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Introduction

Endogeneity is one of the most challenging problems in applied economics. It may

occur when important causal factors are omitted, when variables can only be observed

within a measurement error, or when a regressor is determined simultaneously with the

response variable. Frequently, economists overcome this obstacle by using instrumental

variables. Examples of instruments are rainfall variations to estimate the impact of

economic growth on the likelihood of civil war in Africa in Miguel et al. [2004], the

Vietnam era draft lottery to identify the effects of military service on subsequent civilian

mortality in Hearst et al. [1986], or quarter of birth for estimating returns to schooling

Angrist and Krueger [1991].

Applications of instrumental variables methods are often widely debated in the liter-

ature. One important issue is the validity of the instruments, that is, exogeneity to the

error term (cf. Bound et al. [1995] as an example). Another concern regards unrea-

sonable strong functional assumptions on the structural relationship, such as linearity

(cf. Horowitz [2011b]). In both situations, the model is potentially misspecified which

can lead to seriously erroneous conclusions. Therefore, the aim of this doctoral thesis

is twofold. First, we provide testing procedures to check whether instrumental variable

models are correctly specified. Second, we develop estimation methods that do not rely

on implausible functional restrictions.

To minimize the likelihood of misspecification the nonparametric version of instru-

mental variable models became increasingly popular in the literature. In this work, we

consider nonparametric instrumental mean and quantile regressions models. In these

models, given a scalar dependent variable Y and a vector of regressors Z, the structural

function ϕ satisfies

Y = ϕ(Z) + U (0.1)

where the error term U might be correlated with the vector of regressors Z. But there is

another variable W available, called an instrumental variable, that satisfies in the mean
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regression case

E[U |W ] = 0. (0.2)

In instrumental quantile regression, we assume that the instrumental variable W satis-

fies

P(U 6 0|W ) = q (0.3)

for some quantile 0 < q < 1. The quantile regression model (0.1) & (0.3) subsumes a

nonseparable model Y = h(Z, V ) with function h being strictly monotonic in its second

argument and unobservable V being independent W . Thereby, the quantile regression

model (0.1) & (0.3) allows for heterogeneity in the unobservables.

When the methods of analysis are widened to include nonparametric techniques, how-

ever, one must confront two mayor challenges. First, identification requires stronger as-

sumptions about the instrumental variables than for the parametric case. Second, the ac-

curacy of any estimator of the structural function can be low, even for large sample sizes.

Consequently, the need for statistically justified model simplifications is paramount.

In this doctoral thesis, we contribute to the literature new estimation and testing

procedures in the nonparametric instrumental regression models (0.1) & (0.2) and (0.1)

& (0.3). The chapters are self-contained and can be read separately. Each chapter ends

with an appendix that contains the proofs.

In Chapter 1, which is based on a joint paper with Prof. Dr. Jan Johannes, we consider

the problem of estimating a linear functional `(ϕ) of the structural function ϕ in the

mean regression model (0.1) & (0.2). We propose a plug-in estimator which is based

on a dimension reduction technique and additional thresholding. It is shown that this

estimator is consistent and can attain the minimax optimal rate of convergence under

additional regularity conditions. This, however, requires an optimal choice of the di-

mension parameter m depending on certain characteristics of the structural function ϕ

and the joint distribution of the regressor and the instrument, which are unknown in

practice. We propose a fully data driven choice of m which combines model selection

and Lepski’s method. We show that the adaptive estimator attains the optimal rate of

convergence up to a logarithmic factor. The theory in this paper is illustrated by con-

sidering classical smoothness assumptions and we discuss examples such as pointwise

estimation or estimation of averages of the structural function ϕ. A Monte Carlo investi-

gation illustrates that the difference of the adaptive parameter choice to the optimal one

is small in finite samples.
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In Chapter 2, we propose several tests of restricted specification in the mean regression

model (0.1) & (0.2). Based on series estimators, test statistics are established that allow

for tests of the general model against a parametric or nonparametric specification as

well as a test of exogeneity of the vector of regressors. The tests are asymptotically

normally distributed under correct specification and consistent against any alternative

model. Under a sequence of local alternative hypotheses, the asymptotic distribution

of the tests is derived. In Monte Carlo simulations we give examples where our tests

exceeds the power of existing tests in finite samples.

Chapter 3 studies the quantile regression model (0.1) & (0.3). There are many en-

vironments in econometrics which require nonseparable modeling of a structural dis-

turbance. Under certain key conditions, these models lead to the conditional quantile

restriction (0.1) & (0.3) which is used in the literature to obtain identification and esti-

mation results. These conditions concern validity of the instruments and monotonicity of

the model in the nonseparable, continuously distributed disturbance. If one of these as-

sumptions is violated the true structural function may not solve the conditional quantile

restriction. Erroneously assuming the misspecified conditional quantile representation

might lead to inconsistent estimators. This paper develops a methodology for testing

the hypothesis whether the instrumental quantile regression model is correctly speci-

fied. Our test statistic is asymptotically normally distributed under correct specification

and consistent against any alternative model. A Monte Carlo study examines its finite

sample properties. As an empirical illustration we consider a quantile regression model

describing the effect of class size on scholastic achievement.





1 Adaptive Estimation of Functionals in

Nonparametric Instrumental

Regression

1.1 Introduction

We consider estimation of the value of a linear functional of the structural function ϕ in

a nonparametric instrumental regression model. The structural function characterizes

the dependency of a response Y on the variation of an explanatory random variable Z

by

Y = ϕ(Z) + U with E[U |Z] 6= 0 (1.1a)

for some error term U . In other words, the structural function equals not the condi-

tional mean function of Y given Z. In this model, however, a sample from (Y, Z,W ) is

available, where W is a random variable, an instrument, such that

E[U |W ] = 0. (1.1b)

Given some a-priori knowledge on the unknown structural function ϕ, captured by a

function class F , its estimation has been intensively discussed in the literature. In con-

trast, in this paper we are interested in estimating the value `(ϕ) of a continuous linear

functional ` : F → R. Important examples discussed in this paper are weighted average

derivatives or point evaluation functionals which are both continuous under appropriate

conditions on F . We establish a lower bound of the maximal mean squared error for esti-

mating `(ϕ) over a wide range of classes F and functionals `. As a step towards adaptive

estimation, we propose in this paper a plug-in estimator of `(ϕ) which is consistent and

minimax optimal. This estimator is based on a linear Galerkin approach which involves

the choice of a dimension parameter. We present a method for choosing this parameter

in a data driven way combining model selection and Lepski’s method. Moreover, it is

shown that the adaptive estimator can attain the minimax optimal rate of convergence
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within a logarithmic factor.

Model (1.1a–1.1b) has been introduced first by Florens [2003] and Newey and Powell

[2003], while its identification has been studied e.g. in Carrasco et al. [2006], Darolles

et al. [2002], and Florens et al. [2011]. It is interesting to note that recent applications

and extensions of this approach include nonparametric tests of exogeneity (Blundell and

Horowitz [2007]), quantile regression models (Horowitz and Lee [2007]), or semipara-

metric modeling (Florens [2002]) to name but a few. For example, Ai and Chen [2003],

Blundell et al. [2007], Chen and Reiß [2011] or Newey and Powell [2003] consider

sieve minimum distance estimators of ϕ, while Darolles et al. [2002], Hall and Horowitz

[2005], Gagliardini and Scaillet [2012a] or Florens et al. [2011] study penalized least

squares estimators. A linear Galerkin approach to construct an estimator of ϕ com-

ing from the inverse problem community (c.f. Efromovich and Koltchinskii [2001] or

Hoffmann and Reiß [2004]) has been proposed by Johannes and Schwarz [2010]. But

estimating the structural function ϕ as a whole involves the inversion of the conditional

expectation operator of Z given W and generally leads to an ill-posed inverse problem

(c.f. Newey and Powell [2003] or Florens [2003]). This essentially implies that all pro-

posed estimators have under reasonable assumptions very poor rates of convergence. In

contrast, it might be possible to estimate certain local features of ϕ, such as the value of

a linear functional at the usual parametric rate of convergence.

The nonparametric estimation of linear functionals from Gaussian white noise ob-

servations is a subject of considerable literature (c.f. Speckman [1979], Li [1982] or

Ibragimov and Has’minskii [1984] in case of direct observations, while in case of indi-

rect observations we refer to Donoho and Low [1992], Donoho [1994] or Goldenshluger

and Pereverzev [2000]). However, nonparametric instrumental regression is in general

not a Gaussian white noise model. Moreover, this model involves the additional diffi-

culty of dealing with an unkown operator. On the other hand, in the former setting the

parametric estimation of linear functionals has been addressed in recent years in the

econometrics literature. To be more precise, under restrictive conditions on the linear

functional ` and the joint distribution of (Z,W ) it is shown in Ai and Chen [2007],

Santos [2011], and Severini and Tripathi [2010] that it is possible to construct n1/2-

consistent estimators of `(ϕ). In this situation, efficiency bounds are derived by Ai and

Chen [2007] and, when ϕ is not necessarily identified, by Severini and Tripathi [2010].

We show below, however, that n1/2-consistency is not possible for a wide range of linear

functionals ` and joint distributions of (Z,W ).

In this paper, we establish a minimax theory for the nonparametric estimation of the

value of a linear functional `(ϕ) of the structural function ϕ. For this purpose, we con-
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sider a plug-in estimator ̂̀m := `(ϕ̂m) of `(ϕ), where the estimator ϕ̂m was proposed

by Johannes and Schwarz [2010] and the integer m denotes a dimension to be chosen

appropriately. The accuracy of ̂̀m is measured by its maximal mean squared error uni-

formly over the classes F and P, where P captures conditions on the unknown joint

distribution PUZW of the random vector (U,Z,W ), i.e., PUZW ∈ P. The class F reflects

prior information on the structural function ϕ, e.g., its level of smoothness, and will

be constructed flexible enough to characterize, in particular, differentiable or analytic

functions. On the other hand, the condition PUZW ∈ P specifies amongst others some

mapping properties of the conditional expectation operator of Z given W implying a

certain decay of its singular values. The construction of P allows us to discuss both a

polynomial and an exponential decay of those singular values. Considering the maximal

mean squared error over F and P we derive a lower bound for estimating `(ϕ). Given

an optimal choice m∗n of the dimension we show that the lower bound is attained by ̂̀m∗n
up to a constant C > 0, i.e.,

sup
PUZW∈P

sup
ϕ∈F

E |̂̀m∗n − `(ϕ)|2 6 C inf̆
`

sup
PUZW∈P

sup
ϕ∈F

E |˘̀− `(ϕ)|2

where the infimum on the right hand side runs over all possible estimators ˘̀. Thereby,

the estimator ̂̀m∗n is minimax optimal even though the optimal choice m∗n depends on

the classes F and P, which are unknown in practice.

The main issue addressed in this paper is the construction of a data driven selec-

tion method for the dimension parameter which adapts to the unknown classes F and

P. When estimating the structural function ϕ as a whole, adaptive estimators have

been proposed by Loubes and Marteau [2009], Johannes and Schwarz [2010], and

Horowitz [2011a]. Johannes and Schwarz [2010] consider an adaptive estimator based

on a model selection approach (cf. Barron et al. [1999] and its detailed discussion in

Massart [2007]) which attains the minimax optimal rate. The estimator of Loubes and

Marteau [2009] attains this rate within a logarithmic term. Both papers crucially rely

on the a-priori knowledge of the eigenfunctions which yields an orthogonal series esti-

mator involving the estimated singular values of the conditional expectation operator.

In econometric applications, however, the eigenfunctions of this operator are unknown.

Recently, Horowitz [2011a] proposed an adaptive estimation procedure which is based

on minimizing the asymptotic integrated mean-square error and does not involve the

knowledge of the eigenfunctions of the operator.

For estimating linear functionals of the structural function ϕ, adaptive estimation pro-

cedures are not yet available. We propose a new method that is different from the above,
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does not involve a-priori knowledge of the eigenfunctions of the operator, and allows for

a polynomial or exponential decay of its singular values. The methodology combines a

model selection approach and Lepski’s method (cf. Lepskij [1990]). It is inspired by

the recent work of Goldenshluger and Lepski [2011]. To be more precise, the adaptive

choice m̂ is defined as the minimizer of a random penalized contrast criterion 1, i.e.,

m̂ := arg min
16m6M̂n

{
Ψ̂m + p̂enm

}
(1.2a)

with random integer M̂n and random penalty sequence p̂en := (p̂enm)m>1, to be defined

below, and the sequence of contrast Ψ̂ := (Ψ̂m)m>1 given by

Ψ̂m := max
m6m′6M̂n

{
|̂̀m′ − ̂̀m|2 − p̂enm′

}
. (1.2b)

With this adaptive choice m̂ at hand the estimator ̂̀m̂ is shown to be minimax optimal

within a logarithmic factor over a wide range of classes F and P. The appearance of

the logarithmic factor within the rate is a known fact in the context of local estimation.

Brown and Low [1996] show that it is unavoidable in the context of non-parametric

Gaussian regression and, hence it is widely considered as an acceptable price for adap-

tation. This factor is also present in the work of Goldenshluger and Pereverzev [2000]

where Lepski’s method is applied in the presence of indirect Gaussian observations.

1.2 Complexity of functional estimation: a lower bound.

1.2.1 Notations and basic model assumptions.

The nonparametric instrumental regression model (1.1a–1.1b) leads to a Fredholm equa-

tion of the first kind. To be more precise, let us introduce the conditional expectation op-

erator Tφ := E[φ(Z)|W ] mapping L2
Z = {φ : E[φ2(Z)] <∞} to L2

W = {ψ : E[ψ2(W )] <
∞} (which are endowed with the usual inner products 〈·, ·〉Z and 〈·, ·〉W , respectively).

Consequently, model (1.1a–1.1b) can be written as

g = Tϕ (1.3)

where the function g := E[Y |W ] belongs to L2
W . In what follows we always assume that

there exists a unique solution ϕ ∈ L2
Z of equation (1.3), i.e., g belongs to the range of T ,

1For a sequence (am)m>1 having a minimal value in A ⊂ N set arg min
m∈A

{am} := min{m : am 6 am′∀m′ ∈

A}.
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and that the null space of T is trivial (c.f. Engl et al. [2000] or Carrasco et al. [2006] in

the special case of nonparametric instrumental regression). Estimation of the structural

function ϕ is thus linked with the inversion of the operator T . Moreover, we suppose

throughout the paper that T is compact which is under fairly mild assumptions satisfied

(c.f. Carrasco et al. [2006]). Note that the proof of minimax optimality of our estimator

does not rely on this assumption but it is used for the illustrations and remarks below.

If T is compact then a continuous generalized inverse of T does not exist as long as the

range of the operator T is an infinite dimensional subspace of L2
W . This corresponds to

the setup of ill-posed inverse problems.

In this section, we show that the obtainable accuracy of any estimator of the value

`(ϕ) of a linear functional can be essentially determined by regularity conditions im-

posed on the structural function ϕ and the conditional expectation operator T . In this

paper, these conditions are characterized by different weighted norms in L2
Z with respect

to a pre-specified orthonormal basis {ej}j>1 in L2
Z , which we formalize now. Given

a positive sequence of weights w := (wj)j>1 we define the weighted norm ‖φ‖2w :=∑
j>1wj |〈φ, ej〉Z |2, φ ∈ L2

Z , the completion Fw of L2
Z with respect to ‖·‖w and the el-

lipsoid Frw :=
{
φ ∈ Fw : ‖φ‖2w 6 r

}
with radius r > 0. We shall stress that the basis

{ej}j>1 does not necessarily correspond to the eigenfunctions of T ∗T where T ∗ denotes

the adjoint operator of T . In the following we write an . bn when there exists a generic

constant C > 0 such that an 6 C bn for sufficiently large n ∈ N and an ∼ bn when

an . bn and bn . an simultaneously.

Minimal regularity conditions. Given a nondecreasing sequence of weights γ := (γj)j>1,

we suppose, here and subsequently, that the structural function ϕ belongs to the ellip-

soid Fργ for some ρ > 0. The ellipsoid Fργ captures all the prior information (such as

smoothness) about the unknown structural function ϕ. Observe that the dual space of

Fγ can be identified with F1/γ where 1/γ := (γ−1
j )j>1 (cf. Krein and Petunin [1966]). To

be more precise, for all φ ∈ Fγ the value 〈h, φ〉Z is well defined for all h ∈ F1/γ and by

Riesz’s Theorem there exists a unique h ∈ F1/γ such that `(φ) = 〈h, φ〉Z =: `h(φ). In cer-

tain applications one might not only be interested in the performance of an estimation

procedure of `h(ϕ) for a given representer h, but also for h varying over the ellipsoid Fτω
with radius τ > 0 for a nonnegative sequence ω := (ωj)j>1 satisfying infj>1{ωjγj} > 0.

Obviously, Fω is a subset of F1/γ .

Furthermore, as usual in the context of inverse problems, we specify some mapping

properties of the operator under consideration. Denote by T the set of all compact

operators mapping L2
Z into L2

W . Given a sequence of weights υ := (υj)j>1 and d > 1 we
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define the subset T υd of T by

T υd :=
{
T ∈ T : ‖φ‖2υ/d 6 ‖Tφ‖2W 6 d ‖φ‖2υ, ∀φ ∈ L2

Z

}
. (1.4)

Notice first that any operator T ∈ T υd is injective if the sequence υ is strictly positive.

Furthermore, for all T ∈ T υd it follows that υj/d 6 ‖Tej‖2W 6 dυj for all j > 1. If

(sj)j>1 denotes the ordered sequence of singular values of T then it is easily seen that

υj/d 6 s2
j 6 dυj . In other words, the sequence υ specifies the decay of the singular

values of T . In what follows, all the results are derived under regularity conditions on

the structural function ϕ and the conditional expectation operator T described through

the sequence γ and υ, respectively. We provide illustrations of these conditions below

by assuming a “regular decay” of these sequences. The next assumption summarizes our

minimal regularity conditions on these sequences.

Assumption 1.1. Let γ := (γj)j>1, ω := (ωj)j>1 and υ := (υj)j>1 be strictly positive
sequences of weights with γ1 = ω1 = υ1 = 1 such that γ is nondecreasing with |j|3γ−1

j =
o(1) as j →∞, ω satisfies infj>1{ωjγj} > 0 and υ is a nonincreasing sequence.

Remark 1.2.1. We illustrate Assumption 1.1 for typical choices of γ and υ usually studied
in the literature (c.f. Hall and Horowitz [2005], Chen and Reiß [2011] or Johannes et al.
[2011]). Let [h]j be the j-th generalized Fourier coefficient, i.e., [h]j := E[h(Z)ej(Z)], then
we consider the cases

(pp) γj ∼ |j|2p with p > 3/2, υj ∼ |j|−2a, a > 0, and

(i) [h]2j ∼ |j|−2s, s > 1/2− p or

(ii) ωj ∼ |j|2s, s > −p.

(pe) γj ∼ |j|2p, p > 3/2 and υj ∼ exp(−|j|2a), a > 0, and

(i) [h]2j ∼ |j|−2s, s > 1/2− p or

(ii) ωj ∼ |j|2s, s > −p.

(ep) γj ∼ exp(|j|2p), p > 0 and υj ∼ |j|−2a, a > 0, and

(i) [h]2j ∼ |j|−2s, s ∈ R or

(ii) ωj ∼ |j|2s, s ∈ R.

Note that condition |j|3γ−1
j = o(1) as j →∞ is automatically satisfied for all p > 0 in case

of (ep). In the other two cases this condition states under classical smoothness assumptions
that, roughly speaking, the structural function ϕ has to be differentiable. Note that Hall
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and Horowitz [2005], who only consider the polynomial case, assume 2p + 1 > 2a > p

with p > 0 and a > 1/2 which is more restrictive than Assumption 1.1 for a > 2. �

We shall see that the minimax optimal rate is determined by the sequence Rh :=
(Rhn)n>1, in case of a fixed representer h, and Rω := (Rωn)n>1 in case of a representer

varying over the class Fτω . These sequences are given for all x > 1 by

Rhx := max

α∗x
m∗x∑
j=1

[h]2j
υj

,
∑
j>m∗x

[h]2j
γj

 and Rωx := α∗x max
16j6m∗x

{
1

ωjυj

}
(1.5)

where α∗x := max
{
υm∗xγ

−1
m∗x
, x−1}. This corresponds to the usual variance and bias de-

composition of the mean square error. Here the dimension parameter m∗x is chosen to

trade off both, that is, we let for x > 1

m∗x := arg min
m∈N

{∣∣∣υm
γm
− x−1

∣∣∣}. (1.6)

In case of adaptive estimation the rate of convergence is given byRhadapt := (Rhn(1+logn)−1)n>1

andRωadapt := (Rωn(1+logn)−1)n>1, respectively. For ease of notation letm◦n := m∗n(1+logn)−1

and α◦n := α∗n(1+logn)−1 . The bounds established below need the following additional as-

sumption, which is satisfied in all cases considered in Remark 1.2.1.

Assumption 1.2. There exists a constant 0 < κ 6 1 such that for all n > 1

κ 6
nυm∗n
γm∗n

6 κ−1. (1.7)

Assumption 1.2 implies that nυm∗nγ
−1
m∗n

is uniformly bounded from above and away

from zero. Thereby, we can write nυm∗n ∼ γm∗n .

1.2.2 Lower bounds.

The results derived below involve assumptions on the conditional moments of the ran-

dom variables U given W , captured by Uσ, which contains all conditional distributions

of U given W , denoted by PU |W , satisfying E[U |W ] = 0 and E[U4|W ] 6 σ4 for some

σ > 0. The next assertion gives a lower bound for the mean squared error of any esti-

mator when estimating the value `h(ϕ) of a linear functional with given representer h

and structural function ϕ in the function class Fργ .

Theorem 1.2.1. Assume an iid. n-sample of (Y, Z,W ) from the model (1.1a–1.1b). Let γ
and υ be sequences satisfying Assumptions 1.1 and 1.2. Suppose that supj>1 E[e4

j (Z)|W ] 6
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η4, η > 1, and σ4 >
(√

3 + 4ρ η2∑
j>1 γ

−1
j

)2. Then for all n > 1 we have

inf̆
`

sup
T∈T υ

d

sup
PU|W∈Uσ

sup
ϕ∈Fργ

E |˘̀− `h(ϕ)|2 > κ

4 min
( 1

2 d , ρ
)
Rhn

where the first infimum runs over all possible estimators ˘̀.

Note that in Theorem 1.2.1 and in the following results the marginal distribution of

Z and W is kept fixed while only the dependency structure of the joint distribution of

(Z,W ) and of (U,Z,W ) is allowed to vary.

Remark 1.2.2. In the proof of the lower bound we consider a test problem based on
two hypothetical structural functions. For each test function the condition σ4 >

(√
3 +

4ρ η2∑
j>1 γ

−1
j

)2 ensures a certain complexity of the hypothetical model in a sense that it
allows for Gaussian residuals. This specific case is only needed to simplify the calculation of
the distance between distributions corresponding to different structural functions. A similar
assumption has been used by Chen and Reiß [2011] in order to derive a lower bound for
the estimation of the structural function ϕ itself. In particular, the authors show that in
opposite to the present work an one-dimensional subproblem is not sufficient to describe the
full difficulty in estimating ϕ.

On the other hand, below we derive an upper bound assuming that PU |W belongs to Uσ
and that the joint distribution of (Z,W ) fulfills in addition Assumption 1.3. Obviously
in this situation Theorem 1.2.1 provides a lower bound for any estimator as long as σ is
sufficiently large. �

Remark 1.2.3. The regularity conditions imposed on the structural function ϕ and the
conditional expectation operator T involve only the basis {ej}j>1 in L2

Z . Therefore, the
lower bound derived in Theorem 1.2.1 does not capture the influence of the basis {fl}l>1 in
L2
W used below to construct an estimator of the value `h(ϕ). In other words, this estimator

attains the lower bound only if {fl}l>1 is chosen appropriately. �

Remark 1.2.4. The rate Rh of the lower bound is never faster than the
√
n-rate, that

is, Rhn > n−1. Moreover, it is easily seen that the lower bound rate is parametric if and
only if

∑
j>1[h]2jυ−1

j < ∞. This condition does not involve the sequence γ and hence,
attaining a

√
n-rate is independent of the regularity conditions imposed on the structural

function. Moreover, due to the link condition T ∈ T υd we have that Piccard’s condition∑
j>1[h]2jυ−1

j < ∞ is equivalent to h belonging to the range R(T ∗), where T ∗ denotes
the adjoint of T . Note that Severini and Tripathi [2010] showed in their Lemma 4.1 that
h ∈ R(T ∗) is necessary to obtain

√
n-estimability. Under appropriate conditions on ϕ and
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the joint distribution of (Y,Z,W ) we show in the next section that h ∈ R(T ∗) is also
sufficient for

√
n-estimability. �

The following assertion is due to Breunig and Johannes [2009] who establish a lower

bound uniformly over the ellipsoid Fτω of representer. Note that this result is a direct

consequence of the lower bound in Theorem 1.2.1 with a fixed representer h. Indeed,

if we consider the function h∗ := τω
−1/2
j∗ ej∗ with j∗ := arg max16j6m∗n{(ωjυj)

−1} then

it obviously belongs to Fτω . Further, Corollary 1.2.2 follows by calculating the value of

the lower bound in Theorem 1.2.1 for the specific representer h∗ and, hence we omit its

proof.

Corollary 1.2.2. Let the assumptions of Theorem 1.2.1 be satisfied. Then for all n > 1 we
have

inf̆
`

sup
T∈T υ

d

sup
PU|W∈Uσ

sup
ϕ∈Fργ , h∈Fτω

E |˘̀− `h(ϕ)|2 > τκ

4 min
( 1

2 d , ρ
)
Rωn

where the first infimum runs over all possible estimators ˘̀.

Remark 1.2.5. If the lower bound given in Corollary 1.2.2 tends to zero then (ωjγj)j>1

is a divergent sequence. In other words, without any additional restriction on ϕ, that is,
γ ≡ 1, consistency of an estimator of `h(ϕ) uniformly over all ϕ ∈ Fργ and all h ∈ Fτω is
only possible under restrictions on the representer h in the sense that ω has to be a divergent
sequence. �

1.3 Minimax optimal estimation.

1.3.1 Estimation by dimension reduction and thresholding.

In addition to the basis {ej}j>1 in L2
Z used to establish the lower bound we consider now

also a second basis {fl}l>1 in L2
W . We comment on the choice of these basis functions in

Remark 1.3.2.

Matrix and operator notations. Given m > 1, Em and Fm denote the subspace of L2
Z

and L2
W spanned by the functions {ej}mj=1 and {fl}ml=1 respectively. Em and E⊥m (resp.

Fm and F⊥m) denote the orthogonal projections on Em (resp. Fm) and its orthogonal

complement E⊥m (resp. F⊥m), respectively. Given an operatorK from L2
Z to L2

W we denote

its inverse by K−1 and its adjoint by K∗. If we restrict FmKEm to an operator from Em
to Fm, then it can be represented by a matrix [K]m with entries [K]l,j = 〈Kej , fl〉W
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for 1 6 j, l 6 m. Its spectral norm is denoted by ‖[K]m‖, its inverse by [K]−1
m and

its transposed by [K]tm. We write I for the identity operator and ∇υ for the diagonal

operator with singular value decomposition {vj , ej , fj}j>1. Respectively, given functions

φ ∈ L2
Z and ψ ∈ L2

W we define by [φ]m and [ψ]m m-dimensional vectors with entries

[φ]j = 〈φ, ej〉Z and [ψ]l = 〈ψ, fl〉W for 1 6 j, l 6 m.

Consider the conditional expectation operator T associated with (Z,W ). If [e(Z)]m
and [f(W )]m denote random vectors with entries ej(Z) and fj(W ), 1 6 j 6 m, respec-

tively, then it holds [T ]m = E
{
[f(W )]m[e(Z)]tm

}
. Throughout the paper [T ]m is assumed

to be nonsingular for all m > 1, so that [T ]−1
m always exists. Note that it is a nontrivial

problem to determine when such an assumption holds (cf. Efromovich and Koltchinskii

[2001] and references therein).

De�nition of the estimator. Let (Y1, Z1,W1), . . . , (Yn, Zn,Wn) be an iid. sample of

(Y,Z,W ). Since [T ]m = E
{

[f(W )]m[e(Z)]tm
}

and [g]m = E
{
Y [f(W )]m

}
we construct

estimators by using their empirical counterparts, that is,

[T̂ ]m := 1
n

n∑
i=1

[f(Wi)]m[e(Zi)]tm and [ĝ]m := 1
n

n∑
i=1

Yi[f(Wi)]m.

Then the estimator of the linear functional `h(ϕ) is defined for all m > 1 by

̂̀
m :=

 [h]tm[T̂ ]−1
m [ĝ]m, if [T̂ ]m is nonsingular and ‖[T̂ ]−1

m ‖ 6
√
n,

0, otherwise.
(1.8)

In fact, the estimator ̂̀m is obtained from the linear functional `h(ϕ) by replacing the un-

known structural function ϕ by an estimator proposed by Johannes and Schwarz [2010].

Remark 1.3.1. If Z is continuously distributed one might be also interested in estimating
the value

∫
Z ϕ(z)h(z)dz where Z is the support of Z. Assume that this integral and also∫

Z h(z)ej(z)dz for 1 6 j 6 m are well defined. Then we can cover the problem of estimating∫
Z ϕ(z)h(z)dz by simply replacing [h]m in the definition of ̂̀m by a m-dimensional vector

with entries
∫
Z h(z)ej(z)dz for 1 6 j 6 m. Hence for

∫
Z ϕ(z)h(z)dz the results below

follow mutatis mutandis. �

Note that the orthonormal bases {ej}j>1 in L2
Z and {fl}l>1 in L2

W depend on the

marginal distributions of Z and W . As we illustrate in the following remark, these

marginals are not needed to be completely known in advance as long as they satisfy

additional regularity conditions.
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Remark 1.3.2. Without loss of generality assume that the support of Z and W is confined
to [0, 1] and denote L2

[0,1] := {φ :
∫ 1

0 φ
2(z)dz < ∞}. If one assumes in addition that

L2
[0,1] ⊂ L2

Z and L2
W ⊂ L2

[0,1] then it is possible to consider the restriction of T onto L2
[0,1].

Note that this condition is satisfied if the density of Z is bounded from above and the
density of W is uniformly bounded away from zero. For a detailed discussion we refer to
a preliminary version of Darolles et al. [2002] or Section 2.2. of Florens [2002]. Further,
let {ej}j>1 and {fj}j>1 be orthonormal bases in L2

[0,1]. In this case, (E[el(Z)fj(W )])j,l>1

is the matrix representation of the restricted operator (T̃ φ)(·) :=
∫ 1

0 φ(z)pZW (z, ·)dz on
L2

[0,1] where pZW denotes the joint density of (Z,W ). Moreover, due to Remark 1.3.1 the
estimator of `(ϕ) in this situation coincides with the estimator ̂̀m given in (1.8) and hence,
the results below follow simillarly. �

Moment assumptions. Besides the link condition (1.4) for the conditional expectation

operator T we need moment conditions on the basis, more specific, on the random

variables ej(Z) and fl(W ) for j, l > 1, which we summarize in the next assumption.

Assumption 1.3. There exists η > 1 such that the joint distribution of (Z,W ) satisfies

(i) supj∈N E[e2
j (Z)|W ] 6 η2 and supl∈N E[f4

l (W )] 6 η4;

(ii) supj,l∈N E |ej(Z)fl(W )− E[ej(Z)fl(W )]|k 6 ηkk!, k = 3, 4, . . . .

Note that condition (ii) is also known as Cramer’s condition, which is sufficient to

obtain an exponential bound for large deviations of the random variable ej(Z)fl(W ) −
E[ej(Z)fl(W )] (c.f. Bosq [1998]). Moreover, any joint distribution of (Z,W ) satisfies

Assumption 1.3 for sufficiently large η if the basis {ej}j>1 and {fl}l>1 are uniformly

bounded, which holds, for example, for the trigonometric basis considered in Subsection

1.3.4.

1.3.2 Consistency.

The next assertion summarizes sufficient conditions to ensure consistency of the estima-

tor ̂̀m introduced in (1.8). Let us introduce the function ϕm ∈ Em which is uniquely

defined by the vector of coefficients [ϕm]m = [T ]−1
m [g]m and [ϕ]j = 0 for j > m + 1.

Obviously, up to the threshold, the estimator ̂̀m is the empirical counterpart of `h(ϕm).
In Proposition 1.3.1 consistency of the estimator ̂̀m is only obtained under the condition

‖ϕ− ϕm‖γ = o(1) as m→∞ (1.9)
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which does not hold true in general. Obviously (1.9) implies the convergence of `h(ϕm)
to `h(ϕ) as m tends to infinity for all h ∈ F1/γ .

Proposition 1.3.1. Assume an iid. n-sample of (Y,Z,W ) from the model (1.1a–1.1b) with
PU |W ∈ Uσ and joint distribution of (Z,W ) fulfilling Assumption 1.3. Let the dimension
parameter mn satisfy m−1

n = o(1), mn = o(n),

‖[h]tmn [T ]−1
mn‖

2 = o(n), and m3
n‖[T ]−1

mn‖
2 = O(n) as n→∞. (1.10)

If (1.9) holds true then E |̂̀mn − `h(ϕ)|2 = o(1) as n→∞ for all ϕ ∈ Fγ and h ∈ F1/γ .

Notice that condition (1.9) also involves the basis {fl}l>1 in L2
W . In what follows, we

introduce an alternative but stronger condition to guarantee (1.9) which extends the

link condition (1.4). We denote by T υd,D for some D > d the subset of T υd given by

T υd,D :=
{
T ∈ T υd : [T ]mis nonsingular and ‖[∇υ]1/2m [T ]−1

m ‖2 6 D for all m > 1
}
. (1.11)

Remark 1.3.3. If T ∈ T υd and if in addition its singular value decomposition is given by
{sj , ej , fj}j>1 then for all m > 1 the matrix [T ]m is diagonalized with diagonal entries
[T ]j,j = sj , 1 6 j 6 m. In this situation it is easily seen that supm∈N‖[∇υ]1/2m [T ]−1

m ‖2 6 d

and, hence T satisfies the extended link condition (1.11), that is, T ∈ T υd,D. Furthermore,

it holds T υd = T υd,D for suitable D > 0, if T is a small perturbation of ∇1/2
υ or if T is

strictly positive (c.f. Efromovich and Koltchinskii [2001] or Cardot and Johannes [2010],
respectively). �

Remark 1.3.4. Once both basis {ej}j>1 and {fl}l>1 are specified the extended link con-
dition (1.11) restricts the class of joint distributions of (Z,W ) such that (1.9) holds true.
Moreover, under (1.11) the estimator ϕ̂m of ϕ proposed by Johannes and Schwarz [2010]
can attain the minimax optimal rate. In this sense, given a joint distribution of (Z,W )
a basis {fl}l>1 satisfying condition (1.11) can be interpreted as optimal instruments (c.f.
Newey [1990]). �

Remark 1.3.5. For each pre-specified basis {ej}j>1 we can theoretically construct a basis
{fl}l>1 such that (1.11) is equivalent to the link condition (1.4). To be more precise, if
T ∈ T υd , which involves only the basis {ej}j>1, then the fundamental inequality of Heinz
[1951] implies ‖(T ∗T )−1/2ej‖2Z 6 dυ−1

j . Thereby, the function (T ∗T )−1/2ej is an element
of L2

Z and, hence fj := T (T ∗T )−1/2ej , j > 1, belongs to L2
W . Then it is easily checked

that {fl}l>1 is a basis of the closure of the range of T which may be completed to a basis
of L2

W . Obviously [T ]m is symmetric and moreover, strictly positive since 〈Tej , fl〉W =
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〈(T ∗T )1/2ej , el〉Z for all j, l > 1. Thereby, we can apply Lemma A.3 in Cardot and Johannes
[2010] which gives T υd = T υd,D for sufficiently large D. We are currently exploring the data
driven choice of the basis {fl}l>1. �

Under the extended link condition (1.11) the next assertion summarizes sufficient

conditions to ensure consistency.

Corollary 1.3.2. The conclusion of Proposition 1.3.1 still holds true without imposing
condition (1.9), if the sequence υ satisfies Assumption 1.1, the conditional expectation
operator T belongs to T υd,D, and (1.10) is substituted by

mn∑
j=1

[h]2jυ−1
j = o(n) and m3

n = O(nυmn) as n→∞. (1.12)

1.3.3 An upper bound.

The last assertions show that the estimator ̂̀m defined in (1.8) is consistent for all struc-

tural functions and representers belonging to Fγ and F1/γ , respectively. The following

theorem provides now an upper bound if ϕ belongs to an ellipsoid Fργ . In this situation

the rate Rh of the lower bound given in Theorem 1.2.1 provides up to a constant also

an upper bound of the estimator ̂̀m∗n . Thus we have proved that the rate Rh is optimal

and, hence ̂̀m∗n is minimax optimal.

Theorem 1.3.3. Assume an iid. n-sample of (Y,Z,W ) from the model (1.1a–1.1b) with
joint distribution of (Z,W ) fulfilling Assumption 1.3. Let Assumptions 1.1 and 1.2 be
satisfied. Suppose that the dimension parameter m∗n given by (1.6) satisfies

(m∗n)3 max
{
| logRhn|, (logm∗n)

}
= o(γm∗n), as n→∞, (1.13)

then we have for all n > 1

sup
T∈T υ

d,D

sup
PU|W∈Uσ

sup
ϕ∈Fργ

E |̂̀m∗n − `h(ϕ)|2 6 C Rhn

for a constant C > 0 only depending on the classes Fργ , T υd,D, the constants σ, η and the
representer h.

