
Scalable Propagation of Continuous Actions

in Peer-to-Peer-based

Massively Multiuser Virtual Environments:

The Continuous Events Approach

Inauguraldissertation
zur Erlangung des akademischen Grades

eines Doktors der Wirtschaftswissenschaften
der Universität Mannheim

Vorgelegt von: Florian Heger

Mannheim, 2013

Dekan: Dr. Jürgen M. Schneider

Erstreferent: Prof. Dr. Christian Becker

Zweitreferent: Prof. Dr. Alexander Mädche

Tag der mündlichen Prüfung: 29.04.2013

Abstract

Peer-to-Peer-based Massively Multiuser Virtual Environments (P2P-MMVEs) pro-

vide a shared virtual environment for up to several thousand simultaneous users

based on a peer-to-peer network. Users interact in the virtual environment by con-

trolling virtual representations of themselves, so-called avatars. Their computers

communicate with each other via a wide area network such as the Internet to provide

the shared virtual environment. A crucial challenge for P2P-MMVEs is propagating

state changes of objects in the virtual environment between a large number of user

computers in a scalable way. Objects may change their state on one of the com-

puters, e.g. their position. Information about a state change has to be propagated

via the peer-to-peer network to computers of other users whose avatars are able to

perceive the object. Optimization algorithms for a scalable propagation of state

changes are needed because of the very large number of users and the typically lim-

ited bandwidth of their Internet connections. This thesis describes an approach that

optimizes the propagation of state changes caused by continuous actions. Continu-

ous actions lead to multiple subsequent state changes over a given period of time.

Instead of propagating each subsequent state change caused by continuous actions

via the network, the approach propagates descriptions of the actions included in so-

called continuous events. Based on the descriptions, the subsequent state changes

are calculated and applied over time on each user’s computer. Continuous events

contain information about (1) the timing of calculations, (2) the spatial extent of

the influence of the continuous action in the virtual environment over time and (3)

the effect of the continuous action on influenced objects over time. The propagation

and management of continuous events is performed based on the spatial publish

subscribe communication model. Each user computer declares interest in a certain

space in the virtual environment. If the space intersects with the spatial extent

of the influence of a continuous event, the particular computer is provided with

the continuous event. This thesis describes the basic concept of continuous events,

presents a system architecture for support of continuous events in the context of a

given target system model for P2P-MMVEs, and evaluates the continuous events

approach based on a prototypical implementation of the system architecture.

Acknowledgements

I would like to thank the following people and organizations for their support: My

supervisor Prof. Dr. Christian Becker, Dr. Gregor Schiele, the project team of

Peers@Play (especially Richard Süselbeck and Laura Krammer), Verena Majuntke,

Sebastian VanSyckel, Dominik Schäfer, Christian Krupitzer, Markus Latz, Kerstin

Goldner, the Mannheim Business School gGmbH, Prof. Dr. Dr. h.c. mult. Chris-

tian Homburg, Prof. Dr. Jens Wüstemann, Dr. Ingo Bayer, Björn Schenk, Angelika

Hilger. A special thank goes to my parents, my brother and Susanne.

Contents

List of Figures III

List of Tables V

Nomenclature VII

1. Introduction 1
1.1. Research Objectives . 3
1.2. Overview of the Approach . 4
1.3. Contributions . 5
1.4. Organization of this Work . 6

2. Background 9
2.1. Massively Multiuser Virtual Environments 9
2.2. Related Concepts and Technologies 12

2.2.1. Interest Management . 13
2.2.2. Dead Reckoning . 29
2.2.3. Prediction Techniques for Avatar Behavior 35
2.2.4. Geocast . 37
2.2.5. Own Related Work . 38

2.3. Target System Model . 39
2.4. Assumptions . 44
2.5. Requirements . 45

3. The Continuous Events Approach 47
3.1. The Concept of Continuous Events 47
3.2. Formal Model of Continuous Events 55
3.3. Timing Alternatives: Finite and Infinite Continuous Events 57

4. A System Architecture for Continuous Event Support in P2P-
MMVEs 61
4.1. Architecture Design . 61
4.2. Basic Continuous Event Support . 74

4.2.1. MMVE Start . 75
4.2.2. Joining of a New Peer . 76
4.2.3. Leaving of a Peer . 76
4.2.4. Start and Execution of Continuous Events 77
4.2.5. Management of Existing Continuous Events 82
4.2.6. Modification and Termination of Existing Continuous Events . 87

I

II Contents

4.3. Extensions . 89
4.3.1. Extensions for Support of Multiple Zones 90
4.3.2. Handling of Peer Crashes . 100
4.3.3. Handling of Peer Disconnections 101
4.3.4. Handling of Overloaded Peers 102

5. Evaluation 105
5.1. Evaluation Focus . 105
5.2. Evaluation Methodology . 107

5.2.1. Aspects and Metrics for Evaluation 107
5.2.2. Software Prototype . 109
5.2.3. Simulation Process . 112
5.2.4. Software and Hardware Specifications 113
5.2.5. General Settings . 114

5.3. Action Type 1: Object Movement . 115
5.3.1. Description . 115
5.3.2. Simulation Results . 117

5.4. Action Type 2: Object Movement with Single Additional Influence . 119
5.4.1. Description . 119
5.4.2. Simulation Results . 122

5.5. Action Type 3: Object Movement with Multiple Additional Influences 124
5.5.1. Description . 124
5.5.2. Simulation Results . 126

5.6. Action Type 4: Object Group Movement with Additional Influences . 129
5.6.1. Description . 129
5.6.2. Simulation Results . 131

5.7. Assessment and Discussion of Results 134

6. Conclusion and Future Work 141
6.1. Summary . 141
6.2. Classification of this Work . 144
6.3. Fulfillment of Requirements . 146
6.4. Future Directions . 147

A. Simulation Results IX

B. Load Experiment XIII

Bibliography XV

List of Figures

2.1. Classification of interest management approaches 14
2.2. Basic concept of dead reckoning . 30
2.3. Basic concept of prediction techniques for avatar behavior 36
2.4. Propagation of events based on areas of interest and effect 41
2.5. Layer model of the target system . 42

3.1. Pattern of a typical continuous action 48
3.2. Spatial modeling alternatives for continuous actions 51
3.3. Basic concept of continuous events 55
3.4. Timing of continuous events . 56
3.5. Complex use case example for continuous events 59

4.1. Extended layer model of the target system 74
4.2. Start of a new continuous event . 78
4.3. Start of continuous event execution 79
4.4. Step of continuous event execution 80
4.5. Information flow for start and execution of continuous events 81
4.6. Start of continuous event management 83
4.7. Step of continuous event management 85
4.8. Information flow after detection of a new intersection between AoE

and AoI . 86
4.9. Information flow for modification or termination of existing continu-

ous events . 88
4.10. Potential AoE locations for newly started continuous events in P2P-

MMVEs with multiple zones . 91
4.11. Extended start of a new continuous event 92
4.12. Continuous event propagation in P2P-MMVEs with multiple zones . 93
4.13. Potential AoE locations for existing continuous events in P2P-MMVEs

with multiple zones . 95
4.14. Extended step of continuous event management 97

5.1. Screenshot of the graphical user interface of the software prototype . 110
5.2. Illustration of continuous action type 1 115
5.3. Spatial modeling alternatives for continuous action type 1 117
5.4. Overall simulation results for continuous action type 1 118
5.5. Analysis of the information flow for continuous action type 1 119
5.6. Illustration of continuous action type 2 120
5.7. Spatial modeling alternatives for continuous action type 2 121
5.8. Overall simulation results for continuous action type 2 122

III

IV List of Figures

5.9. Analysis of the information flow for continuous action type 2 123
5.10. Illustration of continuous action type 3 125
5.11. Spatial modeling alternatives for continuous action type 3 126
5.12. Overall simulation results for continuous action type 3 127
5.13. Analysis of the information flow for continuous action type 3 128
5.14. Illustration of continuous action type 4 130
5.15. Spatial modeling alternatives for continuous action type 4 131
5.16. Overall simulation results for continuous action type 4 132
5.17. Analysis of the information flow for continuous action type 4 133

List of Tables

5.1. Simulation parameters . 114
5.2. Reduction percentages of the simulated optimization approaches . . . 135
5.3. Average payload size per messsage of the simulated optimization ap-

proaches . 139

A.1. Recorded simulation results for continuous action type 1 IX
A.2. Recorded simulation results for continuous action type 2 X
A.3. Recorded simulation results for continuous action type 3 XI
A.4. Recorded simulation results for continuous action type 4 XII

B.1. Load experiment: Software and hardware specifications XIII
B.2. Load experiment: Number of calculated steps for CE Min AoE in 100

ms . XIII
B.3. Load experiment: Number of calculated steps for CE Max AoE in

100 ms . XIII

V

Nomenclature

AoE Area of Effect

AoI Area of Interest

CEC Continuous Event Controller

CEE Continuous Event Executor

CEM Continuous Event Manager

CES Continuous Event Storage Service

CR Code Repository Service

CVE Collaborative Virtual Environment

DARPA Defense Advanced Research Projects Agency

DIS Distributed Interactive Simulation

DL Direct P2P Link Service

DVE Distributed Virtual Environment

FoV Field of View

HLA High Level Architecture

IM Interest Management

MASSIVE Model, Architecture and System for Spatial Interaction in Virtual
Environments

MMORPG Massively Multiuser Online Roleplaying Game

MMVE Massively Multiuser Virtual Environment

NPSNET Naval Postgraduate School Networked Vehicle Simulator

NVE Networked Virtual Environment

P2P-MMVE Peer-to-Peer-based MMVE

PVS Potentially Visible Sets

RWM Random Waypoint Model

SIMNET Simulator Networking Project

SPS Spatial Publish Subscribe Service

TS Timer Service

UFR Update-Free Regions

VON Voronoi-based Overlay Network

VII

1. Introduction

Massively Multiuser Virtual Environment (MMVE) systems provide a shared vir-

tual environment for a very large number of simultaneous users. These users are

able to interact by controlling virtual representations of themselves via a software

running on their computers. Communication in MMVE systems usually takes place

over a wide area network, for example the Internet. MMVE systems originated

from military simulations and became publicly known because of the media pres-

ence of the virtual online community Second Life and the commercial success of

online roleplaying games such as World of Warcraft. Today, they are used in fields

far beyond virtual communities or games. MMVE systems, for example, can be

used as a cost-effective medium by companies for business-related use cases such as

trainings of employees in virtual factory buildings, security simulations, virtual fairs

and conferences.

Existing MMVE systems typically are provided by companies. Second Life, for

example, is provided by Linden Labs. Using an existing MMVE system that is

provided by another company can be a possible solution for certain business-related

use cases. In the past, Second Life was used by companies for marketing purposes.

Companies created virtual stores and interacted with their customers in the MMVE

in order to build and maintain customer relations and to sell their goods. However,

in order to be able to use an existing MMVE system, companies have to accept

the economical and legal framework of the provider. This often involves strategic

elements that are driven by the business model of the provider, for example the

use of a given virtual currency. Accepting the conditions dictated by the provider

is not necessarily beneficial for a company that wants to use the MMVE for their

own business-related use case. In addition, existing MMVE systems are not flexi-

ble enough to support the requirements of a specific business-related use case of a

company. For example, creating a virtual construction facility for specific training

of employees is hard to realize in an existing MMVE system. In order to control

the training of employees and to measure their performance, companies need sophis-

ticated evaluation mechanisms that have to be tailored to the use case and given

goals. This requires adjustments to the software of the MMVE system and usually

1

2 1. Introduction

can not be realized based on an existing MMVE system.

In conclusion, creating and running an own MMVE system tailored to the specific use

case seems to be the best solution for companies and their business-related use cases.

However, creating and running an MMVE system is very expensive. In practice,

existing state-of-the-art MMVE systems are based on a client/server architecture.

This type of architecture is well understood by MMVE system designers and, in

practice, works well. The MMVE providers, for example the Second Life provider

Linden Labs, maintain huge server farms that run their MMVE. The computers

of the MMVE users connect to the servers as clients. All communication between

the clients is managed by the central servers. The scalability of the overall MMVE

system is usually enhanced by splitting the virtual environment into smaller regions

and assigning the management for regions to servers in a server cluster. A Second

Life region server, for example, is responsible for managing a virtual region with a

size of 256 x 256 meters and is able to support up to hundred simultaneous users

within its region. In addition, the scalability of the system is enhanced by increasing

the hardware resources of the server clusters. As a result, MMVE providers face

huge costs for the provision of large computer centers. In an interview given in

2006, the chief technology officer of Linden Labs explained that Second Life at that

time was run by 2597 servers [Ter]. Therefore, providing an own MMVE based on

a state-of-the-art MMVE system with a client/server architecture would result in

huge costs for companies and is not a feasible solution.

In past research, it was shown that a peer-to-peer architecture [LCP+05, ATS04] can

be an alternative [KMA02, KLXH04, HL04, YV05, FRP+08] or addition [IHK04,

CYB+07, SZ08, BHS+08, Kul09] to client/server-based MMVE system architectures.

In peer-to-peer architectures, user computers act as peers. Communication flows

directly between the user computers and tasks for running the system are assigned

to user computers. Using a peer-to-peer architecture for the provision of MMVEs

allows to run the system mostly on the computers of the participating users. Own

hardware by the MMVE provider is only needed for certain tasks such as the initial

bootstrapping of the system and the persistent storage of the virtual environment.

This has the potential to make MMVEs based on peer-to-peer cheaper in comparison

to client/server-based MMVEs. In conclusion, providing an own MMVE based

on a peer-to-peer architecture would result in less costs than using a client/server

architecture and is a more beneficial solution for companies.

The distributed character of a peer-to-peer architecture results in a lot of new chal-

1.1. Research Objectives 3

lenges for the design of the MMVE system. Instead of sending informations over

the network to one central server cluster, user computers have to send informations

over the network to a potentially large number of other user computers. In addition,

system tasks such as controlling non-user characters and environmental effects have

to be assigned to certain user computers and coordinated between the user com-

puters by sending informations over the network. The increased amount of direct

information flow between the user computers can lead to problems for the scalability

of the overall MMVE system because standard network connections of users usually

have a very limited upload bandwidth. Therefore, a huge challenge for the design

of a scalable peer-to-peer-based MMVE (P2P-MMVE) system is to minimize the

information flow that has to be sent by peers over the network.

In order to make a P2P-MMVE system scalable, numerous specific approaches and

algorithms are needed. The continuous events approach, which is presented in this

work, focuses on one aspect of scalability in P2P-MMVE systems. It aims at pro-

viding a scalable propagation of continuous actions. Continuous actions are actions

that result in numerous following state changes over time. Continuous actions are

described in more detail later on in this work. In the following, the research objec-

tives of this work are elaborated. After that, a summary of the approach is given

and the main contributions are identified. Finally, an overview of the organization

of this work is given.

1.1. Research Objectives

P2P-MMVEs include so-called continuous actions. A continuous action is an action

or user input that results in multiple following state changes of objects in the virtual

environment over time. A relatively simple example can be described as follows: As

result of a user input, an object in the virtual environment moves a certain distance

with a given starting and a given ending location. After it arrived at the ending

location, it influences other objects within a certain distance. A more complex

example for a continuous action that influences multiple objects can be described

as follows: A peer is assigned the task of controlling the weather of the virtual

environment. As part of this task, it has to create and control a large number of

rain cloud objects. Each of these cloud objects has to be created, displayed and

moved on other peers. After the initial creation of a new rain cloud on a peer, the

cloud changes its position numerous times according to the wind. On its way, the

4 1. Introduction

rain cloud influences numerous other objects, for example because rain falls down

on the objects. Without any optimization, in these examples each position change

of the object and each state change of other objects caused by the initial object has

to be represented by an update that has to be sent over the network to other peers.

This results in a potentially huge amount of network traffic.

The network connections of users typically have a much lower upload bandwidth

than download bandwidth. This is in general a potential bottleneck in a P2P-

MMVE system. Sending the potentially large number of updates for continuous

actions without further optimization over the network even increases the danger of

bottlenecks at the sending side of the network connections. Therefore, finding an

approach for optimizing the sending of the outcome of continuous actions over the

network is crucial for the overall scalability of a P2P-MMVE system.

This work explores ways to optimize the sending of the outcome of continuous actions

over the network in P2P-MMVEs. It aims at finding an approach to send the

outcome of continuous actions to all affected peers with as little network messages

and bandwidth as possible. For this work, a target P2P-MMVE system model is

given. This work puts an emphasis on the design of a system architecture and

algorithms for sending the future outcome of continuous actions in the context of

the target system in a scalable way.

1.2. Overview of the Approach

The presented approach builds on the basic idea to send descriptive informations

about continuous actions over the network instead of sending an update for every

single state change that is caused by a continuous action over time. The approach in-

troduces an explicit event entity for continuous actions, so-called continuous events.

Continuous events are used within the P2P-MMVE system to carry the descrip-

tive informations about continuous actions. After its creation, a continuous event

is propagated to all affected peers. In the following, the resulting state changes of

the continuous action that is described by the continuous event are calculated over

time, at best without having to send any further messages over the network.

Continuous events include descriptive informations about timing, the spatial influ-

ence over time and the effect over time of the described continuous action. The

informations about timing include the points in time when the continuous action

1.3. Contributions 5

starts and ends and the interval between the calculation of new updates on the tar-

get peers. The informations about the spatial influence over time include the initial

influence area of the action and how this area changes over time. The informations

about the effect describe the specific state change that should be applied to affected

objects in the virtual environment.

Instead of including static informations, continuous events carry references to locally

stored function code. In order to determine the spatial influence over time and the

effect at a given point in time and to apply the effect to all affected objects, a con-

tinuous event only includes parameter values and calls the function code according

to the references. Function code is supported in a generic way. Additional code can

be added to the system and called by continuous events.

Continuous events are executed and managed automatically by the system. A con-

tinuous event can be started on one of the peers and then is propagated to other

peers based on the spatial influence of the continuous action. All target peers exe-

cute continuous events automatically. The execution of continuous events includes

the calculation and application of the resulting state changes over time. Selected

peers are assigned a management role. These peers are responsible for management

tasks, such as providing new peers with existing continuous events and coordinating

the potential modification and termination of existing continuous events.

The approach is integrated into the target P2P-MMVE system model by using

artificially created single events. When executing continuous events, the calculated

state changes are not applied directly to objects. Instead, artificial single event

messages are created that are identical to event messages received from the network.

This allows other parts of the target P2P-MMVE system to perform their algorithms

without further adjustments.

1.3. Contributions

The contributions of the continuous events approach to the field of P2P-MMVEs

can be summarized as follows:

Enhancement of scalability of state change propagation in P2P-MMVEs - The ap-

proach allows to propagate all future state changes that are caused by a continuous

action in an aggregated way by using one continuous event. This results in a reduc-

tion of network traffic for propagating the future outcome of continuous actions and

enhances the overall scalability of state change propagation in P2P-MMVEs.

6 1. Introduction

Support of generic types of complex continuous actions - Existing optimization ap-

proaches for propagation of continuous actions typically focus on a certain type of

continuous action. The continuous events approach aims at supporting generic func-

tion code to describe the future outcome of continuous actions. This enables the

support of a wide variety of action types and use cases. In addition, a continuous

event can include informations about very complex state changes of multiple objects.

After a continuous event was received by a peer, the approach is able to calculate

and apply state changes of a potentially large number of objects on this peer.

Encapsulated execution and management of continuous events - The design of the

continuous events approach facilitates the use of continuous events by giving in-

terfaces for the explicit start, modification and termination of continuous events.

The following processes for propagating continuous events to affected peers, cal-

culating continuous events and applying state changes are by design encapsulated

in the system for continuous event support. Once a continuous event was started

on a peer, the system automatically takes care of distributing continuous events

to peers, calculating and applying state changes on these peers and providing new

peers with existing continuous events. In case a modification or termination of an

existing continuous event was performed via the given interfaces on a peer, the sys-

tem for continuous event support automatically takes care of the distribution of this

information to other peers.

1.4. Organization of this Work

In addition to this introductive chapter, this work is organized as follows:

Chapter 2 describes the background of this work. An introduction into MMVEs is

given and MMVE systems from research and practice are presented. An overview

of related work from the fields of interest management, dead reckoning, prediction

techniques for avatar behavior and geocast is given. Previously published own re-

lated work is summarized. The target system model of this work is described. The

underlying assumptions and requirements for this work are presented.

Chapter 3 presents the continuous events approach for a scalable propagation of

continuous actions in P2P-MMVE systems. The concept of continuous events is

introduced. A formal model of continuous events is given. Timing alternatives for

continuous events are discussed. Potential use cases for very complex continuous

events are described and discussed.

1.4. Organization of this Work 7

Chapter 4 describes the design of a system architecture for continuous event support

in the context of the given target system model for P2P-MMVEs. The overall

design and architectural components are presented and the integration into the

target system model is explained. The system behavior and algorithms for basic

continuous event support are given. Several extensions to the basic continuous

event support are discussed.

Chapter 5 includes an evaluation of the continuous events approach. The evaluation

focuses on the networking aspects of the approach. Simulations of four varying

types of continuous actions are described. The performances of two alternatives of

the continuous events approach with varying spatial modelings are compared to the

performance of a P2P-MMVE without continuous events and the performance of

a state-of-the-art MMVE architecture based on the client/server model and dead

reckoning.

Chapter 6 finally draws conclusions from the presented work. A comprehensive

summary of this work is given. This work is classified in comparison to related

work. The fulfillment of requirements by the continuous events approach is assessed.

Potential fields of future research are identified and discussed.

2. Background

This chapter describes the background of this work. Section 2.1 gives an introduction

into MMVE systems in research and practice. Section 2.2 presents an overview of

related approaches and technologies from the field of MMVEs and other research

fields. Section 2.3 describes the target system model of this work. Section 2.4

presents the underlying assumptions. Finally, Section 2.5 presents the requirements

for this work.

2.1. Massively Multiuser Virtual Environments

A Massively Multiuser Virtual Environment (MMVE) is a large shared virtual en-

vironment for a huge number of simultaneous users. The MMVE is displayed to

the users via software on their computers. The users can interact with each other

or the environment via virtual representations, so-called avatars. The user avatars

are typically controlled by user inputs into peripheral devices such as keyboard and

mouse. The software translates the inputs into avatar actions. Communication in a

MMVE system typically takes place over a wide area network such as the Internet.

Depending on the basic communication model of the MMVE system, the provision

and management of the MMVE can either be done centralized by using large server

clusters or decentralized by distributing the tasks to user computers.

Over the last decades, multiple research communities and military initiatives evolved

around the idea of providing a shared virtual environment for a huge number of users

over wide area networks. Shared virtual environments with a focus on entertain-

ment like World of Warcraft became a major factor for the gaming industry. Virtual

communities like Second Life gained huge attention by the mass media. In the fol-

lowing, this section gives an overview of MMVE systems in research and practice.

The overview focuses on introducing the varying research communities, military ini-

tiatives and commercial MMVE systems and only includes short descriptions. The

following section then gives more detailed descriptions of approaches and technolo-

gies that are directly related to this work.

9

10 2. Background

The U.S. military founded several projects with the goal to support distributed

military simulations over wide area networks, starting with the Simulator Network-

ing project (SIMNET) [MT95]. SIMNET was developed between 1983 und 1990

and sponsored by the Defense Advanced Research Projects Agency (DARPA). The

project aimed at providing an infrastructure for military training in a virtual envi-

ronment.

Later on, SIMNET research evolved into the research field of Distributed Interac-

tive Simulation (DIS). The DIS initiative was driven by the U.S. government and

industry. DIS built on research work from SIMNET and aimed at defining a generic

infrastructure for distributed simulations in virtual environments. The DIS infras-

tructure, which resulted from the initiative, provides a shared virtual environment

based on distributed autonomous simulation nodes. It is able to simulate a large

number of military units such as tanks and air planes. The DIS infrastructure is

described by several IEEE standards [iee93, iee95a, iee95b, iee96, iee97, iee98].

The High Level Architecture (HLA) was another research initiative driven by the

U.S. government. It used conceptual elements from the DIS standards and added

concepts from other previous military projects in the field of distributed simulation,

for example the aggregate level simulation protocol [WW94]. The HLA initiative

aimed at providing a general framework for virtual environment systems and simu-

lations. The HLA framework, which resulted from the initiative, allows developers

to structure and design their simulation applications in a generic way without em-

phasizing certain use cases or application types. Analogical to DIS, the HLA is

described by several IEEE standards [iee03, iee07, iee10a, iee10b, iee10c].

Collaborative Virtual Environment (CVE) research focused on the collaboration as-

pect of virtual environments. It aimed at providing 3-dimensional virtual environ-

ments that primarily support collaborative work and social play [BGRP01]. CVE

systems with importance for this work are NPSNET and MASSIVE. Both systems

are introduced in the following. For further informations about other CVE systems

and a comprehensive overview of CVE research see [BGRP01].

The Naval Postgraduate School Networked Vehicle Simulator (NPSNET) put a

strong emphasis on the support of a very large number of users. It incorporated

existing technologies, for example the SIMNET database technology and the DIS

communication protocol, and aimed at enhancing their capabilities based on mul-

ticast networks in order to be able to support more than 1000 simultaneous users

over the Internet in a scalable way. [MBZ+95]

2.1. Massively Multiuser Virtual Environments 11

The Model, Architecture and System for Spatial Interaction in Virtual Environments

(MASSIVE) originated from the University of Nottingham, UK [Gre97]. Several

prototypes were developed over the years. MASSIVE-1 focused on teleconferencing

over wide area networks. MASSIVE-2 and MASSIVE-3 focused on a wider variety of

use cases such as public participation in online art and performance and inhabited

television. Inhabited television can be described as a combination of CVEs and

television that aims at supporting television shows in a virtual environment with

public participation via avatars. [BGRP01]

A new genre of games, Massively Multiuser Online Roleplaying Games (MMORPGs),

became very successful in the late 1990s and early 2000s and evolved into a mass phe-

nomenon. The most successful MMORPG, World of Warcraft [Blia], had a peak

number of worldwide subscribers of more than 12 million in 2010 [Blib]. Today,

MMORPGs are a major part of the gaming market and every year multiple new

MMORPGs are published. The concepts from these systems are highly relevant for

this work. Unfortunately, the gaming industry does not publish their concepts for

reasons of competition. Therefore, related work from MMORPG systems can only

be regarded by this work at best knowledge.

During the 2000s, shared virtual environments with a focus on community aspects

gained large public attention, mainly because of the media buzz caused by the

system Second Life [Lina]. Second Life aimed at providing a virtual universe where

users can live a parallel life. Similar to the real world, users are able to buy and

occupy real estates and goods. Users are involved in forming the virtual world, for

example they are able to add own content to the virtual environment. Second Life

even included an own currency and offered the possibility to exchange real money

into virtual money. Driven by the strong media presence, numerous companies

established virtual representations and stores within Second Life. In contrast to

MMORPGs, more information is available about the technical background of Second

Life, for example via the Second Life Wiki [Linb]. The source code of the Second

Life client software was even published under Gnu Public License (GPL) in 2007.

2007 also marked the year of founding of the OpenSimulator project [Ope]. The

project followed up the GPL publication of the Second Life client software. It

initially aimed at providing an alternative open source MMVE server that could be

used in conjunction with the Second Life client. Although the compatibility with the

Second Life client is still maintained today, the aim of the project shifted over time.

At the point in time of the writing of this work, OpenSimulator supports a variety

12 2. Background

of client softwares and the focus of the project is on providing a server software

that can function as an infrastructural backbone for a 3-dimensional version of the

World Wide Web (a so-called 3D Web). To date, the OpenSimulator community

is very active and there is also involvement by industry partners, mainly by IBM.

IBM even introduced a product for virtual collaboration based on OpenSimulator

in 2009: Virtual Collaboration for Lotus Sametime.

Although the topics of distributed communication and provision of shared virtual

environments were discussed in research and provided by some of the military simu-

lations, commercial MMVE systems were and today still are using the client/server

communication model. This model gives the companies that run the MMVEs more

control over the system architecture, but comes with high costs for running huge

server farms. In the 2000s, researchers proposed peer-to-peer as an alternative com-

munication model for MMVEs. They aimed at developing systems that run the

MMVE either fully or at least partly without central server hardware and are able

to reduce the costs for running MMVEs. Several research communities evolved

around the idea of developing MMVEs based on peer-to-peer. These communities

initially proposed such peer-to-peer-based MMVE (P2P-MMVE) systems under the

terms Distributed Virtual Environment (DVE) and Networked Virtual Environment

(NVE). Over time, the research communities joined forces and agreed to MMVE as

the general term in order to accentuate the aspect that these systems aim at very

large user numbers [SHWL09]. Numerous proposals for P2P-MMVE systems were

made that are highly relevant for this work because it aims at P2P-MMVEs. The

relevant systems from the field of P2P-MMVEs and their approaches are described

in detail as part of the following section.

2.2. Related Concepts and Technologies

This section gives an overview of related approaches and technologies from MMVE

research and practice as well as other research fields. The presented approaches and

technologies are categorized based on the general concepts of interest management,

dead reckoning and prediction techniques for avatar behavior. In addition, this

section describes the concept of geocast from the research field of context-aware

computing. Finally, it gives a summary of previously published own related work.

2.2. Related Concepts and Technologies 13

2.2.1. Interest Management

MMVEs typically consist of a huge number of stateful objects. In order to display

an up-to-date state of these objects on all participating user computers, a large

number of state update messages has to be propagated between the computers.

Because of the huge number of objects and the large size of the environment in a

MMVE, a system-wide propagation of all state updates to all computers poses a

major challenge for the scalability of the system and usually does not scale at all.

Therefore, MMVE systems enhance scalability by performing filtering algorithms

before the propagation of state updates. The relevancy of state updates for certain

users is determined based on one relevancy criterion or multiple revelancy criteria

and only the relevant state updates are propagated to each user. In other words:

The filtering algorithms determine the interest of a user in certain update messages.

By reducing the message amount for update propagation down to only the rele-

vant messages, these so-called interest management algorithms enhance the overall

scalability of a MMVE system.

To date, interest management algorithms are a crucial part of every MMVE system.

This work also uses basic interest management concepts such as the area of interest

and a determination of relevancy of events based on spatial areas. Therefore, interest

management approaches and technologies from research and practice are highly

relevant in the context of this work. In the following, this work gives an overview.

Over the years, numerous interest management approaches were published and a

variety of possible relevancy criteria were proposed. In the following, the related

work about interest management is classified based on the interest criterion that is

used by the particular approach. The following categories of interest management

are presented: Aura-based interest management, extended aura-based interest man-

agement, zone-based interest management, interest management based on visibility

relations, and interest management based on content attributes. Zone-based interest

management is further classified into approaches that use a static tesselation into

zones and approaches that perform a dynamic tesselation at runtime. Figure 2.1 on

page 14 gives an overview of the classification structure.

Please note that the presented related work focuses on interest management ap-

proaches for distributed system architectures. For a comprehensive overview of

interest management approaches for centralized client/server-based system archi-

tectures with a focus on massively multiplayer games see [BKV06].

14 2. Background

Figure 2.1.: Classification of interest management approaches

Aura-based Interest Management

The conceptual foundation of aura-based interest management is the aura model.

The aura model is a concept from the spatial model of group interaction in virtual

environments by Benford et al. [BF93]. The spatial model of group interaction orig-

inated from CVE research and was used, for example, by the CVE system MASSIVE

[Gre97].

In the aura model, every object in the virtual environment is surrounded by a

spatial area, the so-called aura. Objects carry their auras with them in case the

object position changes. The system that provides the infrastructure for the virtual

environment watches for overlapping object auras. An interaction between objects is

possible if the corresponding auras of the objects overlap. Objects can have multiple

auras representing different media, for example different auras for visibility and for

audio. These auras can have varying spatial structures. This allows asymmetrical

interaction. In a large space it is possible that a user can see another user, but

at the same time the user is not able to hear the other user. This scenario, for

example, can be modeled by using a very large visibility aura and a much smaller

audio aura. The avatar of the user that can be seen and not heard is located within

the large visibility aura, but outside of the smaller audio aura. The authors further

2.2. Related Concepts and Technologies 15

divide auras into focus and nimbus. A focus aura describes the potential perception

of a user avatar within the virtual environment, for example the viewing distance.

A nimbus aura describes the potential perceptivity of an object. A user is able to

perceive an object if the focus aura of the user intersects the nimbus aura of the

object. [BF93, GB95]

Today, the aura model or at least a modified version of the aura model is part of

most MMVE systems. The interest of a user avatar in its surroundings is typi-

cally modeled by an aura that surrounds the avatar, the so-called area of interest

(AoI). The corresponding user computer is provided with all updates about state

changes of objects that take place within the avatar’s AoI. Depending on the partic-

ular MMVE system, this basic concept is further extended by additional concepts.

In the following, this work gives an overview of aura-based interest management

approaches.

The P2P-MMVE system HyperVerse, which was described by Botev et al., includes

an interest management approach based on multiple 3-dimensional auras. The sys-

tem uses three spheres that surround every user avatar. The avatar’s field of view

(FoV), the AoI, and a third sphere without a particular name. The FoV has a radius

d and depicts the view of the user on the environment. The AoI has a much larger

radius and is used to retrieve objects and terrain. Because the FoV is much smaller

than the AoI, the user can move a certain distance without additional retrieval of

object and terrain data. The third sphere with a radius between d and the radius of

the AoI is used to reset the AoI position. In case the FoV sphere exceeds the third

sphere, the AoI is reset and a new retrieval of object and terrain data is performed.

[BHS+08]

Kawahara et al. proposed a peer-to-peer-based message exchange scheme for large-

scale NVEs. Their approach surrounds the avatar of each peer with an AoI. All peers

establish unicast connections to other peers whose avatars are located within the AoI

of the peer (so-called active entities). By establishing these connections, an overlay

network for propagation of update messages is created. A peer provides its active

entities with detailed update messages about itself via the unicast connections. In

addition, it compresses the minimum required information about all of its active

entities and exchanges this information with other active entities. By doing so,

these active entities are provided with rough information about avatars that are

located close by but not within their own AoI (so-called latent entities). The overlay

network adapts dynamically. Existing unicast connections are disconnected and new

16 2. Background

connections are established according to avatar movement. [KMA02]

The CVE system VELVET, which was proposed by de Oliveira et al., includes an

interest management approach with dynamically adjusted AoI sizes and AoI border

areas for object prefetching. In VELVET, every user avatar is surrounded by a 2-

dimensional circular AoI. The AoI size of each avatar can vary and is dynamically

enlarged or shrinked at runtime based on the number of objects that are located

within the AoI. In case of a high object density within the AoI, the AoI is shrinked

in order to reduce the number of received update messages and to maintain system

scalability. In case of a low object density within the AoI, the AoI is enlarged

in order to optimize the utilization of the user hardware and network connection.

Because of the potentially varying AoI sizes, the interest between two users is not

necessarily symmetric. For example, a user A can have a larger AoI than another

user B. As a result of this, user A can see user B while user B can not see user

A. The authors call this ’degree of blindness’ [dOG02, p. 2493] and define this as

’perfectly legal in VELVET’ [dOG02, p. 2493] because they only aim at providing

consistency at best effort. In addition to the dynamically adjusted AoI sizes, the

AoI scheme of VELVET includes a border area for each AoI. The border area is

used to perform check-in and check-out operations for objects. Based on the border

area, object data can be prefetched before the location of an object shifts within

a user’s AoI because of user movement. The border area can also be dynamically

adjusted. In VELVET, updates are propagated via multicast. A multicast group

is created for each object. Users join the multicast groups of all objects that are

located within their AoI. In case the state of an object changes, the object sends an

update message to its multicast group. [dOG02]

Han et al. presented an interest management approach for NVEs based on so-called

interest groups. In their scheme, all user avatars are surrounded by a spherical

AoI. Users are dynamically grouped in interest groups based on their interests and

distance. Update messages are propagated based on these groups. Each user in

the group multicasts update messages to the rest of the group whenever it moves

or interacts with the world. Each group has one representative. If the group is

included or overlaps with the AoI of a user that is not part of the group, the repre-

sentative sends an aggregation of the update messages from within the group with

low frequency to this user. Users can not join or create several groups. They have

to assign a priority for their interests. Groups are then created or joined based on

the priorities. Later on, Han et al. described an extended version of their scheme

2.2. Related Concepts and Technologies 17

that aimed at DVEs. In addition to interest groups, the extended version of their

scheme tesselates the virtual environment into regions and sub-regions. A superpeer

is assigned for each region. Each superpeer manages interest groups and multicast

communication within its region. Sub-regions are used to provide users with low

fidelity data of objects that are located in the sub-region and can only be seen.

[HLL00, HLLH08]

Bharambe et al. proposed Colyseus. Colyseus is a distributed architecture for

online multiplayer games. In Colyseus, users express their interest in surrounding

objects via range query expressions. Each user defines one or multiple range query

expressions. The AoI of a user consists of the union of its defined range queries.

Up-to-date object data is retrieved for all objects within a user’s AoI. [BPS06]

In the P2P-MMVE Solipsis, which was described by Keller et al., every avatar is sur-

rounded by a 2-dimensional circular AoI, the so-called awareness area. The aware-

ness area is used to determine the neighboring avatars for building and maintaining

a network topology and to retrieve data about objects that are located within the

viewing distance of a user. The radius of the awareness area is variable and depends

on the density of users and objects within the awareness area as well as the hardware

capabilities of the peer. [KS02, KS03]

Over time, two independent versions of Solipsis were proposed. The described first

version of Solipsis aimed at building a network topology with the structure of a torus.

