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ABSTRACT
We present a system for automatically detecting salient im-
age regions in stereoscopic videos. This report extends our
previous system [4] and provides additional details about its
implementation. Our proposed algorithm considers informa-
tion based on three dimensions: salient colors in individual
frames, salient information derived from camera and object
motion, and depth saliency. These three components are
dynamically combined into one final saliency map based on
the reliability of the individual saliency detectors. Such a
combination allows using more efficient algorithms even if
the quality of one detector degrades. For example, we use
a computationally efficient stereo correspondence algorithm
that might cause noisy disparity maps for certain scenarios.
In this case, however, a more reliable saliency detection al-
gorithm such as the image saliency is preferred. To evaluate
the quality of the saliency detection, we created modified
versions of stereoscopic videos with the non-salient regions
blurred. Having users rate the quality of these videos, the re-
sults show that most users do not detect the blurred regions
and that the automatic saliency detection is very reliable.

Keywords
Video saliency, depth saliency, visual attention, stereoscopic
videos

1. INTRODUCTION
Automatically detecting salient regions in images is the

basis of many different applications in image processing. For
instance, saliency detection is used for image compression
to encode salient regions in high quality and to increase the
compression rate for non-salient regions. Another applica-
tion is image retargeting, which automatically adapts the
resolution of an image to the target resolution of a display
[10, 21, 11, 15, 22]. Errors caused by cropping, scaling, or
warping are significantly reduced when saliency information
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is taken into account. A third example is embedding digital
watermarks in images. A watermark should be nearly invis-
ible to a human observer but should be robust at the same
time. Being robust means to be extractable even when sub-
ject to image distortions or compression artifacts [29]. Em-
bedding watermark information in non-salient regions allows
to increase the signal strength of the watermark without in-
creasing the effect on the human visual system. Yet another
example is to automatically produce short video summaries
by selecting important shots and scenes from a video [19,
18]. Detecting salient image regions, salient shots, salient
scenes, and audio saliency are fundamental requirements for
video summarization.
There has been all kinds of research for detecting salient

regions in still images and videos. As multiview videos are
becoming more and more popular, depth has been added
as a new factor in saliency. A special case of multiview
videos are stereoscopic videos which provide two different
views of a scene to add a depth impression1. The basis
of stereoscopic perception is seeing with two eyes that are
slightly horizontally shifted. This way, both eyes see the
same object or scene from different angles. By this means,
the images formed by each eye divert slightly concerning the
location of objects within a scene. Those differences between
object points are called disparities. Based on the disparities
between both views, the human brain is capable of decoding
depth information of a scene. Although the effect of depth is
the main motivation for watching multiview or stereoscopic
videos, only very few research results have been published
yet that focus on the saliency of the depth information.
The number of movie theaters that support 3D content

has increased significantly in the last few years. Also, all ma-
jor enterprises that produce displays or TVs offer at least one
screen that supports stereoscopic content. This trend con-
tinues now with smartphones and mobile phones. Because
cinematic movies [14] are typically captured in wide screen
resolution, that is, aspect ratio between 17 : 9 and 22 : 9 in
contrast to the HD ratio of 16 : 9, methods for automatically
retargeting the resolution of stereo video become necessary
to make the content available for other display devices.
In this paper, we analyze the impact of depth information

in videos on the human visual system. We detect salient
regions based on the colors of the content, the motion in a
scene, and the depth differences of objects in a scene. Our
main focus is to see how much influence the depth impression

1Note that in the case of cinematic movies, the commonly
used term 3D movies actually refers to stereoscopic video.
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really has as a factor for the detection of salient regions in
stereo videos.

This paper is structured as follows: Section 2 covers differ-
ent approaches for the detection of salient regions in media.
A number of methods to detect salient regions in still im-
ages as well as in videos and stereo videos are presented.
Section 3 gives an overview of our system while Section 4
presents the implementation of the saliency detection algo-
rithm in stereo videos. The results of the implementation
and a discussion on how test users evaluated the accuracy
of the implemented method are given in Section 5. Section
6 concludes the paper.

2. RELATED WORK
Saliency detection methods can be classified depending

on the amount of visual information they consider. Image-
based approaches consider the color and contrast of pixels
in an image (2D content). Videos also include temporal in-
formation about object and camera motion. Stereo videos
additionally provide depth information about the objects in
a scene. In the following, we present selected approaches to
saliency detection in images and video. Up to date, only one
other method for saliency detection in stereoscopic video has
been published. It is discussed in detail at the end of this
section.

The goal of image saliency detection is to determine re-
gions which are particularly noticeable to human observers.
Image saliency detectors are usually mathematically or bio-
logically inspired [1]. Several methods have been proposed
that try to simulate the characteristics of the human visual
system. Most approaches make the assumption that an ob-
ject is salient if it significantly differs from other objects in
its local neighborhood [7]. It is common to distinguish be-
tween top-down and bottom-up approaches [26]: Top-down
approaches identify important image regions like faces, su-
perimposed text [16], people [17], or objects [28], whereas
bottom-up techniques analyze pixel values and group highly
salient pixels into regions.

Ma and Zhang [24] proposed a bottom-up contrast-based
saliency detection algorithm. Their general assumption is
that a high contrast between pixels is a good indicator for
image regions that are relevant to an observer. The contrast
value Ci of pixel i is defined as Ci =

∑
q∈Θ d(pi, q). pi is the

color of the current pixel, and q ∈ Θ is a pixel in the local
neighborhood Θ of i. The Gaussian distance d is used to
measure the color difference of two pixels in the LUV space.
A fuzzy growing technique is then applied to the contrast
map to identify regions with high saliency.

In previous work, we improved the method proposed by
Ma and Zhang [20]. Instead of using fuzzy growing we imple-
mented a color quantization technique based on the Linde-
Buzo-Gray (generalized Lloyd) algorithm [23]. The values
of Ci are mapped to a fixed number of new values which de-
fine the codebook. The values in the codebook are selected
such that the average distortion caused by the mapping is
minimized. To achieve this, the codebook must fulfill two
constraints: A contrast value must be mapped to the near-
est value in the codebook, and each codeword must be the
centroid of the contrast values mapped to it.

Another approach was presented by Achanta et al. [1]. It
focuses on objects with a high contrast to the image back-
ground. In a first step, the images are normalized by remov-

ing very high and very low contrast differences. A very high
contrast typically indicates noise which distorts saliency re-
sults. Low differences are removed such that all pixels in
a large region get similar saliency values. The Euclidean
distance in the L*a*b* color space of a pixel to the aver-
age color of the normalized image is used to estimate the
saliency value of a pixel. The advantages of the proposed
approach are its computational efficiency and its ability to
create saliency images with a correct localization of object
borders.
A further novel approach was proposed by Goferman et

al. [6]. It detects salient regions in the background as well
as important foreground objects. The detection of local and
global saliency is determined by the number of appearances
of a pixel. This is done by centering a window of varying size
around a pixel. Based on the prominence of this window,
the saliency of the centered pixel is set. Next, a multi-scale
saliency enhancement step is performed. The last step is
to highlight those pixels that build the centers of gravity of
salient regions. Therefore, the most salient regions are ex-
tracted based on a threshold. Then, the saliency value of
each pixel outside a salient region is redefined on the ba-
sis of its distance to the closest pixel of the salient region.
Consequently, parts of neighboring background pixels of an
object are also considered to be salient.
Cheng and Zhang presented another bottom-up approach

that analyses the global color contrast in images [3]. In or-
der to compute the importance of a color, the algorithm
computes its difference to all other colors in L*a*b* color
space weighted by their frequencies. We selected this image
saliency detector for our system due to the high quality of
the results and its computational efficiency. The details of
this approach are discussed in Section 4.1.

