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Abstract

Remote-controlled malware, organized in so-called botnets, have emerged as one
of the most prolific kinds of malicious software. Although numbers vary, in ex-
treme cases such as Conficker, Bredolab and Mariposa, one botnet can span up to
several million infected computers. This way, attackers draw substantial revenue
by monetizing their bot-infected computers.
This thesis encapsulates research on the detection of botnets – a required step

towards the mitigation of botnets. First, we design and implement Sandnet,
an observation and monitoring infrastructure to study the botnet phenomenon.
Using the results of Sandnet, we evaluate detection approaches based on traffic
analysis and rogue visual monetization.
While traditionally, malware authors designed their botnet command and con-

trol channels to be based on plaintext protocols such as IRC, nowadays, botnets
leverage obfuscation and encryption of their C&C messages. This renders meth-
ods which use characteristic recurring payload bytes ineffective. In addition, we
observe a trend towards distributed C&C architectures and nomadic behavior of
C&C servers in botnets with a centralized C&C architecture, rendering blacklists
infeasible. Therefore, we identify and recognize botnet C&C channels by help of
traffic analysis. To a large degree, our clustering and classification leverage the
sequence of message lengths per flow. As a result, our implementation, called
CoCoSpot, proves to reliably detect active C&C communication of a variety of
botnet families, even in face of fully encrypted C&C messages.
Furthermore, we observe that botmasters design their C&C channels in a more

stealthy manner so that the identification of C&C channels becomes even more
difficult. Indeed, with Feederbot we found a botnet that uses DNS as carrier
protocol for its command and control channel. By help of statistical entropy as
well as behavioral features, we design and implement a classifier that detects DNS-
based C&C, even in mixed network traffic of benign users. Using our classifier,
we even detect another botnet family which uses DNS as carrier protocol for its
command and control.
Finally, we show that a recent trend of botnets consists in rogue visual mon-

etization. Perceptual clustering of Sandnet screenshots enables us to group
malware into rogue visual monetization campaigns and study their localization
as well as monetization properties.
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Zusammenfassung

Fernsteuerbare Schadsoftware, zusammengeschaltet in sog. Botnetzen, hat sich
mittlerweile zu einer sehr verbreiteten Art an Schadsoftware entwickelt. Obwohl
die genauen Zahlen mitunter schwanken, so zeigt sich in Extremfällen wie etwa
bei Conficker, Bredolab und Mariposa, dass ein einzelnes Botnetz aus infizierten
Computern mit bis zu zweistelliger Millionenanzahl besteht. Die Angreifer er-
wirtschaften somit erhebliche Einkommen, indem sie die infizierten Computer
monetarisieren.
Diese Arbeit umfasst Forschungsarbeiten zur Erkennung von Botnetzen – ein

notwendiger Schritt, um Botnetze zu entschärfen. Zunächst entwerfen und imple-
mentieren wir die Beobachtungsumgebung Sandnet, um das Botnetz-Phänomen
detailliert untersuchen zu können. Mit Hilfe der Ergebnisse des Sandnet ent-
werfen und bewerten wir Erkennungsmechanismen, die sowohl auf Verkehrsflus-
sanalyse des Netzwerkverkehrs als auch auf dem visuellen Eindruck der bösartigen
Benutzerschnittstelle basieren.
Während Schadsoftware-Autoren in der Vergangenheit die Steuerkanäle (C&C)

ihrer Botnetze häufig unter Verwendung von Klartext-Protokollen wie etwa IRC
entworfen haben, so werden neuerdings fast ausschließlich verschleierte oder ver-
schlüsselte C&C-Nachrichten verwendet. Dies verhindert Erkennungsmechanis-
men, die auf charakteristischen, wiederkehrenden Nutzdaten-Mustern basieren.
Darüber hinaus lässt sich ein Trend hin zu verteilten C&C-Architekturen sowie
ein nomadisches Umzugsverhalten der C&C-Server im Falle von Botnetzen mit
zentralisierter C&C-Architektur erkennen. Auf diese Weise werden Blacklists von
C&C-Endpunkten umgangen. Wir entwickeln daher einen Ansatz zur Identifika-
tion und Wiedererkennung von Botnetz-C&C-Kanälen mit Hilfe von Verkehrs-
flussanalyse. Unser Ansatz basiert dabei in erster Linie auf der Sequenz von
Nachrichtenlängen einer Netzwerkverbindung. In der Evaluation beweist un-
sere Implementierung CoCoSpot, dass sie auf verlässliche Art und Weise C&C-
Kommunikation einer Vielzahl an verschiedenen Botnetz-Familien erkennen kann,
selbst wenn die C&C-Nachrichten vollständig verschlüsselt sind.
Ferner beobachten wir, dass Botmaster ihre C&C-Kanäle unter erheblicher

Berücksichtigung der Tarnung im Netzwerkverkehr entwerfen. Mit Feederbot
zeigen wir, dass mittlerweile Botnetze existieren, die DNS als Trägerprotokoll
für ihren C&C-Kanal verwenden. Mit Hilfe der statistischen Entropie sowie Ver-
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Zusammenfassung

haltenseigenheiten wird ein Klassifizierer entworfen und implementiert, der DNS-
basierte C&C-Kanäle erkennen kann – selbst in gemischtem Netzwerkverkehr von
legitimen Benutzern. Unter Verwendung unseres Klassifizierers entdecken wir
sogar eine weitere Botnet-Familie, die DNS als Trägerprotokoll für ihren C&C
benutzt.
Schließlich zeigen wir, dass ein aktueller Trend in der sog. rogue visual moneti-

zation liegt. Ein wahrnehmungsbasiertes Clustering von Screenshots des Sand-
net ermöglicht es uns, Schadsoftware in Kampagnen der rogue visual monetiza-
tion zu gruppieren und die Eigenschaften ihrer Lokalisierung und Monetarisierung
zu studieren.
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Chapter1
Introduction

1.1 Motivation
Malicious software, often referred to as malware, poses a severe problem to to-
day’s information technology. While computer viruses have been around for more
than 25 years, nowadays, a prevalent subset of malware is organized in a remote-
controllable fashion. An attacker merely infects computers, or more generally,
IT systems of innocent victims in order to remotely execute arbitrary software.
Thus, the change towards remote-controlled malware enables attackers to have
maximum flexibility concerning their monetization. Typically, an attacker aggre-
gates her infected computers in a network. Such a network of computers infected
with remote-controlled malware is referred to as a botnet.
Adversaries monetize botnets in a variety of ways, e.g., by sending large amounts

of unsolicited commercial email (spam), ad fraud, stealing banking credentials of
the infected computers’ users in order to mislead financial transactions or by lur-
ing users into buying rogue software. Some botmasters build on extortion, and if
the victim does not pay, the botnet performs a distributed denial of service attack,
effectively knocking the victim offline. Recent studies on the underground econ-
omy reveal potential revenues as well as the damage induced by remote-controlled
malware. Botnets such as Koobface [Vil10, TN10] focus solely on pay-per-click
or pay-per-install fraud, while still earning more than two million US dollars per
year. Similarly, the Storm botnet is expected to have produced a yearly revenue
of 3.5 million US dollars [KKL+09]. Other botnets have specialized in distribut-
ing rogue software, e.g., fake antivirus software and drew combined revenues of
over 130 million US dollars a year [SGAK+11]. In November 2011, operation
Ghost Click addressed the takedown and prosecution of DNSChanger, a botnet
that generated more than 14 million US dollars in fraudulent advertising revenue
by help of hijacked DNS resolution of the victim computers [Gal11].
But neither are botnets a problem of isolated spots, nor is it always necessarily

the monetization technique alone that causes damage. For example, the Mariposa
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1 Introduction

botnet has comprised more than 13 million infected computers in more than 190
countries [SBBD10]. Even worse, the Conficker botnet variants A-D are believed
to have infected between 9 and 15 million computer systems worldwide [Onl09,
UPI09], some even report up to 25 million infections [SGRL12]. In addition,
without ever exposing a monetization technique at all, Conficker variants A-D
caused severe problems in several institutions just by collateral damage of the
infections. Fighter planes of the French military were unable to take off due
to Conficker infections of related computer systems [Tel09]. Likewise, British
warships suffered from outages caused by Conficker infections [Reg09]. These
incidents are examples of the severity of malicious, remote-controllable software.
Clearly, the damage caused by botnets has reached a substantial extent, pos-

sibly even endangering society. As a first step, we need to design accurate and
reliable detection methods for botnets. Being able to detect and measure the
impact of botnets on a large scale serves as a basis for subsequent actions, even-
tually – if legal frameworks allow – leading to disinfections or takedowns.
A key characteristic of malicious remote-controlled software lies in its ever-

changing appearance. This can be observed in a variety of ways. For example,
in case of malicious remote-controlled software binaries, this property is often re-
alized by so-called packing, which refers to the process of re-coding the software
binary while adding random elements, applying encryption or obfuscation. The
same observation holds for a certain type of network traffic emitted by malicious
remote-controlled software, namely its command and control traffic. Typically,
botnet command and control channels employ some kind of encryption or ob-
fuscation technique in order to avoid characteristic payload substring patterns,
which would serve as identification and recognition attribute. As a third ex-
ample, let us refer to the user interfaces of rogue visual malware, such as fake
antivirus software. Although adhering to a similar user interface structure, their
visual appearance employs slight variations in the details of their user interface
elements.
In summary, motivated by the need to evade detection, malicious software

strives for an ever-varying appearance. Even several samples of one kind of
malicious remote-controlled software, e.g., what can naively be considered one bot
family, expose different appearances. As a result, the classification of malicious
software and its network traffic is rendered a challenge.

1.2 Contributions: Countering Deviance
This ever-changing appearance hinders the detection of both, malicious remote-
controlled software as well as its network traffic. However, this thesis aims
at identifying and exploiting properties of remote-controlled malicious software
that – despite evasion techniques of malware – may serve for detection. This
methodology builds upon two main observations.

2



1.2 Contributions: Countering Deviance

First, the variation of malware properties is hardly ever complete. While mal-
ware authors typically address some properties specifically, such as the encoding
of C&C messages by help of encryption, there is still room for detection ap-
proaches in more subtle ways. In other words, we try to identify those properties
that are less frequently affected by variation, e.g., traffic analysis on botnet com-
mand and control communication. As an example, the traffic analysis approach
used in CoCoSpot as described in Chapter 4 leverages the sequence of message
lengths in botnet command and control channels. While encrypting C&C mes-
sages results in varying payloads and thus avoids to recognize botnet C&C chan-
nels by payload patterns, the traffic analysis properties still reveal characteristic
recognition attributes.

Second, the variation of malware sample properties is bounded. Using an
appropriate feature space, even though samples may vary, this variation is typ-
ically of limited scope, so that a large set of samples exhibits clusters of similar
sample instances. From these clusters, characteristic structural templates can
be extracted and used as recognition attributes. For example, this approach is
used in this thesis to infer user interface templates of rogue visual software, such
as fake antivirus software, by help of perceptual screenshot clustering. In this
case, the variation of the user interface is bounded in the sense that only very
slight changes are made to the user interface elements, while the overall percep-
tion remains the same. Using our perceptual clustering approach, we reveal the
underlying structure of the user interface which can be used as a recognition
feature.

Telling from the facts, the number of observed MD5-distinct malware binaries
have increased for years [CDKL09]. Figure 1.1 shows the total number of MD5-
distinct malware binaries per year from 1984 to 2012 as measure by AV-TEST
GmbH. On the one hand, it is difficult – if at all possible – to measure whether
this increase in unique malware binary hash sums relates to an increase in distinct
malware families. Nevertheless, on the other hand, this trend might also be a
result of the variations of malicious software binaries, such as packing. In this
case, it is difficult to judge, whether the number of distinct families increases, too.
However, it is desirable to understand and extract detection attributes on a per-
family basis – instead of for each sample individually. Therefore, we also provide
a perspective on malware families. In the scope of this thesis, we define the term
family in each specific context where it is used. For example, in the context
of CoCoSpot, we consider a family as the subset of malicious remote-controlled
software executions which share the same command and control protocol. Using
the techniques proposed in this thesis, even though no general definition of a
malware family can be concluded, the notion of a malware family depending on
the context will be fostered.

3
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Figure 1.1: Total number of MD5-distinct malware binaries per year from 1984
to 2012 as measured by AV-TEST GmbH [Avt12]

1.2.1 Detection := Identification + Recognition

In this thesis, the detection process is separated into the two subtasks of identify-
ing and recognizing remote-controlled malicious software and its network traffic.
While the identification deals with the decision whether a certain samples is
to be considered malicious, the recognition aims at finding (additional) related
instances. Note that in the scope of this thesis, the term “sample” does not nec-
essarily only refer to a malicious binary, but rather to one element of a dataset,
such as a C&C network flow or a screenshot.
The identification task, i.e., the decision if a certain sample is to be considered

malicious, highly depends on the definition of maliciousness, and thus on the
context of the decision. By its very nature, it is thus a subjective decision,
typically made by a human analyst. This thesis aims at providing means to aid
a human analyst in the decision making process. For example, the clustering
phase of CoCoSpot, a system developed as part of this thesis, exposes similar
communication patterns in network traffic and aggregates similar network flows
into subsets. A human analyst will only need to analyze some of the flows per
subset in order to make the decision concerning maliciousness, thus effectively
reducing the work load. Similarly, our screenshot clustering approach enables an
analyst to quickly grasp the visual appearance of a subset of samples.
In the recognition phase, we aim at finding related samples. In the face of

variation, the recognition task does not only involve exact pattern matching, but
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1.2 Contributions: Countering Deviance

requires fuzzy pattern matching. While the recognition features are usually ex-
tracted from a subset of samples, for example, the training samples compiled in
the identification phase, this set does not represent all possible values, i.e., the
training sample set is not guaranteed to be complete. As an example, the mes-
sage length sequences for a subset of similar network traffic samples for the Virut
family’s command and control channels might expose a characteristic detection
attribute. However, we will hardly ever be able to compile a complete set of train-
ing samples for Virut C&C traffic, due to variation. In other words, compared to
the training samples, another instance of a Virut command and control channel,
e.g., found in the wild, will most certainly again vary slightly concerning the mes-
sage length sequence and thus differ from all of the training samples. As a result,
not only the identification phase needs to be aware of this variation, but also the
recognition phase must be designed with regard to a certain level of fuzziness.
To sum up, it is exactly this deviance which renders the detection of malicious
software a challenge. Thus, our separation of identification and recognition allows
us to develop specifically tailored methods for each of the subtasks.

1.2.2 List of Contributions
This thesis aggregates work on the identification and recognition of malicious
remote-controlled software in terms of the following contributions.

Sandnet – A contained environment for dynamic malware analysis

Before we can apply machine learning, we need to collect data to be used in
our experiments. While nowadays, malware is apparently ubiquitous, gathering
malicious datasets from different parties might not seem to be a challenge. How-
ever, using datasets from different sources raises concerns because they might
not be comparable. In order to strive for correct and sound experiments, we
aim to avoid artifacts in datasets, such as those induced by different source en-
vironments, as much as possible. Therefore, we need a dataset where a large
number of diverse malware has been executed under very similar conditions and
within the same environment. We solve this problem by designing Sandnet,
our contained dynamic malware analysis environment. In addition, we imple-
ment an extensive post-processing chain which extracts and transforms the raw
execution results into structured and easily processable form and enriches them
by correlating with external sources, such as origin AS and routing paths from
BGP feeds, geolocalization of IP addresses as well as reverse DNS information.
Using Sandnet, we are able to compile a dataset of samples stemming from the
same environment, for a given experiment. Chapter 3 describes the design, usage
and workflow of Sandnet. Sandnet has been developed in joint work with
Christian Rossow.

5



1 Introduction

Recognition of command and control plane communication

Earlier work on detecting botnets developed means to automatically infer charac-
teristic payload substring patterns of botnet C&C. Those substrings could then
be used as payload signatures in the recognition phase. Albeit, over the last
few years, botnets have evolved and nowadays the majority of botnets employ
obfuscated or encrypted command and control protocols. In addition, botnets
exhibit more and more nomadic C&C servers, i.e., migrate their C&C servers on
a regular basis from one domain, IP address range or Autonomous System to
another. As a consequence thereof, detecting C&C flows of these modern botnets
is truly rendered a challenge, especially since encryption defeats payload pattern
matching and a frequent migration of C&C servers turns blacklists inefficient.
It may seem unlikely to still be able to detect such C&C channels. However,

in Chapter 4, we address the problem of recognizing command and control flows
of botnets and show that, using traffic analysis features, we can infer a model to
correctly classify C&C channels of more than 35 distinct prevalent bot families
among network traffic of contained malware analysis environments. A key feature
of our traffic analysis approach lies in the sequence of message lengths of C&C
flows.

Detecting botnets with DNS as carrier for command and control

Traditionally, botnets designed their C&C protocols to be based on IRC and later
on HTTP. Similarly, a body of related work exists on the detection of IRC- and
HTTP-based command and control protocols. However, taking disguise of botnet
command and control channels to the next level, we have discovered Feederbot, a
botnet that uses the DNS protocol as carrier for its command and control. Being
the first of this kind, we reverse engineered and investigated this botnet in detail,
disclosing the techniques employed to hide their encrypted C&C traffic in regular
DNS requests and responses.
Additionally, we face the challenge to design a detection approach. Although

the botmasters employ DNS tunneling techniques, we show in this thesis that
our specifically tailored method can still detect botnets that use DNS as carrier
protocol for its C&C. Using our classifier, we have even discovered an independent
second botnet that, too, builds its C&C upon the DNS protocol. Furthermore, we
evaluate our approach on mixed network traffic with benign users’ network traffic
in order to show that this approach can even be used in real-world environments
to detect DNS-based botnets.

Detection of visual monetization plane activities

Given the fact that remote-controlled malware depends on network communica-
tion, aiming to detect malware based on command and control traffic features, as
described in Chapters 4 and 5, seems natural. Complementary to the command
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and control plane, we can try to detect malicious software by its monetization
technique. Recently, one important monetization technique has consisted in a
kind of malicious software termed rogue visual malware, which aims at luring
the innocent user into spending money on a rogue software product. Prevalent
examples of rogue visual malware are fake antivirus software (Fake A/V) and
ransomware.
In this thesis, we study essential properties of rogue visual malware and propose

a method to recognize malware based on its graphical user interface. Especially
in face of very low antivirus detection rates of rogue visual malware binaries –
ranging as low as 10% of all binaries per campaign – our methodology points
towards a new approach of detecting malware by exploiting its visual perception.
In addition, our approach supports a human analyst in identifying rogue visual
malware campaigns. Furthermore, using the results of our approach, we provide
insights into the monetization and localization habits of rogue visual malware
campaigns, based on data of more than two years.

1.3 Thesis Outline
This thesis is structured as follows. Since this work combines techniques from ma-
chine learning with the task of detecting malware, Chapter 2 provides background
information on properties of malicious software as well as recurring concepts of
machine learning. We will cover the general process on how to apply unsupervised
and supervised machine learning to a given malware detection approach, starting
with the compilation of a dataset and concluding with evaluation methods.
Subsequently, motivated to compile a correct and sound dataset, Chapter 3

describes our approach of building a contained environment for dynamic malware
analysis. In addition, we provide examples on how to inspect the results of a
binary execution in order to assign ground truth labels to samples of the dataset.
For subsequent experiments throughout this thesis, we will always refer to the
Sandnet dataset.
Recently, botnets have evolved and many bot families now employ obfuscated

or encrypted command and control channels. This renders previous approaches
of recognizing botnet C&C channels ineffective. For example, payload pattern
matching is defeated by C&C message encryption. Furthermore, the nomadic
character of modern centralized botnets, where the C&C server is migrated from
one domain, Autonomous System and IP address range to another, avoids black-
list approaches. The same holds true for botnets with a distributed C&C archi-
tecture. Despite the countermeasures taken by botmasters, we will address the
problem of recognizing command and control flows in Chapter 4. We will show
that our methodology of exploiting traffic analysis features successfully recognizes
even encrypted botnet C&C channels.
Having identified a new kind of botnet C&C, namely botnets that use DNS

7



1 Introduction

as carrier for its command and control protocol, in Chapter 5, we provide a case
study on such a botnet and design a detection approach. Again, we show that
our classifier successfully detects DNS-based botnets, effectively revealing another
botnet which uses DNS as C&C carrier protocol. Furthermore, our approach is
even able to detect DNS-based botnets in network traffic mixed with that of
benign users.
Chapter 6 focuses on a complementary detection approach for remote-controlled

malware by exploiting the monetization visibility. Rogue visual malware is a class
of malware that builds on graphical user interfaces, a key property that we ex-
ploit in our detection methodology. We show that the similarity among graphical
user interfaces of one family is reflected in our perceptual clustering approach,
effectively structuring a set of more than 200,000 executions of malware bina-
ries. Concluding our work on rogue visual malware, we provide insights into
and compare monetization and localization means of Fake A/V and ransomware
campaigns.
Finally, Chapter 7 concludes this thesis by providing a summary and outlining

directions of future research.

1.4 List of Publications
This thesis aggregates research on the detection of malicious remote-controlled
software. While containing unpublished work, in large part, it consists of the
following publications:

• “Sandnet: Network Traffic Analysis of Malicious Software” (co-authored
with Christian Rossow) [RDB+11]

• “On Botnets that use DNS for Command and Control” [DRF+11]

• “CoCoSpot: Clustering and Recognizing Botnet Command and Control
Channels using Traffic Analysis” [DRP12a]

• “Exploiting Visual Appearance to Cluster and Detect Rogue Software”
[DRP13]

The part concerning the design and implementation of Sandnet in Chapter 3
is joint work with Rossow and has not been published before. Subsequent results
have been published together with Rossow, Bos, Cavallaro, van Steen, Freiling
and Pohlmann [RDB+11].
The identification and recognition of botnet command and control channels as

proposed in Chapter 4 are based on a journal article together with Rossow and
Pohlmann [DRP12a]. Additionally, this work has been refined and re-evaluated
on a larger dataset in August 2012.
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1.4 List of Publications

Chapter 5 provides our insights on botnets using DNS as carrier protocol for
command and control. This work has been published in a paper together with
Rossow, Freiling, Bos, van Steen and Pohlmann [DRF+11].
Furthermore, we contributed to the following publications, but they have not

been included in this thesis:

• “eID Online Authentication Network Threat Model, Attacks and Implica-
tions” [DRP12b]

• “Large-Scale Analysis of Malware Downloaders” [RDB12]

• “Prudent Practices for Designing Malware Experiments: Status Quo and
Outlook” [RDK+12]

• “Manufacturing Compromise: The Emergence of Exploit-as-a-Service” [GBC+12]
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Chapter2
Background

Before digging into the technical approaches of detecting remote-controlled mal-
ware, this chapter provides background information on recurring terms and con-
cepts throughout this thesis. The methodologies that were developed as part
of this thesis combine techniques from the domain of machine learning with the
field of malware detection. Therefore, we will discuss basic aspects of both areas.
First, we provide a definition and an overview over botnets or more formally,
remote-controlled malware. Subsequently, we introduce machine learning tech-
niques used throughout the remaining experiments of this thesis.

2.1 Remote-Controlled Malware
Increasingly, malware depends on network communication. To a great degree,
current malicious software is programmed in a remote-controllable manner. It
receives instructions over the Internet and sends back information. The prop-
erty of being remote-controlled enables an attacker – in this context referred to
as botmaster – to change the functionality of the malware after having infected
computers in the wild. Whenever the bot master faces countermeasures, the bots
can thus be updated in order to circumvent the countermeasures. Furthermore,
there is a variety of ways how malware monetizes infected computers, most of
which heavily depend on Internet communication. Consequently, network com-
munication is inevitable for most modern malware.

Definition. For the scope of this thesis, remote-controlled malicious software is
defined as software which fulfills the following two conditions:

• The software is remote-controlled by means of network communication.

• The software employs malicious monetization, i.e., it monetizes information
or resources from or via the victim user or his/her computer.
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Thus, remote-controlled malicious software requires a network-based command
and control (C&C) plane. The C&C plane is used to instruct the bots and to
report back to the controlling unit. For example, the C&C plane is used for the
botmaster to instruct a bot to send spam and, vice versa, to report on the mail
submission back to the C&C peer. In addition, the monetization plane covers
the techniques to monetize on the victim. For example, such monetization might
include the actual sending of spam messages, performing click fraud, denial-of-
service attacks as well as to steal personal information such as online banking
credentials.