The next result gives sufficient conditions for
√
n-estimability of `h(ϕ). The next corol-

lary is a direct consequence of Theorem 1.3.3 and Remark 1.2.4, hence its proof is omit-

ted.
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Corollary 1.3.4. Let the assumptions of Theorem 1.3.3 be satisfied. If in addition h ∈
R(T ∗) then we have for all n > 1

sup
T∈T υ

d,D

sup
PU|W∈Uσ

sup
ϕ∈Fργ

E |̂̀m∗n − `h(ϕ)|2 6 C n−1

where C is as in Theorem 1.3.3.

Remark 1.3.6. The last result together with Remark 1.2.4 established equivalence between
condition h ∈ R(T ∗) and

√
n-estimability of `h(ϕ) under appropriate conditions on ϕ and

the joint distribution of (Y,Z,W ) (as conjectured in Chapter 4, Remark (ii) of Severini
and Tripathi [2010]). As illustrated in the next subsection, depending on the severness
of the ill-posedness

√
n-estimability could not be possible even for smooth functionals. In

the polynomial case (pp), condition h ∈ R(T ∗) holds true only if s > a + 1/2. In case
of (ep), h ∈ R(T ∗) only if the representer h is analytic. In contrast to our framework,
the estimation procedure of Santos [2011] crucially relies on condition h ∈ R(T ∗) which
implies the existence of a function ϑ ∈ L2

W such that `h(ϕ) = E[Y ϑ(W )]. �

Note that Breunig and Johannes [2009] considered a similar estimator as ̂̀m given in

(1.8) which requires the choice an additional regularization parameter. Breunig and Jo-

hannes [2009] show that their estimator attains the lower bound rate within a constant

where the loss is measured uniformly over the class Fτω of representer. In the following,

we see that a similar result can be shown for the estimator ̂̀m. Observe that ‖h‖21/γ 6 τ
and Rhn 6 τ α∗n max16j6m∗n{(ωjυj)

−1} = τ Rωn for all h ∈ Fτω . Employing these esti-

mates, the proof of the next result is similar to the proof of Theorem 1.3.3 and is thus

omitted.

Corollary 1.3.5. Let the assumptions of Theorem 1.3.3 be satisfied where we substitute
condition (1.13) by (m∗n)3 max {| logRωn |, (logm∗n)} = o(γm∗n) as n→∞. Then we have

sup
T∈T υ

d,D

sup
PU|W∈Uσ

sup
ϕ∈Fργ , h∈Fτω

E |̂̀m∗n − `h(ϕ)|2 6 C Rωn

for a constant C > 0 only depending on the classes Fργ , Fτω , T υd,D and the constants σ, η.

1.3.4 Illustration by classical smoothness assumptions.

Let us illustrate our general results by considering classical smoothness assumptions.

To simplify the presentation we follow Hall and Horowitz [2005], and suppose that

the marginal distribution of the scalar regressor Z and the scalar instrument W are
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uniformly distributed on the interval [0, 1]. All the results below can be easily extended

to the multivariate case. In the univariate case, however, both Hilbert spaces L2
Z and

L2
W equal L2[0, 1]. Moreover, as a basis {ej}j>1 in L2[0, 1] we choose the trigonometric

basis given by

e1 :≡ 1, e2j(t) :=
√

2 cos(2πjt), e2j+1(t) :=
√

2 sin(2πjt), t ∈ [0, 1], j ∈ N.

In this subsection also the second basis {fl}l>1 is given by the trigonometric basis. In

this situation, the moment conditions formalized in Assumption 1.3 are automatically

fulfilled.

Recall the typical choices of the sequences γ, ω, and υ introduced in Remark 1.2.1. If

γj ∼ |j|2p, p > 0, as in case (pp) and (pe), then Fγ coincides with the Sobolev space

of p-times differential periodic functions (c.f. Neubauer [1988]). In case of (ep) it is

well known that Fγ contains only analytic functions if p > 1(c.f. Kawata [1972]). Fur-

thermore, we consider two special cases describing a “regular decay” of the unknown

singular values of T . In case of (pp) and (ep) we consider a polynomial decay of the se-

quence υ. Easy calculus shows that any operator T satisfying the link condition (1.4) acts

like integrating (a)-times and hence is called finitely smoothing (c.f. Natterer [1984]).

In case of (pe) we consider an exponential decay of υ and it can easily be seen that

T ∈ T υd implies R(T ) ⊂ C∞[0, 1], therefore the operator T is called infinitely smoothing
(c.f. Mair [1994]). In the next assertion we present the order of sequences Rh and Rω

which were shown to be minimax-optimal. Note that the minimax optimal rate Rω in

the cases (pp) and (pe) were already derived in Breunig and Johannes [2009] but are

stated and proved here for the sake of completeness.

Proposition 1.3.6. Assume an iid. n-sample of (Y,Z,W ) from the model (1.1a–1.1b) with
T ∈ T υd,D and PU |W ∈ Uσ. Then for the example configurations of Remark 1.2.1 we obtain

(pp) m∗n ∼ n1/(2p+2a) and

(i) Rhn ∼


n−(2p+2s−1)/(2p+2a), if s− a < 1/2,

n−1 logn, if s− a = 1/2,

n−1, otherwise,

(ii) Rωn ∼ max(n−(p+s)/(p+a), n−1).

(pe) m∗n ∼ log(n(logn)−p/a)1/(2a) and

(i) Rhn ∼ (logn)−(2p+2s−1)/(2a),

(ii) Rωn ∼ (logn)−(p+s)/a.
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(ep) m∗n ∼ log(n(logn)−a/p)1/(2p) and

(i) Rhn ∼


n−1(logn)(2a−2s+1)/(2p), if s− a < 1/2,

n−1 log(logn), if s− a = 1/2,

n−1, otherwise,

(ii) Rωn ∼ max(n−1(logn)(a−s)/p, n−1).

Remark 1.3.7. As we see from Proposition 1.3.6, if the value of a increases the obtainable
optimal rate of convergence decreases. Therefore, the parameter a is often called degree of
ill-posedness (c.f. Natterer [1984]). On the other hand, an increasing of the value p or s
leads to a faster optimal rate. Moreover, in the cases (pp) and (ep) the parametric rate n−1

is obtained independent of the smoothness assumption imposed on the structural function ϕ
(however, p > 3/2 is needed) if the representer is smoother than the degree of ill-posedness
of T , i.e., (i) s > a− 1/2 and (ii) s > a. Moreover, it is easily seen that if [h]j ∼ exp(−|j|s)
or ωj ∼ exp(|j|2s), s > 0, then the minimax convergence rates are always parametric for
any polynomial sequences γ and υ. �

Remark 1.3.8. It is of interest to compare our results with those of Hall and Horowitz
[2005] or Chen and Reiss [2008] who consider the estimation of the structural function as
a whole. In the notations of Hall and Horowitz [2005], who consider only the case (pp), the
decay of the eigenvalues of T ∗T is assumed to be of order j−α, that is, α = 2a with α > 1.
Furthermore, they suppose a decay of the coefficients of the structural function of order
j−β, that is, β = p+ 1/2 with β > 1/2. By using this parametrization, Hall and Horowitz
[2005] obtain in the case (pp) the minimax rate of convergence n−2p/(2a+2p+1) (see also
Chen and Reiß [2011]). Let us compare this rate when estimating ϕ at a point t0 ∈ [0, 1] (cf.
Example 1.3.1). Here, we have s = 0 and hence, obtain the minimax rate of convergence
n−(2p−1)/(2a+2p). Roughly speaking, one looses 1/2 of smoothness, which corresponds to
the loss of smoothness of Sobolev embeddings in Hölder spaces. For any representer h with
2s > (2a + 1)/(2a + 2p + 1), however, the rate of convergence for estimating `h(ϕ) in the
case (pp) is faster than estimating ϕ as a whole. �

Example 1.3.1. Suppose we are interested in estimating the value ϕ(t0) of the struc-
tural function ϕ evaluated at a point t0 ∈ [0, 1]. Consider the representer given by ht0 =∑∞
j=1 ej(t0)ej . Let ϕ ∈ Fγ . Since

∑
j>1 γ

−1
j < ∞ (cf. Assumption 1.1) it holds h ∈ F1/γ

and hence the point evaluation functional in t0 ∈ [0, 1], i.e., `ht0 (ϕ) = ϕ(t0), is well defined.
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In this case, the estimator ̂̀m introduced in (1.8) writes for all m > 1 as

ϕ̂m(t0) :=

 [e(t0)]tm[T̂ ]−1
m [ĝ]m, if [T̂ ]m is nonsingular and ‖[T̂ ]−1

m ‖ 6
√
n,

0, otherwise

where ϕ̂m is an estimator proposed by Johannes and Schwarz [2010]. Let p > 3/2 and
a > 0. Then the estimator ϕ̂m∗n(t0) attains within a constant the minimax optimal rate of
convergence Rht0 . Applying Proposition 1.3.6 gives

(pp) Rht0n ∼ n−(2p−1)/(2p+2a),

(ep) Rht0n ∼ (logn)−(2p−1)/(2a),

(ep) Rht0n ∼ n−1(logn)(2a+1)/(2p). �

Example 1.3.2. We want to estimate the average value of the structural function ϕ over
a certain interval [0, b] with 0 < b < 1. The linear functional of interest is given by
`h(ϕ) =

∫ b
0 ϕ(t)dt with representer h := 1[0,b]. Its Fourier coefficients are given by [h]1 =

b, [h]2j = (
√

2πj)−1 sin(2πjb), [h]2j+1 = −(
√

2πj)−1 cos(2πjb) for j > 1 and, hence
[h]2j ∼ j−2. Again we assume that p > 3/2 and a > 0. Then the mean squared error
of the estimator ̂̀m∗n =

∫ b
0 ϕ̂m∗n(t)dt is bounded up to a constant by the minimax rate of

convergence Rh. In the three cases the order of Rhn is given by

(pp) Rhn ∼


n−(2p+1)/(2p+2a), if a > 1/2,

n−1 logn, if a = 1/2,

n−1, otherwise,

(ep) Rhn ∼ (logn)−(2p+1)/(2a),

(ep) Rhn ∼


n−1(logn)(2a−1)/(2p), if a > 1/2,

n−1 log(logn), if a = 1/2,

n−1, otherwise.

As in the direct regression model where the average value of the regression function can
be estimated with rate n−1 we obtain the parametric rate in the case of (pp) and (ep) if
a < 1/2. �

Example 1.3.3. Consider estimation of the weighted average derivative of the structural
function ϕ with weight function H, i.e.,

∫ 1
0 ϕ
′(t)H(t)dt. This functional is useful not only

for estimating scaled coefficients of an index model, but also to quantify the average slope of
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structural functions. Assume that the weight function H is continuously differentiable and
vanishes at the boundary of the support of Z, i.e., H(0) = H(1) = 0. Integration by parts
gives

∫ 1
0 ϕ
′(t)H(t)dt = −

∫ 1
0 ϕ(t)h(t)dt = −`h(ϕ) with representer h given by the derivative

of H. The weighted average derivative estimator ̂̀m∗n = −
∫ 1

0 ϕ̂m∗n(t)h(t)dt is minimax
optimal. As an illustration consider the specific weight function H(t) = 1− (2t− 1)2 with
derivative h(t) = 4(1 − 2t) for 0 6 t 6 1. It is easily seen that the Fourier coefficients
of the representer h are [h]1 = 0, [h]2j = 0, [h]2j+1 = 4

√
2(πj)−1 for j > 1 and, thus

[h]22j+1 ∼ j−2. Thus, for the particular choice of the weight function H the estimator ̂̀m∗n
attains up to a constant the optimal rateRh, which was already specified in Example 1.3.2.
�

1.4 Adaptive estimation

In this section, we derive an adaptive estimation procedure for the value of the linear

function `h(ϕ). This procedure is based on the estimator ̂̀m̂ given in (1.8) with dimen-

sion parameter m̂ selected as a minimizer of the data driven penalized contrast criterion

(1.2a–1.2b). The selection criterion (1.2a–1.2b) involves the random upper bound M̂n

and the random penalty sequence p̂en which we introduce below. We show that the esti-

mator ̂̀m̂ attains the minimax rate of convergence within a logarithmic term. Moreover,

we illustrate the cost due to adaption by considering classical smoothness assumptions.

In an intermediate step we do not consider the estimation of unknown quantities in

the penalty function. Let us therefore consider a deterministic upper bound Mn and

a deterministic penalty sequence pen := (penm)m>1, which is nondecreasing. These

quantities are constructed such that they can be easily estimated in a second step. As

an adaptive choice m̃ of the dimension parameter m we propose the minimizer of a

penalized contrast criterion, that is,

m̃ := arg min
16m6Mn

{Ψm + penm} (1.14a)

where the random sequence of contrast Ψ := (Ψm)m>1 is defined by

Ψm := max
m6m′6Mn

{
|̂̀m′ − ̂̀m|2 − penm′

}
. (1.14b)

The fundamental idea to establish an appropriate upper bound for the risk of ̂̀m̃ is given

by the following reduction scheme. Let us denote m ∧ m′ := min(m,m′). Due to the
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definition of Ψ and m̃ we deduce for all 1 6 m 6Mn

|̂̀m̃ − `h(ϕ)|2 6 3
{
|̂̀m̃ − ̂̀m̃∧m|2 + |̂̀m̃∧m − ̂̀m|2 + |̂̀m − `h(ϕ)|2

}
6 3

{
Ψm + penm̃ +Ψm̃ + penm +|̂̀m − `h(ϕ)|2

}
6 6{Ψm + penm}+ 3|̂̀m − `h(ϕ)|2

where the right hand side does not depend on the adaptive choice m̃. Since the penalty

sequence pen is nondecreasing we obtain

Ψm 6 6 max
m6m′6M

(
|̂̀m′ − `h(ϕm′)|2 −

1
6 penm′

)
+

+ 3 max
m6m′6Mn

|`h(ϕm − ϕm′)|2

where (·)+ denotes the positive part of a function. Combining the last estimate with the

previous reduction scheme yields for all 1 6 m 6Mn

|̂̀m̃−`h(ϕ)|2 6 7 penm +78 biasm +42 max
m6m′6M

(
|̂̀m′ − `h(ϕm′)|2 −

1
6 penm′

)
+

(1.15)

where biasm := supm′>m|`h(ϕm′ − ϕ)|2. We will prove below that penm + biasm is of

the order Rhn(1+logn)−1 . Moreover, we will bound the right hand side term appropriately

with the help of Bernstein’s inequality.

Let us now introduce the upper bound Mn and sequence of penalty penm used in

the penalized contrast criterion (1.14a–1.14b). In the following, assume without loss of

generality that [h]1 6= 0.

Definition 1.4.1. For all n > 1 let an := n1−1/ log(2+logn)(1 + logn)−1 and Mh
n :=

max{1 6 m 6 bn1/4c : max
16j6m

[h]2j 6 n[h]21} then we define

Mn := min
{

2 6 m 6Mh
n : m3‖[T ]−1

m ‖2 max
16j6m

[h]2j > an
}
− 1

where we set Mn := Mh
n if the min runs over an empty set. Thus, Mn takes values between

1 and Mh
n . Let ς2

m = 74
(
E[Y 2] + max16m′6m ‖[T ]−1

m [g]m‖2
)
, then we define

penm := 24 ς2
m (1 + logn)n−1 max

16m′6m
‖[h]tm′ [T ]−1

m′ ‖
2. (1.16)

To apply Bernstein’s inequality we need another assumption regarding the error term

U . This is captured by the set U∞σ for some σ > 0, which contains all conditional

distributions PU |W such that E[U |W ] = 0, E[U2|W ] 6 σ2, and Cramer’s condition hold,
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i.e.,

E[|U |k|W ] 6 σk k!, k = 3, 4, . . . .

Moreover, besides Assumption 1.3 we need the following Cramer condition which is in

particular satisfied if the basis {fl}l>1 are uniformly bounded.

Assumption 1.4. There exists η > 1 such that the distribution of W satisfies

supj,l∈N E |fj(W )fl(W )− E[fj(W )fl(W )]|k 6 ηk k!, k = 3, 4, . . . .

We now present an upper bound for ̂̀m̃. As Goldenshluger and Pereverzev [2000] we

face a logarithmic loss due to the adaptation.

Theorem 1.4.1. Assume an iid. n-sample of (Y, Z,W ) from the model (1.1a–1.1b) with
E[Y 2] > 0. Let Assumptions 1.1–1.4 be satisfied. Suppose that (m◦n)3 max16j6m◦n [h]2j =
o(anυm◦n) as n→∞. Then we have for all n > 1

sup
T∈T υ

d,D

sup
PU|W∈U∞σ

sup
ϕ∈Fργ

E|̂̀m̃ − `h(ϕ)|2 6 C Rhn(1+logn)−1

for a constant C > 0 only depending on the classes Fργ , T υd,D, the constants σ, η and the
representer h.

Remark 1.4.1. In all examples studied below the condition (m◦n)3 max16j6m◦n [h]2j = o(anυm◦n)
as n tends to infinity is satisfied if the structural function ϕ is sufficiently smooth. More
precisely, in case of (pp) it suffices to assume 3 < 2p + 2 min(0, s). On the other hand, in
case of (pe) or (ep) this condition is automatically fulfilled. �

In the following definition we introduce empirical versions of the integer Mn and

the penalty sequence pen. Thereby, we complete the data driven penalized contrast

criterion (1.2a–1.2b). This allows for a completely data driven selection method. For

this purpose, we construct an estimator for ς2
m by replacing the unknown quantities by

their empirical analog, that is,

ς̂2
m := 74

(
n−1

n∑
i=1

Y 2
i + max

16m′6m
‖[T̂ ]−1

m [ĝ]m‖2
)
.

With the nondecreasing sequence (ς̂2
m)m>1 at hand we only need to replace the matrix

[T ]m by its empirical counterpart (cf. Subsection 1.3.1).
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Definition 1.4.2. Let an and Mh
n be as in Definition 1.4.1 then for all n > 1 define

M̂n := min
{

2 6 m 6Mh
n : m3‖[T̂ ]−1

m ‖2 max
16j6m

[h]2j > an
}
− 1

where we set M̂n := Mh
n if the min runs over an empty set. Thus, M̂n takes values between

1 and Mh
n . Then we introduce for all m > 1 an empirical analog of penm by

p̂enm := 204 ς̂2
m(1 + logn)n−1 max

16m′6m
‖[h]tm′ [T̂ ]−1

m′ ‖
2. (1.17)

Before we establish the next upper bound we introduce

M+
n := min

{
2 6 m 6Mh

n : υ−1
m m3 max

16j6m
[h]2j > 4Dan

}
− 1 (1.18)

where M+
n := Mh

n if the min runs over an empty set. Thus, M+
n takes values between 1

and Mh
n . As in the partial adaptive case we attain the minimax rate of convergence Rh

within a logarithmic term.

Theorem 1.4.2. Let the assumptions of Theorem 1.4.1 be satisfied. Additionally suppose
that (M+

n + 1)2 logn = o
(
nυM+

n +1
)

as n → ∞ and supj>1 E |ej(Z)|20 6 η20. Then for all
n > 1 we have

sup
T∈T υ

d,D

sup
PU|W∈U∞σ

sup
ϕ∈Fργ

E |̂̀m̂ − `h(ϕ)|2 6 C Rhn(1+logn)−1

for a constant C > 0 only depending on the classes Fργ , T υd,D, the constants σ, η and the
representer h.

Remark 1.4.2. Note that below in all examples illustrating Theorem 1.4.2 the condition
(M+

n + 1)2 logn = o(nυM+
n +1) as n tends to infinity is automatically satisfied. �

As in the case of minimax optimal estimation we now present an upper bound uni-

formly over the class Fτω of representer. For this purpose define Mω
n := max{1 6 m 6

bn1/4c : max16j6m(ω−1
j ) 6 n}. In the definition of the bounds M̂n, M+

n , andM−n (cf. Ap-

pendix 1.4) we replace Mh
n and max16j6m[h]2j by Mω

n and max16j6m ω
−1
j , respectively.

Consequently, by employing ‖h‖21/γ 6 τ and Rhn 6 τ Rωn for all h ∈ Fτω the next result

follows line by line the proof of Theorem 1.4.2 and hence its proof is omitted.

Corollary 1.4.3. Under the conditions of Theorem 1.4.2 we have for all n > 1

sup
T∈T υ

d,D

sup
PU|W∈U∞σ

sup
ϕ∈Fργ , h∈Fτω

E |̂̀m̂ − `h(ϕ)|2 6 C Rωn(1+logn)−1
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where the constant C > 0 depends on the parameter spaces Fργ , Fτω , T υd,D, and the constants
σ, η.

Illustration by classical smoothness assumptions. Let us illustrate the cost due to

adaption by considering classical smoothness assumptions as discussed in Subsection

1.3.4. In Theorem 1.4.2 and Corollary 1.4.3, respectively, we have seen that the adaptive

estimator ̂̀m̂ attains within a constant the rates Rhadapt and Rωadapt. Let us now present

the orders of these rates by considering the example configurations of Remark 1.2.1.

The proof of the following result is omitted because of the analogy with the proof of

Proposition 1.3.6.

Proposition 1.4.4. Assume an iid. n-sample of (Y,Z,W ) from the model (1.1a–1.1b)
with conditional expectation operator T ∈ T υd,D, error term U such that PU |W ∈ U∞σ , and
E[Y 2] > 0. Then for the example configurations of Remark 1.2.1 we obtain

(pp) if in addition 3 < 2p+ 2 min(s, 0) that m◦n ∼
(
n(1 + logn)−1)1/(2p+2a) and

(i) Rhn(1+logn)−1 ∼


(n−1(1 + logn))(2p+2s−1)/(2p+2a), if s− a < 1/2

n−1(1 + logn)2, if s− a = 1/2

n−1(1 + logn), if s− a > 1/2,

(ii) Rωn(1+logn)−1 ∼ max
(
(n−1(1 + logn))(p+s)/(p+a), n−1(1 + logn)

)
.

(pe) m◦n ∼ log
(
n(1 + logn)−(a+p)/a)1/2a and

(i) Rhn(1+logn)−1 ∼ (1 + logn)−(2p+2s−1)/(2a),

(ii) Rωn(1+logn)−1 ∼ (1 + logn)−(p+s)/a.

(ep) m◦n ∼ log
(
n(1 + logn)−(a+p)/p)1/2p and

(i) Rhn(1+logn)−1 ∼


n−1(1 + logn)(2a+2p−2s+1)/(2p), if s− a < 1/2

n−1(1 + logn)(log logn), if s− a = 1/2

n−1(1 + logn), if s− a > 1/2,

(ii) Rωn(1+logn)−1 ∼ max
(
n−1(logn)(a+p−s)/p, n−1(1 + logn)

)
.

Let us revisit Examples 1.3.1 and 1.3.2. In the following, we apply the general theory

to adaptive pointwise estimation and adaptive estimation of averages of the structural

function ϕ.
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Example 1.4.1. Consider the point evaluation functional `ht0 (ϕ) = ϕ(t0), t0 ∈ [0, 1],
introduced in Example 1.3.1. In this case, the estimator ̂̀m̂ with dimension parameter m̂
selected as a minimizer of criterion (1.2a–1.2b) writes as

ϕ̂m̂(t0) :=

 [e(t0)]t
m̂

[T̂ ]−1
m̂

[ĝ]m̂, if [T̂ ]m̂ is nonsingular and ‖[T̂ ]−1
m̂
‖ 6
√
n,

0, otherwise

where ϕ̂m is an estimator proposed by Johannes and Schwarz [2010]. Then ϕ̂m̂(t0) attains
within a constant the rate of convergence Rht0adapt. Applying Proposition 1.4.4 gives

(pp) Rht0n(1+logn)−1 ∼
(
n−1(1 + logn)

)(2p−1)/(2p+2a),

(ep) Rht0n(1+logn)−1 ∼ (1 + logn)−(2p−1)/(2a),

(ep) Rht0n(1+logn)−1 ∼ n−1(1 + logn)(2a+2p+1)/(2p). �

Example 1.4.2. Consider the linear functional `h(ϕ) =
∫ b

0 ϕ(t)dt with representer h :=
1[0,b] introduced in Example 1.3.2. The mean squared error of the estimator ̂̀m̂ =

∫ b
0 ϕ̂m̂(t)dt

is bounded up to a constant by Rhadapt. Applying Proposition 1.4.4 gives

(pp) Rhn(1+logn)−1 ∼


(n−1(1 + logn))(2p+1)/(2p+2a), if a > 1/2,

n−1(1 + logn)2, if a = 1/2,

n−1(1 + logn), otherwise,

(ep) Rhn(1+logn)−1 ∼ (1 + logn)−(2p+1)/(2a),

(ep) Rhn(1+logn)−1 ∼


n−1(1 + logn)(2a+2p−1)/(2p), if a > 1/2,

n−1(1 + logn)(log logn), if a = 1/2,

n−1(1 + logn), otherwise.

�

1.5 Monte Carlo experiments.

In this section, we examine the finite sample properties of our estimation procedure. We

study first the point evaluation functional and thereafter, an average of the structural

function. As in Subsection 1.3.4, we consider the case where Z and W are both scalar

and {ej}j>1 and {fl}l>1 coincide with the trigonometric basis. Moreover, we generate
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the joint density of (Z,W ) by the multivariate function pZW (z, w) = Cυ[e(z)]tk
(
[I]k +

Ak
)
[∇υ]1/2k [f(w)]k where Cυ is a normalization constant, (υj)j>1 is a nondecreasing se-

quence which is specified below, and k = 100. Here, Ak is a randomly generated k × k
matrix with spectral norm 1/2. Due to the construction of the joint density pZW the link

condition T ∈ T υd is satisfied for all φ ∈ Ek. Note that if Ak equals the zero matrix then

this would correspond to the situation where the eigenfunctions of T coincide with the

bases {ej}j>1 and {fl}l>1. We generate samples of size n = 1000 using the relationship

Y = E[ϕ(Z)|W ] + V where V ∼ N(0, 0.01). The number of Monte Carlo replications is

1000.

In particular, we want to study the performance of our estimators in finite samples

when the dimension parameter m is chosen by our adaptive procedure given in (1.2a–

1.2b). The constants in the definition of the adaptive procedure, though suitable for the

theory, may be chosen much smaller in practice. Here, we replace in definition of p̂en
(given in (1.17)) and ς̂2

m the constants 204 and 74 by 5 and 1, respectively. In addition,

we adjust the upper bound M̂ in the following way. We replace an (given in Definition

1.4.1) by 40n(1 + logn)−1.

Point wise estimation Let us consider the problem of pointwise estimation of ϕ(z) =
10 z2 sin(π z) for z ∈ [0, 1] over an equidistantly spaced grid of length 50. We truncate its

infinite dimensional vector of coefficients at a sufficiently large integer, say 100. In Figure

1.1, we compare the performance of the estimators with optimal parameter m∗n (in the

first column) and data driven parameter m̂ (in the second column). More precisely,

at each point t0 of the grid we choose m∗n as the minimizer of the empirical mean of

|̂̀m−`ht0 (ϕ)|2. The first row represents (pp) with υj = j−1 while the second depicts (pe)
with υj = exp(−j). In case of (pp), the pointwise 95%–confidence bands are sufficiently

tight to make significant statements about the curvature of ϕ. Not surprisingly, in case of

(pe) the pointwise confidence bands are much wider. But also in this case the pointwise

median of the adaptive estimators is very close to ϕ.
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Figure 1.1: The green solid, black dashed, and blue dotted lines show ϕ, point-wise
median of the estimators, and their 95% estimation band.

Estimation of averages We now consider the estimation of averages of the structural

function. In the following, let ϕ(z) =
∑100
j=1(−1)j+1j−2ej(z). We consider the problem of

estimating the value of the linear functional
∫ 0.75

0 ϕ(z)dz ≈ 0.898. The empirical means

from a Monte Carlo simulation are displayed in Table 1.1. Here, we choose m∗n as the

minimizer if the empirical mean of |̂̀m − ∫ 0.75
0 ϕ(z)dz|2. From Table 1.1 we see that the

difference of the empirical means of |̂̀m∗n − `h(ϕ)|2 and |̂̀m̂ − `h(ϕ)|2 are small.
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Model Sample Size Empirical mean of
υj |̂̀m∗n − `h(ϕ)|2 |̂̀m̂ − `h(ϕ)|2

j−1 200 0.0218 0.0202
1000 0.0058 0.0070

j−2 200 0.0784 0.0770
1000 0.0317 0.0300

j−3 200 0.1295 0.1404
1000 0.0931 0.1058

j−4 200 0.1462 0.1533
1000 0.1288 0.1462

exp(−j) 200 0.0627 0.0619
1000 0.0214 0.0313

exp(−2 j) 200 0.1275 0.1479
1000 0.1080 0.1362

exp(−3 j) 200 0.1521 0.1555
1000 0.1341 0.1538

Table 1.1: Results of Monte Carlo Simulations

Appendix

Proof of the lower bound given in Section 1.2.

PROOF OF THEOREM 1.2.1. Let us define ϕ∗ :=
(

ζ κα∗n∑m∗n
l=1[h]2

l
υ−1
l

)1/2 m∗n∑
j=1

[h]jυ−1
j ej with ζ :=

min(1/(2d), ρ). Since (γ−1
j υj)j>1 is nonincreasing and by using the definition of κ given

in (1.7) it follows that ϕ∗ and in particular ϕθ := θϕ∗ for θ ∈ {−1, 1} belong to Fργ . Let

V be a Gaussian random variable with mean zero and variance one (V ∼ N (0, 1)) which

is independent of (Z,W ). Consider Uθ := [Tϕθ](W ) − ϕθ(Z) + V , then PUθ|W belongs

to Uσ for all σ4 > (
√

3 + 4ρ
∑
j>1 γ

−1
j η2)2, which can be realized as follows. Obviously,

we have E[Uθ|W ] = 0. Moreover, we have supj E[e4
j (Z)|W ] 6 η4 implies E[ϕ4

θ(Z)|W ] 6
ρ2(∑

j>1 γ
−1
j

)2 E[e4
j (Z)|W ] 6 ρ2η4(

∑
j>1 γ

−1
j )2 and thus, |[Tϕθ](W )|4 6 E[ϕ4

θ(Z)|W ] 6
ρ2η4(

∑
j>1 γ

−1
j )2. From the last two bounds we deduce E[U4

θ |W ] 6 16E[ϕ4
θ(Z)|W ] +

6Var(ϕθ(Z)|W ) + 3 6 (
√

3 + 4ρ η2∑
j>1 γ

−1
j )2. Consequently, for each θ iid. copies

(Yi, Zi,Wi), 1 6 i 6 n, of (Y,Z,W ) with Y := ϕθ(Z)+Uθ form an n-sample of the model

(1.1a–1.1b) and we denote their joint distribution by Pθ and by Eθ the expectation with

respect to Pθ. In case of Pθ the conditional distribution of Y given W is Gaussian with
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mean [Tϕθ](W ) and variance 1. The log-likelihood of P1 with respect to P−1 is given by

log
( dP1
dP−1

)
=

n∑
i=1

2(Yi − [Tϕ∗](Wi))[Tϕ∗](Wi) +
n∑
i=1

2|[Tϕ∗](Wi)|2.

Since T ∈ T υd the Kullback-Leibler divergence satisfies the inequality KL(P1, P−1) 6
E1[log(dP1/dP−1)] = 2n‖Tϕ∗‖2W 6 2nd‖ϕ∗‖2υ. It is well known that the Hellinger dis-

tance H(P1, P−1) satisfies H2(P1, P−1) 6 KL(P1, P−1) and thus, employing again the

definition of κ we have

H2(P1, P−1) 6 2nd
m∗n∑
j=1

[ϕ∗]2jυj = 2nd ζ κα∗n∑m∗n
l=1[h]2l υ

−1
l

m∗n∑
j=1

[h]2j
υj

= 2dζ κ α
∗
n

n−1 6 2 d ζ 6 1.

(1.19)

Consider the Hellinger affinity ρ(P1, P−1) =
∫ √

dP1dP−1 then for any estimator ˘̀ it

holds

ρ(P1, P−1) 6
∫ |˘̀− `h(ϕ1)|

2|`h(ϕ∗)|

√
dP1dP−1 +

∫ |˘̀− `h(ϕ−1)|
2|`h(ϕ∗)|

√
dP1dP−1

6
(∫ |˘̀− `h(ϕ1)|2

4|`h(ϕ∗)|2
dP1

)1/2
+
(∫ |˘̀− `h(ϕ−1)|2

4|`h(ϕ∗)|2
dP−1

)1/2
. (1.20)

Due to the identity ρ(P1, P−1) = 1− 1
2H

2(P1, P−1) combining (1.19) with (1.20) yields

E1 |˘̀− `h(ϕ1)|2 + E−1 |˘̀− `h(ϕ−1)|2 > 1
2 |`h(ϕ∗)|2. (1.21)

Obviously, |`h(ϕ∗)|2 = ζκα∗n
m∗n∑
j=1

[h]2jυ−1
j . From (1.21) together with the last identity we

conclude for any possible estimator ˘̀

sup
T∈T υ

d,D

sup
PU|W∈Uσ

sup
ϕ∈Fργ

E |˘̀− `h(ϕ)|2 > sup
θ∈{−1,1}

Eθ |˘̀− `h(ϕ(θ)
∗ )|2

>
1
2
{
E1 |˘̀− `h(ϕ1)|2 + E−1 |˘̀− `h(ϕ−1)|2

}
>
κ

4 min
( 1

2d, ρ
)
α∗n

m∗n∑
j=1

[h]2jυ−1
j . (1.22)
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Consider now ϕ̃∗ :=
(

ζ κ∑
l>m∗n

[h]2
l
γ−1
l

)1/2 ∑
j>m∗n

[h]jγ−1
j ej , which belongs to Fργ since κ 6 1

and ζ 6 ρ. Moreover, since (γ−1
j υj)j>1 is nonincreasing and by using the definition of κ

given in (1.7) we have

2nd
∑
j>m∗n

[ϕ̃∗]2jυj = 2nd ζ κ∑
l>m∗n

[h]2l γ
−1
l

∑
j>m∗n

[h]2jυj
γ2
j

6 2ndζ κ

γm∗nυ
−1
m∗n

6 2 d ζ 6 1.

Thereby, following line by line the proof of (1.22) we obtain for any possible estimator ˘̀

sup
T∈T υ

d,D

sup
PU|W∈Uσ

sup
ϕ∈Fργ

E |˘̀− `h(ϕ)|2 > 1
4 |`h(ϕ̃∗)|2 = κ

4 min
( 1

2d, ρ
) ∑
j>m∗n

[h]2jγ−1
j .

Combining, the last estimate and (1.22) implies the result of the theorem, which com-

pletes the proof.

Proofs of Section 1.3.

We begin by defining and recalling notations to be used in the proofs of this section. For

m > 1 recall ϕm =
∑m
j=1[ϕm]jej with [ϕm]m = [T ]−1

m [g]m keeping in mind that [T ]m is

nonsingular. Then the identities [T (ϕ− ϕm)]m = 0 and [ϕm − Emϕ]m = [T ]−1
m [TE⊥mϕ]m

hold true. We denote Qm := [T̂ ]m− [T ]m and Vm := [ĝ]m− [T̂ ]m[ϕm]m = n−1∑n
i=1(Ui +

ϕ(Zi) − ϕm(Zi))[f(Wi)]m, where obviously EVm = 0. Moreover, let us introduce the

events

Ωm := {‖[T̂ ]−1
m ‖ 6

√
n}, fm := {

√
m‖Qm‖‖[T ]−1

m ‖ 6 1/2}

Ωc
m := {‖[T̂ ]−1

m ‖ >
√
n} and fcm = {

√
m‖Qm‖‖[T ]−1

m ‖ > 1/2}.

Observe that if
√
m‖Qm‖‖[T ]−1

m ‖ 6 1/2 then the identity [T̂ ]m = [T ]m{I + [T ]−1
m Qm}

implies by the usual Neumann series argument that ‖[T̂ ]−1
m ‖ 6 2‖[T ]−1

m ‖. Thereby, if
√
n > 2‖[T ]−1

m ‖ we have fm ⊂ Ωm. These results will be used below without further ref-

erence. We shall prove at the end of this section four technical Lemmata (1.5.1 – 1.5.4)

which are used in the following proofs. Furthermore, we will denote by C universal

numerical constants and by C(·) constants depending only on the arguments. In both

cases, the values of the constants may change from line to line.

Proof of the consistency.
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PROOF OF PROPOSITION 1.3.1. Consider for all m > 1 the decomposition

E |̂̀m − `h(ϕ)|2 = E |̂̀m − `h(ϕ)|2 1Ωm +|`h(ϕ)|2P (Ωc
m)

6 2E |̂̀m − `h(ϕm)|2 1Ωm +2|`h(ϕm − ϕ)|2 + |`h(ϕ)|2P (Ωc
m) (1.23)

where we bound each term separately. Let fm := {‖Qm‖‖[T ]−1
m ‖ 6 1/2} and let fcm

denote its complement. By employing ‖[T̂ ]−1
m ‖1fm 6 2‖[T ]−1

m ‖ and ‖[T̂ ]−1
m ‖2 1Ωm 6 n it

follows that

|̂̀m−`h(ϕm)|2 1Ωm 6 2
∣∣∣[h]tm[T ]−1

m Vm
∣∣∣2+2

∣∣[h]tm[T ]−1
m Qm[T̂ ]−1

m Vm
∣∣2 1Ωm(1fm +1fcm

)

6 2|[h]tm[T ]−1
m Vm|2+2‖[h]tm[T ]−1

m ‖2
{

4‖[T ]−1
m ‖2‖Qm‖2‖Vm‖2 + n‖Qm‖2‖Vm‖2 1fcm

}
.

