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AbstratThis work deals with theoreti aspets of ooperating systems, i.e., systemsthat onsists of ooperating subsystems. Our main fous lies on the om-plexity theoreti lassi�ation of deiding the reahability problem and one�iently establishing deadlok-freedom in models of ooperating systems.The formal veri�ation of system properties is an ative �eld of researh,�rst attempts of whih go bak to the late 60's. The behavior of ooperatingsystems su�ers from the state spae explosion problem and an beome verylarge. This is, tehniques that are based on an analysis of the reahablestate spae have a runtime exponential in the number of subsystems. Theonsequene is that even modern tehniques that deide whether or not asystem property holds in a system an beome unfeasible.We use interation systems, introdued by Sifakis et al. in 2003 [GS03℄, asa formalism to model ooperating systems. The reahability problem anddeiding deadlok-freedom in interation systems was proved to be PSPACE-omplete [MCM08℄. An approah to deal with this issue is to investigatesublasses of systems in whih these problems an be treated e�iently.We show here that the reahability problem remains PSPACE-omplete insublasses of interation systems with a restrited ommuniation struture.We onsider strutures that from trees, stars and linear arrangements ofsubsystems. Our result motivates the researh of tehniques that treat thereahability problem in these sublasses based on su�ient onditions whihexploit harateristis of the strutural restritions [Mar09, Hoa85, BR91,BHH+06, BCD02, MCM08a℄.In a seond part of this work we investigate an approah to e�iently es-tablish the reahability of states and deadlok-freedom in general interationsystems. We introdue abstrat over-approximations � a onept of ompatrepresentations of over-approximations of the reahable behavior of intera-tion systems. Families of abstrat over-approximations are the basis for ourapproah to establish deadlok-freedom in interation systems in polyno-mial time in the size of the underlying interation system. We introdue an



operator alled Edge-Math for re�ning abstrat over-approximations. Thestrength of our approah is illustrated on various parametrized instanes ofinteration systems. Furthermore, we establish a link between our re�ne-ment approah and the �eld of relational database theory and use this linkin order to make a preiseness statement about our re�nement approah.



ZusammenfassungDiese Arbeit beshäftigt sih mit theoretishen Aspekten von kooperieren-den Systemen, d.h. Systemen, die aus kooperierenden Subsystemen beste-hen. Unser Augenmerk liegt hauptsählih auf der komplexitätstheoretishenKlassi�zierung des Erreihbarkeitsproblem und dem e�zienten Nahweis vonVerklemmungsfreiheit in Modellen von kooperierenden Systemen. Die forma-le Veri�kation von Systemeigenshaften ist ein aktives Forshungsfeld dessenAnfänge in die späten sehziger Jahre zurükreihen. Kooperierende Systemeleiden unter dem Problem der Zustandsraumexplosion und können ein sehrkomplexes Verhalten besitzen. Tehniken, die auf der Analyse des erreihba-ren Zustandsraumes basieren weisen hier eine Laufzeit auf, die exponentiellin der Anzahl der Subsysteme ist. Die Konsequenz ist, dass selbst aktuelleTehniken, die Systemeigenshaften entsheiden, an ihre Grenzen geraten.Wir benutzen den von Sifakis et al. 2003 [GS03℄ eingeführten Formalis-mus der Interaktionssysteme um kooperierende Systeme zu modellieren.Das Erreihbarkeitsprobelm und das Problem der Verklemmungsfreiheit inInteraktionssystemen ist PSPACE-vollständig [MCM08℄. Ein Ansatz die-ses Problem anzugehen ist die Betrahtung von Teilklassen, in denen die-se Probleme e�zient behandelt werden können. Wir zeigen hier, dass dasErreihbarkeitsproblem auh in Teilklassen mit eingeshränkter Kommu-nikationsstruktur PSPACE-vollständig ist. Wir betrahten Strukturen, dieBäume, Sterne und lineare Anordnungen aus Subsystemen darstellen. Un-sere Ergebnisse motivieren die Untersuhung von Tehniken die das Er-reihbarkeitsproblem in diesen Teilklassen, basierend auf hinreihenden Be-dingungen welhe die strukturellen Charakteristiken ausnutzen, behandeln[Mar09, Hoa85, BR91, BHH+06, BCD02, MCM08a℄.In einem zweiten Teil dieser Arbeit stellen wir einen Ansatz vor, der esermögliht die Erreihbarkeit von Zuständen und Verklemmungsfreiheit inInteraktionssystemen festzustellen. Dafür führen wir abstrakte Überappro-ximationen ein. Dies sind kompakte Repräsentationen von Überapproxima-tionen des erreihbaren Verhaltens von Interaktionssystemen. Familien von



abstrakten Überapproximationen sind die Basis für unseren Ansatz in poly-nomieller Zeit Verklemmungsfreiheit in Interaktionssystemen festzustellen.Wir benutzen einen Operator, den wir Edge-Math nennen, um abstrakteÜberapproximationen zu verfeinern. Die Stärke unserer Ansätze demonstrie-ren wir anhand von vershiedenen parametrisierten Modellen von Interakti-onssystemen. Darüber hinaus ziehen wir eine Verbindung zwishen unseremAnsatz der Verfeinerung von abstrakten Überapproximationen und dem Ge-biet der relationalen Datenbanktheorie. Wir benutzen diese Verbindung umeine Aussage über die Güte unseres Verfeinerungsansatzes zu mahen.
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Chapter 1
Introdution
1.1 MotivationThis work deals with a omplexity theoreti lassi�ation of deiding ertainsystem properties in sublasses of ooperating systems and introdues anapproah for establishing deadlok-freedom in ooperating systems. In thefollowing we put this work into ontext and motivate the relevane of ourresults. [WRS+08℄1.1.1 Formal Veri�ation�Complete formal veri�ation is the only known way to guaranteethat a system is free of programming errors.�1Formal veri�ation of systems refers in the widest sense to tehniques thatshow or refute desired behavior of systems by formal methods. From today'sperspetive, this means a formal veri�ation tehnique shows or refutes that1Opening of the paper [KEH+09℄ from Klein et al. in whih they disuss the formalveri�ation of the slE4 mirokernel. 1



CHAPTER 1. INTRODUCTIONa formal model of a system meets desired properties by using formal methodsof mathematis.System properties desribe that the behavior of a system should satisfy er-tain requirements, e.g., a ertain situation must or must not our or thatit is always possible to evoke a ertain situation. Partiularly systems thatoperate in environments where a system failure an ause harm to people orresult in huge �nanial losses are ruially required to satisfy ertain proper-ties. For example, an error in the ontrol system of a nulear power plant orin a guidane system on a plane an beome fatal, a �awed entral proess-ing unit in large-sale prodution an result in an expensive reall ampaign.An, in general, unwanted situation in a system is a situation where the sys-tem gets stuk and is unable to ontinue its desired behavior. For example,an operation system that rashes is at least unpleasant and a ontrol systemof a nulear power plant that is not able to reat to a ritial inident anlead to a dangerous situation. A system state like that is alled a deadlokand a system that an not get into a deadlok state is alled deadlok-free.The system property of deadlok-freedom is given a partiular signi�aneas the problem of verifying safety properties (an important lass of systemproperties that we disuss in detail in Chapter 4) in ooperating systems anbe redued to the detetion of deadloks [GW92℄. The authors of [GW92℄introdue a tehnique to detet deadloks in ooperating systems and showhow the tehnique an be used to verify an arbitrary safety property.One way to desribe system properties is based on temporal logi suh asLTL [Pnu77℄ and CTL [CE81℄ or the more general modal logi µ-alulus[Koz82℄. Another approah that di�ers from a desription by a modal logiis based on equivalene relations on the behavior of systems like bisimulationor observational equivalene as disussed in [Mil89℄. The idea is to desribe asystem and a system property in the same formalism. If the desriptions areequivalent then the system ful�lls the property. Tehniques that automati-ally hek equivalenes are for example published in [KS83, PT87, CS01℄.In the following we take a loser look at the temporal logis LTL and CTL2



1.1. MOTIVATIONand tehniques that automatially hek whether a system ful�lls a propertydesribed in these logis.Prior [Pri57℄ introdued in 1957 a modal logi with the operators F (�eventu-ally�) and P (�previously�) that states that a proposition eventually beomestrue in the future respetively a proposition was true in the past. Thus, this�rst attempt assumes that time is linear. In orrespondene with Kripke,who mentioned that a linear view of time might not always be enough, Priordeveloped two branhing time logis that are suited to express that a propo-sition beomes true in all or at least one possible future. For example �onlyone proess of the system will enter it's ritial setion at one point in time�,�a ustomer an only withdraw money from the ATM if the pin was enteredorretly�, �if the reator beomes to hot, it will shut down eventually� or �ifa user is logged into the ATM, the user has always the possibility to logout�.In 1977 Pnueli introdued linear temporal logi (LTL) a temporal logi forspeifying system properties [Pnu77, Pnu79℄. The idea is that a system thatis exeuted runs through a (possible in�nite) sequene of states where in eahstate atomi propositions hold, i.e., an exeution indues a sequene of sets ofatomi propositions. An LTL formula spei�es a set of permitted sequenesof sets of atomi propositions and a system models an LTL formula if theindued sequene of atomi system properties of eah possible exeution ispermitted. �a ustomer an only withdraw money from the ATM if the pinwas entered orretly� is an example for a property that an be spei�ed byLTL.In 1981 Clarke and Emerson introdued omputational tree logi (CTL) abranhing time logi [CE81℄. In ontrast to LTL, a CTL formula does notdeal with sequenes of sets of atomi propositions but with trees the nodes ofwhih are sets of atomi propositions. A system indues a (possible in�nite)omputational tree, i.e., a tree that desribes all possible exeutions of thesystem. A system ful�lls a CTL formula if the indued omputational treeis a tree that is desribed by the formula. �If a user is logged into the ATM,3



CHAPTER 1. INTRODUCTIONthe user has always the possibility to logout� is an example for a systemproperty that an be desribed by CTL as this property spei�es that foreah system state where a user is logged into the ATM there is a sequeneof ations that leads to a state where the user an logout.LTL and CTL are suited to express important system properties. Espeiallythe system property of deadlok-freedom an be desribed by LTL and CTL.Among the �rst attempts of formal veri�ation is the dedutive programveri�ation whih started with the Floyd-Hoare logi where pre- and post-onditions are assigned to ommands in omputer programs. A set of in-ferene rules is used in order to dedue pre- and postonditions of largerode fragments. This work was published in [Hoa69℄ and was in�uened by[Flo67℄ where a similar approah is desribed for �owharts. The introduedapproah is suited to prove partial orretness of programs, i.e., for a givenpreondition this approah an be used to show that a program meets de-sired postonditions but this approah does not prove termination of theprogram.Tehniques that automatially hek whether a system models a CTL re-spetively LTL formula are subsumed under the term CTL respetively LTLmodel heking. The input of a CTL or LTL model heking tehnique is thedesription of a system and an LTL respetively CTL formula. The osts ofa CTL or LTL model heking tehnique are given in relation to the inputsize, i.e., if the system is given by a labeled transition systems then the sizeof the system orresponds to the number of ontained states and transitionsand the size of an LTL or CTL formula orresponds to the number of on-tained subformulas. In addition to introduing CTL, Clarke and Emersonprovided in [CE81℄ a tehnique that automatially heks whether or not asystem, given as a transition system, models a CTL formula. Quielle andSifakis desribed the same (for a temporal logi similar to CTL) [QS82℄.The tehnique in [CE81℄ is polynomial in the size of the transition systemand the size of the CTL formula (the number of subformulas). This bound4



1.1. MOTIVATIONis improved in [CES86℄ by an algorithm that deides whether or not a CTLformula in a transition system holds in time linear in the size of the systemand the formula, i.e., for a transition system S and a CTL formula Φ thetehnique runs in O(|S| · |Φ|) where |S| denotes the size of S and |Φ| thesize of Φ. In [VW86℄ Vardi and Wolper introdued a tehnique for auto-mati heking whether an LTL formula is modeled by a system given asa transition system. The tehnique by Vardi and Wolper is linear in thesize of the transition system but exponential in the size of the LTL formula,i.e., for a transition system S and an LTL formula ϕ the tehnique runs in
O(|S| · 2|ϕ|). See [Sh02℄ for an overview of the omplexity of temporal logimodel heking. Algorithms that implement LTL and CTL model hekingexhibit these runtime and are in use in popular model heking tools � seefor example Spin for LTL model heking [Hol97℄. Thus, algorithms in usetoday are linear in the number of states and transitions of the transitionsystems in onsideration.
Burh, Clarke, et al. desribed in [BCM+92℄ how a symboli representationof labeled transition systems by binary deision diagrams (BDDs) [Bry86℄allows for model heking large systems in a reasonable time. As the title of[BCM+92℄ states, this approah permits the veri�ation of system propertiesin systems with 1020 states and beyond. This number was improved in thesubsequent years, e.g., in [BCL91℄ Burh et al. reported about a tehniquebased on symboli model heking that manages systems with 10120 states.Note that these numbers refer to omputer performane at respetive times.Although, symboli model heking is superior to model heking on systemsthat are represented expliitly, this tehnique does not improve the asymp-toti bounds of CTL and LTL model heking algorithms. In [BCCZ99℄Clarke et al. introdued bounded model heking, a tehnique where LTLmodel heking is redued symbolially to the satis�ability problem of propo-sitional logi formulas. 5



CHAPTER 1. INTRODUCTION1.1.2 Model Cheking Cooperating SystemsA ooperating system is a system that onsists of subsystems whih worktogether, i.e., a ooperating system is spei�ed by its subsystems and bya desription of how these subsystems interat among eah other � thisdesription is alled the �glue-ode� of the system. Compared to the sizeof the subsystems and the glue-ode, the global behavior that results fromsuh a spei�ation an beome quite omplex and thus hard to analyze.This problem is alled the state spae explosion problem [BK08℄, i.e., thephenomenon that the state spae of a system grows exponentially in thenumber of subsystems that work in parallel. The subsystems of a ooperatingsystem operate in parallel where eah subsystem features its own state spae,i.e., the state spae of a ooperating system onsists of the Cartesian produtof the state spaes of the subsystems. The glue-ode onnets the subsystemby speifying a dependeny between the state transitions of the subsystems,i.e., the state transition that is o�ered by a ertain subsystem is dependingon other subsystems being in partiular states. Thus, the glue-ode restritsthe reahable state spae of a ooperating system. Nevertheless, the size ofthe state spae is exponential in the number of subsystems and the size ofthe reahable state spae might be as well.There are several formalisms that model ooperating systems inluding Petrinets [Pet67℄ or UML [RJB99℄ (graphial languages), CSP [Hoa85℄ or CCS[Mil82℄ (proess algebras), Linda [ACG86℄ or Reo [Arb04℄ (oordination lan-guages) or even atual programming language as Java or C/C++ and theformalism of interation systems [GS03℄ that we introdue in Setion 1.4 ofthis hapter and use in the remainder to model ooperating systems. Fur-ther models, that are similar to the formalism of interation systems, aredesribed in Setion 1.4.1.A ooperating system satis�es a system property that is given by an LTLor CTL formula if and only if the global behavior of the system satis�esthe formula. LTL and CTL model heking algorithms are linear in the6



1.1. MOTIVATIONsize of the system in onsideration, i.e., model heking a ooperating sys-tem by those algorithms requires time exponential in the number of sub-systems. This, observation is baked up by [BVW94℄ (extended abstratof [KVW00℄) and [Kup95℄ where it was proven that LTL and CTL modelheking for onurrent programs [Pnu79℄, a formalism for modeling oop-erating systems, is PSPACE-omplete in the size of the input system andthe respetive temporal logi formula (see [VU98℄ for a summary of om-plexity theoreti lassi�ations regarding LTL and CTL model heking).The authors even strengthened this statement by showing that the sameomplexity theoreti lassi�ation holds if the temporal logi formula is on-sidered to be arbitrary but �xed, i.e., the PSPACE-ompleteness result doesnot depend on the LTL or CTL formula. Note that these results do notimply the PSPACE-ompleteness of the problem to model hek a parti-ular system property desribed in LTL or CTL in a ooperating system.However, the omplexity theoreti lassi�ation of the problem to hekwhether or not a partiular system property holds in a system has beenresearhed for various formalisms that model ooperating systems and var-ious important system properties. For example, the PSPACE-ompletenessof deiding reahability, deadlok-freedom and liveness in 1-safe Petri netswas shown in [CEP95℄. The PSPACE-ompleteness of deiding reahabil-ity, deadlok-freedom, progress and availability in interation systems wasshown in [MCM08℄. See [AKY99℄ for results in ommuniating �nite statemahines and [CEP95, EN94℄ for results in various sublasses of Petri nets.Even though LTL and CTL model heking allow for an automati hekingof important system properties in omplex systems, there are still systemsthat are relevant in real life where it is not feasible to hek ertain sys-tem properties beause of the sheer size of the reahable state spae. Thisis, heking whether a property holds in a ooperating system an beomeunfeasible if the number of subsystems or the size of individual subsystemsinreases. Symboli model heking [BCM+92℄ allows for dealing with sys-tems with 1020 states and beyond, e.g., ooperating systems that onsists7



CHAPTER 1. INTRODUCTIONof 20 subsystems with eah 10 states. The improved approah by Burh etal. [BCL91℄ an deal with systems with 10120 states, e.g., 120 subsystemswith eah 10 states. In [HKW12℄ the authors analyze the ontrol softwareof the CERN Compat Muon Solenoid experiment whih onsists of over
30, 000 ooperating �nite state mahines, i.e., a relevant system that is fartoo large for a diret appliation of model heking tehniques. The authorsonly onsider systems properties that an be veri�ed by onsidering sub-systems onsisting of reasonable numbers of state mahines. In Chapter 4we introdue an approah, based on a su�ient ondition, that establishesdeadlok-freedom in ooperating systems in time polynomial in the size ofthe input system. In order to illustrate our results we introdue in Chapter5 several parameterized examples the state spae of whih is onsiderablelarger than 10120, e.g., we onsider a model onsisting of 1, 200 subsystemswith at least 2 states in eah subsystem.1.1.3 Dealing with Complexity IssuesIf a system is very omplex then a formal veri�ation an beome unfeasiblebeause even a omputer aided appliation of known tehniques an requiretoo muh resoures. This e�et is supported by various omplexity theoretiresults regarding various formalisms, for modeling ooperating systems, andsystem properties whih prove that a veri�ation an not be ahieved inpolynomial time in the size of the input system. Approahes to irumventthis issue inlude the following items.
• Exploiting harateristis of sublasses of systems. Even if a om-plexity result states that we an not expet to deide whether or nota ertain system property holds in polynomial time there might beinteresting sublasses where this an be ahieved.
• A modi�ation of the input system suh that known tehniques needless resoures. One approah is to redue the size of the system in on-8



1.1. MOTIVATIONsideration while preserving whether or not a system property holds inthe modi�ed system. Tehniques that follow this approah are widelyreferred to as state spae redution tehniques.
• Another approah is to onsider veri�ation tehniques that are basedon su�ient onditions and require less resoures, i.e., if a tehniquelike this sueeds then a property is guaranteed, if not then we annotonlude whether or not the property holds.These onepts are not mutually exlusive from eah other, i.e., a tehniquean be based on several of these onepts. In the following we disuss teh-niques that are based on these approahes.SublassesDeision problems that are omplete in a omplexity lass that indiatesthat we an not expet that there is an algorithm that deides the problemin polynomial time might inlude �interesting� sublasses where the dei-sion problem is deidable in polynomial time. A well known example isthe Boolean satis�ability problem where 3SAT is NP-omplete and 2SATis deidable in polynomial time. The problem HORNSAT (the problem ofdeiding whether a given set of propositional Horn lauses is satis�able)is even deidable in linear time. Similarly, the quanti�ed 3SAT problem isPSPACE-omplete, whereas the quanti�ed 2SAT problem and the quanti�edHORNSAT problem [KBS88℄ is deidable in polynomial time. See [GJ79℄ fordesriptions and more examples. In ontext of system properties for whihit is hard (e.g., PSPACE-omplete) to deide whether or not they hold in asystem, the examples above rise the question whether there are interestingsublasses of systems where we an deide in polynomial time whether ornot the system property holds.If we show that a property P is deidable in polynomial time in a sub-lass then this sublass is interesting if the sublass onsists of systems that9



CHAPTER 1. INTRODUCTIONare relevant in pratie. If, on the other hand, we show that deiding Pis PSPACE-omplete in a ertain sublass then this sublass is interest-ing if it is as restrited as possible. This is beause we an onlude thatdeiding P in eah superlass is PSPACE-hard. Furthermore, the PSPACE-ompleteness of deiding P in a sublass justi�es the researh of tehniques,based on su�ient onditions, that establish P in this lass and an be testedin polynomial time (we disuss some of these approahes in the following).An important approah in the design of ooperating systems is the so-alledorretness by onstrution approah, i.e., the design of modeling rules thatensure that a system model ful�lls ertain properties. This an be general-ized by providing a set of modeling rules that ensure that a ertain systemproperty an be deided or ensured e�iently in a ooperating system thatis onstruted by these rules. This is, a result that shows that a systemproperty an be deided or ensured e�iently in a sublass of ooperatingsystems an be used to design orretness by onstrution tehniques.Many omplexity results have been published for various sublasses of Petrinets. They show that various deision problems that are EXPSPACE-hardin general Petri nets beome PSPACE-omplete in interesting sublasses.In the same way various problems that are PSPACE-omplete in generalPetri nets beome NP-omplete in respetive sublasses. [JLL77℄ onsideredreahability, liveness and boundedness in free hoie Petri nets, on�it freePetri nets and onservative Petri nets and [HJR93℄ boundedness, reahabil-ity, ontainment and equivalene problems in single path Petri nets. A morereent results an be found in [PL08℄ where it was shown that the reahabil-ity problem is PSPACE-omplete in Petri nets with fast growing markings(the best known lower bound in general Petri nets needs exponential spae[Lip76℄). However, in [Esp98℄ Esparza summarizes various results regardingvarious sublasses of Petri nets and sets up the following rule of thumb:�Many questions about marked graphs are solvable in polynomialtime. Almost no questions about Petri net lasses substantially10



1.1. MOTIVATIONlarger than marked graphs are solvable in polynomial time.�Marked graphs are a very basi sublass of Petri nets that is inluded in allabove mentioned sublasses A marked graph is a Petri net where eah plaehas exatly one inoming and one outgoing ar.Various works deal with sublasses of ooperating systems that are de�nedby arhitetural onstraints. For this a graph struture is de�ned whih rep-resents the ommuniation struture among the subsystems. In this graph,the nodes are the subsystems and an undireted edge onnets two sub-systems if the glue-ode spei�es a ooperation between these subsystems.Based on this struture one an de�ne sublasses of systems the ommu-niation struture of whih forms, for example, a tree, a star or a lineararrangement of subsystems. Several works onsidered tree-like ommunia-tion patterns and in partiular established onditions that ensure deadlok-freedom. Communiating Sequential Proesses are introdued in [Hoa85℄where a direted ommuniation struture based on input/output ommu-niation is onsidered. It is argued that ommuniating proesses, if thedireted input/output ommuniation struture forms a rooted tree, annot deadlok. [BR91℄ desribes a general ommuniation graph for CSPmodels and provides onditions that guarantee deadlok-freedom in systemsthe ommuniation graph of whih forms a tree. [BCD02℄ examined a pro-ess algebra based on an arhitetural desription language alled PADLand onsiders deadlok-freedom in systems with a tree-like ommuniationpattern (a proper superlass of systems with a star-like or linear pattern).The tehnique is based on a ompatibility ondition that is tested amongpairs of ooperating subsystems, i.e., the omposite behavior of two sub-systems is weak bisimilar to the behavior of one of the omponents. Ane�ient tehnique based on a su�ient onditions for establishing deadlok-freedom in interation systems with a star-like ommuniation pattern isintrodued in [Lam09℄ where, similar to [BCD02℄, a ompatibility ondi-tion based on branhing bisimilarity is tested. A su�ient ondition forestablishing deadlok-freedom for the sublass of tree-like interation sys-11



CHAPTER 1. INTRODUCTIONtems is desribed in [MCM08a℄ where a ondition is tested on the reahablestate spaes of pairs of interating subsystems. In [LMC11℄ the ondition in[MCM08a℄ is extended suh that deadlok-freedom an be established in aproper superlass of tree-like interation systems. Henniker et al. proposedin [BHH+06, HJK10℄ a tehnique to onstrut so alled observable behaviorof a ooperating system with an ayli ommuniation pattern whih anbe used to establish ertain system properties.State Spae RedutionIn order to irumvent the state spae explosion problem in ooperatingsystems one an apply so-alled state spae redution tehniques in orderto redue the size of the reahable state spae. These tehniques inludevarious methods that remove states or entire subsystems from a system orproviding an assoiated system with a smaller state spae. Given a systemand a desired property, the idea is to onstrut a modi�ed system suh that1. the state spae of the modi�ed system is small enough suh that atehnique an be applied to hek whether the property holds in areasonable amount of time and2. if the property holds in the modi�ed system then the property holdsin the original system.Three approahes whih follow these requirements are tehniques that ex-ploit symmetries in a system, partial order redution and abstrat interpre-tation.The idea behind exploiting the symmetry of a system is to ompress the statespae of a system by ombining states into equivalene lasses based on anequivalene relation. The equivalene relation is hosen suh that paths inthe original system orrespond to paths in the ompressed system and vieversa. The ompression ratio and the properties that an be established byexamining the ompressed system is highly depending on the hoie of the12



1.1. MOTIVATIONequivalene relation. In [ID96℄ this idea is used to hek whether a state isreahable in a system and for establishing deadlok-freedom. [ES96℄ uses thismethod on ooperating systems with idential or isomorphi subsystems andestablishes system properties in CTL* in the ompressed systems. [CJEF96℄provides a state spae redution based on symmetries for a system whihtransition relation is given symbolially as a BDD and identi�es a sublassof temporal logi formulas that is preserved by this redution. [Jen96℄ usesthis method to ompress the state spae of olored Petri nets.Partial order redution exploits that a state in a ooperating system mightbe reahed by exeuting ations in di�erent orders. The idea is that in theproess of heking a suitable system property only one of these paths needsto be examined. [Pel93℄ introdues so-alled model heking with represen-tatives. An equivalene relation on the paths in a ooperating system isonsidered suh that either all or none of the paths in a lass model a for-mula in LTL. Based on this equivalene relation a labeled transition systemis onstruted suh that for eah equivalene lass there is at least one pathin this lass (alled representative) present in this system. The resulting sys-tem an beome onsiderable smaller and if the resulting system satis�es anLTL formula then the respetive ooperating systems in onsideration mod-els this LTL formula as well. [GW92℄ presents an algorithm that uses partialorder redution and heks deadlok-freedom in onurrent �nite state sys-tems. Furthermore, [GW92℄ shows how the algorithm an be used to heka ertain lass of system properties in onurrent �nite state systems. Adesription of an appliation of tehniques that use partial order redutionon pratial relevant systems an be found in [GPS96℄.Abstrat interpretation is based on the idea to neglet parts of a systemthat do not have an impat on whether or not a desired system propertyholds by applying a more abstrat semanti to the spei�ations of a system.The most frequently mentioned example is the abstration of data valuesby bounded intervals. Abstrat interpretation was introdued in [CC77℄.Formally, the method onsists of de�ning an abstration funtion α : L→ L′13



CHAPTER 1. INTRODUCTIONand a onretization funtion γ : L′ → L where L is the onrete state spae,i.e., the state spae of the original system and L′ is the (desirable smaller)abstrat state spae on whih one an perform model heking tehniques.Many results request that (α, γ) is a Galois-onnetion from L to L′ [CGL94,GS97, Lon93℄.Su�ient ConditionsConsider an arbitrary deision problem. A su�ient ondition on instanesof the problem guarantees that the answer of the deision problem on aninstane is �yes� if the ondition holds for the instane. On the other hand,if the ondition does not hold for an instane then we an not onlude theanswer of the deision problem for the instane. Tehniques that are basedon a su�ient ondition are useful if heking the ondition requires muhless resoures as tehniques that atually deide the problem, e.g., if deidingthe problem is PSPACE-omplete and applying the su�ient ondition anbe ahieved in polynomial time in the size of the input. In our ontext aninstane onsists of a ooperating system and a system property and thequestion is whether or not the property holds in the system.Several formal veri�ation tehniques that are based on su�ient onditionsestablish system properties by analyzing approximations of the global statespae or the global behavior of a ooperating system. An approximation isalled under-approximation if it desribes a subset of the reahable statesor transitions of the system in onsideration. An over-approximation onthe other hand desribes a superset of the reahable states or transitions.Depending on the system property in onsideration an under- or an over-ap-proximation is needed to establish the property. For example, if the propertyspei�es that ertain states are not reahable and these states are not reah-able in an over-approximation then these states are not reahable in thebehavior of the system as well. If a property on the other hand requires thatertain states are reahable then these states are reahable in the global be-14



1.1. MOTIVATIONhavior if they are reahable in an under-approximation of the system. A wellresearhed lass of system properties are so-alled safety properties whihstate that �something bad does never happen� [Lam77, LS85℄. Properties ofthis kind an be established in over-approximations of a ooperating system.If something bad does never happen in an over-approximation of a systemthen it ertainly does never happen in the behavior of the system. Espeiallydeadlok-freedom and the negated reahability property (deiding whethera ertain state is not reahable) are safety properties.Of ourse, if a property does not hold in an under-approximation respetivelyover-approximation then we an not make any statement as to whether theproperty in onsideration holds in the system. In this ase a re�nement ap-proah might help in order to modify an approximation suh that a propertyan be established by analyzing a modi�ed approximation. Re�ning under-approximations of ooperating systems means here to add states or transi-tions suh that the resulting objet remains to be an under-approximation.Whereas states or transitions are removed in over-approximations when re-�nement is applied. Clearly, if a tehnique fails to establish a property inan under-approximation respetively over-approximation then the tehniquemight sueed in respetive re�ned approximations.Tehniques based on over-approximations are, for example, introdued in[AC05, GDHH98, GD99, CHM+93, CGL94, Kur94℄. [CCQ94℄ onstrutsover-approximations by an approximative forward state spae explorationthat is re�ned by an exat bakward exploration. Moon et al. [MJH+98℄supports CTL model heking by using over-approximations that are on-struted by approximative forward traversal. [LPJ+96℄ uses an approxi-mative bakward-analysis in order to onstrut over-approximations andre�nes them until an ACTL or ECTL formula an be proved or refuted.Over-Approximations of interation systems are onsidered in [MCMM07℄for establishing deadlok-freedom (the over-approximations are desribed inmore detail in [MMC09b℄). Under-approximations are for example onsid-ered in [PH98℄. In Chapter 3 we desribe an approah to e�iently represent15



CHAPTER 1. INTRODUCTIONand re�ne over-approximations of interation systems and in Chapter 4 weintrodue a tehnique to establish deadlok-freedom in interation systemsthat exploits over-approximations and is based on a su�ient ondition thatan be applied in polynomial time.[AG97℄ desribes an approah that tests a ondition on the glue-ode of aooperating system in order to guarantee the onstrution of deadlok-freesystems, i.e., this approah does not make use of under- or over-approxi-mations. A tehnique based on a su�ient ondition that is introduedin [IU01℄ uses partial equivalene relations between graphs onstruted fromthe subsystems of a ooperation system without any state spae exploration.An approah based on a su�ient ondition for establishing liveness in in-teration systems is desribed in [MCMM08℄.
1.2 ContributionThe ontribution of this work onsists of two parts. In the �rst part wedisuss, how ooperating systems an be lassi�ed in order to desribe in-teresting sublasses with respet to a omplexity theoreti examination ofdeiding system properties in these sublasses. We desribe several basisublasses that are based on onstraints regarding the ommuniation stru-ture between the subsystems and are relevant in pratie. We show that de-iding the reahability problem in these lasses is PSPACE-omplete. Thus,we annot expet that there is a tehnique that deides the reahabilityproblem in these lasses in polynomial time. Our results justify orretnessby onstrutions approahes that exploit harateristis of these sublassesand the appliation of tehniques that are based on su�ient onditionsand establish the reahability problem in these lasses in polynomial time[Hoa85, BR91, BCD02, MCM08a, Lam09, HJK10℄. In addition, the resultsmotivate the researh of further su�ient onditions, that exploit the indi-vidual harateristis of our sublasses, in order to onstrut more e�ient16



1.2. CONTRIBUTIONtehniques that tests for the reahability of states.In a seond part, whih makes up the larger part of this work, we intro-due a tehnique for establishing deadlok-freedom in ooperating systemsthat is based on a su�ient ondition and an be tested in polynomial time.Our approah is based on the analysis of ompat representations of over-approximations of the reahable global behavior of a ooperating system.We all these representations abstrat over-approximations. An abstratover-approximation is based on a subset of subsystems and indues an over-approximation of the global behavior. Thus, we argue that our abstratover-approximations have the potential to be the basis of tehniques thatestablish safety properties in ooperating systems based on a su�ient on-dition. We introdue an operator alled Edge-Math that we use to re�ne afamily of abstrat over-approximations by a pairwise omparison. Our def-inition of abstrat over-approximations and our approah of re�ning thesean, in a ertain way, be seen as a state spae redution approah. The sumof the sizes of all abstrat over-approximations in our approah is usuallysigni�antly smaller than the size of the global behavior of a ooperatingsystem, i.e., we apply our approah to establish deadlok-freedom to ob-jets that are signi�antly smaller than the global behavior of the systemin onsideration. On the other hand, in omparison to state spae redu-tion tehniques, our abstrat over-approximations are not suited to diretlyapply known model heking tehniques.To irumvent omplexity issues regarding the veri�ation of system prop-erties in ooperating systems we proeed as follows. In order to establish asafety property P of a omplex ooperating system, we propose a three stepapproah:1. The onstrution of polynomially many so-alled abstrat over-appro-ximations of the reahable state spae suh that eah abstrat over-ap-proximation is of polynomial size and indues an over-approximationof the system. This topi is disussed in Chapter 3.17



CHAPTER 1. INTRODUCTION2. The re�nement of the abstrat over-approximations by a pairwise om-parison with an operator that we all Edge-Math whih an be per-formed in polynomial time. This re�nement approah is introdued inChapter 3.3. The onstrution of a prediate P ′ on the abstrat over-approximationssuh thati) P holds if P ′ holds for all abstrat over-approximations andii) P ′ an be heked in polynomial time.This onept is disussed for the system property of deadlok-freedomin Chapter 4.Viewed abstratly our method establishes a su�ient ondition for the va-lidity of property P . This ondition an be heked in polynomial time.To the best of our knowledge there are very few other approahes that dealwith the re�nement of over-approximations of ooperating systems in oursense that are based on subsets of subsystems. Approahes that are sim-ilar or related to our work are Minnameier's Cross-Cheking operator forthe re�nement of overlapping over-approximations of the reahable state-spae of interation systems [MMC09b℄, the work of Govindaraju et al.[GDHH98, GD99℄ that onerns approximative reahability in ooperatingsystems and establishing invariants (a sublass of safety properties) in syn-hronous hardware modeled by Mealy mahines and Attie and Chokler'sapproah to establish deadlok-freedom in ooperating systems [AC05℄ byanalyzing over-approximations that are based on subsets of three subsystemseah. These approahes are disussed in detail in Chapter 3 in Setion 3.4.18



1.3. ROAD MAP1.3 Road MapThis work is strutured as follows. In the next setion we introdue theformalism of interation systems � a formalism for modeling ooperatingsystems that was introdued by Sifakis and Gössler in [GS03℄. In the re-mainder of this work we use this formalism to model ooperating systems.In the seond hapter we present several redutions whih prove that de-iding important system properties in ertain sublasses of interation sys-tems is PSPACE-omplete. These sublasses are de�ned by restriting thetopology that is indued by the glue-ode of a ooperating system, i.e., theommuniation struture between the subsystems.In Chapter 3 we onsider a onept of over-approximations of the globalbehavior of interation systems. These over-approximations are suited as abasis for tehniques that establish safety properties in interation systems,i.e., one an diretly apply model heking tehniques for safety properties.These over-approximations su�er from the state spae explosion problemjust like the global behavior of an interation system, i.e., they are notsuited for an approah that e�iently ensures a system property the veri-�ation of whih requires the examination of the reahable state spae. Toirumvent this problem we introdue a speial kind of over-approximations� abstrat over-approximations. An abstrat over-approximation is a om-pat representation of an over-approximation and, suitably hosen, it is ofpolynomial size with respet to the parameters of the underlying interationsystem. This is, an abstrat over-approximation indues an over-approxi-mation of the global behavior of an interation system. We use abstratover-approximations as a basis for an approah to establish the safety prop-erty of deadlok-freedom in interation systems in polynomial time in thesize of an underlying interation system. This approah is introdued inChapter 4. The approah onsists of a ondition that is tested on a fam-ily of abstrat over-approximations whih, if true, guarantees that there isa deadlok-free over-approximation of the global behavior, i.e., the global19



CHAPTER 1. INTRODUCTIONbehavior is deadlok-free as well. Moreover, in ase our approah fails, weexemplify how we an use information that was produed in our approah inorder to modify a system suh that our approah ensures deadlok-freedom.If our approah fails and the system in onsideration is in fat deadlok-freethen a re�nement of the abstrat over-approximations, i.e., the removal ofstates and transitions suh that the result remains to be an abstrat over-approximation, might result in a family of abstrat over-approximations onwhih our approah sueeds. For this purpose we introdue in Chapter 3an operator that re�nes abstrat over-approximations by a pairwise ompar-ison and propose an approah to alulate a �xed-point with respet to anappliation of this operator on a family of abstrat over-approximations inpolynomial time in the size of the underlying interation system. In Chap-ter 5 we desribe a tool that implements our tehniques, introdue severalomplex and parameterized examples and provide results of our re�nementapproah. Chapter 6 establishes a onnetion between our onept of ab-strat over-approximations and their re�nement and the �eld of databasetheory. Besides of pointing out this interesting onnetion, we use resultsfrom this �eld in order to make preiseness statements about our re�nementapproah.Chapter 7 provides an overall onlusion of this thesis.1.4 Interation SystemsHere we give a brief introdution to interation systems that have been pro-posed by Sifakis and Gössler in [GS03, Sif05℄ to model omponent based sys-tems. The model was studied, e.g., in [BBSN08, BBG11, LMC11, MCMM07,MCM08a, MCMM08, MMC09a, BBNS09, BGL+11, GGMC+06℄, has beenused to model, e.g., biohemial reations [MCSW07℄ and was integrated inthe BIP framework [BBS06℄.An interation system onsists of subsystems alled omponents that o�er20



1.4. INTERACTION SYSTEMSinterfaes for a ooperation among them. The ooperation is spei�ed by aglue-ode that onnets interfaes of di�erent omponents. The glue-odeis modeled by so alled interations. An interation spei�es a multiwayooperation among omponents by onneting di�erent interfaes (alledports) of di�erent omponents. The model is de�ned in two layers. The �rstlayer, the interation model, provides the names of the omponents, theirinterfaes and the glue-ode. In the seond layer, the interation system,in addition the behavior of the omponents by labeled transition systemsis desribed. Thus, the desription of the glue-ode and of the behaviorof the omponents are learly separated. In our ontext, this separation isimportant beause many results in this work are based on the glue-ode ofinteration systems and independent of the behavior of the omponents.In this work, we use interation systems as a formalism to model ooperatingsystems. This is, all our results and tehniques are based on this formalism.Nevertheless, we want to point out that all our tehniques an be easilyapplied to other formalisms that model ooperating systems. This an beahieved by either adapting our tehniques or by using a mapping amongformalisms � see, e.g., [MCM08b℄ for a mapping between interation systemsand 1-safe Petri nets. In the following we disuss some formalisms that anbe used to model ooperating systems and are similar to interation systems.1.4.1 Related FormalismsThe formalism of interation systems is a very general formalism for model-ing ooperating systems and abstrats from data values, timed behavior, thedesription of input/output relations, probabilisti behavior or guarded om-mands. Some formalisms for modeling ooperating systems that are similarto interation systems are Pnueli's onurrent programs [Pnu79℄, Lynh'sI/O automata (Input/Output automata) [LT87, CCK+05, KLSV06℄ andHenzinger's and de Alfaro's interfae automata [dAH01℄. These formalismsare brie�y disussed in the following.21



