
University of Mannheim/Computer Science
Technical Report TR-2013-001

A Collaborative Multi-Touch UML Design Tool

Michael Magin
Department of Computer Science IV
University of Mannheim, Germany

magin@informatik.uni-mannheim.de

Stephan Kopf
Department of Computer Science IV
University of Mannheim, Germany

kopf@informatik.uni-mannheim.de

ABSTRACT
The design and development of software projects is usually done in
teams today. Collaborative systems based on multi-touch walls or
large table-top screens could support these highly interactive tasks.
We present a novel collaborative design tool which allows several
developers to jointly create complex UML (Unified Modeling Lan-
guage) diagrams. We have developed new algorithms to recognize
the gestures drawn by the users, to create the respective elements
of the diagram, to adjust the edges between classes, and to improve
the layout of the classes automatically. Auxiliary lines provide the
user with means to align classes precisely so a more consistent lay-
out is achieved. Export functionality for XML and Java code skele-
tons completes the application; the UML diagram can thus be used
in further steps of the software design process. User evaluations
confirm considerable benefits of our proposed system.

Keywords
Advanced interaction systems, collaborative multi-touch interfaces,
natural interaction

Categories and Subject Descriptors
H.5.3 [Group and Organization Interfaces]: Computer supported
cooperative work; H.5.2 [User Interfaces]: Input devices and strate-
gies; D.2.2 [Design Tools and Techniques]: Computer-aided soft-
ware engineering

1. INTRODUCTION
Throughout the design phase of a software development process,

a number of developers and software architects gather to discuss
the structure of the project. While they all have expertise they want
to contribute to the project, combining this expertise by collabo-
ratively designing the structure is harder than it should be: The
tools currently available to design, e.g., a UML diagram, provide
no means to effectively work together as a group of people. This is
also caused by the fact that these tools use traditional input devices

Technical Report TR-2013-001, February 2013,
University of Mannheim/Computer Science.

like mouse or keyboard which do not support collaborative work
very well.

The Unified Modeling Language1 (UML) is a standardized general-
purpose modeling language for software engineering. The usual
way of designing software is to use a modeling tool, in most cases
a tool that generates UML class diagrams. Yet, these tools are col-
laborative only in a limited way. Many of the higher-quality UML
diagram editors like Rational Rose2 support collaboration by allow-
ing users to split up the diagram and delegate parts of the modeling
to specific teams. More recent versions even integrate collabora-
tion support for social networks. Still, real same-space same-time
collaboration cannot be achieved using these tools.

A different approach can be found when designing software with-
out using computers. Whiteboards allow multiple users at the same
time to work on the diagram, it is easy to instantly discuss the re-
sults and collaboratively design the diagram. But this approach
also has a number of major drawbacks: UML diagrams, especially
in the design stage, are not static. While they are designed, they
are constantly changed, leading to the need to erase parts of the di-
agrams. Also, once the diagram is completed, it has to be ported
into a file to allow further distribution and automatic processing.

We propose a system to overcome the disadvantages by creating
a collaborative multi-touch design tool for UML diagrams. Multi-
touch is a novel interaction technique that enables the manipulation
of graphical entities with several fingers at the same time. This
technique makes direct interaction and collaboration of multiple
users much easier compared to WIMP interfaces (window, icon,
menu, pointing device). The main advantage over traditional UML
modeling tools is the collaborative approach: Using large multi-
touch screens, multiple users can work with complex diagrams si-
multaneously. Even if users are not familiar with UML design
tools, they can use intuitive gestures to draw their part of the di-
agram. To facilitate the design process, we have added advanced
techniques, e.g., the generation of Java code skeletons from the
UML diagram or the automatic layout of the diagram using graph
drawing algorithms. The key advantages of such a system, com-
pared to a classical whiteboard, are evident: The tool features a
virtually unlimited canvas on which the items are drawn, it allows
classes to be moved and modified without the need to re-create the
whole class, and it supports panning to move to a new area of the
canvas to continue drawing. When moving classes around, the rela-
tionship edges are automatically adjusted. In the end, the generated
diagram can be exported in digital form to allow further distribution
and automatic processing.