Compared to still images, video sequences contain motion
which is another aspect of human visual attention. Motion
is either caused by moving objects or by camera movements.
In both cases, the regions of interest might change over time
as objects enter or leave a scene.
The optical flow can be used to detect motion in image

sequences. It describes a vector field that indicates the di-
rection in which each pixel moved. Wixson and Hansen [32]
developed an algorithm to detect salient motion based on
flows. Using a surveillance scenario, the assumption is that
important objects move in a constant direction. To measure
the saliency of a pixel, a set of optical flow fields is consid-
ered and for each pixel the distance it has moved and its
direction is taken as a measure for saliency.
Zhu et al. [36] propose an adaptive saliency algorithm for

videos using motion vectors. The approach analyses motion
vectors derived from block matching and optical flow. The
salient region is defined by motion features in case of high
motion; otherwise color and orientation is used. The ap-
proach is efficient to compute, because only a part of the
saliency features are considered in each iteration.
Xia et al. [33] use motion history maps to create saliency

maps. The model computes the spatial saliency as well as
the temporal saliency. For motion analysis, each frame is
divided into blocks and a motion vector field is computed
to detect moving blocks. Next, region growing is applied
to detect the interior of moving objects. To create the final
temporal saliency map, the motion map of the current frame
is combined with the motion history map. The resulting



saliency map for a frame is a combination of the spatial and
temporal saliency map. An advantage of this approach is its
ability to keep a moving object highlighted as salient even
after it stopped moving.

Only few 3D visual attention models have been published
that consider depth as an estimator for salient regions. An
early approach was formulated by Maki et al. [25] which
considers motion and depth information. First, preattentive
cues are detected. These are stereo disparity, image flow,
and motion. In a second stage, the cues are combined into
one saliency map. For this, two masks are computed based
on pursuit and saccade modes. In the pursuit mode, the
target object is followed and masked, whereas the goal of
the saccade mode is to switch the focus to another more
relevant object. To determine the final target mask, depth
is used as an indicator to tell which of the masks should be
applied.

Riche et al. [27] present a similar saliency detection ap-
proach that combines motion and depth information. The
proposed model consists of a horizontal, a vertical, and a
depth motion feature extractor. The detected features are
discretized into different speeds and directions. After ex-
tracting the features, a low-pass spatio-temporal filter is
applied to summarize the feature maps of all speeds and
directions. Although this bottom-up approach analyzes 3D
object motion, it does not consider image saliency features
like color or contrast. This makes the obtained saliency in-
formation inapplicable to many practical purposes.

An approach that combines depth maps with a region-
based saliency map was developed by Zhang et al. [34]. The
saliency value of a pixel region is computed from its color
contrast to all other regions in the image. Supposing that
a depth map for the input image is available, the saliency
value of a region is computed as the combination of its depth
value and its color-based saliency. Their work only consid-
ers depth information of images and does not take temporal
information into account.

The only method that considers all three saliency factors
(color contrast, motion, and depth) is the visual attention
model proposed by Zhang et al. [35]. The saliency map
of a frame is computed as a combination of three different
saliency maps. First, salient regions for still images are de-
tected by the bottom-up spatial attention model developed
by Itti et al.[9]. This approach combines color contrast, in-
tensity, and orientation. The second part is a temporal at-
tention model. To detect motion of objects within a video
sequence, block-based optical flow is used [35]. The consecu-
tive frames build a frame group where vertical and horizon-
tal motion is estimated and combined for each frame. The
third component is the depth attention model. A graph cut
algorithm [12] is used to create a disparity map, which is
converted into the perceived depth Z with Z = B ∗ f/dc,
where B is the baseline between both cameras, f is the focal
length of the cameras, and dc is the physical disparity be-
tween corresponding points. The physical disparity is calcu-
lated by converting pixel disparities into centimeters. With
the knowledge of the perceived depth Z, pixels belonging to
near objects get higher saliency values compared to those
that do not. A disadvantage of this approach is that the
camera parameters must be known. This is unrealistic in
most scenarios.

The final step of the stereoscopic attention model by Zhang

is a dynamic fusion of all saliency values. The different val-
ues of the spatial and temporal models are weighted dynam-
ically on the basis of motion contrast. This means that in
sequences with low motion contrast the weight for the static
image increases. Pixel values of the depth map are weighted
by a static factor. However, in their paper the authors did
not present a user evaluation that measures the perceived
quality of the saliency maps.

In comparison to the previous research in this area, the
distinctive features of our proposed system are:

1. We built a system that computes saliency maps for
stereoscopic video based on a combination of image
saliency, motions saliency, and depth saliency. Almost
all previous system focus on only one or two saliency
features at a time.

2. Our proposed method is suitable for arbitrary stereo
videos. We do not assume that information about the
capturing process is available (e.g., camera parameters
like focal length or distance between the two cameras).

3. The computational effort of the algorithms is consid-
ered in our approach. Efficiency is preferred over preci-
sion of the disparity maps in order to reduce the overall
computation time to process a video.

4. Many automatically computed disparity maps are very
noisy. We propose techniques to reduce such noise
by including the reliability of the image, motion, and
depth saliency maps into the calculation of suitable
weights.

5. To evaluate the performance of the saliency detector,
we generated test videos with strong distortions in
regions that were marked as non-salient by various
saliency measurements. A user evaluation compares
the perceived visual quality of the different algorithms.

3. SYSTEM OVERVIEW
Figure 1 gives an overview of the system. In a first step,

the algorithm decodes a stereo video and splits each frame
into the left and right views. We require rectified views in
order to create valid disparity maps. It can be assumed that
all input videos are shot with calibrated cameras and that
the images are already rectified.
Now, the actual process of saliency detection starts. The

spatial and temporal salient regions are detected from only
the left view, since they are usually applied to 2D videos.
However, both views need to be considered for the creation
of depth saliency. Each of the three detectors for salient
regions creates an individual saliency map. The disparity
map, created by a stereo correspondence algorithm, is used
as an indicator for pop-out regions in a frame.
In the next step, all three saliency maps are fused to a

single map by weighting each map differently. The result
is a combined saliency map that contains the final salient
regions. This information is now available to other appli-
cations to enhance the processing of stereo videos. Typi-
cal examples for such applications are video compression,
video retargeting, or video summarization. To create test
videos for our user evaluation, a sample application blurs
non-salient regions in both views and encodes them into a
new stereo video file.



Figure 1: System overview

4. SALIENCY DETECTION

4.1 Saliency in Still Images
For the computation of image saliency we use a histogram-

based algorithm proposed by Chen et al. [3]. This algorithm
utilizes the fact that the human visual system is sensitive to
colors which occur seldom within an image. The algorithm
works in three steps: quantization, color difference estima-
tion, and smoothing.
Quantization is done to improve the run-time of the al-

gorithm. Instead of using the full color space, each color
channel (RGB) is reduced to only 12 values. This reduces
the maximum number of different colors to 123 = 1728. Fur-
thermore, there are colors that occur too infrequently to be
considered salient by the human eye. Hence, they are re-
placed by colors that lie closest to them in the histogram.
The remaining colors – typically less than 100 different color
values – constitute a new color space for the analyzed image.

