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Abstract

Combinatorial problems are often easy to state and hard to solve.
A whole bunch of graph coloring problems falls into this class as
well as the satisfiability problem. The classical coloring problems
consider colorings of objects such that two objects which are in
a relation receive different colors, e.g., proper vertex-colorings,
proper edge-colorings, or proper face-colorings of plane graphs.

A generalization is to color the objects such that some pre-
defined patterns are not monochromatic. Ramsey theory deals
with questions under what conditions such colorings can occur.
A more restrictive version of colorings forces some substructures
to be polychromatic, i.e., to receive all colors used in the coloring
at least once. Also a true-false-assignment to the boolean vari-
ables of a formula can be seen as a 2-coloring of the literals where
there are restrictions that complementary literals receive different
colors.

Mostly, the hardness of such problems is been made explicit by
proving that they are NP-hard. This indicates that there might
be no simple characterization of all solvable instances. Extremal
questions then become quite handy, because they do not aim at
a complete characteriziation, but rather focus on one parameter
and ask for its minimum or maximum value.

The goal of this thesis is to demonstrate this general way on
different problems in the area of graph colorings and satisfiability
of boolean formulas.
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First, we consider graphs where all edge-2-colorings contain
a monochromatic copy of some fixed graph H. Such graphs are
called H-Ramsey graphs and we concentrate on their minimum
degree. Its minimization is the question we are going to answer
for H being a biregular bipartite graph, a forest, or a bipartite
graph where the size of both partite sets are equal.

Second, vertex-colorings of plane multigraphs are studied such
that each face is polychromatic. A natural parameter to upper
bound the number of colors which can be used in such a coloring
is the size g of the smallest face. We show that every graph can
be polychromatically colored with ⌊3g−5

4 ⌋ colors and there are
examples for which this bound is almost tight.

Third, we consider a variant of the satisfiability problem where
only some (not necessarily all) assignments are allowed. A nat-
ural way to choose such a set of allowed assignments is to use a
context-free language. If in addition the number of all allowed as-
signments of length n is lower bounded by Ω(αn) for some α > 1,
then this restricted satisfiability problem will be shown to be NP-
hard. Otherwise, there are only polynomially many allowed as-
signments and the restricted satisfiability problem is proven to be
polynomially solvable.



Zusammenfassung

Kombinatorische Probleme sind oft einfach zu formulieren aber
schwierig zu lösen. Eine ganze Reihe von Graphenfärbungs-Pro-
blemen fällt in diese Klasse wie auch das Erfüllbarkeitsproblem
von boolschen Formeln. Klassische Färbungsprobleme betrachten
Färbungen von Objekten, so dass je zwei Objekte, die in einer Re-
lation stehen, verschiedene Farben erhalten, z.B., gültige Knoten-
färbungen, gültige Kantenfärbungen oder gültige Färbungen der
Gebiete eines planaren Graphen.

Eine Verallgemeinerung sind Färbungen, so dass vordefinier-
te Muster nicht einfarbig sind. Die Ramsey-Theorie behandelt
Fragestellungen, wann solche Färbungen vorkommen können. Ei-
ne eingeschränktere Variante von Färbungen zwingt gewisse Teil-
strukturen polychromatisch zu sein, d.h., alle Farben kommen
mindestens einmal vor. Ebenso kann eine Belegung der boolschen
Variablen einer Formel mit Wahr- und Falsch-Werten als eine 2-
Färbung der Literale angesehen werden, wobei komplementäre
Literale unterschiedliche Farben erhalten.

Die Schwere von solchen Problemen wird meistens dadurch
gezeigt, dass man beweist, dass sie NP-schwer sind. Dies deutet
darauf hin, dass es keine einfache Charakterisierung aller lösbaren
Instanzen geben wird. Extremale Fragestellungen sind dann recht
nützlich, da sie nicht eine vollständige Charakterisierung erzielen
wollen, sondern einen Parameter fixieren und nach dessen Mini-
mum oder Maximum fragen.

Das Ziel dieser Doktorarbeit ist es diesen allgemeinen Weg
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anhand verschiedenener Probleme der Graphenfärbbarkeit und
Erfüllbarkeit von logischen Formeln aufzuzeigen.

Zuerst betrachten wir Graphen, in welchen jede Kanten-2-
Färbung eine monochromatische Kopie eines bestimmten Gra-
phen H enthält. Solche Graphen nennt man H-Ramsey Graphen
und wir konzentrieren uns auf deren minimalen Knotengrad. Die
Frage nach dessen Minimierung beantworten wir für bireguläre
bipartite Graphen, Wälder und bipartite Graphen mit gleich gros-
sen Partitionsklassen.

Als Zweites untersuchen wir Knotenfärbungen von planaren
Multigraphen, so dass der Rand jedes Gebietes polychromatisch
gefärbt ist. Ein natürlicher Parameter, um die Anzahl Farben
nach oben zu beschränken, ist die Grösse g des kleinsten Gebie-
tes. Wir zeigen, dass jeder planare Multigraph mit ⌊3g−5

4 ⌋ Farben
polychromatisch gefärbt werden kann, und es gibt Beispiele, die
zeigen, dass diese Schranke fast scharf ist.

Drittens betrachten wir eine Variante des Erfüllbarkeitspro-
blems, wobei nur eine Teilmenge aller Belegungen (nicht unbe-
dingt alle) erlaubt sind. Eine natürliche Weise, um solch eine
Teilmenge von Belegungen zu wählen, ist eine kontextfreie Gram-
matik. Falls zusätzlich die Anzahl von erlaubten Belegungen der
Länge n von unten durch Ω(αn) abgeschätzt werden kann für
ein α > 1, dann wird das eingeschränkte Erfüllbarkeitsproblem
wiederum NP-schwer sein. Andernfalls sind nur polynomiell viele
Belegungen erlaubt und es wird gezeigt, dass das eingeschränkte
Erfüllbarkeitsproblem polynomiell lösbar ist.
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Tibor Szabó advising me and the stay in Montreal;

Bettina Speckmann, Dominik Scheder, Kevin Buchin, Maike
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[Combinatorial mathematics] rendered many
services to both pure and applied
mathematics. Then along came the prince
of computer science with its many
mathematical problems and needs—and it
was combinatorics that best fitted the glass
slipper held out.

S. Jukna

Chapter 1

Introduction

Extremal graph theory and extremal set theory as well as ex-
tremal combinatorics in general are beautiful areas of mathe-
matics with connections to fields like probability theory, (linear)
algebra, topology, geometry, theoretical computer science. The
books [55, 11] give a good overview of these topics. In this thesis
we focus on extremal graph colorings and extremal satisfiability.

The term “extremal” means that some parameter is maxi-
mized or minimized under certain restrictions. For example, the
classical question in Ramsey theory concerns the minimum num-
ber n of vertices needed such that every graph on n vertices ei-
ther contains a clique of size k or an independent set of size k.
Moreover, there are fundamental extremal questions related to
complexity, for instance, what is the smallest k such that the k-
coloring problem is NP-hard?
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2 Chapter 1. Introduction

This thesis contains three rather independent parts which can
be read separately although some connections do exist. Notation
common in all chapters is introduced in Section 1.4. Chapter 2
deals with extremal Ramsey theory, which is the study of special
colorings of graphs. Chapter 3 is devoted to polychromatic edge-
colorings and polychromatic colorings of plane graphs. Chapter 4
contains variants of the satisfiability problem and investigations
about their complexity.

Graph coloring is an active and rich field, where the books by
Soifer [84] and by Jensen, Toft [54] give an extended overview.
In addition, [44] is the standard book in Ramsey theory written
by Graham, Rothschild, and Spencer. The philosophy of Ramsey
theory is that some structure can always be found within a huge
collection of objects. The simplest statement is the pigeonhole
principle, a concrete example of which is the fact that in a class
with at least 27 students there are always two students whose last
name starts with the same letter.

The satisfiability problem is prominent in various areas includ-
ing logic, artificial intelligence, combinatorial optimization, pro-
gram and system verification. Satisfiability plays a major role in
complexity theory because it was used countless times to deduce
NP-hardness of natural problems. Recently, a handbook about
satisfiability containing more than 900 pages was published [10].

We proceed by giving a short introduction for each part of
this thesis and outlining what will be revealed in the forthcoming
chapters.

1.1 Extremal Ramsey Theory

A graph G is called H-Ramsey, denoted by G → H, if in every
edge-coloring of G with colors red and blue there is a monochro-
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1.1. Extremal Ramsey Theory 3

matic copy of H. Furthermore, if every proper subgraph of an
H-Ramsey graph G is not H-Ramsey, then we say that G is H-
minimal. We denote the family of all H-Ramsey graphs by R(H)
and the family of H-minimal graphs by M(H).

The classical theorem of Ramsey implies that for all graphs
H the family R(H) is nonempty and so is M(H). This was first
discovered by Ramsey and published posthumously in [75]. Erdős
and Szekeres [34] proved the theorem independently and applied
it to a problem in discrete geometry. A significant portion of
Ramsey theory is concerned with finding the extremal value of
various graph parameters over the family R(H) or M(H). The
most widely investigated among these questions is the minimiza-
tion of n(G), the number of vertices, over all graphs G ∈ R(H),
which gives rise to the classical Ramsey number r(H). We use
r(k) = r(Kk), where Kk is the k-clique.

The result r(3) = 6 is folklore and r(4) = 18 is proven in [45].
The exact value of r(5) is already unknown and the best bounds
nowadays are 43 ≤ r(5) ≤ 49, which are proven in [35, 65]. The
growth of the Ramsey number is exponential but the lower and
upper bound are still far apart. Erdős proved in [32] that there
exists a constant c such that r(k) ≥ ck2k/2, see also Spencer [85]
who improved on the constant c. The currently best known upper
bound is proven by Conlon [25] and states that there exists a

constant C such that r(k) ≤ k
−C log k

log log k
(
2k
k

)
. To limit the scope

we do not mention other results about Ramsey numbers.

Determining r(H) is equivalent to calculating the minimum
n such that Kn ∈ R(H). Noncomplete Ramsey theory studies
graphs other than cliques in R(H) or M(H) and their graph
parameters. Our main interest in Chapter 2 is the quantity

s(H) := min
G∈M(H)

δ(G) ,

where δ(G) is the minimum degree of the graph G. The parame-
ter s(H) captures the minimum influence of a vertex needed to be
important in a H-Ramsey graph. Clearly, s(H) ≥ δ(H). Burr,
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4 Chapter 1. Introduction

Erdős, and Lovász [19] introduced s(H) and studied it for H
being a clique. The exact value is known for cliques and com-
plete bipartite graphs [19, 21, 40], and a simple lower bound
s(H) ≥ 2δ(H) − 1 (see Proposition 2.2) is proven by Fox and
Lin in [40]. We will extend these results in various ways.

Example. Let H = C4 be the 4-cycle. The simple lower bound
yields s(C4) ≥ 3 while it is known that K6 and K5,5 are C4-
Ramsey graphs [42, 8]. Any subgraph of these two graphs has
minimum degree at most 5 and an H-Ramsey graph always has
an H-minimal subgraph. Therefore, s(C4) ≤ 5, but this is not
optimal. We claim that G = K3,9 ∈ R(C4). Let A, B be the
partite sets with |A| = 3, |B| = 9 and color the edges of G with
red and blue. Every vertex b ∈ V (B) has three incident edges and
there are 23 = 8 possible color patterns of these edges. Since |B| =
9, the pigeonhole principle implies that there are two vertices
b1, b2 ∈ V (B) with the same color pattern. The color blue or
red appears at least twice in this color pattern, which yields a
monochromatic C4 containing the vertices b1, b2. This shows that
K3,9 ∈ R(C4). Every subgraph of K3,9, in particular any C4-
minimal subgraph, has minimum degree at most 3 which proves
that s(C4) ≤ 3. Actually, it is also possible to prove that already
K3,7 is C4-Ramsey, even C4-minimal. A generalization of this
argument for complete bipartite graphs can be found in [40].

(a) K6 (b) K5,5 (c) K3,7

Figure 1.1: C4-Ramsey graphs

In Section 2.1 we will determine the s-value for a large class
of bipartite graphs. This class includes all even cycles, forests,
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1.1. Extremal Ramsey Theory 5

bi-regular graphs, and all connected bipartite graphs with partite
sets of the same size. Actually, all these graphs fulfill s(H) =
2δ(H) − 1, i.e., the simple lower bound is tight for them. We
will continue in Section 2.2 by exploring the behavior of the s-
parameter under taking disjoint union of graphs. Especially, we
will prove that a large clique completely dictates the s-value in
the disjoint union with a small clique, while a small complete bi-
partite graph determines the s-value in the disjoint union with
a larger complete bipartite graph. For complete graphs as well
as for all bipartite graphs considered in Section 2.1, the s-value
is always upper bounded by a function of the minimum degree.
However, this is not true in general, as we will prove in Section 2.3.
Finally, in Section 2.4 we will discuss asymmetric cases and gen-
eralizations to more than two colors for cliques.

For proving upper bounds on s(H) one has to show that there
exists an H-minimal graph with small minimum degree. We usu-
ally show this by explicit constructions. In general, it is not
easy to explicitly construct an H-Ramsey graph. The minimality
makes such constructions even more difficult. Our usual approach
is to proceed in two steps. In the first step, we find a graph G that
is not H-Ramsey but in all colorings without a monochromatic
copy of H, which are also called critical colorings, a special color-
ing of some subgraph can be forced. In the second step, we extend
G by adding a new vertex (or maybe more than one) for some t-
subsets of the vertices V (G) and connect it to all members of this
t-set. If everything fits together nicely, we can force a coloring to
appear in every critical coloring of G such that no matter how we
color the newly introduced edges there is a monochromatic copy
of H. This proves that the extended graph is H-Ramsey. More-
over, if we delete all newly introduced vertices, then we would
obtain G again, which was by assumption not H-Ramsey. Hence,
there exists some graph between G and its extension which is
H-minimal. The minimum degree of this graph cannot be larger
than t, showing that s(H) ≤ t.

5



6 Chapter 1. Introduction

Chapter 2 is based on the joint work with Tibor Szabó and
Stefanie Zürcher [88].

1.2 Polychromatic Colorings

The art gallery problem is a famous problem in computer sci-
ence and it originates from a real-world problem. Imagine an art
gallery consisting of one large room which we will think of as a
simple polygon P . The task is to place guards at its vertices to
make sure they see the whole polygon P . What is the minimum
number of guards needed for that? If P is convex then one guard
is sufficient, but usually there are some reflex corners and a guard
cannot see around such corners. Chvátal [24] proved that there is
always a set of at most n/3 vertex guards who guard a polygon
P with n vertices. Furthermore, this bound is tight. Although
Chvátal’s paper contains only three pages, Fisk [38] found an even
shorter proof of this fact which we will present here: Triangulate

3

2

3 2

1

2

31

1 2

1

3

Figure 1.2: A polygon P with a triangulation and a vertex-3-
coloring which can be guarded by 4 vertex-guards but not by 3.

P by only adding straight edges inside P . The resulting graph
is still outerplanar and therefore can be properly colored with 3
colors. The smallest color class C contains no more than n/3
vertices. Every triangle contains a vertex of each color class. We
place at each vertex of C a guard and claim that they together

6



1.2. Polychromatic Colorings 7

guard the whole polygon P . Every point p inside P belongs to
some triangle T and one of the vertices of T is in C, say x. Since
a triangle is convex the guard at x sees p which proves that the
whole polygon P is guarded with at most n/3 guards.

The crucial point in the argument above is that every triangle
receives all three colors. A vertex-k-coloring of a plane multigraph
G is polychromatic if every face receives all colors on its boundary.
In contrast to the classical coloring problem in graph theory, it is
harder to provide a polychromatic coloring with many colors than
with few. Polychromatic colorings correspond to a combinatorial
variant of the art gallery problem: The input is a plane multi-
graph G and a vertex guard sees all the faces incident to it. This
means especially that we forget about the whole geometry and
allow guards also to see around corners if it is still in the same
face.

We consider plane multigraphs where edges are drawn by any
curve connecting the endpoints (see Figure 1.3). This setting is
more general and most of our results in Chapter 3 fit into it.

There are several proofs that every plane multigraph without
faces of size 1 or 2 can be polychromatically 2-colored (Theo-
rem 3.15). Therefore any plane multigraph on n vertices with
no faces of size 1 or 2 can be guarded by ⌊n

2 ⌋ guards. In the
combinatorial setting as described above this is tight.

(a) triangulation
with multiedges

(b) plane multi-
graph with 2-faces

(c) non-degenerate rect-
angular subdivision

Figure 1.3: Plane Multigraphs

From a result of Hoffmann and Kriegel [50] it follows that any
plane, bipartite, 2-connected simple graph is polychromatically

7



8 Chapter 1. Introduction

3-colorable (Theorem 3.26). Horev and Krakovski [53] showed
that any connected plane graph G without faces of size 1 or 2
and maximum degree at most 3, which is not K4 or a subdivision
of K4 on 5 vertices, is polychromatically 3-colorable. In [52] it is
shown that every bipartite cubic plane graph has a polychromatic
4-coloring (with the possible exception of the outer face).

A subdivision of a rectangle into rectangles is called rectan-
gular subdivision and it is non-degenerate if no four rectangles
meet in a point. Dinitz et al. [31] showed that it is possible to
color the vertices of any non-degenerate rectangular subdivision
S with three colors such that each rectangle in S has at least
one vertex of each color. They conjectured that this is also pos-
sible with four colors. And indeed, a proof by Guenin [46] of a
conjecture by Seymour [82] concerning the edge-coloring of a spe-
cial class of planar graphs, directly implies such a 4-coloring [30].
Keszegh [58] investigates polychromatic colorings of so-called n-
dimensional guillotine-partitions.

