) (l, 2, clk) (l, 3, 1) (l, 3, 2) (l, 3, clk)

(l, 1) (l, 2) (l, 3)(l, clk)

(l, clk, 2)(l, clk, 1) (l, clk, 3)

Figure 5.10: Graph that illustrates how an order function f for Theorem 5.7
can be found. The thick red edges constitute a simple path that, projected to
V2, corresponds to the order given by function f in Example 5.8.

We want to point out that this idea can be further extended such that we
can ask for a particular border component k whether the whole interaction
system can be reduced to a system that consists only of the middle component
m and k. To accomplish this, we only need to construct the graph as above,
turn the direction of all edges, and search for a simple path starting in the
vertex (m, k) that contains all vertices (m, i) with i ∈ Comp \ {m}. Note that
the construction of the graph above and all path queries can be performed in
polynomial time in the size of the input where the construction has the same
asymptotic costs as the application of Corollary 5.9 which we discussed before
this remark. Here, we do not further discuss the order function f but come
back to it with some further ideas in Section 5.6 at the end of this chapter.

Next, we take a look at our other architectural constraint that is based on the
component graph, viz. interaction systems with a tree-like architecture.

5.3 Exploiting Equivalences in Interaction Systems 129

5.3.2 Tree-Like Architectures with Exclusive Communication

In this section, we take a look at interaction systems with a tree-like archi-
tecture and exclusive communication. Fortunately, the presented analysis
for star-like architectures scales up to an analysis for tree-like architectures.
The main idea for the analysis of tree-like architectures is that they can be
considered as several overlapping star-like ones. We illustrate this idea in
Figure 5.11 which depicts the component graph of an interaction system Sys
with a tree-like architecture.

A

B

C

D

E

F

G

H

I

J

{A, B, C, D, F} {F, G, H, I, J}

{C, E, F, H}

4

4

3

4

3

2

4

3

4

4

Figure 5.11: In each vertex, the small number in the top right corner corre-
sponds to the eccentricity of the vertex. We can now group the vertices with
respect to these eccentricities such that each induced subgraph is a star in the
graph-theoretical sense which is maximal with respect to the set of vertices
that form a star subgraph. Each such star in the graph is surrounded by either
a red dotted, green dashed, or blue densely dotted line.

We motivate the idea by means of the depicted example where we have
Comp = {A, B, C, D, E, F, G, H, I, J}. We do not further specify this interac-
tion system but it should be clear that we can define appropriate action sets
and interactions such that the system has the component graph depicted in
Figure 5.11. Now, we determine the maximal stars of the tree as mentioned
in the caption of the figure and thus consider the following interaction sys-
tems: Sys[{A, B, C, D, F}], Sys[{C, E, F, H}], and Sys[{F, G, H, I, J}]. All three
subsystems have a star-like architecture where components C, F, and H re-
spectively are the middle components.

If now our result of the previous section is applicable for these subsystems,
i.e., we assume that we can conclude that

1. Sys[{A, B, C, D, F}] \\ Î1 ≈∆
b Sys[{C, F}] \\ Î1,

2. Sys[{C, E, F, H}] \\ Î2 ≈∆
b Sys[{F, E}] \\ Î2, and

3. Sys[{F, G, H, I, J}] \\ Î3 ≈∆
b Sys[{F, H}] \\ Î3

130 5 Compositional Reduction

holds (cf. Corollary 5.9), then we can put these three pieces together and
conclude that also Sys \\ Î ≈∆

b Sys[{F, E}] \\ Î holds with appropriate sets of
interactions Î1, Î2, Î3, and Î. Of course, we have to be careful which interactions
are contained in these sets such that no interaction becomes closed that is
needed for a further application of Corollary 5.9. Moreover, we should work
from the outer levels, i.e., the vertices with the maximal eccentricity which
correspond to the periphery of the graph (cf. Definition A.7), to the inner
levels as depicted in Figure 5.11. Then, i.e., if all equivalences hold, the whole
interaction system is equivalent to a system containing only the components
in the graph-theoretical center of the component graph.

Next, we formalize the above developed idea for an arbitrary interaction
system with a tree-like architecture and exclusive communication.

Theorem 5.10: Let Sys be an interaction system with a tree-like architecture,
exclusive communication, and at least three components, i.e., |Comp| ≥ 3. Let
G denote the component graph of Sys, and let for each index x ∈ N with
rad(G) ≤ x < diam(G) the set C?x ⊆ 2Comp denote the set of all subsets of
the set of components such that for each C?

x ∈ C?x holds |C?
x | ≥ 3, Sys[C?

x]

has a star-like architecture, the vertex representing the middle component
of Sys[C?

x] has eccentricity x, and there is no component k ∈ Comp \ C?
x such

that Sys[C?
x ∪ {k}] has a star-like architecture, i.e., the set of components is

maximal with respect to satisfaction of the star-like architectural constraint.

We introduce a (double) index x.y with index x as above and index y ∈N with
1 ≤ y ≤ |C?x | (for each x) such that C?

x.y lets us refer to all sets of components
in C?x , i.e., the two indices allow us to address each star-like subsystem. Let
mx.y ∈ C?

x.y denote the middle component in each Sys[C?
x.y], and let bx.y ∈ C?

x.y
denote the border component whose vertex representation has the smallest
eccentricity, i.e., eccG(bx.y) ≤ min{eccG(v) | v ∈ V ∩ C?

x.y}—if there are
several such border components, we choose an arbitrary one. Furthermore, a
bijective function fx.y : C?

x.y → {1x.y, 2x.y, . . . , nx.y} with nx.y = |C?
x.y| is given

where number 1x.y denotes the middle component, i.e., f−1
x.y (1x.y) = mx.y, and

number nx.y denotes the border component with the smallest eccentricity, i.e.,
f−1
x.y (nx.y) = bx.y. For convenience, we identify a component with respect to its

number in the following.

If for all x with rad(G) ≤ x < diam(G), all x.y with 1 ≤ y ≤ |C?x |, and all ix.y

with 2x.y ≤ ix.y < nx.y holds

Sys[{1x.y, ix.y, ix.y + 1}] \\ Î1x.y,ix.y ≈∆
b Sys[{1x.y, ix.y + 1}] \\ Î1x.y,ix.y

where we have Î1x.y,ix.y :=
(
Int[{1x.y, ix.y}] \ Int[{1x.y}]

)
∪
{

α ∈ Int[{1x.y}] |
∃ β ∈ Int[{1x.y, ix.y}] : α ⊂ β

}
, then it holds with M := center(G) ∪ K where

5.3 Exploiting Equivalences in Interaction Systems 131

K = {nrad(G).1} if |center(G)| = 1 and K = ∅ otherwise, that

Sys \\ Î ≈∆
b Sys[M] \\ Î

with Î :=
⋃

rad(G)≤x<diam(G),1≤y≤|C?x |,2x.y≤ix.y<nx.y
Î1x.y,ix.y .

A formal proof of Theorem 5.10 can be found in Appendix F on page 256.

We proceed with an example that demonstrates the application of Theo-
rem 5.10.

Example 5.11: We consider a street crossing with four traffic lights but model
only two light controllers that show the opposing light signals, i.e., each
controller operates two traffic lights that show the same signals but for conve-
nience, we model each of them as one traffic light. Each light controller and
the associated three bulb controllers are modeled as in Example 5.8. A further
control unit coordinates the switching of the opposing light signals, e.g., if one
traffic light shows its green signal, the other one has to show its red signal.
Again, a clock is used to initiate the change of each signal, however now the
clock sends its trigger to the control unit. Initially, the control unit, that we
model as component C, operates the first light controller, that we model as
component l, to show its green signal and the other light controller, that we
model as component r, to show its red signal. Here, the light controller l is
connected to three bulb controllers 1, 2, and 3 as in Example 5.8 whereas the
light controller r is connected to three bulb controllers 4, 5, and 6.

Thus, we get the following component model:

Comp = {C, l, r, clk, 1, 2, 3, 4, 5, 6},

AC ={status green redC, status yellow redC, status red redyellowC, status red greenC,

status red yellowC, status redyellow redC, waitC, trig1C, sig1C, trig2C, sig2C},
Al , Aclk, and Ai for 1 ≤ i ≤ 6 as in Example 5.8, and

Ar as Al but subscripted with r instead of l.

We assume that bulb 1 corresponds to the red light of traffic light l, 2 to the
yellow one of l, 3 to the green one of l, and similarly, 4, 5, and 6 to the red,
yellow, and green light of traffic light r. Figure 5.12 on the following page
depicts the interaction model of the street crossing example.

Thus, we have the following interactions:

Int =
{
{status green redC}, {status yellow redC}, {status red redyellowC},
{status red greenC}, {status red yellowC}, {status redyellow redC},
{waitC, triggerclk}, {signal redl , sig1C}, {signal redyellowl , sig1C},

132 5 Compositional Reduction

red onl red offl

green onl green offl

yellow onl

yellow offl

waitl

on1 off1

power on1 power off1

on3 off3

power on3 power off3

waitC
trig1C

sig1C

trig2C

sig2C

1 2 3 4 5 6

1: status green redC
2: status yellow redC
3: status red redyellowC
4: status red greenC
5: status red yellowC
6: status redyellow redC

triggerclk tickclk

red onr red offr

green onr green offr

yellow onr

yellow offr

waitr

on4 off4

power on4 power off4

on6 off6

power on6 power off6

l

1

3

C

clk

r

4

6

Figure 5.12: Interaction model of the traffic light street crossing example where
we omitted the bulb components 2 and 5.

{signal greenl , sig1C}, {signal yellowl , sig1C}, {waitl , trig1C},
{signal redr, sig2C}, {signal redyellowr, sig2C}, {signal greenr, sig2C},
{signal yellowr, sig2C}, {waitr, trig2C}, {red onl , on1}, {red offl , off1},
{yellow onl , on2}, {yellow offl , off2}, {green onl , on3}, {green offl , off3},
{red onr, on4}, {red offr, off4}, {yellow onr, on5}, {yellow offr, off5},
{green onr, on6}, {green offr, off6}, {tickclk}

}
∪
{
{poweroni}, {poweroffi} | 1 ≤ i ≤ 6

}
and

Intclosed =
{
{tickclk}

}
.

The behavior of the components is similar as in Example 5.8 where the be-
havior [[r]] of the light controller r is the same as the behavior [[l]] of the light
controller l (cf. Figure 5.7 on page 124) but every action is subscripted with
r instead of l. Thus, the behavior of the bulb controllers [[i]] for 1 ≤ i ≤ 6 is
given in Figure 5.6 (a) on page 123 and the behavior of the clock component
in Figure 5.6 (b) on the same page. Figure 5.13 on the facing page depicts the
behavior of the control component C.

Now, the interaction system modeling the street crossing is completely speci-
fied. In the following, we refer to this system as Sys.

We now apply Theorem 5.10 to this interaction system. First, we need to check
the assumptions of the theorem. Observe that Sys has exclusive communi-

5.3 Exploiting Equivalences in Interaction Systems 133

0
sig1C

1
sig2C

2
trig1C

3

sig1C

4
trig1C

5
sig1C

6

status green redC

7
waitC 8

trig1C
9

sig1C
10

status yellow redC

11
waitC

12
trig1C

13
trig2C

14
sig1C

15
sig2C

16

status red redyellowC

17
waitC

18
trig2C

19
sig2C

20

status red greenC

21
waitC

22
trig2C

23
sig2C

24

status red yellowC

25
waitC 26

trig2C
27

trig1C
28

sig2C
29

sig1C
30

status redyellow redC

31
waitC

Figure 5.13: Behavior of the control component C

cation, which can easily be concluded from the interaction model depicted
in Figure 5.12 because no action is used in interactions with different sets
of participating components. We also have |Comp| ≥ 3, i.e., at least three
components are part of Sys. Next, we have to check the architecture of the
interaction system. We compute the component graph (cf. Definition 4.1)
which is depicted in Figure 5.14 on the following page.

Since it is a tree in the graph-theoretical sense, we conclude that Sys has a
tree-like architecture (cf. Definition 4.3) where component C is the only central
component. Thus, the assumptions of the theorem are satisfied and we can
now take a look at the equivalences.

First, we need to determine the sets C?x ⊆ 2Comp for all x ∈ N with rad(G) ≤

134 5 Compositional Reduction

2 l

3

1 clk

C r

6

4

5

Figure 5.14: Component graph of the traffic light street crossing example

x < diam(G) where G denotes the component graph of Sys (cf. Figure 5.14).
Observe that the graph depicted in Figure 5.11 on page 129, that we discussed
at the beginning of Section 5.3.2, is isomorphic in the graph-theoretical sense
to Sys’s component graph, i.e., the graphs are in fact the same up to the name
of the vertices. Thus, the eccentricity of every vertex (cf. Definition A.7) in the
component graph is given in Figure 5.11.

Here, we get C?2 =
{
{C, l, r, clk}

}
and C?3 =

{
{l, 1, 2, 3, C}, {r, 4, 5, 6, C}

}
where

the middle component of each subsystem with a star-like architecture (to
which the elements of these sets correspond) is the first component in each
set (if we regard the given sequence of the components as an order). The
last component in each such set corresponds to the border component with
the smallest eccentricity or an arbitrary component if there are several such
border components as in the case of the first element of C?2 . Observe that
each set of components is maximal with respect to satisfaction of the star-like
architectural constraint.

Now, we denote these sets as in Theorem 5.10 as C?
2.1 = {C, l, r, clk}, C?

3.1 =

{l, 1, 2, 3, C}, and C?
3.2 = {r, 4, 5, 6, C}. Further, we assume that the following

order functions are given:

• f2.1 : C?
2.1 → {12.1, 22.1, 32.1, 42.1}with f (C) = 12.1, f (l) = 22.1, f (r) = 32.1,

and f (clk) = 42.1,

• f3.1 : C?
3.1 → {13.1, 23.1, 33.1, 43.1, 53.1} with f (l) = 13.1, f (3) = 23.1, f (2) =

33.1, f (1) = 43.1, and f (C) = 53.1, and

• f3.2 : C?
3.2 → {13.2, 23.2, 33.2, 43.2, 53.2} with f (r) = 13.2, f (6) = 23.2, f (5) =

33.2, f (4) = 43.2, and f (C) = 53.2.

We now check for all x with rad(G) ≤ x < diam(G), all x.y with 1 ≤ y ≤ |C?x |,

5.3 Exploiting Equivalences in Interaction Systems 135

and all ix.y with 2x.y ≤ ix.y < nx.y whether

Sys[{ f−1
x.y (1x.y), f−1

x.y (ix.y), f−1
x.y (ix.y + 1)}] \\ Î f−1

x.y (1x.y), f−1
x.y (ix.y)

≈∆
b

Sys[{ f−1
x.y (1x.y), f−1

x.y (ix.y + 1)}] \\ Î f−1
x.y (1x.y), f−1

x.y (ix.y)

holds where the parameter of the closing operator is defined as in Theo-
rem 5.10.

Here, we first check, as in Example 5.8, for both light components whether
the respective light component (l or r) together with the associated green bulb
component (3 or 6, respectively) influences the observable behavior of the
respective light and the corresponding yellow bulb components (l and 2 or r
and 5, respectively), then wether this is the case for the respective light and
corresponding yellow bulb components with respect to the associated red
bulb component (1 or 4, respectively), and finally wether the respective light
and associated red bulb component influence the observable behavior of the
respective light and the control component (l and C or r and C, respectively).
Afterwards, we check whether the control component C together with the
light component l influences the observable behavior of C and the light com-
ponent r and then whether this is the case for C and r with respect to the clock
component. We omit to depict the single systems and to give the equivalence
relations. But, all equivalences specified in the equation above hold.

We can thus conclude that

Sys \\ Î ≈∆
b Sys[{C, clk}] \\ Î

holds where Î, as defined in Theorem 5.10, closes all interactions between the
omitted components and the control component. Observe that the set {C, clk}
corresponds to the set M of the theorem because we have |center(G)| =
|{C}| = 1 and thus M = center(G) ∪ K where K = { f−1

rad(G).1(nrad(G).1)} =

{ f−1
2.1 (42.1)} = {clk}.

We want to determine the savings that this reduction allows for. The reachable
global behavior of Sys consists of 6974 states and 30 241 transitions. If we
now compute the behavior of Sys[{C, clk}] \\ Î, we see that this system only
consists of 64 states and 64 transitions, i.e., the system is much smaller. As
in Example 5.8, we can further reduce the system by computing the quotient
of the system: [[Sys[{C, clk}] \\ Î]]≈∆

b
, which is depicted in Figure 5.15 on the

following page, consists of 12 states and 12 transitions.

Now, we can for instance ask whether Sys is deadlock-free and instead of
computing its global behavior, we can consider [[Sys[{C, clk}] \\ Î]]≈∆

b
. Since

the latter labeled transition system does not contain a state without outgo-
ing transitions (cf. Figure 5.15), we can conclude that the interaction system

136 5 Compositional Reduction

0

{status green redC}

1
{waitC, triggerclk}

2
{status yellow redC}

3
{waitC, triggerclk}

4

{status red redyellowC}

5
{waitC, triggerclk}

6
{status red greenC}

7

{waitC, triggerclk}

8
{status red yellowC}

9
{waitC, triggerclk}

10
{status redyellow redC}

{waitl , triggerclk}

11

Figure 5.15: The labeled transition system [[Sys[{C, clk}] \\ Î]]≈∆
b

Sys \\ Î is deadlock-free and also that Sys is deadlock-free since deadlocks are
preserved by closing.

This ends the discussion of the example.

Analogously to the discussion succeeding Theorem 5.7 and Example 5.8 respec-
tively, we can now derive a corollary for Theorem 5.10 similar to Corollary 5.9.
However, we omit such a corollary here because of its analogous nature.

Instead, we are interested in the costs of an application of the reduction
approach for tree-like architectures. Clearly, we have to apply Corollary 5.9
or Theorem 5.7 respectively several times. To be more precise, the number of
applications equals the number of maximal stars that can be derived from the
tree-like architecture as illustrated in Figure 5.11 on page 129. Moreover, we
need an automatic way to actually output the corresponding subsystems with
a star-like architecture.

Since each component that has more than one neighbor in the component
graph can be the middle component of a subsystem with a star-like architec-
ture, we just have to count the corresponding vertices in the component graph,
i.e., there are, for a given interaction system Sys, exactly |Comp| − |{i ∈ Comp |
| nbG(i)| = 1}| (cf. Definition A.5) many such subsystems. All we have to do
in order to construct these subsystems—if Sys has a tree-like architecture—is to
take each component with more than one neighbor in Sys’s component graph,
add all its neighbors, and use the resulting set for the subsystem construction
operator (cf. Definition 3.18). Since the number of these subsystems is clearly
bounded by the number of components, the overall approach is polynomial
in the size of the input.

We want to finish the discussion of compositional reduction in interaction
systems with a tree-like architecture by addressing where to start the equiv-
alence checks. In the discussion preceding Theorem 5.10, we wrote that we

5.3 Exploiting Equivalences in Interaction Systems 137

should work from the outer levels (with respect to the eccentricities) to the
inner levels. Thus, we need to compute the eccentricity of every vertex and
start from the periphery of the graph that contains the border components of
the outermost subsystems. Now, if the corresponding equivalences hold, we
successively remove the components at the periphery of the graph, recompute
the periphery and check again. Clearly, this approach terminates by reach-
ing the center of the graph and is polynomial in the size of the input if the
eccentricities can be computed efficiently. Fortunately, the eccentricity of a
vertex can be computed in linear time by a simple search strategy if the graph
is a tree [264, Section 7.2.1], which is ensured by our tree-like architectural
constraint.

In the next section, we take a look at the savings our approach allows for in
interaction systems.

5.3.3 Compositional Reduction in Interaction Systems Allows For
Exponential Savings

We discuss the potential savings that our reduction approach allows for. Con-
sider the following interaction system Sys consisting of component 0 that is
surrounded by n components 1, . . . , n. Each component has n actions, one for
each of the other components. Thus, we have:

Comp = {0, 1, 2, . . . , n} and

Ai = {a1
i , . . . , an

i } where i ranges over the components.

Now, the actions are used for cooperation among components but only com-
ponent 0 cooperates with each of the other components, i.e., we have

Int =
{
{ai

0, ai
i}, {ak

i }
∣∣ i ∈ {1, . . . , n} ∧ k ∈ {1, . . . , n} \ {i}

}
.

We set Intclosed = ∅. Figure 5.16 on the following page illustrates the resulting
interaction model.

Obviously, interaction system Sys has a star-like architecture (cf. Definition 4.2)
because all interactions are either unary or binary and there is no cooperation
where component 0 does not participate in. Thus, component 0 is the middle
component and all other components are the border components of Sys. We
omit to depict the component graph (cf. Definition 4.1) since it looks similar to
the interaction model depicted in Figure 5.16.

Observe that the system also has exclusive communication (and even strongly
exclusive communication), i.e., the first two assumptions of Corollary 5.9 of
this chapter are already satisfied.

138 5 Compositional Reduction

a1
0 a2

0
a3

0

a4
0

a5
0

an−1
0

an
0

. . .

a1
1a2

1

a3
1

a4
1

a5
1

an−1
1

an
1

. . .

a1
2a2

2

a3
2

a4
2

a5
2

an−1
2

an
2

. . .

a1
3a2

3

a3
3

a4
3

a5
3

an−1
3

an
3

. . .

a1
na2

n

a3
n

a4
n

a5
n

an−1
n

an
n

. . .

0

1 2

3n

..
.

..
.

Figure 5.16: Interaction model of the example in Section 5.3.3

But before we further analyze this example, we have to specify Sys’s behav-
ioral model. The behavior of each component is the same up to their action
sets: Each component successively executes its actions in their natural order,
i.e., component i ∈ Comp executes its actions a1

i , a2
i , and so on until action an

i is
executed which brings the component back to its initial state. The correspond-
ing labeled transition system is depicted in Figure 5.17. Observe that the size
of all labeled transition systems is linear in n.

0 1
a1

i 2
a2

i 3
a3

i 4
a4

i

5

a5
i

6
a6

i

an
i

an−1
i

Figure 5.17: Behavior of component i for 0 ≤ i ≤ n

Now, we take a closer look at the application of Corollary 5.9 to our example.
We set m = 0 and k = n, and have to check whether for all distinct pairs of
border components i, j ∈ Comp \ {m} the following equivalence holds:

Sys[{m, i, j}] \\ Îm,i ≈∆
b Sys[{m, j}] \\ Îm,i

with Îm,i :=
(
Int[{m, i}] \ Int[{m}]

)
∪
{

α ∈ Int[{m}] | ∃ β ∈ Int[{m, i}] : α ⊂
β
}

which here is equal to Î0,i =
{
{ai

0}, {ai
0, ai

i}
}
∪
{
{ak

i } | k ∈ {1, . . . , n} \ {i}
}

for 1 ≤ i ≤ n.

If we compute these equivalences, we find out that all of them indeed hold.
Since the systems are already too big to be depicted here, we only consider the
costs of this operation. For each computation, we have to construct two labeled

5.3 Exploiting Equivalences in Interaction Systems 139

transition systems whose size is at most cubic in n. The branching bisimilarity
(with explicit divergence) check can be carried out in time proportional to the
product of the number of states and number of transitions in both systems
(cf. Appendix E). Since the number of these computations is bounded by n2,
we can check whether all equivalences hold in polynomial time in n, which,
admittedly, we already know from the discussion after Corollary 5.9.

We can thus conclude according to Corollary 5.9 that

Sys \\ Î ≈∆
b Sys[{m, k}] \\ Î

holds with Î =
⋃

i∈Comp\{m,k} Îm,i which is equal to Î = Int \
{
{an

0 , an
n}, {ai

n} |
i ∈ {1, . . . , n}

}
, i.e., all interactions are closed except the one that models the

cooperation between components 0 and n and all singleton interactions of
component n.

Now, we further reduce the global behavior of the last interaction system and
compute its quotient, viz. [[Sys[{m, k}] \\ Î]]≈∆

b
with m = 0 and k = n, which

results in the labeled transition system depicted in Figure 5.18. The size of this
system is linear in n.

0 1
{a1

n}
2

{a2
n} 3

{a3
n}

4
{a4

n}

5

{a5
n}

6
{a6

n}
{an

0 , an
n}

{an−1
n }

.

Figure 5.18: The labeled transition system [[Sys[{m, k}] \\ Î]]≈∆
b

with m = 0 and
k = n

Since the interaction model does not put strong restrictions on the cooperation
of the components, all state combinations are reachable, i.e., the global state
space of Sys’s global behavior consists of all nn+1 state combinations (each
local component can be in one of its n states and there are n + 1 components).
Thus, the size of the global behavior of Sys is exponential in n.

Summarizing, the example shows that our reduction technique is able to save
an exponential factor. All verification questions that are answerable in Sys \\ Î
are also answerable in Sys[{0, n}] \\ Î if there are preserved by branching
bisimilarity with explicit divergence which holds, e.g., for all CTL*–X formulae
as discussed in Chapter 2.

In the next section, we take a closer look at the assumption of exclusive
communication and whether we can drop it for our reduction approach.

140 5 Compositional Reduction

5.4 Getting Rid Of Exclusive Communication

We want to examine where exactly the property of exclusive communication
was needed in the previous sections. As we mentioned in Section 5.2, this
property can be established via a transformation in polynomial time. But
nevertheless, it is an interesting question whether we can get along without
requiring this property for a given interaction system.

Thus, consider an interaction system with a star-like architecture. We learned
in Section 5.3.1 that if a border component b of the system does influence
the middle component m but there is a border component b′ such that this
influence is not observable later on, we can ignore b. This is achieved by
closing the interactions needed for cooperation between m and b. In the
resulting system, we also need to close those singletons that correspond to the
actions of m that are present as interactions in the subsystem. If we now do
not have exclusive communication, this closing may affect interactions that
are needed for cooperation with other border components.

For instance if there is an interaction {am, ab}, where am is an action of the
middle component m and ab is an interaction of border component b, we also
need to close the interaction {am} in the resulting system. But, if there is
an interaction {am, ab′}, where ab′ is an action of border component b′, the
previous closing does not allow us to use am in the composition step. Observe
that if we have exclusive communication, this situation cannot happen in a
system with a star-like architecture since the cooperation partners for every
action of the middle component need to be the same.

We thus have to find a way to not close the stub of the middle component.
One way to achieve this is to keep all interactions. However then, we cannot
consider valid subsystems since all components participating in the interac-
tions need to be present. But, if we want to reduce the whole system, we can
keep a very small representative of the components, that we previously ig-
nored, after appropriate equivalences were established. We define such a small
representative as the always accepting version of a component as follows.

Definition 5.12 (Always Accepting Version): Let Sys be an interaction sys-
tem and let i ∈ Comp be a component. The always accepting version of i, denoted
by Acc(i), is the replacement of the local behavior [[i]] of component i with the
labeled transition system [[Acc(i)]] := ({s0

i }, Ai, {{(s0
i , s0

i)}}ai∈Ai , {s0
i }) for an

arbitrary initial state s0
i ∈ S0

i .

Next, we formalize the idea using these small representatives. Instead of
ignoring a border component, we check whether we can replace it by its

5.4 Getting Rid Of Exclusive Communication 141

always accepting version. Observe that we do not require the property of
exclusive communication in the following theorem.

Theorem 5.13: Let Sys be an interaction system with a star-like architecture
and at least three components, i.e., |Comp| ≥ 3. Let an arbitrary numbering
of the components be given, i.e., a bijective function f : Comp → {1, . . . , n}
is given with n = |Comp|. Let number 1 denote the middle component, viz.
f−1(1), of the star-like architecture. For convenience, we identify a component
with respect to its unique number in the following. If for all i with 2 ≤ i < n it
holds that

Sys[{1, i, i + 1}] \\ Îi ≈∆
b Sys[{1, Acc(i), i + 1}] \\ Îi

with Îi := {α ∈ Int | {i} ⊆ compset(α)}, then it holds that

Sys \\ Î ≈∆
b Sys[{1, Acc(2), . . . , Acc(n− 1), n}] \\ Î

with Î :=
⋃

i∈{2,...,n−1} Îi.

Proof of Theorem 5.13: Assume that the premise of the theorem holds. We
show Sys \\ Î = Sys[{1, 2, . . . , n − 1, n}] \\ Î ≈∆

b Sys[{1, Acc(2), . . . , Acc(n −
1), n}] \\ Î by an inductive argument over the components. The first equal-
ity follows from Proposition 3.20. For n = 3 holds Sys[{1, 2, 3}] \\ Î2 ≈∆

b
Sys[{1, Acc(2), 3}] \\ Î2 because of the premise, and since Î2 = Î for n = 3 and
branching bisimilarity with explicit divergence is a congruence with respect
to closing the claim follows. For all components i with 2 ≤ i < n holds:

Sys[{1, Acc(2), . . . , Acc(i− 1), i, . . . , n}] \\ Î ≈∆
b

Sys[{1, Acc(2), . . . , Acc(i), i + 1, . . . , n}] \\ Î

because (the used proposition is listed in parentheses above the equation
symbol):

Sys[{1, Acc(2), . . . , Acc(i− 1), i, . . . , n}] \\ Î
(3.21)
=

(
Sys[{1, i, i + 1}] ⊗

I{1,i,i+1},{Acc(2),...,Acc(i−1),i+2,...,n}

Sys[{Acc(2), . . . , Acc(i− 1), i + 2, . . . , n}]
)
\\ Î ∪ Intclosed

(3.23)
=

(
Sys[{1, i, i + 1}] ⊗

I{1,i+1},{Acc(2),...,Acc(i−1),i+2,...,n}

Sys[{Acc(2), . . . , Acc(i− 1), i + 2, . . . , n}]
)
\\ Î ∪ Intclosed

(3.15)
=

(
Sys[{1, i, i + 1}] \\ Îi ⊗

I{1,i+1},{Acc(2),...,Acc(i−1),i+2,...,n}

Sys[{Acc(2), . . . , Acc(i− 1), i + 2, . . . , n}]
)
\\ Î ∪ Intclosed

142 5 Compositional Reduction

(pre.)

≈∆
b

(
Sys[{1, Acc(i), i + 1}] \\ Îi ⊗

I{1,i+1},{Acc(2),...,Acc(i−1),i+2,...,n}

Sys[{Acc(2), . . . , Acc(i− 1), i + 2, . . . , n}]
)
\\ Î ∪ Intclosed

(3.15)
=

(
Sys[{1, Acc(i), i + 1}] ⊗

I{1,i+1},{Acc(2),...,Acc(i−1),i+2,...,n}

Sys[{Acc(2), . . . , Acc(i− 1), i + 2, . . . , n}]
)
\\ Î ∪ Intclosed

(3.21)
= Sys[{1, Acc(2), . . . , Acc(i), i + 1, . . . , n}] \\ Î

Thus, the argument lets us conclude that the theorem holds. Note that when
we applied the premise in the reasoning above, we also used Propositions 3.12
and 3.17. �

Similarly to the reduction result for star-like architectures, we also derive a
corollary that allows for an application of Theorem 5.13 without having access
to an order function f .

Corollary 5.14: Let Sys be an interaction system with a star-like architecture.
Let m denote the middle component and k an arbitrary border component. If
for all distinct pairs of border components i, j ∈ Comp \ {m} holds

Sys[{m, i, j}] \\ Îi ≈∆
b Sys[{m, Acc(i), j}] \\ Îi

with Îi := {α ∈ Int | {i} ⊆ compset(α)}, then it holds that

Sys \\ Î ≈∆
b Sys[{m, k} ∪ {Acc(i) | i ∈ Comp \ {m, k}}] \\ Î

holds with Î :=
⋃

i∈Comp\{m,k} Îi.

A formal proof of Corollary 5.14 can be found in Appendix F on page 261.

We want to point out that the order function f of Theorem 5.13 can be derived
from the equivalences of Corollary 5.14 in a similar way as we discussed in
the remark following the proof of Corollary 5.9 (cf. page 127). The price we
have to pay for not requiring exclusive communication beforehand is that we
have to keep all components, although their behavior is replaced by a very
compact version.

Here, we do not further deepen the discussion of exclusive communication,
but observe that we can also derive a similar result for interaction systems
with a tree-like architecture. Instead, we take a look at related work on com-
positional reduction in component-based settings in the next section.

5.5 Related Work 143

5.5 Related Work

We discuss approaches from the literature that are comparable to our setting.
In these works, the architecture is similarly defined as our component graph
(cf. Definition 4.1)—as already mentioned in Chapter 4.

Bernardo et al. [39] exploit the architecture and behavioral equivalences in
order to efficiently verify the property of deadlock-freedom with respect to
systems specified in their architecture description language PADL, which we
already discussed in Section 2.1.4. They introduce the notion of component
compatibility [39, Definition 4.3] which means that the composite behavior of
two components, where any joint action is concealed, is weakly bisimilar to
the behavior of one of the components with corresponding concealed actions.
For instance, if a component b which only interacts with one component m is
compatible to m, then b is not important for the overall behavior of the system.
Instead of considering both components one can safely consider only m.

This approach is extensible to the whole system and is particularly suited
for acyclic architectures, such as star-like or tree-like ones. For instance in
star-like architectures, the compatibility check is performed for every border
component together with the middle component. The authors derive results
for star-like and tree-like architectures [39, Theorem 4.5 and Corollary 4.6,
respectively] that imply the deadlock-freedom of the whole system if all
pairwise compatibility checks among the components succeed. Although
their result opens the possibility for a reduction technique, in particular their
Lemma 4.4, Bernardo et al. [39] do not address this feature explicitly such that
the reduced version can be used later on instead of the original behavior for,
e.g., other verification purposes.

Hennicker et al. [137] address the last point in their study of component neu-
trality in the semantic model of the Java/A architecture description language
(cf. Section 2.1.4). Here, neutrality of a component x with respect to another
component y means that the combined behavior (with binary connectors be-
tween the components which are unobservable in the behavior) is weakly
bisimilar to the behavior of y where all involved connectors are replaced
by unary ones (which are also unobservable in the behavior). The authors
describe a reduction strategy based on this notion of neutrality that succes-
sively removes neutral components at the border of the architecture (which
are hence called leaf components), i.e., the strategy is particularly applicable
to acyclic architectures that have many leaf components. After the removal of
neutral leafs, the reduction process can be repeated because potentially new
leaf components are now present in the remaining system.

144 5 Compositional Reduction

If the above system is considered as a composite component, the reduction
strategy allows for the determination of the minimal observable behavior that
can be substituted for the typically much larger original behavior of the new
component in further composition steps. Thus, once the minimal behavior of
the corresponding system part is determined, all verification steps that involve
this part benefit from the smaller size of the behavior. For interaction systems,
we shortly addressed in Section 3.7 that such an encapsulation technique can
also be defined. Then, the ideas of this chapter also allow to determine the
minimal observable behavior of a corresponding composite component.

Cheung and Kramer [61] propose a further method with respect to their
study of context constraints for compositional reachability analysis. These
constraints are modeled as so-called interface processes that represent the
environment of a component, whose behavior is also modeled as a process,
in a composition step. The key observation for such context constraints is
that typically the behavior of a component is restricted by its cooperation
with its environment, and if this restriction can be observed before the actual
composition, which possibly results in a too large system, and does not restrict
the overall behavior, then the smaller behavior with respect to the constraints
by the environment can be substituted for the original behavior in analysis
steps. The correctness of this approach is based on a similar idea as discussed
above for the other formalisms which is called transparency [61, Section 6.3]:
An interface process I capturing the context constraints of a composite process
P is transparent to P if the composition of P and I is equivalent—with respect
to strong bisimilarity—to P. The authors formulate a so-called interface the-
orem [61, Section 6.4] that provides conditions under which transparency is
guaranteed.

However, the mentioned strategies are not suited for versatile components that
offer many behavioral variants for different contexts as, e.g., our merchandise
management example (cf. Section 1.3). This versatility supports the reusability
property that is typically desired in component-based system design. Please
note that all three strategies are comparable to the first idea for compositional
reduction that we discussed in Section 5.1 at the beginning of this chapter, i.e.,
they are not applicable for our example SysMMS. For instance in the approach
of Bernardo et al. [39], if a border component alters the behavior of the middle
component but this alteration is not important for the interaction with the
other components, the approach already fails.

Furthermore, we use branching bisimilarity with explicit divergence instead
of weak bisimilarity, which is used by Bernardo et al. [39] and Hennicker
et al. [137], because branching bisimilarity with explicit divergence preserves
more properties of systems (remember that, as discussed in Section 2.4, a

5.6 Summary and Future Work 145

logical characterization of branching bisimilarity with explicit divergence in
CTL*–X exists if the system is deadlock-free), it is more efficient to calculate
(cf. Appendix E), and, as remarked by Van Glabbeek and Weijland [115], many
system that are weakly bisimilar are also branching bisimilar which also holds
for the variant with explicit divergence.

Finally and as already mentioned in Section 1.1.3 of Chapter 1, more general
techniques exist that also aim for a reduction of the state space in order to
avoid or mitigate the state space explosion problem. For instance, Groote
and Moller [126] discuss decomposition techniques for the verification of
parallel systems such that the equivalence of two systems can be concluded
by an analysis of appropriate subsystems. Larsen and Xinxin [167] study
decomposition rules that are based on an operational semantics of contexts
and show how a property of the composite system can be transformed into
properties for the components. The cones and foci proof strategy [102, 129]
shows how branching bisimilarity of two processes (described as linear process
equations [40]) can be established without generating corresponding labeled
transition systems. Several real-life protocols have been verified this way
[102] and, although the approach is not completely automatic, it is interesting
for our approaches of this chapter since we also want to show the branching
bisimilarity (with explicit divergence) of two interaction systems without
generating the global behavior of one of the systems.

We want to point out that there is an interesting connection to work on con-
fluence [128, 197]. Interestingly, in all examples of this chapter, the labeled
transition systems representing the global behavior (after the closing opera-
tor has been applied) are τ-confluent and a priorisation of the τ-transitions
as described by Groote and Sellink [128] yields the same systems as in our
reduction—except for the example from the beginning which is not convergent,
i.e., it contains a cycle of τ-transitions. Given that the check for τ-confluence
can be carried out very efficiently [127] and also in a compositional way [218],
the relation of τ-confluence and our work is an interesting open problem,
which we at this point have to postpone as future work.

This ends our discussion of compositional reduction in interaction systems. In
the next section, we summarize the chapter and give some remarks regarding
future work.

5.6 Summary and Future Work

In this chapter, we showed how the architectural constraints introduced in
Chapter 4 can be used in conjunction with the equivalence for interaction

146 5 Compositional Reduction

systems (cf. Section 2.4.1) to derive a reduction technique for interaction
systems whose application is guaranteed to be polynomial in the size of the
input, which is one of our main goals, and that thus allows for very efficient
property verification. For instance, we can establish whether an interaction
system is deadlock-free by an analysis of a particular subsystem that consists
of only two components if all required equivalences hold.

We conclude with some remarks for future work regarding the order func-
tion f —as promised in the remark after the proof of Corollary 5.9 (cf. page 127).

The results of this chapter can be generalized as follows. Currently, we require
that for each border component in a star-like architecture, we find a witness
that guarantees that the influences of the border component on the observable
behavior of the middle component are negligible. In doing so, we require that
we find a unique witness for each border component (cf. Theorem 5.7) or that
all other border components can serve as a witness (cf. Corollary 5.9).

Now, there is an additional scenario: One particular border component can
serve as a witness for several or even all other border components. In order to
allow for this scenario, we could replace the addition operator among the order
function, that we use to get the next witness, by a witness function g as fol-
lows: Sys[{ f−1(1), f−1(i), g(f−1(i))}] instead of Sys[{ f−1(1), f−1(i), f−1(i +
1)}]. However, we have to ensure that we do not neglect a witness that is
needed in later steps. Here, we do not deepen this idea and instead, take a
closer look at deadlock-freedom in the next chapter.

147

Chapter 6

Efficient Deadlock Analysis

In this chapter, we focus on efficient ways to establish the property of deadlock-
freedom in interaction systems, i.e., techniques whose computational com-
plexity is guaranteed to be polynomial in the size of the input. The only
assumption that we make about interaction systems under analysis before-
hand is that they satisfy one of our architectural constraints which boils down
to that they have a disjoint circular wait free architecture. We thus exploit, as
mentioned in Chapter 4, the additional structure that is introduced among the
possible cooperations of the components in order to overcome the computa-
tional complexity of the decision problem of deadlock detection. However,
we know from Section 4.4.2 that we cannot hope for an efficient approach
that works for all such constrained interaction systems—unless P = PSPACE
is proven—but we nevertheless can derive sufficient conditions that imply
the deadlock-freedom for some of these systems and that are checkable in
polynomial time.

Before we go into the details of detecting deadlocks, we want to justify an
assumption that comes with all our architectural constraints, viz. the graph-
theoretical connectivity of the cooperation graph (cf. Definition A.6). What can
we say about deadlock-freedom if this is not the case? Interestingly, we can
already answer this question with results from earlier chapters. Suppose that
we already determined the graph-theoretical connected components of the
cooperation graph of a given interaction system Sys, which can be computed
in linear time in the size of the graph by starting a depth-first search for each
vertex contained in a different connected component and marking all vertices
that are found [144]. Let C1 ∪ . . . ∪ Ck = Comp be a partition of the set of com-
ponents with respect to these connected components—alternatively, we can
also use the component graph where the connected components directly corre-
spond to the sets C1, . . . , Ck. Now, we can successively decompose interaction

148 6 Efficient Deadlock Analysis

system Sys with respect to these sets, i.e., we first consider the expansion
with respect to Proposition 3.21 where we get with C2,k = C2 ∪ . . . ∪ Ck and
Proposition 3.20:

Sys = Sys[C1 ∪ C2,k] =
(
Sys[C1] ⊗

IC1,C2,k

Sys[C2,k]
)
\\ Intclosed[C1 ∪ C2,k].

The composition information IC1,C2,k equals the tuple (∅, ∅) (cf. Proposi-
tion 3.21) because otherwise, a component contained in C1 cooperates with
a component contained in C2,k and the set C1 is thus not strictly contained in
a graph-theoretical connected component of the cooperation graph—-if the
elements of C1 are regarded as singletons.

Fortunately, for such a composition situation the requirements of Theorem 3.26
are satisfied, and we can conclude from this theorem that Sys is deadlock-
free if the two interaction systems Sys[C1] and Sys[C2,k] are deadlock-free.
Note that the closing operator does not affect the deadlock-freedom of an
interaction system as a consequence of Proposition 3.17: Branching bisimilarity
with explicit divergence is a congruence with respect to this operator. For
interaction system Sys[C1], we know that its cooperation graph is connected,
i.e., we can tackle the system with an approach that is presented in this chapter
to establish its deadlock-freedom if it is also disjoint circular wait free. If it has
a tree-like architecture, we can also try to apply a result from Chapter 5. For
the other interaction system, Sys[C2,k], we can repeat the idea from above and
further decompose the system into subsystems with respect to the connected
components of the cooperation graph.

Summarizing, the assumption of an architectural constraint that the coopera-
tion graph is connected is not a restriction with respect to deadlock-freedom,
because we can analyze appropriate subsystems as explained above to con-
clude the deadlock-freedom of the whole system.

Thus, we can now examine the property of deadlock-freedom more thoroughly
and safely assume that the cooperation graph is connected. As we mentioned
in Chapter 1, we here extend and earlier approach by Majster-Cederbaum and
Martens [180]. We come back to a comparison of the approaches in Section 6.4.
We proceed with observations about deadlocks that become the main idea
behind the approaches that we consider in this chapter.

6.1 Observations about Deadlocks

A deadlock typically induces a circular waiting among some components, i.e.,
for each components’ local state that is part of such a deadlocked global state

6.1 Observations about Deadlocks 149

we have that either all interactions α are blocked by another component that
participates in α, or the local state itself has no outgoing transition. Here, we
only consider the first case, i.e., we reasonably assume that the local behavior
of every component is “locally deadlock-free”: At least one outgoing transition
is present in any local state of the corresponding labeled transition system, i.e.,
we have Suc(si) 6= ∅ for all i ∈ Comp and si ∈ Si in a given interaction system
Sys. Note that this can easily be checked in polynomial time by traversing
each component’s behavior or by analyzing the subsystem Sys[{i}] for each
i ∈ Comp for deadlock-freedom as in Chapter 2—remember that the definition
of a deadlock was given for an interaction system (cf. Definition 2.8).

We need to analyze the interactions that each local state wants to execute. The
next definition allows us to do this in a convenient way. We also define a
notion for states that corresponds to a first simple observation about deadlocks:
If a local state of a component is able to execute an interaction that merely
consists of a single action of the component, every global state where this local
state is part of cannot be a deadlock. We call such a state independent.

Definition 6.1 (Performability and Independence): Let Sys be an interaction
system. For a local state si ∈ Si of a component i ∈ Comp, we put Int(si) :=
{α ∈ Int | Suc(si, Ai ∩ α) 6= ∅} and say for an interaction α ∈ Int(si) that i
wants to perform α in si. Moreover, local state si is called independent if ∃ α ∈
Int(si) : compset(α) = {i}, otherwise si is called dependent.

We want to mention that the state property of independence in Definition 6.1
is called “complete” and “incomplete” respectively in the work of Majster-
Cederbaum and Martens [180]. Originally, this notion was introduced by
Gössler and Sifakis [121] as a property of certain interactions (cf. the discussion
at the end of Section 2.1.2). However, we think that the name “independent”
is more intuitive for states. Next, we formalize the above mentioned circular
waiting observation about deadlocks.

Lemma 6.2 (Deadlock Properties): For every deadlock s in an interaction sys-
tem Sys, there is a set D ⊆ Comp such that the components in D can be ordered
in such a way that each component is waiting for the next one in a circular
way, i.e., each component i ∈ D wants to perform an interaction α in its local
state si of the deadlock (α ∈ Int(si)), but α is not enabled in s because the next
component is unable to perform it.

A formal proof of Lemma 6.2 can be found in Appendix F on page 261.

As mentioned in Chapter 4, architectural constraints are one approach to con-
strain circular waiting situations among the components. Such constraints are

150 6 Efficient Deadlock Analysis

typically defined by means of undirected graphs, e.g., the component graph
(cf. Definition 4.1) or the cooperation graph (cf. Definition 4.4), which yield
constraints such as star-like, tree-like, or disjoint circular wait free architectures
(cf. Definitions 4.2, 4.3, and 4.6). The idea behind constraining the cooperation
among the components to be acyclic, i.e., considering star-like and tree-like
architectures, is that the absence of cycles in the graph reduces the presence
of circular waiting situations. For interaction systems, such an approach was
first taken by Majster-Cederbaum and Martens [179]. For other models of
component-based systems and concurrency, similar approaches can be found
in the literature [39, 49, 137]. However, as remarked in Section 4.2.2, with
such an acyclicity requirement, any cooperation of three or more components
induces a cycle in the corresponding graph, and thus disqualifies the system
for analysis. We thus extended the component graph to the cooperation graph
and derived the architectural constraint of disjoint circular wait freedom in
Section 4.2.2. Originally, this extension was invented by Majster-Cederbaum
and Martens [180] who demanded that the cooperation graph is acyclic. Here,
we dropped this requirement and admitted certain cycles in disjoint circular
wait free architectures.

We repeat our motivation of considering this potentially cyclic but disjoint
circular wait free architecture with respect to our observation about deadlocks
of this chapter. For ensuring deadlock-freedom, we have to consider any
way the components are able to cooperate. Lemma 6.2 shows that a dead-
lock induces a circular waiting among some of the components. Since these
components are also related in the cooperation graph, the superimposition of
the waiting and cooperation information allows us to exclude those waiting
situations where the reason of each single wait is completely independent
from the other ones. As we see in the next section, the exclusion of the above
mentioned waiting situations then allows for the establishment of a condition
for deadlock-freedom of the whole system by an analysis of small, fixed size
subsystems, which results in a polynomial-time bound of the approach.

In the following, we consider the database example introduced in Section 4.1
as our running example because, as we learned in Section 4.2.2, it has a disjoint
circular wait free architecture (cf. Figure 4.7 on page 94).

6.2 Exploiting Disjoint Circular Wait Free Architectures

Before we exploit disjoint circular wait free architectures of interaction sys-
tems, we formalize the idea behind the superimposition of the waiting and
cooperation information mentioned at the end of the previous section. As

6.2 Exploiting Disjoint Circular Wait Free Architectures 151

in Lemma 6.2, if we have a deadlock s in a given interaction system and a
component i wants to execute an interaction α, i.e., α ∈ Int(si), but one of the
other participating components j, i.e., {i, j} ∈ compset(α) and i 6= j, blocks
this execution, i.e., α /∈ Int(sj), then we have a waiting situation: i waits for j
because of α. Now, for the mentioned superimposition, we consider a certain
path—called cooperation path in the following—in the cooperation graph that
corresponds to this waiting situation.

6.2.1 Cooperation Paths

The following definition of cooperation paths corresponds to the mentioned
superimposition of a waiting caused by a deadlock to the cooperation graph.
Please note that a formal definition of a path can be found in Appendix A.

Definition 6.3 (Cooperation Path): Let Sys be an interaction system, and let
Gcoop = (V, E) be its cooperation graph which is assumed to be connected. A
finite path over Gcoop is called cooperation path πα

i,j for components i, j ∈ Comp
and interaction α ∈ Int with i 6= j and {i, j} ⊆ compset(α) if it connects the
corresponding vertices {i}, {j}, and compset(α) in Gcoop, i.e., |πα

i,j| = k for
k ∈ N, πα

i,j[0] = {i}, πα
i,j[k− 1] = {j}, and πα

i,j[k
′] = compset(α) for k′ ∈ N

with 0 < k′ < k− 1.

Figure 6.1 illustrates cooperation paths of the database example SysDB(n)
for n = 2 clients together with possible waiting situations. Note that the
specification of SysDB(n) was given in Section 4.1.

{1} {d} {2}

{d, 1}

α

{d, 2}

β

{d, 1, 2}
γ

α = {grantd, request1}
β = {updated, write2}
γ = {commitd, commit1, commit2}

πα
1,d = 〈{1}, {d, 1}, {d}〉

π
β
d,2 = 〈{d}, {d, 2}, {2}〉

π
γ
2,1 = 〈{2}, {d, 2}, {d, 1, 2}, {d, 1}, {1}〉

Figure 6.1: Three cooperation paths of our running example SysDB(n) with
n = 2. Additionally, possible “waiting for” situations are shown as red dashed
lines, e.g., {1} α99K {d} means component 1 waits for component d because of
interaction α. Observe that each dashed line corresponds to the sequence of
edges of a cooperation path, e.g., {1} α99K {d} corresponds to πα

1,d.

Since we are interested in using cooperation paths to derive information
about interaction systems with a disjoint circular wait free architecture, we

152 6 Efficient Deadlock Analysis

state three simple observations about cooperation paths between cooperating
components in the following lemma.

Lemma 6.4 (Cooperation Path Properties): Let Sys be an interaction system
and Gcoop its cooperation graph which is assumed to be connected. For all
components i, j ∈ Comp and interactions α ∈ Int with i 6= j and {i, j} ⊆
compset(α) exists a cooperation path πα

i,j with the following properties:

1. Every vertex on the cooperation path is a subset of the set of components
participating in α, i.e., ∀ v ∈ πα

i,j : v ⊆ compset(α).

2. Every vertex on the cooperation path except the ones that represent
components i and j contain at least two components, i.e., ∀ v ∈ πα

i,j : v 6=
{i} ∧ v 6= {j} =⇒ |v| ≥ 2.

3. The cooperation path consists of at least three vertices, i.e., |πα
i,j| ≥ 3.

A formal proof of Lemma 6.4 can be found in Appendix F on page 261.

In the following, we only consider cooperation paths that have the properties
of Lemma 6.4. Observe that the proof of the lemma shows how such paths
can be constructed for all suitable pairs of components and interactions. In
the next section, we combine cooperation paths and our observations about
deadlocks made in Section 6.1.

6.2.2 Cooperation Paths and Deadlocks

We now use the information about deadlocks of Lemma 6.2 to conclude the
existence of a certain vertex in the cooperation graph. Intuitively, this vertex
provides the information that at least two components have to (partially) wait
for each other if the corresponding interaction system has a disjoint circular
wait free architecture but is not deadlock-free.