Command and Control Plane

The command and control plane is an essential component of malicious remote-
controlled software and enables an attacker to remotely instruct instances of its
software. Figure 2.1 shows the two prevalent C&C architectures of malicious
remote-controlled software. The command and control architecture is separated
into centralized and distributed structures. While a centralized structure consists
of a single controlling unit, possibly enhanced by one or more backup controlling
units, the distributed C&C architecture exhibits an underlying distributed system
such as a peer-to-peer network. In the later case, every bot can potentially act
as a C&C peer by distributing commands or aggregating gathered information
from other peers. A significant advantage of the distributed C&C architecture in
terms of resilience is to avoid a single point of failure, which in the centralized
C&C architecture translates to the dedicated C&C server entity.

Figure 2.1: Centralized and distributed command and control architectures

As each malware author designs and defines the details of the command and
control plane of her bot families, the C&C plane implementations are typically
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very diverse in nature. This means that, on the one hand, the unique character
of a bot family’s C&C plane implementation – once grasped – might serve well
as a recognition property. On the other hand, the lack of general constraints
on the C&C plane allows the attacker to define the C&C plane techniques in a
flexible and volatile way. Botmasters are free to change the C&C plane technique
frequently, or, with steganography in mind, design it in a very similar fashion as
well-known legitimate communication means.
We will use the following definition of the term C&C protocol.

Definition. A C&C protocol is the protocol that is used to communicate instruc-
tions and reports, signal a bot’s state and availability as well as transmit bot
program updates between one or more bots and the controlling entity, the bot-
master.

In face of the detection of command and control plane communication, we
observe that once the C&C plane communication is identified, it serves as a
reliable recognition attribute. However, as the C&C plane communication may
be encrypted or obfuscated, the identification itself can be a challenging task.

Monetization Plane

Malware authors target financial gain. Thus, the monetization plane grasps those
techniques (and preparations thereof) that the attacker employs in order to have
money transferred to her benefit. Malicious remote-controlled software can be
separated concerning the visibility of monetization techniques on an infected com-
puter. Sending spam email messages or logging keystrokes usually takes place in
the background without the victim user noticing. Similarly, click fraud is typi-
cally performed as a background job without any interface elements noticeable to
the user. This kind of monetization is thus considered covert. However, certain
monetization techniques require the user to interact. For example, a recent mon-
etization technique consists in fake antivirus software luring the user into buying
a fake software product. Likewise, ransomware extorts users to pay in order to
unlock their computers. In the latter cases, the malware is forced to display a
user interface and its monetization technique can thus be classified as exposed.
In contrast to the C&C plane, to a certain degree, the techniques in the mon-

etization plane have to obey outer constraints. For example, a spam bot has to
comply with the general email delivery process, e.g., speaking the SMTP protocol
and addressing well-defined mail servers. Similarly, a fake antivirus software has
to expose a certain user interface which lures the victim into spending money.
These constraints may help in the detection process, because the malware

authors are restricted, e.g., in the network protocols and their usage. Thus,
the obfuscation of the monetization plane activities becomes much more limited.
More precisely, with regard to detection, we observe that monetization plane
activities form monetization-dependent recognition attributes. However, when
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compared to C&C plane recognition, monetization plane recognition attributes
can be more volatile because the duration of monetization campaigns may be
shorter than the C&C plane design and not all monetization techniques expose
recognizable attributes.

2.2 Machine Learning for Malware Detection
One way of addressing and possibly mitigating the ever-changing appearance of
malicious software is to infer structures and dependencies among malware which
are not obvious at first sight. These structures may only be discovered when
analyzing a diverse set of malware and in comparison with benign counterparts.
For example, even though the malware binaries of a certain bot family employ
an encrypted communication channel for command and control, we might still be
able to model the communication behavior that is characteristic for this malware
family. Such a model could only be inferred after having analyzed lots of different
samples of the malware family in question in addition to a diverse set of other
families’ communication. Finally, if a model can be inferred, this communication
model will serve as a means to detect further instances of the same malware
family.
In order to programmatically follow this approach, we turn to machine learn-

ing. Machine learning techniques deal with the modeling of relationships and
dependencies among sets of data. In this thesis, we apply machine learning to
the domain of malware detection. The overall process of applying a machine
learning technique consists of several steps. In the following, we will provide a
general overview, partly enriched with recommendations based on the guidelines
developed by Rossow et al. [RDK+12].

Dataset compilation. First, a dataset covering instances of the data in ques-
tion must be compiled. In general, the more diversity the dataset covers, the
more likely it is to also cover the difficult and challenging cases for the chosen
approach. It is exactly those challenging cases, that help to judge if the derived
model can reliably be used for detection in an application context. In practice,
the size of the dataset and its diversity are typically limited by outer constraints
such as limited time and a limited number of sensors where to acquire instances.
For the experiments in this thesis, we often turn to the Sandnet dataset. In
order to maximize diversity, for example, we distribute instances over several
distinct malware families and points in time. Furthermore, we maximize the
number of instances to be used for the experiment. Care should be taken to
avoid artifacts in the dataset, as they might influence the learning process in an
undesired fashion – especially when combining datasets of distinct sources which
might exhibit different artifacts. If available, the instances of the dataset should
be labeled using ground truth, because these labels allow for evaluation of sub-
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sequently developed models. Based on the labels the dataset can be subdivided
into classes. In addition, when labeled datasets are available, we try to avoid a
skewed training set, i.e., we make sure that each class is represented with roughly
the same number of instances in the training dataset.

Feature Extraction. Second, features need to be defined and extracted from
the dataset. The design and choice of the features depends largely on the specific
goal of an experiment and its application. We will therefore provide the feature
definitions in each of the subsequent chapters containing machine learning ex-
periments. In general, having a certain experiment’s goal in mind, the features
should be able to express the distinction between any of the classes in the dataset
involved.
Kinds of features for network traffic can be distinguished into numerical fea-

tures, sequential features and syntactical features as proposed by Rieck [Rie09].
In addition, depending on the learning algorithm, features may need to be scaled
and normalized. Features can be combined into a multidimensional vector. The
aggregation of multiple features is referred to as a feature vector, spanning a fea-
ture space. For some learning algorithms, redundancy in the features of a feature
vector may bias the learning result. As a precaution, we take care during the
feature extraction process to be aware of dependencies or redundancies among
features.

Dissimilarity or distance measure. Based on the feature space, the dissimi-
larity between any two instances is measured using a dissimilarity or distance
function. Again, the specific distance function depends on the feature space,
the context and the semantics of a certain experiment, and is thus defined in
each experiment of this thesis individually. In general, a distance function is a
function d(u, v), which, given two feature vectors u and v, returns a value in
the range R+

0 . Similar feature vectors exhibit a low distance while dissimilar in-
stances have a higher distance. Examples for distance functions are the Euclidean
distance, the Hamming distance or the Levenshtein distance.
Furthermore, the distance function can be a function composed of several dis-

tance functions for each feature dimension. Assume a feature vector of two di-
mensions with one string feature and one set-of-bigram feature. While the string
feature might fit the Levenshtein distance [Lev65], the bigram dimension requires
a different distance function, such as the Jaccard distance [LW71].

Unsupervised learning. Machine learning techniques are divided into unsuper-
vised and supervised learning. While unsupervised learning strives to structure
a given dataset into subclasses, supervised learning targets the classification or
prediction of previously unseen instances. Clustering is a prevalent example for
unsupervised learning and it is particularly useful to find yet unknown properties
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(a) An example dataset with two labeled classes A and B.

(b) Each class contains fine-grained clusters.

Figure 2.2: Clustering refines the labeled classes A and B (solid boxes) into fine-
grained subclasses (dotted ellipses).
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of the underlying data. Thus, it can be used to split an unlabeled dataset into
clusters of similar instances. From the perspective of malware detection, cluster-
ing addresses the identification part where a set of samples is decomposed into
clusters and each cluster can then be labeled individually.
Using a labeled dataset, clustering can be evaluated on the replicability of the

classes in the dataset. In this case, the labels are not used during the clustering
phase, but only in the evaluation Here, the accordance of the clusters with the
labeled classes provides a measure of replicability by the clustering. Furthermore,
depending on the resolution of the labels in a given labeled dataset, clustering
can be used to refine the structure of the dataset, resulting in more compact
subclasses. Figure 2.2(a) shows an example dataset with class labels A and B,
depicted in a two-dimensional feature space. Clearly, the instances can be split
into their labeled classes A and B. However, if applying clustering to this dataset,
clusters that represent compact subclasses in each of the classes result. These
clusters are depicted as dotted ellipses in Figure 2.2(b). This process can be
helpful when the original class labels are coarse but the identification, or even
later on the recognition, targets towards more fine-grained classes. One practical
example is given by two coarse classes of network traffic samples, e.g., malicious
and benign, while the malicious class consists of command and control flows of
several distinct malware families. In this case, it might be useful to cluster the
malicious class into subclasses per malware family, especially if the recognition
phase aims at recognizing command and control flows on a per-family basis.

Supervised learning. Supervised learning derives a model from a set of training
instances and, using this model, classifies previously unseen instances. Examples
for supervised learning are classification and regression. While regression refers to
prediction functions with continuous output values, classification deals with filing
instances into discrete classes. In the scope of this thesis, referring to malware
detection, supervised learning addresses the recognition task. Thus, we focus on
classification instead of regression, because we typically deal with discrete classes.
Supervised learning can benefit from the results of a preceding unsupervised

learning step, e.g., clustering. Particularly when the original dataset exhibits
coarse labels, using the subclasses resulting from clustering instead can improve
classification results.

Evaluation. Finally, in order to measure the accuracy of a detection approach,
we turn to evaluation techniques. If possible, ground truth data is used to measure
the accuracy. Evaluation is performed differently for unsupervised and supervised
learning. In turn, the following sections will describe the evaluation approaches
for clustering and classification.

17



2 Background

2.2.1 Clustering Evaluation
Since hierarchical clustering is used in several experiments of this thesis, its evalu-
ation methodology is described in a general fashion in this section. Nevertheless,
we will provide a detailed evaluation procedure for each experiment. In general,
clustering aims to structure a given dataset into clusters or subclasses of simi-
lar instances. Given a specific context, the clustering results can be evaluated
by measuring the correspondence of clusters to previously assigned class labels,
i.e., ground truth.
To evaluate how well a clustering represents the labeled dataset, we use two

measures from the area of unsupervised learning and originally defined in the
context of information retrieval [vR79]. First, we measure the precision, which
represents how well our clustering separates instances of different classes into dis-
joint clusters. Second, we compute the recall, which measures if similar instances
are grouped into the same cluster. Formally, let T be the set of ground truth
classes in the labeled dataset, C the set of created clusters, m = |T |, n = |C|
and the total number of instances to be clustered is s = ∑n

i=1 |Ci|. We define
precision P as

P = 1
s

n∑
i=1

Pi = 1
s

n∑
i=1

max(|Ci ∩ T1|, |Ci ∩ T2|, ..., |Ci ∩ Tm|) (2.1)

and recall R as

R = 1
s

m∑
i=1

Ri = 1
s

m∑
i=1

max(|C1 ∩ Ti|, |C2 ∩ Ti|, ..., |Cn ∩ Ti|) (2.2)

A high precision translates to clusters that separate well between instances
of the two classes, i.e., clusters tend to only contain instances of one class. In
addition, a high recall reflects that a high number of instances of one class are
aggregated into one cluster. Figure 2.2.1 shows examples for the combinations of
precision and recall, given a dataset with instances of two classes A (dots) and
B (squares). Clusters are represented by dotted ellipses. Figure 2.2.1 a) reflects
both, a low precision (P = 0.5, R = 0.2) because instances of distinct classes are
not split into different clusters, as well as low recall since each cluster contains
one instance per class at most. In case of Figure 2.2.1 b), the recall is high (R =
1) because all instances per class are grouped into the same cluster. However,
precision is low (P = 0.5) because there is still no distinction between instances
of distinct classes. Vice versa, Figure 2.2.1 c) indicates low recall (R = 0.4) and
high precision (P = 1). Clearly, the best clustering performance is displayed in
Figure 2.2.1 d) which exhibits high precision (P = 1) and high recall (R = 1). In
this case, the clustering results reproduce the structure of the dataset as given
by the class labels.
Throughout this thesis, we strive for a high precision, because instances of
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Figure 2.3: Examples for clustering results measured using precision and recall.
Dotted ellipses symbolize the resulting clusters.
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distinct families should be filed into different clusters. However, in practice,
precision and recall form a trade-off. With higher precision, recall decreases and
vice versa. In this case, we slightly favor a high precision over a high recall. In
other words, under certain circumstances, it is tolerable, if the instances of one
class spread over more than one cluster. One such exemplary reason could be
that the clustering results in more fine-grained clusters than the resolution of the
class labels reveal. For example, imagine to cluster a dataset of fruit, covering
apples and citrus fruit. While the class labels may only provide the two fruit
species apples and citrus fruit, the clustering might even distinguish the sort
of fruit among each of the classes, e.g., lime, orange and lemon among citrus
fruit as well as Granny Smith and Cox Orange among apples.
In face of clustering evaluation, we need to be able to tolerate multiple clusters

for one class, but have to avoid too generic clusters by mixing different classes into
the same cluster. One way to deal with this requirement is to combine precision
and recall in a weighted score and prioritize precision over recall. Formally, we use
the F-measure [vR79] to evaluate the performance of a clustering with threshold
th and a weighting parameter β, with β < 1 reflecting higher weight on precision
over recall:

F-measureth = (1 + β2) · Pth · Rth

β2 · Pth +Rth

(2.3)

We will refer to F-measure in each of the subsequent chapters when dealing
with clustering evaluation and provide a reasonable value for the parameter β
depending on the context.

2.2.2 Classification Evaluation
While for clustering evaluation we apply precision and recall, for classification,
we evaluate using false negative and false positive rates. An instance which by
ground truth is assigned to class A but where the classifier erroneously predicts
it not to be of class A is considered a false negative. Vice versa, a false positive
occurs if an instance is not considered to be of class A (by ground truth), but
the classifier incorrectly assigns it to class A.
Especially for supervised machine learning approaches, there is a general trade-

off between memorization and generalization. Whereas memorization will per-
fectly reproduce the classification results on instances that were used during
training, it will fail for yet unknown instances. In the machine learning con-
text, this pitfall is called overfitting. In contrast, too broad of a generalization
will result in less accuracy of the classification – a phenomenon typically referred
to as underfitting. Ideally, we strive for the right balance between underfitting
and overfitting. This methodology is called structural risk minimization and has
initially been proposed by Vapnik [Vap95].
One way of measuring the fitness of a derived model and estimate its accu-

racy on an independent dataset is provided by cross-validation. Cross-validation
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deals with a repeated classification and evaluation on different subsets of a given
dataset. In this thesis, we turn to k-fold cross-validation [Sto74] which works
as follows. The training and validation datasets are split into k subsets. Then,
k − 1 subsets are used for the training phase, while the remaining subset is used
for the validation. This process is repeated until each subset has been used once
as validation subset. The mean of the resulting false positive and false negatives
rates can help to estimate the performance of a given classifier on an independent
dataset.

2.3 Summary
In this chapter, we introduced the foundations of machine learning techniques
as well as the required concepts and definitions on malicious remote-controlled
malware. Used throughout the remainder of this thesis, these concepts form basic
blocks for our detection methodologies.
In the following chapters, we will design and implement detection approaches

in order to identify and recognize botnet command and control channels as well
as visual monetization techniques.

21





Chapter3
Malware Analysis using Sandnet

3.1 Introduction
Often, analyzing malicious software is not a straight-forward process. Since mal-
ware authors strive to evade detection, they employ a variety of means to hin-
der the analysis and the detection of their malicious binaries. As an example,
the static analysis of PE binaries is typically hindered by custom compression
and obfuscation techniques of the PE binary, an approach referred to as pack-
ing [GFC08, MCJ07, DRSL08]. Only during runtime, the PE binary unpacks it-
self in memory. As understanding the (un)packing algorithm of a certain malware
binary is tedious, researchers turned towards executing the binary and analyzing
the binary during its execution. This approach is typically referred to as dynamic
malware analysis [WHF07].
In order to study the malware phenomenon, we designed a contained dynamic

malware analysis environment, called Sandnet [RDB+11]. The name Sandnet
is derived from “sandbox”, referring to a contained execution environment for
malware without harming the outside world, and “network” due to our special
regard to malicious network traffic. Sandnet focuses on dynamic malware analy-
sis, i.e., the automated execution of Windows PE binaries. Therefore, Sandnet
captures the network traffic emitted during the malware binary execution and
records the graphics output by taking screenshots. Furthermore, we enhanced
Sandnet by means of static analysis of PE binaries as well as an extensive
post-processing analysis, including payload-based protocol detection and parsers
for well-known application layer protocols. The output of the post-processing is
stored in a PostgreSQL database.
As a result, the Sandnet database constitutes a dataset of malicious PE bina-

ries as well as their execution results including the network traffic and screenshots.
This dataset serves as the basis for our subsequent research on detecting malicious
remote-controlled software. Depending on the dedicated goal of an experiment, it
is usually required to compile a subset of certain kinds of samples. For example,
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as some binaries are acquired from public submission, it is not guaranteed that all
binaries are indeed malicious. We have observed cases where legitimate software,
such as the default Windows Notepad program have been submitted. Thus, we
will discuss how the dataset for each experiment is compiled before performing
the actual clustering or classification experiment. One possible way of compiling
a reliable dataset for an experiment is achieved by manually inspecting (a ran-
dom subset of) the samples to be included. In order to make the manual review
of samples as efficient and comfortable as possible for a human analyst, we ex-
tended Sandnet with a web interface. Section 3.4 describes one example of how
we designed a web interface view on the network traffic emitted by an executed
binary. Throughout this chapter, we will describe the design of Sandnet and,
where appropriate, provide statistics based on the resulting Sandnet data.

3.2 Sandnet Architecture
Every day, thousands of malware binaries hit the collection sensors of researchers
and antivirus companies. To a certain degree, the amount of malware samples
makes dynamic malware analysis a scalability problem. Thus, we designed Sand-
net in a distributed, scalable manner. Figure 3.1 shows the overall Sandnet
architecture.
Each binary is executed in a pre-configured virtual machine, called Sandpuppet,

running Windows XP 32bit with Service Pack 3. Additionally, a sandpuppet has
typical applications installed, such as browsers, Flash plugins, PDF readers and
media players as well as language packs for foreign languages including Chinese,
Japanese and Russian. Having these additional language packs installed allows us
to run malware which requires support for foreign languages. The host computers
for the virtual machines are termed herders. In this thesis, all experiments are
based on malware execution using the Windows XP SP3 32bit sandpuppet.
In order to limit potential harm to others while running malware, we take care

in filtering out harmful traffic. Therefore, we deploy containment policies that
redirect harmful traffic, e.g., spam and infections, to local honeypots. Further-
more, we limit the number of concurrent connections and the network bandwidth
to mitigate denial of service activities. An in-path network intrusion detection
system (honeywall) watches for security breaches during our experiments. The
filtering component operates on a per-sandpuppet basis and transparently seg-
ments the sandpuppet-local network on the data link layer. By this means, the
communication between two sandpuppets can be regulated. Since malware strives
to propagate, it often spreads autonomously. If communication between sand-
puppets was not regulated, the binary executed in one sandpuppet might infect
another sandpuppet, influencing the results of both executions. By containment
policy, we can still allow communication among sandpuppets, if required in an
experiment. However, usually we prevent such communication among sandpup-
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Figure 3.1: Sandnet Architecture
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pets. We consider the separation of network segments per sandpuppet a very
important property in order to prevent unwanted influence on execution results.
Furthermore, the fact that filtering the network traffic takes place on each

herder, instead of a single entity, allows for better scalability. Each herder pro-
vides its sandpuppets with filtering instances. Thus, given enough uplink ca-
pacity, in order to increase the processing throughput of Sandnet, herders can
be added. While in practice, several herders use the same spam trap and hon-
eypots, the Sandnet architecture also allows for several spam traps and hon-
eypots, e.g., for load balancing. However, during our Sandnet operation we
never saturated the capacity of the service simulation, spam trap or honeypot
farm. Similarly, the uplink capacity was never saturated because we force each
sandpuppet to the maximum bandwidth and packet rate of a typical dialup DSL
line.
Apart from the execution environment which consists of a set of herders, Sand-

net provides management components that take care of acquiring new binaries,
scheduling binary executions and post-processing the raw results of the binary
executions. Based on the set of malware binaries, the Sandnet controller sched-
ules binaries for execution in the execution queue which then serves as source for
the sandpuppets. Usually, scheduling considers the age of a sample, making sure
that recent binaries are executed. This is an important aspect in order to compile
a set of active remote-controlled malware executions, because the older a binary,
the less likely it is to be able to reach its command and control peers. Further-
more, we acquire antivirus labels for the binaries by help of VirusTotal. For the
five antivirus vendors Microsoft, Symantec, Kaspersky, Avira and Eset, we parse
the returned labels into type, platform, family name and variant. This way, for
example, we can measure the diversity of binaries in terms of distinct families
and – if needed for an experiment – schedule a diverse set of binaries. Especially
in face of polymorphism, we can mitigate the prevalence of a few families by help
of distributing scheduled binaries over several distinct antivirus family labels.
Once a binary has been executed, the post-processors dissect the network traffic

of the execution, extract and transform the raw execution results into structured
and easily processable form by storing the results in an object-relational Post-
greSQL database. In addition, the results are enriched by correlating with exter-
nal sources, such as origin AS and routing paths from BGP feeds, geolocalization
of involved IP addresses as well as reverse DNS information. For subsequent
analyses, the Sandnet database is thus the primary source of input data.

3.3 Segmentation and Dissection of Network Traffic
In order to extract features from network traffic, it is essential to develop data
structures which provide access to the syntactic fields of the involved network
protocols. However, it is often difficult to determine the level of detail required to
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Figure 3.2: Abstract representations of network traffic as superflows, flows, mes-
sages and frames

achieve the goal of an experiment in advance. On the one hand, a high resolution
in the parsed data structures provides a fine-grained access to all fields of a specific
network protocol. On the other hand, today’s networks have high bandwidths
and large data volumes which makes analyzing network traffic as a whole in
such environments infeasible. As a result, we are forced to restrict ourselves
to data structures that provide an abstract view on the network traffic. Thus,
with performance and efficiency in mind, it is advantageous to parse only as few
structures as required. Where applicable, we therefore focus intentionally on a
representation of network traffic where only a very small fraction of the whole
traffic is distilled.
For Sandnet network traffic, we decided to reassemble TCP and UDP streams.

Moreover, we developed parsers for the application layer protocols DNS, HTTP,
SMTP, IRC, FTP and TLS. The parsers have intentionally been developed by
hand so that syntax errors can be detected in detail and handled in a custom
fashion. The DNS parsing results are fed to a passive DNS database. For all
streams other than DNS, we assign the domain name that was used to resolve
the destination IP address to the stream. This is useful in order to compare the
domain name, for example, to the Host-Header in HTTP or the server name of
the Server Name Indication extension in TLS.
Furthermore, we develop heuristics for the segmentation of unknown applica-

tion layer protocols into messages. In general, we designed a data model for TCP-
and UDP-based network traffic and its dissected protocol information, providing
three layers of abstraction, namely superflows, flows and messages. Figure 3.2
shows the relationship between the different levels of abstraction of network traf-
fic.
A flow represents the notion of a communication channel between two entities

in terms of one network connection. It is uniquely identified by the 5-tuple:
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transport layer protocol l4p (TCP or UDP), source sip and destination IP address
dip as well as source port sp and destination port dp. Additionally, a flow contains
contextual information such as start ts and end times te and comprises the list
of computed flow properties, such as the number of messages and the results of
payload-based protocol determination. Formally, we define a flow f

f := 〈 l4p, sip, dip, sp, dp, ts, te 〈properties 〉 〉

Flows directed to the same destination can be aggregated into superflows. In
this case, we do not include the source port in the unique identifier of a superflow,
because in this context, we want a flow to be able to span multiple streams to
the same destination IP address and port with different source ports. As an
example, several HTTP connections between the same source and destination can
have varying source ports whereas the transport layer protocol, the source and
destination addresses as well as the destination port stay the same. A superflow is
uniquely identified by the following 4-tuple (neglecting the source port): transport
layer protocol l4p (TCP or UDP), source sip and destination IP address dip as
well as destination port dp. Formally, we define a superflow fs

fs := 〈 l4p, sip, dip, dp, ts, te 〈properties 〉 〉

Just as a flow, a superflow is enhanced by a list of properties, depending on the
exact experiment’s use case.
Inspired by the fact that lots of application layer network protocols are designed

in a dialogue-like fashion, e.g., pairs of request and response such as HTTP,
SMTP and DNS, we heuristically split the packet payload of a flow into mes-
sages as follows. We define a message to be composed of all consecutive flow
payload transmitted in one direction until the direction of the payload trans-
mission changes, an inactivity timeout of t minutes is hit (typically with t = 5)
or a new stream is opened. The 5-minute-timeout stems from the fact that the
network egress router of the contained environment has a stream idle timeout
of 5 minutes. Frames without payload, especially those carrying only signaling
information such as TCP acknowledgements are ignored because they do not
contribute to the message payload. Additionally, we encountered flows which do
not follow the request-response rhythm, mostly because several requests are sent
before a response is received. We treat such cases depending on whether the
application layer protocol is known or not. If the application layer protocol is
known, we try to detect if duplicate messages were sent and if so, remove the
duplicates. However, if no duplicates were detected, but the protocol consists
of request-response cycles and requests and responses are interleaved, we restore
the request-response-cycle based on the parsed protocol information. For exam-
ple, if an HTTP flow consists of two subsequent requests before any of the two
responses is transmitted, we re-order the messages so that two request-response
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cycles emerge. If the application layer protocol is unknown, we keep multiple
subsequent messages going in the same direction.
Formally, a message mf of the flow f is thus defined as

mf := 〈 dir, len, ts, te, payload, 〈properties 〉 〉

where dir denotes the direction in which the message was transmitted, e.g., source
to destination or vice versa, len is the length of the message in bytes, ts and te are
timestamps of the message start and end, and payload comprises the message’s
payload. In case of HTTP, a message is extended by dissected protocol-specific
fields, namely the request URI and the request and response bodies. We use our
custom HTTP parser to extract these fields for all streams recognized as HTTP
by OpenDPI [ipo11].
Analogously, a message mfs of a superflow fs is thus defined as

mfs := 〈 dir, len, ts, te, payload, 〈properties 〉 〉

In order to apply machine learning to network traffic, we need to define and
extract features. The definition of the feature extraction process is presented
in each of the subsequent chapters, depending on the goal of the experiment.
However, the data structures for network traffic, defined in this chapter play an
important in subsequent work.