For a plane multigraph G, let g(G) be the smallest number
of vertices any face has. There cannot be a polychromatic color-
ing of G with more than g(G) colors. In [53] it was asked if there
exists a constant c such that every plane multigraph G has a poly-
chromatic coloring with g(G) − c colors. We will show that this
is not true. It is proven in Section 3.2 that for g ≥ 5 every plane
multigraph with g(G) = g there exists a polychromatic coloring
with ⌊3g−5

4 ⌋ colors. On the other hand we construct plane simple
graphs G with g(G) = g where every polychromatic coloring can
use at most ⌊3g+1

4 ⌋ colors. The main steps for proving that a
multigraph is polychromatically k-colorable are: (1) we assign to
each face almost all its vertices such that a vertex is not assigned
more than twice; and (2) we consider special edge-colorings which
are called polychromatic edge-colorings. Actually, we will first
consider these special edge-colorings in Section 3.1 and after that
we show how to apply them to obtain polychromatic colorings of
plane multigraphs in Section 3.2.

In Section 3.3 we consider special cases of plane graphs. Tri-

8



1.3. Extremal Satisfiability 9

angulations are plane multigraphs such that every face is a 3-cycle
(Figure 1.3(a)). By the above discussion we know that every trian-
gulation is polychromatically 2-colorable and sometimes it is also
polychromatically 3-colorable. A triangulation is polychromati-
cally 3-colorable if and only if it is properly 3-colorable. For exam-
ple, a plane embedding of K4 is not polychromatically 3-colorable.
We will explore this connection in more details. Furthermore, we
study multigraphs with even faces only and outerplanar multi-
graphs. It will be proven that any outerplanar multigraph G
with g = g(G) ≥ 3 is polychromatically g-colorable.

Section 3.4 explains the connection to guarding problems in
more details. Finally, complexity questions are considered in Sec-
tion 3.5. The decision problem whether a plane multigraph is
polychromatically k-colorable is in P for k = 2 and it is NP-
complete for k = 3 or k = 4. Moreover, we continue by giving
some more restrictive decision problems. For a set L of integers
we consider the decision problem whether a plane multigraph with
faces of sizes only in L is polychromatically 3-colorable. There is
an almost complete characterization shown for which sets L the
problem is in P and for which it is NP-complete.

Chapter 3 is based on joint work with Noga Alon, Robert
Berke, Kevin Buchin, Maike Buchin, Péter Csorba, Saswata Shan-
nigrahi, and Bettina Speckmann [5].

1.3 Extremal Satisfiability

A boolean formula is a well-formed boolean expression contain-
ing boolean variables, the logical AND, the logical OR, and the
logical negation. A boolean formula f over the variables V =
{v1, . . . , vn} is satisfiable if there is an assignment in {true, false}V

such that f evaluates to true. Satisfiability is the problem to de-
cide whether a given formula is satisfiable, and it was the first
problem which was proven to be NP-complete [26, 63].

There are two main questions which guide us from here: What

9



10 Chapter 1. Introduction

special restriction on the SAT problem can guarantee that the
decision problem is trivial, i.e., the answer is always YES or always
NO? What restriction on SAT are possible such that it remains
NP-hard?

There are three ways to restrict the SAT problem:

(i) Restrict on special formulas f ,
(ii) change the satisfying condition, or
(iii) restrict the solution space {true, false}V .

The most common restrictions are of the form (i) and we will
mention here some results (not including monotone, planar, or
linear SAT). It is well-known that every boolean formula has an
equivalent boolean formula in conjunctive normal form (CNF).
The SAT problem restricted to CNF formulas where all clauses
contain k literals, denoted by k-SAT, is NP-hard for k ≥ 3 and it
is polynomial time solvable for k = 2.

Next, restrictions on the number of occurrences in a k-CNF
formula are discussed. It is shown in [61] that if there exists some
unsatisfiable k-CNF formula where every variable occurs only s
times, then the restricted satisfiability problem is NP-hard. Define
f(k) to be the largest integer s such that all k-CNF formulas
with variables not occurring more than s times are satisfiable.
This is a very interesting extremal parameter. An application of
the Lovász Local Lemma shows that f(k) ≥ 2k

ek [61]. The very
recent construction in [41] shows that this is tight up to a constant

factor, i.e., f(k) ∈ Θ(2k

k ). Also recently, an algorithmic version of
the Lovász Local Lemma has been established which implies that
for k-CNF formulas with variables that occur at most 2k−5

k times
not only the decision problem can be solved but also a satisfying
assignment can be found in polynomial time [68].

These results are linked to the dependencies of clauses: Two
clauses have a conflict (negative dependency) if there is a variable
which occurs in one positively and in the other negatively, and
they have a positive dependency if they share a literal. One might
expect that an unsatisfiable CNF formula should contain many

10



1.3. Extremal Satisfiability 11

conflicts, which was the starting point of the investigations in [81],
where it is shown that for k large enough 2.69k ≤ ck ≤ 3.55k,
where ck denotes the minimum number of conflicts in an unsatis-
fiable k-CNF formula.

The second approach (ii) was investigated by Schaefer [78].
His setup allows to take formulas f which are conjunctions of
logical relations. A logical relation is a subset of all possible as-
signments and therefore it is a generalization of the disjunction
in the conjunctive normal form. He gave a complete character-
ization of the classes of relations leading to polynomial time al-
gorithms, and the other classes are NP-hard. This dichotomy
result is astonishing because one could expect that there would
also be intermediate cases, that are neither in P nor NP-hard. It
follows from Schaefer’s theorem that the variants NAE-SAT or
exactly-one SAT are NP-hard. The recent paper [3] considers a
refinement with respect to subtler complexity classes.

We investigate the third way (iii) by restricting the search
space. Normally, every assignment to the variables is allowed,
but we want to forbid some assignments a priori. Given a set
S ⊆ {0, 1}∗ of assignments, the S-SAT problem asks whether
for a formula F over n variables there is an assignment Sn :=
S ∩{0, 1}n that satisfies F . If so, then F is called S-satisfiable. If
|Sn| is polynomial in n and Sn can be enumerated in polynomial
time then S-SAT is in P. To exclude this case we concentrate on
asymptotically exponential families, for which there exists some
α > 1 such that |Sn| ∈ Ω(αn). In fact, we will work with a
generalization of asymptotically exponential families in Chapter 4.

The question whether S-SAT is NP-hard for all asymptoti-
cally exponential S was first stated by Cooper [27]. We will dis-
prove this conjecture by constructing an exponential S such that
S-SAT is not NP-hard, provided P 6= NP (Section 4.7)

The S-SAT problem is still hard under different notions of
hardness: We show that if S-SAT is in P for some exponential S,

11



12 Chapter 1. Introduction

then SAT, and thus every problem in NP, has polynomial circuits
(Section 4.4). This would imply that the polynomial hierarchy
collapses to its second level [56]. Since this is widely believed to
be false, it is a strong indication that S-SAT is a hard problem
in general.

A natural way to describe a language S is by a grammar (if
there exists one). Therefore, we will go further and concentrate
on families Sn given by a regular or context-free grammar. In
both cases, the S-SAT problem turns out to be NP-hard for ev-
ery exponential family S. The main tool to prove NP-hardness
of S-SAT is to compute large index sets for which every assign-
ment can be realized by Sn (see Section 4.3). The maximum size
of such an index set is the VC-dimension of Sn. It is hard to
compute the VC-dimension in general. Moreover the size of Sn

is large, and therefore this approach seems not applicable for a
polynomial reduction. However, if S is given by a finite determin-
istic state machine then we can compute the VC-dimension and
an index set of this size in linear time (Section 4.6). Even if S
is given by a context-free grammar, we can compute large index
sets shattered by Sn (not necessarily a maximum one), which will
lead to NP-hardness proofs of such S-SAT (see Section 4.5).

Chapter 4 is based on joint work Dominik Scheder [80].

1.4 Notation

We denote by N the set of natural numbers 1, 2, 3, . . . , and N0 =
N ∪ {0}. We use the notation [n] := {1, 2, . . . , n} and the set of
all k-subsets of a set S is denoted by

(
S
k

)
. The set of all functions

f : V → W is denoted by W V .

Asymptotics. Let f, g, h be real positive functions. We write
f ∈ O(g) if there exist n0, c such that f(n) ≤ cg(n) for all n ≥ n0.
Normally, for exponential functions we neglect polynomial fac-
tors and write f ∈ O∗(g) instead. Moreover, we use the notation

12



1.4. Notation 13

h ∈ Ω(g) if g ∈ O(h).

Multigraphs. A multigraph G is a pair consisting of a finite
set V (G) of vertices and a multiset E(G) of edges from the set
(
V (G)

2

)
∪

(
V (G)

1

)
. We use n(G) = |V (G)| and e(G) = |E(G)|. For

an edge e ∈ E(G), the elements in e are called its endpoints. A
loop is an edge e ∈ E(G) with only one endpoint. Multiple edges
are edges with the same endpoints. A graph G is a multigraph
without loops and without multiple edges, i.e., the edges are a sub-
set of

(
V (G)

2

)
. If we want to emphasize that G is a graph rather

than a multigraph, then we also say that G is a simple graph.
We assume in the following that multigraphs have no loops if not
otherwise stated.

Multigraphs without loops. Two vertices u, v ∈ V (G) are ad-
jacent in the multigraph G if {u, v} ∈ E(G). The neighborhood of
a vertex v in the multigraph G is denoted by NG(v) and contains
all vertices adjacent to v, the degree of v degG(v) equals to the
number of edges incident to v. If the multigraph G is clear from
the context, we usually just write N(v) and deg(v). The minimum
degree of a multigraph G is denoted by δ(G), and the maximum
degree by ∆(G). A vertex v ∈ V (G) is isolated if NG(v) = ∅.

A vertex-k-coloring of G is a map ϕ : V (G) → {1, . . . , k}
and an edge-k-coloring of G is a map ϕ : E(G) → {1, . . . , k}.
A vertex-k-coloring ϕ is proper if for every edge {u, v} ∈ E(G),
ϕ(u) 6= ϕ(v). An edge-k-coloring is proper if for every vertex
v ∈ V (G), all edges incident to v have different colors. The
chromatic number χ(G) is the smallest k such that there exists
a proper vertex-k-coloring of G. A multigraph G is bipartite if
χ(G) ≤ 2.

Plane multigraphs. A drawing of a multigraph G is a function
defined on V (G) ∪ E(G) that assigns to each vertex v a point
f(v) in the plane and assigns each edge with endpoints u, v a
curve connecting f(u), f(v). A plane embedding of G is a draw-

13



14 Chapter 1. Introduction

ing of G such that no two curves meet in a point other than a
common endpoint. Note that we do not require that the curves
are straight line segments. A plane multigraph is a multigraph
G together with a plane embedding of G. We denote the set of
faces of G by F (G). For a plane multigraph G, a dual graph G∗

is a plane multigraph which has for each face f ∈ F (G) a ver-
tex xf ∈ V (G∗) drawn inside f . An edge e ∈ E(G) with face
a on one side and face b on the other side gives rise to an edge
e∗ ∈ E(G∗) connecting xa and xb. The dual graph G∗ can contain
loops and multiedges also if G itself is a simple graph (Figure 1.4).

Figure 1.4: A simple plane graph and its dual graph.

Simple graphs. For A, B ⊆ V (G) let E(A, B) denote the set
of edges with one endpoint in A and the other one in B. For
A = B, we abbreviate E(A) := E(A, A). For a graph G and a set
S ⊆ V (G) we denote its induced subgraph by G[S], i.e.,

G[S] = (S, E(G) ∩

(
S

2

)

) .

We write G − U for the graph G[V (G) \ U ]. The independence
number α(G) of G is the largest size of a set S ⊆ V (G) such that
G[S] contains no edges.

14



1.4. Notation 15

A graph is called 2-connected (2-edge-connected) if after the
deletion of any vertex (edge) the graph is still connected.

We say that there is a copy of H in G if there is an injective
map ϕ : V (H) → V (G) such that if {h1, h2} ∈ E(H) then also
{ϕ(h1), ϕ(h2)} ∈ E(G). An injective map ϕ : V (H) → V (G)
such that {h1, h2} ∈ E(H) if and only if {ϕ(h1), ϕ(h2)} ∈ E(G)
is called an induced embedding of H in G. If an induced embed-
ding of H in G is also bijective, then we say that G and H are
isomorphic and write G ∼= H. The clique number of G, denoted
by ω(G), is the largest t such that there is a copy of Kt in G.

For two graphs H1, H2 let H ′
1, H

′
2 be isomorphic copies such

that H ′
i
∼= Hi for i = 1, 2 and V (H ′

1)∩V (H ′
2) = ∅. Then H1 +H2

denotes the disjoint sum of H1 and H2, with V (H1 + H2) =
V (H ′

1)∪V (H ′
2), E(H1 +H2) = E(H ′

1)∪E(H ′
2). Furthermore, tH

denotes the disjoint sum H + H + . . . + H of t isomorphic copies
of H. The join H1 ∨ H2 is the graph obtained from H1 + H2 by
adding all edges {x, y} where x ∈ V (H ′

1) and y ∈ V (H ′
2).

Directed multigraph. An edge-orientation of a multigraph G
is a map ϕ : E(G) → V (G) such that the image of each edge e
is one of its endpoints and we say that the edge e points towards
the vertex ϕ(e). A directed multigraph is a graph with an edge-
orientation. For a directed multigraph G and a vertex v ∈ V (G),
the in-degree d−G(v) is the number of edges pointing towards v and
d+

G(v) = degG(v) − d−G(v) is the out-degree of v.

Ramsey theory. The hypergraph Ramsey number rk(a1, . . . , ac)
is the smallest number n ∈ N such that for every c-coloring of the
k-subsets of [n] there is an i ∈ [c] and an ai-subset A ⊆ [n] such
that all elements of

(
A
k

)
are colored with the ith color. We write

rk(a) if all ai are equal to a and for k = 2 we omit the index k
and just write r(a1, . . . , ac). We talk about a symmetric case if
all ai are the same, and otherwise we refer to an asymmetric case.

Boolean formulas. A boolean variable is a variable with values

15



16 Chapter 1. Introduction

true and false which we also interpret as integers 1 and 0. The
negation of a variable v is denoted by v or ¬v and it evaluates to
1− v. The logical AND is denoted by ∧ and the logical OR by ∨
and their evaluation is as usual. A boolean formula F is a well-
formed syntactic expression containing boolean variables as well
as ∨,∧,¬, and parantheses. Denote by vbl(F ) all the variables
which occur at least once in F . The size of a boolean formula is
the length of the expression.

A literal is a variable v or its negation v. A k-clause is a
disjunction of exactly k literals not containing the same literal
twice or a variable and its negation. For example, v3 ∨ v5 ∨ v9 is
a 3-clause. A formula is in conjunctive normal form (CNF) if it
is a conjunction of clauses, furthermore f is a k-CNF formula if
it is a formula in conjunctive normal form with k-clauses only.

An assignment to the variables V = {v1, . . . , vn} is a function
in {true, false}V or {0, 1}V and it evaluates a boolean formula on
the variables V in the usual way.

A boolean formula over variables V is satisfiable if there ex-
ists an assignment in {true, false}V such that f evaluates to true
under this assignment.

Languages. Let Σ be a finite alphabet (normally Σ = {0, 1}).
The empty word has length 0 and is denoted by ε. For n ∈ N0,
the set of all words over Σ of length n will be denoted by Σn and
it consists of all concatenations (sequences) of n elements of Σ.
Moreover, the set of all words is Σ∗ =

⋃

n∈N0
Σn. A language is

any subset of Σ∗. For two languages L1, L2, we denote by L1L2

the language containing all the words w of the form w = w1w2

for w1 ∈ L1, w2 ∈ L2. For a language L we define inductively
L0 = {ε} and Ln+1 = LnL for n ∈ N0. Moreover, we define
L∗ =

⋃

n∈N0
Ln .

16



Party mathematics is an important tool in
the repertoire of the socially gifted
mathematician, and one of the all-time
favorite stories tell us that at a party of six
people there are at least three people who
know each other, or three people who do not
know each other. As mathematicians started
to get invited to larger parties, they began
working on the general case.

M. Schaefer

Chapter 2

Extremal Ramsey

Theory

Noncomplete Ramsey theory—the term was introduced by Burr
in [15]—considers colorings of noncomplete graphs. For complete
graphs one graph parameter, as for example the number of ver-
tices, determines all other graph parameters. This is not the case
for noncomplete graphs where there is a whole bunch of graph
parameters which are of independent interest.

A graph G is called H-Ramsey, denoted by G → H, if in every
edge-coloring of G with colors red and blue there is a monochro-
matic H. Furthermore, if every proper subgraph G′ of an H-
Ramsey graph G is not H-Ramsey, then we say that G is H-
minimal. We denote the family of all H-Ramsey graphs by R(H)
and the family of H-minimal graphs by M(H).

17



18 Chapter 2. Extremal Ramsey Theory

The classical theorem of Ramsey states that for all graphs
H the family R(H) is nonempty, and therefore also M(H) is
nonempty. The quantity r(H) = minG∈R(H) n(G) is the classical
Ramsey number of H (for a regularly updated survey on Ramsey
numbers of all kinds of graphs, see [74]).

One of the first results in the area of noncomplete Ramsey
theory states that for every H there exists G with the same clique
number ω(G) = ω(H) and G → H, see [39, 70].