Lemma 6.5 (Common Vertex): Let Sys be an interaction system and Gcoop =

(V, E) its cooperation graph. Assume that Sys has a disjoint circular wait
free architecture and contains a deadlock. There exist components i, j, k ∈
Comp and interactions α, β ∈ Int with i 6= j, j 6= k, {i, j} ⊆ compset(α),
{j, k} ⊆ compset(β), and α 6= β such that two cooperation paths πα

i,j and πβ
j,k

exist that have a vertex in common that does not represent a component, i.e.,
∃ v ∈ V : v ∈ πα

i,j ∧ v ∈ πβ
j,k ∧ |v| ≥ 2.

A formal proof of Lemma 6.5 can be found in Appendix F on page 262.

6.2 Exploiting Disjoint Circular Wait Free Architectures 153

Next, we combine our knowledge about cooperation paths from Lemma 6.4
and the existence of a common vertex in at least two such paths (if a deadlock
exists) of Lemma 6.5 in order to prove a condition that is checkable among two
components without considering whole cooperation paths, i.e., in the theorem
we do not need to access elements of the cooperation graph.

Theorem 6.6 (Common Interactions): Let Sys be an interaction system. As-
sume that Sys has a disjoint circular wait free architecture and contains a
deadlock s. There exist components i, j ∈ Comp and interactions α, β ∈ Int
with i 6= j, {i, j} ⊆ compset(α), {j} ⊆ compset(β), α ∈ Int(si), α /∈ Int(sj),
β ∈ Int(sj), and |compset(α) ∩ compset(β)| ≥ 2 (where si and sj are the local
states of the components i and j in the global state s).

A formal proof of Theorem 6.6 can be found in Appendix F on page 262.

Theorem 6.6 offers a sufficient condition to verify the deadlock-freedom of
interaction systems. To see this, consider the negation of the statement of
the theorem, that we formalize as the following corollary. We also simplify
the statement such that we only need to consider one interaction α instead of
every pair of distinct interactions.

Corollary 6.7 (Absence of Deadlocks): Let Sys be an interaction system with
a disjoint circular wait free architecture. For component i ∈ Comp and state
si ∈ Si, let coopset(si) :=

⋃
α∈Int(si) compset(α) \ {i} denote the set of compo-

nents that i wants to cooperate with in si. If no two components i, j ∈ Comp,
interaction α ∈ Int, and local states si ∈ Si and sj ∈ Sj with i 6= j, {i, j} ⊆
compset(α), α ∈ Int(si), α /∈ Int(sj), and compset(α) ∩ coopset(sj) 6= ∅ exist,
then Sys contains no deadlock.

A formal proof of Corollary 6.7 can be found in Appendix F on page 263.

In the next section, we address how we can use the sufficient condition stated
in Corollary 6.7 in an automated manner, i.e., how we can efficiently check
whether such components, interactions, and local states as stated in the corol-
lary exist. We also provide an example to illustrate this first deadlock analysis
result.

6.2.3 Problematic States and Deadlock-Freedom

We use the information provided by Corollary 6.7 to define the notion of
problematic states as follows that allows us to determine those components,
interactions, and states that are candidates for the sufficient condition of the
corollary.

154 6 Efficient Deadlock Analysis

Definition 6.8 (Problematic States): Let Sys be an interaction system. For
component i ∈ Comp, dependent local state si ∈ Si, interaction α ∈ Int(si),
and component j ∈ compset(α) \ {i}, we define PSj(si, α) := {sj ∈ Sj |
α /∈ Int(sj) ∧ compset(α) ∩ coopset(sj) 6= ∅ ∧ sj dependent ∧ (∀ β ∈
Int(si) ∩ Int(sj) : compset(β) 6= {i, j}) ∧ (si, sj) reachable in [[Sys[{i, j}]]]}.

Please note that we incorporated two observations to refine these sets with
respect to Corollary 6.7: States are only problematic regarding deadlock-
freedom to each other if both states are dependent—otherwise, they can
execute a singleton interaction globally and thus are never involved in a
deadlock. Similarly, since we compute the behaviors of subsystems of size
two, if an interaction in which only components i and j participate in is enabled
in a state combination, it is also globally enabled. The second observation
concerns the reachability of state combinations: If the combination (si, sj) of
two states is not reachable in the behavior of the subsystem consisting of the
components i and j, it is clear that this combination is not part of any reachable
global state. With this definition, we are able to state a sufficient condition for
deadlock-freedom that can be efficiently checked.

Theorem 6.9 (Deadlock-Freedom): Let Sys be an interaction system with a
disjoint circular wait free architecture. Sys is deadlock-free if for all compo-
nents i ∈ Comp, dependent local states si ∈ Si, interactions α ∈ Int(si), and
components j ∈ compset(α) \ {i} it holds that PSj(si, α) = ∅.

A formal proof of Theorem 6.9 can be found in Appendix F on page 263.

As an example, we determine the problematic states of the database example
system SysDB(n) according to Definition 6.8. For state s2

d ∈ Sd and all compo-
nents i, j ∈ Comp \ {d} with 1 ≤ i, j ≤ n and i 6= j and states s1

i ∈ Si, we get
(all other combinations are empty):

PSi(s2
d, {updated, writei}) = {s1

i }, PSi(s2
d, {informd, waiti}) = {s1

i },
PSj(s1

i , {commitd, . . .}) = {sk
j | 2 ≤ k ≤ wj + 1}.

Note that these states are also intuitively problematic to each other, e.g., if
the database d is in state s2

d and wants to inform client i which is already in
state s1

i , this is not possible because i does not offer its wait action in this state
and wants to cooperate with d. Since not all sets of problematic states are
empty, we cannot conclude deadlock-freedom for interaction system SysDB(n)
by means of Theorem 6.9.

But, lets take a look at our other running example, the merchandise manage-
ment interaction system SysMMS. As we learned in Chapter 4, the system has
a disjoint circular wait free architecture (cf. Figure 4.5 on page 94). Now, if

6.2 Exploiting Disjoint Circular Wait Free Architectures 155

we compute the sets PSj(si, α) for all components i ∈ Comp, dependent states
si ∈ Si, interactions α ∈ Int(si), and components j ∈ compset(α) \ {i}, i.e., for
all appropriate pairs of the customer, management, and storage components,
we find out that no problematic states exist for SysMMS. Thus, the deadlock-
freedom of interaction system SysMMS is implied by Theorem 6.9.

Next, we take a closer look at the computational costs of applying Theorem 6.9
and derive an algorithm in order to be able to perform this task in an automatic
way and to understand why the application of the theorem is guaranteed to
be in polynomial time in the size of the input.

6.2.4 Algorithmic Treatment of Problematic States

In this section, we derive an algorithm that checks the condition of Theorem 6.9.
We show how the sets of problematic states can be determined in an automatic
way and address the computational costs of this operation. Clearly, in order to
check the condition of the theorem, we just need to search for one problematic
state since its existence implies that not all potential sets with respect to
Definition 6.8 are empty.

But first, we need to initialize the new attributes that were introduced in this
chapter, viz. the set Int(s), the set coopset(s), and the dependency for all local
states s of all components (cf. Definition 6.1 and Corollary 6.7), that are needed
to determine whether problematic states exist. Algorithm 6.1 provides this
initialization.

Algorithm 6.1 Initialization for the problematic states computation

PS-INITIALIZATION(Sys)

1 INITIALIZATION(Sys) // cf. Algorithm B.1 on page 211
2 for each component i ∈ Comp
3 for each state si ∈ Si

4 si.dependent = TRUE

5 si.Int = ∅
6 si.coopset = ∅
7 for each interaction α ∈ Int
8 if i ∈ α.compset and not si.Sucα. i == ∅
9 si.Int = si.Int∪ {α}

10 si.coopset = si.coopset∪ α.compset
11 if |α.compset| == 1
12 si.dependent = FALSE

13 si.coopset = si.coopset \ {i}

156 6 Efficient Deadlock Analysis

As we address in Appendix B, the runtime bound for the initialization al-
gorithm called in line 1 of Algorithm 6.1 is polynomial in the size of the
input interaction system. Since we afterwards loop once through all compo-
nents (cf. line 2) and local states (cf. line 3), and for each such state through
all interactions (cf. line 7), we also have polynomial runtime costs for Algo-
rithm 6.1.

Next, we need to examine all potential problematic state combinations which
is carried out by the following algorithm. In its first step, Algorithm 6.2 checks
wether the input interactions system has a disjoint circular wait free architec-
ture which is an assumptions of Theorem 6.9. We addressed this architectural
check in Section 4.3.2 of Chapter 4 where we learned that Algorithm B.6, which
is called in line 1 of Algorithm 6.2 and given in Appendix B, checks whether an
interaction system has a disjoint circular wait free architecture in polynomial
time in the number of components and interactions.

Algorithm 6.2 Check of the condition of Theorem 6.9

DEADLOCK-FREEDOM-CONDITION(Sys)

1 if not DCWF(Sys) // cf. Algorithm B.6 on page 218
2 return FALSE

3 PS-INITIALIZATION(Sys) // cf. Algorithm 6.1 on page 155
4 for each component i ∈ Comp
5 for each state si ∈ Si

6 if si.dependent
7 for each interaction α ∈ si.Int
8 for each component j ∈ α.compset \ {i}
9 for each state sj ∈ Sj

10 if IS-PROBLEMATIC(Sys, i, si, α, j, sj)

11 return FALSE // ↪→ cf. Algorithm 6.3
12 return TRUE

Algorithm 6.3 Problematic state decision with respect to Definition 6.8

IS-PROBLEMATIC(Sys, i, si, α, j, sj)

1 if α /∈ sj.Int and not sj.coopset∩ α.compset == ∅ and sj.dependent
2 for each interaction β ∈ si.Int∩ sj.Int
3 if β.compset == {i, j}
4 return FALSE

5 (S{i,j}, Σ, { a−→}a∈Σ, S0
{i,j}) = BEHAVIOR-TRAVERSAL(Sys[{i, j}])

6 return (si, sj) ∈ S{i,j} // ↪→ cf. Algorithm B.2, use hashing to cache
7 else return FALSE // results and avoid “double” computations.

6.3 Refinement: Problematic States Reachability 157

Algorithm 6.2 enumerates all combinations that possibly constitute a problem-
atic state, i.e., all dependent states si and sj of components i and j respectively
and interactions α such that α ∈ Int(si) and j ∈ compset(α) \ {i} holds (cf.
Definition 6.8). For each combination, Algorithm 6.3 on the facing page is
called in line 10 of Algorithm 6.2, which carries out the further checks.

Observe that the if-clause in the first line of Algorithm 6.3 corresponds to the
first three terms of the logical conjunction in the definition of PSj(si, α) (cf.
Definition 6.8). If it is true, we check in lines 2–4 whether an interaction is
performable in both si and sj where only components i and j participate in,
which means that the state combination (si, sj) cannot be part of a deadlock.
Finally, we check the reachability of (si, sj) in the subsystem consisting of the
components i and j in line 5. As we mentioned in Section 2.2 of Chapter 2,
Algorithm B.2, which is given in Appendix B, computes an interaction system’s
reachable global behavior and we can thus decide the reachability of (si, sj)

by checking whether it is contained in the state space of the labeled transition
system returned by Algorithm B.2. Observe that we treated all five terms in
the logical conjunction that defines a problematic state.

Now, we are interested in the computational costs of these algorithms. One call
of Algorithm 6.3 can be performed in O(|Int|+ |Smax|2 · |Int|) where the latter
summand corresponds to the costs of Algorithm B.2 for two components and
Smax denotes the largest local state space. We have to apply this algorithm to all
pairs of local states and interactions in the worst case, i.e., O(|Comp|2 · |Smax|2 ·
|Int|) times. This means that Algorithm 6.2 has a polynomial runtime bound.
Thus, we derived an efficient approach according to the computational view
and our goals mentioned in Chapter 1. However, we can dramatically speed
up this computation by caching the results of the traversal of the subsystems,
which is indicated as a comment after line 5 of Algorithm 6.3.

In the next section, we further refine the information provided by problematic
states to also verify the deadlock-freedom of the database example.

6.3 Refinement: Problematic States Reachability

In the previous section, we saw that deadlock-freedom of the merchandise
management example SysMMS can be concluded without constructing the
global behavior [[SysMMS]], but for the database example SysDB(n) the ap-
proach failed. Here, we refine the information provided by problematic states
where we use a similar observation on the reachability of global states as
Majster-Cederbaum and Martens [180]. We motivate this refinement by means
of the database example.

158 6 Efficient Deadlock Analysis

Consider SysDB(n) with n = 2 and the global state (s1
d, s2

1, s2
2). We want

to exclude its reachability by only considering subsystems of size two. In
state s1

d, component d wants to cooperate with client 1 and client 2, i.e.,
coopset(s1

d) = {1, 2}—cf. Corollary 6.7 for the definition of the set coopset(s)
for a component’s local state s. Now, we take a look at [[SysDB(2)[{d, 1}]]]
and see that the state (s1

d, s2
1) is only reachable by performing interaction

{grantd, request1} and analogously in [[SysDB(2)[{d, 2}]]], the state (s1
d, s2

2) is
only reachable by {grantd, request2}. Comparing these two interactions, we see
that they are not consistent, i.e., only one of them can be used to enter either
(s1

d, s2
1, s0

2) or (s1
d, s0

1, s2
2).

In the next section, we use this observation to exclude the reachability of
problematic state combinations in interaction systems that have a disjoint
circular wait free architecture and are deadlock-free.

6.3.1 Non-Interfering Backward Reachable Set and Entry Interac-
tions

Let Sys be an interaction system with a disjoint circular wait free architecture.
Assume that Sys is deadlock-free but we find problematic states. Consider
a (potentially reachable) global state s = (. . . , si, . . . , sj, . . . , sk, . . .), i.e., we
fix the three components i, j, and k and three of their local states that are
part of the global state s. From the point of view of component i, this global
state is a potential deadlock if i wants to execute, say, two interactions β j

and βk, i.e., we have Int(si) = {β j, βk}, but sj and sk are problematic states,
i.e., sj ∈ PSj(si, β j) and sk ∈ PSk(si, βk) holds. Recall that we know from
Definition 6.8 that j ∈ compset(β j) and compset(β j) ∩ coopset(sj) 6= ∅ holds,
which means that component j in state sj also wants to cooperate with i or
with one of the components i wants to cooperate with in state si, i.e., the
components i and j are or share cooperation partners in their states si and sj.
The same observation can be made for component k and interaction βk.

We now use this observation to derive information about the reachability of the
global state s—similarly to the idea mentioned at the beginning of Section 6.3
for SysDB(2). We ask: How can the cooperation partners of the components
influence the reachability of the potential deadlock s (from the point of view
of component i)? Here, we mean by influencing whether the cooperation
partners are also involved on the way through the global behavior, i.e., in
interactions that lead to global state s (on a global execution path).

First, we want to exclude the situation that component i reaches state si with-
out cooperating with one of its later cooperation partners, i.e., the components
contained in coopset(si). In order to achieve this, we backwardly search i’s

6.3 Refinement: Problematic States Reachability 159

state space starting in state si and only consider actions that are used in in-
teractions where i’s cooperation partners in si have no influence on. In the
comparison of the interactions which lead to a certain global state, these states
can be reached as intermediate steps without affecting the reachability of a
state combination in question. We define this information as follows similarly
to the notion of “backward search” of Majster-Cederbaum and Martens [180]
which we here, as already mentioned in Chapter 1, adjust in order to work
without previously establishing the property of exclusive communication (cf.
Section 5.2).

Definition 6.10 (Non-Interfering Backward Reachable Set): Let Sys be an in-
teraction system. We define the non-interfering backward reachable set (NBRS) of
a state si ∈ Si of a component i ∈ Comp as the set of all states from which si

is reachable without using actions that are (only) used for cooperation with
components that i wants to cooperate with in si:

NBRS0(si) := {si}
NBRSl+1(si) :=

{
ti ∈ Si | ∃ ri ∈ NBRSl(si) : ti ∈ Pre(ri, {ai ∈ Ai |
∃ α ∈ Int : ai ∈ α ∧ compset(α) ∩ coopset(si) = ∅})

}
NBRS(si) :=

⋃
l∈N

NBRSl(si)

where Pre(si, A) denotes the A-predecessors of a state si as introduced in
Definition A.2.

For instance, computing the NBRSs for the running example SysDB(n) yields
for all clients i and states si ∈ Si : NBRS(si) = {si} and for the states of the
database d:

NBRS(s0
d) = {s0

d, s3
d}, NBRS(s2

d) = {s2
d}, and

NBRS(s1
d) = {s1

d}, NBRS(s3
d) = {s3

d, s2
d, s1

d, s0
d} = Sd.

Here, the NBRS of state s3
d is d’s whole state space because in this state the

component only “cooperates” with itself. However, the NBRS of state s0
d

shows that for reachability concerns also combinations involving s3
d have to

be considered since component d can transit from this state to s0
d without an

influence of any cooperation partner.

Thus, coming back to Sys and its global state s = (. . . , si, . . . , sj, . . . , sk, . . .), if
the components j and k can influence the reachability of i’s state si, we have
to assume that NBRS(si) ∩ Ii = ∅ holds, i.e., there is no initial state of i from
which si can be reached without cooperating with component j or k.

With this additional assumption, we can now take a look at the paths leading
to pairwise state combinations, i.e., how can (si, sj) and (si, sk) respectively

160 6 Efficient Deadlock Analysis

be reached—as we did for interaction system SysDB(2) and the global state
(s1

d, s2
1, s2

2) at the beginning of Section 6.3. Since we have sj ∈ PSj(si, β j), we
know that compset(β j) ∩ coopset(sj) 6= ∅ holds, which means that NBRS(sj)

contains all states from which the reachability of sj in j’s behavior cannot be
influenced by one of its cooperation partners in sj which are also cooperation
partners of component i in state si.

Now, we search for the set of those interactions α such that a global state could
be reached where component i is in state si and component j is in state sj and
no cooperation partner of i in state si can influence this reachability after the
execution of such an α. We define such interactions as follows.

Definition 6.11 (Entry Interactions): Let Sys be an interaction system. We
define the entry interactions (EI) of a state si ∈ Si of a component i ∈ Comp and
a state sj ∈ Sj of a component j ∈ Comp \ {i} as those interactions α ∈ Int such
that an action ai of i, i.e., ai ∈ Ai, is used for cooperation with components
that i wants to cooperate with in si and ai is also used in α to enter a reachable
state in the behavior of the subsystem of i and j from which the state (si, sj)

can be reached without using actions that are (only) used for cooperation with
components that i (and j resp.) wants to cooperate with in si (and sj resp.):

EI(si, sj) :=
{

α ∈ Int | ∃ ai ∈ Ai : ai ∈ α

∧
(
∃ β ∈ Int : ai ∈ β ∧ compset(β) ∩ coopset(si) 6= ∅

)
∧
(
∃ (ri, rj) ∈ NBRS(si)×NBRS(sj) ∃ (ti, tj) ∈ Si × Sj :

ti
ai−→i ri ∧

(
(j(α) = {aj} ∧ tj

aj−→j rj) ∨ (j(α) = ∅

∧ tj = rj)
)
∧ (ti, tj) reachable in [[Sys[{i, j}]]]

)}
.

Thus, if there is an entry interaction α ∈ EI(si, sj) and it gets executed globally,
then a global state (. . . , si, . . . , sj, . . .) can be reached afterwards and no coop-
eration partner of component i in state si can influence this reachability once α

has been executed. We can proceed similarly for si and sk and also compute
EI(si, sk). Now, if we find an interaction α that is contained in both of these sets,
i.e., α ∈ EI(si, sj) ∩ EI(si, sk), we know that after the execution of α a global
state can be reached such that component i is in state si, j is in state sj, and k is
in state sk and no cooperation partner of i in si can influence this reachability
after α has been executed. But conversely, i.e., if no such α exists, we can con-
clude that such a global state cannot be reached—however, if there is such an
α, we gained no additional information since it could be the case that no global
state is reachable where interaction α is enabled. But, this idea is a criterion
for excluding the reachability of problematic state combinations.

Summarizing, we exploit the above observations that we made for state si

in Sys—similarly to Majster-Cederbaum and Martens [180]: In an interaction

6.3 Refinement: Problematic States Reachability 161

system with a disjoint circular wait free architecture, a state si ∈ Si of any
component i ∈ Comp is only part of a global deadlock if all interactions α that i
wants to perform in si are blocked by the corresponding cooperation partners,
i.e., for all such α ∈ Int(si) there is a component j ∈ compset(α) \ {i} that is
in a state sj ∈ Sj where it does not want to perform α, i.e., α /∈ Int(sj) holds.
Thus, since we want to determine which entry interactions of si may lead to
a state where α is not enabled, we take the union of all entry interactions of
problematic states of components participating in α. Since this argument may
only result in a global deadlock if it holds for all interactions that si wants to
perform, i.e., if there is an entry interaction that is part of the union as above
for all α ∈ Int(si), we compare these sets: In order to determine whether such
an interaction exists, we compute the intersection of all these unions.

In the next section, we formalize the above discussion.

6.3.2 Refined Condition for Deadlock-Freedom

The following theorem formalizes the discussion after the definition of the
entry interactions (cf. Definition 6.11) above. The first condition ensures that
we actually are able to perform the described comparison, because if a state can
be reached from an initial state without using actions that are (only) needed
for cooperation with its cooperation partners, we cannot rely on any entry
information of this state. Hence, we simply demand that no such state is
reachable, or otherwise, that no corresponding problematic state of another
component is also reachable in this way.

Theorem 6.12 (Refined Deadlock-Freedom): Let Sys be an interaction sys-
tem with a disjoint circular wait free architecture. For an interaction α ∈ Int,
let cycleset(α) denote the set of cycle components that participate in α (cf.
Definition 4.6). If the following two conditions hold, then Sys is deadlock-free:

1. For all components i ∈ Comp and dependent local states si ∈ Si it holds
that NBRS(si) ∩ S0

i = ∅ or there is an interaction α ∈ Int(si) such that
for all components j ∈ compset(α) \ {i} holds

(⋃
sj∈PSj(si ,α) NBRS(sj)

)
∩

S0
j = ∅.

2. For all interactions α ∈ Int with |compset(α)| ≥ 2 exists a component
k ∈ compset(α) such that for all components i ∈ cycleset(α) ∪ {k} and
all dependent local states si ∈ Si holds

α /∈
⋂

β∈Int(si)

⋃
j∈compset(β)\{i}

⋃
sj∈PSj(si ,β)

EI(si, sj).

A formal proof of Theorem 6.12 can be found in Appendix F on page 263.

162 6 Efficient Deadlock Analysis

For enhanced readability, we use for a state si of a component i and an interac-
tion β ∈ Int the abbreviation PEI(si, β) :=

⋃
j∈compset(β)\{i}

⋃
sj∈PSj(si ,β) EI(si, sj)

for the union of entry interactions, which we call the problematic entry interac-
tions, and IPEI(si) :=

⋂
β∈Int(si) PEI(si, β) for the corresponding intersections,

which we call the intersection of problematic entry interactions.

We continue with the database example SysDB(n) where we get for compo-
nent d and all components i ∈ Comp \ {d} (all other sets are empty):

PEI(s2
d, {updated, writei}) = PEI(s2

d, {informd, waiti})
=
⋃

1≤j≤n
{
{informd, waitj}, {updated, writej}

}
,

PEI(s1
i , {commitd, commit1, . . . , commitn}) =

{
{informd, waiti},

{updated, writei}
}

.

These problematic entry interactions correspond to the intuition, e.g., the entry
interactions EI(s2

d, s1
i) of state s2

d of d and state s1
i of a client i are that d informs

the client or updates its database with the value provided by the client.

This results in the following intersections: For all i ∈ Comp \ {d} and s1
i ∈ Si,

we get (all other sets are empty):

IPEI(s1
i) =

{
{informd, waiti}, {updated, writei}

}
.

Now, we see that for all sd ∈ Sd the set IPEI(sd) is empty. Since component d
participates in every interaction α ∈ Int with |compset(α)| ≥ 2, cycleset(α) =
{d} holds, and α /∈ IPEI(sd) for all sd, the second condition of Theorem 6.12
holds. Note that also the first condition holds, since for all dependent local
states si of all components i ∈ Comp holds NBRS(si) ∩ S0

i = ∅—except for
state s0

d. But for this state, we learned in Section 6.2.3 (after the statement of
Theorem 6.9) that all problematic state sets are empty, i.e., PSi(s0

d, α) = ∅ for
all suitable components i and interactions α, which makes the first condition
true for all dependent states. Thus, we can conclude that SysDB(n) is deadlock-
free.

Next, we take a closer look at the computational costs of applying Theo-
rem 6.12 and derive an algorithm in order to be able to perform this task in
an automatic way and to understand why the application of the theorem is
guaranteed to be in polynomial time in the size of the input.

6.3.3 Algorithmic Treatment of the Refined Condition

In this section, we derive an algorithm that checks the two conditions of Theo-
rem 6.12. We show how the sets of interesting problematic entry interactions
can be determined in an automatic way and address the computational costs

6.3 Refinement: Problematic States Reachability 163

of this operation. First, we need to initialize the new attributes that were
introduced in the previous section, viz. the set NBRS(s), the non-interfering
backward reachable set, of all component’s local states s (cf. Definition 6.10).
Algorithm 6.4 provides this initialization.

Algorithm 6.4 Computation of the NBRS with respect to Definition 6.10

NBRS-COMPUTATION(Sys)

1 PS-INITIALIZATION(Sys) // cf. Algorithm 6.1 on page 155
2 for each component i ∈ Comp
3 for each state si ∈ Si

4 NBRS-Actions = ∅
5 si.coop-Actions = ∅
6 for each interaction α ∈ Int
7 if i ∈ α.compset
8 if α.compset∩ si.coopset == ∅
9 NBRS-Actions = NBRS-Actions∪ α. i

10 else si.coop-Actions = si.coop-Actions∪ α. i
11 si.NBRS = ∅ // ↪→ The coop-Actions of a state si are those
12 current = {si} // actions ai ∈ Ai such that ∃ β ∈ Int : ai ∈ β

13 repeat // ∧ compset(β) ∩ coopset(si) 6= ∅.
14 si.NBRS = si.NBRS∪ current
15 found = ∅
16 for each state ti ∈ current
17 for each action a ∈ NBRS-Actions
18 found = found∪ ti.Prea

19 current = found \ si.NBRS
20 until current == ∅

We learned in Section 6.2.4 of this chapter that the runtime bound for Algo-
rithm 6.1 called in line 1 of Algorithm 6.4 is polynomial in the size of the input.
After the initialization, we loop for each component and each of its local states
through all interactions to determine the set of actions that are needed for
the NBRS computation, i.e., all actions ai ∈ Ai for a component i and one of
its states si such that ∃ α ∈ Int : ai ∈ α ∧ compset(α) ∩ coopset(si) = ∅ (cf.
Definition 6.10). Here, we can directly store the non-NBRS actions because
they are needed later for the computation of the entry interactions (cf. the com-
ment in lines 11–13 of Algorithm 6.4). After the treatment of the actions, we
then compute the NBRS for each state where we just have to traverse the state
space backwardly using only the actions computed in the previous step. Over-
all, these nested loops run in time O(|Comp| · |Smax| · (|Int|+ |Smax| · |Amax|))
where Smax and Amax denote the largest local state space and action set respec-

164 6 Efficient Deadlock Analysis

tively. We here assume that computing the set containment in line 7 and the
set intersection in line 8 can be carried out in constant time, otherwise a factor
of |Comp| needs to be added to the upper bound. Thus, the whole runtime of
Algorithm 6.4 is polynomial in the size of the input.

With this initialization, we can now compute the sets IPEI(si) and PEI(si, α)

respectively for a state si ∈ Si of a component i and an interaction α ∈ Int,
which allow to check the conditions of Theorem 6.12. Algorithm 6.5 on the
facing page provides this computation.

The algorithm is called with an interaction system Sys. In the first step, cf.
line 1 of Algorithm 6.5, we check wether the input interaction system has a
disjoint circular wait free architecture which is an assumption of Theorem 6.12
and which can be decided in polynomial time (cf. Section 4.3.2). We already
discussed above that the initialization that is then called in line 2 also runs
in polynomial time. In lines 3–33, we compute the set i.dependent-States-IPEI
for each component i ∈ Comp. This set corresponds to the union of the sets
IPEI(si) of all dependent local states si of the current component i. We compute
these sets in lines 5–33 where we check in parallel with the variable cond-one
whether the first condition of Theorem 6.12 holds for each dependent local
state. In line 9, we check wether an initial state of the current component is
contained in an NBRS, i.e., we check whether the first part of the first condition
of the theorem holds. Since we now have to compute consecutive intersections
of sets of interactions, we initialize the set IPEI with the set of all interactions
in line 10.

Next, we examine all performable interactions with respect to the current
local state in lines 11–31, i.e., we start computing the sets PEI(si, α) of all
dependent states si ∈ Si of a component i ∈ Comp and interactions α ∈ Int
that are performable in si, i.e., α ∈ Int(si) holds. We now have to compute the
problematic states of all components j ∈ compset(α) \ {i}, which we consider
in lines 14–27. For each local state sj of such a component j (cf. lines 16–27) we
call Algorithm 6.3 in line 17 to decide whether sj is problematic, i.e., whether
sj ∈ PSj(si, α) holds. If this is the case, we collect the NBRS of such a state
sj in the set PS-NBRS that collects the states that we need to check for the
second part of the first condition of Theorem 6.12. Note that the final check is
performed in line 28 after this collection has been finished.

At this point of the algorithm, we can compute the entry interactions for
the pair of states (si, sj). We loop trough all interactions β ∈ Int in lines 19–
27 and such a β is a potential entry interaction if component i participates
in it and no NBRS action with respect to state si is an element of β. This
works because the NBRS actions are those actions ai ∈ Ai of component
i such that ai ∈ β ∧ compset(β) ∩ coopset(si) = ∅ (for all β) holds (cf.

6.3 Refinement: Problematic States Reachability 165

Algorithm 6.5 Check of the conditions of Theorem 6.12

REFINED-DEADLOCK-FREEDOM-CONDITION(Sys)

1 if not DCWF(Sys) then return FALSE // cf. Algorithm B.6 on page 218
2 NBRS-COMPUTATION(Sys) // cf. Algorithm 6.4 on page 163
3 for each component i ∈ Comp
4 i.dependent-States-IPEI = ∅ // We collect the sets IPEI(si) for all
5 for each state si ∈ Si // dependent states si of component i.
6 IPEI = ∅ // for the set IPEI(si) =

⋂
β∈Int(si)

PEI(si, β)
7 if si.dependent
8 cond-one = TRUE // First condition of Theorem 6.12
9 if not si.NBRS∩ S0

i == ∅ then cond-one = FALSE

10 IPEI = Int
11 for each interaction α ∈ si. Int
12 PEI = ∅ // for PEI(si, α) =

⋃
j∈compset(α)\{i}

⋃
sj∈PSj(si ,α) EI(si, sj)

13 cond-one-interaction = TRUE // Second part the first condition
14 for each component j ∈ α.compset \ {i}
15 PS-NBRS = ∅ // for the set

⋃
sj∈PSj(si ,α) NBRS(sj)

16 for each state sj ∈ Sj
17 if IS-PROBLEMATIC(Sys, i, si, α, j, sj) // cf. Algorithm 6.3
18 if not cond-one then PS-NBRS = PS-NBRS∪ sj.NBRS
19 for each interaction β ∈ Int
20 if not β ∩ si.coop-Actions == ∅ // cf. line 10 of Alg. 6.4
21 for each (ti, tj) ∈ si.NBRS ×̆ sj.NBRS
22 Predecessor = {tj}
23 if j ∈ β.compset then Predecessor = tj.Preβ. j
24 (S{i,j}, . . .) = BEHAVIOR-TRAVERSAL(Sys[{i, j}])
25 if not (ti.Preβ. i ×̆ Predecessor) ∩ S{i,j} == ∅
26 PEI = PEI ∪ {β}
27 break
28 if not cond-one and not PS-NBRS∩ S0

j == ∅
29 cond-one-interaction = FALSE

30 IPEI = IPEI ∩ PEI
31 if not cond-one and cond-one-interaction then cond-one = TRUE

32 if not cond-one then return FALSE

33 i.dependent-States-IPEI = i.dependent-States-IPEI ∪ IPEI
34 Cycle-Comp = CYCLE-COMPONENTS(Sys) // cf. Algorithm B.7 on page 219
35 for each interaction α ∈ Int
36 if |α.compset| ≥ 2
37 contained = TRUE

38 for each component i ∈ α.compset
39 if not α ∈ i.dependent-States-IPEI then contained = FALSE; break
40 for each component i ∈ α.compset∩ Cycle-Comp
41 if α ∈ i.dependent-States-IPEI then contained = TRUE; break
42 if contained then return FALSE

43 return TRUE

166 6 Efficient Deadlock Analysis

Definition 6.10 and line 8 of Algorithm 6.4). Thus, for the other actions ai

holds ai ∈ β ∧ compset(β) ∩ coopset(si) 6= ∅ (for all β) as required by
the definition of the entry interactions (cf. Definition 6.11). Observe that we
already computed these actions and stored them in the set si.coop-Actions (cf.
the comment in lines 11–13 of Algorithm 6.4). According to Definition 6.11,
we now have to determine whether a reachable state exists in the behavior of
the subsystem of both components such that i’s action in β is used to enter
a state after which only NBRS actions are used in appropriate interactions
until the state combination (si, sj) is reached. We carry this determination
out in lines 21–27 straightforwardly to Definition 6.11. The computation in
line 24 of the reachable global behavior of the interaction system Sys[{i, j}]
for the reachability check was already discussed for the problematic states
(cf. the analysis of Algorithm 6.3 in Section 6.2.4). Here, a hash table should
be used to cache results and avoid “double” computations of the behaviors
(both, in this computation and in the computation of the problematic states).
However, there is no exponential blowup in the computational complexity if
we do not cache results. Finally, we can update the set IPEI in line 30 with the
potential entry interactions for the current state. At this point, we can check in
line 32 wether the first condition of Theorem 6.12 holds and answer the check
of the whole condition negatively if it is violated by the currently considered
dependent states.

Now, after the loop over the components is finished (cf. lines 3–33), we de-
termined for each component the union of the sets IPEI(si) of all dependent
local states si of the component i and know that the first condition of Theo-
rem 6.12 holds. Thus, we need to consider the second condition as well. First,
we compute the cycle components of Sys in line 34 by calling Algorithm B.7,
which is given in Appendix B and whose runtime is linear in the size of the
cooperation graph as we discussed at the end of Section 4.3.2. Second, we treat
in lines 35–42 each interaction where at least two components participate in.
In lines 38–39, we check whether there is a component such that the currently
considered interaction is not contained in the collection of entry interactions
of the components. In lines 40–41, we ensure that all cycle components do not
contain the interaction in question in their collection of entry interactions that
potentially lead to a problematic state. After the check of all interactions, we
can finally decide whether the second condition of Theorem 6.12 holds.

This brings us to the question of the overall runtime of Algorithm 6.4. From
the detailed discussion above we know that we loop once through all local
states of all components, and in each loop we consider at most all interactions
and all participating components and their local states. If such a local state
is a problematic state, which can be decided in O(|Int|+ |Smax|2 · |Int|) time
where Smax denotes the largest local state space (cf. Algorithm 6.3), we com-

6.4 Related Work 167

pute the entry interactions: We loop through all interactions and check for
all suitable (with respect to Definition 6.11) pairs of NBRS states whether
they are reachable in a subsystems of size two, which overall consumes
O(|Int| · |Smax|2 · |Smax|2 · |Int|) time (the latter two factors correspond to the
computation of the global behavior of the subsystem of size two). Thus, since
we call the problematic state check and the entry interactions determination at
most O(|Comp|2 · |Smax|2 · |Int|2) times, we have an overall polynomial time
bound of our approach.

As we already mentioned above, we can speed up parts of the computation if
we use a hash table to store already computed sets of reachable states of the
relevant subsystems of size two for both, the problematic state and the entry
interaction computation, i.e., overall we only need to perform at most |Comp|2
reachability analyses bounded by O(|Smax|2). In this case, the overall runtime
bound is O(|Comp|2 · |Smax|4 · |Int|4). However, the approach is much faster
since in typical instances not all components participate in all interactions. We
address this observation by an evaluation of our approach with respect to a
prototype implementation in Section 6.5.

But first, we take a look at related work in the following section.

6.4 Related Work

First and foremost, as we already mentioned several times above, our ap-
proach presented in the previous sections is inspired by an approach of
Majster-Cederbaum and Martens [180], which itself is an extension of an
earlier approach by the authors [179] and whose formal proofs can be found in
the dissertation of Martens [190] and in a journal version [181]. As we pointed
out in Chapter 4, Majster-Cederbaum and Martens [180] define a similar graph
as our cooperation graph and require for their architectural constraint that this
graph is a tree in the graph-theoretical sense. This constraint structures the
cooperations among the components and reduces the possibility of waiting
situations. Here, we extended this idea and admitted certain cycles in our
disjoint circular wait free architectural constraint (cf. Definition 4.6).

The authors make a similar observation regarding problematic states and de-
fine a notion called “backward search” that is comparable to our notion of the
non-interfering backward reachable set of a component’s state. However, for
the latter notion and thus also for their following results regarding deadlock-
freedom, Majster-Cederbaum and Martens [180] require that an interaction
system has strongly exclusive communication—as we discussed in Section 5.2
of Chapter 5. We showed in the referenced section that this property can be

168 6 Efficient Deadlock Analysis

established for a given interaction system in polynomial time—and also find a
similar result by Majster-Cederbaum and Martens [180, Lemma 1]—without
modifying the global behavior of the interaction system under analysis in a
severe way with respect to deadlock-freedom. Furthermore, we here showed
how we can drop this requirement completely by comparing more information
in our entry interactions (cf. Definition 6.11) than Majster-Cederbaum and
Martens [180] in their corresponding entry information called “problematic
actions” [180, Definition 9]. We never assumed exclusive communication and
thus improve their approach by avoiding a polynomial-time preprocessing
step that possibly enlarges the behavior of the components for the verifica-
tion process. We demonstrate the effect of this avoidance by means of an
experimental evaluation in the following section.

Summarizing, for interaction systems which already have strongly exclusive
communication and a cooperation graph that is a tree in the graph-theoretical
sense, the two approaches coincide, i.e., our Theorem 6.12 and Proposition 1
in the paper by Majster-Cederbaum and Martens [180]. Thus, our result
from this chapter is a generalization of all previous approaches that exploit
the architecture of interaction systems to establish the property of deadlock-
freedom in polynomial time.

We want to mention that Martens [190, Definition 3.4.1] presents a further re-
finement for the set of problematic states. However, Becker [32, Example 3.5.2]
already showed that this refinement cannot be used in interaction systems
with a disjoint circular wait free architecture because it depends on a property
that can only be found when the architecture is a tree in the graph-theoretical
sense. To be more precise, if the cooperation graph is a tree and a deadlock is
present in the corresponding interaction system, then for every two consecu-
tive interactions that are part of a circular waiting situation as in Lemma 6.2
it holds that the intersection of the sets of participating components contains
at least two components. Note that in the disjoint circular wait free case,
we can only show the existence of two such interactions (cf. Lemma 6.5 and
Theorem 6.6 respectively). In the tree-like case, one can then conclude that for
all components involved in the circular waiting situation, certain problematic
states exist. This is unfortunately not the case in situations where a vertex
representing a component lies on a simple cycle in the cooperation graph, i.e.,
if the architecture is disjoint circular wait free but not tree-like (with respect to
the cooperation graph).

As we already discussed in Section 5.5, acyclic architectures are also exploited
for the verification of deadlock-freedom in the work of Bernardo et al. [39]
and Hennicker et al. [137]. Remember that both approaches rely on behavioral
equivalences among certain key components in the architecture, i.e., if the

6.4 Related Work 169

behavior of such a key component is not influenced by the cooperation with the
remaining components (which is checked with weak bisimilarity), the question
of deadlock-freedom is answerable by only looking at the behavior of the key
component. Apart from the fact that such equivalences can be found in many
systems and that we also considered a comparable approach in Chapter 5,
however also numerous examples with no behavioral equivalences at all
exist modeling realistic scenarios that are still verifiable with our approach
presented in this chapter, e.g., such an example with respect to the work
by Bernardo et al. [39] can be found in [180, Figure 4]. For a more detailed
discussion of the two approaches, we refer to Section 5.5.

The work of Brookes and Roscoe [49] considers tree-like networks in the
context of CSP [141] restricted to binary communication. For such networks,
the authors additionally require that cooperating components (or processes in
this case) have at most one cooperation partner in every state. This directly
allows to imply the deadlock-freedom of the whole network by an analysis
of all cooperating pairs of components. However, for networks without this
additional property, a tedious case analysis is required to exclude certain
waiting situations among the components. For a more detailed comparison of
this approach with respect to interaction systems, we refer to the dissertation
of Martens [190, pages 68–69 and pages 93–94].

For interaction systems, also several approaches for proving deadlock-freedom
exist, e.g., Bensalem et al. [34–36] worked in the context of BIP [30] (for which
interaction systems are a theoretical model). Their approach is based on find-
ing invariants for the components, which must be provided for each property,
and for the interactions, which are computed automatically. Unfortunately,
according to Bensalem et al. [36], for this computation “there is a risk of ex-
plosion, if exhaustiveness of solutions is necessary in the analysis process.”
Although the authors mitigate this risk by using BDDs, the explosion risk
remains and thus, this approach is not guaranteed to be polynomial in the
number and size of the components and interactions which is an important
property of our approach, e.g., the conditions of Theorem 6.12. But, their ap-
proach is applicable in situations where no architectural constraint is present
and moreover, it also could benefit from the ideas presented in this chapter (in
case the system has a disjoint circular wait free architecture) in the following
way. In order to prove deadlock-freedom, a special predicate called DIS is
constructed in [36] which characterizes the set of all deadlock situations. Now,
if our architecture is present, we can use ideas from this chapter to refine this
predicate, i.e., exclude those situations whose global reachability can be re-
futed by a comparison of entry interactions. Moreover, components for which
we find no problematic states can potentially be neglected in the analysis
process.

170 6 Efficient Deadlock Analysis

A further approach for interaction systems that is guaranteed to be checkable
in polynomial time is presented by Majster-Cederbaum et al. [187]. The
authors compute an over-approximation of the set of reachable states of an
interaction system’s global behavior by projecting it to certain subsystems
(similarly to our subsystem construction operator, cf. Definition 3.18) of a
fixed size d. Here, parameter d is the size of the set of components that
constitute a subsystem and is understood as a parameter that adjusts the
quality of the over-approximation: The larger the parameter, the more precise
the approximation. But, the approach is exponential in this parameter and thus
only feasible for small d. The authors then check a sufficient condition on the
over-approximation that excludes a waiting scenario where three components
are waiting in a row which could be a part of a circular waiting situation
among the components. However, Majster-Cederbaum and Martens [179]
point out that their deadlock analysis for tree-like interaction systems already
is more powerful for interaction system satisfying their architectural constraint
(where all interactions are binary), which thus also holds for our approach
in this case. But, it is still an open question how these approaches generally
compare to each other, e.g., whether the over-approximation approach applied
in interaction systems with a disjoint circular wait free architecture can verify
the property of deadlock-freedom but our Theorem 6.12 fails.

The above mentioned over-approximation can be further refined by a tech-
nique called “cross-checking” of Majster-Cederbaum and Minnameier [184]
that compares subsystems that overlap with respect to the set of constituting
components to check the reachability of states. For instance, if a state (s1, s2, s3)

is reachable in a certain subsystem consisting of components 1, 2, and 3 but
in another subsystem consisting of components 1, 2, and 4 no state (s1, s2, s4)

for any s4 is reachable, then no global state can exist where s1 and s2 are part
of. Thus, the state (s1, s2, s3) can be excluded from the subsystem, which
corresponds to a refinement. For a further discussion of this approach, we
refer to the dissertation of Minnameier [205, Section 6.5]. A similar refinement
with respect to the transitions is proposed by Semmelrock [241].

6.5 Implementation and Experimental Evaluation

We evaluate our deadlock-detection approach, viz. Theorem 6.12 and its im-
plementation in Algorithm 6.5, with respect to interaction systems that can be
parametrized such as the database example SysDB(n). We compare a prototype
implementation of Algorithm 6.5 (cf. page 165) with an implementation of Al-
gorithm B.2 (cf. page 213) that constructs the global behavior of an interaction
system to search for deadlocks as discussed in Section 2.3.1.

6.5 Implementation and Experimental Evaluation 171

Moreover, as mentioned in the previous section, the approach of Majster-
Cederbaum and Martens [180] requires that an interaction system has strongly
exclusive communication and that its cooperation graph is a tree in the graph-
theoretical sense. Here, we also evaluate the first assumption. In Section 5.2
of Chapter 5, we discussed how (strongly) exclusive communication can be
enforced in an interaction system as a pre-processing step in polynomial time
(cf. Algorithm B.8). However, although the global behavior of the resulting
interaction system is isomorphic up to transition relabeling (cf. Lemma 5.6),
the local behavior of the components is modified by adding fresh actions
and transitions. An interesting question now is how this addition affects
the runtime of Algorithm 6.5 with respect to our implementation. We thus
transformed each of the following example interaction systems into a version
with strongly exclusive communication and also evaluated the new system
with respect to our approach in order to make this effect visible—the transfor-
mation time is, of course, not counted as verification time. We are interested
in this effect since we showed in this chapter that the property of strongly
exclusive communication is not necessary for deadlock detection, and we are
thus interested in the time savings that our approach allows for.

Since we also evaluate an algorithm which constructs the global behavior, we
can use its output to determine the exact size of our examples, i.e., the number
of states and transitions. However, due to the size of the corresponding labeled
transition systems we only give these numbers in a logarithmic scale.

We shortly address some key aspects of our implementation. All algorithms
are implemented in the C++ programming language and they use a common
framework that allows to treat interaction systems as data structures from
the C++ standard library. We use one (external) library for the representation
of labeled transition systems. This library implements the concept of binary
decision diagrams that were introduced by Lee [169] to represent switching
functions and further developed together with efficient manipulation algo-
rithms by Bryant [55]—to be more precise, he studied reduced ordered binary
decision diagrams which are commonly referred to as binary decision di-
agrams, or BDDs for short, nowadays. The encoding of labeled transition
systems as binary decision diagrams was proposed by Burch et al. [57] which,
to quote Baier and Katoen [23, Section 6.7.2], was “the milestone for sym-
bolic model checking” and enabled the analysis of large and realistic systems.
Here, we use the implementation of binary decision diagrams available in the
BuDDy library1 (version 2.4) as an efficient data structure to store and manip-
ulate the behavior of the components and the global behavior in interaction
systems.

1http://buddy.sourceforge.net/

http://buddy.sourceforge.net/

172 6 Efficient Deadlock Analysis

The algorithms and our framework were compiled using the C++ compiler
from the GNU Compiler Collection2 (g++ (Debian 4.4.5-8) 4.4.5) with the “-O3”
optimization switch turned on. All experimental evaluations were executed on
a standard personal computer system with an Intel Core 2 Duo E6320 processor
with a clock speed of 1.86 GHz and 4 GB of main memory running Debian’s3

precompiled kernel (version 2.6.32-5-amd64) and no further processor- or
memory-intensive processes other than our evaluation program.

In the following, we first consider a parametrized extension of the merchandise
management example, then evaluate the database example, and finally take a
look at a further interaction system modeling a typical banking scenario. In
each case, we first formally introduce the interaction system (with appropriate
references to earlier sections if we already did so), formally analyze the system
with respect to Theorems 6.9 and 6.12, and then apply our experimental
evaluation sketched above.

6.5.1 Parametrized Merchandise Management Interaction System

In Chapter 3, we used our running example, the merchandise management
system, as an illustration for our composition operator, where we composed
the original system SysMMS with an additional management and customer
component to yield the system Sys(3)MMS; more precisely, an interaction system
consisting of the three original components and two new components (cf.
Figure 3.2 on page 65). Here, we further extend this composition: We add n
management components (with attached customer components) to a single
storage component. However, we do not specify the system as an n-ary
composition operation but directly.

Thus, we define interaction system SysPara-MMS(n) where n ∈ N \ {0} as:

Comp =
⋃

1≤i≤n

{ci, mi} ∪ {s},

Aci = {abortci , askci , buyci , refundci} for 1 ≤ i ≤ n,

Ami = {cancelmi , delivermi , ordermi , paymi , printmi , reimbursemi , releasemi ,

reservemi} for 1 ≤ i ≤ n,

As = {marks, unmarks, ships},

Int =
⋃

1≤i≤n

{
{abortci , cancelmi}, {askci , ordermi}, {buyci , paymi}, {delivermi , ships},

{printmi}, {refundci , reimbursemi}, {releasemi , unmarks}, {reservemi , marks}
}

,

2http://gcc.gnu.org/
3http://www.debian.org/

http://gcc.gnu.org/
http://www.debian.org/

6.5 Implementation and Experimental Evaluation 173

Intclosed =
⋃

1≤i≤n

{
{printmi}

}
.

The behavior of the components is defined as follows. For each management
component mi with 1 ≤ i ≤ n we take the labeled transition system depicted
in Figure 2.3 (cf. page 23) but add an index, viz. the variable i, to all transition
labels (and states), e.g., the transition s0

m
orderm−−−→m s1

m becomes s0
mi

ordermi−−−−→mi s1
mi

.
We proceed analogously for the behavior of each customer component ci,
where we use the labeled transition system depicted in Figure 2.4 (a) (cf.
page 24). For the storage component s, we use the labeled transition system
depicted in Figure 2.4 (b) (cf. page 24) without any relabelings. Observe that
the interaction systems SysMMS and SysPara-MMS(1) are identical up to the
superscript of the components m/m1 and c/c1 respectively.

Now, suppose we want to establish the deadlock-freedom of SysPara-MMS(n)
in an efficient way, i.e., without computing the global behavior. We apply
Theorem 6.9 of this chapter, i.e., we have to compute the problematic states
with respect to all components’ local states, performable interactions, and
cooperation partners. For all 1 ≤ i ≤ n, we get (all other sets are empty):

PSs(s1
mi

, {reservemi , marks}) = {s1
s},

PSs(s4
mi

, {delivermi , ships}) = PSs(s5
mi

, {releasemi , unmarks}) = {s0
s},

PSmi(s
0
s , {reservemi , marks}) = {s4

mi
, s5

mi
}, and

PSmi(s
1
s , {delivermi , ships}) = PSmi(s

1
s , {releasemi , unmarks}) = {s1

mi
}.

However, the non-emptiness of the above sets means that we cannot conclude
deadlock-freedom with Theorem 6.9. But, we can refine the problematic state
information via reachability analyses, i.e., apply Theorem 6.12. First, we have
to compute the NBRSs. For all components j ∈ Comp and states sj ∈ Sj, we
have NBRS(sj) = {sj} except for the five states s0

mi
, s2

mi
, s3

mi
, s4

mi
, s5

mi
of every

management component mi with 1 ≤ i ≤ n where we have: NBRS(s0
mi
) =

{s0
mi

, s3
mi

, s4
mi

, s5
mi

, s6
mi
}, NBRS(s2

mi
) = {s1

mi
, s2

mi
}, NBRS(s4

mi
) = {s2

mi
, s3

mi
, s4

mi
},

NBRS(s3
mi
) = {s3

mi
, s6

mi
}, and NBRS(s5

mi
) = {s2

mi
, s3

mi
, s5

mi
}.

Then, we compute the interesting entry interactions (cf. Definition 6.11) with
respect to Theorem 6.12. For all 1 ≤ i ≤ n, we get (all other sets are
empty):

PEI(s0
s , {reservemi , marks})

=
⋃

1≤j≤n,j 6=i
{
{delivermj , ships}, {releasemj , unmarks}

}
,

PEI(s1
s , {delivermi , ships}) = PEI(s1

s , {releasemi , unmarks})
=
⋃

1≤j≤n,j 6=i
{
{reservemj , marks}

}
, and

PEI(s1
mi

, {reservemi , marks}) =
{
{askci , ordermi}

}
.