CHAPTER 1. INTRODUCTIONPnueli uses onurrent programs in order to introdue the temporal logiLTL in onurrent systems. The behavior of n ∈ N proesses that sharea set of variables is desribed by labeled transition systems the edges ofwhih are labeled by ommands and guards. A ommand an be exeutedif a prediate, named guard, on the shared variables is true. Guards areobsolete if eah guard represents the value true. A ommand is an assignmentthat hanges the values of a set of shared program variables (if there areno shared variables then eah ommand is empty). A state hange in theoverall behavior of the proesses orresponds to the exeution of a transitionof exatly one proess. The model is used in [BVW94℄ in order to provethe PSPACE-ompleteness of CTL and LTL model heking in onurrentprograms.An I/O automaton is given by a labeled transition system the edges of whihare labeled by ations. The authors distinguish between input, output andinternal ations and demand that in eah state of an I/O automaton eah in-put ation is available, i.e., an I/O automaton is always ready to reeive anyinput. The ooperation among several I/O automata is ahieved by an as-soiative omposition whih depends on a pairwise omposability ondition,i.e., two I/O automata are omposable if their ations are disjoint, exeptthat input ations of one may oinide with output ations of the other. Theooperation takes plae on the shared input/output ations whih beomeinternal ations in the omposed system. There are extensions that extendthe expressive strength of the formalism of I/O automata by the ability tomodel, e.g., probabilisti [CCK+05℄ or time dependent [KLSV06℄ behavior.An interfae automaton is an I/O automaton without the restrition that ineah state eah input ation must be available.Other formalisms that are similar to interation systems are Arnold's syn-hronous produt of labeled transition systems [Arn94℄, team automata [Ell97,TBEKR03℄ and even �nite state mahines as Mealy mahines [Mea55℄ orMoore mahines [Moo56℄ an be used to model ooperating systems by on-sidering sets of states variables (see, e.g., [GDHH98, GD99℄ for an approah22



1.4. INTERACTION SYSTEMSto analyze synhronous hardware modeled by Mealy mahines).1.4.2 De�nitionsIn the following we formally desribe the formalism of interation systemsand provide illustrative examples.De�nition 1.1:Let K be a set of omponents and {Ai}i∈K a family of pairwise disjuntsets. Ai is the port set of omponent i ∈ K. We denote omponentsby lowerase letters i, j, k or l and, if not stated otherwise, assume that
K = {1, 2, . . . , n}. A port is denoted by the lowerase letter a indexed bythe respetive omponent, i.e., ai. An interation α is a nonempty set ofports from di�erent omponents, i.e.,a) α ⊆

⋃

i∈K

Ai andb) for all i ∈ K holds that |α ∩ Ai| ≤ 1.An interation αi = {ai1 , ai2 , . . . , aik} with aij ∈ Aij
(1 ≤ j ≤ k) denotesa possible ooperation among the omponents i1, . . . , ik via their respetiveports. For an interation α and a omponent i ∈ K let i(α) = Ai ∩ α. Notethat b) ensures that |i(α)| ≤ 1. If i(α) 6= ∅, i.e., i(α) is a set that onsistsof exatly one port ai ∈ Ai, then we say that i partiipates in α and aiis the port of i that partiipates in α. If i(α) = ∅ then we say i does notpartiipate in α.A set Int of interations is alled interation set (for K), if eah portappears in at least one interation in Int, i.e., ⋃

i∈K

Ai =
⋃

α∈Int

α. The tuple
IM = (K, {Ai}i∈K , Int) is alled interation model if Int is an interationset for K.The glue-ode among the omponents, that is modeled by interations, al-lows for a multiway ooperation, i.e., an interation an ontain ports ofmore than two omponents. This is in ontrast to other formalisms that23



CHAPTER 1. INTRODUCTIONmodel ooperating systems and only allow a ooperation between two sub-systems. The onept of multiway ooperation among subsystems is alledglobal synhronous ommuniation in [Osa12℄ and is listed as a design guide-line that an result in a substantially redued number of states in the globalbehavior of a system ompared to a design guideline that only allows a o-operation among two subsystems. For example I/O automata respetivelyinterfae automata only allow ooperation between the input ation of oneautomaton and the output ation of another. Other well-known formalismswith a two-way ommuniation are, e.g., the proess algebras CCS [Mil82℄where ommuniation takes plae between an ation a and a ounterpart āand CSP [Hoa85℄ where ommuniation ours between an input and an out-put hannel. Many proess algebras that are based on CCS or CSP pursuethis restrition, e.g., PEPA [Hil96℄ or the π-alulus [MPW92a, MPW92b℄.Multiway ommuniation an be found in, e.g., Petri nets [Pet67℄ where onetransition an move several tokens among multiple plaes or in the proessalgebra LoCo [vW08℄ whih is inspired by Petri nets.We introdue here a simple example that we use as a running example inthe remainder of this work in order to illustrate our tehniques.Example 1.1:Users login into terminals (TER1,TER2, . . . ,TERk) in order to retrieve in-formation. The terminals are onneted to a gateway server (GS) that on-nets to an authentiation database (ADB) in order to validate a user re-quest. The ADB sends a on�rmation to a database (DB) whih transfersthe requested information to the GS whih in turn forwards the informationto the terminal from whih the request was initiated.For ease of presentation, we model here a system with only two terminals.Note that the results and observations in this work an be adapted to modelswith an arbitrary number k of terminals. Let
K = {TER1,TER2,GS,ADB,DB}be a set of omponents. From a terminal TERi (i = 1, 2) a user an request24



1.4. INTERACTION SYSTEMS(reqi) an information and get an information (geti) if the authentiationproess is �nished. The gateway server GS an get a request (get_req) foran information, request an authentiation (req_auth) of a user, get a value(get_val) that represents the requested information and send a value (send)to the user. The authentiation database ADB an get an authentiationrequest (get_auth_req) and authentiate a user (auth). The database DBan get an authentiation (get_auth) and send a value (send_val). Thus,the sets of ports for the omponents in K are de�ned as follows.
ATERi

= {reqi, geti} (i = 1, 2)

AGS = {get_req, req_auth, get_val, send}
AADB = {get_auth_req, auth}

ADB = {get_auth, send_val}Let Int be a set, onsisting of the following interations. Note that Int isan interation set for K.
send_reqi = {reqi, get_req} (i = 1, 2)

ask_auth = {req_auth, get_auth_req}

authorize = {auth, get_auth}

send_data = {send_val, get_val}

get_replayi = {send, geti} (i = 1, 2)

IM = (K, {Ai}i∈K , Int) is a well de�ned interation model. We display aninteration model graphially by drawing the omponents as squares thatare labeled by the names of the omponents. On the edge of the squareswe draw the ports as blak dots that are labeled by the names of the ports.The interations are depited as lines, labeled by the names of the inter-ations, that onnet the appropriated ports. Figure 1.1 shows a graphialrepresentation of IM.An interation model gives the names of omponents of a ooperating sys-tem, their ports and spei�es the ooperation between the omponents viaports. An interation system extends this spei�ation by assigning a be-25
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send_valFigure 1.1: Graphial representation of the interation model IM from Ex-ample 1.1. For ease of presentation the two omponents TER1 and TER2are depited as one box TERi (i = 1, 2) with respetive ports.havior to eah omponent in form of a labeled transition system. We usethe following de�nition of labeled transition systems.De�nition 1.2:A labeled transition system is a tuple S = (Q,A,→S, q
0). The set Qis the state spae of S, A a set of labels, →S⊆ Q × A × Q a transitionrelation and q0 ∈ Q the initial state. An element q ∈ Q is alled state andan element (q, a, q′) of→S is alled transition. Instead of (q, a, q′) ∈→S weuse the notation q

a
−→S q′. In graphial representations of labeled transitionsystems we mark the initial state by an inoming arrow (see, e.g., Figure 1.2in Example 1.2).For a state q ∈ Q let

en(q) = {a ∈ A|∃q′∈Qq
a
−→S q′}.We say the label a ∈ en(q) is enabled in q.We use the standard de�nition of reahability in transition systems, i.e., astate q ∈ Q is reahable in S if q = q0 or there is a sequene of transitions

q0
a1−→S q1, q1

a2−→S q2, q2
a3−→S q3, . . . , qn−1 an−→S qnwith n ≥ 1 and qn = q. This is, a sequene that starts in the initial stateand ends in q. A transition q

a
−→S q′ is reahable if q is reahable. The setof reahable transitions in S is alled the reahable behavior of S.26



1.4. INTERACTION SYSTEMS
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Figure 1.2: Behavior of the omponents in Example 1.1. TTERi
is depitedfor i = 1, 2.A state q ∈ Q is alled a deadlok if en(q) = ∅, i.e., if no label is enabledin q. S is alled deadlok-free if no deadlok is reahable in S.De�nition 1.3:Let IM = (K, {Ai}i∈K , Int) be an interation model. The tuple Sys =

(IM, {Ti}i∈K) is alled interation system where Ti = (Qi, Ai,→i, q
0
i ) for

i ∈ K is a labeled transition system. In the following, for i ∈ K, we refer to
Ti as the loal behavior, to Qi as the loal state spae, →i as the loaltransition relation and to q0i as the loal initial state of omponent i.The following example provides loal behaviors for the omponents in Ex-ample 1.1.Example 1.2:Figure 1.2 gives loal behaviors to the omponents from Example 1.1. Theinteration model IM that was de�ned in Example 1.1 together with theloal behavior given by the transition systems in Figure 1.2 forms a wellde�ned interation system Sys = (IM, {Ti}i∈K).From the loal behavior of the omponents of an interation system Sys andthe interation set we an determine the global behavior of Sys, in form ofa transition system, as follows.De�nition 1.4:Let Sys = (IM, {Ti}i∈K) be an interation system with interation model
IM = (K, {Ai}i∈K , Int) and the set of omponents K = {1, 2, . . . , n}.27



CHAPTER 1. INTRODUCTIONThe global behavior of Sys is the transition system T = (Q, Int,→T , q
0)where

• the Cartesian produt Q =
∏

i∈K Qi, whih we onsider to be indepen-dent from the order of the omponents, is the global state spae,
• q0 = (q01, . . . , q

0
n) is the global initial state and

• →T⊆ Q× Int×Q is the global transition relation with q
α
−→T q′ iffor all i ∈ K:� if α ∩ Ai = {ai} then qi

ai−→i q
′
i and� if α ∩ Ai = ∅ then qi = q′i.IfK = {1, 2, . . . , n} then a global state q ∈ Q has the form q = (q1, q2, . . . , qn).If we onsider a global state q ∈ Q then we denote the loal state of ompo-nent i ∈ K in q by qi.The interation system Sys is alled deadlok-free if there is no reahablestate q ∈ Q in the global behavior T suh that q is a deadlok.Globally a transition q

α
−→T q′ an be performed if eah port in α is enabledin the state of the loal behavior of its respetive omponent.Remark 1.1:Let Sys = (IM, {Ti}i∈K) be an interation system with interation model

IM = (K, {Ai}i∈K , Int) and global behavior T = (Q, Int,→T , q
0). In thiswork we only onsider interation systems where K and eah Ai and Qi for

i ∈ K are �nite.The size of Sys is given by the sum over the sizes of K, Int and Ai, Qi and
→i for i ∈ K.Example 1.3:The interation system introdued in Example 1.1 and 1.2 onsists of �veomponents where the loal behavior of four omponents (TTER1

, TTER2
,

TADB and TDB) ontains exatly two states and the loal behavior of one28
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Figure 1.3: Part of the global behavior T in Example 1.3.omponent (TGS) exatly four states. It follows that the global behavior
T = (Q, Int,→T , q

0) has a state spae Q that onsists of 24 · 4 = 64 states.The set of reahable states of this system is relatively small and onsists ofonly nine reahable states. The reahable transitions of T and some of theunreahable transitions are depited in Figure 1.3. For better readability,in Figure 1.3, the loal states are indexed by the numbers 1 to 5, where 1orresponds to TER1, 2 to TER2, 3 to GS, 4 to ADB and 5 to DB. Notethat, in eah state in the reahable state spae of T , there is an enabledinteration and there are states in the unreahable state spae where nointeration is enabled. This is, the reahable behavior of T and thus T itselfis deadlok-free. Nevertheless, note that there are unreahable deadloks.
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Chapter 2
Arhitetural Constraints &Reahability
2.1 IntrodutionIn this hapter we explore the omplexity theoreti lassi�ation of the reah-ability problem in sublasses of ooperating systems, i.e., the problem ofdeiding whether or not a ertain state is reahable in a ooperating sys-tem. We use the formalism of interation systems that was introdued inChapter 1 to model ooperating systems. Deiding reahability in generalinteration systems was proven to be PSPACE-omplete [MCM08℄. Herewe de�ne di�erent sublasses of interation systems by arhitetural on-straints and show that deiding the reahability problem in these sublassesremains PSPACE-omplete.Popular deision problems that are omplete in NP or even in PSPACEare deidable in polynomial time in ertain sublasses of instanes. Maybethe most popular example is the Boolean satis�ability problem where 3SATis NP-omplete and 2SAT is deidable in polynomial time. The problemHORNSAT (the problem of deiding whether a given set of propositional31



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYHorn lauses is satis�able) is even deidable in linear time. Similarly, thequanti�ed 3SAT problem is PSPACE-omplete, whereas the quanti�ed 2SATproblem is also deidable in polynomial time. See [GJ79℄ for desriptions andmore examples. These examples raise the question whether there are �inter-esting� lasses of ooperating systems for whih the reahability problem ise�iently deidable.There are various starting points to speify sublasses of ooperating sys-tems.1. Restritions regarding the behavior of the subsystems.2. The degree of synhronization among the subsystems as systems with avery high degree of synhronization tend to display a smaller reahablestate spae.3. The glue-ode, i.e., the struture of the interation among the subsys-tems.Here, our onern lies on the latter. In this hapter we examine restritionswith respet to the interations of a system, i.e., restritions regarding theommuniation struture. We show that deiding the reahability problemremains PSPACE-omplete even if we strongly restrit the ommuniationstruture between the omponents in various ways. For this purpose wede�ne an undireted graph suh that the nodes are the omponents of aninteration system and two omponents are onneted by an edge if thereis an interation in whih both omponents partiipate � we all this graphinteration graph. By the struture of an interation graph we an de�nesublasses of systems. Basi graph strutures of an undireted graph G =

(V,E) are, e.g.,
• trees � G is onneted and ayli,
• stars � one node is of degree |V | − 1 and all other nodes are of degree
1, 32



2.1. INTRODUCTION
• lines � G is onneted, exatly two nodes are of degree 1 and all othernodes are of degree 2.Espeially systems with a tree-like ommuniation struture indue an im-portant lass of ooperating systems. Many interesting systems belong tothis lass, e.g., hierarhial systems or networks built by a master-slave op-erator. This lass has been early studied, e.g., in [Hoa85, BR91℄ and morereently, e.g., in [BHH+06, BCD02, MCM08a℄. Star strutures appear inpratie in, e.g., lient/server systems as banking or booking systems. Prop-erties of ooperating systems with a ommuniation pattern that forms astar were onsidered for example in [Lam09, BCD02, GSM07℄. Cooperatingsystems with a linear strutures appear in, e.g., pipeline systems as instru-tion pipelines or general queue based algorithms.We show the PSPACE-hardness of deiding the reahability problem in sub-lasses of systems with a tree-like ommuniation pattern (i.e., the inter-ation graph is a tree) by providing a detailed redution from the truenessproblem of quanti�ed Boolean formulas. Moreover we strengthen this re-sult and show that the same omplexity holds for even simpler systems witha linear and a star-like ommuniation pattern. The PSPACE-hardness ofdeiding the reahability problem in systems with a linear pattern is a-omplished by a redution from the aeptane problem in linear boundedTuring mahines and in systems with a star-like pattern by a redution fromthe reahability problem in general interation systems.Additionally, we modify our redution for systems with a tree-like ommuni-ation pattern to proof that deiding progress in suh systems is PSPACE-omplete as well.A ommuniation struture that forms a line respetively a star forms par-tiularly a tree, i.e., our PSPACE-ompleteness results of deiding the reah-ability problem in ooperating systems with a linear respetively star stru-ture imply the PSPACE-hardness of deiding the reahability problem in sys-tems with a ommuniation struture that forms a tree. When we started to33



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYthink about the omplexity theoreti lassi�ation of the reahability prob-lem in ooperating systems with a tree-like ommuniation struture, ourquestion in mind was whether tehniques based on su�ient onditions thatestablish reahability or reahability based systems properties in suh sys-tems are justi�ed [Mar09, Hoa85, BR91, BHH+06, BCD02, MCM08a℄, i.e.,ould it be the ase that the reahability problem in suh systems an be de-ided e�iently? The generalization of the tree-like result to systems witha linear and star-like ommuniation struture was onsidered by us at alater stage. This is, we introdue our redution to systems with a tree-likeommuniation pattern for the sake of ompleteness. On the other hand ourredution to systems with a tree-like ommuniation pattern brought up ageneral tehnique of propagating information through a system while avoid-ing irles in the ommuniation struture, i.e., the ooperation between twosubsystems in a system whih ommuniation struture forms irle an beremodeled by propagating the ooperation among the other subsystems onthe irle. We refer to this tehnique in our proof that deiding the reaha-bility problem in linear and star-like systems is PSPACE-hard. Furthermore,we use our proof of the PSPACE-hardness of deiding the reahability prob-lem in tree-like systems in order to show that the deision problem whethera global state is reahable where a �xed omponent is in a �xed loal statean not be deided in polynomial time.This hapter is organized as follows. In Setion 2.2 we provide de�nitionsthat we need in the remainder of this hapter. In Setion 2.3 we show thatthe reahability problem in tree-like systems is in PSPACE and present aredution that proves the PSPACE-hardness of this problem [MCS10℄. InSetion 2.4 we argue why deiding whether a global state is reahable inthe behavior of a tree-like interation system that ontains a ertain �xedloal state of a �xed omponent an not be deided in polynomial time. Se-tion 2.5 and 2.6 provide redutions that show that the reahability problemremains PSPACE-hard in linear respetively star-like interation systems[MCS13b℄. In Setion 2.7 we outline why deiding progress in tree-like inter-34



2.2. DEFINITIONSation systems is PSPACE-omplete. A onlusion an be found in Setion2.8.2.2 De�nitionsWe fous on strutural onstraints on interation systems. By this we meanonstraints onerning the ommuniation struture of a system. We �rstonsider systems with a tree-like ommuniation pattern. Then we furtherrestrit the pattern to linear and star-like ommuniation. The followingde�nition introdues the interation graph of an interation model. Thisgraph is the basis of our approah to de�ne sublasses with respet to aertain ommuniation struture. The nodes of this undireted graph arethe omponents of an interation model and two nodes are onneted if thereis an interation in whih both respetive omponents partiipate.De�nition 2.1:Let IM = (K, {Ai}i∈K, Int) be an interation model with |K | = n. Theinteration graph G = (K, E) of IM is an undireted graph with {i, j} ∈ Eif and only if there is an interation α ∈ Int with i(α) 6= ∅ and j(α) 6= ∅.Let Sys be an interation system with interation model IM. Let G be theinteration graph of IM. We all IM respetively Sys

• tree-like if and only if G is a tree, i.e., G is onneted and ayli,
• star-like if and only if G is a star, i.e., exatly one node is of degree
n− 1 and all other nodes are of degree 1 and
• linear if and only if G is onneted and exatly two nodes have degree
1 and any other node degree 2.Let ISgeneral be the lass of all interation systems with no restritions to

G, i.e., the set of all interation systems, IStree the sublass of all tree-likeinteration systems, ISstar the sublass of all star-like systems and ISline thesublass of all linear systems. 35



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITY
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DBFigure 2.1: Interation graph G of IM in Example 1.1.Remark 2.1:Note that tree-like, star-like and linear interation systems with a set Int ofinterations imply that for all α ∈ Int |α| ≤ 2.Remark 2.2:For the sublasses de�ned in De�nition 2.1 the following set inlusions hold.Obviously, IStree, ISstar and ISline are all inluded in ISgeneral. The sublasses
ISstar and ISline are inluded in IStree. The intersetion of ISstar and ISline isnot empty, and neither ISstar \ ISline nor ISline \ ISstar is empty.Here we give three examples of interation systems and their respetiveinteration graphs.Example 2.1:Consider Example 1.1 that was introdued in Chapter 1. The interationgraph G of the interation model in Example 1.1 is depited in Figure 2.1.The graph G ontains a yle, i.e., an interation system based on the inter-ation model from Example 1.1 is not inluded in IStree, ISline or ISstar.Example 2.2:This example illustrates a simple omponent based lient/server model. Aserver o�ers a servie that an be requested by a lient. Let s be a omponentthat models a server then this omponent o�ers the ports os (o�er a servie)and fs (�nish a servie). A omponent c that models a lient in need ofa ertain servie features the ports rc (request a servie) and gc (gained36



2.2. DEFINITIONS
p

p1 pt

p1,1 pr,1 p1,t pr,t. . . . . .. . .
Figure 2.2: Interation graph G of IMr,t in Example 2.2.a servie). We onsider here omponents that are able to both o�er andrequest servies.In the following we onsider a parameterized instane of a lient/servermodel. Let IMr,t = (K, {Ai}i∈K , Int) be an interation model with r, t > 0where
K = {pi,j|1 ≤ i ≤ r, 1 ≤ j ≤ t} ∪ {pj|1 ≤ j ≤ t} ∪ {p}.For 1 ≤ i ≤ r and 1 ≤ j ≤ t a omponent pi,j models a proess thathas a lient funtion only, i.e., let Api,j

= {rpi,j , gpi,j}. For 1 ≤ j ≤ t aomponent pj models a proess that has a lient and a server funtion, i.e.,let Apj
= {rpj , gpj , opj , fpj}. The omponent p models a proess with a serverfuntion only, i.e., Ap = {op, fp}.For 1 ≤ i ≤ r and 1 ≤ j ≤ t omponent pi,j needs the servie that iso�ered by omponent pj . The omponent pj on the other hand is in need ofthe servie that is o�ered by p. Thus, the interation set of IM is given asfollows.

Int = {{rpi,j , opj}, {gpi,j , fpj}|1 ≤ i ≤ r, 1 ≤ j ≤ t} ∪

{{rpj , op}, {gpj , fp}|1 ≤ j ≤ t}.The interation graph G of the interation model IMr,t is given in Figure 2.2and apparently a tree, i.e., an interation system Sys with interation model
IMr,t is tree-like and thus inluded in IStree.37



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYExample 2.3:This example illustrates a linear interation system. We onsider a sim-ple ommuniation pipeline onsisting of n stations. Station one initiatespassing a message to station two, station two passes the message to stationthree and so on. If the message arrives at station n then station n passes anaknowledge message, on the same way, bak to station one.Let IM = (K, {Ai}i∈K , Int) be the interation model with omponents K =

{s1, s2, . . . , sn} for n ≥ 2 where si models station i for 1 ≤ i ≤ n. A sta-tion si with 1 < i < n an reeive a message (rec_mi), pass the messageforward (send_mi), reeive an aknowledge (rec_ai) and pass the aknowl-edge forward (send_ai). Station s1 an only send the initial message andreeive the aknowledge and station sn an only reeive a message and sendan aknowledge. This is, the port sets of the omponents are de�ned asfollows.
As1

= {send_m1, rec_a1}
Asi

= {rec_mi, send_mi, rec_ai, send_ai}, 1 < i < n

Asn
= {rec_mn, send_an}The interation set Int is given by the following interations.

send_messagei = {send_mi, rec_mi+1}, 1 ≤ i < n

send_acknowledgei = {send_ai, rec_ai−1}, 1 < i ≤ nLet Sys = (IM, {Ti}i∈K) be the interation system with loal behaviordepited in Figure 2.3.The interation graph G of IM is depited in Figure 2.4. G forms a lineof omponents. Thus, IM is a linear interation model and Sys is a linearinteration system. 38
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send_m1

rec_a1(a) Ts1

rec_mi

send_mi
rec_ai

send_ai

(b) Tsi
, 1 <

i < n

rec_mnsend_an() TsnFigure 2.3: Loal behavior of the omponents in a simple ommuniationpipeline.
s1 s2 s3 snFigure 2.4: Interation graph G for the interation model IM in Example2.3.2.3 PSPACE-ompleteness of Reahability inTree-Like SystemsHere we show that deiding the reahability problem in tree-like interationsystems is PSPACE-omplete. We show the PSPACE-hardness by providinga redution from the trueness problem of quanti�ed Boolean formulas (QBF)[GJ79℄, i.e., we desribe how a quanti�ed Boolean formulaH an be mappedto a tree-like interation system SysH and a state q in the global behavior Tof SysH in polynomial time suh that deiding the reahability problem for

q in SysH orresponds to deiding whether or not H is true.First we formally introdue the trueness problem of quanti�ed Boolean for-mulas and the reahability problem in tree-like interation systems and showthat deiding this problem is in PSPACE. In a seond part we de�ne a tree-like interation system SysH for a quanti�ed Boolean formula H by speify-ing the omponents, the ports of the omponents, the interations and theloal behavior of the omponents. In the last part we prove in detail thatdeiding the reahability problem for a ertain state in the global behaviorof SysH orresponds to deiding whether H is true.39



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYQBF and RISTQBFA quanti�ed Boolean formula (QBF) (see [GJ79℄ for details) onsists ofa Boolean formula f over variables x1, . . . , xn where eah variable is boundedby a quanti�er ∀ or ∃. For example, in prenex normal form, i.e., the stringrepresentation of a formula in whih all quanti�ers are written in front ofthe Boolean formula, the formula
P = (Q1x1

)(Q2x2
) . . . (Qnxn

)fis a QBF where Qi is either an existential quanti�er ∃ or an universal quan-ti�er ∀ for 1 ≤ i ≤ n.If P is a QBF then P is a subformula of P . If P ′ is a subformula of Pand P ′ is of the form P ′ = ⊕P ′′, where ⊕ is an unary operator (e.g. ,
P ′ = ¬P ′′ or P ′ = ∃x.P ′′) then P ′′ is a subformula of P . If P ′ is of theform P ′ = P1 ⊗ P2, where ⊗ is a binary operator (e.g., P ′ = P1 ∨ P2 or
P ′ = P1 ∧ P2) then P1 and P2 are subformulas of P . The size of a QBF Pis the number of subformulas of P .Eah QBF instane P ′ an be rewritten into an equivalent instane P overthe grammar

P ::= x|¬P |P ∧ P |∃x.P.The rewriting an be ahieved in polynomial time in the size of P ′ by parsingthe subformulas of P ′ top down, starting with P ′, and applying respetiveequivalenes. Without loss of generality, in the following we only onsiderQBF instanes that are rewritten over this grammar. Let P be a QBF thenthe question is whether P is true. The language TQBF is de�ned as theset of true QBF instanes and it is well known that the deision problemwhether a QBF is in TQBF is PSPACE-omplete ([GJ79℄).In order to determine whether a QBF P is true or false we introdue thestraightforward, reursive Algorithm 1 alled eval. This algorithm is used in40



2.3. PSPACE-COMPLETENESS OF REACHABILITY IN TREE-LIKESYSTEMSthe remainder to illustrate our redution. The algorithm reursively parses aQBF P and evaluates eah subformula for eah ombination of truth assign-ments to the variables. In Line 1 and 2 a subformula of the form P = ∃x.P ′is parsed. The term P ′
x=true respetively P ′

x=false denotes the subformula
P ′ with true respetively false assigned to all ourrenes of variable x in
P ′. In Line 5 respetively 8 a subformula of the form P = ¬P ′ respetively
P = P ′ ∧ P ′′ is parsed. In Line 11 a subformula that onsists of a variableis parsed. The funtion value(x) returns the truth value that is urrentlyassigned to the variable x. Remember that eah variable in QBF is boundedby a quanti�er, i.e., in our ase bounded by an existene quanti�er. Thus,before Line 11 is exeuted for variable x, Line 2 was exeuted where thesubformula that quanti�es x was parsed and a truth value was assigned toall ourrenes of x. Obviously, P ∈ TQBF if and only if eval(P ) returns
true.Algorithm 1 eval(P )1: if P = ∃x.P ′ then2: return eval(P ′

x=true) ∨ eval(P ′
x=false)3: end if4: if P = ¬P ′ then5: return ¬eval(P ′)6: end if7: if P = P ′ ∧ P ′′ then8: return eval(P ′) ∧ eval(P ′′)9: end if10: {P = x is the only remaining possibility, i.e., P is a variable}11: return value(x)RISTWe now formally introdue the reahability problem in tree-like interationsystems. For Sys ∈ IStree let Q(Sys) be the state spae of the global behavior41



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYof Sys and Reach(Sys) ⊆ Q(Sys) be the set of reahable states in the globalbehavior. Let
RIST =

⋃

Sys∈IStree

({Sys} ×Q(Sys)) .For (Sys, q) ∈ RIST we want to deide whether q is reahable in the globalbehavior of Sys. Let TRIST ⊆ RIST be the set of RIST instanes of theform (Sys, q) where q is reahable in the global behavior of Sys, i.e.,
TRIST =

⋃

Sys∈IST

({Sys} × Reach(Sys)) .Deiding (Sys, q) ∈ TRIST is in PSPACE. Given a tree-like interationsystem and a global state q one an guess a sequene of interations (beausePSPACE=NPSPACE [Sav70℄) and hek in linear spae if it leads from theinitial state q0 to q. At any time we store exatly one global state fromwhih we guess a suessor state.A Mapping from QBF to Tree-Like Interation SystemsIn the following we introdue for a QBF H a tree-like interation system
SysH (with an interation model IMH) and a global state qt suh thati) H ∈ TQBF ⇔ (SysH , q

t) ∈ TRIST andii) the size of SysH is polynomial in the size of H .The idea for the onstrution of SysH an be skethed as follows: the in-teration system basially simulates the evaluation of the formula H , as inAlgorithm 1, based on the syntax tree of H . The subformulas of H are theomponents of the system, and the interation model desribes the propa-gation of truth values between the nodes of the syntax tree. Example 2.4shows the interation graph of an interation model IMH with respet to aQBF H that results from our redution. If a subformula that models anexistential quanti�er is alled reursively during the evaluation of Algorithm42
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H ′

H=¬P1

∃x1.P2

P3 ∧ P4

P3 = x1
1 ¬P5

P5 = x2
1

x′
1

Figure 2.5: Interation graph GH of IMH in Example 2.4.1 then a truth value is assigned to all ourrenes of the respetive quanti-�ed variable. In Example 2.4 this would suggest a ommuniation betweenthe omponent that models the subformula ∃x1.P2 and the omponents thatmodel x1
1 respetively x2

1, i.e., modeling this interation would result in aninteration model suh that the interation graph of whih is not a tree.The idea to avoid these ommuniations is to store the truth assignmentin an auxiliary omponent (x′
1 in Example 2.4) and propagate the respe-tive assignment down the tree to the omponents that model the respetivevariables.Example 2.4:Consider the formulaH = ¬∃x1.(x1∧¬x1). The assoiated interation graph

GH of IMH is given in Figure 2.5. The syntax tree of H is ontained in GH .Components with highlighted frames denote omponents that do not modelsubformulas of H .We now desribe in detail how SysH is onstruted. First we introdue theomponents of SysH , then the ports of the omponents, followed by thespei�ation of the interations and the loal behavior of the omponents.43



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYComponentsLet H be a QBF over the variables x1, . . . , xn. Generally, there may beseveral ourrenes of a variable xi inH . Let xi our ki times for i = 1, . . . , nas a subformula in H , then we assume that the jth ourrene of variable
xi is renamed in H as xj

i for 1 ≤ j ≤ ki, e.g., in Example 2.4 the formula
¬∃x1.(x1 ∧ ¬x1) is renamed to ¬∃x1.(x

1
1 ∧ ¬x

2
1).Let KH = K1 ∪K2 ∪{H

′} be a set of omponents suh that
• K1 = {P |P is a subformula of H} and
• K2 = {x

′
1, x

′
2, . . . , x

′
n}.In ontext of our intention to model the evaluation of Algorithm 1, the om-ponents in K2 store the urrent truth assignment to the variables during theevaluation. The omponent H ′ is an auxiliary omponent that is used tomodel the initialization and the termination of Algorithm 1. The ompo-nents in K1 model the subformulas of H and have the same name as thesubformulas. In the following it is lear from the ontext whether we speakabout a subformula P ofH or the omponent P that models this subformula.Given a truth assignment to the variables, subformulas are evaluated to trueor to false. Therefore, when we mention an assignment to a omponent in

KH then we refer to the urrent truth assignment to the respetive vari-able respetively the urrent evaluation of the respetive subformula that ismodeled by this omponent.In the following we introdue the port sets of the omponents in KH . Manyports of di�erent omponents model the same funtionality and only di�erin their subsripts. 44



2.3. PSPACE-COMPLETENESS OF REACHABILITY IN TREE-LIKESYSTEMSPort sets of omponents modeling subformulasEah omponent P ∈ K1 that models a subformula P has to o�er the fol-lowing funtionalities in form of ports.
• aP abbreviates �ativate P �: indues the evaluation of all subformulasin P with respet to the urrent truth assignment to the variables.
• tP respetively fP : the urrent truth assignment of P is true respe-tively false.
• rPxlt (rPxlf) abbreviates �P reeives instrution to set xl true (false)�:all ourrenes of the variable xl in P shall be set to true (false).
• rP t: assign true to this subformula.The following ports are o�ered by omponents that model subformulas Pthat are not variables, i.e., P onsists of an operator and one subformula P1(e.g., P = ¬P1) or two subformulas (e.g., P = P1 ∧ P2).
• e

1
P (e2P ) abbreviates �evaluate P1 (P2)�: evaluate P1 (P2) with respetto the urrent truth assignment to the variables.

• sub1P t (sub2P t) respetively sub1Pf (sub2Pf) abbreviates �subformula P1(P2) is true respetively false�: P1 (P2) was evaluated to true respe-tively false.
• tP respetively fP : P was evaluated true respetively false with respetto the urrent truth assignments of the variables.
• s1Pxlt (s2Pxlt) respetively s1Pxlf (s2Pxlf) abbreviates �set xl true (false)in P1 respetively P2�): all ourrenes of the variable xl in P1 (P2)shall be set to true respetively false.
• s1P t (s2P t): assign true to P1 (P2).45



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYFor i = 1, . . . , n and j = 1, . . . , ki the omponent P = xj
i ∈ K1 representsthe jth ourrene of variable xi in H . The set AP of ports is given by

AP = {aP , tP , fP , rP t} ∪ {rPxlt, rPxlf |l = 1, . . . , n}.A omponent modeling a negation, i.e., a subformula of the form P = ¬P1has the following set of ports
AP = {e1P , aP , sub

1
P t, sub

1
Pf, tP , fP , rP t, s

1
P t} ∪

{rPxlt, rPxlf, s
1
Pxlt, s

1
Pxlf |l = 1, . . . , n}.A omponent that models a onjuntion, i.e., a subformula of the form

P = P1 ∧ P2 has the set of ports
AP = {aP , e

1
P , e

2
P , sub

1
P t, sub

1
Pf, sub

2
P t, sub

2
Pf, tP , fP , rP t, s

1
P t, s

2
P t} ∪

{rPxlt, rPxlf, s
1
Pxlt, s

1
Pxlf, s

2
Pxlt, s

2
Pxlf |l = 1, . . . , n}.A omponent that models a subformula of the form P = ∃xi.P1 (1 ≤ i ≤ n)needs to have aess to the urrent truth assignment of the variable xi.We store the urrent truth assignment of the variable xi, that an ourmultiple times in the QBF H , in the behavior of the omponent x′

i ∈ K2.This omponent will exlusively interat with the omponent that models
P = ∃xi.P1. The set of ports Ax

′
i
is given by

Ax
′
i
= {rxit, rxif, txi

, fxi
}.

txi
respetively fxi

models that true respetively false is assigned to all o-urrenes of variable xi. The port rxit assigns true to x′
i. Analogously rxifswithes the assignment to false.The port set AP for P = ∃xi.P1 is given by

AP = {aP , e
1
P , sub

1
P t, sub

1
Pf, tP , fP , xit, xif, sxit, sxif, rP t, s

1
P t} ∪

{rPxlt, rPxlf, s
1
Pxlt, s

1
Pxlf |l = 1, . . . , n}.46



2.3. PSPACE-COMPLETENESS OF REACHABILITY IN TREE-LIKESYSTEMS
aP , e1P , sub1P t, sub1Pf , tP and fP at similarly to the orresponding ports ofthe other omponents spei�ed above. The port xit on�rms that true isassigned to all ourrenes of the variable xi, and sxit models that true isassigned to all ourrenes of xi. On the other hand xif on�rms that falseis assigned to xi, and sxif assigns false to xi.The omponent H ′ models the all to the algorithm eval and the termina-tion. The set of ports AH

′ is given by
AH

′ = {e1
H

′, sub1
H

′t, sub1
H

′f, s1
H

′t, endH′}.All ports but endH′ have the same funtionality as the ports desribed above.We show that the formula H is in TQBF if and only if the omponent asso-iated with H is evaluated to true, i.e., sub1
H

′t beomes enabled eventually.The port endH′ models that the simulated evaluation of Algorithm 1 termi-nated. This port shall beome enabled, either if H was evaluated to true orto false. We use this port in order to prevent SysH from being stuk afterthe evaluation of H .InterationsWe now de�ne the interation set Int of IMH . Let P ∈ K1 ∪{H
′} modela subformula whih is not an ourrene of a variable. The omponent Pan model a subformula that onsists of an operator and one subformula P1(e.g., P = ¬P1) or two subformulas P1 and P2 (e.g., P = P1∧P2). If P needsthe truth value of Pk, k ∈ {1, 2}, to be evaluated then the evaluation in Pkneeds to be ativated. This is realized by the synhronization of ekP and aPk

.Furthermore P an ask Pk for its urrent truth value. These interations arerealized by
eval_P → Pk = {ekP , aPk

}

P_ask_Pk_true = {subkP t, tPk
}

P_ask_Pk_false = {subkPf, fPk
}47



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYfor k ∈ {1, 2}. These interations onnet all omponents in K1 ∪{H
′} andresult in an interation graph that is related to the syntax tree of the QBF

H .If a subformula of the form P = ∃xi.P1 (1 ≤ i ≤ n) needs all ourrenesof variable xi to be set to true or to false a diret interation with theomponents that model these variables would lead to a yle in the assoiatedinteration graph. Therefore, P passes this information to its subformula P ′,i.e., s1Pxit in P has to synhronize with rP1
xit in P1. The omponent P1 needsto pass on this information to the omponents that model the subformulas of