Later on, a second version of Solipsis was proposed that uses Delauney triangulation

to build a network topology. The second version of Solipsis is described later on in

the context of zone-based interest management with dynamic tesselation.

Extended Aura-based Interest Management

Basic aura-based approaches implicitly assume that object state changes or events

describing these changes occur at a single point in the virtual environment. A state

change is only relevant for a user if the position of the changing object or the other

user that triggered the corresponding event is located within the user’s AoI. Extended

aura-based interest management approaches aim at providing a higher flexibility by

giving state changes or events their own spatiality. These approaches typically ex-

tend the concept of AoI with one or multiple additional spaces that model the extent

of an object’s state change or an event. This allows a more precise determination

of relevancy in comparison to basic aura-based approaches. In extended aura-based

18 2. Background

interest management approaches, relevancy is determined based on the intersection

of the AoI and the additional spaces.

Morse et al. reported the functionality of data distribution management in the

HLA. The HLA distributes messages based on multidimensional routing spaces,

so-called update regions and subscription regions. Each space consists of a set of

coordinates that can be adjusted dynamically at runtime. Each simulation entity

can define multiple update and subscription regions. ’Update regions are associated

with individual objects’ [MS97, p. 345] while ’a federate might have a subscription

region for each sensor system being simulated’ [MS97, p. 345]. The data type that

will be sent to an update region or received via a subscription region can be specified

by a given object class and attribute name or by an interaction class. The relevancy

of an object’s update is then determined by intersecting the associated update region

with available subscription regions of the same data type. [MS97]

Lee at el. proposed APOLO, a peer-to-peer overlay network for massively multi-

player online games. In APOLO, each update message has a so-called coverage area.

A spanning multicast tree is derived from the existing network topology of APOLO

based on the coverage area. The update message is propagated to all network nodes

in the coverage area. [LLI+05]

Ito et al. presented a peer-to-peer architecture for massively multiplayer online

games that propagates information based on virtual spaces. In the described archi-

tecture, player avatars are surrounded by so-called visible areas. Visible areas move

with the avatar in case the avatar changes its position. Virtual environment objects

are surrounded by so-called surveillance areas. All visible and surveillance areas

have the spatial structure of a 2-dimensional square and the same size. Because of

the same area size, all players whose avatar is located within the surveillance area

of an object are interested in the object. Multicast groups are built based on this

information. Object updates are propagated via these multicast groups. [ISST06]

Shun-Yun Hu described a communication mechanism for MMVEs called spatial pub-

lish subscribe. In a spatial publish subscribe system, each node specifies a so-called

publication space and a so-called subscription space. These spaces are updated ac-

cording to node movement. Nodes send messages to the publication space. The

system checks for intersections with the subscription spaces of other nodes and de-

livers the messages to all nodes with an intersecting subscription space. Matching

of publication and subcription spaces and delivery of messages is performed by so-

called interest matchers. Interest matchers are assigned to participating nodes based

2.2. Related Concepts and Technologies 19

on given criteria, for example based on a given tesselation of the virtual environ-

ment. In this case, one interest matcher is assigned for each zone and performs

the matching of spaces for this zone. In case a publication space intersects other

zones, the interest matcher of the original zone forwards the messages to the interest

matchers of the intersected zones. [Hu09]

Zone-based Interest Management

Aura-based and extended aura-based interest management approaches use spatiality

as main criterion for interest management. User interest and the extent of update

messages or events are represented by spaces that are either attached to entities of

the MMVE, for example user avatars or objects, or to entities of the system, for

example update messages or events. Zone-based interest management approaches

also use spatiality as main criterion for interest management. In contrast to aura-

based and extended aura-based approaches, zone-based approaches define the spatial

structures that are used for interest management based on the virtual environment.

Zone-based approaches typically tesselate the environment into disjoint zones. User

peers are then assigned to these zones, for example according to their avatars’ posi-

tions. Update messages are propagated to user peers based on the zones, for example

by sending update messages via multicast to all user peers whose avatars are located

within a certain zone.

In comparison to aura-based and extended aura-based approaches, zone-based in-

terest management approaches only allow a less precise determination of relevancy

because zones are only a rough approximation of an individual user avatar’s interest.

However, the provision of individual auras for all user avatars and determination of

interest based on these auras is a computation-intensive task. This is even more

true for extended aura-based approaches because these approaches include addi-

tional spatial structures for the influence of state changes or events and demand

the calculation of a potentially very large number of intersection operations for de-

termination of relevancy. Using zones is less accurate, but at the same time has

the potential to be much less computation-intensive than using individual auras or

auras extended by additional spaces.

Some proposals combined aura-based and zone-based interest management. The

previously summarized publication by Shun-Yun Hu about spatial publish subscribe

[Hu09] adds conceptual elements from zone-based interest management to the ex-

tended aura-based approach of spatial publish subscribe by proposing the use of

20 2. Background

a tesselation of the virtual environment for the assignment of interest matchers.

The P2P-MMVE VON, which is described later on in this work, tesselates the vir-

tual environment into disjoint zones and, in addition, uses individual AoIs that are

intersected with the zones to build and maintain a peer-to-peer network topology.

Existing zone-based interest management approaches can be further classified into

two sub-categories: 1) Approaches that use a static tesselation algorithm. 2) Ap-

proaches that use a dynamic tesselation algorithm. Static tesselation algorithms

define or calculate a partitioning of the virtual environment before runtime. Only

the assignment of user peers to zones is performed at runtime. Dynamic tesselation

algorithms partition the virtual environment at runtime. Dynamic tesselation algo-

rithms often include mechanisms that adjust the tesselation scheme dynamically for

further optimization of update propagation. In the following, this work first gives

an overview of approaches with static tesselation algorithms. After that, it presents

approaches with dynamic tesselation algorithms.

Macedonia et al. presented an interest management approach for use with NPSNET.

In their approach, the virtual environment is tesselated into static, fixed-size, hexag-

onal zones. An application layer multicast group is created and maintained for each

zone. Entities, for example user avatars or vehicles, can join several multicast groups

depending on the zones that they are interested in. In case an entity moves, the

multicast groups are updated according to the entity’s interest. [MZP+95]

Knutsson et al. proposed a system architecture that supports massively multiplayer

online games with peer-to-peer communication. Their approach includes an interest

management scheme that partitions the virtual environment into static, fixed-size

zones. Each player is assigned to a zone based on the location of its avatar. A

so-called interest group is built for each zone. The interest group of a zone is used

to multicast messages to all peers within the zone. In case a user leaves a zone and

moves into another zone, the interest groups are rearranged. A so-called coordinator

peer is assigned for each zone. The coordinator is used for update propagation in

combination with the concept of interest groups. Position changes of avatars are

send directly via multicast to all other players in the zone based on the interest

group. Object state changes are first sent to the coordinator. The coordinator

resolves potential conflicts. Then it sends the state change via multicast to its zone.

[KLXH04]

Iimura et al. proposed a zoned federation model for scalable massively multiplayer

online games based on peer-to-peer networks. The zoned federation model adds

2.2. Related Concepts and Technologies 21

an additional software layer between the game program and the P2P network, the

so-called zoning layer. The zoning layer tesselates the virtual environment into

static, disjoint zones. Then it selects and assigns peers as zone owners. Zone owners

perform server-like tasks for their zone, for example the distribution of workload over

the participating peers. The authors do not give a certain tesselation algorithm or

zone shape. This task is left open for developers which want to use the zoned

federation model. [IHK04]

Yu et al. presented MOPAR, a mobile peer-to-peer overlay architecture for interest

management of massively multiplayer online games. MOPAR tesselates the virtual

environment into fixed-size zones of a 2-dimensional hexagonal shape. Peer nodes

are divided into master nodes, slave nodes and home nodes. Each zone has one

master node, one home node and multiple slave nodes. The avatars of master and

slave nodes of a zone are located in the zone. The home nodes are only assigned

virtually to zones and do not have to be located in the zone. The home nodes are

responsible for selecting master nodes and assigning them to zones. In addition,

they establish and maintain connections between the master nodes of neighboring

zones. The slave nodes are registered with the master node of the zone where their

avatar is located. The propagation of update messages is performed as follows: The

master nodes receive all update messages from their zone. In addition, they receive

update messages from their neighboring zones via the connections to the master

nodes of these zones. Then they provide their slave nodes with updates about the

neighborhood of the slave nodes. [YV05]

Yamamoto et al. described a distributed event delivery method for MMORPGs. In

their method, the game space is tesselated into fixed-size, 2-dimensional squares.

Each square is managed by a responsible node. User avatars have an AoI that

is modeled by a fixed-size, 2-dimensional rectangle. Each user registers with the

responsible nodes of all squares that intersect its AoI. State changes are propagated

based on events. In case an action takes place, a corresponding event is triggered.

The event message first is sent to the responsible node of the square where the action

took place. The responsible node then forwards the message to its registered users.

The presented interest management approach is further enhanced by aggregation.

The responsible nodes collect events and send them as a list to registered users. In

addition, so called load balancing trees are built within squares in case the number

of users within a square exceeds a given threshold. The square is further tesselated

into sub-squares. Users are arranged into a tree based on the sub-squares. Events

22 2. Background

are propagated to the responsible node via the load balancing tree. [YMYI05]

El Rhalibi et al. described a peer-to-peer architecture for massively multiplayer

online games. Their architecture includes an interest management approach that

tesselates the virtual environment into fixed-size, rectangular regions. For each

region, a peer is assigned the role of a region server. A peer group is established.

The peer group includes all peers whose avatars are located in the region. The peer

groups are maintained by the region servers. Update propagation between peers of a

region is performed via the peer group. In addition, the region servers are connected

with each other. This allows the propagation of updates between regions via the

region servers. [ERM05]

Hampel et al. presented a peer-to-peer architecture for massively multiplayer online

games. Their architecture includes an interest management approach that tesselates

the virtual environment into fixed-size regions. The authors describe an example

using 2-dimensional hexagonal regions. Each region has a so-called region controller.

The region controller acts for this region as a server. A user is interested into a region

if its avatar is located in the region. It declares its interest by subscribing to the

controller of the region. State changes are propagated based on events. In case an

event is triggered because of a game action within a region, it is first sent to the

region controller. The region controller then calculates the new game state based

on the event. After that, the controller sends out the new game state to all peers

that are subscribed for the region. [HBH06]

Ahmed et al. proposed the NVE system MM-VISA. MM-VISA tesselates the virtual

environment into hexagonal regions of a fixed size. Each region is assigned a so-called

coordinator peer that manages communication for the region. Users declare interest

in a region if their avatar is located in the region. In addition, they declare interest

in the surrounding regions up to a given distance value. The coordinators form

a top level mesh hierarchy that is used for a hand-over of users between regions

and for management of interest of users from other regions. Communication within

regions is performed via application layer multicast. Multicast trees are built based

on movement characteristics as criteria. Entities that move fast have a tendency

to change regions often. Therefore, such entities are located lower in the tree to

reduce the needed effort for tree reconstruction in case the entity leaves the region

and enters another region. [ASdO06]

Chan et al. presented Hydra, a peer-to-peer architecture for massively multiplayer

online games. Hydra assumes that the virtual environment is partitioned into dis-

2.2. Related Concepts and Technologies 23

joint regions of a fixed size. The authors do not give an algorithm for partitioning

nor mention a certain region shape. They assume that the partitioning is predeter-

mined by the game developer which uses Hydra. Peers participate in the system as

clients and, in addition, they are able to perform server tasks for one or multiple

regions. Clients can only interact with other clients that are connected to the same

server. The authors also delegate load balancing. It is up to the game developer to

find an appropriate world partitioning to avoid overloading of servers. [CYB+07]

The Badumna Network Suite for massively multiplayer online games by Kulkarni et

al. includes an interest management approach that tesselates the virtual space into

fixed-size regions. The regions are inserted into a distributed hash table. The peer

closest to a region takes over responsibility for the region and performs server-like

tasks including propagation of update messages. Depending on the nature of the

massively multiplayer online game application, size of the game space and region

density, Badumna is able to switch to alternative interest management protocols:

The dynamic bounded protocol and the gossip protocol. The dynamic bounded pro-

tocol reduces traffic on the distributed hash table by aggregating and performing

the requests of entities within a certain bounding space at once. The gossip pro-

tocol is used in case of a very high density of entities. In this case, the entities

start communicating directly with its neighboring entities and only query the peer

responsible for the region periodically at a reduced frequency. [Kul09]

Hu et al. proposed a scalable peer-to-peer networked virtual environment. In their

system, the virtual environment is tesselated dynamically into disjoint zones at

runtime by using Voronoi diagrams. A Voronoi diagram is an existing mathematical

construct. ’Given n points on a plane (each point called a site), a Voronoi diagram

is constructed by partitioning the plane into n non-overlapping regions that contain

exactly one site in each region. A region contains all the points closest to the

region’s site than to any other site.’ [HL04, p. 131]. In the approach by Hu

et al., on each peer a 2-dimensional Voronoi diagram is calculated for the virtual

environment so that the avatar of each peer node is located as site at the center of

a region. Neighboring peer nodes are identified based on the Voronoi diagram and

connections between them are established. In case of avatar movement, the Voronoi

diagram is recalculated and the connections between neighboring peers are adjusted.

In addition to the Voronoi diagram, each avatar has a 2-dimensional circular AoI.

Interest is determined by combining the regions of the Voronoi diagram and the

AoI. All neighboring peers that are located inside the AoI are interested in updates

24 2. Background

from the corresponding user avatar and have to be provided with update messages.

[HL04]

Later on, Hu et al. described a so-called Voronoi-based overlay network (VON).

VON includes an extended version of the approach described in [HL04]. The original

approach with the same fixed-size AoI for all peers showed a potential weakness when

confronted with a high user density at certain places because this leads to a lot of

connections and update messages for the peers. The extended approach includes

dynamic-sized AoIs. An individual AoI radius is calculated for each peer based on

the peer’s networking capabilities. The AoI is adjusted dynamically. If the number

of connected neighbors exceeds a given threshold, the AoI is shrinked. The AoI is

restored if the number falls below the threshold. [HCC06]

Analogical to VON, the second version of Solipsis by Frey et al. tesselates the vir-

tual environment by using Voronoi diagrams. Solipsis II builds on RayNet [BKR07].

RayNet is a peer-to-peer overlay network that tesselates the environment based on

Voronoi diagrams and creates and maintains a network topology according to a De-

launey graph. A Delauney graph connects all sites of a Voronoi diagram. As a result,

the peer nodes are connected to their neighbors and are able to communicate with

them. The network topology is adjusted according to avatar movement. Solipsis

II further includes an AoI concept. All avatars are surrounded by so-called bound-

ing boxes. Bounding boxes are defined as spheres. The exchanged informations

are categorized into different levels of detail. Only the peers of avatars with over-

lapping bounding boxes exchange informations in high-grained detail. The other

neighboring peers receive a low-detailed version. [FRP+08]

Douglas et al. presented a peer-to-peer architecture for massively multiplayer online

games. In their architecture, the 2-dimensional virtual environment is tesselated

into squares. A distributed spatial data service is established over a peer-to-peer

network based on the tesselation. The data service is arranged as a quad tree. In

case a square gets overloaded, it is dynamically subdivided into four smaller squares

and the quadtree is updated. The data service is used to discover and query relevant

entities for a certain peer. In addition to the data service, the approach includes an

entity interaction service. Every entity registers a so-called event region with the

system. The event region is defined so that it guarantees to contain the entity for a

period of time. The size of the event regions for peers can vary. An entity can move

a certain distance within its event region while the center of the region stays fixed. If

the entity exceeds a threshold distance from the center, the event region is updated.

2.2. Related Concepts and Technologies 25

All event regions are stored in the quad tree for discovery and query. Entities are

likely to interact with each other if their event regions overlap. Therefore, direct

connections are established between two entities if intersections are detected. After

that, updates are exchanged directly. [DTHK05]

GauthierDickey et al. proposed to manage interest based on n-trees. N-trees are de-

fined as ’a generalization of the octree ... that recursively subdivide an n-dimensional

space’ [GLZ05, p. 87]. In their approach, the virtual environment is tesselated into

n sub-domains based on n-trees. These sub-domains can be further recursively sub-

divided at runtime in case there is a high density of entities within a sub-domain.

GauthierDickey et al. described a game that includes a 2-dimensional virtual world.

The corresponding n-tree is used to organize peers by their application-level scope

of interest and to propagate events between peers. Each peer has a function that

describes its scope of interest and joins the tree based on the result of the function.

Each event has a function that describes its scope of impact and influences one or

multiple sub-domains of the tree. In case a peer generates an event, it uses the

tree to propagate the event to other peers. The event’s scope is intersected with

the sub-domains to determine the influenced sub-domains. Then the event is prop-

agated to all peers that are connected to the corresponding nodes of the influenced

sub-domains. [GLZ05]

Please note that the propagation algorithm of the interest management approach

by GauthierDickey et al. shows similar characteristics as the approaches that were

presented under the category of extended aura-based interest management. The

function for the scope of interest can be interpreted as AoI and the function for the

scope of impact can be interpreted as a spatial representation of the event’s influence.

However, the approach by GauthierDickey et al. is classified as zone-based approach

with dynamic tesselation because the matching between the functions is performed

based on the n-tree structure as main conceptual element.

Morillo et al. described a DVE system called COVER. In COVER, the virtual

environment is tesselated into square regions. A peer is assigned as supernode for

each region. Supernodes are arranged by a dynamic quadtree structure. In case the

resources of a supernode are used to full capacity, the region is further subdivided

into squares and each subregion is assigned a new supernode. The supernodes of

the subregions are then added to the quadtree structure. COVER additionally

uses the AoI concept to determine neighboring avatars and to make sure that these

avatars are aware of each other’s state. Every avatar has a 2-dimensional circular

26 2. Background

AoI. The AoI is used to determine different types of neighbors. An avatar is a so-

called first level neighbor of another avatar if the avatar is located within its AoI.

All first level neighbors of an avatar’s first level neighbor are so-called second level

neighbors of the avatar. Each time an avatar moves, it sends a message to its first

level neighbors. The first level neighbors then propagate the message to the second

level neighbors. All avatars are classified into covered and uncovered avatars. An

avatar is covered if its first and second level neighbors are located in such a way

that the intersections of their AoIs totally cover the AoI of the avatar. Otherwise,

the avatar is uncovered. For covered avatars, awareness is provided automatically

because no avatar can approach them without being detected by the neighbors. For

uncovered avatars, awareness is provided by using the supernode structure. In case

of movement, uncovered avatars send a message to their neighbors and, in addition,

to the supernode of the region. [MMOnD06]

Interest Management based on Visibility

Interest management approaches based on auras or zones represent the spatiality

of user interest or the influence of events with basic mathematical structures, for

example circles, rectangles or hexagons. This works well in outdoor scenarios be-

cause basic mathematical structures are able to approximate the spatiality of user

interest and the influence of events in an accurate way. However, these approaches

can lead to shortcomings when confronted with indoor scenarios, for example user

interactions within buildings. In indoor scenarios, the avatar view is often limited by

obstacles such as walls. An aura or a large zone does not necessarily approximate the

spatial structure of a room in an accurate way because it can exceed the size of the

room. As a result, the corresponding peer is provided with update messages from

other rooms within its AoI or zone, even its avatar is not able to view the actions in

these rooms because its view is limited by walls. Interest management approaches

that consider the specific characteristics of indoor scenarios have the potential to

perform better than aura-based or zone-based approaches in such scenarios.

The common idea of these approaches is to tailor the interest management scheme

to the spatial characteristics of the virtual environment. Instead of defining spatial

structures for interest or influence and using these structures at runtime to determine

relevancy, these approaches analyze the virtual environment beforehand and calcu-

late visibility relations between existing parts of the virtual environment. Assuming

an indoor scenario within rooms, visibility relations are calculated and stored that

2.2. Related Concepts and Technologies 27

define the potential visibility of other rooms from certain spots in the building. At

runtime, the interest of a user avatar is determined based on the stored relations.

Instead of calculating intersections between spatial structures, the user computers

perform a database query on the stored relations. The corresponding peer is then

provided with update messages from the visible rooms. Some approaches use a nega-

tion of this idea and calculate non-visibility relations. Instead of making a query

on the visibility relations to determine the interest in rooms and then providing a

peer with update messages from these rooms, these approaches use the non-visibility

relations to filter out update messages from rooms that can not be seen. In the fol-

lowing, this work gives an overview of interest management approaches based on

visibility and non-visibility relations.

The potentially visible sets (PVS) approach, which was described by Airey et al.

and by Teller et al., analyzes the virtual environment and determines cells, for

example according to the rooms of a building. Visibility relations between cells

are determined based on the characteristics of the building, for example based on

openings or portals between the rooms. The PVS approach computes for each cell

the other cells that are visible from the cell and stores the potentially visible cells in

a set. At runtime, the potentially visible set of a cell is used to determine the cells

that have to be rendered for avatars that are located in the cell. [ARB90, TS91]

Makbily et al. proposed an approach based on update-free regions (UFR). The UFR

approach can be interpreted as a negation of the PVS approach. Mutually irrelevant

UFRs between pairs of users are calculated based on the criteria proximity, visibility

and direction. The UFR approach varies from the other described approaches based

on visibility because the calculation of UFRs between user pairs is performed at

runtime and UFRs are recalculated in case of avatar movement. After UFRs were

calculated, update propagation between a pair of users is optimized based on the

result. As long as the avatars of both users remain in the UFRs, no communication

between them is required. If an avatar leaves its UFR, updates are sent and UFRs

are recalculated. [MGBY99]

The frontier sets approach by Steed et al. can also be interpreted as a negation of

the PVS approach. The frontier sets approach uses a PVS structure to generate a

new structure of relations that allows a pair of entities to ensure that no interaction

between the entities is necessary. In the approach by Steed et al., a pair of cells has

a frontier if the cells are mutually invisible for each other. A frontier set includes

all frontiers of a cell. Update messages are filtered based on the frontier set. A user

28 2. Background

which is located in a cell does not receive updates from another cell if both cells

have a frontier. [SA04]

The early version of the frontier sets approach, which was described in [SA04],

included pre-computation and local storage of frontier sets on all peers. Later on,

the authors realized that this requires a massive amount of storage space, at worst

up to n3. Therefore, they extended their approach with an enhanced PVS structure.

The enhanced PVS structure is pre-computed, stored and used as an intermediate

data structure. It needs less storage space, at worst up to n2. At runtime, frontiers

are calculated based on the enhanced PVS structure when necessary. [SA05, SZ08]

Frontier sets show strong similarities to UFRs. In their later work, the authors even

compared their approach to UFR as a ’concrete example of a more general class of

algorithm called update-free regions’ [SZ08, p. 25].

Interest Management based on Content Attributes

Aura-based, zone-based and visibility-based interest management approaches all put

an emphasis on the aspect of spatiality when deciding about the relevance of update

messages or events. However, it is possible that users are only interested in updates

about certain attributes of objects in their surroundings. In the context of interest

management, this notion can be used for a fine-grained filtering of update messages

based on content attributes. In the following, this work describes two systems that

include such interest management approaches.

Bharambe et al. presented Mercury, a distributed publish subscribe system for in-

ternet games. Mercury includes a subscription language that allows users to perform

subscriptions into certain attribute types. Subscriptions are a conjunction of pred-

icates that are described by tuples of the form (type, attribute, operator, value).

In case of state changes, publications are made. Publications include a list of typed

attribute-value pairs that are described by tuples of the form (type, attribute, value).

Relevancy is determined by matching publications with existing subscriptions. In

case one of the attribute-value pairs of a publication falls within the value range

defined by one of the predicate tuples of a subscription, the corresponding user is

provided with the publication. Matching of publications and subscriptions and rout-

ing of messages are performed in a distributed way by so-called attribute hubs. Each

of these hubs is responsible for the matching of publications and subscriptions of a

certain attribute. [BRS02]

2.2. Related Concepts and Technologies 29

The P2P-MMVE system Donnybrook by Bharambe et al. focuses on fast-paced

first person shooting games. The included interest management approach makes

use of the limits of human cognition. It builds on the assumption that in first

person shooting games users typically focus attention on only a small number of

other user avatars. The authors argue that only these avatars have to be displayed

with a tight consistent state, while the rest of the avatars within a user’s field of

view can be displayed less consistent. Therefore, Donnybrook calculates so-called

interest sets for every user at each frame. The interest set of a user contains the five

users in which the user has the highest interest. The grade of interest is determined

based on three weighted criteria: 1) User proximity, because users which are close

by each other are highly interested into each other. 2) Aim, because users have an

orientation and tend to be interested highly into users at which they are aiming.

3) Interaction recency, because users which interacted recently are highly interested

into each other. A user receives updates from other users within it’s interest set

once every frame. The states of avatars of users which are not included in the user’s

interest set are not updated regularly. In case the avatars of other users are not

included in the interest set of a user, but are located within the field of view of this

user, these avatars are represented by bots. The bots act based on given artificial

intelligence routines and emulate user behavior. [BDL+08]

2.2.2. Dead Reckoning

In case a user avatar or an object of the MMVE moves on one of the participating

user computers, position updates have to be sent to other user computers that hold

a copy of the avatar or object in order to adjust the state of the copy. In a MMVE

based on a client/server architecture, the server is responsible for distributing these

updates. In a P2P-MMVE, these updates are sent directly to other user computers.

Dead reckoning approaches aim at reducing the network traffic for propagation of

position changes to other user computers based on the following notion: Instead of

sending the position updates of moving objects regularly, only the initial position

and additional informations describing the movement, for example the direction and

speed of movement, are sent to user computers with a copy. After that, future posi-

tion changes are extrapolated based on mathematical equations and the additional

informations and are applied to the copy.

Several approaches optimize dead reckoning by using a deviation threshold. The

server or the peer that holds the original object also performs an extrapolation of

30 2. Background

Figure 2.2.: Basic concept of dead reckoning

the future positions based on the same equations and informations as the computers

with a copy. Based on the result, it checks if the current position of the original

object deviates from the extrapolated position and compares the deviation with

a given threshold. In case the threshold is exceeded, the current position of the

original object and an up-to-date version of the additional informations is sent to

all clients or peers with an object copy.

In order to avoid erratic position changes after the current position and up-to-date

version of the additional informations were received, dead reckoning approaches

often do not apply the current position of the original immediately to the locally

stored copy. Instead, they converge the position of the copy slowly towards the

received position of the original object for a more realistic user experience.

Figure 2.2 illustrates the basic concept of dead reckoning independently from a spe-

cific approach. On the left, the figure displays the original object that is held by

the server or a peer. On the right, the figure displays one of the object copies that

are held by clients or other peers. In case the original object starts to move, the

initial position and additional informations describing the movement, for example

direction and speed, are sent to the clients or peers with an object copy (1). After

that, the clients or peers extrapolate the future positions of the object copies based

on mathematical equations and the sent informations (2). The holder of the original

object also performs the extrapolation (3). It checks regularly if a given deviation

threshold between the position of the original object and the results of the extrap-

2.2. Related Concepts and Technologies 31

olation is exceeded. In case the threshold is exceeded, the current position of the

original object and an up-to-date version of the additional movement informations

are sent to all holders of object copies (4). After receiving the position and infor-

mations, the holders of object copies converge the state of their local copy of the

object based on given algorithms (5).

Dead reckoning is a state-of-the-art concept that is used today by most MMVEs or

networked computer games [SKH02]. Dead reckoning has the potential to reduce

network traffic because position update messages can be held back while displaying

dead reckoned versions of moving objects on the user computers. As a side effect,

dead reckoning can also be used to smooth the display of movement in case of high

network latency. While waiting for the next position update, the avatar or object

copy can be dead reckoned and moved accordingly [Aro]. Over time, numerous

dead reckoning approaches as well as optimizations and extensions to the previously

described basic concept were proposed. In the following, this work gives an overview

of selected work about dead reckoning.

A very early approach that uses conceptual elements of dead reckoning was proposed

in the context of distributed multiplayer online games. In 1985, Berglund et al.

proposed Amaze. In Amaze, users move their avatars that look like monsters through

a maze with the goal to shoot the avatars of other users with rockets. In the proposed

system, each user computer has to display the maze, the position and state of each

avatar as well as the position and state of each fired rocket. In order to enhance

the scalability of the distribution of game states between user computers, Amaze

includes a technique that the authors call state extrapolation with correction. Instead

of sending state updates regularly, Amaze only sends a so-called first derivative of

the game state. It communicates the current and next directions, the velocity, the

corridor the object is traveling and the intersection ahead for avatars and rocket

objects to other user computers. Based on these informations, future states are

extrapolated without any further sending of state updates. A new update is only

send in case of a new keyboard input by a user. To keep inconsistency between user

computers as small as possible, Amaze further includes a correction mechanism.

The extrapolated states are corrected periodically in a fixed interval to avoid strong

deviations between the user computers. [BC85]

In the SIMNET project for distributed military simulations, dead reckoning is based

on contracts among the participating simulation nodes. The nodes agree about a

certain deviation threshold between the state of local objects and extrapolated states

32 2. Background

of object copies on other nodes as well as a retransmission interval. In case the

threshold is exceeded, the nodes guarantee a resending of state updates within the

interval. In SIMNET, state updates include the corrected position, velocity and

heading information. SIMNET further includes a smoothing technique. In case a

state update is lost completely, the state extrapolation for an object copy continues

for a few additional seconds. [MT95]

The IEEE Standard for Distributed Interactive Simulation - Application Protocols

(IEEE Std 1278.1-1995) describes the dead reckoning approach that is included

in DIS. Because DIS builds on SIMNET concepts, the described dead reckoning

approach shows strong similarities to the approach of SIMNET. In addition, DIS in-

cludes rotational dead reckoning, a technique that predicts an object’s 3-dimensional

orientation. In DIS, each participating simulation node holds the original of its own

avatar and a local copy for dead reckoning purposes. All nodes hold copies of other

avatars that are of interest for them. Initially, a state update about an avatar is sent

to all nodes with copies and thresholds for position and orientation are established.

In the following, the node with the original and all nodes with copies extrapolate the

position and orientation. In case the position or orientation of the original avatar

deviates more than the established threshold from the local copy for dead reckoning

purposes, the node with the original sends a new update message to the nodes with

copies and the copies are updated. DIS uses convergence algorithms in order to

minimize erratic position changes in case a position or orientation is updated. The

DIS standard allows the use of varying types of dead reckoning formulas. It includes

a notation for dead reckoning and describes dead reckoning mathematics. [iee95a]

Over the years, several optimizations and extensions for the dead reckoning approach

of DIS were proposed. For example, Lee et al. described an adaptive dead reckoning

algorithm for DIS systems. Their algorithm aims at increasing the network traffic

reduction of dead reckoning by adapting the error threshold dynamically based on

spatial areas and by selecting an appropriate extrapolation equation for dead reck-

oning based on movement characteristics. The threshold is adapted based on the

concept of AoI from interest management. The concept of AoI is extended by a

so-called sensitive region. A sensitive region has a smaller radius than the AoI. In

case an avatar steps inside the sensitive region of another avatar, it is very likely that

a collision will occur. Depending on whether the AoIs of avatars 1) do not overlap,

2) do overlap, 3) an avatar moves into the other avatar’s AoI or 4) an avatar moves

into the other avatar’s sensitive region, an appropriate threshold is selected. For

2.2. Related Concepts and Technologies 33

the selection of an appropriate extrapolation equation, the movement of an avatar

is classified into the types smooth, bounce and jolt. The extrapolation equation is

chosen according to the type. [LCTC00]

Chen et al. presented another optimization proposal for dead reckoning in DIS. Their

fuzzy dead reckoning algorithm for Distributed Interactive Simulations adapts the

error threshold dynamically at runtime based on fuzzy logic. Chen et al. argue that

in addition to distance between avatars other types of relations should be considered

as well for adapting the error threshold. Based on the relationships between avatar

properties and a priority for each property, a so-called fuzzy correlation degree is

calculated and the error threshold for dead reckoning is adjusted accordingly. [CC05]

In contrast to DIS, the run time infrastructure of the HLA does not support dead

reckoning directly. Moreover, dead reckoning techniques have to be implemented

by the federates [Fuj98]. Lin et al. pointed out that the HLA ’no longer dictates

the set of formulas that can be used’ [LBW97, p. 104] and ’the concept of dead

reckoning is extended to attribute extrapolation’ [LBW97, p. 104]. They presented

a dead reckoning translator between DIS-compatible simulators and the HLA run

time infrastructure. Dead reckoning informations are extracted from DIS protocol

data units and sent via the HLA run time infrastructure. After receiving dead reck-

oning informations via the HLA run time infrastructure, the translator converts the

informations back into protocol data units for DIS-compatible simulators. [LBW97]

NPSNET-IV includes an approach for dead reckoning of player positions based on

the ’players and ghosts paradigm’ [MBZ+95, p. 94]. The avatar of each player is

represented on other computers by so-called ghosts. After an initial update message

including location, orientation and velocity was sent over the network, the ghosts

update their positions based on dead reckoning without further sending of network

messages. The computer that hosts the original avatar also performs the dead reck-

oning extrapolations and compares the actual position with the predicted positions

of the ghosts. A new network message with an up-to-date location, orientation and

velocity is sent either after an error threshold is exceeded or 5 seconds have passed.

[MBZ+95]

Duncan et al. presented a pre-reckoning algorithm for DVEs. They aimed at opti-

mizing the accuracy of existing dead reckoning algorithms for DVEs. According to

the angle of turns during movement of the original avatar, their approach anticipates

possible future exceedances of the error threshold on the computer that holds the

original dead reckoned avatar. In case a potential exceedance in the near future is

34 2. Background

detected, an up-to-date state is sent over the network to all computers that hold

copies of the avatar before the threshold is actually exceeded. The approach by

Duncan et al. potentially results in a higher accuracy at the expense of an increased

network traffic. [DG03]

The Badumna Network Suite for massively multiplayer online games has a built-in

dead reckoning approach that extrapolates the current position of an entity based

on direction and velocity. It is up to the application developers which use Badumna

to decide when a new up-to-date position should be sent. This has to be performed

explicitly by the massively multiplayer online game application. The provided dead

reckoning approach works under the assumption of a fixed velocity. [Sca]

Yahyavi et al. proposed an approach called AntReckoning. They aimed at increasing

the accuracy of dead reckoning concepts that are based on mathematical formulas.

The approach by Yahyavi et al. considers user interest as an additional criterion

for prediction of future avatar positions. All entities in the virtual environment,

such as other users, objects or locations, are assigned a value that describes their

attractiveness. Over time, the entities spread and fade their attraction within the

virtual environment similar to the spreading of pheromones within ant colonies of the

real world. The authors presented a formula that extends the typical mathematical

formulas for dead reckoning by incorporating the attractiveness of nearby objects

via so-called attraction forces. [YHK11]

Singhal et al. described a position history-based protocol for distributed object visu-

alization that extends basic dead reckoning approaches by taking previous position

changes of objects into account for dead reckoning. Their protocol observes the

movement of an object over time and then selects an appropriate formula for dead

reckoning based on previous position changes. The up-to-date position of the orig-

inal object is resent either after an error threshold is exceeded or a given period of

time has passed. [SC94]

Later on, Singhal et al. described an approach for scalability enhancement in dis-

tributed interactive simulations that combines dead reckoning with aggregation. The

approach aggregates objects of the same organization type that are located within

the same zone of a virtual environment into groups. These so-called projection aggre-

gations are assigned a common multicast address. Users which are located far away

from the projection aggregation or which have only low interest into the projection

aggregation can subscribe via the multicast address. Subscribed users are provided

with a rough summary of all contained objects from the projection aggregation every

2.2. Related Concepts and Technologies 35

few seconds instead of fine-grained updates. Each summary contains the number of

objects, a summary position and information about how the objects are distributed

in dependency of the given location. The summary position is calculated as average

of the positions of the objects that are contained in the aggregation. The object

distribution is described by the radius of a bounding sphere that contains all object

positions as well as the mean and standard deviation of the object positions from

the summary position. On the computers of the users which receive a summary, the

objects of the projection aggregation are then placed randomly within the defined

sphere based on the deviation values. Over time, the target computers perform dead

reckoning for the summary point, radius and mean distance and adjust the object

positions accordingly after a new summary was sent. Projection aggregations are

created dynamically and are implemented as logical entities within the system. User

computers can detect existing projection aggregations within a region by submitting

a query to the system. [SC96]

Capin et al. described a dead reckoning technique for streaming virtual human

animation. Their approach performs dead reckoning for the joint angles of body

parts of avatars. Instead of sending fine-grained information about the movement

of certain body parts of the original avatar, for example the movement of an arm,

dead reckoning formulas are applied to the angles and the avatar copies move their

body parts accordingly. [CET99]

2.2.3. Prediction Techniques for Avatar Behavior

In addition to movement, user avatars often perform other actions in the virtual

environment. The copies of an avatar on other user computers have to act accord-

ingly. Similar to movement, updates have to be sent over the network to propagate

the avatar actions.

Over time, several approaches were proposed that aim at reducing the network traffic

for sending the outcome of avatar actions. These approaches use a similar notion as

dead reckoning. Instead of sending multiple precise update messages for particular

avatar actions over the network, only a rough descriptive information is sent and the

avatar copies act autonomously based on prediction techniques for avatar behavior.