174 6 Efficient Deadlock Analysis

For all components j ∈ Comp and states sj ∈ Sj, we have IPEI(sj) = ∅, i.e.,
the second condition of Theorem 6.12 holds. Now, also the first condition
holds since for all dependent local states sj of all components j ∈ Comp holds
NBRS(sj) ∩ S0

j = ∅—except for the initial states of all components, viz. s0
s ,

s0
mi

, and s0
ci

for 1 ≤ i ≤ n, for which we have to show that the second term
of the first condition holds, i.e., for all these states sj, we have to find an
interaction α ∈ Int(sj) such that for all components k ∈ compset(α) \ {j}
holds

(⋃
sk∈PSk(sj,α) NBRS(sk)

)
∩ S0

k = ∅.

For state s0
s , we can pick interaction {reservemi , marks} for any 1 ≤ i ≤ n be-

cause {reservemi , marks} ∈ Int(s0
s), compset({reservemi , marks}) \ {s} = {mi},

and we have PSmi(s
0
s , {reservemi , marks}) = {s4

mi
, s5

mi
} but both NBRS(s4

mi
) ∩

S0
mi

= ∅ and NBRS(s5
mi
) ∩ S0

mi
= ∅. Observe that for the states s0

mi
and s0

ci

with 1 ≤ i ≤ n, all problematic state sets are empty, i.e., PSk(s0
mi

, α) = ∅ and
PSk(s0

ci
, α) = ∅ for all suitable components k and interactions α. Thus, the first

condition holds for all these states.

Now, we can conclude the deadlock-freedom of SysPara-MMS(n) for all n ∈
N \ {0} because both conditions of Theorem 6.12 hold. Next, we take a look
at the experimental evaluation of this system.

1 500 1,000

0

100

200

300

Number of Managements

Ve
ri

fic
at

io
n

Ti
m

e
(s

) Normal
Exclusive
Traversal

(a) Analysis of SysPara-MMS(n), 1 ≤ n ≤ 1000

1 500 1,000

100

10100

10200

10300

Number of Managements

Si
ze

(l
og

ar
it

hm
ic

sc
al

e) States
Transitions

(b) Size of SysPara-MMS(n) for 1 ≤ n ≤ 1000

Figure 6.2: Evaluation of the parametrized merchandise management system

Figure 6.2 depicts the experimental evaluation of SysPara-MMS(n) for parame-
ter n ranging from 1 to 1000. From the comparison of the three runtimes in
Figure 6.2 (a), we see that our conditional approach without requiring strongly
exclusive communication is the fastest. Observe that around n = 770, our
evaluation system gets low on memory to compute and store the global behav-
ior as a binary decision diagram. The global state space of [[SysPara-MMS(770)]]
has approximately the size of 10235 states which demonstrates the power of

6.5 Implementation and Experimental Evaluation 175

the symbolic representation, i.e., we cannot store such a huge number with an
explicit representation of the states.

Nevertheless, our approach can verify the deadlock-freedom of the inter-
action system SysPara-MMS(1000) in under 3 minutes where the global state
space analysis needs approximately 2.86 hours. Note that the corresponding
labeled transition system consists of more than 10304 states and more than
10307 transitions (cf. Figure 6.2 (b)).

We can also conclude that the property of strongly exclusive communication
clearly influences the verification time, although the differences for n = 1000
are small, i.e., the non-exclusive version completed in 162.07 seconds whereas
the strongly exclusive one needed 229.7 seconds. However, a trend is observ-
able that this difference gets bigger for larger systems.

6.5.2 Database Interaction System

We already discussed our conditions for deadlock-freedom with respect to
SysDB(n) (n ∈N \ {0}): In Section 6.2.3 we treated Theorem 6.9, which failed,
and in Section 6.3.2 we applied Theorem 6.12, which succeeded, i.e., SysDB(n)
is deadlock-free. Now, we also evaluate this system. Figure 6.3 depicts the
verification time and global behavior size for SysDB(n) for various numbers of
clients, i.e., the parameter n, where we set the parameter to wi = i.

2 200 400

0

10

20

30
·103

Number of Clients

Ve
ri

fic
at

io
n

Ti
m

e
(s

) Normal
Exclusive
Traversal

(a) Analysis of SysDB(n) for 2 ≤ n ≤ 400

2 150 300
100

1030

1060

1090

10120

Number of Clients

Si
ze

(l
og

ar
it

hm
ic

sc
al

e) States
Transitions

(b) Size of SysDB(n) for 2 ≤ n ≤ 370

Figure 6.3: Evaluation of the database system

Observe that we stopped to evaluate our global-behavior-based deadlock
detection approach for n = 370 (which can be seen in Figure 6.3 (b) where
the size is only plotted up to n = 370). For this system, the evolution already

176 6 Efficient Deadlock Analysis

took more than 24 hours, where our approach from this chapter completed
in under 4 hours. For n = 400, the deadlock-freedom was established in
5.5 hours.

If we compare the size of the global behavior of SysDB(n) as depicted in
Figure 6.3 (b) with the size of the global behavior of the previous example
SysPara-MMS(n) (cf. Figure 6.2 (b)) there seems to be a curiosity: We can com-
pute a labeled transition system of more than 10300 states in case of the latter
system, but give up for SysDB(n) for n = 370 although the corresponding
global behavior only consists of approximately 10115 states which is several
orders of magnitude smaller. The answer to this curiosity lies in the sym-
bolic representation, i.e., the corresponding binary decision diagrams. It is
well known that we can store more information symbolically, the better the
variable ordering, e.g., consider the example given by Baier and Katoen [23,
Example 6.73] which shows a linear- and an exponential-size version of a
binary decision diagram because of different variable orderings. However,
here we do not deepen the discussion of this issue since the variable ordering
in the specification, i.e., the binary decision diagrams for the behavior of the
components, is the same in all cases and not optimized with respect to a certain
approach. But, we have to keep this phenomenon is mind if we compare our
results with the literature—which we leave as future work.

Finally, Figure 6.3 (a) shows a slight performance increase if we do not trans-
form the system into one with strongly exclusive communication beforehand.
For instance for 400 clients, the difference between the non-exclusive, called
“normal” in the figure, and the exclusive version amounts to approximately
16 minutes. Note that the database component d is the only component that
needs adjustment. As for the previous example, this shows that the exclusive
communication factor should not be underestimated.

6.5.3 Banking Interaction System

We consider an example that models a typical banking scenario: A clearing
company interacts with n banks and each bank interacts with m automated
teller machines (ATMs). This example was introduced by Baumeister et al. [31]
and modeled as an interaction system by Majster-Cederbaum and Martens
[179]. As usual, the banks operate the ATMs which receive requests by cus-
tomers that consist of an inserted bank card and an associated personal iden-
tification number (PIN). The verification of the account information is then
provided by a clearing company, which is the same for all banks. In case
the verification succeeded, the customer can debit his account, i.e., the bank
disburses the money, or cancel the operation. Otherwise, the customer is

6.5 Implementation and Experimental Evaluation 177

informed about the wrong credentials; however, the number of trials is not
limited.

Here, we define interaction system SysBanks(n, m) where n, m ∈ N \ {0} as:

Comp = {cc, b1, . . . , bn} ∪
⋃

1≤i≤n

{a1
i , . . . , am

i },

Acc = {checkcc, correctcc, incorrectcc},
Abi = {cancelbi , checkbi , correctbi , disbursebi , incorrectbi , requestbi , rightpinbi ,

wrongpinbi} for 1 ≤ i ≤ n,

Aaj
i
= {cancelaj

i
, requestaj

i
, rightpinaj

i
, takemoneyaj

i
, wrongpinaj

i
} for 1 ≤ i ≤ n

and 1 ≤ j ≤ m,

Int =
⋃

1≤i≤n

{
{checkcc, checkbi}, {correctcc, correctbi}, {incorrectcc, incorrectbi}

}
∪

⋃
1≤i≤n,1≤j≤m

{
{requestbi , requestaj

i
}, {rightpinbi , rightpinaj

i
}, {cancelbi , cancelaj

i
},

{wrongpinbi , wrongpinaj
i
}, {disbursebi , takemoneyaj

i
}
}

, and

Intclosed =
{}

.

Figure 6.4 depicts the interaction model for one bank and one ATM, i.e., n = 1
and m = 1.

checkcc

correctcc

incorrectcc

requestb1

cancelb1

rightpinb1

wrongpinb1

disburseb1

checkb1

correctb1

incorrectb1

requesta1
1

cancela1
1

rightpina1
1

wrongpina1
1

takemoneya1
1

cc b1 a1
1

Figure 6.4: Interaction model of the banking example for n = 1 and m = 1

The behavioral model is depicted in Figure 6.5 on the following page. The
behavior of the clearing company component cc is depicted in Figure 6.5 (a)
together with the behavior of each bank component bi for 1 ≤ i ≤ n in
Figure 6.5 (b) and the behavior each ATM component aj

i for 1 ≤ i ≤ n and
1 ≤ j ≤ m in Figure 6.5 (c).

The cooperation graph of SysBanks(n, m) is depicted in Figure 6.5 (d) which
shows that the system has a tree-like architecture and hence also a disjoint
circular wait free one. Please note that the nested structure of the cooperation
graph already indicates that many cooperations are not exclusive, i.e., the
transformation of the system requires adjustments of many more components
than of SysDB(n).

178 6 Efficient Deadlock Analysis

0 1checkcc

correctcc

incorrectcc

(a) Behavior of component cc

0

1

re
qu

es
t b

i

2

ch
ec

k b
i

4correctbi

5

ri
gh

tp
in

b i
disbursebi , cancelbi

3

incor
rec

t b i

wrongpin
b

i

(b) Behavior of bi with 1 ≤ i ≤ n

0 1

requestaj
i

wrongpinaj
i

2

rightpinaj
i

takemoneya j
i , cancela j

i

(c) Beh. of aj
i with 1 ≤ i ≤ n and 1 ≤ j ≤ m

{cc}

{b1}

{cc, b1}

{a1
1}

{b
1,

a1 1
}

{am
1 }

{b
1 , a m1 }

. . .

{bn}

{cc, bn}

. . .

{am
n }

{b
n , a mn }

{a1
n}

{b
n
, a

1 n
}

. . .

(d) Cooperation graph of SysBanks(n, m)

Figure 6.5: Behavioral model and cooperation graph of SysBanks(n, m)

We analyze the banking example as well. We want to verify the deadlock-
freedom of SysBanks(n, m) and start by applying Theorem 6.9, i.e., we check
whether problematic states exist. For all 1 ≤ i ≤ n and 1 ≤ j ≤ m, we get (all
other combinations are empty):

PScc(s1
bi

, {checkcc, checkbi
}) = {s1

cc},

PScc(s2
bi

, {correctcc, correctbi
}) = PScc(s2

bi
, {incorrectcc, incorrectbi

}) = {s0
cc},

PSbi
(s0

cc, {checkcc, checkbi
}) = {s2

bi
},

PSbi
(s1

cc, {correctcc, correctbi
}) = PSbi

(s1
c , {incorrectcc, incorrectbi

}) = {s1
bi
},

PSbi
(s0

aj
i
, {requestbi

, requestaj
i
}) = {s3

bi
, s4

bi
, s5

bi
},

PSbi
(s1

aj
i
, {wrongpinbi

, wrongpinaj
i
}) = PSbi

(s1
aj

i
, {rightpinbi

, rightpinaj
i
}) = {s0

bi
, s5

bi
},

PSbi
(s2

aj
i
, {cancelbi

, cancelaj
i
}) = PSbi

(s2
aj

i
, {disbursebi

, takemoneyaj
i
}) = {s0

bi
, s3

bi
, s4

bi
},

PSaj
i
(s0

bi
, {requestbi

, requestaj
i
}) = {s1

aj
i
, s2

aj
i
},

PSaj
i
(s3

bi
, {wrongpinbi

, wrongpinaj
i
}) = PSaj

i
(s4

bi
, {rightpinbi

, rightpinaj
i
}) = {s0

aj
i
, s2

aj
i
},

PSaj
i
(s5

bi
, {cancelbi

, cancelaj
i
}) = PSaj

i
(s5

bi
, {disbursebi

, takemoneyaj
i
}) = {s0

aj
i
, s1

aj
i
}.

We use one of these states to illustrate the intuition behind problematic states.
Consider a bank bi and its state s3

bi
. In this state, the bank wants to cooperate

with one of its associated ATMs, i.e., we have coopset(s3
bi
) = {aj

i | 1 ≤

6.5 Implementation and Experimental Evaluation 179

j ≤ m}. We fix one ATM aj
i and since bi wants to perform the interaction

α = {wrongpinbi , wrongpinaj
i
}, we take a look at the set PSaj

i
(s3

bi
, α), i.e., we

ask which states of the ATM are problematic for the bank in state s3
bi

and α.
Now, the only state that is not problematic is s1

aj
i

since we have α ∈ Int(s1
aj

i
).

For the other two states, the ATM wants to cooperate with the bank, i.e.,
bi ∈ coopset(sk

aj
i
) for k ∈ {0, 2} and thus, we need to check their reachability

in the subsystem consisting of the bank and the ATM component and whether
an interaction β with compset(β) = {bi, aj

i} is enabled. Here, we get:

PSaj
i
(s3

bi
, {wrongpinbi , wrongpinaj

i
}) = {s0

aj
i
, s2

aj
i
}.

Thus, we cannot conclude deadlock-freedom and therefore refine the informa-
tion by considering the reachability of problematic state combinations. First,
we compute the NBRSs: For all components k ∈ Comp and states sk ∈ Sk,
we have NBRS(sk) = {sk} except for the three states s1

bi
, s3

bi
, s4

bi
of every bank

component bi with 1 ≤ i ≤ n where we have:

NBRS(s1
bi
) = {s1

bi
, s0

bi
, s3

bi
, s5

bi
, s4

bi
}, NBRS(s3

bi
) = {s3

bi
, s2

bi
, s1

bi
},

NBRS(s4
bi
) = {s4

bi
, s2

bi
, s1

bi
}.

Again, we consider state s3
bi

of a bank bi: The states s1
bi

and s2
bi

are contained
in the non-interfering backward reachable set because in each of these states,
the bank only wants to cooperate with the clearing company component cc.
Thus, the cooperation partners of bi in state s3

bi
, which are the associated ATMs,

cannot influence that state s3
bi

is reached once state s1
bi

or s2
bi

is entered.

Then, we apply Theorem 6.12 and compute the entry interactions with respect
to problematic state combinations. For all 1 ≤ i ≤ n and 1 ≤ j ≤ m, we get
(all other sets are empty):

PEI(s0
cc, {checkcc, checkbi})

=
⋃

1≤k≤n,k 6=i
{
{correctcc, correctbk}, {incorrectcc, incorrectbk}

}
,

PEI(s1
cc, {correctcc, correctbi}) = PEI(s1

cc, {incorrectcc, incorrectbi})
=
⋃

1≤k≤n,k 6=i
{
{checkcc, checkbk}

}
,

PEI(s0
bi

, {requestbi , requestaj
i
}) = ⋃

1≤k≤m,k 6=j
{
{wrongpinbi , wrongpinak

i
},

{cancelbi , cancelak
i
}, {disbursebi , takemoneyak

i
}
}

,

PEI(s3
bi

, {wrongpinbi , wrongpinaj
i
}) = PEI(s4

bi
, {rightpinbi , rightpinaj

i
})

=
⋃

1≤k≤m,k 6=j
{
{requestbi , requestak

i
}
}

, and

PEI(s5
bi

, {cancelbi , cancelaj
i
}) = PEI(s5

bi
, {disbursebi , takemoneyaj

i
})

=
⋃

1≤k≤m,k 6=j
{
{rightpinbi , rightpinak

i
}
}

.

180 6 Efficient Deadlock Analysis

As an example, consider a bank bi in state s3
bi

, one of its associated ATMs aj
i in

state s0
aj

i
, and interaction α = {wrongpinbi , wrongpinaj

i
}. We learned above that

s0
aj

i
∈ PSaj

i
(s3

bi
, α) holds and thus compute the entry interactions of these states.

Here, we have EI(s3
bi

, s0
aj

i
) =

⋃
1≤k≤m,k 6=j

{
{requestbi , requestak

i
}
}

because if we
consider the relevant NBRS combinations, which are (s2

bi
, s0

aj
i
) and (s1

bi
, s0

aj
i
),

we can observe that the state (s1
bi

, s0
aj

i
) can be reached in the behavior of the

subsystem consisting of the two components, viz. [[SysBanks(n, m)[{bi, aj
i}]]],

by executing the (partial) interaction {requestbi} which is used for cooperation
with one of the other associated ATMs. Since each of these possibly offers the
corresponding request action, we get the union of all these request interactions
as the entry interactions of state s3

bi
and s0

aj
i
. Observe that the interaction

{requestbi , requestaj
i
} is not part of the entry interactions since its execution does

not lead to a state combination where ATM aj
i stays in its initial state, which is

also the explanation why there is no interaction that lies in all intersections of
the problematic entry interactions as we see next.

For all components k ∈ Comp and states sk ∈ Sk, we have IPEI(sk) = ∅, i.e.,
the second condition of Theorem 6.12 holds. Again, considering a particular
bank bi, the state s3

bi
is only a potential deadlock if all associated ATMs are

in a problematic state. For instance, if m = 2, then the state combination
(s3

bi
, s0

a1
i
, s0

a2
i
) can only be part of a reachable global state if we have:

EI(s3
bi

, s0
a1

i
) ∩ EI(s3

bi
, s0

a2
i
) 6= ∅.

We learned above that at least one of the ATMs has to cooperate with the
bank bi such that it can get to its local state s3

bi
and that no such common entry

interaction exists. Here, this corresponds to the intuition about the banking
system since either the state combination (s3

bi
, s1

a1
i
, s0

a2
i
) or (s3

bi
, s0

a1
i
, s1

a2
i
) can be

reached after the execution of one of the request interactions.

As a further example, observe that if the clearing company cc wants to inform a
bank bi that the provided PIN is correct, i.e., cc wants to perform the interaction
{correctcc, correctbi} in state s1

cc, then a previously performed initial cooperation
(a check interaction) with any other bank bk with i 6= k is problematic since the
bank bi could then not be ready to be informed anymore. But, since the check
interaction for bi is not problematic in this case, no such waiting situation can
occur—which is shown by the emptiness of the intersections.

We come back to Theorem 6.12. We learned above that the second condition
holds and now, also the first one holds since for all dependent local states
sk of all components k ∈ Comp holds NBRS(sk) ∩ S0

k = ∅, except for the
initial states of the components and state s1

bi
of every bank bi but there the

corresponding problematic state sets are empty. Thus, we can conclude the
deadlock-freedom of SysBanks(n, m).

6.5 Implementation and Experimental Evaluation 181

Next, we take a look at the experimental evaluation of this system. Figure 6.6
depicts our evaluation for different numbers of banks and ATMs.

50
100

50

1000

1

2
·103

Number of Banks
Number
of ATMs

Ve
ri

fic
at

io
n

Ti
m

e
(s

) Normal

Exclusive

Traversal

(a) Analysis of SysBanks(n, m), 1 ≤ n, m ≤ 100

30
60

30

60100

1085

10170

Number of Banks
Number
of ATMs

States

Transitions

(b) Size of SysBanks(n, m) for 1 ≤ n, m ≤ 66

Figure 6.6: Evaluation of the banking system

Observe that the largest system we evaluated is SysBanks(100, 100) whose
deadlock-freedom was established in 1647.98 seconds (approximately 27.5 min-
utes). For the direct deadlock analysis, we already gave up for n = 66 and
m = 66, where we needed 2146.4 seconds (approximately 35 minutes), be-
cause the trend of the verification time observable in Figure 6.6 (a) makes
clear that larger systems need more and more time because our evaluation
system starts to be running out of memory. With the approach of this chapter,
we established the deadlock-freedom of SysBanks(66, 66) in 262.08 seconds
(approximately 4.4 minutes). This supports our statement in the introduction
of this thesis that a system with ten thousand components is hard to analyze
directly because SysBanks(100, 100) consists of 10 101 components.

Finally, the exclusive communication factor is better visible since the verifi-
cation of the systems with strongly exclusive communication requires much
more time. For instance, for n = 85 banks and m = 85 ATMs for each bank,
which yields an interaction system with 7311 components, the difference in
the verification times amounts to approximately 14 minutes (for the exclu-
sive case, this corresponds to the yellow peak visible in Figure 6.6 (a)). This
lets us conclude that also from a performance point of view, the exclusive
communication factor should not be underestimated and it is beneficial to
have a technique such as our entry interactions to completely circumvent this
requirement.

This ends our discussion of the experimental evaluation. In the next section,
we summarize the chapter and address future work.

182 6 Efficient Deadlock Analysis

6.6 Summary and Future Work

In this chapter, we showed how component-based systems with multiway
cooperation can be analyzed on the basis of an architectural constraint that
goes beyond common acyclicity requirements. The presented analysis focuses
on the property of deadlock-freedom of interaction systems and provides
a polynomial-time checkable condition that ensures deadlock-freedom by
exploiting a restriction of the architecture called disjoint circular wait freedom.
Roughly speaking, this architectural constraint disallows any circular waiting
situations among the components such that the reason of one waiting is
independent from any other one.

We want to point out that we only derived a sufficient condition for deadlock-
freedom. For instance, our approach fails in situations where a set of compo-
nents blocks each other but other components not involved in this blocking
are able to proceed globally. But, it should be clear that by only considering
sets of components of size two—which yields a very efficient approach—not
all such situations can be covered.

On the other hand, if our approach fails, the information provided by the
entry interactions gives a hint of which components are involved in a potential
deadlock. With this information, a software engineer can take a closer look at
this potentially small set of components and either resolve the reason manually
or encapsulate this set in a new composite component that has equivalent
behavior, is verified deadlock-free with another technique, and now causes no
problems in the remaining system.

Our approach can also be used as a design pattern to ensure that a system
is correct by construction. If a software engineer sticks to the composition
rule imposed by our architectural constraint, a subsequent application of our
condition after each composition step facilitates a correct system design in an
automatic and convenient way.

Moreover, our approach can be extended in the following direction. If we
consider subsystems of fixed size k > 2 in the sufficient condition, we could
obtain more information regarding the reachability of state combinations.
Potentially, we then could, as already mentioned in Section 4.7 of Chapter 4,
also admit simple cycles in the cooperation graph where up to k vertices
that represent components lie on and derive a k-disjoint circular wait free
architecture.

However, we leave these ideas for future work and instead further refine the
model of interaction systems in the next chapter to allow for a gray-box view
of the components.

183

Chapter 7

Gray-Box View and Protocols

In the previous chapters, we learned that restrictions on the architecture of
interaction systems and the behavior of components (by requiring that certain
equivalences hold) allow for property verification such as deadlock-freedom
(cf. Chapter 6) or CTL*–X formulae (cf. Chapter 5) without exhaustively search-
ing the global state space, which yields efficient approaches from a computa-
tional viewpoint.

A drawback of the original model of interaction systems (as specified in
Chapter 2) is that the entity used for cooperation among the components, viz.
the ports in the terminology of component-based development, is considered
as a single action and thus no additional behavior can be specified for it, e.g.,
for any behavior-related questions we have to analyze the local component
behavior. Additionally, if the local behavior of a component should not be
fully disclosed, the natural question arises what kind of information needs
to be disclosed by the component in order to still be able to verify properties.
Up to now, we required the disclosure of the full behavior, which is usually
called a white-box view of the components. The other extreme is a black-box
view in which no behavior is accessible, i.e., the components only disclose
their set of actions. Clearly, this is not useful in order to verify properties like
deadlock-freedom, and we thus have to find a way in between these extremes:
A so-called gray-box view.

We employ the following idea. We extend the model of interaction systems to
also capture port behavior. We group several actions of one component and
call this group a port alphabet, i.e., the set of actions is partitioned into several
port alphabets. Additionally, every port is equipped with a labeled transition
system over the port alphabet which we call the port protocol.

The idea behind this approach is that in verification steps we only want to

184 7 Gray-Box View and Protocols

use the port protocols of involved components instead of their local behavior.
This is more efficient since the behavior of the component is typically much
larger (if we compare the number of states and transitions) than its port
protocols. The verification of properties for the whole component and system
respectively should then follow from the verification step that used only the
port protocols.

Of course, this raises several questions. If we use a port protocol of a com-
ponent in a verification step, its underlying labeled transition system has to
be related to the behavior of the component or resemble parts of it. This
relationship should also preserve properties, e.g., the satisfaction of the same
logical formulae. Another question is how to obtain such port protocols, i.e.,
are they derived in an automatic manner or explicitly given by the compo-
nent’s author. In a typical scenario, a component processes data of one port
internally and outputs it over another port. Obviously, the latter port must
wait for the availability of the internal data. This step has to be incorporated
in the port protocol, e.g., we could assume that this data is always available
in verification steps. A certain unobservable action in the port protocol could
model the exchange if this waiting influences the future behavior of the port.
This connection of a port protocol’s action (or a sequence of them) to the
component’s internal actions (or actions of another port) is also interesting for
the first question, i.e., how are a component and a port related.

Another point for the introduction of such additional behavior is the paradigm
of information hiding: Only relevant software parts should be accessible from
outside. A component may be given only as a black box, i.e., the internal
behavior is unknown in the development process, but the author provides
the port protocols and guarantees that any property which is verifiable with
the port protocols is also satisfied by the whole component. As mentioned
above, this supports a gray-box view of the components that is desired in
component-based development and related to information hiding [54].

In the following, we address the above mentioned questions and show how
to answer them with a modified version of interaction systems which we call
protocol interaction system.

7.1 Formalization of Protocol Interaction Systems

We formalize the idea for protocol interaction systems and port protocols as
mentioned in the introduction to this chapter. We take the same route as in the
introduction of interaction systems in Chapter 2, i.e., we first define a protocol
component system.

7.1 Formalization of Protocol Interaction Systems 185

Definition 7.1 (Protocol Component System): A protocol component system
PCS is defined as a tuple (Comp, {Pi}i∈Comp, {Ap

i }i∈Comp∧p∈Pi) where Comp is a
finite set of components, which are referred to as i ∈ Comp. The available ports
of a component i are given by the finite set Pi, and the mapping ports(i) :=
{i:p | p ∈ Pi} allows to refer to a port p of i as i:p ∈ ports(i). The actions
of each port i:p are given by the finite set Ap

i , also denoted by port alphabet
Ai:p, and are assumed to be disjoint, i.e., ∀ i, j ∈ Comp ∀ p ∈ Pi ∀ q ∈ Pj : i 6=
j ∨ p 6= q =⇒ Ap

i ∩ Aq
j = ∅. Similarly to a component system, all actions of

a component i are contained in its action set Ai :=
⋃

p∈Pi
Ap

i , and the union of
all action sets is called the global action set Act :=

⋃
i∈Comp Ai. For convenience,

we assume that τ /∈ Act holds for a valid protocol component system.

Since we defined an action set for each component and the global action set
above, we can now define interaction models for protocol component systems
analogously to the definition for component systems. In the definition of an
interaction (cf. Definition 2.2) and an interaction model (cf. Definition 2.3), we
only need to substitute the term “component system” by “protocol component
system”. Thus, instead of defining protocol interaction models, we use Defini-
tions 2.2 and 2.3 for protocol component systems. Similarly as for interactions
and components, we put i:p(α) := Ai:p ∩ α for an interaction α and a port i:p
of a component i in a given interaction model based on a protocol component
system and say that i:p participates in α if i:p(α) 6= ∅ holds.

Please note that all actions are assigned to a port in Definition 7.1. If some of
these actions should be internal, they can be assigned to a special internal port,
which we omitted here. Next, we define protocol interaction systems.

Definition 7.2 (Protocol Interaction System): Let IM be an interaction model
based on a protocol component system PCS. A protocol interaction system
Sys is defined as a tuple (IM, {LTSi}i∈Comp, {LTSi:p}i∈Comp∧i:p∈ports(i)). The
component behavioral model {LTSi}i∈Comp is a family of labeled transition sys-
tems with LTSi = (Si, Ai, { a−→i}a∈Ai , S0

i), i.e., for each component exists a
labeled transition system over its action set. Similarly, the port behavioral
model {LTSi:p}i∈Comp∧i:p∈ports(i) is a family of labeled transition systems with
LTSi:p = (Si:p, Ai:p ∪ {τ}, { a−→i:p}a∈Ai:p∪{τ}, S0

i:p), i.e., for each port exists a la-
beled transition system over its port alphabet (where τ-transitions are allowed)
which we call port protocol. For convenience, we write [[i]] instead of LTSi and
[[i:p]] instead of LTSi:p. Further, we assume that the components’ and the port
protocols’ sets of states are disjoint, i.e., ∀ i, j ∈ Comp : i 6= j =⇒ Si ∩ Sj = ∅
and ∀ i, j ∈ Comp ∀ i:p ∈ ports(i) ∀ j:q ∈ ports(j) : i 6= j ∨ i:p 6= j:q =⇒
Si:p ∩ Sj:q = ∅, and that all sets of states are nonempty, i.e., ∀ i ∈ Comp : |Si| ≥
|S0

i | > 0 and ∀ i ∈ Comp ∀ i:p ∈ ports(i) : |Si:p| ≥ |S0
i:p| > 0 holds.

186 7 Gray-Box View and Protocols

Observe that the special symbol τ is allowed as a transition label in the port
protocols but not in the component behavior—we required that no action
set contains τ in the definition of a protocol component system (cf. Defini-
tion 7.1).

We give an example to demonstrate protocol interaction systems. We use a
simpler version of the merchandise management example SysMMS. We modify
the original system such that the components do not cover the cancel/refund
operations, i.e., we assume that all orders are successful, and such that no
direct deliveries are offered. This leads to the following protocol component
system where each component provides ports with respect to its cooperation
partners. Please note that for the specification of the ports for a component i,
we use the ports(i) notation instead of the Pi notation. We set:

Comp = {c, m, s},

ports(c) = {c:m}, ports(m) = {m:c, m:p, m:s}, ports(s) = {s:m},

Ac:m = {askc, buyc},
Am:c = {orderm, paym}, Am:p = {printm}, Am:s = {deliverm, reservem}, and

As:m = {marks, ships}.

The interaction model based on this protocol component system is similar to
the original one, i.e., we connect the actions in the following way:

Int =
{
{askc, orderm}, {buyc, paym}, {deliverm, ships}, {printm},
{reservem, marks}

}
and

Intclosed =
{
{printm}

}
.

Figure 7.1 illustrates the interaction model based on the protocol component
system of the simplified version of the merchandise management example.
We use a diamond shape to visualize the ports attached to a component.

buyc

askc

paym

orderm

reservem

deliverm

printm

marks

ships

m c s

p

mc m s

Figure 7.1: Interaction model based on a protocol component system

Now, in order to complete the specification for a protocol interaction system,
we have to give the component and the port behavioral models. For the former,
we use a similar behavior as for the original merchandise management system
without the cancel/refund operations and the direct delivery branch.

7.1 Formalization of Protocol Interaction Systems 187

Figure 7.2 depicts the labeled transition systems of the component behavioral
model.

0

1 2 3

4

5

ord
erm

paym

reservem paym

reservem

deliv
erm printm

(a) Behavior of component m

0 1

askc

buyc

(b) Behavior of component c

0 1

marks

ships

(c) Behavior of component s

Figure 7.2: Behavior of the components of the protocol interaction system

Furthermore, we have to give the port behavioral model, i.e., define labeled
transition systems over the corresponding port alphabets. We start with
the (simple) management component where we have to give three labeled
transition systems for the three ports, which are depicted in Figure 7.3.

0paym 1

orderm

paym

(a) Port protocol [[m:c]]

0 printm

(b) Port protocol [[m:p]]

0

1 2

3

τ

τ

reservem

reservem

deliverm

(c) Port protocol [[m:s]]

Figure 7.3: Port protocols of the simple management component m

We derived the port protocols as follows (up to now, we have not addressed an
automatic procedure for this task). Consider the cooperations that are possible
over the port m:c with respect to the local behavior [[m]] (cf. Figure 7.2 (a)).
A customer can either order something and then has to pay, or directly pay.
Afterwards, this process can be repeated which leads to the port protocol as
depicted in Figure 7.3 (a). Similarly, a (potential) printer component could
observe consecutive print actions over the port m:p which results in the port
protocol depicted in Figure 7.3 (b). For the port m:s and a storage component,
the reservation and the delivery actions are triggered after the customer has
chosen to either order or pay directly. We model the initial unobservable
choice as two τ-transitions leading to different states which then results in the
port protocol depicted in Figure 7.3 (c).

188 7 Gray-Box View and Protocols

The customer and the storage component have only one port for cooperating
with the management component. Thus, we can use the behavior of the
component as the protocol of the respective port. However, to complete the
specification, Figure 7.4 depicts the corresponding port protocols.

0 1

askc

buyc

(a) Port protocol [[c:m]] of component c

0 1

marks

ships

(b) Port protocol [[s:m]] of component s

Figure 7.4: Port protocols of the simple customer and storage components

Observe that this completes the specification of a protocol interaction system
according to Definition 7.2.

Now, the global behavior of a protocol interaction system is defined analo-
gously as for an interaction system (cf. Definition 2.6). Clearly, a protocol
interaction system can be understood as an interaction system by ignoring the
port alphabets and protocols. Thus, we can use the operators for interaction
systems defined in Chapter 3 and moreover, define corresponding ones for
protocol interaction systems. However, since these operators do not modify
the components, we skip such definitions here. For instance, a subsystem
construction operator for protocol interaction systems works the same way
as the one for interaction systems (cf. Definition 3.18), but has to include all
ports of the components in the resulting subsystem in order to yield a valid
protocol interaction system.

We already mentioned that we have not yet required any relation between
port protocols and component behavior. Next, we discuss this issue.

7.1.1 Relating Port Protocols and Component Behavior

In the introduction to this chapter, we stated that for a component gray-box
view, the access to the behavior of the components, i.e., the component be-
havioral model, is restricted and cannot be used in verification steps. Instead,
the port protocols should be used. But up to now, it is sufficient to assign
a labeled transition system with a single initial state and no transitions for
each port since the only requirement in Definition 7.2 is that no set of states is
empty, e.g., the port protocols depicted in Figure 7.5 on the facing page can be
used for the protocol merchandise management example instead of the ones
specified in Figures 7.3 and 7.4.

7.1 Formalization of Protocol Interaction Systems 189

0

(a) [[c:m]]

0

(b) [[m:c]]

0

(c) [[m:p]]

0

(d) [[m:s]]

0

(e) [[s:m]]

Figure 7.5: Alternative port protocols for the example

However, since our original plan is to use the port protocols instead of the
components’ local behavior in verification steps, we need to investigate on
the necessary relation of a port and its corresponding component. When we
introduced the port protocols in the previous section, we already addressed
this issue in a vague way: A port protocol should indicate what kind of
(partial) behavior of the component can be observed over the port. The
protocol thus acts as a window to the component that allows for seeing some
of its internals.

In Chapter 2, we introduced a behavioral equivalence for interaction systems
and labeled transition systems. Thus, it is natural to use this equivalence, viz.
branching bisimilarity with explicit divergence, as the relation between a port
protocol and the behavior of the corresponding component. Here, the behavior
of the component that is observable through the port should be restricted to
the port alphabet and be as small as possible. The following notion of port
conformance formalizes this idea where we require that the local behavior of
the component restricted to the alphabet of the port is branching bisimilar
(with explicit divergence) to the port protocol.

Definition 7.3 (Port Conformance): Let Sys be a protocol interaction system.
A port i:p of a component i is said to be conform to the component if [[i:p]] ≈∆

b
fi:p([[i]]) holds where fi:p is a relabeling function that replaces all labels and
transitions not contained in the port alphabet Ai:p with the label τ and with
a τ-transition respectively, i.e., for [[i]] = (Si, Ai, { a−→i}a∈Ai , S0

i) we have
fi:p([[i]]) = (Si, Ai:p ∪ {τ}, { a−→i}a∈Ai:p∪{τ}, S0

i) with τ−→i =
⋃

a∈Ai\Ai:p
a−→i.

Furthermore, we assume that the port protocol is minimal with respect to
branching bisimilarity with explicit divergence if it is conform, i.e., we have
[[i:p]] = [[i:p]]≈∆

b
.

Thus, if we use the port protocols depicted in Figure 7.5 for the protocol
merchandise management example, i.e., the labeled transition systems each
consisting of a single initial state without transitions, it holds that no port is
conform to its associated component since all components offer an outgoing
transition in their initial states (cf. Figure 7.2). Thus, we take a look at the origi-
nal specification of the example, i.e., the port protocols specified in Figures 7.3
and 7.4. Since the components c and s have only one port and the port protocol
is identical to the component’s behavior in each case, these ports are conform.

190 7 Gray-Box View and Protocols

For component m, we proceed as follows: We take the original labeled transi-
tion system [[m]] (cf. Figure 7.2 (a)), replace for each port all transitions whose
label is not contained in the port alphabet with τ (which corresponds to the
relabeling function given in Definition 7.3), and compute the quotient with
respect to branching bisimilarity with explicit divergence (cf. Definition 2.16)
of the resulting system. Figure 7.6 depicts the three quotients.

0paym 1

orderm

paym

(a) Quotient of fm:c([[m]])

0 printm

(b) Quotient of fm:p([[m]])

0 1

reversem

deliverm

(c) Quotient of fm:s([[m]])

Figure 7.6: Quotients of the behavior of component m

Now, if we compare these labeled transition systems, i.e., the one in Fig-
ure 7.3 (a) with Figure 7.6 (a), Figure 7.3 (b) with Figure 7.6 (b), and Figure 7.3 (c)
with Figure 7.6 (c), we learn that the ports m:c and m:p are conform to compo-
nent m but port m:s is not because its port protocol is not minimal with respect
to branching bisimilarity with explicit divergence. Thus, we replace the port
protocol [[m:s]] with the labeled transition system depicted in Figure 7.6 (c)
and gain a protocol interaction system where all ports are conform to their
associated components.

We already mentioned our goal of using the port protocols instead of the local
component behavior in verification steps. In order to approach this goal, we
need a way to combine the port protocols of two cooperating components
such that we can examine their joint behavior similar to interaction systems
created with the subsystem construction operator of Chapter 3. The following
definition of the port behavior allows for this examination.

Definition 7.4 (Port Behavior): Let Sys be a protocol interaction system and
P ⊆ ⋃

i∈Comp ports(i) a set of ports of Sys’s components. The port behavior
of Sys with respect to P is defined as the labeled transition system [[P]] :=
(SP, IntP ∪ {τ}, { α−→P}α∈IntP∪{τ}, S0

P) where SP = ∏i:p∈P Si:p, S0
P = ∏i:p∈P S0

i:p,
and IntP = {α∩ (⋃i:p∈P Ai:p) | α ∈ Int} \ {∅}. For all α ∈ IntP and all s, t ∈ SP

we have s α−→P t if and only if ∀ i:p ∈ P : if i:p(α) = {a} then si:p
a−→i:p ti:p

and if i:p(α) = ∅ then si:p = ti:p. Additionally, for s, t ∈ SP we have s τ−→P t if
and only if ∃ i:p ∈ P : si:p

τ−→i:p ti:p ∧ (∀ j:q ∈ P \ {i:p} : sj:q = tj:q), i.e., only
one unobservable local step is allowed to happen during an unobservable
step in the port behavior. If all reachable states of [[P]] have at least one
successor, i.e., ∀ s ∈ SP ∀ s0 ∈ S0

P : s0 −→∗P s =⇒ Suc(s) 6= ∅ holds with
−→P =

⋃
α∈IntP∪{τ}

α−→P, then we call the port behavior deadlock-free.

7.1 Formalization of Protocol Interaction Systems 191

Please note that we do not distinguish between open and closed interactions
in Definition 7.4. This is reasonable since we currently only analyze a single
protocol interaction system. An extension with respect to several protocol
interaction systems is left for future work.

We want to mention that an interaction system can be transformed into a
protocol interaction system with conform ports in a straightforward way—the
other direction is even simpler since, as already mentioned above, we just
have to ignore the ports and take the union of the port alphabets as action sets.
The following corollary fixes the former transformation.

Corollary 7.5 (Relation of Protocol and “Normal” Interaction Systems): Let
Sys be an arbitrary interaction system with a set Comp of components, a set Int
of interactions over an action set Act =

⋃
i∈Comp Ai, a set of closed interactions

Intclosed, and a family {[[i]]}i∈Comp of labeled transition systems describing the
local behavior of the components. Introduce for every component i ∈ Comp a
port i:p with the port alphabet Ai:p = Ai. The port protocol of each such port
corresponds to the local behavior of the component, i.e., we set [[i:p]] = [[i]].
The interaction sets need not to be modified. Now, we gained a protocol inter-
action system where all ports are conform to their corresponding component.

We omit a proof of Corollary 7.5 since it directly follows from the definition
that the transformation yields a valid protocol interaction system with con-
form ports. We want to point out that these transformations imply that all
definitions such as deadlock-freedom (cf. Definition 2.8) or livelock-freedom
(cf. Definition 2.9) are also valid for protocol interaction systems. Moreover,
the behavioral equivalence between interaction systems (cf. Definition 2.15)
carries over to protocol interaction systems. Next, we introduce architectural
constraints for protocol interaction systems.

7.1.2 Architectures of Protocol Interaction Systems

We define the architecture of a protocol interaction system as a special graph
similar to the component graph for interaction systems (cf. Definition 4.1).
In order to restrict this architecture as in Chapter 4, we require that certain
properties of this graph hold which we call a tree-like protocol architecture.

Definition 7.6 (Protocol Component Graph and Architecture): The protocol
component graph Gprot := (V, E) of a protocol interaction system Sys is de-
fined by the set of vertices V = Comp∪ (⋃i∈Comp ports(i)) and the set of edges
E = {{i, i:p} | i ∈ Comp ∧ i:p ∈ ports(i)} ∪ {{i:p, j:q} | i, j ∈ Comp ∧ i:p ∈
ports(i) ∧ j:q ∈ ports(j) ∧ (∃ α ∈ Int : i:p(α) 6= ∅ ∧ j:q(α) 6= ∅)}. Two

192 7 Gray-Box View and Protocols

ports are connected if they are related by an edge in Gprot. The port connectivity
of a port i:p is defined as the number of ports to which i:p is connected. If the
port connectivity of a port is less than two, we say that the port is uniquely
connected. If Gprot forms a tree in the graph-theoretical sense (cf. Definition 4.3),
we say Sys has a tree-like protocol architecture.

Since it is more convenient to have a graphical representation of the protocol
component graph, we use the following notation: Components are depicted
as rectangles (as in the component graph, cf. Definition 4.1) and ports as
diamonds. Figure 7.7 depicts the protocol component graph of the protocol
merchandise management example. Observe that the graph is a tree in the
graph-theoretical sense and the port connectivity of every port is less than
two, i.e., the example has a tree-like protocol architecture and all ports are
uniquely connected.

c c:m mm:c m:s

m:p

ss:m

Figure 7.7: Protocol component graph of the protocol merchandise manage-
ment example, where we use a diamond shape for the vertices representing
the ports.

We omit an algorithm for deciding whether a protocol interaction system has
a tree-like protocol architecture because such an algorithm is analogously to
the one for tree-like architectures discussed in Section 4.3.1.

Next, we show how this architectural constraint can be used to verify deadlock-
freedom of protocol interaction systems without accessing the behavior of the
components.

7.2 Deadlock Detection with Port Protocols

In order to exploit the compositional information and the information obtained
by combining the port protocols via the port behavior (cf. Definition 7.4), we
put restrictions on the architecture as above and on the local behaviors, i.e., on
the existence of unobservable behavior in the port protocols. We then establish
an efficiently checkable condition for deadlock-freedom in protocol interaction
systems, which can be verified in time polynomial in the number and size of
the port protocols without accessing the behavior of the components.

7.2 Deadlock Detection with Port Protocols 193

Before we consider deadlock-freedom of a protocol interaction system, we
analyze the deadlock information that can be derived due to the port con-
formance (cf. Definition 7.3). The following lemma addresses this issue. We
want to mention that the property of deadlock-freedom is only defined for
protocol interaction systems (as for interaction system, cf. Definition 2.8) and
port behaviors (cf. Definition 7.4), i.e., we have to be careful which structures
we call deadlock-free.

Lemma 7.7: Let Sys be a protocol interaction system, i ∈ Comp one of its
components, and i:p ∈ ports(i) one of i’s ports that is conform to i. The port
behavior [[{i:p}]] is deadlock-free if and only if Sys[{i}] is deadlock-free.

A formal proof of Lemma 7.7 can be found in Appendix F on page 267.

Thus, we can exclude the possibility that a deadlock is introduced into a system
by a component that has a state without outgoing transitions by requiring that
all ports are conform—which is reasonable as discussed above—and checking
the deadlock-freedom of one port behavior consisting of a single port for each
component.

Now, in order to verify deadlock-freedom of a whole protocol interaction
system, we use the following idea: An unobservable step in a port protocol is
only present if the component’s future behavior can be influenced by the co-
operation with its environment. If no τ-transition is present, the component’s
behavior visible through the port protocol is inevitable unless the component
gets stuck, i.e., involved in a deadlock. Here, the requirements of a tree-like
protocol architecture and uniquely connected ports allow that it is sufficient
to check pairs of port protocols for deadlock-freedom, because due to their τ-
and deadlock-freedom, no cyclic waiting relation is possible.

Next, we formalize this idea as a theorem.

Theorem 7.8: Let Sys be a protocol interaction system. Assume that Sys has
a tree-like protocol architecture and that every port is uniquely connected
and conform to its corresponding component and that all port protocols are
free of τ-transitions and states without successors. If for all connected ports
i:p ∈ ports(i) and j:q ∈ ports(j) of all components i, j ∈ Comp it holds that
[[{i:p, j:q}]] is deadlock-free, then [[Sys]] is deadlock-free.

A formal proof of Theorem 7.8 can be found in Appendix F on page 268.

We apply the theorem to the protocol merchandise management example
where we use the port protocols specified in Figure 7.3 (a), Figure 7.3 (b),
and Figure 7.6 (c) for component m. As mentioned above, all ports are con-

194 7 Gray-Box View and Protocols

form to their associated component and, clearly, all port protocols are free of
τ-transitions and states without successors. Thus, the assumptions of Theo-
rem 7.8 are satisfied because, as discussed in Section 7.1.2, the system has a
tree-like protocol architecture and all ports are uniquely connected.

Now, we have to compute the port behaviors of all connected ports, viz.
[[{c:m, m:c}]] and [[{m:s, s:m}]], which are depicted in Figure 7.8.

0 1

{askc, orderm}

{buyc, paym}
(a) Port behavior [[{c:m, m:c}]]

0 1

{deliverm, marks}

{reservem, ships}
(b) Port behavior [[{m:s, s:m}]]

Figure 7.8: Port behaviors of the connected ports

Obviously, both port behaviors [[{c:m, m:c}]] and [[{m:s, s:m}]] are deadlock-
free. Thus, the deadlock-freedom of the protocol merchandise management
example is implied by Theorem 7.8.

As already mentioned, the application of Theorem 7.8 is very efficient since
we only have to compute the port behaviors of uniquely connected ports in
a system that has a tree-like protocol architecture, i.e., we can perform these
computations in time polynomial in the number and size of the port protocols.
Moreover, we do not need accessing the behavior of the components—if
we assume that the port conformance is established beforehand—and our
approach thus supports the gray-box view mentioned in the introduction to
this chapter.

In the next section, we take a look at the potential savings that our approach
allows for since the port protocols are usually much smaller than the behavior
of the components.

7.2.1 Potential Savings

We address how deadlock analyses in interaction systems can benefit from
port protocols despite the limited information due to a gray-box view, i.e.,
restricted access to the behavior of the components.

Consider a protocol interaction system Sys with one master component m that
is surrounded by client components 1, . . . , n for a n ∈ N \ {0}. The master
component offers one port containing a single action for each client and each
client has two ports, one for the master component containing a single action

7.2 Deadlock Detection with Port Protocols 195

and another one—called r—containing n− 1 actions. Thus, we have (where i
ranges over 1, . . . , n):

Comp = {m, 1, 2, . . . , n},

ports(m) = {m:1, . . . , m:n} and ports(i) = {i:m, i:r},

Am:i = {ai
m}, Ai:m = {ai

i}, and Ai:r = {a1
i , . . . , an

i } \ {ai
i}.

Now, the actions of the ports are used for synchronizing the components in
the following way:

Int =
{
{ai

m, ai
i}, {ak

i }
∣∣ i ∈ {1, . . . , n} ∧ k ∈ {1, . . . , n} \ {i}

}
and

Intclosed =
{}

.

Figure 7.9 illustrates the resulting interaction model.

a1
m

a2
m

a3
man

m

a1
1

a2
1, . . . , an

1

a2
2

a1
2, a3

2, . . . , an
2

a3
3

a1
3, a2

3, a4
3, . . . , an

3

an
n

a1
n, . . . , an−1

n

..
.

. . .

..
.

1 2

3n

m

r

m

r

m

r

m

r

m

1 2

3n

..
.

..
.

Figure 7.9: Interaction model of the protocol interaction system

Next, we specify the component and the port behavioral model. Observe
that each component has n actions that can be numbered from 1 to n. For the
component behavior, we consecutively execute these actions in their natural
order. Figure 7.10 (a) depicts the labeled transition system for the master
component m, and Figure 7.10 (b) the one for the clients.

0 1
a1

m
2

a2
m

3

a3
man

m
an−1

m

(a) Behavior of component m

0 1
a1

i 2
a2

i

3

a3
ian

i
an−1

i

(b) Behavior of component i, 1 ≤ i ≤ n

Figure 7.10: Component behavior of the protocol interaction system

For the port behavioral model, we only address the connected ports. Fig-
ure 7.11 on the following page depicts these port protocols: Figure 7.11 (a)

196 7 Gray-Box View and Protocols

depicts the port protocol of each port m:i of the master component m where
i ∈ Comp \ {m} denotes a client. Similarly, Figure 7.11 (b) shows the port
protocols of the ports i:m of all client components i ∈ Comp \ {m}. Clearly,
the port protocols are conform (cf. Definition 7.3) and free of τ-transitions
and states without successors. The conformance holds since if we replace all
transitions in a component’s behavior except the one contained in the port al-
phabet in question with τ-transitions, then the resulting system consists of one
observable transition preceded and succeeded respectively by τ-transitions.
The quotient with respect to branching bisimilarity with explicit divergence
of such a system clearly is a single initial state with a self-loop as depicted in
Figure 7.11 (cf. Definition 2.16).

0 ai
m

(a) Port protocol [[m:i]], 1 ≤ i ≤ n

0 ai
i

(b) Port protocol [[i:m]], 1 ≤ i ≤ n

Figure 7.11: Port protocols of the protocol interaction system

Please note that the port protocols of the ports i:r of all components i ∈
Comp \ {m} can be similarly derived in a conform and τ-free way by taking
the corresponding component behavior, replacing the action and transition re-
spectively that is not contained in the port alphabet Ai:r with τ, and computing
the quotient with respect to branching bisimilarity with explicit divergence (cf.
Definition 2.16). These systems are also free of states without successors.

Now, assume we want to prove the deadlock-freedom of this example. Since
the interaction model does not put strong restrictions on the cooperation of
the components, all state combinations are possible and reachable, i.e., if
we compute the global behavior of the example, we quickly face the state
space explosion problem since the global state space consists of all nn+1 state
combinations where n is the number of clients.

However, we can use our approach from Chapter 6 since the example clearly is
disjoint circular wait free (ignoring the port protocols and treating the example
as an interaction system). If we want to apply Theorem 6.9 (cf. page 154), we
have to compute the problematic states. Without going into the details of
this computation here, we find out that no problematic states exists in the
example and thus its deadlock-freedom is implied by Theorem 6.9. But,
while performing this computation, we need to analyze all subsystems of
cooperating components of size two that consist of the master component m
and a client component i for i ∈ Comp \ {m} in each case, i.e., a total number
of n labeled transition systems, and all these systems are of size n2 where n is
the number of clients.