P1 and so on. Let i ∈ {1, . . . , n} and k ∈ {1, 2}. The following interationsrealize the synhronizations needed to propagate the information to assigna truth value to a variable.
set_xi_true_P → Pk = {skPxit, rPk

xit}

set_xi_false_P → Pk = {skPxif, rPk
xif}If the QBF H is true, we need all omponents to be in one designated state� whether or not this global state is reahable orresponds to whether ornot H is true. If H was evaluated to true then the omponent H ′ reahesa designated loal state. To assure that all omponents an reah a orre-sponding designated state, a similar tehnique as above is used. We propa-gate, starting in the omponent H ′, the information through the tree thatall omponents shall reah their designated state that indiates that H istrue. A omponent P that models a subformula propagates this informa-tion to the omponents that model the subformulas of P by the followinginteration. For k ∈ {1, 2} let

set_Pk_true_P → Pk = {skP t, rPk
t}.Consider a subformula of the form P = ∃xi.P1 ∈ K1 and the assoiatedomponent x′

i ∈ K2. The omponent that models P an assign true or falseto x′
i and an ask x′

i whether the urrent truth assignment is true or false.48



2.3. PSPACE-COMPLETENESS OF REACHABILITY IN TREE-LIKESYSTEMSThis is realized by
set_x′

i_true = {sxit, rxit}

ask_truex′
i

= {xit, txi
}

set_x′
i_false = {sxif, rxif}

ask_falsex′
i

= {xif, fxi
}We model SysH suh that if H ′ reahes a state that indiates that H wasevaluated to true or false, i.e., the simulation of the evaluation of H is�nished, then the unary interation evaluated = {endH′} beomes enabledin the global behavior of SysH .Let Int be the set of interations given by

{eval_P → Pk|P ∈ K1 ∪{H
′} with su. Pk}∪

{P_ask_Pk_true|P ∈ K1 ∪{H
′} with su. Pk}∪

{P_ask_Pk_false|P ∈ K1 ∪{H
′} with su. Pk}∪

{set_x′
i_true, set_x′

i_false, ask_truex′
i
, ask_falsex′

i
|x′

i ∈ K2}∪

{set_Pk_true_P → Pk|P ∈ K1 ∪{H
′} with su. Pk}∪

{set_xi_true_P → Pk|P ∈ K1 with su. Pk, i ∈ {1, . . . , n}}∪

{set_xi_false_P → Pk|P ∈ K1with su. Pk, i ∈ {1, . . . , n}}∪

{evaluated}.Remark 2.3:The interation graph GH , assoiated to IMH , is a tree, as it is onstrutedalong the syntax tree and augmented with the omponents H ′ and x′
i for

1 ≤ i ≤ n without forming yles.Loal BehaviorThe loal behavior of the omponents is given by labeled transition systems.Every system has one state labeled t and one labeled f . These states modelthe fat that either true respetively false is assigned to this omponent orit was evaluated to true respetively false.49
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i (2.6a), Tx
′
i
for x′

i (2.6b)and TH
′ for the omponent H ′ (2.6).Figure 2.6a depits the transition system of the omponent modeling the jthourrene of variable xi. Figure 2.6b gives the loal behavior of a omponent

x′
i ∈ K2. The behavior of H ′ is given in Figure 2.6. The transition systemsfor a omponent that models a variable xj

i respetively for x′
i ∈ K2 are self-explanatory. If in TH

′ the port e
1
H

′ is performed, i.e., omponent H needsto be evaluated, then TH
′ waits to perform either sub1

H
′t or sub1

H
′f . Theseports an only be performed if TH reahes its state labeled t respetively f .We show that this indiates whether the assoiated QBF is true respetivelyfalse.In Figure 2.7 the loal behavior for a omponent of the form P = ¬P1 isdepited. Note that, for better readability, the transition system in Figure2.7a is not ompletely shown. In Figure 2.7a the transitions and statesdisplayed in Figure 2.7b and 2.7 have to be inluded between the stateslabeled t and f for l = 1, . . . , n.In Figure 2.8 the loal behavior for a omponent of the form P = ∃xi.P1is depited. For better readability, the transition system in Figure 2.8a isnot ompletely shown. In Figure 2.8a the transitions and states displayed inFigure 2.7b and 2.8b have to be inluded between the states labeled t and

f for l = 1, . . . , n.In Figure 2.9 the loal behavior for a omponent of the form P = P1 ∧P2 is50
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(2.9).depited. Note that the transition system in Figure 2.9a is not ompletelyshown. The transitions and states displayed in Figure 2.9b and 2.9 have tobe inluded between the states labeled t and f for l = 1, . . . , n.The resulting interation system is denoted by SysH = (IMH , {TP}P∈KH

).
H ∈ TQBF ⇔ (SysH , q

t) ∈ TRISTIn order to show that the reahability problem in tree-like interation systemsis PSPACE-hard we need to show that a quanti�ed Boolean formula H istrue if and only if a designated state is reahable in the global behavior of
SysH . This proposition is formulated in the following theorem.Theorem 2.1:Let H be a QBF over the grammar P ::= x|¬P |P ∧ P |∃x.P and SysH theassoiated interation system obtained from the redution. Let qt be theglobal state in whih all omponents are in their state labeled t, then

H ∈ TQBF ⇔ (SysH , q
t) ∈ TRIST.52



2.4. REACHABILITY OF LOCAL STATES
Proof. The proof an be found in Appendix A on Page 183.2.4 Reahability of Loal StatesIn the previous setion we disussed the omplexity theoreti lassi�ationof the reahability problem in tree-like interation systems by introduing aredution from the trueness problem of quanti�ed Boolean formulas. Herewe onsider a speial kind of the reahability problem in tree-like interationsystems. Given a tree-like interation system Sys with a set of omponents
K, a omponent i ∈ K and a loal state qi in the behavior Ti of omponent
i we disuss the question whether there is a state q reahable in the globalbehavior T of Sys where omponent i is in the state qi.We show that deiding this problem is PSPACE-omplete in tree-like inter-ation systems. The redution uses parts of the proof of Theorem 2.1.First we formulate the respetive deision problem.Let Sys = (IM, {Ti}i∈K) be an interation system with interation model
IM = (K, {Ai}i∈K , Int). We assume that the loal state spaes of the om-ponents in Sys are pairwise disjoint. Let Qloc(Sys) =

⋃

i∈K

Qi, i.e., Qloc(Sys)is the union of all loal state spaes of the omponents in Sys. Rememberthat IStree is the lass of tree-like interation systems. Let
RISTL =

⋃

Sys∈IStree

({Sys} ×Qloc(Sys)) .For (Sys, qloc) ∈ RISTL let qloc ∈ Qi for some i ∈ K. We want to deidewhether a global state q ∈ Q is reahable in the global behavior of Sys suhthat omponent i is in state qloc in q. Let TRISTL ⊆ RISTL be the set of
RISTL instanes where this is the ase.53



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYLet Sys ∈ IStree be a tree-like interation system with a set of omponents K.For i ∈ K let ReachLocali(Sys) ⊆ Qi be the set of states qi ∈ Qi suh thatthere is a state q reahable in the global behavior of Sys where omponent
i is in the state qi. Let

ReachLocal(Sys) =
⋃

i∈K

ReachLocali(Sys)be the union over all reahable loal states in Sys then
TRISTL =

⋃

Sys∈IStree

({Sys} ×ReachLocal(Sys)) .The following orollary relates the question whether (Sys, qloc) ∈ RISTLis an instane of TRISTL to the question whether a quanti�ed Booleanformula is true.Corollary 2.1:Let H be a QBF and SysH the assoiated interation system obtained fromthe redution given in Setion 2.3. We assume that the loal state spaes ofthe omponents in SysH are disjoint, e.g., eah loal state is indexed by thename of the respetive omponent. Consider the state tH′ of omponent H ′(this state is labeled t in Figure 2.6), then
H ∈ TQBF ⇔ (SysH , tH′) ∈ TRISTL.Proof. The proof an be found in Appendix A on Page 194.Analogously to the argument why deiding the reahability problem in tree-like interation systems is in PSPACE, it is easy to see that the problem ofdeiding TRISTL is in PSPACE as well. Let (Sys, qloc) ∈ RISTL where

K is the set of omponents in Sys and qloc ∈ Qi for i ∈ K. We guess asequene of interations and hek in linear spae whether it leads from theglobal initial state q0 to a state q where qi = qloc. Thus, by Corollary 2.1follows that deiding whether there is a global state reahable where a �xedomponent is in a �xed state is PSPACE-omplete.54



2.5. PSPACE-COMPLETENESS OF REACHABILITY IN LINEARSYSTEMS2.5 PSPACE-ompleteness of Reahability inLinear SystemsIn the following we give a redution from the aeptane problem in linearbounded Turing mahines to the reahability problem in linear interationsystems. This redution strengthens the result of the QBF redution as thesublass of omponent systems with a linear ommuniation struture is aproper subset of systems with a tree-like ommuniation struture. We usethe following syntax for a Turing mahine but we refrain from repeating thewell known semantis (see [GJ79℄ for details).De�nition 2.2:A tuple M = (Γ,Σ,P, δ) is alled deterministi Turing mahine (DTM)with
• Γ is a �nite set of tape symbols,
• Σ ⊆ Γ is a set of input symbols with a distinguished blank symbol
b ∈ Γ \ Σ,
• P is a �nite set of states, inluding a distinguished initial state p0and two distinguished halt states pY and pN and
• δ is the transition funtion of M , given by

δ : (P \ {pY , pN})× Γ→ P× Γ× {−1,+1}.We onsider a both-sided in�nite tape with ells labeled by integers. Givenan input x ∈ Σ∗ written on the ells labeled 1 through |x| we assume M tobe initially in the initial state p0 and the tape head pointing at ell 1. For astring x ∈ Σ∗ with |x| = n we denote the ith letter in x by xi for 1 ≤ i ≤ n.A DTMM is alled linear bounded if no omputation onM uses more than
n+1 tape ells, where n is the length of the input string. A on�gurationof a bounded DTM M is denoted by (p; γ0, . . . , γi, . . . , γn+1) where M is in55



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYstate p, γj is the tape symbol in ell 0 ≤ j ≤ n + 1 and the tape head is onell i.De�nition 2.3:The problem linear spae aeptane (LSA) has as input a linear boundedDTM M and a �nite string x over the input alphabet of M . The questionis whether M aepts x, i.e., does M halt in the state pY .It is well known that the problem LSA is PSPACE-omplete [GJ79℄.The idea for our redution is to model the ells of a DTM M by omponentsof an interation system SysM and the transition funtion of M by inter-ations suh that a path in the global behavior of SysM orresponds to anexeution of M . In order for the transition funtion to alulate the nexton�guration ofM we need the urrent position of the tape head, the urrenttape symbol in the respetive ell and the urrent state of M . We modelall these informations in eah ell, i.e., in order to model the alulation ofthe next on�guration we only need an interation between the omponentthat models the ell with the tape head and the respetive omponents thatmodel the neighboring ells.Let M = (Γ,Σ,P, δ) be a linear bounded DTM and x ∈ Σ∗ an input with
|x| = n. Let SysM = (IMM , {Ti}i∈K) be an interation system with intera-tion model IM = (K, {Ai}i∈K, Int) suh that K = {0, . . . , n+ 1}.The set of ports Ai for a omponent i ∈ K with 1 ≤ i ≤ n is given by

Ai = {(p, γ)
1
i , (p, γ)

2
i |p ∈ P \ {pY , pN}, γ ∈ Γ}.A port (p, γ)1i models that the tape head moves away from ell i where γ isthe urrent tape symbol in this ell and M is in state p. Analogously, (p, γ)2imodels that the tape head moves onto ell i where γ is written on this elland M is in state p.Beause of M being linear bounded, we now that δ does not move the tapehead from ell 0 to the left respetively from ell n + 1 to the right. Thus,56



2.5. PSPACE-COMPLETENESS OF REACHABILITY IN LINEARSYSTEMSwe an omit ports from A0 and An+1 that model a head movement from oronto ell −1 and n + 2. The set of ports A0 is given by
A0 = {(p, γ)10|p ∈ P \ {pY , pN}, γ ∈ Γ,¬∃p′,γ′δ(p, γ) = (p′, γ′,−1)} ∪

{(p, γ)20|p ∈ P \ {pY , pN}, γ ∈ Γ,¬∃p′,γ′δ(p, γ) = (p′, γ′, 1)}.Analogously, for omponent n+ 1 ∈ K, i.e., for the rightmost used ell let
An+1 = {(p, γ)1n+1|p ∈ P \ {pY , pN}, γ ∈ Γ,¬∃p′,γ′δ(p, γ) = (p′, γ′, 1)} ∪

{(p, γ)2n+1|p ∈ P \ {pY , pN}, γ ∈ Γ,¬∃p′,γ′δ(p, γ) = (p′, γ′,−1)}.The set of interations is given by
Int = {{(p, γ)1i , (p, γ)

2
i+T}|∃p′,γ′δ(p, γ) = (p′, γ′,T), 0 ≤ i+ T ≤ n+ 1}.For i ∈ K let Ti = (Qi, Ai,→i, q

0
i ) be the loal behavior of omponent i with

Qi = {(p, γ)|p ∈ P ∪ {s}, γ ∈ Γ} where s is an auxiliary symbol that is notinluded in P. The port (p, γ) ∈ Qi with p 6= s models that the tape headis urrently on ell i and the urrent tape symbol in this ell is γ. The port
(s, γ) models that γ is the ontent of ell i and the tape head is not on thisell. The loal initial states are derived from the initial word on the tape,i.e., q00 = (s, b), q01 = (p0, x1), q0i = (s, xi) for 2 ≤ i ≤ n and q0n+1 = (s, b).For i ∈ K let →i be the union of the following transitions.a) For all γ, γ′ ∈ Γ and p ∈ P \ {pY , pN} let (p, γ) (p,γ)

1
i−−−→i (s, γ

′) if there are
p′ ∈ P and T ∈ {−1, 1} suh that δ(p, γ) = (p′, γ′,T).b) For all γ, γ̃ ∈ Γ, p ∈ P \ {pY , pN} and p′ ∈ P let (s, γ̃)

(p,γ)
2
i−−−→i (p

′, γ̃) ifthere are γ′ ∈ Γ and T ∈ {−1, 1} suh that δ(p, γ) = (p′, γ′,T).The transitions desribed in a) model the impat of the transition funtion
δ on ell i if the tape head is urrently on this ell. Let M be in state p andthe tape head on ell i reading γ, i.e., Ti is in the state (p, γ). If δ(p, γ) =
(p′, γ′,T) then γ′ is written and the tape head moves to a neighboring ell,i.e., Ti moves to the state (s, γ′). On the other hand, the transitions desribed57



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYin b) model the impat of δ on ell i if the tape head moves onto this ell.Let γ̃ be the urrent tape symbol on ell i, i.e., Ti is in state (s, γ̃) beforethe head moves. After the movement let M hanges its state to p′, i.e., Timoves to the state (p′, γ̃).Remark 2.4:Note that in eah omponent, loal states of the form (pY , γ) and (pN , γ) donot have outgoing transitions, i.e., a omponent that reahes one of thesestates an never interat again. We an avoid this situation by speifying aself-loop on these states that is labeled by a distinguished port. An inter-ation that onsists of only this one port is permanently enabled if one ofthese states is reahed.Remark 2.5:
SysM satis�es the onditions of an interation system: every port of a om-ponent ours in at least one interation. Let i ∈ K, (p, γ)1i ∈ Ai and
δ(p, γ) = (p′, γ′,T) then 0 ≤ i+T ≤ n+1 and {(p, γ)1i , (p, γ)2i+T} ∈ Int. For
(p, γ)2i ∈ Ai is 0 ≤ i− T ≤ n + 1 and {(p, γ)1i−T, (p, γ)

2
i } ∈ Int.It is lear that SysM has a linear ommuniation struture beause everyomponent 1 ≤ i ≤ n only interats with its neighboring omponents i − 1and i+ 1.Remark 2.6:The redution is polynomial, sine | Int | ≤ |P| · |Γ| and for all i ∈ K |Ai| ≤

2 · |P| · |Γ| and |Qi| ≤ (|P|+ 1) · |Γ|.Theorem 2.2:Let M = (Γ,Σ,P, δ) be a linear bounded DTM, x ∈ Σ∗ with |x| = n aninput for M and SysM the assoiated linear interation system. We have Maepts x if and only if a global state q = (q0, . . . , qn+1) is reahable in SysMsuh that there is i ∈ {0, . . . , n + 1} with qi = (pY , γ) for a tape symbol
γ ∈ Γ.Proof. The proof an be found in Appendix A on Page 194.58



2.6. PSPACE-COMPLETENESS OF REACHABILITY IN STAR-LIKESYSTEMSRemark 2.7:An instane of the reahability problem in linear interation systems is alinear interation system Sys and a global state q. The interation system
SysM for a linear bounded DTM M and an input x an be extended suhthat a distinguished global state an be reahed if M halts on x. Thisan be ahieved by the tehnique that was used in Setion 2.3 in orderto reah a distinguished global state in tree-like interation systems. Theidea is to invoke, starting from the omponent that reahed (pY , γ), thateah omponent shall reah a distinguished state. This invoation an bepropagated through neighboring omponents.The reahability problem in linear interation systems is in PSPACE beauseeah linear interation system is partiularly a tree-like interation systemand the reahability problem in tree-like interation systems is in PSPACE.It follows by Theorem 2.2 and Remark 2.7 that the reahability problem inlinear interation systems is PSPACE-omplete.
2.6 PSPACE-ompleteness of Reahability inStar-Like SystemsHere we show that deiding the reahability problem in the lass of star-like interation systems is PSPACE-omplete. We show this by providing aredution from a general interation systems Sys to a star-like systems Sys′.The idea of the redution is to onstrut a �ontrol omponent� cc that formsthe enter of the star struture in Sys′ and is surrounded by the omponentsof Sys. An interation in Sys is modeled by multiple interations in Sys′where eah onsists of exatly two ports. The exeution of an interation in
Sys then orresponds to the exeution of a sequene of interations in Sys′that is oordinated by cc and ahieved in two steps. Let α be an interationin Sys. 59



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYa) In a �rst step cc interats with eah omponent that partiipates in αand heks whether the respetive port in α is enabled without hangingthe loal states of the omponents. If this hek fails then cc returns toits initial state.b) If the hek sueeds then cc interats with eah respetive omponenton the ports in α, i.e., a global transition in Sys that is labeled by α issimulated.Let Q =
∏

i∈K Qi be the global state spae of Sys then we have a globalstate spae ∏

i∈K∪{cc}Qi for Sys′ with the property that q ∈ Q is reahablein Sys if and only if a state q′ is reahable in Sys′ suh that q′ equals q up tothe loal state of the omponent cc. Sine reahability in general interationsystems is PSPACE-omplete, the onsequene of this transformation is thePSPACE-ompleteness of reahability in star-like interation systems.Let Sys = (IM, {Ti}i∈K) be an interation system with interation model
IM = (K, {Ai}i∈K, Int) and Sys′ = (IM′, {T ′

i}i∈K′) be an interation systemwith interation model IM = (K′, {A′
i}i∈K′, Int′).Let K′ = K∪{cc}, where cc is a ontrol omponent that oordinates se-quenes of interations in Int′ that orrespond to interations in Int. For

i ∈ K let A′
i = Ai ∪{a

ok
i , a¬oki |ai ∈ Ai}. The port aoki respetively a¬oki mod-els that omponent i enables respetively does not enable the port ai ∈ Ai.The set of ports Acc of omponent cc is given by

Acc = {a_iokcc , a_i¬okcc , a_iccfire|i = 1, . . . , n, ai ∈ Ai} ∪ {αcc|α ∈ Int}.Let i ∈ K and ai ∈ Ai a port in i then a_iokcc models that omponent iurrently enables ai and a_i¬okcc models that ai is urrently not enabled by
i. The port a_iccfire models that omponent i performs a transition labeledby ai. For an interation α ∈ Int the port αcc models the initiation of aproess that heks whether α is enabled by the respetive omponents and,if appliable, oordinates that all ports in α interat one after another.60



2.6. PSPACE-COMPLETENESS OF REACHABILITY IN STAR-LIKESYSTEMS
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Figure 2.10: Parts of the loal behavior of omponent cc.The set of interations Int′ is given by
Int′ = {{aoki , a_iokcc }, {a

¬ok
i , a_i¬okcc }, {ai, a_ifirecc }|ai ∈ Ai, i = 1, . . . , n} ∪

{{αcc}|α ∈ Int}.The loal behavior of i ∈ K is given by T ′
i = (Qi, A

′
i,→

′
i, q

0
i ) with

→′
i= →i ∪{(qi, a

ok
i , qi)|qi ∈ Qi ∧ ai ∈ en(qi)}∪

{(qi, a
¬ok
i , qi)|qi ∈ Qi ∧ ai /∈ en(qi)}.

T ′
i extends Ti suh that for eah port ai ∈ Ai there is a self-loop on eah state

qi ∈ Qi that is labeled by aoki if qi enables ai and by a¬oki otherwise. Thesetransitions are used to hek whether or not eah port of an interation
α ∈ Int is enabled in a global state of Sys′ without hanging the loal stateof the respetive omponents.Let Int = {α1, α2, . . . , αk} and αj = {aj1, . . . , aj|αj

|
} for j ∈ {1, 2 . . . , k}.Figure 2.10 depits the loal behavior Tcc = (Qcc, Acc,→cc, q

0
cc) of omponent

cc that oordinates a test that heks whether eah port in αj is enabled in
Sys′ and, if appliable, enables ports that an interat with eah port in αj.Remark 2.8:Eah port of Sys′ ours in at least one interation, i.e., Sys′ satis�es the61



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYonditions of an interation system. Furthermore, the size of Sys′ is polyno-mial in the size of Sys beause |K ′| = |K|+ 1, | Int′ | = | Int |+∑

i∈K 3 · |Ai|and for i ∈ K holds |A′
i| = 3 · |Ai| and | →′

i | = | →i | + |Qi| · |Ai|. For
cc ∈ K ′ holds |Acc| = | Int | +

∑

i∈K 3 · |Ai|, |Qcc| = 1 +
∑

α∈Int 2 · |α| and
| →cc | =

∑

α∈Int(3 · |α|+ 1).Theorem 2.3:Let Sys = (IM, {Ti}i∈K) be an interation system with interation model
IM = (K, {Ai}i∈K , Int) and Sys′ the assoiated star-like interation system.A global state q is reahable in Sys if and only if a global state q′ is reahablein Sys′ suh that qi = q′i for i ∈ K and q′cc = q0cc.Proof. The proof an be found in Appendix A on Page 195.The reahability problem in star-like interation systems is in PSPACE be-ause eah star-like interation system is partiularly a tree-like interationsystem and the reahability problem in tree-like interation systems is inPSPACE. It follows by Theorem 2.3 that the reahability problem in star-like interation systems is PSPACE-omplete.2.7 PSPACE-ompleteness of Progress in Sys-tems with a Restrited CommuniationStrutureGiven an interation system Sys with omponents K and a omponent k ∈
K, an interesting question is, whether or not there are reahable statesin the global behavior of Sys from whih k may never partiipate againin an interation. If, for example, omponents in an interation systemmodel proesses that an send requests among eah other whih need to beanswered by a respetive response then an obvious question is whether ornot there are reahable global states where a request is never answered by62



2.7. PSPACE-COMPLETENESS OF PROGRESS IN SYSTEMS WITHA RESTRICTED COMMUNICATION STRUCTUREa response. The progress problem onsists of the question whether or nota omponent k ∈ K has to partiipate in in�nitely many interations fromevery reahable state in the global behavior of Sys. Of ourse, if there is areahable global state where no interation is enabled then this question isobsolete beause from suh a state no further interation is enabled in whih
k may or may not partiipate. In [MCM08℄ it was shown that in generalinteration systems deiding progress is PSPACE-omplete.By a minor modi�ation of the redution given in Setion 2.3 it is possibleto show that deiding progress in tree-like interation systems is PSPACE-omplete as well. First we provide some de�nitions in order to introdueprogress in interation systems. We proeed by arguing why deiding thisproperty in the sublass of tree-like interation systems is PSPACE-omplete.Furthermore, we provide two remarks about the PSPACE-ompleteness ofdeiding progress in systems with a linear or star-like ommuniation pat-tern. Sine deiding progress in general interation systems is PSPACE-omplete, deiding progress in interation systems with any restrition onthe ommuniation struture is in PSPACE.De�nition 2.4:Let Sys be a deadlok-free interation system (see De�nition 1.4) with globalbehavior T = (Q, Int,→T , q

0). A run of Sys is an in�nite sequene σ

q0
α1−→T q1

α2−→T q2 . . . ,with ql ∈ Q and αl ∈ Int for l ≥ 1.De�nition 2.5:Let Sys be a deadlok-free interation system with omponents K. A om-ponent k ∈ K may progress in Sys if for every run σ the omponent kpartiipates in�nitely often in σ. This is, there are in�nitely many intera-tions α in σ with k(α) 6= ∅.An instane of the progress problem in interation systems is given by a tuple
(Sys, k) where Sys is a deadlok-free interation system with omponents Kand k ∈ K. The question is if k may progress in Sys.63



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITY
t tproFigure 2.11: Transition system Tpro for the omponent pro.In order to proof that deiding progress in tree-like interation systems isPSPACE-hard we extend our redution from Setion 2.3. Let H be a QBFand SysH the assoiated tree-like interation system, i.e., a ertain globalstate qt is reahable in the global behavior T of SysH if and only if H is true.The omponent H ′ reahes its state labeled t only if H is true and f only if

H is false, i.e., exatly one of these loal states is determined to be reahedin every run of SysH . Both states only enable the port endH′ that self-loopson these states (see Figure 2.6). The port endH′ is the only port in theunary interation evaluated, i.e., SysH is deadlok-free beause eventually
evaluated beomes enabled permanently. The state qt is the global statewhere the loal behavior of eah omponent is in its state labeled t. Notethat this state is determined to be reahed if and only if H is true and thatthe only enabled interation in this state is evaluated.The idea is to onstrut a modi�ed system Sys′H by introduing an additionalomponent alled pro that may progress if and only if H is true. Let Apro =

{tpro} be the set of ports of pro. The behavior is given by the transitionsystem Tpro in Figure 2.11.In addition we modify the omponent H ′ as follows. The set of ports AH
′of the omponent H ′ is now given by

AH
′ = {e1

H
′ , sub1

H
′t, sub1

H
′f, s1

H
′t, end_trueH′, end_falseH′},i.e., endH′ is removed and the ports end_trueH′ and end_falseH′ are added.The modi�ed behavior of H ′ is given by the transition system TH

′ in Figure2.12.In addition, the interation evaluated is removed from the set Int of inter-64



2.7. PSPACE-COMPLETENESS OF PROGRESS IN SYSTEMS WITHA RESTRICTED COMMUNICATION STRUCTURE
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end_trueH′Figure 2.12: Modi�ed transition system TH
′ for the omponent H ′.ations, and the interations

evaluated_true = {end_trueH′, tpro} and
evaluated_false = {end_falseH′}are added. Let H be a QBF and Sys′H the interation system that is on-struted as in Setion 2.3 with the above modi�ations.Theorem 2.4:The progress problem in tree-like interation systems, i.e., the questionwhether or not, given a tree-like interation system Sys and a omponent kin Sys, k may progress in Sys, is PSPACE-omplete.Proof. The proof an be found in Appendix A on Page 196.In the following two remarks we argue why deiding progress in linear andstar-like interation systems is PSPACE-omplete as well.Remark 2.9:We argue the PSPACE-ompleteness of deiding progress in linear intera-tion systems by desribing how the redution in 2.5 an be slightly modi�edto show that a ertain omponent may progress if and only if the respetivelinear bounded Turing mahine M aepts the respetive input x. Let SysMbe the interation system that results from the redution in Setion 2.5 fora linear bounded Turing mahine M and an input x for M . Note that our65



CHAPTER 2. ARCHITECTURAL CONSTRAINTS & REACHABILITYredution does not assure that SysM is deadlok-free. There are three aseson how M ats on the input x:1. IfM does not halt on x then it is easy to see that SysM is deadlok-freebeause the in�nite exeution of M is modeled by SysM .2. If M atually deides that it does not aept x then M halts in thestate pN , i.e., SysM reahes a global state where a omponent i ∈

{0, 1, . . . , n+1} is in a state of the form (pN , γ). A global state of thisform is a deadlok. We argue that in eah omponent eah loal stateof the form (pN , γ) an be extended by a self-loop that is labeled by adistinguished port. Furthermore, for eah omponent we assume thereis an interation that onsists only of this port, i.e., if this ase is onhand, then our assumption guarantees deadlok-freedom in SysM .3. If M aepts x then SysM reahes a global state where a omponent
i ∈ {0, 1, . . . , n+1} is in a state of the form (pY , γ). In Remark 2.7 weargued that we an modify SysM suh that the linear ommuniationstruture is preserved, while we an guarantee that a distinguishedglobal state is reahed. We assume here that this state is of the form
qend = (qend0 , qend1 , . . . , qendn+1). For now we assume that a loal state qendi(i ∈ {0, 1, . . . , n+1}) does not enable any port, i.e., qend is a deadlok.Analogously as for tree-like interation systems, we argue that SysM anbe extended by an additional omponent pro (that is de�ned as in Figure2.11) that may progress if and only if qend is reahable in SysM . We extendthe omponent that models ell 0 by a self-loop on the state qend0 that islabeled by a port end and add the additional interation {tpro, end}. Thus,

{tpro, end} beomes enabled permanently if and only if qend is reahed, i.e.,the omponent pro may progress if and only if M aepts x.The extended version of the redution still results in a linear interation sys-tem beause omponent pro only interats with the omponent that modelsell 0. Thus, deiding progress in linear interation systems is PSPACE-66



2.7. PSPACE-COMPLETENESS OF PROGRESS IN SYSTEMS WITHA RESTRICTED COMMUNICATION STRUCTUREomplete.Remark 2.10:in Setion 2.6, our transformation to star-like systems does not preserveprogress. Let α be an interation that is not enabled in a global state q inthe original system Sys. Let q′ be the orresponding state in the assoiatedstar-like system Sys′. Starting in q′ there is a sequene of transitions in Sys′that orresponds to a test of whether or not all ports in α are enabled. Thissequene an be repeated in�nitely often. Let k be a omponent that mayprogress in Sys but does not partiipate in α. This is, starting in q′ thereis a run in Sys′ suh that k does not partiipate in the interations in thisrun, i.e., k may not progress in Sys′. The transformation an be extendedsuh that progress is preserved. The idea is to exlude an interation in
Sys from being heked in Sys′ if it has been on�rmed in Sys′ that thisinteration is not enabled in the orresponding state in Sys. Clearly, thisexlusion has to be revoked if a sequene of interations was performed in
Sys′ that orresponds to an interation in Sys.We extend Sys′ as follows. For every interation α in Sys we introdue aomponent cα with Acα

= {bα, fα}. The port bα models that a hek whethera sequene of interations in Sys′ that orresponds to α shall be bloked and
fα revokes this blok. The behavior Tcα

is depited in Figure 2.13b. Foreah interation α in Sys we extend the set of ports Acc of omponent ccby a port fα
cc that models that a blok with respet to α shall be revoked.Let Int = {α1, α2, . . . , αk} be the set of interations in Sys. Figure 2.13adepits the extended behavior of omponent cc. Depited is the part of thebehavior that oordinates a hek whether a sequene of interations thatorresponds to αj = {aj1, . . . , aj|αj

|
} for j ∈ {1, 2, . . . , k} is enabled in Sys′and, if appliable, oordinates the exeution of the respetive ports. If Tccsuessfully oordinated the interation with eah port in αj , Tcc oordinatesthe unbloking of eah omponent cα for α ∈ Int.The set of interations in Sys′ is modi�ed as follows. For α ∈ Int the port αcc67
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j for 1 ≤ j ≤ k and parts ofthe behavior of omponent cc.of omponent cc shall interat with the port bα of omponent cα, i.e., αcc annot interat again until cα beomes unbloked. Thus, an interation {αcc}in Sys′ is replaed by an interation {αcc, bα}. Furthermore, for α ∈ Int weintrodue an interation {fα

cc, fα} that revokes a blok.It is easy to see that this extension of our redution preserves progress, i.e.,to deide progress in star-like interation systems is PSPACE-omplete.2.8 ConlusionWe investigated omplexity issues for omponent-based systems. In [CEP95℄the reahability in 1-safe Petri nets was proven to be PSPACE-ompleteand in [MCM08℄ this result was used to show the PSPACE-ompleteness ofthe reahability problem in general interation systems. Here we restritedourselves to systems with ertain ommuniation pattern, suh as tree-like,star-like and linear ommuniation strutures, and showed that even in theselasses deiding reahability is PSPACE-omplete. Given these omplexityissues it makes sense to look for onditions that an be tested in polynomial68



2.8. CONCLUSIONtime and guarantee a desired property that is related to reahability [Hoa85,BR91, BCD02, MCM08a, Lam09, HJK10℄.
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Chapter 3
A Re�nement Tehnique forOver-Approximations
3.1 IntrodutionIn this hapter we report about an approah to e�iently represent andre�ne over-approximations of the global behavior of ooperating systems[MCS13a℄. An approah to irumvent omplexity issues of heking var-ious properties in ooperating systems, i.e., PSPACE-ompleteness resultsof the reahability problem and various other properties in interation sys-tems [MCM08℄, is to investigate tehniques based on su�ient onditionsin order to establish those properties. In this ontext, an interesting sub-lass of system properties are safety properties whih an be establishedin over-approximations of a ooperating system (this topi is disussed indetail in Chapter 4). Espeially the system property of deadlok-freedomand the negated reahability problem (the question whether or not a er-tain state is not reahable) are safety properties and an be established inover-approximations of a ooperating system, i.e., if an over-approximationof a ooperating system is deadlok-free then the behavior of the system inonsideration is deadlok-free as well. We introdue here a formal notion of71



CHAPTER 3. A REFINEMENT TECHNIQUE FOROVER-APPROXIMATIONSover-approximations of the global behavior of ooperating systems for theformalism of interation systems that was introdued in Chapter 1. Theglobal behavior of an interation system is modeled by a labeled transitionsystem, thus, our over-approximations are labeled transition systems as well.For omplexity reasons these over-approximations are in general to large tobe handled e�iently beause an over-approximation of the global behav-ior of an interation system su�ers from the state spae explosion problemjust like the global behavior. Thus, we introdue a ompat representa-tion of an over-approximation that we all abstrat over-approximation. Anabstrat over-approximation is a transition system that indues an over-ap-proximation of the global behavior of an interation system while it an beonstruted in a way that it is of polynomial size in the size of the underlyinginteration system.If a safety property does not hold in an over-approximation of an interationsystem then we an not onlude whether or not the underlying interationsystem ful�lls this property. In this ase it might help to re�ne an over-ap-proximation by whih we here mean to remove sates and transitions suhthat the resulting objet remains to be an over-approximation. This is,if an over-approximation of an interation system is not deadlok-free butthe re�nement of this over-approximation results in an over-approximationwhere all transitions that lead to reahable deadloks are removed then theunderlying interation system is deadlok-free. We introdue here a re�ne-ment tehnique that is based on an operator that we all Edge-Math. Thisoperator ompares pairs of abstrat over-approximations and removes tran-sitions suh that the resulting transition system remains to be an abstratover-approximation.A family of abstrat over-approximations an be used to establish ertainsystem properties in a ooperating system in polynomial time in the size ofthe underlying interation system. This statement is disussed in Chapter 4where we show how abstrat over-approximations an be used to establishdeadlok-freedom. In this hapter we treat exlusively the onstrution and72



3.2. ABSTRACT OVER-APPROXIMATIONS AND THEIRREFINEMENTre�nement of abstrat over-approximations.This hapter is organized as follows. In Setion 3.2 we formally de�ne over-approximations of the global behavior of interation systems, our oneptof abstrat over-approximations and illustrate how an abstrat over-appro-ximation indues an over-approximation of the global behavior of an in-teration system. Furthermore, we introdue the Edge-Math operator, are�nement operator that works on pairs of abstrat over-approximations.In Setion 3.3 we disuss preiseness aspets of the Edge-Math operatorand argue that we an not expet to alulate �exat� abstrat over-appro-ximations by any re�nement operator in polynomial time in the size of theunderlying interation system, i.e., abstrat over-approximations where nofurther re�nement is possible. In a seond part of Setion 3.3 we introduean approah that re�nes a family of abstrat over-approximations and argueunder whih assumptions this approah works in polynomial time. Setion3.4 onludes this hapter.3.2 Abstrat Over-Approximations and theirRe�nementHere we introdue our onept of over-approximations of the reahable be-havior of an interation system Sys. As the global behavior of Sys is de�nedby a transition system we de�ne an over-approximation of the global be-havior of Sys as a transition systems that �inludes� the reahable behaviorof the global behavior of Sys, i.e., eah reahable transition in the globalbehavior of Sys is inluded in an over-approximation. If T is the globalbehavior of Sys, then the size of the reahable behavior of T might be expo-nentially in the number of omponents in Sys, i.e., if Sys onsists of a largenumber of omponents (e.g., 2.000 omponents where the loal behavior ofeah omponent has 2 states) then it is not feasible to alulate the reah-able behavior of T . Certainly, in this ase it is not feasible to onsider an73



CHAPTER 3. A REFINEMENT TECHNIQUE FOROVER-APPROXIMATIONSover-approximation of the reahable behavior as well. What we do is thatwe look at a transition system that �indues� an over-approximation of thereahable behavior.We de�ne an over-approximation of a transition system as follows.De�nition 3.1:Let RT be the operator that yields all reahable transitions of a transitionsystem. Let R = (Q,A,→R, q
0) be a transition system with→R⊆ Q×A×Q.A transition system U = (Q′, A′,→U , q

′0) with →U⊆ Q′ × A′ × Q′ is alledan over-approximation (of the reahable behavior) of R if and only if
q0 = q′0 and RT (R) ⊆ RT (U). An over-approximation U of R is alledexat over-approximation of R if and only if RT (R) = RT (U).We onsider here a speial type of over-approximations, i.e., over-approxi-mations that are indued by an abstrat over-approximation that is basedon a subset of omponents. These abstrat over-approximations are basedon the following de�nition.De�nition 3.2:Let Sys = (IM, {Ti}i∈K) be an interation system with interation model
IM = (K, {Ai}i∈K, Int) and C ⊆ K with C 6= ∅. A transition system of theform R = (QC , Int,→R, q

0
C) where

• QC =
∏

i∈C Qi,
• q0C = (q0i )i∈C and
• →R⊆ QC × Int×QCis alled a transition system with respet to C. Let T = (Q, Int,→T

, q0) be the global behavior of Sys. For q ∈ Q the projetion of q tothe omponents in C is denoted by q↓C ∈ QC , i.e., if q = (qi)i∈K then
q↓C = (qi)i∈C .In the following we de�ne in whih ase a transition system with respet to
C, i.e., a transition system of the form R = (QC , Int,→R, q

0
C) is an abstrat74



3.2. ABSTRACT OVER-APPROXIMATIONS AND THEIRREFINEMENTover-approximation of the global behavior T of an interation system Sys.In the immediately following lemma we justify the de�nition by showingthat an indued transition system that is onstruted by �extending� R is anover-approximation of T if and only if R is an abstrat over-approximationof T .De�nition 3.3:Let T be the global behavior of an interation system Sys with omponents
K and C a nonempty subset of K. Let T ′ = (Q, Int, RT (T ), q0), i.e., thetransition relation →T of T restrited to reahable transitions. Let T ′′ be
T ′ projeted on the omponents in C, i.e., T ′′ = (QC , Int,→T

′′, q0C) with
qC

α
−→T

′′ q′C if and only if there is a transition q
α
−→T

′ q′ in T ′ with q↓C = qCand q′↓C = q′C . We say a transition system R = (QC , Int,→R, q
0
C) is anabstrat over-approximation of T if and only if R is an over-approxi-mation of T ′′.In other words, R is an abstrat over-approximation of T if and only if eahreahable transition in the global behavior T projeted on the omponentsin C is reahable in R.Lemma 3.1:Let Sys = (IM, {Ti}i∈K) be an interation system with interation model

IM = (K, {Ai}i∈K , Int). Let C ⊆ K be a nonempty subset of omponentsand R = (QC , Int,→R, q
0
C) a transition system with respet to C. Let

T = (Q, Int,→T , q
0) be the global behavior of Sys. The global extensionof R is the transition system E(R) = (Q, Int,→E(R), q

0) suh that for all
q, q′ ∈ Q and all α ∈ Int the transition q

α
−→E(R) q

′ is in E(R) if and only ifa transition qC
α
−→R q′C is in R with q↓C = qC and q′↓C = q′C . Then: R is anabstrat over-approximation of T if and only if E(R) is an over-approxima-tion of T .Proof. The proof an be found in Appendix A on Page 196.Remark 3.1:If R is an abstrat over-approximation of T then we all E(R), de�ned as in75
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, q0DB)Figure 3.1: Transitions in a global extension E(R) of R.Lemma 3.1, the indued over-approximation of T with respet to R.The following example shows some global extensions of a single transition.Example 3.1:Consider a subset of omponents C = {TER1,GS,ADB} from the inter-ation system Sys presented in Examples 1.1 and 1.2 in Chapter 1. Let
R = (QC , Int,→R, q

0
C) be a transition system and

(q1TER1
, q2GS, q

1
ADB)

send_data
−−−−−−→R (q1TER1

, q3GS, q
1
ADB)a transition in R. The omponents TER2 and DB are not in C. Figure 3.1shows some (4 out of 16) transitions in E(R) that are extensions of the abovetransition. For better readability, the loal states of omponents not in Care underlined. Note that the onsidered interation send_data inludesthe port send_val from omponent DB. The only transition labeled by

send_val in DB is q1DB

send_val
−−−−−→DB q0DB, i.e., the only transitions in Figure3.1 that our in the global behavior of Sys are those with q1DB on the lefthand side and q0DB on the right hand side.