Thus, from estimate (1.27), (1.28), and (1.29) in Lemma 1.5.1 we infer

E |̂̀m − `h(ϕm)|2 1Ωm 6 C(γ)n−1‖[h]tm[T ]−1
m ‖2η4(σ2 + ‖ϕ− ϕm‖2γ

)
×
{

1 + m3

n
‖[T ]−1

m ‖2 + m3P 1/4(fcm)
}
. (1.24)

Let m = mn satisfying m−1
n = o(1), mn = o(n), and condition (1.10). We have

√
n >

2‖[T ]−1
mn‖ and thus, Ωc

mn ⊂ fcmn for n sufficiently large. From Lemma 1.5.3 it follows

that m12
n P (fcmn) 6 2 exp

{
−mn (32η2n−1mn

3‖[T ]−1
mn‖

2)−1 + 14 logmn
}

= O(1) as n →
∞ since mn(4n−1m3

n‖[T ]−1
mn‖

2)−1 6 4η2n for n sufficiently large. Thus, in particular

P (Ωc
mn) = o(1). Consequently, as n→∞we obtain E |̂̀mn−`h(ϕmn)|2 1Ωmn = o(1) since

‖[h]tmn [T ]−1
mn‖

2 = o(n). Moreover, as n → ∞ it holds |`h(ϕmn) − `h(ϕ)|2 6 ‖h‖1/γ‖ϕ −
ϕmn‖γ = o(1) due to condition (1.9), and |`h(ϕ)|2P (Ωc

mn) 6 ‖h‖1/γ‖ϕ‖γP (Ωc
mn) = o(1).

This together with decomposition (1.23) proves the result.

PROOF OF COROLLARY 1.3.2. The assertion follows directly from Proposition 1.3.1, it

only remains to check conditions (1.9) and (1.10). We make use of decomposition ‖ϕ−
ϕm‖γ 6 ‖E⊥mϕ‖γ + ‖Emϕ−ϕm‖γ . As in the proof of Lemma 1.5.2 we conclude ‖Emϕ−
ϕm‖2γ 6 ‖E⊥mϕ‖γ supm sup‖φ‖γ=1‖T−1

m FmTE
⊥
mφ‖γ 6 Dd‖E⊥mϕ‖γ . By using Lebesgue’s

dominated convergence theorem we observe ‖E⊥mϕ‖γ = o(1) as m→∞ and hence (1.9)

holds. Condition T ∈ T υd,D implies ‖[h]tm[T ]−1
m ‖2 6 D

∑m
j=1 [h]2jυj−1 and ‖[T ]−1

m ‖2 6
Dυ−1

m for all m > 1 since υ is nonincreasing. Thereby, condition (1.12) implies condition

(1.10), which completes the proof.

Proof of the upper bound.
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PROOF OF THEOREM 1.3.3. The proof is based on inequality (1.23). Applying estimate

(1.32) in Lemma 1.5.2 gives |`h(ϕm−ϕ)|2 6 2ρ {
∑
j>m[h]2jγ−1

j +Ddυmγ−1
m

∑m
j=1[h]2jυ−1

j }
for all ϕ ∈ Fργ and h ∈ F1/γ . Since |`h(ϕ)|2 6 ‖ϕ‖2γ‖h‖21/γ and ‖ϕ‖2γ 6 ρ we conclude

E |̂̀m − `h(ϕ)|2 6 2E |̂̀m − `h(ϕm)|2 1Ωm

+ 4ρ
{ ∑
j>m

[h]2jγ−1
j + dD

υm
γm

m∑
j=1

[h]2jυ−1
j

}
+ ρ‖h‖21/γP (Ωc

m). (1.25)

By employing ‖Qm[T̂ ]−1
m ‖2 1fm 6 m−1 and ‖[T̂ ]−1

m ‖2 1Ωm 6 n it follows that

|̂̀m − `h(ϕm)|2 1Ωm 6 2|[h]tm[T ]−1
m Vm|2 + 2m−1‖[h]tm[T ]−1

m ‖2‖Vm‖2

+ 2n‖[h]tm[T ]−1
m ‖2‖Qm‖2‖Vm‖2 1fcm .

Due to T ∈ T υd,D and ϕ ∈ Fργ we have ‖[h]tm[T ]−1
m ‖2 6 D

∑m
j=1[h]2j/υj and ‖ϕ−ϕm‖2γ 6

2 ρ (1 + Dd) (cf. (1.31) in Lemma 1.5.2), respectively. Thereby, similarly to the proof of

Proposition 1.3.1 we get

E |̂̀m − `h(ϕm)|2 1Ωm 6 C(γ)D(σ2 + η2dDρ)n−1
m∑
j=1

[h]2jυ−1
j

{
1 +m3P (fcm)1/4

}
.

Combining the last estimate with (1.25) yields

E |̂̀m−`h(ϕ)|2 6 C(γ)D(σ2+η2dDρ) max
{ ∑
j>m

[h]2jγ−1
j ,max

(υm
γm

, n−1
) m∑
j=1

[h]2jυ−1
j

}
×
{

1 +m3P (fcm)1/4
}

+ ρ‖h‖21/γP (Ωc
m). (1.26)

Consider now the optimal choice m = m∗n defined in (1.6), then we have

E |̂̀m∗n − `h(ϕ)|2 6 C(γ)D
{
σ2 + ρ

(
η2dD + ‖h‖21/γ

)}
Rhn

×
{

1 + (m∗n)3P (fcm∗n)1/4 + (Rhn)−1P (Ωc
m∗n

)
}

and hence, the assertion follows by making use of Lemma 1.5.4.

Technical assertions.

The following paragraph gathers technical results used in the proofs of Section 1.3.

Below we consider the set Sm := {s ∈ Rm : ‖s‖ = 1}.
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Lemma 1.5.1. Suppose that PU |W ∈ Uσ and that the joint distribution of (Z,W ) satisfies
Assumption 1.3. If in addition ϕ ∈ Fργ with γ satisfying Assumption 1.1, then for all m > 1
we have

sup
s∈Sm

E |st Vm|2 6 2n−1(σ2 + C(γ) η2‖ϕ− ϕm‖2γ
)
, (1.27)

E‖Vm‖4 6 C(γ)
(
n−1mη2(σ2 + ‖ϕ− ϕm‖2γ)

)2
, (1.28)

E‖Qm‖8 6 C
(
n−1m2 η2)4. (1.29)

PROOF. Proof of (1.27). Since ({Ui + ϕ(Zi) − ϕm(Zi)}
∑m
j=1 sjfj(Wi)), 1 6 i 6 n, are

iid. with mean zero we have E |st Vm|2 = n−1 E |{U + ϕ(Z) − ϕm(Z)}
∑m
j=1 sjfj(W )|2.

Then (1.27) follows from E[U2|W ] 6 (E[U4|W ])1/2 6 σ2 and from Assumption 1.3 (i),

i.e., supj∈N E[e2
j (Z)|W ] 6 η2. Indeed, applying condition |j|3γ−1

j = o(1) (cf. Assumption

1.1) gives
∑
j>1 γ

−1
j 6 C(γ) and thus,

E |{ϕ(Z)− ϕm(Z)}
m∑
j=1

sjfj(W )|2 6 ‖ϕ− ϕm‖2γ
∞∑
l=1

γ−1
l E |el(Z)

m∑
j=1

sjfj(W )|2

6 C(γ) η2‖ϕ − ϕm‖2γ
m∑
j=1

s2
j = C(γ) η2‖ϕ − ϕm‖2γ .

Proof of (1.28). Observe that for each 1 6 j 6 m, ({Ui + ϕ(Zi) − ϕm(Zi)}fj(Wi)),
1 6 i 6 n, are iid. with mean zero. It follows from Theorem 2.10 in Petrov [1995] that

E‖Vm‖4 6 Cn−2m2 supj∈N E |{U+ϕ(Z)−ϕm(Z)}fj(W )|4. Thereby, (1.28) follows from

E[U4|W ] 6 σ4 and supj∈N E[f4
j (W )] 6 η4 together with E |{ϕ(Z) − ϕm(Z)}fj(W )|4 6

C(γ) η4‖ϕ − ϕm‖4γ , which can be realized as follows. Since [T (ϕ − ϕm)]j = 0 we have

{ϕ(Z)−ϕm(Z)}fj(W ) =
∑
l>1[ϕ−ϕm]l{el(Z)fj(W )− [T ]j,l}. Furthermore, Assumption

1.3 (ii), i.e., supj,l∈N E |el(Z)fj(W )− [T ]j,l|4 6 4!η4, implies

E |{ϕ(Z)− ϕm(Z)}fj(W )|4 6 ‖ϕ− ϕm‖4γ E
∣∣∣∑
l>1

γ−1
l |el(Z)fj(W )− [T ]j,l|2

∣∣∣2
6 C(γ) η4‖ϕ − ϕm‖4γ .

Proof of (1.29). The random variables (el(Zi)fj(Wi) − [T ]j,l), 1 6 i 6 n, are iid.

with mean zero for each 1 6 j, l 6 m. Hence, Theorem 2.10 in Petrov [1995] implies

E‖Qm‖8 6 Cn−4m8 supj,l∈N E |el(Z)fj(W )− [T ]j,l|8 and thus, the assertion follows from

Assumption 1.3 (ii), which completes the proof.
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Lemma 1.5.2. If T ∈ T υd,D and ϕ ∈ Fργ , then for all m > 1 we have

‖Emϕ− ϕm‖2γ 6 Ddρ, (1.30)

‖ϕ− ϕm‖2γ 6 2 (1 + Dd) ρ, (1.31)

|〈h, ϕ− ϕm〉Z |2 6 2 ρ
∑
j>m

[h]2j
γj

+ 2Ddρ
υm
γm

m∑
j=1

[h]2j
υj

. (1.32)

PROOF. Consider (1.30). Since T ∈ T υd,D the identity [Emϕ − ϕm]m = −[T ]−1
m [TE⊥mϕ]m

implies ‖Emϕ− ϕm‖2υ 6 D‖TE⊥mϕ‖2W 6 Dd‖E⊥mϕ‖2υ. Consequently,

‖Emϕ− ϕm‖2υ 6 Ddγ−1
m υm‖ϕ‖2γ (1.33)

because (γ−1
j υj)j>1 is nonincreasing and thus, ‖Emϕ − ϕm‖2γ 6 γmυ

−1
m ‖Emϕ − ϕm‖2υ.

By combination of the last estimate and (1.33) we obtain the assertion (1.30). By em-

ploying the decomposition ‖ϕ − ϕm‖2γ 6 2‖ϕ − Emϕ‖2γ + 2‖Emϕ − ϕm‖2γ the bound

(1.31) follows from (1.30) and ‖ϕ − Emϕ‖2γ 6 ‖ϕ‖2γ . It remains to show (1.32). Ap-

plying the Cauchy-Schwarz inequality gives |〈h, ϕ− Emϕ〉Z |2 6 ‖ϕ‖2γ
∑
j>m[h]2jγ−1

j and

|〈h,Emϕ − ϕm〉Z |2 6 Dd ‖ϕ‖2γ υmγ−1
m

∑m
j=1[h]2jυ−1

j by (1.33). Thereby (1.32) follows

from the inequality |〈h, ϕ − ϕm〉Z |2 6 2|〈h, ϕ − Emϕ〉Z |2 + 2|〈h,Emϕ − ϕm〉Z |2, which

completes the proof.

Lemma 1.5.3. Suppose that the joint distribution of (Z,W ) satisfies Assumption 1.3. Then
for all n > 1 and m > 1 we have

P
(
m−2n‖Qm‖2 > t

)
6 2 exp

(
− t

8η2 + 2 logm
)

for all 0 < t 6 4 η2n. (1.34)

Proof. Our proof starts with the observation that for all j, l ∈ N the condition (ii) in

Assumption 1.3 implies for all t > 0

P
(∣∣ n∑
i=1
{ej(Zi)fl(Wi)− E[ej(Z)fl(W )]}

∣∣ > t) 6 2 exp
( −t2

4nη2 + 2ηt

)
,

which is just Bernstein’s inequality (cf. Bosq [1998]). This implies for all 0 < t 6 2ηn

sup
j,l∈N

P
(∣∣ n∑
i=1
{ej(Zi)fl(Wi)− E[ej(Z)fl(W )]}

∣∣ > t) 6 2 exp
(
− t2

8η2n

)
. (1.35)

It is well-known that m−1‖[A]m‖ 6 max16j,l6m |[A]j,l| for any m×m matrix [A]m. Com-
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bining the last estimate and (1.35) we obtain for all 0 < t 6 2η n1/2

P
(
m−1n1/2‖Qm‖ > t

)
6

m∑
j,l=1

P
(∣∣ n∑

i=1

(
ej(Zi)fl(Wi)− E[ej(Z)fl(W )]

)∣∣ > n1/2t
)

6 2 exp
(
− t2

8η2 + 2 logm
)
.

Lemma 1.5.4. Under the conditions of Theorem 1.3.3 we have for all n > 1

(m∗n)12P (fcm∗n) 6 C(γ, υ, η,D) (1.36)

(Rhn)−1P (Ωc
m∗n

) 6 C(γ, υ, η, h,D). (1.37)

PROOF. Proof of (1.36). Since ‖[T ]−1
m ‖2 6 Dυ−1

m due to T ∈ T υd,D it follows from Lemma

1.5.3 for all m,n > 1 that

P (fcm) 6 P
(
m−2n‖Qm‖2 >

nυm
4Dm3

)
6 2 exp

(
− nυm

32Dη2m3 + 2 logm
)

since (4Dm3υ−1
m )−1 6 1 6 4η2 for all m > 1. Due to condition (1.13) there exists n0 > 1

such that nυm∗n > 448Dη2(m∗n)3 logm∗n for all n > n0. Consequently, (m∗n)12P (fcm∗n) 6 2
for all n > n0, while trivially (m∗n)12P (fcm∗n) 6 (m∗n0)12 for all n 6 n0, which gives (1.36)

since n0 and m∗n0 depend on γ, υ, η and D only.

Consider (1.37). Let n0 ∈ N such that max{| logRhn|, (logm∗n)}(m∗n)3 6 nυm∗n(96Dη2)−1

for all n > n0. Observe that fm ⊂ Ωm if n > 4Dυ−1
m . Since (m∗n)−3nυm∗n > 96Dη2

for all n > n0 it follows nυm∗n > 4D for all n > n0 and hence (Rhn)−1P (Ωc
m∗n

) 6
(Rhn)−1P (fcm∗n) 6 2 for all n > n0 as in the proof of (1.36). Combining the last es-

timate and the elementary inequality (Rhn)−1P (Ωc
m∗n

) 6 (Rhn0)−1 for all n 6 n0 shows

(1.37) since n0 depends on γ, υ, η, h and D only, which completes the proof.

Proofs of Section 1.3.4

PROOF OF PROPOSITION 1.3.6. Proof of (pp). From the definition of m∗n in (1.6) it fol-

lows m∗n ∼ n1/(2p+2a). Consider case (i). The condition s − a < 1/2 implies that

n−1∑m∗n
j=1 |j|2a−2s ∼ n−1(m∗n)2a−2s+1 ∼ n−(2p+2s−1)/(2p+2a) and moreover, we calcu-

late
∑
j>m∗n

|j|−2p−2s ∼ n−(2p+2s−1)/(2p+2a) since p + s > 1/2. If s − a = 1/2 then

n−1∑m∗n
j=1 |j|2a−2s ∼ n−1 log(n1/(2p+2a)) and

∑
j>m∗n

|j|−2p−2s ∼ n−1. In the case of

s − a > 1/2 it follows that
∑m∗n
j=1 |j|2a−2s is bounded whereas

∑
j>m∗n

|j|−2p−2s . n−1
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and hence, Rhn ∼ n−1. To prove (ii) we make use of Corollary 1.2.2. We observe that if

s− a > 0 the sequence ωυ is bounded from below, and hence Rωn ∼ n−1. Otherwise, the

condition s− a < 0 implies Rωn ∼ n−(p+s)/(p+a).

Proof of (pe). Note that m∗n satisfies m∗n ∼ log(n(logn)−p/a)1/(2a). In order to

prove (i), we calculate that
∑
j>m∗n

|j|−2p−2s ∼ (logn)(−2p−2s+1)/(2a) and moreover,

n−1∑m∗n
j=1 exp(|j|2a)|j|−2s . (logn)(−2p−2s+1)/(2a). In case (ii) we immediately obtain

Rωn ∼ (logn)−(p+s)/a.

Proof of (ep). It holds true m∗n ∼ log(n(logn)−a/p)1/(2p). Consider case (i). If

s − a < 1/2 then n−1∑m∗n
j=1 |j|2a−2s ∼ n−1(logn)(2a−2s+1)/(2p). If s − a = 1/2 we con-

clude n−1∑m∗n
j=1 |j|2a−2s ∼ n−1 log(log(n)). On the other hand, the condition s− a > 1/2

implies that
∑m∗n
j=1 |j|2a−2s is bounded and thus, we obtain the parametric rate n−1. More-

over, it is easily seen that
∑
j>m∗n

|j|−2s exp(−|j|2p) . n−1∑m∗n
j=1 |j|2a−2s. In case (ii) if

s − a > 0 then the sequence ωυ is bounded from below as mentioned above and thus,

Rωn ∼ n−1. If s− a < 0 then Rωn ∼ n−1(logn)(a−s)/p, which completes the proof.

Proofs of Section 1.4

At the end of this section we shall prove six technical Lemmata (1.5.7 – 1.5.12) which are

used in the following proofs. Let us introduce a nondecreasing sequence ∆ := (∆m)m>1

and its empirical analog ∆̂ := (∆̂m)m>1 by ∆m := max16m′6m‖[h]tm′ [T ]−1
m′ ‖2 and ∆̂m :=

max16m′6m‖[h]tm′ [T̂ ]−1
m′ ‖2, respectively. Similarly to M+

n introduced in (1.18) we define

M−n := min
{

2 6 m 6Mh
n : 4Dυ−1

m m3 max
16j6m

[h]2j > an

}
− 1 (1.38)

where we set M−n := Mh
n if the set is empty. Thus, M−n takes values between 1 and

Mh
n . In the following C > 0 denotes a constant only depending on the classes Fργ , T υd,D,

the constants σ, η and the representer h. For ease of notation, the value of C > 0 may

change from line to line.

PROOF OF THEOREM 1.4.1. The proof of the theorem is based on inequality (1.15). Ob-

serve that by Lemma 1.5.10 we have M−n 6 Mn 6 M+
n . Further, due to condition

(m◦n)3 max16j6m◦n [h]2j = o(anυm◦n) there exists n0 > 1 only depending on h, γ, and υ

such that for all n > n0 it holds m◦n 6 M−n . We distinguish in the following the cases

n > n0 and n < n0. First, consider n > n0. Applying Corollary 1.5.6 together with

estimate (1.15) implies

E|̂̀m̃ − `h(ϕ)|2 6 C
{

penm◦n + biasm◦n +n−1
}
.
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From the definition of penm we infer penm 6 24(3ρ+ 2σ2)(1 + logn)n−1D
∑m
j=1[h]2jυ−1

j

since T ∈ T υd,D, U ∈ U∞σ , and ϕ ∈ Fργ . Moreover, since ϕ ∈ Fργ and h ∈ F1/γ

estimate (1.32) in Lemma 1.5.2 implies for all 1 6 m 6 M−n the inquality biasm 6
min16m′6M−n 2 ρ

{∑
j>m′ [h]2jγ−1

j + dDυm′γ
−1
m′
∑m′
j=1[h]2jυ−1

j

}
.

Consequently,

E|̂̀m̃ − `h(ϕ)|2 6 C
{

max
( ∑
j>m◦n

[h]2jγ−1
j , α◦n

m◦n∑
j=1

[h]2jυ−1
j

)
+ n−1

}
.

Consider now n < n0. Observe that for all 1 6 m 6Mh
n it holds

|̂̀m − `h(ϕ)|2 6 2|[h]tm[T̂ ]−1
m Vm|2 1Ωm +2(|`h(ϕm − ϕ)|2 + |`h(ϕ)|2 1Ωcm)

6 2n‖[h]Mh
n
‖2‖VMh

n
‖2 + 2(|`h(ϕm − ϕ)|2 + |`h(ϕ)|2 1Ωcm). (1.39)

From the definition of Mh
n we infer ‖[h]Mh

n
‖2 6 [h]21 n5/4. Hence inequality (1.28) in

Lemma 1.5.1, inequality (1.31) in Lemma 1.5.2 and Lemma 1.5.12 yield for all ϕ ∈ Fργ
and h ∈ F1/γ

nE |̂̀m̃ − `h(ϕ)|2 6 2 [h]21 n9/5‖VMh
n
‖2 + 6ρ‖h‖21/γ(1 +Dd)n 6 C,

which proves the result.

Lemma 1.5.5. Consider (p̃enm)m>1 with p̃enm := 24
(
24E[U2]+96η2ρm3γ−1

m

)
(1+logn)n−1.

Then under the conditions of Theorem 1.4.1 we have for all n > 1

sup
T∈T υ

d,D

sup
PU|W∈U∞σ

E max
m◦n6m6M

+
n

(
|̂̀m − `h(ϕm)|2 − 1

6 p̃enm
)

+
6 C n−1.

PROOF. Similarly to the proof of Theorem 1.3.3 we obtain the decomposition

|̂̀m − `h(ϕm)|2 6 2|[h]tm[T ]−1
m Vm|2 + 2m−1‖[h]tm[T ]−1

m ‖2‖Vm‖2+

2n‖[h]tm[T ]−1
m Qm‖2‖Vm‖2 1fcm +|`h(ϕm)|2 1Ωcm .

Observe that ‖[h]tm[T ]−1
m ‖2 6 ∆m for all m > 1 and hence, we have for all m◦n 6 m 6



48 Adaptive Estimation of Functionals

M+
n

(
|̂̀m − `h(ϕm)|2 − 1

6 p̃enm
)

+
6 2∆m

( |[h]tm[T ]−1
m Vm|2

‖[h]tm[T ]−1
m ‖2

− p̃enm
24∆m

)
+

+ 2∆m

(‖Vm‖2
m

− p̃enm
24∆m

)
+

+ 2n∆m‖Qm‖2‖Vm‖2 1fcm +|`h(ϕm)|2 1Ωcm

=: Im + IIm + IIIm + IVm.

Consider the first two right hand side terms. We calculate

E max
m◦n6m6M

+
n

(Im + IIm) 6 4 max
m◦n6m6M

+
n

sup
s∈Sm

E
(
|stVm|2 −

p̃enm
24∆m

)
+

M+
n∑

m=1
∆m.

From the definition of p̃en we infer for all s ∈ Sm and m◦n 6 m 6M
+
n

nE
(
|stVm|2 −

p̃enm
24∆m

)
+
6 2E

(
(n−1/2

n∑
i=1

Uis
t[f(Wi)]m)2 − 12E[U2](1 + logn)

)
+

+ 2E
(
(n−1/2

n∑
i=1

(ϕ(Zi)− ϕm(Zi))st[f(Wi)]m)2 − 48η2ρm3γ−1
m (1 + logn)

)
+

6 C(σ, η, γ, ρ,D)n−1

where the last inequality follows from Lemma 1.5.7 and 1.5.8. Due to the definition of

M+
n and since ∆ is nondecreasing we have

n−1
M+
n∑

m=1
∆m 6 D(nυM+

n
)−1(M+

n )2 max
16j6M+

n

[h]2j 6 4D2.

Consequently, Emaxm◦n6m6M+
n

(Im + IIm) 6 Cn−1. Further, we obtain for ϕ ∈ Fργ and

h ∈ F1/γ

E max
m◦n6m6M

+
n

(IIIm) 6 n∆M+
n

(E ‖QM+
n
‖8)1/4(E ‖VM+

n
‖4)1/2P 1/4

( M+
n⋃

m=1
fcm

)

6 C(γ) η4(σ2 + (1 + Dd)ρ)n−1∆M+
n

(M+
n )3P 1/4

( M+
n⋃

m=1
fcm

)
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where the last inequality is due to Lemma 1.5.1 and

E max
m◦n6m6M

+
n

(IVm) 6 ρ‖h‖21/γP
( M+

n⋃
m=1

Ωc
m

)
.

Now applying inequality n−1∆M+
n

(M+
n )3 6 4D2 and Lemma 1.5.9 gives the upper bound

Emaxm◦n6m6M+
n

(IIIm + IVm) 6 Cn−1, which completes the proof.

Corollary 1.5.6. Under the conditions of Theorem 1.4.1 we have for all n > 1

sup
T∈T υ

d,D

sup
PU|W∈U∞σ

E max
m◦n6m6M

+
n

(
|̂̀m − `h(ϕm)|2 − 1

6 penm
)

+
6 C n−1.

Proof. Observe that m3γ−1
m = o(1) and ‖ϕ−ϕm‖2Z = o(1) as m→∞ due to Assumption

1.1 and T ∈ T υd,D (cf. proof of Corollary 1.3.2), respectively. Thereby, there exists a

constant n0 only depending on γ, ρ, and η such that for all n > n0 and m > m◦n we have

24E[U2]+96η2ρm3γ−1
m 6 72

(
E[Y 2]+‖ϕm‖2Z+‖ϕ−ϕm‖2Z

)
+96η2ρm3γ−1

m 6 ς
2
m. (1.40)

We distinguish in the following the cases n < n0 and n > n0. First, consider n < n0.

Due to n−1∑M+
n

m=1 ∆m 6 4D2 and inequality (1.27) in Lemma 1.5.1 we calculate for all

s ∈ Sm

M+
n∑

m=1
∆m E

(
|stVm|2−

penm
24∆m

)
+
6

M+
n∑

m=1
∆m E |stVm|2 6 8n0D

2(σ2+C(γ) η2 ‖ϕ−ϕm‖2γ
)
n−1.

Therefore, following line by line the proof of Lemma 1.5.5 it is easily seen that it holds

nEmaxm◦n6m6M+
n

(
|̂̀m − `h(ϕm)|2 − 1

6 penm
)
+ 6 C. Consider now n > n0. Inequal-

ity (1.40) implies p̃enm 6 penm and thus,
(
|̂̀m − `h(ϕm)|2 − 1

6 penm
)
+ 6

(
|̂̀m −

`h(ϕm)|2 − 1
6 p̃enm

)
+ for all m◦n 6 m 6 M+

n . Thus, from Lemma 1.5.5 we infer

nEmaxm◦n6m6M+
n

(
|̂̀m − `h(ϕm)|2 − 1

6 penm
)
+ 6 C, which completes the proof of the

corollary.

PROOF OF THEOREM 1.4.2. Similarly to the proof of Theorem 1.4.1 and since p̂en is a

nondecreasing sequence we have for all 1 6 m 6 M̂n

|̂̀m̂ − `h(ϕ)|2 . p̂enm + biasm + max
m6m′6M̂n

(
|̂̀m′ − `h(ϕm′)|2 −

1
6 p̂enm′

)
+
.
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Let us introduce the set

A :=
{

penm 6 p̂enm 6 8 penm, 1 6 m 6M+
n

}
∩ {M−n 6 M̂n 6M+

n },

then we conclude for all 1 6 m 6M−n

|̂̀m̂ − `h(ϕ)|2 1A . penm + biasm + max
m6m′6M+

n

(
|̂̀m′ − `h(ϕm′)|2 −

1
6 penm′

)
+
.

Thereby, similarly as in the proof of Theorem 1.4.1 we obtain for all ϕ ∈ Fργ and

h ∈ F1/γ the upper bound for all n > 1

E|̂̀m̂ − `h(ϕ)|2 1A 6 C Rhn(1+logn)−1 . (1.41)

Let us now evaluate the risk of the adaptive estimator ̂̀m̂ on Ac. From the definition

of Mh
n we infer ‖[h]Mh

n
‖2 6 [h]21 nMh

n . Consequently, inequality (1.39) together with

(1.28) in Lemma 1.5.1, (1.31) in Lemma 1.5.2 and Lemma 1.5.12 yields for all ϕ ∈ Fργ
and h ∈ F1/γ

E |̂̀m̂ − `h(ϕ)|2 1Ac

6 2 [h]21 n2Mh
n (E ‖VMh

n
‖4)1/2P (Ac)1/2 + 6ρ‖h‖21/γ(1 +Dd)P (Ac) 6 C n−1.

The result follows by combining the last inequality with (1.41).

Technical assertions.

The following paragraph gathers technical results used in the proofs of Section 1.4. In

the following we denote ξs(w) :=
∑m
j=1 sjfj(w) where s ∈ Sm = {s ∈ Rm : ‖s‖ = 1}.

Lemma 1.5.7. Let Assumptions 1.3 and 1.4 hold. Then for all n > 1 and 1 6 m 6 bn1/4c
we have

sup
PU|W∈U∞σ

sup
s∈Sm

E
[( 1
n

∣∣∣ n∑
i=1

Uiξs(Wi)
∣∣∣2 − 12E[U2](1 + logn)

)
+

]
6 C(σ, η)n−1.

Proof. Let us denote δ = 12E[U2](1 + logn). Since the error term U satisfies Cramer’s



Appendix 51

condition we may apply Bernstein’s inequality and since E[U2|W ] 6 σ2 we have

E
[( 1
n

∣∣∣ n∑
i=1

Uiξs(Wi)
∣∣∣2 − δ)

+
|W1, . . . ,Wn

]
=
∫ ∞

0
P
( n∑
i=1

Uiξs(Wi) >
√
n(t+ δ)|W1, . . . ,Wn

)
dt

6
∫ ∞

0
exp

( −n(t+ δ)
8σ2∑n

i=1 |ξs(Wi)|2
)
dt+

∫ ∞
0

exp
( −

√
n(t+ δ)

4σmax16i6n |ξs(Wi)|
)
dt. (1.42)

Consider the first summand of (1.42). Let us introduce the set

B :=
{
∀1 6 j, l 6 m : |n−1

n∑
i=1

fj(Wi)fl(Wi)− δjl| 6
logn
3
√
n

}

where δjl = 1 if j = l and zero otherwise. Applying Cauchy-Schwarz’s inequality twice

we observe on B for all n > 1 and 1 6 m 6M+
n

|n−1
n∑
i=1
|ξs(Wi)|2 − 1|1B 6

m∑
j,l=1
|zj ||zl||n−1

n∑
i=1

fj(Wi)fl(Wi)− δjl|1B 6
1
2

since n−1/4 logn 6 3/2 for all n > 1. Thereby, it holds n−1∑n
i=1 |ξs(Wi)|2 1B 6 3/2 and

thus,

nE
[ ∫ ∞

0
exp

( −n(t+ δ)
8σ2∑n

i=1 |ξs(Wi)|2
)
dt1B

]
6 12σ2 exp

(
logn− δ

12σ2

)
6 6σ2.

(1.43)

On the complement of B observe that supj,l Var(fj(W )fl(W )) < η2 due that Assumption

1.3 (i) and thus, Assumption 1.4 together with Bernstein’s inequality yields

P (Bc) 6
m∑

j,l=1
P
(
3
∣∣ n∑
i=1

fj(Wi)fl(Wi)− δjl
∣∣ > √n logn

)

6 2m2 exp
(
− n(logn)2

36nη4 + 6η
√
n logn

)
6 2 exp

(
2 logm− (logn)2

42η4

)
.

By Assumption 1.3 (i) it holds E |ξs(W )|4 6 E |
∑m
j=1 f

2
j (W )|2 6 m2η4. Thereby

nE
[ ∫ ∞

0
exp

( −n(t+ δ)
8σ2∑n

i=1 |ξs(Wi)|2
)
dt1Bc

]
6 8σ2n

(
E |ξs(W1)|4P (Bc)

)1/2
6 12σ2η2

(1.44)
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for all n > exp(126η4) and 1 6 m 6 bn1/4c. Moreover, for n < exp(126η4) it holds

nE[|ξs(W1)|2 1Bc ] < exp(126η4). Consider the second summand of (1.42). Since x 7→
exp(−1/x), x > 0, is a concave function and E |ξs(W )|4 6 m2η4 we deduce for all

1 6 m 6 bn1/4c

E
[ ∫ ∞

0
exp

( −
√
n(t+ δ)

4σmax16i6n |ξs(Wi)|
)
dt
]
6
∫ ∞

0
exp

( −
√
n(t+ δ)

4σ Emax16i6n |ξs(Wi)|
)
dt

6
∫ ∞

0
exp

( −
√
n(t+ δ)

4σ(nE |ξs(W )|4)1/4

)
dt 6

∫ ∞
0

exp
(−n1/4√(t+ δ)

4σ η
√
m

)
dt

6 8σ η
√
m/n exp

(−n1/4√δ
4σ η
√
m

)(
n1/4√δ + 4σ η

√
m
)
6 C(σ, η)n−1. (1.45)

The assertion follows now by combining inequality (1.42) with (1.43), (1.44), and

(1.45).

Lemma 1.5.8. Let Assumptions 1.1 and 1.3 hold. Then for all n > 1 and m > 1 we have

sup
T∈T υ

d,D

sup
s∈Sm

E
[( 1
n

∣∣∣ n∑
i=1

(ϕ−ϕm)(Zi)ξs(Wi)
∣∣∣2−48η2ρ

m3

γm
(1+logn)

)
+

]
6 C(η, γ, ρ,D)n−1.

Proof. Let us consider a sequence w := (wj)j>1 with wj := j2. Since [T (ϕ − ϕm)]m = 0
we conclude for m > 1, s ∈ Sm, and k = 2, 3, . . . that

E |(ϕ(Z)− ϕm(Z))ξs(W )|k = E |
∞∑
l=1

[ϕ− ϕm]l
m∑
j=1

sj(el(Z)fj(W )− [T ]jl)|k

6 ‖ϕ− ϕm‖kw E |
∞∑
l=1

w−1
l

m∑
j=1

(el(Z)fj(W )− [T ]jl)2|k/2

6 ‖ϕ − ϕm‖kwmk/2(π/
√

6)k sup
j,l∈N

E |el(Z)fj(W ) − [T ]jl|k

where due to Assumption 1.3 (i) supj,l∈NVar(el(Z)fj(W )) 6 η2 and due to Assumption

1.3 (ii) it holds supj,l∈N E |el(Z)fj(W ) − [T ]jl|k 6 k!ηk for k > 3. Moreover, similarly

to the proof of (1.31) in Lemma 1.5.2 we conclude mk/2‖ϕ − ϕm‖kw 6 (m3γ−1
m )k/2(2 +

2Dd)k/2ρk/2. Let us denote µm := η (1 + Dd)
√

6ρm3γ−1
m . Consequently, for all m > 1

we have E |(ϕ(Z)− ϕm(Z))ξs(W )|2 6 µ2
m and

sup
s∈Sm

E |(ϕ(Z)− ϕm(Z))ξs(W )|k 6 µkmk! for k = 3, 4, . . . . (1.46)
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Now Bernstein’s inequality gives for all m > 1

sup
s∈Sm

E
[( 1
n

∣∣∣ n∑
i=1

(ϕ(Zi)− ϕm(Zi))ξs(Wi)
∣∣∣2 − 8µ2

m(1 + logn)
)

+

]
6 2

∫ ∞
0

exp
(−(t+ δ)

8µ2
m

)
dt+ 2

∫ ∞
0

exp
(−√n(t+ δ)

4µm

)
dt

6 16µ2
m exp(− logn)+16µmn−1/2 exp

(−√n(1 + logn)
2

)
(4µm+

√
8nµ2

m(1 + logn))

6 C(η, γ, ρ,D)n−1

and thus, the assertion follows.

Lemma 1.5.9. Let T ∈ T υd,D. Then for all n > 1 it holds

P
( M+

n⋃
m=1

fcm
)
6 C(h, υ, η,D)n−4, (1.47)

P
( M+

n⋃
m=1

Ωc
m

)
6 C(h, υ, η,D)n−1. (1.48)

Proof. Proof of (1.47). Since T ∈ T υd,D we have ‖[T ]−1
m ‖2 6 Dυ−1

m and thus, exploiting

Lemma 1.5.3 together with the definition of M+
n gives

n4P
( M+

n⋃
m=1

fcm
)
6 2 exp

(
− 1

48ηD
nυM+

n

(M+
n )3 + 3 logM+

n + 4 logn
)
6 C(h, υ, η,D).

Proof of (1.48). Due to the definition of M+
n there exists some n0 > 1 such that n >

4Dυ−1
M+
n

for all n > n0. Thereby, condition T ∈ T υd,D implies max16m6M+
n
‖[T ]−1

m ‖2 6

Dυ−1
M+
n
6 n/4 for all n > n0. This gives

⋃M+
n

m=1 Ωc
m ⊂

⋃M+
n

m=1 fcm and inequality (1.48)

follows by making use of (1.47). If n < n0 then nP
(⋃M+

n
m=1 Ωc

m

)
6 n0 and the assertion

follows since n0 only depends on h, υ and D.

Lemma 1.5.10. Let T ∈ T υd,D. Then it holds M−n 6Mn 6M+
n for all n > 1.