In order to compute the importance of these colors, the
algorithm uses the difference between them. This is done by
first converting the RGB-space into the L*a*b* color space,
where the L*-axis represents the brightness, the a*-axis the
green to red part of a color, and the b*-axis the blue and
yellow part. A major advantage of L*a*b* is the fact that
it contains all colors in a perceptually uniform way. This
means that a fixed absolute change of a color value has the
same visual importance (based on human perception) for all
colors.
After this conversion, the image saliency value of a color

value cl can be defined as:

S(cl) =

n∑
j=1

fj ∗D(cl, cj),

where fj is the frequency of pixel occurrences with color
value cj , n is the number of different color values occurring
in the complete image (after quantization), and D(cl, cj)



Figure 2: Left view of stereo videos and corresponding image saliency maps. Pixels with high saliency values
are printed in dark colors.

computes the absolute color distance between two colors cl
and cj in the L*a*b* color space.
The final step of this algorithm is color space smoothing.

This step is performed to reduce noise and thereby refine
the saliency value for each color. The current saliency value
of a color is replaced by a weighted average saliency value
of similar colors.

The image saliency value IS(p) of pixel p is defined as

IS(p) = S(cl) (1)

on condition that the color of pixel p is mapped to cl during
the quantization step.

Figure 2 shows two video frames and the corresponding
image saliency maps. The red car is correctly detected as
salient region in the first video. In the second video, the
red posts and the bus are correctly detected but the sky is
marked as salient, too.

4.2 Motion Saliency
The algorithm to estimate motion saliency analyzes the

differences between consecutive frames. First, the moving
average between two frames Ii−1 and Ii is computed. The
image acci serves as an accumulator and stores the weighted
sum of input frames in a sequence. It is computed for all
pixels (x, y) as

acci(x, y) = (1− α) · acci−1(x, y) + α · Ii(x, y), (2)

where Ii specifies the current frame and α is an indicator of
how fast the accumulator forgets about previous frames.

Next, the absolute difference between the current frame Ii
and the current moving average acci is calculated. In order
to get blobs of moving objects, multiple erosion and dilation

steps are performed. Dilation increases any bright regions in
an image whereas erosion shrinks them. Because we do not
need information about exact boundaries of moving objects
and to make sure that the full shape of moving objects is
covered, the number of iterations for dilation is larger than
the one for erosion.
Therefore, the motion saliency value MS(p) of pixel p is

defined as

MS(p) = (|Ii − acci| �n B)⊕m B. (3)

�n and⊕m denote n respectivelym iteration steps of erosion
and dilation using the structuring element B.
Figure 3 shows the motion saliency maps of two stereo

videos. The first video visualizes two moving objects (cars)
which are clearly visible in the saliency map. Although the
red car is partially occluded, its pixels are estimated very
well due to the dilation step. The second saliency ignores
the colorful background (in contrast to image saliency) and
shows the movement of the person.

4.3 Depth Saliency based on Semi-Global Block
Matching

We make the assumption that objects close to the camera
are more relevant in terms of saliency that other objects.
Our goal is to identify these objects (pop-out regions) by
comparing both views of a stereo video. The depth of an ob-
ject pixel is approximated by its horizontal shift (disparity).
For the computation of disparity maps, semi-global block
matching is used. It is a slightly modified version of the semi-
global matching algorithm developed by Hirschmüller [8].
We assume that the stereo video is already rectified. There-

fore, the disparity d of a pixel p describes the horizontal shift
of a pixel between both views of a frame in a stereo video.



Figure 3: Left view of stereo videos and corresponding motion saliency maps.

The aim of the algorithm is to compute the optimal dispar-
ity d for each pixel p. The cost C1(p, d) should be minimized
and is defined as the absolute luminance difference

C1(p, d) = |Ip − Iq| (4)

of the pixels p and q of the left and the right frame. Con-
sidering the position of a pixel p = (px, py)

T , the position of
pixel q = (px−d, py)

T depends on the value of the disparity
and describes a horizontal shift.

A direct computation of the cost C1(p, d) typically leads to
very noisy results. Therefore, two additional constraints are
added to smooth the resulting disparity map. Small changes
of disparity values should be avoided. If two disparity values
Dp and Dq slightly differ between pixels p and q (q is in the
neighborhood of p), then a constant penalty P1 is added.
This defines the additional cost C2 for a pixel p and its
disparity d:

C2(p, d) =
∑
q∈Np

P1 ∗ T [|Dp −Dq| = 1] (5)

The binary function T [v] is zero or one depending on the
value of parameter v which checks whether the difference
value is small (equals 1). In case of large disparity changes
(which typically occur at object boundaries), a larger penalty
value P2 is added as cost term C3:

C3(p, d) =
∑
q∈Np

P2 ∗ T [|Dp −Dq| > 1] (6)

To compute gradual changes of the depth, P1 ≤ P2 should
be valid. The overall cost Csum of a pixel with disparity d
is now defined as:

Csum(p, d) =
∑
p

(C1(p, d) + C2(p, d) + C3(p, d)) (7)

To find an optimal disparity map, Equation 7 is to be
minimized.
The disparity map is defined by the disparity values Dp of

all pixels p. The depth saliency value DS(p) of pixel p high-
lights pop-out regions which correspond to large disparity
values. DS(p) is therefore defined as:

DS(p) = argmin
d

Csum(p, d). (8)

The computation of the global minimum of Csum is NP-
complete [8]. Therefore, a heuristic is used to compute a
local minimum. This is done by analyzing different paths
that move to the current pixel p. The reduction of a two-
dimensional into a one-dimensional problem allows the com-
putation of the optimal disparity values for the path pixels.
The penalty values P1 and P2 are still used to avoid noisy
results. The original algorithm is further modified as follows:

• Instead of searching matches for single pixels, blocks
are matched (we use the sum of absolute differences
with a fixed window size of 3).

• A Birchfield-Tomasi sub-pixel metric [2] is used to re-
place mutual information as proposed in the original
implementation [8].

• We do not use a fixed value for the maximal disparity
value, but set the maximum depending on the width
of the input image.



Table 1: Weights for the edges of the graph cut algorithm
edge weight for

(s, a) Docc(a) a ∈ A0

(a, t) Docc(a) a ∈ Aα

(a, t) D(a) +Dsmooth(a) a ∈ A0

(s, a) D(a) a ∈ Aα

(a1, a2), (a2, a1) Va1,a2 {a1, a2} ∈ N

(a1, a2) ∞ p ∈ P, a1 ∈ A0, a2 ∈ Aα, a1, a2 ∈ Np(f̃)

(a2, a1) Cp p ∈ P, a1 ∈ A0, a2 ∈ Aα, a1, a2 ∈ Np(f̃)

4.4 Depth Saliency based on Graph Cuts
A second approach to estimate the disparity uses the graph

cut algorithm which was developed by Kolmogorov and Zabih[13]
and can be divided into the following steps:

1. Preprocessing of the input image

2. Define energy function

3. Create graph of stereo image

4. Use graph cuts to minimize the engery function

In the following, A will be a set of unordered pairs of
pixels which are likely to correspond. In the case of rec-
tified images and pixels p with coordinates (px, py), A is
defined as A = {〈p, q〉 | py = qy and 0 ≤ qx − px < k} where
k is the maximum disparity between to pixels. An assign-
ment a = 〈p, q〉 ∈ A is given a value fa which is set to
1 if the assignment consist of corresponding pixels (active
assignment) and otherwise 0.