3.4 Visualization
In order to evaluate our experiments, ground truth labels need to be assigned
to the instances of a given dataset. Therefore, to inspect the execution results
of a binary, we designed a web interface on the execution results of Sandnet.
This section shows two important views of the web interface which were used
throughout the subsequent experiments in this thesis.
Figure 3.3 shows the network flows over time per execution. The x-axis corre-

lates to the relative time since the start of the execution of the binary with alter-
nating background column coloring every five minutes. On the y-axis, starting
from the top, the destinations of a superflow (or flow, respectively) are displayed
in terms of IP address or domain name, destination port as well as the country
code of the geolocalization result of the destination IP address. Additionally the
amount of traffic transmitted in this superflow is shown. Colored bars symbol-
ize superflows with colors denoting the application layer protocol as given by
payload-based protocol detection. For example, the red bars in Figure 3.3 corre-
late to two IRC superflows, blue denotes superflows with DNS, green symbolizes
HTTP traffic and fuchsia relates to HTTP traffic where an executable binary
has been downloaded. The border color of the bars provide additional informa-
tion such as whether a known C&C protocol was detected and labeled in the
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superflow.
While the clustering and classification experiments rely on programmatically

inferred features, the web interface assists in building a ground truth for these
experiments. For example, in the recognition of command and control channels
as part of CoCoSpot, we derived labels by inspecting executions of binaries using
this web interface view in order to identify candidate command and control flows.

Figure 3.3: Sandnet web interface’s superflows view, x-axis shows the time since
the binary is launched, y-axis shows superflow destination endpoints

Once candidate (super)flows are identified, the analyst switches to the message
view. Figure 3.4 displays the message view of a flow. If C&C communication is
in plain text, this view typically reveals the command and control instructions.
For example, in the first message in Figure 3.4, the bot reports that it runs on
Windows XP Service Pack 3. In return, as can be seen in the second message,
the C&C server instructs the bot to download four additional binaries from the
given URLs. These binaries will subsequently be executed.
In case of encrypted C&C channels, it is much more difficult to confirm, if a

given flow is command and control traffic or not. Some families appear suspicious
because the distribution of file types among the HTTP communication exhibits a
noticeable skew towards image types, possibly even images of only one file format.
Figure 3.5 shows an example for a concealed C&C protocol where the response
appears to be a bitmap image file. However, the preview in the pop-up shows that
the image file does not constitute a semantically valid image, but rather consists
of high-entropy contents depicted as seemingly, randomly distributed pixels. In
this case, it is an encrypted binary update camouflaged as a bitmap image. In
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Figure 3.4: Sandnet web interface’s message view shows the messages of a Virut
plain variant’s C&C flow.

addition, the mismatch of requested file type and response file type, i.e., the
fact that the request indicates to retrieve a JPEG image file, but the response
indicates a bitmap image file, underlines the suspicion of this HTTP transaction.
Some families strive towards steganographic C&C channels, especially if the

command and control traffic is concealed more carefully, such as C&C of the
Renos/Artro family, shown in Figure 3.6, where the C&C instructions are hidden
in valid images, transmitted via HTTP. In these concealed cases, we then turned
to manually reverse engineer the binary in order to judge and develop a decryption
routine for its C&C.
If the application layer protocol is detected and we have a parser for the proto-

col, the message view transparently shows the parsed message contents. In case
of an HTTP flow for example, each HTTP request or response is parsed trans-
parently, such that if compression or chunking was used, the message view will
instead show the decompressed body. In addition, as shown in Figure 3.6, if an
image was transmitted, this image can be shown in a preview pop-up window.

3.5 Dataset Overview and Evaluation
Between February 2010 and November 2012, Sandnet analyzed more than
410,588 MD5-distinct Windows PE binaries, out of a pool of 1,549,841 MD5-
distinct binaries. Since some binaries were executed multiple times, e.g., as part
of an experiment to monitor the command and control infrastructure, the total
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Figure 3.5: Sandnet web interface’s message view shows the request and the
parsed HTTP response of a C&C message concealed as a bitmap
image.
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Figure 3.6: Sandnet web interface’s message view shows the parsed HTTP re-
sponse of a C&C message concealed by a GIF image.

number of executions is 520,166, i.e., slightly higher than the number of binaries.
The total run time of all executions adds up to more than 34 years. Of the total
1,549,841 MD5-distinct binaries, 74.08% had at least one antivirus label assigned
that indicated malware by the time we queried VirusTotal. Thus, we can safely
assume that more than the majority of binaries is actually malicious. In total, the
executed binaries cover 2858 different families measured by Microsoft A/V labels,
2371 families by Kaspersky A/V labels or 2702 different families by Avira A/V
labels. Note that some binaries, although malicious, do not have any A/V labels
assigned, possibly because none of the A/V scanners at VirusTotal detected the
binary in question.
Malware labels as assigned by antivirus scanners have been used by researchers

and analysts in numerous experiments, e.g., as a ground truth for malware de-
tection or clustering approaches. However, because of missing labels or inconsis-
tencies in malware naming – especially by the different vendors – it gets harder
and harder to exactly determine which malware we are dealing with. As a re-
sult, A/V labels do not always fit well for evaluation purposes. Therefore, we
manually developed means to recognize network traffic of certain prevalent bot
families as well as decrypt and parse their C&C traffic, effectively tracking the
C&C activities of the corresponding botnets.
Furthermore, one focus of this thesis deals with the detection of C&C com-

munication. While the majority of botnets exposes a centralized C&C archi-
tecture, our dataset covers botnets with both C&C architectures, centralized as
well as peer-to-peer C&C. Among botnets with a centralized C&C architecture,
our tracking spans well-known botnet families such as Bredolab [dGFG12], Car-
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berp, Cutwail [SGHSV11], Harnig, Koobface [Vil10], Mariposa [SBBD10], Meb-
root/Sinowal [SGHSV11], Mega-D/Ozdok [CCG+10], Palevo/Rimecud, Pushdo,
Renos/Artro, Rustock [CL07], Sality, Tedroo/Grum and Virut. However, next
to these well-known botnets, new families have emerged, e.g., Kuluoz, Feederbot,
Morto, and Chebri. In addition, also toolkit-based botnets are included in our
dataset, such as Spyeye and Zeus. For peer-to-peer botnets, the dataset spans
Zeus P2P, Sality P2P, Miner [Wer11b, PGP12], Hlux/Kelihos [Wer11a] as well
as Sirefef/ZeroAccess P2P.
Throughout our analysis period of more than two and a half years, we have

seen several botnets come and go. Some botnets have faced dedicated takedowns,
such as Rustock, Mega-D and Pushdo, while others cease without further ado.
When using malicious network traffic, especially command and control traffic, as
a basis for detection experiments, it is advantageous to measure the activity of
the C&C channels involved. In general, while we handle a diverse set of binaries,
some binaries might already be outdated, i.e., their C&C peers might no longer be
reachable. However, we are especially interested in those binaries that actually
manage to become part of a botnet and consider the respective executions as
active. As a result, we strive to compile a set of active executions which cover a
diverse set of malware families.
By help of our tracking means, we are able to classify the activity of C&C chan-

nels. Figure 3.7 graphs the activity of the top 25 botnets in terms of consecutive
C&C activity by family, as seen and covered by our tracking means in Sandnet,
as well as public attention. The x-axis reflects the time period since February, 1st,
2010 until October, 31st, 2012, while the y-axis lists well-known botnet families.
A star depicts a dedicated takedown action. Note that, in case of Mariposa and
Mega-D, the takedown actions have taken place before the beginning of the time
period in this graph. The Mariposa takedown has occurred on December 23rd,
2009 [Cor10], and Mega-D has been taken down in November 2009 [Mus09]. In
these cases, the stars are placed on the start of the time period in Figure 3.7 in
order to visualize the preceding takedown. A thin black line with black markers
represents the time period where new binaries are acquired, but none of the bi-
naries exhibit an active C&C channel. A thick fuchsia bar represents the time
periods where active C&C communication has been observed, per botnet family.
Note that the monitoring time period has been interrupted by two maintenance
periods of Sandnet, from mid-February to mid-March 2011 as well as end-May
to mid-July 2012. Furthermore, some families exhibit distinct botnets. For ex-
ample, in case of toolkit-based families such as Zeus and SpyEye, several distinct
botnets may be formed. In our C&C activity tracking, we restrict ourselves to
whole families instead of individual botnets on purpose. While Figure 3.7 shows
only a fraction of the tracked botnets, the total number of families covered by
our tracking means is 153. This way, we can make sure to cover a diverse set of
bot families without even having to rely on A/V labels.
On the one hand, as can be seen in Figure 3.7, the takedowns of the Bredolab
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[Wil10], Mega-D [Mus09] as well as the Rustock botnet [Wil11] have a long-lasting
effect. Although for Bredolab and Mega-D we witness active C&C during up to
several months after the takedowns, none of these botnets manage to achieve
active C&C communication in the long run. On the other hand, we have seen
quite a few botnet families resurrect from takedowns. For example, researchers
initiated a takedown of the Pushdo botnet in August 2010. However, even two
years after the takedown, we still observe active executions of Pushdo. The Mari-
posa botnet is believed to have been taken down in December 2009 [Cor10], but
we have seen active Mariposa command and control traffic ever since. Similarly,
although the Nitol botnets have been taken down in September 2012 [Bos12],
many Nitol binaries manage to successfully bootstrap and reach a viable C&C
server. In addition, the Tedroo botnet has been addressed in a takedown action
on July, 19th, 2012 [Mus12]. However, again, we observed active C&C communi-
cation of the same botnet family just within days after the takedown, continuing
for at least three months. From an observational point of view, the challenge of
botnet family takedowns lies in their sustain.
Some botnets even cease without a dedicated takedown of the C&C infras-

tructure. For example, the Miner botnet has not been addressed in a dedicated
operation of its peer-to-peer-based C&C, but its activity diminished significantly
after October 2011. Similarly, the Renos botnet has ceased its operation, possibly
after removal signatures addressing the Renos binaries have been distributed by
Microsoft as part of its Removal Tool MSRT [Rad11].
Figure 3.8 shows the C&C activity of botnets that expose Fake A/V or Ran-

somware as monetization technique. Over time, the diversity of rogue visual
malware families has increased in prevalence throughout 2011. Of the botnet
families shown in Figure 3.8, Ransom and Urausy demand ransom for monetiza-
tion, while all other families focus on Scareware and Fake A/V. The prevalence
of active bot families using rogue visual monetization techniques underlines the
importance of this trend. Thus, we will specifically deal with this kind of mone-
tization in Chapter 6.
An interesting question is to what degree the executable binaries per botnet

family manage to evade antivirus detection. Therefore, we turn to our C&C
tracking means and measure the antivirus detection rates of malware binaries per
botnet family. We consider all executions of binaries where the C&C tracking
means trigger in the first flow of that execution. We apply this constraint in
order to make sure that the binary being executed actually relates to the C&C
communication observed. If this constraint had been omitted, and the C&C
tracking had triggered on a subsequent flow, it would not have been guaranteed
that the C&C communication stems from the executed binary, because additional
malware could have been downloaded. The observed C&C communication could
then have originated in the additional malware instead of the originally executed
binary. In fact, we have observed this behavior, i.e., the downloading of additional
malware, in at least 23 distinct bot families. We conclude that these 23 families
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3 Malware Analysis using Sandnet

actually act as downloaders. A detailed analysis of this phenomenon is out of
scope of this thesis and has been dealt with by Rossow et al. [RDB12].
Table 3.1 shows the results of measuring the antivirus detection of the executed

binaries per botnet family. In this table, we included only families with at least
100 distinct binaries showing active C&C communication. Due to inconsistencies
in malware naming, we restricted ourselves to only take into account whether
the sample was flagged as malicious, and we do not consider the label of the
antivirus scan result. The columns two and three measure the number of binaries
detected as malicious by at least one A/V vendor among all binaries of that
family. While the second column, entitled “Binaries (all vendors)” measures the
number of binaries flagged as malicious by at least one out of all 42 vendors
included in VirusTotal, the third column, entitled “Binaries (six vendors)” only
considers at least one out of the six big antivirus vendors Microsoft, Kaspersky,
Eset, Symantec, McAfee and TrendMicro. The results show that detection rates
vary. For some families up to 15% of the binaries that showed active C&C
communication have not been detected as malicious, while for other families not
a single binary has been missed in antivirus detection.
While the second and third columns measure the unified detection impression

per botnet family, the fourth and fifth columns aim at the detection coverage
among vendors. The “Vendors” columns show the average ratio of antivirus
vendors that flagged binaries, per family. The detection coverage among vendors
varies, too. On average, for example, a binary of the Zeus P2P family is detected
by less than three out of the six big antivirus vendors.
These results show that when labeling Sandnet executions, antivirus labels of

all vendors combined typically cover up to 95% of all binaries per botnet family.
However, only a fraction of vendors detect each binary of a given botnet family.
Thus, on end user systems where typically only one antivirus scanner is in use,
we can assume that by far not all of the binaries per family are detected.
As some binaries stem from public sample submission systems, the Sandnet

dataset also spans benign binaries. By help of repeated manual inspection of
a random subset of the executions, we occasionally found the following benign
software in our dataset and labeled the respective executions: Norton Download
Manager, Symantec Criteria Checker, Software Informer, Google Updater, PP
Live TV as well as installers for various Google products such as Chrome or
Google Earth. If required, we excluded these executions from the dataset to be
used in a certain experiment.

3.6 Conclusion
During our research, Sandnet turned out to be a very valuable tool and source
of data for our malware detection and analysis experiments. The distributed ar-
chitecture has proven to scale up to 500,000 executions. In the Sandnet dataset
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3.6 Conclusion

Binaries (%) Vendors (%)
Botnet all vendors six vendors all vendors six vendors
Carberp 97.02 91.49 47.48 51.13
Cutwail 97.96 93.88 62.39 59.86
Harnig 97.54 99.65 54.78 61.29
Hlux 92.04 87.08 39.07 47.88
Lethic 92.60 97.45 63.43 66.16
Mariposa 100.00 100.00 88.71 79.78
Mebroot 100.00 93.85 53.30 58.21
Palevo 98.75 98.42 73.96 73.41
Pushdo 100.00 85.71 68.37 64.29
Renocide 100.00 92.77 59.44 53.61
Renos 99.93 97.99 87.91 77.48
Renos:New BB 99.84 100.00 93.27 82.22
Sality 98.78 99.78 84.85 80.22
Sirefef 97.69 90.95 41.80 48.30
SpyEye 98.79 93.77 55.19 59.52
Swizzor 100.00 98.53 62.07 56.33
Tedroo 100.00 94.74 53.48 51.97
Virut (crypt) 98.21 100.00 83.10 80.82
Zeus 91.27 93.01 45.00 52.33
Zeus P2P 88.55 91.67 33.39 44.92

Table 3.1: Antivirus detection of PE binaries per botnet family for families with
more than 100 MD5-distinct binaries. All values in percent, either
using all 42 scanners or only the top six.
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evaluation we have shown how we made sure that the resulting dataset satisfies
our requirements of spanning diverse and active remote-controlled malware. We
maximize sample diversity by pooling binaries from several distinct malware fam-
ilies, while, at the same time, considering the C&C activity in order to guarantee
that our dataset reflects well-functioning malware.
As a result, all of the subsequent experiments in this thesis are based on sub-

sets of data acquired by means of Sandnet. In addition, Sandnet provides a
human analyst with detailed information on the execution of a PE binary, en-
abling both, quickly gathering a first impression of a binary as well as deeply
analyzing all network communication. However, in many cases, manual efforts
were additionally involved in order to get an understanding of what a certain
malware execution actually aims at, for example in terms of monetization.
To sum up, in this chapter we provide an overview of Sandnet, our contained

dynamic malware analysis environment, which is used to compile a dataset of
malware executions. In the following chapters, we will show how we develop
malware detection approaches and evaluate using the Sandnet data.
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Chapter4
Recognition of Command and
Control Flows

4.1 Introduction and Problem Statement
A defining characteristic of a bot is its ability to be remote-controlled by way of
command and control (C&C). Typically, a bot receives commands from its mas-
ter, performs tasks and reports back on the execution results. All communication
between a C&C server and a bot is performed using a specific C&C protocol over
a certain C&C channel. Consequently, in order to instruct and control their bots,
botmasters – knowingly or not – have to define and use a certain command and
control protocol. The C&C protocol is thus considered a bot-inherent property.

Listing 4.1: Rbot IRC-based command and control message

1 <:DEU|00|XP|SP3|L|440514 MODE DEU|00|XP|SP3|L|440514 :+iB

2 <:DEU|00|XP|SP3|L|440514!ciddumj@XXX JOIN :##sodoma_3

3 <:DEU|00|XP|SP3|L|440514 ##sodoma_3 :.root.start dcom135 200 5 0 -b -r -s

4 <:DEU|00|XP|SP3|L|440514 ##sodoma_3 drake 1260838540

5 <:DEU|00|XP|SP3|L|440514 @ ##sodoma_3

6 <:DEU|00|XP|SP3|L|440514 @KrOwN @drake

7 <:DEU|00|XP|SP3|L|440514 ##sodoma_3 :End of /NAMES list.

8

9 >PRIVMSG ##sodoma_3e :nzm (tftp.plg) transfer to 88.43.117.44 beginning, info:

(C:\WINDOWS\system32\upds.exe).

Historically, bots used cleartext C&C protocols, such as plaintext messages
transmitted using IRC or HTTP. For example, Listing 4.1 shows C&C messages
sent from the C&C server to a bot, instructing the bot to start its DCOM vulner-
ability scanning module on destination TCP port 135 (line 3). The parameters
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tell the bot to launch 200 scanning threads in parallel, while each scan operation
has a timeout of 5 seconds. Scanning shall continue until either told to stop or all
addresses in the same /16 IPv4 subnet have been iterated. The results shall not
be posted in a channel, but instead be sent via a private message (PRIVMSG).
Once, the bot finds a vulnerable target, it infects the victim and the victim con-
nects back in order to receive the second-stage binary via TFTP. The botmaster
is notified about this event via PRIVMSG in line 9. Note that the actual infection
in the example as well as the downloading of second-stage binaries is transpar-
ently redirected to local honeypot systems, effectively avoiding a true infection
of third parties on the Internet.

Listing 4.2: HTTP-based command and control message transmitting stolen
email credentials in plaintext

1 POST /blog/user_id_upload.php HTTP/1.1

2 Connection: keep-alive

3 Content-Length: 196

4 Host: 2agohuxoiyr.ru

5 Accept: text/html, */*
6 Accept-Charset: UTF-8

7 Accept-Encoding: identity

8 User-Agent: Mozilla/3.0 (compatible; Indy Library)

9

10 Array

11 (

12 [email] => alina@XXXXX

13 [password] => sonne123

14 [user_name] => SYSTEM

15 [comp_name] => WORKSTATION

16 [id] => S-6788F32F-4467-4885

17 [lang_id] => 1031

18 [product] => COL

19 )

Similarly, Listing 4.2 depicts the plaintext C&C message of a trojan that steals
credentials and reports general information of the infected system. In this case,
the email address and the corresponding password have been transmitted in ad-
dition to the computer’s name as well as the username that the bot runs as.
However, a C&C channel relying on a plaintext protocol can be detected reliably.
Methods such as payload byte signatures as shown by Rieck et al. [RSL+10] or
heuristics on common C&C message elements such as IRC nicknames as pro-
posed by Goebel and Holz in a system called Rishi [GH07] are examples for such
detection techniques. To evade payload-based detection, botnets have evolved
and often employ C&C protocols with obfuscated or encrypted messages as is
the case with Waledac [CDB09], Zeus [BOB+10], Hlux [Wer11a], TDSS [GR10],
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Virut [RDB12] and Feederbot [DRF+11], to name but a few. The change towards
encrypted or obfuscated C&C messages effectively prevents detection approaches
that rely on plaintext C&C message contents. For example, Listing 4.3 shows the
hexdump of an encrypted Virut C&C message as sent from the bot to the C&C
server. The C&C message contents is XOR-encrypted with a random four-byte
key. Thus, the message exhibits no characteristic payload byte pattern. Once
decrypted, as shown in Listing 4.4, the plaintext message reveals that the under-
lying protocol is still IRC or IRC-like. The four-byte session key can be derived
by a known plaintext attack on the first four bytes of the first C&C message,
which turns out to always be the string NICK.

Listing 4.3: An encrypted Virut command and control message, transmitted in
two frames

1 0000 61 E3 B4 A1 27 31 0E 67 53 B2 AE 04 2C D7 B0 2F a...’1.g S...,../

2 0010 3D 42 74 18 =Bt.

3

4 0014 5C ED C6 17 EB 4F BA 3A 35 91 CB A3 FE 12 FB AD \....O.: 5.......

5 0024 57 32 85 01 FE 3C E0 AB 87 72 6D 5E F9 F0 F3 30 W2...<.. .rm^...0

6 0034 4D A0 CD CB A8 D2 6F DE A6 B0 29 F1 D5 7B 87 M.....o. ..)..{.

Listing 4.4: The decrypted Virut command and control message of Listing 4.3

1 0000 4E 49 43 4B 20 68 79 7A 68 74 73 77 6D 0A 55 53 NICK hyz htswm.US

2 0010 45 52 20 6B ER k

3

4 0014 30 32 30 35 30 31 20 2E 20 2E 20 3A 23 36 63 31 020501 . . :#6c1

5 0024 30 64 62 61 65 36 20 53 65 72 76 69 63 65 20 50 0dbae6 S ervice P

6 0034 61 63 6B 20 33 0A 4A 4F 49 4E 20 23 2E 30 0A ack 3.JO IN #.0.

Furthermore, previous work on detecting botnet C&C channels targeted to-
wards blacklisting the communication endpoints in terms of IP addresses and
domain names that were used to locate the C&C server. This lead to a number
of blacklists for C&C servers, such as [abu11a, Lis09, abu11b]. However, botnets
have adapted to this approach and migrate their C&C servers from one domain to
another, in order to avoid the blacklisted addresses. For example, while tracking
the Belanit botnet as part of our study of downloaders [RDB12], we noticed that
the domain names for the main C&C server migrate from one top level domain
to another, as can be seen from Figure 4.1. Between December 2011 and January
2012, the domains were registered with .com, later with .info and subsequently
with .ru.
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2011-11 2011-12 2012-01 2012-02 2012-03 2012-04 2012-05 2012-06

.com
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.info

.info

.ru

Figure 4.1: Migration of the Belanit C&C server’s domain from one top level
domain to another

A similar trend can be observed for the Emit botnet, shown in Figure 4.2. In
this case, the botmaster migrated its C&C server domain names from .com via
.org, .pl, .ua to .us in the period from June 2011 to April 2012.
However, the migration is not only limited to the DNS domain names. We

witness the same countermeasure concerning the IP addresses of the C&C servers
as well as the Autonomous System (AS) that announces the routing for the IP
address origin. Figure 4.3 shows how several distinct Autonomous Systems have
been used to announce the C&C servers of the Vobfus/Changeup botnet. Again,
it is clearly visible that different ASes have been used over time, exhibiting the
nomadic character of today’s botnets.
To sum up, once a change of C&C server address is noticed, blacklists need to

react quickly in order to block communication with C&C servers of centralized
botnets. In addition, blacklist approaches do not work with botnets that employ
a distributed C&C architecture, such as peer-to-peer botnets.