Figure 2.3 on page 36 gives an overview of the basic concept. On the left, the figure

displays the original avatar. On the right, the figure displays one of the avatar

copies. Instead of sending numerous fine-grained updates describing avatar actions,

36 2. Background

Figure 2.3.: Basic concept of prediction techniques for avatar behavior

only a rough description of the goal, outcome or behavior is sent to other computers

with avatar copies (1). After that, the avatar copies act autonomously based on

given behavioral routines and the received description (2). Some approaches further

try to optimize this concept and minimize deviations by resending up-to-date states

or descriptions in given time intervals (3) and by adapting the behavior of the avatar

copies accordingly (4). In the following, this work gives an overview of approaches

that reduce network traffic based on the described concept.

Shi et al. proposed the concept of smart avatars. The original avatar of the local

computer is represented on other computers by smart avatars. Instead of sending

specific state changes as multiple updates over the network, for example to describe

specific movements of body parts for an action, the computer that holds the local

avatar sends text messages including a rough description of the executed actions.

One of the examples given by the authors is ’take the ball’ [SSGB99, p. 159].

Instead of representing each specific movement for taking the ball by an update and

sending the updates over the network, only the description is sent. After receiving

the description, the avatar copies take the ball autonomously. [SSGB99]

Szwarcman et al. presented a framework for networked reactive characters. Their

framework includes an approach that aims at reducing network traffic for propa-

gation of avatar actions based on the idea of autonomous clones. The avatar on

the local computer is called pilot. The pilot defines a general goal for the following

avatar behavior, for example ’walk to the wall between the doors’ [SFC00, p. 205].

2.2. Related Concepts and Technologies 37

The pilot sends this information to its copies on other computers. The copies are

called clones. The clones then act autonomously towards the given goal. In order

to reduce the deviation between the copies and the pilot, the approach includes

a recovering mechanism. Pilots resend state updates in intervals. In case a clone

detects a strong deviation, it adapts to the current state of the pilot. [SFC00]

The P2P-MMVE system Donnybrook by Bharambe et al. emulates the behavior

of an avatar on other peers based on artificial intelligence routines. As described

earlier in the subsection about interest management, Donnybrook calculates interest

sets for each user. The interest sets contain the five users in which the user has the

highest interest. To reduce network traffic, this concept is extended by a prediction

technique. Avatars of users which are not included in the interest set of a user

but are located within the field of view of this user are represented by bots, so-

called doppelgängers. The doppelgängers receive guidance information from the

original user avatar once per second. In between, the doppelgängers use the guidance

information to act based on given artificial intelligence routines. [BDL+08]

The authors called this prediction technique based on doppelgängers and artificial

intelligence routines guided artificial intelligence. A detailed description and defi-

nition of guided artificial intelligence can be found in [PUL07]. In the context of

Donnybrook, guidance is defined as ’a compact summary of his (a player) predicted

behavior for the period between now and the next anticipated message, such as

where he expects to go, whom he is targeting, and how often he fires his weapon’

[BDL+08, p. 392].

2.2.4. Geocast

Geocast is a concept from mobile and context-aware computing that is used to

send messages to certain geographical areas in mobile networks [DR03]. Similar to

interest management in MMVEs, the basic notion of geocast is that specific types

of messages, for example warning messages, are only interesting for users of mobile

devices within certain areas. The messages are propagated to these areas and are

delivered to mobile devices based on their location as criterion of interest.

For delivery of messages, geocast has to rely on an underlying location model. For

example, Dürr et al. proposed a hybrid location model that combines a symbolic

location model and a geometric location model. The symbolic model provides ad-

dressing of messages based on a hierarchy of symbolic locations, for example to

38 2. Background

address a certain room within a certain floor within a certain building. The ge-

ometric location model provides addressing of messages based on 2,5-dimensonal

spatial areas. A 2.5-dimensional spatial area consists of a 2-dimensional figure as

base, a fixed height and an altitude value for the base. A symbolic location can be

translated into a geometric location and vice versa. [DR03]

Although not directly related to the presented approach, the concept of geocast

might be an interesting starting point for future research. The concept of geocast

shows strong similarities to spatial publish subscribe communication in MMVEs.

Both, geocast and spatial publish subscribe, address messages via spatial areas. Lo-

cation models of mobile computing (see [BD05] for a comprehensive overview) might

be applicable in the context of a virtual environment or for the implementation of

a spatial publish subscribe system. Because spatial publish subscribe is the tar-

get communication model of this work, the continuous events approach might be

adapted for use case scenarios from the fields of mobile and context-aware comput-

ing with geocast. The support of such use case scenarios is beyond the scope of this

work. Nevertheless, the concept of geocast is relevant for future work. Section 6.4

of this work discusses potential directions of future research. This includes potential

research in the context of geocast.

2.2.5. Own Related Work

An early version of the continuous events approach was presented by Heger et al. at

the IEEE Consumer Communications and Networking Conference 2012 [HSS+12].

The work that was presented at the conference described the basic idea of continuous

events, defined a formal model for continuous events and gave early versions of algo-

rithms for continuous event execution and management. Compared to this work, no

peer crashes, disconnections or overloaded peers were considered. In addition, the

work that was presented at the conference was restricted to a single zone, did not

include infinite continuous events and no mechanism for modifying existing contin-

uous events in the system after their creation. The simulations had a preliminary

character. They were performed to give a first hint at the potential of the contin-

uous events approach and to explore potential parameters for more sophisticated

evaluations such as the evaluation included in this work.

2.3. Target System Model 39

2.3. Target System Model

This work originated from the project Peers@Play [PaP] that aimed at providing a

framework for MMVE developers based on the peer-to-peer communication model.

Being part of a project implies the existence of an overall system model that has to be

considered in the context of this work. In addition, several MMVE and networking

services exist as part of the framework that are used by this work. This section gives

an overview of the system model, as considered by this work, and existing services.

Peer-to-Peer Communication Model

The MMVE system consists of a large number of end-user computers (peers). These

peers are connected via a wide area network, preferably the Internet. Every peer

can enter and leave the system intended at any time. In addition, a peer can leave

the system unintended, for example due to hardware failures or network outages.

The MMVE system is based on the peer-to-peer model. The network communication

between the peers as well as the provision of the virtual environment and system

tasks are operated cooperatively by the peers. Therefore, each peer is potentially

able to take over tasks for communication (such as propagation of state updates to

other peers) and operation (such as persistent storage of object states or calculation

of state updates according to user input).

Tesselation into Zones and Assignment of Superpeers

The target P2P-MMVE system makes use of so-called superpeers. Peers with strong

hardware and network capabilities are selected from the set of all available peers

and are assigned additional system tasks for running the MMVE. The assignment

of tasks to superpeers is done spatially, based on a tesselation of the virtual envi-

ronment. The virtual environment is tesselated into disjoint zones and for each zone

a superpeer is selected and assigned to this zone. A superpeer is responsible for

providing system tasks for its zone.

The target system uses a 2-dimensional projection of the virtual environment and

tesselates the projection into disjoint zones based on a given tesselation algorithm.

40 2. Background

Stateful Objects

The virtual environment consists of a large number of stateful objects. Each object

has a specific location within the virtual environment. In order to display the virtual

environment, a copy of all objects in the avatars’ surroundings has to be provided

on each peer. The object state can change, for example because of an interaction of

an avatar with the object. In order to have an up-to-date state of an object on all

peers, state changes have to be propagated to other peers via network messages and

applied to the object copies.

Event-Driven Propagation of State Changes

The propagation of state changes of the target system is event-driven and, therefore,

decoupled from the objects. In case a user input is detected, the input is translated

into an avatar action. Then the action is performed by the avatar and a correspond-

ing event is generated by the system. The event is propagated via the network to

other peers based on relevancy to make sure that all peers for which the event is

relevant are provided with the information contained in the event. In case a peer

receives an event from another peer, the state changes described by the event are

applied to the locally stored object copies.

Event Propagation based on Spatial Influence in the Virtual

Environment

The relevancy of an event is determined based on the spatial influence of the corre-

sponding user action and the spatial interest of users in a 2-dimensional projection

of the virtual environment. The influence of a user action is described by a so-called

area of effect (AoE) that consists of one or multiple 2-dimensional spatial shapes in

the virtual environment. Every user avatar is surrounded by another spatial shape,

the so-called area of interest (AoI). An event is relevant for a peer if the AoI of

the avatar of that peer intersects at least one of the shapes of the event’s AoE (see

[SSSB09] and [HSSB09]).

Figure 2.4 on page 41 illustrates the determination of relevancy based on AoEs and

AoIs. The user avatars A, B, C, D and E each are surrounded by a circular AoI.

The AoI size of avatars can vary, for example avatar A has a larger AoI than avatar

E. In case an action is performed, an event representing the action is created, the

2.3. Target System Model 41

Figure 2.4.: Propagation of events based on areas of interest and effect

spatial influence of the action is determined and the event is propagated to an AoE

corresponding to the spatial influence. The figure shows the AoEs of events 1, 2

and 3. The AoE of an event can consist of several spatial shapes, for example event

3 represents a teleport of an object from one location to another location in the

virtual environment and, therefore, the AoE consists of two areas with the shape of

a small circle at the original spot and at the target spot. An event is relevant for a

user and has to be propagated via the network to this user’s peer if the AoI of the

user avatar intersects at least one of the shapes of the event’s AoE. For example,

the AoE of event 1 intersects the AoIs of avatars A and C and, therefore, the event

has to be delivered to the peers that correspond to these avatars.

The superpeers have an important role for the determination of relevancy and prop-

agation of events. Regular peers are only provided with spatial subscriptions from

other peers up to a certain range, the area of propagation (see [SSSB09]). Therefore,

a single peer is only able to determine relevancy of events for other peers up to a

certain distance. In order to make sure that events can be propagated to AoEs

outside of a peer’s area of propagation, the superpeers are provided with all spatial

subscriptions for their zones and are used as a fall-back solution for determination

of relevancy. If a peer determines that it is not able to propagate the event directly,

it uses the superpeer for propagation. Because of this mechanism, it can be assumed

42 2. Background

Figure 2.5.: Layer model of the target system

that a superpeer has up-to-date states of all AoIs of peers within its zone. This is

important for this work.

The described event propagation mechanism based on spatial influence can be clas-

sified as spatial publish subscribe (see [Hu09]). AoEs can be interpreted as spatial

publications and AoIs as spatial subscriptions. In the remainder of this work, this

terminology is used.

MMVE Software

In order to operate the P2P-MMVE system, each peer runs a special MMVE soft-

ware. Figure 2.5 presents an overview of the architectural layers of the MMVE

software of the target system. The components of the architecture are described in

detail in the following.

The 3D Client presents the end users a 3-dimensional graphical view on the virtual

environment. The content that is needed to display the virtual environment, for

example textures or maps, is installed together with the software on the peers before

a peer can join the MMVE system. Additional content is provided after the initial

installation of the software via peer-to-peer file sharing. Before a user can log in, the

system checks if new content is available. In case new content is found, this content

is retrieved from other peers. There is no streaming of content at runtime. The 3D

Client also collects user input via keyboard and mouse and translates it into avatar

actions.

2.3. Target System Model 43

The Object Management is responsible for holding the local copies of objects in the

surroundings of the user avatar. Interactions with these objects are handed over from

the 3D Client to the Object Management for further processing. Incoming events

from other peers over the network are also handed over to the Object Management

in order to adjust the state of the local object copies. The Object Management

is able to process events that apply an effect to a given object as well as events

that apply an effect to objects within a given spatial area. In addition, the Object

Management is involved into system tasks regarding objects, for example storing

the world state persistently.

The MMVE software includes several MMVE services for running the MMVE.

The Placement Management is responsible for assigning calculation tasks to certain

peers, for example the calculation of weather effects in certain areas or the control

of non-player characters. The Interest Magement is responsible for management

of AoIs. The Consistency Management provides several consistency concepts for

the system. It solves potential conflicts between events, orders incoming events on

peers and makes sure that only consistent state changes are propagated and applied

to object copies. The Security Management protects the system against malicious

attacks and cheating.

For propagation of events and communication between the system parts on different

peers, the software provides a selection of P2P network services. It includes a Spa-

tial Publish Subscribe Service that allows to make spatial subscriptions for network

messages within a certain area. The subscriptions can include additional filters, for

example to subscribe for only a certain message type. In addition, it allows to make

spatial publications of network messages to a given area. In case the spatial pub-

lication and a spatial subscription and its filters intersect, the network message is

delivered to the corresponding peer. In the target system, the Spatial Publish Sub-

scribe Service is used for propagation of events based on AoIs and AoEs. AoIs are

registered as spatial subscriptions. Events are propagated to their AoEs as spatial

publications. In addition to the Spatial Publish Subscribe Service, the P2P network

services include a Direct P2P Link Service. In the target system, every peer has a

unique peer id. This service allows to send network messages directly to a certain

peer based on its peer id. For sending the messages over the network, the P2P

network services use TCP/IP.

44 2. Background

2.4. Assumptions

This work is based on the following general assumptions:

Time is loosely synchronized between peers - The presented approach makes heavy

use of timers. Therefore it is important to have a synchronized time on all peers that

participate in the MMVE. Obviously, a strictly synchronized time constitutes the

optimal solution. However, the approach works at minimum under the assumption

of a loosely synchronized time between peers. For the remainder of this work, it

is assumed that time is at minimum loosely synchronized between all peers that

participate in the MMVE.

No handling of cheating or provision of security - The presented approach includes

distributed calculation of MMVE code on end-user computers. This can be a poten-

tial point of attack for cheaters and hackers. Providing specific security concepts and

protection against cheating is beyond the scope of this work. As described earlier

in this work, the MMVE software of the target system model includes the MMVE

service Security Management that protects the system against malicious attacks and

cheating. For the remainder of this work, it is assumed that the existing Security

Management provides a security concept and protection against cheating.

No handling of consistency and event ordering - The presented approach calculates

future state changes on peers and locally creates artificial single events instead of

sending single events over the network. The calculation of state changes can poten-

tially lead to a weaker consistency than sending the specific state changes because

function calls of the corresponding continuous event can be missed and the actual

state of a continuous action can deviate from the calculated state. In addition,

consistency has to be provided in case of conflicts between events. Incoming single

events from the network and locally calculated artificial single events have to be or-

dered. The described approach includes a mechanism for detecting missed function

calls and for converging continuous events towards a current state. However, pro-

viding consistency in case of conflicting events and ordering incoming single events

from the network and locally created artificial single events is beyond the scope of

this work. As described earlier, the MMVE software of the target system includes

the MMVE service Consistency Management. For the remainder of this work, it is

assumed that consistency in case of conflicting events and the ordering of events is

provided by the existing Consistency Management of the target system.

2.5. Requirements 45

2.5. Requirements

The presented work has to fulfill the following requirements:

Scalable propagation of continuous actions - The approach aims at a scalable propa-

gation of continuous actions in event-driven P2P-MMVEs with an event propagation

via spatial publish subscribe. In the context of this work, enhancement of scalabil-

ity can be measured by the reduction of the number of messages and bandwidth

for propagation of continuous actions over the network. The approach has to be

compared to a basic event-driven P2P-MMVE with an event propagation via spa-

tial publish subscribe using single events. In addition, it has to be compared to

a state-of-the art MMVE approach that is client/server-based and performs dead

reckoning for object movement.

Support of explicit use - The scalable propagation of continuous actions has to be

supported for explicit use. Continuous actions do not have to be identified auto-

matically for a scalable propagation. Instead, the scalable propagation of a contin-

uous action can be started explicitly by the MMVE software via a given interface.

Changes to running continuous actions that were already propagated or their ter-

mination are also triggered explicitly by the MMVE software via given interfaces.

Encapsulation of execution and management processes by the system - After the

scalable propagation of a continuous action was started explicitly by the MMVE

software, any following processes for calculation and application of state changes as

well as for propagating running continuous actions to new peers have to be performed

automatically by the system. After a change to an already propagated continuous

action or its termination was triggered explicitly by the MMVE software, the system

has to distribute the information automatically to all peers that need it.

Handling of peer crashes - Peers can leave the system unintended because their

hardware or software breaks down. This has to be considered in the context of the

presented approach.

Handling of peer disconnections - Peers can leave the system unintended because of

network problems. Peers that leave the system because of disconnections from the

network have to be considered in the context of the presented approach.

Handling of overloaded peers - The performance of calculations on peers potentially

increases the CPU and memory load. The handling of peers whose CPU and memory

get overloaded has to be considered in the context of the presented approach.

3. The Continuous Events Approach

This chapter presents the continuous events approach for scalable propagation of

continuous actions in P2P-MMVEs. Section 3.1 gives an introduction into the con-

cept of continuous events. Section 3.2 presents a formal model for continuous events.

Finally, Section 3.3 discusses the timing of continuous events and potential use cases

for finite and infinite continuous events.

3.1. The Concept of Continuous Events

Section 2.3 described the target system of this work. The target system is an event-

driven P2P-MMVE. It propagates user actions based on events and their spatial

influence on the virtual environment according to the spatial publish subscribe com-

munication model. The MMVE software of the target system translates user input

into avatar actions. It creates events that describe the state changes caused by

avatar actions. Each event has an AoE that corresponds to its spatial influence on

the virtual environment. The events are propagated to peers based on relevancy.

Relevancy is determined by checking for intersections between the AoE and the AoIs

of avatars of peers.

There are certain types of user actions in MMVEs that result in multiple subsequent

state changes of objects. Figure 3.1 on page 48 illustrates a typical pattern of such a

continuous action. As result of a single user action, an object is created at location A.

In the following, the object moves through the virtual environment towards location

B. When the object reaches location B, it influences user avatars and other objects

that are located within a given influence area. The object of the continuous action

described by Figure 3.1, for example, influences avatars and objects within a circular

area that has a given radius and is centered at location B.

Examples for such continuous actions can be found in a wide variety of MMVE use

cases. In military simulations, for example, the object can represent a rocket. The

rocket is fired off at location A and aims at location B. When the rocket reaches

location B, it harms avatars and buildings within a circular influence area. In a

47

48 3. The Continuous Events Approach

Figure 3.1.: Pattern of a typical continuous action

serious game that simulates a disaster for training purposes, the object can represent

a patch of fire. The patch of fire is created at location A. In the following, the patch

moves towards location B according to the wind in the virtual environment. Please

note that in this use case the influence areas deviate from the areas illustrated by

Figure 3.1 because the patch of fire influences avatars and objects on its entire way

through the virtual environment instead of avatars and objects within one area at

location B. In a business use case, the object can represent a car on an assembly

line. The car is put on the assembly line at location A. After that, it moves on the

line towards location B. When the car reaches the end of the line at location B, an

acoustic signal is triggered that notifies about the arriving of the car. The acoustic

signal is heard by all avatars that are located within a given circular area.

In the basic event-driven spatial publish subscribe communication model of the

target system, each state change caused by such a continuous action has to be

represented by an event with a corresponding AoE. This results in a potentially

large number of events that have to be sent over the network for the propagation of

continuous actions. The propagation of the continuous action illustrated by Figure

3.1, for example, results in update events about the position changes of the object

over time and the final influence at the target location. The update events about

the position changes each are propagated to an AoE of a point at the location of

the object. The update event about the final influence is propagated to a circular

AoE that has the given radius and is centered at the target location.

MMVEs typically consist of a very large number of users, objects and actions. There-

fore, the described propagation of continuous actions with multiple single events puts

a high burden on the sending side of the network connection of the computer where

3.1. The Concept of Continuous Events 49

a continuous action is performed as well as on the propagation infrastructure. In

P2P-MMVEs without a central server infrastructure, the propagation of events is

completely performed by user computers that act as peers. Events are propagated di-

rectly between the peers. The bandwidth of network connections of users is typically

very limited. In addition, the network connections of users are often asymmetric.

The connections have a much higher download than upload bandwidth. This re-

sults in a potential bottleneck for network traffic at the sending side of the network

connections of the peers. Therefore, propagating continuous actions with multiple

single events without any optimization can compromise the overall scalability of a

P2P-MMVE system because the potentially large number of single events resulting

from continuous actions increases network traffic on the sending side. Finding a way

to optimize the propagation of continuous actions is crucial for the overall scalability

of the system.

MMVE systems usually have a closed set of possible actions that can be performed

by users. These actions are designed and implemented during the development of

a MMVE. After the MMVE was launched and is available for users, it provides

the users with a predefined set of actions. The users are able to make inputs and

perform one of the given actions. Usually, they can not add their own actions or

perform actions that are not known by the MMVE system. Even in MMVEs that

make heavy use of user-generated content, for example Second Life, the set of actions

is typically closed. This observation applies to actions that result in a single state

change as well as to continuous actions.

Another observation that can be made in the context of continuous actions is that

the entire future outcome and all future influences of continuous actions typically

can be described at the point in time when the action is performed. At least, a

pattern for the future outcome and influences can be described. For the continuous

action illustrated by Figure 3.1, for example, the future movement of the object and

the final influence at location B is known at the point in time when the user action

is performed.

These observations can be used to optimize the propagation of continuous actions.

Because the set of user actions is closed and the future outcome can be described at

the point in time when a continuous action takes place, all future state changes and

influences of a continuous action can be aggregated and propagated to other peers

at the point in time when the continuous action is performed. The peer where the

continuous action is performed creates a so-called continuous event. The continu-

50 3. The Continuous Events Approach

ous event contains a description of the continuous action. Instead of propagating

the outcome of the continuous action over time with multiple single events to other

peers, the peer only propagates the continuous event once at the point in time when

the continuous action is performed. After that, all peers that received the continu-

ous event calculate and apply the following state changes based on the description

contained in the continuous event.

To be able to represent a continuous action by a continuous event, an appropriate

description of the outcome of the continuous action over time and an appropriate

AoE that aggregates the extent of all future influences of the continuous action have

to be found. In contrast to single events, a continuous event is created and propa-

gated at the point in time when the corresponding action is performed. To be able

to propagate the continuous event to all peers whose avatars can be affected by the

continuous event in the future, an appropriate AoE has to contain or approximate

all future influence areas of the continuous action. In the following, this work first

discusses the spatial modeling of AoEs for continuous events. After that, it discusses

the types of informations that have to be contained in a continuous event in order

to be able to calculate and apply its outcome over time.

Figure 3.2 on page 51 presents alternatives to model the continuous action illus-

trated by Figure 3.1 with single or continuous events and corresponding AoEs. The

alternative shown on the top of the figure uses a propagation according to the basic

event-driven spatial publish subscribe communication model of the target system.

For each position change of the object, a single event is created and propagated to

an AoE of a point. When location B is reached, an additional single event is created

for the influence and propagated to a circular AoE. This results in multiple single

events that have to be sent over the network.

The alternative shown at the bottom of the figure uses a propagation based on

a continuous event. The AoE of the continuous event covers the extents of all

future influences. The extents of the position changes of the object and the final

influence are approximated by an aggregated AoE that consists of a line and a circle.

The continuous event that contains the description of the future outcome of the

continuous action is propagated at the point in time when the continuous action is

performed to the aggregated maximum AoE. After that, future state changes caused

by the continuous action are calculated and applied by all peers that received the

continuous event.

Figure 3.2 further illustrates that, in addition to the propagation according to the ba-

3.1. The Concept of Continuous Events 51

Figure 3.2.: Spatial modeling alternatives for continuous actions

sic event-driven spatial publish subscribe communication model of the target system

and the propagation based on a continuous event with a maximum AoE, intermedi-

ate modeling alternatives using multiple continuous events and corresponding AoEs

are also possible. The alternative in the middle of the figure, for example, represents

the continuous action with multiple continuous events. The movement is split into

parts and each part is propagated using a continuous event that has an AoE of a

line. The final influence is propagated using a single event that has a circular AoE.

The use of such an intermediate spatial modeling has the potential to reduce the

number of events in comparison to the basic alternative and, at the same time, to

provide a higher grade of accuracy in comparison to the alternative with a maximum

AoE.

In summary, there are several possible spatial modeling alternatives for continuous

events. The alternatives have varying implications on network traffic. On the first

hand, using a maximum AoE seems to be the most beneficial alternative because

only one continuous event has to be sent over the network. However, using multiple

continuous events seems to be a viable alternative as well because it constitutes

a trade-off between reduction of network traffic and accuracy. Depending on the

characteristics of the MMVE type and use case, reduction of network traffic and

accuracy is prioritized differently. In a P2P-MMVE that includes large cities, for

example, a lot of users are crowded inside the cities. There is a high user density

52 3. The Continuous Events Approach

at certain places. The users do not pay much attention to the specific actions of all

users. In case a continuous action takes place, the outcome has to be propagated to

a large number of other peers whose avatars are located nearby. In such a use case,

network traffic reduction is prioritized higher than accuracy and one continuous

event might be the desired model. In a use case that takes place outside of cities,

there are less users and users pay more attention to the specific actions of other users.

In such a use case, accuracy is prioritized higher than network traffic reduction and

several continuous events or even single events might be the desired model.

In conclusion, there is not one best way to model continuous actions with continuous

events and AoEs. Therefore, the continuous events approach aims at providing a

generic way to model continuous actions depending on the use case. In order to

provide a scalable propagation of continuous actions in P2P-MMVEs, the basic

event-driven spatial publish subscribe communication model of the target system

is extended with continuous events. The continuous events approach supports the

explicit use of varying modeling alternatives. Instead of creating continuous events

and a certain spatial modeling automatically, the system for support of continuous

events provides a framework for creating and using continuous events explicitly as

needed.

In general, three types of informations are needed to calculate and apply the outcome

of a continuous action over time: 1) Temporal information, 2) spatial information

and 3) information about the effect. In the following, this work discusses these types

of information that have to be contained in every continuous event.

In order to calculate changes and influences correctly over time, every continuous

event has to contain temporal information about when the continuous event starts

and ends as well as the interval between every new calculation of state changes

and influences. For example, a continuous event representing the continuous action

illustrated by Figure 3.1 starts at the point in time when the action takes place and

the object is created. It ends at the point in time of the calculation and application of

the final influence. The interval determines how often the continuous event performs

the calculation of changes and influences in between the start and end. While start

and end are clearly defined, the interval provides room for varying alternatives. A

small interval results in more calculations. This puts a higher calculation burden on

the user computer, but is able to provide a smoother experience for the user because

object states are adjusted more often. A large interval results in less calculations.

This reduces the calculation burden, but can result in objects that change their

3.1. The Concept of Continuous Events 53

state in an erratic way. Both alternatives seem to be viable. A small interval and a

more frequent adjustment of object states is beneficial if enough computing power

is available. A larger interval with less calculations is beneficial if it is likely that

the participating user computers are not able to handle the calculation load. In

conclusion, no specific interval should be defined by the system for continuous event

support. Instead, the system provides the possibility to define intervals explicitly as

needed.

In order to apply the outcome of the continuous action that is represented by a

continuous event to avatars and objects, the continuous event has to contain spatial

information. Whenever an interval has passed and a continuous event is calculated,

the extent of the represented continuous action at that point in time has to be

determined in order to decide about the influence of the continuous action on the

virtual environment. For example, the extent of the continuous action illustrated

by Figure 3.1 can be calculated over time by providing a mathematical function or

programming code that returns a point during the object movement and a circle

if the target location is reached. In addition to applying the outcome, the spatial

information is needed for managing continuous events over time. Because continuous

events reside in the system for a certain lifetime, which is defined by start and end,

they have to be provided by the system to users that newly join the MMVE during

their lifetime. To provide this functionality, the information about the extent of the

represented continuous action at a given point in time is needed. More about the

management of existing continuous events is given in the next chapter of this work

about a system architecture for continuous event support in P2P-MMVEs.

Finally, every continuous event has to contain information about the effect of a

continuous action over time. Whenever a continuous event is calculated, the system

has to determine what has to be applied to the virtual environment or affected

objects at that point in time. For example, the continuous event representing the

continuous action illustrated by Figure 3.1 has to move the object to the location

that is calculated based on the contained spatial information after each interval until

the end is reached. When the continuous event is calculated for the last time, it has

to move the object to the target location and, in addition, has to apply the influence

of the object on the target area. The determination and application of the effect of

a continuous event at a given point in time can be performed, for example, based

on function code that is called and performs the application of state changes and

influences.

54 3. The Continuous Events Approach

The continuous action illustrated by Figure 3.1 involved a single object that changes

state over time and results in one final influence. However, continuous actions

can also involve multiple objects that change state over time and influence the

environment. For example, instead of triggering the movement of a single car on a

single assembly line, a continuous action can trigger the movement of multiple cars

on multiple assembly lines. Because all cars move according to the same movement

pattern, the same function code for calculation of the spatial extent and the effect

can be used for all cars. The future state changes and influences of all objects can be

propagated in a scalable way by using one common continuous event. To be able to

support such complex continuous actions with multiple objects, continuous events

have to be conceptually independent from MMVE objects.

In summary, in order to provide a scalable propagation of continuous actions in

P2P-MMVEs, the continuous events approach extends the event model of the tar-

get system with an additional explicit event entity for continuous events. Continu-

ous events represent the future outcome of continuous actions independently from

MMVE objects. They reside in the system until their end is reached or until they are

terminated explicitly. They carry the information about when a continuous action

starts, when it ends, and when a calculation should be performed. A continuous

event is able to calculate the spatial extent of the represented continuous action by

calling generic function code that returns a spatial shape. The calculation of the

effect and the application are also performed by calling generic function code.

Because continuous events are conceptually decoupled from MMVE objects, only

carry descriptive information about the continuous action and work based on generic

function code, the continuous events approach is able to support a wide variety of

modeling alternatives and use cases. One continuous event is able to change the

state of a single object as well as a large number of objects over time. This allows

to propagate a potentially very large number of state updates with one continuous

event. Because generic function code is called, the approach is conceptually able to

provide the possibility to add own function code to the system.

Figure 3.3 on page 55 gives on overview of the basic concept of continuous events.

Conceptually, the continuous events approach decouples the calculation and appli-

cation of future changes and influences from MMVE objects. The calculation and

application is performed by explicit continuous event entities. Continuous events

reside in the system for a given lifetime. They carry the information that is needed

for the calculation and application. They call generic function code to calculate the

3.2. Formal Model of Continuous Events 55

Figure 3.3.: Basic concept of continuous events

future spatial extent and effect of the represented continuous action at a given point

in time and to apply the results to MMVE objects. Continuous events are created

explicitly by the MMVE software on the peers. After a continuous event was created

on a peer, it is propagated to other peers according to the spatial publish subscribe

communication model. In the following, the local peer where the continuous event

was created and the remote peers that received the continuous event over the net-

work perform the calculation and application over time. To be able to call the same

function code on all peers, the function code has to be synchronized between the

peers. This can be done either by sending the code included in the continuous event

or by synchronizing the code before runtime. This topic is discussed later on in the

next chapter of this work about a system architecture for continuous event support

in P2P-MMVEs. In the following, this work presents a formal model of continuous

events.

3.2. Formal Model of Continuous Events

A continuous event CE can be modeled formally as a 6-tuple (compare [HSS+12]):

CE = {t0, δt, n, fAoE(t), fE(t), fapply(AoE,E)}

The temporal information of CE is described by t0, δt and n. t0 corresponds to

the point in time when the continuous action that is represented by CE starts. δt

describes the interval between every calculation of CE. n defines the number of

56 3. The Continuous Events Approach

Figure 3.4.: Timing of continuous events

intervals that have to be completed in case CE is not terminated explicitly before n

is reached. Please note that the formal model does not explicitly include the point

in time when CE ends. The end of CE can be determined in dependency of the

included information as t0 + n * δt.

The spatial information of CE is described by the function fAoE(t). fAoE(t) calculates

the spatial extent AoE of CE at a given point in time t. As described before, the

result of fAoE(t) can change over time, for example the function can return an AoE

that includes one or multiple spatial structures with a different size or shape.

The information about the effect of CE and the application of the effect are described

by the functions fE(t) and fapply(AoE,E). fE(t) calculates the specific effect of CE

at a given point in time t, for example a certain change of an object property. Similar

to fAoE(t), the result can also change over time, for example to increase the value of

an object property over time or to shift completely to an other effect with a varying

characteristic. fapply(AoE,E) applies the effect locally on a peer based on the results

of fAoE(t) and fE(t).

Figure 3.4 illustrates the timing of continuous events as described by the formal

model. Please note that the axes of coordinates for time are labeled with exem-

plary numbers. Conceptually, the continuous events approach is not correlated to a

3.3. Timing Alternatives: Finite and Infinite Continuous Events 57

certain time unit. At the top, Figure 3.4 illustrates the timing of the propagation

of a continuous action using single events. Without any optimization, a continuous

action is split into multiple single events that are each propagated at the respective

point in time. At the bottom, Figure 3.4 illustrates the timing of the propagation of

the same continuous action using a continuous event. The same continuous action

can be represented and propagated using one continuous event CE. CE is created

and propagated at the point in time t0. The creation is combined with the first

calculation of CE and application of state changes by calling the functions fAoE(t),

fE(t) and fapply(AoE,E). After that, the peer where CE was created and the peers

that received CE recalculate CE n times based on the given interval length δt. In

order to recalculate CE over time, the functions fAoE(t), fE(t) and fapply(AoE,E)

are called repeatedly. The end of CE tn is reached if n intervals have passed.

3.3. Timing Alternatives: Finite and Infinite Continuous

Events

The presented formal model and timing of continuous events assumed that the end

of continuous events can be defined at the point in time of their creation. For each

continuous event there is a given number of intervals n. The end of the continuous

event is reached if n intervals have passed. In other words, the continuous events

that were discussed so far are finite.

However, not all continuous actions have a predefined end. In addition, it might also

be desirable to have continuous events without a predefined end from the perspec-

tive of MMVE design. A MMVE system for simulation of distasters, for example,

might want to create a fire patch without deciding beforehand about the point in

time when the fire has to be put out. Instead, it might want to create the fire by

using a continuous event, control the continuous event over time and terminate the

continuous event explicitly in order to put the fire off.

To support such use case scenarios, the continuous events approach includes infinite

continuous events in addition to finite continuous events. Conceptually, infinite

continuous events have a clearly defined start, analogical to finite continuous events.

The start of infinite continuous events is marked by the point in time t0 when the

continuous event is created, propagated and calculated for the first time. Infinite

continuous events also have a given interval δt that describes the time span between

the recalculations of the continuous event. In contrast to finite continuous events,

58 3. The Continuous Events Approach

infinite continuous events do not have a given number of intervals n. Instead of

performing the recalculation of the continuous event n times, the recalculation of

an infinite continuous event is performed infinite times.

The introduction of infinite continuous events allows to support use cases with po-

tentially very complex continuous events. Weather effects in MMVE systems, for

example, typically are not very dynamic. In order to improve the scalability of the

MMVE system, effects like rain are scripted. Instead of presenting rain clouds as

objects in the virtual environments and applying rain effects based on the position

of these clouds, rain is available as a scripted event on user computers. The scripted

event is started from time to time in order to provide the users with the experience

of changing weather. Infinite continuous events have the potential to enable the

presentation of sophisticated rain clouds in P2P-MMVEs in a scalable way. In order

to support this, a peer can be assigned with the task of controlling the weather

effects for a given area. In the following, this peer calculates conditions like wind

direction and speed for the assigned area. In order to present clouds and to apply

the impact of rain on other peers without creating a lot of network messages, this

peer can create and sent one continuous event. This continuous event has an AoE

that consists of multiple spatial shapes. Each of these shapes represents the position

of a cloud object and the influence of the rain of this cloud on the environment. Af-

ter the creation and initial propagation, the continuous event calculates up-to-date

positions for all cloud objects and applies the rain effect over time according to the

wind direction and speed. Figure 3.5 on page 59 illustrates the described example.

Infinite continuous events that reside in the system can be controlled explicitly. In

case the wind direction and speed should change, for example, the peer that controls

the weather sends another message to all peers that have a copy of the continuous

event. In order to save network bandwidth, only the adjusted parameters for the

functions need to be sent instead of creating and sending a new continuous event.

The calculation of the cloud objects and their influence then can be adjusted on the

peers based on the received information. In case the rain should be stopped, for

example, the peer that controls the weather sends a message for termination of the

continuous event copies on all peers.

Because the continuous events approach uses generic function code, it is able to

support even more complex alternatives of the described use case. For example, the

functions for calculating the positions of clouds and their influence over time could

consider the dilution of clouds in the air. In addition to changing the position, the

3.3. Timing Alternatives: Finite and Infinite Continuous Events 59

Figure 3.5.: Complex use case example for continuous events

functions could shrink the size of the cloud objects and their influence over time.

Another alternative of the described use case with a higher grade of complexity

could be the inclusion of the reactions of non-player characters to the rain clouds.

For example, the functions called by the continuous event could force all non-player

characters within the influence area to open umbrellas. Assuming the function code

that is needed to perform the actions in the virtual environment is available on

all peers, no additional network bandwidth is needed at runtime to support such

alternatives of the use case with a higher grade of complexity.

From a conceptual point of view, there are use cases that can be represented by

both timing alternatives. In Section 3.1, this work presented the example of a

continuous action that creates an object and moves the object from location A

to location B. Finally, the object influences other objects in the surroundings of

location B according to a given influence area (compare Figure 3.1 on page 48).

Such a continuous action can be represented by an infinite continuous event as well.

