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Abstract. Although the Semantic Web was originally designed as a
“web for machines”, the growing wealth of information in Linked Open
Data has become interesting for human users as well. Consequently, quite
a few browsers for Linked Open Data have recently been developed.
However, despite being developed for the semantic web, those browsers
often present alphabetically ordered lists of facts, without respecting the
semantics of the data.

In our submission to the Semantic Web Challenge, we present a seman-
tic browser for the semantic web1, which aims at presenting facts from
Linked Open Data in semantically coherent groups. This paper intro-
duces the main algorithms as well as an evaluation of the browser with
end users.
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1 Introduction

Although the Semantic Web was originally designed as a “web for machines”,
the growing wealth of information in Linked Open Data has become interesting
for human users as well. Consequently, quite a few browsers for Linked Open
Data have recently been developed. Furthermore, most servers for Semantic Web
data, such as D2R2 or Virtuoso3, have basic browsing capabilities. The latter
provides the front-end to the popular DBpedia dataset [1], which lists all triples
alphabetically, based on the predicate’s URI.

Disco4 [3], Tabulator5 and [2] are some of the most popular browsers. Disco
and Tabulator, like many similar systems, essentially present lists of facts, with-
out any logical grouping and/or filtering. Thus, there are very few systems that
actually provide a semantic view on the data. One rare exception is aemoo6 [9],

1 Live demo: http://kebap.ke.informatik.tu-darmstadt.de:8080/semantic-browser/
2 http://d2rq.org/d2r-server
3 http://virtuoso.openlinksw.com/
4 http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/
5 http://www.w3.org/2005/ajar/tab
6 http://wit.istc.cnr.it/aemoo



which extracts a number of core facts about an entity and augments them with
text snippets from Wikipedia.

The main idea of our semantic browser is to get the sense of specific facts.
Facts that are semantically related should be grouped together. For example,
for a country, there are facts about the politics (the parties, the prime minister,
etc.), the geography (cities, states, etc.), the culture, the climate, and so on.
Our approach aims at grouping those facts automatically so that users can get
a better view of the data and find information more quickly.

2 Approach

Our approach foresees several steps for semantically grouping facts. First, the
data is retrieved, then, the similarity of the different statements is determined.
Based on that similarity, groups are formed and labeled.

2.1 Preprocessing Datasets

Data in Linked Open Data is stored as RDF data, i.e., triples of a subject,
a predicate, and an object [7]. When retrieving data about a resource from a
Linked Open Data endpoint, in most cases, two types of triples are retrieved:

– Triples that have the retrieved resource as their subject. For example, for
the resource Darmstadt, such a triple is :Darmstadt :country :Germany.

– Triples that have the retrieved resource as their object. For Darmstadt, such
a triple would be :TU Darmstadt :city :Darmstadt.

We aim at presenting both types of triples to the user. While the subject (or
the object, for the second type, respectively) is constant, there are two choices
upon which to determine semantic relatedness. We have chosen to use the predi-
cates for determining semantic relatedness, since the resources related as subjects
or objects can be quite diverse.

One further design decision was to treat both types of triples separately, For
example, consider the following facts:

:Germany :partOf :Europe .

:Hesse :partOf :Germany .

Both predicates have the same name, but if we focus on the resource Germany,
they can have different meanings. In the first line, Germany is subject, that means
we look at a direct property. It describes that Germany is a part of Europe. The
second line describes an indirect property of Germany, namely that Hesse is
a part of Germany. If we handle both predicates as one, we could not create
groups for Location of Germany and States of Germany. We want to keep
this information, so we handle direct and indirect predicates as two different
predicates.



2.2 Determining the Similarity of Predicates

Although predicates are defined in schemas or ontologies as object or datatype
properties, those definitions carry only little information about the similarity
of two predicates. For example, the two DBpedia properties areaCode and
leaderTitle are defined with identical domain and range definitions, however,
they are not very closely related semantically. Thus, we have to use external
knowledge to determine the semantic similarity of predicates.

We use the labels and local names (if labels are not present) of properties
for calculating a semantic similarity. Those are strings, which we tokenize into
individual words. We then look up those words in WordNet [5] in order to de-
termine their similarity. Each predicate is mapped to one or more SynSets (i.e.,
words of synonym meaning) in WordNet.