7.2 Deadlock Detection with Port Protocols 197

As an alternative to this analysis, we can apply the approach from this chapter,
i.e., Theorem 7.8 (cf. page 193). We already mentioned above that all port
protocols are conform and free of τ-transitions and states without successors.
The protocol component graph of the example is a tree in the graph-theoretical
sense—hence, the system has a tree-like protocol architecture—and every
port is uniquely connected (cf. Definition 7.6 and Figure 7.9—we here omit to
depict the graph since it looks similar to the system’s interaction model). Thus,
the requirements of Theorem 7.8 are satisfied and we have to analyze the port
behavior (cf. Definition 7.4) of all connected ports. We can see in Figure 7.11
that all resulting labeled transition systems consist of one initial state with
a self-loop labeled by the corresponding interaction of the port behavior in
question. Since all these port behaviors are deadlock-free, Theorem 7.8 implies
deadlock-freedom of the example. Here, we need to analyze all port behaviors
of connected ports of size two that consist of the master component’s port m:i
and a client component’s port i:m for i ∈ Comp \ {m} in each case, i.e., a total
number of n labeled transition systems, and all these systems are of constant
size.

The difference in the size of the labeled transition systems under analysis of
the approaches of Chapter 6 and this chapter corresponds to a quadratic factor
that we can save in the asymptotical costs. Thus, we can benefit from port
protocols in special situations as demonstrated by the example, although we
do not have full access to all information of the protocol interaction system if
we take a gray-box view as mentioned in the introduction of this chapter.

7.2.2 Conjectured Extension

In the paper where we introduced port protocols for interaction systems [161],
we conjectured that we can extend Theorem 7.8 by weakening one of its
assumption. To quote from our paper [161]: “We conjecture that it is sufficient
that the protocol behavior of combined port protocols is τ-free instead of
requiring the τ-freedom of all port protocols.” Note that we call the protocol
behavior of combined port protocols simply port behavior in this thesis, but
in our former paper, we additionally required that the combined behavior is
minimal with respect to branching bisimilarity, i.e., we consider the quotient
of the port behavior in the following.

Unfortunately, this conjecture is false as we show by the following counterex-
ample. Consider the following protocol interaction system Sys with:

Comp = {1, 2, 3},

ports(1) = {1:2, 1:3}, ports(2) = {2:1}, ports(3) = {3:1},

198 7 Gray-Box View and Protocols

A1:2 = {a1, b1, c1}, A1:3 = {d1, e1, f 1}, A2:1 = {a2, b2, c2}, A3:1 = {d3, e3, f 3},

Int =
{
{a1, a2}, {b1, b2}, {c1, c2}, {d1, d3}, {e1, e3}, {f 1, f 3}

}
, and

Intclosed =
{}

.

The behavior of the components and the port protocols are given in Figure 7.12
where use the same labeled transition system for [[2]] and [[2:1]] and for [[3]]
and [[3:1]].

0

1

a1

2

d1

b1

3

e1

4

c1

f 1

(a) Comp. behavior [[1]]

0 1

a1

b1

2

τ

c1

(b) Port protocol [[1:2]]

0 1

e1

f 1

2

τ

d1

(c) Port protocol [[1:3]]

0c2 1

b2

a2

(d) [[2]] and [[2:1]]

0d3 1

f 3

e3

(e) [[3]] and [[3:1]]

Figure 7.12: Component behaviors and port protocols of the counterexample

Observe that all ports are conform to their associated component. Clearly, the
architecture of this system is tree-like because the only ports that are connected
are 1:2 with 2:1 and 3:2 with 3:1. However, not all port protocols are free of
τ-transitions, viz. [[1:2]] and [[1:3]] (cf. Figure 7.12 (b) and (c)). Thus, we cannot
apply Theorem 7.8 to show deadlock-freedom of the example.

But what about our conjecture? First, we compute the global behavior of
the system which is depicted in Figure 7.13 (a). Clearly, the system is not
deadlock-free—this can also be seen from the specification of the protocol in-
teraction system (cf. Figure 7.12): Observe that component 1 wants to execute
interactions {a1, a2} or {e1, e3} in its initial state where its partners, compo-
nents 2 and 3, want to execute interactions {b1, b2} or {c1, c2} and {d1, d3} or
{f 1, f 3} respectively. This mismatch results in the deadlock that is depicted in
Figure 7.13 (a).

0

(a) Global behavior

0 {c1, c2}
(b) Port behavior [[{1:2, 2:1}]]≈∆

b

0 {d1, d3}
(c) Port behavior [[{1:3, 3:1}]]≈∆

b

Figure 7.13: Global behavior and port behaviors of the counterexample

Now, we apply our conjecture from above where we have to compute the
labeled transition systems [[{1:2, 2:1}]]≈∆

b
and [[{1:3, 3:1}]]≈∆

b
, i.e., the quotients

of the port behaviors of the connected ports. The quotients are depicted in

7.3 Related Approaches and Discussion 199

Figure 7.13 (b) and (c). Observe that both quotients are free of τ-transitions
and states without successors, i.e., all assumptions of our conjecture hold.
However, the deadlock-freedom of the whole protocol interaction system is a
false implication now because the global initial state is a deadlock. This ends
our discussion of the conjectured extension of Theorem 7.8.

In the next section, we take a look at related approaches from the literature
that employ similar ideas as our port protocols.

7.3 Related Approaches and Discussion

Hennicker et al. [137] and Mota et al. [207] study similar ideas as our protocol
interaction systems, which we discuss and compare in this section. In both
works, the authors define port protocols on the basis of a formal model for
component-based systems.

The approach of Hennicker et al. [137] introduces port protocols in the way
we stated our goals formulated at the beginning of this chapter. In their com-
ponent model, each component’s port provides a protocol which is in the
following correctness relation to the behavior of the component. A compo-
nent is called correct with respect to one of its ports, if the behavior of the
component restricted to the actions in the port alphabet (i.e., any other action
becomes an unobservable τ-action) is weakly bisimilar to the port protocol.
Of course, it is assumed that each component is correct with respect to all of
its ports. The authors do not provide an automatic generation of such port
protocols, i.e., they assume that they are given by the component’s author. But,
obviously, the correctness relation between a component and one of its ports
can be used to derive a suitable port protocol.

Then, a notion called “neutrality” allows to apply a reduction strategy such
that properties need only to be verified on the reduced part of the system.
Note that this notion is also defined for the components (in the absence of port
protocols) which we discussed in Section 5.5 of Chapter 5. Here, neutrality of
a port q for a port p means that the composition of the protocols of p and q
restricted to the alphabet of p is weakly bisimilar to the protocol of p, i.e., it is
sufficient to consider only p. This protocol composition works similar to the
port behavior we defined above (cf. Definition 7.4) and we can thus apply the
approach of Hennicker et al. [137] to protocol interaction systems.

However, the port neutrality seems to be a strong restriction as can be seen
by means of the protocol merchandise management example. We showed
in Section 7.1.1 that the port protocols are conform to their components and

200 7 Gray-Box View and Protocols

thus, they are also correct in the notion of Hennicker et al. [137] since labeled
transition systems that are branching bisimilar (with explicit divergence) are
also weak bisimilar. Now, Figure 7.14 depicts the combined behavior of the
respective port protocols of the customer and the management component,
i.e., the port behavior [[{c:m, m:c}]]. The latter is depicted in Figure 7.14 (c),
and Figure 7.14 (d) depicts the restricted version.

0 1

askc

buyc

(a) Port protocol [[c:m]]

0paym 1

orderm

paym

(b) Port protocol [[m:c]]

0 1

{askc, orderm}

{buyc, paym}
(c) Port behavior [[{c:m, m:c}]]

0 1

orderm

paym

(d) [[{c:m, m:c}]] restricted to Am:c

Figure 7.14: Port protocols and port behavior of the protocol merchandise
management example

Clearly, the two systems are not weakly bisimilar because only one of them
has a paym-self-loop in its initial state—compare Figure 7.14 (b) and Fig-
ure 7.14 (d).

Moreover, weak bisimilarity is in our opinion not suited for the relationship
between components and their ports. Any information about the branching
structure is typically lost and with the additional requirement by Hennicker
et al. [137, Section 4.2] of weakly deterministic port protocols and the implied
existence of a weakly bisimilar τ-free port protocol, any information about the
unobservable but important internal behavior of the component is lost in the
port protocol. Of course, we made a similar assumption by requiring the ab-
sence of τ-transitions in Theorem 7.8, and the necessity of this assumption for
the verification of deadlock-freedom is a drawback of the approach. However,
with weak bisimilarity this information is lost a priori which indicates a loss
of information due to the definition of the model.

For instance, if a τ-self-loop exists in a port protocol at a state which has
another non-τ outgoing transition, the τ-self-loop can simply be left out,
because the behavior of this new port protocol is weakly bisimilar to the
former behavior. But, an important information is lost during this step: The
port protocol indicates at this state that the component could forever cooperate
through other ports with its environment, and thus this port is never used for

7.3 Related Approaches and Discussion 201

cooperation. However, since a non-τ outgoing transition exists, the port may
eventually be used for cooperation.

A similar observation exists with inevitable τ-divergent behavior, which indi-
cates at a port protocol that the corresponding component has reached a state
in which it never uses the port for cooperation again. This could indicate a
design flaw of the component, but also situations are imaginable in which a
port offers a special action which serves as a safety seal in order to disable
the functionality of this port completely. Or, similarly, it is possible to disable
this port over another port with the execution of a transition leading into a
τ-divergent state. When using weak bisimilarity, all of this possible interesting
information is lost in the port protocol.

In the work by Mota et al. [207], a similar idea is called “compatibility” of
two ports and requires that all sequences of actions of one port are also
possible in the other one if we abstract from input and output actions. In their
component model, the behavior of a component is given as a CSP [141] process
that offers channels for the component’s cooperation with its environment
which can be understood as the ports of the component. These channels are
related by connectors that are also modeled as CSP processes. A protocol
is defined as a projection of a component’s behavior over a channel where
this projection is done by concealing every symbol that is not contained in
the channel’s alphabet. If it now holds for two protocols that “all possible
sequences of output values in one channel are accepted by the corresponding
input channel” [207] and vice versa, they are called compatible. However,
our protocol merchandise management example discussed around Figure 7.14
above shows that the depicted protocols are not compatible in this sense if we
abstract from I/O operations, i.e., the approach of Mota et al. [207] fails for
our example.

The name “protocol” has, of course, a very broad meaning and has been
used in quite different settings. We mention one occurrence with respect
to component-based systems that we already discussed in Chapter 2: The
SOFA component model which features so-called behavior protocols [228].
A behavior protocol extends a SOFA component with a regular expression
like protocol, which represents traces of the component’s behavior that can
be observed on the interface of the component. In the following, we use
the terminology for behavior protocols introduced by Ježek et al. [148]. The
authors call the compliant behavior of a component with its ports “horizontal
protocol compatibility” of the components’ behavior protocols. This compat-
ibility check also features (by interconnecting two behavior protocols) the
detection of bad activity, i.e., the request of a component cannot be answered
by the other one, no activity, i.e., local deadlock of the interconnection, and

202 7 Gray-Box View and Protocols

infinite activity, i.e., the interconnection forms a communication loop which is
never exited. Additionally, a “vertical protocol compatibility” called “protocol
compliance” is available which allows for checking whether the behavior
protocol of a composite component corresponds to the interconnection of the
behavior protocols of its subcomponents.

However, as a behavior protocol abstracts the behavior of a whole component,
the idea behind behavior protocols is different from the questions we focus
on; thus, although it is an interesting way of checking the compliance of two
components, the behavior protocols are not comparable to our approach. Note
that in interaction systems, a behavior protocol is comparable to the behavior
of the whole component, i.e., the underlying labeled transition system.

Finally, Graf and Steffen [125] show how interface specifications, that are
supersets of the set of sequences which can be observed at a certain interface
of a process and that are provided by the designer of the system, can be used to
minimize finite state systems in a compositional way. This potentially indicates
an opportunity for future work, e.g., whether we can apply compositional
reduction as discussed in Chapter 5 to protocol interaction systems where we
only use the port protocols in equivalence checks. We want to mention that
interface generation of software components, i.e., the interface specifications
are not provided, is also an active field of research, e.g., a recent approach is
discussed by Giannakopoulou and Păsăreanu [111].

This ends our discussion of related approaches. In the next section, we address
some limitations of the port protocols approach.

7.4 Limitations of the Port Protocols Approach

We take a closer look at the acyclicity requirement of the protocol compo-
nent graph, that we used to establish a condition for deadlock-freedom in
Section 7.2, and what information can be derived from the port protocols in
the absence this requirement. As we see in the following, this reveals some
limitations of the port protocols approach.

We consider a mutual blocking scenario in a protocol interaction system. Such
a mutual blocking of two components is the smallest deadlock—measured
in the number of involved components—that can occur in a protocol interac-
tion system if we assume that all behaviors of the components are “locally
deadlock-free”. Of course, such “mutual” deadlocks can be efficiently detected,
because we only need to analyze all subsystems of size two for deadlocks
which is possible in polynomial time, i.e., if |Smax| denotes the largest local
state space, then this detection can be performed in O(|Comp|2 · |Smax|2).

7.4 Limitations of the Port Protocols Approach 203

However, the introduction of port protocols and the reliance on only con-
sidering these protocols in a deadlock analysis is flawed if mutual blocking
is present in a system. The following example gives a first indication why
a protocol-only approach is not sufficient. Figure 7.15 depicts the protocol
component graph and behavioral models of the following protocol interac-
tion system Sys with Comp = {1, 2}, ports(1) = {1:1, 1:2}, and ports(2) =

{2:1, 2:2}. Each port alphabet contains a single action, we have A1:1 = {a1},
A1:2 = {b1}, A2:1 = {a2}, and A2:2 = {b2}. The interactions set is given by
Int =

{
{a1, a2}, {b1, b2}}, i.e., the components cooperate over their a- and

b-actions, and the set of closed interactions is empty. Clearly, all ports are
conform to their associated components.

1
1:1

1:2

2
2:1

2:2

(a) Protocol component graph

0 1

a1

b1

(b) Comp. behavior [[1]]

0 1

b2

a2

(c) Comp. behavior [[2]]

0 a1

(d) Port prot. [[1:1]]

0 b1

(e) Port prot. [[1:2]]

0 a2

(f) Port prot. [[2:1]]

0 b2

(g) Port prot. [[2:2]]

Figure 7.15: Protocol interaction system modeling a mutual blocking situation

Although the protocol interaction system is already deadlocked in its global
initial state—observe that component 1 can only execute interaction {a1, a2}
and component 2 only interaction {b1, b2} in the global initial state (s0

1, s0
2)—

any protocol-only analysis (without additional assumptions) is unable to
detect the mutual blocking because the port protocols model that any action is
always executable. The port behaviors of the connected ports, viz. [[{1:1, 2:1}]]
and [[{1:2, 2:2}]], consist of a single initial state labeled by the respective in-
teraction, i.e., they are deadlock-free. Thus, no deadlock information can be
derived from them.

Similarly to the mutual blocking in the previous scenario, any larger cycle of
waiting situations among components in a protocol interaction system causes
problems if only the protocols of the system are considered in an analysis. Here,
we solved this problem by requiring the acyclicity of the protocol component
graph that excluded such scenarios.

This ends our discussion of protocol interaction systems. We summarize the
chapter in the next section and provide some directions for future work.

204 7 Gray-Box View and Protocols

7.5 Summary and Future Work

We discussed how a white-box view of the components, that we assumed in
the previous chapters, can be turned into a gray-box view by the introduction
of port protocols. Such a view is reasonable with the advent of prefabricated
components that do not fully disclose their internal details. With further as-
sumptions, these port protocols allow for the verification of deadlock-freedom
without looking at the component behavior and thus they potentially make
verification steps more efficient since the labeled transition systems that need
to be considered can be much smaller. However, we learned that also some
drawbacks exist and the architecture of a systems needs to be restricted in
order to detect cooperation mismatches that lead to deadlocks.

Despite these drawbacks, the available information could even be more re-
stricted as the following scenario illustrates, which shows some directions
for future work—of course, weaker assumptions that lie in between the ones
of Theorem 7.8 and the (non-working) extension of Section 7.2.2 are also of
interest. Additionally, the proof of Theorem 7.8 shows an application for a
correctness-by-construction approach.

7.5.1 Partial Specification of Components via Port Protocols

Imagine a situation where a software architect ordered a prefabricated com-
ponent at a software company, but the development time of this particular
component lasts. Since the software architect wants to implement and test the
behavior of the future component, the software company and the architect
agree on a specification of the future component.

This specification is only partial because the full behavior is not known yet,
and thus the protocol obtainment technique mentioned in Section 7.1.1 is
not applicable. Now, logic is used for this contract, e.g., CTL*–X to specify
the desired properties, i.e., the company provides the architect with a set of
CTL*–X formulae that the later component is guaranteed to satisfy.

This view is more restricted than the gray-box view we discussed in this chap-
ter, because the behavior is not specified completely. Here, it is only known
that each port guarantees the validity of its associated set of formulae. How-
ever, we currently do not know how such a restricted view can be incorporate
in (protocol) interaction systems. Please note that these are only early ideas
for future work on the topic.

In the following chapter, we conclude the thesis.

205

Chapter 8

Conclusion

In this final chapter, we conclude the thesis by giving pointers to the sections
where we discussed related work and by addressing additional directions for
future work. But first, we shortly address our goals formulated at the begin-
ning of the thesis (cf. Section 1.2.1): Have we accomplished our mission?

One of our goals is to guarantee efficiency which we ensured by showing upper
bounds that are polynomial in the size of an interaction system’s specification
for all presented techniques—left aside the direct approaches based on a global
behavior analysis discussed in Chapter 2. We derived automatic property
verification techniques, which is our second goal, i.e., all techniques can be
applied in a convenient way for a given interaction system and do not require
any further user input, and moreover, these techniques allow for correctness
by construction. Instead of building systems at will and then use, say, model
checking to establish properties, we followed the philosophy to develop and
investigate design patterns or architectural constraints, which we introduced
in Chapter 4, that are amenable to the formulation of efficiently checkable
conditions for the properties in question. We followed this line for deadlock-
freedom in Chapter 6 and for CTL*–X formulae in Chapter 5. Thus, although
such conditions indicate that not all systems can be verified by using them,
we achieved our goals for an interesting class of systems.

8.1 Related Work

We addressed related work in each chapter: We reviewed various formal mod-
els for software components in Section 2.1.4 of Chapter 2, analyzed related
(de-)composition operators in Section 3.6 of Chapter 3, dealt with architec-
tures and restrictions of the cooperation structure in related formalisms in

206 8 Conclusion

Section 4.6 of Chapter 4, treated compositional reduction in other component-
based settings in Section 5.5 of Chapter 5, discussed related work on efficient
deadlock analysis in Section 6.4 of Chapter 6, and showed how various authors
introduced ideas similar to port protocols in Section 7.3 of Chapter 7.

8.2 Future Work

We already gave some directions for future work at the end of each chap-
ter. We particularly want to highlight the extension of our compositional
reduction approach discussed in Section 5.6 of Chapter 5 and the extension
of our approach for deadlock-freedom discussed in Section 6.6 of Chapter 6.
Furthermore, there are some directions that we have not addressed yet and
mention in the following paragraphs.

A dependable system has the ability to provide its services under severe
conditions such as failure of system parts or presence of malicious coopera-
tion partners. With respect to interaction systems, Majster-Cederbaum and
Martens [178] address how a deadlock-free interaction systems preserves its
deadlock-freedom if a certain set of actions is not available anymore, i.e., all
interactions where such an action is part of are not executable any longer. The
authors call deadlock-freedom in a given interaction system robust with re-
spect to such a set of actions if the constrained system is deadlock-free as well.
Moreover, Martens [190, Chapter 5] extended the deadlock detection approach
for tree-like interaction systems [180] to check in polynomial time whether
deadlock-freedom is robust with respect to a certain set of actions. Here, it
is an interesting question whether our approach (cf. Chapter 6) can also be
extended in this way to show that deadlock-freedom is robust in interaction
systems with a disjoint circular wait free architecture.

Similar investigations can be found in the field of fault tolerance and reliable
distributed computing where more detailed failure models such as crash-stop,
crash-recovery, or byzantine are studied. Here, it is a challenging question
whether such failure models can be incorporated in a component-based setting
such as interaction systems. Our work on consensus algorithms [105, 106]
already indicates how processes could be encapsulated as components with
ports. Recently, Bonakdarpour et al. [44] studied such ideas in the context of
BIP [30] for which interaction systems are a theoretical model.

Last but not least, a combination of the ideas in Chapter 5, where we investi-
gated under which conditions a component can be removed from the analysis,
and the ideas of Chapter 6, where we showed how deadlock-freedom can be
established in polynomial time, is promising.

207

Appendix A

Preliminaries and Notation

In this appendix, we include various definitions for self-containedness of the
thesis.

A.1 Labeled Transition Systems

We use labeled transition systems for any behavioral description in this thesis.
Formally, they are defined as follows.

Definition A.1 (Labeled Transition System): A labeled transition system LTS
is a tuple (S, Σ, { a−→}a∈Σ, S0) where S is a finite set of states which is also
called the state space, Σ is an alphabet1 containing the labels, { a−→}a∈Σ is a
family of transition relations where a−→ ⊆ S× S for each a ∈ Σ, and S0 ⊆ S
is a set of initial states. Whenever (s, t) ∈ a−→ for two states s, t ∈ S and a
label a ∈ Σ, we write s a−→ t instead and say that there is an a-transition from
s to t. A label a ∈ Σ is called enabled in a state s ∈ S if a state t ∈ S exists
such that s a−→ t. A transition s a−→ s for a state s ∈ S and a label a ∈ Σ
is called an a-self-loop, and in general, transitions relating the same state are
called self-loops.

Since we often need to deal with the future or past behavior (as seen from a
particular state), the following definition of two functions allows us to access
this state information in a convenient way.

Definition A.2 (Predecessor and Successor): Let LTS = (S, Σ, { a−→}a∈Σ, S0)

be a labeled transition system. For a state s ∈ S and a set of labels L ⊆ Σ, we
define the L-predecessors of s as Pre(s, L) := {t ∈ S | ∃ a ∈ L : t a−→ s} and

1An alphabet is a finite set of symbols as in automata theory [145].

208 A Preliminaries and Notation

the predecessors of s as Pre(s) := Pre(s, Σ). Similarly, the L-successors of s are
defined as Suc(s, L) := {t ∈ S | ∃ a ∈ L : s a−→ t} and the successors of s as
Suc(s) := Suc(s, Σ). Note that Pre(s, ∅) = Suc(s, ∅) = ∅ holds.

The second last of the preliminary definitions introduces the notion of a “path”
that is used in various contexts throughout this thesis. The most common
usage of this notion is in the area of graph theory (cf. for instance the book of
Diestel [89, Section 1.3]).

Definition A.3 (Path and Maximal Path): A path over a tuple (S,R), where
S is a finite set andR ⊆ S× S is a binary relation over S, is a finite or infinite,
consecutively numbered sequence π := 〈s0, s1, s2, . . .〉 such that ∀ i ∈N : si ∈
π =⇒ si ∈ S and ∀ i ∈ N : si ∈ π ∧ si+1 ∈ π =⇒ (si, si+1) ∈ R. The
length of a finite path, i.e., the number of its elements, is denoted by |π|; if π

is an infinite path we write |π| = |N|. By π[i] we denote the ith element of
the path—observe that a zeroth element exists—and by π[i . .] the suffix path
starting with element si (for i ∈N with i < |π|). We call a path maximal either
if it is infinite, i.e., |π| = |N|, or if |π| > 0 and for the last element no successor
element exists, i.e., if π = 〈s0, . . . , sn〉 for some n ∈N and no sn+1 ∈ S exists
with (sn, sn+1) ∈ R. By MaxPaths(s) for s ∈ S we denote the set of all maximal
paths π over (S,R) with π[0] = s. A finite path π is called simple, if no element
occurs twice, i.e., ∀ i, j ∈ {0, . . . , |π| − 1} : i 6= j =⇒ π[i] 6= π[j].

Finally, the notion of paths allows us to define the well-known notion of
reachability of states in labeled transition systems.

Definition A.4 (Reachable States): Let LTS = (S, Σ, { a−→}a∈Σ, S0) be a la-
beled transition system. A state s ∈ S is called reachable in LTS if an initial state
s0 ∈ S0 and a finite path π over (S,

⋃
a∈Σ

a−→) exist such that π[0] = s0 and
π[|π|−1] = s holds.

A.2 Graph Theory

The following definitions are common notation in graph theory. A more
comprehensive introduction and overview can be found in the book of Diestel
[89, Chapter 1].

Definition A.5 (Graph): A graph G is a tuple (V, E) where V is a finite set of
vertices and E a set of edges which are 2-element subsets of V, i.e., E ⊆ {e ∈
2V | |e| = 2}. Two vertices v, w ∈ V are called adjacent if an edge e ∈ E exists
with e = {v, w}. In this case, edge e and vertex v (and w respectively) are

A.2 Graph Theory 209

called incident. Furthermore, the set of neighbors of a vertex v in G is denoted
by nbG(v), i.e., nbG(v) := {w ∈ V | {v, w} ∈ E}.

The definition of a path that we gave in the previous section is also valid
for graphs as defined above because we can consider the set of edges as a
symmetric binary relation over the set of vertices. Thus, if we reason about
paths in a graph in the following, we think of paths as introduced with
Definition A.3.

Definition A.6 (Connected Graph): A graph G = (V, E) is said to be con-
nected if for any two vertices v, w ∈ V a finite path π over G with π[0] = v and
π[|π| − 1] = w exists.

For connected graphs, we define the following properties.

Definition A.7 (Graph Properties): Let G = (V, E) be a connected graph.
The distance distG(v, w) between two vertices v and w in G is the length of a
shortest path between them minus one (since in graph theory, as opposed to
our definition of a path, the edges are counted), i.e., distG(v, w) := min{|π| −
1 | π is a finite path over G with π[0] = v and π[|π| − 1] = w}. The eccentric-
ity eccG(v) of a vertex v is the maximum distance from v to any other vertex,
i.e., eccG(v) := max{distG(v, w) | w ∈ V}. The radius rad(G) is the mini-
mum eccentricity over all vertices in G, i.e., rad(G) := min{eccG(v) | v ∈ V}.
The diameter diam(G) is the maximum eccentricity over all vertices in G, i.e.,
diam(G) := max{eccG(v) | v ∈ V}. The center center(G) contains all ver-
tices v whose eccentricity equals the radius of G, i.e., center(G) := {v ∈
V | eccG(v) = rad(G)}. The periphery periphery(G) contains all vertices v
whose eccentricity equals the diameter of G, i.e., periphery(G) := {v ∈ V |
eccG(v) = diam(G)}.

Finally, we define the notion of simple cycles in graphs.

Definition A.8 (Simple Cycle): A simple cycle in a graph G = (V, E) is a finite
path π of length at least four, starting and ending in a vertex v ∈ V, i.e.,
π[0] = v and π[|π| − 1] = v and |π| > 3, with the property that no vertex
other than v occurs twice: ∀ i, j ∈ {1, . . . , |π| − 1} : i 6= j =⇒ π[i] 6= π[j], i.e.,
the suffix path π[1 . .] is a simple path. The set of vertices that lie on such a
simple cycle is denoted by cycle(G) ⊆ V.

211

Appendix B

Pseudocode Algorithms

In this appendix, we give some of the algorithms mentioned throughout
the thesis together with runtime analyses. The first algorithm initializes the
information that we need in following algorithms.

Algorithm B.1 Initialization for all algorithms based on interaction systems

INITIALIZATION(Sys) // defines all variables as attributes of objects

1 for each component i ∈ Comp
2 for each state s ∈ Si

3 for each action a ∈ Ai

4 s.Suca = ∅ // for setting Suc(s, a)
5 s.Prea = ∅ // for setting Pre(s, a)
6 for each component i ∈ Comp
7 for each state s ∈ Si

8 for each action a ∈ Ai

9 for each state t ∈ Si

10 if (s, t) ∈ a−→i // or: s a−→i t
11 s.Suca = s.Suca ∪ {t}
12 t.Prea = t.Prea ∪ {s}
13 for each interaction α ∈ Int
14 α.compset = ∅ // for setting compset(α)
15 for each component i ∈ Comp
16 if not Ai ∩ α == ∅ // if i participates in α

17 α.compset = α.compset∪ {i}
18 α. i = a where {a} = Ai ∩ α // setting i(α) as action
19 α.closed = FALSE

20 if α ∈ Intclosed

21 α.closed = TRUE

212 B Pseudocode Algorithms

Please note that we here consider algorithms that operate on interaction sys-
tems where we assume that the input is given as specified in Definition 2.5, i.e.,
we assume, as already done in Algorithm B.1 on the preceding page, that we
have access to the sets Comp, Act, Int, Intclosed, and Intopen and for each com-
ponent i ∈ Comp we can access the labeled transition system corresponding
to its local behavior [[i]] = (Si, Ai, { a−→i}a∈Ai , S0

i). Observe that Algorithm B.1
initializes the following information: The functions Suc() and Pre() for every
state and action (cf. Definition A.2) and the functions compset() and i() for
every interaction and component i (cf. Definition 2.2). An upper bound for
the runtime of this algorithm is O(|Comp| · |Smax|2 · |Amax| + |Int| · |Comp|)
where Smax is the largest set of states among the components and Amax the
largest action set. This bound is polynomial in the size of the input, which we
highlighted as an important goal in the introduction of the thesis, i.e., we can
use this algorithm in the following and can safely assume that the initialization
is carried in polynomial time. Next, we take a look at the computation of the
reachable global behavior of an interaction system.

Global Behavior Traversal

Algorithm B.2 on the facing page computes the reachable global behavior (cf.
Definition 2.6) of an interaction system by traversing through the global state
space. Here, we are not interested in a particular order of the components with
respect to global state tuples. However for an algorithm that is executable by
a computer, we have to use an operator that allows for considering an “order
independent” Cartesian product, i.e., we cannot use the Cartesian product
operator that is available in many programming languages.

Here, we denote such an “order independent” Cartesian product operator by
“×̆” and use it to construct global states as in Definition 2.6—cf. its usage in
line 4, line 24, and line 25 of Algorithm B.2. From an implementation point
of view, we could for instance always use the same order of the components
or use a set representation. Furthermore, we assume that an appropriate
×̆-operator corresponds to an “unfolded” Cartesian product, i.e., the operator
does not introduce the typical nested set structure that comes with a consec-
utive application of a Cartesian product. As an example, consider the sets
S1 = {s1}, S2 = {s2}, and S3 = {s3, t3}. If we now compute S = S1 × S2 =

{(s1, s2)} and afterwards S× S3, we get {((s1, s2), s3), ((s1, s2), t3)}. For our
new operator, we require that (S1 ×̆ S2) ×̆ S3 equals {(s1, s2, s3), (s1, s2, t3)}
and that the order inside the tuples is not important but always the same.
Note that such a computation is typically carried out in a loop, e.g., consider
line 4 of Definition 2.6 where we compute the set of global initial states.

213

Algorithm B.2 Global behavior traversal

BEHAVIOR-TRAVERSAL(Sys)

1 INITIALIZATION(Sys) // cf. Algorithm B.1 on page 211
2 S0 = ∅ // for setting the global initial states
3 for each component i ∈ Comp
4 S0 = S0 ×̆ S0

i // An “order independent”, “unfolded” Cartesian product
5 S = ∅ // for setting the global states
6 τ−→ = ∅ // for setting the global transition relations
7 for each interaction α ∈ Intopen

8 α−→ = ∅
9 current = S0

10 repeat // traverse the global state space
11 S = S ∪ current
12 found = ∅ // for saving the global states found in the current step
13 for each global state s ∈ current
14 s.Suc = ∅ // we only compute Suc(s) here (cf. Definition A.2)
15 s.Sucτ = ∅ // for setting Suc(s, {τ})
16 s.Suc6τ = ∅ // for setting Suc(s, Intopen)

17 for each interaction α ∈ Int
18 successors = ∅
19 for each i ∈ Comp and i’s local state si of s = (. . . , si, . . .)
20 if i ∈ α.compset
21 if si.Sucα. i == ∅
22 successors = ∅
23 break for loop over components (line 19)
24 else successors = successors ×̆ si.Sucα. i

25 else successors = successors ×̆ {si}
26 found = found∪ successors
27 if not successors == ∅
28 if α.closed == TRUE

29 τ−→ = τ−→∪
(
{s} × successors

)
30 s.Sucτ = s.Sucτ ∪ successors
31 else α−→ = α−→∪

(
{s} × successors

)
32 s.Suc6τ = s.Suc6τ ∪ successors
33 s.Suc = s.Suc∪ successors
34 current = found \ S // keep only the new states for the next step
35 until current == ∅
36 return (S, Intτ

open, { α−→}α∈Intτ
open

, S0) // returns labeled transition system

214 B Pseudocode Algorithms

Next, we demonstrate a few steps of Algorithm B.2 by means of the mer-
chandise management example SysMMS. After the first for loop we have
S0 = {(s0

c , s0
m, s0

s)} (after line 4). Observe that this is the only global initial
state, thus when the repeat loop in line 10 starts the set current contains only
this global state. When the for loop in line 13 treats this global state and the for
loop in line 17 treats the interaction α = {askc, orderm}, the set successors is set
to s0

c .Sucaskc × s0
m.Sucorderm × {s0

s} = {(s1
c , s1

m, s0
s)}. Since this set is nonempty,

we get for the α-transition relation α−→ =
{(

(s0
c , s0

m, s0
s), (s1

c , s1
m, s0

s)
)}

after
line 31. Note that this is the only interaction that is enabled in the global initial
state, i.e., for all other interactions the for loop of line 19 is terminated in line 23
because of a component whose action is not enabled in its current state.

We turn to the question of the runtime of Algorithm B.2. Since we check for
every global state which interactions are enabled in the corresponding local
states of the components, we have O(|S| · |Int| · |Comp|) as an upper bound.
This bound holds since each reachable global state is only considered once in
the repeat loop in line 10 and in the for loop in line 13 respectively because
such a state is part of the set current exactly once—this is also the reason why
the successors Suc(s) of a global state s are set correctly in line 14 and line 33.
We already discussed in Section 2.2 that for the size of the global state space S
we have |S| ≤ |Smax||Comp| where |Smax| denotes the size of the largest local
state space, i.e., |Smax| = max{|Si| | i ∈ Comp}. However, this boils down to
O(|Smax|n) with n = |Comp| as the upper runtime bound of Algorithm B.2,
which clearly is not in polynomial time in the size of the input—if we neglect
the factors |Int| and |Comp|. Thus, this algorithm is only feasible for small
parameters (such as the merchandise management example SysMMS).

Livelock Detection

The following algorithm inspects an interaction system with respect to livelock-
freedom: Algorithm B.3 on the facing page works in two phases. First, the
reachable states of the global behavior of the given interaction system are
determined in line 1 which are then used to construct a directed graph where
the vertices correspond to the states that have an outgoing τ-transition and
no outgoing non-τ-transition (cf. lines 2–8). If we detect a state that possesses
only a τ-self-loop (cf. line 5), we can answer the question of livelock-freedom
negative since we already detected a reachable livelock. Afterwards, the edges
are stored as an adjacency list in lines 9–12 where two vertices u, v are adjacent
if there is a τ-transition from u to v. In this step, we can neglect the τ-self-
loops since we already checked them while constructing the set of vertices.
Then, the second phase begins where we have to check whether there is a

215

Algorithm B.3 Livelock detection

LIVELOCK-FREE(Sys)

1 (S, Σ, { a−→}a∈Σ, S0) = BEHAVIOR-TRAVERSAL(Sys) // cf. Algorithm B.2
2 Vertices = ∅ // on page 213
3 for each global state s ∈ S
4 if not s.Sucτ == ∅ and s.Suc6τ == ∅ // s has τ- and no non-τ-success.
5 if s.Sucτ == {s} // if s has only a τ-self-loop, s is a livelock
6 return FALSE

7 Vertices = Vertices∪ {s}
8 s. indegree = 0
9 for each global state s ∈ Vertices // check for a cycle among the vertices

10 s.Adjacency = (s.Sucτ ∩Vertices) \ {s} // keep only relevant τ-tran.
11 for each global state t ∈ s.Adjacency
12 t. indegree = t. indegree + 1
13 Sources = CREATESTACK() // Sources is a common stack data structure
14 for each global state s ∈ Vertices
15 if s. indegree == 0
16 PUSH(Sources, s)
17 while not ISEMPTY(Sources) // successively remove vertices
18 s = POP(Sources) // with indegree == 0
19 for t ∈ s.Adjacency
20 t. indegree = t. indegree− 1
21 if t. indegree == 0
22 PUSH(Sources, t)
23 for each global state s ∈ Vertices// If there is still a vertex with nonzero
24 if s. indegree > 0 // indegree, then also a cycle exists.
25 return FALSE

26 return TRUE

directed cycle among the vertices (cf. lines 13–22). Observe that we stored
the indegree, i.e., the number of incoming edges, for every vertex. Now, as
long as there is a vertex with indegree zero, we decrement the indegrees of all
adjacent vertices and re-check (we keep a stack of non-checked vertices with
indegree zero to avoid double checks). Afterwards, if there still is a vertex
with an indegree greater than zero, then there must be a cycle in the original
graph which corresponds to a cycle of τ-transitions in the global behavior (cf.
lines 23–25 where we inspect the indegree of all vertices). This lets us decide
the livelock-freedom of the interaction system in question.

The runtime of the second phase of Algorithm B.3 is linear in the number
of vertices and edges of the graph constructed in the first phase because we

216 B Pseudocode Algorithms

check each of these entities at most once. But, the construction of the graph is
directly connected to the construction of the global state space (with a call of
Algorithm B.2 in line 1 of Algorithm B.3). Since the size of the corresponding
labeled transition system can be exponential in the number of components,
hence also the runtime of Algorithm B.3.

Composition Information Validity

Algorithm B.4 checks whether the set I+ is valid with respect to Definition 3.4.
The comments provide an explanation of this check.

Algorithm B.4 Validity check of the set I+ of a composition information

CHECK-NEW-INTERACTIONS(I+, Sys(1), Sys(2), . . . , Sys(n))

1 for each new interaction α ∈ I+

2 counter = 0 // Counts the number of participating systems
3 for i = 1 to n
4 β = α ∩Act(i) // The actions of Sys(i) that are contained in α

5 α = α \ β // Update α to contain only non-processed actions
6 valid = TRUE

7 if not β == ∅ // Sys(i) participates in the new interaction α

8 counter = counter + 1
9 valid = FALSE

10 for each interaction γ ∈ Int(i)

11 if β ⊆ γ // Check whether β ∈ ⋃γ∈Int(i) 2γ holds
12 valid = TRUE

13 break for loop over interactions (line 10)
14 if not valid
15 return FALSE

16 if α == ∅ // Sys(i) is the last system participating in α

17 if counter ≤ 1 // Check whether α ∈ ⋃1≤i≤n
⋃

γ∈Int(i) 2γ

18 return FALSE

19 break for loop over interaction systems (line 3)
20 if not α == ∅ // An element is contained in α that is not an action
21 return FALSE

22 return TRUE

The runtime bound of Algorithm B.4 is polynomial in the size of the input
since we loop for all new interactions through the set of interactions of the
n input interaction systems, i.e., the bound is O(|I+| · n · |Int(max)|) where
Int(max) denotes the largest interaction set.

217

Computing the Cooperation Graph

Algorithm B.5 yields the cooperation graph Gcoop of an interaction system Sys
(cf. Definition 4.4).

Algorithm B.5 Computation of the cooperation graph

COOPERATION-GRAPH(Sys)

1 INITIALIZATION(Sys) // cf. Algorithm B.1 on page 211
2 Vertices = ∅
3 Edges = ∅
4 for each interaction α ∈ Int // Add each set of participating components
5 Vertices = Vertices∪ {α.compset} // to the set of vertices.
6 Tmp = ∅
7 for each vertex u ∈ Vertices // We consider all pairs of sets of compo-
8 for each vertex v ∈ Vertices // nents participating in an interaction.
9 Tmp = Tmp∪ {u ∩ v}

10 Vertices = Vertices∪ (Tmp \ {∅})
11 for each component i ∈ Comp // Add each component as a singleton to
12 Vertices = Vertices∪ {{i}} // the set of vertices.
13 for each vertex v ∈ Vertices
14 v.nb = ∅
15 for each vertex u ∈ Vertices
16 for each vertex v ∈ Vertices
17 if u ⊂ v // Is u adjacent to v?
18 adjacent = TRUE

19 for each vertex w ∈ Vertices// Does a proper subset of v
20 if u ⊂ w and w ⊂ v // strictly contain u?
21 adjacent = FALSE

22 break for loop over vertices (line 19)
23 if adjacent == TRUE

24 Edges = Edges∪ {{u, v}}
25 u.nb = u.nb∪ {v}
26 v.nb = v.nb∪ {u}
27 return (Vertices, Edges)

The most time consuming part of this algorithm is in lines 15–26 where we
loop three times through the set of vertices in order to determine the edges.
Thus, the runtime bound of the algorithm is O(|V|3) where V denotes the set
of vertices of the cooperation graph. As we learned in Section 4.3, we here
have |V| ∈ O(|Int|2 + |Comp|), i.e., the runtime of this algorithm is polynomial
in the size of the interaction system given as input.

218 B Pseudocode Algorithms

Disjoint Circular Wait Free Architectures

Algorithm B.6 implements Theorem 4.9 which checks whether a given interac-
tion system has disjoint circular wait free architecture.

Algorithm B.6 Check for a disjoint circular wait free architecture

DCWF(Sys)

1 (V, E) = COOPERATION-GRAPH(Sys) // cf. Algorithm B.5 on page 217
2 if not GRAPH-IS-CONNECTED(V, E) // cf. [76, Section 22.3]
3 return FALSE

4 V ′ = ∅
5 E′ = ∅
6 for each vertex v ∈ V
7 V ′ = V ′ ∪ {vin, vout}
8 E′ = E′ ∪ {(vin, vout)} // directed edges are ordered pairs
9 for each edge {v, w} ∈ E // edges are 2-element subsets of vertices

10 E′ = E′ ∪ {(vout, win), (wout, vin)}
11 CAPACITY = λ x, y : (x, y) ∈ E′ ? 1 : 0 // λ yields a function
12 for each component i ∈ Comp with v = {i}, v ∈ V, and vin, vout ∈ V ′

13 if |v.nb| ≥ 2
14 CAPACITY-V = λ x, y : (x, y) == (vin, vout) ? 2 : CAPACITY(x, y)
15 for each component j ∈ Comp with w = {j}, w ∈ V, win ∈ V ′

16 if not i == j and |w.nb| ≥ 2
17 if MAXIMUM-FLOW(V ′, E′, vin, win, CAPACITY-V) ≥ 2
18 return FALSE // ↪→ network, source, sink, capac.
19 return TRUE

We already addressed the runtime of Algorithm B.6 in the discussion of an
application of Theorem 4.9 in Section 4.3.2.

Computation of the Cycle Components

Algorithm B.7 on the facing page computes the set of cycle components in an
efficient way.

In line 4, we use an algorithm by Tarjan [251] for finding all bridges in time
O(|V|+ |E|). The runtime of this algorithm is linear in the number of vertices
and edges of the cooperation graph—if we neglect its construction—since
each of these entities is at most considered once in a loop and the classification
in line 4 can also be carried out in linear time.

219

Algorithm B.7 Computation of the cycle components

CYCLE-COMPONENTS(Sys)

1 (V, E) = COOPERATION-GRAPH(Sys) // cf. Algorithm B.5 on page 217
2 for each vertex v ∈ V
3 v.degree = |v.nb|
4 Classify each edge e ∈ E as bridge: e.bridge is set to TRUE or FALSE [251]
5 for each edge e ∈ E with e = {u, v} and u, v ∈ V
6 if e.bridge == TRUE

7 u.degree = u.degree− 1
8 v.degree = v.degree− 1
9 Cycle-Comp = ∅

10 for each component i ∈ Comp with v = {i} and v ∈ V
11 if v.degree > 1
12 Cycle-Comp = Cycle-Comp∪ {i}
13 return Cycle-Comp

Ensuring Exclusive Communication

Algorithm B.8 on the following page ensures the property of exclusive com-
munication (cf. Definition 5.1) for interaction systems as defined in this thesis
(cf. Definition 2.5).

We omit a detailed cost analysis of Algorithm B.8 but it obviously runs in
polynomial time in the size of the input since every interaction is considered
once and this consideration possibly adds new labels and transitions for the
behavior of components whose number is bounded by the size of the currently
considered interaction.

220 B Pseudocode Algorithms

Algorithm B.8 Ensuring exclusive communication

EXCLUSIVE(Sys)

1 INITIALIZATION(Sys) // cf. Algorithm B.1 on page 211
2 for each component i ∈ Comp
3 Anew

i = ∅
4 LTSnew

i = (Si, ∅, ∅, S0
i) // where [[i]] = (Si, Ai, { a−→i}a∈Ai , S0

i)

5 Intnew = ∅
6 Intnew

closed = ∅
7 for each interaction α ∈ Int
8 αnew = ∅
9 for each component i ∈ α.compset

10 anew = α. i α. compset // each action a ∈ α becomes acompset(α)

11 Anew
i = Anew

i ∪ anew

12 αnew = αnew ∪ anew

13 for each transition si
α. i−→i ti of [[i]]

14 add a label anew to LTSnew
i

15 add a transition si
anew−→i ti to LTSnew

i
16 Intnew = Intnew ∪ αnew

17 if α.closed == TRUE

18 Intnew
closed = Intnew

closed ∪ αnew

19 return (((Comp, {Anew
i }i∈Comp), Intnew, Intnew

closed), {LTSnew
i }i∈Comp)

221

Appendix C

Polynomial-Space Algorithms
for Freedom from Deadlock and
Freedom from Livelock

In this appendix, we want to address the issue of detecting deadlocks and
livelocks deterministically in polynomial space. Note that we already know
that this is possible for deadlocks since, as discussed in Chapter 2, the decision
problem can be solved nondeterministically in polynomial space and together
with Savitch’s famous theorem [240], PSPACE = NPSPACE, the claim fol-
lows. However, it is interesting to ask whether we can use polynomial-space
algorithms in practice, and we have to give a polynomial-space algorithm
for the deciding livelock-freedom to establish its PSPACE-completeness (cf.
Section 2.3.2).

According to Lipton [174, Chapter 29], Savitch’s theorem [240] uses a key idea
that was introduced in a proof by Lewis II et al. [172] about the recognition
of a context-free language in logarithmic space. However, it was Savitch
who realized the important consequence of the idea for the collapse of the
complexity classes PSPACE and NPSPACE.

In the following, we give several algorithms that all work with respect to a
given interaction system Sys. In some cases, we omit to pass Sys as a parameter
for better readability, i.e., only the two following Algorithms C.5 and C.7 are
called with Sys as a parameter and all other algorithms are called from inside
these and thus have access to Sys as a global parameter. We also assume that
interaction system Sys is initialized with respect to Algorithm B.1 on page 211.
Observe that this initialization does not occupy more than polynomial space.
We begin with a polynomial-space algorithm for deadlock-freedom.

222 C Polynomial-Space Algorithms

C.1 Freedom from Deadlock

The first item we have to determine is whether a certain global state is a
deadlock. Algorithm C.1 realizes this check in the most space efficient way
by checking wether an interaction is enabled, which answers the question of
deadlock-freedom for the state in question affirmative.

Algorithm C.1 Determines whether a given global state is a deadlock

DEADLOCK(s) // global state s

1 for each interaction α ∈ Int
2 enabled = TRUE

3 for each i ∈ Comp and i’s local state si of s
4 if i ∈ α.compset
5 if si.Sucα. i == ∅
6 enabled = FALSE

7 break for loop over components (line 3)
8 if enabled == TRUE

9 return FALSE

10 return TRUE

The next step is to apply Algorithm C.1 to all reachable global states. Here,
we need to be able to compute the set of global states in a space efficient way.
The following algorithm realizes this with the concept of an iterator that only
stores one global state at a time.

Algorithm C.2 Global state iterator

GLOBAL-STATE-ITERATOR()

1 current = 0
2 max = 1
3 for each component i ∈ Comp
4 max = max · |Si|
5 while current < max
6 global-state = ∅ // we use an ordered set to construct an n-tuple
7 divisor = 1
8 for each component i ∈ Comp
9 global-state = global-state∪ Si[b current

divisor c mod |Si|]
10 divisor = divisor · |Si| // ↪→ Si[k] yields the (k + 1)th state of i
11 yield the global state that corresponds to global-state
12 current = current + 1

The main idea of Algorithm C.2 is that we do not compute the Cartesian

C.1 Freedom from Deadlock 223

product that corresponds to the global state space directly, which would waste
too much space, but instead compute its elements sequentially in a lazy way.
Here, we assume that each set of local states has a fixed order and is accessible
as in typical arrays, i.e., Si[k] yields the (k + 1)th local state of component i for
0 ≤ k ≤ |Si| − 1. We yield each global state in line 11 of Algorithm C.2.

Since a global state is reachable if there is a path starting in a global initial state,
we need to iterate over all global initial states in a space efficient way. We use
the same idea as for Algorithm C.2 to derive the following algorithm.

Algorithm C.3 Global initial state iterator

GLOBAL-INITIAL-STATE-ITERATOR()

1 current = 0
2 max = 1
3 for each component i ∈ Comp
4 max = max · |S0

i |
5 while current < max
6 global-initial-state = ∅
7 divisor = 1
8 for each component i ∈ Comp
9 global-initial-state = global-initial-state∪ S0

i [b
current
divisor c mod |S0

i |]
10 divisor = divisor · |S0

i | // ↪→ S0
i [k] yields the (k + 1)th init. state

11 yield the global state that corresponds to global-initial-state
12 current = current + 1

Next, we can address the reachability question. In Algorithm C.4 on the
following page, we use the typical idea as in Savitch’s theorem [240]: A global
state t is reachable from another global state s in at most k transitions if there
is a global state r that is reachable from s in at most b k

2c transitions and t
is reachable from r in at most d k

2e transitions. The key insight for the space
consumption of Algorithm C.4 is that the recursion depth is logarithmic in the
number of global states since each call halves the parameter k. Moreover, we
only need to store three global states and an integer in each recursion level
and, only on the lowest level, iterators over the interactions and components
respectively. Clearly, all these variables occupy only logarithmic space. Thus,
the overall space requirement is squared logarithmical in the number of global
states, which meets our polynomial-space bound.

Finally, we can derive a polynomial-space algorithm for deadlock-freedom,
which is given as Algorithm C.5 on the following page. Thereby, we use the
overall number of global states as parameter k for the reachability analysis
since at most all global states are intermediate states on any path.

224 C Polynomial-Space Algorithms

Algorithm C.4 Polynomial-space reachability analysis

REACHABLE(s, t, k) // global states s, t and integer k

1 if k ≤ 1
2 for each interaction α ∈ Int
3 executable = TRUE

4 for each i ∈ Comp and i’s local state si of s and ti of t
5 if i ∈ α.compset
6 if ti /∈ si.Sucα. i

7 executable = FALSE

8 break for loop over components (line 4)
9 elseif not ti == si

10 executable = FALSE

11 break for loop over components (line 4)
12 if executable == TRUE

13 return TRUE

14 return s == t
15 else for each global state r in GLOBAL-STATE-ITERATOR()

16 if REACHABLE(s, r, b k
2c) and REACHABLE(r, t, d k

2e)
17 return TRUE

18 return FALSE

Algorithm C.5 Polynomial-space deadlock detection

PSPACE-DEADLOCK-FREE(Sys)

1 max = 1
2 for each component i ∈ Comp
3 max = max · |Si|
4 for each global initial state s0 in GLOBAL-INITIAL-STATE-ITERATOR()

5 for each global state s in GLOBAL-STATE-ITERATOR()

6 if DEADLOCK(s) and REACHABLE(s0, s, max)
7 return FALSE

8 return TRUE

C.2 Freedom from Livelock

For a polynomial-space livelock detection, we can proceed similarly as above.
A certain global state is a livelock (cf. Definition 2.9), if it is reachable from
a global initial state, if in all global states that are reachable over a sequence
of τ-transitions no open interaction is enabled, and if the global state itself is
reachable (again) by a nonempty sequence of τ-transitions. We can already

C.2 Freedom from Livelock 225

answer the first part with Algorithm C.4 in polynomial space and thus need a
space-efficient way for the two latter parts.