In this thesis, we take a different approach to recognize C&C channels of bot-
nets and fingerprint botnet C&C channels based on traffic analysis properties.
The rationale behind our methodology is that for a variety of botnets, character-
istics of their C&C protocol manifest in the C&C communication behavior. For
this reason, our recognition approach is solely based on traffic analysis.
As an example, consider a C&C protocol that defines a specific handshake –

e.g., for mutual authentication – to be performed in the beginning of each C&C
connection. Let each request and response exchanged during this imaginary hand-
shake procedure conform to a predefined structure and length, which in turn leads
to a characteristic sequence of message lengths. In fact, we found that in the con-
text of botnet C&C, the sequence of message lengths is a well-working example
for traffic analysis features. For example, let us consider the two prevalent botnet
families Virut and Palevo1. Table 4.1 shows the sequence of the first 8 messages

1A synonym for the malware family Palevo is Rimecud (Microsoft terminology) or Pilleuz
(Symantec terminology).
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Figure 4.2: Migration of the Emit C&C server’s domain from one top level domain
to another [RDB12]

2010-03 2010-06 2010-09 2010-12 2011-03 2011-06 2011-09 2011-12 2012-03 2012-06

AS57348
AS41947
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AS49335
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AS16276
AS43289
AS4134
AS28271

Figure 4.3: Migration of the Vobfus/Changeup C&C server from one origin Au-
tonomous System to another
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in four Virut C&C flows and two Palevo C&C flows. Whereas Virut exhibits
similar message lengths for the first message (in the range 60-69) and a typical
sequence of message lengths at positions five to eight, for Palevo, the first three
message lengths provide a characteristic fingerprint.

ID Family Message length sequence
1 2 3 4 5 6 7 8

1 Virut 60 328 12 132 9 10 9 10
2 Virut 69 248 69 10 9 10 9 10
3 Virut 68 588 9 10 9 10 9 10
4 Virut 67 260 9 10 9 10 9 10
5 Palevo 21 21 30 197 32 10 23 10
6 Palevo 21 21 30 283 21 10 23 10

Table 4.1: Examples of message length sequences for Virut and Palevo C&C flows

Leveraging statistical protocol analysis and hierarchical clustering analysis, we
develop CoCoSpot, a method to group similar botnet C&C channels and derive
fingerprints of C&C channels based on the message length sequence, the under-
lying carrier protocol and encoding properties. The name CoCoSpot is derived
from spotting command and control. Furthermore, we design a classifier that is
able to recognize known C&C channels in network traffic of contained malware
execution environments, such as Sandnet.
The ability to recognize botnet C&C channels serves several purposes. A

bot(net)’s C&C channel is a botnet’s weakest link [FHW05]. Disrupting the
C&C channel renders a bot(net) ineffective. Thus, it is of high interest to de-
velop methods that can reliably recognize botnet C&C channels. Furthermore,
driven by insights of our analysis of botnet network traffic, we found that a bot’s
command and control protocol serves as a fingerprint for a whole bot family.
Whereas for example properties of the PE binary change due to polymorphism,
we witness that the C&C protocol and the corresponding communication behav-
ior seldom undergo substantial modifications throughout the lifetime of a botnet.
From an analyst’s perspective, our classifier helps to detect and aggregate similar
C&C channels, reducing the amount of manually inspected traffic.
To summarize, the contributions of this chapter are two-fold:

• We provide a clustering method to analyze relationships between botnet
C&C flows.

• We present CoCoSpot, a novel approach to recognize botnet command and
control channels solely based on traffic analysis features, namely carrier
protocol distinction, message length sequences and encoding differences.

The remainder of this chapter is structured as follows. Section 4.2 sheds light
on related work, defines the scope of this chapter and highlights innovative aspects
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of our approach. Subsequently, in Section 4.3, the general methodology as well as
the feature space is described. While Section 4.4 deals with the clustering phase
of C&C flows, Section 4.5 outlines the classifier which is then used to classify
unknown flows. In order to evaluate our approach, as described in Section 4.6,
we classified arbitrary network flows emitted from our dynamic malware analysis
environment Sandnet as either C&C or Non-C&C and verified the results using
two datasets. Finally, we discuss limitations of our approach in Section 4.7 and
conclude in Section 4.8.

4.2 Related Work
Traditionally, botnet C&C channels have mainly been identified in two ways.
First, publicly available blacklists [abu11a, Spa11, Goo11, Phi11] provide lists
of known botnet servers by IP addresses or domain names. The drawback of
blacklists is that properties like IP addresses or domains are volatile. Botmasters
can and do change these often, rendering detection methods based on blacklists
infeasible. In addition, botnets that rely on a peer-to-peer C&C architecture
exhibit quickly changing sets of rendez-vous points. Some botmasters design
their bot’s bootstrap process even more resilient by avoiding any static rendez-
vous coordinates, e.g., by using domain generation algorithms where the current
rendez-vous point is valid for a very limited time span such as a few hours.
These volatile communication endpoints can hardly be grasped by blacklists.
Second, botnet C&C channels can be detected by checking for characteristic
payload substrings. For example, Botzilla [RSL+10], Rishi [GH07] and rules for
the Snort IDS [Thr11] identify C&C channels in network traffic using payload
byte signatures for a small set of known botnets. However, most encrypted or
obfuscated C&C protocols do not exhibit characteristic payload patterns and
undermine existing payload byte signatures.
Consequently, the traditional techniques are unsatisfying and have motivated

research for automated and more reliable processes. In that trail of research,
BotMiner [GPZL08] and BotGrep [NMH+10] provide approaches to use traffic
analysis in order to find botnet C&C channels. However, while BotMiner requires
detectable so-called A-plane activity such as spam, DDoS or scanning, CoCoSpot
does not require any a priori or accompanying malicious actions and aims at
the recognition of C&C channels. For CoCoSpot, in order to detect a bot, it
is enough to just exhibit C&C communication. The graph-based approach of
BotGrep requires botnets with distributed C&C architectures in order to detect
them. However, CoCoSpot not only works with peer-to-peer-based botnets, but
also with botnets exhibiting a centralized C&C architecture.
Jacob et al. present JACKSTRAWS [JHKH11], which exploits that certain

C&C channels show recognizable system-level behavior in terms of system call
traces of Anubis [BKK06]. Particularly, JACKSTRAWS dynamically analyzes
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malware binaries (e.g., with Anubis) and models system call graphs for known
C&C connections. New C&C channels are detected by matching unknown net-
work connections against these graphs. As opposed to JACKSTRAWS, CoCoSpot
does not depend on host-level analyses such as tainting, which enables our system
to be applied without host access. In addition, we will show that CoCoSpot can
detect C&C flows of numerous different bot families, while Jacob et al. do not pro-
vide insight into the diversity of the C&C channels detected by JACKSTRAWS.
For example, while pure download-and-execute C&C channels follow strict sys-
tem call patterns, more complex C&C channels spanning multiple TCP/UDP
connections (e.g., typical for most modern P2P- or HTTP-based botnets) may
not be detected by JACKSTRAWS. In contrast, CoCoSpot detects different ar-
chitectural and many semantic types of C&C channels.
Concurrent to our work, Bilge proposed DISCLOSURE [BBR+12], a system

to detect C&C servers in unknown network traffic based on NetFlow data. Bilge
frames a number of features that characterize botnet C&C servers, which are
partially similar to ours, but are applied in a different context. While we use
periodicity of messages to select C&C candidates, Bilge uses periodicity of net-
work connections towards a server as an indicator for C&C channels. Similarly,
we rely on the sequence of C&C message lengths, while DISCLOSURE bases on
sequences of C&C stream size lengths. In both scenarios, these features seem
to work well, while the constraints are different: DISCLOSURE is bound to the
strict NetFlow format, while we can rely on much finer granularity (messages
vs. connections) in our setting and deploy a wider flow format. Another advan-
tage of CoCoSpot over DISCLOSURE is that we have fewer assumptions that
narrow the type of C&C channels. For example, DISCLOSURE models network
traffic in a client-server fashion and favors centralized C&C channel architectures
and thus it will presumably fail for P2P-based botnets. Moreover, CoCoSpot
does not require a priori knowledge on reputation of autonomous systems, so
that CoCoSpot even recognizes C&C servers in well-reputable networks.
In general, our approach complements existing C&C detection systems, in that

we propose a technique to also recognize the nature (i.e., malware family) of C&C
channels. While the difference may sound subtle, we see a major contribution
here. In many cases, it is desirable to know which type of botnet accounts for a
detected C&C channel, e.g., to automate classification of malware [SGKA+09].
In addition, especially compared to IP address (and domain) blacklists CoCoSpot
provides a finer granularity in that it restricts the detection to specific flows, which
turns out useful if legitimate and malicious activity appear on the same IP address
(or domain). Moreover, our system is able to produce human-readable reports for
detected C&C channels, making an analysis easy. Currently, CoCoSpot reports
back the type of C&C channel found and provides the security analyst with
examples of similar C&C channels in the training dataset.
In summary, the automatic recognition of C&C channels is a challenge and

demands for a different approach. We fill this gap by designing a method to
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Figure 4.4: Overview of the C&C flow classification methodology

recognize known C&C channels based on traffic analysis while not relying on
specific payload contents nor IP addresses or domain names.

4.3 Methodology

A coarse-grained overview of our methodology is shown in Figure 4.4. First, we
dissect and aggregate TCP and UDP network traffic according to our network
traffic data model. This process is described in Section 3.3 of Chapter 3. Based on
this model, we design features that measure traffic analysis properties of network
communication and extract these features from a set of manually analyzed C&C
flows (Section 4.3.1). Using hierarchical clustering, we compile clusters of related
C&C flows, and manually verify and label these C&C flows (Section 4.4). For
each cluster, our method derives a centroid (Section 4.5.1) which is subsequently
used during the classification of C&C candidate or even completely unknown
flows of a contained execution environment such as Sandnet (Section 4.5.2).
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4.3.1 Traffic Analysis Features of Botnet C&C
Based on our data model, we define features aiming to measure traffic analysis
properties of network communication, especially in the context of botnets. These
features will be used for the clustering analysis and the subsequent classification
of flows.
Our feature space consists of three features. First, we consider the carrier pro-

tocol to be the underlying protocol of the C&C protocol and distinguish between
TCP, UDP and HTTP. We assume that a C&C protocol is either designed to
be used with TCP, UDP or HTTP. In fact, we have not witnessed a change of
carrier protocol during the lifetime of a botnet in our analysis of botnet traffic.
As the second feature, we define the sequence of message lengths in a flow.

This feature is motivated by the observation that most C&C protocols exhibit a
characteristic sequence of message lengths. More precisely, we exploit the char-
acteristic message length sequence during the beginning of a flow. We assume
that the first few messages of a flow cover what could be regarded a handshake
phase of the C&C protocol. In addition, we observed that C&C flows exhibit
characteristic message lengths during idle phases, i.e., when only keep-alive-like
messages are transmitted. We decide to take up to the first eight messages into
consideration because on the one hand they cover the initial handshake and – if
there is an early idle phase – the first few messages of an idle phase, too. On
the other hand, eight messages is reasonably small in order to keep the compu-
tational overhead low. We evaluated different numbers of messages in a flow and
while smaller numbers make the computational performance decrease, we did not
experience huge improvement with longer message length sequences.
In case of TCP and UDP as carrier protocol, the length of a message is defined

as the total length of the carrier protocol’s payload in bytes. For HTTP, we define
the message length of an HTTP request to be the sum of the body length as well
as the URI query section, and for a response the body length. We omit HTTP
headers because they do not contain relevant information for our method.
The third feature is specific to HTTP and counts the number of distinct byte

values in the query section of the HTTP request URI, aggregated over up to the
first four HTTP requests’ URIs of a flow. We observed that malware authors de-
cide for different encoding schemes such as Base64, Hex or ASCII when designing
an HTTP-based C&C protocol. To a certain degree, the number of distinct bytes
reflect the encoding scheme of the URI’s query section. For example, for a Base64
encoded query section of the URI, the number of distinct bytes does not exceed
64. Note that we restrict ourselves to the query section of the request URIs for
all requests.
Throughout one botnet family, it is possible that there are multiple C&C pro-

tocols with possibly even different C&C architectures in place, for several reasons.
Malware authors might allow for a backup C&C protocol that is only activated if
the primary C&C protocol fails, several variants of one bot family might operate

50



4.4 Clustering Analysis of Known C&C Flows

in parallel using two distinct C&C protocols or the bot has been designed to work
with two (or more) C&C channels. As an example, we observed the latter case
with New_BB, an egg downloaded by Renos/Artro which exhibits two HTTP
C&C channels with two different servers. Another example is Virut where some
variants exhibit a plaintext IRC-based C&C channel while other more well-known
variants use a TCP-based custom-encrypted C&C protocol.

4.4 Clustering Analysis of Known C&C Flows
Clustering enables us to identify and aggregate groups of similar C&C flows in
our data set. We use clustering for two main reasons. Often, the message lengths
of the messages in a C&C flow are not equally static throughout several C&C
flows of one botnet, but show slight deviations in a small range. Thus, we need
to aggregate similar flows and learn the range of each message’s length in a
C&C flow. Second, grouping similar C&C flows into clusters allows us to build
a centroid for each cluster which represents the fingerprint of this cluster’s C&C
flows. The clustering step produces efficient representations that serve as training
data for the subsequent classification of flows. In addition, the clustering results
provide insights into and measure the relationships between clusters of different
malware families.

4.4.1 Definition of the Distance Function
Using the features described in Section 4.3.1, we define the feature vector v(f) of
a flow f , called flow vector, as:

v(f) = 〈 p,ml1,ml2,ml3, ...,mln, hb 〉

where v.p denotes the carrier protocol TCP, UDP or HTTP, v.mlk denotes the
length of the k-th message in the flow f , and hb is the number of distinct bytes
in the query section of an HTTP request URI if the flow has HTTP as carrier
protocol. We use n = 8, i.e., up to the first eight messages per flow, as described
in Section 4.3.1. Based on the resulting feature space, we define the following
distance function d(u, v) of the feature vectors u and v of two C&C flows:

d(u, v) = 1
T
dp(u, v) + 1

T
dml(u, v) + 1

T
dhb(u, v) (4.1)

where
T =

{
3, u.p = http ∧ v.p = http

2, else (4.2)

dp(u, v) =
{

0, u.p = v.p
1, else (4.3)
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and with k being the minimum number of messages in the two flow vectors u and
v:

dml(u, v) = 1
k

k∑
i=1

(
|u.mli − v.mli|

max(u.mli, v.mli)

)
(4.4)

dhb(u, v) =
{ |u.hb−v.hb|

max(u.hb,v.hb) u.p = http ∧ v.p = http

0, else
(4.5)

In the distance function d, all feature distance terms dp, dml and dhb weigh
equally. If both flows are HTTP flows, then the three features p, ml and hb are
each weighted with 1/3, otherwise the two features p and ml are each weighted
with 1/2. The main intention of introducing weights in Equation 4.1 is to limit
the range of output values to [0, 1]. While in general, weights can also be used
to fine-tune the distance computation, we decide to keep the equal weights on
purpose. Fine-tuning requires a representative evaluation dataset and if applied
aggressively, fine-tuning inevitably leads to overfitting. In our case, using broad
evaluation datasets, we will show that using the distance function with equally
weighted feature terms yields very low misclassification rates. When dealing
with a very specific application or dataset, fine-tuning the weights might lead to
a performance increase.
By definition, our distance function results in values between 0.0 (equal flows)

and 1.0 (completely different flows). Table 4.2 consists of four flow vectors of
the Virut family and two Palevo flow vectors and will be used to illustrate the
distance computation. All Virut C&C flows have TCP as carrier protocol, Palevo
flows have UDP as carrier protocol. The distance between the first two Virut flow
vectors in Table 4.2 (IDs 1 and 2) is 0.0885. When looking at the first Virut flow
vector (ID 1) and the first Palevo flow vector (ID 5), their distance is 0.4934.

ID Family Carrier Message length sequence
protocol 1 2 3 4 5 6 7 8

1 Virut TCP 60 328 12 132 9 10 9 10
2 Virut TCP 69 248 69 10 9 10 9 10
3 Virut TCP 68 588 9 10 9 10 9 10
4 Virut TCP 67 260 9 10 9 10 9 10
5 Palevo UDP 21 21 30 197 32 10 23 10
6 Palevo UDP 21 21 30 283 21 10 23 10

Table 4.2: Message length sequences for Virut and Palevo C&C flows (Table 4.1
extended with Carrier Protocol)

Even from this small subset of C&C flow vectors, it becomes obvious that the
message length at a certain position is more characteristic than others. In our
case, the messages at message position 2 of the Virut flows have varying lengths
between 248 and 588 bytes whereas the messages at the first position vary in
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ID # Flows Description
Fall 34,258,534 Sandnet flows, mixed C&C and Non-C&C
FCand 23,162 C&C candidate flows
FC 1,137 Manually verified C&C flows

Table 4.3: Data sets of flows

length between 60 and 69. We will take this into consideration when computing
the cluster centroids and explain this in detail in Section 4.5.1.

4.4.2 Dataset Overview
We compiled several datasets in order to apply and verify our C&C flow recogni-
tion methodology. As a first step, aiming to get C&C candidate flows, we apply
several heuristics to a set of 34,258,534 Sandnet flows, Fall, and consult the
Amada C&C server blacklist in order to find C&C flow candidates. The flows
in Fall are gained from Sandnet, the contained malware execution environment
presented in Chapter 3, and stem from 34,387 malware binaries of 1930 distinct
families according to Microsoft antivirus labels. We conducted all malware exe-
cution experiments using the Windows XP SP3 32bit sandpuppets connected to
the Internet via NAT, as described in Chapter 3. While harmful traffic such as
spam and infections are redirected to simulated service endpoints, honeypots and
spam traps, other protocols (e.g., IRC, DNS or HTTP) were allowed in order to
enable C&C communication. The biases affecting the following experiments due
to containment should thus remain limited. We did not deploy user interaction
during our experiments. The flows cover a time span from February 2010 to
December 2011.
As heuristics to detect C&C flow candidates, we applied periodicity detection,

long-lasting flow detection as well as domain flux detection to the flows in Fall.
Note that while these heuristics certainly do not guarantee to find all C&C flows,
we use them to find a bootstrapping set of C&C flows. The resulting set of
candidate C&C flows is denoted as FCand. In order to detect periodic messages,
we compute the time between any two subsequent messages in a flow, the so-called
message gap interval in seconds, and the relative frequencies of these message gap
intervals. The message gap intervals are computed separately for requests and
responses, and rounded to integer precision. A flow is considered periodic with
period p if one message gap interval has a relative frequency of r1 or two adjacent
intervals add up to a cumulative relative frequency of r2, in at least one direction.
We evaluated r1 between 45% and 60%, r2 between 75% and 90% at a step size
of 5, and finally chose r1 = 50% and r2 = 80%.
We considered a flow as long-lasting if its duration is greater than half of the

time that a malware sample was running in Sandnet. In addition, we heuris-
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tically detect a sample that performs a domain generation algorithm (DGA) by
looking at the ratio of distinct DNS queries that result in NXDOMAIN to suc-
cessful DNS responses for a sliding window time span of m minutes. Once the
ratio exceeds g – i.e., more than g DNS queries result in NXDOMAIN in m min-
utes – we consider the presence of a DGA. In our case, we set g = 100 and m = 5.
Furthermore, we used flows to IP addresses and domains of the Amada block-
list [abu11a] as C&C candidates. In addition, we were provided with network
traces of recently active botnets including Hlux [Wer11a] and Miner [Wer11b]
with known C&C flows. We added these known C&C flows to the set FCand.
Of the C&C candidate flows, we manually reviewed and classified 2,691 flows

as C&C and – if possible – assigned malware family labels. The resulting set of
verified C&C flows is denoted as FC .
At this stage, FC contains 2,691 C&C flows of 43 bot families. This set is

skewed, i.e., a few bot families cause the majority of C&C flows. We mitigate
the imbalance in the set FC by limiting the number of flows per family to a max-
imum of 50 and require a minimum of 10 flows per family. Finally, the filtered
set contains 1,137 C&C flows of 43 distinct families, including e.g., Hlux/Ke-
lihos [Wer11a], Koobface [Vil10, TN10], Mariposa [SBBD10], Miner [PGP12,
Wer11b], Palevo/Rimecud, Renos/Artro, Sality P2P [Fal11], Sirefef/ZeroAccess,
SpyEye [SEB12], Torpig [SCC+09], Virut and Zeus [BOB+10].

4.4.3 Hierarchical Clustering
We apply agglomerative hierarchical clustering to group the set of manually ver-
ified C&C channels FC . In order to avoid the so-called chaining phenomenon,
where the minimum distance between any two instances of adjacent clusters could
cause the clusters to be merged, we decided to use average linkage hierarchical
clustering, as the latter does not tend to fall for the chaining phenomenon. The
clustering is performed 2-fold using two disjunct subsets to avoid overfitting,
i.e., we split the dataset FC into two halves, and cluster once using each half.
Eventually, to group C&C flow vectors, a cut-off threshold determines the maxi-
mum distance for which two different flows still belong to the same C&C group
(i.e., cluster). To illustrate, we again refer to the first two flow vectors in Table 4.2
(IDs 1 and 2) and their distance of 0.0885. If the cut-off threshold was greater
than this distance, both instances would be aggregated in the same cluster. Oth-
erwise they would be filed into different clusters. Finally, the most prevalent
family per cluster in terms of number of flows determines the cluster’s family.
However, for some clusters we could not infer the malware family, because an-
tivirus scanners did not detect the binaries at all, only heuristic or generic labels
applied or labeling was inconsistent among antivirus scanners. In these cases, we
tried to manually assign a malware family based on the antivirus scanning results
and the IP addresses and domains used during C&C communication. Figure 4.5
provides an example dendrogram that visualizes the clustering results for one
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0497682 Mariposa
5203425 Mariposa
7182369 Mariposa
4910234 Mariposa

5131381 Virut
9403737 Virut
6015424 Virut
6223221 Virut
0139167 Virut
4199832 Virut
9117297 Virut

Figure 4.5: Example extract of a dendrogram that visualizes the clustering re-
sults, covering one Virut cluster and one Mariposa cluster and a cut-
off threshold of 0.115.

Virut and one Mariposa cluster.

4.4.4 Cluster Evaluation
We evaluate our clustering by checking if the clustering results correspond to the
labels that we assigned to our training dataset. Ideally, for each family label (i.e.,
C&C protocol identifier) we assigned to the dataset, a cluster with no more than
all elements with this label should be created. For that, in a first step, we have
to choose a clustering cut-off threshold that results in the best-possible clustering
result. To evaluate how well our clustering represents the labeled dataset, we use
the two measures precision and recall, as introduced in Chapter 2.2.1. First,
we measure the precision as of Equation 2.1, which represents how well our
clustering separates C&C flows of different types. Ideally, all instances of one
cluster should be of the same kind of C&C flow. Second, we compute the recall
as of Equation 2.2, which expresses if similar C&C flows are grouped into the
same cluster. In general, we strive for a cluster that contains all C&C flows
of one kind. However, recall is not as straight-forward as precision and will be
described later in this section in more detail.
Note that we defined the overall precision and overall recall so that the preci-

sion and recall of all C&C types are equally taken into account. This mitigates
imbalances that would otherwise have been introduced by skewed datasets with
disparate numbers of elements per C&C type.
We aim for a clustering that both groups C&C flows of one type into one

cluster (maximum recall), and that also separates between different C&C flows
(maximum precision). At the later stage, a low precision translates to more
false positives, while a low recall causes false negatives. In our setting, to avoid
false positives, we can tolerate multiple clusters for one C&C type, but have to
avoid too generic clusters by mixing different C&C types. We therefore combine
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Figure 4.6: F-measure evaluation of the hierarchical clustering at different cut-off
thresholds.

precision and recall in the weighted F-measure and prioritize precision twice as
important as recall. Formally, we use the F-measure as introduced in Chap-
ter 2.2.1 to evaluate the performance of our clustering with threshold th and
β = 1/2:

F-measureth = 1.25 · Pth · Rth

0.25 · Pth +Rth

(4.6)

We then maximize this function to find the optimal clustering threshold th by
iterating the cut-off-threshold in the range 0.0 to 1.0 using a step size of 0.005,
as shown in Figure 4.6. The result of the F-measure evaluation leads to a cut-off
threshold of 0.115.