A propagation of the continuous action based on an infinite continuous event can be

described as follows: The infinite version of the corresponding continuous event is

initially propagated to an AoE of a point at location A. After that, the continuous

event calculates the new positions of the object and moves the object into the

direction of location B without including the information about when to stop the

60 3. The Continuous Events Approach

movement. At the point in time when the object arrives at location B, the peer

where the continuous event was initially created terminates the continuous event

explicitly. After that, it propagates the final influence with an additional single

event. Using a finite continuous event seems to be the better alternative for the

given use case because no additional single event has to be sent and, as a result, less

network traffic is created. Nevertheless, it is possible to use an infinite continuous

event as well.

On the other hand, the example use case for infinite continuous events that was

presented in this section can also be represented by a finite continuous event as

well. Instead of terminating the movement of clouds and the application of rain

effect explicitly, the continuous event can include a given number of intervals after

that it is terminated automatically. The number of intervals can be chosen, for

example, so that the cloud objects are created and start to move at one border of a

given area in the virtual environment and are terminated automatically when they

reach the other border of the area. Using a finite continuous event for this use case

has the potential to reduce the network traffic for propagation because no explicit

termination message has to be sent. However, a finite continuous event provides less

flexibility compared to the alternative with the infinite continuous event because the

end has to be predefined and an appropriate number of intervals has to be found.

The described observations show that a decision about the timing alternative that

should be used for a certain use case can not be made in general. The selection

of a specific timing alternative has implications on flexibility and resulting network

traffic. A decision about a timing alternative can only be made in dependency of

the use case. Therefore, the continuous events approach supports the use of both

timing alternatives. This has to be considered for the design of algorithms and a

system architecture for continuous event support.

This chapter presented the basics of the continuous events approach. The approach

enables a scalable propagation of very complex continuous actions and supports

a variety of use cases in P2P-MMVEs. This chapter emphasized the conceptual

aspects of the approach. It introduced the concept of continuous events, gave a

formal model and discussed timing alternatives and potential use cases. The next

chapter puts an emphasis on the realization of the continuous events approach in

the context of P2P-MMVEs. It describes the design of algorithms and a system

architecture for support of continuous events in P2P-MMVEs.

4. A System Architecture for Continuous Event

Support in P2P-MMVEs

This chapter presents a system architecture that supports continuous events in the

context of the target system model of a P2P-MMVE with zones and superpeers.

Section 4.1 identifies the functionalities that have to be provided for continuous

event support, discusses the overall design of the system architecture and gives an

overview of the system architecture and its components. Section 4.2 describes the

basic support of continuous events by the architecture and gives algorithms for basic

support. Finally, Section 4.3 presents and discusses several extensions for the system

architecture.

4.1. Architecture Design

Based on the requirements that were presented in Section 2.5 and the description

of the continuous events approach in the previous chapter, the following three main

functionalities for continuous event support can be identified:

1. Explicit use of continuous events - In the previous chapter, it was shown

that there is no modeling for continuous events that fits all use cases and

continuous actions. In addition, infinite continuous events have to be modified

and terminated explicitly and no general decision can be made about a timing

alternative that fits all use cases and types of continuous actions. The system

achitecture aims at providing continuous event support for P2P-MMVEs in a

generic way without focusing on a certain use case or type of continuous action.

Therefore, the system architecture has to support the explicit use of continuous

events by the peers. It has to provide an interface for explicit creation of new

continuous events as well as explicit modification and termination of existing

continuous events.

2. Execution of continuous events on target peers - For support of the continuous

events approach, incoming continuous events have to be executed automati-

61

62 4. A System Architecture for Continuous Event Support in P2P-MMVEs

cally by the peers. In order to support this, the system architecture has to

provide an automatic execution mechanism that includes the automatic cal-

culation of continuous events and application of their effect over time. In case

no explicit termination takes place, continuous events have to be terminated

automatically after the given lifetime is over and the end is reached.

3. Management of existing continuous events - For support of the continuous

events approach, existing continuous events have to be managed automatically

by the system. The available AoI subscriptions in the system can change

because of peers that leave or join the MMVE or because of avatar movement.

In addition, the AoEs of existing continuous events can change location and

size over a continuous event’s life time based on the functions that are called

over time. Changing AoI subscriptions and AoEs can lead to new intersections

between the AoEs of existing continuous events and AoIs of peers that do not

execute these continuous events yet. Therefore, the system architecture has

to include a mechanism that detects these new intersections and provides the

peers with up-to-date copies of existing continuous events. In addition, the

system architecture has to provide a mechanism to address all available copies

of a continuous event in the system in order to be able to modify or terminate

all copies of a specific continuous event. Analogical to functionality 2, in case

no explicit termination takes place, the management of continuous events has

to be stopped automatically by the system after the given lifetime is over and

the end is reached.

For full support of the continuous events approach, these three main functionali-

ties have to be provided by the system architecture. Functionalities 1 and 2 have

to be provided on every peer because every peer has to be able to use continuous

events explicitly and to execute continuous events locally. Functionality 3 can also

be provided on every peer. However, it does not need to be provided on each peer.

Continuous events can also be managed by only a subset of peers or even in a cen-

tralized way by a single peer. In case a single peer manages the continuous events

for the whole virtual environment, this peer has to calculate the up-to-date state of

all existing continuous events. In addition, the peer has to be provided with all AoI

subscriptions to be able to detect new intersections between AoEs of existing con-

tinuous events and AoI subscriptions. In order to be able to perform these tasks, the

peer needs very strong hardware and networking capabilities and has to be selected

by the system based on these criteria. In case a subset of peers manages continuous

4.1. Architecture Design 63

events, the burden that is put on the computational and network resources can be

distributed over multiple machines. To enable continuous event management by

a subset of peers, algorithms for selecting appropriate peers, for providing each of

these peers with a subset of AoIs, for assigning continuous events to peers and for

coordinating between the managing peers are needed. The alternative of using all

peers for continuous event management has the potentially best distribution of load

because all available machines are used. Analogical to the alternative using a subset

of peers, this alternative also needs algorithms for selecting appropriate peers, for

providing each of these peers with a subset of AoIs, for assigning continuous events

to peers and for coordinating between the managing peers. A comprehensive dis-

cussion of the alternatives for continuous event management on the participating

peers is given later on in this chapter. In the following, this work introduces the

architectural components and discusses their placement on peers.

The system architecture for support of the continuous events approach distributes

the provision of the identified functionalities over architectural components as fol-

lows: Functionality 1 is provided by the so-called Continuous Event Controller

(CEC). The CEC provides interfaces for explicit use of continuous events and con-

trols the outgoing and incoming information flow. The provision of functionality 2

and the provision of functionality 3 both have similar needs. For example, for both

functionalities the calculation of continuous events over time has to be performed.

However, since continuous event management can also be performed by a subset of

peers or by a single peer and the varying alternatives have direct implications on the

overall system performance, the execution and management of continuous events is

split into two architectural components. This allows to execute continuous events

on all peers while managing continuous events by all, by a subset or by a single peer.

The execution of continuous events is provided by the so-called Continuous Event

Executor (CEE). The management of continuous events is provided by the so-called

Continuous Event Manager (CEM). In the following, the CEC, CEE and CEM

are described in more detail. The collaboration of the architectural components is

explained later on in Section 4.2.

A CEC is run on all peers that participate in the MMVE. It provides interfaces for

the explicit use of continuous events by the MMVE software on the peers. Contin-

uous events can be started, modified and terminated via the CEC. In addition to

providing interfaces, the CEC is responsible for handling the outgoing and incoming

information flow to and from the network. Locally created continuous events are

64 4. A System Architecture for Continuous Event Support in P2P-MMVEs

propagated by the CEC to other peers over the network via spatial publish sub-

scribe. Incoming continuous events are received by the CEC. The CEC hands them

over to the CEE or CEM for future performance of their respective tasks. In case

CEEs or CEMs that are located on different peers have to communicate with each

other over the network, this is handled by the CEC as well.

A CEE is also run on all participating peers. The CEE receives continuous events

from the CEC that were either received from other peers or locally created on the

peer. The CEE is then responsible for calculating the continuous events over time

and for applying the state changes locally to the MMVE objects. For the calculation

of continuous events and application of state changes, the CEE calls generic function

code in given intervals as described in Chapter 3.

In the context of the target system model as described in Section 2.3, two potential

alternatives for applying the state changes can be identified. The called function

code can apply the state changes directly to the MMVE objects, for example by

modifying the object properties. Alternatively, the state changes can be translated

into artificial single events that are created by the called function code and are

conceptually identical to incoming single events from the network services of the

MMVE software. Because these artificial single events are conceptually identical

to incoming events from the network services, the existing services for running the

MMVE can be reused. Consistency and security can be provided by the respective

services and the existing object management can be used for applying the state

changes described by the artificial single events to the MMVE objects.

A direct application of state changes demands additional interfaces from the tar-

get system that allow the direct manipulation of MMVE objects without using the

existing MMVE services of the target system, such as Consistency Management or

Object Management. It is a challenging task to provide such interfaces because the

continuous events approach aims at supporting generic function code. In addition,

the functionalities of the existing MMVE services have to be provided by the con-

tinuous events when the functions are called. This creates a high complexity for

the system architecture for continuous event support and leads to redundancy in

the overall context of the target system. The functionalities also can not be pro-

vided without coordination with the existing services because continuous events and

these services provide the same functionalities for the same MMVE objects. It is a

challenging task to realize this for generic function code.

4.1. Architecture Design 65

In conclusion, applying the state changes directly is not a viable solution in the

context of the target system. Therefore, the CEE is designed to create artificial single

events. When executing continuous events, the function code is called and based on

the results one or multiple artificial single events are created that are conceptually

equal to incoming single events from the network services. The existing MMVE

services, such as Consistency and Security Management, are used to perform their

tasks for incoming single events from the network services and for locally created

artificial single events. The existing Object Management is responsible for applying

the state changes described by the single events to MMVE objects.

A CEM is responsible for managing a set of existing continuous events over time.

As mentioned before, a CEM can be run at minimum on one peer and at maximum

on all peers. In case of a single CEM, the managed set consists of all existing

continuous events in the MMVE system. In case of multiple CEMs, the set of all

existing continuous events has to be split into subsets and these subsets have to be

assigned to the CEMs. In addition, the CEMs each have to be provided with all

AoI subscriptions that are needed to be able to detect new intersections between the

AoEs of their managed continuous events and the AoIs of peers in the surroundings.

In order to find an appropriate design for the CEM, five aspects have to be considered

and are discussed in the following: The extent of the calculations that have to be

performed by the CEM (1), the number of peers with CEMs (2), the placement of

CEMs on peers (3), the provision of AoI subscriptions to CEMs in the context of the

target system (4), the addressing of available continuous event copies in the system

for modification and termination (5).

Concerning the extent of the calculations that have to be performed by the CEM (1),

at minimum the CEM needs to calculate the AoE of each managed continuous event

because this information is needed for the detection of new intersections between

the AoE and AoI subscriptions of peers. In case only the AoE of a continuous event

is calculated by the CEM, there is no up-to-date state of the full continuous event

available at the CEM. Baring any unforeseen circumstances such as peer crashes,

an up-to-date state of the full continuous event is at least available at the CEE of

the peer where the continuous event was created. In addition, an up-to-date state

is available at the CEEs of all peers that received the continuous event. In case the

CEM only calculates the AoE of each managed continuous event and detects new

intersections with AoIs, an up-to-date state of the full continuous event either has

to be retrieved from one of the CEEs and sent to the peer with a newly intersecting

66 4. A System Architecture for Continuous Event Support in P2P-MMVEs

AoI or the direct sending of the full state from one of the CEEs to this peer has to

be triggered by the CEM. At maximum, the CEM performs a full calculation of the

continuous event. All functions are called, analogical to the execution of continuous

events by the CEE. In contrast to the execution of continuous events, no artificial

single events have to be created and applied. In case the CEM performs a full

calculation, peers whose AoI newly intersects the AoE of a managed continuous event

can be provided directly by the CEM with an up-to-date state of the continuous

event.

In comparison, a minimum calculation puts a lower calculation burden on the hard-

ware of the peers that run a CEM because less functions have to be called. However,

the retrieval of up-to-date states of continuous events from one of the CEEs or the

triggering of direct sending of states leads to additional network overhead. On the

other hand, a full calculation puts a higher calculation burden on the hardware of

the peers that run a CEM, but does not need additional network bandwidth for

retrieving states or triggering the direct sending of states. Because the continuous

events approach aims at reducing network traffic, the CEM is designed to perform

full calculations of the managed continuous events. The CEM provides peers with

newly intersecting AoIs directly with continuous event copies that have an up-to-

date state. The additional calculation burden can, for example, be handled by

assigning CEMs to peers with strong hardware capabilities and by making sure that

there are always enough CEMs in the system to allow a full calculation of all existing

continuous events in the system without overloading a certain peer.

Concerning the aspect of finding an appropriate number of peers with CEMs (2),

a CEM can be run on one peer, on a subset of peers or on all peers. In case a

single peer manages the continuous events for the whole MMVE system, this peer

has to calculate a potentially huge number of continuous events and intersections.

In addition, the peer has to be provided with the AoI subscriptions of all peers.

Because of the huge number of users and objects in a MMVE, this overloads the

hardware and networking capabilities of a single user computer. Therefore, a fully

centralized management of continuous events is not a viable option in the context

of a pure P2P-MMVE that is run solely by user computers. The task of managing

continuous events has to be distributed over a selected subset of peers or over all

peers. The system architecture for continuous event support is designed to use

multiple CEMs and the set of all existing continuous events in the MMVE system

is split and distributed over the CEMs.

4.1. Architecture Design 67

Placing a CEM on every peer has the potentially best distribution of load because

the task of managing continuous events is performed by all user computers and, in

theory, uses all available resources of peers in the system. However, although the

use of such a fully decentralized continuous event management distributes load over

a huge number of peers, certain peers can still get overloaded. Not all participating

peers in a P2P-MMVE are strong enough to be used for additional system tasks.

The hardware and networking capabilities of some user computers can be weak

and barely strong enough to participate in the MMVE. On the other hand, placing

CEMs on only a selected subset of peers allows the system to select appropriate

peers with strong hardware and networking capabilities. Such peers are less likely

to be overloaded and weak user computers are disburdened from performing system-

related tasks. In conclusion, using a subset of strong peers has advantages over using

all peers. Therefore, the system architecture is designed to place CEMs on a selected

subset of peers.

The use of multiple CEMs implies the need for a criterion and mechanism for placing

CEMs on peers (3). Concerning a potential criterion for placing CEMs and assign-

ing continuous events to CEMs, two alternatives come to mind. The placement of

CEMs and assignment of continuous events can be performed with or without spa-

tial awareness. An approach without spatial awareness selects a certain number of

strong peers based on a given algorithm that measures the hardware and networking

capabilities of the peers. CEMs are run on these peers and continuous events are

assigned to these CEMs in a balanced way. This makes sure that load is distributed

and all peers manage a similar number of continuous events.

In contrast, an approach with spatial awareness tesselates the virtual environment

spatially into zones. For each zone a peer with strong hardware and networking

capabilities is selected. Each of these peers runs a CEM. The CEM is responsible

for managing the existing continuous events within the given zone of the virtual

environment. Continuous events are assigned based on their AoEs. Each CEM

manages all continuous events whose AoEs intersect its zone.

An approach without spatial awareness is able to balance the load between the peers

with CEMs. However, a potentially huge network overhead is created. Without a

spatial distribution of continuous events to CEMs, the AoEs of continuous events

that are managed by a specific CEM can be potentially located anywhere in the

virtual environment. As a result, all CEMs have to be provided with all AoIs in the

system in order to be able to detect new intersections between the AoEs of man-

68 4. A System Architecture for Continuous Event Support in P2P-MMVEs

aged continuous events and the AoIs in a reliable way. On the other hand, using

an aproach with spatial awareness distributes the continuous events based on their

AoEs to CEMs. CEMs only need to be provided with the AoI subscriptions for

their zone. As a result, less network traffic is created. In conclusion, an approach

with spatial awareness has advantages over an approach without spatial awareness

concerning network traffic. Because the continuous events approach aims at reduc-

ing network traffic, the system architecture is designed based on an approach with

spatial awareness.

In the context of the given target system, an approach with spatial awareness can

be realized in a straightforward way. The existing zone tesselation and superpeers

of the target system can be reused for continuous event management. Because the

superpeers of the target system are selected based on their hardware and networking

capabilities, they are unlikely to be overloaded by the additional task of managing

continuous events for their zone. A CEM is placed at each superpeer and the

continuous events are assigned to the CEMs based on the intersections of their

AoEs with the existing zones.

A solution concerning (4) can also be derived from the target system. Because the

existing superpeers of the target system act as backup interest matchers for their

zones, all AoI subscriptions of a zone are available at the superpeer of the zone. In

order to be able to detect new intersections between the AoEs of existing continuous

events and AoI subscriptions, the available AoI subscriptions can be used without

sending additional network messages because the CEMs are placed at the existing

superpeers.

Please note that continuous events can have very large AoEs or AoEs that consist

of multiple shapes. As a result, such AoEs can intersect multiple zones. In case

continuous events are assigned to CEMs based on their AoEs, this can result in

continuous events that have to be managed by multiple CEMs. This creates a need

for coordination between these CEMs. Mechanisms for coordination between CEMs

are discussed in more detail later on in Section 4.3.

Concerning (5), in order to be able to address all peers that hold a copy of a specific

continuous event, the CEM has to maintain informations about which peer received

which continuous event for execution. In case a continuous event has to be modified

or terminated, all peers with copies can then be addressed based on the stored

informations. Therefore, the CEM holds a so-called receiver list for each managed

continuous event. After a peer received a continuous event for execution, it registers

4.1. Architecture Design 69

with the CEM of the superpeer of its zone as a receiver of this continuous event.

This registration is updated by the peer in case of changes, for example in case

the peer changes its zone. By holding receiver lists for the managed continuous

events, the CEM is able to sent modification or termination messages to all peers

that execute a copy of a specific continuous event. More about the information flow

for modification and termination of existing continuous events is given later on in

Section 4.2.

Several additional functionalities can be derived from the described design of the

CEC, CEE and CEM that are needed by the three architectural components to

provide their functionalities. These additional functionalities are described in the

following. Please note that in order to make a clear distinction between all func-

tionalities the earlier enumeration is continued. Therefore, the numbering of the

additional functionalities starts with 4.

The following additional functionalities can be derived:

4. Provision of generic function code on the peers - The CEE and CEM call

generic function code to execute or manage continuous events. The function

code has to be available on all peers. In addition, the insertion of additional

function code to the system has to be supported.

5. Use of timers for continuous event calculation - The CEE and CEM call func-

tion code in given intervals. A timer functionality or timer service is needed

for this.

6. Storage of continuous event states between function calls - The state of a con-

tinuous event has to be stored by the CEE and CEM between the function

calls. A functionality for storing continuous events is needed.

7. Propagation of network messages via spatial publish subscribe - The CEC has

to be able to propagate newly created continuous events to other peers based

on a spatial publication corresponding to the AoE of the continuous event.

8. Sending of network messages to specific peers - The CEC has to be able to send

network messages directly to a given peer, for example to send modification

or termination messages to the peers that are contained in the receiver list of

a continuous event.

Concerning functionality 4, three potential alternatives come to mind. The function

code that is called by a continuous event can either 1) be sent included in the

70 4. A System Architecture for Continuous Event Support in P2P-MMVEs

continuous event to all target peers at runtime. Or 2) it can be synchronized between

all peers in the system before runtime. At runtime only function ids are included

in the continuous event and the code is retrieved and called based on the ids. Or

3) function code can be synchronized before runtime. At runtime function ids and

the values of function parameters are included in the continuous event. The code is

retrieved and called based on the ids and the parameter values.

In comparison to the other alternatives, the alternative of sending the function code

included in the continuous event at runtime provides the most flexibility. Code can

be created and sent at runtime. That allows a very flexible creation of continuous

events. The downside of this alternative is that the payload of network messages

including code is potentially very large. This can overload the upload bandwidth of

the peers because the upload bandwidth of the Internet access of end-users typically

is very limited. In addition, providing security and protection against cheating for

this alternative is a major challenge. Attackers or cheaters can create code, induce

the code into the system at runtime and propagate the code to other peers. The

continuous events then would act as carriers of potentially malicious code and call

functions that harm the system or cheat on other users in the MMVE.

The alternative of synchronizing code before runtime and sending function ids in-

cluded in the continuous event is the least flexible alternative, but the potentially

most scalable alternative concerning network bandwidth. The function code can be

distributed between peers before the MMVE is run, for example by downloading

the function code from other peers before the user logs in. File and content sharing

is a standard use case of peer-to-peer networks and sophisticated algorithms and

protocols for file sharing exist. In addition, as mentioned before, the set of available

continuous actions of an MMVE is usually closed and defined when designing an

MMVE. Therefore, the code for available actions can be written before publishing

the MMVE and be included into the MMVE software. Additional code that is added

later on by the MMVE provider then can be distributed via peer-to-peer before the

user logs in. Similar mechanisms are already used by existing commercial MMVE

systems such as World of Warcraft for distributing content updates over the user

computers. Compared to the alternative of sending function code at runtime, the

alternative that uses function ids results in smaller payloads for network messages

because only the function ids have to be included in the continuous event. However,

the lack of flexibility can be a huge problem, especially concerning the function code

for calculating AoEs. Without any additional parameters, a huge number of func-

4.1. Architecture Design 71

tions has to be written and stored in order to provide all potential AoE shapes. In

the previously described example of an object that moves from location A to loca-

tion B as the outcome of a continuous action, the corresponding continuous event,

for example, always has the shape of a line with the same length. But depending on

the position and direction of the user avatar at the point in time when the contin-

uous action is performed, the starting and ending points of the lines that represent

the AoEs of the continuous events can have varying coordinates. The function for

calculating the AoE needs at least the position and direction to calculate the line.

In conclusion, although the alternative of sending only function ids has clear advan-

tages concerning network traffic over the alternative of sending function code, it is

not a viable option because the calculation of AoE shapes can only be supported in

a very limited way.

The alternative of sending function ids and additional parameter values for the func-

tions is able to overcome the limitations of the other alternatives. This alternative

avoids the large payload and the security and cheating concerns of the alternative

that sends code. In addition, it offers more flexibility than the alternative that sends

only function ids. This comes at the cost of a slightly larger payload that is needed

for sending the additional parameter values. For example, the continuous event that

creates the object and moves it from location A to location B can include the id

of a function that calculates a line of a given length. In addition to the id of this

function, the starting position and direction can be sent as additional parameter

values. Please note that there is a lot of flexibility. For example, there can also be a

function that calculates a line based on a position, direction and length. In addition

to the described example, such as function can also be used for other use cases that

involve lines as AoEs. However, the given length has to be sent as an additional

parameter value. The higher flexibility comes at the cost of a higher network traffic.

In summary, sending function ids and additional parameter values constitutes the

best trade-off between potential payload size and flexibility. Therefore, the system

architecture is designed according to this alternative. It includes a so-called Code

Repository Service (CR). A CR is run on every peer. Function code can be added to

the CR of a peer and is synchronized between the CRs of the peers before runtime.

If new function code is added, the CR assigns a unique id for the function. The

CR includes an interface for the CEE and CEM that allows to retrieve the code

for a given function id. In case a continuous event has to be calculated, the CEE

and CEM retrieve and call the function code based on the function ids that are

72 4. A System Architecture for Continuous Event Support in P2P-MMVEs

contained in the continuous event. To make sure that the available function code

is up-to-date, the CR searches for newly available function code in the system after

the MMVE software is started on a peer by a user. If new function code is detected,

it is downloaded from the CRs of other peers. The user can not log in before the

search and a potential download of code was completed.

In order to execute or manage continuous events, the CEE and CEM need to make

use of timers to trigger the calling of function code (functionality 5). To provide this

functionality, the system architecture includes a Timer Service (TS). A TS is run

on every peer and provides a service for registration of timers for CEE and CEM.

A performant timer service is available in most programming languages and can be

reused when implementing the described system architecture. Therefore, no further

discussion about the design of a timer service is given here.

During the intervals between function calls, the state of continuous events has to be

stored by the CEE and CEM (functionality 6). Two potential design alternatives

concerning the storage of continuous event states come to mind. The storage can

either be integrated into the design of the CEE and CEM and be performed by CEE

and CEM independently from each other. Or the storage can be provided for both

architectural components by an additional component or service.

Including the storage into the design of the CEE and CEM and storing the states in-

dependently from each other facilitates the use of separate storage concepts for each

architectural component. This is beneficial, for example, if one of the components

needs fast access to the stored states but not necessarily a high grade of persistency

while the other component has different requirements. On the downside, a design

that includes the storage functionality into the CEE and CEM potentially results in

redundancy when implementing the system architecture in case both architectural

components have similar requirements.

Providing the storage by an additional component or service has the benefit of

reducing code redundancy when implementing the system architecture. The storage

service can be optimized towards providing a scalable storage while CEE and CEM

can be optimized towards executing and managing continuous events. In addition,

an additional service for storage can also provide several storage concepts, similar to

the design alternative that includes storage into the design of the CEE and CEM.

In conclusion, the design alternative with an additional storage service has less

potential redundancy than the design alternative that includes storage into the CEE

and CEM. At the same time, it is also able to provide different storage concepts for

4.1. Architecture Design 73

each component if needed. Therefore, the system architecture includes a so-called

Continuous Event Storage Service (CES). A CES is run on every peer and provides

an interface for the CEE and CEM that allows to store and retrieve the state of

continuous events.

Concerning a storage concept for the CES, two basic alternatives come to mind.

Continuous event states can either be stored transiently in memory or be written

persistently to the hard disk. Storing the states in memory allows a faster access

to the states than writing and reading the states to and from the hard disk. On

the downside, the states can be lost in case the MMVE software on a peer crashes.

Writing and reading the states to and from the hard disk has potentially slower access

times, but states can be read from the hard disk after a crash of the MMVE software.

In addition to these two basic alternatives, a hybrid concept is also possible. A

hybrid concept stores continuous event states in memory for fast access and writes

the states additionally to the hard disk.

When deciding about a storage concept, it has to be discussed if it is beneficial at all

to write continuous event states to the hard disk. Restarting the MMVE application

after a crash usually takes a certain amount of time. If continuous event states are

written to the disk, the stored states can deviate strongly from the actual system

state after the MMVE application is restarted. Therefore, having a persistent copy

of continuous event states on the hard disk does not bring a huge benefit. As will

be described later on in Section 4.3, after a system crash up-to-date states can be

retrieved from other peers in the system instead of reading them from the hard

disk. On the other hand, having fast access to continuous event states is a huge

factor for scalability of the continuous events approach. Whenever a continuous

event is recalculated, the previous state has to be retrieved. Then the functions are

called. After that, the new state has to be stored. Having fast access times to the

continuous event state increases the performance of the continuous events approach.

The benefits of fast access times clearly overweigh the benefits of having a persistent

storage. Therefore, the CES stores continuous event states in memory.

Concerning functionalities 7 and 8, the system architecture for support of continuous

events can use the existing peer-to-peer network services from the target system as

described in Section 2.3. The Spatial Publish Subscribe Service provides the CEC

with the possibility to propagate network messages to other peers via spatial publish

subscribe. In addition, the management of spatial subscriptions is also performed

by the existing Spatial Publish Subscribe Service. Existing AoI subscriptions for a

74 4. A System Architecture for Continuous Event Support in P2P-MMVEs

Figure 4.1.: Extended layer model of the target system

zone can be retrieved by the CEM from the Spatial Publish Subscribe Service via

an interface. The Direct P2P Link Service provides the CEC with the possibility to

send network messages directly to specific peers. Each peer has a unique peer id in

the system. The peer id is assigned by the Direct P2P Link Service. Messages to

specific peers can be sent by addressing them based on the peer ids.

To conclude this section about the design and components of the architecture for

support of continuous events in P2P-MMVEs, Figure 4.1 illustrates the integration

of the presented architecture into the overall architecture of the target system. The

layer model of the target system that was presented earlier in Section 2.3 (compare

Figure 2.5 on page 42) is extended for continuous event support. Another layer is

added that includes the architectural components for support of continuous events.

4.2. Basic Continuous Event Support

The previous section presented the overall design and components of the system

architecture for continuous event support. This section describes the collaboration

of the architectural components and explains in detail how continuous event support

is provided. It focuses on basic continuous event support within a zone of the P2P-

MMVE. Continuous event support for multiple zones is discussed later on in Section

4.3.

In the remainder of this section, the system behavior and algorithms for the fol-

4.2. Basic Continuous Event Support 75

lowing use cases are described: MMVE start (Subsection 4.2.1), joining of a new

peer (Subsection 4.2.2), leaving of a peer (Subsection 4.2.3), start and execution

of continuous events (Subsection 4.2.4), management of existing continuous events

(Subsection 4.2.5), modification and termination of existing continuous events (Sub-

section 4.2.6).

Please note that the descriptions and algorithms in this section and the next section

refer to the architectural components based on the abbreviations that were intro-

duced in the previous section. The used MMVE and P2P network services from the

target system are abbreviated as follows: Interest Management (IM), Spatial Pub-

lish Subscribe Service (SPS), Direct P2P Link Service (DL). The given pseudocode

uses the conventions for pseudocode from the textbook Introduction to Algorithms

by Cormen et al. (see [CLRS01, p.19-p.20]).

4.2.1. MMVE Start

According to the target system model that was described in Section 2.3 the system

behavior at the start of the MMVE can be described as follows: The target sys-

tem initially tesselates the virtual environment into zones based on a 2-dimensional

projection of the space. For each zone, a superpeer is selected from the set of all

available peers in the system. These superpeers perform additional system tasks for

their zones. The system tasks include the management of AoI subscriptions and the

matching of AoI subscriptions and AoE publications for the provision of the SPS.

Therefore, a peer is provided with the AoI subscriptions of all peers within the zone

after it is selected as a superpeer and assigned to a zone.

This system behavior is extended for continuous event support as follows: After a

superpeer was selected and assigned to a zone, a CEM is started on this peer. All

CECs of the peers that belong to the zone managed by the superpeer are provided

with the peer id of the superpeer to make sure that the CECs can address network

messages directly to the superpeer for continuous event management. In order to

receive all continuous event publications whose AoEs intersect the zone, the CEC

of the superpeer uses the SPS to perform an additional spatial subscription that

corresponds to the shape of the zone. This subscription includes a filter that makes

sure that the CEC is only provided with continuous event messages.

76 4. A System Architecture for Continuous Event Support in P2P-MMVEs

4.2.2. Joining of a New Peer

The joining of a new peer into the running MMVE takes place after the MMVE

software is started on a user computer. Before the user is able to log in, all lay-

ers and services of the MMVE software including the architectural components for

continuous event support are started.

After CEC, CEE, CR, TS and CES were started, the CEC is provided by the MMVE

software with the peer id of the superpeer of the zone in order to be able to address

network messages directly to the superpeer for continuous event management. Then

the CR checks if new continuous event function code is available from other CRs in

the system. In case new function code is found, the CR downloads the code.

After all new code was downloaded, the user is able to log in. After the log in,

according to the target system model the MMVE software uses the SPS to perform

a new AoI subscription for this peer in dependency of the initial position of the user

avatar. Based on this AoI subscription, the CEM of the superpeer of the zone is

able to detect AoEs of existing continuous events that intersect the AoI subscription

according to the algorithm for management of continuous events, which is described

in Subsection 4.2.5 of this work. In case the CEM detects an intersection, it sends a

copy of the corresponding continuous event to the CEC of the newly joined regular

peer and adds the peer id of the regular peer to the receiver list of the continuous

event. The CEC of the newly joined peer then hands the received copy over to the

CEE for execution. More details about the process of registering peers as receivers

based on receiver lists and the processes of executing and managing continuous

events are given later on in this work.

4.2.3. Leaving of a Peer

A peer is leaving the system intentionally in case a user logs out of the system and

the MMVE software is shut down.

In case the peer is a regular peer, the CEC sends a message to the CEC of the

superpeer of the zone. The CEC of the superpeer triggers the removal of the peer id

of the regular peer from all receiver lists by the CEM. All architectural components

for support of continuous events (CEC, CEE, CR, TS and CES) are shut down on

the leaving regular peer. According to the previously discussed design of the CES no

continuous event states are stored persistently. The next time the MMVE software

4.2. Basic Continuous Event Support 77

is started, the peer will be provided with up-to-date copies of all existing continuous

events as described in Subsection 4.2.2.

In case the peer is a superpeer, according to the target system model the MMVE

system selects another peer as superpeer for the zone before the MMVE software of

the peer is shut down. In order to manage continuous events on the new superpeer,

the MMVE software starts a CEM. Analogical to the system behavior that was

described for MMVE start (see Subsection 4.2.1), the CEC of the new superpeer

performs a spatial subscription for continuous event messages that corresponds to

the shape of the zone. The CEC of the leaving superpeer generates a message that

contains an aggregation of all managed continuous events and their receiver lists.

Then the DL is used to provide the aggregation to the new superpeer. The CEC

of the new superpeer receives the aggregation and hands it over to the CEM. The

CEM starts managing the continuous events for the zone based on the provided

informations. The CECs of all peers within the zone are provided with the peer id

of the new superpeer for direct addressing of future network messages. After that,

the CEC of the leaving superpeer revokes its spatial subscription for the continuous

event messages of the zone. All architectural components for support of continuous

events are shut down on the leaving superpeer. Analogical to a regular peer, no

continuous event states or receiver lists are stored persistently.

4.2.4. Start and Execution of Continuous Events

In case a continuous action takes place on a peer, a new continuous event can

be started explicitly by the MMVE software via the CEC. Figure 4.2 on page 78

gives the pseudocode for the starting of a new continuous event by the CEC. The

CEC has to be provided with the following informations: The starting time of

the continuous event, the interval length between the recalculations, the maximum

number of intervals, the ids of the code for the functions, and optional parameter

values for the functions for calculating the AoE and the effect over time. The CEC

first creates a unique id and assigns it to the new continuous event (lines 2 and

3). Then the point in time of the next execution and management step is set to

the given starting time (line 4). After that, the point in time of the last execution

and management step is calculated and set based on the given informations if the

maximum number of intervals is not infinite, or set to infinite else (lines 5 to 10).

In the following, the other attributes of the new continuous event are filled with

the given informations (line 11). At next, the code for calculating the AoE of the

78 4. A System Architecture for Continuous Event Support in P2P-MMVEs

Input: starting time (t0), interval length (δt), maximum number of intervals (n), id of
fAoE (aoeid), optional parameters of fAoE (aoepms), id of fE (eid), optional
parameters of fE (epms), id of fapply (aid)

1 begin
2 ce← initialize;
3 id[ce]← create unique id;
4 nextstep[ce]← t0;
5 if not n is infinite then
6 finalstep[ce]← t0 + (n ∗ δt);
7 end
8 else
9 finalstep[ce]← infinite;

10 end
11 set values of other attributes of ce: δt, aoeid, aoepms, eid, epms, aid;
12 aoefunction← retrieve code for aoeid from CR;
13 initialaoe← call aoefunction(t0, aoepms);
14 use SPS to propagate ce to initialaoe;
15 hand ce over to CEE and start execution;

16 end

Figure 4.2.: Start of a new continuous event

continuous event is retrieved from the CR and the initial AoE is calculated based

on the given informations (lines 12 and 13). The SPS is used to propagate the

continuous event via a spatial propagation to the calculated AoE (line 14). After

the spatial propagation was made, the continuous event is handed over to the local

CEE for execution (line 15).

The SPS delivers the continuous event to all peers with a spatial subscription for

continuous event messages that intersects the AoE. This includes all regular peers

whose AoI subscription intersects the AoE, and always the superpeer because the

CEC of the superpeer made an additional spatial subscription corresponding to the

shape of the zone after the CEM was started. Please note that according to the

given target system model the user of the superpeer also participates in the MMVE.

Therefore, it is possible that the AoI subscription of this peer intersects with the

AoE of a continuous event in addition to the zone-wide spatial subscription for

continuous event management. As a result, this peer receives the continuous event

twice. This system behavior is intended because execution and management of

continuous events have to be clearly separated in order to be able to hand over the

managed continuous events in case the superpeer changes. The system behavior for

continuous event management that takes place at the superpeer is described later

on in Subsection 4.2.5. The remainder of this subsection focuses on the reception

and execution of continuous events by regular peers.

4.2. Basic Continuous Event Support 79

Input: continuous event (ce)
1 begin
2 retrieve function code for aoeid[ce], eid[ce] and aid[ce] from CR;
3 while nextstep[ce] <= current MMVE time and nextstep[ce] <= finalstep[ce] do
4 aoe← call aoefunction(nextstep[ce], aoepms[ce]);
5 e← call efunction(nextstep[ce], epms[ce]);
6 singleevents← call applyfunction(aoe, e);
7 hand singleevents over to MMVE software;
8 nextstep[ce]← nextstep[ce] + δt[ce];

9 end
10 if nextstep[ce] < finalstep[ce] then
11 store ce in CES;
12 use TS to register new timer for id[ce] at nextstep[ce];

13 end
14 else
15 discard ce;
16 end

17 end

Figure 4.3.: Start of continuous event execution

After the CEC of a regular peer received a continuous event for execution from the

SPS, it hands the continuous event over to the CEE. Then the CEC uses the DL to

connect to the superpeer in order to register the peer as a receiver of the continuous

event.