First, the algorithm needs to do some image preparation
before it can start. For this, the input image is segmented
into regions with possible similar disparities. For instance,
this can be done with color segmentation. In this case, it
is assumed that the disparities in areas with similar colors
do not differ too much. Then, each segment of the image is
used as a configuration f which is called unique if each pixel
of it is involved in at most one active assignment. In unique
configurations, occluded pixels are in no active assignments.

Next, an energy function needs to be created which in this
case is defined as:

E(f) = Edata(f) + Eocc(f) + Esmooth(f) (9)

The data term Edata(f) is a result from the differences in
intensity between pixels. The second term in the function is
the occlusion term Eocc which imposes a penalty if a pixel is
occluded. The smooth term Esmooth imposes a penalty if one
assignment is in the configuration f , whereas a neighboring
assignment with the same disparity value is not. Hence, if
neighboring pixels have the same disparity this penalty is
zero.

Now that an energy function is given, the following steps
are the creation of a graph and the minimization of the func-
tion with graph cuts. Those steps will be explained in theory
and practice with the example shown in Figure 4. In this
example, the left and right view consist of four pixels each.
The solid lines represent active assignments that were found
in the preparation of the image. The dashed lines indicate
the assignments that are considered to be better matches.

Figure 4: Example for the graph cut algorithm

Given a configuration f and a disparity α, the algorithm
starts with a unique configuration f0 with:
A0 =

{
a ∈ A(f0) | d(a) 
= α

}
, where d(a) is the disparity

value of the assignment a, and an α-expansion set of inac-
tive assignments Aα = {a ∈ A | d(a) = α}. In the example,
the left and right image consists of four pixels each. The
solid lines define the active assignments, so A0 would con-
sist of the assignments {〈p, w〉 , 〈q, y〉 , 〈r, z〉}, whereas Aα =
{〈p, y〉 , 〈q, z〉}. The goal is to find a new configuration with
active assignments within one α expansion as a subset of

Ã = A0 ∪Aα.
Now a weighted graph G = (V,E) can be created where

each assignment a ∈ A0∪Aα is a vertex, as shown in Figure
5(a). Next, terminals s and t are added to the graph. These
are needed to compute the flow in the graph. Afterwards,
edges are added to the graph. Edges (s, a) are set from the
source to each vertex in the graph and from each vertex to
the sink edges (a, t)are added. Further edges are inserted for
neighboring assignments in the same set. Hence, in Figure
5(c) the assignments 〈q, y〉 and 〈r, z〉 as well as 〈p, y〉 and
〈q, z〉 are connected. The assignments 〈p, w〉 and 〈q, y〉 are
not connected because w and y are no direct neighbors.
Furthermore, assignments from different sets are connected

if they contain the same pixels. This needs to be done, be-
cause the final result should be a unique configuration, so
pixels cannot occur in more than one assignment. In the
example in Figure 5 the assignments 〈p, w〉 and 〈p, y〉 both
contain pixel p, thus, they need to get connected.
The last step of the graph creation is setting the weights

for each edge. The different weights for edges can be seen
in Table 1 and are taken from [13].
The occlusion costDocc is defined asDocc(〈p, q〉) = Docc(p)+

Docc(q), where Docc(p) = 0 if p has more than one entering
edge and Cp, which is a penalty if the pixel is occluded, if
there is only one. The weight D(a) comes from the data
term which considers the differences in intensities I of pix-
els. It is defined as D(a) = (I(p)− I(q))2 for an assignment
a = (〈p, q〉). Va1,a2 is a penalty based on the smoothness



<p,w> <q,y> <r,z>

<p,y> <q,z>

(a) Initializing the graph

<p,w> <q,y> <r,z>

<p,y> <q,z>
s t

(b) Adding terminals source and sink to the graph

<p,w> <q,y> <r,z>

<p,y> <q,z>
s t

(c) Adding relevant edges between vertices. Not all edges between source and
sink to each assignment are drawn for visualization

<p,w> <q,y> <r,z>

<p,y> <q,z>
s t

(d) Adding relevant edges between vertices

<p,w> <q,y> <r,z>

<p,y> <q,z>
s t

Va1,a2

Va1,a2

∞

Cp ∞
Cp ∞

Cp ∞
Cp

Docc(a)

D(a)

D(a) +Dsmooth(a)

Docc(a)

(e) Adding costs to the different edges. Lines without arrows are bidirectional and have
the same cost in both directions.

Figure 5: Graph construction of the graph cut algorithm



constraint. The smoothness cost is set to

Dsmooth(a1) =
∑

{a1,a2}∈N,a2/∈ ˜A

Va1,a2. (10)

How the costs are assigned is shown in Figure 5(e). For
instance, the edge from 〈q, y〉 to 〈q, z〉 has costs ∞ because
both contain pixel q which cannot be active in two assign-
ments.

The final step of the algorithm is to find the best matches
between pixels. This is done by a cut C = V s, V t which
divides the vertices into two sets such that s ∈ V s and t ∈
V t. Moreover, each vertex in A can be either in V s or in
V t. Now, the goal is to find the minimum cut which is the
cut with the smallest cost. This can be solved by computing
the maximum flow between source and sink. For instance,
a well known algorithm to compute the maximum flow is
given by Ford and Fulkerson [5].

4.5 Fusion of the Saliency Maps
After the three saliency maps are created, they are fused

into a single map. The final saliency value of a pixel is
computed by

S(p) = wi ∗ IS(p) + wm ∗MS(p) + wd ∗DS(p) (11)

where S(p) is the final saliency value of a pixel p. The values
of each map are considered as IS(p) for the saliency value of
still images (see Equation 1), MS(p) for the one computed
for motion (Equ. 3), and DS(p) which is the disparity value
of a pixel (Equ. 8). Moreover, each value is weighted differ-
ently by the weights wi, wm, wd ∈ [0, 1] which need to hold
wi + wm + wd = 1.
In our implementation, the weight wm is set to 0.3. This

parameter was empirically determined and is approximately
the average of wi and wd. Motion is therefore always con-
sidered but does not outweigh the other weights.
The other weights can be chosen dynamically based on

different factors with the constraint that wi + wd = 0.7.
To estimate these weights, the maximum distance between
colors and the maximum depth value is considered. These
measures are used because the saliency detection algorithm
in still images usually produces incorrect results if the max-
imum distance of colors is low. Then, the algorithm detects
either too much of the image as salient or hardly any regions.
Another indicator are strong pop out regions in an image,

that have pixel disparity values above a certain threshold.
Hence, wd > wi should be set if either the maximum dis-
tance between colors is low or the average disparity is high.
Vice versa, if the maximum color distance is large enough,
the IS(p) is usually a better indicator for salient regions.
This is mainly based on the fact that the automatically com-
puted disparity maps usually show a lot of errors and do not
represent ground truth data.
The pseudo code in Algorithm 1 illustrates the details

and parameters for the computation of the weights. The
first case checks whether the color distance or the number
of pop-out pixels are above or below a certain threshold.
If both values are very high, it can be assumed that both
saliency maps are giving important information about the
overall saliency. In contrast, if both values are below their
thresholds, it is assumed that the saliency maps are not very
reliable. In both cases, the weight for the image saliency
map is set a little higher because the reliability of the image

Algorithm 1 Computing weights

// colDist: color distance
// pD: percentage of pixels with disparity above a thresh.
if colDist ≥ maxV al && pD ≥ 0.05 ||
colDist < maxV al && pD < 0.05 then

wi ← 0.4
wd ← 0.3

else
if colDist ≥ maxV al && pD < 0.05 then

wi ← 0.5
wd ← 0.2

end if
if colDist < maxV al then

if pD > 0.05 && pD < 0.3 then
wd ← 0.62 ∗ √pD + 0.16
wi ← 0.7− wd

end if
if pD ≥ 0.3 then

wd ← 0.5
wi ← 0.2

end if
end if

end if

saliency detector is a little higher in these cases.
Next, if the distance between colors is over its threshold

but there is hardly any depth in a scene, then, the weight
for the image saliency is set much larger than the one for the
disparities. The last case is the one in which the maximum
color distance is below its threshold and there are more than
5% of pixels with high values in the disparity map. If this
is the case, the weight for pixels in the disparity map is
increased by the percentage of pixels with large disparity
values. If more than 30% of the complete image corresponds
to pop out regions then the pixels in the disparity map will
influence the final map by 50%.
The last step of the fusion is checking whether S(p) is be-

low a certain threshold to remove small areas, which usually
are non-salient regions.