Instead of minimizing the clique number, we can also ask how
small the chromatic number of G can be such that still G →
H. Denote by rχ(H) the minimum chromatic number of all H-
Ramsey graphs. This parameter is characterized for all graphs
H in [19], although in most cases its actual value is not known.
Some new definitions are needed to understand that result. For
a set G of graphs we denote by r(G) the minimum n such that
in every red/blue edge-coloring of Kn there is a monochromatic
copy of some graph in G. Furthermore, the set of images of all
homomorphisms from H is denoted by hom(H). It is proven that
rχ(H) is equal to r(hom(H)), see [19]. In particular, it is easy to
see that for H bipartite rχ(H) = 2, i.e., for every bipartite graph
H there exists a bipartite graph G such that G → H. Another
special case is for H = Kk where it is easy to see that hom(Kk) =
{Kk} and therefore rχ(Kk) = r(Kk). The greedy coloring of a
graph G with maximum degree ∆ shows that χ(G) ≤ ∆ + 1 and
therefore it follows that every Kk-Ramsey graph has a vertex of
degree at least r(Kk) − 1.

Another natural parameter is the size Ramsey number r̂(H),
which is the minimum number of the edges over all graphs in
R(H). The size Ramsey number was introduced by Erdős, Fau-
dree, Rousseau, and Schelp in [33] and studied more extensively
by many others (see [37] for a recent survey). Clearly, the num-
ber of edges in the complete graph with r(H) vertices is an upper
bound for the size Ramsey number. It is interesting to note that
this bound is tight for H = Kk:

18
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Theorem 2.1 ([33]). For a positive integer m we have

r̂(Kk) =

(
r(Kk)

2

)

.

Proof. Let G be a Kk-Ramsey graph and let G′ be a χ-critical
subgraph of G, i.e., χ(G′) = χ(G) ≥ r(Kk) and for every x ∈
V (G′) : χ(G′ − x) < χ(G). Then it is easy to see that δ(G′) ≥
χ(G′) − 1 and n(G′) ≥ χ(G′). Therefore for the number of edges

e(G) ≥ e(G′) ≥

(
χ(G′)

2

)

≥

(
r(Kk)

2

)

.

There are results about Ramsey-minimal graphs considering
whether M(H) is finite or infinite for a given graph H. The
following characterization is known: M(H) < ∞ if and only if H
is the disjoint union of a (possibly empty) matching and at most
one star with an odd number of edges, see [19, 76, 69, 17, 18, 36].

For the parameters like minimum degree or connectivity one
has to restrict to Ramsey-minimal graphs to obtain reasonable
questions. Our main interest in this chapter is in the quantity

s(H) := min
G∈M(H)

δ(G) ,

i.e., the minimum of the minimum degrees over all H-minimal
graphs. This parameter was introduced and first studied by Burr,
Erdős, and Lovász [19]. By the minimality condition one cannot
just simply add vertices of small degree to an H-Ramsey graph
and thereby get a small upper bound for s(H). On the contrary,
each of the vertices, in particular a vertex of minimum degree,
has to be important to produce a monochromatic copy of H.

Proposition 2.2 (“simple lower bound”, [40]). For all graphs H

s(H) ≥ 2δ(H) − 1 .

Proof. Assume for contradiction that there exists an H-minimal
graph G with δ(G) < 2δ(H) − 1. Let v ∈ V (G) be a vertex of

19



20 Chapter 2. Extremal Ramsey Theory

minimum degree. By the minimality there exists an edge-coloring
c of G− v without monochromatic copy of H. We extend c to an
edge-coloring c′ of G by coloring at most δ(H) − 1 of the edges
incident to v red and the remaining at most δ(H)− 1 edges blue.
The degree of v in the red graph is at most δ(H) − 1 implying
that v cannot be part of a red copy of H. Similarly, v cannot be
part of a blue copy of H. Therefore, there is no monochromatic
copy of H in the edge-coloring c′ of G, which contradicts to the
assumption that G is H-Ramsey.

A clique of size r(H) is H-Ramsey, but maybe it is not H-
minimal. By deleting some edges or vertices of the clique (not
everything) the minimum degree cannot increase (this holds for
every regular graph). Therefore we have s(H) ≤ r(H) − 1. The
determination of r(Kk) is out of reach currently and is one of
the most notorious open problems in combinatorics. In a striking
contrast, s(Kk) turned out to be more approachable and was com-
puted exactly for every k by Burr et al. [19, 21]: they obtained
that s(Kk) = (k − 1)2. An alternative proof was found by Fox
and Lin [40]. They showed also that Proposition 2.2 is tight for
all complete bipartite graphs Ka,b, i.e., s(Ka,b) = 2 min{a, b}− 1,
and they raised the question whether the simple lower bound (2.2)
would be tight for any other graph.

2.1 Bipartite Graphs

We answer the above question affirmatively by providing a large
class of bipartite graphs which all attain the simple lower bound.
This class contains paths, even cycles, and more generally, all
trees and all bi-regular bipartite graphs.

A bipartition (A, B) of a bipartite graph H is a partition of
the vertices V (H) = A ∪ B such that E(A, B) = E(H). If H
is connected, then there is only one bipartition. We define the
parameters a(H) and b(H) by

a(H) := min{|S| : (S, V (H) \ S) is a bipartition} ,

20



2.1. Bipartite Graphs 21

and b(H) := n(H)− a(H). For a bipartite graph H with biparti-
tion (A, B) let ∆A(H) (∆B(H)) be the largest among the degrees
of vertices in A (B). A bipartite graph H is called bi-regular if
there is a bipartition (A, B) such that deg(x) = ∆A(H) for every
x ∈ A and deg(x) = ∆B(H) for every x ∈ B.

For all graphs H with a(H) = a, b(H) = b we obviously have
H ⊆ Ka,b, but H 6⊆ Ka−1,m for all m ∈ N.

Lemma 2.3. Let H be a bipartite graph with a(H) = a. Then
for all positive integers m

K2a−2,m 9 H .

Proof. Let us denote by V the partite set of K2a−2,m having size
2a−2. We partition V into two sets V1 and V2, each of size a−1,
and we color the edges incident to V1 red and the edges incident to
V2 blue. This edge-coloring does not contain a monochromatic H,
since the red and blue graph are each copies of Ka−1,m 6⊇ H.

The edge-coloring in the above proof has the property that
both monochromatic subgraphs are copies of Ka−1,m. We call
such an edge-coloring of K2a−2,m balanced. For a fixed d, we will
show that if an edge-coloring of K2a−2,m has no monochromatic
copy of H then it contains a balanced coloring of K2a−2,d, pro-
vided m is large enough.

Lemma 2.4. Let H be a bipartite graph with a(H) = a and
b(H) = b and let d be an integer. Then there exists an integer m =
m(a, b, d) such that in every red/blue edge-coloring of K2a−2,m

there exists

(i) a monochromatic copy of H, or
(ii) a copy of K2a−2,d with a balanced coloring .

Proof. Clearly, if the statement is true for some d, then it is true
for all d′ ≤ d, because a balanced coloring of K2a−2,d contains a
K2a−2,d′ with a balanced coloring. Hence, we may assume that
d ≥ b. Moreover, it is enough to prove the lemma for H = Ka,b.

21



22 Chapter 2. Extremal Ramsey Theory

Set m := (d − 1) · 22a−2 + 1 and denote by V and W the partite
sets of K2a−2,m of size 2a − 2 and m, respectively. Consider an
arbitrary edge-coloring c of K2a−2,m with colors red and blue. Let
v1, v2, . . . , v2a−2 be the elements of V in some ordering. Assign
for each vertex w ∈ W a vector p(w) ∈ {red, blue}2a−2 such
that p(w)i = c({w, vi}) for i = 1, 2, . . . , 2a − 2. There are 22a−2

possible p-vectors. By the pigeonhole principle there exist at least
d vertices w1, . . . wd ∈ W with the same p-vector. If the number
of red entries in p(w1) is at least a, then the vertices w1, . . . , wd

and a of the vertices of V corresponding to the red entries of
p(w1) form a monochromatic red copy of Ka,d ⊇ Ka,b. The case
of at least a blue entries in p(w1) is analogous. Otherwise, p(w1)
has a − 1 red and a − 1 blue entries, meaning that the vertices
w1, . . . , wd and V induce a K2a−2,d with a balanced coloring.

We define the bipartite incidence graph S(m, k) = (A∪B, E)
for integers m, k by

A = {1, 2, . . . , m} , B =

(
A

k

)

, E = {{a, T} : T ∈ B, a ∈ T} .

Lemma 2.5 (Nešetřil, Rödl [70]; cf. Diestel [29] p.264). Let H be
a bipartite graph.

(i) There exist integers m, k such that H can be embedded into
S(m, k). In fact, we can choose k = a(H) + 1.

(ii) For every k, m ∈ N there exists an integer m′ such that

S(m′, 2k − 1) → S(m, k) .

Corollary 2.6. For every bipartite graph H = (A ∪ B, E) we
have

s(H) ≤ 2a(H) + 1 .

We will modify the above lemma using a slightly different
construction and thereby improve the bound on k. We will then
apply this to derive our main theorem.
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2.1. Bipartite Graphs 23

Definition 2.7. Let G be a graph, J ⊆ V (G), and k ≥ 1, ℓ ≥ 1.
Then we define T ℓ

k (G; J) to be the graph (V ′, E′) with

V ′ = V (G) ∪

((
J

k

)

× [ℓ]

)

,

E′ = E(G) ∪

{

{x, (M, i)} : M ∈

(
J

k

)

, x ∈ M, i ∈ [ℓ]

}

.

The graph defined above can be obtained from G by first de-
signating a subset J of the vertices of G and then for each k-
tuple M of J adding ℓ new distinct vertices and connecting them
to all vertices in M . It is clear, that |V ′| = |V (G)| +

(|J |
k

)
·

ℓ, |E′| = |E(G)| +
(|J |

k

)
· ℓ · k. Furthermore, note that unless

|J | < k, the degree of all new introduced vertices is k. Observe
that T 1

k (En; [n]) = S(n, k) for En being the empty graph on the
vertices [n] = {1, 2, . . . , n}.

Lemma 2.8. Let H = (A ∪ B, E) be a bipartite graph.

(i) There exist integers n, k, ℓ such that H can be embedded in
T ℓ

k (En, [n]). In fact, we can choose k = ∆B(H) and map
A into V (En).

(ii) For every n, k, ℓ there exists n′, ℓ′, with the property that

T ℓ′

2k−1(En′ , [n′]) → T ℓ
k (En, [n]) ,

such that the set corresponding to V (En) in the monochro-
matic copy of T ℓ

k (En, [n]) is contained in V (En′).

Proof. (i) Set n = |A| + ∆B(H), k = ∆B(H), ℓ = |B|. In order
to find an embedding ϕ : H → T ℓ

k (En, [n]), first arbitrarily map
A onto [|A|] then process the vertices of B in an arbitrary order:
For each w ∈ B it holds that |N(w)| ≤ k, so we can choose

L = ϕ(N(w))∪ {|A|+ 1, . . . , |A|+ (k − deg(w))} ∈
([n]

k

)
and map

w to (L, i) for some unused i (there is at least one unused i by
the definition of ℓ).

(ii) Set ℓ′ = 2
(
2k−1

k

)
(ℓ − 1) + 1, n′ = rk(n, n, 2k − 1) (the

k-uniform hypergraph Ramsey number for three colors) and let
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24 Chapter 2. Extremal Ramsey Theory

K = T ℓ′

2k−1(En′ ; [n′]). Color the edges of K with red and blue. The
degree of each vertex (M, i) ∈ V (K) \ [n′] is 2k − 1, so there is a
color cM,i which appears at least k times among the edges incident

to (M, i). Hence we can define a function ϕ :
( [n′]
2k−1

)
× [ℓ′] →

{red, blue} ×
([n′]

k

)
such that all edges of K between (M, i) and

the second component (ϕ(M, i))2 (which is a k-element subset of
M) is colored with the first component (ϕ(M, i))1. For any fixed

M ∈
( [n′]
2k−1

)
, there are 2

(
2k−1

k

)
many possible ϕ-values. Thus, by

the definition of ℓ′ and the pigeonhole principle, at least ℓ of the
vertices from {(M, 1), (M, 2), . . . , (M, ℓ′)} have the same ϕ-value;
let us denote this value by ϕM .

We now define an auxiliary coloring of the k-tuples
([n′]

k

)
. For a

subset S ∈
([n′]

k

)
, if there exists an M ∈

( [n′]
2k−1

)
such that (ϕM )2 =

S then S receives the color (ϕM )1 (if there are more than one such
M then we choose one of them arbitrarily). This way we obtain a

partial red/blue coloring of
([n′]

k

)
which we extend by giving each

yet uncolored k-tuple the color white. By the choice of n′ there is
(a) a set of size n with only red k-tuples or
(b) a set of size n with only blue k-tuples or
(c) a set of size 2k − 1 with only white k-tuples.

Case (c) does not occur because by definition, every 2k − 1

tuple M ∈
( [n′]
2k−1

)
does contain a red or a blue k-tuple, namely

(ϕM )2.

The cases (a) and (b) are symmetric, therefore we can assume
that we have a set A′ ⊆ [n′] of size n containing only red k-
tuples of the auxiliary coloring. This means that for each k-tuple
T ⊆ A′, there is a (2k − 1)-set MT ⊇ T such that (ϕMT

)2 = T
and (ϕMT

)1 = red. Hence there are ℓ vertices of the form (MT , i)
each of which has only red edges towards T . In particular there
is a red copy of T ℓ

k (En; [n]) in K.

By part (i) and (ii) of Lemma 2.8, we have the following corol-
lary.
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2.1. Bipartite Graphs 25

Corollary 2.9. For every bipartite graph H = (A ∪ B, E)

s(H) ≤ 2 min{∆A(H), ∆B(H)} − 1 .

The following theorem is our main result in this section. It
shows that for a large class of bipartite graphs the simple lower
bound is tight.

Theorem 2.10. Let H be a bipartite graph with δ(H) ≥ 1 and
assume that there exists a bipartition (A, B) of H such that |{v ∈
B : deg(v) > δ(H)}| ≤ a(H) − 1. Then

s(H) = 2 · δ(H) − 1 .

Proof. Let (A, B) be a bipartition of H with |{v ∈ B : deg(v) >
δ(H)}| ≤ a(H) − 1. Let S ⊆ {v ∈ B : deg(v) = δ(H)} be an
arbitrary subset such that |B \ S| = a(H) − 1 =: a′. Clearly
S 6= ∅ because there is no bipartition where one part is smaller
than a(H). Let N(S) ⊆ A denote the set of vertices adjacent to
at least one vertex in S. The graph H∗ = H[S ∪ N(S)] has a
bipartition, namely (S, N(S)), such that deg(s) = δ(H),∀s ∈ S,
i.e., ∆S(H∗) = δ(H). According to Lemma 2.8 there exist integers
n = n(H∗) and ℓ = ℓ(H∗) with the property that

T ℓ
2δ(H)−1(En; [n]) → H[S ∪ N(S)] , (2.1)

such that in the monochromatic copy of H[S∪N(S)] the set N(S)
is contained in V (En). Without loss of generality we can assume
that n ≥ |A|.

By Lemma 2.4, there is an integer m = m(a(H), b(H), n) such
that in every edge-coloring of G = K2a′,m there exists a monochro-
matic H or there is a copy of K2a′,n with a balanced coloring. Let
L and M be the partite sets of G with size 2a′ and m, respectively.
Now we show that

T ℓ
2δ(H)−1(G; M) → H . (2.2)

Let c be an arbitrary red/blue edge-coloring of T ℓ
2δ(H)−1(G; M).

The restriction of c to E(G) either contains a monochromatic H

25



26 Chapter 2. Extremal Ramsey Theory

and we are done, or otherwise there is a copy K of K2a′,n with a
balanced coloring. Let L and M ′ ⊆ M , |M ′| = n, be the partite
sets inducing K.

Consider T ℓ
2δ(H)−1(En; M ′) which is certainly a subgraph of

T ℓ
2δ(H)−1(G; M). By (2.1) there exists a monochromatic, say blue,

copy T of H[S ∪N(S)], such that the image of N(S) is contained
in M ′. Since |M ′| ≥ |A| we have space to embed the vertices of
A \ N(S) in M ′ \ V (T ). Hence the union of T and the blue copy
of Ka′,n in K contains a blue copy of H and (2.2) follows.

On the other hand by Lemma 2.3 G 6→ H, and hence there
is an H-minimal graph G′, such that G ⊆ G′ ⊆ T ℓ

2δ(H)−1(G; M).

The minimum degree of G′ is clearly at most 2δ(H) − 1 and the
theorem follows.

Corollary 2.11. Let k ≥ 2.

(i) For all paths Pk, we have s(Pk) = 1.
(ii) For all even cycles C2k, k ≥ 2, we have s(C2k) = 3.
(iii) For all bi-regular bipartite graphs H with δ(H) ≥ 1, we

have s(H) = 2δ(H) − 1.
(iv) For all connected bipartite graphs H = (A ∪ B, E) with

|A| = |B| we have s(H) = 2δ(H) − 1.
(v) For every tree T , we have s(T ) = 1.

Proof. Parts (i)-(iv) are immediate. For (v), let X and Y be
the partite sets of the tree T . We can easily apply Theorem 2.10
unless |X| 6= |Y | and all vertices of minimum degree are contained
in the larger of the two partite sets.

Hence assume that |X| > |Y | = a(T ) and the set of all ver-
tices of degree 1, denoted by S, is contained in X. To apply
Theorem 2.10 it is enough to show that |X \ S| < |Y |. Fix an
arbitrary vertex r ∈ Y as the root of the tree and define the suc-
cessor relation according to it. All vertices in X \ S have at least
one successor in Y and these all have to be different (because
there are no cycles). Thus the function succ : X \ S → Y is in-
jective. Since the root vertex r is not the successor of any vertex,
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2.2. Disjoint Union of Graphs 27

we have

|Y | ≥ | succ(X \ S)| + 1 ≥ |X \ S| + 1 .