1http://www.omg.org/spec/UML/
2http://www.ibm.com/software/rational/

1

Class 1 Class 2
Class 1

Class 2

Create
Class

Create
Package

Create
Edge

Figure 1: Gestures to modify UML elements (selected)

In this paper, we present a novel system for the generation of
UML diagrams. The major goal of our systems is to enable col-
laborative work on UML diagrams by providing an efficient and
user-friendly interface. Although we exemplarily focus on UML,
the proposed techniques are generally applicable to the collabora-
tive drawing of diagrams. The major contributions of our approach
are:

1. We have developed a complete multi-touch system that en-
ables collaborative work on UML diagrams. Target users
vary from professional software developers to groups of un-
dergraduate students who use the system for collaborative
learning.

2. Gesture recognition algorithms (see examples in Figure 1)
enable an easy interaction and modification of items on the
virtually unlimited canvas. The intuitive interaction is espe-
cially beneficial for learners.

3. Enhanced functionality facilitates the design process, e.g.,
Java code skeletons are generated automatically from UML
diagrams, auxiliary lines support the drawing, and automatic
layout algorithms enhance the visual representation of UML
diagrams by rearranging items.

The outline of the paper is as follows: The following section
gives an overview of multi-touch technology. Section 3 illustrates
the features of our new system. In Section 4, we present user eval-
uations, and conclude the paper in Section 5.

2. MULTI-TOUCH TECHNOLOGIES
We have developed a complete system for the collaborative de-

sign of UML diagrams. To limit the hardware costs, we built a
large optical multi-touch table that uses infrared light to capture
the input.

Nowadays, most low-cost multi-touch screens use either capaci-
tive, resistive or optical technology. While resistive or capacitive
touch-screens are mainly used for smaller devices, many mass-
market large screen devices use the following approach: On top
of the glass surface of an LCD a plane of infrared light is generated
by multiple light emitters. Two low-profile cameras in the bezel of
the screen record the interruption of the infrared light created by
objects touching the surface. The position of the touch can then be
triangulated using information from both cameras. We also use this
technique in our system.

In contrast to optical character recognition [7] or classification of
arbitrary shapes (e.g., people or gestures) [8, 13], our multi-touch

UML tool only uses a small number of different input gestures.
This makes it much easier to process the raw input touch data in
real-time. There are two main protocols that transmit raw touch
data: TUIO and WM_Touch. TUIO is a community protocol cre-
ated during the development of the Reactable, a multi-touch table-
top that is used as a musical instrument [5]. It is the main input
standard supported by all main open-source multi-touch trackers.
The TUIO protocol transmits touch events as a tuple of the touch-
event identifier and the position of the event on the grid.

With Windows 7, WM_Touch3 (Windows Touch Messages) have
been introduced so developers can use the multi-touch functionality
integrated in Windows 7. Making use of WM_ Touch, we use MT4j
(Multi-Touch 4 Java)4 which provides both high-level abstractions
and access to low-level functionality. Using inheritance and pre-
defined elements (widgets), it is possible to take advantage of the
integrated multi-touch functionality while creating custom widgets.
Today, modern multi-touch development frameworks such as MT4j
support mostly the same basic set of gestures out of the box. This
set consists of the tap, double-tap, tap-and-hold, drag, pan, zoom
(pinch) and rotate gesture (please refer to [3] for additional infor-
mation about the gestures).

Our system combines multi-touch input and automatic layout al-
gorithms to support the collaborative work on UML diagrams. Sev-
eral applications were proposed which use multi-touch displays to
simplify the navigation in 2D or 3D environments (e.g., [4, 12]).
The technique proposed by Cheng et al. [1] is closer related to
our system: The authors have developed a multi-touch multime-
dia system for collaborative learning and testing of students, that
focuses on the definition of gestures to interact with educational
items. Frisch et al. [3] discuss suitable gestures to interact with
diagrams, but do not focus on collaborative work.