4.6 Application: Blur Non-Salient Regions
In order to analyze the quality of the detected salient re-

gions, a sample application blurs out non-salient regions in
each frame (see Figure 17). As input, this application needs
the combined saliency map and both views. First, multiple
erode and dilate steps are done in order to remove small
artifacts in the saliency map (we use 10 iterations of each
operator). Such a high value is used because usually there
are small salient regions around a main salient region. If the
number of iterations is set high enough, these regions are
merged to one.
As a next step, the algorithm finds the outer contours to

detect salient regions in the saliency map. The identification
of outer contours is sufficient, because if one contour lies
within another, it will be detected as salient anyway. The
algorithm iterates through the contours and builds bounding
rectangles around them. As occluded pixels are usually at
the border of objects, the width and height of the rectangle is
increased by a small value to make sure that these pixels are
not blurred. However, it has not been found that occluded
pixels influenced the results negatively.
As the saliency maps for the still image and for the motion
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Figure 6: Blurring effects with different algorithms

are based on the left view, the bounding rectangle is only
defined for the left view. Therefore, the salient region in
the left view is matched against the right view to find the
corresponding region. Due to the erosion and dilation in
the beginning, the salient regions are large enough to find
confident matches.

The last step before the encoding of the stereo video is
to smooth all non-salient regions outside the bounding rect-
angles in both views. We use Gaussian blur with standard
deviation σx and σy defined as:

σx = (
nx

2
− 1) ∗ 0.3 + 0.8,

σy = (
ny

2
− 1) ∗ 0.3 + 0.8.

(12)

nx and ny specify width and height of the windows size
that is used for smoothing. The smallest window size that
can be used to smooth an image is 3×3, for which the blur-
ring effect can hardly be seen in the sample videos. When
the window size increases the blurring is more noticeable.

The visual impact on smoothing an image is highly de-
pendent on the number of different colors, which is a good
indicator for the level of details. This is why we use an adap-
tive window size. The number of different colors defines the

parameter of the window size which is kept between 3×3 and
35× 35. Experimental results have shown that the number
of colors in the test video sequences usually varies between
30 and 300. Thus, the window size of the blurring algorithm
is set to:

Vodd =

{
0 if (�numColors

10
� mod 2) = 0,

1 otherwise.
(13)

nx = ny = nmax − �numColors

10
� − Vodd (14)

The modulo operation in Equation 13 ensures that the
window size is odd, which is a requirement for the smoothing
operation. nmax defines the odd maximum window size that
is used for blurring (we use nmax = 33). If the number
of colors is larger than 300, the corresponding images are
blurred with the minimum window size of 3×3. Images with
a number of colors smaller than 30 can be seen as images
with only few textures, thus, the window size is set to 35×35.
Figure 6 shows the differences between selected smooth-

ing methods. The presented image was smoothed with a
window size of 3× 3, 15× 15, and 31× 31 from left to right.
The Figures 6 (a) to (c) were blurred with Gaussian blur,
(d) to (e) with a normalized box filter, and the last three
images with a median filter. Using the smallest window size



does not create noticeable differences between all methods.
But increasing the window size, the effects of the methods
become more obvious. As one can see, the box and median
filter destroy the image structure the most. Especially little
details are very blurry and with the median filter the peo-
ple can hardly be recognized. Even in images with a low
texture level, these blurring methods create obvious errors
in the image. That is why the Gaussian blur is used in
this implementation. As the images show, even with a large
window size, colors and details are still perceptible.

5. EVALUATION
The evaluation is split in two parts. First, we present

the tested video sequences, visualize results of the saliency
computation, and discuss typical errors. The second part
then presents the user evaluation.

5.1 Experimental Results

Table 2: Properties of the tested video sequences

Video Parameters of the video
Image size Frame Length
(one view) rate

HHI Tridelity Demo1 960× 1080 25fps 9s
HHI Tridelity Demo4 960× 1080 25fps 27s
HHI Tridelity Demo5 960× 1080 25fps 27s

Ice Age 816× 1920 25fps 23s
Sammy’s Adventure 2 640× 720 29fps 60s

Table 2 lists the video sequences that are used to evaluate
the results of our implementation. The first three sequences
listed in Table 2 are are taken from the multiview video
sequences provided by Fraunhofer Heinrich-Hertz-Institute
(HHI)2. Further, we use two animated video sequences from
the movies Ice Age and Sammy’s Adventure 2.

Figure 7 shows single frame’s saliency maps for still im-
ages, motion, and depth information. For both videos, the
left view frame of the video (a), the three separate saliency
maps (b)-(d), and the combined saliency map (e) are visu-
alized.

Image Saliency
In most cases, the saliency maps of the histogram-based

approach (b) are accurate enough to be used as an indicator
for salient regions. Overall, these saliency maps are very
detailed, with some exceptions in which the algorithm either
returns hardly any salient regions or identifies far too many
pixels as salient. In these cases, it might be better to use the
other maps to determine salient regions. Thus, we analyzed
for which kinds of pictures the algorithm returns incorrect
saliency maps.

The following conditions on the source frames are indica-
tors of incorrectly calculated image saliency maps:

• There are only few colors and the distance between
them is low.

• The distance between colors of salient objects and the
background colors is low in general.

2http://sp.cs.tut.fi/mobile3dtv/stereo-video/

• Parts of salient objects have the same color as back-
ground colors.

The best results are usually achieved if the color distance
is much larger than the number of colors and if the salient
objects do not contain colors that occur the most.
The resulting image saliency map from the first video,

shown on the left side in Figure 7 (b), detected most of the
salient regions. Intuitively, the two persons and the table
seem to attract the human visual attention the most; only
the head of the person in the background is not highlighted
as salient. This is caused by the fact that its color is similar
to one of the wall’s colors in the background. However, this
error is later compensated in the combined saliency map.
The saliency map of the second video, on the right in Fig-

ure 7 (b), detected all salient regions with only some small
errors in the background. In this example, the person, the
flowers, and the lamp seem to be most important. High-
lighting parts of the background at the right image border
are again an error that will be compensated by the other
algorithms when the maps are combined.

Motion Saliency
Figure 7 (c) shows motion saliency maps. Naturally, mo-

tion can only be detected in non-static scenes. The results
are especially reliable when there is almost no camera move-
ment, which means that the background does not change.
In the first video, the sitting person moves only a little,

which can be seen by the fact that the pixel values in these
regions are not as high as the ones for the person in the
background. The second person is walking through the room
which emphasizes the person very well in the motion saliency
map.
The second video illustrates the movement of the person

behind the flowers very well, whereas the flowers are static
and are thus not detected in the motion saliency map.