Figure 4.3 gives the pseudocode for the start of execution of a continuous event

by the CEE after it was handed over from the CEC. At first, the function code is

retrieved from the CR according to the ids included in the continuous event (line

2). After that, the CEE has to check if any execution steps were missed. Execution

steps can be missed, for example, in case there is a high network latency between

the propagating peer and the receiving peer and the propagation of the continuous

event over the network takes longer than the given interval between execution steps.

Therefore, the algorithm for starting the execution of a continuous event includes

a mechanism that checks for missed steps and converges continuous events towards

the current MMVE time. The mechanism can be described by using a while loop

(lines 3 to 9). As long as the next planned execution step is before or simultaneous

to the current MMVE time and before or simultaneous to the final execution step,

the CEE performs the function calls, creates artificial single events, and hands them

over to the MMVE software for further processing. After that, the planned next

execution step is advanced according to the given interval. After the while loop was

left, the algorithm checks if the while loop was only left because the current MMVE

80 4. A System Architecture for Continuous Event Support in P2P-MMVEs

Input: id of continuous event (ceid)
1 begin
2 ce← retrieve continuous event for ceid from CES;
3 retrieve function code for aoeid[ce], eid[ce] and aid[ce] from CR;
4 while nextstep[ce] <= current MMVE time and nextstep[ce] <= finalstep[ce] do
5 aoe← call aoefunction(nextstep[ce], aoepms[ce]);
6 e← call efunction(nextstep[ce], epms[ce]);
7 singleevents← call applyfunction(aoe, e);
8 hand singleevents over to MMVE software;
9 nextstep[ce]← nextstep[ce] + δt[ce];

10 end
11 if nextstep[ce] < finalstep[ce] then
12 update state of ce in CES;
13 use TS to register new timer for id[ce] at nextstep[ce];

14 end
15 else
16 remove ce from CES;
17 end

18 end

Figure 4.4.: Step of continuous event execution

time was reached and if there are still any execution steps left (line 10). In case

there are any steps left, the continuous event is stored in the CES and a timer that

triggers at the planned point in time of the next execution step is registered for the

continuous event (lines 11 and 12). In case no more steps are left, the continuous

event is discarded (line 15).

The pseudocode that describes a step of the following continuous event execution

process can be derived straightforward from the described pseudocode for start of

continuous event execution (see Figure 4.4). After the timer for the continuous

event triggered, the previously stored state of the continuous event is retrieved from

the CES based on the continuous event id that was attached to the timer (line 2).

The function code is retrieved (line 3) and, analogical to the previously described

algorithm, the CEE checks for missed execution steps and converges the continuous

event towards the current MMVE time (lines 4 to 10). Execution steps can be missed

during the regular execution, for example, if the resources of a peer get overloaded

and the timer service that is used by an implementation of the system architecture

cannot trigger its timers at the scheduled points in time. After the while loop was

left, the CEE checks if there are any execution steps left (line 11). In case there are

any steps left, the stored state of the continuous event is updated and a new timer

is registered (lines 12 and 13). In case no more steps are left, the continuous event

has reached the end of its lifetime and has to be terminated automatically. The

4.2. Basic Continuous Event Support 81

Figure 4.5.: Information flow for start and execution of continuous events

previously stored state is removed from the CES and no timer is registered (line 16).

Figure 4.5 presents a concluding overview of the system behavior and information

flow in case a new continuous event is started by a CEC and, in the folllowing,

executed by the CEEs of receiving peers and managed by the CEM of the superpeer

of a zone. The avatars of peer A and peer B both are located in the zone of

superpeer C. Assuming a continuous action takes place on peer A, a continuous

event can be started explicitly via the CEC on peer A (1). As described by the

algorithm presented in Figure 4.2, the CEC of peer A uses the given informations

to create a continuous event. Then the continuous event is propagated to its AoE

by using the SPS (2). The CECs of all peers with intersecting AoI subscriptions

as well as the CEC of the superpeer, which made an additional spatial subscription

for the zone, receive the continuous event. The CECs of all peers that received the

continuous event (including peer B) hand the continuous event over to their CEEs

for execution (3) and use the DL to send a direct network message to the superpeer C

including their peer id and the continuous event’s id in order to register as a receiver

of this continuous event (4). The CEC of the superpeer hands the continuous event

over to the CEM for management (5). On the regular peers, the CEEs perform

the algorithm for handling missed function calls and the start of continuous event

execution as described in Figure 4.3. After that, the standard execution process as

82 4. A System Architecture for Continuous Event Support in P2P-MMVEs

described in Figure 4.4 is started. In the following, the continuous event is executed

and artificially created single events are handed over to the MMVE software for

further processing (6). On the superpeer, after receiving the continuous event for

management from the CEC, the CEM starts the management of the continuous

event, creates a receiver list and adds the peer id of the peer that propagated the

continuous event to the receiver list. After a message for registering as a receiver

of a continuous event was received from the CEC of a regular peer, the CEC of

the superpeer hands the information over to the CEM (7) and the CEM adds the

peer id to the receiver list of the continuous event. In the following, the CEM

checks for additional intersections of the current AoE of the continuous event with

AoI subscriptions of peers in the zone (8). If the avatar of peer D moves closer to

the AoE of the continuous event, for example, peer D is provided with an up-to-

date copy. More about the system behavior and algorithms for continuous event

management is given in the following subsection.

4.2.5. Management of Existing Continuous Events

Figure 4.6 on page 83 presents the pseudocode of the algorithm that is performed

after a continuous event was received for management by the CEC of a superpeer

and handed over to the CEM. The CEM first retrieves the function code for calcu-

lating the AoE and effect of the continuous event from the CR (line 2). Then missed

management steps are detected and the continuous event is converged towards the

current MMVE time, similar to the algorithm for starting the execution of a con-

tinuous event. Using a while loop, the functions are called and the scheduled point

in time of the next management step is advanced until either the current MMVE

time or the point in time of the last management step is reached (lines 3 to 7). In

contrast to the algorithm for starting the execution, no artificial single events are

created and handed over to the MMVE software. After the while loop was left, the

CEM checks if there are any management steps left (line 8). In case there are any

steps left, a new empty receiver list is created for the continuous event, the peer id

of the propagating peer is added to the list, and the list is added the the collection

of receiver lists of the CEM (lines 9 to 11). The continuous event is stored in the

CES (line 12) and a timer that triggers at the planned point in time of the next

management step is registered for the continuous event (line 13). In case there are

no management steps left, no receiver list has to be created and no timer has to be

registered. The continuous event is discarded (line 16).

4.2. Basic Continuous Event Support 83

Input: continuous event (ce)
1 begin
2 retrieve function code for aoeid[ce] and eid[ce] from CR;
3 while nextstep[ce] <= current MMVE time and nextstep[ce] <= finalstep[ce] do
4 call aoefunction(nextstep[ce], aoepms[ce]);
5 call efunction(nextstep[ce], epms[ce]);
6 nextstep[ce]← nextstep[ce] + δt[ce];

7 end
8 if nextstep[ce] < finalstep[ce] then
9 rlist← create empty receiver list for id[ce];

10 add peer id of propagating peer to rlist;
11 add rlist to existing receiver lists;
12 store ce in CES;
13 use TS to register new timer for id[ce] at nextstep[ce];

14 end
15 else
16 discard ce;
17 end

18 end

Figure 4.6.: Start of continuous event management

As mentioned earlier, superpeers additionally have to perform the tasks of a regular

peer in order to allow their users to participate in the MMVE. In order to separate

the execution and management clearly, superpeers can receive continuous events

twice if the AoI subscription of the superpeer and the additional spatial subscription

by the CEC for continuous event messages of the zone both intersect the AoE of

a continuous event. This has to be considered in the context of storing continuous

events because based on the presented algorithms both versions of the continuous

event, for execution and management, have the same continuous event id. In order

to store the continuous event twice in the CES and to identify the copy for execution

and the copy for management, a modification is needed. Such a modification is not

included in the presented algorithms for execution and management, but certainly

has to be considered when implementing the presented system architecture. For

example, the software prototype that was used for evaluating the continuous events

approach (see Chapter 5) stores continuous events in a hash table und uses the

continuous event id as key. In order to divide between the continuous event copy

for execution and management, the CEM adds a prefix to the continuous event id

before a continuous event is stored or retrieved.

When managing continuous events, crucial tasks are the detection of new inter-

sections between the AoEs of managed continuous events and AoI subscriptions of

peers and the provision of up-to-date copies of continuous events to peers with new

84 4. A System Architecture for Continuous Event Support in P2P-MMVEs

intersections. As mentioned earlier in the section about the overall design of the sys-

tem architecture, the CEM is able to use the available AoI subscriptions from the

SPS of the target system because it is placed on the existing superpeer of the target

system. This eliminates the need for any additional network messages. Concerning

the design of an algorithm for continuous event management, two alternatives come

to mind. Either the CEM is automatically provided with all new or updated AoI

subscriptions after they are received by the SPS, checks immediately for intersec-

tions with the AoEs of managed continuous events and, in case a new intersection

is found, provides the peers that have an intersecting AoI and are not included in

the receiver list directly with the state of the continuous event that is stored in the

CES. Or the CEM retrieves the currently available AoI subscriptions from the SPS

after the timer for management of a continuous event triggered and the AoEs were

recalculated, checks for intersections between the AoI subscriptions and the AoEs

and provides all peers that have an intersecting AoI and are not included in the

receiver list of the continuous event with a copy of the continuous event.

The former alternative only checks for intersections if there are new or updated

incoming AoI subscriptions. This potentially optimizes the number of intersection

checks because no checks are performed between existing continuous events and un-

changed AoIs. If the peers do not move, no updated AoI subscriptions are sent to

the SPS and no check is performed by the CEM. However, this alternative leads to

problems in case the AoE of a continuous event changes. If the AoE of a continu-

ous event changes their location or shape, this can result in new intersections with

existing unchanged AoI subscriptions. This is not detected if a check for intersec-

tions between the AoEs of managed continuous events and AoI subscriptions is only

performed when the SPS receives new or updated AoI subscriptions.

The latter alternative checks for intersections whenever the functions are called dur-

ing the management process and the continuous event changes its state. The check

for intersections detects new intersections that were caused by changing AoEs and

by new or updated AoI subscriptions because the current state of the AoE of a con-

tinuous event was just calculated and a retrieval of available AoI subscriptions at

that time returns a current state of all AoIs. On the downside, this alternative po-

tentially results in a larger number of intersection checks and calculation operations

in comparison to the former alternative because intersection checks between the

AoE of a continuous event and all available AoI subscriptions have to be performed

whenever the timer of the continuous event triggers.

4.2. Basic Continuous Event Support 85

Input: id of continuous event (ceid)
1 begin
2 ce← retrieve continuous event for ceid from CES;
3 rlist← get receiver list for id[ce] from existing receiver lists;
4 retrieve function code for aoeid[ce] and eid[ce] from CR;
5 aoe← initialize;
6 while nextstep[ce] <= current MMVE time and nextstep[ce] <= finalstep[ce] do
7 aoe← call aoefunction(nextstep[ce], aoepms[ce]);
8 call efunction(nextstep[ce], epms[ce]);
9 nextstep[ce]← nextstep[ce] + δt[ce];

10 end
11 aois← retrieve aoi subscriptions from SPS;
12 foreach aoi in aois do
13 if aoe intersects shape[aoi] then
14 if not rlist contains peerid[aoi] then
15 use DL to provide peerid[aoi] with ce;
16 add peerid[aoi] to rlist;

17 end

18 end

19 end
20 if nextstep[ce] < finalstep[ce] then
21 update state of ce in CES;
22 use TS to register new timer for id[ce] at nextstep[ce];

23 end
24 else
25 remove rlist from existing receiver lists;
26 remove ce from CES;

27 end

28 end

Figure 4.7.: Step of continuous event management

In conclusion, only the latter alternative makes sure that intersections between

changing AoEs and non-changing AoIs are detected. This alternative has to be

used by the CEM, although it results in a potentially higher calculation load.

Figure 4.7 gives the pseudocode for a step of the continuous event management

process. The algorithm is performed after the timer for a continuous event trig-

gered. At first, the continuous event state, the receiver list and the function code

are retrieved (lines 2 to 4). Then missed management steps are detected and the

continuous event is converged towards the current MMVE time (lines 6 to 10), ana-

logical to the algorithm for starting the management of continuous events. After

that, new intersections between the AoE of the continuous event and available AoI

subscriptions are detected and copies of the continuous event are provided (lines 11

to 19). The available AoI subscriptions are retrieved from the SPS. For each AoI,

a check is performed if the AoE of the continuous event intersects the AoI. In case

86 4. A System Architecture for Continuous Event Support in P2P-MMVEs

Figure 4.8.: Information flow after detection of a new intersection between AoE and AoI

an intersection is detected, the algorithm checks if the receiver list contains the id

of the corresponding peer. If the list does not contain the peer id, the DL is used

to provide an up-to-date copy of the continuous event to the peer and the peer id is

added to the receiver list. After the detection of new intersections was performed,

the algorithm determines if there are any future management steps left (line 20). In

case there are any steps left, the state of the continuous event is updated and a new

timer is registered (lines 21 and 22). In case there are no steps left, the continuous

event has to be terminated automatically. The receiver list is removed from the

collection of existing receiver lists of the CEM, no new timer is registered, and the

previously stored state of the continuous event is removed from the CES (lines 25

and 26).

Figure 4.8 illustrates the information flow in the MMVE system in case an inter-

section between the AoE of an existing continuous event and an AoI subscription

is detected and the corresponding peer is not contained in the receiver list of the

continuous event. The figure assumes that the continuous event whose creation and

start of execution was shown earlier in Figure 4.5 is still executed and managed. For

example, peer A is one of the peers that execute the continuous event (1). Superpeer

C manages the continuous event. Since the creation and start of execution and man-

agement of the continuous event, the avatar of peer D has moved closer to the AoE

4.2. Basic Continuous Event Support 87

of the continuous event and has updated its AoI subscription at superpeer C. As a

result, the corresponding AoI subscription now intersects the AoE. As part of the

managing process, the CEM of superpeer C checks regularly for new intersections

between AoEs and AoIs according to the algorithm described by Figure 4.7. After

the timer for the continuous event triggered, the intersection is detected based on

the given algorithm (2). The CEM hands an up-to-date copy of the continuous event

and the id of peer D over to the CEC (3). The CEC handles the communication. It

uses the DL to provide the CEC of peer D with the copy (4). In case the sending

was successful, the CEC of superpeer C informs the CEM and the id of peer D is

added to the receiver list of the continuous event (5). The CEC of peer D hands

the received continuous event copy over to the CEE (6) and, in the following, the

CEE of peer D executes it (7). Because the id of peer D was added to the receiver

list, the CEM does not provide peer D with another copy of the continuous event

anymore, even the AoI still intersects the AoE.

4.2.6. Modification and Termination of Existing Continuous Events

Informations about the modification or termination of a continuous event have to

be sent to all peers that execute a copy because their copies have to be adjusted.

In addition, the copy that is used for management by the CEM has to be adjusted

as well. The information flow in the system for sending informations about the

modification or termination of a continuous event is identical. Therefore, both cases

are described together in this subsection.

Existing continuous events can be modified or terminated on one of the executing

peers. This can happen, for example, because a user input interrupts a continuous

action. Another example is that a peer controls weather effects in an area, decides

to change wind direction and has to adjust the movement direction of clouds that

are represented as continuous events in the system. In the system architecture for

continuous event support, existing continuous events can be modified or terminated

explicitly via the CEC. In case of continuous event modifications, the id of the

continuous event as well as the modifications have to be provided to the CEC. By

design, the system architecture for continuous event support allows the modification

of specific attributes of continuous events. The CEC has to be provided with the

continuous event id and a collection of pairs that describe the modifications of

specific attributes. Each pair includes the name of the attribute and the new value.

The CEC sends all provided modifications in one modification message to the CEC

88 4. A System Architecture for Continuous Event Support in P2P-MMVEs

Figure 4.9.: Information flow for modification or termination of existing continuous events

of the superpeer. The CEC of the superpeer then propagates the message based

on the receiver list of the continuous event to the CECs of the peers that hold a

continuous event copy. In case of a continuous event termination, the CEC only

has to be provided with the continuous event id. The CEC sends a termination

message including the id to the CEC of the superpeer. The CEC of the superpeer

then propagates the message based on the receiver list of the continuous event to

the CECs of the peers that hold a continuous event copy.

The resulting information flow in the MMVE system is identical for modifications

and terminations. Figure 4.9 gives an overview of the information flow. The figure

assumes that peer A and peer B both execute the continuous event. Superpeer C

manages the continuous event. After a continuous event was explicitly modified or

terminated via the CEC of peer A (1), the CEC of peer A creates the correspond-

ing message type and uses the DL to provide the message directly to the CEC of

superpeer C (2). The CEC of superpeer C provides the modification or termination

information to the CEM. The CEM modifies or terminates its copy of the contin-

uous event (3). In addition, the CEC retrieves the receiver list of the continuous

event from the CEM (4) and uses the DL to provide the CECs of all peers that are

included in the list (including peer A) with the modification or termination message

(5). The CECs of the peers then provide the CEEs with the modification or termi-

4.3. Extensions 89

nation information. The CEEs modify or terminate their copies of the continuous

event (6).

From a theoretical point of view, there is another alternative to the described infor-

mation flow. The CEC of peer A can provide the CEE of peer A directly with the

modification or termination message after the sending of the message to the CEC of

superpeer C was successful. In comparison to the previously described information

flow, this alternative results in one less network message because peer A does not

need to be provided with the modification or termination message by the CEC of

superpeer C. However, this alternative results in a deviation between peer A and

other peers that execute the continuous event, for example peer B, because of the

additional hop via the CEC of superpeer C. In order to prevent this, the potential

overhead of the additional message is accepted at the benefit of eliminating state

deviations between the peers caused by the continuous events approach. Please note

that there can still be slight deviations between the peers because of varying laten-

cies of the connections between the executing peers and the superpeer. However, in

the context of the target system varying latencies of the connections between the

regular peers and the superpeer of a zone also affect standard single events. The

handling of latency in the overall context of the target system is beyond the scope

of this work.

4.3. Extensions

The previous section described the system behavior and algorithms for basic support

of continuous events by the system architecture. The focus of this work is on the

general concept of continuous events in P2P-MMVEs and its potential usage for a

scalable propagation of continuous actions. The previously described basic contin-

uous event support by the system architecture provides all functionalities that are

needed for using the concept of continuous events in P2P-MMVEs and for propa-

gating continuous actions with continuous events. The evaluation of the potential of

the concept of continuous events and its usage in P2P-MMVEs, which is presented

later on in Chapter 5, was performed based on the system architecture for basic

continuous event support. Nevertheless, the existence of multiple zones in the tar-

get system model and the handling of certain exceptional cases that are included in

the requirements for this work imply a need to discuss several extensions for basic

continuous event support. These extensions are discussed in the remainder of this

90 4. A System Architecture for Continuous Event Support in P2P-MMVEs

section. However, they are not elaborated in the same detail as basic continuous

event support. The following extensions are presented and discussed: Extensions for

support of multiple zones (Subsection 4.3.1), the handling of peer crashes (Subsec-

tion 4.3.2), the handling of peer disconnections (Subsection 4.3.3) and the handling

of overloaded peers (Subsection 4.3.4).

4.3.1. Extensions for Support of Multiple Zones

In the context of a P2P-MMVE with multiple zones, for example the target system

described in Section 2.3, several exceptional cases can occur that are mainly related

to the existence of zone borders. In the following, the implications of multiple

zones on the basic algorithms for start, execution, management, modification and

termination of continuous events are discussed and potential extensions for the basic

algorithms are presented.

Start and Execution of Continuous Events

In a P2P-MMVE with multiple zones, the initial AoEs of newly started continuous

events can be located in several zones. Figure 4.10 on page 91 gives an overview of

the potential cases that can occur. The figure assumes that the P2P-MMVE consists

of four zones. Avatar A is located in zone 1. A continuous action is performed by

avatar A and is represented by a continuous event. The initial AoE of the continuous

event that is started on the corresponding peer of avatar A can be located fully in

the same zone (1), partially in the same zone and partially in one other zone (2),

partially in the same zone and partially in multiple other zones (3), fully in another

zone (4), or fully outside of the same zone and partially in multiple other zones (5).

In the context of basic continuous event support, the initial AoE is used for a spatial

propagation of the continuous event. The spatial propagation is made by using the

SPS of the existing target system. The spatial publication makes sure that all

regular peers whose AoI subscription intersects the AoE and the superpeer of the

zone, which made an additional spatial subscription for continuous event messages

of the zone, receive the continuous event for further execution and management.

The existing SPS delivers a spatial publication to all peers with spatial subscriptions

that intersect the given spatial shape. Based on this, all cases can be supported by

basic continuous event support without any further extensions. All regular peers

4.3. Extensions 91

Figure 4.10.: Potential AoE locations for newly started continuous events in P2P-MMVEs with
multiple zones

with intersecting AoI subscriptions receive the spatial publication from the SPS, no

matter if the peers are located in the same zone or in another zone. In addition,

assuming the CECs of the superpeers of the four zones all performed spatial sub-

scriptions for continuous event messages of their zones as described in Section 4.2.1

about the MMVE start, they also receive the spatial publication from the SPS in

case the AoE intersects with their zone. In conclusion, no extensions have to be

made concerning the start and initial propagation of continuous events.

Concerning the following execution and management of continuous events, a prop-

agation of a continuous event to regular peers and superpeers of other zones results

in continuous events that are executed by the CEEs of peers in multiple zones and

managed simultaneously by the CEMs of superpeers of multiple zones. The simul-

taneous management of a continuous event by multiple CEMs creates a need for

coordination between the CEMs. This is discussed later on as part of the discussion

about implications for continuous event management. In the following, this work

focuses on the execution and the receiver registrations that are performed as part

of the execution.

According to the described basic continuous event support, the CEC of a regular

peer registers as a receiver by sending a message to the CEC of the superpeer of its

zone after it received a continuous event. This can also be supported in multiple

zones without any extensions because the CEC of the superpeer of a zone receives

continuous events that are created in other zones from the SPS in case the AoE

92 4. A System Architecture for Continuous Event Support in P2P-MMVEs

Input: starting time (t0), interval length (δt), maximum number of intervals (n), id of
fAoE (aoeid), optional parameters of fAoE (aoepms), id of fE (eid), optional
parameters of fE (epms), id of fapply (aid)

1 begin
2 ce← initialize;
3 id[ce]← create unique id;
4 nextstep[ce]← t0;
5 if not n is infinite then
6 finalstep[ce]← t0 + (n ∗ δt);
7 end
8 else
9 finalstep[ce]← infinite;

10 end
11 set values of other attributes of ce: δt, aoeid, aoepms, eid, epms, aid;
12 aoefunction← retrieve code for aoeid from CR;
13 initialaoe← call aoefunction(t0, aoepms);
14 use SPS to propagate ce to initialaoe;
15 zone← get current zone from MMVE software;
16 if not initialaoe intersects shape[zone] then
17 use DL to provide superpeerid[zone] with ce;
18 end
19 hand ce over to CEE and start execution;

20 end

Figure 4.11.: Extended start of a new continuous event

intersects its zone-wide spatial subscription. Therefore, the CEM of the superpeer

is able to manage such continuous events and peers in the zone can register as

receivers.

A problem can occur if the AoE for initial propagation is located fully outside of

the zone of the peer that created the continuous event. In this case, the CEC of the

superpeer of the original zone is not provided with the continuous event via the zone-

wide spatial subscription and the CEM of this peer does not manage the continuous

event. This is a problem because the peer that created the continuous event has

to execute it to allow further modifications and termination on this peer. Because

the peer executes the continuous event, according to the described basic continuous

event support it has to register with the CEM of its zone as a receiver. Because the

CEM of the superpeer of its zone does not manage the continuous event, the peer

can not register as a receiver. An extension for the basic algorithm for starting new

continuous events is needed.

Figure 4.11 gives the pseudocode for an extended algorithm. After the CEC per-

formed the spatial publication (line 14), it retrieves the shape of the current zone

of the peer from the MMVE software (line 15). It checks if the AoE intersects the

4.3. Extensions 93

Figure 4.12.: Continuous event propagation in P2P-MMVEs with multiple zones

shape of the zone. If the AoE does not intersect the shape of the zone at all, the

CEC of the superpeer of the zone did not receive a continuous event copy via the

spatial propagation. Therefore, the CEC of the superpeer is provided with a copy

via the DL (lines 16 to 18).

In addition to the given explanation and extended algorithm, Figure 4.12 gives

a detailed illustration of the potential locations of AoEs and propagation of new

continuous events in P2P-MMVEs with multiple zones. Figure 4.12 shows a P2P-

MMVE with 16 zones. The peers A, C, E and H create new continuous events.

Peer A creates a new continuous event CE 1 that is propagated to a circular AoE.

The AoE of CE 1 intersects the AoI of peer B and is fully located within the same

zone where the avatar of peer A is located (zone 1, green). The propagation to the

AoE according to basic continuous event support is able to provide a copy of CE

1 to all CEEs (CEE B) and all CEMs (CEM 1) that need a copy. No extension to

basic continuous event support is needed.

Peer E creates a new continuous event CE 3 that is propagated to a circular AoE.

94 4. A System Architecture for Continuous Event Support in P2P-MMVEs

The AoE of CE 3 intersects the AoIs of peer F and G as well as the zones 5, 6, 9

and 10 (red). Again, no extension to basic continuous event support is needed. The

propagation to the AoE provides a copy of CE 3 to all CEEs (CEE F and G) and

CEMs (CEM 5, 6, 9 and 10) that need a copy.

An extension for basic continuous event support is needed to support continuous

events with AoEs that are located fully outside of the original zone. Peer C creates a

new continuous event CE 2 that is propagated to a circular AoE. The AoE intersects

the AoI of peer D and zone 4. It is located fully outside of the original zone (zone

3). The basic continuous event support algorithm provides the CEE of peer D and

the CEM of zone 4 with a copy of CE 2 via the spatial publication to the AoE

(light blue). In addition, it starts the execution by the CEE of peer C (light blue).

However, peer C is not able to register as receiver of modification and termination

messages because the CEM of its zone is not provided with a copy of CE 2 via the

spatial publication. Therefore, basic continuous event support has to be extended

and peer C has to provide CEM 3 directly with a copy of CE 2.

The same extension is able to support continuous events with AoEs that are located

fully outside of the original zone and intersect multiple other zones, for example CE

4 that is created and propagated by peer H. The spatial propagation to the AoE

provides a copy of CE 4 to the CEEs of peer I and J as well as the CEMs of the

zones 11, 12, 15 and 16 (dark blue). In addition, the execution of CE 4 by CEE H

is started (dark blue). Because of the extension, peer H provides the CEM of zone

14 directly with a copy of CE 4 and peer H is able to register as a receiver of CE 4.

Management of Continuous Events

The AoEs of continuous events can change location and spatial shape over time

depending on the results of the called function code. In a P2P-MMVE with multiple

zones, this can result in AoEs that leave the zone of the CEM that initially managed

the continuous event. This has implications for the management of continuous events

because in the algorithms for basic continuous event support the task of managing a

continuous event is assigned based on the intersection between the continuous event’s

AoE and the zone. In case the AoE of an existing continuous event leaves a zone over

the lifetime of the continuous event, this has to be detected and a mechanism for

handing the management of the continuous event over from the CEM of the original

zone to the CEMs of other zones is needed. The previously presented algorithms

4.3. Extensions 95

Figure 4.13.: Potential AoE locations for existing continuous events in P2P-MMVEs with multiple
zones

for basic continuous event support are not able to handle this case without any

extensions.

Figure 4.13 gives an overview of potential cases of AoEs that change zones. The

figure assumes that the P2P-MMVE consists of two zones. A continuous action was

performed on one of the peers of zone 1 and a corresponding continuous event was

created. Because the initial AoE of the continuous event fully intersected zone 1 and

did not intersect zone 2, only the CEM of the superpeer of zone 1 was provided with

the continuous event and manages it. The CEM of the superpeer of zone 2 did not

receive the continuous event. The following cases can be identified: The AoE stays

within zone 1 for the whole lifetime of the continuous event (1), the AoE leaves the

zone partially over time (2), the AoE leaves the zone fully over time (3), the AoE

leaves and returns partially to the initial zone over time (4), or the AoE leaves and

returns fully to the initial zone over time (5).

In case the AoE of a continuous event stays within a single zone for the whole lifetime

of the continuous event (1), no extensions are needed and the continuous event can

be managed based on the previously described algorithms for basic continuous event

support.

The basic algorithms are also able to manage continuous events whose AoEs have

left the original zone and are located fully within another zone (3) or have left the

original zone and returned fully to the zone (5). Extensions to the algorithms for

basic continuous event support are needed to handle the change of zones (2) (4).

To be able to handle the change of zones, a CEM has to determine if the AoE of a

96 4. A System Architecture for Continuous Event Support in P2P-MMVEs

managed continuous event leaves the zone that is managed by the CEM. The target

zone and its CEM have to be identified and this CEM has to be provided with a

copy of the continuous event for future management. From a theoretical point of

view, there are two alternative procedures concerning the CEM of the old zone after

the CEM of the new zone was provided with a continuous event copy and the AoE

has fully left the original zone. Either the CEM stops management of the continuous

event or it resumes management.

Stopping the management results in less calculations and disburdens the hardware of

the superpeer. On the downside, stopping management creates the need of another

handover if the AoE alternates between zones and returns to the original zone in the

future. In case of a continuous event that repeatedly alternates between zones, the

CEMs have to exchange continuous event copies multiple times over the network.

Stopping the calculation can also lead to a problem in case there are peers in the

original zone that still execute the continuous event after a handover between the

CEMs. If management is stopped after the handover, the CEM of the original

peer is not able to handle communication if the continuous event gets modified or

terminated on one of these peers.

Resuming management makes sure that all CEMs that once received a continuous

event have an up-to-date state. The resulting calculation overhead for continuous

events that have left zones puts a higher burden on the hardware of the superpeers

in comparison to the alternative of stopping management. However, less continuous

event copies have to be exchanged between CEMs over the network in case of alter-

nating AoEs. In addition, the described problem resulting from executing peers in

the initial zone does not occur. In conclusion, resuming management is the more

beneficial alternative. The extended algorithm for continuous event management,

which is presented in the following, resumes management of continuous events after

a handover.

In order to be able to handle AoEs that change zones over time, the existing algo-

rithm for continuous event management by the CEMs has to be extended with a

mechanism that checks for leaving AoEs and provides other CEMs with a copy of

the corresponding continuous event if a leaving AoE is detected. Other CEMs can

only be provided with continuous event copies if the CEM of the original zone is able

to determine into which zone an AoE leaves and which superpeer is assigned to the

zone because these informations are needed for addressing the network messages.

Because the tesselation and assignment of superpeers of the target system is reused

4.3. Extensions 97

Input: id of continuous event (ceid)
1 begin
2 ce← retrieve continuous event for ceid from CES;
3 rlist← get receiver list for id[ce] from existing receiver lists;
4 retrieve function code for aoeid[ce] and eid[ce] from CR;
5 aoe← initialize;
6 while nextstep[ce] <= current MMVE time and nextstep[ce] <= finalstep[ce] do
7 aoe← call aoefunction(nextstep[ce], aoepms[ce]);
8 call efunction(nextstep[ce], epms[ce]);
9 nextstep[ce]← nextstep[ce] + δt[ce];

10 end
11 ownzone← get current zone from MMVE software;
12 if aoe intersects shape[ownzone] then
13 aois← retrieve aoi subscriptions from SPS;
14 foreach aoi in aois do
15 if aoe intersects shape[aoi] then
16 if not rlist contains peerid[aoi] then
17 use DL to provide peerid[aoi] with ce;
18 add peerid[aoi] to rlist;

19 end

20 end

21 end

22 end
23 if not aoe fully intersects shape[ownzone] then
24 zones← get zones from MMVE software;
25 foreach zone z in zones do
26 if aoe intersects shape[z] and not rlist contains superpeerid[z] then
27 use DL to provide superpeerid[z] with ce;
28 add superpeerid[z] to rlist;

29 end

30 end

31 end
32 if nextstep[ce] < finalstep[ce] then
33 update state of ce in CES;
34 use TS to register new timer for id[ce] at nextstep[ce];

35 end
36 else
37 remove rlist from existing receiver lists;
38 remove ce from CES;

39 end

40 end

Figure 4.14.: Extended step of continuous event management

by the continuous events approach, the informations about zone shapes and the ids

of superpeers that are assigned to these zones can be retrieved from the SPS of the

target system.

Figure 4.14 gives the pseudocode of an extended version of the algorithm for man-

agement of continuous events by CEMs. After all informations for management of

98 4. A System Architecture for Continuous Event Support in P2P-MMVEs

a continuous event were retrieved and the continuous event was converged towards

the current MMVE time in case of missed function calls (lines 2 to 10), the spatial

shape of the zone that is managed by the CEM is retrieved from the MMVE software

(line 11). Because the existence of multiple zones implies that the new AoE of the

continuous event can be fully located outside of the zone, the extended version of

the algorithm first checks if the new AoE intersects the zone at all (line 12). Only

if there is an intersection, the AoI subscriptions are retrieved from the SPS and the

check for new intersections between the AoE and the AoI subscriptions is performed

(lines 13 to 21). If the AoE is located fully outside of the zone, there is no need to

waste hardware resources of the superpeer for performing the check for intersections.

At next, the algorithm checks if the AoE is fully located in the zone of the CEM (line

23). In case it is not fully located in the zone, parts of the AoE or the whole AoE

have to be located in other zones and the CEMs of these zones need to be provided

with a copy of the continuous event. The mechanism that determines intersections

with other zones and provides the CEMs of these zones with a continuous event copy

is described in lines 24 to 29. At first, all available zones are retrieved from the SPS

(line 24). After that, the algorithm checks for all zones if there is an intersection with

the AoE. In case an intersection is detected and the receiver list does not contain

the id of the superpeer of the zone, the DL is used to provide a copy to the CEM of

this superpeer and the id of the superpeer is added to the receiver list (lines 25 to

30). Please note that the superpeer of the other zone that received the copy starts

management of the continuous event, creates a receiver list for the continuous event

and adds the id of the providing superpeer to the receiver list in order to be able

to address modification and termination messages back to the providing superpeer.

This is not included in the given algorithm that describes a step of the extended

continuous event management by the CEM.

After potential intersections with other zones were determined, continuous event

copies were provided and the receiver list was adjusted, a step of extended continuous

event management ends similar to a step of basic continuous event management. If

there are any management steps left, the continuous event state is stored in the CES

and a new timer is registered (lines 32 to 35). If there are no steps left, the receiver

list is removed, no new timer is registered and the previously stored state of the

continuous event is removed from the CES (lines 36 to 39).

4.3. Extensions 99

Modification and Termination of Continuous Events

In a P2P-MMVE with multiple zones, continuous events can exist simultaneously

in several of these zones. Continuous events that exist in several zones have to

be managed by multiple CEMs and executed by multiple CEEs. In case such a

continuous event is modified or terminated explicitly on one of the peers, all CEMs

and CEEs with a copy of the continuous event have to be informed about this.

According to the basic information flow for modification and termination of contin-

uous events, the peer where the continuous event was modified or terminated first

sends the information to the superpeer of its zone. Based on the receiver list, the

superpeer then sends the information to all peers within the zone that execute the

continuous event. In a P2P-MMVE with multiple zones, this information has to

be provided additionally to superpeers of other zones that manage the continuous

event. These superpeers then can distribute the information to the executing peers

within their zones according to the basic information flow.

The basic information flow for modification and termination of continuous events

in P2P-MMVEs with multiple zones is extended for the support of multiple zones

as follows: After a continuous event was modified or terminated explicitly via the

CEC of an executing peer, the CEC uses the DL to send the information to the

CEC of the superpeer of its zone. The CEC either hands the information over to

the CEM for application of the modifications to the copy of the continuous event

or it triggers the stopping of management of the continuous event by the CEM. In

addition, the CEC retrieves the receiver list and sends the information to all peers

whose ids are contained in the list. Because the ids of superpeers of other zones that

received a copy are also included in the list, the sending to all peers in the list makes

sure that all peers in the zone that execute the continuous event and all superpeers

of other zones that manage the continuous event are provided with the information

about modifications or termination. On the executing peers, the CEC triggers the

stopping of execution of the continuous event by the CEE. On the superpeers of

other zones, the CEC proceeds as described for the superpeer of the zone where the

continuous event was modified or terminated.

Because the extension to the basic information flow for modification and termination

of continuous events, which was illustrated by Figure 4.9 on page 88, is straightfor-

ward, no additional figure that illustrates the extended information flow is given.

100 4. A System Architecture for Continuous Event Support in P2P-MMVEs

4.3.2. Handling of Peer Crashes

With regards to the target system model, peer crashes can take place either be-

cause the MMVE software crashes or the user computer crashes. In both cases, the

peer leaves the P2P-MMVE unintended and does not return for a certain period of

time. During a peer crash, no algorithms can be performed by the MMVE software.

Generally, a peer crash can affect a regular peer or a superpeer.

In a P2P-MMVE system, the crash or disconnection of a peer typically affects the

system as a whole. Therefore, a mechanism that detects missing peers has to be

part of the overall P2P-MMVE system and not only of continuous event support.

In the following, it is assumed that there is a mechanism that detects if a peer is

missing and if the missing peer is disconnected or has crashed.