Algorithm C.6 answers the question whether a global state t is reachable
from a global state s in at most k steps and polynomial space by only using
τ-transitions. Observe that we meet our polynomial-space bound for k ≤
1 by looping through all closed interactions and sets of local states of the
participating components. For larger k, the halving of the parameter ensures
that the recursion depth stays logarithmic in k—analogously as discussed
above for Algorithm C.4.

Algorithm C.6 Polynomial-space τ reachability analysis

TAU-REACH(s, t, k) // global states s, t and integer k

1 if k ≤ 1
2 tau-executable = FALSE

3 for each closed interaction α ∈ Intclosed

4 executable = TRUE

5 for each i ∈ Comp and i’s local state si of s and ti of t
6 if i ∈ α.compset
7 if ti /∈ si.Sucα. i

8 executable = FALSE

9 break for loop over components (line 5)
10 elseif not ti == si

11 executable = FALSE

12 break for loop over components (line 5)
13 if executable == TRUE

14 tau-executable = TRUE

15 break for loop over interactions (line 3)
16 return s == t or tau-executable
17 else for each global state r in GLOBAL-STATE-ITERATOR()

18 if TAU-REACH(s, r, b k
2c) and TAU-REACH(r, t, d k

2e)
19 return TRUE

20 return FALSE

Now, in order to decide whether a given interaction is livelock-free in polyno-
mial space, we need to consider each reachable global state, ensure that it has
no (global) successor that is reachable over a sequence of τ-transitions where
an open interaction is enabled, and whether the global state in question is
reachable (again) from its successors by τ-transitions only (which ensures that
there is at least one such transition). Note that we employ the same idea as for
Algorithm C.5 to keep the space bound by checking all paths up to a certain
length k. Algorithm C.7 on the following page implements this task.

226 C Polynomial-Space Algorithms

Algorithm C.7 Polynomial-space livelock detection

PSPACE-LIVELOCK-FREE(Sys)

1 max = 1
2 for each component i ∈ Comp
3 max = max · |Si|
4 for each global initial state s0 in GLOBAL-INITIAL-STATE-ITERATOR()

5 for each global state s in GLOBAL-STATE-ITERATOR()

6 if REACHABLE(s0, s, max)
7 livelock = TRUE

8 reachable-again = FALSE

9 for each global state t in GLOBAL-STATE-ITERATOR()

10 if TAU-REACH(s, t, max) // i.e., if s τ−→∗ t, check
11 non-tau-enabled = FALSE // Suc(t, Intopen) = ∅
12 for each open interaction α ∈ Intopen

13 enabled = TRUE

14 for each i ∈ Comp and i’s local state ti of t
15 if i ∈ α.compset
16 if ti.Sucα. i == ∅
17 enabled = FALSE

18 break for loop in line 14
19 if enabled == TRUE

20 non-tau-enabled = TRUE

21 break for loop in line 12
22 if non-tau-enabled == TRUE

23 livelock = FALSE

24 break for loop in line 9
25 if reachable-again == FALSE // check s τ−→+ s
26 if s == t // check for a τ-self-loop
27 Insert lines 2–15 of Algorithm C.6
28 reachable-again = tau-executable
29 else reachable-again = TAU-REACH(t, s, max)
30 if livelock and reachable-again
31 return FALSE

32 return TRUE

Note that we have to ensure that the currently considered global state has a
τ-self-loop in lines 26–28 because a global state is always reachable in at most
k steps from itself and we thus cannot use Algorithm C.6 as in line 29.

Together with the PSPACE-hardness established in Section 2.3.2 of Chapter 2,
we can thus conclude that livelock detection is PSPACE-complete.

227

Appendix D

Computation Tree Logic

In this appendix, we give the formal definition for the syntax and semantics of
Extended Computation Tree Logic. Note that a detailed introduction, discus-
sion, and references for this topic are given in Section 2.3.3 of Chapter 2. Some
further remarks can be found in Section E.4 of the following appendix.

Definition D.1 (Syntax of CTL*): Let Σ be an alphabet with τ /∈ Σ called
atomic propositions. A CTL* state formula Φ over Σ, also briefly called CTL*
formula, is syntactically defined via the grammar:

Φ ::= >
∣∣ p

∣∣ ¬Φ
∣∣ Φ1 ∧Φ2

∣∣ E φ

where p ∈ Σ, Φ1, Φ2 are CTL* state formulae over Σ, and φ is a CTL* path
formula over Σ which is syntactically defined via the grammar (where φ1, φ2

are CTL* path formulae over Σ):

φ ::= Φ
∣∣ ¬φ

∣∣ φ1 ∧ φ2
∣∣ X φ

∣∣ φ1 U φ2

Definition D.2 (Auxiliary Notation for CTL*): As usual, we define the fol-
lowing operators (with the operator precedence ¬,E,A,U,F,G,∧,∨,⇒,⇔)
and symbols for CTL* path formulae φ, φ1, φ2 and CTL* formulae Φ, Φ1, Φ2:

• ⊥ := ¬>

• φ1 ∨ φ2 := ¬(¬φ1 ∧ ¬φ2)

• Φ1 ∨Φ2 := ¬(¬Φ1 ∧ ¬Φ2)

• φ1 ⇒ φ2 := ¬φ1 ∨ φ2

• Φ1 ⇒ Φ2 := ¬Φ1 ∨Φ2

• φ1 ⇔ φ2 := φ1 ⇒ φ2 ∧ φ2 ⇒ φ1

• Φ1⇔Φ2 := Φ1 ⇒ Φ2 ∧Φ2 ⇒ Φ1

• A φ := ¬E¬φ

• F φ := >U φ

• G φ := ¬F¬φ

•
∨

i∈{1,...,n} φi := φ1 ∨ . . . ∨ φn

•
∨

i∈{1,...,n}Φi := Φ1 ∨ . . . ∨Φn

228 D Computation Tree Logic

•
∧

i∈{1,...,n} φi := φ1 ∧ . . . ∧ φn

•
∧

i∈{1,...,n}Φi := Φ1 ∧ . . . ∧Φn

•
∨

i∈∅ φi := ⊥

•
∨

i∈∅ Φi := ⊥

•
∧

i∈∅ φi := >

•
∧

i∈∅ Φi := >

For the empty disjunction and conjunction, we have
∨

i∈∅ φi = ⊥ whereas∧
i∈∅ φi = > holds. This is reasonable because a disjunction corresponds to an

existential quantification whereas a conjunction to a universal one.

Definition D.3 (Kripke Structure): A Kripke structure is defined as a tuple
KS := (S,−→, S0, Σ,L) where S is a finite sets of states, −→ ⊆ S × S is a
transition relation, S0 ⊆ S is the set of initial states, Σ is an alphabet containing
the atomic propositions, and L : S→ 2Σ is a function that labels each state with
a set of atomic propositions. Whenever (s, t) ∈ −→ for two states s, t ∈ S we
write s −→ t instead.

Definition D.4 (Satisfaction Relation for CTL*): Let KS = (S,−→, S0, Σ,L)
be a Kripke structure and let p ∈ Σ 6τ be an atomic proposition, s ∈ S be a state,
φ, φ1, φ2 be CTL* path formulae over Σ 6τ and Φ, Φ1, Φ2 be CTL* state formulae
over Σ 6τ. The satisfaction relation |= for CTL* state formulae is inductively
defined as (where KS, s |= > always holds):

KS, s |= p iff p ∈ L(s)
KS, s |= ¬Φ iff KS, s 6|= Φ

KS, s |= Φ1 ∧Φ2 iff KS, s |= Φ1 ∧ KS, s |= Φ2

KS, s |= E φ iff ∃π ∈ MaxPaths(s) : KS, π |= φ

For any maximal path π over KS (cf. Definition A.3), satisfaction relation |=
for CTL* path formulae is defined as

KS, π |= Φ iff KS, π[0] |= Φ

KS, π |= ¬φ iff KS, π 6|= φ

KS, π |= φ1 ∧ φ2 iff KS, π |= φ1 ∧ KS, π |= φ2

KS, π |= X φ iff |π| > 1 ∧ KS, π[1 . .] |= φ

KS, π |= φ1 U φ2 iff ∃ i ∈N : i < |π| ∧ KS, π[i . .] |= φ2

∧ (∀ j ∈N : j < i =⇒ KS, π[j . .] |= φ1)

Definition D.5 (Equivalence of CTL* Formulae): Two CTL* formulae Φ1 and
Φ2 over an alphabet Σ 6τ are equivalent, denoted by Φ1 ≡ Φ2, if for every Kripke
structure KS = (S,−→, S0, Σ,L) and every state s ∈ S it holds that

KS, s |= Φ1 if and only if KS, s |= Φ2.

229

Appendix E

Bisimilarities

In this appendix, we formally define the five equivalences mentioned in
Section 2.4. There, they are only briefly discussed and after a comparison
branching bisimilarity with explicit divergence is chosen to be our “working”
behavioral equivalence for interaction systems (cf. Definition 2.15). Here, we
give formal definitions based on labeled transition systems (in the notation
of this thesis, cf. Definition A.1), shortly present their historical origin, and
discuss the asymptotic runtime of their computation. We also address their
expressive power, i.e., what kind of properties are preserved in equivalent
systems, by means of a logical characterization.

We want to mention that for their computation, i.e., an algorithm that decides
whether two systems are equivalent, the known algorithms usually compute
the largest/coarsest auto-equivalence of a single labeled transition system, i.e.,
they relate the states in one given system. If we are now interested in deciding
the equivalence of two systems, the first step is to construct a “union system”
which serves as the input for the auto-equivalence algorithm.

This union is defined in the natural way: Let LTS1 and LTS2 be labeled tran-
sition systems over the same alphabet, i.e., LTSi = (Si, Σ, { a−→i}a∈Σ, S0

i) for
i = 1, 2. The union of the two systems is the labeled transition system:

LTS = (S1 ∪ S2, Σ, { a−→1 ∪ a−→2}a∈Σ, S0
1 ∪ S0

2).

Now, the labeled transition systems LTS1 and LTS2 are equivalent if there is a
corresponding auto-equivalence relationR for LTS such that ∀ s0

1 ∈ S0
1 ∃ s0

2 ∈
S0

2 : (s0
1, s0

2) ∈ R and, vice versa, ∀ s0
2 ∈ S0

2 ∃ s0
1 ∈ S0

1 : (s0
2, s0

1) ∈ R—this
works becauseR is symmetric. Additionally, since these algorithms usually
compute the largest/coarsest equivalence relation, they can also be used to
compute quotients of labeled transition systems, as introduced in our setting
for branching bisimilarity with explicit divergence by Definition 2.16. We refer

230 E Bisimilarities

the reader to the book of Baier and Katoen [23, Chapter 7] for a more detailed
treatment.

Typically, the number of states and the number of transitions of the input
labeled transition system are the influencing parameters for the runtime costs
of such algorithms, which is in our case the union of the two systems in
question. For the sake of better readability, we use the abbreviations n =

|S1|+ |S2| and m = ∑a∈Σ(| a−→1|+ |
a−→2|) in the following.

E.1 Strong Bisimilarity

First, we give a formal definition of strong bisimilarity with respect to labeled
transition systems.

Definition E.1 (Strong Bisimilarity): Let LTSi = (Si, Σ, { a−→i}a∈Σ, S0
i), i =

1, 2, be labeled transition systems over the same alphabet. The systems are
strongly bisimilar, denoted by LTS1 ≈s LTS2, if a symmetric relation R ⊆
S1 × S2 ∪ S2 × S1 exists such that for i = 1, 2 and j = (i mod 2) + 1 holds

1. for all states s0
i ∈ S0

i exists a state s0
j ∈ S0

j such that (s0
i , s0

j) ∈ R and

2. for all (si, sj) ∈ R with si ∈ Si and sj ∈ Sj, all ti ∈ Si, and all a ∈ Σ, if
si

a−→i ti then there is a state tj ∈ Sj with sj
a−→j tj and (ti, tj) ∈ R.

The notion of bisimilarity was independently invented by Park [222] and Mil-
ner [197] where Milner applied the notion under the name strong equivalence
in the context of his CCS [200]. The two ideas are the same if image finiteness
is assumed [86], i.e., the number of successors of all states is finite, and later,
Milner [197] adopted Park’s notation. Milner was also involved in the first
logical characterization of his equivalence where Hennessy-Milner logic [135]
was found to characterizes strong bisimilarity [136]. Hennessy-Milner logic
can directly be interpreted over labeled transition systems, i.e., we do not need
to translate labeled transition systems into Kripke structures as for CTL* (cf.
Section 2.3.3), however, it is weaker than CTL* which means that there are
properties that can be expressed in CTL* but not in Hennessy-Milner logic—
note that there is no fixed-point operator in the latter logic [247, Remark 2].
Browne et al. [53] give a logical characterization of strong bisimilarity in CTL*,
where they apply Milner’s notion of strong bisimilarity in the context of Kripke
structures. Note that with the translation of De Nicola and Vaandrager [85],
this applies also for labeled transition systems—in the cited work, the authors
only talk about CTL*–X but the translation is also valid for CTL* because it
preserves strong bisimilarity [238].

E.2 Weak Bisimilarity 231

For the computation of strong bisimilarity, the first algorithm goes back to
Kanellakis and Smolka [152]—according to Baier and Katoen [23, Section 7.10].
The main idea behind this algorithm is partition refinement: Start with an
initial partition of the state space and try to refine these partitions, usually
called blocks, until all equivalent states are in the same block. The refine-
ment is done by so-called splitters that separate the states in a block by their
distinguishable behavior. This technique has its origins in automata theory
in the context of minimization, e.g., the algorithm by Hopcroft [143], where
equivalent states with respect to the relation by Myhill [209] and Nerode [211]
are computed. For strong bisimilarity, the partition refinement algorithm of
Paige and Tarjan [219] improved the one by Kanellakis and Smolka [152] and
settled the upper bound of O(m · log n) if the number of labels is fixed and
m ≥ n holds—a very detailed overview can be found in the book of Baier and
Katoen [23, Section 7.3.4]. Dovier et al. [93] discuss improvements and sym-
bolic implementations of this algorithm. The question of the runtime behavior
of a strong bisimilarity checking algorithm without the assumption that |Σ| is
constant was recently addressed by Valmari [257]. The author shows that the
O(m · log n) bound is also valid in this case.

E.2 Weak Bisimilarity

The notion of strong bisimilarity has the drawback that all behavior is con-
sidered as observable. For instance, a sequence of τ-transition can be fully
observed and each single τ step can be counted. The existence of unobservable
behavior thus needs a special treatment that was introduced in the broad work
of Robin Milner [135, 136, 195–200]. Before we further discuss the historical
origin, we give a formal definition of weak bisimilarity with respect to labeled
transition systems.

Definition E.2 (Weak Bisimilarity): Let LTSi = (Si, Στ, { a−→i}a∈Στ , S0
i), i =

1, 2, be labeled transition systems over the same alphabet. The systems are
weakly bisimilar, denoted by LTS1 ≈w LTS2, if a symmetric relation R ⊆
S1 × S2 ∪ S2 × S1 exists such that for i = 1, 2 and j = (i mod 2) + 1 holds

1. for all states s0
i ∈ S0

i exists a state s0
j ∈ S0

j such that (s0
i , s0

j) ∈ R and

2. for all (si, sj) ∈ R with si ∈ Si and sj ∈ Sj, all ti ∈ Si, and all a ∈ Στ, if
si

a−→i ti then

(a) either a = τ and a state tj ∈ Sj exists with sj
τ−→∗j tj and (ti, tj) ∈ R

(b) or there are states qj, rj, tj ∈ Sj with sj
τ−→∗j qj, qj

a−→j rj, rj
τ−→∗j tj,

and (ti, tj) ∈ R.

232 E Bisimilarities

Originally, the notion of weak bisimilarity was introduced as observational
equivalence in the presence of unobservable actions by Hennessy and Milner
[135, 136]; however, Milner [198] also seems to be the first to use the name
weak bisimilarity. In their original definition, the authors define this equiva-
lence over sequences of actions, although Milner [199, Proposition 8.4] shows
that it is possible to restrict these sequences to be of length one, which then
coincides with Definition E.2. Similar concepts were discussed by Bergstra and
Klop [37] and by Baeten and Van Glabbeek [22]. The failure equivalence of
Brookes et al. [51] in the context of CSP [141] also specially treats unobservable
behavior although it is coarser than weak bisimilarity. We refer the reader to
Van Glabbeek [113, Section 4] for a good overview. A logical characterization
of weak bisimilarity can be found in Milner’s book on CSS [200, Chapter 10],
where he introduces weak modalities for Hennessy-Milner logic [135].

We turn to the question of computing weak bisimilarity. Typical algorithms
first compute the reflexive transitive closure of the τ-transition relation, which
yields the double arrow relation of CCS [197], and then use the algorithm for
strong bisimilarity, e.g., the algorithm derived by Kanellakis and Smolka [152].
The former part can be achieved by the Floyd–Warshall algorithm [100, 261]
in runtime O(n3), or for a better worst case upper bound, by an algorithm
by Munro [208] that exploits fast matrix multiplication, which in turn can
be computed in runtime O(n2.376) with an algorithm by Coppersmith and
Winograd [75]. The closure computation then dominates the runtime over
the strong bisimilarity computation. More recently, this over twenty years
old bound was improved independently by Stothers [248] to O(n2.3737) and
later by Vassilevska Williams [259] to O(n2.3727). In the latter work, the author
also conjectures that more tighter estimates are very likely. However, these
algorithms are only of theoretical interest although they yield the best worst
case upper bound that is known today. We refer the reader to the thesis of
Nuutila [214] for efficient algorithms addressing this problem. However, as
pointed out by Groote and Vaandrager [130, Section 6.2], the above runtime is
only valid if the number of labels is fixed, otherwise the upper bound becomes
O(m · n2.3727).

E.3 Branching Bisimilarity

One drawback of weak bisimilarity is that it does not preserve the branch-
ing structure of labeled transition systems. Figure 2.11 on page 53 already
illustrated this non-preservation: The depicted systems are (pairwise) weakly
bisimilar but in the first system, there is a computation path that always offers
α before β is executed whereas in the other systems such a path does not exists.

E.3 Branching Bisimilarity 233

A better example is given by Van Glabbeek and Weijland [115, Figure 1] where
the same computation paths in three different (weakly bisimilar) systems
offer different in-between options. These kind of observations, which origin
from Van Glabbeek and Weijland [114], led to the introduction of branching
bisimilarity, which we define next.

Definition E.3 (Branching Bisimilarity): Let LTSi = (Si, Στ, { a−→i}a∈Στ , S0
i),

i = 1, 2, be labeled transition systems over the same alphabet. The systems
are branching bisimilar, denoted by LTS1 ≈b LTS2, if a symmetric relation
R ⊆ S1× S2 ∪ S2× S1 exists such that for i = 1, 2 and j = (i mod 2) + 1 holds

1. for all states s0
i ∈ S0

i exists a state s0
j ∈ S0

j such that (s0
i , s0

j) ∈ R and

2. for all (si, sj) ∈ R with si ∈ Si and sj ∈ Sj, all ti ∈ Si, and all a ∈ Στ, if
si

a−→i ti then

(a) either a = τ and (ti, sj) ∈ R

(b) or there are states rj, tj ∈ Sj with sj
τ−→∗j rj, rj

a−→j tj, (si, rj) ∈ R,
and (ti, tj) ∈ R.

We want to mention that a proof that branching bisimilarity is an equivalence
relation was addressed by Basten [29] after some “obvious” proofs turned
out to be incorrect. De Nicola and Vaandrager [85] studied logical charac-
terizations of branching bisimilarity and show that CTL*–X interpreted over
all paths instead of maximal paths (as introduced in Appendix D) is suitable
for such a characterization. Their work is based on stuttering equivalence of
Kripke structures studied by Browne et al. [53].

Computational issues were addressed by Groote and Vaandrager [130] which
derive an algorithm that works similarly to the approach for strong bisimilarity
mentioned in Section E.1: After an initial partition of the state space into blocks,
the blocks are refined by splitters (with respect to a certain label) until no more
refinements are possible. Such a splitter with respect to a label a for a block B
is the set of states that can be reached from the states in B with an a-transition
after performing a finite number of τ-transitions that enter only states in B as
intermediate states. We refer the reader to the detailed discussion in the work
by Groote and Vaandrager [130] that also addresses implementation issues.
The runtime of this algorithm is O(m · log m + m · n) or O((|Σ|+ m) + m · n)
depending on whether one uses heapsort or bucket sort respectively in the
construction of the initial partition—note that the set of labels needs not to
be fixed. Otherwise, the runtime is O(m · n). The authors conjecture that
this bound can be improved, but best to our knowledge, no better worst case
upper bound is known today.

234 E Bisimilarities

E.4 Divergence Sensitive Branching Bisimilarity

Although the interpretation of CTL* formulae over all paths of Kripke struc-
tures was originally used by its inventors, Emerson and Halpern [95], this
interpretation is only reasonable for total Kripke structures, i.e., structures in
which all states have at least one successor. An example that illustrates this is-
sue is given by De Nicola and Vaandrager [85, Example 3.2.8]. Nowadays, the
maximal path interpretation became accepted, e.g., Baier and Katoen [23, Re-
mark 6.11, page 329] allow it, although, for instance, Clarke et al. [72] require
totality of the transition relation but then use an infinite path interpretation—
remember that maximal paths and infinite paths coincide in this case. An
additional reason for using the maximal path interpretation is the ability to de-
scribe properties like fairness [85]. If one now wants to use CTL*–X interpreted
over maximal paths (as we do in Appendix D) to serve as a logical charac-
terization, branching bisimilarity needs to be strengthened to be sensitive to
divergent paths, i.e., maximal paths where eventually only τ-transitions occur,
which lead to the introduction of divergence sensitive branching bisimilarity.
This new bisimilarity was invented by De Nicola and Vaandrager [85] where
they originally introduced a special state in both labeled transition systems in
question such that every state in one of the original systems, that lies on a cycle
of τ-transitions or has no outgoing transition, is equipped with a transition
to the new state. This translation allows to relate livelocks in the systems
since De Nicola and Vaandrager [85] define the new bisimilarity as: If the new
systems are branching bisimilar, the original systems are divergence sensitive
branching bisimilar. Here, we modify this definition to skip the addition of
the special state and give a more “direct” definition.

Definition E.4 (Divergence Sensitive Branching Bisimilarity): Let LTSi =

(Si, Στ, { a−→i}a∈Στ , S0
i), i = 1, 2, be labeled transition systems over the same

alphabet. The systems are divergence sensitive branching bisimilar, denoted by
LTS1 ≈λ

b LTS2, if a symmetric relationR ⊆ S1 × S2 ∪ S2 × S1 exists such that
for i = 1, 2 and j = (i mod 2) + 1 holds

1. for all states s0
i ∈ S0

i exists a state s0
j ∈ S0

j such that (s0
i , s0

j) ∈ R and

2. for all (si, sj) ∈ R with si ∈ Si and sj ∈ Sj it holds that

2.1. for all ti ∈ Si and all a ∈ Στ, if si
a−→i ti then

(a) either a = τ and (ti, sj) ∈ R

(b) or there are states rj, tj ∈ Sj with sj
τ−→∗j rj, rj

a−→j tj, (si, rj) ∈
R, and (ti, tj) ∈ R and

2.2. if there is an infinite path π over (Si, τ−→i) such that π[0] = si,

E.5 Branching Bisimilarity with Explicit Divergence 235

then there exists a state tj ∈ Sj such that sj
τ−→j tj or tj = sj if

Suc(sj) = ∅ and (ti, tj) ∈ R where ti = π[k] for some k ∈N.

We omit a formal proof that Definition E.4 coincides with the original one
mentioned above, since Part 2.2 exactly captures those states that are treated
in the translation of De Nicola and Vaandrager [85]. Finally with this new
bisimilarity, De Nicola and Vaandrager [85, Theorem 3.4.6] show that diver-
gence sensitive branching bisimilarity is logically characterized by CTL*–X
interpreted over maximal paths.

The computation of divergence sensitive branching bisimilarity can be per-
formed with a slight modification of the algorithm by Groote and Vaandrager
[130] that computes branching bisimilarity as addressed in the previous sec-
tion. We shortly address this modification here since we did not find it in
the literature. Before the initial partition is computed, the algorithm [130]
computes the strongly connected components of the input transition system
restricted to inert τ-transitions (interpreted as a directed graph where the
edges correspond to the τ-transitions). Then, the transition system is con-
densed with respect to these strongly connected components, i.e., the states in
such a connected component become a single new state where all incoming
and outgoing transitions are redirected to the new state. Since branching
bisimilarity does not preserve divergence, no τ-self-loop is added to a new
state. If we now want to preserve divergence, we just have to add such a
self-loop (if the state has at least one successor, cf. Part 2.2 of Definition E.4)
as a non-inert transition in the terminology of the implementation of Groote
and Vaandrager [130]. Note that this modification does not influence the
asymptotic runtime of the algorithm, which thus yields the same runtime as
discussed in the previous section.

E.5 Branching Bisimilarity with Explicit Divergence

In Chapter 3, we discussed the desired behavior that a behavioral equivalence
in interaction systems is a congruence with respect to the composition and
closing operator. Otherwise, the composition of two systems is not guaranteed
to have the expected outcome if one of the systems is replaced by a behav-
ioral equivalent one. For divergence sensitive branching bisimilarity such
an undesired behavior was observed by Van Glabbeek et al. [117, Section 5]
where they introduce a merge operator for labeled transition systems that cor-
responds to process algebraic parallel operators. An example [117, Figure 4]
then illustrates the undesired behavior, where two states of a labeled transition
system are auto-equivalent with respect to divergence sensitive branching

236 E Bisimilarities

bisimilarity, but after the merge operator is applied, this equivalence vanishes.
The authors show that a stronger equivalence, viz. branching bisimilarity with
explicit divergence, overcomes this problem. This equivalence was defined by
Van Glabbeek and Weijland [114] in the spirit of Bergstra et al. [38]. Next, we
define this equivalence in our setting.

Definition E.5 (Branching Bisimilarity with Explicit Divergence): Let LTSi

= (Si, Στ, { a−→i}a∈Στ , S0
i), i = 1, 2, be labeled transition systems over the

same alphabet. The systems are branching bisimilar with explicit divergence,
denoted by LTS1 ≈∆

b LTS2, if a symmetric relationR ⊆ S1× S2 ∪ S2× S1 exists
such that for i = 1, 2 and j = (i mod 2) + 1 holds

1. for all states s0
i ∈ S0

i exists a state s0
j ∈ S0

j such that (s0
i , s0

j) ∈ R and

2. for all (si, sj) ∈ R with si ∈ Si and sj ∈ Sj it holds that

2.1. for all ti ∈ Si and all a ∈ Στ, if si
a−→i ti then

(a) either a = τ and (ti, sj) ∈ R

(b) or there are states rj, tj ∈ Sj with sj
τ−→∗j rj, rj

a−→j tj, (si, rj) ∈
R, and (ti, tj) ∈ R and

2.2. if there is an infinite path π over (Si, τ−→i) such that π[0] = si, then
there exists a state tj ∈ Sj such that sj

τ−→j tj and (ti, tj) ∈ R where
ti = π[k] for some k ∈N.

One drawback of the switch from the divergence sensitive version to the
one with explicit divergence lies in the logical characterization. This was
also addressed by Van Glabbeek et al. [117], where the authors discuss a
modification of the translation from labeled transition systems to Kripke
structures or alternatively, a modification of the logic CTL*–X such that it is
able to distinguish deadlocks and livelocks. As we discussed in Section 2.4.1,
this can also be achieved by ensuring that the labeled transition system in
question is deadlock-free.

The computation of branching bisimilar with explicit divergence goes along
the lines of the modification of the algorithm by Groote and Vaandrager [130]
described in the previous section. The only difference is that we add τ-self-
loops to all condensed states instead of only to the ones that have at least one
successor. Thus, we also get the same runtime as for computing branching
bisimilarity.

237

Appendix F

Formal Proofs

F.1 Proofs from Chapter 2

Proof of Lemma 2.10: First observe that the global behaviors of the two sys-
tems are “nearly identical”: The additional component x in Sys′ introduces for
every global state of [[Sys′]] a self-loop that is labeled with τ—since {livex} is
a closed interaction—and all τ-transitions of [[Sys]] are labeled with the cor-
responding open interactions in [[Sys′]]. All other transitions can be found in
both systems. Now, assume that Sys is deadlock-free. Then, for all reachable
global states s of [[Sys]] holds Suc(s) 6= ∅ (cf. Definition 2.8). Thus, for all
corresponding global states s′ of [[Sys′]] also holds Suc(s′) 6= ∅ and that they
are reachable. Since we have Suc(s′, {τ}) = {s′}, i.e., the only τ-transition is
the one by component x, we know that Suc(s′, Int′open) 6= ∅ holds, i.e., there is
a successor that is reachable via an open interaction—otherwise s would be a
deadlock. But this means that no such state s′ can be a livelock, thus Sys′ is
livelock-free (cf. Definition 2.9). Analogously, we can show the other direction,
i.e., assume that Sys′ is livelock-free and conclude the deadlock-freedom of
Sys. Finally, the translation itself can clearly be carried out in constant time
if we assume that we work on a given copy of Sys or directly modify the
system. �

Proof of Lemma 2.17: Let LTS = (S, Στ, { a−→}a∈Στ , S0) be the given system.
We distinguish LTS and its quotient by (S1, Στ

1 , { a−→1}a∈Στ
1
, S0

1) = LTS≈∆
b

and
(S2, Στ

2 , { a−→2}a∈Στ
2
, S0

2) = LTS in the following. Observe that the alphabets of
the two systems are equal by definition, i.e., Στ

1 = Στ
2 =: Στ. We now have

to show that a relationR′ ⊆ S1 × S2 ∪ S2 × S1 exists such that LTS≈∆
b
≈∆

b LTS
holds. The definition of the quotient LTS≈∆

b
(cf. Definition 2.16) already pro-

238 F Formal Proofs

vides a symmetric relation R ⊆ S × S—observe that S = S2 holds—that
establishes LTS ≈∆

b LTS. We define R′ := {([s2]R, s2) | s2 ∈ S2}↔ and show
thatR′ is indeed a relation that establishes the branching bisimilarity with ex-
plicit divergence of LTS≈∆

b
and LTS—remember that S1 consists of equivalence

classes of the states in S2 with respect to R. Clearly, R′ is symmetric since
we applied the symmetric closure. Now, for all initial states s0

i ∈ S0
i exists a

state s0
j ∈ S0

j such that (s0
i , s0

j) ∈ R′ for i = 1, 2 and j = (i mod 2) + 1 because
each initial state of LTS is contained in an equivalence class by definition. This
shows the first part of Definition E.5. Next, we consider the second part. For
i = 1, 2, j = (i mod 2) + 1, and all (si, sj) ∈ R′ with si ∈ Si and sj ∈ Sj holds

2.1. for all ti ∈ Si and all a ∈ Στ, if si
a−→i ti then s a−→ t holds for two states

s, t ∈ S with s ∈ si and t ∈ ti if i = 1 and s = si and t = ti if i = 2.

(a) If a = τ and (s, t) ∈ R, then we have (ti, sj) ∈ R′ by definition.

(b) Otherwise, we know that a state r ∈ S exists such that s τ−→∗ r,
r a−→ t, and (s, r) ∈ R holds. But then, we also find rj, tj ∈ Sj

with rj 3 r and tj 3 t if j = 1 and rj = r and tj = t if j = 2 such
that sj

τ−→∗j rj, rj
a−→j tj, and (si, rj) ∈ R′ holds because s and r

are in the same equivalence class. Thus, also (ti, tj) ∈ R′ holds by
definition ofR′ and becauseR establishes LTS ≈∆

b LTS.

2.2. if there is an infinite path π over (Si, τ−→i) such that π[0] = si, then we
find this path also over (S, τ−→). Thus, we know that a state t ∈ S exists
with s τ−→+ t, (s, t) ∈ R, and t τ−→∗ s since the state space is finite.
Now, we also find a state tj ∈ Sj such that sj

τ−→j tj and (ti, tj) ∈ R′
where ti ∈ Si is a state with ti = [t]R if i = 1 and ti = t if i = 2 (cf.
Definition 2.16).

Thus, the relationR′ establishes the branching bisimilarity with explicit diver-
gence of the systems in question, i.e., LTS≈∆

b
≈∆

b LTS holds. �

F.2 Proofs from Chapter 3

Proof of Proposition 3.6: We have to show that the interaction model con-
structed by the composition operator,

⊗
(I+,I−){IM(1), . . . , IM(n)}, is indeed a

valid interaction model. Observe that this is sufficient—for the proof that the
tuple is an interaction system—since for all other entities of an interaction
system such as the sets of components, actions, and labeled transition systems,
the validity is guaranteed by the disjointness of the single systems—because
these entities are interrelated to each other by set union. Since the composition
operator joins the closed interactions by set union and no closed interaction

F.2 Proofs from Chapter 3 239

is removed from the overall interaction set, we can focus on this set of inter-
actions. We have to show two things: First, that every interaction contains at
most one action of every component, and second, that any action is contained
in at least one interaction (cf. Definitions 2.2 and 2.3). For the first claim, we
have to consider only the set I+ since the claim already holds for all Int(i) with
1 ≤ i ≤ n. The set I+ is constructed via the powerset interjoin operator which
combines sets from its operands by set union. Since the first claim already
holds for all of these operands, the set union of the powerset interjoin does
not add actions of one component twice. For the second claim, we have to
consider the set I− which removes interactions from the combined interaction
set. But for this removal, we have the requirement that I− v I+ holds, i.e., any
interaction that is removed is contained in at least one new interaction. This
guarantees the validity of the second claim. Thus, the composition operator
yields a valid interaction system. �

Proof of Proposition 3.7: In order to show the proposition, we have to prove
two claims: First, that each (binary) composition step is indeed a valid compo-
sition according to Definition 3.4, and second, that the resulting interaction
sets on both sides of the equation of the proposition are equal. Note that
the latter claim is sufficient for the equality, since the sets of components,
actions, closed interactions, and labeled transition systems are not altered by
the composition operator (cf. Definition 3.4).

We prove the first claim via induction over the current composition step
with system Sys(i) for 2 ≤ i ≤ n. Consider an arbitrary composition step
where the next binary composition is between Sys(i) with 2 ≤ i ≤ n and the
composed system of the previous steps. We can assume that all previous
composition steps are valid. Let Int(1,...,i−1) denote the resulting interaction set
of the previous compositions. The current step is valid if (cf. Definition 3.4):

1. I+1,...,i ⊆ Int(1,...,i−1)
open ./ Int(i)open,

2. I−1,...,i ⊆ Int(1,...,i−1)
open ∪ Int(i)open, and

3. I−1,...,i v I+1,...,i holds.

The first item follows because I+1,...,i contains only interactions α where com-
ponents of Sys(i) participate in—since α ∩ Act(i) 6= ∅ is required—but not
exclusively, i.e., there is at least one component from the systems 1, . . . , i− 1
that also participates—since α * Act(i) is required. This is exactly the require-
ment for a powerset interjoin of two sets (cf. Definition 3.2). The second item
is also true because I−1,...,i contains interactions α either from Int(1,...,i−1)

open since

∃ β ∈ I+1,...,i : α = β \Act(i), or from Int(i)open since ∃ β ∈ I+1,...,i : α = β∩Act(i), i.e.,

240 F Formal Proofs

α ∈ Int(1,...,i−1)
open ∪ Int(i)open. The last item follows because, as for the second item,

any interaction in I−1,...,i is contained in an interaction in I+1,...,i: The α is always
included in the quantified β in I−1,...,i. This proves that any binary composition
step is indeed a valid one.

For the second claim, we have to show that(
I+ ∪ Int(1) ∪ . . . ∪ Int(n)

)
\ I− ?=

I+1,...,n ∪
[(

. . .
[(

I+1,2 ∪ Int(1) ∪ Int(2)
)
\ I−1,2

]
. . .
]
∪ Int(n)

)
\ I−1,...,n (?)

where the left-hand side is the interaction set resulting from the composition
of all systems, and the right-hand side corresponds to the set of interactions
resulting from the single binary compositions applied in the order given by
the parentheses on the right-hand side of the equation of the proposition.

We first show that the resulting set of interactions of the binary compositions,
i.e., the right-hand side of Equation (?), can be rewritten as:

I+1,...,n ∪
[(

. . .
[(

I+1,2 ∪ Int(1) ∪ Int(2)
)
\ I−1,2

]
. . .
]
∪ Int(n)

)
\ I−1,...,n

=
(⋃

2≤i≤n

I+1,...,i ∪ Int(1) ∪ . . . ∪ Int(n)
)
\
⋃

2≤i≤n

I−1,...,i (∗)

This rewriting is valid because any interaction that is removed via set dif-
ference on the left-hand side of Equation (∗) is not included in later (with
respect to the order induced by the parentheses) unions, i.e., for any index i
with 2 ≤ i ≤ n, and any interaction α ∈ I−1,...,i it holds that for all k with
i + 1 ≤ k ≤ n holds α /∈ I+1,...,k ∧ α /∈ Int(k). This statement holds because
any such α is not included in an I+1,...,k with a higher index k > i since these
sets only consist of interactions where components from Sys(k) participate in
which is not the case for sets with smaller indices. Analogously, this holds for
any set Int(k) which only adds interactions of a system with a higher index
(that could not have been removed earlier) for any such k.

Next, we prove two auxiliary equations which we apply to Equation (∗)
afterwards. It holds that⋃

2≤i≤n

I+1,...,i \
⋃

2≤i≤n

I−1,...,i = I+ and (†)

(
Int(1) ∪ . . . ∪ Int(n)

)
\
⋃

2≤i≤n

I−1,...,i =
(
Int(1) ∪ . . . ∪ Int(n)

)
\ I−. (‡)

We prove Equation (†): First, observe that I+ ⊆ ⋃
2≤i≤n I+1,...,i holds because

for any index i, the composite interactions where components of interaction
system Sys(i) and of all systems with smaller indices participate in are included
in I+1,...,i. We have to show that the union of the parametrized old interactions

F.2 Proofs from Chapter 3 241

(I−1,...,i) contains all interactions that are not contained in I+ but in the union
of the parametrized new interactions (I+1,...,i). Note that no interaction from I+

is removed because for any such α, that is removed, it is required that either
α /∈ I+, or α ∈ I− and I+ ∩ I− = ∅ holds. Assume that α is an arbitrary
interaction that is contained in

⋃
2≤i≤n I+1,...,i but not in I+. Observe that any

such α is present in the union because an index i exists such that components
from Sys(i) participate in α and also an index k with k > i exists such that
components from Sys(k) participate in an interaction β with α ⊂ β, because
otherwise α ∈ I+ (if no such β exists). Assume that k is the largest of such
indices with the property that no index j with i < j < k exists such that
components from Sys(j) participate in β. Note that we can always find these
two indices i and k with no index j in between, because α /∈ I+ and the
components from Sys(k) belong to the last system (with respect to the order
induced by the parentheses) that need α for cooperation—if an j in between
exists, then another set that strictly contains α is used for this cooperation, i.e.,
this index j is already the largest one. We have β ∈ I+1,...,k since components
of Sys(k) participate in it. Now, we also have α ∈ I−1,...,k, since α = β \ Act(k),
α /∈ I+, and ∀ γ ∈ I+ : α ⊆ γ =⇒ β ⊆ γ since k is the largest of such
indices. Note that also α /∈ Act(j) holds for any j < k, since otherwise, α is
not contained in

⋃
2≤i≤n I+1,...,i. Thus, any such interaction α is contained in⋃

2≤i≤n I−1,...,i which proves Equation (†).

For a proof of Equation (‡), observe that any interaction α that is removed
from Int(1) ∪ . . .∪ Int(n) by

⋃
2≤i≤n I−1,...,i is also contained in I− because for any

index i such an α is contained in either I−1,...,i if α ⊆ Act(j) and α ∈ I− for any
index j < i, or α ⊆ Act(i) and α ∈ I−. Since also I− ⊆ ⋃

2≤i≤n I−1,...,i holds—
because I− v I+, I+ ⊆ ⋃2≤i≤n I+1,...,i, and ∃ β ∈ I+1,...,i : α = β ∩Act(i) ∧ α ∈ I−

for all i—the claim of Equation (‡) follows.

We apply Equations (†) and (‡) to Equation (∗), which yields:(⋃
2≤i≤n

I+1,...,i ∪ Int(1) ∪ . . . ∪ Int(n)
)
\
⋃

2≤i≤n

I−1,...,i

=
(⋃

2≤i≤n

I+1,...,i \
⋃

2≤i≤n

I−1,...,i

)
∪
(
Int(1) ∪ . . . ∪ Int(n)

)
\
⋃

2≤i≤n

I−1,...,i

=
(

I+
)
∪
(
Int(1) ∪ . . . ∪ Int(n)

)
\ I−

=
(

I+ \ I−
)
∪
(
Int(1) ∪ . . . ∪ Int(n)

)
\ I− (since I+ ∩ I− = ∅)

=
(

I+ ∪ Int(1) ∪ . . . ∪ Int(n)
)
\ I−

This proves Equation (?), i.e., the set of interactions of both systems in the
equation of Proposition 3.7 are equal, which proves the statement. �

242 F Formal Proofs

Proof of Proposition 3.9: The composition information only consists of sets
that have no order information, i.e., it holds that Int(1)open ./ Int(2)open = Int(2)open ./

Int(1)open and Int(1)open ∪ Int(2)open = Int(2)open ∪ Int(1)open. �

Proof of Proposition 3.10: First, we show that the two binary compositions
on the left-hand side of the equation of the proposition can be contracted into
a single composition, i.e., that(

Sys(1) ⊗
(I+1,2,I−1,2)

Sys(2)
)
⊗

(I+1,2,3,I−1,2,3)
Sys(3) =

⊗
(I+,I−)

{Sys(1), Sys(2), Sys(3)} (?)

holds. Consider the set of interactions resulting on the left-hand side of
Equation (?). According to Definition 3.4, there we have:(

I+1,2,3 ∪
(
(I+1,2 ∪ Int(1)open ∪ Int(2)open) \ I−1,2

)
∪ Int(3)open

)
\ I−1,2,3

=
(

I+1,2,3 ∪ I+1,2 ∪ Int(1)open ∪ Int(2)open ∪ Int(3)open

)
\
(

I−1,2,3 ∪ I−1,2

)
=
((
(I+1,2 ∪ I+1,2,3) \ I−1,2,3

)
∪ Int(1)open ∪ Int(2)open ∪ Int(3)open

)
\
(
(I−1,2 ∪ I−1,2,3) \ I+1,2

)
=
(

I+ ∪ Int(1)open ∪ Int(2)open ∪ Int(3)open

)
\ I− (∗)

where I+ = (I+1,2 ∪ I+1,2,3) \ I−1,2,3 and I− = (I−1,2 ∪ I−1,2,3) \ I+1,2 are defined in the
proposition. Note that the penultimate line is correct because I−1,2 ∩ I+1,2 = ∅
holds. Now, we showed that the last line of Equation (∗) equals the set
of interactions after the contracted composition step above, i.e., the set of
interactions resulting on the right-hand side of Equation (?). Additionally, we
have to show that this composition is valid, i.e., that

1. I+ ⊆ Int(1)open ./ Int(2)open ./ Int(3)open,

2. I− ⊆ Int(1)open ∪ Int(2)open ∪ Int(3)open, and

3. I− v I+ holds.

Case 1 directly follows from the definition of I+ because I+ = (I+1,2 ∪ I+1,2,3) \
I−1,2,3 and the sets I+1,2 and I+1,2,3 are valid powerset interjoins: I+1,2 ⊆ Int(1)open ./

Int(2)open and I+1,2,3 ⊆ Int(1,2)
open ./ Int(3)open where Int(1,2)

open contains interactions from

Int(1)open, Int(2)open, and from a valid powerset interjoin of these two. Next, we
consider Case 2:

I− = (I−1,2 ∪ I−1,2,3) \ I+1,2

⊆
(
(Int(1)open ∪ Int(2)open) ∪ (Int(1,2)

open ∪ Int(3)open)
)
\ I+1,2

=
(
Int(1)open ∪ Int(2)open ∪ ((I+1,2 ∪ Int(1)open ∪ Int(2)open) \ I−1,2) ∪ Int(3)open

)
\ I+1,2

F.2 Proofs from Chapter 3 243

=
(
Int(1)open ∪ Int(2)open ∪ I+1,2 ∪ Int(3)open

)
\ I+1,2

= Int(1)open ∪ Int(2)open ∪ Int(3)open.

Thus, also this case holds. For I− v I+, an interaction α contained in I− =

(I−1,2 ∪ I−1,2,3) \ I+1,2 that has no appropriate superset interaction β contained
in I+ = (I+1,2 ∪ I+1,2,3) \ I−1,2,3, i.e., α ⊆ β, would violate either I−1,2 v I+1,2 or
I−1,2,3 v I+1,2,3. Thus, we know that the contraction of the composition is correct,
i.e., Equation (?) holds.

Second, we expand the system of the right-hand side of Equation (?) in a
different order. The numbering of the interaction systems is not important, i.e.,
applying the renaming 1 = 3′, 2 = 1′, and 3 = 2′ of the proposition, we get:⊗

(I+,I−)

{Sys(1), Sys(2), Sys(3)} =
⊗

(I+,I−)

{Sys(3
′), Sys(1

′), Sys(2
′)}.

Since {Sys(3
′), Sys(1

′), Sys(2
′)} = {Sys(1

′), Sys(2
′), Sys(3

′)}, we can apply Propo-
sition 3.7 and Definition 3.4, which yields⊗

(I+,I−)

{Sys(1
′), Sys(2

′), Sys(3
′)} =

(
Sys(1

′) ⊗
I1′ ,2′

Sys(2
′)
)
⊗
I1′ ,2′ ,3′

Sys(3
′).

Now, we rename the interaction systems (but not the composition information)
and apply Proposition 3.9:(

Sys(1
′) ⊗
I1′ ,2′

Sys(2
′)
)
⊗
I1′ ,2′ ,3′

Sys(3
′) = Sys(1) ⊗

I1′ ,2′ ,3′

(
Sys(2) ⊗

I1′ ,2′
Sys(3)

)
. �

Proof of Proposition 3.12: Let (S1, Σ1, { α−→1}α∈Σ1 , S0
1) = [[Sys(1)]] with Σ1 =

Int(1)open ∪ {τ}, (S2, Σ2, { α−→2}α∈Σ2 , S0
2) = [[Sys(2)]] with Σ2 = Int(2)open ∪ {τ}, and

(S3, Σ3, { α−→3}α∈Σ3 , S0
3) = [[Sys(3)]] with Σ3 = Int(3)open ∪ {τ} be the correspond-

ing global behaviors of the given interaction systems. Since Sys(1) ≈∆
b Sys(2)

holds, the alphabets of the corresponding labeled transition systems are equal,
i.e., Σ1 = Σ2 =: Σ holds and the “either/or” distinction of the supersets
of the sets I+ and I− is no restriction. Furthermore, there exists a symmet-
ric relation R ⊆ S1 × S2 ∪ S2 × S1 with the properties of Definition 2.15.
We now have to show that also a relation R⊗ ⊆ S1,3 × S2,3 ∪ S2,3 × S1,3

exists such that Sys(1)⊗(I+,I−) Sys(3) ≈∆
b Sys(2)⊗(I+,I−) Sys(3) holds where

each Si,3 with i = 1, 2 denotes the global state space of the correspond-
ing composed system, which we define next. Let Γ := (I+ ∪ Σ ∪ Σ3) \
I− be the alphabet of the global behaviors of the composed systems, i.e.,
[[Sys(1)⊗(I+,I−) Sys(3)]] = (S1,3, Γ, { α−→1,3}α∈Γ, S0

1,3) and similarly, but with
Sys(2) instead of Sys(1), [[Sys(2)⊗(I+,I−) Sys(3)]] = (S2,3, Γ, { α−→2,3}α∈Γ, S0

2,3) (cf.
Definitions 2.6 and 3.4). Note that τ ∈ Γ holds because τ ∈ Σ ∪ Σ3 and τ /∈ I−

244 F Formal Proofs

holds. We constructR⊗ as follows.

R⊗ =
{(

(si, s3), (sj, s3)
)
∈ Si,3 × Sj,3 | (si, sj) ∈ R for i = 1, 2 and

j = (i mod 2) + 1
}

.

We need to show that R⊗ is indeed a relation that establishes branching
bisimilarity with explicit divergence of the systems Sys(1)⊗(I+,I−) Sys(3) and
Sys(2)⊗(I+,I−) Sys(3). First note that R⊗ is symmetric since it is constructed
out of a symmetric relation in a way that does not affect the symmetry. In the
following, we reason about both i = 1, 2 and j = (i mod 2) + 1 at the same
time. Because of the premise, we know that for every initial state s0

i ∈ S0
i there

is an initial state s0
j ∈ S0

j such that (s0
i , s0

j) ∈ R. From the construction ofR⊗,
it directly follows that for every initial state s0

3 ∈ S0
3, the pair

(
(s0

i , s0
3), (s

0
j , s0

3)
)

is included inR⊗, i.e., the first part of Definition 2.15 holds forR⊗. We now
consider the first part (2.1) of the second part and distinguish three cases. For
all
(
(si, s3), (sj, s3)

)
∈ R⊗ with si ∈ Si, sj ∈ Sj, and s3 ∈ S3, and all ti ∈ Si,

t3 ∈ S3, and α ∈ Γ holds: If (si, s3)
α−→i,3 (ti, t3) then

1. α ∈ Σ and no component of Sys(3) participates in the transition, i.e.,
s3 = t3 holds. Since then also si

α−→i ti and since (si, sj) ∈ R we know
that either α = τ and (ti, sj) ∈ R, or that rj, tj ∈ Sj exist with sj

τ−→∗j rj,
rj

α−→j tj, (si, rj) ∈ R, and (ti, tj) ∈ R. Thus, we either have α = τ

and
(
(ti, s3), (sj, s3)

)
∈ R⊗, or (sj, s3)

τ−→∗j,3 (rj, s3), (rj, s3)
α−→j,3 (tj, s3),(

(si, s3), (rj, s3)
)
∈ R⊗, and

(
(ti, s3), (tj, s3)

)
∈ R⊗ by the definition of

relationR⊗.

2. α ∈ Σ3 and no component of Sys(i) participates in the transition, i.e.,
si = ti holds. Since also no component of Sys(j) participates, s3

α−→3 t3,
and (si, sj) ∈ R, also (sj, s3)

α−→j,3 (sj, t3) and
(
(si, t3), (sj, t3)

)
∈ R⊗

holds by the definition of relationR⊗.

3. α ∈ I+: Components of both systems participate in the transition. Then
there exist β ∈ Int(i)open and γ ∈ Int(3)open such that α = β ∪ γ and it
holds that si

β−→i ti and s3
γ−→3 t3. Since (si, sj) ∈ R and β 6= τ, we

know that rj, tj ∈ Sj exist with sj
τ−→∗j rj, rj

β−→j tj, (si, rj) ∈ R, and
(ti, tj) ∈ R. Thus, we have (sj, s3)

τ−→∗j,3 (rj, s3), (rj, s3)
α−→j,3 (tj, t3),(

(si, s3), (rj, s3)
)
∈ R⊗, and

(
(ti, t3), (tj, t3)

)
∈ R⊗ by the definition of

relationR⊗.

Note that if α = τ, which means that an interaction exists that is closed in one
of the systems, both α ∈ Σ and α ∈ Σ3 holds. But, only one of the systems
makes a step in this case, i.e., we can distinguish the Cases 1 and 2 as above.