3. BUILDING A COLLABORATIVE UML DE-
SIGN TOOL

This section describes the design cycle of our collaborative multi-
touch system. The visual representation of UML elements and the
gestures to manipulate them are presented first. Because not all
relevant gestures are supported in current libraries, we had to im-
plement a new gesture recognition algorithm. In the last part, we
discuss the specific functionalities that simplify the work with the
diagrams by using automatic layout algorithms and methods for

3http://msdn.microsoft.com/en-us/library/dd562197/
4http://www.mt4j.org/

2

Figure 2: Screenshot of the application (the colors are inverted to enhance the readability of this figure)

data import and export.

3.1 Representation of UML elements
UML class diagrams are a well-known instrument in the soft-

ware engineering process. They describe the structure of a sys-
tem by showing the system’s classes, their interrelationships, and
their attributes. The following elements are supported by our multi-
touch application: Classes are represented as rectangles containing
the class name, the attributes, methods, and properties such as an
abstract or interface of the class. Relationships are represented by
different line types and arrowheads. Relationship properties are op-
tional attributes of the relationship and are displayed along the re-
lationship edge. Packages are used to group classes, and – as many
types of relationships – induce a hierarchical order on the diagram
that is used when calculating an optimized layout.

3.2 Usage of Gestures to Manipulate Diagrams
We distinguish between local functions that apply changes to se-

lected items on the canvas, and global functions which specify the
general layout or provide additional functionality like ’loading’,
’saving’, or ’generating Java code’. Collaborative work is sup-
ported for all local functions, whereas only a single user should
activate a global method at a particular time. This is the reason
why several global functions are only accessible through buttons
that are located at a fixed position on the screen.

New classes are sketched by drawing a rectangle on the canvas
(see Figure 1). Packages can be created by either drawing the shape
of a package or by drawing a rectangle that encloses one or multiple
classes. A double tap on an item opens a new representation, in
which the different components can be edited individually. Text is
entered using a virtual keyboard which is automatically shown on

the screen when a text input field is touched. Creating edges is done
either by performing a tap-and-hold gesture simultaneously on both
classes or by drawing a line from one class to the other. Edges can
be edited by using a contextual menu, the type and direction of
the edge can easily be selected. Dragging nodes can be done by
simply touching the node with one finger and moving the finger.
The position of the relationship edges are automatically generated,
so they are adjusted whenever a class is moved. Deleting nodes
and adjacent edges is done by dragging them to the recycle bin. To
delete an edge, the contextual menu of the edge must be used.

The global function scaling is not allowed on single nodes for
consistency reasons, but can be done on the whole diagram by us-
ing the pinch gesture. Panning can be done by moving two fingers
on the canvas. A set of buttons necessary to call additional global
functionality is present at the left side of the screen. The buttons
(see Figure 2) allow to save and load the graph using XML files,
they trigger the automatic layout algorithm, and the Java code ex-
port. A recycle bin placed on the bottom of the left edge completes
the overlay menu; elements dragged on top of the recycle bin are
deleted from the canvas, including all adjacent edges.

3.3 Gesture Recognition
Many standard gestures are already included in MT4j and can

be applied to any component. Yet some of the gestures defined
above require a separate gesture recognition algorithm. Therefore,
we have implemented a gesture recognition derived from work pro-
posed by Wobbrock et al. [15] that consists of four steps: Resam-
ple the point path, rotate gesture based on the indicative angle,
scale and translate, and find the best angle and calculate the op-
timal score.

The first step, resampling the point path, has to be done as the

3

algorithm relies on a point-by-point comparison, which requires
both the gesture and the pattern template to have the same num-
ber of points. It also eliminates the differences that arise when the
gesture is drawn at different speeds or different sizes, as the multi-
touch system only registers a limited number of points per space
and time. The resampled path contains N points that have the same
distance from each other.