Define Gδ to be the family of bipartite graphs H with δ(H) = δ
for which there is a bipartition (A, B) such that |{v ∈ B :
deg(v) > δ(H)}| ≤ a(H) − 1. Theorem 2.10 states that for each
graph in Gδ we have s(H) = 2δ − 1.

Observation. If H1 ∈ Gδ and H2 bipartite with δ(H2) ≥ δ then
H1 + H2 ∈ Gδ.

Let (A1, B1) be a good bipartition of H1 and let (A2, B2) be a
bipartition of H2 such that |B2| = a(H2). We have a(H1 +H2) =
a(H1) + a(H2) and it is easy to see that (A1 ∪ A2, B1 ∪ B2) is a
good bipartition of H1 + H2.

The following corollaries are immediate consequences of the
above observation and Corollary 2.11.

Corollary 2.12. For all forests F without isolated vertices, we
have s(F ) = 1.

Corollary 2.13. For all bipartite graphs H with 1 ≤ δ(H) ≤
∆(H) ≤ 2, we have s(H) = 2δ(H) − 1.

Indeed, the graphs in Corollary 2.13 are disjoint sums of paths
and even cycles.

2.2 Disjoint Union of Graphs

Taking the disjoint union of two graphs is arguably the simplest
graph operation. The common parameters in graph theory behave
simple under this operation, e.g., the chromatic number satisfies
χ(G+H) = max{χ(G), χ(H)}, the independence number has the
property α(G + H) = α(G) + α(H), and for the clique number
ω(G+H) = max{ω(G), ω(H)} holds. What can be said about the
Ramsey extremal properties, like the Ramsey number r, or the

27



28 Chapter 2. Extremal Ramsey Theory

parameter s introduced before? We will show that their behavior
can be much more complex.

Our main considerations here are for cliques and complete
bipartite graphs, and our main focus is how a small graph can
affect the behavior in the disjoint union with a large graph. Let us
first concentrate on complete bipartite graphs. By the discussion
from the previous section we have

s(Kb,b + Kc,c) = 2 min{b, c} − 1 .

Thus the smaller complete bipartite graph determines this s-value
completely. If b < c then this value is different from s(Kc,c).
Especially, we see that there are (Kb,b + Kc,c)-minimal graphs
that are not Kc,c-minimal, i.e., there exist a graph G that is Kc,c-
Ramsey but not (Kb,b+Kc,c)- Ramsey. On the other hand we will
show that a small clique does not affect the Ramsey parameters
in the union with a large clique in a most general way: the Kt-
Ramsey graphs and the (Kt + Ks)-Ramsey graphs are the same
when s ≤ t − 2. This behavior leads to the following definitions.

Definition 2.14. Two graphs H and K are Ramsey-equivalent
if the set of H-Ramsey graphs and the set of K-Ramsey graphs
are the same. Otherwise, H and K are called Ramsey-separable.

The set of all H-Ramsey graphs is monotone, i.e., if J is H-
Ramsey then so is every supergraph of J . The minimal elements
with respect to the subgraph relation constitute the family M(H).
Thus, if H and K are Ramsey-equivalent, then M(H) = M(K)
and consequently s(H) = s(K), r(H) = r(K), r̂(H) = r̂(K).

Clearly, the relation of being Ramsey-equivalent is an equiva-
lence relation and we have in addition that if the graphs A, C are
Ramsey-equivalent and A ⊆ B ⊆ C, then all three graphs A, B, C
are Ramsey-equivalent.

2.2.1 Cliques

The smallest clique is K1 which contains just one point. Up to
now, we have always assumed that we do not have isolated ver-
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2.2. Disjoint Union of Graphs 29

tices. The reason is that we can handle them separately by the
following proposition.

Proposition 2.15. Let H be a graph without isolated vertices
and for some t ≥ 1 define H ′ = H + tK1.

(i) If t > r(H)− n(H) then H and H ′ are Ramsey-separable,
r(H ′) = n(H ′), and s(H ′) = 0

(ii) If t ≤ r(H)−n(H) then H and H ′ are Ramsey-equivalent,
r(H ′) = r(H), and s(H ′) = s(H).

Proof. (i) There exists a graph K on exactly r(H) vertices that
is H-minimal, but every H ′-Ramsey graph has to contain at least
n(H ′) > r(H) vertices, which implies that K cannot be a H ′-
Ramsey graph. The graph K + (t − r(H) + n(H))K1 is clearly
H ′-minimal and has minimum degree 0 and n(H ′) many vertices.

(ii) We claim that a graph G is H-Ramsey if and only if it is
H ′-Ramsey. If G is H-Ramsey then, by the definition of r(H),
n(G) ≥ r(H). Hence in any edge-coloring of G there are at least
r(H) − n(H) vertices besides a monochromatic copy of H to ac-
commodate the t isolated vertices of H ′.

The Ramsey parameters for the disjoint union of some clique
with a 2-clique is worked out completely in the following theorem.

Theorem 2.16. For t ≥ 4

r(K2 + K2) = 5 r(K3 + K2) = 7 r(Kt + K2) = r(Kt)

s(K2 + K2) = 1 s(K3 + K2) = 1 s(Kt + K2) = (t − 1)2 .

Proof. By Lemma 2.2 we have s(Kr + K2) ≥ 1 for all r ≥ 2. A
matching of size three shows that s(K2 + K2) = 1. It is easy to
see that K4 is not K2 + K2-Ramsey but K5 is.

For r = 3, we claim that K6 + K2 is (K3 + K2)-minimal, and
thus s(K3 + K2) = 1.

In any red/blue edge-coloring of K6 there is at least one mono-
chromatic K3. To avoid a monochromatic K3 + K2 the edge-
coloring must contain two vertex-disjoint monochromatic copies
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30 Chapter 2. Extremal Ramsey Theory

of K3: one in blue and one in red. No matter how we color the
extra edge, we will get a monochromatic K3+K2, i.e., K6+K2 →
K3 + K2.

(a) s(K2 + K2) = 1 (b) s(K3 + K2) = 1

Figure 2.1: Minimal graphs

The graph K6 minus one edge has an edge-coloring without a
monochromatic K3, and K6 is not (K3 +K2)-Ramsey: The color-
ing consisting of a red K4 and all remaining edges blue contains
no monochromatic K3+K2. Hence K6+K2 is (K3+K2)-minimal,
s(K3 + K2) = δ(K6 + K2) = 1, and r(K3 + K2) > 6.

In any red/blue edge-coloring of K7 there is a monochromatic
K3, say it is red. The edges between the other 4 vertices all have
to be colored blue. To avoid a blue K3+K2, all the edges between
these two parts have to be red, which will yield a red K3 + K2.

For t ≥ 4 we apply Theorem 2.17 with s = 2, a1 = t, and
a2 = 2, and use that r(t, t − 1) > 2t for t ≥ 4 and the result
s(Kt) = (t − 1)2.

Remark. Let t ≥ 4 and H = Kt + H2. Then H has minimum
degree 1 but its s-value grows quadratically in t. This example
shows that the trivial lower bound (Lemma 2.2) can be arbitrarily
far away from the actual value of s(H).

Theorem 2.17. Let a1 ≥ a2 ≥ . . . ≥ as ≥ 1 and define Hi :=
Ka1 + . . . + Kai

for 1 ≤ i ≤ s. If r(a1, a1 − as + 1) > 2(a1 + . . . +
as−1), then Hs and Hs−1 are Ramsey-equivalent.
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2.2. Disjoint Union of Graphs 31

Proof. Since Hs−1 is a subgraph of Hs, if G → Hs then also
G → Hs−1. Thus it suffices to show that G → Hs−1 implies
G → Hs.

Let G be a graph such that G → Hs−1 and suppose for con-
tradiction that G 6→ Hs. Let c be a red/blue edge-coloring of G
without monochromatic Hs. Without loss of generality, we may
assume that there is a blue copy of Hs−1, and let S1 be its vertex
set. Since c has no blue Hs, the coloring restricted to V (G) \ S1

has no blue Kas . Define H0 to be the empty graph. Let i be the
largest index such that V (G) \S1 contains a red Hi and let S2 be
its vertex set (it may happen that S2 is empty). Since c has no red
Hs, we have i < s. The coloring c restricted to V (G) \ (S1 ∪ S2)
contains no red Ka1 .

Our goal is now to recolor some of the edges of G such that
the resulting coloring c′ contains no monochromatic Ka1 . We
have |S1 ∪ S2| = |V (Hs−1)| + |V (Hi)| ≤ 2(a1 + . . . + as−1) <
r(a1, a1−as+1) so by the definition of the Ramsey number we can
recolor the edges inside S1 ∪S2 such that there is no red Ka1 and
no blue Ka1−as+1. All edges between S1∪S2 and V (G)\ (S1∪S2)
are recolored to blue, while the colors of the other edges do not
change. The largest blue clique restricted to S1 ∪ S2 has at most
a1 − as vertices, the largest blue clique in V (G) \ (S1 ∪ S2) has
at most as − 1 vertices, which implies that c′ contains no blue
copy of Ka1 . Since there are no red edges between S1 ∪ S2 and
V (G) \ (S1 ∪ S2), the largest red clique contains less than a1

vertices. Therefore there is no monochromatic Ka1 in c′. This is
a contradiction to G → Hs−1 and the proof is complete.

By repeatedly applying the above theorem we get the following
corollary.

Corollary 2.18. Let a1 ≥ . . . ≥ as ≥ 1 be such that

r(a1, a1 − ai + 1) > 2(a1 + . . . + ai−1), ∀i = 2, . . . , s .

Then Ka1 + . . . + Kas is Ramsey-equivalent to Ka1.
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32 Chapter 2. Extremal Ramsey Theory

Let s < r(t,t−k+1)−2(t−k)
2k and k ≤ t − 2. The variable s fulfills

r(t, k +1) > 2(t+(s− 1)(t−k)). According to Corollary 2.18 the
graphs Kt + sKk and Kt are Ramsey-equivalent.

For the two extremes of the spectrum of k, we spell out the
concrete bounds by substituting known results for the Ramsey
number.

(a) Kt + sKt−2 is Ramsey-equivalent to Kt for some s =

Ω
(

t
log t

)

,

(b) Kt + sK2 is Ramsey-equivalent to Kt for t ≥ 4 and some
s = Ω(t2t/2).

For (a), one uses that r(t, 3) = Ω
(

t2

log t

)

proven by Kim [59],

for (b) one can use r(t, t − 1) = Ω(t2t/2) proven by Erdős [32].
Naturally, the question arises, whether we can go further, i.e., are
the graphs Kt + Kt or Kt + Kt−1 also Ramsey-equivalent to Kt.

Proposition 2.19. Let t ≥ 1.

(i) Kt and Kt + Kt are Ramsey-separable.
(ii) Kt and Kt−1 are Ramsey-separable.

Proof. (i) Let R = r(Kt, Kt) and G = KR. Then G → Kt

but KR−1 6→ Kt. Extend an edge-coloring of KR−1 without a
monochromatic Kt arbitrarily to KR−1 ∨ x ∼= KR. All monochro-
matic Kt in this extended coloring have to contain the vertex x
and therefore we do not find two vertex-disjoint ones. This proves
G 6→ Kt + Kt.

(ii) Nešetřil and Rödl [70] proved that min{χ(G) : G →
H} = χ(H). Thus two graphs with different chromatic number
are Ramsey-separable, in particular Kt and Kt−1 are Ramsey-
separable.

It is shown in [20] that r(tK3) = 5t,∀t ≥ 2. This implies that
sK3 and tK3 are Ramsey-separable for s 6= t.

32



2.2. Disjoint Union of Graphs 33

Theorem 2.20 ([20]). For all t ∈ N and graphs G on n vertices

(2n − α(G))t − 1 ≤ r(tG) ≤ (2n − α(G))t + C(G) ,

where α(G) denotes the maximum size of an independent set in G
and C(G) is a constant depending on G. Moreover, there exists
t0 ∈ N and D(G) such that for t ≥ t0

r(tG) = (2n − α(G))t + D(G) .

Burr [16] worked out the constant D(G) explicitly for complete
graphs and cycles: for t large enough r(tKk) = (2k−1)t+r(Kk)−2
and r(tCk) = (2k−⌊k

2⌋)t−1. In [9] it is shown that r(tC4) = 6t−1
for all t.

2.2.2 General Graphs

We will give here some general upper bounds for the disjoint union
of graphs and especially for multiple copies of the same graph. As
an application we will determine s(nKt).

Lemma 2.21. Let H be a graph containing at least one edge. Ev-
ery H-minimal graph G has an edge-coloring with only red copies
of H, and there are no two edge-disjoint red H.

Proof. Let G → H minimal and e ∈ E(G). Then G − e 6→ H
and therefore there exists an edge-coloring c of G − e without
monochromatic H. Let c′ be the extension of c to G where e
receives the color red. All monochromatic H have to contain e
and thus there are no two edge-disjoint monochromatic H and all
monochromatic H are red.

Corollary 2.22. Let H be a graph containing at least one edge.
Then H and H + H are Ramsey-separable.

Corollary 2.23. Let H be a connected graph and n ∈ N. Then

s(nH) ≤ s(H) .
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34 Chapter 2. Extremal Ramsey Theory

Proof. If H is an isolated vertex then the statement is trivial.
Therefore we can assume that H contains at least one edge. Let
G be a H-minimal graph and let cred (cblue) be the edge-coloring
from Lemma 2.21 with only red (blue) copies of H, and there are
no two edge-disjoint monochromatic H. Define G′ = (2n − 1)G.
We will show that G′ is nH-minimal.

In every edge-coloring of G′ we have at least 2n − 1 disjoint
monochromatic copies of H. By the pigeonhole principle there is
a color, say red, such that at least n of these disjoint copies are
completely red. This shows that G′ → nH.

We name the copies of G in G′ by G1, G2, . . . , G2n−1. Let e ∈
E(G′), say e ∈ E(G1) without loss of generality. Then because
G is H-minimal we can color G1 − e without monochromatic H.
For G2, . . . , Gn we take the coloring cred and for Gn+1, . . . , G2n−1

we take the coloring cblue. Since H is connected we can only take
n− 1 disjoint red H and only n− 1 disjoint blue H which proves
that G′ − e 6→ nH.

Thus G′ is nH-minimal and clearly δ(G′) = δ(G).

Theorem 2.24. For t ≥ 2

s(nKt) = (t − 1)2 .

Proof. By the above lemma and the fact that s(Kt) = (t − 1)2

it is enough to prove s(nKt) ≥ s(Kt). Assume for contradiction
that s(nKt) < (t−1)2. Then there exists a nKt-minimal graph G
and x ∈ V (G) with deg(x) = δ(G) < (t − 1)2. Let c be any edge-
coloring of G− x without monochromatic copy of nKt, i.e., there
are at most n − 1 red copies of Kt and at most n − 1 blue copies
of Kt. Let R1, . . . , Rk be a maximal vertex-disjoint collection of
red Kt−1 in N(x). Because |N(x)| = δ(G) < (t − 1)2 we have
k < t − 1. We extend the coloring c to G by coloring every
edge {x, y} with y ∈

⋃

i Ri blue and all the remaining edges red.
This edge-coloring c′ of G does not contain any new red Kt by
the maximality and it does not contain any new blue Kt because
k < t − 1, which shows G 6→ nKt.
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We continue by giving an upper bound for the disjoint union
of two connected graphs G, H where we additionally assume that
G is a supergraph of H. Theorem 2.25 is a generalization of Corol-
lary 2.23 for n = 2, but not for n > 2 because of the condition
about connectedness.

Theorem 2.25. Let G ⊇ H be two connected graphs. Then

s(G + H) ≤ max{s(G), s(H)} .

Proof. Let K be a G-minimal graph with δ(K) = s(G) and J be a
H-minimal graph with δ(J) = s(H). We proceed by giving a case
distinction. Note that if we want to find a monochromatic copy
of G + H in a disjoint sum of graphs G1 + . . . Gk then we have to
find G in one Gi and H in one Gj because G, H are connected.

First, we assume that

J → G . (2.3)

Then clearly δ(J+J+J) = δ(J) = s(H) and J is also a G-minimal
graph because G contains H. Moreover, J + J + J → G + H
because we find in each copy of J a monochromatic G ⊇ H and
at least two of them have the same color. For any edge e, we have
J − e 6→ H ⊆ G. Let e be any edge of J . Then we can choose
for one J a coloring without monochromatic G + H and only
containing red H ⊆ G by Lemma 2.21. For the second J we can
choose a coloring without monochromatic G + H and only blue
H ⊆ G by Lemma 2.21. We can choose a coloring of J−e without
monochromatic H. This together is a coloring of J + J + (J − e)
without monochromatic G + H.

Thus, from now on, we can assume that J 6→ G, i.e., there
is an edge-coloring of J without monochromatic G. Second, we
assume that

K → G + H . (2.4)

Then K is also (G+H)-minimal and has minimum degree δ(K) =
s(G).
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Now, we assume that (2.4) and (2.5) are wrong and

K + J → G + H . (2.5)

For e ∈ E(K) we can color K − e and J without monochro-
matic G showing that (K − e) + J 6→ G ⊆ G + H. For e ∈ E(J)
we can color K without monochromatic G+H and J −e without
monochromatic H showing that K + (J − e) 6→ G + H.

In the next case, we assume that (2.4)-(2.6) are wrong and

K + J + J → G + H . (2.6)

For e ∈ E(J) we can color J − e without monochromatic H and
K +J without monochromatic G+H showing that K +J +(J −
e) 6→ G + H. Next, assume that e is an edge from K. Because
we assume that (2.4) is wrong we have that J 6→ G and with
K − e 6→ G we have (K − e) + J + J 6→ G ⊆ G + H showing that
K + J + J is (G + H)-minimal.