E(R) is an indued over-approximation that is never onstruted in any ofour methods as it an beome exponentially large beause of the state spaeexplosion problem. The re�nement of E(R) is taking plae on R. If E(R) isan over-approximation of T then R an be seen as a ompat representationof E(R). 76



3.2. ABSTRACT OVER-APPROXIMATIONS AND THEIRREFINEMENTThe next lemma shows that transition systems that are abstrat over-appro-ximations an be easily onstruted from the spei�ation of an interationsystem. We use these transition systems as an initial point for our re�nementtehnique.Lemma 3.2:Let Sys = (IM, {Ti}i∈K) be an interation system with interation model
IM = (K, {Ai}i∈K , Int) and C ⊆ K a nonempty subset of omponents. Let
SC = (QC , Int,→SC

, q0C) be the transition system with transition relationde�ned as follows: qC α
−→SC

q′C if for all i ∈ C: if α∩Ai = {ai} then qi
ai−→i q

′
iand if α ∩ Ai = ∅ then qi = q′i. Then SC is an abstrat over-approximationof the global behavior T of Sys.Proof. The proof an be found in Appendix A on Page 198.Remark 3.2:The de�nition of the transition relation of SC is similar to the de�nition ofthe global behavior of an interation system (see De�nition 1.4 in Chapter1). Atually, SC equals the global behavior T if C = K.Note further that for an interation α ∈ Int, where for all i ∈ C we have

α∩Ai = ∅, for eah qC ∈ QC holds that qC α
−→SC

qC , i.e., interations that donot inlude ports from a omponent in C label a self-loop in SC . Atually,in SC eah state in QC has a self-loop for eah interation whih does notinlude ports from a omponent in C.In the following we disuss the re�nement of abstrat over-approximations.A re�nement by the Cross-Cheking operator, as disussed in [Min10℄, on-siders the re�nement of over-approximations of the reahable global statespae of interation systems and amounts to the removal of states fromthe over-approximations. Here we onsider the re�nement of the reahableglobal behavior of interation systems. This is, we do not remove states fromabstrat over-approximations but transitions. Of ourse, if we onsider anabstrat over-approximation of the reahable global behavior and remove77



CHAPTER 3. A REFINEMENT TECHNIQUE FOROVER-APPROXIMATIONStransitions then the reahable state spae might beome smaller. In ourontext we use the term �re�nement� based on the following de�nition.De�nition 3.4:Let U = (Q′, A′,→U , q
′0) be an over-approximation (of the reahable be-havior) of the transition system R = (Q,A,→R, q

0). A transition system
Ū = (Q̄, Ā,→Ū , q̄

0) is alled a re�nement of U (with respet to R) if U isan over-approximation of Ū and Ū is an over-approximation of R. This is,
RT (R) ⊆ RT (Ū) ⊆ RT (U).Remark 3.3:Let Sys = (IM, {Ti}i∈K) be an interation system with interation model
IM = (K, {Ai}i∈K , Int) and C ⊆ K a nonempty subset of omponents.Let R = (QC , Int,→R, q

0
C) be an abstrat over-approximation of the globalbehavior T of Sys, i.e., R is an over-approximation of the transition system

T ′′ (see De�nition 3.3). Thus, aording to De�nition 3.4, we all an abstratover-approximation R′ = (QC , Int,→R
′, q0C) of T a re�nement of R if R isan over-approximation of R′.A transition system SC with respet to a subset of omponents C that isonstruted as in Lemma 3.2 an indue a relatively oarse over-approxi-mation E(SC) of the global behavior T , i.e., there an be a great deal ofreahable transitions in E(SC) that are not reahable in the global behavior

T . In order to re�ne E(SC) we modify SC by removing transitions from SCwhih only indue transitions in E(SC) that are not reahable in T . Theseare exatly the reahable transitions in SC that are not projetions of reah-able transitions in T . Transitions like these are alled artifats. Re�ning
SC , i.e., removing transitions that are artifats an result in a smaller reah-able state spae in a re�ned version S ′

C (and thus in E(S ′
C) as well). In thefollowing, an abstrat over-approximation with respet to a subset of om-ponents C that is onstruted as in Lemma 3.2 is denoted by an upperase

S indexed by C, i.e., SC .The following example shows an abstrat over-approximation of the global78
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0
C). For the larity of Figure3.2, the transition system S onsists of parts of the behavior of the abstratover-approximation SC that is onstruted as in Lemma 3.2. Omitted in Sare

• all transitions that are not reahable in SC ,
• some, but not all, artifats and
• all self-loops on the states that are labeled with interations whih donot need a omponent in C in order to partiipate.Note that S is an abstrat over-approximation if the self-loops are inluded.We now give an example that demonstrates the idea of how a transition in anabstrat over-approximation an be identi�ed as an artifat by a omparisonwith another abstrat over-approximation. Afterwards we formally de�ne are�nement operator that is based on this idea.79
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ADB)whih is reahable in S and assume that this transition is the projetionof a transition q

send_data
−−−−−−→T q′ that is reahable in T . As R is an abstratover-approximation as well, q↓D send_data

−−−−−−→R q′↓D has to be reahable in R.In q, the loal behavior TGS is in state q2GS and TADB is in state q1ADB. Theonly reahable state in R in whih TGS and TADB are in these loal states80



3.2. ABSTRACT OVER-APPROXIMATIONS AND THEIRREFINEMENTis (q2GS, q
1
ADB, q

0
DB). Thus, if q↓D send_data

−−−−−−→R q′↓D is reahable in R then
q↓D equals (q2GS, q

1
ADB, q

0
DB). This state does not have an outgoing transitionlabeled by send_data that leads to a state that agrees with q′↓C on sharedomponents. Thus, we an onlude that q↓C send_data

−−−−−−→S q′↓C is an artifatas this transition annot be the projetion of a transition that is reahablein T .We now de�ne the Edge-Math operator that removes transitions from atransition system S by a omparison with another transition system R. Thesubsequent theorem states that the result of the Edge-Math operator, if Sand R are abstrat over-approximations of the global behavior T of an inter-ation system Sys, is a re�ned version of S, i.e., only artifats are removedfrom S.De�nition 3.5:Let Sys be an interation system with omponents K. Let C and D benonempty subsets of K and S = (QC , Int,→S, q
0
C) and R = (QD, Int,→R

, q0D) transition systems with respet to C respetively D. For a state qC ∈

QC the state qC↓D ∈ QC∩D denotes the projetion of qC on the omponentsin D, i.e., if qC = (qi)i∈C then qC↓D = (qi)i∈C∩D. Note that qC↓D yields theempty tuple if C ∩ D = ∅. The Edge-Math operator EM on S and Ryields a transition system S ′ = EM(S,R) with S ′ = (QC , Int,→S
′, q0C) suhthat qC α

−→S
′ q′C if and only if qC α

−→S q′C is reahable in S and a transition
qD

α
−→R q′D is reahable in R with qC↓D = qD↓C and q′C↓D = q′D↓C .Theorem 3.1:Let Sys be an interation system with omponents K and global behavior

T . Let C and D be nonempty subsets of K and S = (QC , Int,→S, q
0
C) and

R = (QD, Int,→R, q
0
D) abstrat over-approximations of T , then EM(S,R)is an abstrat over-approximation of T .Proof. The proof an be found in Appendix A on Page 198.Given an interation system Sys with a set of omponents K we use the81



CHAPTER 3. A REFINEMENT TECHNIQUE FOROVER-APPROXIMATIONSEdge-Math operator to re�ne a family of abstrat over-approximations ofthe global behavior T of Sys by a pairwise appliation. An abstrat over-ap-proximation is based on a subset C of omponents in K. Thus, a family ofabstrat over-approximations is indexed by a subset C of 2K . We all thisset a domain.De�nition 3.6:Let Sys = (IM, {Ti}i∈K) be an interation system with interation model
IM = (K, {Ai}i∈K , Int). A set C ⊆ 2K \ {∅} of subsets of omponents isalled a domain of IM.The next example shows the result of the appliation of the Edge-Mathoperator on a family of abstrat over-approximations from the running ex-ample.Example 3.4:Consider the interation system Sys de�ned in Example 1.1 and 1.2 in Chap-ter 1. Let {SC}C∈C be the family of abstrat over-approximations of T withrespet to the domain

C = {{TER1,GS,ADB}, {GS,ADB,DB}, {TER2,GS,DB},

{TER2,GS,ADB}, {TER2,GS,TER1}, {GS,TER1,DB}}that are onstruted as in Lemma 3.2. Let {RC}C∈C be the result of asequene of appliations of the Edge-Math operator on {SC}C∈C. Fig-ure 3.4 depits parts of the abstrat over-approximation RC with C =

{TER1,GS,ADB}. Omitted are all self-loops on the states that are la-beled with interations whih do not need a omponent in C in order topartiipate. Note that RC is a re�ned abstrat over-approximation of theabstrat over-approximation S desribed in Example 3.2. A total of 8 tran-sitions that are in S are not inluded in RC at whih 4 reahable states in
S beome unreahable in RC . 82
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get_reply2Figure 3.4: Part of the transition system RC with C = {TER1,GS,ADB}in Example 3.4.3.3 Preiseness and AppliationIn this setion we disuss the preiseness of abstrat over-approximationsthat were re�ned by the Edge-Math operator, introdue how we apply ourre�nement tehnique on a family of abstrat over-approximations and ana-lyze the runtime of this approah.An obvious question is, whether we an onstrut exat abstrat over-appro-ximations (see De�nition 3.1). Unfortunately, we show here that we annotexpet to onstrut exat over-approximations by an algorithm that runsin polynomial time in the size of the underlying interation system. Weintrodue here a weaker preiseness property of abstrat over-approxima-tions that we all legitimate. Roughly speaking, if we onsider a familyof abstrat over-approximations, then a transition in an abstrat over-ap-proximation is legitimate if there is a transition in eah abstrat over-ap-proximation suh that all these transitions agree on shared omponents.Thus, a transition that is not legitimate is an artifat. A family of abstratover-approximations is legitimate if in all abstrat over-approximations alltransitions are legitimate. We argue that we annot assume that a family ofabstrat over-approximations that was re�ned by the Edge-Math operatoris legitimate. In Chapter 6 we show, by using results from the �eld of83



CHAPTER 3. A REFINEMENT TECHNIQUE FOROVER-APPROXIMATIONSrelational databases, that for a ertain sublass of families of abstrat over-approximations holds that a re�ned by the Edge-Math operator results ina legitimate family of abstrat over-approximations.In a seond part we formulate an algorithm that alulates a �xed-point ofa family of abstrat over-approximations with respet to an appliation ofour re�nement operator and give a detailed runtime analysis whih desribesunder whih irumstanes our algorithm runs in polynomial time in the sizeof the underlying interation system.3.3.1 PreisenessHere we disuss aspets regarding the preiseness of abstrat over-approxi-mations that were re�ned by the Edge-Math operator. By preiseness wemean whether or not there are artifats in the abstrat over-approximations.We onsider here two questions:1. Can we expet to onstrut exat abstrat over-approximations inpolynomial time in the size of the underlying interation system, i.e.,abstrat over-approximations without artifats?2. If there are artifats that annot be deteted by the Edge-Math op-erator, why does the operator fails here?The following orollary shows that we annot expet to generate exat ab-strat over-approximations by using a tehnique that runs in polynomialtime in the size of the spei�ation of an interation system. This result isa diret onlusion from the fat that the deision problem whether there isa global state reahable where a �xed omponent is in a �xed loal state isPSPACE-omplete. This result was shown in Chapter 2 in Setion 2.5.Lemma 3.3:Let Sys = (IM, {Ti}i∈K) be an interation system with interation model
IM = (K, {Ai}i∈K , Int). Let C ∈ K be a nonempty subset of omponents.84



3.3. PRECISENESS AND APPLICATIONConstruting an exat abstrat over-approximation S = (QC , Int,→S, q
0
C)an not be ahieved in polynomial time in the size of the spei�ation of

Sys.Proof. The proof an be found in Appendix A on Page 199.Lemma 3.3 states that we have to assume that an abstrat over-approxi-mation that was onstruted and re�ned in polynomial time in the size ofthe spei�ation of Sys ontains artifats. It is quite easy to haraterizeertain artifats the detetion of whih is not overed by the Edge-Mathoperator. In the following we exemplify this laim and desribe how theseresidual artifats an be haraterized.Let Sys = (IM, {Ti}i∈K) be an interation system with interation model
IM = (K, {Ai}i∈K , Int), global behavior T and let RD, RD1

and RD2
beabstrat over-approximations of T . Let qD α

−→RD
q′D be a reahable transitionin the abstrat over-approximation RD and let qD1

α
−→RD1

q′D1
be the onlytransition that is reahable in RD1

and qD2

α
−→RD2

q′D2
in RD2

suh that
qD↓D1

= qD1
↓D, q′D↓D1

= q′D1
↓D, qD↓D2

= qD2
↓D and q′D↓D2

= q′D2
↓D.Thus, qD α

−→RD
q′D is in EM(RD, RD1

) and in EM(RD , RD2
). If now either

qD1
↓D2
6= qD2

↓D1
or q′D1

↓D2
6= q′D2

↓D1
then it is easy to see that qD α

−→RD
q′Dis an artifat and that qD α

−→RD
q′D is not removed by the appliation of theEdge-Math operator.The following de�nition formalizes in whih ase a set of abstrat over-ap-proximations does not ontain suh artifats. We de�ne this property onfamilies of abstrat over-approximations.De�nition 3.7:Let Sys = (IM, {Ti}i∈K) be an interation system with interation model

IM = (K, {Ai}i∈K , Int). Let C be a domain of IM and {RC}C∈C a familyof abstrat over-approximations. A transition qC
α
−→RC

q′C (C ∈ C) is alledlegitimate if qC α
−→RC

q′C is reahable in RC and there exists a transition85



CHAPTER 3. A REFINEMENT TECHNIQUE FOROVER-APPROXIMATIONS
q

α
−→T q′ in the global behavior T suh that q↓C = qC and q′↓C = q′C and forallD ∈ C (D 6= C) holds that there exists a reahable transition qD

α
−→RD

q′Din RD with q↓D = qD and q′↓D = q′D.
RC is alled legitimate if all reahable transitions in RC are legitimate. Thefamily {RC}C∈C is alled legitimate if all abstrat over-approximations in
{RC}C∈C are legitimate.In other words, a reahable transition in an abstrat over-approximation RCis legitimate if we an �nd a reahable transition in eah abstrat over-ap-proximation RD for D ∈ C suh that all these transitions agree on sharedomponents. It follows that in this ase there is a global transition thatagrees with all these transitions on shared omponents as well, i.e., if areahable transition in RC is not legitimate then this transition is an artifatas there annot be a reahable global transition whih projetion is reahablein RC .We argued that, in general, if {RC}C∈C resulted from a sequene of appli-ations of the Edge-Math operator, we annot assume that this family islegitimate. This motivates the onsideration of additional approahes in or-der to identify and remove transitions in abstrat over-approximations thatare not legitimate or to analyze under whih assumptions we an use ouroperator in order to generate a legitimate family of abstrat over-approxima-tions. In Chapter 6 we use a theorem from the �eld of relational databasetheory to show that a �xed-point with respet to the appliation of theEdge-Math operator is legitimate if C has a ertain struture.3.3.2 A Fixed-Point of a Family of Over-Approxima-tionsA tehnique for establishing a system property that is based on a su�ientondition and uses abstrat over-approximations is not able onlude thatthe property does not hold in the underlying interation system. This is, if86



3.3. PRECISENESS AND APPLICATIONthe tehnique fails to establish the property then it is unknown whether ornot the property holds. A re�nement of the abstrat over-approximationsmight help to establish the property, providing that the property atuallyholds in the interation system. This is, we are interested in re�ning abstratover-approximations as muh as possible by the Edge-Math operator. Givenan interation system Sys with a set of omponents K and a domain C ⊆ 2Kwe want to alulate a �xed-point of the family of abstrat over-approxi-mations {SC}C∈C that are onstruted as in Lemma 3.2, i.e., we want toapply a sequene of appliations of the Edge-Math operator on {SC}C∈Csuh that no appliation of the Edge-Math operator on a pair of abstratover-approximations in the resulting family {RC}C∈C yields any re�nement.After formally introduing in whih ase a family of abstrat over-approxi-mations is a �xed-point of the Edge-Math operator we proeed by showingthat two �xed-points that result from di�erent sequenes of appliationsof the Edge-Math operator are idential, i.e., the quality of a �xed-pointthat results from the re�nement by the Edge-Math operator is independentfrom the sequene of appliations. We proeed by introduing an algorithmthat alulates the �xed-point with respet to the Edge-Math operator of afamily of abstrat over-approximations and give a detailed runtime analysis.Our runtime analysis shows that a polynomial runtime of our algorithmompletely depends on the hoie of the domain of the family of abstratover-approximations. We propose a lass of domains suh that our algorithmruns in polynomial time on families that are based on these domains andwe provide two interesting lemmas whih show that we an, under ertainonditions, modify a domain C while preserving the �information� in the�xed-point of the family {SC}C∈C that is onstruted by the Edge-Mathoperator.De�nition 3.8:Let Sys = (IM, {Ti}i∈K) be an interation system with interation model
IM = (K, {Ai}i∈K , Int) and C a domain of IM. Let {RC}C∈C be a fam-ily of transition systems of the form RC = (QC , Int,→RC

, q0C). The family87



CHAPTER 3. A REFINEMENT TECHNIQUE FOROVER-APPROXIMATIONS
{RC}C∈C is alled a �xed-point with respet to the Edge-Math op-erator if EM(RC , RD) = RC for all C,D ∈ C, i.e., no further appliation ofthe Edge-Math operator on a pair of transition systems yields any re�ne-ment.First we show here that �xed-points with respet to the Edge-Math oper-ator that result from di�erent sequenes of appliations of the Edge-Mathoperator on pairs of transition systems in a family are idential. This resultshows that we do not have to onsider that there might be a sequene ofre�nement steps that leads to a more re�ned �xed-point.Lemma 3.4:Let Sys = (IM, {Ti}i∈K) be an interation system with interation model
IM = (K, {Ai}i∈K , Int) and C a domain of IM. Let {RC}C∈C be a familyof transition systems of the form RC = (QC , Int,→R

′
C
, q0C). Let seq1 and

seq2 be sequenes that desribe appliations of the Edge-Math operatoron {RC}C∈C, i.e., sequenes of tuples in C × C. Let seq1 result in thefamily {R′
C}C∈C and seq2 in the family {R′′

C}C∈C. If {R′
C}C∈C and {R′′

C}C∈Care �xed-points with respet to the Edge-Math operator then {R′
C}C∈C =

{R′′
C}C∈C.Proof. The proof an be found in Appendix A on Page 199.De�nition 3.9:Let Sys = (IM, {Ti}i∈K) be an interation system with interation model

IM = (K, {Ai}i∈K , Int) and C a domain of IM. Let {RC}C∈C be a familyof transition systems of the form RC = (QC , Int,→RC
, q0C). If {R′

C}C∈C isthe �xed-point with respet to the Edge-Math operator that resulted fromthe appliation of a sequene of Edge-Math operations on {RC}C∈C thenwe all {R′
C}C∈C the Edge-Math �xed-point of {RC}C∈C.Note that from Theorem 3.1 follows that the Edge-Math �xed-point of afamily of abstrat over-approximations is a family of abstrat over-approxi-mations. 88



3.3. PRECISENESS AND APPLICATIONAn Algorithm for alulating the Edge-Math Fixed-PointWe now introdue an approah to alulate the Edge-Math �xed-point ofthe family of abstrat over-approximations {SC}C∈C that is onstruted as inLemma 3.2. In our approah we suessively apply the Edge-Math operatoron all pairs of abstrat over-approximations, that share a nonempty set ofomponents, until no further appliation auses any re�nement. Algorithm2, alled FP , desribes this approah in pseudoode.Algorithm 2 FP({SC}C∈C)1: {RC}C∈C ← {SC}C∈C2: {R′
C}C∈C ← NIL3: while {RC}C∈C 6= {R

′
C}C∈C do4: {R′

C}C∈C ← {RC}C∈C5: for all C,D ∈ C with C 6= D and C ∩D 6= ∅ do6: RC ← EM(RC , RD)7: end for8: end while9: return {RC}C∈CIn the following we disuss the runtime of Algorithm 2 and argue underwhih assumption this runtime is polynomial in the size of the underlyinginteration system. The runtime analysis shows that we an ensure thatAlgorithm 2 runs in polynomial time on {SC}C∈C if the domain C onsistsof a polynomial number of subsets and eah subset onsists of a numberof omponents that is bounded by a onstant. Later we propose a lass ofdomains that ful�lls these properties.Runtime Analysis of Algorithm FPLet Sys = (IM, {Ti}i∈K) be an interation system with interation model
IM = (K, {Ai}i∈K , Int) and C a domain of IM.89



CHAPTER 3. A REFINEMENT TECHNIQUE FOROVER-APPROXIMATIONSLet cmax = max{|C| |C ∈ C}, i.e., the number of omponents in the largestset in C and let m = max{|Qi| |i ∈ K}, i.e., the size of the largest statespae among all omponents in K. Let C ∈ C be an arbitrary set in thedomain. The size of the state spae QC of the abstrat over-approximation
SC is bounded by |QC | ≤ mcmax. Thus, the size of the transition relation
→SC

⊆ QC × Int×QC is bounded by | →SC
| ≤ m2·cmax · |Int|.The ost of a reahability analysis on SC is bounded by |QC | + |→SC

| ≤

mcmax +m2·cmax · |Int| (a modi�ed BFS).The appliation of the Edge-Math operator on a pair of abstrat over-appro-ximations SC and SD (C,D ∈ C) onsists of a omparison of eah reahabletransition in SC with eah reahable transition in SD. Thus, the ost of anappliation orresponds to the osts of a reahability analysis on SC and
SD plus |→SC

| · |→SD
|. It follows that the osts of an appliation of theEdge-Math operator is bounded by

em = 2
(

mcmax +m2·cmax · |Int|
)

+
(

m2·cmax · |Int|
)2

.where the �rst summand desribes the worst ase osts of the reahabilityanalysis on SC and SD and the seond summand an upper bound for thenumber of pairs of transitions in SC and SD.There are |C| abstrat over-approximations in {SC}C∈C. The for-loop inLine 5 to Line 7 performs an appliation of the Edge-Math operator oneah pair of abstrat over-approximations, i.e., the osts of this proess arebounded by |C|2 · em.The number of all transitions in {SC}C∈C is bounded by |C| ·m2·cmax · |Int|.In the while-loop in Line 3 to Line 8 at least one transition is removed bythe Edge-Math operator in eah iteration. It follows that the runtime ostsof Algorithm 2 are altogether
|C| ·m2·cmax · |Int| · |C|2 · em.This runtime bound is polynomial in the size of the spei�ations of Sys if90



3.3. PRECISENESS AND APPLICATION1. cmax is a onstant, i.e., the number of omponents in eah set in C isbounded by a onstant and2. |C| is of polynomial size in the size of the spei�ations of Sys.Thus, the requirement for Algorithm 2 to run in polynomial time in thesize of the spei�ations of Sys is ompletely depending on the hoie of thedomain.The size of a domain C ⊆ 2K is bounded by 2|K|, i.e., the number of ab-strat over-approximations in a family an be exponentially in the number ofomponents in an interation system. Sure enough, a family onsisting of anexponential number of abstrat over-approximations requires an exponentialnumber of appliations of the Edge-Math operator in order to alulate the�xed-point. In the following we propose a domain suh that Algorithm 2runs in polynomial time in the size of the spei�ations of Sys on a familyof abstrat over-approximations that is based on this domain.Let Sys be an interation system with interation model IM and a set ofomponents K. We assume here that the interation graph G of IM isonneted. Consider the domain C ⊆ 2K that onsists of all subsets of theset of omponents K that are of a �xed onstant size d ≪ |K|, i.e., allsubsets of the same onstant size d whih is onsiderable smaller than |K|.For a domain like this holds that |C| = (

|K|
d

)

≤ |K|d and eah set in C isof onstant size, i.e., Algorithm 2 runs in polynomial time in the size of thespei�ations of Sys on the family of abstrat over-approximations {SC}C∈C.In the following we argue that, depending on the struture of the interationgraph G, we an neglet ertain sets in C.A Sophistiated DomainLet Sys be an interation system with a set of omponents K and C ⊆ 2K adomain. Let {SC}C∈C be the family of abstrat over-approximations that areonstruted as in Lemma 3.2. Let {RC}C∈C be the Edge-Math �xed-point91



CHAPTER 3. A REFINEMENT TECHNIQUE FOROVER-APPROXIMATIONSof {SC}C∈C. The following lemmas show that, under ertain onditions,we an modify C by replaing subsets in C against others, that are notinluded in C, or even removing entire subsets suh that, roughly spoken,the information in {RC}C∈C is preserved in the Edge-Math �xed-point ofthe family that is based on the modi�ed domain.The �rst lemma exploits the struture of the interation graph of an in-teration model (see De�nition 2.1 in Chapter 2) and shows that we anrestrit ourselves domains onsisting of subsets of omponents suh that theinteration graph restrited to a subset is onneted in a graph theoretisense.De�nition 3.10:Let G = (V,E) be an undireted graph. A set of nodes V ′ ⊆ V is alledonneted in G if any two nodes in V ′ are onneted by a path and nonode in V ′ is onneted by an edge to a node in V \ V ′. We say G = (V,E)is onneted if V is onneted in G.Let C ⊆ 2K be a domain with respet to an interation system Sys witha set of omponents K. Let G = (K,E) be the interation graph of theinteration model of Sys and D ∈ C. We show that we an replae D bya partition of D that onsists of the onneted subsets of omponents in Grestrited to the omponents in D.Lemma 3.5:Let Sys = (IM, {Ti}i∈K) be an interation system with interation model
IM = (K, {Ai}i∈K , Int) and C a domain of IM. Let D ∈ C where D isthe disjoint union of the sets D1, D2, . . . , Dk suh that Di (1 ≤ i ≤ k) isonneted in the interation graph G of IM restrited to the omponents in
D.Let C′ = C\{D} and C̃ = C′∪{D1, D2, . . . , Dk}. Let {RC}C∈C be the Edge-Math �xed-point of the family {SC}C∈C and {R′

C}C∈C̃ be the Edge-Math�xed-point of the family {SC}C∈C̃. 92



3.3. PRECISENESS AND APPLICATIONThen the following two properties hold for the two families:1. RC = R′
C for C ∈ C′ and2. a transition qD

α
−→RD

q′D is reahable in RD if and only if the transition
qDi

α
−→R

′
Di

q′Di
with qD↓Di

= qDi
and q′D↓Di

= q′Di
is reahable in R′

Difor eah 1 ≤ i ≤ k.Proof. The proof an be found in Appendix A on Page 200.The next lemma shows that we an remove a subset in a domain that isinluded in another subset in the domain. Roughly spoken, the reason fornot inluding a subset in a domain is beause the information that thissubset of omponents ontributes to the re�nement proess is overed byanother subset of omponents already inluded in the domain.Lemma 3.6:Let Sys = (IM, {Ti}i∈K) be an interation system with interation model
IM = (K, {Ai}i∈K , Int) and C a domain of IM. Let D1, D2 ∈ C with
D1 ( D2 and C′ = C \ {D1}. Let {RC}C∈C be the Edge-Math �xed-pointof the family {SC}C∈C and {R′

C}C∈C′ be the Edge-Math �xed-point of thefamily {SC}C∈C′ . Then we an onlude that1. RC = R′
C for C ∈ C′ and2. a transition qD1

α
−→RD1

q′D1
is reahable in RD1

if and only if a transition
qD2

α
−→R

′
D2

q′D2
with qD2

↓D1
= qD1

and q′D2
↓D1

= q′D1
is reahable inR′

D2
.Proof. The proof an be found in Appendix A on Page 202.Let Sys be an interation system with interation model IM and a set ofomponents K and onsider the domain C ⊆ 2K that onsists of all subsetsof the set of omponents K that are of a �xed onstant size d≪ |K|.Consider the domain C′ that results from C by removing all D ∈ C where Grestrited toD is not onneted and adding the onneted sets inG restritedto D, i.e., for eah C ∈ C′ holds that G restrited to C is onneted. Let93



CHAPTER 3. A REFINEMENT TECHNIQUE FOROVER-APPROXIMATIONS
{RC}C∈C respetively {R′

C}C∈C′ be the Edge-Math �xed-points whih arealulated by Algorithm 2 from {SC}C∈C respetively {SC}C∈C′. By Lemma3.5 follows that for eah D ∈ C, if G restrited to D is onneted, that
RD = R′

D and, if G restrited to D is not onneted, that we an onstrut
RD from the respetive abstrat over-approximations in {R′

C}C∈C′ that arebased on the onneted sets in G restrited to D.Consider now the domain C′′ that results from C′ by removing all D1 ∈ C′if there is D2 ∈ C′ with D1 ( D2. Let {R′′
C}C∈C′′ be the Edge-Math�xed-point of {SC}C∈C′′ that was alulated by Algorithm 2. By Lemma3.6 follows that for eah D ∈ C′ ∩ C′′ holds that R′

D = R′′
D and for eah

D1 ∈ C′ \ C′′ that we an onstrut R′
D1

by projeting the transitions in anabstrat over-approximation R′′
D2

on D1 where D2 is a superset of D1.The domain C′′ onsists of all subsets C of K with d omponents suh thatthe interation graph G restrited to C is onneted. This domain is asubset of the domain that onsists of all subsets of size d, i.e., our runtimeanalysis shows that Algorithm 2 runs in polynomial time in the size of thespei�ations of Sys on a family of abstrat over-approximations that isbased on this domain. Thus, this is the domain that we propose to use as abasis for Algorithm 2.Example 3.5:The interation graph G of the interation model in Example 1.1 is depitedin Figure 2.1 on Page 36. The Interation model ontains the set of ompo-nents K = {TER1,TER2,GS,ADB,DB}, i.e., K onsists of 5 omponents.A domain C that onsists of all subsets of size 3 inludes (5
3

)

= 10 subsets.The domain
C′ = {{TER1,GS,ADB}, {GS,ADB,DB}, {TER2,GS,DB},

{TER2,GS,ADB}, {TER2,GS,TER1}, {GS,TER1,DB}}onsists of all subsets C ⊆ K suh that |C| = 3 and the interation graph Grestrited to C is onneted. This domain only onsists of 6 subsets. If weonsider an interation model with s ≥ 2 terminals then a respetive domain94



3.4. CONCLUSION AND RELATED WORK
C that onsists of all subsets of size 3 inludes (s+3

3

) subsets (s terminals andthe 3 additional omponents GS, ADB and DB). If we onsider a domainthat onsists of all subsets C ⊆ K with |C| = 3 and the interation graph Grestrited to C is onneted then it is easy to see that eah set onsists of theomponent GS and two arbitrary additional omponents. This is, there are
(

s+2
2

) sets in this domain. In other words, in this example, there are (

s+2
3

)less sets in this domain ompared to the domain that onsists of all subsetsof size 3.Let Sys be an interation systems with a set of omponents K. In summary,we propose to use a domain C ⊆ 2K as a basis for a family of abstratover-approximations in Algorithm 2 that onsists of all subsets C of K suhthat1. C onsists of d omponents for a onstant d≪ |K| and2. the interation graph G with respet to the interation model in on-sideration restrited to the omponents in C is onneted.There is no set in C that an be negleted by Lemma 3.5 or Lemma 3.6 andeah subset of K that onsists of d omponents and is not in C is redundantfor the alulation of the �xed-point of a family of abstrat over-approxima-tions that is based on C.A domain like that onsists in the worst ase of (|K|
d

)

≤ |K|d subsets andeah abstrat over-approximation is of polynomial size in the size of thespei�ations of Sys. By our runtime analysis of Algorithm 2 follows thatthe algorithm runs in polynomial time in the size of the spei�ations of Syson a family of abstrat over-approximations that is based on suh a domain.3.4 Conlusion and Related WorkIn this hapter we presented a formal onept of over-approximations ofthe global behavior of interation systems. Suh over-approximations su�er95



CHAPTER 3. A REFINEMENT TECHNIQUE FOROVER-APPROXIMATIONSfrom the state spae explosion problem just like the global behavior thatis approximate. In order to irumvent this issue, we introdued abstratover-approximations that are based on a subset of omponents of an inter-ation system and disussed that these abstrat over-approximations indueover-approximations of the global behavior of an interation system whilethey, depending on the size of the underlying subset of omponents, are ofpolynomial size in the size of the spei�ations of the interation system.Furthermore, we desribed the Edge-Math operator that ompares pairsof abstrat over-approximations in order to re�ne them and proposed analgorithm that omputes the �xed-point of a family of abstrat over-ap-proximations with respet to an appliation of this operator. We showedunder whih assumptions our algorithm runs in polynomial time in the sizeof the underlying interation system. The assumptions relate to the numberof abstrat over-approximations in a family and their individual size, i.e.,the requirement for our algorithm to run in polynomial time is ompletelydepending on the domain of the family in onsideration. We proposed asublass of families of abstrat over-approximations that guarantees that wean alulate the �xed-point in polynomial time.The work most related to our abstrat over-approximations whih indueover-approximations of a ooperating system modeled by the formalism ofinteration systems is [Min10℄. Similar to our approah, [Min10℄ onsidersnot neessarily disjoint subsets of omponents of an interation system andintrodues subsystems that are based on these subsets and the glue-ode ofthe system. The reahable state spae of eah subsystem is interpreted asa ompat representation of an over-approximation of the reahable statespae of the global behavior of the interation system. In the followingwe all these sets abstrat state over-approximations . Thus, the approahdeals with over-approximations of the set of reahable global states and notwith over-approximations of the reahable global behavior, i.e., reahableglobal transitions. The abstrat state over-approximations are re�ned by atehnique alled Cross-Cheking that, similar to the Edge-Math operator,96



3.4. CONCLUSION AND RELATED WORKompares pairs of abstrat state over-approximations and removes a subsys-tem state qC if there is an abstrat state over-approximation with no statethat agrees with qC on shared omponents. This is, our re�nement approahuses a similar ourse of ation while we use the information that is providedby the glue-ode in our tehniques. Thus, it is easy to see that if we interpretthe sets of states in the Cross-Cheking approah as abstrat over-approxi-mations in our setting then our approah results in more re�ned abstratover-approximations. In Chapter 5 we introdue several examples and pointout the advantages of our approah over the Cross-Cheking approah. Inaddition [Min10℄ introdues an approah to establish deadlok-freedom ininteration systems in polynomial time by an approah that is based on theanalysis of abstrat state over-approximations. The approah is brie�y in-trodued in Chapter 4 in Setion 4.3 as the waiting hain approah. Weshow by examples that our approah to establish deadlok-freedom and thewaiting hain approah are inomparable, i.e., there are deadlok-free sys-tems where our approah sueeds to establish deadlok-freedom and thewaiting hain approah fails and vie versa.[CHM+93℄ onsiders a partitioning of all subsystems in a ooperating sys-tem and performs reahability analyses on, so alled, �subautomata� that arebased on a set in this partition. Like in our approah, these subautomataare ompat representations of over-approximations. The subautomata arebased on pairwise disjunt subsets of subsystems, i.e., there is no way to ap-ply a re�nement approah based on the Cross-Cheking or the Edge-Mathoperator. An approah that omes lose to our approah is introdued in[GDHH98℄ where the reahable state spae of synhronous hardware thatis modeled by Mealy mahines [Mea55℄ is approximated. The Mealy ma-hine formalism omes very lose to the formalism of interation systems.The approah deals exlusively with the onstrution of ompat representa-tions of over-approximations. Similarly to our approah and the approah in[Min10℄, the authors onsider not neessarily disjoint subsets of subsystemsand interpret the reahable state spae of a system based on one of these97



CHAPTER 3. A REFINEMENT TECHNIQUE FOROVER-APPROXIMATIONSsubsets as a ompat representation of an over-approximation of the reah-able state spae of the Mealy mahine in onsideration. Thus, the approahonstruts abstrat state over-approximations of a Mealy mahine. In on-trast to [Min10℄ the reahable state spaes are onstruted simultaneouslyand the re�nement of the abstrat state over-approximations is ahieved byofatoring with the so far explored state spaes. Similarly to [Min10℄ andin ontrast to our re�nement approah, the approah in [GDHH98℄ onsid-ers the state transitions only for state spae explorations and not for there�nement proess of the abstrat state over-approximations, i.e., the ap-proah onsiders only over-approximations of the reahable state spae andnot over-approximations of the reahable transitions. In [GD99℄ the authorsuse this approah in order to establish invariants (a sublass of safety prop-erties) by a ombined forward reahability analysis from the initial state ofa Mealy mahine and bakward reahability analysis from states that harman invariant in onsideration.Introdued in [AC05℄ is a tehnique that is based on a su�ient onditionin order to establish deadlok-freedom in �nite state onurrent programsin polynomial time. The approah heks a ondition that guarantees thatthere is an over-approximation of the global behavior of a system in on-sideration suh that every time a subsystem hanged its state it is ensuredthat this subsystem either does not blok any ooperation or an partii-pate in a ooperation. If the initial state is deadlok-free then this onditionguarantees deadlok-freedom in a system. The ondition is heked by ananalysis of all abstrat over-approximations that are based on subsets of
3 subsystems suh that the interation graph restrited to a subset is on-neted, i.e., in ontrast to our approah the authors do not onsider abstratover-approximations based on d 6= 3 subsystems. Similarly to the waitinghain approah in [Min10℄ the analysis of the abstrat over-approximationsis based on the refutation of ertain waiting onditions among loal statesof the subsystems. 98