PROOF. Consider M−n 6 Mn. If M−n = 1 or Mn = Mh
n the result is trivial. If Mn = 1,

then clearly M−n = 1. It remains to consider M−n > 1 and Mh
n > Mn > 1. Due to

T ∈ T υd,D it holds ‖[T ]−1
Mn+1‖−2 > D−1υMn+1 and thus, by the definition of Mn and M−n
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it is easily seen that

υM−n
max

16j6M−n
[h]2j (M

−
n )3 >

4υMn+1
max

16j6Mn+1
[h]2j (Mn + 1)3 ,

and thus, Mn + 1 > M−n , i.e. Mn > M−n . Consider Mn 6 M+
n . If Mn = 1 or M+

n = Mh
n

the result is trivial, while otherwise since υ−1
m 6 ‖[T ]−1

m ‖2 sup‖Emφ‖υ=1 ‖FmTEmφ‖2 6
D‖[T ]−1

m ‖2 due to condition T ∈ T υd with d 6 D and by the definition of Mn and M+
n it

follows

υMn

max
16j6Mn

[h]2jM3
n

>
4υM+

n +1
max

16j6M+
n +1

[h]2j (M
+
n + 1)3 .

Thus, M+
n + 1 > Mn, i.e. M+

n >Mn, which completes the proof.

In the following, we make use of the notation σ2
Y := E[Y 2] and σ̂2

Y := n−1∑n
i=1 Y

2
i .

Further, let us introduce the events

H :=
{
‖Qm‖‖[T ]−1

m ‖ 6 1/4 ∀ 1 6 m 6 (M+
n + 1)

}
, (1.49)

G :=
{
σ2
Y 6 2 σ̂2

Y 6 3σ2
Y

}
, (1.50)

J :=
{
‖[T ]−1

m Vm‖2 6
1
8
(
‖[T ]−1

m [g]m‖2 + σ2
Y

)
∀ 1 6 m 6M+

n

}
. (1.51)

Lemma 1.5.11. Let T ∈ T υd,D. Then it holds H ∩ G ∩ J ⊂ A.

Proof. For all 1 6 m 6 M+
n observe that condition ‖Qm‖‖[T ]−1

m ‖ 6 1/4 yields by the

usual Neumann series argument that ‖([I]m + Qm[T ]−1
m )−1 − [I]m‖ 6 1/3. Thus, using

the identity [T̂ ]−1
m = [T ]−1

m − [T ]−1
m

(
([I]m +Qm[T ]−1

m )−1 − [I]m
)

we conclude

2‖[h]tm[T ]−1
m ‖ 6 3‖[h]tm[T̂ ]−1

m ‖ 6 4‖[h]tm[T ]−1
m ‖.

Similarly, we have 2‖[T ]−1
m vm‖ 6 3‖[T̂ ]−1

m vm‖ 6 4‖[T ]−1
m vm‖ for all vm ∈ Rm. Thereby,

since [T̂ ]−1
m Vm = [T̂ ]−1

m [ĝ]m − [T ]−1
m [g]m we conclude

‖[T ]−1
m [g]m‖2 6 (32/9)‖[T ]−1

m Vm‖2 + 2‖[T̂ ]−1
m [ĝ]m‖2,

‖[T̂ ]−1
m [ĝ]m‖2 6 (32/9)‖[T ]−1

m Vm‖2 + 2‖[T ]−1
m [g]m‖2.

On J it holds ‖[T ]−1
m Vm‖2 6 1

8(‖[T ]−1
m [g]m‖2 + σ2

Y ). Thereby, the last two inequalities
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imply

(5/9)(‖[T ]−1
m [g]m‖2 + σ2

Y ) 6 σ2
Y + 2‖[T̂ ]−1

m [ĝ]m‖2,

‖[T̂ ]−1
m [ĝ]m‖2 6 (22/9)‖[T ]−1

m [g]m‖2 + (4/9)σ2
Y .

On G it holds σ2
Y 6 2σ̂2

Y 6 3σ2
Y which gives

(5/9)(‖[T ]−1
m [g]m‖2 + σ2

Y ) 6 (3/2)σ̂2
Y + 2‖[T̂ ]−1

m [ĝ]m‖2,

‖[T̂ ]−1
m [ĝ]m‖2 + σ̂2

Y 6 (22/9)‖[T ]−1
m [g]m‖2 + (10/9)σ2

Y .

Combing the last two inequalities we conclude for all 1 6 m 6M+
n

(5/18)
(
‖[T ]−1

m [g]m‖2 + σ2
Y

)
6 ‖[T̂ ]−1

m [ĝ]m‖2 + σ̂2
Y 6 (22/9)

(
‖[T ]−1

m [g]m‖2 + σ2
Y

)
.

Consequently, we have

H ∩ G ∩ J ⊂
{

4 ∆m 6 9 ∆̂m 6 16 ∆m and 5 ς2
m 6 18 ς̂2

m 6 44 ς2
m ∀1 6 m 6M+

n

}
and thus, H ∩ G ∩ J ⊂

{
penm 6 p̂enm 6 18 penm ∀1 6 m 6M+

n

}
. Moreover, it holds

H ⊂
{
M−n 6 M̂n 6 M+

n

}
, which can be seen as follows. Consider {M̂n < M−n }. In case

of M̂n = Mh
n or M−n = 1 clearly {M̂n < M−n } = ∅. Otherwise by the definition of M̂n it

holds

{M̂n < M−n } =
M−n −1⋃
m=1

{
M̂n = m

}
⊂
{
∃2 6 m 6M−n : m3‖[T̂ ]−1

m ‖2 max
16j6m

[h]2j > an
}
.

By the definition of M−n and the property ‖[T ]−1
m ‖2 6 Dυ−1

m there exists 2 6 m 6 M−n

such that on {M̂n < M−n } it holds ‖[T̂ ]−1
m ‖2 > 4Dυ−1

m > 4 ‖[T ]−1
m ‖2 and thereby,{

M̂n < M−n

}
⊂
{
∃2 6 m 6M−n : ‖[T̂ ]−1

m ‖2 > 4 ‖[T ]−1
m ‖2

}
. (1.52)

Consider {M̂n > M+
n }. In case of and M̂n = Mh

n or M−n = 1 clearly {M̂n < M−n } = ∅.
Otherwise, condition T ∈ T υd with d 6 D implies υ−1

m 6 D‖[T ]−1
m ‖2 as seen in the proof

of Lemma 1.5.9. Thereby, we conclude similarly as above

{
M̂n > M+

n

}
⊂
{
‖[T ]−1

M+
n +1‖

2 > 4‖[T̂ ]−1
M+
n +1‖

2
}
. (1.53)
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Again applying the Neumann series argument we observe

H ⊂
{
∀ 1 6 m 6 (M+

n + 1) : 2‖[T ]−1
m ‖ 6 3‖[T̂ ]−1

m ‖ 6 4‖[T ]−1
m ‖

}
,

which combined with (1.52) and (1.53) yields
{
M−n 6 M̂n 6 M+

n

}c ⊂ Hc and thus,

completes the proof.

Lemma 1.5.12. Under the conditions of Theorem 1.4.2 we have for all n > 1

n4(Mh
n )4P (Ac) 6 C.

Proof. Lemma 1.5.11 implies that n4(Mh
n )4P (Ac) 6 n4(Mh

n )4{P (Hc) + P (J c) + P (Gc)}.
Therefore, the assertion follows if the right hand side is bounded by a constant C, which

we prove in the following. Consider H. From condition T ∈ T υd,D and Lemma 1.5.3 we

infer

n4(Mh
n )4P (Hc) 6 2 exp

(
− 1

128Dη
nυM+

n +1
(M+

n + 1)2 +3 log(M+
n +1)+5 logn

)
6 C(h, υ, η,D)

(1.54)

where the last inequality is due to condition (M+
n + 1)2 logn = o(nυM+

n +1). Consider

G. Due to condition m3γ−1
m = o(1) as m → ∞ and U ∈ U∞σ we observe E[Y k] 6

2k(E[ϕk(Z)]+E[Uk]) 6 C(γ, ρ, σ) supj>1 E[ekj (Z)]. Thus, assumption supj>1 E[e20
j (Z)] 6

η20 together with Theorem 2.10 in Petrov [1995] imply

n4(Mh
n )4P (Gc) 6 n5P

(
|σ̂2
Y − σ2

Y | > σ2
Y /2

)
6 1024σ−20

Y n5 E
∣∣n−1

n∑
i=1

Y 2
i − σ2

Y

∣∣10

6 1024σ−20
Y E |Y 2 − σ2

Y |10 6 C(γ, ρ, σ, η). (1.55)

Consider J . For allm > 1 observe that the centered random variables (Yi−ϕ(Zi))fj(Wi),
1 6 i 6 n, satisfy Cramer’s condition (1.46) with µm = η (1 + Dd)

√
6ρm3γ−1

m 6

C(η, γ, ρ,D). From (1.31) in Lemma 1.5.2, ϕ ∈ Fργ , and PU |W ∈ U∞σ we infer ‖ϕm‖2Z +
σ2
Y 6 4(2 + Dd)ρ + 2σ2. Moreover, it holds ‖[T ]−1

m Vm‖2 6 Dυ−1
m ‖Vm‖2 by employing



condition T ∈ T υd,D. Now Bernstein’s inequality yields for all 1 6 m 6M+
n

n6P
(
‖[T ]−1

m Vm‖2 > (‖[T ]−1
m [g]m‖2 + σ2

Y )/8
)

6 n6
m∑
j=1

P
(∣∣∣ n∑

i=1
(Yi − ϕ(Zi))fj(Wi)

∣∣∣2 > n2υm
8Dm

(
‖ϕm‖2Z + σ2

Y

))
6 2n6m exp

(
− n2υmm

−1(‖ϕm‖2Z + σ2
Y )

32Dnµ2
m + 16µmnυ1/2

m m−1/2(‖ϕm‖2Z + σ2
Y )1/2

)

6 2 exp
(
7 logn −

nυM+
n
σ2
Y

M+
n C(σ, η, γ, ρ,D)

)
.

Due to the definition of M+
n the last estimate implies n4(Mh

n )4P (J c) 6 C, which com-

pletes the proof.





2 Goodness-of-Fit Tests based on Series

Estimators in Nonparametric

Instrumental Regression

2.1 Introduction

While parametric instrumental variables estimators are widely used in econometrics,

its nonparametric extension has not been introduced until the last decade. The study

of nonparametric instrumental regression models was initiated by Florens [2003] and

Newey and Powell [2003]. In these models, given a scalar dependent variable Y , a

vector of regressors Z, and a vector of instrumental variables W , the structural function

ϕ satisfies

Y = ϕ(Z) + U with E[U |W ] = 0 (2.1)

for an error term U . Here, Z contains potentially endogenous entries, that is, E[U |Z]
may not be zero. Model (2.1) does not involve the a priori assumption that the structural

function is known up to finitely many parameters. By considering this nonparametric

model, we minimize the likelihood of misspecification. On the other hand, implementing

the nonparametric instrumental regression model can be challenging.

Nonparametric instrumental regression models have attracted increasing attention in

the econometric literature. For example, Ai and Chen [2003], Blundell et al. [2007],

Chen and Reiß [2011], Newey and Powell [2003] or Johannes and Schwarz [2010]

consider sieve minimum distance estimators of ϕ, while Darolles et al. [2002], Hall

and Horowitz [2005], Gagliardini and Scaillet [2012a] or Florens et al. [2011] study

penalized least squares estimators. When the methods of analysis are widened to include

nonparametric techniques, one must confront two mayor challenges. First, identification

in model (2.1) requires far stronger assumptions about the instrumental variables than

for the parametric case (cf. Newey and Powell [2003]). Second, the accuracy of any

estimator of ϕ can be low, even for large sample sizes. More precisely, Chen and Reiß
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[2011] showed that for a large class of joint distributions of (Z,W ) only logarithmic

rates of convergence can be obtained. The reason for this slow convergence is that model

(2.1) leads to an inverse problem which is ill posed in general, that is, the solution does

not depend continuously on the data.

In light of the difficulties of estimating the nonparametric function ϕ in model (2.1),

the need for statistically justified model simplifications is paramount. We do not face

an ill posed inverse problem if a parametric structure of ϕ or exogeneity of Z can be

justified. If these model simplifications are not supported by the data, one might still

be interested in whether a smooth solution to model (2.1) exists and if some regressors

could be omitted from the structural function ϕ. These model simplifications have im-

portant potential since they might increase the accuracy of estimators of ϕ or lower the

required conditions imposed on the instrumental variables to ensure identification.

In this work we present a new family of goodness-of-fit statistics which allows for sev-

eral restricted specification tests of the model (2.1). Our method can be used for testing

either a parametric or nonparametric specification. In addition, we perform a test of

exogeneity and of dimension reduction of the vector of regressors Z, that is, whether

certain regressors can be omitted from the structural function ϕ. By a withdrawal of re-

gressors which are independent of the instrument, identification in the restricted model

might be possible although ϕ is not identified in the original model (2.1).

There is a large literature concerning hypothesis testing of restricted specification of

regression. In the context of conditional moment equation, Donald et al. [2003] and

Tripathi and Kitamura [2003] make use of empirical likelihood methods to test para-

metric restrictions of the structural function. In addition, Santos [2012] allows for dif-

ferent hypothesis tests, such as a test of homogeneity. Based on kernel techniques,

Horowitz [2006], Blundell and Horowitz [2007], and Horowitz [2011b] propose test

statistics in which an additional smoothing step (on the exogenous entries of Z) is

carried out. Horowitz [2006] considers a parametric specification test. Blundell and

Horowitz [2007] establish a consistent test of exogeneity of the vector of regressors Z,

whereas Horowitz [2011b] tests whether the endogenous part of Z can be omitted from

ϕ. Gagliardini and Scaillet [2007] and Horowitz [2012] develop nonparametric speci-

fication tests in an instrumental regression model. We like to emphasize that their test

cannot be applied to model (2.1) where some entries of Z might be exogenous.

Our testing procedure is entirely based on series estimation and hence is easy to imple-

ment. We use approximating functions to estimate the conditional moment restriction

implied by the model (2.1) where ϕ is replaced by an estimator under each conjectured

hypothesis. It is worth noting that by our methodology we can omit some assumptions
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typically found in related literature, such as smoothness conditions on the joint distribu-

tion of (Z,W ). In addition, a Monte Carlo indicates that the finite sample power of our

tests exceed that of existing tests.

Our method is also applicable when an additional smoothing step is carried out. It

is shown that the asymptotic behavior of our test relies crucially on the behavior of the

smoothing operator. In particular, by carrying out additional smoothing the power with

respect to local alternatives increases. On the other hand, the class of alternative models

over which uniform consistency can be obtained might shrink. In this paper, we give

heuristic arguments how to choose the smoothing operator.

2.2 A simple hypothesis test

In this section, we propose a goodness-of-fit statistic for testing the hypothesis H0 : ϕ =
ϕ0, where ϕ0 is a known function, against the alternative ϕ 6= ϕ0. We develop a test

statistic based on L2 distance. As we will see in the following chapters, it is sufficient

to replace ϕ0 by an appropriate estimator to allow for tests of the general model against

other specifications. We first give basic assumptions, then obtain the asymptotic distribu-

tion of the proposed statistic, and further discuss its power and consistency properties.

2.2.1 Assumptions and notation.

The model revisited The nonparametric instrumental regression model (2.1) leads to

a linear operator equation. To be more precise, let us introduce the conditional expec-

tation operator Tφ := E[φ(Z)|W ] mapping L2
Z = {φ : E |φ(Z)|2 < ∞} to L2

W = {ψ :
E |ψ(W )|2 <∞}. Consequently, model (2.1) can be written as

g = Tϕ (2.2)

where the function g := E[Y |W ] belongs to L2
W . Throughout the paper we assume that

an iid. n-sample of (Y, Z,W ) from the model (2.1) is available.

Assumptions. Our test statistic based on a sequence of approximating functions {fl}l>1

in L2
W . LetW denote the support ofW and the marginal density ofW by pW . We assume

throughout the paper that {fl}l>1 are orthonormal on the support of W with respect to

the Lebesgue measure ν, that is,
∫
W fj(w)fl(w)ν(dw) = 1 if j = l and zero otherwise.

Assumption 2.1. There exist constants ηf , ηp > 1 such that (i) supl>1

( ∫
W |fl(s)|4ν(ds)

)
6

ηf and (ii) supw∈W
{
pW (w)/ν(w)

}
6 ηp with ν being strictly positive onW.
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Assumption 2.1 (i) restricts the magnitude of the approximating functions {fj}j>1

which is necessary for our proof to determine the asymptotic behavior of our test statis-

tic. This assumption holds for sufficiently large ηf if the basis {fl}l>1 is uniformly

bounded, such as trigonometric bases or B-splines that have been orthogonalized. More-

over, Assumption 2.1 (i) is satisfied by Hermite polynomials. Assumption 2.1 (ii) is

satisfied if, for instance, pW /ν is continuous andW is compact.

The results derived below involve assumptions on the conditional moments of the

random variables U given W gathered in the following assumption.

Assumption 2.2. There exists a constant σ > 0 such that E[U4|W ] 6 σ4.

The conditional moment condition on the error term U helps to establish the asymp-

totic distribution of our test statistics. The following assumption ensures identification

of ϕ in the model (2.2).

Assumption 2.3. The conditional expectation operator T is nonsingular.

Under Assumption 2.3, the hypothesis H0 is equivalent to g = Tϕ0 which is used

to construct our test statistic below. Note that the asymptotic results under each null

hypothesis considered below hold true even if T is singular. If Assumption 2.3 fails,

however, our test has no power against alternative models whose structural function

satisfies ϕ = ϕ0 + δ with δ belonging to the null space of T .

We will see below that the power of our test can be increased by carrying out an ad-

ditional smoothing step. Therefore, we introduce the smoothing operator L on L2
W . In

contrast to the unknown conditional expectation operator T , which has to be estimated,

the operator L can be chosen by the econometrician. Let L have an eigenvalue decom-

position given by {τ1/2
j , fj}j>1. We allow in this paper for a wide range of smoothing

operators. In particular, L may be the identity operator, that is, no smoothing step is

carried out. We only require the following condition on the operator L determined by

the sequence of eigenvalues τ = (τj)j>1.

Assumption 2.4. The weighting sequence τ is positive, nonincreasing, and satisfies τ1 = 1.

Assumption 2.4 ensures that the operator L is nonsingular.

Remark 2.2.1. Horowitz [2006], Blundell and Horowitz [2007], and Horowitz [2011b]
consider as a smoothing operator a Fredholm integral operator, that is, Lφ(s) =

∫ 1
0 `(s, t)φ(t)dt

for some function φ ∈ L2[0, 1] = {φ :
∫ 1

0 φ
2(s)ds < ∞} and some kernel function ` :

[0, 1]2 → R. In order to ensure Lφ ∈ L2[0, 1] it is sufficient to assume
∫ 1
0
∫ 1

0 |`(s, t)|2dsdt <
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∞. Let {τ1/2
j , fj}j>1 be the eigenvalue decomposition of L. By Parseval’s identity

∫ 1

0

∫ 1

0
|`(s, t)|2dsdt =

∫ 1

0

∞∑
j=1

τj |fj(s)|2ds =
∞∑
j=1

τj

where the right hand side is only finite if the sequence τ decays sufficiently fast. In our case,
if we apply a smoothing operator L with

∑∞
j=1 τj <∞ then our test statistics converges also

to a weighted series of chi-squared random variables. In addition, we allow for a milder
degree of smoothing or no smoothing at all and show below that then asymptotic normality
of our test statistics can be obtained. �

Notation. For a matrix A we denote its transposed by At, its inverse by A−1, and its

generalized inverse by A−. The euclidean norm is denoted by ‖ · ‖ which in case of a

matrix denotes the spectral norm, that is ‖A‖ = (trace(AtA))1/2. The norms on L2
Z and

L2
W are denoted by ‖φ‖2Z := E |φ(Z)|2 for φ ∈ L2

Z and ‖ψ‖2W := E |ψ(W )|2 for ψ ∈ L2
W .

The k × k identity matrix is denoted by Ik. For a vector V we write diag(V ) for the

diagonal matrix with diagonal elements being the values of V . Moreover, em(Z) and

fm(W ) denote random vectors with entries ej(Z) and fj(W ), 1 6 j 6 m, respectively.

For any weighting sequence w we introduce vectors ewm(Z) and fwm(W ) with entries

ewj (Z) = √wjej(Z) and fwj (W ) = √wjfj(W ), 1 6 j 6 m. We write an ∼ bn when there

exist constants c, c′ > 0 such that cbn 6 an 6 c′bn for all sufficiently large n.

2.2.2 The test statistic and its asymptotic distribution

Nonsingularity of the conditional expectation operator T and the smoothing operator L

implies that the null hypothesis H0 is equivalent to L(g − Tϕ0) = 0. Note that ‖L(g −
Tϕ0)‖W = 0 if and only if

∫
W
∣∣L(g−Tϕ0)(w)pW (w)/ν(w)

∣∣2ν(dw) = 0 since the Lebesgue

measure ν is strictly positive onW. Moreover, since {fj}j>1 is an orthonormal basis with

respect to ν we obtain by Parseval’s identity

∫
W

∣∣L(g − Tϕ0)(w)pW (w)/ν(w)
∣∣2ν(dw) =

∞∑
j=1

E[(g − Tϕ0)(W )f τj (W )]2. (2.3)

Now we truncate the infinite sum at some integer mn which grows with the sample size

n. This ensures consistency of our testing procedure. Further, replacing the expectation
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by sample mean we obtain our test statistic

Sn :=
mn∑
j=1

τj
∣∣n−1

n∑
i=1

(Yi − ϕ0(Zi))fj(Wi)
∣∣2. (2.4)

We reject the hypothesis H0 if nSn becomes too large. When no additional smoothing

is carried out, that is, L is the identity operator, then τj = 1 for all j > 1. To achieve

asymptotic normality we need to standardize our test statistic Sn by appropriate mean

and variance, which we introduce in the following definition.

Definition 2.2.1. For all m > 1 let Σm be the covariance matrix of the random vector
Uf τm(W ) with entries sjl = E

[
U2f τj (W )f τl (W )

]
, 1 6 j, l 6 m. Then the trace and the

Frobenius norm of Σm are respectively denoted by

µm :=
m∑
j=1

sjj and ςm :=
( m∑
j, l=1

s2
jl

)1/2
.

Indeed the next result shows that nSn after standardization is asymptotically normally

distributed if mn increases appropriately as the sample size n tends to infinity.

Theorem 2.2.1. Let Assumptions 2.1–2.4 hold true. If mn satisfies

ς−1
mn = o(1) and

( mn∑
j=1

τj
)3

= o(n) (2.5)

then under H0

(
√

2ςmn)−1(nSn − µmn) d→ N (0, 1).

Remark 2.2.2. Since ς2
mn 6 ηp σ

4∑mn
j=1 τj (cf. proof of Theorem 2.2.2) condition ς−1

mn =
o(1) implies that

∑mn
j=1 τj tends to infinity as n increases. Moreover, from condition (2.5) we

see that by choosing a stronger decaying sequence τ the parametermn may be chosen larger.
From the following theorem we see that if

∑mn
j=1 τj = O(1) only mn = o(1) is required. �

In the following result, we establish the asymptotic distribution of our test when the

sequence of weights τ may have a stronger decay than in Theorem 2.2.1, that is, we

consider the case where τ satisfies
∑mn
j=1 τj = O(1). This holds, for instance, if the

sequence τ satisfies τj ∼ j−(1+ε) for any ε > 0. In this case, the asymptotic distribution

changes and additional definitions have to be made. Let Σ be the covariance matrix

of the infinite dimensional centered vector
(
Uf τj (W )

)
j>1. The ordered eigenvalues of
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Σ are denoted by (λj)j>1. Below, we introduce a sequence {χ2
1j}j>1 of independent

random variables that are distributed as chi-square with one degree of freedom.

Theorem 2.2.2. Let Assumptions 2.1–2.4 hold true. If mn satisfies

mn∑
j=1

τj = O(1) and mn = o(1) (2.6)

then under H0

nSn
d→
∞∑
j=1

λj χ
2
1j .

Remark 2.2.3 (Estimation of Critical Values). The asymptotic results of Theorem 2.2.1
and 2.2.2 depend on unknown population quantities. As we see in the following, the critical
values can be easily estimated. Let Wm(τ) denote a n×m matrix with entries f τj (Wi) for
1 6 i 6 n and 1 6 j 6 m. Moreover, Un = (Y1−ϕ0(Z1), . . . , Yn−ϕ0(Zn))t. In the setting
of Theorem 2.2.1, we replace Σm by

Σ̂m := Wm(τ)t diag(Un)2 Wm(τ)

Now the asymptotic result of Theorem 2.2.1 continues to hold if we replace ςmn by the
Frobenius norm of Σ̂mn and µmn by the trace of Σ̂mn . In the setting of Theorem 2.2.2,
the asymptotic distribution is not pivotal and has to approximated. First, note that the
difference of critical values between

∑∞
j=1 λjχ

2
1j and the truncated sum

∑M
j=1 λj χ

2
1j can

be made arbitrarily small by choosing the integer M > 0 sufficiently large (cf. Horowitz
[2006]). Second, replace (λj)16j6M by (λ̂j)16j6M which are the ordered eigenvalues of
Σ̂M . Observe that max16j6M |λ̂j − λj | = ‖Σ̂M − ΣM‖ = O(n−1/2) almost surely and
hence the critical values of

∑M
j=1 λ̂j χ

2
1j converge in probability to the ones of the limiting

distribution of nSn. �

2.2.3 Limiting behavior under local alternatives.

Let us study the power of the test statistic Sn, that is, the probability to reject a false

hypothesis, against a sequence of linear local alternatives that tends to zero as n → ∞.

It is shown that the power of our tests essentially relies on the choice of the weighting

sequence τ .

Let us start with the case ς−1
mn = o(1). We consider the following sequence of linear
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local alternatives

Y = ϕ0(Z) + ς1/2
mn n

−1/2δ(Z) + U (2.7)

for some function δ ∈ L4
Z := {φ : E |φ(Z)|4 <∞}. The next result establishes asymptotic

normality for the standardized test statistic Sn. Let us denote δj := √τj E[δ(Z)fj(W )].

Proposition 2.2.3. Given the conditions of Theorem 2.2.1 it holds under (2.7)

(
√

2ςmn)−1(nSn − µmn) d→ N
(
2−1/2

∞∑
j=1

δ2
j , 1
)
.

As we see below the test statistic Sn has power advantages if
∑mn
j=1 τj = O(1). Let us

consider the sequence of linear local alternatives

Y = ϕ0(Z) + n−1/2δ(Z) + U (2.8)

for some function δ ∈ L4
Z . For the next result, the sequence {χ2

1j(δj/λj)}j>1 denotes

independent random variables that are distributed as non-central chi-square with one

degree of freedom and non-centrality parameters δj/λj .

Proposition 2.2.4. Given the conditions of Theorem 2.2.2 it holds under (2.8)

nSn
d→
∞∑
j=1

λj χ
2
1j(δj/λj) as n→∞.

Remark 2.2.4. We see from Proposition 2.2.3 that our test can detect linear alternatives
at a rate ς1/2

mn n
−1/2. On the other hand, if

∑mn
j=1 τj = O(1) then Sn can detect local linear

alternatives at the faster rate n−1/2. But still our test with L = Id can have better power
against certain smooth classes of alternatives as illustrated by Hong and White [1995]
and Horowitz and Spokoiny [2001]. Indeed, the next subsection shows that additional
smoothing changes the class of alternatives over which uniform consistency can be obtained.
�

2.2.4 Consistency

In this subsection, we establish consistency against a fixed alternative and uniform con-

sistency of our test over appropriate function classes. Let us first consider the case of

a fixed alternative. We assume that H0 does not hold, that is, P(ϕ = ϕ0) < 1. The
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following proposition shows that our test has the ability to reject a false null hypothesis

with probability 1 as the sample size grows to infinity.

The consistency properties require the following additional assumption.

Assumption 2.5. (i) The function pW /ν is uniformly bounded away from zero. (ii) There
exists a constant σo > 0 such that E[U2|W ] > σ2

o .

Assumption 2.5 (i) implies that ‖LT (ϕ − ϕ0)‖W > 0 for any structural function ϕ in

the alternative. Further, Assumption 2.5 implies that
∑mn
j=1 τ

2
j = O(ς2

mn).

Proposition 2.2.5. Assume that H0 does not hold. Let E |Y − ϕ0(Z)|4 < ∞ and let
Assumption 2.5 (i) hold true. Consider the sequence (αn)n>1 satisfying αn = o(nς−1

mn).
Under the conditions of Theorem 2.2.1 we have

P
(
(
√

2 ςmn)−1(nSn − µmn) > αn
)

= 1 + o(1).

Under the conditions of Theorem 2.2.2 we have αn = o(n) and

P
(
nSn > αn

)
= 1 + o(1).

In the following, we specify a class of functions over which our test Sn is uniformly

consistent. This essentially implies that there are no alternative functions in this class

over which our test has low power. We show that our test is consistent uniformly over

the class

Gρn =
{
ϕ ∈ L2

Z : ‖LT (ϕ− ϕ0)‖2W > ρn−1ςmn and sup
z∈Z
|(ϕ− ϕ0)(z)|2 6 C

}
where C > 0 is a finite constant. Clearly, if H0 is false then ‖LT (ϕ− ϕ0)‖2W > ρ ςmnn−1

for all sufficiently large n and some ρ > 0. By Assumption 2.4 the sequence τ is nonin-

creasing sequence with τ1 = 1 and hence, ‖LT (ϕ−ϕ0)‖2W 6 ‖T (ϕ−ϕ0)‖2W 6 ‖ϕ−ϕ0‖2Z
by Jensen’s inequality. We conclude that Gρn contains all alternative functions whose

L2
Z -distance to the structural function ϕ0 is at least n−1ςmn within a constant. If the

coefficients E[(ϕ−ϕ0)(Z)fj(W )] fluctuate for large j then ϕ does not belong to Gρn if the

decay of τ is too strong. On the other hand, if E[(ϕ− ϕ0)(Z)fj(W )] is sufficiently small

for j up to a finite constant then ϕ does not necessarily belong to Gρn with τ having a

slow decay. For the next result let q1α and q2α denote the 1 − α quantile of N (0, 1) and∑∞
j=1 λj χ

2
1j , respectively.
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Proposition 2.2.6. Let Assumption 2.5 be satisfied. For any ε > 0, any 0 < α < 1, and
any sufficiently large constant ρ > 0 we have under the conditions of Theorem 2.2.1 that

lim
n→∞

inf
ϕ∈Gρn

P
(
(
√

2 ςmn)−1(nSn − µmn) > q1α
)
> 1− ε,

while under the conditions of Theorem 2.2.2

lim
n→∞

inf
ϕ∈Gρn

P
(
nSn > q2α

)
> 1− ε.

2.3 A parametric speci�cation test

In this section, we present a test whether the structural function ϕ is known up to a finite

dimensional parameter. Let Θ be a compact subspace of Rk then we consider the null

hypothesis Hp : there exists some ϑ ∈ Θ such that ϕ(·) = φ(·, ϑ) for a known function

φ. The alternative hypothesis is that there exists no ϑ ∈ Θ such that ϕ(·) = φ(·, ϑ) holds

true.

2.3.1 The test statistic and its asymptotic distribution

Under Assumptions 2.3 and 2.4, the null hypothesis Hp is equivalent to L(g−Tφ(·, ϑ)) =
0 for some ϑ ∈ Θ. Thereby, to verify Hp we make use of the test statistic Sn given in

(2.4) where ϕ0 is replaced by φ(·, ϑ̂n) with ϑ̂n being an estimator of ϑ. Hence, our test

statistic for a parametric specification is given by

Sp
n :=

mn∑
j=1

τj
∣∣n−1

n∑
i=1

(
Yi − φ(Zi, ϑ̂n)

)
fj(Wi)

∣∣2.
If the test statistic Sp

n becomes too large then Hp has to be rejected. To obtain asymptotic

results for the statistic Sp
n we require smoothness conditions of the function φ with re-

spect to its second argument. Below we denote the vector of partial derivatives of φ with

respect to ϑ = (ϑ1, . . . , ϑk)t by φϑ = (φϑl)16l6k and the matrix of second-order partial

derivatives by φϑϑ = (φϑjϑl)16j,l6k.

Assumption 2.6. (i) Let ϑ̂n be an estimator satisfying ‖ϑ̂n − ϑ0‖ = Op(n−1/2) for some
ϑ0 ∈ int(Θ) with ϕ(·) = φ(·, ϑ0) if Hp holds true. (ii) The function φ is twice partial
differentiable with respect to its second argument. There exists some constant ηφ > 1 such
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that

sup
16l6k

E |φϑl(Z, ϑ0)|4 6 ηφ and sup
16j,l6k

sup
θ∈Θ

E |φϑjϑl(Z, θ)|
4 6 ηφ.

The following proposition establishes asymptotic normality of Sp
n after standardiza-

tion.

Theorem 2.3.1. Let Assumptions 2.1–2.4 and 2.6 hold true. If mn satisfies (2.5), then
under Hp

(
√

2ςmn)−1(nSp
n − µmn

) d→ N (0, 1).

In the following theorem, we state the asymptotic distribution of nSp
n when

∑mn
j=1 τj =

O(1). In this case, we assume that ϑ̂n satisfies under Hp

√
n(ϑ̂n − ϑ0) = n−1/2

n∑
i=1

hk(Vi) + op(1) (2.9)

where Vi := (Yi, Zi,Wi, ϕ0) and hk(Vi) = (h1(Vi), . . . , hk(Vi))t where hj , 1 6 j 6 k,

are real valued functions. It is well known that this representation holds if ϑ̂n is the

generalized method of moments estimator. In case of
∑mn
j=1 τj = O(1) we have to modify

the standardization of the statistic Sp
n as follows. Let Σp be the covariance matrix of

the infinite dimensional centered vector
(
Uf τj (W )− E[f τj (W )φϑ(Z, ϑ0)t]hk(V )

)
j>1. The

ordered eigenvalues of Σp are denoted by (λp
j )j>1.

Theorem 2.3.2. Let Assumptions2.1–2.4 and 2.6 hold true. Assume that Hp holds true
and ϑ̂n satisfies condition (2.9) with Ehj(V ) = 0 and E |hj(V )|4 < ∞, 1 6 j 6 k. If mn

satisfies (2.6), then

nSp
n

d→
∞∑
j=1

λp
j χ

2
1j .

Remark 2.3.1. [Estimation of Critical Values] For the estimation of critical values of Theo-
rem 2.3.1 and 2.3.2, let us define Up

n =
(
Y1−φ(Z1, ϑ̂n), . . . , Yn−φ(Zn, ϑ̂n)

)t. We estimate
the covariance matrix Σm by

Σ̂m := n−1 Wm(τ)t diag(Up
n)2 Wm(τ).

Now the asymptotic result of Theorem 2.3.1 continues to hold if we replace ςmn by the
Frobenius norm of Σ̂mn and µmn by the trace of Σ̂mn . In the setting of Theorem 2.3.2,
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we replace Σp by a finite dimensional matrix. Let Ak be a n × k matrix with entries
φϑl(Zi, ϑ̂n) for 1 6 i 6 n, 1 6 l 6 k and hk(V ) =

(
hk(V1), . . . , hk(Vn)

)t. Then define
Vk := n−1hk(V )At

k. Given a sufficiently large integer M > 0 we estimate Σp by

Σ̂p
M := n−1WM (τ)t

(
diag(Up

n)−Vk

)t(
diag(Up

n)−Vk

)
WM (τ).

Hence, we approximate
∑∞
j=1 λjχ

2
1j by the finite sum

∑M
j=1 λ̂

p
j χ

2
1j where (λ̂p

j )16j6M are the
ordered eigenvalues of Σ̂p

M . We have max16j6M |λ̂p
j − λ

p
j | = Op(n−1/2). �

2.3.2 Limiting behavior under local alternatives and consistency.

In the following, we study the power and consistency properties of the test statistic Sp
n.

For the next result, we follow Härdle and Mammen [1993] and consider a sequence of

linear local alternatives (2.7) or (2.8) with ϕ0 = φ(ϑ0, ·) where δ is orthogonal to the

class of parametric functions {φ(·, ϑ0) : ϑ0 ∈ Θ}.

Proposition 2.3.3. Let the conditions of Theorem 2.3.1 be satisfied. Then under (2.7) with
ϕ0 = φ(ϑ0, ·) and E[φϑ(ϑ0, Z)δ(Z)] = 0 it holds

(
√

2ςmn)−1(nSp
n − µmn

) d→ N
(
2−1/2

∞∑
j=1

δ2
j , 1
)
.

Let the conditions of Theorem 2.3.2 be satisfied. Then under (2.8) with ϕ0 = φ(ϑ0, ·) and
E[φϑ(ϑ0, Z)δ(Z)] = 0 it holds

nSp
n

d→
∞∑
j=1

λp
j χ

2
1j(δj/λ

p
j).

Remark 2.3.2. Under homoscedasticity, that is, E[U2|W ] = σ2
o , W ∼ U [0, 1], and L = Id

we see from Proposition 2.3.3 that our test has the same power properties as the test of Hong
and White [1995]. On the other hand, if

∑mn
j=1 τj = O(1) then our test can detect local

linear alternatives at a rate n−1/2 as in Horowitz [2006], which decreases more quickly
than the rate obtained by Tripathi and Kitamura [2003]. �

The next proposition establishes consistency of our test against a fixed alternative

model. It is assumed that Hp is false, that is, there exists no ϑ ∈ Θ such that ϕ(·) =
φ(·, ϑ). In this situation, ϑ0 denotes the probability limit of the estimator ϑ̂n.