We continue by assuming that (2.4)-(2.7) are wrong and there
is a subgraph K ′ of K (possibly K) such that

K + K ′ → G + H . (2.7)

Let K ′ be a minimal such subgraph with respect to the number
of edges. We have δ(K + K ′) ≤ δ(K) = s(G). For e ∈ E(K ′), by
the minimality K +(K ′−e) 6→ G+H. If K ′ = K then this is the
only case to check. On the other hand K ′ is a proper subgraph
of K and we have therefore K ′ 6→ G. This together with the fact
that K − e 6→ G implies that (K − e) + K ′ 6→ G ⊆ G + H.

Finally, we assume that (2.4)-(2.8) are wrong and there is a
minimal subgraph K ′ of K such that

K + K ′ + J → G + H , (2.8)

We have δ(K+K ′+J) ≤ max{δ(K), δ(J)} and for e ∈ E(K ′),
by the minimality, K + (K ′ − e) + J 6→ G + H. For e ∈ E(J) we
have J − e 6→ H. This together with the assumption K + K ′ 6→
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G+H implies that there is a coloring of K +K ′+(J −e) without
monochromatic G + H. If K ′ = K then these are the only two
cases to check. Otherwise K ′ is a proper subgraph of K and
therefore K ′ 6→ G as well as K − e 6→ G. This together with the
assumption that J 6→ G implies that (K − e) + K ′ + J 6→ G ⊆
G + H.

One of the above cases apply because we always have that
K + K + J → G + H: There is a monochromatic copy of G in
both copies of K and if they both have the same color then we
are done because H ⊆ G. Otherwise we have a red G and a blue
G which with the monochromatic copy of H in J completes the
proof.

If G ⊇ H are two connected graphs such that G and H are
Ramsey-separable, then we have s(G + H) ≤ s(G). The reason is
that then we can choose J such that (2.4) is not true and proceed
with the proof as before.

2.3 No upper bound for s in terms of δ

In Section 2.1 we have seen a large class of bipartite graphs G
with s(G) = 2δ(G) − 1 and moreover it is known that for cliques
s(Kk) = δ(Kk)

2. The question arises whether there is a function f
such that for all graphs G it holds that s(G) ≤ f(δ(G)). Actually,
we have already seen that such a function cannot exist. Namely,
for G = Kt + K2, t ≥ 4 we have δ(G) = 1 and s(G) arbitrarily
large (Theorem 2.16). This family contains only non-bipartite
graphs which are disconnected. Are these conditions somehow
necessary? One could try to take some bipartite graph H in the
disjoint union with K2. This attempt fails:

Proposition 2.26. Let H be a bipartite graph with δ(H) ≥ 1.
Then s(H + K2) = 1.

Proof. Let (A, B) be a bipartition of H such that |B| = a(H)
and let x, y be the vertices of the K2. Then (A ∪ {x}, B ∪ {y})
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is a bipartition of H + K2 and a(H + K2) = a(H) + 1 = |B| + 1.
Applying Theorem 2.10 finishes the proof.

We do not know whether there exists a bipartite graph not
attaining the simple lower bound (Proposition 2.2), but we will
show in this section that there exist connected graphs with mini-
mum degree 1 and the s-value arbitrarily large.

Let Kt · K2 be the graph containing a t-clique and one addi-
tional vertex connected to exactly one vertex of the t-clique. We
call this additional edge and additional vertex a hanging edge and
a hanging vertex, respectively. Clearly, Kt · K2 is connected and
has minimum degree 1.

Let us assume that we are given a graph H with some red/blue
edge-coloring c without a monochromatic Kt ·K2 and assume from
now on that t ≥ 3. We call a vertex which is incident to two
monochromatic copies of Kt critical, a vertex which is incident to
one monochromatic copy of Kt harmless, and other vertices safe.
For a vertex u ∈ V (H), we denote the set of those neighbors of u
which are adjacent to u via a red (blue) edge by R(u) (B(u)).

Lemma 2.27. Let t ≥ 3 and c a red/blue edge-coloring without
monochromatic Kt · K2 and u ∈ V (H) be a critical vertex. Then

(i) |R(u)| = |B(u)| = t − 1, i.e., u is contained in exactly
one red and exactly one blue copy of Kt and has no other
incident edges.

(ii) E(R(u), B(u)) = ∅, i.e., there is no edge between the red
neighbors of u and the blue neighbors of u.

Proof. (i) Since u is critical it has to be incident to two monochro-
matic Kt. If they were in the same color then this would yield a
monochromatic Kt · K2. Moreover, there cannot be more edges
incident to u without creating a monochromatic Kt · K2.

(ii) Assume there is an edge between a red neighbor of u and
a blue neighbor of u. Then this edge has some color according
to c and therefore it completes a monochromatic Kt · K2 in this
color with one of the t-cliques containing u.
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Lemma 2.28. For every graph H and every edge-coloring c with-
out monochromatic Kt·K2 there exists a new edge-coloring cF with
no critical vertices and no monochromatic Kt · K2.

Proof. For each t-clique which is monochromatic in c and has
a critical vertex, choose one arbitrary edge containing a critical
vertex. Let us denote the set of these edges by F ⊆ E(H) and
let cF be the coloring obtained from c after we change the color
of each edge in F .

By Lemma 2.27, we see that every critical vertex u is incident
to exactly two t-cliques and none of them is monochromatic in
the coloring cF , since we changed the color of exactly one edge in
each. Thus each critical vertex in c is safe in cF .

Every edge whose color was changed contains a critical vertex
in c, which is safe in cF , meaning that these edges cannot be part
of a new monochromatic Kt. That is, every monochromatic Kt

in cF was already monochromatic in c and hence no vertices are
critical in cF .

We still need to show that there is no monochromatic Kt ·K2

in cF . Since every monochromatic Kt in cF was monochromatic
in c, and c has no monochromatic Kt ·K2, the only possibility to
have a monochromatic Kt · K2 in cF would be that the hanging
edge e changed its color. Let U be the vertex set of the Kt within
a monochromatic, say blue, Kt ·K2 in cF . Then the edges within
U were already blue in c, while e was red in c. Since e changed its
color, it was part of a red t-clique W in c. Hence U ∩ W = {u},
where u is an endpoint of e, and u is critical in c. This is a
contradiction, since u is not safe in cF .

Theorem 2.29. For every t ≥ 3,

s(Kt · K2) ≥ t − 1 .

Proof. Suppose for contradiction that there is a Kt · K2-minimal
graph G with a vertex x of degree less than t − 1. Since G − x is
not Kt · K2-Ramsey, there is a red/blue edge-coloring c of G − x
without a monochromatic Kt · K2. By Lemma 2.28 we can also
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40 Chapter 2. Extremal Ramsey Theory

Figure 2.2: s(K3 · K2) ≤ 2

assume that c has no critical vertices. We now extend c to a
coloring of G. Color each edge {x, y} of G red if y is contained
in a blue t-clique of c, and blue otherwise. Since there are no
critical vertices, y cannot be contained in a blue and a red t-
clique, therefore the coloring extension is well-defined.

Since x has degree less than t − 1, it can contribute to a
monochromatic Kt · K2 only as a hanging vertex. Let e be the
hanging edge of a monochromatic Kt · K2 containing x and let
U be the monochromatic t-clique. By the definition of the ex-
tended coloring, the colors of the edge e and of the edges in U are
different, a contradiction.

The lower bound is tight for t = 3:

Proposition 2.30.

s(K3 · K2) = 2 .

Proof. By Theorem 2.29 we know that s(K3 ·K2) ≥ 2. Therefore
it is enough to give a K3 · K2-minimal graph G with minimum
degree 2.

We extend K6 by three paths of length 2, see Figure 2.2, and
claim that this graph G is K3 ·K2-minimal. In any red/blue edge-
coloring of K6 there is a monochromatic triangle. It is possible to
color K6 without a monochromatic K3 · K2, namely coloring two

40



2.4. Cliques—More Colors 41

disjoint triangles blue and coloring all other edges red. It is easy
to see that, up to renaming of the vertices and the colors, this is
the only such edge-coloring. In any partition of the K6 of G into
two triangles T1, T2, there is a path P of length 2 connecting a
vertex in T1 and a vertex in T2. Suppose that the edges of T1 and
T2 are colored blue. If one of the edges of the path P is also blue,
then this would complete a blue K3 ·K2. Thus both edges of the
path P are colored red. Hence P and the other red edges going
between T1 and T2 yield a red K3 ·K2. This shows that the graph
G is K3 · K2-Ramsey.

If we delete an edge from the K6 then we can color K6 without
monochromatic triangles and extend this to each of the three 2-
paths by coloring their two edges with distinct colors. If we delete
an edge e lying on a 2-path of G then it is easy to color G − e
without creating a monochromatic K3 · K2: partition the vertex
set of the K6 of G into two blue triangles such that each of the
endpoints of the remaining two 2-paths are completely contained
in one of the blue triangles and color all other edges red. It is
easy to see that this edge-coloring has no monochromatic K3 ·K2.
Hence G is (K3 · K2)-minimal.

Actually, we proved a stronger statement, namely the graph
G shown in Figure 2.2 is K3 · K2-minimal.

2.4 Cliques—More Colors

As it is quite usual in Ramsey theory, one can consider generaliza-
tions of results with more than two colors and asymmetric cases.
The results for bipartite graphs can be generalized to asymmet-
ric cases as well as to more than two colors. Because of the lack
of new insights we leave out the details here. Instead, we will
consider cliques in more than two colors after we introduce the
necessary definitions. While we can give a general upper bound
for the s-value of the tuple (Ka1 , . . . , Kar), its tighness is proven
only for special cases.
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Definition 2.31. Let r ∈ N and G, H1, H2, . . . , Hr be graphs.
If in every edge-r-coloring of G with colors 1, 2, . . . , r there is
j ∈ [r] and a copy of Hj completely in color j, then we say that G
is (H1, H2, . . . , Hr)-Ramsey and write G → (H1, H2, . . . , Hr). If
additionally every proper subgraph of G is not (H1, H2, . . . , Hr)-
Ramsey, then we say that G is (H1, H2, . . . , Hr)-minimal. Define

s(H1, . . . , Hr) = min{δ(G) : G is (H1, . . . , Hr)-minimal} .

If we have only three colors then we assume that these three
colors are named red, blue, green. The value s(Ka1 , . . . , Kar) was
previously only known for r = 2, i.e., s(Ka, Kb) = (a − 1)(b − 1),
see [19, 40].

2.4.1 Upper Bound

The upper bound shown here is a generalization of the upper
bound construction for two colors in the symmetric setting given
by Fox and Lin [40].

Let G be a graph and k, r ∈ N. Let F(G, k, r) be the family of
graphs F that satisfy (i) ω(F ) = ω(G), and (ii) in every vertex-
coloring of F with k colors and in every edge-coloring of F with
r colors there exists a copy of G that is monochromatic in the
edge-coloring and it is monochromatic in the vertex-coloring.

Folkman [39] proved that F(G, k, 1) is non-empty for every
graph G and F(Ks, 1, 2) is non-empty for every s ∈ N . He con-
jectured that the second result should also be true for more than
two colors, which was proven by Nešetřil and Rödl [70]. Moreover,
they proved F(G, 1, r) 6= ∅ for every graph G. It is easy to see
now that the family F(G, k, r) always contains at least one graph:
Let G1 ∈ F(G, k, 1) and G2 ∈ F(G1, 1, r) then G2 ∈ F(G, k, r).

The second main tool is the lexicographic product, sometimes
also called the Abbott product because of its application in [2]
(do not google the term “Abbott product”).
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Definition 2.32. Let A, B be graphs. The lexicographic product
A ⋉ B is the graph whose vertex set is V (A) × V (B), with edges
given by (a, b) is adjacent to (a′, b′) if either a is adjacent to a′ in
A or a = a′ and b is adjacent to b′ in B.

Let G = A ⋉ B be the lexicographic product of the graphs A
and B. For x ∈ V (A) we define Bx = G[S] to be the induced
subgraph of G on the vertices S = {x}×V (B). It is obvious that
Bx

∼= B.

An alternative definition for the lexicographic product A⋉B is
the following: Let Bx be disjoint copies of B for x ∈ V (A). Then
for each pair x, y ∈ V (A), {x, y} ∈ E(A) add all the edges be-
tween V (Bx) and V (By). We note that in general A⋉B 6∼= B ⋉A
(Figure 2.3 indicates an example for that) and it is easy to see
that ω(A ⋉ B) = ω(A) · ω(B).

(a) K3 ⋉ C4 (b) C4 ⋉ K3

Figure 2.3: The lexicographic products K3 ⋉ C4, C4 ⋉ K3, where
the fat lines indicated that all edges between these two parts are
present.

Proposition 2.33. The lexicograhic product is associative, i.e.,
for graphs A, B, C we have A ⋉ (B ⋉ C) = (A ⋉ B) ⋉ C.
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44 Chapter 2. Extremal Ramsey Theory

Proof. It is clear that the vertex set of both graphs is V (A) ×
V (B) × V (C). A pair of vertices (a, b, c), (a′, b′, c′) is adjacent
for both graphs if either (i) {a, a′} ∈ E(A), or (ii) a = a′ and
{b, b′} ∈ E(B), or (iii) a = a′, b = b′ and {c, c′} ∈ E(C). This
shows that the graphs are the same.

Since the lexicographic product is associative, we will leave
out the round brackets in the following and just write A⋉B ⋉C.

Definition 2.34. Let A, B, C be graphs. An edge-r-coloring ϕ of
A ⋉ B is good with respect to C if for all x ∈ V (A) there exists
Vx ⊆ V (Bx) such that

(i) Cx := Bx[Vx] ∼= C for all x ∈ V (A), and
(ii) for all {a1, a2} ∈ E(A) all edges between Va1 and Va2 have

the same color.

We write
A ⋉ B →r-good A ⋉ C,

if every edge-r-coloring of A ⋉ B is good with respect to C.

Note that for an edge-coloring of A⋉B to be good with respect
to C, it does not matter how the edges inside the Bx are colored.
If ϕ is a good edge-r-coloring of A ⋉ B as above then there is an
edge-r-coloring ϕ′ of A such that for every edge {a1, a2} ∈ E(A)
we have ϕ(E(Va1 , Va2)) = {ϕ′({a1, a2})}.

Lemma 2.35. Let A, C be graphs and let r ≥ 1 be an integer.
Then there exists B with ω(B) = ω(C) such that

A ⋉ B →r-good A ⋉ C .

Proof. Let B′ ∈ F(C, d1, 1), B ∈ F(B′, d2, 1) for integers d1, d2

which will be defined later. By definition of F we have ω(B) =
ω(C).

Let c be an edge-coloring of A ⋉ B with r colors. We want to
show that c is good with respect to C. Without loss of generality
we can assume that V (A) = {1, 2, . . . , n}. As introduced before
we will use the notation Bj for the induced subgraph of A⋉B on
vertex set {j} × V (B). We will proceed in two steps.
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Claim 1. There are W1 ⊆ V (B1), . . . , Wn ⊆ V (Bn) such that

(i) for all j, Bj [Wj ] ∼= B′, and
(ii) for 2 ≤ j ≤ n and x ∈

⋃

k<j Wk all edges between x and
Wj have the same color.

Proof. We begin with any W1 ⊆ V (B1) with B1[W1] ∼= B′ which
exists because B1 ∈ F(B′, d2, 1). We will continue inductively
and therefore we can assume that for 1 < m < n we have found
W1, . . . , Wm satisfying (i) and (ii). Let S =

⋃

1≤j≤m Wj and as-
sume for technical reasons that S is ordered. We associate with
each vertex x ∈ V (Bm+1) a vector (c({x, y}))y∈S ∈ [r]|S| which
contains the colors of its incident edges (we set c({x, y}) to some
arbitrary color if {x, y} is not an edge). Define a vertex-coloring ϕ
of Bm+1 by ϕ(x) = (c({x, y}))y∈S with r|S| = rmn(B′) colors. Be-
cause Bm+1 ∈ F(B′, d2, 1) and we can choose d2 = r(n(A)−1)n(B′)

there is a vertex set Wm+1 ⊆ Bm+1 such that Bm+1[Wm+1] ∼= B′

and it is monochromatic under ϕ. Clearly, (i) holds now for
j = m + 1. Since all y ∈ Wm+1 have the same color under ϕ,
condition (ii) follows for j = m + 1 as well. Denote by B′

j the
induced subgraph of Bj on the vertex set Wj . This finishes the
proof of the claim.

We can repeat this reasoning in the backward order. Since
the proof is exactly the same, we will only statement.

Claim 2. There are Vn ⊆ Wn, . . . , V1 ⊆ W1 such that

(i’) for all j, Cj := B′
j [Vj ] ∼= C, and

(ii’) for 1 ≤ j ≤ n−1 and x ∈
⋃

k>j Vk all edges between x and
Vj have the same color.

Note that this time we can choose d1 = r(n(A)−1)n(C). The
conditions (ii) and (ii’) imply that for every pair {a1, a2} ∈ E(A)
the edges between Va1 and Va2 have the same color.
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Definition 2.36. Let A1, A2, . . . , As be graphs. Let G be the lex-
icographic product A1 ⋉ A2 ⋉ . . . ⋉ As and define for 1 ≤ i ≤ s

Ei = {{x, y} ∈ E(G) : xi 6= yi, xj = yj∀j < i} ,

and for t1 ∈ V (A1), . . . , ti−1 ∈ V (Ai−1)

Ei(t1, . . . , ti−1) = {{x, y} ∈ E(G) : xi 6= yi, xj = yj = tj∀j < i} .

An edge-r-coloring c of G is 1-uniform if there exists an edge-r-
coloring c1 of A1 such that c({x, y}) = c1({xj , yj}) for all {x, y} ∈
E1; and for i ≥ 2, an edge-r-coloring c of G is i-uniform if for
all t1, . . . , ti−1 there exists an edge-r-coloring ci,t1,...,ti−1 of Ai such
that c({x, y}) = ci,t1,...,ti−1({xj , yj}) for all {x, y} ∈ Ei(t1, . . . , ti−1).
Moreover, if c is i-uniform for all 1 ≤ i ≤ s, then we call c totally
uniform.