Chapter 4
Establishing Deadlok-Freedom
4.1 IntrodutionVerifying properties of a system is a ruial part in the proess of systemdesign. Given system spei�ations, in system design a model in a formallanguage is onstruted that should meet the spei�ations. Deiding variousproperties in interation systems is PSPACE-omplete [MCM08℄, i.e., forertain system properties, we an not expet that there is a tehnique thatdeides this property in time polynomial in the size of an input interationsystem. Partiularly, deiding the system property of deadlok-freedom isPSPACE-omplete, i.e., the property that states that there is no globalstate reahable in the global behavior of an interation system that is adeadlok. Deadlok-freedom is an important and desirable system propertyin ooperating systems. Espeially systems that are ritially required toanswer to unexpeted or dangerous situations are ruially required to bedeadlok-free, e.g., a ontrol omponent in a power plant that is in a deadlokduring an earthquake an blok important safety preautions.It is well known that the lass of safety properties, i.e., properties that statethat �something bad does never happen� [Lam77, LS85℄, an be established99



CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOMin a system by heking these properties in an over-approximation of thesystem. This is, if �something bad does never happen� in an over-approxi-mation of a system then it espeially does never happen in the behavior of thesystem. In partiular, the property of deadlok-freedom is a safety property.Thus, if an over-approximation of an interation system is deadlok-free thenthe there is no deadlok reahable in the global behavior as well. In Chapter3 we introdued a onept of over-approximations of the global behavior ofan interation system and abstrat over-approximations that are based on asubset of omponents and indue over-approximations of the global behavior.In this hapter we desribe how a family of abstrat over-approximations anbe used in order to establish deadlok-freedom in interation systems in timepolynomial in the size of an input interation system. The general idea ofestablishing an arbitrary system property is based on [Min10℄. Let Sys bean interation system with a set of omponents K, C ⊆ 2K a domain and
{RC}C∈C a family of abstrat over-approximations of the global behavior Tof Sys. Let P be a system property and P ′ a prediate on abstrat over-approximations suh that from P ′(RC) is true for all C ∈ C follows that
P holds in Sys and the test whether P ′(RC) is true for all C ∈ C an beahieved in polynomial time in the size of Sys. If P is a safety property, i.e.,a property that states that �something bad will never happen� then we anadd the following intermediate step. If we an onlude from P ′(RC) is truefor all C ∈ C that there must be an over-approximation T ′ of T suh that
P holds for T ′ then we an onlude that P holds in T as well.This hapter is organized as follows. In Setion 4.2 we give a brief om-pendium of de�nitions regarding linear time properties and safety proper-ties. Setion 4.3 introdues an approah for establishing deadlok-freedom ininteration systems by analyzing a family of abstrat over-approximations.Furthermore, in Setion 4.3 we ompare our approah to an approah forestablishing deadlok-freedom in interation systems that was introdued in[Min10℄. Setion 4.4 onludes this hapter.100



4.2. SAFETY PROPERTIES AND OVER-APPROXIMATIONS4.2 Safety Properties and Over-ApproximationsIn this setion we provide a brief ompendium of the de�nitions of lineartime properties and the sublass of safety properties. We reapitulate thewell known theorem that states that safety properties an be establishedin systems by testing these properties in over-approximations of the systemand we exemplify how a family of abstrat over-approximations an be usedto guarantee that a safety property has to hold in an over-approximation ofa system. The notations in this setion are based on [BK08℄1.For a given transition system that desribes the behavior of a system, wehave to de�ne a labeling funtion that assigns sets of so alled �atomi�propositions to the states of the transition system, e.g., a system that modelsan ATM has states to whih we ould assign atomi propositions like �a useris logged in�, �a wrong pin was entered� or �ERROR 37 ourred�. Theseare propositions that are guaranteed in a �xed state of the system and areindependent from states being visited previously or afterwards. The pathsof a system indue sequenes of sets of atomi propositions. A linear timeproperty is de�ned by a set of sequenes of sets of atomi propositions. Apath in a system ful�lls a linear time property if the indued sequene ofpropositions is inluded in the linear time property and a system ful�lls alinear time property if the indued sequene of eah path is inluded in thelinear time property. In the following we formally introdue this onept.De�nition 4.1:Let S = (Q,A,→S, q
0) be a transition system with transition relation→S⊆

Q×A×Q. A �nite path in S is a �nite sequene of states π = q0q1q2 . . . , qksuh that for eah 0 ≤ i ≤ k − 1 there is a transition qi
a
−→ qi+1 in S.Analogously, an in�nite path in S is an in�nite sequene of states π′ =

q0q1q2 . . . suh that for i ≥ 0 there is a transition qi
a
−→ qi+1 in S. Note thata �nite respetively in�nite path starts in the initial state q0. A �nite path1In ontrast to [BK08℄ we allow a transition systems to ontain reahable deadloks,i.e., in some points the following de�nitions di�er from the onepts in [BK08℄.101



CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOMis alled maximal if it ends in a deadlok.Let Pathfin(S) be the set of all �nite paths in S and Path(S) the set of allin�nite and maximal �nite paths in S.If there are atomi propositions assigned to the states of a transition systemthen a �nite path in the system indues a sequene of sets of atomi propo-sitions. These sequenes are alled traes. A linear time property is de�nedby a set of sequenes of sets of atomi propositions and a transition systemsful�lls a linear time property if all traes of the system are inluded in theproperty.De�nition 4.2:Let S = (Q,A,→S, q
0) be a transition system, AP a set of atomi propo-sitions and LS : Q → 2AP a labeling funtion that assigns a set of atomipropositions to eah state in Q. Let π = q0q1q2 . . . , qk ∈ Pathsfin(S) be a�nite path in S, then the trae of π is the sequene

trace(π) = LS(q
0)LS(q

1)LS(q
2) . . . LS(q

k).Let Tracesfin(S) = {trace(π)|π ∈ Pathsfin(S)} be the set of all traesof �nite paths in S. Analogously, for an in�nite path π′ = q0q1q2 . . .let trace(π′) = LS(q
0)LS(q

1)LS(q
2) . . . and Traces(S) = {trace(π)|π ∈

Paths(S)}, i.e., the set of all traes of all in�nite and maximal �nite pathsin S.A linear time property (LT-property) Plt is a subset of (2AP )∞ wherethe ∞ operator yields all �nite and in�nite onatenations of elements in
2AP . A transition system S satis�es an LT-property Plt if and only if
Traces(S) ⊆ Plt. We denote S satis�es Plt as S |= Plt.A well investigated sublass of LT-properties is the sublass of safety proper-ties. Roughly spoken, an LT-property is a safety property if we an on�rmthat the trae of a path in a transition system violates the property by onlyexamine a �nite pre�x of the trae, i.e., even if the trae in onsideration isof in�nite length. A state in a system that is reahed if we follow a path102



4.2. SAFETY PROPERTIES AND OVER-APPROXIMATIONSthat orresponds to a pre�x like that is often interpreted as a �bad situa-tion� beause following this path violates the safety property. Thus, a safetyproperty states that �something bad does never happen� [Lam77, LS85℄.De�nition 4.3:Let AP be a set of atomi propositions and Plt ⊆ (2AP )∞ an LT-property.The property Plt is alled a safety property if for eah in�nite word σ in
(2AP )∞ \ Plt (i.e., a word that does not belong to Plt) there is a �nite pre�x
σ′ of σ suh that all words σ′′ in (2AP )∞ where σ′ is a pre�x of σ′′ do notbelong to Plt as well.Remark 4.1:In other words, if σ is an in�nite trae in a transition system S suh that σ isnot in a safety property Plt then only a �nite pre�x of σ has to be examinedin order to refute that S |= Plt.In the following example we illustrate the negated reahability problem ininteration systems in the presented notation of LT-properties and argue whythis property is in fat a safety property. The negated reahability problemonsists of the question, given an interation system Sys and a global state
q, whether q is not reahable in the global behavior T of Sys.Example 4.1:Let Sys = (IM, {Ti}i∈K) be an interation system with a set of ompo-nents K = {1, 2, . . . , n} and interation model IM = (K, {Ai}i∈K , Int). Weassume that the loal state spaes of the loal behaviors are pairwise dis-joint. Let T = (Q, Int,→T , q

0) be the global behavior of Sys and q =

(q1, q2, . . . , qn) ∈ Q a global state in T . We want to establish whether qis not reahable in T . Let AP be the set of atomi propositions that on-sists of all states of the loal behaviors in Sys, i.e., AP = ∪i∈KQi. Let
LT : Q → 2AP be a labeling funtion with LT (q

′) = {q′1, q
′
2, . . . , q

′
n} for

q′ = (q′1, q
′
2, . . . , q

′
n) ∈ Q, i.e., the atomi propositions that hold in a globalstate oinide with the respetive loal states. The LT-property
P =

{

σ|σ ∈
(

2AP \ {q1, q2, . . . , qn}
)∞}103



CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOMonsists of all �nite and in�nite sequenes σ of subsets of AP where the set
{q1, q2, . . . , qn} does not our in σ. Clearly,
• P is a safety property beause a sequene that is not in P has a �nitepre�x that ends in {q1, q2, . . . , qn} and
• T |= P if and only if q is not reahable in T .It is well known that a safety property an be established in a system byheking this property in an over-approximation of the system. This state-ment is based on the following theorem.Theorem 4.1:Let S = (QS, AS,→S, q

0
S) and T = (QT , AT ,→T , q

0
T ) be transition systems,

AP a set of atomi propositions and LT : QT → 2AP and LS : QS → 2APlabeling funtions. Then Tracesfin(T ) ⊆ Tracesfin(S) if and only if foreah safety property P holds S |= P ⇒ T |= P .Proof. A proof an be found in [BK08℄.Let T = (Q,A,→T , q
0) and S = (Q,A,→S, q

0) be transition systems suhthat S is an over-approximation of T . Furthermore, let AP be a set ofatomi propositions and L : Q→ 2AP a labeling funtion, then it is easy tosee that Tracesfin(T ) ⊆ Tracesfin(S). This is beause eah �nite path in Tis also a �nite path in S and thus eah trae of a �nite path in T is inludedin the set of �nite traes of S as well. This means, if one an show that anarbitrary safety property P holds in S then P holds in T as well. Clearly, if
P does not hold in S then we do not know whether P does or does not holdin T .Note, if S is an over-approximation of T , that we an not onlude that Tsatis�es an arbitrary LT-property P whih is not a safety property if S |= P ,i.e., if Traces(S) ⊆ P . A maximal �nite path in T the trae of whih is notinluded in P might be a proper pre�x of a maximal �nite or in�nite pathin S. This is, we an not assume that Traces(T ) ⊆ Traces(S) and that104



4.2. SAFETY PROPERTIES AND OVER-APPROXIMATIONS
Traces(T ) ⊆ P if P is not a safety property.We onsider abstrat over-approximations of an interation system Sys whihindue over-approximations of the global behavior T of Sys. Beause of thestate spae explosion problem we want to avoid to analyze the over-approxi-mation that is indued by an abstrat over-approximation in order to ensurea safety property P in Sys. What we do is that we formulate a prediate
P ′ on a family of abstrat over-approximations suh that if P ′ holds on thefamily then we an onlude that there is an over-approximation S of T with
S |= P . By Theorem 4.1 it follows then that T |= P .The following example illustrates, based on Example 4.1, how we an useabstrat over-approximations in order to onlude that there is an over-ap-proximation of the global behavior of an interation systems where a ertainglobal state is not reahable.Example 4.2:Let Sys = (IM, {Ti}i∈K) be an interation system with interation model
IM = (K, {Ai}i∈K , Int) and global behavior T . Let P be the safety propertythat was desribed in Example 4.1 that holds in T if and only if the globalstate q = (q1, q2, . . . , qn) ∈ Q is not reahable in T .Let RC be an abstrat over-approximation of T with respet to the subsetof omponents C ⊆ K. If q is reahable in T then it follows from De�nition3.3 that q↓C is reahable in RC . Note, if q↓C is reahable in RC then weannot onlude whether or not q is reahable in T . If q↓C is not reahablein RC then we an onlude that q is not reahable in the global extension
E(RC) of RC (see Lemma 3.1), i.e., for the over-approximation E(RC) of Tholds that E(RC) |= P . It follows by Theorem 4.1 that T |= P as well.Clearly, if q↓C is reahable in RC then a re�nement by the Edge-Mathoperator, with other abstrat over-approximations, might result in a re�nedversion R′

C where q↓C is not reahable, i.e., an abstrat over-approximationthat su�e to establish that q is not reahable in T .105



CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOM4.3 An Approah to Establish Deadlok-FreedomIn this setion we disuss how we an establish whether there is no dead-lok (see De�nition 1.4) reahable in an interation system by onsideringa family of abstrat over-approximations, i.e., we want to establish whetheran interation system is deadlok-free.Our approah deals with the identi�ation of states in abstrat over-appro-ximations that annot be projetions of reahable deadloks in the globalbehavior T of an interation system Sys. If there is one abstrat over-ap-proximation R of T where no state an be the projetion of a reahabledeadlok then we an onlude that there must be an over-approximation
T ′ of T where no reahable state is a deadlok. This is beause the respetiveprojetion of eah reahable state in T is reahable in R. Deadlok-freedomis a safety property, i.e., we an ontinue to onlude that T is deadlok-freeas well.In the following we de�ne the system property of deadlok-freedom in inter-ation systems as an LT-property. Let Sys = (IM, {Ti}i∈K) be an interationsystem with interation model IM = (K, {Ai}i∈K , Int) and global behavior
T = (Q, Int,→T , q

0). Let AP = Int be a set of atomi propositions and
L : Q→ 2AP with

L(q) = {α ∈ Int |∀i∈Ki(α) 6= ∅ ⇒ i(α) ⊆ en(qi)},i.e., α ∈ L(q) if and only if in the global behavior T the interation α isenabled in q. The state q is a deadlok if and only if no interation is enabledin q, i.e., if and only if L(q) = ∅. The interation system Sys is deadlok-freeif there is no deadlok reahable in T . Thus, deadlok-freedom of Sys anbe spei�ed as an LT-property by
Pdlf =

{

σ|σ ∈
(

2AP \ {∅}
)∞}

,i.e., all sequenes of subsets of AP where ∅ does not our in the sequene.Clearly, Pdlf is a safety property, beause a sequene of subsets of AP violates106



4.3. AN APPROACH TO ESTABLISH DEADLOCK-FREEDOM
Pdef if and only if this sequene has a �nite pre�x that ends in the emptyset. Thus, if S is an over-approximation of T and S |= Pdlf then it followsby Theorem 4.1 that T |= Pdef , i.e., we an test whether Pdef holds in Tby heking whether Pdef holds in an over-approximation S of T . Given anabstrat over-approximation R = (QC , Int,→R, q

0
C) of T , we an onstrutthe indued over-approximation E(R) and hek a safety property in E(R).Clearly, this ourse of ation is not feasible if T , and thus E(R) as well,is a omplex transition system. We want to hek Pdlf e�iently on anabstrat over-approximation R of T . Eah reahable state in R ould bethe projetion of a deadlok that is reahable in T . Let qC ∈ QC be areahable state in R and E(qC) ⊆ Q be all states q ∈ Q with q↓C = qC .We an onlude that qC annot be the projetion of a reahable deadlokin T if there is no q ∈ E(qC) with L(q) = ∅. Clearly, Sys is deadlok-freeif this property holds for eah reahable state in an abstrat over-approxi-mation. This is a rather strit and naive approah to establish deadlok-freedom beause a deadlok in E(qC) is not neessarily reahable in T . Inthe following we desribe how this approah an be improved by omparingdi�erent abstrat over-approximations in a family of abstrat over-approxi-mations.We illustrate our approah on the example of the Dining Philosophers Prob-lem and show additionally how we an use the information that our ap-proah ollets in order to remove possible deadloks in this example in anon-automati way.Example 4.3:In the remainder we demonstrate our approah to establish deadlok-freedomon variations of the well known Dining Philosophers Problem that was in-trodued by E. Dijkstra [Dij02℄. The Dining Philosophers Problem is usedto desribe parallel proesses whih share a bounded number of resoures.Basi version of this problem are not deadlok-free, i.e., the system mightreah a state where no further ativity is possible.107



CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOMThe problem is desribed as follows. We have n ≥ 2 philosophers, numberedonseutively, sitting in an antilokwise order around a table. Eah philoso-pher has a plate of food in front of himself. Plaed between two philosophersis a fork whih has to be shared between these neighboring philosophers. Aphilosopher an think or eat. If a philosopher thinks he does not have anyforks in his hands. If a philosopher wants to eat he needs both forks, leftand right, i.e., if a philosopher eats then the two neighboring philosopherson his left and right annot eat beause the shared forks are in use. If aphilosopher already took one fork, either its left or right, then he will notput it bak on the table until he took the respetive other fork and �nishedeating.If the philosophers are allowed to hoose nondeterministially whih forkthey take �rst (provided the respetive fork lies on the table) then it is easyto see that a model that is based on these spei�ations is not deadlok-free.If all philosophers on the table are holding either their left respetively rightfork then eah philosopher waits to take his right respetively left fork.In the following we model the Dining Philosophers Problem with n philoso-phers by an interation system Sysn. Afterwards we desribe abstrat over-approximations of the model and show whih states indiate that the globalbehavior T of the Sysn is not deadlok-free. Later we desribe how we anuse these states in the abstrat over-approximations in order to modify themodel suh that it beomes deadlok-free.Let Sysn = (IM, {Ti}i∈K) with n ≥ 2 be an interation system with intera-tion model IM = (K, {Ai}i∈K , Int). Let
K = {Phil0, Phil1, . . . , Philn−1, F ork0, F ork1, . . . , F orkn−1}where Phili models philosopher i and Forki models fork i for 0 ≤ i < n. Weassume that fork i is plaed on the right of philosopher i. The set of ports

APhili
respetively AForki

for philosopher i respetively fork i with 0 ≤ i < nis spei�ed as follows. 108



4.3. AN APPROACH TO ESTABLISH DEADLOCK-FREEDOM
APhili

= { take_lefti, // take the left fork
take_righti, // take the right fork
put_lefti, // put the left fork on the table
put_righti // put the right fork on the table}

AForki
= { takei, // take this fork

puti // put this fork bak on the table}Eah philosopher an take the fork on his left respetively right and put theseforks bak on the table. The following interations model this ooperationbetween philosopher Phili and the fork on his left Forki−1 and the fork onhis right Forki for 0 ≤ i < n. Note that we assume a modulo n arithmeti,i.e., if i− 1 = −1 then i− 1 refers to n− 1 and if i+ 1 = n then i+ 1 refersto 0.
tli = {take_lefti, takei−1}

tri = {take_righti, takei}

pli = {put_lefti, puti−1}

pri = {put_righti, puti}Let Int = {tli, tri, pli, pri|0 ≤ i < n} be the interation set of Sysn. Figure4.1 shows the loal behavior of philosopher Phili respetively Forki for
0 ≤ i < n. The loal behavior TPhili

is depited in 4.1a and TForki
in 4.1b.Note, for ease of presentation, we subsript the states in Figure 4.1 by iinstead of Phili respetively Forki.By this, Sysn is fully spei�ed. Figure 4.2 shows the interation graph forthe interation model of Sys8, i.e., for a model of the Dining PhilosophersProblem with 8 philosophers.In the following we examine a family of abstrat over-approximations of Sysnthat is onstruted and re�ned as desribed in Chapter 3. Let C be a domainthat onsist of all subsets of K with 3 omponents where the interationgraph restrited to these three omponents is onneted. There are two109
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4.3. AN APPROACH TO ESTABLISH DEADLOCK-FREEDOMforms of subsets in C, these are Ci = {Forki, Phili+1, F orki+1} and Di =

{Phili, F orki, Phili+1} for 0 ≤ i < n, i.e., two forks and one philosopher andone fork and two philosophers. Let {RC}C∈C be the family of abstrat over-approximations that was onstruted by Algorithm 2 (Chapter 3 on Page89) from the family {SC}C∈C (see Lemma 3.2), i.e., {RC}C∈C is the Edge-Math �xed-point of {SC}C∈C. Figure 4.3 shows RCi
and Figure 4.4 RDifor 0 ≤ i < n. Not depited are transitions that are labeled by interationsin whih no omponent in Ci respetively Di partiipates. The loal statesin the abstrat over-approximation RCi

respetively RDi
are depited in theorder Forki, Phili+1, F orki+1 respetively Phili, F orki, Phili+1.As mentioned, there are exatly two reahable deadloks in the global be-havior T of Sysn. These are the states where all philosophers have takentheir fork on the left respetively right. Certainly, the projetions of thesestates are reahable in the abstrat over-approximations. In Figure 4.3these are the states (q1i , q
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i , q
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1
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2
i+1) (marked blue). In the following we desribe how we anautomatially exlude that some of the states in the abstrat over-appro-ximations are projetions of reahable deadloks in the global behavior of

Sysn.4.3.1 Projeted DeadloksGiven an interation system Sys with a set of omponents K and a familyof abstrat over-approximations {RC}C∈C based on a domain C ⊆ 2K \ {∅}we desribe here an approah to identify states in the abstrat over-appro-ximations that annot be projetions of reahable deadloks in the globalbehavior T of Sys. If for one abstrat over-approximation RC (C ∈ C) eahreahable state qC ∈ QC was ruled out by this approah then we an onludethat Sys is deadlok-free. This onlusion is justi�ed by the fat that eahreahable state q ∈ Q in T projeted on C is reahable in RC . Thus, if none111
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CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOMof the reahable states in RC are projetions of reahable deadloks thenthere is an over-approximation S of T whih is deadlok-free and thus, as ofTheorem 4.1, T is deadlok-free as well.The basi idea behind this approah is based on the following three obser-vations. First we need one additional de�nition.De�nition 4.4:Let Sys = (IM, {Ti}i∈K) be an interation system with interation model
IM = (K, {Ai}i∈K , Int), C a nonempty subset of K and qC ∈ QC . Let

enC(qC) = {α ∈ Int |∀i∈Ki(α) 6= ∅ ⇒ (i ∈ C ∧ i(α) ⊆ en(qi))}.We say that an interation α ∈ enC(qC) is omplete in qC .In other words, let qC ∈ QC be a state then enC(qC) onsists of all intera-tions α ∈ Int in whih only omponents in C partiipate and eah ompo-nent that partiipates in α enables its respetive port. Note that eah globalstate that projeted on C equals qC is assured to enable all α ∈ enC(qC).Observation 4.1:If qC ∈ QC is a state that is not reahable in RC , then qC annot be theprojetion of a reahable deadlok q in T beause a state q with q↓C = qCis not reahable in T in the �rst plae (see De�nition 3.3).Observation 4.2:If qC ∈ QC is reahable in RC and enC(qC) 6= ∅ then qC annot be theprojetion of a reahable deadlok in T . Let α ∈ enC(qC) then eah port in
α is enabled by the respetive omponents in qC . These ports are enabledin eah global state q with q↓C = qC as well, i.e., α ∈ en(q).Observation 4.3:If qC ∈ QC is reahable in RC and there is another abstrat over-approxi-mation RD with D 6= C suh that for eah reahable state qD ∈ QD in RDwith qC↓D = qD↓C holds that either
• it is on�rmed that qD annot be the projetion of a reahable deadlokin T or 114



4.3. AN APPROACH TO ESTABLISH DEADLOCK-FREEDOM
• for the state qC∪D ∈ QC∪D with qC∪D↓C = qC and qC∪D↓D = qD holds
enC(qC∪D) 6= ∅then qC annot be the projetion of a reahable global deadlok as well.This is beause, for eah state q reahable in T with q↓C = qC holds thateither q↓D is not the projetion of a deadlok or q is assured to enable aninteration in whih only omponents in C ∪D partiipate.Based on the above observations we an formulate an approah that identi-�es states in a family of abstrat over-approximations that an not be theprojetion of a reahable deadlok in the global behavior of an interationsystem. Observation 4.1 and 4.2 a�et only individual abstrat over-appro-ximations, i.e., there is no ross referene between pairs of abstrat over-ap-proximations. We use these two observations to onstrut an initial set ofstates for eah abstrat over-approximation that we want to re�ne by Obser-vation 4.3. Observation 4.3 onsiders pairs of abstrat over-approximations.Algorithm 3, named CRIT , desribes an approah in pseudoode, that ap-plies the above observations on a family of abstrat over-approximations inorder to onstrut a set of states for eah abstrat over-approximation in thefamily that onsists of states for whih we annot exlude that they are pro-jetions of reahable deadloks. The family of abstrat over-approximationsan be onstruted as in Algorithm 2 (Chapter 3).Observation 4.1 is applied in Line 1 in Algorithm 3 where ReachStates(RC)returns all reahable states in the abstrat over-approximation RC . Theseond observation is applied in Line 2 where complete(HC) returns all states

qC in HC for whih enC(qC) 6= ∅. The third observation is used in the while-loop in Line 4 to 20 where pairs of sets of states are ompared. The for-loopin Line 6 to 19 runs through all pairs C,D ∈ C. For eah state qC ∈ HC weassume that this state is not the projetion of a reahable deadlok � in Line8 this is indiated by assigning true to the variable notCritical. The state
qC is then ompared to eah state qD ∈ HD, i.e., we only onsider states
qC and qD that an be projetions of reahable deadloks. In Line 12 the115



CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOMalgorithm heks whether there is an interation that is omplete in a state
qC∪D with qC∪D↓C = qC and qC∪D↓D = qD. If there is one suh state whereno interation is omplete then we have to assume that qC is the projetionof a reahable deadlok � this is marked in Line 12 where false is assignedto the variable notCritical.The while-loop terminates if there is no new state found that annot be theprojetion of a reahable deadlok.Algorithm 3 CRIT({RC}C∈C)1: {HC}C∈C ← {ReachStates(RC)}C∈C2: {HC}C∈C ← {HC \ complete(HC)}C∈C3: {H ′

C}C∈C ← NIL4: while {H ′
C}C∈C 6= {HC}C∈C do5: {H ′

C}C∈C ← {HC}C∈C6: for C,D ∈ C do7: for qC ∈ HC do8: notCritical ←true9: for qD ∈ HD do10: if qC↓D = qD↓C then11: Let qC∪D ∈ QC∪D with qC∪D↓C = qC and qC∪D↓D = qD12: notCritical ← notCritical ∧ enC(qC∪D) = ∅13: end if14: end for15: if notCritical then16: HC ← HC \ {qC}17: end if18: end for19: end for20: end while21: return {HC}C∈CIn Chapter 3 we disussed under whih assumptions the �xed-point of a116



4.3. AN APPROACH TO ESTABLISH DEADLOCK-FREEDOMfamily of abstrat over-approximations with respet to an appliation of theEdge-Math operator an be alulated in polynomial time. This is the aseif the family onsists of polynomial many abstrat over-approximations andeah abstrat over-approximation is based on a number of omponents whihis bounded by a onstant d. This implies that the number of states in eahabstrat over-approximation is bounded polynomially in d. This means, ifwe assume that a family of abstrat over-approximations is onform to thisassumptions then Algorithm 3 runs in polynomial time. This is beausewe start with polynomially many states that we onsider to be possibleprojetions of deadloks and in eah exeution of the while-loop in Line 4 to20 at least one of these states is removed.Remark 4.2:In the following we say a state in an abstrat over-approximation is markedas ritial if we have not yet ruled out that this state is the projetionof a reahable deadlok in the global behavior of the interation system inonsideration.Example 4.4:If we apply Algorithm 3 on the family of abstrat over-approximations ofour model of the Philosophers problem, desribed in Example 4.3, then westart with 13 reahable states in an abstrat over-approximation RCi
and 27reahable states in an abstrat over-approximation RDi

for 0 ≤ i < n (seeLine 1), i.e., HCi
ontains 13 and HDi

ontains 27 ritial states. After re-moving all states fromHCi
respetively HDi

for 0 ≤ i < n with enC(qCi
) 6= ∅respetively enC(qDi

) 6= ∅ the re�ned sets ontain 3 respetively 7 remain-ing ritial states (see Line 2). After the while loop from Line 4 to Line20 was exeuted, i.e., the re�nement desribed in Observation 3 was ap-plied, the updated set HCi
ontains 3 ritial states and HDi

4 ritial states(0 ≤ i < n).The returned family of sets of states onsists of n sets of size 3 and n setsof size 4. Remember that there are two reahable deadloks in the globalbehavior of a model of the Dining Philosophers problem � the states where117



CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOMeah philosopher piked up the fork on his left respetively right. This is, weknow that eah abstrat over-approximation ontains exatly two states thatare atually projetions of reahable deadloks, i.e., this example shows thatwe annot expet to rule out all states that are not projetions of reahabledeadloks by this approah.In summary, we presented an approah that an be used to establish deadlok-freedom in interation systems by analyzing a family of abstrat over-appro-ximations of the system. In order for the approah to run in polynomialtime we propose to use a family of abstrat over-approximations that areonstruted as desribed in Setion 3.3 in Chapter 3. We exempli�ed our ap-proah on a model of the Dining Philosophers problem. The global behaviorof this model is not deadlok-free. The example shows that our approah isable to exlude a great amount of states from being ritial, i.e., the exludedstates an not be projetions of reahable global deadloks. Nevertheless,there are states in the example, that our approah has marked as ritial,whih are not projetions of reahable global deadloks. However, we anuse the obtained information, i.e., the family of sets of ritial states, in orderto modify the system suh that our approah is suessfully, i.e., suh thatthere is at least one abstrat over-approximation where we an onlude thatno state ould be the projetion of a reahable deadlok. This approah anmake sense even if all states marked as ritial are atually false-positives,i.e., the system in onsideration is deadlok-free. Our intention is, if thesystem in onsideration is far to omplex to be veri�ed by exat tehniquesas LTL or CTL model heking then we modify the system suh that themodi�ations preserve the initial design spei�ations su�iently while ourapproah sueeds to establish deadlok-freedom.The following example illustrates how we an modify our model of the DiningPhilosophers in order to establish deadlok-freedom by our approah.Example 4.5:Consider the family of sets of ritial states {HC}C∈C from Example 4.4, i.e.,118
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HCi

and HDi
for 0 ≤ i < n. Inluded in HC0

(C0 = {Fork0, Phil1, F ork1})is the state (q10 , q11, q11), i.e., the state where Fork0 and Fork1 are taken and
Phil1 has taken only the fork on his left (this state is marked red in Figure4.3). This state is the projetion of the reahable global deadlok where eahphilosopher took the fork on his left and waits to take the fork on his right.We want to modify the system suh that this state beomes unreahablein RC0

, i.e., suh that this state does not appear in HC0
. In RC0

the state
(q10, q

1
1, q

1
1) an only be reahed if philosopher Phil1 took the fork Fork0 onhis left side and the fork Fork1 on his right side was obtained by philosopher

Phil2 (who is not inluded in C0). In order to prevent this situation we anmodify the behavior of philosopher Phil1 suh that he takes the fork on hisleft only if he already holds the fork on his right, i.e., we modify the behaviorof philosopher Phil1 as depited in Figure 4.5.Roughly spoken, this modi�ation prevents the deadlok in the global be-havior where eah philosopher took the fork on his left and waits for thefork on his right, i.e., the deadlok where eah philosopher took the fork onhis right and waits for the fork on his left should still be reahable in the119
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andother states that remained marked as ritial in the original version are nowon�rmed to be not projetions of deadloks with respet to Observation 3.In the same manner we an modify, e.g., the behavior of philosopher Phil0suh that he only waits for the fork Fork0 on his right if he already took thefork Forkn−1 on his left, i.e., we modify the behavior of philosopher Phil0 asdepited in Figure 4.6. This modi�ation should prevent that the projetionof the (former) reahable global deadlok where eah philosopher took thefork on his right and waits for the fork on his left is reahable in the abstratover-approximation with respet to C0 of the modi�ed system.It is easy to see that the modi�ed system is deadlok-free. And, as expeted,after our approah applied to this modi�ed system there is no state markedas ritial in any abstrat over-approximation, i.e., the modi�ed system is120



4.3. AN APPROACH TO ESTABLISH DEADLOCK-FREEDOMon�rmed to be deadlok-free. Note that projetions of the reahable globaldeadlok where eah philosopher holds the fork on his left respetively rightin the original system are still reahable in respetive abstrat over-approxi-mations of the modi�ed system. Nevertheless, our approah on�rmed thatthese projetions an not be projetions of reahable global deadloks.4.3.2 Comparison to the Waiting Chain ApproahIn Chapter 3 in Setion 3.4 we mentioned that our introdued re�nementapproah is similar to an approah that was introdued in [Min10℄ whereobjets are onsidered that are similar to abstrat over-approximations. Inaddition an approah for testing whether an interation system is deadlok-free is desribed in [Min10℄. The approah exploits a waiting struture be-tween loal states in a deadlok and attempts to refute that there is a statereahable in the global behavior that exhibits a ertain waiting struture byanalyzing respetive waiting strutures in abstrat over-approximations. Inthe following we give a brief and merely informal desription of the approahin [Min10℄ and provide two examples that show that our approah and theapproah in [Min10℄ are inomparable, i.e., there are systems where our ap-proah sueeds and the approah in [Min10℄ fails and vie versa. Thus, weargue that one approahes an be applied if the other fails in order to estab-lish deadlok-freedom in an interation system. In the following we refer tothe approah in [Min10℄ as the waiting hain approah.The waiting hain approah is based on the following waiting struture onglobal states in an interation system.De�nition 4.5:Let Sys = (IM, {Ti}i∈K) be an interation system with interation model
IM = (K, {Ai}i∈K, Int) and global behavior T = (Q, Int,→T , q

0). Let q ∈ Qbe a global state. The waiting graph of q is a direted graph G(q) = (V,E)with V = {q1, q2, . . . , qn} for q = (q1, q2, . . . , qn) and (qi, qj) ∈ E if and onlyif there is α ∈ Int with 121



CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOM
• i(α) 6= ∅ and j(α) 6= ∅ and
• i(α) ⊆ en(qi) and j(α) * en(qj).This is, qi enables a port that is inluded in an interation α. Component

j features a port that is inluded in α as well, but qj does not enable thisport. This is interpreted as qi waits on qj .Let Sys = (IM, {Ti}i∈K) be an interation system with interation model
IM = (K, {Ai}i∈K, Int) and global behavior T = (Q, Int,→T , q

0). We assumehere that for eah omponent i ∈ K eah loal state qi ∈ Qi enables at leastone port, this is, en(qi) 6= ∅. Let q ∈ Q be a deadlok then it is easy tosee that G(q) ontains a direted yle. Eah loal state in q enables aport that is inluded in at least one interation and, as q is a deadlok, nointeration is enabled in q beause at least one loal state does not enableits orresponding port, i.e., eah loal state waits on at least one other state.Note that it is possible that a global state q ∈ Q is not a deadlok even if
G(q) ontains a direted yle.The waiting hain approah, interpreted in our setting and our notations,works as follows. Let C be a domain that onsists of all C ⊆ K with |C| = dfor d ≪ |K| and {RC}C∈C a family of abstrat over-approximations. Let
q ∈ Q be a global state that is a deadlok, i.e., G(q) ontains at least onedireted yle. Assume that q is reahable in the global behavior T of Sysand one direted yle in G(q) onsists of loal states of the omponents in
D ⊆ K. The approah now distinguishes two ases |D| ≤ d and |D| > d, i.e.,there are less or equal d loal states involved in the yli waiting relationand there are more than d loal states involved.If |D| ≤ d then there must be C ∈ C with D ⊆ C and there is qC ∈ QCreahable in RC suh that q↓D = qC↓D. Thus, the direted yle in G(q)an be found in a respetive representation of the waiting struture in qC .It follows that, if in eah abstrat over-approximation RC with C ∈ C thereis no reahable state where loal states are in a yli waiting relation then122



4.3. AN APPROACH TO ESTABLISH DEADLOCK-FREEDOMthere an not be a state reahable in the global behavior T where ≤ d loalstates are in a yli waiting relation.If |D| > d then for eah hain of d loal states on the yle there must bean abstrat over-approximation, based on the respetive omponents, wherethe projetion of q on these omponents is reahable. The haining waitingrelation is apparent in this projetion. A �rst onlusion is, if for eah
C ∈ C there is no state qC ∈ QC reahable in RC suh that the loal statesin qC are in a haining waiting relation then there an not be a deadlokreahable in the global behavior T of Sys where more than d omponents areinvolved in a yli waiting relation. This observation an be strengthenedas follows. Let C1, C2 ∈ C and C1, C2 ⊆ D suh that q↓C1

and q↓C2
are in ahaining waiting relation then it is lear that q↓C1

and q↓C2
agree on sharedomponents. Thus, if a reahable state qC ∈ QC in the abstrat over-ap-proximation RC is in a haining waiting relation and there is no abstratover-approximation RC

′ for C ′ ∈ C where a state qC′ ∈ QC
′ is reahable suhthat the loal states in qC′ are in a haining waiting relation and qC and qC′agree on shared omponents then the loal states in qC an not our in awaiting hain in a yli waiting relation of a global state. This observationan be used in order to exlude a state in an abstrat over-approximationfrom being involved in a yli waiting relation in a global state q.The waiting hain approah attempts to exlude separately that there arereahable global states where less or equal d loal states or more than d loalstates are in a yli waiting relation. If this sueeds then it is lear thatthere an not be a reahable global deadlok, i.e., the system in onsiderationis deadlok-free.The waiting hain approah and our approah, that was introdued in Se-tion 4.3, are inomparable. This is, there are interation systems that aredeadlok-free where the waiting hain approah fails to establish deadlok-freedom and our approah sueeds and vie versa. We show this laimby providing two simple examples. Example 4.6 introdues an interation123



CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOMsystem the global behavior of whih is deadlok-free where our approah su-eeds to establish deadlok-freedom and the waiting hain approah fails. Onthe other hand, in Example 4.7 we desribe a deadlok-free interation sys-tem where our approah fails to establish deadlok-freedom and the waitinghain approah sueeds. The onsequene is that one approah an be ap-plied on an interation system if the other fails. Nevertheless, we reommendto apply our approah �rst. This is beause the output of our approah on-sists of a family of states from abstrat over-approximations that ould beprojetions of reahable global deadloks. States that are not in this familyan not be projetions of reahable deadloks, i.e., there is no need to applythe waiting hain approah on these states.Example 4.6:Let IM = (K, {Ai}i∈K, Int) be an interation model with K = {1, 2, 3, 4}and Ai = {lefti, righti, alli} for i ∈ K. We assume that the omponentsare arranged irularly in an antilokwise order. For i ∈ K the port leftimodels a ommuniation with the omponent on the left, righti models aommuniation with the omponent on the right and the port alli modelsa ooperation among all omponents in K. Thus, let Int onsists of thefollowing interations:
• commi = {righti, lefti+1} for i ∈ K where i+ 1 = 5 refers to 1 and
• all = {alli|i ∈ K}.Let Sys = (IM, {Ti}i∈K) be an interation system. The loal behavior of theomponents in Sys is depited in Figure 4.7. 4.7a depits the loal behavior

T1 of omponent 1 and 4.7b depits the loal behavior Ti of omponent i for
i ∈ {2, 3, 4}.Figure 4.8 depits the global behavior T = (Q, Int,→T , q

0) of Sys restritedto reahable transitions. Apparently, T is deadlok-free.Let C be the domain that onsists of all subsets of K of size 3, i.e., C =124
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{C1, C2, C3, C4} with