Proposition 2.3.4. Assume that Hp does not hold. Let E |Y − φ(Z, ϑ0)|4 < ∞ and As-
sumption 2.5 (i) hold true. Let (αn)n>1 as in Proposition 2.2.5. Under the conditions of



2.4 A nonparametric test of exogeneity 71

Theorem 2.3.1 we have

P
(
(
√

2 ςmn)−1(nSp
n − µmn

)
> αn

)
= 1 + o(1).

Given the conditions of Theorem 2.3.2 it holds

P
(
nSp

n > αn
)

= 1 + o(1).

In the following, we show that Sp
n is consistent uniformly over the function class

Hρn =
{
ϕ ∈ L2

Z : ‖LT (ϕ−φ(·, ϑ0))‖2W > ρn−1ςmn and sup
z∈Z
|ϕ(z)−φ(z, ϑ0)| 6 C

}

for some constant C > 0 and ϑ0 denotes the probability limit of ϑ̂n. Similarly as in the

previous section, it can be seen that Hρn only contains functions whose L2
Z distance to

φ(·, ϑ0) is at least n−1ςmn within a constant. For the next result let q1α and q2α denote

the 1− α quantile of N (0, 1) and
∑∞
j=1 λ

p
j χ

2
1j , respectively.

Proposition 2.3.5. Let Assumption 2.5 be satisfied. For any ε > 0, any 0 < α < 1, and
any sufficiently large constant ρ > 0 we have under the conditions of Theorem 2.3.1 that

lim
n→∞

inf
ϕ∈Hρn

P
(
(
√

2 ςmn)−1(nSp
n − µmn

)
> q1α

)
> 1− ε,

whereas under the conditions of Theorem 2.3.2 it holds

lim
n→∞

inf
ϕ∈Hρn

P
(
nSp

n > q2α
)
> 1− ε.

2.4 A nonparametric test of exogeneity

Endogeneity of regressors is a common problem in econometric applications. Falsely

assuming exogeneity of the regressors leads to inconsistent estimators. On the other

hand, treating exogenous regressors as if they were endogenous can lower the accuracy

of estimation dramatically. In this section, we propose a test whether the vector of

regressors Z is exogenous, that is, E[U |Z] = 0 or equivalently ϕ(Z) = E[Y |Z]. In

this section, let ϕ0(Z) = E[Y |Z] then the hypothesis under consideration is given by

He : ϕ = ϕ0. The alternative hypothesis is that ϕ 6= ϕ0.
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2.4.1 The test statistic and its asymptotic distribution

To establish a test of exogeneity, let us first introduce an estimator of the conditional

mean of Y given Z. This estimator is based on a sequence of approximating functions

{ej}j>1 belonging to L2
Z . Further, let Zk denote a n × k matrix with entries ej(Zi) for

1 6 i 6 n and 1 6 j 6 k. Moreover, let Yn = (Y1, . . . , Yn)t. Then we define the

estimator

ϕk(·) := ek(·)tβ̂k where β̂k = (ZtkZk)− ZtkYn. (2.10)

In contrast to the parametric case we need to allow for k tending to infinity as n→∞ in

order to ensure consistency of the estimator ϕk. Under conditions given below ZtknZkn
will be nonsingular with probability approaching one and hence its generalized inverse

will be the standard inverse. Note that the asymptotic behavior of the estimator ϕk was

studied, for example, by Newey [1997].

Under Assumptions 2.3 and 2.4, the null hypothesis He is equivalent to L(g− Tϕ0) =
0. Consequently, our test of exogeneity of Z is based on the goodness-of-fit statistic Sn
introduced in (2.4) but where ϕ0 is replaced by the series estimator ϕkn . The proposed

test statistic for He is now given by

Se
n =

mn∑
j=1

τj
∣∣n−1

n∑
i=1

(
Yi − ϕkn(Zi)

)
fj(Wi)

∣∣2
where kn and mn tend to infinity as n → ∞. The hypothesis of exogeneity of Z has to

be rejected if Se
n becomes too large.

For controlling the bias of the estimator ϕkn we specify in the following a rate of

approximation (cf. Newey [1997]). Let γ = (γj)j>1 be a nondecreasing sequence with

γ1 = 1. We assume that ϕ0 belongs to

Fγ :=
{
φ ∈ L2

Z : sup
z∈Z
|φ(z)− ekn(z)tβkn |2 = O(γ−1

kn
) for some βkn ∈ Rkn

}
.

Here, the sequence of weights γ measures the approximation error of ϕ0 with respect to

the functions {ej}j>1.

Assumption 2.7. (i) Let ϕ0 ∈ Fγ with nondecreasing sequence γ satisfying j2 = o(γj). (ii)
There exists some constant ηe > 1 such that supz∈Z ‖ekn(z)‖2 6 ηekn. (iii) The smallest
eigenvalue of E[ek(Z)ek(Z)t] is bounded away from zero uniformly in k. (iv) E[U2|Z] is
bounded.



2.4 A nonparametric test of exogeneity 73

Assumption 2.7 (i) determines the required asymptotic behavior of the rate γ. For

splines and power series this assumption is satisfied if the number of continuous deriva-

tives of ϕ0 divided by the dimension of Z equals two. Assumption 2.7 (ii) and (iii)
restrict the magnitude of the approximating functions {ej}j>1 and impose nonsingular-

ity of their second moment matrix.

We are now in the position to proof the following asymptotic result for the stan-

dardized test statistic Se
n. Here, a key requirement is that kn = o(ςmn) implying that

kn = o(
∑mn
j=1 τj) and, in particular, kn = o(mn) if the smoothing operator L is the iden-

tity.

Theorem 2.4.1. Let Assumptions 2.1–2.4 and 2.7 be satisfied. If

n = o(γknςmn), kn = o(ςmn), and
( mn∑
j=1

τj
)3

= o(n) (2.11)

then under He it holds

(
√

2ςmn)−1(nSe
n − µmn

) d→ N (0, 1).

Example 2.4.1. Let Z be continuously distributed with dim(Z) = r and set L = Id.
Consider the polynomial case where γj ∼ j2p/r with p > 1 and let mn ∼ nν with 0 <

ν < 1/3. Let Assumption 2.5 hold true then
√
mn = O(ςmn). Hence, condition (2.11) is

satisfied if kn ∼ nκ with

r(1− ν/2)/(2p) < κ < ν/2. (2.12)

Note that condition (2.12) requires 2p > r (2/ν−1). Hence, with a larger dimension r also
the smoothness of ϕ0 has to increase, reflecting the curse of dimensionality. �

The next result states an asymptotic distribution result for the statistic Se
n if

∑mn
j=1 τj =

O(1). Let Σe be the covariance matrix of the infinite dimensional centered vector(
U(f τj (W )−

∑
l>1 E[f τj (W )el(Z)]el(Z))

)
j>1. The ordered eigenvalues of Σe are denoted

by (λe
j)j>1.

Theorem 2.4.2. Let Assumptions 2.1–2.4 and 2.7 be satisfied. If

mn∑
j=1

τj = O(1), n = O(γkn), k3
n = o(n), and mn = o(1) (2.13)
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then under He it holds

nSe
n

d→
∞∑
j=1

λe
j χ

2
1j .

Example 2.4.2. Consider the setting of Example 2.4.1 but where the eigenvalues of L
satisfy τj ∼ j−2. Condition (2.13) is satisfied if mn ∼ nν for some ν > 0 and kn ∼ nκ with
r/(2p) < κ < 1/3. The estimator of ϕ0 is undersmoothed. This ensures that the bias of this
estimator in the statistic Se

n is asymptotically negligible. Here, the required smoothness of
ϕ0 is p > 3r/2. �

Remark 2.4.1. In contrast to Blundell and Horowitz [2007] no smoothness assumptions on
the joint distribution of (Z,W ) is required here. In addition, we do not need any assumption
that links the smoothness of the regression function ϕ0 to the smoothness of the joint density
of (Z,W ). �

Remark 2.4.2 (Estimation of Critical Values). For the estimation of critical values of The-
orem 2.4.1 and 2.4.2, let us define Ue

n =
(
Y1 − ϕkn(Z1), . . . , Yn − ϕkn(Zn)

)t. For any
m > 1 we estimate the covariance matrix Σm by

Σ̂m := n−1 Wm(τ)t diag(Ue
n)2 Wm(τ).

Now the asymptotic result of Theorem 2.4.1 continues to hold if we replace ςmn by the
Frobenius norm of Σ̂mn and µmn by the trace of Σ̂mn . This consistency is shown in Lemma
2.4.3. In the setting of Theorem 2.4.2, we replace Σe by a finite dimensional matrix

Σ̂e
M := n−1WM (τ)t

(
In − n−1ZknZtkn

)
diag(Ue

n)2
(
In − n−1ZknZtkn

)
WM (τ)

where M > 0 is a sufficiently large integer. Let (λ̂e
j)16j6M denote the ordered eigen-

values of Σ̂e
M . Hence, we approximate

∑∞
j=1 λ

e
jχ

2
1j by the finite sum

∑M
j=1 λ̂

e
j χ

2
1j where

max16j6M |λ̂e
j − λe

j | = op(1). �

Lemma 2.4.3. Consider Σ̂mn as defined in Remark 2.4.2. Under conditions of Theorem
2.4.1 or Theorem 2.4.2 the difference of its Frobenius norm to ςmn and its trace to µmn
converge in probability to zero.

2.4.2 Limiting behavior under local alternatives and consistency.

Similar to the previous sections we study the power and consistency properties of our

test. To study the power of Se
n against a sequence of local alternatives we proceed
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similarly as Ait-Sahalia et al. [2001]. More precisely, given a sequence of functions

(ϕ[n])n>1 where ϕ[n] satisfies ‖ϕ[n]−ϕ0‖2Z = O(γ−1
kn
, n−1kn). Then we consider alternative

models Y = ϕ(Z) + U with E[U |W ] = 0 where the structural function ϕ satisfies

√
n sup
z∈Z

∣∣ϕ(z)− ϕ[n](z)−
√
nς−1
mnδ(z)

∣∣ = o(ςmn) (2.14)

with δ ∈ L4
Z .

Proposition 2.4.4. Given the conditions of Theorem 2.4.1 and Assumption 2.5 (ii) it holds
under (2.14)

(
√

2ςmn)−1(nSe
n − µmn

) d→ N
(
2−1/2

∞∑
j=1

δ2
j , 1
)
.

Given the conditions of Theorem 2.4.2 it holds under (2.14) with ςmn replaced by 1 we have

nSe
n

d→
∞∑
j=1

λe
j χ

2
1j(δj/λe

j).

Let us now establish consistency of our tests when He does not hold, that is, P
(
ϕ =

ϕ0
)
< 1.

Proposition 2.4.5. Assume thatHe does not hold. Let E |Y−ϕ0(Z)|4 <∞ and Assumption
2.5 (i) hold true. Let (αn)n>1 as in Proposition 2.2.5. Under the conditions of Theorem
2.4.1 we have

P
(
(
√

2 ςmn)−1(nSe
n − µmn

)
> αn

)
= 1 + o(1),

whereas in the setting of Theorem 2.4.2

P
(
nSe

n > αn
)

= 1 + o(1).

In the following we show that our tests are consistent uniformly over the function

class

Iρn =
{
ϕ ∈ L2

Z : ‖LT (ϕ− ϕ0)‖2W > ρn−1ςmn and sup
z∈Z
|(ϕ− ϕ0)(z)| 6 C

}
form some constant C > 0. For the next result let q1α and q2α denote the 1− α quantile

of N (0, 1) and
∑∞
j=1 λ

e
j χ

2
1j , respectively.
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Proposition 2.4.6. Let Assumption 2.5 be satisfied. Under the conditions of Theorem 2.4.1
we have for any ε > 0, any 0 < α < 1, and any sufficiently large constant ρ > 0 that

lim
n→∞

inf
ϕ∈Iρn

P
(
(
√

2 ςmn)−1(nSe
n − µmn

)
> q1α

)
> 1− ε,

whereas under the conditions of Theorem 2.4.2 it holds

lim
n→∞

inf
ϕ∈Iρn

P
(
nSe

n > q2α
)
> 1− ε.

2.5 A nonparametric speci�cation test

A solution to the linear operator equation (2.2) only exists if g belongs to the range of T .

This might be violated if, for instance, the instrument is not valid, that is, E[U |W ] 6= 0.

We consider the hypothesis Hnp: there exists a solution ϕ0 to (2.2). The alternative

hypothesis is that there exists no solution to (2.2). In addition, we see in this section

that our results allow for a test of dimension reduction of the vector of regressors Z, that

is, whether some regressors can be omitted from the structural function ϕ0.

2.5.1 Nonparametric estimation method

The nonparametric estimator. In the following, we derive an estimator of ϕ0 under

the null hypothesis Hnp. For simplicity, assume that Z = W and consider a sequence

{ej}j>1 of approximating functions which are orthonormal on Z with respect to the

Lebesque measure ν. Under conditions given below, ϕ0 has the expansion ϕ0(·) =∑∞
l=1
∫
Z ϕ0(z)el(z)ν(dz) el(·). Thereby, the conditional moment restriction under Hnp

leads to the following unconditional moment restrictions

E[Y ej(W )] =
∞∑
l=1

E[ej(W )el(Z)]
∫
Z
ϕ0(z)el(z)ν(dz) (2.15)

for j > 1. This motivates the following orthogonal series type estimator. Let Zk and Yn

be as in the previous section and let Xk denote a n × k matrix with entries ej(Wi) for

1 6 i 6 n and 1 6 j 6 k. Then for each k > 1 we consider the estimator

ϕ̂k(·) := ek(·)tβ̂k where β̂k = (Xt
kZk)−Xt

kYn. (2.16)

Under conditions given below Xt
kn

Zkn will be nonsingular with probability approaching

one and hence its generalized inverse will be the standard inverse. The nonparametric
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estimator ϕ̂k given in (2.16) was studied by Johannes and Schwarz [2010], Horowitz

[2011b], and Horowitz [2012].

Additional assumptions. As noted by Horowitz [2012], uniformly consistent testing

of Hnp is only possible if the null is restricted that any solution to (2.2) is smooth.

Hence, in the following we assume that ϕ0 belongs to the ellipsoid Fργ :=
{
φ ∈ L2

Z :∑∞
j=1 γj E[φ(Z)ej(Z)]2 6 ρ

}
. As in the previous section, γ = (γj)j>1 measures the

approximation error of ϕ0 with respect to the basis {ej}j>1.

Further, as usual in the context of nonparametric instrumental regression, we specify

some mapping properties of the conditional expectation operator T . Denote by T the

set of all nonsingular operators on L2
W . Given a sequence of weights υ := (υj)j>1 and

d > 1 we define the subset T υd of T by

T υd :=
{
T ∈ T :

∫
W
|(Tφ)(w)|2ν(dw) 6 d

∞∑
j=1

υj
( ∫
Z
φ(z)ej(z)ν(dz)

)2 for all φ ∈ L2
Z

}
.

If pZ/ν is bounded from above and pW /ν is uniformly bounded away from zero then the

conditional expectation operator T belongs to T υd with υj = 1, j > 1, due to Jensen’s

inequality. Notice that for all T ∈ T υd it follows that ‖Tej‖2W 6 d ηpυj and thereby, the

condition T ∈ T υd links the operator T to the basis {ej}j>1. In the following, we denote

[T ]k = E[ek(W )ek(Z)t] which is assumed to be a nonsingular matrix. In what follows,

we introduce a stronger condition on the basis {el}l>1. We denote by T υd,D for some

D > d the subset of T υd given by

T υd,D :=
{
T ∈ T υd : [T ]k is nonsingular and sup

k>1
‖diag(υ1, . . . , υk)1/2[T ]−1

k ‖
2 6 D

}
.

The class T υd,D only contains operators T whose off-diagonal elements of [T ]−1
k are suf-

ficiently small for all k > 1. A similar diagonality restriction has been used by Hall

and Horowitz [2005]. Besides the mapping properties for the operator T we need a

stronger assumption for the basis under consideration. The following condition gathers

conditions on the sequences γ and υ.

Assumption 2.8. (i) Let ϕ0 ∈ Fργ with nondecreasing sequence γ satisfying j3 = o(γj).
(ii) The sequence {ej}j>1 is an orthogonal basis on Z = W with respect to ν. (iii) There
exists some constant ηe > 1 such that supj>1 supz∈Z |ej(z)| 6 ηe. (iv) Let T ∈ T υd,D with
υ being a strictly positive sequences such that υ and (υj/τj)j>1 are nonincreasing. (v) The
density pZ/ν is bounded from above and pW /ν is uniformly bounded away from zero.
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Note that by Assumption 2.8 (i) the alternative hypothesis is that there exists no func-

tion in Fργ solving (2.2). Due to Assumption 2.8 (iv) the degree of additional smoothing

for our testing procedure must not be stronger than the degree of ill-posedness im-

plied by the conditional expectation operator T . Under similar assumptions as above,

Johannes and Schwarz [2010] show that mean integrated squared error loss of ϕ̂kn
attains the optimal rate of convergence Rn := max

(
γ−1
kn
,
∑kn
j=1(nυj)−1). Due to As-

sumption 2.8 (v) we do not require orthonormal bases with respect to the unknown

distribution (Z,W ) (cf. Remark 1.3.2).

2.5.2 The test statistic and its asymptotic distribution

As in the previous sections, our test is based on the observation that the null hypothesis

Hnp is equivalent to L(g − Tϕ0) = 0. Our goodness-of-fit statistic for testing nonpara-

metric specifications is given by Sn where ϕ0 is replaced by the nonparametric estimator

ϕ̂kn given in (2.16), that is,

Snp
n :=

mn∑
j=1

τj
∣∣n−1

n∑
i=1

(
Yi − ϕ̂kn(Zi)

)
fj(Wi)

∣∣2.
If Snp

n becomes too large then there exists no function in Fργ solving (2.2). The next result

establishes asymptotic normality of Snp
n after standardization. Again, a key requirement

to obtain this asymptotic distribution is that kn = o(ςmn) implying that kn = o(mn) if the

smoothing operator L is the identity. This corresponds to the test of overidentification

in the parametric framework where more orthogonality restrictions than parameters are

required.

Theorem 2.5.1. Let Assumptions 2.1–2.4 and 2.8 be satisfied. If

nυkn = o(γknςmn), kn = o(ςmn), kn
( mn∑
j=1

τj
)2

= O(nυkn), and
( mn∑
j=1

τj
)3

= o(n) (2.17)

then it holds under Hnp

(
√

2ςmn)−1
(
nSnp

n − µmn
)

d→ N (0, 1).

Example 2.5.1. Consider the setting of Example 2.4.1. In the mildly ill posed case where
υj ∼ j−2a/r for some a > 0 condition (2.17) holds true if kn ∼ nκ with κ < ν/2 and

r(1− ν/2)/(2a+ 2p) < κ < r(1− 2ν)/(2a+ r).
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In the severely ill posed case, that is, υj ∼ exp(−j2a/r) for some a > 0, condition (2.17) is
satisfied if, for example, mn satisfies mn = o(kpn) and kn = o(√mn) where kn ∼

(
logn −

log(m3/2
n )

)r/(2a). �

The next result states an asymptotic distribution of our test if
∑mn
j=1 τj = O(1). Let

Σnp be the covariance matrix of the infinite dimensional centered vector
(
U(f τj (W ) −

eτj (W ))
)
j>1. The ordered eigenvalues of Σnp are denoted by (λnp

j )j>1.

Theorem 2.5.2. Let Assumptions 2.1–2.4 and 2.8 be satisfied. If

mn∑
j=1

τj = O(1), nυkn = o(γkn), k3
n = o(nυkn), and mn = o(1) (2.18)

then it holds under Hnp

nSnp
n

d→
∞∑
j=1

λnp
j χ2

1j .

Example 2.5.2. Consider the setting of Example 2.4.2. In the mildly ill posed case, that is,
υj ∼ j−2a/r for some a > 0, condition (2.18) is satisfied if mn ∼ nν for some ν > 0 and
kn ∼ nκ with

r/(2a+ 2p) < κ < r/(2a+ 3r).

In the severely ill posed case, that is, υj ∼ exp(−j2a/r) for some a > 0, condition (2.18)

is satisfied if kn ∼
(

log(n1+ε)
)r/(2a) for any ε > 0. In both cases, we observe that the

estimator ϕ̂kn is undersmoothed. �

Remark 2.5.1. If the basis {ej}j>1 coincides with {fj}j>1 then nSnp
n is asymptotically

degenerate. To avoid this degeneracy problem we choose different bases functions and hence,
sample splitting as used by Horowitz [2012] is not necessary here. �

Remark 2.5.2. Let Z ′ be a vector containing only entries of Z with dim(Z ′) < dim(Z). It
is easy to generalize our previous result for a test of H ′np: there exists a solution ϕ0 ∈ Fργ to
(2.2) only depending on Z ′. To be more precise consider the test statistic

S
′np
n :=

∥∥n−1
n∑
i=1

(
Yi − ϕ̂kn(Z ′i)

)
f τmn(Wi)‖2

where ϕ̂kn is the estimator (2.16) based on an iid. sample (Y1, Z
′
1,W1), . . . , (Yn, Z ′n,Wn)

of (Y, Z ′,W ). Under H ′np we consider the conditional expectation operator T ′ : L2
Z′ → L2

W
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with (T ′φ)(W ) := E[φ(Z ′)|W ]. It is interesting to note that if T is nonsingular then also
T ′ is. Hence, for a test of H ′np we may replace Assumption 2.3 by the weaker condition that
T ′ is nonsingular. Moreover, under H ′np the results of Theorem 2.5.1 and 2.5.2 still hold
true if we replace Z by Z ′. �

In the mildly ill-posed case, the estimation precision suffers from the curse of dimen-

sionality. Hence, by the test of dimension reduction of Z we can increase the accuracy

of estimation of ϕ0. On the other hand, in the severely ill-posed case the rate of conver-

gence is independent of the dimension of Z (cf. Chen and Reiß [2011]). As the next

example illustrates, a dimension reduction test can also weaken the required restrictions

on the instrument to obtain identification of ϕ in the restricted model

Example 2.5.3. Let Z = (Z(1), Z(2)) where both, Z(1) and Z(2) are endogenous vectors of
regressors. But only Z(1) satisfies a sufficiently strong relationship with the instrumentW in
the sense that for all φ ∈ L2

Z(1) condition E[φ(Z(1))|W ] = 0 implies φ = 0. In this example,
we do not assume that this completeness condition is fulfilled for the joint distribution of
(Z(2),W ). Thereby only the operator T (1) : L2

Z(1) → L2
W with T (1)φ := E[φ(Z(1))|W ] is

nonsingular but T is singular. If our dimension reduction test of Z indicates that Z(2) can
be omitted from the structural function ϕ0 then we obtain identification in the restricted
model. �

Remark 2.5.3. [Estimation of Critical Values] For the estimation of critical values of Theo-
rem 2.5.1 and 2.5.2, let us define Unp

n =
(
Y1−ϕ̂kn(Z1), . . . , Yn−ϕ̂kn(Zn)

)t. For all m > 1,
we estimate the covariance matrix Σm by

Σ̂m := n−1 Wm(τ)tdiag(Unp
n )2 Wm(τ).

Now the asymptotic result of Theorem 2.5.1 continues to hold if we replace ςmn by the
Frobenius norm of Σ̂mn and µmn by the trace of Σ̂mn (this is easily seen from the proof
of Lemma 2.4.3 assuming that {fj}j>1 is uniformly bounded). In the setting of Theorem
2.5.2, we replace Σnp by a finite dimensional matrix. Let Vk := Wk

(
ZtkWk)−1Ztk for

k > 1. Then for a sufficiently large integer M > 0 we estimate Σnp by

Σ̂np
M := n−1WM (τ)

(
In −Vkn

)t diag(Unp
n )2 (In −Vkn

)
WM (τ).

Hence, we approximate
∑∞
j=1 λ

np
j χ

2
1j by the finite sum

∑M
j=1 λ̂

np
j χ2

1j where (λ̂np
j )16j6M are

the ordered eigenvalues of Σ̂np
M where max16j6M |λ̂np

j − λ
np
j | = op(1). �
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2.5.3 Limiting behavior under local alternatives and consistency.

Similar to the previous sections we study the power and consistency properties of our

test. To study the power against local alternatives of the statistic Snp
n we consider al-

ternative functions which solve the operator equation (2.2) but do belong to Fργ . More

precisely, given a sequence of functions (ϕ[n])n>1 where ϕ[n] satisfies ‖ϕ[n] − ϕ0‖2Z =
max

(
γ−1
kn
,
∑kn
j=1(nυj)−1). Then we consider alternative models Y = ϕ(Z) + U with

E[U |W ] = 0 where the structural function ϕ satisfies

√
n sup
z∈Z

∣∣ϕ(z)− ϕ[n](z)−
√
nς−1
mnδ(z)

∣∣ = op(ςmn) (2.19)

for some δ ∈ L4
Z .

Proposition 2.5.3. Let Assumption 2.5 (ii) hold true. Given the conditions of Proposition
2.5.1 it holds under (2.7)

(
√

2ςmn)−1(nSnp
n − µmn

) d→ N
(
2−1/2

∞∑
j=1

δ2
j , 1
)

as n→∞.

Given the conditions of Proposition 2.5.2 it holds under (2.8)

nSnp
n

d→
∞∑
j=1

λnp
j χ2

1j(δj/λ
np
j ) as n→∞.

In the next proposition, we establish consistency of our test when Hnp does not hold,

that is, there exists no function in Fργ that solves (2.2) for any sequence γ satisfying

Assumption 2.8 and any sufficiently large constant 0 < ρ <∞.

Proposition 2.5.4. Assume that Hnp does not hold. Let E |Y −ϕ0(Z)|4 <∞ and Assump-
tion 2.5 (i) hold true. Let (αn)n>1 as in Proposition 2.2.5. Under the conditions of Theorem
2.5.1 and 2.5.2, respectively, we have

P
(
(
√

2 ςmn)−1(nSnp
n − µmn

)
> αn

)
= 1 + o(1),

P
(
nSnp

n > αn
)

= 1 + o(1).

In the following we show that our tests are consistent uniformly over the function

class

J ρn =
{
ϕ ∈ L2

Z : inf
ϕ0∈Fργ

‖LT (ϕ− ϕ0)‖2W > ρn−1ςmn and sup
z∈Z
|(ϕ− ϕ0)(z)| 6 C

}



82 Testing in Instrumental Mean Regression

where C > 0 is a finite constant. For the next result let q1α and q2α denote the 1 − α
quantile of N (0, 1) and

∑∞
j=1 λ

np
j χ2

1j , respectively.

Proposition 2.5.5. Let Assumption 2.5 be satisfied. For any ε > 0, any 0 < α < 1, and
any sufficiently large constant ρ > 0 we have under the conditions of Theorem 2.5.1

lim
n→∞

inf
ϕ∈J ρn

P
(
(
√

2 ςmn)−1(nSnp
n − µmn

)
> q1α

)
> 1− ε,

whereas under the conditions of Theorem 2.5.2 it holds

lim
n→∞

inf
ϕ∈J ρn

P
(
nSnp

n > q2α
)
> 1− ε.

2.6 Monte Carlo simulation

In this section, we study the finite-sample performance of our test by presenting the

results of Monte Carlo experiments. There are 1000 Monte Carlo replications in each

experiment. Results are presented for the nominal level 0.05. Realizations of Y were

generated from

Y = ϕ(Z) + cUU (2.20)

for some constant cU > 0 specified below. The structural function ϕ and the joint distri-

bution of (Z,W,U) varies in the experiments below. As basis {fj}j>1 we choose cosine

basis functions given by fj(t) =
√

2 cos(πjt) for j = 1, 2, . . . throughout this simulation

study.

Parametric Speci�cation Let us investigate the finite sample performance of our tests

in the case of parametric specifications. Realizations (Z,W ) were generated by W ∼
U [0, 1], Z = (ξ W + (1 − ξ) ε)2 where ξ = 0.8 and ε ∼ N (0.5, 0.1). Moreover, let

U = κ ε +
√

1− κ2 ε with κ = 0.3 and ε ∼ N(0, 1). Then realizations of Y where

generated by (2.20) with cU = 0.2 by an either linear function

ϕ(z) = z, (2.21)

a polynomial of second degree

ϕ(z) = z − z2, (2.22)
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or a polynomial of third degree

ϕ(z) = z − z2 + θ3 z
3. (2.23)

Given (2.23) is the correct model, then θ3 = 1.5 if (2.21) is the null model and θ3 = 3
if (2.21) is the null model. In Table 2.1 we depict the empirical rejection probabilities

when using Sp
n with additional smoothing where either τj = j−1 or τj = j−2, j > 1,

which we denote by S1p
n or S2p

n , respectively. When τj = j−1 then the number of basis

Sample Null Alt. Empirical Rejection probability
Size Model Model S1p

n S2p
n H(2006)’ test

250 (2.21) Hp true 0.047 0.045 0.063
(2.22) Hp true 0.049 0.050 0.059
(2.21) (2.22) 0.902 0.930 0.888
(2.21) (2.23) 0.730 0.732 0.653
(2.22) (2.23) 0.442 0.488 0.468

500 (2.21) Hp true 0.055 0.044 0.053
(2.22) Hp true 0.051 0.053 0.059
(2.21) (2.22) 0.989 0.998 0.988
(2.21) (2.23) 0.899 0.894 0.780
(2.22) (2.23) 0.709 0.728 0.652

Table 2.1: Empirical Rejection probabilities for parametric specification

functions used is m = 200 while in the case of τj = j−2 a choice of m = 100 is sufficient.

The critical values are estimated as described in Remark 2.3.1 whereM = 150 if τj = j−1

and M = 100 if τj = j−2. This choice of M ensures that the estimated eigenvalues λ̂j
are sufficiently close to zero for all j >M . We compare our test statistic with the test of

Horowitz [2006]. We follow his implementation using biweight kernels. The bandwidth

used to estimate the joint density of (Z,W ) was also selected by cross validation. As

Table 2.1 illustrates, the results for S1p
n and S2p

n are quite similar. In both situations,

our test is more powerful than the test of Horowitz [2006] when testing (2.21) against

(2.23). In this simulation study, we observed that the estimated coefficients of T (ϕ −
φ(ϑ0, ·)) have a fast decay. Consequently, the test statistic Sn with no weighting has less

power, as we discussed in Subsection 2.4. In contrast, we will demonstrate by the end

of this section that using weights can be inappropriate.
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Testing Exogeneity We now turn to the test of exogeneity where the realizations

(Z,W ) are generated by W ∼ U [0, 1] and Z = ξ W +
√

1− ξ2 ε with ξ = 0.7, and

ε ∼ U [0, 1]. Moreover, let U = κ ε +
√

1− κ2 ε with ε ∼ U [0, 1]. Here, κ measures

the degree of endogeneity of Z and is varied among the experiments. The null hy-

pothesis H0 holds true if κ = 0 and is false otherwise. Now realizations of Y where

generated by (2.20) with cU = 1 and the nonparametric structural function ϕ1(z) =∑∞
j=1(−1)j+1 j−1 sin(jπz). For computational reasons we truncate the infinite sum at

K = 100. The resulting function is displayed in Figure 2.1. We estimate the structural

relationship using Lagrange polynomials. Indeed, only a few basis functions are nec-

essary to accurately approximate the true function. If we choose kn too small or too

large then the estimator will be a poor approximate of the true structural function and

hence, the test statistic will reject Hnp. In this experiment we set kn = 4 for n = 250 and

n = 500.

Sample Size κ Empirical Rejection probability using
S1e
n S2e

n BH(2007)’ test

250 0.0 0.038 0.030 0.030
0.15 0.209 0.314 0.153
0.2 0.369 0.513 0.293
0.25 0.591 0.716 0.504

500 0.0 0.043 0.043 0.052
0.15 0.476 0.543 0.416
0.2 0.749 0.809 0.693
0.25 0.922 0.957 0.885

Table 2.2: Empirical Rejection probabilities for testing exogeneity

In Table 2.2 we depict the empirical rejection probabilities when using Se
n with addi-

tional smoothing where either τj = j−1 or τj = j−2, j > 1, which we denote by S1e
n

or S2e
n , respectively. The critical values of these statistics are estimated as described in

Remark 2.4.2 with M = 50 in case of τj = j−1 and M = 40 in case of τj = j−2. We

compare our results with the test of Blundell and Horowitz [2007]. We follow their

approach by choosing the bandwidth of the joint density of (Z,W ) by cross validation.

The bandwidth of the marginal of Z is n1/5−7/24 times the cross-validation bandwidth.

As we see from Table 2.2, S1e
n is slightly more powerful than the test of Blundell and

Horowitz [2007]. If we choose a stronger sequence, however, then our test statistic S2e
n

becomes considerably more powerful.
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Nonparametric Speci�cation Let us now study the finite sample of our test in the case

of nonparametric specification. We generate the pair (Z,W ) as in the parametric case

described above. For the generation of the dependent variable Y we distinguish two

cases. Besides the structural function ϕ1(z) =
∑∞
j=1(−1)j+1j−2 sin(jπz) we also con-

sider the function ϕ2(z) =
∑∞
j=1((−1)j+1 + 1)/4 j−2 sin(jπz). Again, for computational

reasons we truncate the infinite sum at K = 100. The resulting functions are displayed

in Figure 2.1. Further, Y is generated by (2.20) either with ϕ1 and cU = 0.2 or ϕ2

and cU = 0.8. In both cases, we estimate the structural relationship using Lagrange

polynomials with kn = 4 for n = 500 and n = 1000.

If Hnp is false then E[U |W ] 6= 0 and we let E[U |W ] = E[ρ(Z)|W ] where ρ is defined

below. Consequently, when Hnp is false we generate realizations of Y from

Y = ϕl(Z) + ρj(Z) + U

for l = 1, 2 and j > 1 where ρj(z) = cj(exp(2jz)1{z61/2}+ exp(2j(1 − z))1{z>1/2}−1)
and cj is a normalizing constant such that

∫ 1
0 ρj(z)dz = 0.5. The functions ρj are con-

tinuous but not differentiable at 0.5. Roughly speaking, the degree of roughness of ρj is

larger for larger j. In Table 2.3, we depict the empirical rejection probabilities when
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Figure 2.1: Graph of ϕ1 and ϕ2

using Snp
n with either no smoothing or additional smoothing τj = j−2, j > 1, which we

denote by S0np
n or S2np

n , respectively. When no additional smoothing is applied then the

number of basis functions fj is given by mn = 11 if n = 500 and mn = 15 if n = 1000
and hence, the choice of mn is slightly larger than n1/3 as suggested by the theoretical
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Sample Size ρ Empirical Rejection probability using
S0np
n S2np

n H(2012)’ test

500 Hnp true 0.034 0.039 0.040
ρ1 0.099 0.382 0.258
ρ2 0.309 0.765 0.536
ρ4 0.498 0.884 0.712

1000 Hnp true 0.058 0.058 0.046
ρ1 0.405 0.672 0.427
ρ2 0.768 0.899 0.704
ρ4 0.920 0.943 0.808

Table 2.3: Empirical Rejection prob. for Nonparametric Spec. for ϕ1 with cU = 0.2

results. The critical values of these statistics are estimated as described in Remark 2.5.3

where in the case of S2np
n we choose M = 100. We compare our results with the test of

Horowitz [2012]. We observe that the statistic S0np
n is less powerful than S2np

n against

the alternatives ρ1 and ρ2.

In the following, we illustrate that using additional weighting can be inappropriate.

Table 2.4 illustrates the power of our tests when the structural function ϕ2 is considered

and realizations (Z,W ) were generated by W ∼ U [0, 1], Z = (0.8W + 0.3 ε)2 where

ε ∼ N (0.5, 0.05). In this case, we generate Y using (2.20) where cU = 0.8. In this case,

Sample Size ρ Empirical Rejection probability using
S0np
n S2np

n H(2012)’ test

500 Hnp true 0.022 0.044 0.044
ρ3 0.230 0.193 0.158
ρ4 0.400 0.319 0.245
ρ5 0.543 0.463 0.370

1000 Hnp true 0.044 0.049 0.052
ρ3 0.643 0.343 0.302
ρ4 0.836 0.579 0.518
ρ5 0.924 0.792 0.722

Table 2.4: Empirical Rejection prob. for Nonparametric Spec. for ϕ2 with cU = 0.8

the estimates of the generalized coefficients of T (ϕ−ϕ0) are more fluctuating and using

weights is not appropriate here. Indeed, as we can see from Table 2.4, the test statistic

S0np
n with no smoothing is more powerful than S2np

n were weighting τj = j−2, j > 1, is
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used. In particular, S0np
n is much more powerful than the test of Horowitz [2012].

2.7 Conclusion

Based on the methodology of series estimation, we have developed in this paper a family

of goodness-of-fit statistics and derived their asymptotic properties. The implementation

of these statistics is straightforward. We have seen that the asymptotic results depend

crucially on the choice of the smoothing operator L. By choosing a stronger decaying

sequence τ , our test becomes more powerful with respect to local alternatives but might

lose desirable consistency properties. We gave heuristic arguments how to choose the

weights in practice. In addition, in a Monte Carlo investigation our tests perform well in

finite samples.

Appendix

Throughout the Appendix, let C > 0 denote a generic constant that may be different in

different uses. For ease of notation let
∑
i =

∑n
i=1 and

∑
i′<i =

∑n
i=1

∑i−1
i′=1. Further, we

denote ‖FmnTφ‖2τ =
∑mn
j=1 τj E[φ(Z)fj(W )]2 and ‖Tφ‖2τ =

∑∞
j=1 τj E[φ(Z)fj(W )]2 for

any φ ∈ L2
Z .