For example, if we color all edges by the same color then
this is a totally uniform coloring. Another example is to color
all the edges in Ei by color i. But there is more freedom for a
totally uniform coloring as, for example, Figure 2.4 shows. Note
that every coloring is s-uniform. The notion of totally uniform
coloring is a generalization of good colorings for the lexicographic
product of more than two graphs. For s = 2, an edge-r-coloring of
A1 ⋉ A2 is good with respect to A2 if it is totally uniform. There
is a generalization of Lemma 2.35.

Lemma 2.37. Let r ≥ 1, s ≥ 2 and A1, A2, . . . , As be graphs.
There are graphs B2, . . . , Bs with ω(Bi) = ω(Ai) for i = 2, . . . , s
such that for every edge-r-coloring c of A1 ⋉ B2 ⋉ . . . ⋉ Bs there
are subgraphs A′

i of Bi where i = 2, . . . s with A′
i
∼= Ai and c is

totally uniform on A1 ⋉ A′
2 ⋉ . . . ⋉ A′

s.

Proof. We proceed by an induction over s. For s = 2 the state-
ment reduces to Lemma 2.35. Let s > 2. Assume as induction
hypothesis that the statement is true for s − 1, i.e., there are
B2, . . . Bs−1 such that ω(Bi) = ω(Ai) for i = 2, . . . , s − 1 and
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Figure 2.4: A totally uniform coloring of K3 ⋉K3 ⋉K3. Different
colors are indicated by solid, dashed, and dotted lines and thick
lines represent that all edges between these two parts are colored
the same.
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for every edge-r-coloring of A1 ⋉ B1 ⋉ . . . ⋉ Bs−1 there are sub-
graphs A′

i of Bi with A′
i
∼= Ai such that c is totally uniform on

A1 ⋉ A′
2 ⋉ . . . ⋉ A′

s−1.
By Lemma 2.35 we can choose Bs with ω(Bs) = ω(As) such

that

(A1 ⋉B1 ⋉ . . .⋉Bs−1)⋉Bs →
r-good (A1 ⋉B1 ⋉ . . .⋉Bs−1)⋉As .

We claim that these B2, . . . , Bs−1 together with Bs fulfill the re-
quirements of the lemma. Clearly, ω(Bi) = ω(Ai) for i = 2, . . . , s.
Let c be an edge-r-coloring of A1 ⋉ B2 ⋉ . . . ⋉ Bs. By the choice
of Bs there is a subgraph A′

s of Bs with A′
s
∼= As such that c is

good with respect to As. Thus, there is an edge-r-coloring cs on
H ′ = A1⋉B1⋉. . .⋉Bs−1 such that for each edge {a1, a2} ∈ E(H ′)
we have c(E((A′

s)x, (A′
s)y)) = {cs({x, y})}. This shows that c is

(s − 1)-uniform on this graph. By induction hypothesis we know
that there are subgraphs A′

i of Bi for i = 2, . . . , r− 1 such that cs

is totally uniform on A1 ⋉ A′
2 ⋉ . . . ⋉ A′

s−1. Therefore, c is totally
uniform on A1 ⋉ A′

2 ⋉ . . . ⋉ A′
s.

Definition 2.38. An edge-r-coloring ϕ of A1 ⋉ A2 ⋉ . . . ⋉ As is
totally uniformly monochromatic if all the edges in E1 have the
same color and for 2 ≤ j ≤ r; t1 ∈ V (A1), . . . , tj−1 ∈ V (Aj−1) all
the edges in Ej(t1, . . . , tj−1) have the same color.

Corollary 2.39. Let r ≥ 1, s ≥ 2 and A1, A2, . . . , As be graphs.
There are graphs C1, C2, . . . , Cs with ω(Ci) = ω(Ai) for i =
1, . . . , s such that for every edge-r-coloring ϕ of H = C1 ⋉ . . .⋉Cr

there are subgraphs A′
i of Ci with A′

i
∼= Ai such that ϕ is totally

uniformly monochromatic on A′
1 ⋉ . . . ⋉ A′

s.

Proof. For 1 ≤ i ≤ s let Gi ∈ F(Ai, 1, r) and C1 = G1. For 2 ≤
i ≤ s choose Ci according to Lemma 2.37 with ω(Ci) = ω(Gi) =
ω(Ai) such that in every edge-r-coloring c of C1 ⋉ C2 ⋉ . . . ⋉ Cs

there are subgraphs G′
i of Ci with G′

i
∼= Gi such that c is totally

uniform on G1 ⋉ G′
2 ⋉ . . . ⋉ G′

s. Since G′
i
∼= Gi ∈ F(Ai, 1, r) the

statement follows.
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Figure 2.5: A totally uniformly monochromatic coloring of K3 ⋉

K3 ⋉ K3. Different colors are indicated by solid, dashed, and
dotted lines and thick lines represent that all edges between these
two parts are colored the same.
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Theorem 2.40. Let r ≥ 1. For a1 ≥ . . . ≥ ar ≥ 1

s(Ka1 , . . . , Kar) ≤
r∏

i=1

(ai − 1) =: p .

Proof. To prove the theorem we will construct a (Ka1 , . . . , Kar)-
minimal graph with minimum degree p.

Let H = C1 ⋉ C2 ⋉ . . . ⋉ Cr be the graph from Corollary 2.39
for Ai = Kai−1, i = 1, . . . , r. First, we prove H 6→ (Ka1 , . . . , Kar).
Look at the coloring of H where Ei is colored completely in color
i. The ith color class in this coloring contains the edges cor-
responding to a subgraph isomorphic to mCi ⋉ nK1 for some
m, n ∈ N. There is no monochromatic ai-clique in color i because
ω(mCi ⋉ nK1) = ω(Ci) = ai − 1.

Let H1 = T 1
p (H; V (H)), i.e., we add for each p-tuple of V (H)

a new vertex and connect it to the members of the tuple. For
every edge-r-coloring c of H there are subgraphs Ai of Ci with
Ai

∼= Kai−1 such that c is totally uniformly monochromatic on
A1 ⋉ . . . ⋉ Ar. Moreover, there is a newly introduced vertex w in
H1 which is connected to all vertices of that subgraph.

Claim 3. Assume that G = Ka1−1 ⋉ . . . ⋉ Kar−1 is totally uni-
formly monochromatic colored with r colors and w is connected
to all its vertices. Every r-coloring of the edges incident to w
completes the edge-r-coloring such that there is for some i with
1 ≤ i ≤ r an ai-clique completely in color i.

Proof. We proceed by induction over r. The statement is trivial
for r = 1. Let r > 1 and assume that the statement holds for r−1.
All the edges in E1 of G have the same color, say color j. If aj < a1

then there is already an aj-clique completely in color j. On the
other hand we have aj = a1, because the ai’s are ordered, and we
can assume that by renaming the colors j = 1 holds. If for some x
there is an edge in color 1 inside (Ka2−1⋉. . .⋉Kar−1)x then there
is a monochromatic a1-clique in color 1 and we are done. Thus,
we can assume there is no edge in color 1 except the ones in E1.
Furthermore, if w is connected to every (Ka2−1 ⋉ . . .⋉Kar−1)x by
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at least one edge in color 1, then this finishes a monochromatic
Ka1 completely in color 1. Thus, we can assume that there is an
x such that all edges among w and (Ka2−1 ⋉ . . . ⋉ Kar−1)x are
only using the colors 2, . . . , r. By induction we know that there
is an aj-clique completely in color j for 2 ≤ j ≤ r.

Therefore, H1 → (Ka1 , . . . , Ka2). There exists a Ramsey-
minimal graph H2 with H2 ⊆ H1. Not all of the newly in-
troduced vertices in H1 are deleted in H2, because otherwise
H2 ⊆ H 6→ (Ka1 , . . . , Ka2). Thus, the minimum degree of H2

is at most p.

2.4.2 Lower Bounds

For providing lower bounds we try to adapt the technique from
Theorem 2.24 and thereby prove stronger statements about some
special colorings of cliques.

Definition 2.41. Let H, G1, . . . , Gr be graphs and let c be an
edge-r-coloring of H. Then we say that c is a (G1, . . . , Gr)-good
coloring if there is an vertex-r-coloring of H, such that there is
no copy of Gj with edges and vertices of color j only, for every
1 ≤ j ≤ r. If c is not a (G1, . . . , Gr)-good coloring then we say
that it is a (G1, . . . , Gr)-critical coloring. For Gj = Kaj

we just
write (a1, . . . , ar)-good and (a1, . . . , ar)-critical, respectively.

If c is a (G1, . . . , Gr)-critical coloring of H with |V (H)| =
k, then there exists also a critical coloring of Kk by arbitrarily
extending c. Therefore we will only look at complete graphs and
their colorings.

Definition 2.42. Let s∗(G1, . . . , Gr) be the minimum k such that
there exists a (G1, . . . , Gr)-critical edge-coloring of Kk.

Note that the edge-coloring c can contain large monochro-
matic cliques, but we want large cliques that are monochromatic
in the vertex- and edge-coloring.
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Proposition 2.43.

(i) s∗(1, a2, . . . , ar) = s∗(a2, . . . , ar).

(ii) s∗(a1 − 1, . . . , ar − 1) ≤ s(a1, . . . , ar).

(iii) s∗(a1, a2, . . . , ar) ≥ (
r∑

i=2

ai − r + 2)a1.

(iv) s∗(a, b) = ab.

(v) s∗(a1, . . . , ar) ≤
r∏

i=1

ai.

Proof. (i) Every (1, a2, . . . , ar)-critical coloring is also (a2, . . . , ar)-
critical and vice versa.

(ii) Let G be a (a1, . . . , ar)-minimal graph with minimum de-
gree δ(G) = s(a1, . . . , ar) and x ∈ V (G) with deg(x) = δ(G).
Let H = G[N(x)] and c an edge-r-coloring of G − x without
monochromatic aj-clique in color j for all j. The restriction of
c to the edges of H is (a1 − 1, . . . , ar − 1)-critical, because any
vertex-k-coloring of H can be viewed as a r-coloring of the edges
incident to x in G. We have n(H) = δ(G) and as above we can
extend this edge-coloring of H to a complete graph with n(H)
vertices which is still critical. The desired inequality follows.

(iii) Let c be any edge-coloring of Kn with n < (
∑r

i=2(ai −
1) + 1)a1. Let R1, . . . , Rk be a maximal vertex disjoint collection
of a1-cliques which are monochromatic in the first color. We have
k ≤

∑r
i=2(ai − 1). Define s1 = 0, sm =

∑m
i=2(ai − 1). Color the

vertices of
⋃sm

j=sm−1+1 Rj by color m and the remaining vertices
by color 1. There is no a1-clique with vertices and edges in color
1 by the maximality and there are at most (am − 1)-cliques in
color m.

(iv) By (iii) it follows that s∗(a, b) ≥ ab. Together with (i)
and the result s(a + 1, b + 1) = ab this implies the statement.

(v) It is simple to check that the lexicographical coloring of
the graph Ka1 [Ka2 ] . . . [Kar ] is (a1, a2, . . . , ar)-critical.
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For a1 = a2 = . . . = ar = 2, we have

s∗(2, 2, . . . , 2) ≤ s(3, 3, . . . 3) ≤ 2r .

Also we suspect that 2r is the right value for the s-parameter, we
can show that for the s∗ it is actually much smaller.

Proposition 2.44. For r ≥ 1 it holds

s∗(2, 2, . . . , 2
︸ ︷︷ ︸

r

) ≤ 2r2 log r + 1 .

Proof. We construct a (2, 2, . . . , 2)-critical edge-coloring randomly.
Let n = 2r2 log r + 1 and look at a random edge-r-coloring ϕ of
Kn (choose the color of each edge uniformly at random). Then
for a fixed vertex-r-coloring γ of Kn denote the event that there is
no monochromatic edge in ϕ with its endpoints of the same color
in γ by Mγ . By using Jensen’s inequality, we have

Pr[Mγ ] =
r∏

j=1

Pr[γ−1(j) has no edge in color j under ϕ]

=
r∏

j=1

(1 −
1

r
)(

|γ−1(j)|
2 ) = (1 −

1

r
)
∑r

j=1 (|γ
−1(j)|

2 )

≤ (1 −
1

r
)r(

1
r

∑r
j=1 |γ−1(j)|

2
)

< exp

(

−

(
n/r

2

))

.

Thus the expected number of monochromatic edges under any γ
is

∑

γ

Pr[Mγ ] < rn exp

(

−

(
n/r

2

))

= exp

(

n log r −

(
n/r

2

))

≤ 1 .
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This random edge-r-coloring of Kn has less than 1 monochromatic
edge in expectation. Since the number of monochromatic edges
is for every fixed ϕ a nonnegative integer, there has to be at least
one edge-r-coloring ϕ with no monochromatic edge under any
vertex-r-coloring γ.

Lemma 2.45. The only graph G on at most 4 vertices with a
(2, 2)-critical coloring is K4.

Proof. It is enough to prove that every edge-coloring of G = K4−
e is (2, 2)-good. Let a, b be non-adjacent vertices in G and let
c, d be the other two vertices. For an edge-coloring χ of G with
χ({c, d}) = red, color the vertices c, d blue and color a, b red.
For an edge-coloring χ of G with χ({c, d}) = blue, color c, d red
and a, b blue. In both colorings there is no monochromatic edge
with its endpoints in the same color, which proves that all edge-
colorings of G are (2, 2)-good.

Proposition 2.46. s∗(2, 2, 2) ≥ 8 .

Proof. We show that every edge-3-coloring of K7 is (2, 2, 2)-good.
The monochromatic degree of a vertex x ∈ V (G) is at least 2 for
some color, say green. Let y, z be the neighbors of x that are
connected by a green edge and assume that {y, z} is blue or green
again. If there is a red edge in G− {x, y, z} then by Lemma 2.45
we can color V (G)\{x, y, z} by using only blue and green and not
create a monochromatic K2. Then we can finish by coloring x, y, z
red. On the other hand if there is no red edge in G − {x, y, z}
then we color V (G) \ {x, y, z} red and x, y blue and y green.

Lemma 2.47. In every red/blue/green edge-coloring of K5 which
is not completely red, there exists a green or blue edge such that
the remaining triangle is not polychromatic, i.e., it has at most
two different colors.

Proof. Assume for contradiction that there exists a red/blue/green
edge-coloring of K5 such that (i) there exists a blue or green edge,
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and (ii) for every blue/green edge the remaining 3 vertices form
a polychromatic triangle.

First, we assume that there is a blue/green triangle T in this
coloring. The remaining edge e in K5 −T has color red otherwise
it would contradict (ii). For every edge in T the other 3 vertices
have to form a polychromatic triangle by (ii). Thus all the edges
between T and e have to be blue or green. The edge connecting
one endpoint of e and a vertex from T is blue or green but the
remaining triangle has no red edge contradicting (ii).

Second, we assume that there is a red triangle T in this col-
oring. The remaining edge e has to be red as well by (ii). There
has to be at least one blue or green edge by (i). It is easy to see
now that all edges between T and e have to be blue or green.
Let a, b be the endpoints of e. Without loss of generality the blue
degree of a is at least two. These two neighbors together with a
form a red/blue triangle and the remaining edge is blue or green,
contradicting (ii).

Finally, we assume that there is neither a blue/green triangle
nor a red triangle. Then there is a blue/green 5-cycle and all the
other edges (also forming a 5-cycle) are red. In this blue/green 5-
cycle there is at least one vertex with two edges of the same color,
say blue. This forms a red/blue triangle where the remaining edge
is blue or green which is a contradiction to (ii).

Lemma 2.48. Every edge-3-coloring of K8 with a monochromatic
triangle is (2, 2, 2)-good.

Proof. Let c be an edge-3-coloring of K8 with colors red, blue,
and green such that there is a red triangle. Then we will show
that c is (2, 2, 2)-good. Let A be the vertices of the red triangle
and B = V (K8) \ A the remaining 5 vertices.

If there exist only red edges in G[B] then we can color A green
and B blue. Therefore we can assume that there is a blue or green
edge {b1, b2} and by Lemma 2.47 we can moreover assume that
the remaining 3 vertices C do not form a polychromatic triangle.

If C uses only the colors red and green, then we can color A
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56 Chapter 2. Extremal Ramsey Theory

green, C blue, and b1, b2 red. If C uses only the colors red and
blue, then we can color A blue, C green, and b1, b2 red. If C
forms a blue/green triangle, then without loss of generality we
can assume that {b1, b2} is green and color A green, C red, and
b1, b2 blue.

Proposition 2.49. s∗(3, 2, 2) ≥ 12.

Proof. Let c be an edge-3-coloring of K11 and our goal is to show
that it is (3, 2, 2)-good. Because the Ramsey number r(4, 3) is 9
there has to be a red K4 or a triangle with edges using only the
colors blue and green.

Case 1. There is a red K4.
Let A be the vertices of the red K4. The remaining 7 vertices have
to contain at least two vertex disjoint blue edges (otherwise color
A green, the only blue edge red, and the rest blue,). Moreover by
Lemma 2.47 we can assume that the remaining 3 vertices do not
form a polychromatic triangle. Let us denote the blue edges by
e1, e2 and the vertex set of the non-polychromatic triangle T .

If T has only blue and green edges then color A blue, e1 green,
e2 and T red. If T has only red and blue edges then color A blue,
e1, e2 red, T green. If T has only red and green edges then color
A green, e1, e2 red, T blue.