C1={1, 2, 3},

C2={1, 2, 4},

C3={1, 3, 4} and
C4={2, 3, 4}.Let {SC}C∈C be the family of abstrat over-approximations that is on-struted as in Lemma 3.2 and {RC}C∈C be the family of abstrat over-ap-proximations that resulted from our re�nement approah that is desribedin Chapter 3.The waiting hain approah does not work on this example, i.e., the ap-proah is not able to onlude whether or not the global behavior T of Sysis deadlok-free. The waiting graph G(q0) of q0 ontains a direted ylebeause the state q01 is waiting on q02 with respet to the interation comm1,

q02 is waiting on q03 with respet to the interation comm2 and so on. The125
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in Example 4.6.waiting graph G(q0) is depited in Figure 4.9. The initial state q0 is a reah-able state in T , this is, all ombinations of three states that are in a hainingwaiting relation in G(q0) are reahable in the respetive abstrat over-appro-ximation in {SC}C∈C (and in all abstrat over-approximations that resultedfrom a re�nement by the Edge-Math operator). Thus, the respetive statesin the abstrat over-approximations ontain a haining waiting relation andthe waiting hain approah an not exlude that any of these states appearsin a yli waiting relation that involves more than three loal states in areahable global state.Our approah on the other hand applied to this example onludes that theglobal behavior T of Sys is deadlok-free. Figure 4.10 depits the behaviorof the abstrat over-approximations RC1
and RC2
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4.3. AN APPROACH TO ESTABLISH DEADLOCK-FREEDOMglobal deadloks.The only reahable states in RC2
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4.4. CONCLUSION
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4.4 ConlusionIn this hapter we introdued an approah that an be used in order to es-tablish deadlok-freedom in interation systems by analyzing a family of ab-strat over-approximations. Our approah attempts to onlude that there129



CHAPTER 4. ESTABLISHING DEADLOCK-FREEDOMis an over-approximation of the global behavior of an interation systemthat is deadlok-free. As deadlok-freedom is a safety property it followsthat the global behavior of the system in onsideration is deadlok-free aswell. We argued that our approah runs in polynomial time under er-tain assumptions on the family of abstrat over-approximations. Moreover,we desribed, using a version of the Dining Philosophers problem (whihis not deadlok-free), how we an use the information that is alulatedby our approah in order to modify a system suh that we an guaranteedeadlok-freedom. Additionally, we provided two examples whih show thatour approah and the waiting hain approah that is desribed in [Min10℄are inomparable, i.e., if one approah fails to establish deadlok-freedom inan interation system the other approah an be applied.
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Chapter 5
Results
5.1 IntrodutionWe implemented our approah to re�ne abstrat over-approximations andour approah to establish deadlok-freedom in a tool. In our tool we modelthe loal behavior of omponents and abstrat over-approximations by BDDs[Bry86℄. BDDs o�er the possibility to aomplish reahability analyses andappliations of the Edge-Math operator e�iently by operations on BDDs.The symboli representation of �nite automata by BDDs is also the basisof the symboli model heking approah [BCM+92℄ where operations onBDDs are used to model hek omplex systems. Our tool takes as inputan interation system Sys in a desription language and a parameter d > 1where d is the number of omponents in an abstrat over-approximation.An example for a system given in the desription language and the methodsthat implement the Edge-Math operator and the reahability analysis anbe found in Appendix B. The tool onstruts all �reasonable� over-approxi-mations with d omponents as desribed in Setion 3.3.2. The alulationof all subsets C with d omponents where these omponents are onnetedin the interation graph G of Sys restrited to C is ahieved by a funtionthat is based on an algorithm that is desribed in [MN06℄. The following131



CHAPTER 5. RESULTSadditional software is used in the tool.
• JavaCC/JJTree, a Java ompiler ompiler is used to parse our desrip-tion language of interation systems1.
• BuDDy, an e�ient BDD library written in C/C++ and developed byJørn Lind-Nielsen2.
• Java Native Aess (JNA), provides an interfae to the native libraryBuDDy3.
• Graphviz layout programs, for the visualization of transition systemsand graph strutures4.
• GraphViz.java, a simple API to all dot from Java programs by LaszloSzathmary5.In the following we introdue several parameterized examples of interationsystems and present results of our approah regarding the re�nement of ab-strat over-approximations that is desribed in Chapter 3 and our approahto establish deadlok-freedom that is desribed in Chapter 4. The experi-ments were made on a omputer with a dual-ore 2.53GHz CPU and 4GiBRAM.After eah introdued example, we give a table that summarizes benhmarksregarding the appliation of our tool on various model instanes. The in-stanes di�er on parameters that in�uene the number of omponents andthe sizes of the loal state spaes of the model. Additionally, we provideresults from the appliation of the Cross-Cheking operator [Min10℄ on therespetive example in order to ompare this re�nement approah with ourEdge-Math operator. The olumns are labeled by parameters that whereused in a spei� model instane. The rows are labeled as follows.1see http://java.java.net/2see http://soureforge.net/projets/buddy/3see https://github.om/twall/jna/4see http://www.graphviz.org/Doumentation.php5see http://www.loria.fr/~szathmar/off/projets/java/GraphVizAPI/index.php132



5.1. INTRODUCTION
• |K| denotes the number of omponents in the model instane.
• | Int | denotes the number of interations in the model instane.
• |Q| is the size of the state spae of the model instane. This inludesreahable and unreahable states, i.e., the size of the Cartesian produtof the loal state spaes.
• |C| is the number of abstrat over-approximations in the family onwhih we apply our re�nement tehnique. The domain of our initialfamily of abstrat over-approximations is onstruted as desribed inChapter 3 in Setion 3.3.2. The size of the individual sets in the domainis indiated in the respetive model desription.
• Σ|QC | denotes the sum over the sizes of all state spaes of the ab-strat over-approximations. This number inludes initially reahableand unreahable states.
• ΣReach is the sum over the number of reahable states of all initialabstrat over-approximations, i.e., abstrat over-approximations thatare onstruted as in Chapter 3 Lemma 3.2. This is the number ofstates in all abstrat over-approximations on whih we have to ap-ply our approah to establish deadlok-freedom if we do not use anyre�nement tehniques.
• ΣCC denotes the sum over all states that remain in the �xed-pointwith respet to an appliation of the Cross-Cheking operator on thefamily of abstrat over-approximations.
• ΣEM denotes the sum over all states that remain in the �xed-pointwith respet to an appliation of the Edge-Math operator on thefamily of abstrat over-approximations.
• % is the perentage of states from Σ|QC | that is not reahable in the�xed-point with respet to the Edge-Math operator. This numberindiates the strength of our re�nement approah as attempts to es-133



CHAPTER 5. RESULTStablish deadlok-freedom (or another safety property) by analyzingabstrat over-approximations do not have to deal with states that be-ome unreahable by our re�nement approah. This is, our approahto establish deadlok-freedom applied to the reahable states of the ab-strat over-approximations is less possible to produe a false-negativeif there are less artifats in the abstrat over-approximations, i.e., ifthere are less states reahable.
• time is the time milliseonds that it takes to alulate the �xed-pointwith respet to the Edge-Math operator.
• rit is the sum over the number of states that remain ritial in allabstrat over-approximations in the �xed-point with respet to theEdge-Math operator after an appliation of our approah to establishdeadlok-freedom. Note, if this numbers equals zero then our approahensures deadlok-freedom for the respetive model instane.

5.2 Measurement-GridThis example desribes a grid of data storages that allow to store measure-ment results from adjaent neighboring measurement station.We onsider an m × n (m,n ≥ 1) grid of data storages (DS). Two verti-ally respetively horizontally adjaent DSs share a measurement station Vrespetively H that is plaed in between the two storages � the border ofthe grid is surrounded by vertial respetively horizontal measurement sta-tions that are eah used by only one data storage. A storage DS an deideto ompare measurement values of their horizontally respetively vertiallyadjaent stations. If so, DS waits for both stations to onnet. When theonnetions are established, then DS performs l (l ≥ 1) work-steps witheah station. This is, our example is parametrized by l, m and n. After thework-steps are ompleted, both stations disonnet from DS.134



5.2. MEASUREMENT-GRIDInteration ModelAs an instane of the Measurement Grid example we onsider a 2×2 grid Gwith l = 1 work-steps during a onnetion between a data storage and mea-surement stations. Let IMG = (K, {Ai}i∈K , Int) be an interation model.The set of omponents K is given by.
K = {DSi,j|i = 0, 1 ∧ j = 0, 1} ∪ //data storages

{Vi,j|i = 0, 1 ∧ j = 0, 1, 2} ∪ //vertial measurement stations
{Hi,j|i = 0, 1, 2 ∧ j = 0, 1} //horizontal measurement stationsSo far we did not desribe, how a data storage DS obtains aess to twoadjaent vertial or horizontal measurement stations. This is regulated bya oordination between adjaent data storages. A data storage DS mayaess two vertially (horizontally) adjaent measurement stations if thereis no on�it with the aess of any of these stations by some other datastorages.For i = 0, 1 and j = 0, 1 the set of ports ADSi,j

for DSi,j onsists of thefollowing ports.
vpi,j : obtain vertial priority
hpi,j : obtain horizontal priority
vci,j : a vertial station onnets
hci,j : a horizontal station onnets
ifi,j : this storage is idling
vwi,j : work-step with a vertial station
hwi,j: work-step with a horizontal station
vdi,j : a vertial stations disonnets
hdi,j : a horizontal stations disonnetsFor i = 0, 1 and j = 0, 1, 2 the set of ports AVi,j

for Vi,j onsists of the135



CHAPTER 5. RESULTSfollowing ports.
cvi,j : onnet to a data storage
wvi,j: work with a data storage
dvi,j : disonnet from a data storageThe sets of ports AHi,j

for Hi,j (i = 0, 1, 2 and j = 0, 1) are spei�ed analo-gously.The interations of IMG are spei�ed for i = 0, 1 and j = 0, 1 as follows.
getPriorVi,j = {vpi,j, ifi,j−1, ifi,j+1}

1

getPriorHi,j = {hpi,j, ifi−1,j , ifi+1,j}
1

connLefti,j = {hci,j, chi,j}

connRighti,j = {hci,j, chi+1,j}

connUpi,j = {vci,j, cvi,j}

connDowni,j = {vci,j, cvi,j+1}

workLefti,j = {hwi,j, whi,j}

workRighti,j = {hwi,j, whi+1,j}

workUpi,j = {vwi,j, wvi,j}

workDowni,j = {vwi,j, wvi,j+1}

disConnLefti,j = {hdi,j, dhi,j}

disConnRighti,j = {hdi,j, dhi+1,j}

disConnUpi,j = {vdi,j, dvi,j}

disConnDowni,j = {vdi,j, dvi,j+1}Note: 1: ifi,j−1 is not inluded if j−1 < 0. Same goes for ifi,j+1 if j+1 = n,
ifi−1,j if i− 1 < 0 and ifi+1,j if i+ 1 = n.Let Int be the set that onsists of these interations for i = 0, 1 and j = 0, 1.Figure 5.1 shows the omponents of a 2× 2 grid.136



5.2. MEASUREMENT-GRID
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for i = 0, 1 and

j = 0, 1, Figure 5.2b the behavior TVi,j
for i = 0, 1 and j = 0, 1, 2 and Figure5.2 the behavior THi,j

for i = 0, 1, 2 and j = 0, 1.Results & DisussionTable 5.1 shows benhmarks of the Measurement-Grid Example for d = 3,i.e., for eah instane we onsidered a domain where all subsets of om-ponents are of size d = 3. The olumns are labeled by (n,m, l), i.e., an137



CHAPTER 5. RESULTSinstane is an n × m grid with l working steps during a onnetion to adata storage. For eah family of abstrat over-approximations holds, afteran appliation of our approah to establish deadlok-freedom, that there isno ritial state in any abstrat over-approximation, this is, our approahsueeds and guarantees that there is no reahable deadlok in the globalbehavior of our model instanes. Our re�nement approah has an advantageover the Cross-Cheking approah for eah instane. In fat, there is no stateremoved from the initial reahable states by the Cross-Cheking operator,i.e., the Cross-Cheking approah does not ause any re�nement at all.System (2, 2, 1) (5, 5, 5) (10, 4, 6) (7, 7, 5) (10, 10, 5)

|K| 16 85 134 161 320

| Int | 56 350 560 686 1, 400

|Q| 233.82 2289.89 2483.78 2552.46 21103.42

|C| 56 946 1, 610 2, 150 4, 856

Σ|QC | 25, 792 10, 005, 754 25, 837, 020 24, 443, 462 57, 657, 104

ΣReach 19, 024 7, 862, 298 20, 339, 164 19, 395, 286 45, 999, 808

ΣCC 19, 024 7, 862, 298 20, 339, 164 19, 395, 286 45, 999, 808

ΣEM 11, 488 6, 585, 744 17, 217, 682 16, 764, 484 40, 456, 624

% 55.46 34.18 33.36 31.42 29.83time 353 39, 734 107, 576 118, 406 395, 530rit 0 0 0 0 0Table 5.1: Benhmarks of the Measurement-Grid example for d = 3.
5.3 Tanenbaum's PhilosophersIn [Tan07℄ Tanenbaum desribes a solution that guarantees deadlok-freedomfor the Dining Philosophers problem. The original problem and a model wasintrodued in Chapter 4 Example 4.3 in order to desribe our approah toestablish deadlok-freedom by analyzing abstrat over-approximations. For138



5.3. TANENBAUM'S PHILOSOPHERSeah philosopher Tanenbaum suggests to add a semaphore to a model ofthe system. A semaphore is binary and has the two states loked and un-loked. The idea is that a semaphore that is assoiated with a philosopheran only beome loked if the semaphores assoiated with the neighboringphilosophers are unloked. A philosopher an only start his eating proess,i.e., taking his forks, eating and putting the forks bak on the table if hissemaphore is loked. The semaphore beomes unloked if the philosopherput both forks bak on the table. This approah guarantees that a philoso-pher who already took one fork will never wait for the seond fork, i.e., aphilosopher who starts his eating proess is assured to eat and put bothforks bak on the table.Interation ModelThe spei�ations of this system di�er from the system desribed in Example4.3 in the following points.
• Before a philosopher an take a fork he has to gain the right to do so.In order to do this he interats with his semaphore and the semaphoresthat are assoiated with his neighboring olleagues. If the neighboringsemaphores are unloked then his semaphore beomes loked and heis able to take either his left or right fork.
• after a philosopher �nished eating, he an put both forks at one bakon the table. In this proess his semaphore beomes unloked.Let IMn = (K, {Ai}i∈K , Int) be an interation model with n ≥ 2. Let K bethe set of omponents

K = {Phil0, Phil1, . . . , Philn−1}∪

{Sem0, Sem1, . . . , Semn−1}∪

{Fork0, F ork1, . . . , F orkn−1}where Phili models philosopher i, Semi Semaphore i and Forki models fork
i for 0 ≤ i < n. The set of ports APhili

for philosopher i with 0 ≤ i < n139



CHAPTER 5. RESULTSonsists of the following ports.
get_priori : gain the right to take a fork
take_lefti : take the left fork
take_righti: take the right fork
put_forksi : put both forks bak on the tableThe set of ports ASemi

for semaphore i with 0 ≤ i < n onsists of thefollowing ports.
is_unlockedi: the semaphore is unloked
locki : lok this semaphore
unlocki : unlok this semaphoreThe set of ports AForki

for fork i with 0 ≤ i < n onsists of the followingports.
takei: take this fork
puti : put this fork bak on the tableEah philosopher an gain the right to pik up his forks on his left and hisright by loking their respetive semaphore, if the respetive neighboringsemaphores are unloked. Furthermore, eah philosopher an take his forkon the left respetively right and put these forks bak on the table. Thefollowing interations model these ooperations between philosopher Phili,semaphore Semi and the fork on his left Forki and the fork on his right

Forki−1 for 0 ≤ i < n. Note that we assume (similarly to Example 4.3) amodulo n arithmeti, i.e., if i − 1 = −1 then i − 1 refers to n − 1 and if
i+ 1 = n then i+ 1 refers to 0.

pri = {get_priori, is_unlockedi−1, locki, is_unlockedi+1}

tli = {take_lefti, takei−1}

tri = {take_righti, takei}

pui = {put_forksi, puti−1, puti, unlocki}Let Int = {pri, tli, tri, pui|0 ≤ i < n}.Figure 5.3 depits the interation graph G of the interation model IMn for
n = 8. 140



5.3. TANENBAUM'S PHILOSOPHERS
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Figure 5.3: Interation graph G of IM8 in Tanenbaum's Philosophers exam-ple.Interation SystemIn the following we speify the interation system Sysn = (IMn, {Ti}i∈K) for
n ≥ 2 that provides the loal behavior for eah omponent desribed in theinteration model IMn. Figure 5.4 shows the loal behavior TPhili

, TForkirespetively TSemi
for 0 ≤ i < n.Results & DisussionTable 5.2 shows results from our tool for instanes of our model of Tanen-baum's solution of the Dining Philosophers problem. We onsidered in-stanes with n = 5, 10, 20, 100, 200 and 400 philosophers and onstrutedabstrat over-approximations based on all reasonable subsets with d = 3omponents. If we apply our approah to establish deadlok-freedom thenthere is no state in any abstrat over-approximation that remains to be a141



CHAPTER 5. RESULTS
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i for 0 ≤ i <

n and Cb
i , Cc

i for 0 ≤ i < n−1. The omponents model ertain proesses. Inthe following we will not distinguish between a omponent and the proessthat is modeled by this omponent. We refer to a proess that is modeled bya omponent of the form Ca
i , Cb

i respetively Cc
i as an a-proess, b-proessrespetively c-proess. For 0 ≤ i < n− 1 Ca

i an onnet to Cb
i if Cc

i is not142



5.4. A CHAIN OF COMPONENTSSystem 5 10 20 100 200 400

|K| 15 30 60 300 600 1, 200

| Int | 20 40 80 400 800 1, 600

|Q| 221.61 243.22 286.44 2432.19 2864.39 21728.77

|C| 185 390 780 3, 900 7, 800 15, 600

Σ|QC | 3, 520 7, 200 14, 400 72, 000 144, 000 288, 000

ΣReach 2, 680 5, 500 11, 000 55, 000 110, 000 220, 000

ΣCC 1, 660 3, 460 6, 920 34, 600 69, 200 138, 400

ΣEM 1, 635 3, 410 6, 820 34, 100 68, 200 136, 400

% 53.55 52.64 52.64 52.64 52.64 52.64time 356 783 1, 873 16, 476 47, 438 207, 212rit 0 0 0 0 0 0Table 5.2: Benhmarks of Tanenbaum's Philosophers for d = 3.onneted to another proess and vie versa. We all Cb
i and Cc

i the frontproesses with respet to Ca
i . Analogously, for 1 ≤ i < n Ca

i an onnet to
Cb

i−1 if Cc
i−1 is not onneted and vie versa and these proesses are alledthe bak proesses with respet to Ca

i . If Ca
i (0 ≤ i < n) is onneted to aproess then the two proesses will perform simultaneously l ≥ 0 workingsteps. After two proesses ompleted their working steps they disonnet.

Interation ModelLet IMn = (K, {Ai}i∈K , Int) (with n ≥ 2) be the interation model that isspei�ed as follows. The set of omponents K is given by
K = {Ca

i , C
b
i , C

c
i |0 ≤ i < n− 1} ∪ {Ca

n−1}.143



CHAPTER 5. RESULTSThe set of ports AC
a
i
for a omponent Ca

i with 1 ≤ i < n− 1 onsists of thefollowing ports.
connf

i : onnet to a front proess
connb

i : onnet to a bak proess
workf

i : do a working step with a front proess
workb

i : do a working step with a bak proess
disfi : disonnet from a front proess
disbi : disonnet from a bak proessThe port set AC

a
0
respetively AC

a
n−1

is spei�ed analogously without theports that model a ommuniation with a bak respetively a front proess.The set of ports A
C

b
i
for a omponent Cb

i with 0 ≤ i < n− 1 onsists of thefollowing ports.
conn_bi : onnet to an a-proess
work_bi: do a working step with an a-proess
dis_bi : disonnet from an a-proess
free_bi : this proess is not onneted to any proessAnalogously, the set of ports AC

c
i
for a omponent Cc

i with 0 ≤ i < n − 1onsists of the following ports.
conn_ci : onnet to an a-proess
work_ci: do a working step with an a-proess
dis_ci : disonnet from an a-proess
free_ci : this proess is not onneted to any proessLet the interation set Int of IMn onsist of the following interations.For 0 ≤ i < n− 1 the omponent Ca

i

• onnets to its front b-proess: {connf
i , conn_bi, free_ci}

• onnets to its front c-proess: {connf
i , conn_ci, free_bi}

• does a working step with its front b-proess: {workf
i , work_bi}144



5.4. A CHAIN OF COMPONENTS
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• does a working step with its front c-proess: {workf
i , work_ci}

• disonnets from its front b-proess: {disfi , dis_bi}

• disonnets from its front c-proess: {disfi , dis_ci}For 1 ≤ i < n the omponent Ca
i

• onnets to its bak b-proess: {connb
i , conn_bi−1, free_ci−1}

• onnets to its bak c-proess: {connb
i , conn_ci−1, free_bi−1}

• does a working step with its bak b-proess: {workb
i , work_bi−1}

• does a working step with its bak c-proess: {workb
i , work_ci−1}

• disonnets from its bak b-proess: {disbi , dis_bi−1}

• disonnets from its bak c-proess: {disbi , dis_ci−1}Figure 5.5 depits the interation graph of the interation model IM6.Interation SystemLet n ≥ 2 and IMn = (K, {Ai}i∈K , Int) be the interation model for thehaining omponents example. Let l ≥ 0 and Sysln = (IMn, {Ti}i∈K) be theinteration system with the loal behaviors of the omponents in K. Figure5.6 depits the respetive loal behaviors for l = 2. 5.6a depits TC
a
i
for

1 ≤ i < n − 1 and 5.6b T
C

b
i
, 5.6 TC

c
i
for 0 ≤ i < n − 1. It is easy tosee that the global behavior T of Sysln is deadlok-free for any n ≥ 2 and

l ≥ 0. Note that TC
a
0
respetively TC

a
n−1

are strutured analogously without145
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Cc
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5.5. A CIRCLE OF COMPONENTSSystem (5, 2) (10, 4) (20, 5) (50, 5) (100, 7)

|K| 13 28 58 148 298

| Int | 48 108 228 588 1, 188

|Q| 228.42 279.37 2178.9 2458.36 21034.56

|C| 28 68 148 388 788

Σ|QC | 3, 376 31, 188 112, 252 297, 892 1, 321, 236

ΣReach 2, 894 26, 128 93, 570 249, 030 1, 090, 204

ΣCC 2, 894 26, 128 93, 570 249, 030 1, 090, 204

ΣEM 2, 302 19, 028 66, 076 175, 396 738, 692

% 31.81 38.99 41.14 41.12 44.09time 54 334 991 3, 524 18, 732rit 378 2, 498 7, 752 20, 592 70, 838Table 5.3: Benhmarks of the haining omponents example for d = 3.an appliation of the Edge-Math operator results in a great amount of un-reahable states. The other observation we want to point out is that ourapproah to establish deadlok-freedom fails for all instanes in Table 5.3,i.e., if we onsider abstrat over-approximations based on subsets of d = 3omponents then our approah fails for all examined instanes. On the otherhand our approah sueeds for the same instanes if we base our analysison subsets of d = 4 omponents (see Table 5.4). This is, if our approahfails on a family of abstrat over-approximations then onsidering anotherparameter d might establish a property in onsideration.5.5 A Cirle of ComponentsThe following example desribes an abstrat parameterizes interation sys-tem. The interation system is similar to the interation system desribedin Setion 5.4 and provides a system where the Cross-Cheking approah(adapted to our ontext), that is desribed in [Min10℄ has a signi�ant147



CHAPTER 5. RESULTSSystem (5, 2) (10, 4) (20, 5) (50, 5) (100, 7)

|K| 13 28 58 148 298

| Int | 48 108 228 588 1, 188

|Q| 228.42 279.37 2178.9 2458.36 21034.56

|C| 40 105 235 625 1, 275

Σ|QC | 23, 968 374, 220 1, 632, 631 4, 403, 581 25, 418, 043

ΣReach 18, 292 279, 740 1, 215, 679 3, 292, 789 18, 727, 547

ΣCC 5, 212 45, 180 159, 439 433, 429 1, 754, 427

ΣEM 5, 212 45, 180 159, 439 433, 429 1, 754, 427

% 78.25 87.93 90.23 90.16 93.1time 188 1, 339 4, 192 14, 035 75, 385rit 0 0 0 0 0Table 5.4: Benhmarks of the haining omponents example for d = 4.impat regarding the re�nement of abstrat over-approximations and theEdge-Math operator reates even better re�ned abstrat over-approxima-tions. The orresponding interation graph G of a model instane forms airle-like struture.Let n ≥ 2. Similarly as in the example in Setion 5.4, the system onsists ofthree kinds of omponents Ca
i , Cb

i and Cc
i for 0 ≤ i < n. The omponentsmodel ertain proesses. In the following we will not distinguish between aomponent and the proess that is modeled by this omponent. We refer toa proess that is modeled by a omponent of the form Ca

i , Cb
i respetively

Cc
i as an a-proess, b-proess respetively c-proess. For 0 ≤ i < n Ca

ian onnet to Cb
i if Cc

i is not onneted to another proess and vie versa.We all Cb
i and Cc

i the front proesses with respet to Ca
i . Analogously, for

0 ≤ i < n Ca
i an onnet to Cb

i−1 if Cc
i−1 is not onneted and vie versa andthese proesses are alled the bak proesses with respet to Ca

i . The term
i−1 refers to n−1 if i = 0. If Ca

i (0 ≤ i < n) is onneted to a proess thenthe two proesses will perform simultaneously l ≥ 1 working steps. The last148



5.5. A CIRCLE OF COMPONENTSworking step orresponds to a disonnetion of the proesses. For 0 ≤ i < nthe omponent Ca
i is able to synhronize with its front proesses Cb

i and Cc
iif both omponents are onneted to an a-proess.Interation ModelLet IMn = (K, {Ai}i∈K , Int) be an interation model with n ≥ 2. The set ofomponents K is given by

K = {Ca
i , C

b
i , C

c
i |0 ≤ i < n}.The set of ports AC

a
i
for a omponent Ca

i with 0 ≤ i < n onsists of thefollowing ports.
connf

i : onnet to a front proess
connb

i : onnet to a bak proess
workf

i : do a working step with a front proess
workb

i : do a working step with a bak proess
synci : synhronize with the front proessesThe set of ports A

C
b
i
for a omponent Cb

i with 0 ≤ i < n− 1 onsists of thefollowing ports.
conn_bi : onnet to an a-proess
work_bi: do a working step with an a-proess
sync_bi : synhronize with an a-proess
free_bi : this proess is not onneted to any proessAnalogously, the set of ports AC

c
i
for a omponent Cc

i with 0 ≤ i < n − 1onsists of the following ports.
conn_ci : onnet to an a-proess
work_ci: do a working step with an a-proess
sync_ci : synhronize with an a-proess
free_ci : this proess is not onneted to any proess149



CHAPTER 5. RESULTSLet the interation set Int of IMn onsist of the following interations.For 0 ≤ i < n the omponent Ca
i

• onnets to its front b-proess: {connf
i , conn_bi, free_ci}

• onnets to its front c-proess: {connf
i , conn_ci, free_bi}

• does a working step with its front b-proess: {workf
i , work_bi}

• does a working step with its front c-proess: {workf
i , work_ci}

• synhronizes with its front proesses: {synci, sync_bi, sync_ci}
• onnets to its bak b-proess: {connb

i , conn_bi−1, free_ci−1}

• onnets to its bak c-proess: {connb
i , conn_ci−1, free_bi−1}

• does a working step with its bak b-proess: {workb
i , work_bi−1}

• does a working step with its bak c-proess: {workb
i , work_ci−1}Note that i− 1 refers to n− 1 if i = 0.Figure 5.7 depits the interation graph of the interation model IM10.

Interation SystemLet n ≥ 2 and IMn = (K, {Ai}i∈K , Int) be the interation model for theirle-like omponents example. Let l ≥ 1 and Sysln = (IMn, {Ti}i∈K) be theinteration system with the loal behaviors of the omponents in K. Figure5.8 depits the respetive loal behaviors for l = 2. 5.8a depits TC
a
i
, 5.8b

T
C

b
i
and 5.8 TC

c
i
for 0 ≤ i < n. It is easy to see that the global behavior Tof Sysln is deadlok-free for any n ≥ 2 and l ≥ 1.150



5.5. A CIRCLE OF COMPONENTS
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CHAPTER 5. RESULTSSystem (5, 2) (10, 4) (20, 5) (50, 5) (100, 7)

|K| 15 30 60 150 300

| Int | 45 90 180 450 900

|Q| 231.61 283.4 2181.48 2453.71 21024.67

|C| 40 80 160 400 800

Σ|QC | 3, 400 29, 160 98, 560 246, 400 1, 134, 000

ΣReach 2, 580 22, 420 76, 040 190, 100 878, 600

ΣCC 1, 890 18, 520 64, 760 161, 900 777, 800

ΣEM 1, 640 15, 040 51, 560 128, 900 602, 800

% 51.76 48.42 47.69 47.69 46.84time 99 464 1, 333 4, 483 22, 504rit 280 1, 760 5, 200 13, 000 47, 600Table 5.5: Benhmarks of the irle-like omponents example for d = 3.
Results & Disussion
We applied our approah to various instanes of the haining-like ompo-nents example with abstrat over-approximations based on subsets of d = 3(Table 5.5) and d = 4 (Table 5.6) omponents. The olumns are labeled by
(n, l), i.e., we onsidered systems of the form Sysln. Even though the obvioussimilarity between this system and the haining omponents system intro-dued in Setion 5.4, Table 5.5 shows that the Cross-Cheking operator hasa signi�ant re�nement e�et on the instanes. The Edge-Math operatorhowever produes even more re�ned abstrat over-approximations on theonsidered instanes with d = 3. If we onsider abstrat over-approxima-tions based on subsets of size d = 4 then the Edge-Math operator has noadvantage over the Cross-Cheking operator, i.e., both approahes produeabstrat over-approximations with the same reahable state spae.152



5.6. PRODUCTION CELLSystem (5, 2) (10, 4) (20, 5) (50, 5) (100, 7)

|K| 15 30 60 150 300

| Int | 45 90 180 450 900

|Q| 231.61 283.4 2181.48 2453.71 21024.67

|C| 65 130 260 650 1, 300

Σ|QC | 24, 400 340, 200 1, 369, 060 3, 422, 650 20, 776, 500

ΣReach 15, 585 222, 970 904, 520 2, 261, 300 13, 880, 200

ΣCC 4, 505 36, 850 120, 560 301, 400 1, 309, 600

ΣEM 4, 505 36, 850 120, 560 301, 400 1, 309, 600

% 81.54 89.17 91.19 91.19 93.7time 279 1, 500 4, 350 14, 169 71, 478rit 0 0 0 0 0Table 5.6: Benhmarks of the irle-like omponents example for d = 4.5.6 Prodution CellThe Prodution Cell is a small system that desribes the automati pro-essing of metal blanks. The system inludes a feed belt, a rotating table,a robot unit with two arms, arm one and arm two, whih are assembledon one swivel and an only move simultaneously, a press that proesses themetal blanks, a deposit belt and a rane. The feed belt an transport ametal blank to the rotating table. The table rotates suh that arm one anlift the blank into the press. After the press proessed the blank, arm twowithdraws the produt and moves it to the deposit belt that transports theprodut into the sope of the rane. The rane an lift the produt bakon the feed belt where it is used again as a metal blank. Thus, one metalblank an be proessed in�nitely often. The System is desribed in detail in[LL95℄. Here we model an abstrat version of the system by an interationsystem. Our model is partly based on a Petri net model that is desribed in[HD95℄. We provide here merely a brief desription of the system and ourmodel. See [LL95℄ and [HD95℄ for further details.153



CHAPTER 5. RESULTSWe model eah unit of the system as a omponent with the exeption that therobot unit is modeled by three omponents � the two arms and the swivelare modeled separately. Between two neighboring units in the proessingyle there is a onneting area that is modeled by a omponent as well. Anarea models the three ases that the next unit in the proess is busy, i.e., thearea is bloked, the next unit is waiting and there is no metal blank/produtavailable, i.e., the area is free and the ase that the unit is waiting and ametal blank/produt is available. Note that this system is not parameterizedby a parameter that a�ets the number of omponents.Interation ModelLet IM = (K, {Ai}i∈K , Int) be an interation model with the set of ompo-nents K = Kunits ∪Kareas where
Kareas = {FT, TA1, A1P, PA2, A2D,DC,CF, } and
Kunits = {feedBelt, table, arm1, swivel, press, arm2, depositBelt, crane}.Note that the names of the omponents that model the areas onsists of the�rst letters of the units that are onneted by the area, e.g., the omponent
FT models the area that onnets the feed belt and the table and PA2models the area that onnets the press and arm two.In the following we speify the set of ports for eah omponent. Variousomponents that model units and areas in the model share a similar behav-ior, i.e., they exhibit a similar set of ports. For i ∈ {feedBelt, depositBelt}let Ai onsist of the following ports.

occupyi : the belt beomes oupied by a metal blank
transporti: the belt transports a blank to the output area
emptyi : a metal blank beomes unloaded from the belt
goidlei : the belt goes into an idle state154



5.6. PRODUCTION CELLFor i ∈ {table, press} let Ai onsist of the following ports.
moveUnloadi : an available blank moves to the unload position
readyUnloadi: a blank beomes unloaded
moveLoadi : move to the loading position
readyi : beome available for inputFor i ∈ {arm1, arm2} let Ai onsist of the following ports.
gowait1i : wait for the swivel to rotate towards a blank
loadi : load a blank
goSwivel1i: rotate toward the output area
storei : a loaded blank waits for beoming unloaded
gowait2i : wait for the swivel to rotate into the output area
unloadi : beome ready for unloading
goSwivel2i: turn into the output area and unload a blank
freei : wait for a new blankThe set of ports Aswivel onsists of the following ports.
takeswivel: an arm wants to use the swivel in order to rotate
putswivel : an arm �nished a rotating proessThe set of ports Acrane of the omponent that models the rane onsists ofthe following ports.

loadcrane : load an available blank
storecrane : a loaded blank waits for being moved
unloadcrane: unload a blank into the output area
freecrane : beome available for a new blankFor i ∈ Kareas let the set of ports Ai onsist of the following ports.

lockInputi : the area is bloked by a blank
unlockInputi : a blank was proessed by the next unit
lockOutputi : previous unit wants to load a blank into this area
unlockOutputi: loads a blank from the previous unit155



CHAPTER 5. RESULTSThe following interations desribe the ooperation between eah unit and itsinput respetively output area. Let Int onsists of exatly these interations.The omponent that models the rane interats with the areas DC and CF :
lockInputDC = {lockInputDC , loadcrane}

unlockInputDC = {unlockInputDC , storecrane}

lockOutputCF = {lockOutputCF , unloadcrane}

unlockOutputCF = {unlockOutputCF , freecrane}Component feedBelt interats with the areas CF and FT :
lockInputCF = {lockInputCF , occupyfeedBelt}

unlockInputCF = {unlockInputCF , emptyfeedBelt}

lockOutputFT = {lockOutputFT , transportfeedBelt}

unlockOutputFT = {unlockOutputFT , goidlefeedBelt}The omponent depositBelt that models the deposit belt interats with theomponents A2D and DC:
lockInputA2D = {lockInputA2D, occupydepositBelt}

unlockInputA2D = {unlockInputA2D, emptydepositBelt}

lockOutputDC = {lockOutputDC, transportdepositBelt}

unlockOutputDC = {unlockOutputDC, goidledepositBelt}The table interats with the areas FT and TA1:
lockInputFT = {lockInputFT , moveUnloadtable}

unlockInputFT = {unlockInputFT , goreadytable}

lockOutputTA1 = {lockOutputTA1, moveLoadtable}

unlockOutputTA1 = {unlockOutputTA1, readyUnloadtable}Component press interats with the areas A1P and PA2:
lockInputA1P = {lockInputA1P , moveUnloadpress}

unlockInputA1P = {unlockInputA1P , goreadypress}

lockOutputPA2 = {lockOutputPA2, moveLoadpress}

unlockOutputPA2 = {unlockOutputPA2, readyUnloadpress}156



5.6. PRODUCTION CELLThe omponent arm1 that models the robot arm one interats with theareas TA1 and A1P and with the omponent that models the swivel:
lockInputTA1 = {lockInputTA1, gowait1arm1}

unlockInputTA1 = {unlockInputTA1, goSwivel1arm1}

lockOutputA1P = {lockOutputA1P , gowait2arm1}

unlockOutputA1P = {unlockOutputA1P , goSwivel2arm1}

takeSwivel1Arm1 = {takeswivel, loadarm1}

putSwivel1Arm1 = {putswivel, storearm1}

takeSwivel2Arm1 = {takeswivel, unloadarm1}

putSwivel2Arm1 = {putswivel, freearm1}The omponent arm2 that models the robot arm two interats with theareas PA2 and A2D and with the omponent that models the swivel:
lockInputPA2 = {lockInputPA2, gowait1arm2}

unlockInputPA2 = {unlockInputPA2, goSwivel1arm2}

lockOutputA2D = {lockOutputA2D, gowait2arm2}

unlockOutputA2D = {unlockOutputA2D, goSwivel2arm2}

takeSwivel1Arm2 = {takeswivel, loadarm2}

putSwivel1Arm2 = {putswivel, storearm2}

takeSwivel2Arm2 = {takeswivel, unloadarm2}

putSwivel2Arm2 = {putswivel, freearm2}Figure 5.9 depits the interation graph of the interation model IM.Interation SystemLet Sys = (IM, {Ti}i∈K) be the interation system that onsists of the in-teration model of the Prodution Cell example and the loal behavior ofthe omponents that is depited in the following �gures. Note that the lo-al initial state of the behavior of omponents in {DC,CF, FT,A1P,A2D}is avail. This state models that a blank is urrently in this area whihis ready for further proessing. The omponents in {PA2, TA1} exhibit157



CHAPTER 5. RESULTS
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{DC,CF, FT,A1P,A2D}.Figure 5.10 depits the loal behavior of the omponents that model the feedbelt, the deposit belt, the table and the press, Figure 5.11 the loal behaviorof the areas, Figure 5.12 the loal behavior of the omponent that modelsthe swivel and the rane and Figure 5.13 depits the loal behavior of theomponents that model the robot arm one and two.158



5.6. PRODUCTION CELL
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CHAPTER 5. RESULTSResults & DisussionOur model of the Prodution Cell example is not parameterized and, in om-parison to instanes in our other examples, relatively small � there are only
15 omponents in the model. Table 5.7 shows the results of our re�nementapproah and our approah to establish deadlok-freedom applied to theProdution Cell example. The olumns are labeled by the parameter d thatwe used in our experiments. We onsidered families of abstrat over-appro-ximations based on subsets onsisting of 3, 6, 9, 12 and 15 omponents. Notethat there is only one abstrat over-approximation if we onsider d = 15 andthat this abstrat over-approximation orresponds to the global behavior ofthe system (thus, the required time to alulate the Edge-Math �xed-pointequals 0 milliseonds). Furthermore the table shows that the Edge-Mathoperator produes only slightly more re�ned abstrat over-approximationsin omparison with the Cross-Cheking operator and that our approah toestablish deadlok-freedom sueeds for an analysis with d = 12, i.e., ourmodel is deadlok-free.5.7 ConlusionIn this hapter we presented results of a tool that implements our approah tore�ne abstrat over-approximations and our approah to establish deadlok-freedom by an analysis of these abstrat over-approximations. Furthermore,we provided a omparison between our re�nement approah and a re�nementapproah that is based on the Cross-Cheking operator [Min10℄. The resultsare alulated from various omplex and parametrized examples.The results present the strength of our re�nement approah and re�et thatthere are omplex systems where our approah is able to onlude in a rea-sonable amount of time that a great amount of states in the initial abstratover-approximations are not projetions of reahable global states. Further-more, the results show that we an establish deadlok-freedom in interation160



5.7. CONCLUSIONSystem 3 6 9 12 15

|K| 15 15 15 15 15

| Int | 36 36 36 36 36

|Q| 228.09 228.09 228.09 228.09 228.09

|C| 19 39 60 70 1

Σ|QC | 1, 172 138, 240 10, 153, 728 523, 542, 528 286, 074, 857

ΣReach 652 18, 390 276, 104 3, 050, 172 13, 107

ΣCC 524 11, 418 156, 617 1, 310, 519 13, 107

ΣEM 521 11, 418 155, 873 1, 310, 291 13, 107

% 55.55 91.74 98.46 99.75 100.0time 63 708 5, 596 52, 427 0rit 60 187 120 0 0Table 5.7: Benhmarks of the Prodution Cell example for various values ofthe parameter d.systems with a large number of omponents.As already argued in Chapter 3, our re�nement approah is at least as strongas the Cross-Cheking approah. Our results show that there are systemswhere our approah produes signi�antly more re�ned abstrat over-ap-proximations. Partiularly in the haining omponents example (Setion5.4), our approah produes for d = 3 in the system Sys7100 (see Table5.3) abstrat over-approximations where the number of all reahable statesis onsiderably smaller in omparison to the abstrat over-approximationsonstruted by the Cross-Cheking approah. In fat, in this example, ourapproah produes abstrat over-approximations with more than 30% lessreahable states. Furthermore, the results depited in Table 5.3 show thatthere are systems where the Cross-Cheking approah does not have anyre�nement e�et at all, whereas our approah results in abstrat over-ap-proximations where a great amount of initial reahable states beome un-reahable. Presented in [Min10℄ is a prototype tool PrInSESSA that im-161



CHAPTER 5. RESULTSplements a �xed-point alulation of abstrat over-approximations based onthe Cross-Cheking operator. PrInSESSA is implemented in pure Java anddoes not use BDDs as an underlying data struture. Thus, PrInSESSA isin omparison with our tool onsiderably more slowly and an only handleonsiderably less omplex systems.There are, best to our knowledge, no other tools that implement a ompa-rable approah. We just want to mention that all PROMELA models of thePhilosophers Problem that we found an only be analyzed in an aeptableruntime in the famous LTL model heker SPIN [Hol97℄ for a onsiderablysmaller number of philosophers. However, this observation an not be usedor extended to a relevant omparison beause SPIN analyzes (without addi-tional adjustments) the entire reahable state spae of a system.
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Chapter 6
A Connetion to RelationalAlgebrai Operators
6.1 IntrodutionIn this hapter we present a onnetion between our approah to re�neabstrat over-approximations by the Edge-Math operator, that we intro-dued in Chapter 3, and the theory of relational algebra and its operators[MCS13a℄. We show that a family of abstrat over-approximations an bemodeled as relations in a database on a relational database sheme andmodel our re�nement operator by relational algebrai operators. We usethis onnetion to derive a proposition regarding the �preiseness� of ourre�nement tehnique that was introdued in Chapter 3. For this purposewe onsider ayli relational database shemata. These shemata form animportant sublass in the theory of relational databases as they ful�ll vari-ous interesting properties and several operations beome deomposable, i.e.,an operation on a general database the appliation of whih requires anexpensive alulation that involves all tables in the database an be de-omposed to less expensive operations on subsets or even pairs of tables(see, e.g., [Yan81℄ for e�ient algorithms on databases that are based on163



CHAPTER 6. A CONNECTION TO RELATIONAL ALGEBRAICOPERATORSayli database shemata). We show here that the �xed-point of a familyof abstrat over-approximations with respet to the Edge-Math operator islegitimate (see De�nition 3.7) if the hypergraph that is based on the domainof the family is ayli. Results from the theory of relational databases havebeen exploited in other �elds as well, e.g., a generalization of these oneptsin the �eld of set theory an be found in [Heg91℄. A relational algebrai ap-proah for establishing system properties is used in [LL88℄ where the statespae of ooperating protools is modeled as one relation and various prop-erties are heked by relational queries. In [KK96℄ a Petri net is modeled bya relation for markings and one for the plaes and transitions. Propertiesan be heked by algorithms on these relations that make use of relationalalgebrai operators.
In the �rst part of this hapter, that onsists of Setion 6.2 and 6.3, wedesribe how abstrat over-approximations an be interpreted in terms ofrelations and how the Edge-Math operator an be modeled by operationsfrom the relational algebra. Partiularly the semijoin on a relation r with arelation s is used for this purpose, that (roughly speaking) restrits a relation
r to tuples t for whih there is a tuple t

′ in s suh that t and t
′ oinide ontheir shared attributes. We start the �rst part by repeating the notions ofthe relational algebra that we need in the remainder.