Proofs of Section 2.2

PROOF OF THEOREM 2.2.1. Under H0 we have (Yi −ϕ0(Zi))f τm(Wi) = Uif
τ
m(Wi) for all

m > 1 and consequently we observe

ς−1
mn

(
nSn−µmn

)
= 1
ςmnn

∑
i

mn∑
j=1

(
|Uif τj (Wi)|2−sjj

)
+ 1
ςmnn

∑
i 6=i′

mn∑
j=1

UiUi′f
τ
j (Wi)f τj (Wi′)

where the first summand tends in probability to zero as n→∞. Indeed, since E |Ufj(W )|2−
ςjj = 0, j > 1, it holds for all m > 1

1
(ςmn)2 E

∣∣∑
i

m∑
j=1
|Uif τj (Wi)|2−sjj

∣∣2 = 1
nς2
m

E
∣∣ m∑
j=1
|Uf τj (W )|2−sjj

∣∣2 6 1
nς2
m

E ‖Uf τm(W )‖4.
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By using Assumptions 2.1 and 2.2, i.e., supj∈N E |fj(W )|4 6 ηf ηp and E[U4|W ] 6 σ4,

we conclude

E ‖Uf τm(W )‖4 6 max
16j6m

E |Ufj(W )|4
( m∑
j=1

τj
)2
6 ηf ηp σ

4
( m∑
j=1

τj
)2
. (2.24)

Let m = mn satisfy condition (2.5) then E ‖Uf τmn(W )‖4 = o
(
nς2
mn

)
. Therefore, it is

sufficient to prove

√
2(ςmnn)−1 ∑

i 6=i′

mn∑
j=1

UiUi′f
τ
j (Wi)f τj (Wi′)

d→ N (0, 1). (2.25)

Since ςmn = o(1) this follows from Lemma 2.7.2 and thus, completes the proof.

PROOF OF THEOREM 2.2.2. Similarly to the proof of Theorem 2.2.1 it is sufficient to

study the asympotic behavior of n−1∑mn
j=1

∑
i 6=i′ UiUi′f

τ
j (Wi)f τj (Wi′). For any finite m >

1 we obtain

E
∣∣∣ 1
n

m∑
j=1

∑
i 6=i′

UiUi′f
τ
j (Wi)f τj (Wi′)−

1
n

∞∑
j=1

∑
i 6=i′

UiUi′f
τ
j (Wi)f τj (Wi′)

∣∣∣2
6 E

[
E[U2

1U
2
2 |W1,W2]

( ∑
j>m

f τj (W1)f τj (W2)
)2]
6 σ4ηp

∑
j,l>m

( ∫
W
f τj (s)f τl (s)ν(ds)

)2

6 σ4ηp
∑
j>m

τ2
j

which, since
∑
j>1 τ

2
j = O(1), becomes sufficiently small (depending on m). Note that( 1√

n

∑
i Uif

τ
1 (Wi), . . . , 1√

n

∑
i Uif

τ
m(Wi)

) d→ N (0, Σm). Hence, for any finite m > 1 we

have

m∑
j=1

∣∣∣ 1√
n

∑
i

Uif
τ
j (Wi)

∣∣∣2 d→
m∑
j=1

λjχ
2
1j

with λj , 1 6 j 6 m, being eigenvalues of Σm. Moreover, we conclude for m > 1

1
n

m∑
j=1

∑
i 6=i′

UiUi′f
τ
j (Wi)f τj (Wi′)t =

m∑
j=1

(∣∣∣ 1√
n

∑
i

Uif
τ
j (Wi)

∣∣∣2 − 1
n

∑
i

|Uif τj (Wi)|2
)

d→
m∑
j=1

(
λjχ

2
1j − sjj

)
.

It is easily seen that
∑m
j=1(λjχ2

1j−sjj) has expectation zero. Hence, following the lines of
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page 198-199 of Serfling [1981] we obtain that
∑
j>m

(
λjχ

2
1j − sjj

)
becomes sufficiently

small (depending on m) and thus, completes the proof.

PROOF OF PROPOSITION 2.2.3. For ease of notation let δn(·) := ς
1/2
mn n

−1/2δ(·). Under

the sequence of alternatives (2.7) the following decomposition holds true

Sn =
∥∥n−1∑

i

Uif
τ
mn(Wi)

∥∥2 + 2〈n−1∑
i

Uif
τ
mn(Wi), n−1∑

i

δn(Zi)f τmn(Wi)〉

+
∥∥n−1∑

i

δn(Zi)f τmn(Wi)
∥∥2 =: In + 2IIn + IIIn.

Due to Theorem 2.2.1 we have (
√

2ςmn)−1(n In − µmn) d→ N (0, 1). Consider IIn. We

observe

nE |IIn| 6
mn∑
j=1

τj
(
E |Ufj(W )|2 E |δn(Z)fj(W )|2

)1/2+
(
nE

∣∣∣ mn∑
j=1

τj [Tδn]jUfj(W )
∣∣∣2)1/2

6 σ
mn∑
j=1

τj
(
E |δn(Z)fj(W )|2

)1/2 + σ
√
n‖Tδn‖τ .

From the definition of δn and condition (2.5) we infer that nE |IIn| = o(ςmn). Con-

sider IIIn. Employing again the definition of δn it is easily seen that nς−1
mnIIIn =∑mn

j=1 τj [Tδ]2j + op(1). We conclude (
√

2ςmn)−1nIIIn = 2−1/2∑
j>1 δ

2
j + op(1), which

completes the proof.

PROOF OF PROPOSITION 2.2.4. Let δn(·) := n−1/2δ(·). Similarly to the proof of Theorem

2.2.2 it is straightforward to see that under the sequence of alternatives (2.8) it holds

1
n

∑
i 6=i′

mn∑
j=1

(Ui + δn(Zi))(Ui′ + δn(Zi′))f τj (Wi)f τj (Wi′)

=
∞∑
j=1

(∣∣∣ 1√
n

∑
i

Uif
τ
j (Wi) + 1

n

∑
i

δ(Zi)f τj (Wi)
∣∣∣2 − 1

n

∑
i

∣∣Uif τj (Wi)
∣∣2)

d→
∞∑
j=1

λjχ1j(δj/λj)

simillar to the lines of page 198-199 of Serfling [1981] and hence the assertion follows.

PROOF OF PROPOSITION 2.2.5. If H0 fails we observe that ‖T (ϕ− ϕ0)‖2τ =
∫
W |LT (ϕ−

ϕ0)(w)pW (w)/ν(w)|2ν(dw) > C‖LT (ϕ − ϕ0)‖2W > 0 since pW /ν is uniformly bounded
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from zero and LT is nonsingular. Now since ςmnαn + µmn = o(n) it is sufficient to show

Sn = ‖T (ϕ− ϕ0)‖2τ + op(1). We make use of the decomposition

Sn =
mn∑
j=1

τj
∣∣n−1∑

i

(Yi − ϕ0(Zi))fj(Wi)− [T (ϕ− ϕ0)]j
∣∣2

+2
mn∑
j=1

τj
(
n−1∑

i

(Yi−ϕ0(Zi))fj(Wi)−[T (ϕ−ϕ0)]j
)
[T (ϕ−ϕ0)]j+‖FmnT (ϕ−ϕ0)‖2τ

= In + IIn + IIIn.

Due to condition E |Y −ϕ0(Z)|4 <∞ it is easily seen that In+IIn = op(1). On the other

hand IIIn = ‖T (ϕ− ϕ0)‖2τ + o(1), which proves the result.

PROOF OF PROPOSITION 2.2.6. We make use of the decomposition

P
(
(
√

2 ςmn)−1(nSn − µmn) > q1−α
)

> P
(∥∥n−1/2∑

i

(ϕ(Zi)− ϕ0(Zi))f τmn(Wi)
∥∥2 +

∥∥n−1/2∑
i

Uif
τ
mn(Wi)

∥∥2 − µmn

>
√

2 ςmnq1−α + 2|〈n−1∑
i

(ϕ(Zi)− ϕ0(Zi))f τmn(Wi),
∑
i

Uif
τ
mn(Wi)〉|

)
.

Uniformly over all ϕ ∈ Gρn it holds

〈n−1∑
i

(ϕ(Zi)−ϕ0(Zi))f τmn(Wi),
∑
i

Uif
τ
mn(Wi)〉 = Op

(
max(

√
n‖LT (ϕ−ϕ0)‖W , ςmn)

)
.

Indeed, this is easily seen from

E
∣∣ mn∑
j=1

τj E[(ϕ(Z)−ϕ0(Z))fj(W )]
∑
i

Uifj(Wi)
∣∣2 6 σ2ηpn

mn∑
j=1

E[(ϕ(Z)−ϕ0(Z))f τj (W )]2

and further, denoting ψji = (ϕ(Zi)− ϕ0(Zi))fj(W )− E[(ϕ(Z)− ϕ0(Z))fj(W )], 1 6 j 6
mn, 1 6 i 6 n, from

E
∣∣n−1 ∑

i 6=i′

mn∑
j=1

τjψjiUi′fj(Wi′)
∣∣2 = n− 1

n

mn∑
j,j′=1

τjτj′ E
[
ψj1ψj′1

]
E
[
U2fj(W )fj′(W )

]
6 C

mn∑
j,j′=1

τjτj′ E
[
U2fj(W )fj′(W )

]
6 Cσ2 E

∣∣ mn∑
j=1

τjfj(W )
∣∣2 = O

( mn∑
j=1

τj
)
.
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Thereby, for all 0 < ε′ < 1 there exists some constant C > 0 such that

P
(
(
√

2 ςmn)−1(nSn − µmn) > q1−α
)

> P
(∥∥n−1/2∑

i

(ϕ(Zi)− ϕ0(Zi))f τmn(Wi)
∥∥2 +

∥∥n−1/2∑
i

Uif
τ
mn(Wi)

∥∥2 − µmn

>
√

2 ςmnq1−α + C max(
√
n‖LT (ϕ − ϕ0)‖W , ςmn)

)
− ε′.

Note that
∥∥n−1/2∑

i Uif
τ
mn(Wi)

∥∥2 = µmn +Op(ςmn) due to Theorem 2.2.1. Moreover,

∥∥n−1/2∑
i

(ϕ(Zi)− ϕ0(Zi))f τmn(Wi)
∥∥2
> n‖FmnT (ϕ− ϕ0)‖2τ

−2
∣∣〈∑

i

(ϕ(Zi)−ϕ0(Zi))f τmn(Wi)−n[LT (ϕ−ϕ0)]mn , [LT (ϕ−ϕ0)]mn〉 = In+IIn.

Consider IIn. For 1 6 j 6 mn let sj = τj [T (ϕ − ϕ0)]j/‖FmnT (ϕ − ϕ0)‖τ then clearly∑mn
j=1 s

2
j = 1 and thus E |

∑mn
j=1 sjfj(W )|2 6 ηfηp. Further, since supz∈Z |ϕ(z)−ϕ0(z)|2 6

C we calculate

E |IIn|2 = nE
∣∣∣ mn∑
j=1

τj
(
(ϕ(Z)− ϕ0(Z))fj(W )− [T (ϕ− ϕ0)]j

)
[T (ϕ− ϕ0)]j

∣∣∣2
6 n‖FmnT (ϕ− ϕ0)‖2τ E

∣∣∣ mn∑
j=1

sj(ϕ(Z)− ϕ0(Z))fj(W )
∣∣∣2 = O

(
n‖LT (ϕ− ϕ0)‖2W

)
and hence IIn = Op(

√
n‖LT (ϕ− ϕ0)‖W ). Consider In. Note that ‖LT (ϕ− ϕ0)‖2W 6 C

for all ϕ ∈ Gρn we have In > Cn‖LT (ϕ− ϕ0)‖2W for n sufficiently large. Since on Gρn we

have n‖LT (ϕ−ϕ0)‖2W > ρ ςmn we obtain the result by choosing ρ sufficiently large.

Proofs of Section 2.3

For ease of notation, we write in the following φ(·) for φ(·, ϑ0) and φϑl(·) for φϑl(·, ϑ0).

PROOF OF THEOREM 2.3.1. The proof is based on the decomposition under Hp

Sp
n =

∥∥ 1
n

∑
i

Uif
τ
mn(Wi)

∥∥2 + 2〈 1
n

∑
i

Uif
τ
mn(Wi),

1
n

∑
i

(
φ(Zi)− φ(Zi, ϑ̂n)

)
f τmn(Wi)〉

+
∥∥ 1
n

∑
i

(
φ(Zi)− φ(Zi, ϑ̂n)

)
f τmn(Wi)

∥∥2 = In + 2IIn + IIIn. (2.26)
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Due to Theorem 2.2.1 it holds (
√

2ςmn)−1(nIn − µmn) d→ N (0, 1). Consider IIIn. Since

φ(Zi)− φ(Zi, ϑ̂n) = φϑ(Zi)t(ϑ0 − ϑ̂n) + op(n−1) observe

nIIIn 6 2n‖ϑ0−ϑ̂n‖2
( k∑
l=1

mn∑
j=1

τj [Tφϑl ]
2
j+

k∑
l=1

mn∑
j=1

τj
( 1
n

∑
i

φϑl(Zi)fj(Wi)−[Tφϑl ]j
)2)+op(1).

For each 1 6 l 6 k we have

mn∑
j=1

[Tφϑl ]
2
j =

mn∑
j=1

( ∫
W

(Tφϑl)(w)fj(w)pw(w)dw
)2

6
∫
W
|(Tφϑl)(w)pw(w)/ν(w)|2ν(dw) 6 ηp‖Tφϑl‖

2
W

6 ηp E |φϑl(Z, ϑ0)|2 6 ηpηφ (2.27)

by applying Jensen’s inequality. Moreover, we calculate

k∑
l=1

mn∑
j=1

E
∣∣ 1
n

∑
i

φϑl(Zi)fj(Wi)− [Tφϑl ]j
∣∣2 6 kmn

n
sup
j,l>1

E |φϑl(Z)fj(W )|2 6 η4kmn

n
.

(2.28)

These estimates together with ‖ϑ0 − ϑ̂n‖ = Op(n−1/2) imply nIIIn = op(ςmn). We are

left with the proof of nIIn = op(ςmn). We observe for each 1 6 l 6 k

E
∣∣∣ mn∑
j=1

τj
(
n−1/2∑

i

Uifj(Wi)
(
n−1∑

i

φϑl(Zi)fj(Wi)− [Tφϑl ]j
))∣∣∣

6 n−1/2
mn∑
j=1

τj
(
E |Ufj(W )|2

)1/2(E |φϑl(Z)fj(W )|2
)1/2 = O

(
n−1/2

mn∑
j=1

τj
)

= o(ςmn).

Now since n1/2(ϑ0 − ϑ̂n) = Op(1) we infer

nIIn = n1/2(ϑ0 − ϑ̂n)t
mn∑
j=1

τj
(
ς−1
mnn

−1/2∑
i

Uifj(Wi)E[φϑ(Z)fj(W )]
)

+ op(1).

We observe for each 1 6 l 6 k

ς−2
mnn

−1 E
∣∣∣ mn∑
j=1

τj
∑
i

Uifj(Wi)[Tφϑl ]j
∣∣∣2 6 ς−2

mnσ
2ηp

mn∑
j=1

[Tφϑl ]
2
j 6 ς

−2
mnσ

2 η2
p ηf

which implies nIIn = op(ςmn) and thus, in light of decomposition (3.23), completes the
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proof.

PROOF OF THEOREM 2.3.2. For 1 6 j 6 mn we make use of the following decomposi-

tion

n−1/2∑
i

fj(Wi)
(
Ui+φ(Zi)−φ(Zi, ϑ̂n)

)
= n−1/2∑

i

(
fj(Wi)Ui−

k∑
l=1

[Tφϑl ]jhl(Vi)
)

+
k∑
l=1

(
n−1∑

i

fj(Wi)φϑl(Zi)− [Tφϑl ]j
)(
n−1/2∑

i

hl(Vi)
)

+
k∑
l=1

n−1∑
i

fj(Wi)φϑl(Zi)rl + op(1) = Anj +Bnj + Cnj + op(1) (2.29)

where rk = (r1, . . . , rk)t is a stochastic vector satisfying rk = op(1). Consequently, under

Hp we have

nSp
n =

mn∑
j=1

τjA
2
nj + 2

mn∑
j=1

τjAnj(Bnj + Cnj) +
mn∑
j=1

τj(Bnj + Cnj)2 + op(1).

Clearly, for all 1 6 i 6 n the random variables Uif τj (Wi) + E
[
f τj (W )φϑ(Z)t

]
hk(Vi), 1 6

j 6 mn, are centered with bounded second moment. Due to the proof of Theorem 2.2.2

it is easily seen that
∑mn
j=1 τjA

2
nj

d→
∑∞
j=1 λ

p
j χ

2
1j . Inequality (2.28) yields

∑mn
j=1B

2
nj =

op(1). Since
∑mn
j=1[Tφϑ]2j 6 ηpηφ we have ‖E[fmn(W )φϑ(Z)t]rk‖2 6 k ηpηφ‖rk‖2 =

op(1) and hence
∑mn
j=1C

2
nj = op(1). Finally, Cauchy Schwarz’s inequality implies that∑mn

j=1 τjAnj(Bnj + Cnj) = op(1), which completes the proof.

PROOF OF PROPOSITION 2.3.3. Consider the case ς−1
mn = o(1). Under the sequence of

alternatives (2.7) the following decomposition holds true

Sp
n = Sn+2〈n−1∑

i

(Ui+ς1/2
mn n

−1/2δ(Zi))f τmn(Wi), n−1∑
i

(φ(Zi)−φ(Zi, ϑ̂n))f τmn(Wi)〉

+
∥∥n−1∑

i

(φ(Zi)− φ(Zi, ϑ̂n))f τmn(Wi)
∥∥2
.

Due to Proposition 2.2.3 and the proof of Theorem 2.3.1 it is sufficient to show

〈n−1∑
i

δ(Zi)f τmn(Wi), n−1/2∑
i

(φ(Zi)− φ(Zi, ϑ̂n))f τmn(Wi)〉 = op(
√
ςmn). (2.30)
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Indeed, since δj = √τj E[δ(Z)fj(W )] we have

mn∑
j=1

δjn
−1/2∑

i

(φ(Zi)−φ(Zi, ϑ̂n))fj(Wi) =
√
n(ϑ0−ϑ̂n)t

mn∑
j=1

δj E[φϑ(Z)fj(W )]+op(1)

6 ηp ηφ
√
n‖ϑ0 − ϑ̂n‖

∞∑
j=1

δ2
j + op(1) = Op(1)

and hence (2.30) holds true.

Consider the case
∑mn
j=1 τ

2
j = O(1). We make use of decomposition (2.29) where Ui is

replaced by Ui + n−1/2δ(Zi). Similarly to the proof of Proposition 2.2.4 it is easily seen

that
∑mn
j=1 τjA

2
nj

d→
∑∞
j=1 λ

p
j χ

2
1j(δj/λ

p
j ). Thereby, due to the proof of Theorem 2.3.2, the

assertion follows.

PROOF OF PROPOSITION 2.3.4. It is sufficient to prove Sp
n = ‖T (ϕ− φ(·, ϑ0))‖2τ + op(1).

Consider the case ς−1
mn = o(1). Since ‖n−1∑

i(φ(Zi, ϑ0) − φ(Zi, ϑ̂n))f τmn(Wi)‖2 = op(1)
(cf. proof of Theorem 2.3.1) and ‖n−1∑

i(Yi−φ(Zi, ϑ0))f τmn(Wi)‖2 = ‖T (ϕ−φ(·, ϑ0))‖2τ+
op(1) (cf. proof of Proposition 2.2.5) the result follows. In case of

∑mn
j=1 τ

2
j = O(1), we

infer similarly that Sp
n =

∑mn
j=1 τj

∣∣n−1∑
i

(
(Yi − φ(Zi, ϑ0))fj(Wi)

∣∣2 + op(1) and hence,

Sp
n = ‖T (ϕ− ϕ0)‖2τ + op(1).

PROOF OF PROPOSITION 2.3.5. Consider the case ς−1
mn = o(1). The basic inequality (a−

b)2 > a2/2− b2, a, b ∈ R, yields

P
(
(
√

2 ςmn)−1(nSp
n − µmn

)
> q1−α

)
> P

(
1/2

∥∥n−1/2∑
i

(ϕ(Zi)− φ(Zi, ϑ0))f τmn(Wi)
∥∥2 +

∥∥n−1/2∑
i

Uif
τ
mn(Wi)

∥∥2 − µmn

>
√

2 ςmnq1−α + 2|〈n−1∑
i

(ϕ(Zi)− φ(Zi, ϑ̂n))f τmn(Wi),
∑
i

Uif
τ
mn(Wi)〉|

+
∥∥n−1/2∑

i

(φ(Zi, ϑ0) − φ(Zi, ϑ̂n))f τmn(Wi)
∥∥2)

. (2.31)

From the proof of Theorem 2.3.1 we infer
∥∥n−1/2∑

i(φ(Zi, ϑ̂n)−φ(Zi, ϑ0))f τmn(Wi)
∥∥2 =

op(ςmn) and

〈n−1∑
i

(ϕ(Zi)− φ(Zi, ϑ̂n))f τmn(Wi),
∑
i

Uif
τ
mn(Wi)〉

= 〈n−1∑
i

(ϕ(Zi)− φ(Zi, ϑ0))f τmn(Wi),
∑
i

Uif
τ
mn(Wi)〉+ op(ςmn).
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Thus, following line by line the proof of Proposition 2.2.6, the assertion follows. In case

of
∑mn
j=1 τ

2
j = O(1) the assertion follows similarly.

Proofs of Section 2.4.

In the following, we denote Q = E[ekn(Z)ekn(Z)t] and Q̂ = n−1∑n
i=1 ekn(Zi)ekn(Zi)t.

By Assumption 2.7, the eigenvalues of Q = E[ekn(Z)ekn(Z)t] are bounded away from

zero and hence, it may be assumed that Q = Ikn (cf. Newey [1997], p. 161).

PROOF OF THEOREM 2.4.1. The proof is based on the decomposition (3.23) where the

estimator φ(·, ϑ̂n) is replaced by ϕkn(·) given in (2.10). It holds nIIIn = op(ςmn), which

can be seen as follows. We make use of

IIIn/2 6
∥∥ 1
n

∑
i

(Eknϕ0(Zi)−ϕkn(Zi))f τmn(Wi)
∥∥2 +

∥∥ 1
n

∑
i

(
E⊥knϕ0

)
(Zi)f τmn(Wi)

∥∥2

=: An1 + An2.

Consider An1. We observe

An1 6 2‖T (Eknϕ0−ϕkn)‖2W+2‖Eknϕ0−ϕkn‖
2
Z

mn∑
j=1

τj

kn∑
l=1
|n−1∑

i

el(Zi)fj(Wi)−[T ]jl|2

=: 2Bn1 + 2Bn2. (2.32)

For Bn1 we evaluate due to the relation [Q̂]−1
kn

= Ikn − [Q̂]−1
kn

([Q̂]kn − Ikn) that

Bn1 6 ‖Eknϕ0 − ϕkn‖
2
Z 6 2

∥∥[Q̂]kn [ϕ0]kn − n−1∑
i

Yiekn(Zi)
∥∥2

+ 2
∥∥[Q̂]kn − Ikn

∥∥2 ∥∥[Q̂]−1
kn

∥∥2 ∥∥[Q̂]kn [ϕ0]kn − n−1∑
i

Yiekn(Zi)
∥∥2
.

Since the spectral norm of a matrix is bounded by its Frobenius norm it holds

E
∥∥[Q̂]kn − Ikn

∥∥2
6 n−1

kn∑
l,l′=1

E |el(Z)el′(Z)|2 6 ηe n−1k2
n
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and condition ϕ ∈ Fργ together with
∑kn
l=1 γ

−1
l 6 π

2/6 for n sufficiently large yields

E
∥∥[Q̂]kn [ϕ0]kn − n−1∑

i

Yiekn(Zi)
∥∥2
6 n−1

kn∑
j=1

E
∣∣ej(Z)Eknϕ0(Z)− Y ej(Z)|2

6 n−1 sup
z∈Z
‖ekn(z)‖2 E

∣∣Eknϕ0(Z)−Y |2 6 4ηen−1kn
(

sup
z∈Z
|E⊥knϕ0(z)|+‖ϕ0‖2Z+EY 2)

= O(n−1kn)

Moreover, since the difference of eigenvalues of [Q̂]kn and Ikn is bounded by ‖[Q̂]kn −
Ikn‖, the smallest eigenvalue of [Q̂]kn converges in probability to one and thereby,

‖[Q̂]−1
kn
‖2 = 1 + op(1). Consequently,

n‖Eknϕ0 − ϕkn‖
2
Z = Op(kn) (2.33)

and since kn = o(ςmn) we proved nBn1 = op(ςmn). In addition, applying inequality

(2.28) together with equation (2.33) yields nBn2 = op(ςmn). Consequently, nAn1 =
o(ςmn). Consider An2. Similar to the derivation of (2.27) we obtain

E
∥∥n−1∑

i

(
E⊥knϕ0

)
(Zi)f τmn(Wi)

∥∥2
6 2ηp‖E⊥knϕ0‖2Z + 2n−1

mn∑
j=1

E |E⊥knϕ0(Z)fj(W )|2.

We have

mn∑
j=1

τj E |(E⊥knϕ0)(Z)fj(W )|2 = O
(
γ−1
kn

mn∑
j=1

τj
)

= o(ςmn) (2.34)

and n‖E⊥knϕ0‖2Z = O(nγ−1
kn

) = o(ςmn). Hence, nIIIn = op(ςmn). Consider IIn. We

calculate

nIIn 6
∣∣∣ mn∑
j=1

τj
∑
i

Uifj(Wi)([ϕ0]kn−[ϕ]kn)t
(
n−1∑

i

ekn(Zi)fj(Wi)−E
[
ekn(Z)fj(W )

])∣∣∣
+
∣∣∣ mn∑
j=1

τj

kn∑
l=1

([ϕ0]l − [ϕ]l)
(∑

i

Uifj(Wi)[T ]jl
)∣∣∣

+
∣∣∣ mn∑
j=1

τj
(∑

i

Uifj(Wi)
)(
n−1∑

i

E⊥knϕ0(Zi)fj(Wi)− E[E⊥knϕ0(Z)fj(W )]
)∣∣∣

+
∣∣∣ mn∑
j=1

τj
(∑

i

Uifj(Wi)
)
E[E⊥knϕ0(Z)fj(W )]

∣∣∣ = Cn1 + Cn2 + Cn3 + Cn4. (2.35)
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Consider Cn1. Applying twice the Cauchy Schwarz inequality gives

Cn1 6 ‖Eknϕ0−ϕkn‖Z
mn∑
j=1

τj
∣∣∑
i

Uifj(Wi)
∣∣ ( kn∑

l=1
|n−1∑

i

el(Zi)fj(Wi)−E[el(Z)fj(W )]|2
)1/2

.

From E |
∑
i Uifj(Wi)|2 6 n ηfσ

2, relation (2.33), and inequality (2.28) we infer Cn1 =
op(ςmn) due to condition (2.11). For Cn2 we evaluate

Cn2 6 ‖Eknϕ0 − ϕkn‖Z
( kn∑
l=1

∣∣ mn∑
j=1

∑
i

Uifj(Wi)[T ]jl
∣∣2)1/2

.

Now
∑mn
j=1

∑kn
l=1[T ]2jl = O(kn) together with (2.33) yields Cn2 = op(1). Consider Cn3.

Since E[U2|W ] 6 σ2 we conclude similarly as in inequality (2.34) that

ECn3 6
mn∑
j=1

τj
(
E |Ufj(W )|2

)1/2(E |E⊥knϕ0(Z)fj(W )|2
)1/2 = O

(
γ
−1/2
kn

mn∑
j=1

τj
)

= o(ςmn).

Consider Cn4. We calculate

E |Cn4|2 6 n ηp σ2
mn∑
j=1

[TE⊥knϕ0]2j 6 n η2
p σ

2‖TE⊥knϕ0‖2W = O(nγ−1
kn

) = o(ςmn).

Consequently, in light of decomposition (2.35) we obtain nIIn = o(ςmn), which com-

pletes the proof.

PROOF OF THEOREM 2.4.2. Employing the equality [Q̂]−1
kn

= Ikn− [Q̂]−1
kn

([Q̂]kn−Ikn) we

obtain for all 1 6 j 6 mn

n−1/2∑
i

fj(Wi)
(
Ui + ϕ0(Zi)− ϕkn(Zi)

)
= n−1/2∑

i

(
fj(Wi)Ui + E[fj(W )ekn(Z)t]ekn(Zi)

(
ϕ0(Zi)− Yi

))
+ n−1/2∑

i

E
[
fj(W )ekn(Z)t

]
[Q̂]−1

kn

(
[Q̂]kn − Ikn

)(
Eknϕ0(Zi)− Yi

)
+
(
n−1∑

i

fj(Wi)el(Zi)− E
[
fj(W )ekn(Z)t

])√
n
(
[ϕ0]kn − [ϕ]kn

)
+n−1/2∑

i

E[fj(W )ekn(Z)t]ekn(Zi)
(
fj(Wi)−(EknT ∗fj)(Zi)

)
= Anj+Bnj+Cnj+Dnj .

(2.36)

Due to Assumption 2.7 (ii) we may assume that {e1, . . . , ek} forms an orthonormal
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system in L2
Z and hence

∑k
l=1 E[fj(W )el(Z)]2 is bounded uniformly in k. Thereby,∑

l>1 E[fj(W )el(Z)]el(·) belongs to L2
Z for all j > 1. Now following line by line the

proof of Theorem 2.2.2 we deduce

mn∑
j=1

τjA
2
nj =

m∑
j=1

τj E
∣∣∣n−1/2∑

i

Ui
(
fj(Wi)+

∑
l>1

E[fj(W )el(Z)]el(Zi)
)∣∣∣2+op(1) d→

∞∑
j=1

λe
j χ

2
1j .

Moreover, we see similarly to the proof of Theorem 2.4.1 that
∑mn
j=1 τj(B2

nj + C2
nj +

D2
nj) = op(1), which completes the proof.

PROOF OF LEMMA 2.4.3. Note that the squared Frobenius norm of Σ̂mn −Σmn is given

by

mn∑
j,l=1

∣∣∣n−1∑
i

(Yi − ϕkn(Zi))2f τj (Wi)f τl (Wi)− sjl
∣∣2

6 ‖ϕkn − Eknϕ‖
4
Z

mn∑
j,l=1

E
[
‖ekn(Z)‖2f τj (W )f τl (W )

]2
+

mn∑
j,l=1

E
[
(E⊥knϕ0(Z))2f τj (W )f τl (W )

]2 + op(1)

6 ‖ϕkn − Eknϕ‖
4
ZO
(( mn∑

j=1
τj
)2)+ O

((
γ−1
kn

mn∑
j=1

τj
)2)+ op(1) = op(1)

by using relation (2.33). Consequently, the Frobenius norm of Σ̂mn equals ςmn + op(1).
Consistency of the trace of Σ̂mn is seen similarly.

PROOF OF PROPOSITION 2.4.4. Consider the case ς−1
mn = o(1). Due to condition (2.14)

and similarly to the proof of Theorem 2.4.1 we observe

mn∑
j=1

∣∣∣n−1/2∑
i

(ϕ(Zi)− ϕkn(Zi))f τj (Wi)
∣∣∣2

=
mn∑
j=1

1
n

∣∣∣∑
i

(
ϕ(Zi)−ϕ[n](Zi)−

√
n

ςmn
δ(Zi)

)
f τj (Wi)

∣∣∣2+
mn∑
j=1

∣∣∣ 1
n

∑
i

δ(Zi)f τj (Wi)
∣∣∣2+op(ςmn)

=
mn∑
j=1

δ2
j /ςmn + op(ςmn).

Consequently, the result follows as in the proof of Theorem 2.4.1. For
∑mn
j=1 τ

2
j = O(1)

we conclude similarly.
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PROOF OF PROPOSITION 2.4.5. Similar to the proof of Proposition 2.3.4.

PROOF OF PROPOSITION 2.4.6. We make use of inequality (2.31) where φ(·, ϑ̂n) is re-

placed by ϕkn . From the proof of Theorem 2.4.1 we conclude that
∥∥n−1/2∑

i(ϕkn(Zi)−
ϕ0(Zi))f τmn(Wi)

∥∥2 = op(ςmn) and

〈n−1∑
i

(ϕ(Zi)− ϕkn(Zi))f τmn(Wi),
∑
i

Uif
τ
mn(Wi)〉

= 〈n−1∑
i

(ϕ(Zi)− ϕ0(Zi))f τmn(Wi),
∑
i

Uif
τ
mn(Wi)〉+ op(ςmn)

uniformly over all ϕ ∈ Iρn. Thus, following line by line the proof of Proposition 2.2.6,

the assertion follows.

Proofs of Section 2.5.

Recall that [T ]k = E[ek(W )ek(Z)t]. In the following, we introduce the function ϕkn(·) :=
ekn(·)t[T ]−1

kn
[g]kn which belongs to L2

Z . For all k > 1 let us denote Ωk := {‖[T̂ ]−1
k ‖ 6

√
n}

and fk := {‖Qk‖‖[T ]−1
k ‖ 6 1/2} where Qk = [T̂ ]k − [T ]k. Note that E1Ωc

kn
= P(Ωc

kn
) =

o(1) (cf. proof of Proposition 1.3.1) and, hence 1Ωkn = 1 + op(1).

PROOF OF THEOREM 2.5.1. For the proof we make use of decomposition (3.23) where

the estimator φ(·, ϑ̂n) is replaced by ϕ̂kn given in (2.16). Consider IIIn. Observe

IIIn 6 2‖n−1∑
i

(ϕkn(Zi)− ϕ̂kn(Zi))f τmn(Wi)‖2

+ 2‖n−1∑
i

(
ϕkn(Zi)− ϕ0(Zi)

)
f τmn(Wi)‖2 = 2An1 + 2An2. (2.37)

Consider An1. We evaluate by applying Cauchy Schwarz inequality

An1 6 2‖T (ϕkn− ϕ̂kn)‖2W +2‖ϕkn− ϕ̂kn‖2υ
mn∑
j=1

τj

kn∑
l=1

υ−1
l |n

−1∑
i

el(Zi)fj(Wi)− [T ]jl|2.

The link condition T ∈ T υd,D yields ‖T (ϕ̂kn − ϕkn)‖2W 6 d‖ϕ̂kn − ϕkn‖2υ. From Theorem

2.6 of Johannes and Schwarz [2010] and condition (2.17) we infer n‖ϕ̂kn − ϕkn‖2υ =
Op
(

max(nυknγ−1
kn
, kn)

)
= op(ςmn). This together with estimate (2.28) implies nAn1 =
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op(ςmn). Consider An2. We observe

EAn2 6 2‖T (ϕkn − ϕ0)‖2W + 2n−1 E ‖
(
ϕkn(Z)− ϕ0(Z)

)
f τmn(W )‖2

6 2d‖ϕkn − ϕ0‖2υ + 2n−1∑
l>1

l2([ϕkn ]l − [ϕ0]l)2
mn∑
j=1

τj
∑
l>1

l−2 E |el(Z)fj(W )|2

6 8Dd2ρ
(υkn
γkn
‖ϕkn − ϕ0‖2γ + π2

6 η
4‖ϕkn − ϕ0‖2γ

k2
n

nγkn

mn∑
j=1

τj
)
. (2.38)

where we used Lemma A.2 of Johannes and Schwarz [2010], i.e., ‖ϕkn − ϕ0‖2w 6
4Ddρwknγ−1

kn
for a nondecreasing sequence w. Condition (2.17) together with the esti-

mate k2
n 6 σ

4∑mn
j=1 τj for n sufficiently large implies nAn2 = op(ςmn). Consequently, due

to (2.37) we have shown nIIIn = op(ςmn). The proof of nIIn = op(ςmn) is based on de-

composition (2.35) where ϕkn and E⊥knϕ0 are replaced by ϕ̂kn and ϕkn−ϕ0, respectively.

Consider Cn1. We calculate

Cn1 6 ‖ϕ̂kn − ϕkn‖υ
mn∑
j=1

τj
∣∣∑
i

Uifj(Wi)
∣∣( kn∑

l=1
υ−1
l

∣∣n−1∑
i

el(Zi)fj(Wi)− [T ]jl
∣∣2)1/2

Since
√
n‖ϕ̂kn − ϕkn‖υ = op(ς1/2

mn ) we obtain, similarly as in the proof of Theorem 2.4.1,

Cn1 = op(ςmn). Consider Cn2. Again similarly to the proof of Theorem 2.4.1 we observe

Cn2 =
∣∣∣ mn∑
j=1

τj

kn∑
l=1

[T ]jl([ϕ̂kn ]l − [ϕkn ]l)
(∑

i

Uifj(Wi)
)∣∣∣

6
(
n‖ϕ̂kn − ϕkn‖2υ

)1/2(
σ2

kn∑
l=1

υ−1
l

mn∑
j=1

[T ]2jl
)1/2

+ op(1) = o(ςmn)

by exploiting
∑mn
j=1[T ]2jl = ‖Tel‖2W 6 dυl. Consider Cn3. Since E[U2|W ] 6 σ2 we

conclude similarly as in inequality (2.34) using Lemma A.2 of Johannes and Schwarz

[2010]

ECn3 6 σ
mn∑
j=1

τj
(
E |(ϕkn(Z)−ϕ0(Z))fj(W )|2

)1/2
6 η2 πσ√

6
kn√
γkn
‖ϕkn−ϕ0‖γ

mn∑
j=1

τj = o(ςmn).