4.4.5 Clustering results
The clustering phase results in a total number of 91 clusters, of which 13 are
singletons, i.e., comprise only one C&C flow training instance. Table 4.5 provides
an excerpt of the resulting clusters which includes those clusters that refer to well-
known malware families. Some clusters could not reasonably be labeled with a
malware family because the samples have not been detected by any antivirus
scanner at all (we used VirusTotal scan results), labeling was inconsistent, or only
generic and heuristic labels applied. In total, the number of clusters outweighs
the number of families in the training data set FC . This is caused by families
which have multiple clusters, such as Virut. We identified three main reasons for
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this. First, the bots of a certain malware family evolve over time. For Virut,
two kinds of bots circulate in the wild. One variant is based on a plaintext IRC
C&C channel, and another variant employs a TCP-based C&C channel which
provides an intermediate layer of custom encryption. These two variants exhibit
different message length sequences (and message encodings) which is reflected in
two distinct Virut clusters. Second, different clusters might represent different
activity states. Idle bots, i.e., where the botmaster does not have instructions
for the bots, typically exhibit smaller messages (e.g., only keep-alive messages)
compared to when orders (e.g., spam templates and address lists) are transmitted.
Third, families that do not exhibit characteristic message lengths at all will result
in a high number of clusters.

4.5 Designing the C&C Flow Classifier
During the clustering phase, we have built groups of similar C&C flows. In
order to extract fingerprints, we now compute a centroid for each cluster and
design a nearest-cluster classifier that can classify unknown flows based on these
centroids. Finally, we evaluate our classifier on two data sets and give upper
bounds of classification errors.

4.5.1 Cluster Centroids as C&C Channel Fingerprints
In the training phase, we compute a centroid z for each cluster C.
The data structure z of a centroid is based on the structure of a flow vector

v as defined in Section 4.4, extended by a sequence of weights and a maximum
distance. It consists of the following attributes:

z = < p, ml1,ml2, . . . ,mln, w1, w2, . . . , wn, maxdist, hb >

• z.p: The carrier protocol.

• z.mli: The sequence of the average length of the messages at index i of all
flows in C.

• z.wi: The sequence of weights for each position i in the average message
length sequence z.ml.

• z.maxdist: The maximum distance between the centroid and all of the flow
vectors in the cluster in order to limit the cluster’s scope.

• z.hb: In case of a centroid for a cluster with at least one HTTP C&C flow:
the average number of distinct bytes in the query section of HTTP requests.
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We compute the centroid z for each cluster C as follows. First, for each cluster,
we load the output of the clustering step, i.e., the set of clustered C&C flow
vectors of a cluster C. The carrier protocol of the centroid, z.p, is set to the carrier
protocol of all flow vectors in C. Note that flow vectors with two different carrier
protocols will never be clustered into the same cluster, as the clustering cut-off
threshold is smaller than the distance caused by two differing carrier protocols.
In other words, one cluster only spans flow vectors of one carrier protocol.
For all message length sequences of the flow vectors in cluster C, we compute

z.mli by averaging the elements at the i-th position in the message length se-
quence. Let C contain n flow vectors and let V (C) = {vk}k=1..n be the set of
flow vectors of the cluster C. For each flow vector vk in V (C) and each index i
in the message length sequence of vk, the centroid’s sequence of message lengths
is computed as follows:

z.mli(C) = 1
n

n∑
k=1

vk.mli (4.7)

Referring to the example shown in Table 4.2, some message positions of the
message sequences can be considered more characteristic for a C&C protocol due
to less variation at a specific message position. In order to reflect this in the
cluster centroid, we introduce a weighting vector which contains a weight for
each message position and indicates the relevance of the message’s position. The
smaller the variation of the message lengths at a given message position of all
flows in a cluster, the higher the relevance of this message position. In other
words, if two flow vectors’ message lengths differ in a message position with low
relevance, the less impact this has on the result of the classification distance
function. Thus, we decide to compute the coefficient of variation (cv) for each
message position over all flow vectors in one cluster. The coefficient of variation
[Dod06] is defined as the ratio of the standard deviation to the mean and fits
our needs. Consequently, we define our weight as one minus the coefficient of
variation, in order to reflect that a higher variation leads to a smaller weight.
The weighting vector is computed as:

z.wi(C) = 1−min (cv(vk.mli), 1) = 1−min
(
stddev(vk.mli)
mean(vk.mli)

, 1
)

(4.8)

Table 4.4 shows the flow vectors of a cluster with four C&C flows and the
corresponding weights for all message positions. As shown, message positions
with varying lengths have a weight value that decreases as the range of message
lengths at that position increases.
In order to respect the weight in the distance computation during the classifi-

cation of a flow vector, we modify the distance function for the message lengths
dml in Equation 4.4 by adding the weight as a factor. The resulting distance
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ID Message length sequence
1 2 3 4 5 6 7 8

1 301 2135 305 2169 305 2163 305 2153
2 301 2153 301 2149 305 2153 305 2123
3 301 2125 301 2153 305 2131 305 2157
4 301 2145 301 2155 305 2155 305 2115

Average message length sequence
301 2139.5 302 2156.5 305 2150.5 305 2137

Weighting sequence
1 0.995 0.994 0.997 1 0.994 1 0.991

Table 4.4: Examples for the average message lengths and weighting sequence of
a centroid for a cluster of four C&C flows

function dml,class is defined as:

dml,class(u, v) =
(

k∑
i=1

z.wi

)−1

·
k∑

i=1

(
z.wi ·

|u.mli − v.mli|
max(u.mli, v.mli)

)
(4.9)

The complete distance function that is used during the classification is given
as:

dclass(u, v) = 1
T
dp(u, v) + 1

T
dml,class(u, v) + 1

T
dhb(u, v) (4.10)

where
T =

{
3, u.p = http ∧ v.p = http

2, else (4.11)

In addition, we define the quality indicator of a cluster to be the normalized
sum of all weights in the weighting vector. The quality indicator expresses the
overall weight of all positions in a cluster centroid’s message length sequence. As
an example, if all of the message lengths in the message length sequence vary
widely, this will result in a low quality indicator.

q(z) = 1
k
·
(

k∑
i=1

z.wi

)
(4.12)

The quality indicator is a means to filter clusters that do not represent charac-
teristic message length sequences.
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Family Label #C #S C&C Arch CP Plain Avg QI
Bifrose 4 1 centralized TCP no 90.48
BlackEnergy 3 0 centralized HTTP no 92.71
Cycbot 6 0 centralized HTTP no 31.28
Delf 2 1 centralized HTTP no 95.33
Koobface 2 1 centralized HTTP no 88.89
Mariposa 6 1 centralized UDP no 86.41
Mebroot 6 2 centralized HTTP no 66.50
Miner 1 0 P2P HTTP yes 97.35
Nimnul/Ramnit 1 0 centralized TCP no 67.47
Palevo 2 1 centralized UDP no 86.28
Renos/Artro 2 0 centralized HTTP no 99.87
Renos/Katusha 1 0 centralized HTTP no 100.00
Renos:New BB 5 1 centralized HTTP yes 84.42
Sality P2P 6 2 P2P UDP no 74.31
Sirefef/ZeroAccess 3 0 P2P TCP no 80.51
Small 2 1 centralized HTTP no 44.50
Spatet/Llac 1 0 centralized TCP no 92.59
TDSS/Alureon 1 0 centralized TCP no 81.82
Tedroo 1 0 centralized TCP no 97.95
Torpig 5 0 centralized TCP no 71.55
Virut 3 0 centralized TCP mixed 82.01

Table 4.5: Clustering results of some well-known botnet families. #C: number of
clusters, #S: number of singleton clusters, C&C Arch denotes the C&C
architecture (P2P=peer to peer), CP is the Carrier Protocol, Plain
denotes whether the family uses a plaintext C&C protocol encoding;
Avg QI is the average quality indicator.

4.5.2 Classification Algorithm
So far, we have developed a data structure for the cluster centroid and a distance
function for the classification. The complete algorithm to classify a flow f is as
follows. First, we build the corresponding feature vector vf and compute the
distance between all cluster centroids and vf using the distance function dclass in
Equation 4.10.
Naively, we could be tempted to assign the closest cluster to the flow f , i.e.,

the cluster with the minimum distance to vf . However, the closest cluster is not
necessarily correct. Especially in case f is not a C&C flow at all, our classifier
requires a means to find out that f lies outside the scope of all clusters. Thus, we
additionally store the maximum distance between the centroid and all training
flow vectors of a corresponding cluster, computed using the distance function d
of Equation 4.1. The maximum distance limits the scope of the cluster, and flows
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outside of this scope are discarded by the classifier.
The label of the nearest cluster, i.e., the cluster with the minimum distance

between vf and the cluster centroid, is assigned to f , as long as the distance is
below the maximum distance for the centroid. If none of the cluster centroids
are in range of f , the flow is considered not to be a known C&C flow. Listing 4.5
contains the simplified Python code involved in the classification of a flow vector,
given a set of centroids. For improved readability, error handling code has been
omitted.

4.6 Evaluation of the C&C Flow Recognition
In this section we use our classifier to recognize C&C channels among arbitrary
network traffic emitted from Sandnet, our contained malware execution envi-
ronment. Due to the sheer amount of flows to be classified and the absence of
rock-solid ground truth for C&C flows, validating the result of the classification is
a difficult task. Therefore, we try to estimate upper bounds for the classification
errors in order to provide an impression of the performance of our classification
approach. We verify our classifier by help of two evaluation datasets, shown in
Table 4.6.
In order to estimate the false negative rate, we compiled a set of C&C peers.

For each of the 43 families in the training set FC , we build sets of C&C server
IP addresses or domain names based on manually verified C&C flows as well as
publicly available C&C server blacklists [abu11d, abu11c, abu11b]. We assume
all flows heading for any of the IP addresses or domains in our list of C&C peers
as C&C flows. Using these C&C peer lists, we extract all matching flows from
Sandnet traffic Fall, except those in the training set FC . For five families, our
heuristic did not find additional C&C flows, i.e., all flows of that specific family
have already been used in the training phase and are thus excluded from the
classification set FF N .
For an initial set of centroids for classification, we discard centroids of four C&C

families, as these do not show sufficiently characteristic message lengths. Among
these families are SpyEye, Hlux, Zeus P2P and Carberp. Particularly, we discard
families with only singleton clusters, or centroids whose average message length
weights is smaller than 30%. Our idea of finding a C&C protocol’s handshake
could be extended to search for representative message length sequences past our
current limit of eight messages per flow to mitigate these cases. The resulting
data set is denoted as FF N and contains C&C flows for 34 out of 43 families.
In order to estimate the false positive rate, we build a subset of all Sandnet flows

Fall, balanced by A/V label family so that the subset contains no more than five
malware samples of a certain family, determined by Kaspersky antivirus labels.
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Listing 4.5: Classification algorithm in Python

1 def classify(f, centroids):

2 """

3 Classifies flow vector f into the class of the closest

4 cluster centroid of the given set of centroids.

5

6 Stores the class and the distance to the centroid in f and

7 returns them as a tuple of (class, distance). If no centroid

8 matches, class is None and distance is positive infinity.

9 """

10 # By default, assume no class match and a minimum distance

11 # between f and any cluster centroid of positive infinity

12 cur_class = None

13 min_dist = float("inf")

14

15 # Iterate all cluster centroids

16 for z in centroids:

17 # Compute the distance between the current cluster centroid z

18 # and the flow vector f to be classified

19 cur_dist = distance(f, z)

20 # If the distance falls within the range of the current centroid

21 # and the distance is smaller than any previously computed

22 # distance, then store the class of the matching centroid in

23 # cur_class and the current distance in min_dist

24 if cur_dist <= z.maxdist and cur_dist <= min_dist:

25 cur_class = z.get_class()

26 min_dist = cur_dist

27

28 # Store the class of the matching cluster centroid in the

29 # flow vector instance

30 if cur_class is not None:

31 f.set_class(cur_class)

32 f.set_distance(min_dist)

33 return (cur_class, min_dist)
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Figure 4.7: Overview of the C&C flow classification performance.

The resulting set of flows to be classified is denoted as FS, and contains a variety
of different application-layer protocols from 3245 different malware samples of
671 distinct families. From this set, we remove all flows destined to any of the IP
addresses or domains of the C&C peers, so that the resulting set does not contain
any C&C flows of the families known to our classifier.
The classifier is trained on the clustering output of the data set FC of Section

4.4.4. The training subset contains up to 50 random C&C flows per family. Note
that we made sure that none of the flows used during the training phase of the
classifier were in either of the sets of flows to be classified.
We define two types of classifications. First, if a C&C flow of FF N actually

belongs to family A (based on the C&C peer list), but our classifier assigned
a different family (e.g family B) or no family at all, this is considered a false
negative. Thus, if our classifier assigned the same family as assigned by the C&C
peer list, we denote this as true positive. Per family, the true positive rate is the
ratio of correctly assigned flows over all C&C flows for a specific family. Second, if
a Non-C&C flow of FS is assigned a C&C cluster, we denote this as false positive.
The false positive rate is the ratio of falsely classified flows for a cluster family
over the total number of flows in FS.
Figure 4.7 shows the results of the classification as a cumulative distribution

function for all families that were included in both, true positive and false positive

ID # Flows Description
FS 1,275,422 subset of Sandnet flows, only Non-C&C
FF N 87,655 C&C flows to C&C peers

Table 4.6: Evaluation data sets
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analysis. Note that the true positive rate values are given on the left y-axis, the
false positive rate values on the right y-axis. More than half of all families have a
true positive rate of over 95.6%. A small fraction of seven C&C families had true
positives rates lower than 50%, which was caused by too specific cluster centroids.
In most of these cases, we had too little training data to learn representative
message length variations of a particular C&C protocol, which could be improved
by adding more training data for this family.

For 88% of the families, the false positive rate is below 0.1%, and 23 cluster
families do not exhibit any false positive at all. For the few families that cause
false positives, we observed that the corresponding cluster centroids have high
variation coefficients on many message length positions, effectively rendering the
centroids being too generic and possibly matching random flow patterns. The
C&C family Cycbot shows a maximum false positive rate of 1.93%, while having a
true positive rate of 99.92%. At the same time, the average quality indicator of the
Cycbot family is 31.28% which is the minimum of all families. The Cycbot family
exhibits an HTTP-based C&C protocol and after the clustering, it spreads among
six clusters, which we observed due to several different activity states. Four of
the six clusters are caused by C&C server errors, such as servers returning errors
in the HTTP 500-599 status code range, File not found (status code 404) and
even cases where servers returned OK (status code 200), but the response body
contained an error message, telling that the requested page could not be found.
In summary, erroneous C&C flows in the training data for this family lead to
false positives where Non-C&C flows matched which happened to exhibit similar
requests and had the same response bodies returned (e.g., for status code 404
File not found or 500 Internal server error). When compared to other families,
the low quality indicator for Cycbot shows that, on average, the Cycbot clusters
do not tightly represent characteristic behavior.

4.7 Discussion

Whereas the previous chapters presented a method to recognize C&C channels
by help of clustering and subsequent classification, this section will shed light on
the strengths of our method as well as possible evasions. As is often the case,
a detection approach such as ours can be mitigated by adversaries. However,
we believe that today, only very few of the recent botnet C&C channels have
been designed to mitigate the kind of traffic analysis proposed in this work. We
provide answers to the question why our methodology works in recognizing C&C
channels and we will outline the limitations of our approach.
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4.7.1 Reasoning and Evasion

Why does our methodology work? We assume that, driven by the practical
need to evade payload byte signatures, botnet C&C protocols have evolved from
plaintext to obfuscated and encrypted message encodings. However, we speculate
that in practice, it has so far hardly ever been required to address the evasion of
traffic analysis from a botmaster’s point of view.
The fact that our approach relies on message length sequences sets a limitation

if messages would no longer exhibit characteristic lengths. During the clustering
phase, we had to remove four families from the dataset because they do not have
characteristic message lengths. These families include Hlux, SpyEye, Zeus P2P
and Carberp. However, it is difficult to tell whether the C&C protocols of these
families are designed to evade traffic analysis approaches or whether CoCoSpot
just failed to derive centroids due to the kind of data that was transmitted over
the labeled C&C flows. We manually inspected the families where our approach
has failed, in order to clarify whether the message lengths are altered on pur-
pose or by coincidence. Only in case of Zeus P2P, using reverse engineering, we
found proof in that it adds random message padding to most of its C&C mes-
sages before encryption, possibly to evade message-length-based approaches such
as CoCoSpot. Interestingly, in case of Sality P2P, while message lengths vary,
certain C&C messages are not padded at all and do exhibit characteristic mes-
sage lengths. Thus, even if a subset of the C&C messages exhibits characteristic
message lengths, CoCoSpot can effectively detect and classify this family. Fur-
thermore, telling from the evaluation results, 34 of the 43 malware families we
analyzed, can successfully be detected using CoCoSpot. We see our approach as
an innovative, additional means of classifying malicious traffic.
In addition, our methodology has some limitations concerning details of the

practical implementation. As described in Section 3.3 of Chapter 3, we heuris-
tically split messages of a flow if the direction of transmission changes or a new
connection is opened. If several messages are sent in the same direction over the
same connection, i.e., the C&C protocol does not follow a dialogue-like pattern,
our approach will fail to correctly separate these. Indeed, after manual inspec-
tion, we found such cases to cause false negatives, especially with unreliable C&C
servers that did not respond to an unusually high number of requests. For exam-
ple, if a C&C server only responds to every fifth request, five subsequent requests
might be aggregated into one request message until a response is received. Thus,
the resulting message length sequence differs significantly from what has been
learned during the training phase (where the C&C server responded to every re-
quest), exhibiting higher values for the request message lengths. However, if the
carrier protocol is known, e.g., in case of HTTP, it can be parsed and does not
need to be split heuristically. Retransmissions of requests without response could
then be ignored and messages can be separated at well-defined boundaries. This
could further reduce the possible false classification.
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Additionally, care has to be taken during the training phase in order to make
sure that representative C&C flows are considered. As the classification results of
the Cycbot family show, erroneous C&C flows in the training data might result in
high false positive rates. As such, it is important to make sure that the training
set is compiled of active C&C channels.

4.7.2 C&C Blacklist Peculiarities and Delusion
In a separate experiment, we evaluated the Kuluoz malware family against a set
of C&C signatures of a network intrusion detection system. When inspecting
apparent false negatives of our classification results for the Kuluoz botnet C&C
in comparison to those signature matches, we stumbled upon a delusion technique
of that specific botnet. We observed bots directing requests with the same URI
pattern as their C&C to popular legitimate destinations, such as bing.com and
twitter.com, probably aiming to trigger signatures on purpose. Listing 4.6 shows
three HTTP requests, where the first stems from an active C&C channel and
the last two are delusion requests. Those servers have not been C&C servers
and thus responded with an error message. However, the signature matches
were based only on the URI request pattern and – erroneously – indicated C&C
communication with the respective destinations. Instead, our method performed
correctly and did not classify this communication as C&C because the error
responses differed significantly from what was derived from the active C&C in
the training phase. In fact, this revealed a false positive of the signature. This
experience elucidates that our method is able to distinguish active C&C from
inactive C&C. Furthermore, automatically compiled blacklists from signature
matches will suffer from false positives, if delusions like those employed by Kuluoz
occur. In this case, bing.com and twitter.com could have mistakenly been added
to a blacklist due to the signature hits.

We observed a similar delusion with the domain facebook.com. In this case,
a SpyEye version 1.3 bot directed requests with a very similar pattern as its
regular C&C towards facebook.com, possibly to poison automatically compiled
C&C server blacklists. While we have not found facebook.com in any of the C&C
server blacklists that were used and monitored throughout our experiments, it
shows the potential danger of mistreating legitimate domains as C&C servers.
Especially for lesser-known benign domain names, it might not be as obvious
as in the above mentioned cases, whether the respective domain acts as a C&C
server.
Even worse, we have witnessed botnets that use C&C servers which are located

in typical benign environments. We have observed C&C servers that were hosted
on Amazon Elastic Compute Cloud EC2 [Ama12]. Blacklisting the IP address of
the respective C&C server will inevitably block a variety of other services, which
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Listing 4.6: Delusion of Kuluoz C&C communication

1 // This is active C&C communication with a C&C server

2 GET /forum/index.php?r=gate&id=6c..ae&group=2507rcm&debug=0&ips=192.168.X.Y HTTP/1.1

3 User-Agent: Mozilla/5.0 (Windows; U; MSIE 9.0; Windows NT 9.0; en-US)

4 Host: XXXXXXXXXXXXXX.ru

5

6

7 // This is a delusion request towards twitter.com

8 GET /nygul/index.php?r=gate&ac=6c..ae&group=2507rcm&debug=0&ips=192.168.X.Y HTTP/1.1

9 User-Agent: Mozilla/5.0 (Windows; U; MSIE 9.0; Windows NT 9.0; en-US)

10 Host: twitter.com

11

12

13 // This is another delusion request towards bing.com

14 GET /afyu/index.php?r=gate&gh=6c..ae&group=2507rcm&debug=0&ips=192.168.X.Y HTTP/1.1

15 User-Agent: Mozilla/5.0 (Windows; U; MSIE 9.0; Windows NT 9.0; en-US)

16 Host: www.bing.com

17 Connection: Keep-Alive

Listing 4.7: Delusion of SpyEye C&C communication

1 // This is active C&C communication with a C&C server

2 GET /folder/gate.php?guid=Admin!COMPNAME!18273645&ver=10133&stat=ONLINE&ie=8.0.6001.18702

&os=5.1.2600&ut=Admin&cpu=4&ccrc=F8..BF&md5=e1..b1 HTTP/1.0

3 User-Agent: Microsoft Internet Explorer

4 Host: XXXXXXXXXXXX.com

5
6 // This is the delusion request towards facebook.com

7 GET /login.php?guid=5.1.2600!COMPNAME!18273645&ver=10325&stat=online&ie=8.0.6001.18702

&os=5.1.2600&ut=Admin&ccrc=36..45&md5=0f..af&plg=customconnector HTTP/1.1

8 User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0)

9 Host: facebook.com

are hosted on EC2, too, because EC2’s IP addresses are pooled. Furthermore,
we found that the Bancos botnet distributes bot configuration updates by help of
dropbox.com. While dropbox.com is also being used for sharing benign contents,
it is hardly possible to blacklist its domain or IP addresses without interfering
with benign usage. In such cases, a detection approach such as CoCoSpot helps
to fill the gap between a blacklist approach and more fine-grained filtering based
on active C&C channels.
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4 Recognition of Command and Control Flows

4.8 Conclusion
With CoCoSpot, we have shown that for a variety of recent botnets, C&C pro-
tocols can be detected using traffic analysis features, namely the message length
sequence of the first 8 messages of a flow, the carrier protocol as well as differences
in the encoding scheme of the URI’s query section in case of HTTP messages. The
huge benefit of our approach is to be independent from payload byte signatures
which enables the detection of C&C protocols with obfuscated and encrypted
message contents, as used by the majority of modern botnets. In addition, our
C&C flow fingerprints complement existing detection approaches while allowing
for finer granularity compared to IP address or domain blacklists. Especially the
inherent distinction between active and inactive C&C channels renders CoCoSpot
less prone to delusion, as shown in case of the Kuluoz botnet.
As a side-effect, our C&C flow clustering can be used to discover relationships

between malware families, based on the distance of their C&C protocols. Exper-
iments with more than 87,000 C&C flows as well as over 1.2 million Non-C&C
flows have shown that our classification method can reliably detect C&C flows
for a variety of recent botnets with very few false positives.
The technique presented in this chapter has focussed on the recognition of

C&C channels. In order to evade detection, botmasters could design their C&C
channels in a more stealthy manner so that the identification of C&C channels
becomes even more difficult. As such, C&C could be performed over less com-
mon protocols for botnet C&C. For example, while most botnet C&C channels
exhibit HTTP as carrier protocol, botnets could instead build on DNS. From a
botmasters point of view, the DNS protocol has the advantage that most net-
worked environments require DNS as part of the regular operation, since the
domain resolution via DNS is a service protocol to most other application layer
protocols. Thus, the following chapter will deal with DNS as carrier protocol for
botnet command and control.
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Chapter5
Detecting Botnets with DNS as
Command and Control

5.1 Introduction
Botnets, i.e., sets of computers that are infected with a specific malicious soft-
ware that allows these computers to be remote controlled, have become one of
the biggest security issues on the Internet imposing a variety of threats to In-
ternet users. Therefore, organizations have keen interest to keep the number of
bot infections low. Since the remote command and control channel (C&C) is a
defining characteristic of botnets, techniques have been developed to detect bot
infections by identifying the C&C network traffic.
Advances in malware research have challenged botnet operators to improve the

resilience of their C&C traffic. Partly, this has been achieved by moving towards
decentralized structures (like P2P) or by otherwise obfuscating and even encrypt-
ing communication [SGE+09, SCC+09, HSD+08, BHB+09, CL07, GYP+09]. This
makes it harder for researchers to distinguish malicious from benign traffic, albeit
not impossible.
In the previous chapter, we proposed our method of identifying and recognizing

botnet C&C channels, even for encrypted C&C communication. It was only a
question of time when botnet C&C channels would be designed in a way that
C&C messages are hidden in common application layer protocols, striving for
covert communication.
Recently, we observed a specific type of malware termed Feederbot that showed

strange behavior in the sense that it seemingly did not use any obvious C&C chan-
nel. A significant amount of traffic generated by the malware were messages for
the Domain Name System (DNS). By reverse engineering the particular sample,
we found out that the bot (ab)used DNS as a communication channel for C&C
traffic. Apart from this insight, we were interested in the difficulties to detect this
type of seemingly “covert” and “hard to detect” traffic. Since DNS has not been
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documented so far as a C&C protocol in botnets1, such botnets benefit from the
fact that currently there is no specifically tailored detection mechanism, which in
turn raises the probability for the botnet to remain undetected. We achieved to
detect this particular type of C&C traffic using machine learning techniques and
traffic analysis.
For example, we applied the resulting method on purely malicious traffic pro-

duced using our dynamic malware analysis network Sandnet and found that
in over 14 million DNS transactions of over 42,000 malware binaries we did not
produce any false positive. In fact, in addition to Feederbot, we were able to
identify a second class of malware that also used DNS as C&C channel.
One reason for our good results was the way in which DNS was used for com-

munication: the botnet was using the technique of DNS tunneling to evade detec-
tion. DNS tunneling refers to the technique in which data is transmitted within
resource record fields of a DNS message. As a bottom line, our results underline
that covert communication must not necessarily be harder to detect than non-
covert communication. On the contrary, the covert communication we analyzed
introduced anomalies to DNS traffic that can be identified. So the difficulty was
not only to detect the presence of C&C information in DNS, it was also to identify
the carrier (i.e., DNS) over which covert communication takes place.
In summary, the contributions of this chapter are threefold:

• To our knowledge, we are the first to document DNS-based botnet C&C
traffic.