In the second step, the angle of the path is normalized so that
the gesture can be recognized, even if it is drawn at an angle com-
pletely different from the template. In consequence, the algorithm
is rotation-invariant, which is essential when working with large
multi-touch table-tops where users may work and draw from all
sides. To normalize the angle of the gesture, the indicative angle
of the path is used, which is defined as the angle between the cen-
troid of the path and the starting point of the gesture. Note that this
normalized angle is merely a point of reference from which further
fine-tuning is started.

To account for the different sizes of the gestures, it is scaled non-
uniformly to a reference square in step 3. Once this is completed,
the points are translated such that the (x, y) coordinate of the cen-
troid of the gesture is (0, 0). In the last step, the average distance
di between the template Ti and the gesture C is calculated:

di =
1

N

N∑
k=1

√
(C[k]x − Ti[k]x)2 + (C[k]y − Ti[k]y)2,

where C[k] is the k-th point in the array of points in the ges-
ture. To accurately identify the most probable candidate during the
recognition process, the path distance needs to be calculated using
the best angular alignment. As we have noted in step 2, the in-
dicative angle is only an approximation of the best alignment. Two
angles are constructed at ±45 degrees of the indicative angle. The
angle that generates the less optimal solution is moved towards the
other angle until both angles meet.

We have implemented this algorithm in Java, using MT4j’s data
types and built-in functionality.

3.4 Automatic Layout of UML Diagrams
One of the main advantages of using computers to aid the UML

diagram design process is the automatic optimization of the layout
of the drawing. Keys to an automatic layout of UML class diagrams
are the hierarchical relationships between classes. These relation-
ships are defined either explicitly in the (directed) edges of the dia-
gram or implicitly through the membership of classes in packages.
We especially consider the hierarchy between classes, spatial and
semantic clusters, the consistent location of parent and child nodes,
and edge crossings, which should be minimized.

By analyzing basic rules collected from various viewpoints of
the UML class diagram design process, Eichelberger [2] identifies
several aesthetic criteria. These criteria contain rules imposed by
aspects of graph drawing, human computer interaction, software
engineering and software visualization.

Based on the idea proposed by Sugiyama et al. [14], we have
implemented the following graph algorithm to enable the automatic
layout of UML diagrams: In a first step, a directed, acyclic sub-
graph is generated, and implicit hierarchical information is added
as edges to the graph. All nodes are assigned to a specific layer
(rank), which is defined by the edges. The next step has two main
purposes: to reduce edge crossings and to reintegrate edges and
vertices that were not hierarchically connected. In the last step, the
nodes are assigned their actual positions on the canvas based on
their rank.

A further, more visually oriented aid to the diagram layout that
was implemented in this work are auxiliary lines. They provide a
more consistent layout by helping to align classes more precisely.
Whenever a class is moved and one of its edges is within two pixels
of the horizontal and vertical position of another class, an auxiliary
line appears, indicating the position of the other class.

3.5 Data Import and Export
One of the major advantages of a multi-touch based UML mod-

eling tool over a virtual whiteboard is the ability to automatically
process the diagram created by the application. Yet to allow the
post-processing, the software requires functionality to make the
data available to other applications. To simplify data exchange,
the system provides input and output based on XML. In addition,
the XML files are put under version control. During the design pro-
cess, unwanted changes can thus be taken back by using an earlier
version of the file.

A more specialized approach is the generation of Java code skele-
tons to provide a jump start to the implementation process by trans-
ferring the information contained in the diagram to Java source
files. UML classes, attributes, and all their properties are directly
mapped to Java. The edges that are least critical to transfer are in-
heritance and realization edges. Transferring associations is not as
trivial: Now, the multiplicities of the edge have to be evaluated to
decide how the associations are implemented. Unidirectional asso-
ciations with a multiplicity of 1 can be implemented by referencing
the head class. A multiplicity of 1:n is implemented by using a
single reference on the n side and the data structure array on the 1
side. Edges with n:m multiplicities now require additional classes
to hold the association. Inside these classes, a mapping that relates
the n class to the m class in both directions is established.