Consider Cn4. Again exploring the link condition T ∈ T υd,D and Lemma A.2 of Johannes
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and Schwarz [2010] we calculate

E |Cn4|2 6 nσ
mn∑
j=1

[T (ϕkn − ϕ0)]2j 6 nσ‖T (ϕkn − ϕ0)‖2W

6 nσd‖ϕkn − ϕ0‖2υ 6 4Ddρσnυkn
γkn
‖ϕkn − ϕ0‖2γ = o(ςmn).

Consequently, the estimates for Cn1, Cn2, Cn3, and Cn4 imply nIIn = op(ςmn), which

completes the proof.

PROOF OF THEOREM 2.5.2. Observe [T̂ ]kn [ϕkn ]kn−[ĝ]kn = n−1∑
i fkn(Wi)(ϕkn(Zi)−Yi)

and hence, for all 1 6 j 6 mn

n−1/2∑
i

fj(Wi)
(
Ui + ϕ0(Zi)− ϕ̂kn(Zi)

)
= n−1/2∑

i

(
fj(Wi)Ui + E

[
fj(W )ekn(Z)t

]
[T ]−1

kn
ekn(Wi)

(
ϕkn(Zi)− Yi

))
− n−1/2∑

i

E
[
fj(W )ekn(Z)t

]
[T ]−1

kn
Qkn [T̂ ]−1

kn
ekn(Wi)

(
ϕkn(Zi)− Yi

)
+
(
n−1∑

i

fj(Wi)ekn(Zi)t−E
[
fj(W )ekn(Z)t

])
[T̂ ]−1

kn

(
n−1/2∑

i

ekn(Wi)
(
ϕkn(Zi)−Yi

))
+ n−1/2∑

i

(
ϕ0(Zi)− ϕkn(Zi)

)
fj(Wi) = Anj +Bnj + Cnj +Dnj . (2.39)

Consider Anj . The entries of the inverse of the matrix (E[fj(W )el(Z)])j,l>1, which is

equivalent to (E[ej(W )el(Z)])j,l>1, are denoted by tjl for all j, l > 1. For each 1 6 j 6

mn, note that E
[
fj(W )ekn(Z)t

]
[T ]−1

kn
ekn(·) converges in probability to

∑
l,k>1[T ]jltlkek(·) =

ej(·). This proves

mn∑
j=1

τjA
2
nj 6

mn∑
j=1

τj
∣∣∣n−1/2∑

i

Ui
(
fj(Wi)− ej(Wi)

)∣∣∣2 + op(1) d→
∞∑
j=1

λnp
j χ2

1j .

Consider Bnj . By employing ‖[T̂ ]−1
k ‖1fk 6 2‖[T ]−1

k ‖ and ‖[T̂ ]−1
k ‖2 1Ωk 6 n for all
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k > 1 it follows

mn∑
j=1

τjB
2
nj 1Ωkn =

mn∑
j=1

τjB
2
nj 1Ωkn (1fkn +1fc

kn
)

6
∥∥E[f τmn(W )ekn(Z)t][T ]−1

kn

∥∥2(4‖[T ]−1
kn
‖2‖Qkn‖2‖n−1/2∑

i

fkn(Wi)
(
ϕkn(Zi)−Yi

)
‖2

+ n‖Qkn‖2‖n−1/2∑
i

fkn(Wi)
(
ϕkn(Zi) − Yi

)
‖2 1fc

kn

)
.

As above we have ‖E f τmn(W )ekn(Z)t[T ]−1
kn
‖2 = O(1). Moreover, n‖Qkn‖2 = Op(k2

n) and

‖n−1/2∑
i ekn(Wi)

(
ϕkn(Zi)− Yi

)
‖2 = Op(kn) due to Lemma 1.5.1. In addition, similarly

to the proof of Proposition 1.3.1, it can be seen that n‖Qkn‖2‖n−1/2∑
i ekn(Wi)

(
ϕkn(Zi)−

Yi
)
‖2 1fc

kn
= op(1). Consequently,

∑mn
j=1 τjB

2
nj = op(1) using 1Ωkn = 1 + op(1). Similarly,

it is easily seen that
∑mn
j=1 τjC

2
nj = op(1) and

∑mn
j=1 τjD

2
nj = op(1), which proves the

result.

PROOF OF PROPOSITION 2.5.3. Consider the case ς−1
mn = o(1). Similar to the proof of

Proposition 2.3.3 it is sufficient to show

〈n−1∑
i

δ(Zi)f τmn(Wi), n−1/2∑
i

(ϕ0(Zi)− ϕ̂kn(Zi))f τmn(Wi)〉 = op(
√
ςmn). (2.40)

Due to the link condition T ∈ T υd,D we obtain

mn∑
j=1

τj [Tδ]j
1√
n

∑
i

(ϕkn(Zi)−ϕ̂kn(Zi))fj(Wi) 6
√
dn‖Tδ‖τ‖ϕkn−ϕ̂kn‖υ+op(1) = op(ςmn).

As in the proof of Theorem 2.5.1 it can be seen
∑mn
j=1 τj [Tδ]j

∑
i(ϕ0(Zi)−ϕkn(Zi))fj(Wi) =

op(
√
nςmn) and, hence equation (2.40) holds true. Consider the case

∑mn
j=1 τ

2
j = O(1).

We make use of decomposition (2.39) where Ui is replaced by Ui + n−1/2δ(Zi). Simi-

larly to the proof of Proposition 2.2.4 it is seen that
∑mn
j=1 τjA

2
nj

d→
∑∞
j=1 λ

np
j χ2

1j(δj/λ
np
j ).

Thereby, due to the proof of Theorem 2.3.2, the assertion follows.

PROOF OF PROPOSITION 2.5.4. Similar to the proof of Proposition 2.3.4.

PROOF OF PROPOSITION 2.5.5. We make use of inequality (2.31) where φ(·, ϑ̂n) is re-

placed by ϕ̂kn . From the proof of Proposition 2.5.1 we infer
∥∥n−1/2∑

i(ϕ̂kn(Zi) −
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ϕ0(Zi))f τmn(Wi)
∥∥2 = op(ςmn) and

〈n−1∑
i

(ϕ(Zi)− ϕ̂kn(Zi))f τmn(Wi),
∑
i

Uif
τ
mn(Wi)〉

= 〈n−1∑
i

(ϕ(Zi)− ϕ0(Zi))f τmn(Wi),
∑
i

Uif
τ
mn(Wi)〉+ op(ςmn)

uniformly over all ϕ ∈ J ρn . Consequently, following line by line the proof of Proposition

2.2.6, the assertion follows.

Technical assertions.

Let us introduce Xii′ :=
√

2(ςmnn)−1∑mn
j=1 UiUi′f

τ
j (Wi)f τj (Wi′) and

Qni :=


∑i−1
l=1 Xli, for i = 2, . . . , n,

0, for i = 1 and i > n.
(2.41)

Then clearly

(
√

2ςmnn)−1 ∑
i 6=i′

mn∑
j=1

UiUi′f
τ
j (Wi)f τj (Wi′) =

√
2(ςmnn)−1 ∑

i<i′

mn∑
j=1

UiUi′f
τ
j (Wi)f τj (Wi′)

=
∑
i<i′

Xii′ =
n∑
i=1

Qni.

Let Bni := B((Z1, Y1,W1), . . . , (Zi, Yi,Wi)), 1 6 i 6 n, n > 1, be the σ-algebra generated

by (Z1, Y1,W1), . . . , (Zi, Yi,Wi). Since Uif τj (Wi), 1 6 i 6 n, are centered random vari-

ables it follows that {(
∑i
i′=1Qni′ ,Bni), i > 1} is a Martingale for each n > 1 and hence

{(Qni,Bni), i > 1} is a Martingale difference array for each n > 1. Moreover, it satisfies

the conditions of Proposition 2.7.1 as shown in the following technical result.

Proposition 2.7.1. If {(Qni,Bni), i > 1} is a Martingale difference array for each n > 1
satisfying conditions

∞∑
i=1

E |Qni|2 6 1 for all n > 1, (2.42)

∞∑
i=1

Q2
ni = 1 + op(1), (2.43)

sup
i>1
|Qni| = op(1) (2.44)
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then
∑∞
i=1Qni

d→ N(0, ν).

Proof. See Awad [1981].

Note that this result has been also applied by Ghorai [1980] to establish asymptotic

normality of an orthogonal series type density estimator. Indeed, the following proof is

similar to the proof of Lemma 2 of Ghorai [1980].

Lemma 2.7.2. Let Qni be defined as in (2.41). Let Assumptions 2.1–2.4 be satisfied and
assume

(∑mn
j=1 τj

)3 = o(n). Then conditions (2.42)–(2.44) hold true.

Proof. Proof of (2.42). Observe that E[X1iX1i′ ] = 0 for i 6= i′ and thus, for i = 2, . . . , n
we have

E |Qni|2 = E |X1i + · · ·+Xi−1,i|2 = (i− 1)E |X12|2

= 2(i− 1)
n2ς2

mn

E
∣∣ mn∑
j=1

U1f
τ
j (W1)U2f

τ
j (W2)

∣∣2 = 2(i− 1)
n2ς2

mn

mn∑
j,j′=1

(
E[U2f τj (W )f τj′(W )]

)2
= 2(i− 1)

n2

by the definition of ςmn . Thereby, we conclude

n∑
i=1

E |Qni|2 = 2
n2

n−1∑
i=1

i = n(n− 1)
n2 = 1− 1

n
(2.45)

which proves (2.42).

Proof of (2.43). Using relation (2.45) we observe

E
∣∣ n∑
i=1

Q2
ni − 1

∣∣2 =
n∑
i=1

EQ4
ni + 2

∑
i<i′

EQ2
niQ

2
ni′ − 1 + o(1) =: In + IIn − 1 + o(1).

Consider In. Observe that

E |Qni|4 = E
∣∣ i−1∑
i′=1

Xi′i

∣∣4 = E
∣∣∣ √2
nςmn

mn∑
j=1

τjUifj(Wi)
i−1∑
i′=1

Ui′fj(Wi′)
∣∣∣4

6
4

n4ς4
mn

( mn∑
j=1

τj
)3 mn∑

j=1
E |Ufj(W )|4

(
(i− 1)τj E |Ufj(W )|4 + 3(i− 1)(i− 2)ς2

jj

)

where we used that E[Ufj(W )] = 0. Since
∑n
i=1 3(i − 1)(i − 2) = n(n − 1)(n − 2) we
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conclude

In 6
4

n4ς4
mn

( mn∑
j=1

τj
)3(n(n− 1)

2

mn∑
j=1

τj(E |Ufj(W )|4)2+n(n−1)(n−2)
mn∑
j=1

s2
jj E |Ufj(W )|4

)

Therefore, applying maxj>1 E |Ufj(W )|4 6 ηf ηp σ
4 and

∑mn
j=1 τj = o(n1/3) yields In =

o(1). Consider IIn. We calculate for i < i′

Q2
niQ

2
ni′ =

( i−1∑
k=1

X2
ki

)( i′−1∑
k=1

X2
ki′

)
+
( i−1∑
k=1

X2
ki

)( i′−1∑
k 6=k′

Xki′Xk′i′

)

+
( i−1∑
k 6=k′

XkiXk′i

)( i′−1∑
k=1

X2
ki′

)
+
( i−1∑
k 6=k′

XkiXk′i

)( i′−1∑
k 6=k′

Xki′Xk′i′

)
=: Aii′ + Bii′ + Cii′ + Dii′ .

ConsiderAii′ . Exploiting relation (2.45) and using
∑
i<i′(i−1) =

∑n
i′=1(i′−1)(i′−2)/2 =

n(n − 1)(n − 2)/6 and further
∑
i<i′(i − 1)(i′ − 3) =

∑n
i′=1(i′ − 3)(i′ − 2)(i′ − 1)/2 =

n(n− 1)(n− 2)(n− 3)/8 we obtain

2
∑
i<i′

EAii′ = 4EX2
12X

2
23
∑
i<i′

(i− 1) + 2(EX2
12)2 ∑

i<i′

(i− 1)(i′ − 3) + o(1)

= 8n(n− 1)(n− 2)
3n4ς4

mn

( mn∑
j,j′,l,l′=1

ςjj′ςll′ EU4f τj (W )f τj′(W )f τl (W )f τl′ (W )
)

+ n(n− 1)(n− 2)(n− 3)
n4 + o(1).

Moreover, applying Cauchy Schwarz’s inequality twice gives

mn∑
j,j′,l,l′=1

sjj′sll′ EU4f τj (W )f τj′(W )f τl (W )f τl′ (W )

6 max
16j6mn

E |Ufj(W )|4
( mn∑
j, j′=1

√
τjτj′sjj′

)2
6 ηf ηp σ

4ς2
mn

( mn∑
j=1

τj
)2
.

Thereby, it holds 2
∑
i<i′ EAii′ = 1 + o(1). Now consider Bii′ . Since {fl}l>1 forms an



orthonormal basis on the support of W we obtain

E
( i−1∑
k=1

X2
ki

)( i′−1∑
k 6=k′

Xki′Xk′i′

)
= 2

i−1∑
k=1

EX2
kiXki′Xii′

6
8(i− 1)
n4ς4

mn

mn∑
j,j′=1

E
∣∣∣U3

1 f
τ
j (W1)f τj′(W1)U3

2 f
τ
j (W2)f τj′(W2)

mn∑
l,l′=1

ςll′f
τ
l (W1)f τl′ (W2)

∣∣∣
6

8(i− 1)σ2η2
p

n4ς3
mn

( mn∑
j,j′=1

E |U2f τj (W )f τj′(W )|2
)
6

8(i− 1)σ6ηf η
3
p

n4ς3
mn

( mn∑
j=1

τj
)2
.

This, together with relation (2.45), yields
∑
i<i′ EBii′ = o(1). Further, it is easily seen

that
∑
i<i′ ECii′ = o(1). Consider Dii′ . Using twice the law of iterated expectation gives

EDii′ = E
( i−1∑
k 6=k′

XkiXk′i

)( i′−1∑
k 6=k′

Xki′Xk′i′

)
= 4

i−1∑
k<k′

EXkiXk′iXki′Xk′i′

= 4
i−1∑
k<k′

E
[
XkiXk′i E[Xki′Xk′i′ |(Yk, Zk,Wk), (Yk′ , Zk′ ,Wk′), (Yi, Zi,Wi)]

]
= 8
n2ς2

mn

i−1∑
k<k′

E
[
E[XkiXk′i|(Yk, Zk,Wk), (Yk′ , Zk′ ,Wk′)]

×
mn∑
j,j′=1

sjj′Ukf τj (Wk)Uk′f τj′(Wk′)
]

= 8
n4ς4

mn

E
∣∣∣ mn∑
j,j′=1

sjj′U1f
τ
j (W1)U2f

τ
j′(W2)

∣∣∣2(i− 1)(i− 2) 6
8σ4η2

p

n4ς2
mn

(i− 1)(i− 2).

Since ς−1
mn = o(1) we obtain

∑
i<i′

EDii′ 6
8σ4η2

p

n4ς2
mn

∑
i<i′

(i− 1)(i− 2) =
2σ4η2

p n(n− 1)(n− 2)(n− 3)
3ς2
mnn

4 = o(1)

and hence 2
∑
i<i′ EQ2

niQ
2
ni′ = 1 + o(1).

Proof of (2.44). Note that P
(

supi>1 |Qni| > ε
)
6
∑n
i=1 P

(
Q2
ni > ε2) and, hence the

assertion follows from the Markov inequality.



3 Speci�cation Testing in Nonparametric

Instrumental Quantile Regression

3.1 Introduction

Regression models that involve instrumental variables are widely used in economics to

overcome endogeneity problems. In these models, assuming additive separable struc-

tural disturbances can often not be justified by the data. This is why their nonseparable

extension has been studied extensively in the recent past. Under certain key conditions

the nonseparable model implies a conditional quantile restriction. This quantile rep-

resentation is used in the literature to obtain identification and estimation results. If

one of the key conditions is violated, however, the quantile regression representation is

potentially misspecified as we illustrate below. This paper contributes to the literature

a specification test in nonparametric instrumental quantile regression. In addition, we

develop several tests to justify model simplification.

We consider the nonseparable model

Y = h(Z, V ) (3.1)

where Y is a scalar dependent variable, Z a vector of regressors, and V an unobserved

scalar variable. Here Z contains potentially endogenous entries in the sense that Z and

V may not be independently distributed. Typically in the literature, one finds the follow-

ing key conditions: an instrumental variable W is available being independent of V , the

function h is strictly monotonic in its second argument (wlog strictly monotonically in-

creasing), and V is continuously distributed (wlog V ∼ U [0, 1]). Given these conditions,

for any 0 < q < 1 the quantile structural effect ϕ(·) := h(·, q) satisfies

P(Y 6 ϕ(Z)|W ) = P(h(Z, V ) 6 h(Z, q)|W ) = P(V 6 q|W ) = q,

and hence we obtain the following quantile regression representation (Horowitz and
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Lee [2007])

Y = ϕ(Z) + U with P(U 6 0|W ) = q. (3.2)

Research on identification and estimation in nonparametric instrumental quantile re-

gression has been active in the last decade. Chesher [2003] investigated nonparametric

identification of derivatives of the unknown functions in a triangular array structure.

Chernozhukov and Hansen [2005] and Chernozhukov et al. [2007] give identification

conditions and develop a nonparametric minimum distance estimator. In that model,

Horowitz and Lee [2007] propose an estimator based on Tikhonov regularization. Chen

and Pouzo [2012] study penalized sieve minimum distance estimator. Dunker et al.

[2011] consider an iteratively regularized Gauß-Newton method to solve nonlinear in-

verse problems involving instrumental variables. Gagliardini and Scaillet [2012b] study

the asymptotic distribution of a Tikhonov regularized estimator. All these papers assume

that a solution to the model equation exists.

Specification tests in instrumental variable models is a subject of considerable litera-

ture (the earliest work goes back to Sargan [1958] which together with Hansen [1982]

are known as the test of overidentifying restrictions). In the context of nonparamet-

ric instrumental mean regression, tests for correct specification have been proposed by

Gagliardini and Scaillet [2007], Horowitz [2012], and see also Chapter 2. On the other

hand, Horowitz and Lee [2009] established a test of parametric specification of ϕ in

model (3.2). But, as we far as we know, its nonparametric extension, that is whether a

function ϕ solving (3.2) exists, has not yet been addressed in the literature.

Indeed, there exist several sources for misspecification in model (3.2). Model (3.1)

need not to imply the quantile regression model (3.2) if the instrument W is not valid

(that is W is not independent of V ), h is not strictly monotonic in its second argument

or V is not continuously distributed. Under violation of one of the key conditions the

correct quantile structural representation is given by

Y = ϕ(Z) + U with P(U 6 0|W ) = q + ξ(W ) (3.3)

for some function ξ. If h is not strictly monotonic in its second argument we have

ξ(W ) = P(h(Z, V ) 6 h(Z, q)|W ) − q. If h satisfies the monotonicity condition but the

instrumentW is not valid then ξ(W ) = P(V 6 q|W )−q. Moreover, if h is monotonic and

W is a valid instrument but V is not continuously distributed then ξ(W ) ≡ P(V 6 q)−q.
Consequently, any estimator of ϕ in the misspecified model (3.2) does not account for

the additive term ξ(W ) and hence might not converge to the true structural quantile
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effect. The aim of this paper is to test whether model (3.2) is correctly specified, that is

ξ ≡ 0.

We also provide extensions of our results concerning model simplification. We estab-

lish a test of exogeneity of the regressors Z in the quantile regression model (3.2), that is

whether P(U 6 0|Z) = q. Falsely assuming exogeneity of the regressors leads to incon-

sistent estimators whereas treating exogenous regressors as if they were endogenous can

lower the accuracy of estimation dramatically. Moreover, we propose a test of dimension

reduction, that is whether certain regressors can be omitted from the quantile structural

effect ϕ. A test of dimension reduction may reduce the complexity of the model and

help to increase the accuracy of estimators of the structural effect ϕ. In particular, by

justifying a withdrawal of regressors that are only weakly correlated to the instrument

one might obtain identification in the restricted specification while ϕ is not identified in

the original model. Further, a test of additivity of the structural function is established.

Our test statistic is based on the L2 norm of the empirical conditional quantile restric-

tion. We establish the asymptotic distribution of our test statistic and its consistency

against fixed alternatives. Also uniform consistency over certain classes of functions can

be obtained. By Monte Carlo simulations we demonstrate the power properties of our

test in finite samples. As an empirical illustration, we study a nonparametric median

regression model of the effects of class size on test scores of 4th grade students in Israel.

We reject the hypothesis of exogeneity of class size at the 0.5–quantile but fail to reject

the hypothesis of correct specification of an instrumental median regression model.

3.2 The test statistic and its asymptotic properties

This section begins with the definition of the test statistic and states assumptions re-

quired to obtain its asymptotic distribution under the null hypothesis. Further, we show

that the penalized sieve estimator of Chen and Pouzo [2012] can be used to estimate

the structural effect ϕ. Moreover, we study power and consistency properties of our test.

3.2.1 De�nition of the test statistic

The quantile regression model (1.1a) leads to a nonlinear operator equation, as we see

in the following. Let Φ be a Banach space and let us introduce the Hilbert space L2
W :=

{ψ : ‖ψ‖2W := E |ψ(W )|2 < ∞}. Then we define the nonlinear operator T : Φ → L2
W

with

T φ = E[1 {Y 6 φ(Z)} − q|W ] (3.4)
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for any φ ∈ Φ where 1 denotes the indicator function. Thereby, model (1.1a) can be

rewritten as the operator equation T ϕ = 0. Throughout the paper, we assume that the

function ϕ defined by the operator equation is identified.

In many economic applications, for instance when estimating a demand function or

Engel curves, the structural function of interest may be assumed to be smooth. This a
priori knowledge is captured by a set B which we introduce below. Thereby, we consider

the null hypothesis

H0 : there exists a function ϕ ∈ B such that T ϕ = 0. (3.5)

The alternative is that for any ϕ ∈ B it holds T ϕ = ξ for some nonzero, bounded

function ξ.

To motivate the test statistic assume that the support of W is contained in [0, 1].
Let pW denote the marginal density of W . By carrying out an additional smooth-

ing step one might obtain better power properties as we discuss below. Let L be a

nonsingular smoothing operator L acting on L2
W . Then (T ϕ)(w) = 0 if and only if

(LT ϕ)(w)pW (w) = 0 for all w in the support of W . Our test statistic is based on

a sample analog of
∫ 1

0 |(LT ϕ)(w)pW (w)|2dw. Further, let us introduce approximating

functions {fj}j>1 which are assumed to form an orthonormal basis L2
[0,1]. In what fol-

lows, let {τj , fj}j>1 be the eigenvalue decomposition of the smoothing operator L with

τ := (τj)j>1 being a positive nonincreasing sequence. Further, due to Parseval’s identity

the following representation holds true

∫ 1

0
|(LT ϕ)(w)pW (w)|2dw =

∞∑
j=1

τj E
[(
1 {Y 6 ϕ(Z)} − q

)
fj(W )

]2
. (3.6)

Throughout the paper, we assume that an independent and identically distributed n-

sample of (Y,Z,W ) is available. Further, we truncate the infinite sum on the right hand

side of (3.6) and replace the expectation by sample mean. Our test statistic is then given

by

Sn :=
mn∑
j=1

τj
∣∣n−1

n∑
i=1

(
1 {Yi 6 ϕ̂n(Zi)} − q

)
fj(Wi)

∣∣2 (3.7)

where mn tends to infinity as n → ∞ and ϕ̂n is an estimator of ϕ. Here, ϕ̂n can be any

consistent estimator of ϕ satisfying a certain convergence condition which we specify

below. We will see that this condition is satisfied by the estimator of Chen and Pouzo

[2012]. We reject the hypothesis H0 if nSn becomes too large. Further note that if no
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additional smoothing is carried out, that is L is the identity, then τj = 1 for all j > 1.

Remark 3.2.1 (Parametric Specification). Given some finite integer k assume that func-
tions e1, . . . , ek are available such that ϕ(·) =

∑k
j=1 ϑjej(·) for some unknown coefficients

ϑ1, . . . , ϑk. To test the parametric specification T ϕ = 0 one may proceed as in Horowitz
and Lee [2009] where the vector of coefficients is estimated via the instrumental quantile
regression estimator of Chernozhukov and Hansen [2006]. In the general case, however,
a finite dimensional approximation might be not accurate for consistently estimating the
structural function ϕ. Therefore, we require the dimension parameter k to tend to infinity
as the sample size increases. �

3.2.2 Assumptions and notation.

To obtain asymptotic normality as mn →∞ we need to standardize our test statistic Sn
by appropriate mean and variance, which we introduce in the following definition.

Definition 3.2.1. For all m > 1 let Σm denote a m × m matrix with the entries sjl =
√
τjτl E

[
fj(W )fl(W )

]
, 1 6 j, l 6 m. Then the trace and the Frobenius norm of Σm are

respectively denoted by

µm :=
m∑
j=1

sjj and ςm :=
( m∑
j, l=1

s2
jl

)1/2
.

In order to obtain our asymptotic result we state the following assumptions. Our first

assumption gathers conditions which we require for the basis {fj}j>1 in L2
W . In the

following, let {fj}j>1 form an orthonormal basis on the supportW of W with respect to

the Lebesgue measure ν (that is,
∫
W fj(w)fl(w)ν(dw) = 1 if j = l and zero otherwise).

Assumption 3.1. There exists some constants ηf , ηp > 1 such that

sup
l>1

( ∫
W
|fl(s)|4ν(ds)

)
6 ηf and sup

w∈W
pW (w) 6 ηp.

Assumption 3.1 holds for sufficiently large ηf if the basis {fl}l>1 is uniformly bounded,

such as trigonometric bases or B-splines that have been orthogonalized. Moreover, As-

sumption 3.1 holds in case of Hermite polynomials.

Our methodology requires conditions specifying the relation of the nonlinear operator

T to its linearization. In the following, we denote the Fréchet derivative of T at ϕ by

Tφ :=
∫
Z
pY,Z|W (ϕ(z), z,W )φ(z)dz
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where pY,Z|W denotes the density of (Y, Z) given W . Let DB denote a distance on B.

Throughout the paper, we assume that DB is bounded by the supremum norm. Let us

specify an upper bound on the Taylor remainder of T .

Assumption 3.2. There exists some constant η > 0 such that for all functions φ ∈ Uε(ϕ) =
{φ ∈ B : DB(φ, ϕ) 6 ε} for some ε > 0 it holds

‖T φ− T ϕ− T (φ− ϕ)‖2W 6 η‖T φ− T ϕ‖2W .

Assumption 3.2 is also known as the tangential cone condition and frequently used in

the analysis of nonlinear operator equations (for a further discussion and examples we

refer to Hanke et al. [1995]).

Assumption 3.3. Let Bn := {φ ∈ B : DB(φ, ϕ) 6 Rn} then we assume that there exist
constants C > 0 and κ ∈ (0, 1] such that

max
16j6mn

E
[

sup
φ∈Bn

∣∣1{Y 6 ϕ(Z)} − 1{Y 6 φ(Z)}
∣∣2f2

j (W )
]
6 CR2κ

n . (3.8)

Assumption 3.3 states that the function ϕ 7→ (1{Y 6 ϕ(Z)}−q)fj(W ), 1 6 j 6 mn, is

locally uniformly L2
W continuous. This condition has also been exploited by Chen et al.

[2003] (Theorem 3), Chen [2007] (Lemma 4.2 (i)) or Chen and Pouzo [2012] (Remark

c.1).

Assumption 3.4. There exists an estimator ϕ̂n ∈ B of ϕ based on an iid. n-sample of
(Y,Z,W ) from the model (1.1a) such that (i) DB(ϕ̂n, ϕ) = op(Rn) with µmnRκn = o(ςmn)
where κ is as in (3.8) and (ii) n‖T (ϕ̂n − ϕ)‖2W = op(ςmn).

In Assumption 3.4, condition (i) requires to choose mn such that the DB–rate of con-

vergence of ϕ̂n has a stronger decay than ςmnµ
−1
mn . Assumption 3.4 (ii) ensures that

the difference of ϕ̂n − ϕ in our test statistic is asymptotically negligible. As we see in

subsection 3.2.4, Assumption 3.4 (ii) is satisfied by the estimator of Chen and Pouzo

[2012].

In the following, we describe smoothness conditions imposed on the structural func-

tion ϕ which is captured by the set B. Let Z have support Z ⊂ Rd and for any vector of

nonnegative integers k = (k1, . . . , kd) define |k| =
∑d
j=1 kj and Dk = δ|k|/(δzk1

1 . . . δzkdd ).
For some integer p > 0 we define the norms

‖φ‖α,p =
( ∑
|k|6α+α0

∫
Z

∣∣Dkφ(z)
∣∣pdz)1/p

, ‖φ‖α,∞ = max
|k|6α

sup
z∈Z

∣∣Dkφ(z)
∣∣
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where α and α0 are positive integers. We denote the Sobolev spaces associated with the

norm ‖ · ‖α,p by

Wα,p := {φ : Z → R : ‖φ‖α,p <∞}. (3.9)

For some constant ρ > 0, define B as the Sobolev ellipsoid of radius ρ given by

B := {φ ∈Wα,p : ‖φ‖α,p 6 ρ}. (3.10)

The following assumption gathers regularity conditions imposed on the structural

functions ϕ and the supports Z of Z andW of W .

Assumption 3.5. (i) Let α0 > d/p and α > min(d/κ, d/2) where the constant κ > 0
satisfies equation (3.8). (ii) Z is bounded, convex and satisfies a uniform cone property.
(iii) W is bounded and the marginal density pW is uniformly bounded away from zero on
W.

Assumption 3.5 (i) requires α to be large if (3.8) holds only for small κ > 0 or the

dimension d is large. Assumption 3.5 (ii) imposes a weak regularity condition on the

shape of Z. For the uniform cone property see, for instance, Paragraph 4.4 in Adams

and Fournier [2003]. This property was also used by Santos [2012].

Example 3.2.1. Let FY |ZW denote the cumulative distribution function of Y given (Z,W )
and assume that it is Lipschitz continuous with constant CL > 0, i.e., |FY |ZW (y) −
FY |ZW (y′)| 6 CL|y − y′| for all (y, y′). Due Assumption 3.5 the Sobolev space Wα,p

can be embedded in Wα,∞ (cf. Adams and Fournier [2003]). In particular, DB(φ, ϕ) =
‖φ − ϕ‖∞ = supz∈Z |φ(z) − ϕ(z)| is bounded on B and moreover, Assumption 3.3 holds
true. Indeed, by following Chen et al. [2003] (page 1599 – 1600) we observe for each
1 6 j 6 mn

E
[

sup
φ∈Bn

∣∣1{Y 6 ϕ(Z)} − 1{Y 6 φ(Z)}
∣∣2f2

j (W )
]

6 E
[(
1{Y 6 ϕ(Z) +Rn} − 1{Y 6 ϕ(Z)−Rn}

)
f2
j (W )

]
= E

[(
FY |ZW (ϕ(Z) +Rn)− FY |ZW (ϕ(Z)−Rn)

)
f2
j (W )

]
6 CLRn

which implies Assumption 3.3 with κ = 1/2. In addition, if L is the identity operator then
condition 3.4 (i) is equivalent to Rn = o(m−1

n ). �
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3.2.3 Asymptotic distribution under the null hypothesis

In this section, we establish asymptotic normality of our test statistic. The following

theorem establishes asymptotic normality of Sn after standardization by µmn and ςmn .

Theorem 3.2.1. Let Assumptions 3.1–3.5 be satisfied. Further, if

ς−1
mn = o(1) and

( mn∑
j=1

τj
)3

= o(n) (3.11)

then we have under H0

(
√

2ςmn)−1
( n

q(1− q) Sn − µmn
)

d→ N (0, 1).

3.2.4 Estimating procedure

In the previous section, we derived the asymptotic distribution of our test statistic under

the condition n‖T (ϕ̂n − ϕ)‖2W = op(ςmn). In this section, we present an estimation

method for the structural function ϕ that satisfies this condition. We discuss a penalized

sieve minimum distance estimator suggested by Chen and Pouzo [2012].

Chen and Pouzo [2012] propose a class of estimators, which are minimizers of a

penalized minimum distance criterion over a collection of sieve spaces. Given a sequence

of known basis functions {ej}j>1 the series least square estimator of T φ is given by

(T̂ φ)(·) = eln(·)′
( n∑
i=1

eln(Wi)eln(Wi)t
)−1 n∑

i=1
(1{Yi 6 φ(Zi)} − q)eln(Wi) (3.12)

where the integer ln grows slowly with the sample size n. Chen and Pouzo [2012]

consider the following penalized sieve minimum distance estimator, ϕ̂n, defined as

Q̂n(ϕ̂n) 6 inf
φ∈Bkn

Q̂n(φ) (3.13)

where

Q̂n(φ) = n−1
n∑
i=1

(T̂ φ)(Wi)′ (T̂ φ)(Wi) + λnP(φ). (3.14)

Here Bkn is a closed sieve parameter space whose complexity (denoted as kn := dim(Bkn))
grows with sample size n and becomes dense in the original function space B (Bk ⊆
Bk+1 ⊆ B), λn > 0 is a penalization parameter such that λn → 0 as n→∞, and penalty
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function P : B → [0,∞). One could also generalize the results to an empirical analog

of the penalty. Let DB be a norm on B and hence, we write DB(φ, ϕ) = ‖φ − ϕ‖B for

any φ ∈ Φ. In the following, let Eknϕ ∈ Bkn such that ‖Eknϕ − ϕ‖B = o(1) and assume

‖T Eknϕ‖W = o(1).
Chen and Pouzo [2012] establish consistency of the estimator ϕ̂n given in (3.13) at a

certain convergence rate. In the following, we assume that ‖ϕ̂n − ϕ‖B = op(Rn) where

µmnRn = o(ςmn) which can be ensured by a moderate choice of mn. Further, we restrict

the class of functions to the shrinking sets

Bo = {φ ∈ B : ‖φ− ϕ‖B 6 Rn, ‖φ‖B 6 C1, λnP(φ) 6 λnC2} and Bokn = Bo ∩ Bkn

for some constants C1, C2 > 0. In the following, ‖ · ‖ denotes the euclidean norm.

Assumption 3.6. (i) Bo and Bokn are convex; (ii) there is a constant C > 0 such that
supy sup(z,w)∈Z×W pY |Z,W (y, z, w) 6 C; (iii)Z is compact with Lipschitz continuous bound-
ary, and the marginal density of Z is bounded and bounded away from zero over Z. (iv)
supj>1E|ej(Z)|2 6 η for some constant η > 0, the smallest eigenvalue of E[ek(Z)ek(Z)t]
is bounded away from zero for all k > 1, and supz∈Z ‖ekn(z)‖2 = o(n/kn).

Let us introduce a sequence (δn)n>1 satisfying δ2
n = max

(
n−1ln, bln

)
where bln is the

order of the bias of the least square estimator T̂ . In the following result we show that the

estimator ϕ̂n given in (3.13) converges sufficiently fast to ϕ in the pseudo norm induced

by T . Note that sufficient conditions for consistency of ϕ̂n are given in Section 3 of Chen

and Pouzo [2012].

Proposition 3.2.2. Consider the estimator ϕ̂n given in (3.13) with ‖ϕ̂n − ϕ‖B = op(Rn).
Let ϕ ∈ Bo and Eknϕ ∈ Bokn , and let Assumptions 3.2 with 0 < η < 1 and 3.6 hold. If

nmax
(
δ2
n, λn, ‖T (Eknϕ− ϕ)‖2W

)
= o(ςmn) (3.15)

then we have

n‖T (ϕ̂n − ϕ)‖2W = op(ςmn).

Remark 3.2.2. Chen and Pouzo [2012] prove under mild regularity assumptions on the
joint joint distribution of (Y, Z,W ) in Lemma C.2 that δ2

n = max
(
n−1ln, l

−2β/ dim(W )
n

)
as

long as T φ belongs to a Hölder space with Hölder parameter β. In this case, condition
nδ2

n = o(ςmn) is satisfied if ln = o(ςmn) and n = o(ςmn l
2β/ dim(W )
n ). On the other hand,

Chen and Pouzo [2012] assume in the Hilbert space case the link condition ‖T (Eknϕ −
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ϕ)‖2W 6 υkn‖Eknϕ − ϕ‖2B for some positive nonincreasing sequence (υj)j>1. Moreover,
with ϕ ∈ Wα,2 and the norm ‖φ‖B =

( ∫ 1
0 φ

2(z)dz
)1/2 for all φ ∈ B it is well known

that ‖Eknϕ− ϕ‖B = O(k−α/dn ) for splines, wavelets, power series, and Fourier series bases.
Hence, n‖T (Eknϕ− ϕ)‖2W = o(ςmn) holds true if nυkn = o

(
ςmnk

2α/d
n

)
. �

Below, we write an ∼ bn when there exist constants c, c′ > 0 such that cbn 6 an 6 c′bn
for sufficiently large n.