There are various relations between the SynSets in WordNet. Using the struc-
ture of WordNet allows us to calculate distances [4] between two words. Because
semantic identical words are placed together, we can use the path length for our
approach. A problem occurs if we try to calculate distances between words of
different word types (e.g., nouns and verbs), because they are organized in a
different SynSet, and by far not all predicates in Linked Open Data are proper
verbs, as shown in the examples above. In case of a verb, we use nominalisation
to produce the common subjective. All other word types will be ignored, reduc-
ing false distance calculation. When predicates consist of multiple words, we use
two different kinds of metric to calculate the distance: average distance between
each pair of words and the minimal distance between each pair of words.

2.3 Grouping Predicates

Once we have determined the distance between each pair of predicates viewed
for a resource, we have to order them in groups. To that end, we use clustering
algorithms which group those predicates, based on the computed distances. The
result should be groups that contain facts with a semantic relation. For the
development of the semantic browser, we have tested two cluster algorithms:
k-means [10] and bottom-up [6] (hierarchical clustering).

For the k-means algorithm, we have to choose a number k how many groups
should be generated by the algorithm. We have decided to use the psychological
criteria: humans can only keep around 7 things in mind at the same time [8].
Thus, in our implementation the k-means generates 7 groups for every direct
and indirect properties, resulting in 14 groups.

For the bottom-up algorithm, the number of groups cannot be chosen directly.
The algorithm generates a tree with the grouped items, and the height at which
to cut the tree can be selected. To find the best-fitting tree height, we have tested
110 random datasets:

Using the same psychological aspect [8] we chose to cut the tree at a height
of 5. That results in an average number of groups of 13.20, each with 20.55
items in average. The number of items in each groups seems to be very high, but
the average has the property that big datasets results in imprecise results. The



tree height Ø number of groups Ø group size median number of groups median group size

3 5.27 56.81 4.00 16.00

4 8.55 33.60 7.00 10.00

5 13.20 20.55 12.00 6.50

6 19.22 12.97 18.00 4.00

7 25.54 8.94 24.00 3.00
Table 1. Dependency between the tree height and the generated groups.

median in this case is much lower and shows that the group size is much smaller
for normal-sized datasets.

2.4 Labeling Groups

Once the groups have been identified, we want to assign meaningful headlines to
them. Those are displayed for structuring the document as well as for providing
a shortcut navigation, as shown in Fig. 1.

We have implemented two strategies that provide group labels based on the
facts that were grouped together. The first approach exploits the WordNet struc-
ture and finds common ancestors along the specialization hierarchy that matches
the majority of the grouped facts’ predicates. In case this is not successful (i.e.,
the common ancestor is a meaningless top-level concept such as object), the most
frequent predicate’s label is used as a group label.

2.5 Implementation

The approach discussed above has been implemented as an extension into the
modular Linked Open Data browser MoB4LOD7. In order to avoid time-consuming
lookup of property labels, those labels are cached, so that after a warm-up period,
most resources can be loaded and displayed within a few seconds. A screenshot
of the application is shown Fig. 1.

3 Evaluation

For evaluation, a preliminary user study was performed. We randomly selected
each 10 DBpedia resources from 3 different kind of topics: country, city and
movie. They were selected so people of this study do not know them nor the
resource has too less information for grouping properties together. For each re-
source a question was created manually. In the study, the user had to answer
the question only by using the information that our browser provides. The idea
behind this study was: the faster the user can answer the question, the bet-
ter the view of the browser is. The use of the functionality to search within
the page was not allowed. We measured the time to complete a question and

7 http://www.ke.tu-darmstadt.de/resources/mob4lod/



Fig. 1. Screenshot of the Semantic Browser Application

whether that answer was correct. Furthermore, we asked the users for feedback
in a questionnaire and to rate the different views.

We created three different views for the 30 resources:

1. The baseline view produces an alphabetical list of the properties, grouped
in eight clusters based on the first letter (A-C, D-F, etc.).

2. The clusters provided by the k-means clustering algorithm with k = 7, using
the average WordNet distance for multi-word labels (see above).