For the infinite path case (2.2) of Definition 2.15, we can use the same argument

F.2 Proofs from Chapter 3 245

as in the Cases 1 and 2 above, since the infinite path is either in a system Sys(i)

for i = 1, 2 and we find the corresponding state tj, or in Sys(3) in which case
it can be found in both composed systems. Thus, the relationR⊗ establishes
branching bisimilarity with explicit divergence of the systems in question, i.e.,
Sys(1)⊗(I+,I−) Sys(3) ≈∆

b Sys(2)⊗(I+,I−) Sys(3) holds. �

Proof of Proposition 3.14: We have to show that the interaction model con-
structed by the closing operator, IM \\ Î, is indeed a valid interaction model.
Since only the set of closed interactions is modified by the closing oper-
ator and Sys is a valid interaction system, we have to show that the set
Intclosed ∪ (Î ∩ Int) is contained in the set of interactions. By assumption,
we know that Intclosed ⊆ Int holds, and (Î ∩ Int) ⊆ Int follows from set theory.
Thus, the closing operator yields a valid interaction system. �

Proof of Proposition 3.15: First, observe that all interactions that are closed
before the composition on the right-hand side are also closed after the compo-
sition since we required that Î(1) ⊆ Î and Î(2) ⊆ Î holds. Thus, the equality of
the systems depends on the validity of the composition, i.e., we have to show
that no interaction is closed that is needed for the composition information.
Let X(i) = {α ∈ 2Act(i) | α ∈ I− ∨ (∃ β ∈ I+ : α = β ∩ Act(i) ∧ α 6= ∅)}
denote the set defined in the theorem. We start with the set I−. Observe
that we demanded that for each α ∈ Î(i) with i = 1, 2 holds α /∈ X(i). Thus
no such α is contained in I−. Next, consider the set I+. Here, we required
for each α ∈ Î(i) with i = 1, 2 that no β ∈ I+ exists with α = β ∩ Act(i)—
otherwise α ∈ X(i) and Î(i) ∩ X(i) 6= ∅. Thus, no closed interaction affects the
composition information which proves the claim. �

Proof of Proposition 3.17: Let (S1, Σ1, { α−→1}α∈Σ1 , S0
1) = [[Sys(1)]] with Σ1 =

Int(1)open ∪ {τ} and (S2, Σ2, { α−→2}α∈Σ2 , S0
2) = [[Sys(2)]] with Σ2 = Int(2)open ∪ {τ}

be the corresponding global behaviors of the given interaction systems. Since
Sys(1) ≈∆

b Sys(2) holds (we assume that the premise of the proposition holds
for the proof), the alphabets of the labeled transition systems are equal, i.e.,
Σ1 = Σ2 =: Σ, and there exists a symmetric relation R ⊆ S1 × S2 ∪ S2 × S1

with the properties of Definition 2.15. We now have to show that also a relation
R̂ ⊆ S1 × S2 ∪ S2 × S1 exists such that Sys(1) \\ Î ≈∆

b Sys(2) \\ Î holds. Let
Σ̂ := {τ}∪Σ \ Î be the alphabet of the global behaviors of the systems after the
closing operation, i.e., [[Sys(1) \\ Î]] = (S1, Σ̂, { α−→

1̂
}α∈Σ̂, S0

1) and [[Sys(2) \\ Î]] =
(S2, Σ̂, { α−→2̂}α∈Σ̂, S0

2)—cf. Definition 3.13 and observe that only the alphabet
and transition relation of a global behavior are modified by closing. We

246 F Formal Proofs

explicitly included τ in the set Σ̂ since τ ∈ Î is allowed but has no affect. We
define R̂ := R and show that R̂ is indeed a relation that establishes branching
bisimilarity with explicit divergence of Sys(1) \\ Î and Sys(2) \\ Î. First note
that R̂ is symmetric since R is symmetric by definition. Since R equals R̂,
the requirement for the initial states in Definition 2.15 is satisfied, i.e., for all
states s0

i ∈ S0
i exists a state s0

j ∈ S0
j such that (s0

i , s0
j) ∈ R̂ for i = 1, 2 and

j = (i mod 2) + 1. We now consider the second part of Definition 2.15. For
i = 1, 2, j = (i mod 2) + 1, and all (si, sj) ∈ R̂ with si ∈ Si and sj ∈ Sj holds

2.1. for all ti ∈ Si and all α ∈ Σ̂, if si
α−→

î
ti then

(a) α = τ and there is a β ∈ Σ ∩ Î with si
β−→i ti. Since (si, sj) ∈ R and

β 6= τ we know that states rj, tj ∈ Sj exist with sj
τ−→∗j rj, rj

β−→j tj,
(si, rj) ∈ R, and (ti, tj) ∈ R. Thus, also sj

τ−→∗
ĵ

rj and rj
τ−→

ĵ
tj

with (si, rj) ∈ R̂ and (ti, tj) ∈ R̂ because R̂ = R.

(b) si
α−→i ti holds. Since (si, sj) ∈ R we know that either α = τ

and (ti, sj) ∈ R, or that rj, tj ∈ Sj exist with sj
τ−→∗j rj, rj

α−→j tj,
(si, rj) ∈ R, and (ti, tj) ∈ R. Thus, we either have α = τ and
(ti, sj) ∈ R̂, or sj

τ−→∗
ĵ

rj and rj
α−→

ĵ
tj with (si, rj) ∈ R̂ and

(ti, tj) ∈ R̂ because R̂ = R.

2.2. if there is an infinite path π over (Si, τ−→
î
) such that π[0] = si then we

find this path also over (Si, τ−→i) or over (Si,
⋃

α∈Σ∩ Î
α−→i ∪

τ−→i). In the
first case, we know that a state tj ∈ Sj exists such that sj

τ−→j tj and
(ti, tj) ∈ R where ti = π[k] for some k ∈ N because (si, sj) ∈ R. In the
second case, the path cannot be found over (Si, τ−→i), thus we find an
index l ∈N such that π[l] β−→i π[l + 1] with β ∈ Σ ∩ Î and β 6= τ. Let l
be the smallest among such indices, i.e., we have π[0] τ−→∗i π[l]. SinceR
establishes branching bisimilarity with explicit divergence, we know that
(π[l], sj) ∈ R holds and that a state tj ∈ Sj exists with (π[l + 1], tj) ∈ R.
Thus, in either case we find such a state tj ∈ Sj with sj

τ−→
ĵ

tj (in the

second case because β ∈ Σ ∩ Î) and (ri, tj) ∈ R̂ where ri = π[k′] for
some k′ ∈N because R̂ = R.

Thus, the relation R̂ establishes branching bisimilarity with explicit divergence
of the systems in question, i.e., Sys(1) \\ Î ≈∆

b Sys(2) \\ Î holds. �

Proof of Proposition 3.19: Observe that CS[C] is a valid component system
with respect to Definition 2.1 because otherwise, two overlapping action sets
are also overlapping in CS which contradicts the validity of this component
system. The same argument applies for the behavioral model {[[i]]}i∈C. Thus,
we have to show that the interaction model IM[C] is valid. We have to show

F.2 Proofs from Chapter 3 247

three things: First, that every interaction contains at most one action of every
component in C, second, that any action in Act[C] is contained in at least one
interaction, and third, that the set of closed interactions is a subset of the set
of all interactions (cf. Definitions 2.2 and 2.3). Clearly, no interaction contains
an action of a component that is not contained in C since all interactions are
intersected with Act[C]. Furthermore, for all interactions α ∈ Int[C] at least
one “superset” interaction β exists in Int because of “∃ β ∈ Int : α = β∩Act[C]”
and the removal of the empty set in the definition of Int[C]. Now, the first
claim holds, since otherwise, a component that participates with two actions
in one interaction can also be found in Int which contradicts the validity of
IM. For the second claim, the contrary would again violate the validity of the
original interaction model. For the set of closed interactions, observe that it
merely consists of interactions that were also closed in the original system
and whose participating components are contained in C. This proves the third
claim. Thus, the subsystem construction operator yields a valid interaction
system. �

Proof of Proposition 3.20: By setting C := Comp in Definition 3.18, we get
CS = CS[C] and Act = Act[C]. This implies Int = Int[C], and thus IM = IM[C]
because Int ⊆ 2Act and all components participating in a closed interaction
are contained in Comp. Since also {[[i]]}i∈Comp = {[[i]]}i∈C holds, the claim
follows. �

Proof of Proposition 3.21: First observe that all interactions that are closed
on the left-hand side of the equation are also closed on the right-hand side
because we explicitly declare them as closed. Second, we show that the com-
position is valid (cf. Definition 3.4), i.e., (1) I+C1,C2

⊆ Intopen[C1] ./ Intopen[C2],
(2) I−C1,C2

⊆ Intopen[C1]∪ Intopen[C2], and (3) I−C1,C2
v I+C1,C2

holds. For Claim (1),
observe that each α ∈ I+C1,C2

can be partitioned into nonempty sets α1 ⊆ Act[C1]

and α2 ⊆ Act[C2]—otherwise we find no i ∈ C1 and j ∈ C2 that both partic-
ipate in α. Since for all such α also α ∈ Int[C1 ∪ C2] holds, we can conclude
that α1 ∈ Intopen[C1] and α2 ∈ Intopen[C2] holds because for k = 1, 2 the
interaction αk cannot be closed in the subsystem Sys[Ck] since αk ⊆ α but
compset(α) * Ck (cf. Definition 3.18). Thus, also α ∈ Intopen[C1] ./ Intopen[C2]

holds (cf. Definition 3.2). Claim (2) follows from set theory—since {α ∈
Int[C1] ∪ Int[C2] | α /∈ Int[C1 ∪ C2]} ⊆ Int[C1] ∪ Int[C2]—and the fact that an
interaction that does not occur in Int[C1 ∪ C2] but in Int[C1] or Int[C2] can-
not be contained in Intclosed—otherwise the set of closed interactions is not
a subset of the set of interactions in Sys. For Claim (3), choose an α ∈ I−C1,C2

.
Since α ∈ Int[C1] ∪ Int[C2], we find a β ∈ Int with α = β ∩Act[Ck] for either

248 F Formal Proofs

k = 1 or k = 2 because α /∈ Int[C1 ∪ C2]. Consider γ = β ∩Act[C1 ∪ C2]. Now,
α ⊂ γ holds—otherwise α ∈ Int[C1 ∪ C2]—and thus γ ∈ I+C1,C2

. We conclude
I−C1,C2

v I+C1,C2
(cf. Definition 3.3).

Third, we prove the claim of the proposition. It is clear that CS[C1 ∪ C2] =

CS[C1]⊗CS[C2] holds and that the behavioral models are equal (cf. Defini-
tion 3.4). We have to show that also the interaction models of the subsys-
tems are equal, where it suffices to show that the set of interactions are
equal since the equality of the set of closed interactions is then implied
by the application of the closing operator. Thus, we have to show that
Int[C1 ∪ C2]

?=
(

I+C1,C2
∪ Int[C1] ∪ Int[C2]

)
\ I−C1,C2

holds (cf. Definition 3.4). We
partition the set Int[C1 ∪ C2] into three sets: Set X1,2 that contains interactions
where components contained in both C1 and C2 participate in, set X1 where
only components from C1 participate in, and set X2 for the components in
C2, i.e., Int[C1 ∪ C2] = X1,2 ∪ X1 ∪ X2. By definition, we have X1,2 = I+C1,C2

.
For the other two sets, we only know that X1 ⊆ Int[C1] and X2 ⊆ Int[C2]

holds since the interactions contained in a subsystem need not to be present in
Sys[C1 ∪C2]. But, for Xk with k = 1, 2 we can repair this situation by removing
those interactions, i.e., we have Xk = Int[Ck] \ {α ∈ Int[Ck] | α /∈ Int[C1 ∪ C2]}.
We substitute the auxiliary sets of the partitioning and get:

Int[C1 ∪ C2] = I+C1,C2

∪
(
Int[C1] \ {α ∈ Int[C1] | α /∈ Int[C1 ∪ C2]}

)
∪
(
Int[C2] \ {α ∈ Int[C2] | α /∈ Int[C1 ∪ C2]}

)
=
(

I+C1,C2
∪ Int[C1] ∪ Int[C2]

)
\ {α ∈ Int[C1] | α /∈ Int[C1 ∪ C2]}
\ {α ∈ Int[C2] | α /∈ Int[C1 ∪ C2]}

=
(

I+C1,C2
∪ Int[C1] ∪ Int[C2]

)
\ {α ∈ Int[C1] ∪ Int[C2] | α /∈ Int[C1 ∪ C2]}

=
(

I+C1,C2
∪ Int[C1] ∪ Int[C2]

)
\ I−C1,C2

.

This proves the claim. �

Proof of Proposition 3.23: We prove the claim by showing that the composi-
tion information of Proposition 3.21 equals the composition information of the
new proposition, i.e., IC1,C2 = IC1\C′1,C2\C′2 which means I+C1,C2

= I+C1\C′1,C2\C′2
and I−C1,C2

= I−C1\C′1,C2\C′2
. Observe that this proves the claim.

Pick an α ∈ I+C1,C2
. By definition, we know that component i ∈ C1 and

component j ∈ C2 exist that both participate in α. Now, we have i /∈ C′1
since otherwise we can find an interaction β ∈ Int with α ⊆ β that violates the

F.2 Proofs from Chapter 3 249

requirement about the set C′1—we would have i ∈ C′1 ∧ j ∈ C2 but not {i, j} *
compset(β). Analogously, we have j /∈ C′2 and also compset(α) ∩ (C′1 ∪ C′2) =
∅. Thus, we conclude α ∈ I+C1\C′1,C2\C′2

. Since the case I+C1\C′1,C2\C′2
⊆ I+C1,C2

can

be treated analogously, we conclude I+C1,C2
= I+C1\C′1,C2\C′2

.

Next, we treat I−C1,C2
. Fix an α ∈ I−C1,C2

. Assume α ∈ Int[C1]. Since α /∈ Int[C1 ∪
C2], we know that a β ∈ Int[C1 ∪C2] exists with α ⊂ β and β /∈ Int[C1] (similar
to the proof of Proposition 3.21). As above, we can conclude that compset(α)∩
C′1 = ∅—otherwise i ∈ C′1 and j ∈ C2 exist with {i, j} ⊆ compset(β) which
violates the requirement on C′1—and thus α ∈ Int[C1 \ C′1]. Because α /∈
Int[C1 ∪C2], also α /∈ Int[C1 \C′1 ∪C2 \C′2] holds and thus α ∈ I−C1\C′1,C2\C′2

. The

case α ∈ Int[C2] is treated similarly. Again, since the case I−C1\C′1,C2\C′2
⊆ I−C1,C2

can be treated analogously, we conclude I−C1,C2
= I−C1\C′1,C2\C′2

. This proves the
claim. �

Proof of Theorem 3.26: First observe that (I+, I−) is a valid composition
since ∅ v I+ (cf. Definition 3.3). We prove the claim by contradiction.
Assume that both Sys(1) and Sys(2) are deadlock-free but their composition
Sys = Sys(1)⊗(I+,I−) Sys(2) is not. Thus, we find a reachable global state s in
[[Sys]] with Suc(s) = ∅, i.e., there is a global initial state s0 and a finite path π

starting in s0 and ending in s. For this global state, we consider the two states
s(1) and s(2) that are derived from s by ignoring all local states of components
not contained in the set Comp(1) and Comp(2) respectively.

Now, we only consider s(1) but the same holds for s(2) in an analogous way.
Since s is a deadlock, also s(1) must be a deadlock because all interactions
where components of Sys(1) participate in are blocked and we have I− = ∅.
We show that s(1) is reachable in [[Sys(1)]] by considering the path π from
above: If we restrict every state on the path to states of the components in
Comp(1) and also every label to the actions of Act(1), we can conclude that
consecutive (partial) states on the new path are either identical or can be
related by a transition in [[Sys(1)]] that is labeled with an interaction of Int(1).
Note that otherwise, we find an interaction γ ∈ Int that occurs as a label on
the path π with γ ∩Act(1) 6= ∅ and (γ ∩Act(1)) /∈ Int(1), which violates our
assumption about the sets I+ and I− that every new interaction consists of the
union of two existing interactions and that no old interaction is allowed, i.e.,
removed in the composite system.

However, this implies that the deadlocked state s(1) is reachable in [[Sys(1)]]
which contradicts the assumed deadlock-freedom of this system. Thus, the
interaction system Sys is deadlock-free. �

250 F Formal Proofs

F.3 Proofs from Chapter 4

Proof of Lemma 4.8: Assume that a simple cycle exists in Gcoop which con-
tains the vertices s and t. Thus, there are two simple paths (cf. Definition A.3)

π1 = 〈s, v1, v2, . . . , vk, t〉 and π2 = 〈s, w1, w2, . . . , wl , t〉

with k, l ∈N that have only the vertices s and t in common, i.e., vk′ 6= wl′ for
all k′, l′ ∈N with 1 ≤ k′ ≤ k and 1 ≤ l′ ≤ l.

We now construct a flow function f : E′ → N in Ns,t and show that its flow
value | f | = ∑(sin,v)∈E′ f ((sin, v))−∑(w,sin)∈E′ f ((w, sin)) (for all suitable v, w ∈
V ′) equals 2 and is maximal among all such functions, i.e., f is a maximum
flow. Let

f ((sin, sout)) = 2, f ((sout, v1
in)) = 1, f ((sout, w1

in)) = 1,

f ((v1
in, v1

out)) = 1, f ((w1
in, w1

out)) = 1,

f ((v1
out, v2

in)) = 1, f ((w1
out, w2

in)) = 1,

.

f ((vk
out, tin)) = 1, f ((wl

out, tin)) = 1,

and let all other edges e ∈ E′, i.e., those edges that have no corresponding
part in the paths π1 or π2, transport no flow unit, i.e., f (e) = 0. Obviously,
f is a maximum flow with | f | = 2 because the only edge leaving the source
is (sin, sout), which is fully saturated, and all incoming edges of the source
sin have flow value 0. The construction of the flow function f by following
the corresponding edges of the paths π1 and π2 ensures that a legal flow is
created, i.e., all capacity constraints are satisfied and the flow is conserved at
every vertex. This proves the implication of the lemma.

Next, assume that a maximum flow f with | f | = 2 exists in Ns,t. Starting
with the source sin, we now follow the paths in the directed graph G′ that
are induced by the flow function. By construction, vertex sin is incident to
exactly one outgoing edge, viz. (sin, sout), which has the flow value 2, i.e., is
fully saturated. Further following the route of the flow from vertex sout yields
exactly two distinct vertices, denoted by v1

in and w1
in in the following, because

any vertex adjacent to sout has exactly one outgoing edge by construction—an
edge to the “out” version of the vertex—and these edges have a capacity of
only one which yields the distinctness of the vertices v1

in and w1
in. Thus, the

flow is split at vertex sout, routed to vertices v1
in and w1

in, and from there to
vertices v1

out and w1
out respectively because of the single edge between the “in”

and “out” versions of a vertex.

F.3 Proofs from Chapter 4 251

Repeating the argument as above lets us construct two simple paths

π′1 = 〈sin, sout, v1
in, v1

out, v2
in, . . . , vk

out, tin〉 and π′2 = 〈sin, sout, w1
in, . . . , wl

out, tin〉

with k, l ∈ N that have only the vertices sin, sout, and tin in common. Here,
the distinctness of the inner vertices of the paths is ensured by the flow con-
servation property of the maximum flow; since otherwise a twice occurring
“in” vertex would have a larger incoming flow than it could transport over its
single outgoing edge that has the capacity of one. Observe that we split every
vertex of the cooperation graph G in the construction of G′ to achieve exactly
this property of the paths.

We now consider the corresponding paths in the undirected version of the
network, i.e., we can find the corresponding vertices in G and construct the
following simple paths:

π1 = 〈s, v1, v2, . . . , vk, t〉 and π2 = 〈s, w1, w2, . . . , wl , t〉

with the same indices. Because these paths have only the vertices s and t
in common, we can concatenate them to a simple cycle as required by the
statement of the lemma. �

Proof of Theorem 4.9: Assume that Sys has a disjoint circular wait free archi-
tecture. Then, no simple cycle exists in Gcoop where two (or more) vertices
that represent components lie on (cf. Definition 4.6). Thus, by Lemma 4.8 we
can conclude that no maximum flow of value 2 exists in any flow network in
question.

Next, assume that for all unordered pairs of components i, j ∈ Comp, whose
vertex representations in Gcoop have at least two neighbors, it holds that
no maximum flow of value 2 exists in the associated flow network N{i},{j}.
Assume that Sys does not have a disjoint circular wait free architecture. Thus,
we can find a simple cycle in Gcoop where at least two vertices that represent
components lie on. By the premise and Lemma 4.8, we know that at least one
of these vertices has only one neighbor in Gcoop, since otherwise, the premise
is false. But, this contradicts the assumption that the cycle is simple because
the neighbor of this vertex occurs twice. �

Proof of Lemma 4.10: We show the claim by proving that every vertex that
represents a component in the cooperation graph G′coop = (V ′, E′) of Sys′ has
only one neighbor except the vertex that represents the new component x. If
this statement holds, then the disjoint circular wait freedom of the architecture
of Sys′ is implied by Theorem 4.9. Note that we do not show here that the

252 F Formal Proofs

transformation yields as valid interaction system, since this can be shown
directly by the validity of the original system.

Assume that a vertex u ∈ V ′ exists in G′coop with |u| = 1 and u 6= {x} that has
two distinct neighbors v and w, i.e., u has a degree greater than one. Since
{u, v} ∈ E′ and {u, w} ∈ E′, we know that |v| > 1 and |w| > 1 holds, i.e.,
the vertices do not represent components, because otherwise, the edges are
not included in E′ (cf. Definition 4.4). Let i ∈ Comp′ be the component that
is represented by u, i.e., u = {i}. Since component x participates in every
interaction, we know that x ∈ v and x ∈ w holds. But, since the vertices are
adjacent to u, also i ∈ v and i ∈ w holds. The transformation also introduced
the interaction {freshx, freshi} ∈ Int′, and thus a vertex {x, i} ∈ V ′. But, this
means u ⊂ {x, i} ⊆ v and u ⊂ {x, i} ⊆ w holds, i.e., u has a degree of one and
the vertices v, w cannot be distinct. Thus, Sys′ has a disjoint circular wait free
architecture. �

Proof of Lemma 4.11: In order to be able to establish the isomorphism of
the global behaviors of the two interaction systems (cf. Definition 2.18 with
LTS1 = [[Sys]] and LTS2 = [[Sys′]]), we have to restrict the codomain of the
function mapping the interactions since the fresh actions, that are introduced
for the existing components, are not included in Sys and thus, we cannot find
a corresponding inverse image for interactions of the type {freshx, freshi} for
i ∈ Comp. This restriction does not affect the isomorphism of the systems,
since any interaction that merely consists of fresh actions is not enabled in
[[Sys′]] because no transition labeled with a fresh action of a component (except
for component x) exists in the corresponding local behavior.

Thus, in order to show that the two global behaviors are isomorphic up
to transition relabeling, we define a bijective function that maps the states,
viz. f : S → S′, and one that maps the labels, viz. g : Intτ

open → (Int′open \
{{freshx, freshi} | i ∈ Comp}) ∪ {τ} (cf. Definition 2.6 for the labeled transition
system that represents the global behavior), and show that for every initial
state and every transition in one system, we find an equivalent one in the
other system. For a global state s ∈ S and an interaction α ∈ Intτ

open, we set
(where n = |Comp| and g(τ) = τ):

f (s) = f ((s1, . . . , sn)) = (s1, . . . , sn, s0
x) and g(α) = α ∪ {freshx}.

In other words, the function f extends the tuple representing a global state of
[[Sys]] with the (unique) local state s0

x of the new component x, and the function
g adds the (unique) action freshx of x to every interaction. The functions are
bijective since for f , every state is uniquely mapped to its extended version
and the complete mapping of S′ follows from the fact that Sx (the state space

F.3 Proofs from Chapter 4 253

of component x) contains only one state, and for g, every open interaction is
uniquely mapped to a version combined with the single action freshx of x and
all appropriate interactions are covered since x participates in all interactions
of Sys′. Furthermore, every closed interaction in Sys has a unique counterpart
in Sys′, thus we could set g(τ) = τ.

Now, for every initial state s0 ∈ S0 holds f (s0) ∈ S0′ because s0
x is a local initial

state of component x, and analogously, the same argument holds for any state
s0′ ∈ S0′, i.e., we find a state f−1(s0′) ∈ S0. Otherwise, the states s0 and s0′

respectively are not initial states or f is not bijective.

For a transition s α−→ t with s, t ∈ S and α ∈ Intopen, we have to show that
f (s) β−→′ f (t) holds with β = g(α). Assume that such a transition exists
in [[Sys]] but the mapped version does not exist in [[Sys′]]. We take a look at
the global state s and extend it with the local state s0

x of component x. Since
freshx is enabled in s0

x and α is enabled in s, we can execute the interaction
(α ∪ {freshx}) in s which leads to state t extended with s0

x since the transition
s0

x
a−→x s0

x with a = freshx is the only transition of [[x]]. But, this means we
have a transition f (s) β−→′ f (t) with β = g(α)—otherwise the functions f
or g are not bijective. Analogously, we can argue for the “only if” case of
Definition 2.18 and also for the case of a global τ-transition where we have
to use the existence of a γ ∈ Intclosed that corresponds to the transition label.
Note that as already mentioned, no transition labeled with an interaction that
only consists of fresh actions exists in [[Sys′]] because no corresponding local
transition exists in the behavior of the components (except for x). Thus, the
two systems are isomorphic up to transition relabeling. �

Proof of Theorem 4.12: Let Sys be an arbitrary interaction system. If we ap-
ply our transformation on Sys that yields Sys′, we get a system with a disjoint
circular wait free architecture (cf. Lemma 4.10) that exhibits isomorphic be-
havior up to transition relabeling (cf. Lemma 4.11). We need to prove that
the transformation can be performed in linear time in the size of the input
Sys. Since we add a fresh action to every component, add a new component
with one single action, add that action to every interaction, and add one new
interaction of size two for every component, we need to process each compo-
nent and interaction once and add new interactions of constant length whose
number is bounded by the number of components. Thus, these operations can
be performed in linear time in the size of the input. �

Proof of Corollary 4.13: Let Sys be an arbitrary interaction system. If we ap-
ply our transformation on Sys that yields Sys′, we get a system with a disjoint

254 F Formal Proofs

circular wait free architecture that exhibits isomorphic behavior (cf. Theo-
rem 4.12). Thus, any decision problem for Sys can also be answered using Sys′,
if the problem is closed under isomorphism up to transition relabeling (which
we assumed), by one call to a decision procedure for interaction systems with
a disjoint circular wait free architecture, i.e., we have a many-to-one reduction.
Since Theorem 4.12 also showed that the transformation can be performed in
linear time, the reduction is a linear-time many-to-one reduction. �

F.4 Proofs from Chapter 5

Proof of Proposition 5.4: If Sys has strongly exclusive communication, then
we have α ∩ β = ∅ for all α, β ∈ Int with α 6= β. Thus, we find no two
distinct interactions, i.e., interactions that potentially have different sets of
participating components, that satisfy the premise (α∩ β 6= ∅) of Definition 5.1,
i.e., Sys also has exclusive communication. �

Proof of Lemma 5.5: Let Sys′ = EXCLUSIVE(Sys) denote the result of Algo-
rithm B.8. We first show that the algorithm indeed yields a valid interaction
system. Observe that the algorithm neither modifies the set of components
nor a component’s local state space. Thus, each component’s behavior is valid
with respect to Definition 2.5 as long as no transition label occurs that is not
contained in the corresponding alphabet. This is ensured in lines 14–15. Since
each action is only superscripted by a set in line 10, all sets of actions are dis-
joint (because they are disjoint in the original system). Thus, the component
and behavioral models are valid. Now, all interactions of Int′ are a subset of
the set of actions Act′ because any action that is added while constructing
a new interaction in line 12 is also added to the corresponding action set in
line 11. For the set of interactions Int′, the coverage of Act′, i.e.,

⋃
α∈Int′ α = Act′,

is guaranteed because the for loop in line 7 treats each action at least once and
because the original system Sys is a valid interaction system. The set of closed
interactions is a subset of the set of interactions, i.e., Int′closed ⊆ Int′, since an
interaction is only added to Int′closed = Intnew

closed in line 18 if it was previously
added to Int′ = Intnew in line 16. Thus, we also have a valid interaction model,
and finally, we showed that Sys′ is a valid interaction system.

Next, we have to show that Sys′ has exclusive communication. If the intersec-
tion of two interactions α, β ∈ Int′ is nonempty, i.e., α ∩ β 6= ∅, we know that
the actions in the intersection are equal and thus have the same superscript.
Since every action in α is superscripted with compset(α) and every action
in β with compset(β), we conclude that compset(α) = compset(β) holds (cf.

F.4 Proofs from Chapter 5 255

Definition 5.1). Thus, Sys′ has exclusive communication. �

Proof of Lemma 5.6: Let Sys′ = EXCLUSIVE(Sys) denote the resulting system
of Algorithm B.8. The case that Sys′ is a valid interaction system has been
shown in the proof of Lemma 5.5. In order to establish the isomorphism of
the two systems (cf. Definition 2.18 with LTS1 = [[Sys]] and LTS2 = [[Sys′]]),
we define a bijective function that maps the states, viz. f : S → S′, and one
that maps the labels, viz. g : Intτ

open → Int′open ∪ {τ} (cf. Definition 2.6 for the
labeled transition system that represents the global behavior), and show that
for every initial state and every transition in one system, we find an equivalent
one in the other system. Note that Int′open = Intnew \ Intnew

closed as computed
by Algorithm B.8. For function f we can use the identity function since the
local state spaces of the components are not modified by Algorithm B.8, and
thus the Cartesian product of the local state spaces is the same for Sys and
EXCLUSIVE(Sys), i.e., we have S = S′. Since we also have S0 = S0′, we
conclude that for all s ∈ S it holds that s ∈ S0 holds if and only if f (s) ∈ S0′

holds.

The function g is defined as follows: For α ∈ Intτ
open we set g(α) = τ if α = τ

and g(α) = {acompset(α) | a ∈ α} otherwise. Function g is injective since
every interaction is uniquely mapped to a version where the actions contained
in the interaction are superscripted by the set of participating components.
The surjectivity of g follows since all interactions in Int′open are covered by
construction: An interaction can only be contained in Int′open if an interaction
of the original system was modified by the for loop in line 7 of Algorithm B.8,
and an interaction is only closed in Sys′ if it is closed in Sys (cf. line 17).

Now, for all s, t ∈ S and all α ∈ Intopen we have:

s α−→ t⇔ ∀ i ∈ Comp :
(
i(α) 6= ∅ =⇒ si

i(α)−→i ti
)
∧
(
i(α) = ∅ =⇒ si = ti

)
⇔
(
∀ i ∈ compset(α) : si

i(α)−→i ti
)
∧
(
∀ i /∈ compset(α) : si = ti

)
⇔
(
∀ i ∈ compset(α) ∃ a ∈ α : si

a−→i ti
)
∧
(
∀ i /∈ compset(α) : si = ti

)
⇔
(
∀ i ∈ compset(g(α)) ∃ a ∈ g(α) : si

a−→′i ti
)
∧(
∀ i /∈ compset(g(α)) : si = ti

)
⇔ s g(α)−→′ t⇔ f (s) β−→′ f (t) with β = g(α).

Analogously, for s τ−→ t—above we only quantified over all α ∈ Intopen,
i.e., the case α = τ needs to be treated separately—we can use the existence
of a γ ∈ Intclosed that corresponds to the transition label to conclude that
s τ−→ t⇔ f (s) τ−→′ f (t) holds. Now, we can conclude that for all s, t ∈ S and
all α ∈ Intτ

open it holds that s α−→ t if and only if f (s) β−→′ f (t) with β = g(α).
Thus, the two systems are isomorphic up to transition relabeling. �

256 F Formal Proofs

Proof of Corollary 5.9: If |Comp| < 3 the premise of the corollary is false, i.e.,
the corollary holds. Thus, assume that |Comp| ≥ 3 and that the premise of the
corollary holds. Number the components via a bijective function f : Comp→
{1, . . . , n} with n = |Comp| in an arbitrary way with number 1 being the
middle component m and number n being the chosen border component k,
i.e., f (m) = 1 and f (k) = n holds. Then apply Theorem 5.7. �

Proof of Theorem 5.10: Assume that the premise of the theorem holds. We
show the claim by induction over the “eccentricity levels” of the component
graph, where such a level denotes all vertices with the same eccentricity. Note
that the innermost level corresponds to the center of the graph, where the
eccentricity of the vertices equals the radius, and that the outermost level
corresponds to the periphery, where the eccentricities equal the diameter (cf.
Definition A.7).

From the premise, we know that |Comp| ≥ 3 holds and that the architecture
is tree-like, thus we have diam(G) > rad(G), i.e., there are at least two eccen-
tricity levels. For the base case, we assume that diam(G) = rad(G) + 1 holds.
We have to distinguish two cases:

1. diam(G) = 2 and rad(G) = 1 and

2. diam(G) = 3 and rad(G) = 2.

Note that other cases are not possible (if diam(G) = rad(G) + 1), since we
have at least three vertices and G is a tree in the graph-theoretical sense.

Case 1: In this case, the interaction system has a star-like architecture since the
maximal distance of a pair of vertices is two. We have C?1 = {Comp}, and m1.1

denotes the middle component of Sys and b1.1 an arbitrary border component.
We are given a bijective function f1.1 that numbers the components such that
number 11.1 denotes m1.1 and number n1.1 denotes b1.1. From the premise, we
know that for all 21.1 ≤ i1.1 < n1.1 holds

Sys[{11.1, i1.1, i1.1 + 1}] \\ Î11.1,i1.1 ≈
∆
b Sys[{11.1, i1.1 + 1}] \\ Î11.1,i1.1 .

Thus, if we set in Theorem 5.7 the function f to f1.1, we can conclude that

Sys \\ Î ≈∆
b Sys[{11.1, n1.1}] \\ Î

holds since each set Î11.1,i1.1 equals the respective set Î1,i of Theorem 5.7 if
f = f1.1. Since center(G) = {11.1}, we can set K = {n1.1}, and with M =

{11.1, n1.1} the claim follows for this case.

Case 2: In this case, we have |center(G)| = 2. Let k1 and k2 denote the two com-
ponents whose vertex representations lie in the center of the component graph,

F.4 Proofs from Chapter 5 257

i.e., center(G) = {k1, k2}. From the statement, we have C?2 = {C?
2.1, C?

2.2}
where C?

2.1 = {k1} ∪ nbG(k1) and C?
2.2 = {k2} ∪ nbG(k2). We are given two bi-

jective functions f2.1 : C?
2.1 → {12.1, . . . , n2.1} with n2.1 = |C?

2.1| and f2.2 : C?
2.2 →

{12.2, . . . , n2.2} with n2.2 = |C?
2.2| where f−1

2.1 (12.1) = k1, f−1
2.1 (n2.1) = k2 and

f−1
2.2 (12.2) = k2, f−1

2.2 (n2.2) = k1 because the eccentricity of k1 and k2 equals 2
and all other components have an eccentricity of 3.

From the premise, we know that for all 22.1 ≤ i2.1 < n2.1 holds

Sys[{12.1, i2.1, i2.1 + 1}] \\ Î12.1,i2.1 ≈
∆
b Sys[{12.1, i2.1 + 1}] \\ Î12.1,i2.1 .

Thus, if we set in Theorem 5.7 the function f to f2.1, we can conclude that

Sys[C?
2.1] \\ Î† ≈∆

b Sys[{12.1, n2.1}] \\ Î† (†)

holds with Î† =
⋃

22.1≤i2.1<n2.1
Î12.1,i2.1 since each set Î12.1,i2.1 equals the respective

set Î1,i of Theorem 5.7 if f = f2.1.

Analogously, we can conclude (with f := f2.2) that

Sys[C?
2.2] \\ Î‡ ≈∆

b Sys[{12.2, n2.2}] \\ Î‡ (‡)

holds with Î‡ =
⋃

22.2≤i2.2<n2.2
Î12.2,i2.2 since each set Î12.2,i2.2 equals the respective

set Î1,i of Theorem 5.7 if f = f2.2.

Observe that we have Î = Î† ∪ Î‡ and C?
2.1 ∪ C?

2.2 = Comp. Now, we have (the
used proposition and equation is listed in parentheses at the end of each line):

Sys \\ Î

= Sys[C?
2.1 ∪ C?

2.2] \\ Î (3.20)

= Sys[{12.1, . . . , n2.1} ∪ {12.2, . . . , n2.2}] \\ Î

= Sys[{12.1, . . . , n2.1} ∪ {22.2, . . . , n2.2 − 1}] \\ Î (12.2 = n2.1 and n2.2 = 12.1)

= Sys[C?
2.1 ∪ C?

2.2 \ {12.2, n2.2}] \\ Î

=
(

Sys[C?
2.1] ⊗
IC?2.1,C?2.2\{12.2,n2.2}

Sys[C?
2.2 \ {12.2, n2.2}]

)
\\ Î ∪ Intclosed︸ ︷︷ ︸

Î′

(3.21)

=
(

Sys[C?
2.1] ⊗
I{12.1,n2.1},C?2.2\{12.2,n2.2}

Sys[C?
2.2 \ {12.2, n2.2}]

)
\\ Î′ (3.23)

=
(

Sys[C?
2.1] \\ Î† ⊗

I{12.1,n2.1},C?2.2\{12.2,n2.2}
Sys[C?

2.2 \ {12.2, n2.2}]
)
\\ Î′ (3.15)

≈∆
b

(
Sys[{12.1, n2.1}] \\ Î† ⊗

I{12.1,n2.1},C?2.2\{12.2,n2.2}
Sys[C?

2.2 \ {12.2, n2.2}]
)
\\ Î′ ((†))

=
(

Sys[{12.1, n2.1}] ⊗
I{12.1,n2.1},C?2.2\{12.2,n2.2}

Sys[C?
2.2 \ {12.2, n2.2}]

)
\\ Î′ (3.15)

= Sys[{12.1, n2.1} ∪ C?
2.2 \ {12.2, n2.2}] \\ Î ∪ Intclosed (3.21)

258 F Formal Proofs

= Sys[C?
2.2}] \\ Î (12.1 = n2.2 and n2.1 = 12.2)

=
(

Sys[C?
2.2}] \\ Î‡

)
\\ Î (3.15)

≈∆
b

(
Sys[{12.2, n2.2}}] \\ Î‡

)
\\ Î (Equation (‡))

= Sys[center(G)] \\ Î (3.15)

The last equation follows because we have {12.2, n2.2} = {k2, k1} = center(G).
Note that when we applied Equations (†) and (‡) in the reasoning above, we
also used Propositions 3.12 and 3.17. In the line that follows the line where
we use Proposition 3.21 for the second time, we can drop Intclosed from the
closing operator analogously to the reasoning in the proof of Theorem 5.7, i.e.,
all interactions of Int[{12.1, n2.1}] that are a subset of a closed interaction of the
whole system Sys are also contained in Î or Intclosed[C?

2.2] respectively. This is
ensured by the exclusive communication of the system.

The reasoning above shows the two base cases. We continue with the induction
step and show that for all eccentricity levels l ∈N with rad(G) < l < diam(G)

holds

Sys[
⋃

rad(G)≤x≤l, 1≤y≤|C?x |
C?

x.y] \\ Î ≈∆
b Sys[

⋃
rad(G)≤x≤l−1, 1≤y≤|C?x |

C?
x.y] \\ Î.

To put it differently, we show that we can get rid of the current outermost
eccentricity level with respect to index l. We have:

Sys[
⋃

rad(G)≤x≤l, 1≤y≤|C?x |
C?

x.y] \\ Î

= Sys[
⋃

1≤y≤|C?l |
C?

l.y ∪
⋃

1≤y≤|C?l−1|
C?

l−1.y ∪
⋃

rad(G)≤x≤l−2, 1≤y≤|C?x |
C?

x.y︸ ︷︷ ︸
K

] \\ Î

= Sys[
⋃

1≤y≤|C?l |
C?

l.y ∪
⋃

1≤y′≤|C?l−1|
C?

l−1.y′ ∪ K] \\ Î

= Sys[
⋃

1≤y≤|C?l |
C?

l.y ∪
(⋃

1≤y′≤|C?l−1|
C?

l−1.y′ \
⋃

1≤y′′≤|C?l |
{1l.y′′ , nl.y′′}︸ ︷︷ ︸

L

)
∪ K] \\ Î

Observe that for all indices y′ we find a y′′ such that {1l.y′′ , nl.y′′} ⊆ C?
l−1.y′

= Sys[
⋃

1≤y≤|C?l |
C?

l.y︸ ︷︷ ︸
C

∪ L ∪ K] \\ Î

Since C ∩ (L ∪ K) = ∅ because of the observation, we can apply P. 3.21

=
(

Sys[C] ⊗
IC,L

Sys[L ∪ K]
)
\\ Î ∪ Intclosed︸ ︷︷ ︸

Î′

F.4 Proofs from Chapter 5 259

=
(

Sys[C] ⊗
IC′ ,L

Sys[L ∪ K]
)
\\ Î′ (with C′ =

⋃
1≤y≤|C?l |

{1l.y, nl.y} and P. 3.23)

=
(

Sys[C] \\ Îl ⊗
IC′ ,L

Sys[L ∪ K]
)
\\ Î′ (with Îl =

⋃
1≤y≤|C?l |, 2l.y≤il.y<nl.y

Î1l.y,il.y)

We could apply Proposition 3.15 here since Îl ⊆ Î′

=
(

Sys[
⋃

1≤y≤|C?l |
C?

l.y] \\ Îl ⊗
IC′ ,L

Sys[L ∪ K]
)
\\ Î′

≈∆
b

(
Sys[

⋃
1≤y≤|C?l |

{1l.y, nl.y}] \\ Îl ⊗
IC′ ,L

Sys[L ∪ K]
)
\\ Î′ (see below)

=
(

Sys[
⋃

1≤y≤|C?l |
{1l.y, nl.y}] ⊗

IC′ ,L

Sys[L ∪ K]
)
\\ Î′ (Proposition 3.15)

=
(

Sys[
⋃

1≤y≤|C?l |
{1l.y, nl.y} ∪ L ∪ K]

)
\\ Î ∪ Intclosed (Proposition 3.21)

= Sys[
⋃

1≤y≤|C?l |
{1l.y, nl.y} ∪

(⋃
1≤y′≤|C?l−1|

C?
l−1.y′ \

⋃
1≤y′′≤|C?l |

{1l.y′′ , nl.y′′}
)
∪ K] \\ Î

= Sys[
⋃

1≤y≤|C?l |
{1l.y, nl.y} ∪

⋃
1≤y′≤|C?l−1|

C?
l−1.y′ ∪ K] \\ Î

= Sys[
⋃

1≤y≤|C?l−1|
C?

l−1.y ∪
⋃

rad(G)≤x≤l−2, 1≤y≤|C?x |
C?

x.y] \\ Î (observation above)

= Sys[
⋃

rad(G)≤x≤l−1, 1≤y≤|C?x |
C?

x.y] \\ Î

Observe that this reasoning proves our inductive step if we show that

Sys[
⋃

1≤y≤|C?l |
C?

l.y] \\ Îl
?≈∆

b Sys[
⋃

1≤y≤|C?l |
{1l.y, nl.y}] \\ Îl (?)

holds where Îl =
⋃

1≤y≤|C?l |, 2l.y≤il.y<nl.y
Î1l.y,il.y . Then, the reasoning above is

valid because of Propositions 3.12 and 3.17. Again, exclusive communication
ensures that we can drop the set Intclosed from the closing operator in the line
that follows the line where we use Proposition 3.21 for the second time.

We show Equation (?) by an inductive argument over index y (or the size of
the set C?l), i.e., we show for all indices k ∈N with 1 ≤ k ≤ |C?l | that

Sys[
⋃

1≤y≤k

C?
l.y ∪

⋃
k<y≤|C?l |

{1l.y, nl.y}] \\ Îl ≈∆
b Sys[

⋃
1≤y≤k−1

C?
l.y ∪

⋃
k−1<y≤|C?l |

{1l.y, nl.y}] \\ Îl

holds. In order to be able to prove this claim, we first show that for each fixed
k as above (i.e., with 1 ≤ k ≤ |C?l |) it holds that

Sys[C?
l.k] \\ Îl.k ≈∆

b Sys[{1l.k, nl.k}] \\ Îl.k

260 F Formal Proofs

where Îl.k =
⋃

2l.k≤il.k<nl.k
Î1l.k ,il.k . From the premise, we know that for all 2l.k ≤

il.k < nl.k holds

Sys[{1l.k, il.k, il.k + 1}] \\ Î1l.k ,il.1 ≈
∆
b Sys[{1l.k, il.k + 1}] \\ Î1l.k ,il.k .

Thus, if we set in Theorem 5.7 the function f to fl.k, we can conclude that
the claim holds since each set Î1l.k ,il.k in Îl.k equals the respective set Î1,i of
Theorem 5.7 if f = fl.k.

We proceed with the inductive argument to show Equation (?):

Sys[
⋃

1≤y≤k

C?
l.y ∪

⋃
k<y≤|C?l |

{1l.y, nl.y}] \\ Îl

= Sys[C?
l.k ∪

⋃
1≤y≤k−1

C?
l.y ∪

⋃
k<y≤|C?l |

{1l.y, nl.y}] \\ Îl

= Sys[C?
l.k ∪

(⋃
1≤y≤k−1

C?
l.y ∪

⋃
k<y≤|C?l |

{1l.y, nl.y}
)
\ {1l.k, nl.k}︸ ︷︷ ︸

K

] \\ Îl

=
(

Sys[C?
l.k] ⊗IC?l.k ,K

Sys[K]
)
\\ Îl ∪ Intclosed[C?

l.k ∪ K]︸ ︷︷ ︸
Î′l

(Proposition 3.21)

=
(

Sys[C?
l.k] ⊗
I{1l.k ,nl.k},K

Sys[K]
)
\\ Î′l (Proposition 3.23)

=
(

Sys[C?
l.k] \\ Îl.k ⊗

I{1l.k ,nl.k},K
Sys[K]

)
\\ Î′l (Proposition 3.15 and Îl.k ⊆ Î′l)

≈∆
b

(
Sys[{1l.k, nl.k}] \\ Îl.k ⊗

I{1l.k ,nl.k},K
Sys[K]

)
\\ Î′l (see above & P. 3.12, 3.17)

=
(

Sys[{1l.k, nl.k}] ⊗
I{1l.k ,nl.k},K

Sys[K]
)
\\ Î′l (Proposition 3.15)

=
(

Sys[{1l.k, nl.k} ∪ K]
)
\\ Îl ∪ Intclosed[C?

l.k ∪ K] (Proposition 3.21)

= Sys[{1l.k, nl.k} ∪
(⋃

1≤y≤k−1

C?
l.y ∪

⋃
k<y≤|C?l |

{1l.y, nl.y}
)
\ {1l.k, nl.k}] \\ Îl

= Sys[{1l.k, nl.k} ∪
⋃

1≤y≤k−1

C?
l.y ∪

⋃
k<y≤|C?l |

{1l.y, nl.y}] \\ Îl

= Sys[
⋃

1≤y≤k−1

C?
l.y ∪

⋃
k−1<y≤|C?l |

{1l.y, nl.y}] \\ Îl

In the line that follows the line where we use Proposition 3.21 for the second
time, exclusive communication, as discussed above, ensures that we can drop
the set Intclosed[C?

l.k ∪ K] from the closing operator.

Thus, the induction lets us conclude that the theorem holds. �

F.5 Proofs from Chapter 6 261

Proof of Corollary 5.14: If |Comp| < 3 the premise of the corollary is false, i.e.,
the corollary holds. Thus, assume that |Comp| ≥ 3 and that the premise of the
corollary holds. Number the components via a bijective function f : Comp→
{1, . . . , n} with n = |Comp| in an arbitrary way with number 1 being the
middle component m and number n being the chosen border component k,
i.e., f (m) = 1 and f (k) = n holds. Then apply Theorem 5.13. �

F.5 Proofs from Chapter 6

Proof of Lemma 6.2: Assume that Sys contains a deadlock s ∈ S. Consider
the local states si of the components in s. Since no interaction is enabled in s,
for all such si it holds that all interactions α ∈ Int(si) are blocked, i.e., for each
α, we find a component j ∈ Comp with j(α) 6= ∅ and α /∈ Int(sj)—otherwise
α is enabled in s. Thus, each component i waits for a component j because
of such an α. Since there is only a finite number of components, at least one
component k must wait for an already considered component, i.e., we get: i
waits for j which waits for . . . which waits for k, and k waits for a component
between i and k. Considering the components of this cycle and ordering them
according to the waiting relation results in the statement of the lemma. �

Proof of Lemma 6.4: Assume that the cooperation graph Gcoop = (V, E),
components i, j ∈ Comp, and interaction α ∈ Int with i 6= j and {i, j} ⊆
compset(α) are given. Since the cooperation graph is connected by assump-
tion, we can find by depth-first search a path πα

i,j with |πα
i,j| = k for k ∈ N,

πα
i,j[0] = {i}, πα

i,j[k − 1] = {j}, and πα
i,j[k
′] = compset(α) for k′ ∈ N with

0 < k′ < k− 1, i.e., πα
i,j is a cooperation path (cf. Definition 6.3). Thus, we have

πα
i,j = 〈v0, . . . , vk−1〉 according to Definition A.3 with v0 = {i}, vk−1 = {j},

and vk′ = compset(α). We have v0 ⊆ vk′ and vk−1 ⊆ vk′ (Property 1 for v0

and vk−1), and since all these vertices are different, we conclude |πα
i,j| ≥ 3

(Property 3). From the definition of the cooperation graph (cf. Definition 4.4)
and the reachability of vk′ from v0, we know that there is a path from v0 to vk′

such that for all intermediate vertices vl′ with 0 < l′ < k′ holds v0 ⊂ vl′ ⊂ vk′

since v0 and v1 are only connected if v0 ⊂ v1, vk′ and vk′−1 are only connected
if vk′−1 ⊂ vk′ , and a similar reasoning also shows that this holds for all pairs
of successive intermediate vertices (cf. the definition of the edges in the co-
operation graph in Definition 4.4). Observe that v0 ⊂ vl′ and vl′ ⊂ vk′ for
all 0 < l′ < k′ implies |vl′ | ≥ 2 and vl′ ⊆ compset(α) (Properties 1 and 2
for all vl′). Analogously, we know from the reachability of vk−1 from vk′ that
there is a path from vk′ to vk−1 such that for all intermediate vertices vl′′ with
k′ < l′′ < k− 1 holds vk′ ⊃ vl′′ ⊃ vk−1, i.e., also |vl′′ | ≥ 2 and vl′′ ⊆ compset(α)

262 F Formal Proofs

holds (Properties 1 and 2 for all vl′′). Reconstructing πα
i,j with v0, vk′ , vk−1,

and all intermediate vertices vl′ , 0 < l′ < k′, and vl′′ , k′ < l′′ < k − 1, i.e.,
πα

i,j = (v0, . . . , vl′ , . . . , vk′ , . . . , vl′′ , . . . , vk−1), results in a cooperation path for
which Properties 1, 2, and 3 hold. �

Proof of Lemma 6.5: First observe that if Sys has a disjoint circular wait free
architecture, then its cooperation graph is connected. We prove the claim
by contradiction. Assume that no such paths exist, i.e., for all components
i, j, k ∈ Comp and interactions α, β ∈ Int it holds that all cooperation paths
πα

i,j and πβ
j,k only have vertices in common that represent components, i.e.,

∀ v ∈ V : v ∈ πα
i,j ∧ v ∈ πβ

j,k =⇒ |v| < 2. By Lemma 6.2, we know—
because of the deadlock—that a set D ⊆ Comp exists such that we can order
the components in D in the following way: For 0 ≤ l < |D| it holds (with
i|D| = i0) that component il ∈ D wants to perform an interaction αl ∈ Int,
component il+1 ∈ D is needed by il to perform αl , and il+1 is unable to
perform αl . We now consider the corresponding cooperation paths παl

il ,il+1
for

all 0 ≤ l < |D|. By concatenating these paths, we get a path π that contains
all vertices representing components in D. Since we assumed that no two
cooperation paths share a common vertex that does not represent a component,
the path π also contains a simple cycle in the cooperation graph Gcoop. But, this
contradicts the disjoint circular wait freedom of Sys’s architecture because now
a simple cycle exists in Gcoop that contains more than one vertex that represents
a component. Thus, there must be a component il′ ∈ D with 0 ≤ l′ < |D| such
that the cooperation paths π

αl′
il′ ,il′+1

and π
αl′+1
il′+1,il′+2

(with i|D| = i0, i|D|+1 = i1, and
α|D| = α0) have a vertex v in common that does not represent a component, i.e.,
|v| ≥ 2 holds. By setting i := il′ , j := il′+1, k := il′+2, α := αl′ , and β := αl′+1,
the claim follows. �

Proof of Theorem 6.6: According to Lemma 6.5, we can find components
i, j, k ∈ Comp and interactions α, β ∈ Int with i 6= j, j 6= k, {i, j} ⊆ compset(α),
and {j, k} ⊆ compset(β) such that a vertex v with |v| ≥ 2 of the cooperation
graph Gcoop exists that is contained in both cooperation paths of the lemma,
i.e., v ∈ πα

i,j and v ∈ πβ
j,k. From the proof of Lemmata 6.2 and 6.5, we know

that a set D ⊆ Comp and a component il ∈ D exist such that these components
and interactions can be chosen such that in the deadlocked global state s
component i = il is able to perform interaction α = αl , i.e., α ∈ Int(si),
component j = il+1 is able to perform interaction β = αl+1, i.e., β ∈ Int(sj),
and j is unable to perform α, i.e., α /∈ Int(sj). Thus, all we have to show is
|compset(α) ∩ compset(β)| ≥ 2. By Lemma 6.4, we know that for all vertices
on the cooperation paths πα

i,j and πβ
j,k it holds that they are subsets of the

F.5 Proofs from Chapter 6 263

components participating in the interactions α and β respectively. Thus, for
vertex v from above, that occurs on both paths, holds v ⊆ compset(α) and
v ⊆ compset(β), i.e., v ⊆ compset(α) ∩ compset(β). Since |v| ≥ 2, also
|compset(α) ∩ compset(β)| ≥ 2 holds. �

Proof of Corollary 6.7: Observe that the statement of the corollary corresponds
to the negation of the statement of Theorem 6.6 with the following adjustment:
Instead of requiring that there is an interaction β ∈ Int(sj) with |compset(α)∩
compset(β)| ≥ 2, we can check whether compset(α) ∩ coopset(sj) 6= ∅ holds,
since this implies that there is such an interaction β. �

Proof of Theorem 6.9: Directly follows from Corollary 6.7, since no problem-
atic states exist, i.e, no two components i, j ∈ Comp, interaction α ∈ Int, and
local states si ∈ Si and sj ∈ Sj with i 6= j, {i, j} ⊆ compset(α), α ∈ Int(si),
α /∈ Int(sj), and compset(α) ∩ coopset(sj) 6= ∅ exist because all PSj(si, α) ⊆
{sj ∈ Sj | α /∈ Int(sj) ∧ compset(α) ∩ coopset(sj) 6= ∅} are empty. If
PSj(si, α) is a proper subset, then all other states in the superset are either
independent or any combination (si, sj) of corresponding states is either not
reachable or able to perform an interaction in which only i and j participate
globally (cf. Definition 6.8), i.e., this state combination cannot be part of a
reachable deadlock. �

Proof of Theorem 6.12: Let Sys be an interaction system which has a disjoint
circular wait free architecture. We assume Intclosed = ∅ for the proof, i.e.,
Int = Intopen, and address the presence of closed interactions at the end. Let
Gcoop = (V, E) be Sys’s cooperation graph. We prove the claim by contradic-
tion. Assume that the two conditions of Theorem 6.12 hold, although Sys is
not deadlock-free.