Example 3.2.2. Consider the Hilbert space setting of Remark 3.2.2 with no additional
smoothing, that is L = Id. Further, we have

√
mn = O(ςmn) and let max

{
δ2
n, λn

}
= δ2

n =
kn/n within a constant. Further, let kn ∼ nχ where χ > 0 is specified in the following two
cases.

(i) Mildly ill-posed case: If υkn ∼ k
−2ζ/d
n for some ζ > 0 then in order for (3.15) to hold

we require mn ∼ nι with 0 < ι < 1/3 and

d(1− ι/2)/(2α+ 2ζ) < χ < ι/2.

(ii) Severely ill-posed case: If υkn ∼ exp
(
− k2ζ/d

n
)

for some ζ > 0 then condition (3.15)

is satisfied if, for example, mn satisfies mn = o(kαn) and k2
n = o(mn) where kn ∼(

logn− log(m3/2
n )

)d/(2ζ). �

3.2.5 Limiting behavior under local alternatives

As illustrated in the introduction, a violation of our key conditions leads to an additional

additive term in the conditional quantile restriction. In the following, we study the

power of the test, i.e., the probability to reject a false hypothesis, against a sequence of

linear local alternatives that tends to zero as n → ∞. It is shown that the power of our

tests essentially relies on the choice of the weighting sequence τ .

We consider the following sequence of linear local alternatives

Y = ϕ(Z) + U where P(U 6 0|W ) = q + ς1/2
mn n

−1/2ξ(W ) (3.16)

for some bounded function ξ which is strictly positive on W. The null hypothesis H0

occurs if the function ξ vanishes. The next result establishes asymptotic normality for

the standardized test statistic Sn. Let us denote ξj := √τj E[ξ(W )fj(W )].

Proposition 3.2.3. Given the conditions of Theorem 3.2.1 it holds under (3.16)

(
√

2ςmn)−1
( n

q(1− q) Sn − µmn
)

d→ N
(
2−1/2

∞∑
j=1

ξ2
j , 1
)
.
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From Proposition 3.2.3 we see that our test can detect local linear alternatives at a

rate which becomes arbitrarily close to n−1/2 as the degree of smoothing is increased.

3.2.6 Consistency against a �xed alternative

Let us first establish consistency when H0 does not hold, that is, there exists no solution

to (3.5) belonging to B. The following proposition shows that our test has the ability

to reject a false null hypothesis with probability 1 as the sample size grows to infinity.

Note that since pW bounded away from zero over W we have ‖LT φ‖W > 0 for any

alternative function φ.

Proposition 3.2.4. Assume that H0 does not hold. Consider a sequence (γn)n>1 satisfying
γn = o(nς−1

mn). Under the conditions of Theorem 3.2.1 we have

P
(
(
√

2 ςmn)−1
( n

q(1− q) Sn − µmn
)
> γn

)
= 1 + o(1).

3.2.7 Uniform consistency

In the following, we show that our test is consistent uniformly over some appropriate

class of functions. This implies that there are no alternative functions in this class over

which our test has low power. Let us introduce the class of functions

Gρn =
{
φ ∈ Φ : ‖LT φ‖2W > ρ ςmnn−1 and φ is bounded on Z

}
.

Assume that the tangential cone condition (cf. Assumption 3.2 (ii)) holds and consider

the Hilbert space case, that is Φ = L2
Z , then ‖T φ‖2W 6 (1+η)‖T (φ−ϕ)‖2W 6 (1+η)‖φ−

ϕ‖2Z within a constant. We conclude that Gρn contains all functions whose L2
Z -distance to

the structural function ϕ is at least n−1ςmn within a constant. For the next result let qα
denote the 1− α quantile of N (0, 1).

Proposition 3.2.5. Under the conditions of Theorem 3.2.1 we have for any ε > 0, any
0 < α < 1, and any sufficiently large constant ρ > 0 that

lim
n→∞

inf
ϕ∈Gρn

P
(
(
√

2 ςmn)−1
( n

q(1− q) Sn − µmn
)
> qα

)
> 1− ε.

3.3 Extensions

As we see in this section, our testing procedure can potentially be applied to a much

wider range of situations. We now discuss several corollaries that generalize the previous
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results in various ways.

3.3.1 Testing exogeneity

In this subsection, we propose a test whether the vector of regressors Z is exogenous at

a quantile 0 < q < 1, that is He
0 : P(U 6 0|Z) = q. The null hypothesis He

0 holds true

if and only if there exists a function ϕe such that P(Y 6 ϕe(Z)|Z) = q or, equivalently,

ϕ = ϕe where ϕ satisfies T ϕ = 0. Further, due to nonsingularity of the operator T
hypothesis He

0 is equivalent to

T ϕe = 0. (3.17)

Let us now propose an estimator for the conditional quantile function ϕe. For each

k > 1 let π(t) be a k–dimensional vector with entries ej(t) for 1 6 j 6 k. As basis {ej}j>1

we use B-splines. Then our estimator of ϕ is given for all k > 1 by

ϕ̂e
k(·) := ekn(·)tβ̂k where β̂k = arg min

β∈Rk

n∑
i=1

%q(Yi − π(Zi)tβ) (3.18)

where %q(u) = |u| − (2q − 1)u is the check function. This estimator was studied by He

and Shi [1994].

Assumption 3.7. (i) Assume that Z is scalar and continuously distributed with Z ⊂ [0, 1].
(ii) There exist constants C, c > 0 such that c 6 pZ(z) 6 C for all z ∈ [0, 1]. (iii) Under
He

0 the random variable U has a density function which is strictly positive at zero. (iv) For
some constant C > 0 it holds supy sup(z,w)∈Z×W pY |Z,W (y, z, w) 6 C.

Our test statistic to validate the null hypothesis He
0 is given by Sn but where the

estimator ϕ̂n is replaced by the estimator ϕ̂e
k of the conditional quantile function. That

is

Se
n :=

mn∑
j=1

τj
∣∣n−1

n∑
i=1

(
1
{
Yi 6 ϕ̂

e
n(Z ′i)

}
− q

)
fj(Wi)

∣∣2.
We reject the hypothesisHe

0 if nSe
n becomes too large. The next result establishes asymp-

totic normality of our test statistic Se
n under the null hypothesis.

Corollary 3.3.1. Let Assumptions 3.1–3.3, 3.5, and 3.7 hold true. Let mn satisfy condition
(3.11) of Theorem 3.2.1. Consider the estimator ϕ̂ekn given in (3.18) where kn satisfies

kn = o(ςmn), µmn = op(krκn ςmn) and n = op(k2r
n ςmn) (3.19)
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where r = α− 1/p. Then we have under He
0

(√
2ςmn

)−1( n

q(1− q) S
e
n − µmn

)
d→ N (0, 1).

Example 3.3.1. Let us illustrate when condition (3.19) holds true. We consider the case
when no additional smoothing is applied, that is L is the identity. Hence, we have

√
mn =

O(ςmn). Further, let mn ∼ nι with 0 < ι < 1/3. Then for (3.19) to hold let kn ∼ nχ where
χ > 0 satisfies

max
(1− ι/2

2r ,
ι

2rκ
)
< χ < ι/2.

Hence we require r > 1/κ which a slightly stronger restriction than Assumption 3.5 (i). In
addition r > 1/ι− 1/2 is required. �

3.3.2 Testing dimension reduction

In applications one might want to reduce the complexity of the model by omitting certain

regressors from the structural function ϕ. In this sense, we propose a test of dimension

reduction: Let Z ′ be a vector containing only entries of Z with dim(Z ′) < dim(Z) then

the hypothesis under consideration is given by

H ′0 : there exists a function ϕ ∈ B only depending on Z ′ such that T ϕ = 0. (3.20)

The alternative is that there exists no function in B depending on Z ′ and being root of

T ϕ = 0. In order to validate the null hypothesis H ′0 we consider the test statistic

S′n :=
mn∑
j=1

∣∣n−1
n∑
i=1

(
1
{
Yi 6 ϕ̂n(Z ′i)

}
− q

)
f τj (Wi)

∣∣2
where ϕ̂n is an estimator of ϕ based on an iid. sample (Y1, Z

′
1,W1), . . . , (Yn, Z ′n,Wn) of

(Y,Z ′,W ). It is clear that by reducing the dimension of the regressor Z we can weaken

conditions on the instruments in order to obtain identification (cf. Example 2.5.3 in case

of mean regression). The next asymptotic normality result is a direct consequence of

Theorem 3.2.1 and hence its proof is omitted.

Corollary 3.3.2. Given the condition of Theorem 3.2.1 we have under H ′0

(√
2ςmn

)−1( n

q(1− q) S
′
n − µmn

)
d→ N (0, 1).
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Let us now provide two examples which demonstrate the usefulness of our dimension

reduction test.

Example 3.3.2 (Test of exogeneity). Let Z = (Z ′, Z ′′) where Z ′ is exogenous, that is
P(U 6 0|Z ′) = q. Via a test of hypothesis H ′0 one may justify whether the potentially
endogenous part of Z can be omitted from the structural function ϕ. To be more precise, the
testing procedure is based on the test statistic S′n where ϕ̂ could be the b-spline estimator
(3.18). �

Example 3.3.3 (Identification). Assume there exists some λ ∈ (0, 1) such that

T φ− T ψ = E
[
h(Z,W )(φ− ψ)(Z)

∣∣W ]
where h(Z,W ) = pY |ZW

(
(1 − λ)ψ(Z) + λφ(Z), Z,W

)
and pY |ZW denotes the density of

Y conditional on Z and W . Let Z = (Z ′, Z ′′) where Z ′ is independent of Z ′′ and Z ′′ is
independent of W . Let φ and ψ only depend on Z ′′. Assume that there exist non-negative
functions ν1 and ν2 such that h(Z,W ) = ν1(Z ′,W )ν2(Z ′′) and ν2(Z ′′) = −ν2(−Z ′′) then

T φ− T ψ = E
[
ν1(Z ′,W )E[ν2(Z ′′)(φ− ψ)(Z ′′)|W,Z ′]

∣∣W ]
= E

[
ν1(Z ′,W )E[ν2(Z ′′)(φ − ψ)(Z ′′)]

∣∣W ]
= 0

for any distribution of Z ′′ being symmetric to zero and any symmetric function φ − ψ. We
conclude that ϕ is not identified in model (1.1a). Applying the test of dimension reduction
may justify a withdrawal of the regressor Z ′′ and might lead to identification. �

3.3.3 Testing additivity

By assuming an additive structure of ϕ one might reduce the effect of dimensionality

of the regressors on the convergence rate of an estimator (cf. Chen and Pouzo [2012]

in case of instrumental quantile regression). Applying this structure leads, however, to

inconsistent estimators in general if the function ϕ does not obey an additive form. Our

aim in the following is to test whether

Hadd
0 : there exist functions ϕ1, ϕ2 ∈ B such that P(Y 6 ϕ1(Z ′) + ϕ2(Z ′′)|W ) = q.

(3.21)
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Similarly as above we obtain the test statistic

Saddn :=
mn∑
j=1

∣∣n−1
n∑
i=1

(
1
{
Yi 6 ϕ̂1n(Z ′i) + ϕ̂2n(Z ′i)

}
− q

)
f τj (Wi)

∣∣2
where the estimator (ϕ̂1n, ϕ̂2n) of ϕ = (ϕ1, ϕ2) is given by 3.13. The next asymptotic

normality result is a direct consequence of Theorem 3.2.1 and hence its proof is omitted.

Corollary 3.3.3. Given the conditions of Theorem 3.2.1 we have under Hadd
0

(√
2ςmn

)−1( n

q(1− q) S
add
n − µmn

)
d→ N (0, 1).

3.4 Monte Carlo simulation

In this section, we study the finite-sample performance of our test by presenting the

results of a Monte Carlo simulation. The sample size is 1000 and there are 1000 Monte

Carlo replications in each experiment. Results are presented for the nominal levels 0.05.

Let Φ denote the cumulative standard normal. Throughout this simulation study, re-

alizations (Z,W ) were generated by Z = Φ
(
ζω + (1 − ζ2)ε

)
and W = Φ(ω) where

ω, ε ∼ N(0, 1), Here, the constant ζ > 0 measures the correlation of Z to W and is

varied in the experiments. Realizations of Y were generated from

Y = ϕ(Z) + cUU

where U = ϑ ε +
√

1− ϑ2 ε with ε ∼ N(0, 1) and where the constants cU > 0, ϑ > 0
are varied in the experiments. As basis {fj}j>1 we choose cosine basis functions given by

fj(t) =
√

2 cos(πjt) for j = 1, 2, . . .

Testing Exogeneity The realizations (Y,Z,W ) are generated as described above with

cU = 0.5 and structural effect ϕ1(z) =
∑∞
j=1(−1)j+1 j−2 sin(jπz). For computational

reasons we truncate the infinite sum at K = 100. The resulting function is displayed in

Figure 1. We estimate the structural relationship using Lagrange polynomials. Note that

ϑ measures the degree of endogeneity of Z and is varied among the experiments. The

null hypothesis H0 holds true if ϑ = 0 and is false otherwise.

In Table 2 we depict the empirical rejection probabilities when using either no smooth-

ing or additional smoothing with τj = j−.25 or τj = j−.5, j > 1, which we denote

by S0e
n , S0.25e

n or S0.5e
n , respectively. In the simulation study we choose mn such that
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ζ ϑ Empirical Rejection probability using
S0e
n S0.25e

n S0.5e
n

0.4 0.0 0.048 0.045 0.037
0.2 0.137 0.175 0.208
0.25 0.254 0.287 0.346
0.3 0.387 0.446 0.508
0.35 0.565 0.627 0.690

0.7 0.0 0.034 0.031 0.032
0.2 0.248 0.298 0.376
0.25 0.492 0.548 0.652
0.3 0.764 0.818 0.876
0.35 0.941 0.956 0.984

Table 3.1: Empirical Rejection probabilities for testing exogeneity

∑mn
j=1 τj ≈ n1/3. Hence, without additional smoothing the number of basis functions

used is mn = 10 (= n1/3). On the other hand, with additional smoothing in case, of

τj = j−.25 we have mn = 20 whereas if τj = j−.5 we let mn = 100. We like to emphasize

that, especially in the case of additional smoothing, the results of our test statistic are

not sensitive to the choice of the number of basis functions. As we see from Table 2, our

test becomes slightly with additional smoothing.

Testing a Nonparametric Speci�cation In case of nonparametric specification, we

consider the structural function ϕ2(z) =
∑∞
j=1 j

−4 cos(jπz). Again, for computational

reasons we truncate the infinite sum at K = 100. The resulting functions are displayed

in Figure 1. To estimate the structural function we apply the procedure of Chen and

Pouzo [2012] given in (3.12) with b-splines as approximation basis functions. That is,

for the sieve space Bkn we use b-splines of order 2 with 5 knots (hence kn = 5) and for

T̂ we use b-splines of order 6 with 11 knots (hence ln = 15).

If H0 is false, then P(Y 6 ϕ(Z)|W ) = q + ξ(W ) for some function ξ. In our exper-

iments, we consider ξ(W ) = −P(ϕ(Z) < Y 6 ϕ(Z) + ρ(Z)|W ) for some function ρ

which we specify below. The definition of ξ implies P(Y 6 ϕ(Z) + ρ(Z)|W ) = q+ ξ(W ).
Consequently, when H0 is false we generate realizations of Y from

Y = ϕ(Z) + cj ρj(Z) + U

for j = 1, 2, 3, 4, where



3.4 Monte Carlo simulation 123

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

z

ϕ 1
(z)

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

z

ϕ 2
(z)

Figure 3.1: Graph of ϕ1 and ϕ2

ρ1(z) = 1− (2z − 1)2,

ρ2(z) = z 1{z 6 1/2}+ (1− z)1{z > 1/2},

ρ3(z) = exp(2z)1{z 6 1/2}+ exp(2(1− z))1{z > 1/2} − 1,

ρ4(z) = exp(4z)1{z 6 1/2}+ exp(4(1− z))1{z > 1/2} − 1,

and cj > 0 is a normalizing constant such that
∫ 1

0 ρj(z)dz = 0.5 for j = 1, 2, 3, 4.

In Table 2, we depict the empirical rejection probabilities when using Snp
n with either

no smoothing or additional smoothing τj = j−0.25, j > 1, or τj = j−5, j > 1, which we

denote by S0np
n , S0.25np

n , or S0.5np
n , respectively. The number of cosine basis functions fj

to construct our test statistic is exactly the same as in the setting of the test of exogeneity

as described above.

The results of the experiments are shown in Table 2. We see that the empirical rejec-

tion probability increases as the function ρ becomes more and more irregular. Interest-

ingly, although ρ1 is a smooth function we reject in this case the null hypothesis more

often than in every second Monte Carlo iteration. The reason is that adding ρ1 on the

structural function ϕ2 increases the nonlinearity and hence the number of spline basis

function is not accurate anymore.
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Model Empirical Rejection probability
S0
n S0.25

n S0.5
n

H0 true 0.041 0.052 0.056
ρ1 0.664 0.657 0.699
ρ2 0.789 0.805 0.847
ρ3 0.829 0.839 0.879
ρ4 0.871 0.885 0.909

Table 3.2: Empirical Rejection probabilities

3.5 An empirical application

To illustrate our testing procedure, we present an empirical application concerning es-

timation of the effects of class size on students’ performances on standardized tests.

Angrist and Lavy [1999] studied the effects of class size on test scores of 4th and 5th

grade students in Israel. In this empirical illustration, we focus on 4th grade reading

comprehension which was also considered by Horowitz [2011b].

In this empirical example we study the model

Ysc = ϕ(Zsc) + Vs + Usc with P(Vs + Usc 6 0|Wsc) = q (3.22)

where Ysc is the average reading comprehension test score of 4th grade students in class

c of school s, Zsc is the number of students in class c of school s, Vs is an unobserved

school-specific random effect, and Usc is an unobserved, independently over classes and

schools distributed random variable. We introduce the instrumentWsc below. In contrast

to an additively separable model, the quantile regression model permits for unobserved

heterogeneity among different classes. In this empirical illustration, we focus on the

median structural effect of class size on test scores and hence, let q = 0.5.

The class size Zsc may be endogenous, for instance, due to the socioeconomic back-

ground of the students. To identify the causal effect of class size on scholar achievement

Angrist and Lavy [1999] use Maimonides’ rule as instruments. According to this admin-

istrative rule, maximum class size is given by 40 pupils and will be split if the number

of enrolled students exceeds this number. More precisely, assuming that cohorts are

divided into classes of equal size, Maimonides’ rule is described by

Wsc = Es/d1 + (Es − 1)/40e
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where Es denotes enrollment in school s and dxe denotes the largest integer less or

equal to x. In addition, information on the fraction of disadvantaged students in class

c of school s is available. In this empirical application, we restrict our sample to classes

where the fraction of disadvantaged students does not exceed 7%. In doing so, we have

a sample of n = 861 observations which is sufficient to provide significant nonparamet-

ric results, as we show below. Note that Horowitz [2011b] could show that a linear

relation between class size and scholar achievement as used by Angrist and Lavy [1999]

is misspecified.

(order, knots) (2,6) (2,7) (2,8) (3,4) (3,5) (3,6) (4,3) (4,4) (4,5)

Value of Se
n 3.278 2.872 3.368 3.316 2.300 2.513 3.397 2.437 3.090

Table 3.3: Values of the statistic Se
n using weights τj = j−0.25

In the following we want to test nonparametrically whether class size is endogenous

at the 0.5–quantile. The null hypothesis is that P(Vs + Usc 6 0|Zsc) = 0.5. We construct

our test statistic with additional smoothing as for the Monte Carlo experiments in the

previous section with τj = j−0.25, j > 1. That is, again the number of cosine basis

functions is round about n2/3 ≈ 90. Table 3 depicts the results of our test statistic Se
n

with the b-spline estimator given in (3.18) for different choices of orders and knots. As

we see from Table 3, our test statistic exceeds for each choice of b-spline basis functions

the 0.05-level critical value 1.960 of the standard normal distribution. Consequently,

we may conclude that class size does not satisfy the conditional quantile restriction

P(Vs + Usc 6 0|Zsc) = 0.5 and hence, the hypothesis of exogeneity fails.

We now perform a nonparametric specification test of model (3.22). To estimate the

structural effect in model (3.22) we proceed as in the previous section. That is we use

Chen and Pouzo [2012]’s method and the b-spline basis as approximating functions.

For the sieve space Bkn we use b-splines basis functions of order 3 with 5 knots (hence

kn = 6) and for the estimator T̂ we use b-splines basis functions of order 2 with 17 knots

(hence ln = 17).

degree of smoothing no smoothing τj = −0.25 τj = −0.5

Value of Sn -0.511 0.825 1.600

Table 3.4: Values of the statistic Sn and critical values

The result of our test statistic for different degrees of weighting are depicted in Table
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4. We construct our test statistics as in the Monte Carlo investigation of the previous

section. As we see from Table 4, for each degree of weighting the null hypothesis of

correct specification of the quantile regression model (3.22) cannot be rejected. This is

not the case if kn is chosen too small or too large and hence the specification test could

also be used to exclude inappropriate choices of the basis functions.

3.6 Conclusion

In this paper, we developed a nonparametric specification test for the quantile regression

model (1.1a). We established the asymptotic distribution of our test under the null

hypothesis. Our test is consistent against a fixed alternative and we study its power

properties by considering a sequence of local alternatives. We also illustrated several

extensions of our test theory. Thereby, we developed a test of exogeneity, a test of

dimension reduction, and finally a test for additivity. We demonstrated via a Monte

Carlo simulation study that our testing procedure performs well in finite samples. The

usefulness of our testing procedure is illustrated by an empirical example. Our testing

methodology fails to reject a median regression model of Angrist and Lavy [1999]’s data

for reading comprehension but reject exogeneity at the 0.5–quantile of the class size.

Appendix

Proofs of Section 3.2

In the appendix, f τmn denotes the mn dimensional vector with entries √τjfj for 1 6
j 6 Mn. Moreover, ‖ · ‖ is the usual Euclidean norm. We further denote Tmn := FmnT
and Tmn := FmnT . For ease of notation, let Xi = (Yi, Zi,Wi) for 1 6 i 6 n with

realizations x = (y, z, w) ∈ Y × Z ×W. Let H be a class of measurable functions with

a measurable envelope function H. Then N(ε,H, L2
X) and N[ ](ε,H, L2

X), respectively,

denote the covering and bracketing numbers for the set H. In addition, let J[ ](1,H, L2
X)

denote a bracketing integral of H, that is,

J[ ](1,H, L2
X) =

∫ 1

0

√
1 + logN[ ](ε ‖H‖X ,H, L2

X)dε.

Throughout the proofs, we will use C > 0 to denote a generic finite constant that may

be different in different uses. Further, for ease of notation we write
∑
i for

∑n
i=1 and∑

i′<i for
∑n
i=1

∑i−1
i′=1.
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PROOF OF THEOREM 3.2.1. The proof is based on the decomposition

Sn =
∥∥n−1∑

i

(1 {Ui 6 0} − q)f τmn(Wi)
∥∥2

−2〈n−1∑
i

(1 {Ui 6 0}−q)f τmn(Wi), n−1∑
i

(
1{Yi 6 ϕ̂n(Zi)}−1{Ui 6 0}

)
f τmn(Wi)〉

+ ‖n−1∑
i

(
1{Yi 6 ϕ̂n(Zi)} − 1{Ui 6 0}

)
f τmn(Wi)‖2 = In + 2IIn + IIIn.

(3.23)

Consider In. We calculate further

ς−1
mn

(
nIn − µmn

)
= 1
q(1− q)ςmnn

∑
i

mn∑
j=1

(
|(1 {Ui 6 0} − q)f τj (Wi)|2 − q(1− q)sjj

)
+ 1
q(1− q)ςmnn

∑
i 6=i′

mn∑
j=1

(1 {Ui 6 0} − q)(1 {Ui′ 6 0} − q)f τj (Wi)f τj (Wi′)

where the first summand tends in probability to zero as n → ∞. Indeed, condition

P(U 6 0|W ) = q yields E |(1{U 6 0} − q)f τj (W )|2 = q(1− q)sjj , j > 1, and hence

E
∣∣ 1
ςmnn

∑
i

mn∑
j=1
|(1 {Ui 6 0} − q)f τj (Wi)|2 − q(1− q)sjj

∣∣2
= 1
ς2
mnn

E
∣∣ mn∑
j=1
|(1 {U 6 0}−q)f τj (W )|2−q(1−q)sjj

∣∣2 6 (1 + q)4ηfηp
ς2
mnn

( mn∑
j=1

τj
)2

= o(1)

by using supj∈N E |fj(W )|4 6 ηfηp. Therefore, to establish (
√

2ςmn)−1(nIn − µmn) d→
N (0, 1) it is sufficient to show

√
2

q(1− q)ςmnn
∑
i 6=i′

mn∑
j=1

(1 {Ui 6 0}−q)(1 {Ui′ 6 0}−q)f τj (Wi)f τj (Wi′)
d→ N (0, 1). (3.24)

Since ςmn = o(1) this follows from Lemma 2.7.2. Consider IIIn. Let us define for

1 6 j 6 mn and 1 6 i 6 n

hj(Xi, φ) =
(
1 {Yi 6 ϕ(Zi)} − 1{Yi 6 φ(Zi)}

)
fj(Wi)
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and the classes Hjn = {hj(·, φ) : φ ∈ Bn} and Hj = {hj(·, φ) : φ ∈ B}. We observe

IIIn =
mn∑
j=1

τj
∣∣n−1∑

i

hj(Xi, ϕ̂n)
∣∣2

6 2ηp‖T ϕ̂n − T ϕ‖2W + 2
mn∑
j=1

τj
∣∣n−1∑

i

hj(Xi, ϕ̂n)− Ehj(X, ϕ̂n)
∣∣2

From the tangential cone condition together with Assumption 3.4 we infer n‖T ϕ̂n −
T ϕ‖2W 6 n(1 + η)‖T (ϕ̂n − ϕ)‖2W = op(ςmn). Recall the definition Bn := {φ ∈ B :
DB(φ, ϕ) 6 Rn}. We observe for every φ ∈ Bn that

∣∣hj(Xi, φ)
∣∣2 6 sup

φ∈Bn

∣∣(1 {Yi 6 ϕ(Zi)} − 1{Yi 6 φ(Zi)}
)
fj(Wi)

∣∣2 =: H2
j (Xi)

and hence, Hj is an envelope function of the class Hjn and due to Assumption 3.3 we

have E[H2
j (X)] 6 CRκn for n sufficiently large. Moreover, condition DB(ϕ̂n, ϕ) = op(Rn)

implies

P
( mn∑
j=1

τj
∣∣n−1/2∑

i

hj(Xi, ϕ̂n)− Ehj(X, ϕ̂n)
∣∣2 > ε

)

6
mn∑
j=1

τjε
−1 E sup

φ∈Bn

∣∣∣n−1/2∑
i

hj(Xi, φ)− Ehj(X, φ)
∣∣∣2 + o(1)

6
mn∑
j=1

τjε
−1
(
E sup
φ∈Bn

∣∣∣n−1/2∑
i

hj(Xi, φ)−Ehj(X, φ)
∣∣∣+ (E |Hj(X)|2

)1/2)2
+o(1)

where the last inequality is due to Theorem 2.14.5 of van der Vaart and Wellner [2000].

We further conclude by applying the last display of Theorem 2.14.2 of van der Vaart and

Wellner [2000]

E sup
φ∈Bn

∣∣∣n−1/2∑
i

hj(Xi, φ)− Ehj(X, φ)
∣∣∣ 6 CJ[ ](1,Hjn, L2

X)
(
E |Hj(X)|2

)1/2
.

Now since max16j6mn E |Hj(X)|2 6 CRκn for n sufficiently large and µmnRκn = o(ςmn)
it is sufficient to show that max16j6mn J[ ](1,Hjn, L2

X) < ∞. Further, Lemma 4.2 (i) of
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Chen [2007] yields

N[ ](ε
(
E |Hj(X)|2

)1/2
,Hjn, L2

X) 6 N[ ]
(
ε,
(
E |Hj(X)|2

)−1/2Hjn, L2
X

)
6 N[ ]

(
ε,Hj , L2

X

)
6 N

(( ε

2C
)2/κ

,B, DB
)

6 N
(( ε

2C
)2/κ

,B, ‖ · ‖∞
)

where we used DB(φ, ϕ) 6 ‖φ − ϕ‖∞ for any φ ∈ B. Employing condition α0 > d/p

and Theorem 6.2 Part II of Adams and Fournier [2003] yields that Wα+α0,p is compactly

embedded in Wα,∞. Thereby, B ⊂ Wα,p is totally bounded in Wα,∞ which implies

‖φ‖α,∞ 6 C for all φ ∈ B. Let Wα,∞
C := {Wα,∞ : ‖φ‖α,∞ 6 C}. Now Theorem 2.7.1 of

van der Vaart and Wellner [2000] gives

logN
(
ε2/κ,B, ‖ · ‖∞

)
6 logN

(
ε2/κ,Wα,∞

C , ‖ · ‖∞
)
6 Cε−2d/(ακ)

where C depends on the diameter of Z. Now due to Assumption 3.5 (i) it is straightfor-

ward to see that max16j6mn J[ ](1,Hjn, L2
X) <∞ and hence, nIIIn = op(ςmn).

Consider IIn. We observe

nIIn =
mn∑
j=1

τj
(∑

i

(1 {Ui 6 0} − q)fj(Wi)
)(
n−1∑

i

hj(Xi, ϕ̂n)
)

+ op(ςmn)

=
mn∑
j=1

τj
(∑

i

(1 {Ui 6 0} − q)fj(Wi)
)(
n−1∑

i

hj(Xi, ϕ̂n)− Ehj(X, ϕ̂n)
)

+
mn∑
j=1

τj
(∑

i

(1 {Ui 6 0} − q)fj(Wi)
)
Ehj(X, ϕ̂n) + op(ςmn)

= Cn1 + Cn2 + op(ςmn).

Condition µmnRκn = o(ςmn) yields nCn1 = op(ςmn) by applying the Cauchy Schwarz

inequality. Consider Cn2. Define tj = Ehj(X, ϕ̂n)
(∑mn

j=1(Ehj(X, ϕ̂n))2)−1/2 for 1 6 j 6
mn then

∑mn
j=1 t

2
j = 1 and hence

E |Cn2|2 6 ηpn‖T ϕ̂n − T ϕ‖2W E
∣∣∣ mn∑
j=1

τjtj(1 {U 6 0} − q)fj(W )
∣∣∣2

6 η2
pn‖T ϕ̂n − T ϕ‖2W

∫
W

∣∣∣ mn∑
j=1

τjtjfj(w)
∣∣∣2ν(dw) 6 η2

pn‖T ϕ̂n − T ϕ‖2W = o(ςmn)
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which completes the proof.

PROOF OF PROPOSITION 3.2.2. We first check whether the conditions of Lemma B.1 of

Chen and Pouzo [2012] are satisfied. The tangential cone condition (Assumption 3.2

(ii)) with 0 < η < 1 yields (1 − η)‖T (φ − ϕ)‖W 6 ‖T φ − T ϕ‖W 6 ‖T φ‖W for all

φ ∈ B and moreover, ‖T (Eknϕ)‖W 6 ‖T (Eknϕ) − T ϕ‖W 6 (1 + η)‖T (Eknϕ − ϕ)‖W .

Consequently, Assumption 4.1 (ii) of Chen and Pouzo [2012] follows.

Due to Assumption 3.6 and since {fj}j>1 forms an orthonormal basis in L2
W we may

apply Lemma C.2 of Chen and Pouzo [2012] which implies that the least squares esti-

mator T̂ of T given in (3.12) satisfies n−1∑
i |(T̂ Eknϕ)(Wi)|2 6 C‖T Eknϕ‖2W +Op(δ2

n)
and moreover, n−1∑

i |(T̂ φ)(Wi)|2 > C‖T φ‖2W − Op(δ2
n) uniformly over Bρkn for a finite

constant C > 0. Thereby, Assumption 3.3 of Chen and Pouzo [2012] holds true. In addi-

tion, since Hojn := {hj(·, φ) : φ ∈ Bokn} ⊂ Hjn (defined in the proof of Theorem 3.2.1)

we infer from the proof of Theorem 3.2.1 that max16j6mn J[ ](1,Hojn, L2
X) 6 C < ∞

and hence, Assumption C.2 of Chen and Pouzo [2012] holds true.

Consequently, we may apply Lemma B.1 (ii) of Chen and Pouzo [2012] which yields

‖T (ϕ̂n−ϕ)‖W = Op(rn) where rn = max
(
δn, o(

√
λn), ‖T (Eknϕ−ϕ)‖W

)
. Now condition

(3.15) yields n‖T (ϕ̂n − ϕ)‖2W = op(ςmn), which completes the proof.

PROOF OF PROPOSITION 3.2.3. Since ‖n−1∑
i ξ(Wi)f τmn(Wi)‖2 = Op

(∑∞
j=1 ξ

2
j

)
we see

that

(
√

2ςmn)−1∥∥n−1/2∑
i

(1 {Ui 6 0} − q − ς1/2
mn n

−1/2ξ(Wi))f τmn(Wi)
∥∥2

= (
√

2ςmn)−1∥∥n−1/2∑
i

(1 {Ui 6 0} − q)f τmn(Wi)
∥∥2

+ (
√

2ςmn)−1〈n−1∑
i

(1 {Ui 6 0} − q)f τmn(Wi),E[ξ(W )f τm(W )]〉+Op
( ∞∑
j=1

ξ2
j

)

= In + IIn + Op
( ∞∑
j=1

ξ2
j

)
.

Further, since E |IIn|2 6 η2n−1∑∞
j=1 ξ

2
j = o(1) the assertion follows similarly to the

proof of Theorem 3.2.1.

PROOF OF PROPOSITION 3.2.4. The null hypothesis fails if T ϕ = ξ for some non zero

function ξ ∈ L2
W . For the proof it is sufficient to show Sn = ‖Lξ‖2W + op(1). Since

‖n−1∑
i(1 {Yi 6 ϕ̂n(Zi)} − 1 {Yi 6 ϕ(Zi)})f τmn(Wi)‖2 = op(1) (cf. proof of Theorem
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3.2.1) and

‖n−1∑
i

(1 {Yi 6 ϕ(Zi)}−q)f τmn(Wi)‖2 >
∫
W

∣∣(LT ϕ)(w)pW (w)/ν(w)
∣∣2ν(dw)+op(1)

> C‖Lξ‖2W + op(1)

which proves the result.

PROOF OF PROPOSITION 3.2.5. Let us denote T nφ := n−1∑
i(1 {Yi 6 φ(Zi)}−q)f τmn(Wi)

and T φ := E(1 {Y 6 φ(Z)} − q)f τmn(W ) for all φ ∈ Φ. The basic inequality (a − b)2 >

a2/2− b2, a, b ∈ R, yields for all φ ∈ Gρn and ϕ with T ϕ = 0 that

P
(
(
√

2 ςmn)−1(nSn − µmn) > qα
)

> P
(n

2 ‖T nφ− T nϕ‖
2 + n‖T nϕ‖2 − µmn >

√
2 ςmnqα + 2n|〈T nϕ̂n − T nϕ, T nϕ〉|

+ n‖T nϕ̂n − T nϕ‖2
)
.

From the proof of Theorem 3.2.1 we see n〈T nϕ̂n − T nϕ, T nϕ〉 = op(ςmn), n‖T nϕ̂n −
T nϕ‖2 = o(ςmn) and n‖T nϕ‖2W − µmn = Op(ςmn). Moreover, we observe

n‖T nφ− T nϕ‖2W > n‖T φ‖2 − 2n
∣∣〈T nφ− T nϕ− T φ, T φ〉∣∣ = In − 2IIn.

Note that ‖LT φ‖2W 6 C for all φ ∈ Gρn we have In > Cn‖LT φ‖2W for n sufficiently

large. Consider IIn. For 1 6 j 6 mn let sj = E[(T φ)(W )f τj (W )]/‖T φ‖ then clearly∑mn
j=1 s

2
j = 1 and thus E |

∑mn
j=1 sjfj(W )|2 6 ηfηp. We evaluate

E |IIn|2 6 n‖T φ‖2 E
∣∣∣ mn∑
j=1

sj(1{Y 6 φ(Z)}−1{Y 6 ϕ(Z)})f τj (W )
∣∣∣2 6 n ηfηp‖LT φ‖2W .

and hence IIn = Op(
√
n‖LT φ‖W ). Consequently, for all 0 < ε < 1 and n sufficiently

large we have

P
(
(
√

2 ςmn)−1(nSn − µmn) > qα
)
> P

(n
2 ‖LT φ‖

2
W >

√
2 ςmnqα

)
− ε,

which proves the assertion.

PROOF OF COROLLARY 3.3.1. It is sufficient to show that Assumption 3.4 is satisfied.
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Since supy sup(z,w)∈Z×W pY |Z,W (y, z, w) 6 C we have

‖T (ϕ̂e
kn −ϕ0)‖2W = E |E[pY |Z,W (ϕ0(Z), Z,W )(ϕ̂e

kn −ϕ0)(Z)|W ]|2 6 C‖ϕ̂e
kn −ϕ0‖2Z .

Under the conditions of Assumption 3.7, He and Shi [1994] (proof of Theorem 2.1 equa-

tion (3.11) and (3.12)) establish that ‖ϕ̂e
kn
− ϕ0‖2Z = Op(n−1kn + k−2r

n ). Consequently,

n‖T (ϕ̂e
kn
−ϕ0)‖2W = Op(kn+nk−2r

n ) = op(ςmn) and hence Assumption 3.4 holds true.
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