• We present a technique that distinguishes between DNS-based C&C and
regular DNS communication in real-world DNS traffic. In other words, we
provide a technique for the detection of this particular class of malware.

• We present a classifier that can distinguish purely malicious communication
into DNS-based C&C and regular DNS communication. In other words, we
provide a technique for the classification of malware samples based on their
behavior.

The remainder of this chapter is structured as follows: We present the case
study of Feederbot in Section 5.2. We then describe our detection and classi-
fication approach in Section 5.3. We give a brief discussion of our findings in
Section 5.4 and describe related work in Section 5.5.

5.2 Case Study: DNS as Botnet C&C
From the point of view of a botmaster, a trade-off between C&C communication
visibility and the bot-inherent need to communicate arises. On the one hand, bots

1There is only anecdotal evidence for DNS as botnet C&C [Bro11].
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must communicate with their C&C instance to receive instructions and transmit
data such as stolen credentials. On the other hand, botmasters try to hide the
C&C traffic in order to avoid detection. Usually, the design of a botnet’s C&C
results in messages being obfuscated or encrypted so that it is more difficult to
detect and understand the semantics of certain types of C&C traffic.

5.2.1 DNS as Carrier for Botnet C&C
Whereas several application layer protocols have been analyzed by the research
community concerning the usage as a basis for botnet command and control,
to our knowledge we are the first to openly analyze the Domain Name System
protocol as carrier for botnet C&C. DNS, when compared to other application
layer protocols provides some advantages. Concerning its usage as botnet C&C,
DNS has not been seen so far. Thus, botnets using DNS as C&C benefit from the
fact that currently there is no specifically tailored detection mechanism, which
in turn, raises the probability for the botnet to remain undetected. Even in
environments with heavily restricted Internet access, e.g., by means of firewalling
and proxying, DNS is usually one of the few protocols – if not the only one – that
is allowed to pass without further ado. Furthermore, whereas for some protocols
such as HTTP, there are a number of existing methods to analyze and inspect the
network traffic like the one presented by Perdisci et al. [PLF10], DNS is usually
served “as is”. As another advantage, DNS was designed as a distributed system
and as such provides advantages in terms of resilience.
Using Sandnet, our dynamic malware analysis environment, we discovered a

bot that indeed uses DNS messages as carrier for command and control traffic.
As DNS is a new kind of botnet C&C, we provide some insight into the inner
workings of this bot named Feederbot. We gained insight by reverse engineering
the Feederbot sample as well as analyzing the network traffic that was captured
during the analysis of Feederbot in Sandnet.

Figure 5.1: Example of Feederbot’s DNS Query Domain Name

Feederbot uses valid DNS syntax. Its C&C messages consist of DNS messages
with TXT resource records. Furthermore, the query domain name is used to
transmit certain parameters from the bot to the C&C server such as parameters
for key derivation. An example of the query domain name structure is given
in Figure 5.1. Feederbot has to query the C&C servers directly, bypassing the
pre-configured DNS resolver on the host because the domains that are used in
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Feederbot’s requests are not delegated. Manual resolution of seven domain names
seen in Feederbot requests starting at the DNS root, i.e., not querying Feederbot’s
DNS C&C servers, results in NXDOMAIN responses.
We can only speculate as to why Feederbot avoids the pre-configured resolver

and directly queries its DNS servers. One reason could be that in this way,
the corresponding DNS C&C transactions leave no traces in DNS resolver logs,
caches or passive DNS databases. In contrast, the fact that a different than the
pre-configured DNS resolver is used, might itself be suspicious enough to catch
one’s eye – especially in homogeneous environments.

5.2.2 Segmentation and Encryption
Feederbot’s C&C traffic is split into message chunks with a maximum length of
220 bytes per chunk. One message chunk is transmitted in the rdata field of a
TXT resource record in the DNS response. The structure of a Feederbot message
chunk is shown in Figure 5.2. The query domain name (Figure 5.1) contains
among others the identifier for the message chunk that is to be retrieved from
the C&C server.

Figure 5.2: Structure of a Feederbot DNS C&C Message Chunk

In order to evade detection, most of the message chunks are encrypted using
the stream cipher RC4. Feederbot uses a variety of different encryption keys. A
specific part of the DNS query domain name is used to transmit parameters for
key derivation. As an example, one such parametrized key derivation function
takes as input a substring of the query domain name qdparam. This substring
qdparam is then RC4-encrypted with the string “feedme” and the result is used
to initialize the RC4 decryption of the actual C&C message chunks. The stream
cipher is used in a stateful manner, so that if a message chunk gets lost, decryption
of subsequent message chunks will fail. In addition, Feederbot’s C&C message
chunks make use of cyclic redundancy checks to verify the decryption result. The
CRC32 checksum precedes message chunk payload and is not encrypted.
Using the results from the dynamic analysis in Sandnet as well as the re-

verse engineering efforts, we achieved the implementation of a passive decryption
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utility in order to decrypt Feederbot’s DNS C&C messages. Additionally, we
implemented a low interaction clone of Feederbot to actively analyze its C&C.
Feederbot receives instructions from several DNS C&C servers. Initially, when

Feederbot is launched, a request is sent to a very small subset of C&C servers.
These servers seem to serve as bootstrapping C&C servers. During our monitoring
period of nine months, we have seen only two such DNS servers (in terms of IP
addresses) acting as bootstrapping C&C servers. The response to this initial
bootstrapping request message is not encrypted and only Base64 encoded. It
contains a pointer to at least one other C&C server as well as another domain
name. Subsequent communication is encrypted.

5.3 Detecting DNS-based Botnet C&C
When facing a new kind of botnet C&C as with Feederbot, it is of concern how
such a communication can be detected. Inspired by the results of the Feederbot
analysis, we developed machine learning features for a DNS C&C classification
method.
Our classification approach is based on several prerequisites. First, we as-

sume that DNS-based C&C channels typically carry dense information, such as
compressed or encrypted data. As botmasters strive for resilience, encryption
is becoming more prevalent among botnet C&C. In addition, due to the mes-
sage length limits of DNS, botmasters need to fit their commands into relatively
small messages. Second, we assume that to a certain degree there is a continuous
“downstream” flow of information, i.e., from the C&C server to the bot. Admit-
tedly, this second condition may not be met for bots with certain monetization
functionalities, e.g., low profile trojans. However, we believe that lots of bots
actually fulfill this requirement, especially spam-sending bots or click fraudsters.
In these cases, the C&C server is required to continuously provide the bot with
input data, such as spam target email addresses, templates and text blocks or
URLs to feed the click fraud module.

5.3.1 Classification Features
Key to our detection method are certain differences between regular DNS usage
and DNS C&C, which we divide in two categories. The first category deals with
differences concerning the use of the rdata field whereas the second category
addresses differences concerning the communication behavior.

Rdata Features

The basic unit for these entropy-based features is the rdata field of all resource
records of one DNS response. For brevity, this unit is referred to as rdata message

73



5 Detecting Botnets with DNS as Command and Control

in the following. As an example, in the context of Feederbot this corresponds to
one message chunk. Note that we do not restrict the features to certain resource
record types or sections.
Shannon entropy is a measure of randomness in a string of data. Given a finite

alphabet Σ = {0, 1..255}, the entropy estimates how randomly the characters in
word w are distributed. We use the maximum likelihood estimator to calculate
the sample entropy of a message w ∈ Σ∗, fi denotes the frequency of character i:

Ĥ(w) = −
255∑
i=0

fi · log2(fi) (5.1)

Then, the word w1 = 001101 has a lower sample entropy than the word w2 =
012345. We exploit the fact that encrypted or compressed messages have a high
entropy. As we assume encrypted C&C, the C&Cmessages exhibit a high entropy.
Encrypted data composed of characters of the full 8-bit-per-byte alphabet will
converge towards the theoretical maximum entropy of 8 bits per byte. In this
case, entropy is typically referred to as byte entropy. In fact, when using DNS
as C&C, certain fields of the DNS protocol such as TXT or CNAME resource
records’ rdata do not allow the full 8 bits to be used per byte. Thus, botmasters
have to “downsample” their C&C messages to the destined alphabet, e.g., by
means of Base64 or Base32 encoding. This implies that the resulting message
exhibits a comparatively low byte entropy. We overcome this issue by estimating
the destined alphabet size by counting the number of distinct characters in a
given field. After that, we calculate the expected sample entropy for random
data based on the estimated alphabet size.
Another issue is posed by the fact that short strings of data – even when

composed of random characters – rarely reach the theoretical maximum entropy.
For example, a string of 64 bytes length, based on the 8-bit per byte alphabet Σ
has a theoretical maximum byte entropy of 6 bits. However, considering a string
r of 64 bytes length with randomly distributed bytes of the alphabet Σ, the byte
entropy is typically lower than 6 bits, e.g., around 5.8 bits. This finding is based
on the birthday paradox. Basically, encrypted data is randomly distributed, but
randomness does not imply a uniform distribution. Thus, if a string r is short
(e.g., 64 bytes), the expected byte entropy is significantly below 8 bits, although
r might be purely random.
We overcome this issue by calculating the statistical byte entropy for a string

of a given length. This is done as follows. Empirically, we compute the average
byte entropy of a set of x = 1, 000 random words for every length 1 < N < 210.
For any word w1, . . . , wx, we compose a random byte distribution and calculate
the byte entropy. Since x was chosen sufficiently large, calculating the mean over
all x byte entropies of words with length N estimates the expected statistical byte
entropy of random data of length N . Figure 5.3 shows the maximum theoretical
entropy and the expected statistical random entropy for the full 8-bit per byte
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Figure 5.3: Statistical byte entropy

alphabet Σ as well as typical Base64 and Base32 alphabets. One important
feature is the deviation of the actual sample entropy to the expected statistical
random entropy. Effectively, this covers different alphabets in a flexible fashion,
i.e., we can dynamically detect high sample entropies in data encoded with any
alphabet such as Base64, Base32, Base16 or the like.
In addition, we measure the minimum and maximum byte values of a given

rdata message as well as the coverage of some subsets of the ASCII character
set such as capital letters and digits. The complete list of features for an rdata
message m consists of:

• number of distinct byte values in m

• minimum byte value in m

• maximum byte value in m

• number of ASCII capital letters (byte values 65-90) in m
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• number of ASCII digits (byte values 48-57) in m

• length of m in bytes

• absolute difference of the statistical byte entropy at given length of m and
the entropy of m

Aggregated Behavioral Communication Features

Furthermore, we exploit behavioral properties of DNS C&C bots. These features
address the fact that a certain amount of information has to be transmitted via
the DNS C&C channel, e.g., spam templates, email addresses or click fraud URLs,
and that the C&C channel exhibits a certain level of persistence. In contrast to
the rdata features, the behavioral communication features do not operate on indi-
vidual DNS response resource records. Instead, they operate on aggregated data.
Thus, for the behavioral communication features to be computed, we need to
define aggregation criteria, so that communication properties can be aggregated
over time before calculating the features. When analyzing Feederbot, we observed
that the DNS C&C servers were contacted directly, avoiding the pre-configured
DNS resolver. In this case, in order to compute behavioral communication fea-
tures (e.g., bandwidth), the requester’s IP address as well as the IP address of
the DNS server serve as aggregation criteria. In contrast, if DNS requests are
directed towards pre-configured DNS resolvers, the requester’s IP address and
the query domain name (and parts thereof such as the second-level domain) are
used as aggregation criteria. In both cases, we assume that the requester’s IP
address represents one host, i.e., no network address translation has been per-
formed. Note that even if network address translation was performed, detecting
that DNS C&C was used might still be possible. However, in such a case, it
would be impossible to identify the infected host.
We define the following behavioral communication features. First, we measure

the size of all rdata messages (i.e., rdata fields of DNS response resource records)
and compute the corresponding aggregated bandwidth over time. We expect
that the data volume transmitted between the DNS C&C server and the bot will
tend to be significantly larger when compared to regular DNS usage, as DNS is
typically not used for data transmission. This observation results in either larger
messages and/or in an increased bandwidth consumption between the bot and
the C&C server.
Second, the information flow between one bot instance and the C&C server is

expected to appear more persistent. We measure the persistence as the maximum
of the time between two DNS responses, as well as the communication duration
calculated as the time between the first and the last message exchanged with a
C&C server. Yet simple, we expect these behavioral communication features to
be effective enough in order to extend a classifier based on the rdata features.
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5.3.2 Clustering DNS traffic
Given these features, our goal is to develop a binary classifier that is able to
detect DNS-C&C traffic. Before we can classify DNS traffic, we need to extract
two sets of training data. As a first step, we extract two different kinds of DNS
traffic. We define one transaction to be composed of one DNS request as well
as the corresponding DNS response. Based on the network traffic caused by the
Feederbot execution that we analyzed in Section 5.2, we compile a set of known
Feederbot DNS C&C transactions. This set is referred to as DD and contains
3128 DNS transactions. DD is composed of DNS transactions fulfilling both of
the following two conditions:

• The transaction was directed to any of the DNS bootstrapping C&C servers
which were verified to be used as C&C during reverse engineering.

• The request has a query domain name ending in one of 7 second-level do-
mains observed during dynamic execution analysis.

Furthermore, we extract DN , a set of DNS transactions of 30 executions of bots
that knowingly do not use DNS as C&C. In addition, we manually inspected 500
(1%) of the 47,433 DNS transaction of DN . DN contains DNS transactions that
occurred as part of the monetization functionality of these bots such as spamming
or click fraud. The complete list of bot families used to compile DN is given in
Table 5.1. The bot family names are based on a majority voting of up to 42
labels per sample, acquired from VirusTotal [vir12].

Bot Family Type of C&C # Execs DNS TXs
Unknown HTTP 3 620
Unknown IRC 4 1951
Agobot IRC 1 163
Koobface HTTP 2 4119
Rbot IRC 2 300
Sality Custom P2P 4 5718
Sdbot IRC 3 916
Swizzor IRC 1 93
Virut IRC+CE 4 17,740
Virut IRC (plaintext) 4 15,789
Zbot HTTP+CE 2 24

Table 5.1: Bot executions used to acquire Non-DNS-C&C transactions.
CE=custom encryption; TX=transaction.

With respect to approximately equally sized training sets, the next step consists
in drawing 5000 elements of DN at random into DNS so that the resulting set
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DNS has approximately the same size asDD. We compose the setD := DD∪DNS

as the union of DD and DNS.
At this point, we extract the rdata features described in Section 5.3.1 from all

DNS transactions in D. The resulting set of feature vectors is referred to as F .
Moreover, the elements of F are normalized and the normalization parameters are
stored. Using k-Means clustering with k = 2 and Euclidean Distance function,
we separated F into two clusters CD and CN . The cluster which contains the
most known DNS C&C elements is considered as CD, the other one as CN .
The clustering step aims at distilling the characteristic transactions for DNS

C&C into the resulting cluster CD. Table 5.2, the classes to clusters comparison
shows that only 6 elements of DD were assigned to cluster CN . Manual inspection
revealed that each of these 6 transactions carries a Feederbot C&C message chunk
with an empty payload. Thus, these are not considered as characteristic C&C
messages. All of the transactions in the Non-DNS-C&C set DNS were assigned
to the Non-DNS-C&C cluster CN .

CN CD

DNS 5000 0
DD 6 3122

Table 5.2: Classes to clusters comparison

Based on the clustering results, we develop a classification method. First,
we aim at classifying malicious network traffic, i.e., network traffic caused by
malware as it is acquired in Sandnet. This binary DNS traffic classifier is
supposed to distinguish between DNS-based C&C and Non-C&C in order to find
other malware executions that exhibit DNS C&C. Second, we aim at detecting
DNS-based C&C channels in real-world DNS traffic.

5.3.3 Detecting Bots that use DNS C&C
As we were curious to find further malware samples using DNS C&C – apart
from the Feederbot sample and its execution that we analyzed in depth in Sec-
tion 5.2 – we designed a DNS C&C classifier that can be applied to the network
traffic gained by our Sandnet analysis of more than 100,000 malware samples
between February 2010 and April 2011. Due to the enormous amount of data
and because we wanted to identify individual DNS C&C transactions, we in-
tentionally restrict ourselves to the rdata features as described in Section 5.3.1.
Therefore, we calculate the rdata features for the 14,541,721 DNS transactions
of all 42,143 samples that have been executed in Sandnet and that exhibited
DNS traffic. Each feature vector reflects one DNS transaction.
In order to classify DNS traffic, we calculate the mean cluster centroids of both

clusters CD and CN built in Section 5.3.2. Each feature vector is scaled using
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the normalization parameters from the training phase. Finally, as classification
method, we implemented a Euclidean Distance based classifier which assigns the
class of the closest cluster to the given feature vector.
All in all, 109,412 DNS transactions of Sandnet traffic are classified as DNS

C&C. This procedure reveals 103 further executions of Feederbot samples. Sur-
prisingly, our classification even discovers another bot family that uses DNS-based
C&C. We term this newly found bot Timestamper due to the fact that it uses
the Unix timestamp of the current date and time in the query domain name.
Timestamper, in contrast to Feederbot, uses the pre-configured DNS resolver.
Our classifier detects 53 executions of Timestamper in Sandnet data. Man-
ual inspection verifies that all of the 156 executions which have associated DNS
transactions classified as DNS C&C are either Feederbot or Timestamper execu-
tions. Thus, at this point, we draw the conclusion that, in terms of Sandnet
executions, our classifier does not produce any false positive.
As part of an effort to estimate the false negative rate, we compile a regular

expression for Timestamper’s DNS C&C requests that matches the Unix times-
tamp in the query domain name. 1679 transactions where the regular expression
matches the query domain name are considered as Timestamper’s DNS C&C re-
quests, the remaining 1851 DNS transactions are considered as Non-C&C DNS.
Our classifier correctly classifies all of the 1679 transactions as being DNS C&C
transactions, i.e., showing no false negatives among Timestamper’s DNS C&C
traffic.
In addition, we evaluate our classifier against 1851 Timestamper DNS transac-

tions which are not part of its DNS C&C in order to estimate the false positive
rate on the transaction level. Once more, our classifier correctly considers all
of these 1851 transactions as not being DNS C&C transactions, i.e., showing no
false positive among the Timestamper DNS transactions.
To summarize, our binary DNS C&C transaction classifier successfully reveals

103 further executions of Feederbot and discloses 53 executions of Timestamper,
the newly disclosed bot that also uses DNS C&C. In addition, the results show
that even though we trained only on known Feederbot DNS C&C of one execution,
our classifier was able to correctly classify DNS C&C transactions of another,
completely unrelated type of malware.

5.3.4 Detecting DNS C&C in mixed traffic
Furthermore, we evaluate our classifier on mixed workstation DNS traffic. There-
fore, we recorded DNS network traffic at our Institute at the network router and
NATting point where all traffic from workstations towards internal servers as well
as arbitrary Internet destinations passes. Traffic from the internal servers heading
for Internet destinations was excluded in order for recursive DNS queries caused
by the DNS resolver to be avoided. All DNS traffic was recorded before source
network address translation (NAT) on the router was applied. In this manner,
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we are able to capture DNS traffic destined for the pre-configured DNS resolver
and for remote DNS resolvers on the Internet.
Additionally, we executed one Feederbot sample and one Timestamper sample

from inside the workstation net, each for one hour. Both samples were executed
in virtual machines on workstation computers that were used for regular opera-
tion throughout the whole measuring period. The network access of the virtual
machines was configured to use NAT on the workstation hosts. Thus, the traffic
originating in each infected virtual machine and the corresponding workstation
host traffic cannot be distinguished by source IP address and regarding our aggre-
gation they represent one entity. Additionally, all network traffic caused by the
virtual machines was recorded individually on the workstation host. Our goal
is to detect those workstations that executed the Feederbot and Timestamper
samples.
The captured network traffic contains a total of 69,820 successful DNS transac-

tions from 49 distinct workstation IP addresses of our Institute, captured between
7 a.m. and 8 p.m. on a regular weekday. This dataset is referred to as Tall. The
Feederbot VM caused a total of 2814 DNS transactions (TF ) among which 1092
were DNS C&C transactions (TF CnC). Additionally, we observed 4334 HTTP
flows during its click fraud activity. The network trace of the VM executing the
Timestamp bot showed a total of 181 DNS transactions (TT ) with 102 DNS C&C
transactions (TT CnC). Consequently, the traffic capture contains 66,825 DNS
transactions caused by the legitimate workstations during regular operation.
In order to make use of the aggregated behavioral communication features, we

extended our classification method. Based on the results in Section 5.3.3, we
compiled a set of 10 Feederbot executions revealed in Section 5.3.3. For these
executions, we calculated the following three thresholds:

1. tb the mean bandwidth per aggregate

2. tmi the mean of the maxima of the gaps between two consecutive C&C
messages for DNS C&C flows

3. tsi the standard deviation of the maxima of the gaps between two consec-
utive C&C messages for DNS C&C flows

As a first step, we applied the classifier presented in Section 5.3.3 to all of
the DNS transactions in Tall. This results in the set of candidate DNS C&C
transactions Tcand. Furthermore, in order to apply the behavioral communication
features, we computed two kinds of aggregates for the candidate transactions in
Tcand. First, we aggregate by each pair of source and destination IP addresses.
Second, we aggregate by each pair of source IP address and second level domain
of the query domain name.
Subsequently, the set of aggregates is filtered, eliminating all aggregates that

do not fulfill the behavioral properties. We exclude aggregates with a computed
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bandwidth smaller than tb and a maximum time between two C&C messages
greater than d · tsi + tmi with d = 3. This filtering step makes sure that only
those channels with persistence be considered as C&C channels. None of the
aggregates were excluded in the filtering step.
Based on the resulting set of aggregates, we consider each source IP address to

be infected with malware using DNS C&C. Indeed, only the two IP addresses of
the workstations that hosted the Feederbot and Timestamper bots were classified
as DNS C&C infected hosts. To sum up, we showed that our classifier can even
detect DNS C&C transactions in mixed network traffic of regular workstations.