The seond part of this hapter, Setion 6.4, uses the result of the �rst partin order to derive a proposition that states that the �xed-point of a familyof abstrat over-approximations is legitimated if the domain on whih thefamily is based has a ertain struture.
Setion 6.5 onludes this hapter. 164



6.2. RELATIONAL ALGEBRA6.2 Relational AlgebraHere we give a brief ompendium of notions and operators from the relationalalgebra (see, e.g., [Mai83℄) that are used in the remainder of this hapter.De�nition 6.1:A relational sheme R = {A1,A2, . . . ,Ap} is a �nite set of attributenames (attributes for short). The domain of an attribute Ai (1 ≤ i ≤ p)is a set Di = dom(Ai). Let D(R) = D1 ∪ · · · ∪ Dp then a relation r(R) on
R is a set of mappings r(R) = {t1, t2, . . . , tk} from R to D(R) suh that foreah t ∈ r(R) and eah i ∈ {1, . . . , p} t(Ai) ∈ Di. A mapping in a relation isalled a tuple. In the following, we write r instead of r(R) if it is lear that
r is a relation on R. Let r(R) be a relation and S ⊆ R then for t ∈ r t(S)denotes t restrited to the attributes in S.Remark 6.1:Note that the term domain was introdued in Chapter 3 in De�nition 3.6and entitles a set of subsets of omponents. In the remainder it is obviousfrom the ontext whether we speak about the domain of an attribute or thedomain in the sense of De�nition 3.6.Here we give an example that we use to illustrate the onept of relationalshemata and relations. We use this example in the remainder to illustratevarious operators on relations.Example 6.1:Let R1 = {A,B,C} and R2 = {B,C,D} be relational shemata suh thatthe domain of eah attribute in R1 and R2 equals the natural numbers. Itis ommon to depit relations in the form of tables. Table 6.1 depits tworelations r1(R1) and r2(R2). Eah row orresponds to a tuple in the aordingrelation. The olumns are labeled by the attribute names.In the remainder we make use of the following operations on relations.De�nition 6.2:Let R and S be relation shemata and r(R) and s(S) be relations.165



CHAPTER 6. A CONNECTION TO RELATIONAL ALGEBRAICOPERATORS
A B C

1 2 2

3 1 2

3 1 5

2 5 3(a) r1(R1)

B C D

2 8 5

1 3 1

1 2 1

1 5 3

5 3 2(b) r2(R2)Table 6.1: Graphial representation of the relations r1(R1) and r2(R2).
• The join of r with s is a relation u(U) = r ⊲⊳ s on U = R∪ S with t ∈ uif and only if there are tuples tr ∈ r and ts ∈ s suh that tr = t(R) and
ts = t(S).
• Let U ⊆ R (U 6= ∅). The projetion of r on U is a relation u(U) = πU(r)with u = {t(U)|t ∈ r}.
• The semijoin of r with s is a relation r ⋉ s = πR(r ⊲⊳ s).Example 6.2:Consider the relations r1(R1) and r2(R2) from Example 6.1. The relation

r(U) = r1 ⊲⊳ r2 for U = R1 ∪ R2 is depited in Table 6.2.
A B C D

3 1 2 1

3 1 5 3

2 5 3 2Table 6.2: The relation r(U) = r1 ⊲⊳ r2.Example 6.3:Consider the relations r1(R1) and r2(R2) from Example 6.1. The relation
r(R1) = r1 ⋉ r2 is depited in Table 6.3.166



6.3. THE RELATIONAL EDGE-MATCH OPERATOR
A B C

3 1 2

3 1 5

2 5 3Table 6.3: The relation r(R1) = r1 ⋉ r2.
6.3 The Relational Edge-Math OperatorWe now introdue a mapping from transition relations of transition systemsthat are based on a subset of omponents of an interation system to relationson a relational sheme and show, how the Edge-Math operator an bemodeled by using the semijoin operator. The mapping is straight forwardbeause we interpret a transition relation as a relational algebrai relation,i.e., the mapping merely is a mapping between notations.De�nition 6.3:Let Sys = (IM, {Ti}i∈K) be an interation system with interation model
IM = (K, {Ai}i∈K , Int), C ⊆ K (C 6= ∅) a subset of omponents and
R = (QC , Int,→R, q

0
C) a transition system (see De�nition 3.2 in Chapter 3).Let RC = Cf ∪ {Interaction} ∪ Ct be the relation sheme with

• Cf = {if |i ∈ C} with domains dom(if) = Qi for i ∈ C and
• Ct = {it|i ∈ C} with domains dom(it) = Qi for i ∈ C and
• dom(Interaction) = Int.Note that f abbreviates �from� and t abbreviates �to� as the attributes in

Cf model the left hand side of a transition and the attributes in Ct the righthand side. Thus, a tuple t in a relation on RC is a funtion
t : Cf ∪ {Interaction} ∪ Ct →

⋃

i∈C

Qi ∪ Int .167



CHAPTER 6. A CONNECTION TO RELATIONAL ALGEBRAICOPERATORSLet t be a tuple like this then t models a transition qC
α
−→R q′C with qC =

(qi)i∈C and q′C = (q′i)i∈C if and only if t(Interaction) = α and for i ∈ C holds
t(if ) = qi and t(it) = q′i.Let rR(RC) be the relation on RC that onsists of the tuples that model thetransitions in →R. The relation sheme RC is alled the relation shemeassoiated with C and rR(RC) the relation assoiated with R.We say a tuple t ∈ rR(RC) is reahable in the relation rR(RC) if the orre-sponding transition that is modeled by t is reahable in R.In the following we show how the Edge-Math operator an be modeled bythe semijoin operator. After giving an example we show that the semijoinoperator atually re�nes relations that model abstrat over-approximationsin the same way as the Edge-Math operator re�nes abstrat over-approxi-mations. The following examples shows the result of the semijoin operatorapplied on relations assoiated with abstrat over-approximations from therunning example that was introdued in Example 1.1 in Chapter 1.Example 6.4:Let rS(RC) be the relation assoiated with S (Example 3.2) and rR(RD) therelation assoiated with R (Example 3.3). Relation rS is depited in Table6.4 and rR in Table 6.5. Note that both relations onsists of reahable tuples.The olumns are labeled by the respetive attributes.Table 6.6 depits the relation rS ⋉ rR, i.e., the result of the semijoin operatoron the relations rS and rR. From the 18 tuples in rS are 8 tuples removedin rS ⋉ rR. Note that rS ⋉ rR oinides with the relation assoiated with RCfrom Example 3.4, i.e., the result of the Edge-Math operator applied on Rand S.The following theorem states that the result of the semijoin operator, onrelations that represents transition systems with respet to a subset of om-ponents and are restrited to reahable tuples, orresponds to an appliationof the Edge-Math operator on the transition systems.168



6.3. THE RELATIONAL EDGE-MATCH OPERATOR
TERf

1 GSf ADBf Interaction TERt
1 GSt ADBt

q0TER1
q0GS q0ADB send_req1 q1TER1

q1GS q0ADB

q0TER1
q0GS q0ADB send_req2 q0TER1

q1GS q0ADB

q1TER1
q1GS q0ADB ask_auth q1TER1

q2GS q1ADB

q1TER1
q2GS q1ADB authorize q1TER1

q2GS q0ADB

q1TER1
q2GS q1ADB send_data q1TER1

q3GS q1ADB

q1TER1
q2GS q0ADB send_data q1TER1

q3GS q0ADB

q1TER1
q3GS q0ADB get_reply1 q0TER1

q0GS q0ADB

q0TER1
q1GS q0ADB ask_auth q0TER1

q2GS q1ADB

q0TER1
q2GS q1ADB authorize q0TER1

q2GS q0ADB

q0TER1
q2GS q1ADB send_data q0TER1

q3GS q1ADB

q0TER1
q2GS q0ADB send_data q0TER1

q3GS q0ADB

q0TER1
q3GS q0ADB get_reply2 q0TER1

q0GS q0ADB

q1TER1
q3GS q1ADB authorize q1TER1

q3GS q0ADB

q1TER1
q3GS q1ADB get_reply1 q0TER1

q0GS q1ADB

q0TER1
q0GS q1ADB authorize q0TER1

q0GS q0ADB

q0TER1
q0GS q1ADB send_req1 q1TER1

q1GS q1ADB

q1TER1
q1GS q1ADB authorize q1TER1

q1GS q0ADB

q0TER1
q3GS q1ADB authorize q0TER1

q3GS q0ADBTable 6.4: Relation rS(RC) assoiated with S (Example 3.2).
GSf ADBf DBf Interaction GSt ADBt DBt

q0GS q0ADB q0DB send_req1 q1GS q0ADB q0DB

q0GS q0ADB q0DB send_req2 q1GS q0ADB q0DB

q1GS q0ADB q0DB ask_auth q2GS q1ADB q0DB

q2GS q1ADB q0DB authorize q2GS q0ADB q1DB

q2GS q0ADB q1DB send_data q3GS q0ADB q0DB

q3GS q0ADB q0DB get_reply1 q0GS q0ADB q0DB

q3GS q0ADB q0DB get_reply2 q0GS q0ADB q0DBTable 6.5: Relation rR(RD) assoiated with R (Example 3.3).169



CHAPTER 6. A CONNECTION TO RELATIONAL ALGEBRAICOPERATORS
TERf

1 GSf ADBf Interaction TERt
1 GSt ADBt

q0TER1
q0GS q0ADB send_req1 q1TER1

q1GS q0ADB

q0TER1
q0GS q0ADB send_req2 q0TER1
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q0GS q0ADBTable 6.6: Relation rS ⋉ rR.Theorem 6.1:Let Sys = (IM, {Ti}i∈K) be an interation system with interation model
IM = (K, {Ai}i∈K , Int) and C,D ⊆ K (C,D 6= ∅) subsets of omponents.Let S = (QC , Int,→S, q

0
C) and R = (QD, Int,→R, q

0
D) be transition systemswith respet to C respetively D. Let rS(RC) and rR(RD) be the assoiatedrelations with S and R on the relation shemata RC and RD. Further, let r′Sand r

′
R be rS respetively rR restrited to reahable tuples. Then

r
′
S ⋉ r

′
R = rsuh that r is the relation (on the relation sheme RC) assoiated with thetransition system S ′ = EM(S,R).Proof. The proof an be found in Appendix A on Page 203.Aside from showing in Theorem 6.1 an interesting onnetion between ourre�nement approah and the �eld of relational algebra we use this result inthe following to show that the Edge-Math �xed-point of a family of abstratover-approximations is legitimate if the domain on whih the family is basedexhibits a ertain struture. 170



6.4. A PRECISENESS CONDITION6.4 A Preiseness ConditionIn the following we desribe how results on ayli database shemata [Yan81℄an be interpreted in our setting. If a join is exeuted on a set of tables thenin general not all tuples in the relations atually �appear� in the result, i.e.,the join yields the same result if ertain tuples are removed from the rela-tions. These, so-alled �dangling� tuples are an unneessary fator in datatransmission if the relations are stored on multiple sites (see [Mai83℄). Atehnique to redue the number of dangling tuples in a pre-proessing isthe semijoin redution, where the semijoin operator is applied pairwise oninvolved relations in order to remove dangling tuples. If the attributes ofthe tables that are involved in a semijoin redution have a ertain struturethen one an make a preiseness assumption about the result of the semijoinredution. In the following we exploit this preiseness assumption in orderto make a preiseness assumption about Edge-Math �xed-points by usingthe result from the last setion.First we need to introdue additional de�nitions from the �eld of relationaldatabase theory.De�nition 6.4:Let U be a set of attributes. A relational database sheme R over U is afamilyR = {R1,R2, . . . ,Rp} of relation shemata with Ri ⊆ U and Ri 6= ∅ for
i = 1, . . . , p and ∪i=1,...,pRi = U. A relational database d on the relationaldatabase sheme R is a set of relations d = {r1(R1), . . . , rp(Rp)}.As the join operator is assoiative, ⊲⊳ (d) denotes the join over all relationsin d, i.e.,

⊲⊳ (d) = r1 ⊲⊳ r2 ⊲⊳ . . . ⊲⊳ rp.The full redution of a relation r(R) ∈ d relative to d is FR(r, d) = πR(⊲⊳

(d)). The relation FR(r, d) is the part of r that is atually used in the join
⊲⊳ (d), i.e.,

⊲⊳ (d) = r1 ⊲⊳ r2 ⊲⊳ . . . ⊲⊳ rp = FR(r1, d) ⊲⊳ FR(r2, d) ⊲⊳ . . . ⊲⊳ FR(rp, d).171



CHAPTER 6. A CONNECTION TO RELATIONAL ALGEBRAICOPERATORSA semijoin program SP for d is a sequene of assignments of the form
ri ← ri ⋉ rjfor i, j ∈ {1, . . . , p}. SP (ri, d) denotes the �nal value of relation ri after theexeution of SP on d. A semijoin program SP for d is alled full-reduerfor R if (independent from the relations in d) for all 1 ≤ i ≤ p

FR(ri, d) = SP (ri, d).An important theorem in the �eld of relational database theory states thatthere exists a full-reduer for a database sheme R if and only if R is ayli[BFMY83℄ (a proof an be found in [Mai83℄ as well). The next de�nitionspei�es in whih ase a database sheme is alled ayli.De�nition 6.5:A hypergraph is a tuple H = (V,E) with a set of nodes V and a set ofhyperedges E ⊆ 2V \ {∅}. The GYO-redution (named after Graham[Gra79℄, Yu and Ozsoyoglu [YO79℄) of a hypergraph H = (V,E) is the pro-ess of repeatedly removing nodes from H whih appear in at most one hy-peredge and removing all hyperedges that are inluded in other hyperedges.A hypergraph H = (V,E) is alled ayli if and only if the hypergraph
H ′ = (V ′, E ′) that results from the GYO-redution has no nodes and nohyperedges, i.e., V ′ = ∅ and E ′ = ∅. Note that the result is independent ofthe sequene of node and hyperedge removals.Let R be a database sheme over the set of attributes U. The hypergraph
H = (U,R) is alled the assoiated hypergraph with R. The databasesheme R is alled ayli if and only if H is ayli.Let R be an ayli database sheme. From the sequene of removed hyper-edges during the GYO-redution one an atually onstrut a full-reduerthat only needs a number of semijoin operations that is linear in |R|. It iseasy to see that if a database d on an ayli database sheme is a �xed-point with respet to a pairwise appliation of the semijoin operation then a172



6.4. A PRECISENESS CONDITIONfull-reduer applied on d does not hange any relation in d, i.e., eah relationin d is a full redution.We an now formulate our proposition regarding the �preiseness� of a �xed-point of a family of abstrat over-approximations with respet to an appli-ation of the Edge-Math operator. Let C ⊆ 2K \ {∅} be a domain and
{RC}C∈C a family of abstrat over-approximations of an interation system
Sys with omponents K. As addressed in Chapter 3, we annot expet thatthere is no artifat in any abstrat over-approximation in the Edge-Math�xed-point of {RC}C∈C. The following orollary states that we an onludethat the Edge-Math �xed-point of {RC}C∈C is legitimate if the hypergraph
HC = (K,C) is ayli.Corollary 6.1:Let Sys = (IM, {Ti}i∈K) be an interation system with interation model
IM = (K, {Ai}i∈K , Int). Let C ⊆ 2K \ {∅} be a domain suh that thehypergraph HC = (K,C) is ayli. Let {RC}C∈C be a family of abstratover-approximations, then the Edge-Math �xed-point of {RC}C∈C is legit-imate.Proof. The proof an be found in Appendix A on Page 204.The following example illustrates a laim that is stated in the proof of Corol-lary 6.1. This is, let Sys be an interation system with the set of omponents
K and C ⊆ 2K \ {∅} a domain then a relational database sheme that on-sists of the relational shemata assoiated with the subsets in C is ayli ifthe hypergraph HC = (K,C) is ayli.Example 6.5:Consider the interation system Sys from Example 1.2. Let C = {C1, C2, C3}be a domain with

C1={TER1,GS,ADB},

C2={TER2,GS,DB} and
C3={GS,ADB,DB}.173
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DBFigure 6.1: The hypergraph HC = (K,C).The hypergraph HC = (K,C) is depited in Figure 6.1. A hyperedge isdepited as a losed urve that inludes all nodes in the hyperedge. It iseasy to see that HC is ayli. The nodes TER1 and TER2 eah only ourin one hyperedge and thus an be removed. After that two hyperedges anbe removed as they are inluded in another hyperedge. Now the last threenodes and the resulting empty hyperedge an be removed. This is, HC isayli and thus, aording to Corollary 6.1, the Edge-Math �xed-point ofany family of abstrat over-approximations based on C is legitimate.The relational shemata assoiated with C1, C2 and C3 are
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. Just as above it is easy to see that thehypergraph HR = (U,R) (depited in Figure 6.2) is ayli. This is, R isan ayli database sheme.6.5 ConlusionWe introdued a onnetion between the �eld of relational algebra and ourre�nement approah of abstrat over-approximations by the Edge-Mathoperator. For this purpose we modeled abstrat over-approximations as re-lations and the Edge-Math operator by the semijoin operator. Aside from174



6.5. CONCLUSION
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Chapter 7
Conlusion
We dealt in this work with various aspets of properties in ooperating sys-tems. We used the formalism of interation systems [GS03℄ to model oop-erating systems.In a �rst part (Chapter 2) we disussed omplexity issues of the reahabilityproblem in sublasses of interation systems whih are de�ned by arhite-tural onstraints on a graph struture that represents the ommuniationamong subsystems. We onsidered system lasses with a tree-like, star-likeand linear ommuniation pattern. These sublasses inlude systems thatare highly relevant in pratie, e.g., lient server systems exhibit ommunia-tion patterns that form stars or trees. Deiding reahability of global statesin interation systems is PSPACE-omplete [MCM08℄. We showed thatdeiding this problem remains PSPACE-omplete in all of our sublasses.Furthermore, we argued that deiding progress in our sublasses and thatdeiding loal reahability, i.e., the question whether or not a �xed loalstate ours in a reahable global state, in tree-like systems is PSPACE-omplete as well. Our result motivates further researh on e�ient teh-niques that are based on su�ient onditions and deide reahability basedsystem properties as deadlok-freedom in ooperating systems with arhite-tural onstraints and justi�es published results whih introdue suh teh-177



CHAPTER 7. CONCLUSIONniques for establishing deadlok-freedom [Hoa85, BR91, BCD02, MCM08a,Lam09, HJK10℄.In a seond part, whih aounts for Chapter 3-6 we introdued an approahto e�iently represent over-approximations by abstrat over-approximationsof the global behavior of interation systems, re�ne these abstrat over-ap-proximations based on the Edge-Math operator and present an approahbased on abstrat over-approximations for establishing deadlok-freedom ininteration systems. We presented results of our approahes for various pa-rameterized examples that are alulated by a tool developed by us. Inaddition, we illustrated an interesting link between our approah to re�neabstrat over-approximations and the semi-join operator from the �eld of re-lational database theory and used this link in order to show a result regardingthe preiseness of the �xed-point of a family of abstrat over-approximationswith respet to an appliation of the Edge-Math operator.Our re�nement approah extends the Cross-Cheking approah introduedin [MMC09b℄ that deals with ompat representations of the reahable globalstate spae. Our approah enhanes the Cross-Cheking approah by deal-ing with over-approximations of the reahable behavior, i.e., inluding tran-sitions, instead by dealing with over-approximations of the reahable statespae. Our results show that a re�nement based on our Edge-Math op-erator an result in signi�antly less reahable states in abstrat over-ap-proximations than a re�nement by the Cross-Cheking operator (applied toour ontext). We proposed a proedure that alulates the �xed-point ofa family of abstrat over-approximations with respet to an appliation ofthe Edge-Math operator. Let Sys = (IM, {Ti}i∈K) be an interation systemwith interation model IM = (K, {Ai}i∈K, Int) and C a domain of IM. Weargued that the osts of the appliation of the Edge-Math operator on apair of abstrat over-approximations are bounded by
em = 2

(

mcmax +m2·cmax · |Int|
)

+
(

m2·cmax · |Int|
)2

,where m is the size of the largest loal state spae of the omponents in178



K and cmax is the size of the larges set in C. The osts of our proedure,applied on Sys, based on the domain C, are bounded by
|C| ·m2·cmax · |Int| · |C|2 · em.This is, our proedure runs in polynomial time if cmax is a onstant, i.e., thenumber of omponents in eah set in C is bounded by a onstant and |C| isof polynomial size. Similar as in [MMC09b℄ we proposed to use a domainthat onsists of all subsets of omponents with a onstant size d where theinteration graph restrited to a subset is onneted � a domain like thisguarantees that our proedure runs in polynomial time.We introdued an approah that is based on a su�ient ondition to es-tablish deadlok-freedom in interation systems in polynomial time. Ourapproah works on arbitrary systems, i.e., our approah does not depend onharateristis of sublasses as, e.g., arhitetural onstraints. We arguedthat our approah is inomparable with the waiting hain approah intro-dued in [Min10℄, i.e., if our approah fails to ensure deadlok-freedom thenthe waiting hain approah might sueeds and vie versa. In Chapter 5 ourresults show that our approah sueeds to, e.g., establish deadlok-freedomfor Tanenbaum's solution of the Dining Philosophers Problem, where thewaiting hain approah fails (see [Min10℄). Our abstrat over-approxima-tions are ompat representations of over-approximations of the reahablebehavior of an interation system, i.e., abstrat over-approximations pro-vide further potential to be the basis of approahes to establish other safetyproperties in interation systems.Summarizing the above we introdued an approah to establish deadlok-freedom, in polynomial time, based on an analysis of abstrat over-approxi-mations of the global behavior of an interation system, that an be re�nedby the Edge-Math operator. Our approah an be applied to arbitrary in-teration systems and does not require any arhitetural restritions or otheronstraints whatsoever. Our approah an be easily applied to ooperatingsystems modeled by other formalisms. This an be done either by adapting179



CHAPTER 7. CONCLUSIONour approah or by using a mapping among formalisms � see, e.g., [Min10℄for a mapping between interation systems and 1-safe Petri nets. If we failto establish deadlok-freedom then the output of our approah inludes in-formation on where the system in onsideration an be modi�ed suh thatour approah sueeds.Our approah provides potential for further researh and development. Thefollowing points itemize some suggestions for future researh.
• We did not onsider to use our approah in ombination with well-known state spae redution tehniques.
• Here we only treated the safety property of deadlok-freedom. Ourabstrat over-approximations are ompat representations of over-ap-proximations of the reahable global behavior of an interation system.Thus, it appears promising to researh further onditions that an beapplied on abstrat over-approximations to the purpose of establishinggeneral safety in ooperating systems.
• Our proedure for alulating the Edge-Math �xed-point of a familyof abstrat over-approximations (Algorithm 2 in Chapter 3) is basedon appliations of the Edge-Math operator on all reasonable pairs ofabstrat over-approximations. A lot of these appliations are inde-pendent from eah other. Thus, our proedure is highly parallelizablebeause a great deal of appliations of the Edge-Math operator anbe done in parallel.
• Right now, in order to alulate the Edge-Math �xed-point of a familyof abstrat over-approximations, we apply the Edge-Math operator onall reasonable pairs of abstrat over-approximations until there is nofurther re�nement. This approah might be improved by investigatinga sophistiated order of appliations in order to minimize the numberof appliations of the Edge-Math operator. A starting point is, forexample, the introdued link between our approah and the �eld of180



relational algebra in Chapter 6. From the hypergraph struture of anayli database sheme one an derive an order of semijoin operationsthat is a full-reduer and onsists of a number of semijoin operationsthat is linear in the number of relational shemata in the database.
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Appendix A
Proofs
A.1 Proofs from Chapter 2
Proof of Theorem 2.1The idea of the proof of Theorem 2.1 is as follows. In Setion 2.3 we intro-dued the straightforward, reursive Algorithm 1 alled eval to determinewhether or not a QBF P (given over the restrited grammar) is in TQBF .Note that the algorithm is deterministi. We show that the evaluation of thealgorithm orresponds to a path in the global behavior of SysH and illustratethat this path ends in qt if and only if H is true. For this purpose we mapertain events in the algorithm eval to interations in SysH and show thatthere is only one path (up to some interleaving) in the behavior of SysH thatorresponds to the evaluation of eval with respet to this mapping.Before we prove Theorem 2.1, we need some preliminaries.183



APPENDIX A. PROOFSReursive AlgorithmIn Algorithm 1 (Setion 2.3) we assume that in Line 8 and 2 the onjuntionrespetively the disjuntion is alled in sequene from left to right. In addi-tion, we assume, that eval(P ′′) is not alled in Line 8 if eval(P ′) is evaluated
false and eval(P ′

x=false) is not alled in Line 2 if eval(P ′
x=true) is evaluated

true. These assumptions imply a deterministi exeution of eval(H) for aQBF H .The exeution of eval(H) for a QBF H an be desribed by a sequene overthe following words.
• “call_eval(P )�: subformula P is alled by eval

• “eval(P ) = true�: subformula P was evaluated true by eval

• “eval(P ) = false�: subformula P was evaluated false by evalFor a QBF H let SeqH be this sequene and SeqH(i) the ith word in SeqHfor i = 1, . . . , length(SeqH), where length(SeqH) is the number of words in
SeqH . It is lear, that H ∈ TQBF if and only if the last entry of SeqH is
“eval(H) = true� and “eval(H) = false� otherwise.Example A.1:Consider the QBF H = ¬∃x1.(x1 ∧ ¬x1) with its subformulas abbreviatedas in Figure 2.5, then SeqH is given by
• call_eval(H)

• call_eval(P1)

• call_eval(P2) (true is assigned to x1)
• call_eval(P3)

• eval(P3) = true

• call_eval(P4)

• call_eval(P5)

• eval(P5) = true 184



A.1. PROOFS FROM CHAPTER 2
• eval(P4) = false

• eval(P2) = false

• call_eval(P2) (false is assigned to x1)
• call_eval(P3)

• eval(P3) = false

• eval(P2) = false

• eval(P1) = false

• eval(H) = trueMapping the words of SeqH to IntLet H ∈ QBF and SysH be the assoiated tree-like interation system. Wetreat the assoiated interation graph GH as a rooted tree with omponent
H ′ as the root. In these terms, if we speak of a suessor, a predeessor ora subtree spanned by a omponent, we refer to omponents with respet to
GH . Let Int′ ⊆ Int be the subset of interations given by:
{eval_P → Pk, P_ask_Pk_true, P_ask_Pk_false|P ∈ K1 ∪{H

′} with su. Pk}and S the set of words that an our in SeqH , given by
{“call_eval(P )�, “eval(P ) = true� , “eval(P ) = false�|P is a subformula of H}.We de�ne a mapping from S to Int′ by the funtion f : S → Int′ with
• f(“call_eval(P )�) = eval_P ′ → P ,
• f(“eval(P ) = true�) = P ′_ask_P_true and
• f(“eval(P ) = false�) = P ′_ask_P_false.where P ′ is the predeessor of P and P ′ = H ′ if P = H .Lemma A.1:Let σ̃ be a sequene of interations that orresponds to the interationson a path in the global behavior of SysH , suh that σ̃ is in�nite or theorresponding path ends in a state where no transition is possible. Let σ be185



APPENDIX A. PROOFSthe sequene obtained by removing the interations in Int \ Int′ and let σ(i)be the ith interation in σ for i = 1, . . . , length(σ), where length(σ) is thelength of σ. Then length(σ) = length(SeqH) and
∀

i=1,...,length(σ)
f(SeqH(i)) = σ(i).Before we prove Lemma A.1 by indution, we need some observations whihfollow from invariants of algorithm eval. In the following we refer repeatedlyto the struture of the transition systems given in Figure 2.6, 2.7 and 2.8 andthe interations given on page 47. We assume the indution hypothesis to betrue, i.e., for some i < length(σ) holds that for all 1 ≤ k ≤ i f(SeqH(k)) =

σ(k).Observation A.1:Consider σ(i) to be performed and let SeqH(i+1) = “eval(P ) = true� where
P ′ is the predeessor of P , then P ′ waits to perform P ′_ask_P_true.The same applies for SeqH(i + 1) = “eval(P ) = false� where P ′ waits toperform P ′_ask_P_false.Proof. There is 1 ≤ j ≤ i with SeqH(j) = “call_eval(P )�, i.e., if sub-formula P is evaluated to true then it is assured that P was alled previ-ously. Let j be maximal for this property. For j + 1 ≤ k ≤ i SeqH(k) /∈

{“call_eval(P )�, “eval(P ) = true�, “eval(P ) = false�}, i.e., P is not in-volved in between. It follows that σ(j) = f(“call_eval(P )�) = eval_P ′ →

P , this is, P ′ reahed a state in whih it waits for P ′_ask_P_true or
P ′_ask_P_false. Sine these interations were not performed for j + 1 ≤

k ≤ i, it is assured, that after σ(i) has been performed, P ′ still waits toperform P ′_ask_P_true or P ′_ask_P_false.Observation A.2:Consider σ(i) to be performed and let SeqH(i + 1) = “call_eval(P )�. Letomponent P ′ be the predeessor of omponent P , then P eventually reahesa state in whih it waits to perform eval_P ′ → P = f(SeqH(i+ 1)).186



A.1. PROOFS FROM CHAPTER 2Proof. There are six ases for P :i) P waits to perform eval_P ′ → P , i.e., P is in a state labeled t or f ,then eval_P ′ → P is enabled.ii) P waits to perform set_P̃_true_P → P̃ for a suessor P̃ of P .It is easy to see that this is only possible if f(“eval(H) = true�) =

H ′_ask_H_true performed whih is not the ase.iii) P waits to perform eval_P → P̃ . If this situation ours, either
eval_P ′ → P , P_ask_P̃_false (if P = ∃.xlP̃ ) or P_ask_P̄ ′_false(if P = P̄ ∧ P̃ ) was performed. Let this be the ase for f(SeqH(j)) with
j < i (j maximal). Due to the struture of SeqH , f(SeqH(j + 1)) =

eval_P → P̃ would be the next interation to be performed, i.e., Pannot stay in a state waiting to perform eval_P → P̃ .iv) P waits to perform P_ask_P̃_true. Analogously to ase 3, this annothappen.v) P = ∃.xlP̃ waits to perform set_x′
l_true/false or ask_true/falsex′

lfor 1 ≤ l ≤ n. This interation would always be performed, and subse-quently P waits to perform eval_P → P̃ , whih is not possible due toase 3.vi) P waits to perform set_xl_true_P → P̃ or set_xl_false_P → P̃ for
1 ≤ l ≤ n. If P̃ models a variable then set_xl_true_P → P̃ respe-tively set_xl_false_P → P̃ is enabled by P̃ and an perform. Afterthis, f(SeqH(i+ 1)) = eval_P ′ → P beomes enabled by P . If P̃ doesnot model a variable then analogously (to ase 1-5) either P̃ enables
set_xl_true_P → P̃ respetively set_xl_false_P → P̃ or P̃ waitsto perform set_xr_true_P̃ → P̄ respetively set_xr_false_P̃ →

P̄ (r ∈ {1, . . . , n}) for a suessor P̄ of P̃ . By indution follows,that this interation performs eventually. Therefore, f(SeqH(i + 1)) =

eval_P ′ → P eventually beomes enabled as well.187



APPENDIX A. PROOFSObservation A.3:Let SeqH(i + 1) = “eval(P ) = true� suh that P = xr
l for 1 ≤ l ≤ n and

r ∈ {1, . . . , kl}, then it is assured that P waits to perform P ′_ask_P_trueafter σ(i) is performed. The same applies for SeqH(i + 1) = “eval(P ) =

false� with σ(i+ 1) = P ′_ask_P_false.Proof. Let SeqH(i + 1) = “eval(P ) = true� (respetively SeqH(i + 1) =

“eval(P ) = false�), then SeqH(i) = “call_eval(P )� and there is Q′ = ∃xl.Qand j < i suh that SeqH(j) = “call_eval(Q)�, i.e., if algorithm eval allsa variable reursively then it is assured that beforehand a subformula wasalled that quanti�es this variable. Let j be maximal for this property.There are two ases for j − 1:a) SeqH(j − 1) = “call_eval(Q′)�, i.e., xl is set to true in the subsequentall of eval(Q) (see algorithm eval). After σ(j−1) = f(SeqH(j−1)) wasperformed, eithera.1) set_x′
l_true ora.2) ask_truex′

l
beomes enabled.b) SeqH(j − 1) = “eval(Q) = false�, i.e., Q was evaluated to false and isalled by eval again with xl set to false. After σ(j− 1) = f(SeqH(j− 1))was performed, eitherb.1) set_x′

l_false orb.2) ask_falsex′
l
beomes enabled. This is not possible, beause thenthere is no way σ(j) = call_Q′ → Q = f(SeqH(j)).Consider Case a.1) (resp. b.1)). Let, after σ(j−1) = f(SeqH(j−1)) was per-formed, set_x′

l_true (respetively set_x′
l_false) be enabled and perform.This means that Q′ waits to perform set_xl_true_Q′ → Q (respetively

set_xl_false_Q′ → Q). Analogously to A.2, this interation eventually be-omes enabled. If set_xl_true_Q′ → Q (respetively set_xl_false_Q′ →

Q) is performed it is lear that eval_Q′ → Q = σ(j) = f(SeqH(j)) be-188



A.1. PROOFS FROM CHAPTER 2omes enabled. Analogously, for eah omponent Q̃ and its predeessor Q̃′,
set_xl_true_Q̃′ → Q̃ (respetively set_xl_false_Q̃′ → Q̃) has to be per-formed before eval_Q̃′ → Q̃ beomes enabled. This is until Q̃ models avariable. If Q̃ models an ourrene of xl, then true (resp. false) is assignedto Q̃, else, there is no e�et on the urrent state of Q̃. Therefore it is assuredthat P waits to perform P ′_ask_P_true (respetively P ′_ask_P_false)after σ(i) is performed.Consider Case a.2), i.e., ask_truex′

l
is enabled after σ(j−1) performed. Thenthe omponent x′

l is in the state labeled t. This means, the last interationinvolving x′
l annot be set_x′

l_false or ask_falsex′
l
. There are three ases1.) x′

l was never involved sine σ(j−1) is performed. Due to the fat that allomponents modeling ourrenes of variables start in their state labeled
t, it is easy to see that it is not possible that any of these omponentsould reah the state labeled f . Therefore these omponents are still inthe state labeled t when P ′ waits to perform P ′_ask_P_true.2.) The last interation involving x′

l was set_x′
l_true. With Case a.1) fol-lows that all omponents that model ourrenes of xl were set in theirrespetive state labeled t. As there was no interation involving x′

l sine
set_x′

l_true performed, it is assured that these omponents are still inthe state labeled t when P ′ waits to perform P ′_ask_P_true.3.) The last interation involving x′
l was ask_truex′

l
. This ase is easily re-duible to the last two ases. Therefore it is assured that all omponentsmodeling ourrenes of xl are still in the state labeled t when P ′ waitsto perform P ′_ask_P_true.