Depth Saliency
Especially the block matching algorithm and the semi

global block matching algorithm are based on many differ-
ent parameters which can improve or degrade the disparity
maps. The number of disparities and the SAD window size
have the most influence on the results. In order to find a
possibility to automatically determine these values based on
characteristics of the input image, different parameters have
been tested.
The images that were used for testing the parameters are

taken from the Middlebury Stereo Vision Page3 [31, 30].
First, block matching is analyzed and the SAD window size
was set to a fixed value of 9, and only the horizontal search
range, defined by the number of disparities, has been edited.
Because of the horizontal search, the width of an image plays
an important role in the decision for setting the parameter.
The resulting disparity maps of the Aloe data set with a size
of 1282×1110 pixels is shown in Figure 8. The first image is
the original left view. Figure 8(b) is the disparity map that
was created with a search range of 64 pixels, whereas the
saliency map in Figure 8 (c) was computed with a number
of disparities set to 160. The third disparity map was com-
puted by using 320 pixels as the search range for matches.
The last image shown in Figure 8 is the ground truth map,
which can be seen as the perfect result that needs to be

3http://vision.middlebury.edu/stereo/



Figure 7: Comparison of saliency maps: Left frame of stereo video (a), image saliency (b), motion saliency
(c), depth saliency (d), and combined saliency map (e). Pixels with high saliency values are printed in dark
colors.
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Figure 8: Increasing the number of disparities to achieve better disparity maps. (e) is the ground truth data
to compare the disparity maps.

approximated.
The results show that the disparity map in Figure 8 (c)

is the best approximation. If the search range is to small,
a lot of false matches will be found, which the algorithm
will interpret as disparities even if these regions are in the
background. Choosing the number of disparities too large
will result in quite good disparity maps, but the larger it
gets the more of the picture is cut. As a consequence, these
regions cannot be detected as salient regions anymore.

Due to the fact that block matching searches horizontally,
it can be assumed that the number of disparities varies ac-
cording to the width of an image. To find a correlation
between image width and search range, the block matching
algorithm was tested on the Aloe data set with half the size
of the one tested before. It can already be estimated that
using 160 as the number of disparity (as in the full-sized
image) would cut ≈ 25% of the image, which would be a
drawback for the saliency detection.

The resulting disparity maps for the smaller Aloe set are
shown in Figure 9, in which (a) is the disparity map with
a search range of 64. For (b) the search range was set to
80, and in (c) the number of disparities was set to 160. It
clearly shows that with 80 pixels, as the search range, the
ground truth data can be approximated very well.

The same tests were done with several other images in or-
der to detect a correspondence between the image width and
the number of disparities. Based on these sample images, a
suitable approximation can be formulated as follows:

numDisparities =

{
w
8
, if w

8
mod 16 = 0.⌊

w
8

⌋
+ (16 - (w

8
mod 16)), otherwise.

(15)
with w being the width of an image.
The next step is to see if the SAD window size changes

the results significantly with the number of disparities set
dynamically. As seen before, a fixed SAD size could already
be used, but there are some special cases in which the win-
dow size needs to be edited. This is usually the case in small
images. During several tests, the window size did not have
much influence on disparity maps of large images. However,
as shown in figure 10, there are some obvious differences
between the disparity maps of the respective image.

The size of the Tsukuba image in figure 10(a) is 384×288
pixels; and based on equation 15, the algorithm should set
the number of disparities to 48. A search range of 64 would
be set for the Cones image in Figure 10(e), which is 450×375
pixels of size.

Figure 10 (b) shows the disparity map with the fixed SAD

window size of 9. Even though the objects can be detected
quite well, the depth values of them are not high enough.
Compared to the ground truth data in Figure 10 (d), for
instance, the lamp in the picture should have much higher
disparities than those that have been found. If the window
size is increased, the disparity values are approximated much
better, as Figure 10(c) and (g) shows, in which a window size
of 19 was used.
Similarly, the disparity map for the Cones image can be

improved with a SAD window size of 19. A drawback of
larger values is that they usually result in blurry disparity
maps, as the Cones example shows very well. However, the
goal of the disparity map in this work is to find image regions
with large disparities; this goal is still given with larger win-
dow sizes. Furthermore, larger window sizes are more robust
to noise, thus, only the strong regions are detected.
To see if the window size is also dependent on the image

size, it has been varied for larger images, too. Results can
be found in Figure 11 with (b) using a SAD window size
of 19 and (c) using 25. This actually shows that, even for
the full sized Aloe image set, the window size does not have
much effect on the disparity maps except for reducing noise.
Hence, for this application it is sufficient to work with a fixed
window size for any image size.
Compared to the block matching algorithm, semi global

block matching usually presents much better results. This
algorithm is also very dependent on the number of dispari-
ties and the SAD window size. In order to see if there are
any differences between the choice of parameters for both
algorithms, the same input images have been taken and a
disparity map has been created.
The computation for the number of disparities has been

taken from the block matching algorithm, which was ap-
propriate for this algorithm, too. As Figure 12 shows, the
window size needs to be reduced from 19 (12(b)) to 3 (12(c))
to improve the disparity map. This is the minimum size that
can be chosen and it has given good results for most images
independent of the width and height of an image.
Of all three algorithms that have been tested, the graph

cut approach creates the best results. Parameters of this
algorithm are the number of disparities and the number of
iterations. For the number of disparities, the same computa-
tion as for the block matching algorithms is done. As shown
in Figure 13, there are no noticeable differences between
choosing 2 iterations (13(b)) and running the algorithm with
6 iterations (13(c)).
Hence, the number of iterations is set to 2, which is usually

sufficient and reduces the runtime a little.
It can be seen that in most cases, all algorithms produce
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Figure 9: Increasing the number of disparities to achieve better disparity maps with reduced image resolution.
(e) is the ground truth data to compare the disparity maps.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Influence of the SAD window size on the disparity map. (d) and (h) is the respective ground
truth data

(a) (b) (c) (d)

Figure 11: Increasing the window size for BM. (d) is the ground truth data to compare the disparity maps

(a) (b) (c) (d)

Figure 12: Refining the SAD window size for the semi global block matching algorithm, (d) is the ground
truth data to compare the disparity maps
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Figure 13: Resulting disparity maps for the Tsukuba image set created with the graph cut algorithm. (d) is
the ground truth data to compare the disparity maps

good results with the correct parameters. However, the data
sets provided by Middlebury Stereo Vision have several ad-
vantages towards images taken from stereo videos. On the
one hand, the colors and objects can be divided very good.
This means that the first computation step of disparities can
already create good results and the aggregation and final
disparity computation can refine the disparity map without
many errors. Furthermore, the disparities are very large,
and with greater resolution of an image the disparities in-
crease, too. This assumption cannot be taken for stereo
videos. With frames of stereo videos, there are additional
problems that are not present in the tested data sets. First,
the disparities might not be constant during a sequence of
images. Moreover, the maximum disparities also differs be-
tween different types of films. Especially in computer gener-
ated videos, the disparities are usually larger than in image
sequences taken with a camera. This is mainly based on
the camera setup and as long as the MVC video coding ex-
tensions are not used, the number of disparities can only
be approximated. Nevertheless, if the computation of the
number of disparities gets slightly edited, in most cases, the
resulting disparity maps are satisfying and can be used as
an approximation for pop out regions.