4. EVALUATION
The objective of the evaluation was to get feedback about the

multi-touch interface and about the collaborative support of the sys-
tem. One of the most important aspects for the learning success is
to achieve a high motivation of the students. In previous work, we
put our focus on improving learning materials (e.g., lecture record-
ings [10, 11]). In addition, we analyzed the importance of collabo-
ration for the learning success of students. To improve the activities
of the students, we used participatory simulation where users are
taking part in the computer-based simulation [6, 9].

We conducted a user evaluation where Information Systems and
Business Informatics students familiar with UML class diagrams
were asked to perform a test and give feedback about Advantages,
Disadvantages and Possible Improvements of the system. In a first
step, the users were – without introduction to the system – asked
to create a UML diagram from scratch. In a second step, a short
explanation of the features of the system and the available gestures
was given. Next, users were asked to create a diagram and use all
the available functionality. The first observation was that the size
of the display is critical for the collaboration: In case of three or
more users, large table-top screens are beneficial.

Advantages were seen by the users mostly in the natural way that
classes or packages could be created, even without prior instruction
(see Figure 3). The students did not have any difficulties with the
multi-touch input of UML items. They could create classes, edit
them using a double-tap, and add packages by drawing a rectan-
gle around the classes. Once the system and the gestures had been
explained, also the creation of relationship edges was seen as intu-
itive. The possibility to collaboratively work on the same diagram
was mentioned as the greatest strength of the system. The students

4

Figure 3: Drawing a UML class on the canvas

had a lot of experience with UML modeling and clearly preferred
the multi-touch system to pen and paper. Furthermore, the conve-
nient manipulation of different parts of the application by different
people and the intuitive way to define the relationships between
those different parts were mentioned to be advantageous. More-
over, the automatic adjustment of the relationship edges even while
classes were still being dragged was noted as an advantage, as was
the general usage of touch technology to manipulate the diagram.

Disadvantages, at first, were seen in the creation of edges. After
instruction, however, users were able to intuitively create and edit
edges. More critical was the fact that the collaboration of two or
more users may create conflicts. Local functions are not critical,
because two users usually do not try to move or edit the same item.
Commands that cannot be interpreted by the system are ignored
(e.g., if two users try to move the same class in different directions).
More problematic are global functions, because scaling or panning
might disrupt the work of the other students. Some users found it
difficult to use the virtual keyboard to enter text. Furthermore, the
lack of contextual help to explain the functionality of the buttons
was mentioned as a disadvantage.

As possible improvement, context-sensitive help functions were
mentioned. Also, a description of the icons in the overlay menu was
recommended to ease the first contact with the software. Addition-
ally, the usage of additional input devices, e.g., physical keyboards
was asked for, as the virtual keyboard slowed down data input.

5. CONCLUSIONS
We have created a multi-touch based system allowing users to

collaboratively design UML class diagrams. The system is made
up of independent components and could easily be customized for
other applications. People like architects or designers who collab-
oratively work with diagrams, graphs or drawings might benefit
from such a system. The MT4j framework is used to provide ba-
sic multi-touch functionality. A gesture recognition algorithm was

developed and integrated into the framework to recognize gestures
associated with the elements of the UML class diagram. Addi-
tional algorithms were developed to enhance the human-computer
interaction, like the automatic improvement of the layout of the di-
agram, auxiliary lines that visualize the current position of other
elements in the diagram, export and import functionality for XML
files and the generation of Java code skeletons. Users familiar with
designing UML class diagrams positively evaluated our system and
saw great benefits in both the multi-touch input and the collabora-
tive approach.

While the system already features the aspects mentioned above,
a number of aspects still lack an optimal solution. One of the ma-
jor fields still lacking research is the part of the diagram editing
that goes beyond creating elements and moving them on the can-
vas: The procedure of editing and adding content to the classes.
As these activities are mostly text-based, defining this content us-
ing a virtual keyboard currently is not intuitive enough. While the
recognition of handwritten text, combined with algorithms to se-
mantically analyze the content, could be a solution to the issue, it
requires the implementation of complex and very specialized algo-
rithms for handwriting recognition.