Before we continue, we want to give short sketch of the main idea for the proof:
We now consider an arbitrary reachable deadlock and take a look at the entry
interactions of a certain set D of components where for all corresponding local
states there is a problematic state of another component that is also contained
in D. We show how such a set D can be found (which has to exist because of
the disjoint circular wait free architecture). Afterwards, we show that either
condition one is violated if there is no interaction on the path to the deadlock
where only components in D or at least one cycle component, i.e., a component
whose vertex representation lies on a simple cycle in Gcoop (cf. Definition 4.6),
in D participate in, or there is such an interaction and we have a contradiction
to the second condition.

264 F Formal Proofs

Thus, there is a deadlocked global state s ∈ S and a sequence σ starting in
a global initial state s0 ∈ S0 with s0 α0−→ s1 α1−→ . . . αm−→ s for a fixed m ∈ N.
First, we show that we can choose a set D ⊆ Comp with |D| ≥ 2 similarly to
Lemma 6.2 but with additional properties that are helpful in the following:
For all components i ∈ D and all α ∈ Int(si) it holds that

(P1) a component j ∈ compset(α) \ {i} exists with j ∈ D and sj ∈ PSj(si, α),

(P2) for all β ∈ Int with |compset(α) ∩ compset(β)| ≥ 2 holds cycleset(β) ∩
D 6= ∅ or compset(β) ⊆ D, and

(P3) for all β ∈ Int with |compset(α)∩ compset(β)| ≥ 2 it holds that a β′ ∈ Int
exists with i(β) ∩ β′ 6= ∅ and compset(β′) ∩ coopset(si) 6= ∅.

We show how such a set D can be found—afterwards, we argue why this
is always possible. We modify the cooperation graph Gcoop in the following
way: Set G′ = (V ′, E′) with V ′ = V and E′ = E. We repeat the following
steps until a fixed point is reached: Consider every component i ∈ Comp
whose vertex representation {i} is contained in V ′: If an interaction α ∈
Int(si) and a component j ∈ compset(α) \ {i} exist such that compset(α) ∩
coopset(sj) = ∅, then: (i) If cycleset(α) = ∅, consider the second last vertex
on the cooperation path πα

i,j, i.e., the vertex v that is adjacent to the vertex
w representing j. Remove the edge between vertex v and w, this divides
G′ into two connected components since cycleset(α) = ∅. Keep only the
connected component that contains w as the new G′. (ii) Otherwise, i.e., if
cycleset(α) 6= ∅, remove i from all vertices, i.e., any vertex v ∈ V ′ becomes
v \ {i}. If this removal creates a vertex that corresponds to the empty set,
we remove this vertex and all incident edges. Again, if this removal divides
G′ into connected components, keep only the one that contains the vertex
representing j as the new G′.

After this modification, a set D of components remains in V ′ with |D| ≥ 2.
Otherwise, Sys’s architecture is not disjoint circular wait free, because if there
is no such set D, pick a component i ∈ Comp. We know that α ∈ Int(si)

and j ∈ compset(α) \ {i} exist such that compset(α) ∩ coopset(si) = ∅. Fix
the cooperation path πα

i,j. Consider j. Again, there is a β ∈ Int(sj) and a
k ∈ compset(β) \ {j}with compset(β)∩ coopset(sj) = ∅. Fix the cooperation
path πβ

j,k. Now, we know that these paths do not share a common vertex v with
|v| ≥ 2 because otherwise, there is a component l ∈ compset(α)∩ compset(β)

with l 6= j. Then, l ∈ coopset(sj) since β ∈ Int(sj). But, since l ∈ compset(α)
this implies compset(α) ∩ coopset(sj) 6= ∅ which contradicts our assumption
about G′. Thus, no vertex v exists that is contained in both paths. Now, we
repeat this argument for all components. Since s is a deadlock and Comp is
finite, at least one component waits for an already considered one (similar

F.5 Proofs from Chapter 6 265

to the proof of Lemma 6.2), i.e., we can concatenate all above constructed
cooperation paths to a cycle in the original version of Gcoop. But, this contra-
dicts the assumption that Sys has a disjoint circular wait free architecture since
this cycle contains a simple cycle where more than one vertex representing a
component lies on. Thus, we find a set D ⊆ Comp with |D| ≥ 2.

Next, we show that also the properties P1, P2, and P3 hold for D. For all
i ∈ D and all α ∈ Int(si), we find a j ∈ compset(α) \ {i} such that j ∈ D
and compset(α) ∩ coopset(sj) 6= ∅ holds, because otherwise, the vertex repre-
senting i is not contained in the graph G′ where the set D is extracted from.
Analogously as in the proof of Theorem 6.9, we can then conclude that also
sj ∈ PSj(si, α) holds, i.e., we have established Property P1 of D. Next, we show
that also Property P2 holds. By way of contradiction, assume that there is an
i ∈ D, α ∈ Int(si), and β ∈ Int such that |compset(α)∩ compset(β)| ≥ 2 holds
but cycleset(β) ∩ D = ∅ and there is a k ∈ Comp \ D with k ∈ compset(β).
Assume cycleset(β) = ∅. Pick a component j ∈ compset(α) ∩ compset(β).
Since i ∈ D, also j ∈ D holds. Consider the cooperation path πβ

k,j. Since
k /∈ D, the edge connecting the second last vertex on the path and vertex
{j} was removed in the construction of G′. But, since the connected com-
ponent containing {j} is kept, the vertex compset(α) ∩ compset(β) and thus
also the vertex {i} are not contained in V ′. This contradicts i ∈ D. Thus,
assume cycleset(β) 6= ∅. All components j ∈ compset(α) ∩ compset(β) are
contained in D since i ∈ D. Since cycleset(β) ∩ D = ∅, for all components
k ∈ cycleset(β) holds k /∈ D and thus k /∈ compset(α) ∩ compset(β). Be-
cause each k was removed in the construction of G′, we find at least one
k ∈ cycleset(β) with β ∈ Int(sk) and a j ∈ compset(α) ∩ compset(β) as above
with compset(β) ∩ coopset(sj) = ∅—since the connected component that
contains {j} is kept in the construction of G′. Consider the cooperation path
πβ

k,j. We also have (compset(α) ∩ compset(β)) ∩ coopset(sj) = ∅. But, this
means that for component i and interaction α, we found a component j with
compset(α) ∩ coopset(sj) = ∅. Again, this contradicts i ∈ D. Thus, Property
P2 holds for D.

In order to see why Property P3 holds too, again assume that there is an
i ∈ D, α ∈ Int(si), and β ∈ Int such that |compset(α)∩ compset(β)| ≥ 2 holds
but for all β′ ∈ Int with i(β) ∩ β′ 6= ∅ holds compset(β′) ∩ coopset(si) = ∅.
Consider a component j ∈ compset(β) ∩ compset(α). As above, we know
that j ∈ D. Now, we know by assumption that for all interactions γ ∈ Int(sj)

with i ∈ compset(γ) holds compset(γ) ∩ coopset(si) = ∅. There is at least
one such γ for a j as above since i, j ∈ D. But, this means j /∈ D since j is
removed in the construction of G′ because of i. Thus, Property P3 holds for D.

Next, we consider sequence σ given at the beginning of the proof that leads

266 F Formal Proofs

to deadlock s where we use (as already mentioned after the statement of the
theorem) the abbreviations PEI(si, β) :=

⋃
j∈compset(β)\{i}

⋃
sj∈PSj(si ,β) EI(si, sj)

and IPEI(si) :=
⋂

β∈Int(si) PEI(si, β) for a state si ∈ Si and an interaction β ∈ Int.
We distinguish two cases:

1) For all indices l of sequence σ with 0 ≤ l ≤ m holds |compset(αl)| = 1 or
cycleset(αl) ∩ D = ∅ and there is a k ∈ Comp \ D with k ∈ compset(αl).
Then, for all i ∈ D and all such αl holds: Either i(αl) = ∅, i(αl) 6= ∅
and |αl | = 1, or i(αl) 6= ∅ and |αl | ≥ 2. In the last case, we know that
cycleset(αl) = ∅ holds, since otherwise cycleset(αl) ∩ D 6= ∅ holds be-
cause i ∈ D. We show that in either case compset(αl) ∩ coopset(si) = ∅
holds. For the already considered cases we are done. But in the last case, we
know that a k ∈ Comp \ D exists with k ∈ compset(αl). Assume that a j ∈
compset(αl) \ {i} exists with j ∈ coopset(si). Then, there must be a β ∈ Int(si)

with j ∈ compset(β). We conclude {i, j} ⊆ compset(β) ∩ compset(αl) and
thus |compset(β) ∩ compset(αl)| ≥ 2. Since i ∈ D and β ∈ Int(si), Property
P2 of D and cycleset(αl) = ∅ implies compset(αl) ⊆ D. But, this contradicts
k ∈ compset(αl) and k /∈ D. Thus, compset(αl) ∩ coopset(si) = ∅ holds.
Summarizing, we get for all i ∈ D that NBRS(si) ∩ S0

i 6= ∅ since each ac-
tion of such an i occurring on sequence σ is not an action that is (only) used
for cooperation with components that i wants to cooperate with in si. From
Property P1 of D, we know that for all i ∈ D and all α ∈ Int(si) it holds
that a j ∈ compset(α) \ {i} exists with j ∈ D and sj ∈ PSj(si, α). For all
such j, the same reasoning as above shows NBRS(sj) ∩ S0

j 6= ∅. Thus, we
can conclude that for all i ∈ D and all α ∈ Int(si) it holds that a component
j ∈ compset(α) \ {i} exists with

(⋃
sj∈PSj(si ,α) NBRS(sj)

)
∩ S0

j 6= ∅. But this
contradicts Condition 1 of the theorem.

2) From the reasoning in Case 1, we know that we can find a maximal index
l with 0 ≤ l ≤ m for sequence σ with |compset(αl)| ≥ 2 and cycleset(αl) ∩
D 6= ∅ or compset(αl) ⊆ D. For all subsequent interactions on σ, i.e., all
αl′ with l < l′ ≤ m, holds |compset(αl′)| = 1 or cycleset(αl′) ∩ D = ∅ and
∃ k ∈ Comp \ D : k ∈ compset(αl′). Thus, an analogous argument as in Case 1
shows that for all i ∈ D we have sl+1

i ∈ NBRS(si), i.e., the local state after the
execution of αl on σ is in the non-interfering backward reachable set of the
local part of the deadlock. Since |compset(αl)| ≥ 2, we have to distinguish
two subcases:

2.1) compset(αl) ⊆ D. We already showed that sl+1
i ∈ NBRS(si) holds for

all i ∈ D. Choose a component i ∈ compset(αl) and a β ∈ Int(si). From
Property P1 of D, we know that a j ∈ compset(β) \ {i} exists with j ∈ D and
sj ∈ PSj(si, β). Since j ∈ D, we can conclude that (sl+1

i , sl+1
j) ∈ NBRS(si)×

NBRS(sj) holds. From Property P3 of D, we have ∃ α′ ∈ Int : i(αl) ∩ α′ 6=

F.6 Proofs from Chapter 7 267

∅ ∧ compset(α′)∩ coopset(si) 6= ∅. This implies αl ∈ EI(si, sj) since (sl
i , sl

j) is

reachable in [[Sys[{i, j}]]] and (sl
i , sl

j) ∈ Pre((sl+1
i , sl+1

j), {αl ∩ (Ai ∪ Aj)}). Now,
we see that for all β ∈ Int(si), we have αl ∈ PEI(si, β) and thus αl ∈ IPEI(si).
Analogously as for i, we get αl ∈ IPEI(sk) for all k ∈ compset(αl). But, this
contradicts Condition 2 of the theorem.

2.2) cycleset(αl) ∩ D 6= ∅. Choose a component i ∈ cycleset(αl) ∩ D. From
Property P1 of D, we know that for all β ∈ Int(si) a j ∈ compset(β) \ {i}
exists with j ∈ D and sj ∈ PSj(si, β). From above we can conclude that
(sl+1

i , sl+1
j) ∈ NBRS(si)×NBRS(sj) holds since j ∈ D. A similar reasoning as

in Case 2.1 shows that Property P3 of D implies αl ∈ EI(si, sj). Now, we see
that for all β ∈ Int(si), we have αl ∈ PEI(si, β) and thus αl ∈ IPEI(si). But
again, this contradicts Condition 2 of the theorem.

Thus, Sys is deadlock-free since if the conditions of the theorem hold and a
reachable deadlock exists, we can find a contradiction as shown above: If there
is no interaction on the path to the deadlock where only components in D or
at least one cycle component in D participate in, then there is a contradiction
to the first condition. Otherwise, if there is such an interaction, we have a
contradiction to the second condition. We have to address one more item from
the very beginning, viz. the presence of closed interactions. In the beginning
of the proof, we stated that in case of the presence of a reachable, deadlocked
global state s ∈ S we can find a sequence σ starting in a global initial state
s0 ∈ S0 with s0 α0−→ s1 α1−→ . . . αm−→ s for a fixed m ∈ N. In the presence of
closed interactions some of the αl , 0 ≤ l ≤ m, of this sequence may correspond
to τ. However, we know that in this case an interaction exists that we can use
for our reasoning instead, i.e., if we have sl τ−→ sl+1 on the sequence σ where
0 ≤ l < m, we know from Definition 2.6 that an interaction αl ∈ Int exists
such that for all i ∈ Comp either i(αl) = {ai} for an ai ∈ Ai and si

ai−→i ti holds
or we have i(αl) = ∅ and si = ti where si correspond to i’s local part of the
global state sl and ti to its local part of sl+1. Thus, closed interactions do not
cause a problem with our reasoning above. �

F.6 Proofs from Chapter 7

Proof of Lemma 7.7: The claim directly follows from the properties of branch-
ing bisimilarity with explicit divergence which preserves deadlock-freedom.
A reachable deadlock in Sys[{i}] implies a reachable state without successors
in [[i]] and also in [[i:p]] because of the port conformance. Thus, this state also
occurs in [[{i:p}]]. The other direction follows with an analogous argument.�

268 F Formal Proofs

Proof of Theorem 7.8: Assume that the assumptions of the theorem are satis-
fied and that Sys is not deadlock-free. We now successively consider subsys-
tems of cooperating components of increasing size in an induction like manner,
i.e., assume that there is a set C ⊆ Comp of components such that Sys[C] is
deadlock-free. Such a set of size at least one must exists since each Sys[{i}]
with i ∈ Comp is deadlock-free because of Lemma 7.7. Now, pick a component
j /∈ C that cooperates with a component in C and consider C′ = C ∪ {j}.
Assume that Sys[C′] is not deadlock-free, although a component i ∈ C and
a port i:p ∈ ports(i) exist such that i:p is connected to a port j:q ∈ ports(j)
and the port behavior [[{i:p, j:q}]] is τ- and deadlock-free—which follows
from the assumptions. Note that the port behavior [[{i:p, j:q}]] cannot contain
τ-transitions since the port protocols are τ-free and a τ-transition in a port
behavior always corresponds to a τ-transition in one of the involved port
protocols (cf. Definition 7.4). Since interaction system Sys[C′] is not deadlock-
free, there is a reachable global state sC′ ∈ SC′ that has no successor. Since the
corresponding state sC ∈ SC in the system without j is deadlock-free, there
must be an action ai ∈ Ai and states si, ti ∈ Si with si being i’s local part in sC

and si
ai−→i ti. But, the corresponding interaction α with i(α) = i:p(α) = {ai}

is not available in sC′ anymore—due to the deadlock, i.e., there must be an
action aj ∈ Aj with j(α) = j:q(α) = {aj} that is not enabled in j’s local part
sj in sC′ . Consider the behavior of the subsystem Sys[{i, j}] and the state
(si, sj) of [[Sys[{i, j}]]], which is reachable from an initial state in [[Sys[{i, j}]]]
since the deadlocked global state sC′ is reachable in [[Sys[C′]]]. Now, a state
(si:p, sj:q) ∈ S{i:p,j:q} with (si, si:p) ∈ R≈∆

b
and (sj, sj:q) ∈ R′≈∆

b
is also reachable

in the port behavior [[{i:p, j:q}]] because of the port conformance whereR≈∆
b

andR′≈∆
b

denote the corresponding relations that establish the branching bisim-
ilarity with explicit divergence. But then, Sys[C′] cannot be deadlocked since at
least one β ∈ Int{i:p,j:q}—and thus β ∈ Int[C′]—is enabled in (si:p, sj:q) because
of the port behavior’s deadlock-freedom, and this β can neither be blocked by
i—because i’s cooperation with the other components in C is deadlock-free—
nor by j—because the only cooperation partner of j is i—in [[Sys[C′]]] because
otherwise the port behavior [[{i:p, j:q}]] contains a τ-transition or Sys does
not have a tree-like protocol architecture. Thus, applying this induction until
all components are covered, i.e., C′ = Comp, yields the deadlock-freedom of
interaction system Sys. �

269

Bibliography

[1] Willibrordus Martinus Pancratius van der Aalst, Kees Max van Hee, and
Robert Arie van der Toorn. Component-Based Software Architectures:
A Framework Based on Inheritance of Behavior. Science of Computer
Programming (SCP), 42(2-3):129–171, 2002.

[2] Parosh Aziz Abdulla, Giorgio Delzanno, and Ahmed Rezine. Auto-
matic Verification of Directory-Based Consistency Protocols. In Olivier
Bournez and Igor Potapov, editors, Proceedings of the 3rd International
Workshop on Reachability Problems (RP 2009), volume 5797 of Lecture Notes
in Computer Science, pages 36–50. Springer-Verlag, Berlin, Germany, 2009.

[3] Gregory Dominic Abowd, Robert John Allen, and David Barnard Garlan.
Using Style to Understand Descriptions of Software Architecture. In
Proceedings of the 1st ACM SIGSOFT Symposium on Foundations of Software
Engineering (SIGSOFT 1993), pages 9–20. ACM, New York, NY, USA,
1993.

[4] Jean-Raymond Abrial, Stephen A. Schuman, and Bertrand Meyer. Spec-
ification Language. In R. M. McKeag and A. M. Macnaughten, editors,
On the Construction of Programs, pages 343–410. Cambridge University
Press, Cambridge, UK, 1980.

[5] Franz Achermann and Oscar Nierstrasz. A Calculus for Reasoning
about Software Composition. Theoretical Computer Science (TCS), 331
(2-3):367–396, 2005.

[6] Alessandro Aldini and Marco Bernardo. On the Usability of Process
Algebra: An Architectural View. Theoretical Computer Science (TCS), 335
(2-3):281–329, 2005.

[7] Robert John Allen and David Barnard Garlan. A Formal Approach to
Software Architectures. In Jan van Leeuwen, editor, Proceedings of the
12th IFIP World Computer Congress on Information Processing (IFIP 1992),
pages 134–141. North-Holland, Amsterdam, The Netherlands, 1992.

[8] Robert John Allen and David Barnard Garlan. A Formal Basis for

270 Bibliography

Architectural Connection. ACM Transactions on Software Engineering and
Methodology (TOSEM), 6(3):213–249, 1997.

[9] Bowen Alpern and Fred Barry Schneider. Defining Liveness. Information
Processing Letters (IPL), 21(4):181–185, 1985.

[10] Bowen Alpern and Fred Barry Schneider. Recognizing Safety and Live-
ness. Distributed Computing, 2(3):117–126, 1987.

[11] Nasreddine Aoumeur and Gunter Saake. A Component-Based Petri Net
Model for Specifying and Validating Cooperative Information Systems.
Data & Knowledge Engineering (DKE), 42(2):143–187, 2002.

[12] Farhad Arbab. Abstract Behavior Types: A Foundation Model for Com-
ponents and Their Composition. In Frank Sipke de Boer, Marcello Maria
Bonsangue, Susanne Graf, and Willem-Paul de Roever, editors, Proceed-
ings of the 1st International Symposium on Formal Methods for Components
and Objects (FMCO 2002), volume 2852 of Lecture Notes in Computer
Science, pages 33–70. Springer-Verlag, Berlin, Germany, 2003.

[13] Farhad Arbab. Reo: A Channel-Based Coordination Model for Com-
ponent Composition. Mathematical Structures in Computer Science, 14(3):
329–366, 2004.

[14] André Arnold. Finite Transition Systems: Semantics of Communicating
Systems. Prentice Hall, Hertfordshire, UK, 1994.

[15] Edward Anthony Ashcroft. Proving Assertions about Parallel Programs.
Journal of Computer and System Sciences (JCSS), 10(1):110–135, 1975.

[16] Paul Camille Attie and Hana Chockler. Efficiently Verifiable Condi-
tions for Deadlock-Freedom of Large Concurrent Programs. In Radhia
Cousot, editor, Proceedings of the 6th International Conference on Verifica-
tion, Model Checking, and Abstract Interpretation (VMCAI 2005), volume
3385 of Lecture Notes in Computer Science, pages 465–481. Springer-Verlag,
Berlin, Germany, 2005.

[17] Ralph-Johan Back and Reino Elias Mikael Kurki-Suonio. Distributed
Cooperation with Action Systems. ACM Transactions on Programming
Languages and Systems (TOPLAS), 10(4):513–554, 1988.

[18] John Warner Backus. The Syntax and Semantics of the Proposed Inter-
national Algebraic Language of the Zurich ACM-GAMM Conference.
In Proceedings of the 1st International Conference on Information Processing
(IFIP 1959), pages 125–131. UNESCO, Paris, France, 1959.

[19] Eric Badouel, Albert Benveniste, Marius Dorel Bozga, Benoı̂t Caillaud,

Bibliography 271

Olivier Constant, Bernhard Josko, Qin Ma, Roberto Passerone, and
Mark Skipper. SPEEDS Metamodel Syntax and Draft Semantics, 2007.
Deliverable D2.1c.

[20] Josephus Cornelis Maria Baeten. A Brief History of Process Algebra.
Theoretical Computer Science (TCS), 335(2-3):131–146, 2005.

[21] Josephus Cornelis Maria Baeten. Formal Methods. Lecture given at
the IPA Basic Course on Formal Methods. Eindhoven University of
Technology, 16 January 2006. URL: http://www.win.tue.nl/ipa/
archive/fmbasiccourse2006/FM05b.ppt.

[22] Josephus Cornelis Maria Baeten and Robert Jan van Glabbeek. Another
Look at Abstraction in Process Algebra (Extended Abstract). In Thomas
Ottmann, editor, Proceedings of the 14th Colloquium on Automata, Lan-
guages and Programming (ICALP 1987), volume 267 of Lecture Notes in
Computer Science, pages 84–94. Springer-Verlag, Berlin, Germany, 1987.

[23] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The
MIT Press, Cambridge, MA, USA, 2008.

[24] Christel Baier, Tobias Blechmann, Joachim Klein, and Sascha
Klüppelholz. A Uniform Framework for Modeling and Verifying Com-
ponents and Connectors. In John Field and Vasco Thudichum Vasconce-
los, editors, Proceedings of the 11th International Conference on Coordination
Models and Languages (COORDINATION 2009), volume 5521 of Lecture
Notes in Computer Science, pages 247–267. Springer-Verlag, Berlin, Ger-
many, 2009.

[25] Brenda Sue Baker. Approximation Algorithms for NP-Complete Prob-
lems on Planar Graphs. Journal of the ACM (JACM), 41(1):153–180, 1994.

[26] Eric Barboni and Rémi Bastide. Software Components: A Formal Seman-
tics Based on Coloured Petri Nets. In Proceedings of the 2nd International
Workshop on Formal Aspects of Component Software (FACS 2005), volume
160 of Electronic Notes in Theoretical Computer Science, pages 57–73. Else-
vier B.V., Amsterdam, The Netherlands, 2006.

[27] Leonor Barroca, Jon Hall, and Patrick Hall. An Introduction and History
of Software Architectures, Components, and Reuse. In Software Architec-
tures: Advances and Applications, pages 1–11. Springer-Verlag, London,
UK, 2000.

[28] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice, 2nd edition. Addison-Wesley Professional, Boston, MA, USA,
2003.

http://www.win.tue.nl/ipa/archive/fmbasiccourse2006/FM05b.ppt
http://www.win.tue.nl/ipa/archive/fmbasiccourse2006/FM05b.ppt

272 Bibliography

[29] Twan Basten. Branching Bisimilarity Is an Equivalence Indeed! Informa-
tion Processing Letters (IPL), 58(3):141–147, 1996.

[30] Ananda Shankar Basu, Marius Dorel Bozga, and Joseph Sifakis. Model-
ing Heterogeneous Real-time Components in BIP. In Proceedings of the
4th International Conference on Software Engineering and Formal Methods
(SEFM 2006), pages 3–12. IEEE Computer Society, Los Alamitos, CA,
USA, 2006.

[31] Hubert Baumeister, Florian Hacklinger, Rolf Hennicker, Alexander
Knapp, and Martin Wirsing. A Component Model for Architectural
Programming. In Proceedings of the 2nd International Workshop on Formal
Aspects of Component Software (FACS 2005), volume 160 of Electronic Notes
in Theoretical Computer Science, pages 75–96. Elsevier B.V., Amsterdam,
The Netherlands, 2006.

[32] Oliver Becker. Implementierung von Algorithmen zur Deadlock- und
Fortschritt-Erkennung in komponentenbasierten Systemen. Diploma thesis,
University of Dortmund, 2012.

[33] Mordechai Ben-Ari, Zohar Manna, and Amir Pnueli. The Temporal
Logic of Branching Time. In Proceedings of the 8th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 1981),
pages 164–176. ACM, New York, NY, USA, 1981.

[34] Saddek Bensalem, Marius Dorel Bozga, Thanh-Hung Nguyen, and
Joseph Sifakis. Compositional Verification for Component-Based Sys-
tems and Application. In Sung Deok Cha, Jin-Young Choi, Moonzoo
Kim, Insup Lee, and Mahesh Viswanathan, editors, Proceedings of the
6th International Symposium on Automated Technology for Verification and
Analysis (ATVA 2008), volume 5311 of Lecture Notes in Computer Science,
pages 64–79. Springer-Verlag, Berlin, Germany, 2008.

[35] Saddek Bensalem, Marius Dorel Bozga, Thanh-Hung Nguyen, and
Joseph Sifakis. D-Finder: A Tool for Compositional Deadlock Detection
and Verification. In Ahmed Bouajjani and Oded Maler, editors, Pro-
ceedings of the 21st International Conference on Computer Aided Verification
(CAV 2009), volume 5643 of Lecture Notes in Computer Science, pages
614–619. Springer-Verlag, Berlin, Germany, 2009.

[36] Saddek Bensalem, Marius Dorel Bozga, Thanh-Hung Nguyen, and
Joseph Sifakis. Compositional Verification for Component-Based Sys-
tems and Application. IET Software, 4(3):181–193, 2010.

[37] Johannes Aldert Bergstra and Jan Willem Klop. Algebra of Communi-

Bibliography 273

cating Processes with Abstraction. Theoretical Computer Science (TCS),
37:77–121, 1985.

[38] Johannes Aldert Bergstra, Jan Willem Klop, and Ernst-Rüdiger Olderog.
Failures without Chaos: A Process Semantics for Fair Abstraction. In
Martin Wirsing, editor, Proceedings of the IFIP TC2/WG2.2 Working Con-
ference on Formal Description of Programming Concepts–III, pages 77–101.
Elsevier B.V., Amsterdam, The Netherlands, 1987.

[39] Marco Bernardo, Paolo Ciancarini, and Lorenzo Donatiello. Architecting
Families of Software Systems with Process Algebras. ACM Transactions
on Software Engineering and Methodology (TOSEM), 11(4):386–426, 2002.

[40] Marc Bezem and Jan Friso Groote. Invariants in Process Algebra with
Data. In Bengt Jonsson and Joachim Parrow, editors, Proceedings of the 5th
International Conference on Concurrency Theory (CONCUR 1994), volume
836 of Lecture Notes in Computer Science, pages 401–416. Springer-Verlag,
Berlin, Germany, 1994.

[41] Armin Biere, Cyrille Artho, and Viktor Schuppan. Liveness Checking
as Safety Checking. In Proceedings of the 7th International Workshop on
Formal Methods for Industrial Critical Systems (FMICS 2002), volume 66(2)
of Electronic Notes in Theoretical Computer Science, pages 160–177. Elsevier
B.V., Amsterdam, The Netherlands, 2002.

[42] Dines Bjørner and Clifford B. Jones, editors. The Vienna Development
Method: The Meta-Language, volume 61 of Lecture Notes in Computer
Science, Berlin, Germany, 1978. Springer-Verlag.

[43] Barry William Boehm. Software Engineering Economics, 1st edition. Pren-
tice Hall, Upper Saddle River, NJ, USA, 1981.

[44] Borzoo Bonakdarpour, Marius Dorel Bozga, and Gregor Gössler. A
Theory of Fault Recovery for Component-Based Models. In Proceedings
of the 30th IEEE Symposium on Reliable Distributed Systems (SRDS 2011),
pages 265–270. IEEE Computer Society, Los Alamitos, CA, USA, 2011.

[45] Marius Dorel Bozga, Olivier Constant, Bernhard Josko, Qin Ma, and
Mark Skipper. SPEEDS Metamodel Syntax and Static Semantics, 2007.
Deliverable D2.1b.

[46] Marius Dorel Bozga, Vassiliki Sfyrla, and Joseph Sifakis. Modeling Syn-
chronous Systems in BIP. In Proceedings of the 9th International Conference
on Embedded Software (EMSOFT 2009), pages 77–86. ACM, New York,
NY, USA, 2009.

[47] Luboš Brim, Ivana Černá, Pavlı́na Vařeková, and Barbora Zim-

274 Bibliography

merova. Component-Interaction Automata as a Verification-Oriented
Component-Based System Specification. In Proceedings of the 4th Work-
shop on Specification and Verification of Component-Based Systems (SAVCBS
2005). ACM, New York, NY, USA, 2005.

[48] Guy H. Broadfoot. ASD Case Notes: Costs and Benefits of Applying
Formal Methods to Industrial Control Software. In John Fitzgerald,
Ian James Hayes, and Andrzej Tarlecki, editors, Proceedings of the 13th
International Symposium on Formal Methods (FM 2005), volume 3582 of
Lecture Notes in Computer Science, pages 548–551. Springer-Verlag, Berlin,
Germany, 2005.

[49] Stephen D. Brookes and Andrew William Roscoe. Deadlock Analysis
in Networks of Communicating Processes. Distributed Computing, 4(4):
209–230, 1991.

[50] Stephen D. Brookes and William Chesley Rounds. Behavioural Equiva-
lence Relations Induced by Programming Logics. In Josep Dı́az, editor,
Proceedings of the 10th Colloquium on Automata, Languages and Program-
ming (ICALP 1983), volume 154 of Lecture Notes in Computer Science,
pages 97–108. Springer-Verlag, Berlin, Germany, 1983.

[51] Stephen D. Brookes, Charles Antony Richard Hoare, and An-
drew William Roscoe. A Theory of Communicating Sequential Processes.
Journal of the ACM (JACM), 31(3):560–599, 1984.

[52] Frederick Phillips Brooks and Kenneth Eugene Iverson. Automatic Data
Processing, System 360 Edition. Wiley, New York, NY, USA, 1969.

[53] Michael C. Browne, Edmund Melson Clarke, and Orna Grumberg. Char-
acterizing Finite Kripke Structures in Propositional Temporal Logic.
Theoretical Computer Science (TCS), 59(1-2):115–131, 1988.

[54] Hans de Bruin. A Grey-Box Approach to Component Composition. In
Krzysztof Czarnecki and Ulrich W. Eisenecker, editors, Proceedings of
the 1st International Symposium on Generative and Component-Based Soft-
ware Engineering (GCSE 1999), volume 1799 of Lecture Notes in Computer
Science, pages 195–209. Springer-Verlag, Berlin, Germany, 2000.

[55] Randal Everitt Bryant. Graph-Based Algorithms for Boolean Function
Manipulation. IEEE Transactions on Computers (TC), 35(8):677–691, 1986.

[56] Julius Richard Büchi. On a Decision Method in Restricted Second Order
Arithmetic. In Ernest Nagel, Patrick Suppes, and Alfred Tarski, editors,
Proceedings of the 1st International Congress on Logic, Methodology and

Bibliography 275

Philosophy of Science (LMPS 1960), pages 1–11. Stanford University Press,
Stanford, CA, USA, 1962.

[57] Jerry Robert Burch, Edmund Melson Clarke, Kenneth Lauchlin McMil-
lan, David L. Dill, and Lucius James Hwang. Symbolic Model Checking:
1020 States and Beyond. In Proceedings of the 5th Annual IEEE Symposium
on Logic in Computer Science (LICS 1990), pages 428–439. IEEE Computer
Society, Los Alamitos, CA, USA, 1990.

[58] Tomáš Bureš, Petr Hnětynka, and František Plášil. SOFA 2.0: Balancing
Advanced Features in a Hierarchical Component Model. In Doo-Kwon
Baik, David Primeaux, Naohiro Ishii, and Roger Lee, editors, Proceed-
ings of the 4th International Conference on Software Engineering Research,
Management and Applications (SERA 2006), pages 40–48. IEEE Computer
Society, Los Alamitos, CA, USA, 2006.

[59] Arthur Thomas Charlesworth. The Multiway Rendezvous. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 9(3):350–366,
1987.

[60] Allan Cheng, Javier Esparza, and Jens Palsberg. Complexity Results for
1-Safe Nets. In Rudrapatna Kallikote Shyamasundar, editor, Proceedings
of the 13th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 1993), volume 761 of Lecture Notes in Computer
Science, pages 326–337. Springer-Verlag, Berlin, Germany, 1993.

[61] Shing Chi Cheung and Jeff Kramer. Context Constraints for Composi-
tional Reachability Analysis. ACM Transactions on Software Engineering
and Methodology (TOSEM), 5(4):334–377, 1996.

[62] Shing Chi Cheung and Jeff Kramer. Checking Safety Properties Using
Compositional Reachability Analysis. ACM Transactions on Software
Engineering and Methodology (TOSEM), 8(1):49–78, 1999.

[63] Shing Chi Cheung, Dimitra Giannakopoulou, and Jeff Kramer. Verifica-
tion of Liveness Properties Using Compositional Reachability Analysis.
ACM SIGSOFT Software Engineering Notes (SEN), 22(6):227–243, 1997.

[64] Avram Noam Chomsky. Three Models for the Description of Language.
IRE Transactions on Information Theory, 2:113–124, 1956.

[65] Alonzo Church. An Unsolvable Problem of Elementary Number Theory.
American Journal of Mathematics, 58(2):345–363, 1936.

[66] Edmund Melson Clarke and Ernest Allen Emerson. Design and Synthe-
sis of Synchronization Skeletons Using Branching-Time Temporal Logic.
In Proceedings of the Workshop on Logic of Programs (LOP 1981), volume

276 Bibliography

131 of Lecture Notes in Computer Science, pages 52–71. Springer-Verlag,
Berlin, Germany, 1982.

[67] Edmund Melson Clarke and Jeannette Marie Wing. Formal Methods:
State of the Art and Future Directions. ACM Computing Surveys, 28(4):
626–643, 1996.

[68] Edmund Melson Clarke, Ernest Allen Emerson, and Aravinda Prasad
Sistla. Automatic Verification of Finite-State Concurrent Systems Us-
ing Temporal Logic Specifications. ACM Transactions on Programming
Languages and Systems (TOPLAS), 8(2):244–263, 1986.

[69] Edmund Melson Clarke, David Esley Long, and Kenneth Lauchlin
McMillan. Compositional Model Checking. In Proceedings of the 4th
Annual Symposium on Logic in Computer Science (LICS 1989), pages 353–
362. IEEE, Piscataway, NJ, USA, 1989.

[70] Edmund Melson Clarke, Thomas Filkorn, and Somesh Jha. Exploiting
Symmetry in Temporal Logic Model Checking. In Costas Courcoubetis,
editor, Proceedings of the 5th International Workshop on Computer Aided
Verification (CAV 1993), volume 697 of Lecture Notes in Computer Science,
pages 450–462. Springer-Verlag, Berlin, Germany, 1993.

[71] Edmund Melson Clarke, Orna Grumberg, and David Esley Long. Model
Checking and Abstraction. ACM Transactions on Programming Languages
and Systems (TOPLAS), 16(5):1512–1542, 1994.

[72] Edmund Melson Clarke, Orna Grumberg, and Doron Angel Peled. Model
Checking. The MIT Press, Cambridge, MA, USA, 2000.

[73] Walter Rance Cleaveland and Scott Allen Smolka. Strategic Directions
in Concurrency Research. ACM Computing Surveys, 28(4):607–625, 1996.

[74] Stephen Arthur Cook. The Complexity of Theorem-Proving Procedures.
In Michael Alexander Harrison, Ranan B. Banerji, and Jeffrey David
Ullman, editors, Proceedings of the 3rd Annual ACM Symposium on Theory
of Computing (STOC 1971), pages 151–158. ACM, New York, NY, USA,
1971.

[75] Don Coppersmith and Shmuel Winograd. Matrix Multiplication via
Arithmetic Progressions. In Alfred Vaino Aho, editor, Proceedings of the
19th Annual ACM Symposium on Theory of Computing (STOC 1987), pages
1–6. ACM, New York, NY, USA, 1987.

[76] Thomas H. Cormen, Charles Eric Leiserson, Ronald Linn Rivest, and
Clifford Stein. Introduction to Algorithms, 2nd edition. The MIT Press
and McGraw-Hill Book Company, Cambridge, MA, USA, 2001.

Bibliography 277

[77] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Uni-
fied Lattice Model for Static Analysis of Programs by Construction
or Approximation of Fixpoints. In Proceedings of the 4th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL 1977),
pages 238–252. ACM, New York, NY, USA, 1977.

[78] Brad J. Cox. Object-Oriented Programming: An Evolutionary Approach.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[79] Leandro Dias da Silva and Angelo Perkusich. Composition of Soft-
ware Artifacts Modelled Using Colored Petri Nets. Science of Computer
Programming (SCP), 56(1-2):171–189, 2005.

[80] Luca de Alfaro and Thomas Anton Henzinger. Interface Automata.
ACM SIGSOFT Software Engineering Notes (SEN), 26(5):109–120, 2001.

[81] Luca de Alfaro and Thomas Anton Henzinger. Interface Theories
for Component-Based Design. In Thomas Anton Henzinger and
Christoph Meyer Kirsch, editors, Proceedings of the 1st International Work-
shop on Embedded Software (EMSOFT 2001), volume 2211 of Lecture Notes
in Computer Science, pages 148–165. Springer-Verlag, Berlin, Germany,
2001.

[82] Luca de Alfaro and Thomas Anton Henzinger. Interface-Based De-
sign. In Manfred Broy, Johannes Grünbauer, David Harel, and Charles
Antony Richard Hoare, editors, Engineering Theories of Software Intensive
Systems, volume 195 of NATO Science Series II, pages 83–104. Springer-
Verlag, Berlin, Germany, 2005.

[83] Rocco De Nicola and Frits Willem Vaandrager. Action versus State Based
Logics for Transition Systems. In Irène Guessarian, editor, Semantics of
Systems of Concurrent Processes, volume 469 of Lecture Notes in Computer
Science, pages 407–419. Springer-Verlag, Berlin, Germany, 1990.

[84] Rocco De Nicola and Frits Willem Vaandrager. Three Logics for Branch-
ing Bisimulation. In Proceedings of the 5th Annual IEEE Symposium on
Logic in Computer Science (LICS 1990), pages 118–129. IEEE Computer
Society, Los Alamitos, CA, USA, 1990. Also available as CS-R9012, CWI
Report, Center for Mathematics and Computer Science, Amsterdam,
The Netherlands, 1990.

[85] Rocco De Nicola and Frits Willem Vaandrager. Three Logics for Branch-
ing Bisimulation. Journal of the ACM (JACM), 42(2):458–487, 1995.

[86] Rocco De Nicola, Ugo Montanari, and Frits Willem Vaandrager. Back
and Forth Bisimulations. In Josephus Cornelis Maria Baeten and

278 Bibliography

Jan Willem Klop, editors, Proceedings of the 1st International Conference
on Concurrency Theory (CONCUR 1990), volume 458 of Lecture Notes
in Computer Science, pages 152–165. Springer-Verlag, Berlin, Germany,
1990.

[87] Frank Dederichs and Rainer Weber. Safety and Liveness from a Method-
ological Point of View. Information Processing Letters (IPL), 36(1):25–30,
1990.

[88] Richard Allan DeMillo, Richard Jay Lipton, and Alan Jay Perlis. Social
Processes and Proofs of Theorems and Programs. Communications of the
ACM (CACM), 22(5):271–280, 1979.

[89] Reinhard Diestel. Graph Theory, 4th edition, volume 173 of Graduate
Texts in Mathematics. Springer-Verlag, Berlin, Germany, 2010.

[90] Edsger Wybe Dijkstra. Cooperating Sequential Processes. In F. Genuys,
editor, Programming Languages: NATO Advanced Study Institute, pages
43–112. Academic Press, New York, NY, USA, 1968. Originally appeared
as Technical Report EWD-123, Eindhoven University of Technology,
Eindhoven, The Netherlands, 1965.

[91] Edsger Wybe Dijkstra. The Structure of the “THE”-Multiprogramming
System. Communications of the ACM (CACM), 11(5):341–346, 1968.

[92] Edsger Wybe Dijkstra. On the Role of Scientific Thought. In Selected
Writings on Computing: A Personal Perspective, pages 60–66. Springer-
Verlag, Berlin, Germany, 1982.

[93] Agostino Dovier, Carla Piazza, and Alberto Policriti. An Efficient Algo-
rithm for Computing Bisimulation Equivalence. Theoretical Computer
Science (TCS), 311(1-3):221–256, 2004.

[94] Laurent Doyen, Thomas Anton Henzinger, Barbara Jobstmann, and
Tatjana Petrov. Interface Theories with Component Reuse. In Proceedings
of the 8th International Conference on Embedded Software (EMSOFT 2008),
pages 79–88. ACM, New York, NY, USA, 2008.

[95] Ernest Allen Emerson and Joseph Yehuda Halpern. “Sometimes” and
“Not Never” Revisited: On Branching versus Linear Time Temporal
Logic. Journal of the ACM (JACM), 33(1):151–178, 1986.

[96] Ernest Allen Emerson and Chin-Laung Lei. Model Checking under
Generalized Fairness Constraints. Technical Report TR-84-20, University
of Texas at Austin, Austin, TX, USA, 1984.

[97] Ernest Allen Emerson and Chin-Laung Lei. Modalities for Model Check-

Bibliography 279

ing: Branching Time Logic Strikes Back. Science of Computer Programming
(SCP), 8(3):275–306, 1987.

[98] Ernest Allen Emerson and Aravinda Prasad Sistla. Symmetry and
Model Checking. In Costas Courcoubetis, editor, Proceedings of the 5th
International Workshop on Computer Aided Verification (CAV 1993), volume
697 of Lecture Notes in Computer Science, pages 463–478. Springer-Verlag,
Berlin, Germany, 1993.

[99] Shimon Even, Alon Itai, and Adi Shamir. On the Complexity of
Timetable and Multicommodity Flow Problems. SIAM Journal on Com-
puting (SICOMP), 5(4):691–703, 1976.

[100] Robert W Floyd. Algorithm 97: Shortest Path. Communications of the
ACM (CACM), 5(6):345, 1962.

[101] Robert W Floyd. Assigning Meaning to Programs. In Jacob Theodore
Schwartz, editor, Mathematical Aspects of Computer Science, Proceedings
of Symposia in Applied Mathematics, volume 19, pages 19–32. American
Mathematical Society, Providence, RI, USA, 1967.

[102] Willem Jan Fokkink, Jun Pang, and Jan Cornelius van de Pol. Cones
and Foci: A Mechanical Framework for Protocol Verification. Formal
Methods in System Design (FMSD), 29(1):1–31, 2006.

[103] Lester Randolph Ford and Delbert Ray Fulkerson. A Simple Algorithm
for Finding Maximal Network Flows and an Application to the Hitch-
cock Problem. Canadian Journal of Mathematics, 9:210–218, 1957.

[104] Lester Randolph Ford and Delbert Ray Fulkerson. Flows in Networks.
Princeton University Press, Princeton, NJ, USA, 1962.

[105] Felix Christoph Freiling, Christian Lambertz, and Mila Emilia Majster-
Cederbaum. Easy Consensus Algorithms for the Crash-Recovery Model.
In Gadi Taubenfeld, editor, Proceedings of the 22nd International Sympo-
sium on Distributed Computing (DISC 2008), volume 5218 of Lecture Notes
in Computer Science, pages 507–508. Springer-Verlag, Berlin, Germany,
2008.

[106] Felix Christoph Freiling, Christian Lambertz, and Mila Emilia Majster-
Cederbaum. Modular Consensus Algorithms for the Crash-Recovery
Model. In Proceedings of the 10th International Conference on Parallel
and Distributed Computing, Applications and Technologies (PDCAT 2009),
pages 287–292. IEEE Computer Society, Los Alamitos, CA, USA, 2009.
Presented at the 2nd International Workshop on Reliability, Availability,
and Security (WRAS 2009).

280 Bibliography

[107] Erich Gamma, Richard Helm, Ralph Edward Johnson, and
John Matthew Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Boston, MA, USA, 1994.

[108] Michael Randolph Garey and David Stifler Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman
and Company, New York, NY, USA, 1979.

[109] David Barnard Garlan. Formal Approaches to Software Architecture.
In David Alex Lamb, editor, Proceedings of the 1993 ICSE Workshop on
Studies of Software Design, volume 1078 of Lecture Notes in Computer
Science, pages 64–76. Springer-Verlag, Berlin, Germany, 1996.

[110] David Barnard Garlan and Mary Margaret Shaw. An Introduction to
Software Architecture. In Vincenzo Ambriola and Genoveffa Tortora,
editors, Advances in Software Engineering and Knowledge Engineering, Vol-
ume I, pages 1–39. World Scientific Publishing Co., Inc., River Edge, NJ,
USA, 1993.

[111] Dimitra Giannakopoulou and Corina S. Păsăreanu. Interface Generation
and Compositional Verification in JavaPathfinder. In Marsha Chechik
and Martin Wirsing, editors, Proceedings of the 12th International Con-
ference on Fundamental Approaches to Software Engineering (FASE 2009),
volume 5503 of Lecture Notes in Computer Science, pages 94–108. Springer-
Verlag, Berlin, Germany, 2009.

[112] Robert Jan van Glabbeek. The Linear Time – Branching Time Spectrum
(Extended Abstract). In Josephus Cornelis Maria Baeten and Jan Willem
Klop, editors, Proceedings of the 1st International Conference on Concurrency
Theory (CONCUR 1990), volume 458 of Lecture Notes in Computer Science,
pages 278–297. Springer-Verlag, Berlin, Germany, 1990.

[113] Robert Jan van Glabbeek. The Linear Time – Branching Time Spectrum
II. In Eike Best, editor, Proceedings of the 4th International Conference
on Concurrency Theory (CONCUR 1993), volume 715 of Lecture Notes in
Computer Science, pages 66–81. Springer-Verlag, Berlin, Germany, 1993.

[114] Robert Jan van Glabbeek and Willem Pieter Weijland. Branching Time
and Abstraction in Bisimulation Semantics (Extended Abstract). In
Gerhard X Ritter, editor, Proceedings of the 11th IFIP World Computer
Congress on Information Processing (IFIP 1989), pages 613–618. North-
Holland, Amsterdam, The Netherlands, 1989.

[115] Robert Jan van Glabbeek and Willem Pieter Weijland. Branching Time
and Abstraction in Bisimulation Semantics. Journal of the ACM (JACM),
43(3):555–600, 1996.

Bibliography 281

[116] Robert Jan van Glabbeek, Sebastiaan Pascal Luttik, and Nikola Trčka.
Branching Bisimilarity with Explicit Divergence. Fundamenta Informati-
cae, 93(4):371–392, 2009.

[117] Robert Jan van Glabbeek, Sebastiaan Pascal Luttik, and Nikola Trčka.
Computation Tree Logic with Deadlock Detection. Logical Methods in
Computer Science, 5(4:5):1–24, 2009.

[118] Patrice Godefroid. Using Partial Orders to Improve Automatic Verifi-
cation Methods. In Edmund Melson Clarke and Robert Paul Kurshan,
editors, Proceedings of the 2nd International Workshop on Computer Aided
Verification (CAV 1990), volume 531 of Lecture Notes in Computer Science,
pages 176–185. Springer-Verlag, Berlin, Germany, 1991.