In the context of continuous event support, handling the crash of a regular peer

can be performed as follows: After the crash of a regular peer was detected by

the overall P2P-MMVE system, the CEMs get informed and remove the id of the

crashed peer from the existing receiver lists. In case a peer crashes, the MMVE

software has to be restarted explicitly by the user, no matter if the MMVE software

or the user computer crashes. As was described earlier, no continuous event states

are stored persistently by the CES. Therefore, the CES is empty after the user

restarts the MMVE software. In addition, the TS is reset and no more timers

are present. According to the standard procedure of the target system, the peer

performs a new AoI subscription based on the position of the user avatar. After

that, intersections between the AoI subscription and the AoEs of existing continuous

events are detected by the presented algorithm for continuous event management.

Because the peer id was removed from the existing receiver lists, the CEM provides

the peer with up-to-date copies of the continuous events and adds the peer id to the

receiver lists.

In the target system of this work, the superpeers perform several system-related

tasks for their zone in addition to just managing continuous events. Therefore, han-

dling the crash of a superpeer has to be performed by the overall P2P-MMVE system

instead of the system part for continuous event support. A detailed elaboration of

a concept and algorithms that handle superpeer crashes for the overall P2P-MMVE

system is beyond the scope of this work. A rough outline of a concept based on

a replication strategy can be described as follows: One or multiple copies of the

superpeer of a zone, including the architectural components for continuous event

4.3. Extensions 101

support, are held on other regular peers whose hardware and networking capabili-

ties are strong enough to be potentially a superpeer. In case the original superpeer

crashes, one of the copies is used instead. Assuming that the replication of the

superpeer and the takeover by a backup after a superpeer crash is performed by the

overall system, the system has to make sure that the CEC of the new superpeer

provides the CECs of all regular peers of the zone with its peer id in order to enable

the future addressing of messages from the CECs of the regular peers to the CEC

of the new superpeer via the DL.

4.3.3. Handling of Peer Disconnections

Similar to a peer crash, a peer disconnection from the peer-to-peer network can result

in a peer that leaves the system unintended for a certain period of time and can affect

a regular peer or a superpeer. In contrast to a peer crash, a peer disconnection can

result in a state in which the MMVE software is still running and only lost connection

to the network. If this state persists for a very short period of time, the simulation

of the virtual environment by the MMVE software can continue. For example,

the avatar and the virtual environment can still be displayed to the user. If the

disconnection persists for a longer period of time, the simulation has to be stopped

explicitly by the MMVE software because the displayed state varies strongly from

the other peers. Both cases, short disconnections and long disconnections, affect the

continuous events approach. Potential concepts for handling disconnections in the

context of the continuous events approach are discussed in the following. Analogical

to the discussion about the handling of peer crashes, the following discussion assumes

that the MMVE software includes a mechanism that detects disconnections.

In the context of the continuous events approach, the disconnection of a regular

peer can be handled as follows: After the MMVE software on a peer detects the

disconnection from the network, the calculation of continuous events by the CEE is

explicitly paused. In case the state of disconnection persists for only a short period

of time, the calculation is resumed after the network connection is available again.

After the calculation is resumed, for each executed continuous event the previously

described mechanism for handling missed function calls that is part of the execution

algorithm performs all missed function calls. In case the state of disconnection

persists for a long period of time, the execution of continuous events by the CEE is

stopped and the CEE terminates all executed continuous events. The CEM of the

superpeer that manages the zone where the avatar of the disconnected regular peer

102 4. A System Architecture for Continuous Event Support in P2P-MMVEs

was located removes the peer id of the disconnected peer from all receiver lists. If

the peer reconnects to the system after a long disconnection, a new AoI subscription

is made by the peer according to the standard procedure of the target system. Based

on this AoI subcription, the CEM is able to detect intersections between the AoI of

the peer and the AoEs of existing continuous events and provides the reconnected

peer with up-to-date copies of these continuous events for execution.

Analogical to peer crashes, the disconnection of a superpeer has implications for

several parts of the P2P-MMVE system and, therefore, has to be handled by the

overall system. A detailed elaboration of a concept and algorithms for handling the

disconnection of a superpeer by the overall system is beyond the scope of this work.

A concept based on a replication strategy like the concept that was outlined in the

previous subsection is also a potential solution for handling disconnected superpeers.

Assuming one or multiple copies of a superpeer are held by other regular peers with

strong hardware capabilities, one of the copies is able to take over in case the original

superpeer disconnects from the system. For continuous event support, the system

has to make sure that the CEC of the new superpeer provides the CECs of all regular

peers of the zone with its peer id in order to enable the sending of messages from

the CECs of the regular peers to the CEC of the new superpeer via the DL.

4.3.4. Handling of Overloaded Peers

A P2P-MMVE system is run solely by user computers with very limited hardware

and networking capabilities. The overloading of peers can be avoided to a certain

degree by selecting peers with strong capabilities for system tasks, for example by

using a superpeer model like the target system. Nevertheless, the calculation of

continuous events for execution and management can potentially overload peers

and, therefore, the case of overloaded peers has to be considered in the context of

the continuous events approach. In the following, potential concepts for handling

overloaded regular peers and superpeers are discussed.

The overloading of a regular peer can be handled by using a proxy concept. After

the overloading of a regular peer by continuous event execution is detected, a proxy

CEE is started on another peer with stronger hardware. This proxy CEE calculates

the continuous events for the weak peer and sends single updates over the network to

the overloaded peer. This can be realized in a straightforward way because artifical

single events are calculated as part of of the continuous events approach. These

4.3. Extensions 103

events can be calculated by the proxy CEE and then sent over the network to the

overloaded peer. The drawback of a proxy concept is the creation of additional

network overhead because the overloaded peer receives the state changes over the

network instead of calculating them. In addition, the other peer can get overloaded

by running the additional proxy CEE as well. This can be solved, for example, by

the MMVE provider by adding own hardware to the peer-to-peer network. This

hardware is then used to run the proxy CEEs.

Analogical to the discussions about superpeer crashes and disconnections, handling

the overloading of a superpeer is strongly related to the superpeer concept of the

target system and has to be handled by the overall P2P-MMVE system. If the

superpeer of a zone gets overloaded, the previously described concept of replication

can again be used. The overloaded superpeer is replaced by one of its copies with

stronger capabilities. If none of the copies is strong enough to handle the load for

a zone, a strategy that is often used by MMVEs with zones involves a dynamic

retesselation and reassignment of superpeers to zones. The existing zone is split

into several subzones and for each subzone a new superpeer is selected and assigned

to the zone. This implies that the continuous events approach has to be extended

by a mechanism that handles the split into zones for continuous event management.

This can be handled as follows: At first, the managed continuous events are retrieved

from the CEM of the original zone. After that, CEMs are started on the superpeers

of the subzones. The retrieved continuous events then are assigned to the CEMs

of the subzones based on intersections of their AoEs with the subzones. The CECs

of the new superpeers of the subzones provide the CECs of all regular peers of

their zones with their peer ids to enable the sending of messages from the CECs

of the regular peers to the CECs of the superpeers via the DL. A strategy with

a dynamic tesselation into subzones typically includes that subzones are merged

into larger zones if the load of the superpeers of the subzones falls below a given

threshold. This implies that the continuous events approach has to be extended with

a mechanism that handles the merging of zones for continuous event management.

This can be handled as follows: At first, all continuous events are retrieved from the

CEMs of the subzones and merged into one set. Then the CEMs of the subzones are

stopped, a CEM is started on the superpeer of the new zone and the set is handed

over to the new CEM. The CEM starts managing the continuous events. The CEC

of the superpeer of the new zone provides the CECs of all regular peers of the zone

with its peer id in order to enable the sending of messages from the CECs of the

regular peers to the CEC of the new superpeer via the DL.

5. Evaluation

This chapter presents an evaluation of the continuous events approach for a scalable

propagation of continuous actions in P2P-MMVEs. In order to evaluate the con-

tinuous events approach, a software prototype was implemented and simulations of

the resulting network information flow for the following types of continuous actions

were performed: Movement of an object, movement of an object with a correlated

spatial influence on the environment, movement of an object with multiple corre-

lated spatial influences, and movement of object groups with multiple correlated

spatial influences. In addition, reference values for an assessment of the results were

created by running additional simulations for a P2P-MMVE with spatial publish

subscribe but without continuous events and a client/server approach with basic

dead reckoning.

This chapter is structured as follows: Section 5.1 discusses potential directions of an

evaluation of the continuous events approach and gives reasons for the decision

to focus on the network information flow. Section 5.2 describes the evaluation

methodology. Sections 5.3 to 5.6 describe the performed simulations of the four

varying types of continuous actions and the simulation results. Finally, Section 5.7

presents an assessment and discussion of the results.

5.1. Evaluation Focus

For an evaluation of the continuous events approach, two general directions come to

mind. An evaluation of the networking aspects of the continuous events approach

because the approach aims at a scalable propagation of continuous actions over the

network in P2P-MMVEs. Or an evaluation of the calculation load that is put on

the user hardware because the approach assumes that calculating the continuous

actions on user computers is more beneficial than sending the information over the

network. This implicitly includes the assumption that the calculation of continuous

events is bearable by standard user computers.

105

106 5. Evaluation

In the past, studies showed that in highly interactive scenarios like online games the

quality of user experience decreases for latencies higher than 100 ms [BCL+04]. Such

scenarios typically have high demands on update propagation. Therefore, the given

number of 100 ms represents a meaningful upper bound for P2P-MMVEs. Without

the use of continuous events, a P2P-MMVE has to be able to propagate each of the

single events representing a continuous action within 100 ms over the network to the

target peer for a high quality of user experience. In a P2P-MMVE with continuous

events, a peer has to be able to calculate each continuous event step that results in

the creation of corresponding artificial single events at maximum within the same

amount of time.

Preliminary experiments concerning the calculation load were performed by using

code from the software prototype that is described later on. The experiments were

run on an average office computer of the University of Mannheim (see Table B.1 in

Appendix B for software and hardware specifications). The experiments were per-

formed for all four types of continuous actions in combination with two alternatives

of the continuous events approach with varying spatial modelings of AoEs. One of

the continuous events approach alternatives used a minimum AoE and the other

alternative a maximum AoE. Please see Subsection 5.2.3 for a description of the

spatial modeling alternatives and Sections 5.3 to 5.6 for descriptions of the action

types.

In the experiments, calculation steps were run for each type of continuous action

and the number of steps that could be performed by the office computer within 100

ms was determined. In order to eliminate deviations caused by other processes on

the office computer, the experiments each were repeated ten times and an average

value was calculated.

The experiments showed that in 100 ms the office computer was able to calculate a

huge number of operations for all four types of continuous actions and both spatial

modeling alternatives. In the context of the continuous events approach alternative

with a minimum spatial modeling, the office computer was able to calculate between

5723.6 and 6095.1 steps on average in 100 ms. In the context of the continuous events

approach alternative with a maximum spatial modeling, the office computer was able

to calculate between 5443.7 and 5948 steps on average in 100 ms. Please see Tables

B.2 and B.3 in Appendix B for detailed results.

The results of the experiments indicate that processing power is not a limiting fac-

tor of the continuous events approach. The numbers of calculated steps that were

5.2. Evaluation Methodology 107

recorded in the experiments are high enough to assume that there are enough re-

sources for calculating a very large number of continuous events. As a consequence of

the experiments, it was decided that the focus of the evaluation is on the networking

aspects of the continuous events approach.

5.2. Evaluation Methodology

In order to evaluate the potentially resulting network traffic of the continuous events

approach when used for the propagation of varying types of continuous actions, the

resulting information flow when using continuous events was simulated. The per-

formed simulations aimed at getting results concerning the concept of continuous

events and the continuous events approach in general. Therefore, the simulations

focus on the basic continuous events approach without extensions as described in

Section 4.2 and were performed for one zone using one CEM. This allows a pre-

cise evaluation of the general concept of continuous events and the potential of the

continuous events approach without having to consider additional overhead for han-

dling exceptional cases. In addition, because there is only one CEM in the system,

the load for managing continuous events can be analyzed specifically based on this

CEM.

5.2.1. Aspects and Metrics for Evaluation

The following aspects have to be evaluated for an assessment of the potential network

traffic of a propagation of continuous actions with continuous events:

Network traffic reduction compared to basic P2P-MMVE system with spatial publish

subscribe - The continuous events approach builds on a target P2P-MMVE system

model that includes spatial publish subscribe as the main propagation mechanism.

It aims at reducing the network traffic for propagation of continuous events in the

context of this target system. Therefore it is important to evaluate the reduction in

message number and payload by the continuous events approach in comparison to

a basic P2P-MMVE with spatial publish subscribe propagation and no continuous

events.

Network traffic reduction compared to MMVE system based on the client/server

model with dead reckoning - State-of-the-art MMVEs typically use a client/server

architecture and optimize the propagation of position changes of objects based on

108 5. Evaluation

dead reckoning. The implementation of a complete client/server-based MMVE for

evaluation purposes is beyond the scope of this work. However, evaluations for a

basic client/server approach with dead reckoning are performed in order to compare

the continuous events approach with state-of-the-art systems. It is important to

evaluate the performance of a peer-to-peer approach with spatial publish subscribe

and continuous events in comparison to a basic client/server approach with dead

reckoning concerning network messages and payload for propagation.

Influence of varying spatial modeling of the extent of continuous actions on the

performance of the continuous events approach - As described earlier in this work,

the continuous events approach enables a variable modeling of the spatial influence

area of a continuous event for the initial propagation and the following management.

In general, a minimum and a maximum modeling approach can be identified. Either

the initial influence area of the continuous action is used (minimum approach),

which theoretically should result in less messages for initial propagation but more

overhead for management. Or the influence of all contained sub-actions of the

continuous action is approximated by a large spatial area (maximum approach),

which theoretically should result in more messages for the initial propagation but

less messages for management. Intermediate types of modeling are also possible, but

the minimum and maximum modeling approach mark the boundaries of modeling.

Therefore, their influence on the performance is of most interest in the context of the

evaluation of the continuous events aproach and these two alternatives are evaluated.

It is important to evaluate the influence, potential advantages and disadvantages of

a minimum and maximum modeling on the resulting network traffic in the context

of the simulated types of continuous actions.

Comparison of average payload per message between dead reckoning and the contin-

uous events approach - Although continuous events are able to carry more general

informations and more complex actions than usual dead reckoning schemes, dead

reckoning can be identified as the most direct related work to the continuous events

approach. Therefore, it is interesting to examine the difference in size between the

parameters that are needed for basic dead reckoning and the parameters for con-

tinuous events. Because of the more complex information that is contained in a

continuous event the resulting payload should theoretically be larger in comparison

to dead reckoning, which focuses on positions. The difference is evaluated in order

to assess if the additional overhead is justified in consideration of the fact that a

continuous event is able to carry much more complex continuous actions.

5.2. Evaluation Methodology 109

From the described aspects for evaluation, two metrics for assessing the results of the

performed simulations can be derived: The potential number of messages that are

sent and received for the propagation of continuous actions by the participating user

computers. And the potential payload that is sent and received for the propagation

of continuous actions.

5.2.2. Software Prototype

For the evaluation of the continuous events approach, a software prototype was

implemented in Java Standard Edition 7. The prototype is able to simulate and

record the potential network traffic of a P2P-MMVE with a spatial publish subscribe

propagation and a client/server-based MMVE that uses areas of interest for interest

management and propagation. In addition, it is able to simulate the management

of continuous events over time and the resulting potential network traffic.

For the simulations, at first a set of movement data of user avatars and continuous

actions was created for each type of continuous action. Then simulations for the

varying systems were performed with the software prototype. After the simulation

runs were performed, the recorded data about potential network traffic was retrieved

and graphically prepared for presentation in this work.

For presentation purposes, a graphical display was added to the prototype. Figure

5.1 on page 110 presents a screenshot of the graphical user interface of the software

prototype. The screenshot was taken during a simulation of continuous action type

2 with the CE Max AoE approach. More details about the specific action types

and alternatives of the continuous events approach are given later on in this work.

The interface displays the current simulation state including peer positions, AoIs

and AoEs. By selecting one of the filtering options, the peer ids can be shown in

addition to the positions and only AoEs of a certain peer can be shown.

The implemented P2P-MMVE with spatial publish subscribe propagation simulates

a spatial publish subscribe functionality based on AoIs and AoEs as described in

Section 2.3. The AoI subscriptions of the peers are updated over the course of a

simulation run based on the stored movement data of user avatars. Continuous

actions are propagated as corresponding single or continuous events to the AoEs.

The simulator intersects the AoEs with the active AoI subscriptions. In case inter-

sections are detected, an event is delivered to the corresponding peer, which means

in the context of the simulation that the resulting network traffic and potential

110 5. Evaluation

Figure 5.1.: Screenshot of the graphical user interface of the software prototype

payload of the parameters are recorded. For simulation of the continuous events

approach, the software runs the CEM for the zone, simulates the management of

existing continuous events and records the resulting network messages.

The implemented client/server-based MMVE with dead reckoning includes an inter-

est management scheme based on the concept of area of interest (see Subsection

2.2.1). Each avatar is surrounded by an area of interest, which in the context of

the simulations corresponds to the spatial AoI subscriptions. The areas of interest

of avatars are updated based on the stored movement data over the course of a

simulation run. In comparison to SPS, there are no complex spatial propagations.

The state changes that result from continuous actions are propagated based on the

position where they take place.

State-of-the-art client/server-based MMVEs use dead reckoning for the optimization

of propagation of object movement (see Subsection 2.2.2). Therefore, the simulation

of the client/server system also provides basic dead reckoning functionality. In case a

continuous action results in an object that moves linearly towards a target location,

dead reckoning is performed.

5.2. Evaluation Methodology 111

In contrast to the continuous events approach, which allows to aggregate movement

and additional influences of a continuous action, in the client/server system the

additional influence of moving objects has to be propagated by additional network

messages. In client/server systems, state changes of several objects within an area

are usually aggregated and sent as an aggregated message to clients. Therefore, in

order to get more realistic results, the simulated client/server system includes a basic

aggregation algorithm. In case an additional influence to the object movement takes

place, a corresponding message is first sent to the server. The server determines all

avatars or objects that are influenced and the state changes. After that, it determines

the interest of clients in the state changes and provides all interested clients with an

aggregated message.

For identification within the simulation, all simulated peers or client computers are

assigned a unique id. This id has to be assigned dynamically by the system. In

the Java prototype, such dynamically assigned system-wide unique ids were imple-

mented based on the class java.util.UUID [Oraf]. A UUID consists of a 128-bit

value. The basic concept of UUIDs is described by RFC 4122 [LMS]. The class

java.util.UUID uses version 4 UUIDs, which are generated using a pseudo random

number generator.

Continuous events were implemented as a Java class as follows: For identification

within the system, a unique continuous event id is assigned dynamically to each con-

tinuous event. Continuous event ids were implemented based on java.util.UUID,

analogical to peer or client ids. Timestamps, such as t0 or the points in time of the

next and final step of a continuous event during execution and management, were

implemented as numbers of type java.lang.Long [Orab]. Calculations with times-

tamps were implemented based on the class java.util.Calendar [Orad]. The inter-

val between the steps δt and the number of overall intervals n were implemented as

numbers of type java.lang.Integer [Oraa]. Because function ids are assigned be-

fore runtime, no dynamic creation of ids for functions is needed. Therefore, the pro-

totype implements function ids as numbers of type java.lang.Integer and the ids

are assigned as consecutive numbers. In Java, a number of type java.lang.Integer

has a maximum positive value of 2.147.483.647. In order to get comparable re-

sults for the simulation of payload sizes (obviously the function with the id 1 cre-

ates less payload than a function with a higher number such as the maximum of

2.147.483.647), the simulation always records the worst case and uses the size of the

number 2.147.483.647 when calculating the payload size. The parameters for the

112 5. Evaluation

aoe function fAoE and effect function fE were each implemented as arrays of type

java.lang.String [Orac]. This allows to hand over parameters of varying types

to the functions. In case the parameters include values of another data type than

java.lang.String, implicit casts have to be implemented in the function code.

The Continuous Event Controller, Continuous Event Executor and Continuous Event

Manager were implemented as seperate Java classes. All functionalities were imple-

mented according to the given algorithms for basic continuous event support. The

receiver lists, which are used by the Continuous Event Manager for storing the ids

of all registered receiver peers for continuous events, were implemented based on

the class java.util.ArrayList. All existing receiver lists of the Continuous Event

Manager are stored for further use by the algorithms in a hashtable based on the

class java.util.Hashtable [Orae] using the continuous event ids as keys.

The additional functionalities that are needed for continuous event execution and

management were implemented as follows: The Continuous Event Storage was im-

plemented as a hashtable based on the class java.util.Hashtable [Orae]. Con-

tinuous events can be stored and retrieved using their continuous event id as key.

The Timer Service was realized as ScheduledExecutorService [Orag]. Because

the distribution of function code for continuous events takes place before runtime,

the information flow at runtime is not influenced. Therefore, the information flow

created by the exchange of function code by the Code Repository is omitted and

not simulated. An interface for functions was defined and functions for the action

types were implemented as Java classes that implement the interface and added to

the prototype.

5.2.3. Simulation Process

For the simulations, a data set containing the movement of avatars was created

beforehand (see Subsection 5.2.5 for more details about the movement model). In

addition, a data set of actions was created for each type of continuous action. To

eliminate potential deviations because of movement patterns, all simulation runs

used the same movement data in combination with the respective data set for the

continuous action type. The continuous action types and characterization of the

data sets are described in more detail in Sections 5.3 to 5.6.

For each combination of movement data and actions, simulations were performed

with the software prototype for a peer-to-peer approach with spatial publish sub-

5.2. Evaluation Methodology 113

scribe propagation and no continuous events (P2P SPS), for a client/server approach

with basic dead reckoning and areas of interest (CS DR), a peer-to-peer approach

with spatial publish subscribe propagation and continuous events using a minimum

spatial modeling of the influence (CE Min AoE), and a peer-to-peer approach with

spatial publish subscribe propagation and continuous events using a maximum spa-

tial modeling of the influence (CE Max AoE). The minimum and maximum spatial

modelings that were used for the respective action types are explained in more detail

later on in Sections 5.3 to 5.6.

The course of a simulation run by the software prototype can be described as follows:

Over time, AoI subscriptions are updated based on the stored avatar movement data

and the continuous actions from the action data set are propagated according to the

given system approach. The information flow is only simulated and no data is sent

over a real network interface. Instead, the potential network traffic is recorded. The

number of messages that were sent and received over the course of the simulation run

are recorded for each simulated user computer. In addition, the potential payload for

each message is determined and recorded. In the context of the presented simulation,

the potential payload corresponds to the size of all parameters that have to be carried

by the message. The potential payload is determined by cummulating the size in

bytes of all Java parameters that have to be sent in a certain message. This results

in a large absolute payload size in comparison to existing real MMVE systems.

However, because the software prototype was implemented in the same way for all

simulated approaches, comparing the size in bytes between the approaches results

in meaningful relative values.

5.2.4. Software and Hardware Specifications

All simulations were performed on a system with the following software and hardware

specifications :

• Operating System: Windows Server 2007, 64 Bit

• Java Virtual Machine: Version 7, Update 7

• CPU: 2 x Intel Xeon QuadCore, 2.33GHz

• Memory: 6 GB

114 5. Evaluation

5.2.5. General Settings

Table 5.1 gives an overview of the general simulation parameters. Analogical to the

evaluation of spatial publish subscribe in the system S-VON presented by Hu et al.

[HWB+10], the settings emulate the conditions of Second Life. The zone size was

set to 256 square meters, which corresponds to the size of a region in Second Life. A

user number of 100 was used, which corresponds to the maximum number of users

that can be handled by a Second Life region server. For interest management of the

user avatars a circular AoI with a radius of 64 meters was used.

User movement was calculated based on the Random Waypoint Model (RWM)

[JM96, BMJ+98]. User movement based on RWM can be described as follows:

A user first selects a random target waypoint within the given zone. Then the speed

for the movement towards that waypoint is selected from a uniformely distributed

selection of speed values between a given minimum and maximum speed. After

that, the user moves towards the waypoint with the determined speed. When the

waypoint is reached, the user waits for a given pause time, which is determined from

a uniformely selected distribution of values. When the pause time is over, a new

waypoint and speed are randomly selected, the user moves towards the waypoint

and so on.

For the presented simulations, the movement speed of user avatars was set to 5

meters per second, which roughly corresponds to the speed of running avatars in

Second Life. The exact running speed in Second Life is defined as 5.13 meters

per second [Linc]. When creating the movement data for the presented simulations,

instead of defining a range from minimum to maximum speed for a random selection,

minimum and maximum speed were set to the same value to get a constant speed

for all users. In addition, the pause time was set to 0 seconds. This was done to

eliminate potential influences of these factors on the simulation results.

Parameter Value

Zone Size 256 x 256 meters
User Number 100

AoI Shape Circle
AoI Radius 64 meters

Movement Model Random Waypoint
Movement Speed Users 5 meters per second

Number of CEMs 1
Duration 5 minutes

Table 5.1.: Simulation parameters

5.3. Action Type 1: Object Movement 115

As mentioned earlier, one CEM was used in order to allow a specific analysis of

the potential network traffic for continuous event management. The performed

simulation runs each had an overall duration of 5 minutes.

In the following sections, the simulated continuous action types are described and the

results of the simulations are presented. Please note that the presented percentage

numbers and numbers for payload size per message are rounded to two decimal

places.

5.3. Action Type 1: Object Movement

5.3.1. Description

The first type of continuous actions that was simulated can be described as follows:

As a result of a user action, an object in the virtual environment moves linearly

from a given starting location A in the virtual environment towards a given target

location B. The object changes its location for several times until the target location

is reached. In the context of continuous action type 1, no further influences on other

objects are correlated to the movement. Figure 5.2 illustrates continuous action

type 1.

The action data for the simulation of continuous action type 1 was created based

on the following parameters and assumptions: After every second, a user is selected

randomly and a continuous action is triggered for this user. The moving object

starts at one of 10 possible starting spots located at the western edge of the virtual

environment. The starting spot is also selected randomly. The object moves an

overall distance of 236 meters towards the eastern edge. It moves at a speed of 20

meters per second. The interval between each position change is 100 ms.

In a P2P-MMVE system with spatial publish subscribe and no continuous events

Figure 5.2.: Illustration of continuous action type 1

116 5. Evaluation

(P2P SPS), each position change triggers a new single event on the peer where the

continuous action takes place. Each single event is then propagated to other peers

based on the spatial influence. The AoE of a single event corresponds to a point

located at the new position and a corresponding spatial publication is made. The

publication is intersected with the available AoI subscriptions and the single event

is provided to all peers with intersections.

In a client/server system with basic dead reckoning (CS DR), this type of continuous

action results in the following information flow: The initial position of the object

is sent in combination with the information needed to dead reckon the following

position changes of the object (direction vector, speed). The informations are first

sent from the client on which the continuous action took place to the server. The

server then propagates the information to all clients whose AoI intersects with the

initial position of the object. The target clients create object copies and, in the

following, perform dead reckoning for the object movement. Over time, the server

provides additional clients with an up-to-date position information, direction vector

and speed of the object in case the object moves within their AoI or they move close

enough to the object that their AoI intersects the current object position.

In a P2P-MMVE system with spatial publish subscribe and continuous events, each

continuous action is represented by a continuous event. The continuous event is then

propagated from the peer on which the continuous action took place to other peers

by making one spatial publication. Over time, the CEM manages the continuous

event, calculates the up-to-date AoE and provides additional peers with up-to-date

copies in case their AoI intersects the current AoE of the continuous event. On the

target peers, the continuous event is executed and moves the object via artificial

single update events.

As described earlier, the following two spatial modeling alternatives were simulated:

Propagation and management based on a minimum modeling of the influence (CE

Min AoE) and a maximum modeling of the influence (CE Max AoE). Figure 5.3

on page 117 gives an overview of both alternatives for continuous action type 1. A

minimum spatial modeling (left) uses an AoE that corresponds to the initial object

position at location A. The continuous event is propagated initially to the point.

For management, the CEM over time calculates AoEs corresponding to points that

are located at the future object positions. A maximum spatial modeling (right) uses

an AoE with the shape of a line that starts at location A, ends at location B and

covers all future position changes. The continuous event is propagated initially to

5.3. Action Type 1: Object Movement 117

Figure 5.3.: Spatial modeling alternatives for continuous action type 1. The minimum alternative
is shown on the left, the maximum alternative on the right.

the maximum line. For further management, the CEM over time shrinks the line

towards the target location B.

5.3.2. Simulation Results

Figure 5.4 on page 118 gives an overview of the overall results of the simulations of

continuous action type 1. For the full results see Table A.1 in Appendix A.

Compared to P2P SPS without an optimized propagation of continuous actions,

all simulated optimization approaches were able to reduce the overall number of

messages for propagation as well as the payload significantly. CE Min AoE was able

to reduce the messages by 97.47 percent and the payload by 96.44 percent. CE Max

AoE reduced the messages by 95.32 percent and the payload by 94.26 percent. CS

DR was able to propagate the continuous actions with 97.79 percent less messages

and 97.03 percent less payload.

The average payload size per message for dead reckoning was 124.01 byte. The

average payload size per continuous event message was slightly larger for both al-

ternatives of the continuous events approach: 136.34 bytes for CE Min AoE and

136.58 bytes for CE Max AoE. The registration messages, which are used by the

continuous events approach for the registrations of peers as receivers of continuous

events, had a payload size of exactly 86 bytes per message for CE Min AoE as well

as for CE Max AoE. It is plausible for all registration messages to have the same

size because, no matter which alternative of the continuous events approach is sim-

ulated, all registration messages have to carry a peer id and a continuous event id.

In the simulation prototype, both id types are implemented based on the same Java

class java.util.UUID and the ids do not vary depending on the type of continuous

118 5. Evaluation

(a) Number of Messages Overall (b) Payload Overall (Byte)

Figure 5.4.: Overall simulation results for continuous action type 1

action or in case of an alternative spatial modeling. Therefore, the size has to be

86 bytes for all alternatives of the continuous events approach and all simulated

continuous action types.

When comparing the overall results of the optimization approaches, CS DR shows

the highest grade of reduction. A comparison of the spatial modeling alternatives

indicates that CE Min AoE shows a higher reduction than CE Max AoE.

Figure 5.5 on page 119 shows a more detailed analysis of the information flow of the

simulated optimization approaches. The figure backs up the observation that both

simulated alternatives of the continuous events approach perform worse than the

client/server approach with dead reckoning. CE Min AoE results in 14.38 percent

and CE Max AoE in 111.70 percent more messages for propagation of continuous

actions than CS DR. Concerning the payload, CE Min AoE resulted in 19.91 percent

more payload and CE Max AoE in 93.09 percent more payload than CS DR.

Figure 5.5 further illustrates the varying characteristics of the information flow of

the continuous events approach alternatives. CE Max AoE results in a higher abso-

lute number of messages and payload size than CE Min AoE. The larger initial AoE

results in more peers that are provided directly with continuous events instead of

being provided with continuous event copies from the CEM. Therefore, more mes-

sages are sent directly between the peers when using the maximum spatial modeling.

Because these peers have to register with the CEM as receivers, CE Max AoE results

in more messages that are received by the managing peer that runs the CEM.

CE Min AoE needs less messages and payload than CE Max AoE. However, this

comes at the cost of putting a higher burden on the managing peer. Less continuous

events are propagated directly between regular peers because of the smaller initial

5.4. Action Type 2: Object Movement with Single Additional Influence 119

(a) Number of Messages Sent (b) Number of Messages Received

(c) Payload Sent (Byte) (d) Payload Received (Byte)

Figure 5.5.: Analysis of the information flow for continuous action type 1

AoE. These peers have to be provided with continuous event copies from the CEM

over time. This leads to a more accurate provision with continuous events by the

CEM based on an up-to-date calculated minimum AoE and saves messages. How-

ever, more continuous events are provided by the CEM. This leads to more network

traffic on the sending side of the peer running the CEM.

5.4. Action Type 2: Object Movement with Single

Additional Influence

5.4.1. Description

The second type of simulated continuous actions replicates the object movement

pattern of the first action type, but adds an additional influence on surrounding

objects to the end of the movement. Figure 5.6 on page 120 illustrates continuous

120 5. Evaluation

Figure 5.6.: Illustration of continuous action type 2

action type 2. As result of a user action, an object moves linearly from a starting

position at location A towards a target location B. After arriving at location B, the

object influences all user avatars whose position is located within a circular influence

area surrounding location B.

The object movement data included in the action data for the simulation of contin-

uous action type 2 was generated based on the same parameters and assumptions

as the object movement data for continuous action type 1. A user is selected ran-

domly every second and a continuous action is triggered for the selected user. A

starting position is selected randomly from ten possible starting locations at the

western edge of the virtual environment. Each object moves 236 meters towards the

eastern edge at a speed of 20 meters per second. Position changes are propagated

or calculated every 100 ms. In contrast to action type 1, an additional influence has

to be added to each continuous action. After the object reached the target location,

it influences all avatars within a circular area. The circle has a radius of 10 meters

and is centered around the target location.

In a P2P-MMVE system with spatial publish subscribe and no continuous events

(P2P SPS), all position changes of the object as well as the final influence at the

target location have to be represented by single events. The position update events

are propagated via spatial publications corresponding to points that are each located

at the current position of the object. The final influence is propagated via a spatial

publication to a circle that is centered around the target location and has a radius

of 10 meters.

In a client/server system with basic dead reckoning (CS DR), the position changes

of an object can be optimized based on dead reckoning, analogical to continuous

action type 1. The impact of the final influence has to be propagated via additional

messages. After the object reached the target location, the client that possesses the

original object sends a message about the influence to the server. The server then

5.4. Action Type 2: Object Movement with Single Additional Influence 121

Figure 5.7.: Spatial modeling alternatives for continuous action type 2. The minimum alternative
is shown on the left, the maximum alternative on the right.

determines all affected avatar objects, determines interest of clients and propagates

the informations to the clients. As described earlier, the implementation of CS

DR includes a basic message aggregation. The server provides all interested clients

with a message that contains the effect and an aggregation of the ids of all affected

avatar objects. The clients then update their copies of these avatars according to

the aggregated message.

In a P2P-MMVE system with spatial publish subscribe and continuous events, the

object movement and the final influence can be propagated by using one continuous

event. No additional events are propagated for the final influences correlated to

object movement. The future AoEs of the movement and the influence are calculated

over time based on one common function. The effect of the movement and the

influence are also calculated based on one common function.

Analogical to continuous action type 1, a minimum and a maximum spatial modeling

alternative were simulated. Figure 5.7 gives an overview of the spatial modeling

alternatives for continuous action type 2. The minimum alternative (CE Min AoE),

which is displayed on the left, propagates the continuous events initially to a point at

the starting location A. The CEM then over time calculates AoEs corresponding to

points that are located at the respective object positions. In the end, a circular AoE

corresponding to the final influence area is calculated. The maximum alternative

(CE Max AoE), which is displayed on the right, propagates the continuous events

initially to a maximum AoE that consists of a line for representing the influence of

the object movement over time and a circle for representing the final influence. For

further management, the CEM over time shrinks the maximum AoE towards the

target location.

122 5. Evaluation

5.4.2. Simulation Results

Figure 5.8 presents the overall results of the simulations of continuous action type

2. For the full simulation results see Table A.2 in Appendix A.

Similar to the overall simulation results for continuous action type 1, all simulated

optimization approaches were again able to reduce the overall number of messages as

well as the payload significantly in comparison to P2P SPS. CE Min AoE reduced

the messages by 97.46 percent and the payload by 96.42 percent. CE Max AoE

lead to a reduction of messages by 95.30 percent and payload by 94.24 percent. CS

DR was able to propagate the continuous actions of type 2 with 97.25 percent less

messages and 96.57 percent less payload.

The reduction percentages of all approaches are similar to the percentages in the

context of continuous action type 1. This is plausible because even there is an

additional influence at the end of the object movement in the P2P SPS approach

most events result from the position changes of the objects. The single events

resulting from the final influence only make up a very small number of events.

Therefore, the overall reduction percentages in the context of action types 1 and 2

are similar.

In the simulation of continuous action type 2, the average payload size of a message

for dead reckoning was 124.01 bytes. A continuous event message in the simulation

of CE Min AoE had an average payload size of 136.33 bytes. A continuous event

message in the simulation of CE Max AoE had an average payload size of 136.58

bytes. For both alternatives of the continuous events approach, all messages for

registering peers as receivers had a size of 86 bytes.

(a) Number of Messages Overall (b) Payload Overall (Byte)

Figure 5.8.: Overall simulation results for continuous action type 2

5.4. Action Type 2: Object Movement with Single Additional Influence 123

(a) Number of Messages Sent (b) Number of Messages Received

(c) Payload Sent (Byte) (d) Payload Received (Byte)

Figure 5.9.: Analysis of the information flow for continuous action type 2

Figure 5.9 analyzes the information flow of the simulated optimization approaches in

more detail. When confronted with continuous action type 2, CE Min AoE is able to

beat CS DR concerning the overall number of messages: 7.54 percent less messages

are needed compared to CS DR. However, CS DR performed slightly better than CE

Min AoE concerning overall payload. Although CE Min AoE needed less messages,

it resulted in 4.13 percent more payload compared to CS DR. A possible reason for

this can be the slightly larger payload of continuous event messages in comparison

to dead reckoning messages. Concerning the metrics overall number of messages

and payload, CE Max AoE showed the worst performance of the three optimization

approaches.