5.4 Discussion
Though achieving high true positive rates, there are certain limitations that bots
could exploit to evade our detection. One such limitation is posed by the fact that
botmasters could restrict their C&C messages to very small sizes. In practice,
message contents could be stored in e.g., 4 bytes of an A resource record’s rdata.
In this case, our rdata features alone, which are currently applied to individual
C&C messages, would not be able to detect these C&C messages as high entropy
messages because the statistical byte entropy of such really short messages is very
low and our estimate of the alphabet size by counting the number of distinct bytes
is inaccurate for short messages.
In this case, a countermeasure could be to aggregate several messages and

compute aggregated rdata features. Furthermore, for each aggregate, the change
of entropy among subsequent messages can be measured. Additionally, for certain
resource records one could compare the distribution of byte values against the
expected distribution. For example, the rdata of an A resource record contains
IPv4 addresses. However, the IPv4 address space is not uniformly distributed.
Instead, certain IPv4 address ranges remain reserved, e.g., for private use such as
10.0.0.0/8 (RFC1918) or 224.0.0.0/4 for multicast. These might rarely show up
in Internet DNS traffic whereas other addresses, e.g., popular web sites, might
appear more often in DNS query results.
When looking at Feederbot, it becomes obvious that the query domain name

can be chosen completely at random. In general, this is true for botnets where the
DNS C&C servers are contacted directly. In order to avoid raising suspicion, the
botmasters could have chosen e.g., random or even popular second-level domains.
This would become a problem for our detection mechanism if only the query
domain name was used for aggregation alone. However, as we also aggregate by
the DNS server’s IP address, our classifier can still detect this kind of DNS C&C.
As a result, we suggest to aggregate by at least both, the DNS server’s IP address
and the query domain name, because the botmaster can only arbitrarily change
one of them.
Another limitation is posed by the fact that our behavioral communication fea-
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tures aim at botnets with a central C&C architecture using a limited set of C&C
servers. Botmasters might exploit this by spreading the communication with
C&C servers over lots of different C&C destinations so that even the aggregated
behavioral features such as the aggregated bandwidth remain subliminal. Effec-
tively, a further step in this direction would be to change for a peer-to-peer C&C
architecture where each bot is part of the peer-to-peer network. However, this
opens the door for a whole variety of techniques addressing peer-to-peer networks
such as eclipse attacks.

5.5 Related Work
Related work can be grouped in three categories. First, several C&C techniques of
botnets have been analyzed in depth [HSD+08, SGE+09, CDB09, CL07, SCC+09].
For example, Holz et al. [HSD+08] provide insights into botnets with peer-to-peer
C&C architecture in a case study on the storm worm. Stock et al. and Calvet et
al. [SGE+09, CDB09] analyze the Waledac peer-to-peer botnet in detail. How-
ever, to our knowledge, we are the first to analyze DNS as carrier for botnet C&C.
Our work depicts how C&C messages are structured, encrypted and encoded in
regular DNS syntax as is the case with Feederbot, a bot using DNS C&C we
discovered during this work. Additionally, we discuss general architectural issues
and limitations of DNS botnet C&C. The second group of related work contains
approaches to detect botnets in network traffic. This kind of related work can be
separated into application protocol specific approaches and protocol independent
approaches. As HTTP is used as botnet C&C, some work has been done to de-
velop specifically tailored detection methods for HTTP-based botnet C&C, such
as Perdisci et al. [PLF10]. Goebel and Holz [GH07] present methods in order to
detect IRC-based botnets. However, due to their protocol-dependent orientation,
none of these approaches are able to detect DNS C&C.
Independent of the application layer protocol, Gu [GPZL08] and Strayer [SLWL08]

propose botnet detection methods based on network flow characteristics. How-
ever, protocol-independent approaches will likely fail to detect DNS C&C as they
expose neither chat-style characteristics nor necessarily spatial-temporal corre-
lated behavior. For example, Feederbot does neither exhibit periodicity nor syn-
chronized transactions among different bot executions – effectively exploiting the
gap of existing detection approaches. Therefore, we provide a detection method
specifically tailored to DNS C&C based on rdata and behavioral communication
features – successfully filling this gap.
A special case is the work of Choi et al. [CLLK07], which – though not specif-

ically targeting DNS C&C – addresses group activities in DNS. The authors
define differences between DNS query behavior typical to any kind of botnet
and legitimate DNS resolution. According to Choi et al., key features for bot-
typical behavior include simultaneous DNS queries, quickly changing C&C server
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addresses as well as transient domains. However, as our analysis of Feederbot
discovers, none of these assumptions hold. Feederbot’s C&C servers stayed up for
the whole monitoring period of nine months and DNS queries are not synchro-
nized between different bots. Instead, we exploit rdata features and persistent
communication behavior to detect DNS C&C.
The third group of related work covers DNS covert communication. Bernat

[Ber08] analyzed DNS as covert storage and communication medium. Born and
Gustafson [BG] employ character frequency analysis in order to detect DNS tun-
nels. However, both approaches do not specifically address the detectability of
DNS as botnet C&C. In addition, we significantly improve entropy-based features
and combine them with behavioral features to target botnets.

5.6 Conclusion
Inspired by anomalous DNS behavior, we stepped into a whole new kind of botnet
C&C. This shows that even though many bot families use IRC or HTTP as carrier
protocol for their C&C, malware authors still find new ways of instructing their
bots. It is obvious that DNS C&C moves botnet C&C one step further into
the direction of covert communication. However, as shown in this chapter, the
detection of such botnet C&C, even when covert, remains possible.
We combine protocol-aware information theoretical features with aggregated

behavioral communication features and apply them at different levels of network
traffic abstraction, i.e., DNS transactions and hosts. In this way, we detect DNS
C&C in real-world DNS traffic. Furthermore, we provide means to classify mal-
ware concerning DNS C&C usage based on network traffic.
To summarize, to the best of our knowledge we are the first to not only describe

a real-world botnet using DNS C&C, but also provide a mechanism to detect DNS
C&C in network traffic.
Thus, the previous chapter, presenting our C&C recognition method based

on traffic analysis, as well as this chapter which proposes a dedicated detection
approach for covert DNS-based C&C round up our work on the detection of
botnet command and control channels. The remainder of this thesis deals with
the detection of one of the most prevalent monetization techniques, namely rogue
visual malware.
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Chapter6
Detecting Rogue Visual Malware

6.1 Introduction
While the previous chapters deal with the detection of botnet command and con-
trol channels, in this chapter, we focus on the detection of visual monetization
techniques of remote-controlled malware. Given the fact that botnets are free to
design their C&C protocols in a subtle and covert way, we have observed in a few
cases that botnets such as Zeus P2P even evade traffic analysis means. At that
point, one way to detect such malware lies in its monetization. While malware
comes in many different flavors, e.g., spam bots [SHSG+11, CL07, SGHSV11],
banking trojans [ROL+10, BOB+10] or denial-of-service bots [Naz], one impor-
tant monetization technique of recent years is rogue software, such as fake an-
tivirus software (Fake A/V) [RBM+10, Mic]. In this case, the user is tricked into
spending money for a rogue software which, in fact, does not aim at fulfilling the
promised task. Instead, the rogue software is malicious, might not even have any
legitimate functionality at all, and entices the user to pay. However, all rogue
software has in common to provide a user interface, e.g., be it to scare the user,
or in order to ask for banking credentials, or to carry out the payment process.
Figures 6.1(a) and 6.1(b) show example screenshots of two typical rogue soft-

ware flavors. The first displays a Fake A/V user interface, mimicking a benign
antivirus application, while the second exhibits a ransom screen (in German),
asking the user to pay before the computer is unlocked. Especially the later cate-
gory, ransomware, is considered an increasing threat with more than 120,000 new
ransomware binaries in the second quarter of 2012 [McA12]. In addition, when
referring to the C&C tracking of Fake A/V and ransomware botnets, we observe
a significant increase in activity since June 2011, as can be seen in Figure 3.8
in Chapter 3. We conclude that, today, rogue visual software is thus one of the
most prevalent techniques for the monetization of remote-controlled malware and
address means to detect this kind of threat in this chapter.
As rogue software is required to provide a user interface, we aim at exploiting
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(a) Smart Fortress 2012 (Winwebsec family)

(b) Ransomware asking the user to pay (in German)

Figure 6.1: Example screenshots of rogue software
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its visual appearance in order to cluster and classify rogue software. We motivate
our efforts by the relatively low A/V detection rates of such rogue software, and
we aim to complement existing techniques to strive for better detection rates. In
particular, we observed that the structure of the user interfaces of rogue software
remains constant and can be used to recognize a rogue software family or cam-
paign. Using a perceptual hash function and a hierarchical clustering approach,
we propose a scalable and effective approach to cluster associated screenshot
images of malware samples.
In short, the main contributions of this chapter are threefold:

• We provide a scalable method to cluster and classify rogue software based
on its user interface, an inherent property of rogue visual malware.

• We applied our method to a corpus of more than 187,560 malware samples
of more than 2,000 distinct families (based on Microsoft A/V labels) and
revealed 25 distinct types of rogue software user interfaces. Our method
successfully reduces the amount of more than 187,560 malware samples and
their associated screenshot images down to a set of human-manageable size,
which assists a human analyst in understanding and combating Fake A/V
and ransomware.

• We provide insights into Fake A/V and ransomware campaigns as well as
their payment means. More specifically, we show a clear distinction of
payment methods between Fake A/V and ransomware campaigns.

The remainder of this chapter is structured as follows. In Section 6.2, we
will describe the dataset our analysis is based on and outline our methodology.
Subsequently, we will evaluate our method in Section 6.3. Using the clustering
results, we will provide insights into the monetization and localization of rogue
software, with a focus on four ransomware campaigns in Section 6.4. Section 6.5
will discuss the limitations and evasion of our approach. Finally, we will describe
related work in Section 6.6 and conclude in Section 6.7.

6.2 Methodology
A coarse-grained overview of our methodology is shown in Figure 6.2. Our ap-
proach consists of three steps. First, we execute malware samples and capture
the screen. Furthermore, we compute a perceptual hash of the resulting image
and finally, we cluster screenshots into subsets of similar appearance. Our goal
is to find subsets of images that – although slightly different in detail – exhibit a
similar structure and a similar user perception.
We found that the user interfaces of Fake A/V campaigns vary concerning

details such as the number of supposedly dangerous files as well as the rogue
software name and logo. However, the position of the logo and the sizes of user
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Figure 6.2: Overview of the screenshot clustering methodology

interface elements remain constant among several campaigns of one family. As an
example, Figures 6.3(a) and 6.3(b) display screenshots of two malware samples of
the Winwebsec family, and Figures 6.3(c) and 6.3(d) display screenshots of two
FakeRean malware samples. While the two Winwebsec samples (Smart Fortress
2012 and System Tool) show different logos at the top left corner of the application
window and different icons for the application menu, their overall user interface
structure is very similar. The same applies to FakeRean. Again, the name differs
– Internet Security vs. Spyware Protection – but the application windows and
their user interface elements are positioned in the same fashion.
For our clustering step, we aim at separating the images of the Winwebsec

family from those of the FakeRean family. Furthermore, if possible, different
campaigns should be separated. In other words, we aim at recognizing the struc-
ture of the visual appearance in a screenshot, e.g., concerning the position of a
program or campaign logo and the sizes of user interface elements, but at the
same time ignore detailed information such as colors, the exact program name,
window title or the text inside user interface elements.
In fact, we found that rogue software is required to change its name regularly –

most likely because users searching for such a software name on the Internet will
eventually find out that they fall prey to a rogue software campaign.
Our basic assumption can be fostered in the observation that rogue software

seems to build its user interface from templates which remain constant and only
the contents of certain user interface elements differs. Thus, our clustering ap-
proach specifically targets these templates.

6.2.1 Dataset
For our image clustering technique, we compiled a corpus of 213,671 screenshots
that originate from executing 213,671 MD5-distinct malware binaries representing
more than 2,000 malware families based on Microsoft A/V labels. The binaries
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(a) Smart Fortress 2012 (Winwebsec) (b) System Tool (Winwebsec)

(c) Internet Security (FakeRean) (d) Spyware Protection (FakeRean)

Figure 6.3: Screenshot images of the Winwebsec and FakeRean malware families

were executed in Sandnet and span a time period of more than two years,
up to May 2012. Although by far, most of the samples in our malware feeds
are indeed malicious, occasionally, a sample represents legitimate software, e.g.,
Adobe Flash Installer. For example, this stems from the fact that some samples
are gathered from public submission systems where users are allowed to upload
all kinds of software, possibly even including benign software. However, for our
approach, we see no need to exclude all legitimate software. Instead, in our
clustering results, we expect benign software to be well-separated from rogue
visual software because it exhibits different user interfaces. Indeed, as we will
show in the clustering evaluation Section 6.3.1, benign software separates well
from rogue visual malware.

6.2.2 Malware User Interfaces
In order to capture the visual appearance of a malware sample, we execute the
malware sample in a virtual machine and store a screenshot of the whole virtual
screen. Typically, each sample is executed for one hour. The virtual machines
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use Windows XP 32bit SP3 as operating system and have limited Internet access.
SMTP as well as typical infection vector ports were transparently redirected to
local spam traps and honeypots. During the execution of a sample, no user
interaction was performed. In order to prevent harming others and to mitigate
denial-of-service attacks, we restricted outgoing traffic to the protocols IRC, DNS
and HTTP and throttled outgoing traffic. As the set of executed samples covers
all kinds of malware, some of the screenshot images do not show any graphical
user interface at all, e.g., malware operating completely in the background, or
display an error message. We will deal with the fact that not all screenshots
reflect rogue visual software in subsequent sections.

6.2.3 Perceptual Hash Functions

In our case, one screenshot image consists of 800x600 pixels of 24 bit color depth,
resulting in ca. 11 MB of uncompressed data per image. To reduce the amount
of data, we extract a fingerprint of the visual appearance, for each image. This
fingerprint is then used in the clustering phase. As we are mainly interested in the
perception, we turn to so-called perceptual hash functions. While cryptographic
hash functions aim at resulting in two different hash values upon the slightest
difference between two input values, perceptual hash functions aim at grasping
semantic differences of a certain context.
We use the perceptual hash function p based on the discrete cosine transform

(DCT) as proposed by Zauner [Zau10]. First, an image is converted to grey scale
and a smoothing for each 7x7 pixel subarea is performed. Furthermore, the image
is resized to 32x32 pixels and the two-dimensional type-II DCT coefficients are
calculated. As high frequencies might not sustain compression, 64 low-frequency
coordinates (8x8) are considered – similar to the JPEG compression standard –
to build up an 8-byte bitstring fingerprint. Effectively, this fingerprint provides
a structural context-sensitive feature vector of the screenshot image.
An advantage of this perceptual hash function is its robustness against minor

modifications to the visual appearance such as a change in color, certain levels
of distortion and non-uniform scaling. Thus, even if certain elements of a rogue
software user interface are changed, distorted or blurred – for example in order
to result in different cryptographic hash values – the perceptual hash function
will resist (to a certain degree). During the manual classification, which will be
described in more detail in Section 6.2.4, we found samples that changed the
desktop wallpaper and their perceptual hash value is close to the ones with the
regular wallpaper. Also we found user interfaces where the colors of some user
interface elements were changed, which also produced nearby perceptual hash
values.
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6.2.4 Intra-Fingerprint Coherence

For all of the 213,671 screenshot images, we applied the perceptual hash function,
which results in a set of 17,767 distinct perceptual hash fingerprint values. We
denote the full set of perceptual hash fingerprints as F . Note that not all of
these fingerprints refer to user interfaces of rogue software, but also include error
messages – e.g., cases where the sample to be executed was corrupt – or a blank
screen, i.e., the sample did not exhibit a visual appearance at all.

Using a perceptual hash function, two images with a very high degree of struc-
tural similarity might result in the same hash value. While in general, this fact
is desired, in the worst case, two images with the same hash value might not
reflect the structural and perceptual similarity we aim at. In this case, we would
need to extend the fingerprint either by increasing the fingerprint length or by
taking additional features into account. We define the term Intra-Fingerprint co-
herence to reflect that images with the same fingerprint indeed provide the same
structural and perceptual properties and thus likely reflect images of the same
malware family or campaign.

In order to test our fingerprints for Intra-Fingerprint coherence, we randomly
selected 345 fingerprint values (ca. 2% of 17,767) with at least 35 associated
screenshot images per fingerprint, and for each fingerprint we inspected at least
three random images manually. We checked whether the positions of user inter-
face elements remain constant, especially the positions of logos, progress bars and
text area, list or table elements. In all cases, the images provided the required
similarity in structure.

At the same time, we classified the fingerprints and assigned a campaign label
or – in case the screenshot does not show rogue software – a state label such
as whether an error message, a blank screen or a browser window is displayed
or describe the application window. For example, a blank screen occurs if the
malware operates completely in the background, e.g., in case of Zeus, a popular
banking trojan [BOB+10]. A prevalent group of fingerprints is caused by the
Hotbar/Clickpotato downloader which masks as installers for various software
such as VLC or xvid. Other examples for malware which show neither Fake
A/V nor ransomware include Adware causing the web browser to open a specific
website, cracks or serial key generator programs andWindows Explorer displaying
the contents of a certain folder.

The labeled set of 345 fingerprints covers 18 different fake A/V campaigns and
two ransomware campaigns, shown in Table 6.1. The second column of Table 6.1
denotes the Microsoft A/V family label, if at least one of the associated samples
was detected by Microsoft.
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Perceptual Hash Label MS A/V Family
Fake A/V and Rogue
Clean Catch undetected
Smart Fortress 2012 Winwebsec
System Tool Winwebsec
Personal Shield Pro undetected
FakeScanti FakeScanti
S.M.A.R.T Failure FakeSysdef
Security Tool Winwebsec
Internet Security FakeRean
XP Home Security 2012 FakeRean
Security Monitor 2012 undetected
Antivirus Protection 2012 FakeRean
Spyware Protection FakeRean
Antivirus Action undetected
PC Performance and Stability FakeSysdef
Security Shield undetected
Security Central undetected
Windows Trojans Sleuth FakePAV
Microsoft Security Essentials FakePAV
Ransomware
Windows Security Center Ransom
Bundespolizei Sinmis

Table 6.1: Perceptual Hash Fingerprint Labels for 18 fake A/V and 2 ransomware
campaigns and, if available, Microsoft A/V Family Labels
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6.2.5 Distance Computation and Clustering
While the perceptual hash computation relaxes near-duplicates, i.e., it aggregates
very similar images into one fingerprint value, a malware family or campaign typ-
ically spans multiple different fingerprint values. In other words, one fingerprint
is too specific to reflect a campaign or even a whole malware family. We found
several reasons for this. First, the application window might not always be at
the same position on the screen or other foreground application windows might
obscure parts of the rogue software’s window(s). This could result in different
perceptual hash values. Second, rogue software interfaces can provide several
different views. For example, a fake A/V program might provide one view of a
scan in progress (Figure 6.3(a)) and another one when the scan is finished and
the user is prompted for action, e.g., as shown in Figure 6.3(c).
Thus, in order to aggregate several closely related fingerprints into subsets of

campaigns or malware families, we add a clustering step. In this clustering phase,
we use the normalized bit-wise hamming distance as distance function between
two perceptual hash fingerprints. As the perceptual hashes have a fixed length
of 8 bytes, the hamming distance returns the number of differing bits, with a
maximum of 64. We normalize the hamming distance to the range 0.0 to 1.0 by
dividing it by 64.
Since the perceptual hash is a locality-sensitive hash [KG09], we can rely on

the hamming distance as a simple and fast distance function. Similar images
will result in a low hamming distance (towards 0.0), while different images will
exhibit higher distance values (towards 1.0). Another advantage of the hamming
distance is its high performance (XOR arithmetic). The combination of the
perceptual hash function and the normalized hamming distance allows us to use
agglomerative hierarchical clustering despite its worst-case complexity of O(n3).
Thus, we apply agglomerative hierarchical clustering to the set of fingerprint

values. Furthermore, we decided to use average linkage clustering to avoid the
chaining phenomenon. Finally, to aggregate similar fingerprints into one cluster,
a cut-off threshold determines the maximum distance between any two different
fingerprint clusters. If the distance of any two distinct fingerprint clusters is less
than the cut-off threshold, the associated screenshot fingerprints will be filed in
the same cluster, otherwise they would be filed into different clusters.

6.3 Evaluation
Our clustering evaluation can be divided into two parts, Intra-Fingerprint Co-
herence as well as Cluster Generalization. In addition, we evaluate the true A/V
detection rate of Fake A/V campaigns identified by means of our clustering. As
described in Section 6.2.4, we performed the Intra-Fingerprint evaluation by man-
ually inspecting at least 3 random screenshot images for 345 random fingerprints
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and assigned a campaign description to each fingerprint. This way, we made
sure that there is no collision of fingerprint hashes which breaks our similarity
assumptions and we achieve Intra-Fingerprint Coherence.

6.3.1 Clustering evaluation
In the next step, we aim at evaluating how well our approach generalizes. We
build a subset Fm consisting of the 345 labeled fingerprints plus 700 most preva-
lent non-labeled fingerprints (measured by number of screenshot images per fin-
gerprint) and clustered this subset. The subset Fm represents 187,560 screenshots
and samples, respectively. Our goal is to verify the clustering by checking if the
non-labeled fingerprints correspond to the labeled fingerprints of the same cluster.
Therefore, for each resulting cluster, we inspect at least three of the correspond-
ing screenshot images manually, to see if they relate to the assigned cluster’s
campaign.
However, before evaluation, the optimum cut-off threshold has to be deter-

mined. We use the metrics precision and recall, widely used for unsupervised
machine learning techniques, to measure the clustering accuracy. More precisely,
precision represents how well our clustering separates fingerprints of different
campaigns. Recall denotes whether all fingerprints of a certain campaign or fam-
ily are grouped into the same cluster. In our case, precision is more important
than recall, i.e., it is more important to separate fingerprints of two campaigns
than to have all fingerprints of one campaign in only one single cluster. In other
words, for example, we prefer to have two clusters for one family (or campaign)
over aggregating multiple families (or campaigns) into one cluster. For the rea-
sons mentioned in Section 6.2.5, such as different views of the rogue software’s
user interface, we tolerate multiple clusters per campaign.
Precision and recall are combined into F-measure, as defined in Chapter 2,

Section 2.2.1. We place twice as much emphasis on precision over recall for the
reasons outlined above and thus use the following F-measure to evaluate our
clustering with threshold th and β = 1/2:

F-measureth = (1 + β2) · Pth · Rth

β2 · Pth +Rth

= 1.25 · Pth · Rth

0.25 · Pth +Rth

(6.1)

Using the labeled fingerprints, we estimate the optimum cut-off threshold by
clustering with cut-off thresholds in the range 0.1 to 1.0 and a step size of 0.025.
As a result, the best cut-off threshold is determined as 0.375 at a weighted F-
measure of 93.32%. Figure 6.4 shows the precision, recall and F-measure (β = 1/2)
over the range of evaluated thresholds.
The clustering of the set Fm with cut-off threshold 0.375 results in 51 clusters.