Case 2. There is a blue/green triangle.
Let B be the vertices of the triangle and there are 8 remaining
vertices in K11. If they form a (2, 2, 2)-critical coloring then it
contains no monochromatic triangles by Lemma 2.48 and we can
therefore color these vertices with red. For the vertices B we can
use blue and green because s∗(2, 2) > 3. On the other hand if
the remaining 8 vertices do not form a (2, 2, 2)-critical coloring
then there exists a vertex-coloring using the colors red, blue, and
green without monochromatic edges. Furthermore, we can color
all vertices in B by red. This coloring yields no red K3 because
for a red K3 we can only use one of the vertices in B and therefore
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would need a red edge in the other part.

Proposition 2.50. s∗(4, 2, 2) ≥ 15.

Proof. Let c be an edge-3-coloring of K14, then our goal is to show
that c is (4, 2, 2)-good. Because r(5, 3) = 14, there is either a red
K5 or a blue/green triangle.

First, we assume that there is a blue/green triangle. By
Proposition 2.49 there exists a vertex-coloring of the remaining
11 vertices that is (3, 2, 2)-good. The extension of this coloring
where all vertices from the blue/green triangle are colored red
does not create a red K4.

Second, we assume that there is a red K5 with the vertex set
P . There are at least 3 vertex disjoint blue edges e1, e2, e3 in the
remainder (otherwise color P green, the at most 2 vertex disjoint
blue edges red, and the rest blue). By Lemma 2.47 we can assume
that the remaining triangle T is not polychromatic.

If T uses only the colors red and blue, then color T green, P
blue, e1, e2, e3 red. If T uses only the colors red and green, then
color T blue, P green, e1, e2, e3 red. If T uses only the colors blue
and green, then color T, e1, e2 red, P blue, e3 green.

Let us summarize the results from this section:

s∗(2, 2, 2) = s(3, 3, 3) = 8;
s∗(2, 2, 3) = s(3, 3, 4) = 12;

15 ≤ s∗(2, 2, 4) ≤ s(3, 3, 5) ≤ 16.

The upper bounds follow from Proposition 2.43 and the lower
bounds are proven in the Propositons 2.46, 2.49, 2.50.
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The crocodile is longer than it is green. For a
proof, let’s look at the crocodile: It is long on
the top and on the bottom, but it is green
only on the top. Therefore, the crocodile is
longer than it is green.

heard from Anita Keszler

Chapter 3

Polychromatic Colorings

We give here first some general framework for polychromatic col-
orings. Let B be a base set and F a family of subsets of B. An
r-coloring of B can be viewed as a function ϕ : B → {1, 2, . . . , r}.
We say that F ∈ F is polychromatic under ϕ if it receives all r
colors and the coloring ϕ is called polychromatic if every F ∈ F is
polychromatic under ϕ. We are interested in the maximum num-
ber r of colors such that there exists a polychromatic r-coloring
of F . Clearly, this number is upper bounded by the size of any
F ∈ F , and therefore the maximum really exists unless F = ∅.
Here is a list of some special cases of this problem:

(i) For a hypergraph H = (V, E) and r = 2, set B = V and
F = E. A polychromatic coloring is here a 2-coloring of
the vertices such that each hyperedge receives both colors,
i.e., there is no monochromatic hyperedge. Thus, a hyper-
graph H is polychromatically 2-colorable if and only if it
has property B.
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(ii) For some multigraph G, set B = E(G) and

F = {{e : v ∈ e} : v ∈ V (G)} .

A polychromatic coloring is here an edge-coloring such
that every vertex receives all colors among its incident
edges. The maximization problem is also called the cover
index of a graph, see [47], and will be discussed in Sec-
tion 3.1.

(iii) For some plane graph G, set B = V (G) and

F = {V (f) : f ∈ F (G)} ,

where F (G) is the set of all faces in G. The maximization
problem is investigated in the subsequent sections starting
in Section 3.2.

(iv) For 1 ≤ d ≤ n, set B = V (Qn) and

F = {S ⊆ V (Qn) : Qn[S] ∼= Qd} ,

where Qt is the t-dimensional hypercube graph. This case
and the corresponding case for edge-coloring is considered
in the papers [6, 71] and we will not further discuss it here.

3.1 Polychromatic Edge-Colorings

Definition 3.1. An edge-r-coloring of a multigraph G is called
polychromatic if for all vertices v ∈ V (G) all r colors appear on
the edges incident to v.

Let G denote a multigraph with a loop e with endpoint x ∈
V (G) and let G1, G2 be two copies of G−e with x1 ∈ V (G1), x2 ∈
V (G2) indicating the special vertex. Then the multigraph G′ =
G1 + G2 + {x1, x2} is polychromatically edge-r-colorable if and
only if G is polychromatically edge-r-colorable. The construction
is indicated in Figure 3.1.

By repeatedly applying this procedure we obtain a multigraph
G∗ with no loops and G∗ is polychromatically edge-r-colorable if
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x e

(a) G

x
1

x
2

(b) G′

Figure 3.1: Resolving loops.

and only if G is polychromatically edge-r-colorable. Thus we can
and will assume that all multigraphs in the following have no
loops.

If there is a polychromatic edge-r-coloring then there is also
a polychromatic edge-(r − 1)-coloring. A polychromatic edge-
coloring of G cannot use more than δ(G) colors where δ(G) de-
notes the minimum degree of G.

There is a polychromatic edge-1-coloring for every graph G
without isolated vertices. If G has minimum degree 1 then we
cannot use more than 1 color. Even cycles are polychromati-
cally edge-2-colorable but graphs containing an isolated odd cycle
are not polychromatically edge-2-colorable. The discussion above
gives a necessary condition for a multigraph to be polychromati-
cally edge-2-colorable and we show that it is also sufficient:

Proposition 3.2. A multigraph G is polychromatically edge-2-
colorable if and only if the following two conditions hold.

(i) δ(G) ≥ 2, and
(ii) G does not contain an odd cycle component.

Proof. If G contains a vertex of degree at most 1 or and odd
cycle component then there is no polychromatic edge-2-coloring
which proves that the two conditions are necessary. Sufficiency of
the conditions will follow from the following (stronger) statement
which will be proven inductively.

Claim 4. Let G be a multigraph which does not have an odd cycle
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component. Then there exists an edge-2-coloring of G such that
every vertex of degree at least two is polychromatic.

Proof. The induction proceeds over the number of edges. Without
loss of generality G is connected. If there is no cycle at all in G
(this covers also the base case for the induction) then G = T
is a tree. Let v be a leaf of T and let Tv be the rooted tree
corresponding to T with root v. Then we color an edge {x, y}
with color 1 if min{dist(v, x), dist(v, y)} is even and otherwise
with color 2. In this way all edges between two levels in Tv have
the same color. Every vertex of degree at least two has only one
edge to its parent and the other incident edges have the other
color. Thus, every vertex of degree at least two is polychromatic.

Let k > 0 and let G be a connected multigraph without odd
cycle component and with k edges and at least one cycle C. More-
over, we assume that the statement is true for all multigraphs on
less than k edges. The cycle C is either (a) an isolated even cycle,
(b) an even cycle that is not isolated, or it is (c) an odd cycle that
is not isolated.

The alternating edge-2-coloring of C shows that case (a) is
trivial. Let B1, . . . , Bs be the components of the multigraph ob-
tained by deleting all edges of C in G. We have in case (b) and
(c) that s ≥ 1. Since G is connected, we can choose for each
1 ≤ i ≤ s a vertex yi ∈ V (Bi) ∩ V (C). If Bj is an odd cycle
component, then we can color the edges of Bj alternatingly ex-
cept that the two edges incident to yj are colored in color 1. If
Bj is not an odd cycle, then inductively there is an edge-coloring
of Bj such that every vertex of degree at least two in Bj is poly-
chromatic and, moreover, yj is incident to an edge in color 1. All
vertices of degree at least two in V (G) \ V (C) are already poly-
chromatic. Therefore, it is sufficient to check now that there is an
edge-coloring of C such that every vertex in C is polychromatic.
For case (b), we color the edges in C alternatingly. For case (c),
we color the edges in C alternatingly except that the two edges in
C incident to y1 are colored in color 2. Since y1 has an incident
edge in color 1 in B1, this coloring satisfies the requirements.
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This finishes also the proof of the proposition.

As a consequence of the above lemma we have that every graph
with minimum degree 3 is polychromatically edge-2-colorable and
also every bipartite graph with minimum degree at least two. Our
goal is now to prove similar results for more than two colors. To
achieve this goal, we show first several simple lemmas with their
proof.

Lemma 3.3 ([48, 4, 47]). Let r be a positive integer. It is pos-
sible to color the edges of any bipartite multigraph G by r colors
{1, . . . , r}, such that for every vertex v of G, the number of edges
of each color incident with v are nearly equal. That is for every
i ∈ {1, . . . , r}, the number of edges of color i incident with v is
either ⌊deg(v)/r⌋ or ⌈deg(v)/r⌉.

Proof. First split the vertices of G, if needed, to make its max-
imum degree at most r: As long as there is a vertex v of G of
degree d > r, modify it using the following procedure. Define
k = ⌈d/r⌉ and replace v by k new vertices v1, v2, . . . , vk, called
its descendants. Let u1, u2, . . . , ud be an arbitrary enumeration
of all neighbors of v. For each i ∈ [k], connect the new vertex vi

with uj for all j satisfying (i−1)r < j ≤ min{d, ir}. This process
terminates with a bipartite graph in which all degrees are at most
r. By König’s Theorem (see, for example, [91]) the edges of this
graph can be properly colored by the r colors. By collapsing all
descendants of each vertex v back, keeping the colors of the edges,
we obtain an edge-r-coloring of the original graph G satisfying the
assertion of the claim.

Corollary 3.4. Every bipartite multigraph G has a polychromatic
edge-δ(G)-coloring.

Lemma 3.5. Every multigraph G contains a spanning bipartite
graph B ⊆ G with degB(v) ≥

⌈degG(v)
2

⌉
for every v ∈ V (G).

Proof. Let B be a maximum edge-cut in G with respect to the
number of edges. Assume that there is a vertex v ∈ V (G) with
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degB(v) <
⌈degG(v)

2

⌉
. If we then swap v to the other bipartite set,

this would yield another edge-cut with more edges, contradicting
the maximality.

Lemma 3.6. Every multigraph G has an orientation of its edges
such that deg+(v) ≥

⌊deg(v)
2

⌋
for all v ∈ V (G).

Proof. We may assume that G is connected. If all degrees in G
are even we simply orient it along an Eulerian cycle. Otherwise,
define a new graph G′ which consists of all vertices of G and a new
vertex x and connect all odd degree vertices of G to x. Then all
vertices in G′ have even degrees and therefore there is an Eulerian
cycle in G′. Orient the edges along such an Eulerian cycle and
delete the vertex x. Every vertex v ∈ V (G) with even degree has
then exactly deg(v)/2 outgoing edges. Each vertex v ∈ V (G) with
odd degree has either (deg(v) + 1)/2 or (deg(v) − 1)/2 outgoing
edges.

We are now able to prove a general upper bound for the num-
ber of colors in a polychromatic edge-coloring of a multigraph G.
This result was also discovered independently by Gupta [47].

Theorem 3.7. For every multigraph G without isolated vertices

there is a polychromatic edge-coloring of G with
⌊

3δ(G)+1
4

⌋

colors.

Proof. Denote δ(G) by δ for short. By Lemma 3.5 there is a
spanning bipartite subgraph H of G satisfying δ(H) ≥ ⌈ δ

2⌉. Let
A1 and A2 denote its partite sets. Applying Lemma 3.3 to H with
r =

⌊
3δ+1

4

⌋
results in an edge-coloring χ with the following two

properties.

(i) Every vertex v with degH(v) ≥ r is polychromatic. Indeed
v is incident with at least ⌊degH(v)/r⌋ ≥ 1 edges of each
of the r colors.

(ii) For every vertex u with degH(u) < r each color appears at
most once on edges incident to u since ⌈degH(u)/r⌉ = 1. In
other words all edges incident with u have distinct colors.
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Orient the edges of both G[A1] and G[A2] according to Lemma 3.6

such that deg+
G[Ai]

(v) ≥
⌊ δ−degH(v)

2

⌋
, for i = 1, 2 and all v ∈ Ai ⊆

V (G). For each vertex v ∈ Ai, color the edges oriented from v
to its out-neighbors in G[Ai] with the colors not appearing at the
edges of H incident to v (if there are any such colors). Thus, the
edges incident with any vertex v ∈ V (G) are finally colored with

min

{

degH(v) +
⌊δ − degH(v)

2

⌋
, r

}

≥

⌈
δ

2

⌉

+

⌊
⌊ δ

2⌋

2

⌋

=

⌊
3δ + 1

4

⌋

distinct colors, where the inequality follows from the fact that
degH(v) ≥

⌈
δ
2

⌉
.

Let Td be the “fat triangle” on the vertices x, y, z with ⌊d
2⌋

edges between x and y and ⌈d
2⌉ edges between x and z as well as

between y and z (see Figure 3.2).

Figure 3.2: Fat triangle Td for d = 9.

It is clear that δ(Td) = d and every color class in a poly-
chromatic edge-coloring has to contain at least two edges. This
implies that for the number of colors p we can use

2p ≤

⌊
d

2

⌋

+ 2

⌈
d

2

⌉

,

which implies p ≤ ⌊3d+1
4 ⌋.

This example shows that the bound of Theorem 3.7 is tight
but Td contains multiedges—necessarily so, since there are better
bounds for simple graphs.
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Proposition 3.8. Let G be an r-regular simple graph. Then G
is polychromatically edge-(r − 1)-colorable.

Proof. Let χ be a proper edge-(r + 1)-coloring which exists by
Vizing’s theorem (see, for example, [91]). Every vertex v ∈ V (G)
has one color cv missing among the colors of its incident edges.
Our goal is a new coloring with the first r − 1 colors which is
polychromatic.

Look at the subgraph H of the edges with color r and r + 1.
It is a union of paths and cycles. We can orient them such that
each path/cycle is an oriented path/cycle. The vertices which
are not polychromatic for the first r − 1 colors are exactly the
vertices of degree 2 in H. For every vertex v with cv ∈ [r − 1] we
take the outgoing edge in H and recolor it with the color cv. Any
completion of this coloring to all the edges yields an polychromatic
edge-(r − 1)-coloring.

Theorem 3.9 (Gupta [47]). For any multigraph G and any k ∈
N, there exists an edge-k-coloring of G such that for every vertex
x the number of distinct colors appearing at the edges incident to
x is at least

(i) min{k − mG(x), deg(x)}, if deg(x) ≤ k;
(ii) min{k,deg(x) − mG(x)}, if deg(x) ≥ k.

where mG(x) is the maximum number of edges between x and any
of its neighbors.

By applying Theorem 3.9 with k = δ(G) to a simple graph G
we obtain a generalization of Proposition 3.8.

Corollary 3.10. Every simple graph G is polychromatically edge-
(δ(G) − 1)-colorable.

Proposition 3.2 gives a complete, polynomially testable char-
acterization for graphs which are polychromatically edge-2-color-
able. As not uncommon in complexity theory, the case r = 3 is
then already NP-complete as well as for any other fixed r ≥ 3.
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Theorem 3.11 (Hoyler [51], Leizhen and Ellis [23]). For any
r ≥ 3, it is NP-hard to decide whether a simple r-regular graph is
properly edge-r-colorable.

For r-regular graphs the notion of proper edge-r-coloring and
polychromatic edge-r-coloring is equivalent. Thus the above the-
orem tells us that also polychromatic edge-3-colorability is NP-
hard.

Corollary 3.12. For any r ≥ 3, it is NP-hard to decide whether
a simple r-regular graph is polychromatic r-edge colorable.

3.2 Colorings of Plane Multigraphs

We will work mostly with plane multigraphs for the remaining
of this chapter, i.e., we assume that the graph is embedded in
the plane without crossings. Denote the set of faces of a plane
multigraph G by F (G).

Definition 3.13. For a vertex k-coloring of G we say that a face
f ∈ F (G) is polychromatic if all k colors appear on the vertices of
f . A vertex k-coloring of G is called polychromatic if every face
(also the outerface) of G is polychromatic. The polychromatic
number of G, denoted by p(G), is the largest number k of colors
such that there is a polychromatic vertex k-coloring of G.

Note that a polychromatic coloring does not have to be proper,
i.e., it is possible that both endpoints of an edge receive the same
color.

Moreover, we want to remark that we can neglect loops: If G
is a plane multigraph with a loop around x, then we can divide
the graph into the interior Gin and the exterior Gext of the loop
both including the vertex x but not the loop itself.

It is easy to combine a vertex-coloring of Gin and Gext and
therefore we get p(G) = min{p(Gin), p(Gext)}. Thus, we will as-
sume in the following that G is a plane multigraph without loops.
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(a) p(G) = 3 (b) p(Gin) = 3 (c) p(Gext) = 4

Figure 3.3: Example. p(G) = min{p(Gin), p(Gext)}

The size of a face f ∈ F (G) is the number of vertices on its
boundary. For a plane graph G, let g(G) denote the size of the
smallest face in G. A face of size s in a plane graph is sometimes
also called an s-face. Define

p(g) = min{p(G) | G plane graph, g(G) = g} .

It is clear that p(g(G)) ≤ p(G) ≤ g(G) for every plane graph
G. By adding vertices inside a face of G, we can increase the size
of the smallest face without decreasing the maximum number of
colors one can use in a polychromatic coloring. Thus, the function
p(g) is non-decreasing, i.e., for g ≤ g′ we have p(g) ≤ p(g′).

If g(G) = 1, then G contains only one vertex and therefore
p(1) ≤ 1. If g(G) = 2, then G contains either multiple edges or
only two vertices. The graph G′ depicted in Figure 3.4 shows that
also p(2) ≤ 1.