Hence, Equation 15 has been edited to fit the needs of this
work to the following:

numDisparities =

{
w
32
, if w

32
mod 16 = 0.⌊

w
32

⌋
+ (16 - ( w

32
mod 16)), otherwise.

(16)
Even though the number of disparities either is 16 or 32

for the stereo videos that were tested, the algorithms created
much better results than with Equation 15. A comparison
for one frame can be found in figure 14. The width of the
shown image is 960 pixels, thus, the number of disparities
would have been set to 128 based on Equation 15.

The resulting disparity map for this value with the semi
global block matching algorithm is shown in Figure14(b)
where depth is hardly detected. By decreasing the number
of disparities, the quality of the disparity map increases.
With Equation 16 the value is set to 32 which creates the
best result.

In some cases, further decreasing the number of dispari-
ties would improve the detected pop out regions even more.
However, the maximum disparities vary between different
kinds of stereo videos a lot, hence, a further reduction could
decrease the quality of disparity maps of videos with very
large disparities. Thus, as long as this parameter is not

known, Equation16 gives a reliable measure for the number
of disparities in most stereo videos. Beyond that, choos-
ing a small value for the number of disparities, reduces the
runtime as shown below.
Both block matching algorithms usually have problems

with images with large background areas because in these
images mismatches are easy to happen. In some cases, even
the graph cut algorithm produces noise in similar image ar-
eas. That is why in this implementation the resulting dis-
parity maps of all stereo correspondence algorithms are post
processed by an erosion and dilation step. The effects of this
step are illustrated in Figure 15. The original disparity map
that is shown was computed by the semi-global block match-
ing algorithm.
Even though some depth information gets lost, small ar-

tifacts caused by false matches are reduced. This does not
have much effect on the saliency detection as such small ar-
eas can be seen as non-salient. One case that can be thought
of as problematic, is an image with rain or small artifacts.
Such images are very common in the latest 3D movies but
as in these images the algorithm hardly produce usable dis-
parity maps, this case can be neglected.
In Figure 7 (d), sample disparity maps computed by the

semi-global block matching algorithm are shows. Typically,
the block matching algorithm has problems with images con-
taining large background areas, since in these images mis-
matches are easy to happen. That is why we post-process
the resulting disparity maps by an erosion and dilation step.
Due to this step, all major pop-out regions are detected
and only small pixel areas in the background are incorrectly
highlighted as salient.

Weighted Saliency
Most errors are further reduced by the combination of all

saliency maps as the last row in Figure 7 illustrates. The
combined map is calculated with the dynamic weights for
the image saliency map and the disparity map. In case of
the first video, the saliency maps were weighted with 0.5
for image saliency and 0.2 for the disparity map. These
values are determined by the algorithm because the number
of unique colors and the distance between them is very high.
It can be further seen that the noise in the background of
the image is reduced when combining the different maps.
The weighted saliency map of the second video in Figure

7 (e) is created with the disparity map weighted by 0.3 and
the image saliency map by 0.4. These values are calculated
because there are fewer pop-out regions and the maximum
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Figure 14: Changing the number of disparities for stereo videos

color distance is much lower.
In both cases, it can be seen that individual errors in the

respective saliency maps are reduced by the combination of
all maps. Sometimes, the interior parts of salient objects are
not detected correctly. However, this usually does not pose
a problem, as the outer contours of the salient objects are
easily detected.

In the following, the effects of the weighting process are
discussed. The previous results are all created with a static
weight for the motion map of 0.3, whereas the image saliency
map and the disparity map are weighted dynamically as
described in the previous sections. Figure 16 shows some
experimental results with differently weighted motion maps.
In Figure 16 (a), the motion map was weighted with a factor
of 0.2. It clearly shows that some salient regions are miss-
ing, e.g., the head of the second person. The image saliency
map does not detect the head of the person as salient as
its color is too similar to the background. Furthermore, the
disparity map only gives information about pop-out regions.
Hence, salient objects in the background are not detected.
Consequently, weighting the motion map with a factor of
0.2 is not sufficient, as it does not have enough influence to
correct the errors of either of the other saliency maps.

Using higher weights for the motion map does not change
the final saliency map significantly. Nevertheless, a weight of
0.4 removes some static objects like the logo in the upper left
corner, parts of the head of the first person, and some items
on the table. This example shows that if the motion map
is weighted too high, it might negatively influence the final
result by removing static pixels which might be relevant.

Figure 16 (b) shows the resulting saliency map that was
automatically computed by our algorithm. All intuitively
salient regions are highlighted as salient and the previously
seen errors do not occur.

Computational Effort
Table 3 lists the run-time to compute the image and mo-

tion saliency maps4. It shows that both algorithms perform
their computations very fast, and as shown before, they cre-
ate very good results. Even for frames of high resolution
videos, the time consumption is still low enough, so the al-
gorithms are appropriate for many applications.

Table 3: Run-time of the image and motion saliency
detection

Frame size Saliency Detection Algorithms
Image Saliency Motion Saliency

320× 480 0.06s 0.02s
960× 1080 0.25s 0.10s

Table 4 shows the computation time to calculate disparity
maps. To compare the computational effort, we also used
the graph cut based disparity algorithm presented by Jun-
hwan et al. [12]. The measurement shows that the block
matching algorithm significantly outperforms the graph cut
algorithm concerning computational effort.

Table 4: Run-time of the disparity detection

Frame size Disparity Detection Algorithms
Semi Global Graph Cut

block matching
320× 480 0.15s 4.86s
960× 1080 0.92s 55.30s

The algorithm’s computational effort mainly depends on
the size of a frame. The run-time to completely decode,
process (using semi global block matching), and encode one
video frame is listed in Table 5.

5.2 Subjective Visual Perception
To measure the quality of the developed algorithm, video

examples were shown to 12 test users aged between 21 and

4Intel Core 2 Duo 6400 processor with 2.13 GHz and 3 GB
RAM.
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Figure 15: Effects of erosion and dilation on disparity maps

Table 5: Run-time of the complete algorithm

Frame size Run-time for each frame
640× 480 0.45s

1920× 1080 12.0s

57. Except for one person who suffered from a dyschro-
matopsia (red-green color blindness), nobody suffered from
any defects in vision. The video sequences that were shown
to the users are the Tridelity Demo1 and Demo4 sequences,
as well as the Ice Age and Sammy trailers.

All videos were presented either on an Acer HS244HQbmii
display with its respective glasses, played with PowerDVD,
or on a Samsung SyncMaster 2233 display that uses the
Nvidia 3D Vision Kit and the respective Nvidia player. Both
displays are capable of 120Hz and use the shutter technology
with an infra-red connection to the glasses. For each video,
four different versions of the same sequences were shown to
the test users, created using differently weighted saliency
maps.

The first video presented was always the original video.
Next, the test uses saw a version in which the image saliency
map was weighted with 70%, the motion saliency map with
30%, and the disparity map was not considered as a factor
for saliency. The third version did not consider the image
saliency map at all, but weighted the disparity map with
70%. A video generated with the dynamic weights for the
combined saliency map was presented as a last version. The
users could see the video sequences more than once and were
asked to rank the quality of the videos afterwards. All videos
were shown without sound as it can actually direct the view-
ers’ attention to specific objects.