When comparing the information flow of CE Min AoE and CE Max AoE, the results

show similar characteristics as the results for action type 1. The large AoE of CE

Max AoE results in more messages and payload that are sent by the regular peers.

Because of the large initial AoE, more peers are provided directly with continuous

124 5. Evaluation

events after their creation. Less continuous events have to be provided by the

CEM afterwards. CE Min AoE propagated the continuous actions with less overall

messages and payload than CE Max AoE, but results in more messages and payload

sent by the peer that runs the CEM. The small initial AoE of CE Min AoE provides

less peers directly with continuous events after their creation. More continuous

events have to be provided by the CEM. The better general performance of the

minimum alternative hints at a higher grade of accuracy of this alternative. Because

of the travel time of the object, the AoI subscriptions of peers initially intersect parts

of the maximum AoE, but have moved away from the continuous action until the

object arrives. The minimum alternative does not provide these peers with the

continuous event.

5.5. Action Type 3: Object Movement with Multiple

Additional Influences

5.5.1. Description

Continuous action type 3 also builds on the object movement pattern of the previous

action types. Figure 5.10 on page 125 illustrates the characteristics of continuous

action type 3. A continuous action of type 3 results in an object that moves linearly

from a starting position at location A towards a target location B. In contrast

to the other types, the object influences avatars in its surroundings for multiple

times. Whenever the object reaches a new position, it influences avatars within an

influence area surrounding its current position. Similar to the single final influence

of continuous action type 2, the influences of continuous action type 3 over time

are modeled by circles. With each move, an object influences all avatars within a

given circular area surrounding the respective position of the object at that time.

Please note that for reasons of simplification, the figure shows more dots indicating

position changes than influence areas. However, in the simulation the influence area

moves together with the object. Therefore, with every position change there is also

a new influence area.

The object movement data for continuous action type 3 again was created based on

the same parameters and assumptions as the data that was created for the previous

action types. A continuous action is triggered every second for a randomly selected

user. The starting position of the object is chosen randomly from ten locations at the

5.5. Action Type 3: Object Movement with Multiple Additional Influences 125

Figure 5.10.: Illustration of continuous action type 3

western edge of the virtual environment. The object moves 236 meters towards the

eastern edge at a speed of 20 meters per second. The interval between propagation

or calculation of position changes is 100 ms. In contrast to the action data of

the previous types of continuous actions, a spatial influence was added after each

position change of an object. The object influences all avatars within a circle that

is centered at the new position and has a radius of 10 meters.

In a P2P-MMVE with spatial publish subscribe and no continuous events (P2P

SPS), all position changes of objects and all additional influences have to be rep-

resented by single events. The position update events are propagated via spatial

publications of the shape of points that are located at the respective position of

the object. The additional influences are propagated via spatial publications with a

circular shape centered around the position and a radius of 10 meters.

In a client/server system with basic dead reckoning (CS DR), the position changes

of the objects of continuous action type 3 can also be optimized by dead reckoning,

analogical to the object movement of the previous action types. The additional

influences that are triggered by the object movement over time all have to be prop-

agated via additional messages. Analogical to continuous action type 2, the client

that possesses the original object first sends a message describing the influence to the

server. The server then determines the affected avatar objects, determines interest

and propagates an aggregated message to all interested clients.

A P2P-MMVE system with spatial publish subscribe and continuous events is able

to represent all influences, all position changes and all influences over time of a

moving object by one continuous event. No additional events are needed for the

influences. All future AoEs of the position changes and the influences are calculated

based on one common function. In addition, the effect of the position changes and

the influences are also calculated based on one common function.

Figure 5.11 on page 126 shows the minimum and maximum spatial modeling al-

126 5. Evaluation

Figure 5.11.: Spatial modeling alternatives for continuous action type 3. The minimum alternative
is shown on the left, the maximum alternative on the right.

ternatives for continuous action type 3. The minimum alternative (CE Min AoE),

which is displayed on the left, initially propagates each continuous event to a cir-

cular AoE with a radius of 10 meters whose center point is located at the starting

location of object movement. The CEM then over time recalculates the location

of the circular AoE according to object movement. Please note that the position

of the object is always covered by the circle. Therefore, for the initial propagation

and the following management no additional AoE with the shape of a point has to

be calculated. The maximum alternative (CE Max AoE), which is displayed on the

right, uses a rectangle to approximate all circular influences and all positions over

time. Each continuous event is initially propagated to the maximum rectangle. The

CEM then over time shrinks the size of the rectangle towards the target location.

5.5.2. Simulation Results

Figure 5.12 on page 127 presents the overall results of the simulations of continuous

action type 3. For the full simulation results see Table A.3 in Appendix A.

Compared to P2P SPS, again all simulated optimization approaches were able to

reduce the overall message number and payload. However, for continuous action type

3 both alternatives of the continuous events approach showed a significantly better

performance than CS DR. CE Min AoE reduced the messages by 98.71 percent and

the payload by 98.32 percent. CE Max AoE reduced the messages by 97.72 percent

and the payload by 97.38 percent. CS DR needed 40.46 percent less messages and

41.39 percent less payload than P2P SPS.

5.5. Action Type 3: Object Movement with Multiple Additional Influences 127

(a) Number of Messages Overall (b) Payload Overall (Byte)

Figure 5.12.: Overall simulation results for continuous action type 3

The overall results presented in Figure 5.12 indicate that for action type 3 the

continuous events approach has a clear advantage over the simulated client/server

approach. Although the client/server approach optimizes the propagation of the

spatial influences by using the previously described aggregation mechanism, it was

not able to beat or at least produce similar results to the results of the simulated

alternatives of the continuous events approach.

In the simulations of continuous action type 3, dead reckoning messages had an av-

erage payload of 124.01 bytes. Although the additional informations about multiple

influences were propagated and applied in addition to the object movement by the

continuous events, the size of the average payload per continuous event was almost

identical to the continuous events that were used for the previous action types. Con-

tinuous event messages for CE Min AoE had an average payload of 136.34 bytes and

continuous event messages for CE Max AoE had an average payload size of 136.58

bytes. The payload size per registration message by the peers was again 86 bytes

for both alternatives of the continuous events approach.

The reason for the nearly identical payload of continuous events compared to the

previous action types can be identified in the design of the continuous events ap-

proach. Although the additional spatial shapes and their effect have to be calculated,

only function ids have to be sent. Function ids had a constant size in the performed

simulations under the assumption of the worst case of the highest Integer value.

In addition, for both modeling alternatives only the parameter values describing

location A and B have to be included in the continuous event. The initial circle

and the following circle of the minimum alternative as well as the rectangles of the

maximum alternative can be calculated based on this information. In comparison,

for continuous action types 1 and 2, the functions also needed the parameter values

128 5. Evaluation

(a) Number of Messages Sent (b) Number of Messages Received

(c) Payload Sent (Byte) (d) Payload Received (Byte)

Figure 5.13.: Analysis of the information flow for continuous action type 3

describing location A and B. Therefore, all additional influences can be calculated

without creating a significant payload overhead.

In summary, the overall results hint at a strong advantage of the continuous events

approach for the propagation of complex continuous actions like action type 3 over

the simulated state-of-the-art approach based on the client/server model with dead

reckoning and message aggregation by the server.

Figure 5.13 presents a more detailed analysis of the information flow of the simu-

lated alternatives of the continuous events approach. The information flow of the

continuous events approach alternatives again shows similar characteristics than the

information flow that was observed in the previous simulations. CE Min AoE was

able to reduce the overall message number and payload stronger than CE Max AoE.

However, this came at the cost of a higher network load on the sending side of the

peer that runs the CEM. On the other hand, the large rectangular AoEs of CE Max

AoE led to more continuous events that were propagated directly between regular

5.6. Action Type 4: Object Group Movement with Additional Influences 129

peers. The resulting information flow was more distributed over the sending sides

of the network connections of the regular peers and less network load was on the

managing peer.

5.6. Action Type 4: Object Group Movement with

Additional Influences

5.6.1. Description

Continuous action type 4 was designed to simulate the performances of the varying

optimization approaches when confronted with very complex continuous actions that

include the movement of multiple objects and a high number of additional correlated

influences on objects in the virtual environment. A continuous action of type 4

includes ten objects that move through the virtual environment. Each of these

objects results in multiple additional influence areas. An example for such a type

of action is the cloud example given in Section 3.3. A peer is assigned the task

of controlling the display and of applying the effect of multiple cloud objects on

other peers. All simultaneously created clouds can be represented and propagated

by using one continuous event.

Figure 5.14 on page 130 illustrates the characteristics of continuous action type 4. A

continuous action results in multiple objects that move linearly from their starting

positions (locations A, C, E, G) towards given target locations (locations B, D, F,

H). On their way through the virtual environment, after each position change the

objects influence avatars within a circular influence area centered at their current

positions. Please note that similar to figure 5.10 for reasons of simplification the fig-

ure shows more dots indicating position changes than influence areas. Nevertheless,

in the created action data each position change results in a new influence area. In

addition, for reasons of simplification the figure also shows only four objects while

the continuous actions included in the action data include ten objects.

The objects included in continuous action type 4 all move according to the movement

pattern from the previous action types. Each object starts at the western edge of the

virtual environment and then moves linearly 236 meters towards the eastern edge at

a speed of 20 meters per second. The ten starting spots that were used for random

selection by the previous action types depict the starting spots of the ten moving

objects included in action type 4. The interval between propagation or calculation

130 5. Evaluation

Figure 5.14.: Illustration of continuous action type 4

of position changes is 100 ms. The influence areas that are correlated to the position

changes of objects are circular and have a radius of 10 meters. The creation of the

action data set for continuous action type 4 was performed analogical to the data

sets for the previous action types. After every second, a peer was selected randomly

and a continuous action of type 4 was triggered for this peer.

In a P2P-MMVE with spatial publish subscribe and no continuous events (P2P

SPS), all position changes of the objects and all additional influences result in single

events that are propagated via spatial publications between the peers. The position

updates are propagated to spatial publications corresponding to points. The events

for the additional influences are propagated to spatial publications corresponding to

circles with a radius of 10 meters and centered at the object position.

In a client/server system with basic dead reckoning (CS DR), the movement of the

objects can be optimized by dead reckoning, similar to the previous action types.

However, dead reckoning is usually performed in dependency of an object. Therefore,

in the context of continuous action type 4 the informations for dead reckoning have

to be sent individually for each of the ten objects that are contained in a continuous

action. In addition, for each moving object all influences of the objects over time

have to be propagated by additional messages. The propagation of influences works

analogical to the propagation that was described earlier for continuous action types

2 and 3. The client that possesses the original object first sends a message about

the influence to the server. The server then determines the influenced avatars,

5.6. Action Type 4: Object Group Movement with Additional Influences 131

Figure 5.15.: Spatial modeling alternatives for continuous action type 4. The minimum alternative
is shown on the left, the maximum alternative on the right.

determines interest and provides all interested clients with an aggregated message.

In a P2P-MMVE with spatial publish subscribe and continuous events, the move-

ment of all ten objects and all influences of these objects over time can be represented

by one continuous event. Figure 5.15 gives an overview of the spatial modeling al-

ternatives for continuous action type 4. The minimum alternative (CE Min AoE),

which is displayed on the left, initially propagates the continuous events to a rect-

angle that approximates all initial circular influences of the objects. The object

positions are covered by the rectangle as well. Therefore, no additional AoEs have

to be calculated for the position changes. For further management of the continu-

ous event by the CEM, the corner points of the rectangle are then moved over time

according to the movement of the objects. The maximum alternative (CE Max

AoE), which is displayed on the right, initially propagates the continuous events to

a very large rectangle that approximates all circular influences of all objects over

time. Again, no additional AoEs are needed for the position changes because the

rectangle always covers all object positions. For further management, the maxi-

mum rectangular AoE is then shrinked over time according to the movement of the

objects.

5.6.2. Simulation Results

Figure 5.16 on page 132 presents the overall results of the simulations of continuous

action type 4. For the full simulation results see Table A.4 in Appendix A.

For continuous action type 4, all optimization approaches again were able to reduce

the overall number of network messages and payload for propagation of continuous

132 5. Evaluation

(a) Number of Messages Overall (b) Payload Overall (Byte)

Figure 5.16.: Overall simulation results for continuous action type 4

actions in comparison to the basic peer-to-peer approach P2P SPS. When confronted

with very complex continuous actions like action type 4 both continuous events

approach alternatives clearly have an advantage compared to CS DR. CE Min AoE

and CE Max AoE resulted in a significantly higher message and payload reduction

than CS DR. Compared to P2P SPS, CE Min AoE reduced the messages by 99.88

percent and the payload by 99.84 percent. CE Max AoE resulted in a message

reduction of 99.80 percent and a payload reduction of 99.84 percent. Although CS

DR was performing worse than CE Min AoE and CE Max AoE, the implemented

basic dead reckoning algorithm and aggregation technique of CS DR were at least

able to reduce the messages by 41.11 percent and the payload by 41.94 percent in

comparison to P2P SPS.

Although the movement and influences of ten moving objects were propagated per

continuous event, the average size of the payload per continuous event message was

not significantly larger than the average size of the payload per message for the

previously simulated action types. For CE Min AoE, a continuous event message

had an average payload size of 136.27 byte. For CE Max AoE, a continuous event

message had an average payload size of 136 byte. Registration messages again had

an average payload of 86 bytes for both continuous events approach alternatives. In

the simulation of CS DR, a dead reckoning message had an average payload size of

123.00 bytes.

Figure 5.17 on page 133 analyzes the information flow of the simulated alternatives of

the continuous events approach. Analogical to the simulations for the previous three

continuous action types, CE Min AoE performed better concerning the absolute

number of messages and payload but puts a higher burden on the peer that runs the

CEM. In comparison to CE Max AoE, more continuous events had to be provided

5.6. Action Type 4: Object Group Movement with Additional Influences 133

(a) Number of Messages Sent (b) Number of Messages Received

(c) Payload Sent (Byte) (d) Payload Received (Byte)

Figure 5.17.: Analysis of the information flow for continuous action type 4

by continuous event management after the initial propagation. On the other hand,

CE Max AoE results in more messages and payload that are sent by regular peers

because more continuous events are propagated directly between the regular peers

via the initial propagation of continuous events. The information flow of CE Max

AoE hints at a network load that is more distributed over the peers in comparison

to the information flow of CE Min AoE.

The presented information flow of CE Max AoE shows that CE Max AoE not only

resulted in less messages and payload for provision of existing continuous events

to peers by continuous event management, but rather in no messages at all for

provision of existing continuous events. A potential reason is the very large size of

the rectangle that is used for initial propagation by CE Max AoE. This rectangle is

nearly as large as the given size of the virtual environment. Therefore, it seems that

when using the maximum spatial modeling for simulation all peers were provided

initially with the continuous event from the peer where the continous action took

134 5. Evaluation

place. As a result, in the simulation of continuous action type 4 with CE Max

AoE no more continuous event copies were sent from the managing peer with the

CEM to regular peers. The managing peer only received registration messages by

the peers that were initially provided with the continuous events. In combination

with the observed high overall reduction rate of CE Max AoE compared to a basic

P2P SPS system, this observation indicates that for continuous action type 4 the

continuous events approach is able to reduce the network traffic significantly, even

the continuous events are propagated simply to the whole zone instead of using a

sophisticated approximation of the influence.

5.7. Assessment and Discussion of Results

The previous sections described the performed simulations and presented their re-

sults. This section gives an assessment and discussion of the results in relation to

the aspects for evaluation that were identified in Subsection 5.2.1.

Network Traffic Reduction Compared to Basic P2P-MMVE System

with Spatial Publish Subscribe

Table 5.2 on page 135 presents a concluding overview of the reduction percentages

concerning overall message number and payload that were calculated based on the

recorded simulation results.

The results presented by Table 5.2 show that the continuous events approach is

able to reduce the message number and payload for the propagation of continuous

actions significantly in comparison to a basic peer-to-peer approach with spatial

publish subscribe and no optimization by continuous events. For all simulated types

of continuous actions, both simulated spatial modeling alternatives were able to

reduce the messages and payload for propagation of continuous actions significantly

by at least 94.24 percent. When comparing the percentage numbers for message

number and payload, it can be observed that the continuous events approach led to

a slightly higher reduction rate concerning the message number than the payload.

The results further show that the reduction rate increases for complex continuous

actions that involve multiple objects and influences per continuous action. The re-

duction rates for continuous action types 3 and 4 are clearly higher than the rates

5.7. Assessment and Discussion of Results 135

Action Type 1 Action Type 2 Action Type 3 Action Type 4

-CS DR-
Message Reduction 97.79 97.25 40.46 41.11
Payload Reduction 97.03 96.57 41.39 41.94

-CE Min AoE-
Message Reduction 97.47 97.46 98.71 99.88
Payload Reduction 96.44 96.42 98.32 99.84

-CE Max AoE-
Message Reduction 95.32 95.30 97.72 99.80
Payload Reduction 94.26 94.24 97.38 99.84

Table 5.2.: Reduction percentages of the simulated optimization approaches

for continuous action types 1 and 2. When confronted with type 4, the most com-

plex type of continuous action, both spatial modeling alternatives of the continuous

events approach resulted in the highest reduction percentage. They reduced the

messages by more than 99.80 percent and the payload by 99.84 percent.

This general trend of an increasing reduction rate by the continuous events approach

with an increasing complexity of continuous actions is only broken by a comparison

of the reduction percentages for continuous action types 1 and 2. Continuous ac-

tion type 2 is more complex than continuous action type 1 because it includes an

additional influence. However, the reduction percentages for continuous action type

2 are slightly lower than for continuous action type 1. A potential explanation for

this observation is the circular influence area at the end of the object movement in

continuous action type 2. In comparison to continuous action type 1, this results

in an overall larger AoE of the corresponding continuous event. The larger AoE

for initial propagation has potentially more intersections with AoIs and, therefore,

eventually results in more initial propagations of continuous events.

In summary, the simulation results show that for the simulated types of continuous

actions the continuous events approach was able to reduce the overall message num-

ber and payload for propagation of continuous actions strongly in comparison to a

basic P2P-MMVE system with spatial publish subscribe.

The observed reduction percentages of more than 90 percent are high enough to jus-

tify the conclusion that the continuous events approach has the general potential to

enhance the overall scalability of a P2P-MMVE system and to propagate continuous

actions in a scalable way.

136 5. Evaluation

Network Traffic Reduction Compared to MMVE System based on the

Client/Server Model with Dead Reckoning

The results presented in Table 5.2 further allow to compare the performance of the

continuous events approach to CS DR, the simulated version of a MMVE system

based on the client/server model with basic dead reckoning.

For continuous action types that involve only object movement, for example contin-

uous action type 1, the implemented version of dead reckoning resulted in a higher

reduction rate in percent concerning the number of messages and payload than both

alternatives of the continuous events approach. The message number was reduced

by 97.79 percent compared to 97.47 percent (CE Min AoE) and 95.32 (CE Max

AoE). The payload was reduced by 97.03 percent compared to 96.44 (CE Min AoE)

and 94.26 percent (CE Max AoE). These percentage numbers imply that the con-

cept of dead reckoning can not be beaten by the continuous events approach for

propagating continuous actions that involve only movement.

However, the basic concept of dead reckoning is tailored specifically to optimize

the propagation of movement. Considering the fact that the continuous events

approach aims at supporting the propagation of generic types of continuous actions,

the recorded results indicate a good potential of the continuous events approach

because the continuous events approach alternative CE Min AoE was at least able

to come close to CS DR.

For continuous action types that predominantly involve object movement, for ex-

ample continuous action type 2, CS DR resulted also in a higher reduction rate in

percent than both alternatives of the continuous events approach concerning overall

payload. The payload was reduced by 96.57 percent compared to 96.42 percent (CE

Min AoE) and 94.24 percent (CE Max AoE). However, CS DR did not result in a

generally higher reduction rate concerning the overall number of messages. One of

the continuous events approach alternatives, CE Min AoE, was able to beat CS DR

with a reduction rate of 97.46 percent compared to a reduction rate of 97.25 percent

by CS DR.

Continuous action types 3 and 4 are more complex than continuous action types 1

and 2 because they involve multiple additional influences that are correlated to ob-

ject movement. For these types of continuous actions, CS DR lead to a significantly

lower reduction rate in percent than the continuous events approach. The reduction

rate of both continuous events approach alternatives remained significantly above

5.7. Assessment and Discussion of Results 137

90 percent concerning overall message number and payload. The overall number

of messages and payload were reduced by at least 97.38 percent. In contrast, the

reduction rate of CS DR dropped to below 50 percent. The overall message number

and payload were reduced by at least 40.46 percent and at most 41.94 percent. Basic

dead reckoning concepts can not be used besides object movement. Therefore, in

CS DR additional messages have to be sent to propagate the resulting state changes

of the additional influences. Although the simulated version of CS DR included an

aggregation mechanism for optimizing the propagation of these state changes, the

additional messages resulted in a decreasing reduction rate in comparison to the

continuous events approach.

In summary, a comparison of the reduction rates in percent between the continu-

ous events approach and the simulated version of a client/server system with basic

dead reckoning shows that with increasing complexity of the continuous action the

advantage of the continuous events approach increases. Dead reckoning aims at op-

timizing the propagation of movement while the continuous events approach aims

at optimizing the propagation of continuous actions in general. Therefore, CS DR

has an advantage for continuous actions that only or predominantly involve object

movement. The continuous events approach has an advantage for complex continu-

ous actions with additional interactions and influences on other objects in the virtual

environment.

Influence of Varying Spatial Modeling of the Extent of Continuous

Actions on the Performance of the Continuous Events Approach

The presented results indicate that there are correlations between varying spatial

modeling alternatives for the extent of continuous events and the resulting network

traffic reduction as well as the characteristics of the resulting information flow.

In all performed simulations, the use of a minimum spatial modeling by CE Min

AoE resulted in a higher message and payload reduction than the use of a maximum

spatial modeling by CE Max AoE. However, the difference between the reduction

percentage of CE Min AoE and CE Max AoE gets smaller with increasingly complex

continuous events. For continuous action type 1, CE Min AoE reduced the overall

message number by 2.15 percent more and the overall payload by 2.18 percent more

than CE Max AoE. For the most complex type of continuous action, type 4, CE

Min AoE reduced the overall message number only by 0.08 percent more than CE

Max AoE. The reduction rates concerning the overall payload were even identical.

138 5. Evaluation

Concerning the characteristics of the information flow, in all performed simulations

the minimum spatial modeling resulted in less overall messages and payload but at

the same time led to a higher network load for the peer that runs the CEM. Because

of the smaller initial AoE of the minimum modeling, less continuous events were

propagated directly between peers and more peers had to be provided with existing

continuous events by the CEM. On the other hand, the maximum spatial modeling

resulted in more overall messages and payload than the minimum modeling, but the

network load is more distributed over the peers. Because of the large initial AoE,

more continuous events were propagated initially between the peers and, as a result,

the managing peer had to carry less network load.

This observation backs up the decision by the continuous events approach to sup-

port several spatial modelings and shapes instead of deciding about a certain spatial

modeling for the extent of continuous actions. Depending on the type of continuous

action, the use case and target system, the spatial modeling can be chosen accord-

ingly. By selecting a certain spatial modeling, the characteristics of the information

flow can be directly influenced. In case there is a superpeer with strong networking

capabilities or the MMVE consists of small zones, a minimum modeling seems to be

the best choice because of the highest reduction rate. In case the superpeer has to

carry less networking load or the MMVE consists of large zones, a maximum model-

ing seems to be a feasible choice as well because it leads to more directly propagated

continuous events and the reduction rate is also high.

Comparison of Average Payload per Message between Dead Reckoning

and the Continuous Events Approach

Table 5.3 on page 139 presents a comparison of the average payload sizes in bytes

per message that were calculated based on the recorded results of the simulations.

The comparison shows that independently from the simulated type of continuous

action the payload size of continuous events remained similar. Even for continuous

actions with increasing complexity, the average payload size per continuous event

did not increase. This backs up the decision to include function ids instead of code

into continuous events. Because the code for the complex manipulation of multiple

object states is not contained in the continuous events that are sent at runtime, it is

possible to keep the average payload size relatively constant, even for very complex

continuous actions.

5.7. Assessment and Discussion of Results 139

Action Type 1 Action Type 2 Action Type 3 Action Type 4

Dead Reckoning 124.01 124.01 124.01 123.00
CE Min AoE 136.34 136.33 136.34 136.27
CE Max AoE 136.58 136.58 136.58 136.00

Table 5.3.: Average payload size in bytes per messsage of the simulated optimization approaches

In all simulations, continuous events had a larger average payload than messages

that included the parameters for dead reckoning. When using CE Min AoE, the

average payload of continous events was 12.33 bytes larger for continuous action

types 1 and 3, 12.32 bytes larger for continuous action type 2, and 13.27 bytes

larger for continuous action type 4. When using CE Max AoE, the average payload

of continuous events was 12.57 bytes larger for continuous action types 1, 2 and 3,

and 13 bytes larger for continuous action type 4.

This shows that continuous events are able to support a scalable propagation of

generic, potentially very complex continuous actions with only a slightly larger

payload than dead reckoning that only supports movement. In contrast to dead

reckoning, the continuous events approach needs additional registration messages.

However, as shown in the previous discussion about the general performance of the

approaches, the continuous events approach is able to propagate continuous actions

in a scalable way even including the registration messages.

When comparing the average payload sizes that are presented in Table 5.3 it can be

observed that the average payload size per dead reckoning message is identical for

continuous action types 1 to 3. The average payload size for continuous action type

4 deviates and is smaller. A similar pattern can be observed for the average payload

sizes per continuous event. A potential reason for this is the reuse of the object

movement patterns for the first three types of continuous actions. For continuous

action type 4, only the parameter values for movement were reused because in

contrast to the other three action types ten objects move at a time instead of one

randomly selected object. However, because this observation can be made for all

simulated optimization approaches and all approaches are affected in a similar way,

the results are nevertheless meaningful.

6. Conclusion and Future Work

This final chapter gives a summary of this work in Section 6.1. Then Section 6.2

classifies this work in the context of the presented related work. Section 6.3 assesses

the fulfilment of requirements by the presented approach. Finally, Section 6.4 gives

an outlook on potential directions of future research.

6.1. Summary

Chapter 1 first gave an overview of the research objectives of this work. This work

aims at finding an approach to send the outcome of continuous actions in a scalable

way over the network of a P2P-MMVE. It puts an emphasis on designing a system

architecture and algorithms for a scalable sending of the outcome of continuous ac-

tions in the context of the given target P2P-MMVE system model. At next, Chapter

1 gave a short overview of the conceptual characteristics of the continuous events

approach. The continuous events approach builds on the notion that informations

about continuous actions are sent only once over the network instead of sending

multiple events describing the outcome of the continuous actions over time. Based

on the sent informations, the outcome can then be calculated on the peers. The

informations about continuous actions are propagated based on continuous events.

Continuous events are dedicated event entities for continuous actions that carry

the informations and reside within the system over the duration of the continuous

actions. Continuous events are executed and managed automatically by the sys-

tem. Generic function code can be added to the system and is called by continuous

events. In the following, Chapter 1 summarized the contributions of this work to

the research field of P2P-MMVEs. The continuous events approach enhances the

scalability of P2P-MMVEs by propagating the future outcome of continuous ac-

tions in an aggregated way. One continuous event is able to describe complex state

changes of multiple objects and to apply state changes to a potentially huge number

of objects. The use of continuous events is facilitated by given interfaces. Execution

and management of continuous events is encapsulated. The approach uses generic

141

142 6. Conclusion and Future Work

function code that enables the support of a wide variety of continuous action types

and use cases. Finally, Chapter 1 presented the organization of this work.

Chapter 2 described the background of this work. At first, Chapter 2 introduced

MMVEs and gave an overview of MMVE systems from research and practice.

MMVEs originated primarily from military research and initiatives that aimed at

providing simulations for military training. Over the years, more and more fields of

usage evolved and even several IEEE standards were published. A research commu-

nity specifically for P2P-MMVEs formed in the 2000s. At next, Chapter 2 identified

related work. This work has relations to the fields of interest management, dead

reckoning and several prediction techniques for avatar behavior. An overview of

appproaches from these fields was given. In addition, the concept of Geocast was

described, which might be a potential additional field of usage for the continuous

events approach. A summary of own related work was given. After that, Chapter 2

presented the target P2P-MMVE system model of this work. This work originated

from a research project that aimed at providing a framework for P2P-MMVEs.

The target P2P-MMVE system model includes the following characteristics: Com-

munication via peer-to-peer, use of a superpeer concept by tesselating the virtual

environment into zones and assigning peers as superpeers to zones for coordination

of system tasks, stateful objects, event-driven propagation of state changes based on

the spatial publish subscribe communication model, existence of a MMVE software

on all peers. Chapter 2 concluded with an overview of the underlying assumptions

and the requirements for this work.

Chapter 3 presented the continuous events approach. In the continuous events ap-

proach, continuous actions are represented by continuous events. A continuous event

is an explicit event entity for representing continuous actions in the system. A con-

tinuous event carries informations that describe the future outcome of a continuous

action. It includes informations about the spatial influence of a continuous action

over time, its effect on the virtual environment and objects over time, and timing

information. Instead of propagating events about every state change caused by a

continuous action to other peers, a continuous event is propagated and the future

outcome is calculated and applied on these peers. In the following, Chapter 3 dis-

cussed varying modeling alternatives for the spatial influence of a continuous action

over time. Because there is not one best way to model the spatial influence of all

types of continuous actions, the continuous events approach supports spatial influ-

ence areas for continuous actions in a generic way. Function code for calculating

6.1. Summary 143

certain influence areas over time can be added to the system and continuous events

call these functions to get the shape of the spatial influence over time. The calcu-

lation of the effect of a continuous action on the virtual environment is supported

in the same generic way. Function code can be added that calculates the effect of a

continuous event over time and is called by the continuous event. At next, Chapter

3 introduced a formal model for continuous events. Finally, Chapter 3 concluded

with a discussion of timing alternatives. Continuous events can be either finite or

infinite. Finite continuous events have a clearly defined start and end and are auto-

matically terminated by the system. Infinite continuous event have a clearly defined

start but no end. They have to be terminated explicitly. The continuous events ap-

proach supports both types. The generic support of the spatial influence and effect

of continuous actions and the support of both timing alternatives allows to support

a wide variety of use cases.

Chapter 4 presented a system architecture that supports the continuous events ap-

proach in the context of the given P2P-MMVE target system model. At first,

Chapter 4 gave an overview of the overall design of the system architecture and

the integration into the target system model. The system architectures includes

architectural components for coordination of distributed communication, managing

existing continuous events in the system, executing continuous events on all peers,

providing function code on all peers, storing continuous events on all peers, and for

registering timers. In addition, functionalities of several other architectural compo-

nents of the target system are used by the system architecture. In the following,

Chapter 4 described the basic continuous event support by the system architecture.

The system behavior, algorithms and information flow were explained in detail for

the following basic use cases: MMVE start, joining of a new peer, leaving of a

peer, start and execution of continuous events, management of existing continuous

events, modification and termination of existing continuous events. Finally, Chapter

4 presented and discussed several extensions.

Chapter 5 described an evaluation of the continuous events approach. At first,

Chapter 5 discussed the focus of the presented evaluation. Because preliminary

load experiments showed that calculation load is not a limiting factor for the con-

tinuous events approach, the presented evaluation focuses on the networking aspects

of the approach. At next, Chapter 5 explained the methodology of the evaluation.

The evaluation was performed via simulations of the approach. Several aspects for

an assessment of the simulation results were identified. Two metrics for recording

144 6. Conclusion and Future Work

results, message number and payload size, were derived from the identified aspects.

After that, Chapter 5 gave an overview of the Java implementation of a software

prototype for simulation of the continuous events approach. The prototype includes

basic continuous event support. It is able to simulate the information flow within a

zone of a P2P-MMVE according to the target system model based on pre-recorded

movement and action data. In the following, Chapter 5 described the process of a

typical simulation run, the software and hardware specifications for the simulations,

and the general settings of the simulation. The general settings emulate the condi-

tions of a Second Life zone. Simulations were performed for four types of continuous

actions with varying characteristics. For each action type, the information flow of a

basic P2P-MMVE approach with spatial publish subscribe, a client/server-based ap-

proach with dead reckoning, and two alternatives of the continuous events approach

were simulated. The two alternatives of the continuous events approach used vary-

ing modelings of the spatial influence of the continuous actions: A minimum and a

maximum spatial modeling.

Chapter 5 concluded with an assessment and discussion of the simulation results.

In comparison to the simulated basic P2P-MMVE approach, the continuous events

approach was able to reduce network traffic significantly for all four types of con-

tinuous actions. A comparison to the client/server-based approach with dead reck-

oning showed that the continuous events approach came close, but could not beat

the reduction performance of dead reckoning for continuous actions that only or

predominantly involve movement. For more complex continuous actions, the con-

tinuous events approach had clear advantages. The spatial modeling had a direct

implication on the characteristics of the information flow. A minimum modeling led

to less overall network traffic but a higher load on the peer that manages existing

continuous events. A maximum modeling led to a higher overall network traffic but

more continuous events were propagated directly between peers and, as a result,

the network load was more distributed over all peers. A comparison of the payload

size showed that the payload of continuous events was only slightly larger than the

payload of messages for dead reckoning.

6.2. Classification of this Work

The fields of dead reckoning and prediction techniques for avatar behavior are direct

related work to this work. An overview of approaches from both fields was given

6.2. Classification of this Work 145

earlier in Subsection 2.2. In the following, the presented continuous events approach

is compared to the general concepts of dead reckoning approaches and approaches

with prediction techniques for avatar behavior.

All three types of approaches build on a similar notion. Instead of sending accurate

updates for each state change that is caused by a continuous action, the approaches

accept a certain grade of inaccuracy in order to enhance the scalability of propa-

gation. Informations describing the outcome are sent and future state changes are

exrapolated based on mathematical equations or are predicted based on algorithms.

The similarity of the underlying notion becomes apparent when comparing Figure

2.2 on page 30, Figure 2.3 on page 36 and Figure 3.3 on page 55.

However, a comparison of the three figures also shows the differences of the ap-

proaches. Dead reckoning clearly aims at optimizing the propagation of movement.

Future positions are calculated based on mathematical equations that reside on

each user computer. In contrast to the other approaches, dead reckoning typically

includes algorithms that regularly check for position deviations and trigger a re-

sending of parameters and converging of positions in case the deviation exceeds a

given threshold. Because dead reckoning and its algorithms are tailored specifically

towards positions and movement, the approach has advantages for a scalable prop-

agation of continuous actions that only or predominantly involve movement. This

claim was backed up by the simulation results presented in this work.

Prediction techniques for avatar behavior can conceptually be classified closer to the

continuous events approach because the supported types of continuous actions are

more generic than the continuous actions supported by dead reckoning. Prediction

techniques for avatar behavior communicate a rough description of future avatar

behavior and use function code or artificial intelligence routines to let the copies

of user avatars act similar to the actual user avatar. In contrast to the continuous

events approach, prediction techniques for avatar behavior typically perform their

optimization correlated to a certain avatar object. The continuous events approach,

on the other hand, is able to manipulate the state of a large number of objects of

varying types. Instead of defining certain code or artificial intelligence routines, the

continuous events approach supports a wide variety of use cases by allowing the

adding of generic function code to the system.

From a conceptual point of view, the continuous events approach has the highest

grade of abstraction. Various types of continuous actions are supported. This

might result in a slightly worse performance compared to the other approaches

146 6. Conclusion and Future Work

when confronted with the specific continuous action type that is supported by these

approaches. For example, the simulated client/server system with dead reckoning

was able to beat the continuous events approach for continuous actions that only or

predominantly involve movement. However, the continuous events approach is able

to support the widest variety of use cases.

6.3. Fulfillment of Requirements

Section 2.5 identified the following requirements for this work:

1. Scalable propagation of continuous actions

2. Support of explicit use

3. Encapsulation of execution and management processes by the system

4. Handling of peer crashes

5. Handling of peer disconnections

6. Handling of overloaded peers

The performed simulations showed that the continuous events approach was able to

reduce the number of overall messages and payload for propagation of continuous ac-

tions significantly in comparison to the simulated event-driven P2P-MMVE system

with an event propagation via spatial publish subscribe using single events. In addi-

tion, the simulations showed that for continuous actions that predominantly involve

movement the continuous events approach was able to come at least close in mes-

sage and payload reduction to the simulated client/server-based MMVE system with

dead reckoning. For continuous actions with more complex characteristics involving

multiple influences on other objects in addition to movement, the continuous events

approach clearly beat the client/server-based system with dead reckoning. The re-

duction of the overall number of messages and payload is directly correlated to the

scalability of the event propagation of a P2P-MMVE system. Therefore, based on

the strong reduction rate it can be concluded that the continuous events approach

is able to propagate continuous actions in P2P-MMVE systems in a scalable way.

Requirement 1 is fulfilled by the presented approach.

The presented system architecture for continuous event support includes interfaces

that allow the explicit start, modification and termination of continuous events by

the MMVE software. Algorithms for the start, modification and termination of

6.4. Future Directions 147

continuous events were described in this work. Requirement 2 is fulfilled by the

presented approach.