10 of these 51 clusters did not have any labeled fingerprints in the same cluster
and were manually inspected. Of the 10 unlabeled clusters, 5 clusters represent

94



6.3 Evaluation

Figure 6.4: Precision, recall and F-measure (β = 1/2) evaluation of the clustering
threshold

previously unseen Fake A/V and ransomware campaigns, shown in Table 6.2. The
remaining 5 unlabeled clusters displayed the following distinct user interfaces:

• User Interface of a crack program in order to generate a program serial

• "Run As" dialog, waiting for the user to enter Administrator credentials

• Media Finder Installer

• Firefox, showing the website 3525.com

• Windows Photo Viewer displaying a photo

Note that the benign software, e.g., the Photo viewer as well as the browser,
discovered as part of this clustering separates well from the rogue visual malware
clusters.
For those clusters that have at least one labeled instance, we assign the label

of the first labeled instance to the whole cluster. Note that none of the clusters
with labeled instances had more than one distinct label, i.e., no cluster contained
conflicts among labeled instances. In addition, for each cluster, we inspect three
of the corresponding screenshot images manually, to verify that they relate to the
assigned cluster’s campaign label. In all cases, the cluster assigned the correct
campaign label to the previously unlabeled images.
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Perceptual Hash Label MS A/V Family
Fake A/V and Rogue
Cloud Protection undetected
Antivirus Live FakeSpyprot
Undecipherable undetected
Ransomware
GEMA Blocked undetected
Gendarmerie nationale (FR) undetected

Table 6.2: Previously unseen campaigns and, if available, Microsoft A/V Family
Labels

As an example and in order to underline the usefulness of our approach, we used
the clusters to enumerate the campaigns that can be attributed to the Winwebsec
family. Figure 6.5(a) to 6.5(h) show screenshots of eight Winwebsec campaigns.
To sum up, the clustering phase successfully grouped the set Fm consisting of

700 unlabeled fingerprints and 345 labeled fingerprints, and revealed five previ-
ously unseen campaigns. Of these five campaigns, only one (Antivirus Live) was
detected by antivirus (FakeSysprot) at the time we received the samples.
Figure 6.6 shows the dendrogram of the clustering of Fm. If space allowed, we

added the campaign label for the cluster (black font color) to the dendrogram.
Red font color denotes prevalent non-rogue software clusters such as those dis-
playing an error message caused due to a malformed malware sample, missing
libraries (e.g., DotNET) or language support (e.g., Chinese, Japanese and Rus-
sian), runtime errors or bluescreen crashes. Clusters labeled as "Blank screen"
contain images that did not contain any significant foreground application win-
dow, but exhibit a variety of fingerprints because new desktop links have been
added or the desktop link icons have been rearranged, resulting in different fin-
gerprints. Blue font color denotes clusters that displayed malware which is not
primarily considered Fake A/V or ransomware such as the Hotbar/Clickpotato
downloader or installers for various other software.

6.3.2 Antivirus Detection
During our manual inspection of the rogue software executions, we noticed that
the samples we analyzed exhibited low A/V detection rates. Based on six well-
known campaigns, we computed the A/V detection rate of the samples per cam-
paign. For each sample of these campaigns, we queried VirusTotal [vir12] for
the associated A/V labels when we received the sample. Typically, samples are
already known by VirusTotal when we queried for A/V labels, since we receive
samples with a delay of up to one day from our sample providers. Note that
even if the sample is known by VirusTotal, this does not imply that at least one
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(a) Smart Fortress 2012 (b) System Tool

(c) Live Security Platinum (d) MS Removal Tool

(e) Personal Shield Pro (f) Security Sphere

(g) Smart Protection (h) System Progressive Protection

Figure 6.5: Campaigns of the Winwebsec malware family
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Figure 6.6: Dendrogram excerpt of the clustering of 1045 screenshot fingerprints
into 51 clusters with campaign labels for some large clusters. Black
font=Fake A/V or ransomware, blue=other software, red=no charac-
teristic appearance.
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Campaign Label #MD5 no AV Rate
Cloud Protection 737 15 97.96%
FakeRean:InternetSecurity 323 80 75.23%
FakeRean:SpywareProtect. 608 352 42.11%
Winwebsec:SmartFortress 2656 2367 10.88%
Winwebsec:SmartProtect. 139 83 40.29%
Winwebsec:SystemTool 401 175 56.36%

Table 6.3: A/V Detection of six Fake A/V campaigns

A/V vendor detects it. Table 6.3 shows the number of MD5-distinct samples
per campaign, as well as the number of MD5-distinct samples without any A/V
label. The detection rate is measured as number of distinct sample MD5s with
an A/V label over the total number of distinct sample MD5s per campaign.
As shown in Table 6.3, A/V detection rates vary widely among Fake A/V cam-

paigns. Of the Smart Fortress campaign, only about 11% of the samples have
been detected by at least one A/V vendor. These results confirm the observation
of low A/V detection rates by Rajab et al. [RBM+10] from August 2009 to Jan-
uary 2010, where A/V detection has ranged between 20% and 60% over all Fake
A/V samples.
Our experiments have shown that perceptual clustering and classification of

rogue software effectively groups associated samples of visual malware. Further-
more, we see our approach as a complementary detection method which, as a
last line of defense, can be used to detect rogue software user interfaces on a
consumer’s computer. However, we leave a detailed analysis of our approach for
desktop computer rogue software detection as future work.

6.3.3 Performance
We implemented the computation of the perceptual hash in C++ and the clus-
tering in Python. Albeit not specifically tailored for high performance, this eval-
uation will give a rough impression of the processing speed of our screenshot
clustering approach. The perceptual hash fingerprints were computed for all
screenshot images and stored in a PostgreSQL database. Per 10,000 images,
the perceptual hash computation takes 20.13 minutes on a single core, including
opening and reading the uncompressed image file from disk. This equals to ca.
120 ms per image.
For clustering performance evaluation, we measured the time required to cluster

the full set of 17,767 perceptual fingerprints which relate to 213,671 executed
malware samples with the parameters determined in Section 6.3.1. In total,
without any performance improvements, the clustering of the 17,767 fingerprints
takes just over 10 minutes on a commodity computer hardware. All in all, if used
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in practice, the clustering is fast enough to allow for periodic re-clustering of the
whole set of screenshots, for example once a day.

6.4 Monetization and Localization
While the previous sections outlined our methodology to group Fake A/V and
ransomware campaigns, using these results, we will shed some light on the mon-
etization and localization methods.

6.4.1 Ransomware Campaigns
In the following, we restrict ourselves to the four ransomware campaigns. The
results are summarized in Table 6.4. The four ransomware campaigns prevent the
user from accessing its computer and motivate the user to pay in order to unlock
the computer. Three of the four campaigns provided the user an input field for
either ukash [uka12] or paysafecard [pay12] codes, while the German GEMA ran-
somware campaign provided only paysafecard as payment method. To sum up,
in all cases, the campaigns’ monetization is backed up by pre-paid voucher-like
services. We subsume these as prepay payment method because in all cases the
user has to buy a voucher before the equivalent amount can be spent by provid-
ing the voucher code. The use of prepay methods exposes a significant difference
to the payment as can be observed with Fake A/V campaigns which typically
offer credit card payment. Stone-Gross et al. [SGAK+11] show that Fake A/V
firms even provide refunds in order to avoid credit card chargebacks, because
these chargebacks and associated consumer complaints might lead to a cancella-
tion by the credit card payment processor. From the perspective of ransomware
miscreants, we speculate several advantages of these prepay payment methods
over credit card payment. First, prepay payment is easy-to-use and it only re-
quires one input field for the prepaid voucher code. Second, prepay payment
avoids to be dependent on credit card payment processors which are required to
act against fraud. In addition, while Fake A/V may be doubtful, ransomware
is clearly considered fraud in legislation, which might even prevent ransomware
campaigns from finding any cooperating credit card payment processors. Third,
prepaid vouchers allow miscreants to exploit users which do not have a credit
card at all.
Furthermore, we observed that three of the four campaigns urge the user to

pay in a given time span, which was either three days or one day.
While all samples were executed on a virtual machine with the OS localized

to Germany and an IP address of the German DFN network1, the Gendarmerie
campaign only provided French texts in the user interface. When executing this
sample without Internet connectivity, the user interface remains in French. We

1DFN-IP Service G-WiN, AS 680, is typically the ISP for German universities.
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Campaign Language Amount Payment Limit
GEMA Blocked German 50 EUR p none
Gendarmerie nationale French 200 EUR u+p 3 days
Bundespolizei German 100 EUR u+p 1 day
Windows Security Center German 100 EUR u+p 1 day

Table 6.4: Localization and monetization methods of four ransomware campaigns;
u=ukash, p=paysafecard

assume that, in this case, the language seems to be hardcoded in the malware
binary.
In case of the Bundespolizei and the Windows Security Center campaigns, the

sample uses the service ip2location.com in order to map the IP address of the
infected computer to ISP, country and city. The external IP address, city, region
and ISP’s AS name are then displayed in the user interface. However, the sample
did not adapt the user interface language when confronted with a manipulated
geolocation response. In addition, as part of this campaign, successful installs of
the Bundespolizei samples are reported to a C&C server using a plaintext HTTP
GET request.
For the GEMA campaign, we observed that the user interface contents consists

of HTML with all text and images being server-side generated and transferred
via plaintext HTTP. This way, the localization of the campaign might be adapted
based on the origin of the HTTP requests. Furthermore, we observed that the
GEMA ransomware was accompanied by mostly SpyEye malware.
Very recently, in May 2012, a new ransomware campaign emerged [IC3]. The

software claims that the Computer Crime & Intellectual Property Section of the
U.S. Department of Justice had identified the user of violating United States
Federal Law. Although for time reasons, we did not include this family in our
analysis, we could at least confirm that this campaign is also backed up by prepay
payment methods. In this case, for IP addresses geolocated in the U.S., the
campaign uses paysafecard and moneypak [mon].

6.4.2 Fake A/V Campaigns
We analyzed 14 Fake A/V campaigns in order to shed light on their payment
process as well as localization. The results are summarized in Table 6.5. While
all of the ransomware campaigns rely on prepay payment methods, 5 of the
14 Fake A/V campaigns provided credit card payment. For 9 of the 14 Fake
A/V campaigns, the payment process failed because their payment servers were
no longer reachable, and thus we could not determine the payment method.
However, the fact that we could not find one Fake A/V campaign using prepay
payment supports our observation that there is also a clear distinction in payment
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methods between ransomware and Fake A/V software. Note that, for ethical
reasons, we did not perform any payments ourselves and judged on the accepted
credit cards only based on the user interfaces.
When turning to the amounts of the Fake A/V programs, values range from

$50 to $90 USD, depending on supposedly different versions of the program. The
fact that some campaigns exhibit the same amount scheme suggests that these
campaigns might be related. Indeed, in case of the SmartFortress as well as
the SmartProtection campaigns, we found that both belong to the Winwebsec
malware family. However, we could not find proof that the same organization is
behind both campaigns.
Interestingly, while the ransomware campaigns had user interface texts trans-

lated to the locale’s language, only one of the 14 Fake A/V campaigns of Table 6.5
exhibits user interface texts matching the locale of the OS (German), all others
of the Fake A/V campaigns were only in English. In addition, all amounts were
given in US dollars for the Fake A/V campaigns. In contrast, all ransomware
campaigns had their amounts adapted to the locale’s currency (Euro).

6.5 Limitations
Although our approach is based on the inherent property of rogue software to dis-
play a user interface, as always, there are some limitations and room for evasion.
Targeting the image processing part, i.e., the computation of the perceptual hash
function, malware authors could add random noise to the user interface, so that
the resulting screenshots differ widely among samples of one campaign. How-
ever, since our perceptual hash function depends on low-frequency coordinates,
random noise which results in a change in high frequencies will not significantly
change the perceptual hash value. In order to modify the perceptual hash value
significantly, user interface elements would need to be positioned randomly.
Another line of evasion lies in the resemblance of rogue software user interface

with that of legitimate software. So far, as long as user interfaces of rogue software
differ from those interfaces of legitimate software, our approach can possibly
detect and exploit exactly this difference. If user interfaces no longer visually
differ, e.g., because Fake A/V appearance exhibited the same user interface as
one of the legitimate antivirus programs, our approach would fail. However,
at some point, Fake A/V will always have to provide some kind of payment
instruction and processing user interfaces which could still be used to separate
from legitimate software.
In addition, when executing the malware samples, none of them was confronted

with user interaction. We might have missed some samples which require the
user to interact with the system before displaying their Fake A/V or ransomware
user interface. However, based on current research on environment-sensitive mal-
ware [LKC11], we consider the amount of possibly missed samples to be negligible
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for the evaluation of our approach’s feasibility.

6.6 Related Work
While Fake A/V software has been studied before, e.g., in [RBM+10, KZRB11,
SGAK+11, CLT+10], to the best of our knowledge, we are the first to propose a
clustering and classification approach that targets the visual appearance of rogue
software user interfaces. Thus, we not only cover Fake A/V, but provide a much
broader approach of visual malware, including ransomware. Furthermore, our ap-
proach serves as a means of classifying malware executions of a dynamic malware
analysis environment and allows to identify and classify failed executions such as
bluescreen crashes, error dialogs or lack of visual appearance (silent background
malware).
Related work can be grouped into three trails of research. The technical as-

pects, such as the distribution and infrastructure of Fake A/V malware has been
analyzed by Cova et al. [CLT+10], Rajab et al. [RBM+10] as well as Komili et
al. [KZRB11], e.g., by measuring the lifetime and distribution of domains involved
in Fake A/V software or analyzing the corresponding server geolocation, DNS and
AS information. Especially two results of [RBM+10] inspired the development of
our visual clustering approach. First, the infrastructure of Fake A/V software is
volatile. Throughout the measurement period of one year, the median lifetime
of Fake A/V domains dropped to below one hour [RBM+10]. Thus, relying on
network properties such as domains and IP addresses in order to detect Fake
A/V software becomes a tremendous effort. Second, Fake A/V malware suffers
from decreasing A/V detection rates, even as low as 20% [RBM+10]. Our mea-
surement confirms this, showing that in case of the SmartFortress campaign even
only ca. 11% of the samples were detected by A/V (Table 6.3). This demands for
a different detection approach such as ours by exploiting the visual appearance
of rogue software.
Gazet has analyzed malware programming aspects of early ransomware virii

and the use of cryptographic algorithms that were used when encrypting files
[Gaz10] on the user’s computer. However, the payment process of ransomware has
not been addressed before. In addition, we observed that some of the ransomware
programs included in our study no longer actually cryptographically encrypt files,
but only block users from accessing the computer, typically be means of visually
“locking” the full screen.
The second trail of research deals with economical aspects of Fake A/V soft-

ware. Stone-Gross et al. [SGAK+11] show that more than 130 million dollars
have been earned in three monitored Fake A/V businesses. Furthermore, they
disclose that Fake A/V villains provide refunds in order to avoid credit card
chargebacks and possibly consumer complaints which could result in termination
by the credit card payment processor. We complement existing research by our
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analysis of ransomware payment properties and by discovering a shift towards
prepay payment methods, such as ukash and paysafecard, in all four monitored
ransomware campaigns.
The third area of research covers clustering approaches using behavioral fea-

tures of executed malware samples. Perdisci et al. [PLF10] develop signatures for
characteristic pattern elements in HTTP requests by means of clustering. Sim-
ilarly, Rieck et al. [RSL+10] propose a system to detect malware by models of
recurring network traffic payload invariants. Bayer et al. [BMCH+09] provide a
broad overview over malware behavior using clustering to avoid skew by aggres-
sively polymorphic malware. Our approach complements existing approaches by
mapping visual appearance of rogue software to campaign and malware family
clusters. Especially if none of the existing approaches apply, e.g., if a sample does
not exhibit network traffic at all, our screenshot clustering approach can still be
used. Furthermore, complementary to the existing clustering methods as well as
classic A/V, our approach might help in detecting Fake A/V and ransomware.

6.7 Conclusion
In recent years, rogue software has become one of the most prevalent means of
monetization for malware. We propose a new approach to cluster and detect rogue
software based on its inherent need to display a user interface. Using a perceptual
hash function and a hierarchical clustering on a set of 187,560 screenshot images,
we successfully identified 25 campaigns, spanning Fake A/V and ransomware. We
observed that especially rogue software suffers from very low antivirus detection
rates. Four of the five previously unseen campaigns have not been detected as
malware by the time we received the samples. While malware authors seem
to succeed in evading classic antivirus signatures, our approach helps to avoid
undetected rogue software. Furthermore, we have shown that our approach scales
to a large set of samples, effectively analyzing 213,671 screenshot images.
Using the results of our clustering approach, we show that the two prevalent

classes of visual malware, Fake A/V and ransomware, exhibit distinct payment
methods. While Fake A/V campaigns favor credit card payment, ransomware
programs use prepay methods. From the perspective of ransomware miscreants,
prepay payment methods provide a number of advantages. First, the prepay
methods enable ransomware campaigns to avoid cooperation with any other pay-
ment companies, such as a credit card payment processor. We speculate that
such a dependency on payment processor companies would constitute an unpre-
dictable risk. Second, prepay payment methods are easy to use and to process as
they only require one input field for the voucher code and cannot be associated to
a person. Some ransomware campaigns even include detailed instructions on how
and where to buy the prepay cards. Third, prepay payment allows miscreants to
exploit users which do not own a credit card at all, thereby possible reaching a
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larger set of victims.
To sum up, we have designed and implemented a large-scale clustering method

for rogue visual malware. At the same time, we provide insights into the mone-
tization and localization properties of current rogue visual malware campaigns.
Finally, we propose to convey our detection approach to end-user systems in order
to complement existing antivirus solutions.
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Chapter7
Conclusion

This thesis addresses the problem of identifying and recognizing remote-controlled
malware. First, in Chapter 3 we proposed Sandnet, our dynamic malware analy-
sis environment, which is subsequently used to generate datasets for identification
and recognition experiments. Second, we designed and implemented a recognition
approach of botnet C&C channels based on traffic analysis features in Chapter 4.
Third, in Chapter 5, our case study on Feederbot, a bot with DNS as carrier for
its C&C protocol, sheds light on a whole new class of botnets with covert C&C.
Yet, our classifier of DNS traffic has proven to detect DNS-based C&C, even in
mixed user traffic. Finally, in Chapter 6, we have designed and implemented a
detection framework for rogue visual malware, exploiting the malware’s need to
expose a visual user interface for monetization.
In the following, we will briefly summarize the results of this thesis and outline

future work on each of the topics.

7.1 Sandnet
With Sandnet in Chapter 3, we have shown the importance of designing a
scalable and reliable contained environment in order to study the behavior of
malicious remote-controlled software. Based on Sandnet, we are able to compile
sound datasets representing active and diverse remote-controlled malware. These
datasets enable us to design and evaluate malware detection methods.
While contained environments like Sandnet provide the basis to understand

malware, the enormous growth in terms of MD5-distinct malware binaries rises
concerns how researchers can deal with malware in the forthcoming years. In
the future, we also expect the diversity of malware to increase which makes it
much more important to respect the diversity in the analysis of malware. One
trail of research directs towards a pre-selection of representative instances per
family, in order to avoid the re-execution of already known malware. With Fore-

107



7 Conclusion

cast [NCJK11], Neugschwandtner et al. have proposed an approach of pre-filtering
malware binaries based on static analysis in order to streamline dynamic malware
analysis. However, an alternative method could be to combine the distribution
source of malware binaries with the notion of a malware family. In this way, a
family-aware tracking of the distribution of malware binaries could be evaluated,
possibly leading to modeling the evolution on a per-family basis.
Furthermore, contained environments constantly face the challenge of remain-

ing undetected for malware binaries. Otherwise, environment-sensitive malware
will evade contained environments by either stopping or by exposing a completely
different behavior. Therefore, future contained environments may have to try and
model legitimate user environments as close as possible, including user interac-
tion. For Sandnet, we have begun to developed herders on bare-metal, i.e.,
avoiding virtualization which is a possible source for the detection of contained
environments for malware. However, spending bare-metal hardware for dynamic
malware analysis is hardly able to scale. A more promising direction of research
could examine, how hardware virtualization or dedicated hypervisors as well as
over-provisioning of resources can disguise dynamic analysis environments. While
today’s hypervisors are mainly focussed on the execution performance, it might
be worthwhile to research how they can be optimized for concealment.

7.2 CoCoSpot – Recognition of C&C flows
We have shown how the command and control plane of remote-controlled mal-
ware, i.e., botnets, can reliably be identified and recognized using traffic analysis
features. However, even today there are already a few families, such as Zeus P2P,
which manage to evade our detection approach. In the future, we need to care-
fully investigate how botmasters design their botnet’s C&C in order to subvert
our detection approaches and possibly aim for more robust detection methods.
Furthermore, using CoCoSpot, we developed means to track the C&C activities

of several well-known and novel botnets. Future work may have to deal with a
more automatic approach to monitor the C&C activities, especially if the diversity
of families increases. While we managed to track 153 botnet families over the
last two and a half years, some have already ceased and make room for new
botnets, which means that the new C&C tracking models have to be confirmed
manually before being able to monitor these botnets. In order to understand and
decrypt the C&C protocols, manual effort in terms of reverse engineering is often
required.
In addition, not much is known about the operators of botnets except from a

few cases of successful prosecution. Future work may deal with the identification
of operating groups behind botnets as there may be overlap among several mal-
ware families. Such investigations could address questions as to how botmasters
choose their C&C server havens. We have shown that there is a separation of du-
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ties among malware families in that especially the downloader families take care
of distributing other malware. This underlines the increased professionalization
in the malware underground economy. If legal conditions allow, one could think of
conveying the idea of honeypots and social engineering to this field. For example,
a honeypot of a potential C&C server with ideal conditions from a botmaster’s
perspective could help to get an understanding of how botmasters operate.
Similarly, using the botnet tracking means, the relationships and dependencies

among malware families need to be studied. For example, we observed dedicated
downloader families, which only aim at distributing other malware binaries. In
order to comprehend the dependencies among malware families, we implemented
a Flare [Fla09] visualization tool based on the dependency graph. Figure 7.1
shows a screenshot of the dependency graph visualization. In this tool, an analyst
picks one of the families on the circle and the relationships among related malware
families will be highlighted. A red line connects the family in question with
those families that are being distributed by the picked family, while a green
line refers to those families that have been witnessed as distributing the picked
family. By default, due to alpha blending, blue lines indicate the popularity of
the corresponding family by stroke intensity. Even in the default view, where no
family is picked, those families that interact with many other families are easily
visible. For example, Virut is one of the most active downloaders, as can be
seen in the dependency graph visualization. Once picked, Virut’s relationships
reveal the diversity of families that are being distributed by Virut (red lines).
In addition, it becomes obvious that Virut, although being a downloader family
itself, is being distributed by several other families (green lines).
Furthermore, in contrast to Virut, the Pushdo family (Figure 7.3), has only

been observed to drop the Cutwail spam bot family. However, we observed that
Cutwail has also been downloaded by other families, such as Virut – possibly as
an effect of the takedown efforts on Pushdo.
Along these lines, it could be target-oriented to address the disruption of the

downloader families first, in order to stop the distribution of remote-controlled
malware. Furthermore, a technical dependency may indicate an economical re-
lationship between two malware families. According to the principle “follow the
money”, economical dependencies can be of significant value for investigations
and law enforcement.

7.3 Botnets with DNS-based C&C
Taking disguise of botnet command and control channels to the next level, we
have discovered Feederbot, a botnet that uses the DNS protocol as carrier for
its command and control. With Feederbot being the first of this kind of botnets
with covert C&C, we reverse engineered and investigated this botnet in detail,
disclosing the techniques employed to hide their encrypted C&C traffic in regular
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Figure 7.1: Visualization of the botnet family dependency graph
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Figure 7.2: Highlighting the relationships of Virut
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Figure 7.3: Pushdo has been observed to only drop Cutwail
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DNS requests and responses.
Furthermore, we designed and implemented a detection approach for botnets

with DNS as carrier for their command and control. Based on Sandnet data of
a time period of more than 18 months, we show in Chapter 5 that our specifically
tailored method can still detect botnets that use DNS as carrier protocol for
its C&C. Using our classifier, we have even discovered an independent second
botnet that, too, builds its C&C upon the DNS protocol. Finally, we evaluate
our detection methodology on mixed network traffic with benign users’ network
traffic and prove that our classifier can even be used in real-world environments
to detect DNS-based botnets.
While a whole body of research exists on detecting botnets with IRC and HTTP

as carrier for its command and control, to our knowledge, we are the first to
discover DNS-based botnets. In the future, we expect botmasters to increasingly
design their C&C protocols to be based on different carrier protocols, in order
to evade detection. Future work could examine protocols like NTP or media
streaming protocols for Flash as carrier protocols for botnet C&C. Similarly, as
described with Renos in Chapter 3, botnets could proceed in the direction of
hiding C&C messages in benign-looking contents like images or media content in
general.
While purely network-based approaches may have reached their limits con-

cerning the detection of covert C&C channels, one approach for future work may
consist in examining and modeling the data processing of media contents re-
trieved over the network on the system level. Possibly, benign media processing
software exhibits a different behavior compared to malicious remote-controlled
software. For example, from a high-level perspective, by its very nature, visual
media is supposed to be displayed, i.e., destined for the graphical output. How-
ever, a software that downloads images, but never displays any of the retrieved
image data, may raise suspicion.

7.4 Detection of rogue visual malware
Since botnets have turned to rogue visual monetization techniques by means of
Fake A/V or ransomware, this allows for a perceptual recognition. In Chapter 6,
we have shown how rogue visual malware can be clustered and recognized by help
of perceptual hashing. Especially in face of the very low antivirus detection rates
of the respective malware binaries, sometimes even as low as 11% per campaign,
our detection methodology may complement existing antivirus detection. As part
of future work, we plan to evaluate our visual detection approach in the wild in
order to evaluate the detection performance on user systems.
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