189



APPENDIX A. PROOFSProof of Lemma A.1In the initial state of SysH all omponents but H ′ are in their state labeled
t. The only enabled interation is eval_H ′ → H with f(“call_eval(H)�) =
eval_H ′ → H . Thus, σ(1) = f(SeqH(1)). Lemma A.1 is proven by indu-tion, i.e., we have to show that, if f(SeqH(i)) = σ(i) is performed, under theassumption f(SeqH(j)) = σ(j) for 1 ≤ j ≤ i then the interation in Int′ thatis performed next is f(SeqH(i+1)). In fat we show that f(SeqH(i+1)) even-tually beomes enabled, suh that in between only interations in Int \ Int′are performed.We now onsider the three possible ases for SeqH(i).Indution - Case 1Consider SeqH(i) = “eval(P ) = true�, i.e., σ(i) = f(“eval(P ) = true�) =
P ′_ask_P_true where P ′ is the subformula P is inluded in and P ′ = H ′if P = H . If existent, let P ′′ be the predeessor of P ′ (P ′′ = H ′ if P ′ = H).It is lear, that P is in its state labeled t. There are �ve ases:1.a) If P ′ = P ∧ P̃ , then SeqH(i + 1) = “call_eval(P̃ )�. This means, that

P ′ waits to perform eval_P ′ → P̃ . From Observation A.2 follows thesame for P̃ as well. It follows that the only newly enabled interationin SysH is eval_P ′ → P̃ = f(SeqH(i+ 1)).1.b) If P ′ = P̃ ∧ P , then SeqH(i+ 1) = “eval(P ′) = true�. The omponent
P ′ waits to perform P ′′_ask_P ′_true = f(SeqH(i + 1)) and fromObservation A.1 follows that this is the only newly enabled interationin SysH .1.) If P ′ = ¬P , then SeqH(i + 1) = “eval(P ′) = false�. The omponent
P ′ waits to perform P ′′_ask_P ′_false = f(SeqH(i + 1)) and fromObservation A.1 follows that this is the only newly enabled interationin SysH . 190



A.1. PROOFS FROM CHAPTER 21.d) If P ′ = ∃xi.P , then SeqH(i+ 1) = “eval(P ′) = true�. The omponent
P ′ waits to perform P ′′_ask_P ′_true = f(SeqH(i + 1)) and fromObservation A.1 follows that this is the only newly enabled interationin SysH .1.e) If P ′ = H ′, then i = length(SeqH), i.e., there is no next word on SeqHand no new interation ∈ Int′ is enabled in SysH .Indution - Case 2Consider SeqH(i) = “eval(P ) = false�, i.e., σ(i) = f(“eval(P ) = false�) =

P ′_ask_P_false where P ′ is the predeessor of P and P ′ = H ′ if P = H .If existent, let P ′′ be the predeessor of P ′ (P ′′ = H ′ if P ′ = H). It is lear,that P is in its state labeled t. There are �ve ases:2.a) If P ′ = P ∧ P̃ , then SeqH(i+1) = “eval(P ′) = false�. The omponent
P waits to perform P ′′_ask_P ′_false = f(SeqH(i + 1)) whih is,aording to Observation A.1, enabled by P ′′.2.b) If P ′ = P̃ ∧ P , analogously to Case 2.a).2.) If P ′ = ¬P , analogously to Case 2.a).2.d) If P ′ = ∃xi.P , then there must be j < i with SeqH(j) = “call_eval(P )�,i.e., if P was evaluated to false then P was alled by eval previously. Let
j be the largest value with this property. By assumption follows that
j < i is the biggest index with σ(j) = f(“call_eval(P )�) = eval_P ′ →

P . In line 2 of the eval algorithm P an be alled by eval with xi setto true and afterwards with xi set to false. Aordingly, there are twoases for SeqH(j − 1). Either P ′ was alled, i.e., P is alled with xi setto true or P was evaluated to false and was alled a seond time with
xi set to false.2.d.a) If SeqH(j − 1) = “call_eval(P ′)� then we have SeqH(i + 1) =

“call_eval(P )�. By the indution assumption we an onlude191



APPENDIX A. PROOFSthat σ(j−1) = eval_P ′′ → P ′ = f(“call_eval(P ′)�), i.e., either
set_x′

i_true or ask_truex′
i
was enabled after σ(j−1) performed.This assures that the omponent x′

i is in its state t after σ(j) per-formed. Hene there was no interation involving omponent P ′sine σ(j), x′
i is still in its state labeled t when σ(i) is performed.Therefore, after σ(i) performs, the only newly enabled intera-tion is set_x′
i_false, after that set_xi_false_P ′ → P and af-ter that P ′ waits to perform eval_P ′ → P = f(“call_eval(P )�)whih is, by Observation A.2, assured to beome enabled even-tually.2.d.b) If SeqH(j−1) = “eval(P ) = false� then we have SeqH(i+1) =

“eval(P ′) = false�. By assumption follows that σ(j − 1) =

P ′_ask_P_false = f(“eval(P ) = false�). By Case 1.d.a fol-lows that x′
i is in its state labeled f when σ(i) is performed, i.e.,after σ(i), the only newly enabled interation is ask_falsex′

i
.When ask_falsex′

i
is performed, it follows from Observation A.1that the only newly enabled interation is P ′′_ask_P ′_falsewhih equals f(“eval(P ′) = false�).2.e) If P ′ = H ′, analogously to ase Case 2.a).Indution - Case 3Consider the ase that SeqH(i) = “call_eval(P )�. This is, in this ase

σ(i) = f(“call_eval(P )�) = eval_P ′ → P where P ′ is the predeessor of Pand P ′ = H ′ if P = H . There are four ases3.a) If P = ¬P̃ , then SeqH(i + 1) = “call_eval(P̃ )�. The omponent Pwaits to perform eval_P → P̃ = f(SeqH(i + 1)) whih is, enabled by
P̃ aordingly to Observation A.2 and therefore the only newly enabledinteration.3.b) If P = P̃1 ∧ P̃2, then SeqH(i + 1) = “call_eval(P̃1)�. The omponent192



A.1. PROOFS FROM CHAPTER 2
P waits to perform eval_P → P̃1 = f(SeqH(i+1)). From ObservationA.2 follows that this is the only new enabled interation.3.) If P = ∃xi.P̃ , then SeqH(i + 1) = “call_eval(P̃ )�. In SysH theonly new enabled interation is either set_x′

i_true or ask_truex′
i
. If

set_x′
i_true is exeuted then the only newly enabled interation is

set_xi_true_P → P̃ . Anyway, if set_xi_true_P → P̃ or ask_truex′
iis exeuted, P waits to perform eval_P → P̃ = f(“call_eval(P̃ )�)whih is enabled by P̃ due to Observation A.2.3.d) If P = xr

l , for 1 ≤ l ≤ n and r ∈ {1, . . . , ki}, then either SeqH(i +

1) = “eval(P ) = true� or SeqH(i + 1) = “eval(P ) = false�. WithObservation A.3 follows that P waits to perform either f(SeqH(i+1)) =

P ′_ask_P_true or f(SeqH(i + 1)) = P ′_ask_P_false. Due to thefat that P ′ waits to perform this interation as well, f(SeqH(i+1)) isthe only newly enabled interation ∈ Int′.Proof of Theorem 2.1Proof. By Lemma A.1 we have shown that, if H /∈ TQBF , i.e., Algo-rithm 1 applied on H returns false, then eah path in the global behaviorin our model SysH eventually reahes a state where only the interation
H ′_ask_H_false is enabled. If H ′_ask_H_false performed, then thereis no way qt an be reahed.Analogously, if H ∈ TQBF , i.e., Algorithm 1 applied on H returns true,then eventually the interation H ′_ask_H_true is performed. The onlynew enabled interation is set_H_true_H ′ → H . If set_H_true_H ′ →

H is performed then TH
′ reahes its state labeled t. Let P ′ ∈ K1 ∪{H

′} bea omponent and P ∈ K1 its suessor (i.e., P ′ does not model a variable)suh that set_P_true_P ′ → P is enabled. There are four ases for thestruture of P and two for P ′ if set_P_true_P ′ → P is performed.
• P models a variable, then it is assured that P reahes its state labeled193
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t and no new interation is enabled.
• P = ∃xi.P̃ , then either set_x′

i_true or ask_truex′
i
beomes enabled.Anyway, it is assured, that x′

i reahes its state labeled t. This is,
set_P̃_true_P → P̃ beomes enabled.
• P = P̃ ∧ P̄ or P = ¬P̃ , then set_P̃_true_P → P̃ beomes enabled.
• P ′ = P ∧ P̄ , then set_P̄_true_P ′ → P̄ beomes enabled.
• In any other ase, P ′ reahes its state labeled t.This is, eventually all omponents reah their state labeled t. It follows that

H ∈ TQBF ⇔ (SysH , q
t) ∈ TRIST .Proof of Corollary 2.1Proof. The proof of this orollary follows from the proof of Theorem 2.1.Let H be a QBF, SysH the assoiated interation system that is onstrutedas in Setion 2.3 and qt the global state in the global behavior T of SysH inwhih all omponents are in their state labeled t. Theorem 2.1 states that His true if and only if qt is reahable in T . Atually, in the proof of Theorem2.1, we used that a global state is reahable where the loal behavior ofomponent H ′ is in the loal state tH′ if and only if H is true. We showedthat, from suh a global state, there is always the possibility to reah thedesignated global state qt by propagating, starting from H ′, down throughthe interation graph (that forms a tree) that eah omponent shall reahits loal state labeled t. This is, we showed in the proof of Theorem 2.1 thatomponent H ′ reahes the state tH′ if and only if H is true.Proof of Theorem 2.2Proof. We prove this theorem by giving an isomorphism, with respet totransitions in SysM and transitions of on�gurations in M , between global194



A.1. PROOFS FROM CHAPTER 2states of SysM and on�gurations of M . The statement of the theorem thenfollows by indution as the isomorphism maps the initial on�guration of Mto the initial state of SysM .Let R be the set of on�gurations ofM . We map (p; γ0, . . . , γi, . . . , γn+1) ∈ Rto a global state q = (q0, . . . , qn+1) suh that qi = (p, γi) and qj = (s, γj) for
j 6= i. Let Q′ be the set of global states that orrespond to the on�gurationsin R. It is lear that this mapping is a bijetion between R and Q′.Let (p; γ0, . . . , γi, . . . , γn+1) ∈ R and q = (q0, . . . , qn+1) ∈ Q′ be the asso-iated state in SysM . Let δ(p, γi) = (p′, γ′

i,T), i.e., the next on�gurationin M is (p′; γ0, . . . , γ
′
i, γi+1, . . . , γn+1) ∈ R if T = 1 (the ase T = −1 istreated analogously). The only enabled port in omponent i is (p, γi)1i , thenthe only enabled interation in q is {(p, γi)1i , (p, γi)2i+T}. Thus, omponent

i reahes the state (s, γ′
i) and omponent i + T the state (p′, γi+T). Theresulting global state q′ orresponds to the respetive on�guration in M .The fat that the inverse of the mapping is also a homomorphism an beshown analogously.Proof of Theorem 2.3Proof. Let q be a state in the global behavior T of Sys and q′ be the statein the global behavior T ′ of Sys′ where qi = q′i for i ∈ K and q′cc = q0cc,i.e., omponent cc is in its initial state. Let Int = {α1, α2, . . . , αk} and

αj = {aj1 , . . . , aj|αj
|
} suh that eah port in αj is enabled in q, i.e., allloal states q′l, l = j1, . . . , j|αj

|
in q′ enable the ports aokl and al and do notenable a¬okl . The state q′ enables the interation {αj

cc}. If this interation isperformed then the only possible sequene of interations results in a state
q̃′ with q̃i = q̃′i for i ∈ K and q̃′cc = q0cc. Let there be a port in αj that isnot enabled in q, e.g., ql with l ∈ {j1, . . . , j|αj

|
} does not enable al then q′ldoes enable a¬okl and not aokl . If {αj

cc} performed in q′ then the only possiblesequene of interations in Sys′ leads bak to state q′. For the global initial195



APPENDIX A. PROOFSstates q0 of Sys and q0
′ of Sys′ holds that q0i = q0i

′ for i ∈ K and q0cc
′ is theinitial state of the loal behavior of omponent cc. The �if� part follows byindution over paths in the global behavior of Sys. The �and only if� partfollows analogously.Proof of Theorem 2.4Proof. We already argued that the progress problem in tree-like interationsystems is in PSPACE. Let H be a QBF and Sys′H the assoiated interationsystem whih is onstruted as desribed above. As argued in Setion 2.3,

Sys′H is tree-like and of polynomial size. It is easy to see that the intera-tion evaluated_true is the only interation that is enabled if the state qt isreahed. In this ase, evaluated_true performs in�nitely often in every runof the modi�ed system, i.e., the omponent pro partiipates in�nitely often.Therefore the omponent pro may progress if H is true. If H is false theneventually end_falseH′ beomes enabled in omponent H ′ and the inter-ation evaluated_true never beomes enabled, i.e., pro may not progress.Thus, the omponent pro may progress if and only if H is true, i.e., theprogress problem in tree-like interation systems is PSPACE-hard.A.2 Proofs from Chapter 3Proof of Lemma 3.1Proof. Let R be an abstrat over-approximation of T . Assume that E(R)is not an over-approximation of the global behavior T of Sys, i.e., there isa transition q
α
−→T q′ reahable in T suh that q α

−→E(R) q
′ is not a reahabletransition in E(R). This is, either q

α
−→E(R) q′ is inluded in E(R) butnot reahable in E(R) or q α

−→E(R) q
′ is not even inluded in the transitionrelation of E(R). We distinguish these two ases.196



A.2. PROOFS FROM CHAPTER 31. If q α
−→E(R) q

′ is not a transition in E(R) then, aording to the pre-liminaries of Lemma 3.1, there is no transition qC
α
−→R q′C in R with

q↓C = qC and q′↓C = q′C . This is a ontradition as q
α
−→T q′ isreahable in T and thus q↓C

α
−→R q′↓C is reahable in the abstratover-approximation R.2. Let q

α
−→E(R) q′ be a transition in E(R). This is, q α

−→E(R) q′ is notreahable in E(R). q α
−→T q′ is reahable in T , i.e., there is a sequeneof transitions in T (as in De�nition 1.2) where the �rst transitionoriginates in the global initial state q0 and the last transition is q α

−→T q′.As q
α
−→E(R) q′ is not reahable in E(R) it follows that there is atransition q̄ ᾱ

−→T q̄′ in the sequene suh that q̄ ᾱ
−→E(R) q̄

′ is not reahablein E(R). Let q̄ ᾱ
−→T q̄′ be the �rst transition in the sequene with thisproperty, i.e., q̄ ᾱ
−→E(R) q̄

′ is not even inluded in the transition relationof E(R). By the �rst ase follows that there is no transition qC
ᾱ
−→R q′Cin R with q̄↓C = qC and q̄′↓C = q′C , i.e., this is a ontradition beause

R is an abstrat over-approximation of T .Let E(R) be an over-approximation of T then we want to show that R is anover-approximation of T ′′ (see De�nition 3.1). Let qC α
−→T

′′ q′C be a reahabletransition in T ′′. This is, there is a reahable transition q
α
−→T q′ in T with

q↓C = qC and q′↓C = q′C . As E(R) is an over-approximation of T it followsthat q α
−→E(R) q

′ is reahable in E(R) as well. Aording to the preliminariesof Lemma 3.1, there is a transition q̄C
α
−→R q̄′C in R with q↓C = q̄C and

q′↓C = q̄′C . It is easy to see that q̄C = qC and q̄′C = q′C . This is, if E(R) is anover-approximation of T and qC
α
−→T

′′ q′C is a reahable transition in T ′′ then
qC

α
−→R q′C is a transition inluded in the transition relation of R. It remainsto be shown that qC α

−→R q′C is reahable in R.Let qC
α
−→T

′′ q′C be a reahable transition in T ′′ and assume that qC
α
−→R

q′C is not reahable in R. There is a sequene of transitions in T ′′ (as inDe�nition 1.2) where the �rst transition originates in the initial state q0Cand the last transition equals qC
α
−→T

′′ q′C . As qC
α
−→R q′C is not reahable197



APPENDIX A. PROOFSin R it follows that there is a transition q̄C
α
−→T

′′ q̄′C in the sequene suhthat q̄C α
−→R q̄′C is not reahable in R. Let q̄C α

−→T
′′ q̄′C be the �rst transitionin the sequene with this property. The existene of this transition is aontradition beause, as we showed above, q̄C α
−→R q̄′C is a transition in Rand is thus reahable.Proof of Lemma 3.2Proof. Let q α

−→T q′ be a reahable transition in T . Then there is a sequeneof transitions
q0

α
1

−→T q1, q1
α
2

−→T q2, . . . , qk−1 α
k

−→T qkin T with q = qk−1, α = αk and q′ = qk. Let i ∈ {1, . . . , k} then by thede�nition of SC follows that the transition qi−1↓C
α
i

−→SC
qi↓C is in SC . Itfollows that all transitions in the sequene projeted on the omponents in

C form a sequene in SC that starts in q0C and ends in q↓C
α
−→SC

q′↓C . Thisis, q↓C α
−→SC

q′↓C is a reahable transition in SC .Proof of Theorem 3.1Proof. Let S ′ = (QC , Int,→S
′, q0C) = EM(S,R). We assume that S ′ isnot an abstrat over-approximation of T , i.e., there is a transition q̃

α̃
−→T q̃′reahable in T suh that q̃↓C

α̃
−→S

′ q̃′↓C is not a reahable transition in S ′.As q̃ α̃
−→T q̃′ is reahable in T , there is a path starting in q0 to q̃ in T . Let

q
α
−→T q′ be the last transition on this path with q↓C reahable in S ′, i.e.,

q↓C
α
−→S

′ q′↓C is not a transition in S ′. As S is an abstrat over-approxima-tion of T , q↓C α
−→S q′↓C is reahable in S. This means that q↓C

α
−→S

′ q′↓Cis not a reahable transition in S ′ beause there is no transition qD
α
−→R q′Dreahable in R with qD↓C = qC↓D and q′D↓C = q′C↓D. This is a ontradition,as R is an abstrat over-approximation and thus q↓D

α
−→R q′↓D has to bereahable in R. 198



A.2. PROOFS FROM CHAPTER 3It follows that S ′ is an abstrat over-approximation of T .Proof of Lemma 3.3Proof. Let i ∈ K be a omponent and qi a state in the loal behavior Ti of i.Assume that we have a tehnique available that alulates an exat abstratover-approximation S = (QC , Int,→S, q
0
C) for the input Sys and C ⊆ K inpolynomial time in the size of the spei�ation of Sys. Let C = {i} thenthe size of the transition relation →S is bounded by |Qi|

2 · |Int|, i.e., thesize of S is polynomial in the size of the spei�ation of Sys. This meansthat we an hek in polynomial time whether the state qi is reahable in
S. As S is exat, we an onlude that there is a state q reahable in theglobal behavior T of Sys where omponent i is in state qi if and only if qiis reahable in S. This is a diret ontradition to Corollary 2.1 beausedeiding this problem is PSPACE-omplete.Proof of Lemma 3.4Proof. We assume that {R′

C}C∈C 6= {R
′′
C}C∈C. Note that this means thatthere is C ∈ C with R′

C 6= R′′
C , i.e., there is a transition qC

α
−→R

′
C
q′C in R′

Csuh that qC α
−→R

′′
C
q′C is not a transition in R′′

C or vie versa. Without lossof generality we assume the �rst.
R′′

C is a re�ned version of RC for C ∈ C, i.e., RC is an over-approximationof R′′
C . Let {R̃C}C∈C be the family where
• {R̃C}C∈C resulted from appliations of the Edge-Math operator on
{RC}C∈C whih orrespond to a pre�x of seq1,
• R̃C is an over-approximation of R′′

C for eah C ∈ C and
• the appliation of the Edge-Math operator that orresponds to thenext entry in seq1 would violate the last item, e.g., if (C,D) is the199



APPENDIX A. PROOFSnext entry in seq1 then RM(R̃C , R̃D) results in a transition system R̃′
Csuh that there is a transition qC

α
−→R

′′
C
q′C in R′′

C but qC α
−→R̃

′
C
q′C is nota transition in R̃′

C .This means, that there is no reahable transition qD
α
−→R̃D

q′D in R̃D with
qD↓C = qC↓D and q′D↓C = q′C↓D. There annot be a reahable transitionof this form in R′′

D as well, beause R̃D is an over-approximation of R′′
D.This means that EM(R′′

C , R
′′
D) results in the removal of a transition in R′′

C .This is a ontradition to the assumption that {R′′
C}C∈C is a �xed-point withrespet to the Edge-Math operator.Proof of Lemma 3.5Proof. Let seq be a sequene of the Edge-Math operator on {SC}C∈C whihresult in the �xed-point {RC}C∈C, e.g., a sequenes of tuples in C × C. In

seq might be tuples of the form (C,D) and (D,C) for C ∈ C′. Let seq′ equalthe sequene seq where eah ourrene of (C,D) is replaed by the tuples
(C,D1), (C,D2), . . . , (C,Dk) and eah ourrene of (D,C) is replaed by
(D1, C), (D2, C), . . . , (Dk, C). We prove here by indution on the length of
seq that seq′ applied on {SC}C∈C̃ results in {R′

C}C∈C̃.For the initial families {SC}C∈C and {SC}C∈C̃ holds trivially that qD α
−→SD

q′Dis a reahable transition in SD if and only if qDi

α
−→SDi

q′Di
with qD↓Di

= qDiand q′D↓Di
= q′Di

is a reahable transition in S ′
Di

for eah 1 ≤ i ≤ k. Thisfollows diretly from the De�nition of SD in Lemma 3.2. Thus, property 1.and 2. hold for the initial families of abstrat over-approximations.Let {R̄C}C∈C be the family of abstrat over-approximations before the jthappliation of the Edge-Math operator in seq on {SC}C∈C. Analogously,let {R̄′
C}C∈C̃ be the family of abstrat over-approximations before the re-spetive appliation of the Edge-Math operator in seq′ on {SC}C∈C̃. Thisis, if the Edge-Math operator with respet to a tuple (C,D) respetively

(D,C) in seq was applied in the onstrution proess of {R̄C}C∈C then,200



A.2. PROOFS FROM CHAPTER 3in the onstrution proess of {R̄′
C}C∈C̃, the Edge-Math operator withrespet to the orresponding sequene (C,D1), (C,D2), . . . , (C,Dk) respe-tively (D1, C), (D2, C), . . . , (Dk, C) in seq′ was applied. We assume thatproperty 1. and 2. hold for {R̄C}C∈C and {R̄′

C}C∈C.We distinguish three ases for the next appliation desribed in seq.If the jth appliation is of the form (C,C ′) with C,C ′ 6= D then the nextrespetive appliation of the Edge-Math operator in seq′ is (C,C ′) as well.If we apply these on the respetive abstrat over-approximations then it islear that EM(R̄C , R̄C
′) = EM(R̄′

C , R̄
′
C

′). All other abstrat over-appro-ximations in both families remain the same, i.e., property 1. and 2. stillhold.If the jth appliation is of the form (C,D) then we onsider the appliationsof the Edge-Math operator on {R̄′
C}C∈C̃ that orrespond to the respetivesubsequene (C,D1), (C,D2), . . . , (C,Dk) in seq′. Property 2. holds afterthe appliations of the Edge-Math operator on both families beause theover-approximations R̄D respetively R̄′

Di
for 1 ≤ i ≤ k remain untouhed.Let R̃C the respetive re�ned version of R̄C and R̃′

C the respetive re�nedversion of R̄′
C . Assume that the transition qC

α
−→R̄C

q′C got removed inthe re�nement, but qC
α
−→R̃

′
C
q′C remains in R̃′

C , i.e., there is no transition
qD

α
−→R̄D

q′D reahable in R̄D with qC↓D = qD↓C and q′C↓D = q′D↓C . Itfollows from the seond property that there is 1 ≤ i ≤ k suh that thetransition qDi

α
−→R̄

′
Di

q′Di
with qD↓Di

= qDi
and q′D↓Di

= q′Di
is not reahablein R̄′

Di
. This is a ontradition beause then the transition qC

α
−→R̃

′
C
q′C isnot inluded in EM(R̄′

C , R̄
′
Di
). The other diretion follows analogously.If the jth appliation is of the form (D,C) then we onsider the appliationof the Edge-Math operator on {R̄′

C}C∈C̃ that orresponds to the respetivesubsequene (D1, C), (D2, C), . . . , (Dk, C) in seq′. Property 1. holds afterthe appliations of the Edge-Math operator on both families beause theover-approximations R̄C respetively R̄′
C remain untouhed. Let R̃D therespetive re�ned version of R̄D and R̃′
Di

the respetive re�ned version of201
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R̄′

Di
for 1 ≤ i ≤ k. Assume that qD α

−→R̃D
q′D is reahable in R̃D but thereis 1 ≤ i ≤ k suh that qDi

α
−→R̄

′
Di

q′Di
with qD↓Di

= qDi
and q′D↓Di

= q′Di
gotremoved from R̄′

Di
during the re�nement proess, i.e., the seond property isviolated after the re�nement. It follows that there is no transition qC

α
−→R̄

′
C

q′C with qC↓Di
= qDi

↓C and q′C↓Di
= qDi

↓C
′ reahable in R̄′

C . This is aontradition beause property 1. holds, i.e., R̄C = R̄′
C and thus qD α

−→R̄D
q′Dshould have been removed by EM(R̄D, R̄C). The other diretion followsanalogously.Proof of Lemma 3.6Proof. Let R′

D1
be EM(SD1

, R′
D2
) restrited to reahable transitions, i.e.,the result of the appliation of the Edge-Math operator on SD1

with R′
D2restrited to reahable transitions. If nowa) R′

D1
= EM(R′

D1
, R′

C) for all C ∈ C′ andb) R′
C = EM(R′

C , R
′
D1
) for all C ∈ C′then it follows that the family of abstrat over-approximations {R′

C}C∈Cis the Edge-Math �xed-point of the family {SC}C∈C. The �rst part fromthe assumption then follows from Lemma 3.4 beause this �xed-point andthe �xed-point {RC}C∈C are idential. The seond part follows beause
R′

D1
= RD1

and R′
D2

= EM(R′
D2
, RD1

) as well as RD1
= EM(RD1

, R′
D2
).Assume that a) does not hold, i.e., there is C ∈ C′ suh that R′

D1
6=

EM(R′
D1
, R′

C). This means that there is a reahable transition qD1

α
−→R

′
D1

q′D1in R′
D1

suh that there is no reahable transition qC
α
−→R

′
C
q′C in R′

C with
qC↓D1

= qD1
↓C and q′C↓D1

= q′D1
↓C . Note that from the de�nition of R′

D1follows that C 6= D2 beause there is a transition qD2

α
−→R

′
D2

q′D2
reah-able in R′

D2
with qD2

↓D1
= qD1

and q′D2
↓D1

= q′D1
. As D1 ⊆ D2 it followsthat qD2

α
−→R

′
D2

q′D2
is removed in EM(R′

D2
, R′

C). This is a ontradition tothe assumption that the family {R′
C}C∈C′ is the Edge-Math �xed-point of

{SC}C∈C′. 202



A.3. PROOFS FROM CHAPTER 6We assume now that b) does not hold, i.e., there is C ∈ C′ suh that R′
C 6=

EM(R′
C , R

′
D1
). This is the ase if there is a transition qC

α
−→R

′
C
q′C reahablein R′

C suh that there is no transition qD1

α
−→R

′
D1

q′D1
with qC↓D1

= qD1
↓Cand q′C↓D1

= q′D1
↓C reahable in R′

D1
. Assume that C 6= D2. Beause ofthe assumption that the family {R′

C}C∈C′ is the Edge-Math �xed-point of
{SC}C∈C′ it follows that a respetive transition qD2

α
−→R

′
D2

q′D2
with qD2

↓C =

qC↓D2
and q′D2

↓C = q′C↓D2
must be reahable in R′

D2
. It follows that thetransition qD2

α
−→R

′
D2

q′D2
is removed in EM(R′

D2
, R′

D1
). Thus, without lossof generality, we an assume that C = D2 and that there is a transitionthat is reahable in R′

D2
whih projetion on D1 is not reahable in R′

D1
.Assume, without loss of generality, that qD2

↓D1
is a reahable state in R′

D1
.By the de�nition of SD2

in Lemma 3.2 and the fat that qD2
↓D1

is reahablein R′
D1

follows that the transition qD2
↓D1

α
−→SD1

q′D2
↓D1

is reahable in SD1
,i.e., this transition got removed by the operation EM(SD1

, R′
D2
). This is aontradition beause qD2

α
−→R

′
D2

q′D2
is a reahable transition in R′

D2
.A.3 Proofs from Chapter 6Proof of Theorem 6.1Proof. Let r′S and r

′
R be rS respetively rR restrited to reahable tuples.Let t ∈ r, then t orresponds to a transition qC

α
−→S

′ q′C in S ′ = EM(S,R).This means, that qC α
−→S q′C is a reahable transition in S, i.e., t ∈ r

′
S. Thetransition is in S ′ after the appliation of the Edge-Math operator, i.e.,there is a reahable transition qD

α
−→R q′D in R suh that qC↓D = qD↓C and

q′C↓D = q′D↓C . Let tR ∈ r
′
R be the tuple that orresponds to qD

α
−→R q′D. Thismeans that t ∈ r

′
S ⋉ r

′
R as t ∈ r

′
S and tR ∈ r

′
R.Let t ∈ r

′
S ⋉ r

′
R then t orresponds to a transition qC

α
−→S q′C that is reahablein S. Furthermore, there is a tuple tR ∈ r

′
R that agrees with tS on sharedattributes. Let tR orrespond to the reahable transition qD

α
−→R q′D in R.203



APPENDIX A. PROOFSThis means that qC α
−→S q′C is a transition in EM(S,R) as qC↓D = qD↓C and

q′C↓D = q′D↓C , i.e., t ∈ r.Proof of Corollary 6.1Proof. Let HC = (K,C) be ayli. Let C = {C1, C2, . . . , Ck} and R =

{RC1
,RC2

, . . . ,RCk
} be the relational database sheme that onsists of therelational shemata assoiated with the sets of omponents in C. It is easy tosee that R is ayli if the hypergraph HC = (K,C) is ayli (see Example6.5 for an illustration).Let {R′

C}C∈C be the Edge-Math �xed-point of {RC}C∈C and let
d = {rC1

(RC1
), rC2

(RC2
), . . . , rCk

(RCk
)}be the database on R that onsists of the relations assoiated with thetransition systems in {R′

C}C∈C.As {R′
C}C∈C is a �xed-point with respet to the appliation of the Edge-Math operator eah abstrat over-approximation is restrited to reahabletransitions and no appliation of the Edge-Math operator on a pair of ab-strat over-approximations results in a re�nement. It is easy to see that itfollows from Theorem 6.1 that similarly eah tuple in eah relation in d isreahable and no appliation of a semijoin on a pair of relations results in aremoval of tuples. As R is ayli it follows that eah relation in d is a fullredution.Let C ∈ C and qC

α
−→R

′
C
q′C a reahable transition in R′

C then qC
α
−→R

′
C
q′Corresponds to a reahable tuple tC ∈ rC (rC ∈ d). As rC is a full redutionit follows that rC = πRC

(⊲⊳ (d)), i.e., there is a tuple t ∈ ⊲⊳ (d) suh that
tC = t(RC) and for eahD ∈ C (D 6= C) t(RD) ∈ rD. The tuple t orrespondsto a transition q

α
−→T q′ in the global behavior T of Sys and eah t(RD)(D 6= C) orresponds to a reahable transition qD

α
−→R

′
D
qD in R′

D with
• q↓C = qC and q′↓C = q′C and 204



A.3. PROOFS FROM CHAPTER 6
• for all D ∈ C (D 6= C) holds q↓D = qD and q′↓D = q′D.It follows that qC

α
−→R

′
C
q′C is legitimated and thus that {R′

C}C∈C is legiti-mated.
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Appendix B
Soure Code
B.1 A Desription Language for Interation Sys-temsThe ode in Listing B.1 is an example for an interation system spei�edin a desription language that we use as an input for our tool that imple-ments our approah to re�ne abstrat over-approximations and establishdeadlok-freedom. The ode spei�es a model of Tanenbaum's solution ofthe Dining Philosophers problem (see Setion 5.3). The language is rela-tively minimalisti and features only the ontrol strutures if (restrited tointeger omparison) and for (restrited to single step inrementation). InLine 3 the integer variable n is initialized with the value 20 whih spei�esthe number of philosophers in the model. A COMPONENT -blok (e.g.,Line 7 to 16 models a philosopher) spei�es a omponent by an initial state(Line 9) and a set of transitions � for example, in Line 10 a transition froma state named init to a state named hp labeled by get_prior is de�ned. ACONNECTOR-blok de�nes an interation1. For example, Line 44 to 481In [GS03℄, where interation systems were introdued, interations are alled onne-tors. 207



APPENDIX B. SOURCE CODEmodels that philosopher i takes the fork on his left side1 SYSTEM " ph i l o s ophe r s " ;23 VAR n = 20 ;45 FOR(VAR i =0;n−1)6 {7 COMPONENT "phil_"+i8 {9 INIT " i n i t " ;10 TRANS " i n i t "{" get_prior "}"hp" ;11 TRANS "hp"{" take_le f t "}" h l " ;12 TRANS "hp"{" take_right "}"hr " ;13 TRANS " h l "{" take_right "}" h l r " ;14 TRANS "hr "{" take_le f t "}" h l r " ;15 TRANS " h l r "{"put "}" i n i t " ;16 }1718 COMPONENT "fork_"+i19 {20 INIT " f " ;21 TRANS " f "{" take "}" t " ;22 TRANS "t "{"put "}" f " ;23 }2425 COMPONENT "sem_"+i26 {27 INIT " f r e e " ;28 TRANS " f r e e "{" i s_ f r e e "}" f r e e " ;29 TRANS " f r e e "{" take "}" taken " ;30 TRANS "taken "{"put "}" f r e e " ;31 }32 }3334 FOR(VAR i =0;n−1)35 {36 CONNECTOR "pr io r i ty_ "+i37 {38 "phil_"+i : " get_prior " ;39 "sem_"+i : " take " ;40 "sem_"+(i −1)%n : " i s_ f r e e " ;41 "sem_"+( i +1)%n : " i s_ f r e e " ;42 }4344 CONNECTOR "take_left_ "+i45 {46 "phil_"+i : " take_le f t " ; 208



B.2. JAVA SOURCE CODE47 " fork_"+(i −1)%n : " take " ;48 }4950 CONNECTOR "take_right_ "+i51 {52 "phil_"+i : " take_right " ;53 " fork_"+i : " take " ;54 }5556 CONNECTOR "put_"+i57 {58 "phil_"+i : "put " ;59 " fork_"+(i −1)%n : "put " ;60 " fork_"+i : "put " ;61 "sem_"+i : "put " ;62 }63 } Listing B.1: "Model of Tanenbaum's Dining Philosophers."
B.2 Java Soure CodeOur tool that we used to alulate the results presented in Chapter 5 isimplemented in Java. In this setion we desribe the two most importantmethods in our implementation, this is, the method that restrits the be-havior of an abstrat over-approximation to reahable transitions and themethod that implements the appliation of the Edge-Math operator on apair of abstrat over-approximations. Our implementation of Algorithm 2in Chapter 3 is based on these two methods. In our tool, sets of transitionsand sets of states are modeled by BDDs.Listing B.2 depits the method reah that restrits an abstrat over-appro-ximation, that is modeled by a BDD, to reahable transitions. We performa symboli reahability analysis on the behavior of an abstrat over-appro-ximation and restrit the transition relation to transitions that start in areahable state. Symboli reahability analyses were introdued by Coudertet al. [CBM90℄. The analysis is based on suessively extending a set of209



APPENDIX B. SOURCE CODEreahable states, starting with the set that onsists of the initial state, byits image until no new states are added. In Line 4 we initialize the BDD a1whih represents the set of reahable states. In Line 7 to 17 the reahabilityanalysis is performed. The restrition of the set of transitions is aomplishedin Line 19.1 pub l i  s t a t i  void reah ( Subsystem s , In te ra t i onSys tem i s )2 {3 BDD a0 = i s . getBDDFatory ( ) . z e ro ( ) ;4 BDD a1 = s . g e t I n i t ( ) . id ( ) ;5 BDD tmp ;67 whi le ( ! a0 . equa l s ( a1 ) )8 {9 a0 = a1 . id ( ) ;10 tmp = a1 . and ( s . getBDD ( ) ) ;11 tmp = tmp . e x i s t ( s . getVarsFrom ( ) . union ( sys . getCodedAtSet ( ) ) ) ;12 BDDPairing p = B. makePair ( ) ;13 p . s e t ( s . getVarsTo ( ) . getDomains ( ) , s . getVarsFrom ( ) . getDomains ( ) ) ;14 tmp . replaeWith (p) ;15 p . f r e e p a i r ( ) ;16 a1 . orWith (tmp) ;17 }1819 s . getBDD ( ) . andWith ( a1 ) ;20 a0 . f r e e ( ) ;21 } Listing B.2: "The method reah."Listing B.3 depits the method EM that implements the appliation of theEdge-Math operator on a pair of abstrat over-approximations. Note, if Sand R are abstrat over-approximations, that the method implements theappliation of the Edge-Math operator on S and R and on R and S, i.e.,
S and R are re�ned. If an abstrat over-approximation is re�ned, i.e., atleast one transition is removed, then the respetive transition system getsrestrited to reahable transitions. The method returns false if and onlyif one of the abstrat over-approximations is re�ned, i.e., if and only if atleast one transition is removed in at least one of the two abstrat over-approximations. We use this return value in order to hek a ondition210



B.2. JAVA SOURCE CODEfor the termination of our implementation of Algorithm 2 in Chapter 3.Our re�nement proedure terminates if the Edge-Math operator applied onall (reasonable) pairs of abstrat over-approximations does not ause anyre�nement.The method works as follows. The input onsists of two abstrat over-ap-proximations s1 and s2. In Line 4 the BDD representation of the transitionrelation of s2 is opied. In Line 6 to 10 the opy is projeted to omponentsthat are shared between s1 and s2. In Line 21 the transition relation of s1is restrited to transitions that have a orresponding transition in s2 whihagree on shared omponents. In Line 22 to 26 we test whether or not thereare transitions removed from s1. If so, there might be transitions in s1 thatbeome unreahable. Thus, in this ase, we restrit the re�ned transitionrelation of s1 to reahable transitions. s2 is re�ned in the same mannerwith respet to s1.1 pub l i  s t a t i  boolean EM( Subsystem s1 , Subsystem s2 )2 {3 BDD s1BDD = s1 . getBDD ( ) . id ( ) ;4 BDD s2BDD = s2 . getBDD ( ) . id ( ) ;56 Set<Component> minus1 = s2 . minus ( s1 ) ;7 f o r (Component k : minus1 )8 {9 s2BDD=s2BDD . e x i s t ( k . getFromDomain ( ) . s e t ( ) . union ( k . getToDomain ( ) . s e t ( ) ) ) ;10 }1112 Set<Component> minus2 = s1 . minus ( s2 ) ;13 f o r (Component k : minus2 )14 {15 s1BDD=s1BDD . e x i s t ( k . getFromDomain ( ) . s e t ( ) . union ( k . getToDomain ( ) . s e t ( ) ) ) ;16 }1718 boolean b = true ;1920 BDD s1tmp = s1 . getBDD ( ) . id ( ) ;21 s1 . getBDD ( ) . andWith (s2BDD) ;22 i f ( ! s1 . getBDD ( ) . equa l s ( s1tmp ) )23 {24 b = f a l s e ;25 ISToolBox . reah ( s1 ) ;26 } 211



APPENDIX B. SOURCE CODE27 s1tmp . f r e e ( ) ;2829 BDD s2tmp = s2 . getBDD ( ) . id ( ) ;30 s2 . getBDD ( ) . andWith (s1BDD) ;31 i f ( ! s2 . getBDD ( ) . equa l s ( s2tmp) )32 {33 b = f a l s e ;34 ISToolBox . reah ( s2 ) ;35 }36 s2tmp . f r e e ( ) ;3738 re turn b ;39 } Listing B.3: "The method EM."
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