[119] Patrice Godefroid and Pierre Wolper. Using Partial Orders for the
Efficient Verification of Deadlock Freedom and Safety Properties. In
Kim Guldstrand Larsen and Arne Skou, editors, Proceedings of the 3rd
International Workshop on Computer Aided Verification (CAV 1991), volume
575 of Lecture Notes in Computer Science, pages 332–342. Springer-Verlag,
Berlin, Germany, 1992.

[120] Gregor Gössler. Component-Based Design of Heterogeneous Reactive
Systems in Prometheus. Technical Report 6057, INRIA, 2006.

[121] Gregor Gössler and Joseph Sifakis. Composition for Component-Based
Modeling. In Frank Sipke de Boer, Marcello Maria Bonsangue, Susanne
Graf, and Willem-Paul de Roever, editors, Proceedings of the 1st Interna-
tional Symposium on Formal Methods for Components and Objects (FMCO
2002), volume 2852 of Lecture Notes in Computer Science, pages 443–466.
Springer-Verlag, Berlin, Germany, 2003.

[122] Gregor Gössler and Joseph Sifakis. Component-Based Construction
of Deadlock-Free Systems. In Paritosh Kulin Pandya and Jaikumar
Radhakrishnan, editors, Proceedings of the 23rd Conference on Founda-
tions of Software Technology and Theoretical Computer Science (FSTTCS
2003), volume 2914 of Lecture Notes in Computer Science, pages 420–433.
Springer-Verlag, Berlin, Germany, 2003.

[123] Gregor Gössler and Joseph Sifakis. Composition for Component-Based
Modeling. Science of Computer Programming (SCP), 55(1-3):161–183, 2005.

[124] Gregor Gössler, Susanne Graf, Mila Emilia Majster-Cederbaum, Moritz
Martens, and Joseph Sifakis. Ensuring Properties of Interaction Systems.
In Thomas William Reps, Mooly Sagiv, and Jörg Bauer, editors, Program
Analysis and Compilation, Theory and Practice, Essays Dedicated to Reinhard
Wilhelm on the Occasion of His 60th Birthday, volume 4444 of Lecture Notes

282 Bibliography

in Computer Science, pages 201–224. Springer-Verlag, Berlin, Germany,
2006.

[125] Susanne Graf and Bernhard Steffen. Compositional Minimization of
Finite State Systems. In Edmund Melson Clarke and Robert Paul Kur-
shan, editors, Proceedings of the 2nd International Workshop on Computer
Aided Verification (CAV 1990), volume 531 of Lecture Notes in Computer
Science, pages 186–196. Springer-Verlag, Berlin, Germany, 1991.

[126] Jan Friso Groote and Faron Moller. Verification of Parallel Systems via
Decomposition. In Walter Rance Cleaveland, editor, Proceedings of the 3rd
International Conference on Concurrency Theory (CONCUR 1992), volume
630 of Lecture Notes in Computer Science, pages 62–76. Springer-Verlag,
Berlin, Germany, 1992.

[127] Jan Friso Groote and Jan Cornelius van de Pol. State Space Reduction
Using Partial τ-Confluence. In Mogens Nielsen and Branislav Rovan,
editors, Proceedings of the 25th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2000), volume 1893 of Lecture
Notes in Computer Science, pages 383–393. Springer-Verlag, Berlin, Ger-
many, 2000.

[128] Jan Friso Groote and Martin Paul Alexander Sellink. Confluence for
Process Verification. Theoretical Computer Science (TCS), 170(1-2):47–81,
1996.

[129] Jan Friso Groote and Jan Springintveld. Focus Points and Convergent
Process Operators: A Proof Strategy for Protocol Verification. The Journal
of Logic and Algebraic Programming (JLAP), 49(1-2):31–60, 2001.

[130] Jan Friso Groote and Frits Willem Vaandrager. An Efficient Algorithm
for Branching Bisimulation and Stuttering Equivalence. In Michael Stew-
art Paterson, editor, Proceedings of the 17th International Colloquium on
Automata, Languages and Programming (ICALP 1990), volume 443 of Lec-
ture Notes in Computer Science, pages 626–638. Springer-Verlag, Berlin,
Germany, 1990.

[131] Jan Friso Groote, Adrianus Hubertus Johannes Mathijssen, Michel Adri-
aan Reniers, Yaroslav Sergiyovych Usenko, and Muck Joost van Weer-
denburg. The Formal Specification Language mCRL2. In Ed Brinksma,
David Harel, Angelika Mader, Perdita Stevens, and Roel Wieringa,
editors, Methods for Modelling Software Systems (MMOSS), volume
06351 of Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Dagstuhl, Germany, 2007.

[132] Jan Friso Groote, Ammar Osaiweran, and Jacob Hendrikus Wesselius.

Bibliography 283

Analyzing the Effects of Formal Methods on the Development of Indus-
trial Control Software. In Proceedings of the 27th International Conference
on Software Maintenance (ICSM 2011), pages 467–472. IEEE Computer
Society, Los Alamitos, CA, USA, 2011.

[133] Hans Peter Gumm. Another Glance at the Alpern-Schneider Charac-
terization of Safety and Liveness in Concurrent Executions. Information
Processing Letters (IPL), 47(6):291–294, 1993.

[134] George T. Heineman and William T. Councill. Component-Based Soft-
ware Engineering: Putting the Pieces Together. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2001.

[135] Matthew C. B. Hennessy and Arthur John Robin Gorell Milner. On
Observing Nondeterminism and Concurrency. In Jaco Willem de Bakker
and Jan van Leeuwen, editors, Proceedings of the 7th Colloquium on Au-
tomata, Languages and Programming (ICALP 1980), volume 85 of Lecture
Notes in Computer Science, pages 299–309. Springer-Verlag, Berlin, Ger-
many, 1980.

[136] Matthew C. B. Hennessy and Arthur John Robin Gorell Milner. Alge-
braic Laws for Nondeterminism and Concurrency. Journal of the ACM
(JACM), 32(1):137–161, 1985.

[137] Rolf Hennicker, Stephan Janisch, and Alexander Knapp. On the Ob-
servable Behaviour of Composite Components. In Carlos Canal and
Corina S. Păsăreanu, editors, Proceedings of the 5th International Workshop
on Formal Aspects of Component Software (FACS 2008), volume 260 of
Electronic Notes in Theoretical Computer Science, pages 125–153. Elsevier
B.V., Amsterdam, The Netherlands, 2010.

[138] Alex Ho, Steven Smith, and Steven Hand. On Deadlock, Livelock, and
Forward Progress. Technical Report UCAM-CL-TR-633, University of
Cambridge, Computer Laboratory, 2005.

[139] Charles Antony Richard Hoare. An Axiomatic Basis for Computer
Programming. Communications of the ACM (CACM), 12(10):576–580,
1969.

[140] Charles Antony Richard Hoare. A Model for Communicating Sequential
Processes. In R. M. McKeag and A. M. Macnaughten, editors, On the
Construction of Programs, pages 229–254. Cambridge University Press,
Cambridge, UK, 1980.

[141] Charles Antony Richard Hoare. Communicating Sequential Processes.
Prentice Hall, Upper Saddle River, NJ, USA, 1985.

284 Bibliography

[142] Gerard Johan Holzmann. The Model Checker SPIN. IEEE Transactions
on Software Engineering (TSE), 23(5):279–295, 1997.

[143] John Edward Hopcroft. An n log n Algorithm for Minimizing States in
a Finite Automaton. In Zvi Kohavi and Azaria Paz, editors, Proceedings
of the International Symposium on the Theory of Machines and Computations,
pages 189–196. Academic Press, New York, NY, USA, 1971.

[144] John Edward Hopcroft and Robert Endre Tarjan. Algorithm 447: Effi-
cient Algorithms for Graph Manipulation. Communications of the ACM
(CACM), 16(6):372–378, 1973.

[145] John Edward Hopcroft, Rajeev Motwani, and Jeffrey David Ullman.
Introduction to Automata Theory, Languages, and Computation, 3rd edition.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006.

[146] Paola Inverardi and Sebastián Uchitel. Proving Deadlock Freedom
in Component-Based Programming. In Heinrich Hußmann, editor,
Proceedings of the 4th International Conference on Fundamental Approaches
to Software Engineering (FASE 2001), volume 2029 of Lecture Notes in
Computer Science, pages 60–75. Springer-Verlag, Berlin, Germany, 2001.

[147] Chung-Wah Norris Ip and David L. Dill. Better Verification through
Symmetry. In Proceedings of the 11th IFIP WG10.2 International Conference
on Computer Hardware Description Languages and their Applications (CHDL
1993), pages 97–111. North-Holland, Amsterdam, The Netherlands,
1993.

[148] Pavel Ježek, Jan Kofroň, and František Plášil. Model Checking of Com-
ponent Behavior Specification: A Real Life Experience. In Proceedings of
the 2nd International Workshop on Formal Aspects of Component Software
(FACS 2005), volume 160 of Electronic Notes in Theoretical Computer Sci-
ence, pages 197–210. Elsevier B.V., Amsterdam, The Netherlands, 2006.

[149] Yuh-Jzer Joung and Scott Allen Smolka. Coordinating First-Order Mul-
tiparty Interactions. ACM Transactions on Programming Languages and
Systems (TOPLAS), 16(3):954–985, 1994.

[150] Roope Kaivola. Compositional Model Checking for Linear-Time Tem-
poral Logic. In Gregor von Bochmann and David Karl Probst, editors,
Proceedings of the 4th International Workshop on Computer Aided Verifica-
tion (CAV 1992), volume 663 of Lecture Notes in Computer Science, pages
248–259. Springer-Verlag, Berlin, Germany, 1993.

[151] Roope Kaivola and Antti Valmari. The Weakest Compositional Semantic
Equivalence Preserving Nexttime-Less Linear Temporal Logic. In Wal-

Bibliography 285

ter Rance Cleaveland, editor, Proceedings of the 3rd International Conference
on Concurrency Theory (CONCUR 1992), volume 630 of Lecture Notes in
Computer Science, pages 207–221. Springer-Verlag, Berlin, Germany, 1992.

[152] Paris Christos Kanellakis and Scott Allen Smolka. CCS Expressions,
Finite State Processes, and Three Problems of Equivalence. In Proceedings
of the 2nd ACM Symposium on Principles of Distributed Computing (PODC
1983), pages 228–240. ACM, New York, NY, USA, 1983.

[153] David Ron Karger and Matthew Steven Levine. Random Sampling in
Residual Graphs. In Proceedings of the 34th ACM Symposium on Theory of
Computing (STOC 2002), pages 63–66. ACM, New York, NY, USA, 2002.

[154] Richard Manning Karp. Understanding Science through the Compu-
tational Lens. Journal of Computer Science and Technology (JCST), 26(4):
569–577, 2011.

[155] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-
Aided Reasoning: An Approach. Kluwer Academic Publishers, Norwell,
MA, USA, 2000.

[156] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-
Aided Reasoning: ACL2 Case Studies. Kluwer Academic Publishers, Nor-
well, MA, USA, 2000.

[157] Robert Marion Keller. Formal Verification of Parallel Programs. Commu-
nications of the ACM (CACM), 19(7):371–384, 1976.

[158] Thomas Kropf. Introduction to Formal Hardware Verification: Methods and
Tools for Designing Correct Circuits and Systems, 1st edition. Springer-
Verlag, Berlin, Germany, 1999.

[159] Yat-Sang Kwong. On the Absence of Livelocks in Parallel Programs. In
Gilles Kahn, editor, Proceedings of the International Symposium on Seman-
tics of Concurrent Computation, volume 70 of Lecture Notes in Computer
Science, pages 172–190. Springer-Verlag, Berlin, Germany, 1979.

[160] Christian Lambertz. Exploiting Architectural Constraints and Branching
Bisimulation Equivalences in Component-Based Systems. In Seyyed Mo-
hammadReza Mousavi and Emil Sekerinski, editors, Proceedings of the
Doctoral Symposium of the 2nd World Congress on Formal Methods (FM 2009-
DS), number 0915 in Computer Science Reports, pages 1–7. Eindhoven
University of Technology, Eindhoven, The Netherlands, 2009.

[161] Christian Lambertz and Mila Emilia Majster-Cederbaum. Port Protocols
for Deadlock-Freedom of Component-Based Systems. In Simon Bliudze,
Roberto Bruni, Davide Grohmann, and Alexandra Silva, editors, Pro-

286 Bibliography

ceedings of the 3rd Interaction and Concurrency Experience Workshop (ICE
2010), volume 38 of Electronic Proceedings in Theoretical Computer Science,
pages 7–11. Open Publishing Association, 2010.

[162] Christian Lambertz and Mila Emilia Majster-Cederbaum. Analyzing
Component-Based Systems on the Basis of Architectural Constraints.
In Farhad Arbab and Marjan Sirjani, editors, Proceedings of the 4th Inter-
national Conference on Fundamentals of Software Engineering (FSEN 2011),
volume 7141 of Lecture Notes in Computer Science, pages 64–79. Springer-
Verlag, Berlin, Germany, 2012.

[163] Christian Lambertz and Mila Emilia Majster-Cederbaum. Efficient Dead-
lock Analysis of Component-Based Software Architectures. Manuscript
submitted to Elsevier’s Science of Computer Programming (SCP) jour-
nal, under revision with respect to minor modifications, 2012.

[164] Leslie Lamport. Proving the Correctness of Multiprocess Programs.
IEEE Transactions on Software Engineering (TSE), 3(2):125–143, 1977.

[165] Leslie Lamport. “Sometime” Is Sometimes “Not Never”: On the Tempo-
ral Logic of Programs. In Proceedings of the 7th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 1980), pages
174–185. ACM, New York, NY, USA, 1980.

[166] Leslie Lamport. What Good Is Temporal Logic? In R. E. A. Mason,
editor, Proceedings of the 9th IFIP World Computer Congress on Information
Processing (IFIP 1983), pages 657–668. North-Holland, Amsterdam, The
Netherlands, 1983.

[167] Kim Guldstrand Larsen and Liu Xinxin. Compositionality through an
Operational Semantics of Contexts. In Michael Stewart Paterson, editor,
Proceedings of the 17th International Colloquium on Automata, Languages
and Programming (ICALP 1990), volume 443 of Lecture Notes in Computer
Science, pages 526–539. Springer-Verlag, Berlin, Germany, 1990.

[168] Thierry Lecomte, Thierry Servat, and Guilhem Pouzancre. Formal
Methods in Safety-Critical Railway Systems. In Proceedings of the 10th
Brazilian Symposium on Formal Methods (SMBF 2007), 2007.

[169] C. Y. Lee. Representation of Switching Circuits by Binary-Decision
Programs. Bell Systems Technical Journal, 38(4):985–999, 1959.

[170] Edward Ashford Lee and Alberto Luigi Sangiovanni-Vincentelli. Com-
paring Models of Computation. In Proceedings of the 1996 International
Conference on Computer-Aided Design (ICCAD 1996), pages 234–241. IEEE
Computer Society, Los Alamitos, CA, USA, 1996.

Bibliography 287

[171] Stefan Leue, Alin Ştefănescu, and Wei Wei. A Livelock Freedom Analysis
for Infinite State Asynchronous Reactive Systems. In Christel Baier and
Holger Hermanns, editors, Proceedings of the 17th International Conference
on Concurrency Theory (CONCUR 2006), volume 4137 of Lecture Notes in
Computer Science, pages 79–94. Springer-Verlag, Berlin, Germany, 2006.

[172] Philip M. Lewis II, Richard Edwin Stearns, and Juris Hartmanis. Mem-
ory Bounds for Recognition of Context-Free and Context-Sensitive Lan-
guages. In Proceedings of the 6th Annual Symposium on Switching Circuit
Theory and Logical Design (SWCT 1965), pages 191–202. IEEE Computer
Society, Washington, DC, USA, 1965.

[173] Peter Liggesmeyer, Martin Rothfelder, Michael Rettelbach, and Thomas
Ackermann. Qualitätssicherung Software-basierter technischer Systeme
– Problembereiche und Lösungsansätze. Informatik-Spektrum, 21(5):249–
258, 1998.

[174] Richard Jay Lipton. The P=NP Question and Gödel’s Lost Letter, 1st edition.
Springer Science+Business Media, New York, NY, USA, 2010.

[175] Jeff Magee and Jeff Kramer. Concurrency: State Models & Java Programs.
John Wiley & Sons, Hoboken, NJ, USA, 1999.

[176] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer. Speci-
fying Distributed Software Architectures. In Wilhelm Schäfer and Pere
Botella, editors, Proceedings of the 5th European Software Engineering Con-
ference (ESEC 1995), volume 989 of Lecture Notes in Computer Science,
pages 137–153. Springer-Verlag, Berlin, Germany, 1994.

[177] Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou. Software Archi-
tecture Directed Behaviour Analysis. In Proceedings of the 9th International
Workshop on Software Specification and Design (IWSSD 1998), pages 144–
146. IEEE Computer Society, Los Alamitos, CA, USA, 1998.

[178] Mila Emilia Majster-Cederbaum and Moritz Martens. Robustness in
Interaction Systems. In John Derrick and Jüri Vain, editors, Proceedings
of the 27th IFIP WG 6.1 International Conference on Formal Techniques
for Networked and Distributed Systems (FORTE 2007), volume 4574 of
Lecture Notes in Computer Science, pages 325–340. Springer-Verlag, Berlin,
Germany, 2007.

[179] Mila Emilia Majster-Cederbaum and Moritz Martens. Compositional
Analysis of Deadlock-Freedom for Tree-Like Component Architectures.
In Luca de Alfaro and Jens Palsberg, editors, Proceedings of the 8th Inter-
national Conference on Embedded Software (EMSOFT 2008), pages 199–206.
ACM, New York, NY, USA, 2008.

288 Bibliography

[180] Mila Emilia Majster-Cederbaum and Moritz Martens. Using Architec-
tural Constraints for Deadlock-Freedom of Component Systems with
Multiway Cooperation. In Wei-Ngan Chin and Shengchao Qin, editors,
Proceedings of the 3rd International Symposium on Theoretical Aspects of Soft-
ware Engineering (TASE 2009), pages 225–232. IEEE Computer Society,
Los Alamitos, CA, USA, 2009.

[181] Mila Emilia Majster-Cederbaum and Moritz Martens. Deadlock-
Freedom in Component Systems with Architectural Constraints. Formal
Methods in System Design, 41(2):129–177, 2012.

[182] Mila Emilia Majster-Cederbaum and Christoph Friedrich Minnameier.
Deriving Complexity Results for Interaction Systems from 1-Safe Petri
Nets. In Viliam Geffert, Juhani Karhumäki, Alberto Bertoni, Bart Pre-
neel, Pavol Návrat, and Mária Bieliková, editors, Proceedings of the 34th
Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM 2008), volume 4910 of Lecture Notes in Computer Science, pages
352–363. Springer-Verlag, Berlin, Germany, 2008.

[183] Mila Emilia Majster-Cederbaum and Christoph Friedrich Minnameier.
Everything Is PSPACE-Complete in Interaction Systems. In John Fitzger-
ald, Anne Haxthausen, and Husnu Yenigun, editors, Proceedings of the
5th International Colloquium on Theoretical Aspects of Computing (ICTAC
2008), volume 5160 of Lecture Notes in Computer Science, pages 216–227.
Springer-Verlag, Berlin, Germany, 2008.

[184] Mila Emilia Majster-Cederbaum and Christoph Friedrich Minnameier.
Cross-Checking – Enhanced Over-Approximation of the Reachable
Global State Space of Component-Based Systems. In Olivier Bournez
and Igor Potapov, editors, Proceedings of the 3rd International Workshop on
Reachability Problems (RP 2009), volume 5797 of Lecture Notes in Computer
Science, pages 189–202. Springer-Verlag, Berlin, Germany, 2009.

[185] Mila Emilia Majster-Cederbaum and Nils Semmelrock. Reachability in
Tree-Like Component Systems Is PSPACE-Complete. In Proceedings of the
6th International Workshop on Formal Aspects of Component Software (FACS
2009), volume 263 of Electronic Notes in Theoretical Computer Science,
pages 197–210. Elsevier B.V., Amsterdam, The Netherlands, 2010.

[186] Mila Emilia Majster-Cederbaum and Nils Semmelrock. Reachability
in Cooperating Systems with Architectural Constraints Is PSPACE-
Complete. Manuscript, 2012.

[187] Mila Emilia Majster-Cederbaum, Moritz Martens, and
Christoph Friedrich Minnameier. A Polynomial-Time Checkable

Bibliography 289

Sufficient Condition for Deadlock-Freedom of Component-Based
Systems. In Jan van Leeuwen, Giuseppe Francesco Italiano, Wiebe
van der Hoek, Christoph Meinel, Harald Sack, and František Plášil,
editors, Proceedings of the 33rd Conference on Current Trends in Theory and
Practice of Computer Science (SOFSEM 2007), volume 4362 of Lecture Notes
in Computer Science, pages 888–899. Springer-Verlag, Berlin, Germany,
2007.

[188] Mila Emilia Majster-Cederbaum, Moritz Martens, and
Christoph Friedrich Minnameier. Liveness in Interaction Sys-
tems. In Proceedings of the 4th International Workshop on Formal Aspects
of Component Software (FACS 2007), volume 215 of Electronic Notes in
Theoretical Computer Science, pages 57–74. Elsevier B.V., Amsterdam, The
Netherlands, 2008.

[189] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Con-
current Systems – Specification. Springer-Verlag, Berlin, Germany, 1992.

[190] Moritz Martens. Establishing Properties of Interaction Systems. PhD thesis,
University of Mannheim, 2009.

[191] Malcolm Douglas McIlroy. Mass-Produced Software Components. In
Peter Naur and Brian Randell, editors, Proceedings of the NATO Soft-
ware Engineering Conference, pages 138–155. NATO Science Committee,
Brussels, Belgium, 1969.

[192] Nenad Medvidović and Richard Newton Taylor. A Classification and
Comparison Framework for Software Architecture Description Lan-
guages. IEEE Transactions on Software Engineering (TSE), 26(1):70–93,
2000.

[193] Albert Ronald Meyer and Larry Joseph Stockmeyer. The Equivalence
Problem for Regular Expressions with Squaring Requires Exponential
Space. In Proceedings of the 13th Annual Symposium on Switching and
Automata Theory (SWAT 1972), pages 125–129. IEEE Computer Society,
Los Alamitos, CA, USA, 1972.

[194] Steven P. Miller, Michael William Whalen, and Darren Duane Cofer. Soft-
ware Model Checking Takes Off. Communications of the ACM (CACM),
53(2):58–64, 2010.

[195] Arthur John Robin Gorell Milner. Algebras for Communicating Systems.
In Proceedings of the AFCET/SMF Joint Colloquium in Applied Mathemat-
ics, Paris, France, 1978. Also available as Technical Report CSR-25-78,
Computer Science Department, University of Edinburgh, 1978.

290 Bibliography

[196] Arthur John Robin Gorell Milner. An Algebraic Theory for Synchro-
nization. In Klaus Weihrauch, editor, Proceedings of the 4th GI Conference
on Theoretical Computer Science, volume 67 of Lecture Notes in Computer
Science, pages 27–35. Springer-Verlag, Berlin, Germany, 1979.

[197] Arthur John Robin Gorell Milner. A Calculus of Communicating Systems,
volume 92 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
Germany, 1980.

[198] Arthur John Robin Gorell Milner. Four Combinators for Concurrency.
In Proceedings of the 1st ACM Symposium on Principles of Distributed Com-
puting (PODC 1982), pages 104–110. ACM, New York, NY, USA, 1982.

[199] Arthur John Robin Gorell Milner. Calculi for Synchrony and Asynchrony.
Theoretical Computer Science (TCS), 25(3):267–310, 1983.

[200] Arthur John Robin Gorell Milner. Communication and Concurrency. Pren-
tice Hall, Upper Saddle River, NJ, USA, 1989.

[201] Arthur John Robin Gorell Milner. Operational and Algebraic Semantics
of Concurrent Processes. In Jan van Leeuwen, editor, Handbook of The-
oretical Computer Science, Volume B: Formal Models and Semantics, pages
1201–1242. Elsevier B.V., Amsterdam, The Netherlands, 1990.

[202] Arthur John Robin Gorell Milner, Joachim Parrow, and David Walker. A
Calculus of Mobile Processes, Part I. Information and Computation, 100(1):
1–40, 1992.

[203] Arthur John Robin Gorell Milner, Joachim Parrow, and David Walker. A
Calculus of Mobile Processes, Part II. Information and Computation, 100
(1):41–77, 1992.

[204] Christoph Friedrich Minnameier. Local and Global Deadlock-Detection
in Component-Based Systems Are NP-Hard. Information Processing
Letters (IPL), 103(3):105–111, 2007.

[205] Christoph Friedrich Minnameier. Interaction in Concurrent Systems. PhD
thesis, University of Mannheim, 2010.

[206] Fabrizio Montesi and Davide Sangiorgi. A Model of Evolvable Com-
ponents. In Martin Wirsing, Martin Hofmann, and Axel Rauschmayer,
editors, Proceedings of the 5th International Conference on Trustworthly
Global Computing (TGC 2010), volume 6084 of Lecture Notes in Computer
Science, pages 153–171. Springer-Verlag, Berlin, Germany, 2010.

[207] Alexandre Cabral Mota, Rodrigo Ramos, and Augusto Cezar Alves
Sampaio. Systematic Development of Trustworthy Component Systems.

Bibliography 291

In Ana Cavalcanti and Dennis Dams, editors, Proceedings of the 2nd World
Congress on Formal Methods (FM 2009), volume 5850 of Lecture Notes in
Computer Science, pages 140–156. Springer-Verlag, Berlin, Germany, 2009.

[208] Ian Munro. Efficient Determination of the Transitive Closure of a Di-
rected Graph. Information Processing Letters (IPL), 1(2):56–58, 1971.

[209] John R. Myhill. Finite Automata and the Representation of Events.
Technical Report WADD TR-57-624, Wright-Patterson Air Force Base,
Ohio, USA, 1957.

[210] Gleb Naumovich and Lori A. Clarke. Classifying Properties: An Al-
ternative to the Safety-Liveness Classification. ACM SIGSOFT Software
Engineering Notes (SEN), 25(6):159–168, 2000.

[211] Anil Nerode. Linear Automaton Transformations. Proceedings of the
American Mathematical Society, 9(4):541–544, 1958.

[212] Oscar Nierstrasz and Franz Achermann. A Calculus for Modeling Soft-
ware Components. In Frank Sipke de Boer, Marcello Maria Bonsangue,
Susanne Graf, and Willem-Paul de Roever, editors, Proceedings of the 1st
International Symposium on Formal Methods for Components and Objects
(FMCO 2002), volume 2852 of Lecture Notes in Computer Science, pages
339–360. Springer-Verlag, Berlin, Germany, 2003.

[213] Tobias Nipkow, Lawrence Charles Paulson, and Markus Wenzel. Is-
abelle/HOL – A Proof Assistant for Higher-Order Logic, volume 2283 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany,
2002.

[214] Esko Nuutila. Efficient Transitive Closure Computation in Large Digraphs.
PhD thesis, Helsinki University of Technology, 1995.

[215] Ammar Osaiweran, Tom Fransen, Jan Friso Groote, and Bart J. van
Rijnsoever. Experience Report on Designing and Developing Control
Components Using Formal Methods. In Dimitra Giannakopoulou and
Dominique Méry, editors, Proceedings of the 18th International Symposium
on Formal Methods (FM 2012), volume 7436 of Lecture Notes in Computer
Science, pages 341–355. Springer-Verlag, Berlin, Germany, 2012.

[216] Susan Owicki and Leslie Lamport. Proving Liveness Properties of
Concurrent Programs. ACM Transactions on Programming Languages and
Systems (TOPLAS), 4(3):455–495, 1982.

[217] Sam Owre, John Rushby, and Natarajan Shankar. PVS: A Prototype
Verification System. In Deepak Kapur, editor, Proceedings of the 11th
International Conference on Automated Deduction (CADE-11), volume 607

292 Bibliography

of Lecture Notes in Computer Science, pages 748–752. Springer-Verlag,
Berlin, Germany, 1992.

[218] Gordon J. Pace, Frédéric Lang, and Radu Mateescu. Calculating τ-
Confluence Compositionally. In Warren Alva Hunt, Jr. and Fabio
Somenzi, editors, Proceedings of the 15th International Conference on Com-
puter Aided Verification (CAV 2003), volume 2725 of Lecture Notes in Com-
puter Science, pages 446–459. Springer-Verlag, Berlin, Germany, 2003.

[219] Robert Allan Paige and Robert Endre Tarjan. Three Partition Refinement
Algorithms. SIAM Journal on Computing (SICOMP), 16(6):973–989, 1987.

[220] Christos Harilaos Papadimitriou. Computational Complexity. Addison-
Wesley Longman Publishing Co., Inc., Reading, MA, USA, 1994.

[221] Pavel Parı́zek and František Plášil. Modeling Environment for Compo-
nent Model Checking from Hierarchical Architecture. In Proceedings of
the 3rd International Workshop on Formal Aspects of Component Software
(FACS 2006), volume 182 of Electronic Notes in Theoretical Computer Sci-
ence, pages 139–153. Elsevier B.V., Amsterdam, The Netherlands, 2007.

[222] David Michael Ritchie Park. Concurrency and Automata on Infinite
Sequences. In Peter Deussen, editor, Proceedings of the 5th GI-Conference
on Theoretical Computer Science, volume 104 of Lecture Notes in Computer
Science, pages 167–183. Springer-Verlag, Berlin, Germany, 1981.

[223] David Lorge Parnas. On the Criteria To Be Used in Decomposing
Systems into Modules. Communications of the ACM (CACM), 15:1053–
1058, 1972.

[224] Doron Angel Peled. All from One, One for All: On Model Checking
Using Representatives. In Costas Courcoubetis, editor, Proceedings of
the 5th International Workshop on Computer Aided Verification (CAV 1993),
volume 697 of Lecture Notes in Computer Science, pages 409–423. Springer-
Verlag, Berlin, Germany, 1993.

[225] Doron Angel Peled. Software Reliability Methods. Springer-Verlag, Berlin,
Germany, 2001.

[226] Dewayne Elwood Perry and Alexander L. Wolf. Foundations for the
Study of Software Architecture. ACM SIGSOFT Software Engineering
Notes (SEN), 17(4):40–52, 1992.

[227] Carl Adam Petri. Kommunikation mit Automaten. Institut für Instru-
mentelle Mathematik, Schriften des IIM Nr. 2, Bonn, Germany, 1962.
Also available as Communication with Automata, Technical Report RADC-

Bibliography 293

TR-65-377, volume 1, supplement 1. Griffiss Air Force Base, New York,
NY, USA, 1966.

[228] František Plášil and Stanislav Višňovský. Behavior Protocols for Soft-
ware Components. IEEE Transactions on Software Engineering (TSE), 28
(11):1056–1076, 2002.

[229] František Plášil, Dušan Bálek, and Radovan Janeček. SOFA/DCUP:
Architecture for Component Trading and Dynamic Updating. In Proceed-
ings of the 4th International Conference on Configurable Distributed Systems
(ICCDS 1998), pages 43–52. IEEE Computer Society, Los Alamitos, CA,
USA, 1998.

[230] Amir Pnueli. The Temporal Logic of Programs. In Proceedings of the
18th Annual Symposium on Foundations of Computer Science (FOCS 1977),
pages 46–57. IEEE Computer Society, Los Alamitos, CA, USA, 1977.

[231] Amir Pnueli, Natarajan Shankar, and Eli Singerman. Fair Synchronous
Transition Systems and Their Liveness Proofs. In Anders Peter Ravn
and Hans Rischel, editors, Proceedings of the 5th International Symposium
on Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT
1998), volume 1486 of Lecture Notes in Computer Science, pages 198–209.
Springer-Verlag, Berlin, Germany, 1998.

[232] Emil Leon Post. Formal Reductions of the General Combinatorial Deci-
sion Problem. American Journal of Mathematics, 65(2):197–215, 1943.

[233] Arthur Norman Prior. Time and Modality. Oxford University Press,
Oxford, UK, 1957.

[234] Arthur Norman Prior. Past, Present, and Future. Oxford University Press,
Oxford, UK, 1967.

[235] Jean-Pierre Queille and Joseph Sifakis. Specification and Verification of
Concurrent Systems in CESAR. In Mariangiola Dezani-Ciancaglini and
Ugo Montanari, editors, Proceedings of the 5th International Symposium
on Programming, volume 137 of Lecture Notes in Computer Science, pages
337–351. Springer-Verlag, Berlin, Germany, 1982.

[236] Michael Oser Rabin and Dana Stewart Scott. Finite Automata and Their
Decision Problems. IBM Journal of Research and Development, 3(2):114–125,
1959.

[237] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benoı̂t Caillaud,
Axel Legay, and Roberto Passerone. Modal Interfaces: Unifying Interface
Automata and Modal Specifications. In Proceedings of the 9th International

294 Bibliography

Conference on Embedded Software (EMSOFT 2009), pages 87–96. ACM,
New York, NY, USA, 2009.

[238] Michel Adriaan Reniers and Timothy Ariën Carol Willemse. Folk The-
orems on the Correspondence between State-Based and Event-Based
Systems. In Ivana Černá, Tibor Gyimóthy, Juraj Hromkovič, Keith
Jefferey, Rastislav Královič, Marko Vukolić, and Stefan Wolf, editors,
Proceedings of the 37th International Conference on Current Trends in Theory
and Practice of Computer Science (SOFSEM 2011), volume 6543 of Lec-
ture Notes in Computer Science, pages 494–505. Springer-Verlag, Berlin,
Germany, 2011.

[239] John Edmund Savage. Models of Computation: Exploring the Power of
Computing, 1st edition. Addison-Wesley Longman Publishing Co., Inc.,
Reading, MA, USA, 1997.

[240] Walter John Savitch. Relationships Between Nondeterministic and De-
terministic Tape Complexities. Journal of Computer and System Sciences
(JCSS), 4(2):177–192, 1970.

[241] Nils Semmelrock. Analysis of Cooperating Systems by Refined Over-
Approximations (Extended Abstract). Abstract accepted for presentation
at the FACS 2011 Doctoral Track, 2011.

[242] Mary Margaret Shaw and David Barnard Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall, Upper Saddle River,
NJ, USA, 1996.

[243] Joseph Sifakis. A Framework for Component-Based Construction (Ex-
tended Abstract). In Proceedings of the 3rd IEEE International Conference
on Software Engineering and Formal Methods (SEFM 2005), pages 293–300.
IEEE Computer Society, Los Alamitos, CA, USA, 2005.

[244] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating
System Concepts, 8th edition. John Wiley & Sons, Hoboken, NJ, USA,
2008.

[245] Aravinda Prasad Sistla. On Characterization of Safety and Liveness
Properties in Temporal Logic. In Proceedings of the 4th ACM Symposium
on Principles of Distributed Computing (PODC 1985), pages 39–48. ACM,
New York, NY, USA, 1985.

[246] Aravinda Prasad Sistla and Edmund Melson Clarke. The Complexity of
Propositional Linear Temporal Logics. Journal of the ACM (JACM), 32(3):
733–749, 1985.

[247] Jiřı́ Srba. On the Power of Labels in Transition Systems. In Kim Guld-

Bibliography 295

strand Larsen and Mogens Nielsen, editors, Proceedings of the 12th In-
ternational Conference on Concurrency Theory (CONCUR 2001), volume
2154 of Lecture Notes in Computer Science, pages 277–291. Springer-Verlag,
Berlin, Germany, 2001.

[248] Andrew James Stothers. On the Complexity of Matrix Multiplication. PhD
thesis, Graduate School of Mathematics, University of Edinburgh, 2010.

[249] Clemens Alden Szyperski. Component Software: Beyond Object-Oriented
Programming, 2nd edition. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

[250] Andrew Stuart Tanenbaum. Modern Operating Systems, 3rd edition.
Prentice Hall, Upper Saddle River, NJ, USA, 2007.

[251] Robert Endre Tarjan. A Note on Finding the Bridges of a Graph. Infor-
mation Processing Letters, 2(6):160–161, 1974.

[252] Axel Thue. Probleme über Veränderungen von Zeichenreihen
nach gegebenen Regeln. In Videnskabs-Selskabets Skrifter Matematisk-
naturvidenskabelige Klasse, number 10. Kristiania, Oslo, Norway, 1914.

[253] Stavros Tripakis, Ben Lickly, Thomas Anton Henzinger, and Ed-
ward Ashford Lee. On Relational Interfaces. In Proceedings of the 9th
International Conference on Embedded Software (EMSOFT 2009), pages
67–76. ACM, New York, NY, USA, 2009.

[254] Alan Mathison Turing. On Computable Numbers, with an Application
to the Entscheidungsproblem. Proceedings of the London Mathematical
Society, 42(1):230–265, 1937.

[255] Antti Valmari. Stubborn Sets for Reduced State Space Generation. In
Grzegorz Rozenberg, editor, Proceedings of the 10th International Confer-
ence on Applications and Theory of Petri Nets (PETRI NETS 1990), volume
483 of Lecture Notes in Computer Science, pages 491–515. Springer-Verlag,
Berlin, Germany, 1991.

[256] Antti Valmari. The State Explosion Problem. In Wolfgang Reisig and
Grzegorz Rozenberg, editors, Lectures on Petri Nets I: Basic Models, vol-
ume 1491 of Lecture Notes in Computer Science, pages 429–528. Springer-
Verlag, Berlin, Germany, 1998.

[257] Antti Valmari. Bisimilarity Minimization in O(m log n) Time. In Giu-
liana Franceschinis and Karsten Wolf, editors, Proceedings of the 30th
International Conference on Applications and Theory of Petri Nets (PETRI
NETS 2009), volume 5606 of Lecture Notes in Computer Science, pages
123–142. Springer-Verlag, Berlin, Germany, 2009.

296 Bibliography

[258] Moshe Ya’akov Vardi. From Church and Prior to PSL. In Orna Grumberg
and Helmut Veith, editors, Proceedings of the Symposium on 25 Years of
Model Checking (25MC), volume 5000 of Lecture Notes in Computer Science,
pages 150–171. Springer-Verlag, Berlin, Germany, 2008.

[259] Virginia Vassilevska Williams. Breaking the Coppersmith-Winograd
Barrier. Manuscript, 2011.

[260] Richard Veryard. The Component-Based Business: Plug and Play. Springer-
Verlag, Berlin, Germany, 2001.

[261] Stephen Warshall. A Theorem on Boolean Matrices. Journal of the ACM
(JACM), 9(1):11–12, 1962.

[262] James Christopher Westland. The Cost of Errors in Software Develop-
ment: Evidence from Industry. Journal of Systems and Software (JSS), 62
(1):1–9, 2002.

[263] Jeannette Marie Wing. Formal Methods. In Encyclopedia of Software
Engineering, pages 504–517. John Wiley & Sons, New York, NY, USA,
1994.

[264] Bang Ye Wu and Kun-Mao Chao. Spanning Trees and Optimization Prob-
lems. Discrete Mathematics and Its Applications. Chapman & Hall/CRC,
Boca Raton, FL, USA, 2004.

297

Index

Symbols

≈b . see branching bisimilar, 233
≈λ

b . see divergence sensitive branching bisimilar, 234
≈∆

b . see branching bisimilar with explicit divergence, 236
≈s . see strongly bisimilar, 230
≈w . see weakly bisimilar, 231
· \\ · . see closing operator, 71
·= . see reflexive closure, 16
·∗ . see reflexive transitive closure, 16
·↔ . see symmetric closure, 16
·+ . see transitive closure, 16
· ⊗ · . see binary composition operator, 62⊗

. see composition operator, 62
v . see coverage, 61
≡ . see equivalent formulae, 228
./ . see powerset interjoin, 61
[[·]] . see behavior, 22
[[Sys]] . see global behavior, 30
[[·]]≈∆

b
. see quotient, 57

|= . see satisfaction relation, 42
∀|= . see satisfaction relation, 42
∃|= . see satisfaction relation, 42
·[·] . see subsystem construction operator, 74
·τ . see unobservable label, 16
· 6τ . see unobservable label, 16
· ×̆ · . see order independent Cartesian product, 212
·−→ . see transition relation, 207

K(·) . see Kripke structure, 41
π . see path, 208
πα

i,j . see cooperation path, 151
Σ . see alphabet, 207

A

Acc(·) . see always accepting version, 140

298 Index

Act . see global action set, 18
action . 18
action set . 18
adjacent . 208 f.
alphabet . 207
always accepting version . 140
architecture . 91, 95

B

banking example . 177
behavior . 22, 30, 185, 190
behavioral model . 22, 185
BEHAVIOR-TRAVERSAL() . cf. Algorithm B.2, 213
binary composition . 62
binary counter example . 33
border component . 91
branching bisimilar . 233
branching bisimilar with explicit divergence . 55 f., 236
branching bisimilarity . 233
branching bisimilarity with explicit divergence . 55 f., 236
branching bisimilarity with explicit divergence quotient . 57

C

center . 209
center(·) . see center, 209
central component . 91
CHECK-NEW-INTERACTIONS() . cf. Algorithm B.4, 216
closed interaction . 19 f.
closed interaction set . 19 f.
closing . 71
closing operator . 71
Comp . see component set, 18
component . 18
component behavioral model . 185
component graph . 91
component set . 18
component system . 18
composition . 62
composition information . 62
compset(·) . see participates in, 19
computation tree logic . 44, 227 f.
computation tree logic without next . 44
conform . 189
connected . 209

Index 299

connected graph . 209
cooperate . 19 f.
cooperation graph . 93, 95, 151
cooperation path . 151
COOPERATION-GRAPH() . cf. Algorithm B.5, 217
coopset(·) . see wants to cooperate with, 153
coverage . 61
covered . 61
CS . see component system, 18
CTL . see computation tree logic, 44
CTL* . see extended computation tree logic, 41
CTL–X . see computation tree logic without next, 44
CTL*–X see extended computation tree logic without next, 43
cycle(·) . see simple cycle, 209
cycle component . 95
CYCLE-COMPONENTS() . cf. Algorithm B.7, 219

D

database example . 89
database-sync example . 96
DCWF() . cf. Algorithm B.6, 218
deadlock . 36
DEADLOCK() . cf. Algorithm C.1, 222
deadlock-free . 36, 190
deadlock-freedom . 36
DEADLOCK-FREEDOM-CONDITION() . cf. Algorithm 6.2, 156
dependent . 149
diam(·) . see diameter, 209
diameter . 209
disjoint . 61
disjoint circular wait free . 95
disjoint circular wait free architecture . 95
disjoint interaction systems . 61
distG(·, ·) . see distance, 209
distance . 209
divergence sensitive branching bisimilar . 234 f.
divergence sensitive branching bisimilarity . 234 f.

E

eccG(·) . see eccentricity, 209
eccentricity . 209
edge . 208 f.
EI(·, ·) . see entry interaction, 160
enabled . 207

300 Index

entry interaction . 160
equivalent CTL* formulae . 228
equivalent formulae . 228
EXCLUSIVE() . cf. Algorithm B.8, 220
exclusive communication . 116
extended computation tree logic . 41, 227 f.
extended computation tree logic without next . 43

G

G . see graph, 208
Gcomp . see component graph, 91
Gcoop . see cooperation graph, 93
global action set . 18
global behavior . 30
global initial state . 30
global state . 30
global transition relation . 30
GLOBAL-INITIAL-STATE-ITERATOR() . cf. Algorithm C.3, 223
GLOBAL-STATE-ITERATOR() . cf. Algorithm C.2, 222
Gprot . see protocol component graph, 191
graph . 208 f.

I

i(·) . see participates in, 19
I− . see composition information, 62
I+ . see composition information, 62
(I+, I−) . see composition information, 62
IM . see interaction model, 19
incident . 208 f.
independence . 149
independent . 149
initial state . 207
INITIALIZATION() . cf. Algorithm B.1, 211
Int . see interaction set, 19
Int(·) . see performability, 149
Intclosed . see closed interaction set, 19
interaction . 19
interaction model . 19 f.
interaction set . 19 f.
interaction system . 22
interjoin . 61
intersection of problematic entry interactions . 162
Intopen . see open interaction set, 19
i:p(·) . see participates in, 185

Index 301

IPEI(·) . see intersection of problematic entry interactions, 162
isomorphic up to transition relabeling . 58
isomorphism up to transition relabeling . 58
IS-PROBLEMATIC() . cf. Algorithm 6.3, 156

K

Kripke structure . 41, 228
KS . see Kripke structure, 228

L

label . 207
labeled transition system . 41, 207
livelock . 39
livelock-free . 39
livelock-freedom . 39
LIVELOCK-FREE() . cf. Algorithm B.3, 215
local behavior . 22
local state . 22
LTS . see labeled transition system, 207
LTS satisfaction relation for CTL* . 42
LTS≈∆

b
. see quotient, 57

M

maximal path . 208
MaxPaths(·) . see maximal path, 208
merchandise management example . 23 f.
middle component . 91

N

nbG(·) . see neighbor, 209
NBRS(·) . see non-interfering backward reachable set, 159
NBRS-COMPUTATION() . cf. Algorithm 6.4, 163
neighbor . 208 f.
non-interfering backward reachable set . 159

O

open interaction . 19 f.
open interaction set . 19 f.
order independent Cartesian product . 30, 212

302 Index

P

parametrized merchandise management example . 172
participates in . 19, 185
path . 208
PCS . see protocol component system, 185
PEI(·, ·) . see problematic entry interactions, 162
perform . 149
performability . 149
periphery . 209
periphery(·) . see periphery, 209
port . 185
port alphabet . 185
port behavior . 190
port behavioral model . 185
port conformance . 189
port connectivity . 191 f.
port protocol . 185
ports . 185
ports(·) . see ports, 185
powerset interjoin . 61
predecessor . 207 f.
Pre(·), Pre(·, ·) . see predecessor, 208
problematic entry interactions . 162
problematic state . 154
protocol architecture . 191 f.
protocol component graph . 191 f.
protocol component system . 185
protocol interaction system . 185
PS(·, ·) . see problematic state, 154
PS-INITIALIZATION() . cf. Algorithm 6.1, 155
PSPACE-DEADLOCK-FREE() . cf. Algorithm C.5, 224
PSPACE-LIVELOCK-FREE() . cf. Algorithm C.7, 226

Q

quotient . 57

R

rad(·) . see radius, 209
radius . 209
reachable . 208
REACHABLE() . cf. Algorithm C.4, 224
reachable global behavior . 30
REFINED-DEADLOCK-FREEDOM-CONDITION() cf. Algorithm 6.5, 165

Index 303

reflexive closure . 16
reflexive transitive closure . 16

S

S . see state space, 207
S0 . see initial state, 207
satisfaction relation . 42, 228
satisfaction relation for CTL* . 42, 228
self-loop . 207
simple cycle . 209
simple path . 208
star-like . 91
star-like architecture . 91
state . 207
state space . 207
strong bisimilarity . 230
strongly bisimilar . 230
strongly exclusive communication . 117
subsystem . 74
subsystem construction . 74
subsystem construction operator . 74
successor . 207 f.
Suc(·), Suc(·, ·) . see successor, 208
symmetric closure . 16
Sys . see interaction system, 22
SysBanks . see banking example, 177
Sysbin . see binary counter example, 33
SysDB . see database example, 89
SysDB-Sync . see database-sync example, 96
SysMMS . see merchandise management example, 24
SysPara-MMS see parametrized merchandise management example, 172

T

TAU-REACH() . cf. Algorithm C.6, 225
transition . 207
transition relation . 207
transitive closure . 16
tree-like . 91, 191 f.
tree-like architecture . 91
tree-like protocol architecture . 191 f.

304 Index

U

uniquely connected . 191 f.
unobservable label . 16, 30

V

vertex . 208 f.

W

wants to cooperate with . 153
wants to perform . 149
weak bisimilarity . 231
weakly bisimilar . 231

	List of Algorithms
	List of Definitions
	List of Figures
	List of Tables
	Introduction
	What This Thesis Is About
	What Are Software Components?
	Approaching Formal Methods
	The Computational Viewpoint

	Goals and Findings
	Problem Statement and Motivation
	Methodologies
	Contributions and Roadmap
	Related Work

	Running Example: Merchandise Management
	Conventions

	Interaction Systems
	From Components and Interactions to Interaction Systems
	Component System
	Interaction Model
	Interaction System
	Remarks and Related Models

	Deriving the Behavior of Interaction Systems
	Properties of Interaction Systems
	Freedom from Deadlock
	Freedom from Livelock
	Using Logical Formulae for Property Specification
	Various Known Parametrized Properties
	Specific Properties

	Behavioral Equivalence in Interaction Systems
	Choosing an Appropriate Behavioral Equivalence
	Reducing Behavior: Quotients
	A Further Equivalence: Isomorphism

	Summary

	Compositionality and Abstraction
	Composition of Interaction Systems
	Preliminaries
	The Composition Operator
	Properties of Composition

	Abstraction in Interaction Systems
	The Closing Operator
	Properties of Closing

	Decomposition of Interaction Systems
	The Subsystem Construction Operator
	Properties of Subsystem Construction

	Correctness by Construction
	Deadlock-Freedom Preserving Composition

	Algorithmic Treatment of the Operators
	Related Work
	Summary and Remarks

	Architectures
	A Further Example Interaction System
	Architectures of Interaction Systems
	Component-Based Architecture
	Cooperation-Based Architecture

	Determining an Interaction System's Architecture
	Checking for Star-Like and Tree-Like Architectures
	Checking for Disjoint Circular Wait Free Architectures

	Classifying Disjoint Circular Wait Free Architectures
	Transforming Interaction Systems To Ensure A Disjoint Circular Wait Free Architecture
	Complexity Issues

	Classifying Tree- and Star-Like Architectures
	Related Work
	Summary and Future Work

	Compositional Reduction on the Basis of Architectures
	The Idea behind Compositional Reduction
	Exclusive Communication
	Ensuring Exclusive Communication

	Exploiting Equivalences in Interaction Systems
	Star-Like Architectures with Exclusive Communication
	Tree-Like Architectures with Exclusive Communication
	Compositional Reduction in Interaction Systems Allows For Exponential Savings

	Getting Rid Of Exclusive Communication
	Related Work
	Summary and Future Work

	Efficient Deadlock Analysis on the Basis of Architectures
	Observations about Deadlocks
	Exploiting Disjoint Circular Wait Free Architectures
	Cooperation Paths
	Cooperation Paths and Deadlocks
	Problematic States and Deadlock-Freedom
	Algorithmic Treatment of Problematic States

	Refinement: Problematic States Reachability
	Non-Interfering Backward Reachable Set and Entry Interactions
	Refined Condition for Deadlock-Freedom
	Algorithmic Treatment of the Refined Condition

	Related Work
	Implementation and Experimental Evaluation
	Parametrized Merchandise Management Interaction System
	Database Interaction System
	Banking Interaction System

	Summary and Future Work

	Gray-Box View and Protocols
	Formalization of Protocol Interaction Systems
	Relating Port Protocols and Component Behavior
	Architectures of Protocol Interaction Systems

	Deadlock Detection with Port Protocols
	Potential Savings
	Conjectured Extension

	Related Approaches and Discussion
	Limitations of the Port Protocols Approach
	Summary and Future Work
	Partial Specification of Components via Port Protocols

	Conclusion
	Related Work
	Future Work

	Preliminaries and Notation
	Labeled Transition Systems
	Graph Theory

	Pseudocode Algorithms
	Polynomial-Space Algorithms
	Freedom from Deadlock
	Freedom from Livelock

	Computation Tree Logic
	Bisimilarities
	Strong Bisimilarity
	Weak Bisimilarity
	Branching Bisimilarity
	Divergence Sensitive Branching Bisimilarity
	Branching Bisimilarity with Explicit Divergence

	Formal Proofs
	Proofs from Chapter 2
	Proofs from Chapter 3
	Proofs from Chapter 4
	Proofs from Chapter 5
	Proofs from Chapter 6
	Proofs from Chapter 7

	Bibliography
	Index