3. The clusters provided by the bottom-up clustering algorithm. In this case,
we have used the minimum distance for multi-word labels, since it provided
better results in a pre-evaluation.

Each user was shown all 30 resources rotating the view after 10 resources, so
every user had to work with all 3 views. The assignment of resources to views
was shifted for each user. We asked 10 people to participate in our evaluation. In
total, we have analyzed 300 answers of which only 15 were given wrong answers
or the user did not find the answer. So only a small number of questions (5 %)
could not be answered correctly.

The summary of results are depicted in table 2. Although there are always
questions that can be solved faster with the baseline view, in total, 17 out of 30



Algorithm Baseline k-means Bottom-up

avg. (median) number of groups

Cities 5.6 (4) 12.4 (13.0) 17.9 (17.5)
Countries 5.1 (5.5) 12.0 (12.0) 17.4 (15.5)
Movies 3.2 (3) 7.3 (7.3) 11.7 (12.0)

Ø group size

Cities 184 (37) 104.0 (12.5) 71.4 (8.0)
Countries 95.8 (22.5) 41.1 (8.0) 26.5 (6.5)
Movies 31.8 (30.5) 13.1 (12.5) 8.0 (8.0)

avg. (median) algorithm runtime (in seconds)

Cities < 1 (< 1) 14.1 (4.6) 15.4 (5.1)
Countries < 1 (< 1) 3.9 (1.6) 4.3 (1.7)
Movies < 1 (< 1) 0.5 (0.4) 0.4 (0.4)

avg. (median) user task completion time (in seconds)

Cities 33.6 (25.1) 65.0 (51.6) 40.3 (36.1)
Countries 54.5 (40.0) 47.7 (42.7) 60.0 (51.1)
Movies 33.0 (31.1) 36.1 (27.4) 37.0 (32.0)

User rating (1=best, 6=worst)

3.0 3.4 2.9
Table 2. Summary of evaluation results

questions were answered faster using one of the clustering views; 7 out of 10 for
countries, 6 out of 10 for movies, 4 out of 10 for cities. In particular for questions
about countries, the k-means algorithm provides the more useful view.

Another observation was that clustering did not work well on the city data.
One reason is that city data in DBpedia contain many weather observations
(minimum, maximum, and average temperature and rain for each month), which
are mixed with other data when using the k-means algorithm, and which are
grouped into many small clusters when using the bottom-up clustering algo-
rithm. When comparing the median and the average values for the size of groups,
it can be observed that there are severe outliers for city and country data, while
the clustering of information about movies works much better.

In terms of the users’ rating, the bottom-up clustered views are slightly
preferred to the other views (while the users were faster using the k-means based
view). However, none of the results are statistically significant due to the small
number of users in this preliminary study.

4 Conclusion and Future Work

In this paper, we have discussed an approach for enabling semantic exploration
of Linked Open Data. The preliminary user study has shown that it is possible
to use existing linked open data together in conjunction with external linguistic
resources such as WordNet to generate a more intuitive user interface for viewing
RDF data sets.



There are many possible extensions of this work, from using other semantic
distance measures to implementing more different clustering algorithms. Other
options include clustering not only of predicates, but also of instances connected
by those predicates in case there are many of such instances (for example, many
people born in one city).
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Appendix

This appendix describes how our submission meets the challenge criteria.

Minimal Requirements

End-user Application The application is a Linked Open Data browser tar-
geted at users of the semantic web. It provides additional value for browsing the
semantic web.

Information Sources The approach is generic and works with any kind of
Semantic Web data, following elementary standards such as RDF. Furthermore,
WordNet is used as an external linguistic resource.

Meaning of Data The meaning of data in Linked Open Data is an essential
focus of our work.

Additional Desirable Features

Web Interface The application provides a functional web interface, which we
hope is attractive.

Scalability The application only works on subset of Linked Open Data (i.e.,
the portion that is viewed by the user). The evaluations in the paper show that
for most datasets, real-time processing of the data is feasible.

Evaluation The paper contains an evaluation w.r.t. to user satisfaction.

Functionality different from or beyond pure information retrieval By
providing semantic clustering of results, the interface is more than just an infor-
mation retrieval interface.