An example of a blurred video frame can be seen in Fig-
ure 17. A noticeable difference is the background region
around the head of the walking person, which was detected
as non-salient and was thus blurred. Also, the same applies
to the top region above the head of the sitting person. At
first, most users did not notice this modification; however,
in this case it became obvious for most test users as soon as

Table 6: Rating of the quality of the different video
sequences between 1 (worst) and 5 (best)

Video Average grades for the different
saliency detectors

Orig. Image Depth Dynamic
HHI Demo1 3.75 2.92 2.83 2.92
HHI Demo4 4.42 4.00 1.10 3.50

Ice Age 4.33 2.83 1.46 2.25
Sammy’s Adv. 2 4.54 3.20 2.80 3.71

the person walks into the scene: At this point, the region is
detected as salient by the algorithm, and is hence no longer
blurred.
Table 6 lists the results of the evaluation. The videos

were ranked on a Likert-scale of one to five, where five is
the best. The first video (original) was always evaluated
the best and the goal was to see how the different versions
of the respective video were evaluated. As there are small
artifacts in the video or some ghosting effects, the original
videos were not rated as perfect by everyone. Our dynamic
approach is not compared to Zhang’s algorithm [35] because
we do not know the camera parameters of the test videos.
The second column shows the results for the videos that

were blurred based on the image saliency map and the mo-
tion map. Most users rated the blurred videos very well.
Solely using the disparity and motion map as indicator for
salient regions (third column) does not work very well in
many cases; accordingly, this version was rated the lowest
for every sample video. This either results from the dis-
parity map sometimes not calculating the depth correctly,
or from the fact that regions with strong depth values are
often very small. Thus, large parts of the images were de-
tected non-salient and were thus blurred, which was obvious
for the users. The grades in the last column are the ones for
the algorithm that estimates dynamic weights as discussed
in Section 4. The grades of image saliency and the dynamic
weights are comparable. The errors in the HHI Demo4 video
and the Ice Age video are slightly higher, whereas in the



Figure 16: Results of weighting the motion map differently. Chosen weights: wm = 0.2 (a), wm = 0.3 (b), and
wm = 0.4 (c).

Sammy’s Adventure 2 video sequence, the proposed algo-
rithm got rated best compared to the other edited videos.
This video has the largest disparities, and hence, the dis-
parity maps are very accurate in most cases. Choosing a
better algorithm to compute disparity maps like Graph Cut
improves the overall quality but also increases the computa-
tion time by a factor of ten.

We do not normalize the different saliency maps because
the saliency value of a pixel should be derived from the con-
tent of a frame. E.g., depending on the amount of mo-
tion or the occurence of pop-out regions, the motion or
depth saliency maps of a frame may only contain low values.
Therefore, we decided not to normalize the average number
of salient pixels for each detector.

Overall, the users usually did not detect the video se-
quences’ blurred regions in the first iteration, but needed
more than one iteration to take notice of them. Analyzing
the ratings of the different versions, the ones ignoring the
disparity map and the ones created with our algorithm were
usually ranked best. However, it has been further found out
that adding the disparity map as a measure for saliency can
correct errors in the other saliency maps (based on spatial
and temporal saliency detection).

Discussion
Even more interesting than the absolute ranking are the

results collected from the user’s feedback. It has been no-
ticed that the following conditions influence the subjective
visual perception of the test users:

1. Routine

2. Stereo video experience

3. Static background

4. Fast cuts

5. Genre

6. Previous knowledge of the video

The first indicator for the detection of modifications/errors
in a video sequence is routine. Our test users had the pos-

sibility to watch the video sequence multiple times. Thus,
with each iteration, they could focus on new parts within
the scene. Most users actually needed more than one itera-
tion to detect the differences between the videos. Moreover,
the users knew what to search for after detecting the first
errors. As a consequence, if the first video sequence had cer-
tain parts blurred, the user’s attention automatically was on
these regions in the next video.
The second parameter which influences the perception of

stereo 3D videos is the experience a user has with the 3D
effect. Since more and more 3D movies for cinemas are pro-
duced in recent years, the younger generation is actually
used to watching films in 3D. Hence, they do not focus pop-
ping out objects as much as people who had no experience
with 3D videos. Consequently, we could notice that people
who watch 3D movies regularly detected blurred parts in the
background much faster than these who have never seen a
3D video before.
The third and fourth condition are closely related: In

video sequences with a static background and no changes in
the scenery, the test users did have more time to disengage
their focus of attention from the salient objects. Thus, they
usually detect errors in the background in the first or second
iteration already. In contrast, for videos with many short
scenes that complete changed the scenery every few seconds,
the test users did not have much time to scan the scene. As
a result, they only perceived very few of the blurred regions.
The fifth condition that was found to influence the visual

perception of the test users is the genre. In animated videos,
the depth effect is usually much stronger than in live action
films. Although filmed scenes can be post-processed to cre-
ate a stronger depth impression, this can also appear unnat-
ural for the human eye, and is thus most of the times not
exaggerated. In animated videos, however, the viewer has
no comparison to objects in the real world. Consequently,
scenes do not look unnatural even if the disparities are very
large.
As a result, the conditions 2 and 5 are also related because

people with a lot 3D video experience are more focused to



Figure 17: Left: Original left view frame. Right: Non salient regions are blurred (also left view).

the depth impression in animated videos than in others.
The last condition indicating if a test users can detect

blurred non-salient regions is previous knowledge of the video.
In contrast to the first condition, this means a user already
knows the salient objects in the scene. Thus, he or she de-
tected the blurred regions much faster than test users who
did not have any previous knowledge about the characters
shown in the video. Intuitively, detecting specific characters
as salient might be a good approach; however, we observed
that only people who did not know these characters con-
centrated on them, and thus detected the background as
blurred only in the second iteration.

All these conditions show that it is very hard to tell what
is really salient in an image or a video sequence. One conclu-
sion we can derive is that salient regions are highly depen-
dent on the individual, its previous knowledge of presented
content of the video, and the previous experience with the
depth impression in 3D videos.

6. CONCLUSIONS
In this work, a new approach for saliency detection in

stereo videos was presented, which works without the need
to know any camera parameters or a depth video stream
as additional information. The algorithm calculates three
different saliency maps, which are finally merged.

First, a histogram-based approach detects salient regions
in still images. Second, the motion within a video sequence
is measured and taken as a second indicator for salient re-
gions. As stereo videos add a 3D effect, a disparity map is
calculated which shows the pop out regions in a frame, which
are used as the third indicator for saliency. The resulting
saliency maps is created by merging the individual maps
into one. The motion map is weighted statically, whereas

the image saliency map and the disparity map are weighted
dynamically based on their characteristics and reliability.
This way, it is ensured that the depth impression gets more
influence on the final saliency map if the video contains large
pop out regions.
Even though the disparity maps created with the semi-

global block matching algorithm are sometimes very noisy
and hardly usable, it is not necessary to use ground truth
data or highly complex stereo correspondence algorithms:
Our algorithm still creates suitable results, as combining all
saliency maps with dynamic weighting can reliably compen-
sate errors of individual saliency maps in most cases.
To verify our results, the calculated saliency maps have

been used to create stereo videos in which the detected
salient regions are shown with original quality, whereas the
non-salient regions are blurred. Several users watched and
evaluated these test videos, resulting that saliency maps cal-
culated by our algorithm are actually capable of telling what
is salient in a video frame.
Additionally, our tests have shown that in general the

saliency implied by the depth information highly depends
on the individual person. Especially people with little ex-
perience in watching 3D videos are very focused on pop out
regions, whereas people who regularly watch stereo videos
are used to the 3D impression and are less focused on these
regions. One implication is to query the 3D experience of
individual users and to derive user specific parameters for
depth saliency.
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