To extend the means of collaboration, the inclusion of a merging
feature that can merge two diagrams that were edited in different
locations also is an idea worth pursuing. It would allow users to
concurrently work on the project in different locations, collaborat-
ing not only locally, but also remotely.

6. REFERENCES
[1] I. Cheng, D. Michel, A. Argyros, and A. Basu. A HIMI

model for collaborative multi-touch multimedia education. In
Proc. of the workshop on Ambient media computing, pages
3–12, 2009.

[2] H. Eichelberger. Aesthetics and automatic layout of UML
class diagrams. PhD thesis, University of Würzburg,

5

Germany, 2005.
[3] M. Frisch, J. Heydekorn, and R. Dachselt. Diagram editing

on interactive displays using multi-touch and pen gestures. In
Diagrammatic Representation and Inference, volume 6170
of Lecture Notes in Computer Science, pages 182–196.
Springer, 2010.

[4] C.-W. Fu, W.-B. Goh, and J. A. Ng. Multi-touch techniques
for exploring large-scale 3D astrophysical simulations. In
Intl. Conf. on Human Factors in Computing Systems (CHI),
pages 2213–2222, 2010.

[5] S. Jorda, M. Kaltenbrunner, G. Geiger, and R. Bencina. The
reactable*. In Intl. Computer Music Conf., pages 579–582,
2005.

[6] S. Kopf and W. Effelsberg. New teaching and learning
technologies for interactive lectures. Advanced Technology
for Learning (ATL) Journal, 4(2):60–67, March 2007.

[7] S. Kopf, T. Haenselmann, and W. Effelsberg. Robust
character recognition in low-resolution images and videos.
Technical Report TR-05-002, Department for Mathematics
and Computer Science, University of Mannheim, Germany,
2005.

[8] S. Kopf, T. Haenselmann, and W. Effelsberg. Shape-based
posture and gesture recognition in videos. In Proceedings of
IS&T/SPIE conference on Storage and Retrieval Methods
and Applications for Multimedia, volume 5682, pages
114–124, 2005.

[9] S. Kopf, N. Scheele, L. Winschel, and W. Effelsberg.
Improving activity and motivation of students with
innovative teaching and learning technologies. In
Proceedings of Methods and Technologies for Learning,
pages 551–556, March 2005.

[10] F. Lampi, S. Kopf, M. Benz, and W. Effelsberg. An automatic
cameraman in a lecture recording system. In Proceedings of
the ACM International Workshop on Educational Multimedia
and Multimedia Education (EMME), pages 11–18, 2007.

[11] F. Lampi, S. Kopf, M. Benz, and W. Effelsberg. A virtual
camera team for lecture recording. IEEE MultiMedia
Journal, 15(3):58–61, September 2008.

[12] J. L. Reisman, P. L. Davidson, and J. Y. Han. A screen-space
formulation for 2D and 3D direct manipulation. In Proc. of
the ACM symposium on User interface software and
technology, pages 69–78, 2009.

[13] S. Richter, G. Kuhne, and O. Schuster. Contour-based
classification of video objects. In Proceedings of IS&T/SPIE
conference on Storage and Retrieval for Media Databases,
volume 4315, pages 608–618, 2001.

[14] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual
understanding of hierarchical system structures. IEEE
Transactions on Systems, Man and Cybernetics,
11(2):109–125, Jan 1981.

[15] J. Wobbrock, A. Wilson, and Y. Li. Gestures without
Libraries, Toolkits or Training: A $1 Recognizer for User
Interface Prototypes. In ACM symposium on User interface
software and technology, pages 159–168, 2007.

6

	1 Introduction
	2 Multi-Touch Technologies
	3 Building a Collaborative UML Design Tool
	3.1 Representation of UML elements
	3.2 Usage of Gestures to Manipulate Diagrams
	3.3 Gesture Recognition
	3.4 Automatic Layout of UML Diagrams
	3.5 Data Import and Export

	4 Evaluation
	5 Conclusions
	6 References