The system architecture includes architectural components that execute continuous

events on the peers (CEE) and manage existing continuous events in the system

(CEM). After the explicit start of a continuous event by the MMVE software, the

components execute and manage continuous events automatically. Algorithms for

execution and management were presented in this work. The propagation of an

explicit modification or termination of an existing continuous event by the MMVE

software is performed automatically by the system architecture. The CEM admin-

istrates receiver lists for continuous events and delivers informations about mod-

ifications or termination of a continuous event based on the receiver list of this

continuous event to all peers that have a copy of the continuous event. Requirement

3 is fulfilled by the presented approach.

Subsections 4.3.2, 4.3.3 and 4.3.4 discussed potential solutions for the challenges of

peer crashes, peer disconnections and overloaded peers. No specific algorithms were

designed because such algorithms are closely related to other framework parts and

solutions have to be found at the scope of the overall system architecture, which is

beyond the scope of this work. However, potential strategies and solutions for all

challenges were at least discussed. At the scope of this work, no better fulfillment

of requirements 4, 5 and 6 can be reached.

6.4. Future Directions

Subsection 2.2.4 of this work observed that the concept of geocast from the research

fields of mobile and context-aware computing shows similarities to the spatial pub-

lish subscribe communication mechanism that is used for propagation of continuous

events by the continuous events approach. The similarities between geocast and

spatial publish subscribe might allow to use the concept of continuous events in

research fields beyond P2P-MMVEs. A potential direction for future research might

be to explore the use of continuous events in mobile computing infrastructures based

on geocast. In order to enable the use of continuous events in infrastructures with

geocast, the similarities and differences between geocast and spatial publish sub-

scribe have to be researched in more detail. Potentially needed adjustments to the

continuous events approach for a use in the context of geocast have to be identified

and applied to the presented architectural design and algorithms.

148 6. Conclusion and Future Work

Another potential direction for future research or, at least, for an extension of the

continuous events approach might be a spatial propagation using multi-dimensional

shapes. The spatial publish subscribe mechanism that is used by the continuous

events approach manages interest based on a 2-dimensional spatial projection of the

virtual environment. This simplification reduces the burden for calculating inter-

sections between spatial AoE publications and spatial AoI subscriptions and consti-

tutes a trade-off between accuracy of spatial publish subscribe and calculation over-

head. Nevertheless, expanding the spatiality towards a third dimension is desirable.

MMVEs often include user actions such as flying that result in 3-dimensional posi-

tions of user avatars. Such avatars are positioned high above other user avatars and

the peers of these users do not have to be provided with updates about each other.

In a 2-dimensional projection, these peers might still be provided with updates of

each other because they might have the same coordinates on a 2-dimensional plane.

In such scenarios, spatial publish subscribe can be performed more accurate with

3-dimensional shapes. However, intersecting and managing 3-dimensional shapes

might put a high calculation burden on the peers. Therefore, instead of adding a

full third dimension, a potential trade-off might be found in the field of location

models for geocast. In [DR03], the authors use 2.5-dimensional shapes that consist

of a 2-dimensional base and an altitude value. In order to check if intersections

between two shapes exist, the bases have to be intersected and the altitude values

have to be compared. The grade of accuracy of 2.5-dimensional shapes for spatial

publish subscribe is lower than a full 3-dimensional scheme. However, altitude values

of flying users can be considered for spatial publish subscribe with low calculation

overhead. Extending the spatiality of the spatial publish subscribe mechanism that

is used by the continuous events approach with 2.5-dimensional shapes might be a

future extension for the continuous events approach.

Over the years, numerous P2P-MMVE system architectures were proposed. It was

shown that the peer-to-peer model is a reasonable alternative to MMVEs based on

the client/server model. Nevertheless, at the point of writing of this work the state-

of-the-art architecture that is used by commercially successful MMVEs still is typi-

cally based on the client/server model. The client/server model is well understood

and allows MMVE providers to have a high grade of control over the system. Based

on the client/server model, companies from the gaming sector are able to provide

MMVEs for several hundered simultaneous users in a scalable way. Assuming in the

future the state-of-the-art system architecture will still be client/server-based, ex-

ploring the use of the continuous events approach in the context of the client/server

6.4. Future Directions 149

model might also be a direction of future research. The evaluations that were per-

formed and described in this work used one CEM. This CEM could be placed on the

server in a client/server-based system. Each client could run a CEE, similar to the

regular peers in the simulations. Under the assumption that the client/server-based

system includes a spatial publish subscribe network service and a service for ad-

dressing messages directly to certain clients, the continuous events approach could

be adjusted for use in a client/server-based system. Because one CEM was used,

the presented simulation results not only indicate a high reduction potential by

the continuous events approach in a P2P-MMVE. In addition, the results hint at

a similar potential in the context of client/server-based systems. The design of a

modified system architecture for continuous event support in a client/server-based

system and the exploration of the potential of the continuous events approach in

the context of the client/server model might be an interesting direction for future

research.

The simulations further showed that dead reckoning has an advantage over the con-

tinuous events approach for the propagation of continuous actions that only involve

object movement. In contrast, the continuous events approach is able to support

more continuous action types and has an advantage over dead reckoning for the prop-

agation of complex continuous actions. A potential field of future research might be

to explore the mutual influence of the approaches when used in conjunction in the

same MMVE system. In case the approaches can be used simultaneously without a

negative mutual influence, dead reckoning could be used for the propagation of pure

movement and the continuous events approach for other types of continuous actions.

Such a solution has the potential to combine the advantages of both approaches.

Exploring the mutual influence between dead reckoning and the continuous events

approach might be another promising direction for future research.

A. Simulation Results

Messages Sent
Server Managing Peer Clients / Regular Peers

No Optimization (P2P SPS) 0 0 639291
Client/Server with Dead Reckoning 13842 0 300
P2P SPS with CE Min 0 11809 4366
P2P SPS with CE Max 0 1853 28086

Messages Received
Server Managing Peer Clients / Regular Peers

No Optimization (P2P with SPS) 0 0 58995683
Client/Server with Dead Reckoning 1716840 0 36960
P2P SPS with CE Min 0 1609378 493552
P2P SPS with CE Max 0 252524 3133808

Payload Sent (Byte)
Server Managing Peer Clients / Regular Peers

No Optimization (P2P SPS) 0 0 639291
Client/Server with Dead Reckoning 300 0 13842
P2P SPS with CE Min 0 2333 13842
P2P SPS with CE Max 0 14193 15746

Payload Received (Byte)
Server Managing Peer Clients / Regular Peers

No Optimization (P2P SPS) 0 0 58995683
Client/Server with Dead Reckoning 36960 0 1716840
P2P SPS with CE Min 0 215818 1887112
P2P SPS with CE Max 0 1235778 2150554

Payload Comparison (Byte)
Messages Payload Payload per Message

Dead Reckoning 14142 1753800 124.0135766
CE Min 14142 1928092 136.3380003
CE Min Registration 2033 174838 86
CE Max 16046 2191534 136.5782126
CE Max Registration 13893 1194798 86

Table A.1.: Recorded simulation results for continuous action type 1

IX

X A. Simulation Results

Messages Sent
Server Managing Peer Clients / Regular Peers

No Optimization (P2P SPS) 0 0 642506
Client/Server with Dead Reckoning 17057 0 588
P2P SPS with CE Min 0 11949 4366
P2P SPS with CE Max 0 1903 28296

Messages Received
Server Managing Peer Clients / Regular Peers

No Optimization (P2P SPS) 0 0 59328892
Client/Server with Dead Reckoning 1971054 0 66797
P2P SPS with CE Min 0 1628376 493552
P2P SPS with CE Max 0 259337 3157176

Payload Sent (Byte)
Server Managing Peer Clients / Regular Peers

No Optimization (P2P SPS) 0 0 642506
Client/Server with Dead Reckoning 588 0 17057
P2P SPS with CE Min 0 2333 13982
P2P SPS with CE Max 0 14298 15901

Payload Received (Byte)
Server Managing Peer Clients / Regular Peers

No Optimization (P2P SPS) 0 0 59328892
Client/Server with Dead Reckoning 66797 0 1971054
P2P SPS with CE Min 0 215818 1906110
P2P SPS with CE Max 0 1244808 2171705

Payload Comparison (Byte)
Messages Payload Payload per Message

Dead Reckoning 14142 1753800 124.0135766
CE Min 14282 1947090 136.3317463
CE Min Registration 2033 174838 86
CE Max 16201 2212685 136.5770631
CE Max Registration 13998 1203828 86

Table A.2.: Recorded simulation results for continuous action type 2

A. Simulation Results XI

Messages Sent
Server Managing Peer Clients / Regular Peers

No Optimization (P2P SPS) 0 0 1467224
Client/Server with Dead Reckoning 838910 0 34656
P2P SPS with CE Min 0 12830 6030
P2P SPS with CE Max 0 1862 31662

Messages Received
Server Managing Peer Clients / Regular Peers

No Optimization (P2P SPS) 0 0 144506858
Client/Server with Dead Reckoning 81115107 0 3583109
P2P SPS with CE Min 0 1748354 678750
P2P SPS with CE Max 0 253749 3531873

Payload Sent (Byte)
Server Managing Peer Clients / Regular Peers

No Optimization (P2P SPS) 0 0 1467224
Client/Server with Dead Reckoning 34656 0 838910
P2P SPS with CE Min 0 3165 15695
P2P SPS with CE Max 0 15981 17543

Payload Received (Byte)
Server Managing Peer Clients / Regular Peers

No Optimization (P2P SPS) 0 0 144506858
Client/Server with Dead Reckoning 3583109 0 81115107
P2P SPS with CE Min 0 287370 2139734
P2P SPS with CE Max 0 1389546 2396076

Payload Comparison (Byte)
Messages Payload Payload per Message

Dead Reckoning 14142 1753800 124.0135766
CE Min 15995 2180714 136.3372304
CE Min Registration 2865 246390 86
CE Max 17843 2437056 136.58331
CE Max Registration 15681 1348566 86

Table A.3.: Recorded simulation results for continuous action type 3

XII A. Simulation Results

Messages Sent
Server Managing Peer Clients / Regular Peers

No Optimization (P2P SPS) 0 0 29886020
Client/Server with Dead Reckoning 16906830 0 693120
P2P SPS with CE Min 0 22130 14868
P2P SPS with CE Max 0 0 59700

Messages Received
Server Managing Peer Clients / Regular Peers

No Optimization (P2P SPS) 0 0 2943966445
Client/Server with Dead Reckoning 1637564130 0 71597832
P2P SPS with CE Min 0 3017607 1657848
P2P SPS with CE Max 0 0 6634200

Payload Sent (Byte)
Server Managing Peer Clients / Regular Peers

No Optimization (P2P SPS) 0 0 29886020
Client/Server with Dead Reckoning 693120 0 16906830
P2P SPS with CE Min 0 7584 29414
P2P SPS with CE Max 0 30000 29700

Payload Received (Byte)
Server Managing Peer Clients / Regular Peers

No Optimization (P2P SPS) 0 0 2943966445
Client/Server with Dead Reckoning 71597832 0 1637564130
P2P SPS with CE Min 0 667224 4008231
P2P SPS with CE Max 0 2595000 4039200

Payload Comparison (Byte)
Messages Payload Payload per Message

Dead Reckoning 51595 6345982 122.9960655
CE Min 29714 4049031 136.2667766
CE Min Registration 7284 626424 86
CE Max 30000 4080000 136
CE Max Registration 29700 2554200 86

Table A.4.: Recorded simulation results for continuous action type 4

B. Load Experiment

Property Value

Operating System Windows 7 Professional (Service Pack 1), 64 Bit
Java Virtual Machine Version 7, Update 7

CPU Intel Core2Duo, E7200, 2.53GHz
Memory 4 GB

Table B.1.: Load experiment: Software and hardware specifications

Action Type 1 Action Type 2 Action Type 3 Action Type 4

Run 1 6250 6119 5877 5554
Run 2 6077 5725 5801 5703
Run 3 5928 5800 5754 5765
Run 4 6174 6275 5809 5530
Run 5 5943 6535 5623 5807
Run 6 6190 6268 5794 5798
Run 7 6203 5782 5620 5837
Run 8 6181 5740 5783 5905
Run 9 6036 6148 5794 5765
Run 10 5969 5891 5805 5572

Average 6095.1 6028.3 5766 5723.6

Table B.2.: Load experiment: Number of calculated steps for CE Min AoE in 100 ms

Action Type 1 Action Type 2 Action Type 3 Action Type 4

Run 1 5835 5486 5369 5445
Run 2 6151 5846 5311 5181
Run 3 5849 5824 5514 5219
Run 4 5820 5566 5494 5716
Run 5 5918 5627 5690 5724
Run 6 6017 5641 5633 5520
Run 7 5965 5996 5670 5433
Run 8 6182 5606 5557 5278
Run 9 5735 5719 5561 5585
Run 10 6008 5746 5458 5336

Average 5948 5705.7 5525.7 5443.7

Table B.3.: Load experiment: Number of calculated steps for CE Max AoE in 100 ms

XIII

Bibliography

[ARB90] John M. Airey, John H. Rohlf, and Frederick P. Brooks, Jr. Towards

image realism with interactive update rates in complex virtual building

environments. In Proceedings of the 1990 Symposium on Interactive

3D Graphics, pages 41–50, March 1990.

[Aro] Jesse Aronson. Dead reckoning: Latency hiding for net-

worked games. Online article, September 1997. Accessed:

13.09.2011,12:16. http://www.gamasutra.com/view/feature/3230/

dead reckoning latency hiding for .php.

[ASdO06] Dewan Tanvir Ahmed, Shervin Shirmohammadi, and Jauvane C.

de Oliveira. A novel method for supporting massively multi-user vir-

tual environments. In Proceedings of the IEEE International Workshop

on Haptic Audio Visual Environments and their Applications (HAVE),

pages 72–77, November 2006.

[ATS04] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey

of peer-to-peer content distribution technologies. ACM Computing

Surveys (CSUR), 36(4):335–371, December 2004.

[BC85] Eric J. Berglund and David R. Cheriton. Amaze: A multiplayer com-

puter game. IEEE Software, 2:30–39, May 1985.

[BCL+04] Tom Beigbeder, Rory Coughlan, Corey Lusher, John Plunkett, Em-

manuel Agu, and Mark Claypool. The effects of loss and latency on

user performance in Unreal Tournament 2003. In Proceedings of the 3rd

Workshop on Network and System Support for Games (NetGames),

pages 144–151, August 2004.

[BD05] Christian Becker and Frank Dürr. On location models for Ubiqui-

tous Computing. Personal Ubiquitous Computing, 9(1):20–31, January

2005.

[BDL+08] Ashwin Bharambe, John R. Douceur, Jacob R. Lorch, Thomas Mosci-

broda, Jeffrey Pang, Srinivasan Seshan, and Xinyu Zhuang. Donny-

XV

XVI Bibliography

brook: Enabling large-scale, high-speed, peer-to-peer games. In Pro-

ceedings of the ACM SIGCOMM Conference on Data Communication,

pages 389–400, August 2008.

[BF93] Steve Benford and Lennart Fahlén. A spatial model of interaction in

large virtual environments. In Proceedings of the Third European Con-

ference on Computer-Supported Cooperative Work (ECSCW), pages

109–124, September 1993.

[BGRP01] Steve Benford, Chris Greenhalgh, Tom Rodden, and James Pycock.

Collaborative virtual environments. Communications of the ACM,

44(7):79–85, July 2001.

[BHS+08] Jean Botev, Alexander Höhfeld, Hermann Schloss, Ingo Scholtes, and

Markus Esch. The HyperVerse - concepts for a federated and torrent-

based 3D web. In Proceedings of the 1st International Workshop

on Massively Multiuser Virtual Environments (MMVE), pages 34–39,

March 2008.

[BKR07] Olivier Beaumont, Anne-Marie Kermarrec, and Étienne Rivière. Peer

to peer multidimensional overlays: Approximating complex structures.

In Proceedings of the 11th International Conference on Principles of

Distributed Systems, pages 315–328, December 2007.

[BKV06] Jean-Sébastien Boulanger, Jörg Kienzle, and Clark Verbrugge. Com-

paring interest management algorithms for massively multiplayer

games. In Proceedings of the 5th Workshop on Network and System

Support for Games (NetGames), page 6, October 2006.

[Blia] Blizzard Entertainment, Inc. Official website of World of Warcraft.

Online. Accessed: 18.11.2012,11:43. http://www.worldofwarcraft.com.

[Blib] Blizzard Entertainment, Inc. World of Warcraft subscriber base

reaches 12 million worldwide. Online press release, October 2010.

Accessed: 19.10.2012,11:24. http://us.blizzard.com/en-us/company/

press/pressreleases.html?id=2847881.

[BMJ+98] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and

Jorjeta Jetcheva. A performance comparison of multi-hop wireless

ad hoc network routing protocols. In Proceedings of the 4th Annual

ACM/IEEE International Conference on Mobile Computing and Net-

working, pages 85–97, October 1998.

Bibliography XVII

[BPS06] Ashwin Bharambe, Jeffrey Pang, and Srinivasan Seshan. Colyseus: A

distributed architecture for online multiplayer games. In Proceedings of

the 3rd Symposium on Networked Systems Design and Implementation

(NSDI), pages 155–168, May 2006.

[BRS02] Ashwin Bharambe, Sanjay Rao, and Srinivasan Seshan. Mercury:

A scalable publish-subscribe system for internet games. In Proceed-

ings of the 1st Workshop on Network and System Support for Games

(NetGames), pages 3–9, 2002.

[CC05] Ling Chen and Gencai Chen. A fuzzy dead reckoning algorithm for

distributed interactive applications. In Proceedings of the Second in-

ternational Conference on Fuzzy Systems and Knowledge Discovery,

pages 961–971, August 2005.

[CET99] Tolga K. Capin, Joaqium Esmerado, and Daniel Thalmann. A dead-

reckoning technique for streaming virtual human animation. IEEE

Transactions on Circuits and Systems for Video Technology, 9(3):411–

414, April 1999.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-

ford Stein. Introduction to Algorithms. MIT Press, 2nd edition, 2001.

[CYB+07] Luther Chan, James Yong, Jiaqiang Bai, Ben Leong, and Raymond

Tan. Hydra: A massively-multiplayer peer-to-peer architecture for the

game developer. In Proceedings of the 6th Workshop on Network and

System Support for Games (NetGames), pages 37–42, 2007.

[DG03] Thomas P. Duncan and Denis Gracanin. Pre-reckoning algorithm for

distributed virtual environments. In Proceedings of the 2003 Winter

Simulation Conference, pages 1086–1093, December 2003.

[dOG02] Jauvane C. de Oliveira and Nicolas D. Georganas. VELVET: An adap-

tive hybrid architecture for very large virtual environments. In Pro-

ceedings of the IEEE International Conference on Communications

(ICC), pages 2491–2495, May 2002.

[DR03] Frank Dürr and Kurt Rothermel. On a location model for fine-grained

geocast. In Proceedings of the 5th International Conference on Ubiq-

uitous Computing (UbiComp), pages 18–35, October 2003.

[DTHK05] Scott Douglas, Egemen Tanin, Aaron Harwood, and Shanika

Karunasekera. Enabling massively multi-player online gaming applica-

XVIII Bibliography

tions on a P2P architecture. In Proceedings of the IEEE International

Conference on Information and Automation, pages 7–12, December

2005.

[ERM05] Abdennour El Rhalibi and Madjid Merabti. Agents-based modeling

for a peer-to-peer MMOG architecture. Computers in Entertainment,

3(2):3–3, April 2005.

[FRP+08] Davide Frey, Jérôme Royan, Romain Piegay, Anne marie Kermarrec,

Fabrice Le Fessant, and Emmanuelle Anceaume. Solipsis: A decentral-

ized architecture for virtual environments. In Proceedings of the 1st

International Workshop on Massively Multiuser Virtual Environments

(MMVE), pages 29–33, March 2008.

[Fuj98] Richard M. Fujimoto. Time management in the High Level Architec-

ture. Simulation, 71(6):388–400, December 1998.

[GB95] Chris Greenhalgh and Steven Benford. MASSIVE: A collabora-

tive virtual environment for teleconferencing. ACM Transactions on

Computer-Human Interaction (TOCHI) - Special Issue on Virtual Re-

ality Software and Technology, 2(3):239–261, September 1995.

[GLZ05] Chris GauthierDickey, Virginia Lo, and Daniel Zappala. Using n-trees

for scalable event ordering in peer-to-peer games. In Proceedings of

the 15th International Workshop on Network and Operating Systems

Support for Digital Audio and Video (NOSSDAV), pages 87–92, June

2005.

[Gre97] Chris Greenhalgh. Large Scale Collaborative Virtual Environments.

PhD thesis, University of Nottingham, October 1997.

[HBH06] Thorsten Hampel, Thomas Bopp, and Robert Hinn. A peer-to-peer

architecture for massive multiplayer online games. In Proceedings

of the 5th Workshop on Network and System Support for Games

(NetGames), page 48, 2006.

[HCC06] Shun-Yun Hu, Jui-Fa Chen, and Tsu-Han Chen. VON: A scal-

able peer-to-peer network for virtual environments. IEEE Network,

20(4):22–31, July-August 2006.

[HL04] Shun-Yun Hu and Guan-Ming Liao. Scalable peer-to-peer networked

virtual environment. In Proceedings of the 3rd Workshop on Network

Bibliography XIX

and System Support for Games (NetGames), pages 129–133, August

2004.

[HLL00] Seunghyun Han, Mingyu Lim, and Dongman Lee. Scalable interest

management using interest group based filtering for large networked

virtual environments. In Proceedings of the ACM Symposium on Vir-

tual Reality Software and Technology (VRST), pages 103–108, October

2000.

[HLLH08] Seunghyun Han, Mingyu Lim, Dongman Lee, and Soon J. Hyun. A

scalable interest management scheme for distributed virtual environ-

ments. Comput. Animat. Virtual Worlds, 19(2):129 – 149, May 2008.

[HSS+12] Florian Heger, Gregor Schiele, Richard Süselbeck, Laura Itzel, and

Christian Becker. Scalability in peer-to-peer-based MMVEs: The con-

tinuous events approach. In Proceedings of the IEEE Consumer Com-

munications and Networking Conference (CCNC) 2012, pages 629–

633, January 2012.

[HSSB09] Florian Heger, Gregor Schiele, Richard Süselbeck, and Christian

Becker. Towards an interest management scheme for peer-based virtual

environments. In Proceedings of the 1st International Workshop on

Concepts of Massively Multiuser Virtual Environments (COMMVE),

March 2009.

[Hu09] Shun-Yun Hu. Spatial publish subscribe. In Proceedings of the 2nd

International Workshop on Massively Multiuser Virtual Environments

(MMVE), March 2009.

[HWB+10] Shun-Yun Hu, Chuan Wu, Eliya Buyukkaya, Chien-Hao Chien, Tzu-

Hao Lin, Maha Abdallah, Jehn-Ruey Jiang, and Kuan-Ta Chen. A

spatial publish subscribe overlay for massively multiuser virtual en-

vironments. In Proceedings of the 2010 International Conference On

Electronics and Information Engineering (ICEIE), pages 314–318, Au-

gust 2010.

[iee93] IEEE Std 1278-1993. IEEE Standard for Information Technology -

Protocols for Distributed Interactive Simulations Applications–Entity

Information and Interaction, 1993.

[iee95a] IEEE Std 1278.1-1995. IEEE Standard for Distributed Interactive Sim-

ulation - Application Protocols, 1995.

XX Bibliography

[iee95b] IEEE Std 1278.2-1995. IEEE Standard for Distributed Interactive Sim-

ulation - Communication Services and Profiles, 1995.

[iee96] IEEE Std 1278.3-1996. IEEE Recommended Practice for Distributed

Interactive Simulation - Exercise Management and Feedback, 1996.

[iee97] IEEE Std 1278.4-1997. IEEE Trial-Use Recommended Practice for

Distributed Interactive Simulation - Verification, Validation, and Ac-

creditation, 1997.

[iee98] IEEE Std 1278.1a-1998. IEEE Standard for Distributed Interactive

Simulation - Application Protocols, 1998.

[iee03] IEEE Std 1516.3-2003. IEEE Recommended Practice for High Level

Architecture (HLA) Federation Development and Execution Process

(FEDEP), 2003.

[iee07] IEEE Std 1516.4-2007. IEEE Recommended Practice for Verification,

Validation, and Accreditation of a Federation - an Overlay to the High

Level Architecture Federation Development and Execution Process,

2007.

[iee10a] IEEE Std 1516-2010. IEEE Standard for Modeling and Simulation

(M&S) High Level Architecture (HLA) - Framework and Rules, 2010.

[iee10b] IEEE Std 1516.1-2010. IEEE Standard for Modeling and Simulation

(M&S) High Level Architecture (HLA) - Federate Interface Specifica-

tion, 2010.

[iee10c] IEEE Std 1516.2-2010. IEEE Standard for Modeling and Simulation

(M&S) High Level Architecture (HLA) - Object Model Template

(OMT) Specification, 2010.

[IHK04] Takuji Iimura, Hiroaki Hazeyama, and Youki Kadobayashi. Zoned

federation of game servers: A peer-to-peer approach to scalable multi-

player online games. In Proceedings of the 3rd Workshop on Network

and System Support for Games (NetGames), pages 116–120, August

2004.

[ISST06] Shin Ito, Hajime Saito, Hiroki Sogawa, and Yoshito Tobe. A propaga-

tion of virtual space information using a peer-to-peer architecture for

massively multiplayer online games. In Proceedings of the 26th IEEE

International Conference on Distributed Computing Systems Work-

shops (ICDCSW), page 44, July 2006.

Bibliography XXI

[JM96] David B. Johnson and David A. Maltz. Dynamic source routing in ad

hoc wireless networks. In Mobile Computing, pages 153–181. Kluwer

Academic Publishers, 1996.

[KLXH04] Björn Knutsson, Honghui Lu, Wei Xu, and Bryan Hopkins. Peer-to-

peer support for massively multiplayer games. In Proceedings of the

23rd Conference of the IEEE Communications Society (INFOCOM),

March 2004.

[KMA02] Yoshihiro Kawahara, Hiroyuki Morikawa, and Tomonori Aoyama. A

peer-to-peer message exchange scheme for large scale networked virtual

environments. In Proceedings of the 8th International Conference on

Communication Systems (ICCS), pages 957–961, April 2002.

[KS02] Joaqúın Keller and Gwendal Simon. Toward a peer-to-peer shared

virtual reality. In Proceedings of IEEE Workshop on Resource Sharing

in Massively Distributed Systems (RESH), pages 595–601, July 2002.

[KS03] Joaqúın Keller and Gwendal Simon. Solipsis: A massively multi-

participant virtual world. In Proceedings of the International Con-

ference on Parallel and Distributed Processing Techniques and Appli-

cations (PDPTA), pages 262–268, June 2003.

[Kul09] Santosh Kulkarni. Badumna network suite: A decentralized network

engine for massively multiplayer online applications. In Proceedings of

the IEEE Ninth International Conference on Peer-to-Peer Computing

(P2P), pages 178–183, September 2009.

[LBW97] Kuo-Chi Lin, Jesse L. Blair, and John M. Woodyard. Study on

dead-reckoning translation in High Level Architecture. Simulation,

69(2):103–109, August 1997.

[LCP+05] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, and

Steven Lim. A survey and comparison of peer-to-peer overlay network

schemes. IEEE Communications Surveys and Tutorials, 7(2):72–93,

2005.

[LCTC00] Bu-Sung Lee, Wentong Cai, Stephen J. Turner, and L. Chen. Adap-

tive dead reckoning algorithms for Distributed Interactive Simulation.

International Journal of Simulation Systems, Science and Technology,

1(1):21–34, December 2000.

XXII Bibliography

[Lina] Linden Research, Inc. Official website of Second Life. Online. Accessed:

18.11.2012,16:12. http://www.secondlife.com.

[Linb] Linden Research, Inc. Second Life Wiki. Online. Accessed:

29.01.2013,11:29. http://wiki.secondlife.com/wiki/Main Page.

[Linc] Linden Research, Inc. Second Life Wiki: Voluntary movement speeds.

Online. Accessed: 22.05.2012,15:26. http://wiki.secondlife.com/wiki/

Voluntary/ Movement/ Speeds.

[LLI+05] Jinwon Lee, Hyonik Lee, Sunghwan Ihm, Tcaesvk Gim, and Junehwa

Song. APOLO: Ad-hoc peer-to-peer overlay network for massively

multi-player online games. Technical report, KAIST, December 2005.

[LMS] Paul J. Leach, Michael Mealling, and Rich Salz. Request for Com-

ments (RFC): 4122 - A Universally Unique IDentifier (UUID) URN

Namespace. Online, July 2005. Accessed: 29.07.2012,16:11. http:

//www.ietf.org/rfc/rfc4122.txt.

[MBZ+95] Michael R. Macedonia, Donald P. Brutzman, Michael J. Zyda,

David R. Pratt, Paul T. Barham, John Falby, and John Locke.

NPSNET: A multi-player 3D virtual environment over the internet.

In Proceedings of the 1995 Symposium on Interactive 3D Graphics

(I3D), pages 93–94, April 1995.

[MGBY99] Yohai Makbily, Craig Gotsman, and Reuven Bar-Yehuda. Geometric

algorithms for message filtering in decentralized virtual environments.

In Proceedings of the 1999 Symposium on Interactive 3D Graphics

(I3D), pages 39–46, May 1999.

[MMOnD06] Pedro Morillo, W. Moncho, Juan M. Orduña, and José Duato. Provid-

ing full awareness to distributed virtual environments based on peer-

to-peer architectures. In Proceedings of the 24th International Confer-

ence on Advances in Computer Graphics (CGI), pages 336–347, June

2006.

[MS97] Katherine L. Morse and Jeffrey S. Steinman. Data distribution man-

agement in the HLA: Multidimensional regions and physically correct

filtering. In Proceedings of the 1997 Spring Simulation Interoperability

Workshop, pages 343–352, March 1997.

[MT95] Duncan C. Miller and Jack A. Thorpe. SIMNET: The advent of sim-

Bibliography XXIII

ulator networking. Proceedings of the IEEE, 83(8):1114–1123, August

1995.

[MZP+95] Michael R. Macedomia, Michael J. Zyda, David R. Pratt, Donald P.

Brutzman, and Paul T. Barham. Exploiting reality with multicast

groups: A network architecture for large-scale virtual environments.

In Proceedings of the 1995 IEEE Virtual Reality Annual International

Symposium, pages 2–10, March 1995.

[Ope] OpenSimulator Project. Official website of the OpenSimulator project.

Online. Accessed: 21.10.2012,10:49. http://www.opensimulator.org.

[Oraa] Oracle Corporation. Java Platform Standard Edition 7 Online Doc-

umentation, class java.lang.Integer. Online. Accessed: 30.10.2012.

http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html.

[Orab] Oracle Corporation. Java Platform Standard Edition 7 Online Docu-

mentation, class java.lang.Long. Online. Accessed: 30.10.2012. http:

//docs.oracle.com/javase/7/docs/api/java/lang/Long.html.

[Orac] Oracle Corporation. Java Platform Standard Edition 7 Online Doc-

umentation, class java.lang.String. Online. Accessed: 30.10.2012.

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html.

[Orad] Oracle Corporation. Java Platform Standard Edition 7 Online Doc-

umentation, class java.util.Calendar. Online. Accessed: 30.10.2012.

http://docs.oracle.com/javase/7/docs/api/java/util/Calendar.html.

[Orae] Oracle Corporation. Java Platform Standard Edition 7 Online Doc-

umentation, class java.util.Hashtable. Online. Accessed: 30.10.2012.

http://docs.oracle.com/javase/7/docs/api/java/util/Hashtable.html.

[Oraf] Oracle Corporation. Java Platform Standard Edition 7 Online Docu-

mentation, class java.util.UUID. Online. Accessed: 30.10.2012. http:

//docs.oracle.com/javase/7/docs/api/java/util/UUID.html.

[Orag] Oracle Corporation. Java Platform Standard Edition 7 Online Doc-

umentation, interface java.util.concurrent.ScheduledExecutorService.

Online. Accessed: 30.10.2012. http://docs.oracle.com/javase/7/docs/

api/java/util/concurrent/ScheduledExecutorService.html.

[PaP] Peers@Play Project. Official Website of the Peers@Play Project. On-

line. Accessed: 03.02.2013,12:50. http://www.peers-at-play.org/.

XXIV Bibliography

[PUL07] Jeffrey Pang, Frank Uyeda, and Jacob R. Lorch. Scaling peer-to-

peer games in low-bandwidth environments. In Proceedings of the 6th

International Workshop on Peer-to-Peer Systems (IPTPS), February

2007.

[SA04] Anthony Steed and Cameron Angus. Frontier sets: A partitioning

scheme to enable scalable virtual environments. In Proceedings of the

Eurographics 2004, 2004.

[SA05] Anthony Steed and Cameron Angus. Supporting scalable peer to peer

virtual environments using frontier sets. In Proceedings of the 2005

IEEE Conference on Virtual Reality (VR), pages 27–34, March 2005.

[SC94] Sandeep K. Singhal and David R. Cheriton. Using a position history-

based protocol for distributed object visualization. Technical report,

Stanford University, 1994.

[SC96] Sandeep K. Singhal and David R. Cheriton. Using projection aggrega-

tions to support scalability in distributed simulation. In Proceedings of

the 16th International Conference on Distributed Computing Systems

(ICDCS), pages 196–206, May 1996.

[Sca] Scalify Pty Ltd. Badumna network suite online documentation, section

2.3, dead reckoning. Online. Accessed: 20.10.2012,15:48. http://www.

scalify.com/documentation/Manual/gettingstarted.html.

[SFC00] Dilza Szwarcman, Bruno Feijó, and Mônica Costa. A framework

for networked reactive characters. In Proceedings of the XIII Brazil-

ian Symposium on Computer Graphics and Image Processing (SIB-

GRAPI), pages 203–210, October 2000.

[SHWL09] Gregor Schiele, Shun-Yun Hu, Daniel Weiskopf, and Ben Leong. Chal-

lenges in designing massively multiuser virtual environments: Experi-

ences from MMVE 2008. Special Issue International Journal of Ad-

vanced Media and Communication, 2009.

[SKH02] Jouni Smed, Timo Kaukoranta, and Harri Hakonen. Aspects of net-

working in multiplayer computer games. The Electronic Library,

20(2):87–97, 2002.

[SSGB99] Jianping Shi, Thomas J. Smith, John P. Granieri, and Norman I.

Badler. Smart avatars in JackMOO. In Proceedings of the 1999 IEEE

Conference on Virtual Reality (VR), pages 156–163, March 1999.

Bibliography XXV

[SSSB09] Richard Süselbeck, Gregor Schiele, Sebastian Seitz, and Christian

Becker. Adaptive update propagation for low-latency massively multi-

user virtual environments. In Proceedings of the 18th International

Conference on Computer Communications and Networks (ICCCN),

pages 1–6, August 2009.

[SZ08] Anthony Steed and Bingshu Zhu. An implementation of a first-person

game on a hybrid network. In Proceedings of the 1st International

Workshop on Massively Multiuser Virtual Environments (MMVE),

pages 24–28, March 2008.

[Ter] Daniel Terdiman. Second Life: Don’t worry, we can scale. Online

article, June 2006. Accessed: 27.01.2013,15:37. http://news.cnet.com/

2100-1043 3-6080186.html.

[TS91] Seth J. Teller and Carlo H. Séquin. Visibility preprocessing for inter-

active walkthroughs. In Proceedings of the 18th Annual Conference on

Computer Graphics and Interactive Techniques (SIGGRAPH), pages

61–70, 1991.

[WW94] Annette L. Wilson and Richard M. Weatherly. The aggregate level sim-

ulation protocol: An evolving system. In Proceedings of the 26th Win-

ter Simulation Conference (WSC), pages 781–787, December 1994.

[YHK11] Amir Yahyavi, Kévin Huguenin, and Bettina Kemme. AntReckoning:

Dead reckoning using interest modeling by pheromones. In Proceed-

ings of the 10th Workshop on Network and System Support for Games

(NetGames), pages 1–6, October 2011.

[YMYI05] Shinya Yamamoto, Yoshihiro Murata, Keiichi Yasumoto, and Minoru

Ito. A distributed event delivery method with load balancing for

MMORPG. In Proceedings of the 4th Workshop on Network and Sys-

tem Support for Games (NetGames), pages 1–8, October 2005.

[YV05] Anthony Yu and Son T. Vuong. MOPAR: A mobile peer-to-peer over-

lay architecture for interest management of massively multiplayer on-

line games. In Proceedings of the 15th International Workshop on

Network and Operating Systems Support for Digital Audio and Video

(NOSSDAV), pages 99–104, June 2005.

Curriculum Vitae

Seit Februar 2008 Manager Information Systems and IT Services

an der Mannheim Business School gGmbH

März 2009 - Februar 2011 Akademischer Mitarbeiter am Lehrstuhl für

Wirtschaftsinformatik II, Universität Mannheim,

Lehrstuhlinhaber: Prof. Dr. Christian Becker

September 2002 - Mai 2008 Studium in Wirtschaftsinformatik (Diplom)

an der Universität Mannheim

Juni 2001 Abitur am Gymnasium am Kaiserdom, Speyer