Figure 3.4: Graph G′ with g(G′) = 2 and p(G′) = 1.
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It is well-known that every plane simple graph can be poly-
chromatically 2-colorable, see for example [13], [66], [12]. We will
generalize this result to plane multigraphs G with g(G) ≥ 3.

A triangulation of a plane multigraph G is obtained from G
by adding edges such that every face is a 3-cycle.

Lemma 3.14. Let G be a plane multigraph with g(G) ≥ 3. There
exists a triangulation H of G.

Proof. Without loss of generality we can assume that G is con-
nected. If there are two vertices in a face f ∈ F (G) that are not
connected inside f then we can add an edge between them inside
f and receive again a plane multigraph with two new faces f1, f2.
The size of the new faces f1, f2 is smaller than the size of the old
face f . Therefore, the process stops at some point where all faces
are cliques. If we start with a plane multigraph G with g(G) ≥ 3,
then we will not have 1- or 2-faces after the process. Every face
is an outerplanar graph and therefore we cannot have a K4. The
only possibility remaining is that all faces are K3, i.e., 3-cycles,
which is then the desired triangulation.

Theorem 3.15. Every plane multigraph G with g(G) ≥ 3 is poly-
chromatically 2-colorable.

Proof. Triangulate the graph G by adding edges, resulting in a
new graph H where each face (also the outerface) is a 3-cycle.
The dual graph H∗ of H is then 3-regular. Moreover, H∗ is 2-
edge connected: every minimal edge-cut in H∗ correspond to a
cycle in H, and since H has no loop, there is no cut-edge in H∗.
By Petersen’s Theorem (see, for example, [91]), there exists a
perfect matching M in H∗. After deleting the edges of H corre-
sponding to those of M , the remaining graph H ′ has only faces
of size 4. Therefore there is no odd cycle in H ′ and hence H ′ is
bipartite. Thus, there is a proper vertex 2-coloring of H ′, which is
a polychromatic vertex 2-coloring of H and hence also of G.

A planar embedding of K4 has g(K4) = 3 and p(K4) = 2.
For g = 4 consider Figures 3.5(a) and (b) which illustrate the
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vi

vj

(a) Base graph for g = 4.

v1

v2v3

v4

(b) Forcing graph.

Figure 3.5: Graph G with p(G) = 2 and g(G) = 4.

construction of a graph G. The graph G equals the forcing graph
(see Figure 3.5(b)) where each of the six shaded edges {vi, vj} is
replaced by a copy of the base graph (see Figure 3.5(a)). Clearly,
g(G) = 4. It is easy to check that the following holds.

In any polychromatic 3-coloring of a base graph (see
Figure 3.5(a)) the vertices vi and vj are colored with
distinct colors.

Thus from the fact that K4, the graph underlying the forcing
graph, is not properly 3-colorable, it follows that p(G) ≤ 2.

Therefore, we have

p(1) = 1, p(2) = 1, p(3) = 2, p(4) = 2 ,

and p(5) ≥ 2 but we think that the true value should be 3.

Conjecture 3.16. Every plane graph G with g(G) ≥ 5 is poly-
chromatically 3-colorable.

We proceed in the next subsections by giving lower and upper
bounds for plane graphs G with g(G) ≥ 5, more precisely, we will
show the following bounds for g ≥ 5

⌊
3g − 5

4

⌋

≤ p(g) ≤

⌊
3g + 1

4

⌋

. (3.1)
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Note that the set {⌊3g−5
4 ⌋, . . . , ⌊3g+1

4 ⌋} contains at most 3 integers.

3.2.1 The Lower Bound

We first present several small lemmas which will be needed for
the proof of the lower bound. An incidence is a pair (v, f) where
v is vertex and f a face such that v is on the boundary f .

Lemma 3.17. Let G be a plane graph, let ∅ 6= F ′ ⊆ F (G), ∅ 6=
V ′ ⊆ V (G) and let i(V ′, F ′) denote the number of incidences
between F ′ and V ′. Then i(V ′, F ′) ≤ 2|F ′| + 2|V ′| − 3.

Proof. Define the incidence graph H of V ′ ⊆ V (G) and F ′ ⊆
F (G) by V (H) = F ′ ∪ V ′ and {f, v} ∈ E(H) for v ∈ V ′, f ∈ F ′

if and only if v is on the boundary of f in G. It is easy to see
that H is planar, simple and bipartite. From Euler’s Formula
and the fact that H is simple and triangle-free it follows that H
contains at most 2V (H) − 4 edges, provided that H contains at
least three vertices. In this case we conclude that i(V ′, F ′) =
|E(H)| ≤ 2(|V ′|+ |F ′|)− 4. On the other hand if |V (H)| = 2 and
H contains one edge, then i(V ′, F ′) = 2(|V ′| + |F ′|) − 3 = 1.

The following result is well known (see, for example, [64], The-
orem 2.4.2). For completeness, we include a proof sketch.

Lemma 3.18. Let A ∈ {0, 1}m×n be a matrix with entries ai,j

for i ∈ [m], j ∈ [n]. The following two statements are equivalent:

(i) There is a matrix C ∈ {0, 1}m×n, C ≤ A (that is ci,j ≤ ai,j

for all i ∈ {1, . . . , m} and all j ∈ {1, . . . , n}) such that
every row in C contains at least q 1’s and every column in
C contains at most r 1’s.

(ii) For every M ⊆ {1, . . . , m} and every N ⊆ {1, . . . , n},
∑

i∈M,j∈{1,...,n}\N ai,j ≥ q|M | − r|N |.

Proof. Define a network with vertices s, t, r1, . . . , rm, c1, . . . , cn as
follows. Connect the source s with all vertices ri with edges having
capacity q, connect ri with cj with edges having capacity ai,j ,
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and connect all cj to the sink t with edges having capacity r.
If condition (i) holds, then we can also assume that there exists
such a matrix C where in every row there are exactly q 1’s. Thus
there exists a flow of value mq if and only if (i) holds. It is easy to
show that all cuts have size at least qm if and only if condition (ii)
holds. This implies the statement by using the MaxFlow-MinCut
Theorem.

Corollary 3.19. Let G be a plane graph with g(G) = g. For each
face f ∈ F (G) we can assign g−2 vertices that lie on its boundary
such that no vertex is assigned to more than two faces.

Proof. Let A = (af,v)f∈F,v∈V ) ∈ {0, 1}|F |×|V | be the face-vertex
incidence matrix of G where F = F (G) and V = V (G). That is
af,v = 1 if and only if vertex v is contained in face f . We want to
show that there is a matrix C ∈ {0, 1}|F )|×|V | such that C ≤ A, in
every row of C there are at least (g − 2) 1’s, and in every column
of C there are at most two 1’s.

By Lemma 3.18 with q = g − 2 and r = 2 it is sufficient
to show that for every F ′ ⊆ F, V ′ ⊆ V ,

∑

f∈F ′,v∈V \V ′ af,v ≥

(g − 2)|F ′| − 2|V ′|.
Henceforth we obtain

∑

f∈F ′,v∈V \V ′

af,v =
∑

f∈F ′,v∈V

af,v −
∑

f∈F ′,v∈V ′

af,v

≥ g|F ′| −
∑

f∈F ′,v∈V ′

af,v

≥ g|F ′| − 2|F ′| − 2|V ′|,

where the last inequality follows from Lemma 3.17 in case both
V ′ and F ′ are nonempty, and is trivial if at least one of them is
empty.

Theorem 3.20. For g ≥ 5

p(g) ≥

⌊
3g − 5

4

⌋

.

72



3.2. Colorings of Plane Multigraphs 73

Proof. Let G = (V, E) be a plane graph with g(G) = g. By
Corollary 3.19 we can assign g − 2 vertices from its boundary
to every face of G such that no vertex is assigned to more than
two faces of G. Define an auxiliary multigraph H, with V (H) =
F (G) ∪ {x, y}, where x, y are two additional vertices. For every
vertex v ∈ V (G) define an edge of H, which we call the v-edge, as
follows. If v is assigned to two distinct faces f1 and f2 then the
v-edge is {f1, f2}. If it is assigned only to one face f , the v-edge
is {f, x}, and if it is not assigned to any face, then the v-edge
is {f, y}. In addition, add g − 2 (multi)edges to H connecting x
and y to ensure that all degrees in H are at least g − 2. Thus,
H is a loopless multigraph with minimum degree at least g − 2.
By Theorem 3.7 with d = g − 2 we can color the edges of H with
p =

⌊3(g−2)+1
4

⌋
=

⌊3g−5
4

⌋
colors such that every vertex f ∈ V (H)

is incident with edges of all p colors.

Define a vertex-coloring of G by coloring every vertex v ∈
V (G) by the same color as that of the v-edge. This clearly gives
a coloring in which every face f ∈ F (G) is polychromatic, as
needed.

The above proof is constructive, i.e., one can find in polyno-

mial time a polychromatic coloring of G with
⌊

3g−5
4

⌋

colors.

3.2.2 The Upper Bound

Theorem 3.21. For g ≥ 5,

p(g) ≤

⌊
3g + 1

4

⌋

.

Proof. Define the graph Gg as depicted in Figure 3.6. For g even
set k = l = g

2 and for g odd set k = g+1
2 and l = g−1

2 . Inside the
small triangle and outside the big triangle add a path of g−2 new
vertices as indicated by the dashed arcs. Then g(Gg) = g. Note
that the vertices of the three faces of Gg that contain no dashed

73



74 Chapter 3. Polychromatic Colorings

arcs are W := {u1, u2, . . . , uk, w1, w2, . . . , wk, v1, v2 . . . , vl}, and
none of these vertices lies in all three faces. This implies:

In every polychromatic coloring of Gg, every color ap-
pears on at least two vertices in the set W .

Therefore

2p(Gg) ≤ |W | = 2k + l =

{

3k, if g is even.

3k − 1, if g is odd.

=

{
3g
2 , if g is even.
3g+1

2 , if g is odd.

In both cases we have p(Gg) ≤
⌊

3g+1
4

⌋

. Furthermore, this is a

construction of a simple plane graph.

wk

v1

v2

vl−2

vl−1

vl

u1

u2

uk−2

uk−1
uk

w1

w2

wk−2

wk−1

Figure 3.6: Graph Gg with g(Gg)=g and p(Gg)≤⌊3g+1
4 ⌋.

3.3 Special Cases of Plane Graphs

There are special cases of plane graphs with better bounds for the
polychromatic number.
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3.3. Special Cases of Plane Graphs 75

3.3.1 Triangulations

For every triangulation G it holds that 2 ≤ p(G) ≤ 3. The fol-
lowing simple characterization of triangulations G with p(G) = 3
is a consequence of an old result of Heawood [49].

Theorem 3.22. Let G be a triangulation. The following two
statements are equivalent:

(i) p(G) = 3, and
(ii) G is Eulerian, i.e., the degree of every vertex in G is even.

The following two results immediatly imply Theorem 3.22.

Theorem 3.23 (Kempe [57], Heawood [49, 86]). The vertices
of a triangulation G are properly 3-colorable if and only if G is
Eulerian.

Lemma 3.24. Let G be a triangulation. Then the following are
equivalent:

(i) G is polychromatically 3-colorable.
(ii) G is properly 3-colorable.

Proof. A triangle is properly 3-colored if and only if its three
vertices have the three different colors. Also, a triangle is poly-
chromatically 3-colored if and only if its three vertices have the
three different colors. Thus these two notions are equivalent for
triangulations.

3.3.2 Graphs with Only Even Faces

We will show that multigraphs with only faces of even sizes are
polychromatically 3-colorable by using the same statement for
simple plane graphs.

Theorem 3.25 (Hoffmann and Kriegel [50]). Let G be a graph
which is 2-connected, bipartite, and simple, and plane. Then we
can add edges to G to obtain a triangulation such that the degree
of every vertex is even. Moreover, this triangulation can be found
in polynomial time.

75



76 Chapter 3. Polychromatic Colorings

Theorem 3.26. Let G be a 2-connected, plane multigraph with
even faces only and g(G) ≥ 4, then there exists a polychromatic
3-coloring of G that is proper as well, i.e., no edge is monochro-
matic. Moreover, such a coloring can be found in polynomial time.

Proof. We prove the statement by induction on the number of
multiple edges of G. First, we assume that G is simple. Every
cycle in G has even length (i.e., G is bipartite) because G is re-
quired to be 2-connected and has only even faces. The statement
follows after applying Theorem 3.25 and Theorem 3.22.

Next, we assume that G has some multiple edges. Let x, y ∈
V (G) and e1, e2 ∈ E(G) where both e1 and e2 connect x and
y. The edges e1, e2 build a cycle of length two and therefore they
divide the plane into two parts. Let V1 be the vertices inside e1, e2

(including x, y) and V2 the vertices outside e1, e2 (including x, y).
Since g(G) ≥ 4, we can conclude that Vi ) {x, y}, for i = 1, 2.
Define G1 = (V1, E(G[V1])\{e2}) and G2 = (V2, E(G[V2])\{e1}).
These two graphs are plane, 2-connected with even faces only,
g(G1), g(G2) ≥ 4, and each Gi contains less multiple edges than
G. There exists inductively a polychromatic 3-coloring of Gi,
i = 1, 2, such that no edge is monochromatic. In particular the
coloring of G1 and the coloring of G2 assigns distinct colors to
x and y. Thus we can permute the colors of one coloring such
that the colors of x and y agree in the colorings of G1 and of G2.
This yields a 3-coloring of G which fulfills the condition in the
statement.

3.3.3 Outerplanar Graphs

Another simple case is when the multigraph G is outerplanar (i.e.,
all vertices lie on the outerface). The size of the smallest face is
then equal to the length of the smallest cycle (girth of G) unless
G is a forest. We show that the trivial upper bound p(G) ≤ g(G)
is tight for outerplanar graphs G with g(G) ≥ 3.

Theorem 3.27. Let G be an outerplanar graph with g = g(G) ≥
3. Then there exists a polychromatic coloring of G with g colors
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that is also proper, i.e., no edge is monochromatic.

Proof. We prove this result by induction on the number of faces.
If we have only one face, then the graph G is a forest and clearly
we can polychromatically color every forest with |V (G)| = g(G)
many colors such that no edge is monochromatic. Let us assume
now that G has more than one face. Obviously, it is sufficient to
find a g-coloring of the vertices of G such that all bounded faces
are polychromatic and no edge is monochromatic. The outerface
will by the outerplanarity automatically be polychromatic since
all vertices lie on the outerface. Also we can assume without loss
of generality that G is connected and has no cut-vertex. Other-
wise color the 2-connected components separately and combine
the coloring (maybe rename the colors in each component corre-
spondingly).

It is well-known that the dual graph G∗ without the outerface
forms a forest; and since G is 2-connected, G∗ is connected, and
so G∗ forms a tree. Every tree has at least two leaves. Choose f0

as a face corresponding to a leaf in the tree with maximal size.
Let G′ be the graph obtained from G after deleting all vertices
incident to only f0 and the outerface. Then G′ is an outerplanar
graph and has one fewer face than G. Moreover, since f0 was
choosen to be of maximal size, we have g(G′) = g(G). By the
induction hypothesis we can color G′ polychromatically with g
colors such that no edge is monochromatic.

Finally, add f0 again to G′. There is exactly one edge e0 ∈
E(G′) which is on the boundary of the face f0, i.e., e0 is the edge
between f0 and its parent. The intersection of the vertices of f0

and V (G′) are exactly the endpoints z1, z2 of e0. For simplicity,
assume that z1 has color 1 and z2 has color 2. Let z3, . . . , zk be the
other vertices of f0 such that z1, z2, z3, . . . zk is the clockwise or
counterclockwise order in that face. Extend the coloring of f0 to
1, 2, . . . , g, g−1, g, g−1, . . .. The face f0 will then be polychromatic
(because k ≥ g) and no edge of f0 will be monochromatic (because
g ≥ 3).
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The graph G2 from Figure 3.4(b) shows an outerplanar graph
with g(G2) = 2 which is not polychromatically 2-colorable.

3.4 Connection to Guarding Problems

Polychromatic colorings are related to a combinatorial version of
guarding problems on graphs. In general, guarding problems ask
for a small set of points (guards) that see a given input domain,
for example a polygon, a terrain, or a plane graph. If we consider
guarding a plane graph G, then G is guarded if every face of G is
guarded. If all faces are convex, then every vertex on the bound-
ary of a face sees the complete face. If the faces are not convex,
more guards might be necessary. Certainly a guard cannot see
the entire unbounded face, hence the outerface is usually not re-
quired to be guarded. A combinatorial variant of this problem
is the following: Find the smallest set of vertices S of G such
that every face is incident to (at least) one of the vertices in S.
Clearly each color class in a polychromatic coloring is a guarding
set, that is, the vertices in each color class jointly guard the graph
G. From now on we use “guard” in this combinatorial sense and
also require the unbounded face to be guarded.

In [13] it is shown that one can guard any plane graph on n
vertices with no faces of size 1 or 2 by ⌊n

2 ⌋ guards. This clearly
follows from the fact that p(G) ≥ 2 for any such graph. Similarly,
a simple consequence of Theorem 3.20 is the following:

Corollary 3.28. Every plane graph G with g(G) = g can be
guarded with at most n

⌊(3g−5)/4⌋ ≤ 4n
3g−8 guards.

Proof. By Theorem 3.20, G admits a polychromatic
⌊3g−5

4

⌋
-col-

oring. Place guards on the vertices of the smallest color class
which is of size at most n⌊

3g−5
4

⌋ ≤ 4n
3g−8 . Because the coloring is

polychromatic each face is incident to at least one guard and the
statement follows.
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3.5 Complexity Results for Plane Graphs

Theorem 3.22 immediately implies a polynomial time algorithm to
decide whether a triangulation admits a polychromatic 3-coloring.

For general plane graphs G we show that the decision problem
whether G is polychromatically 3-colorable is hard and also for
polychromatic 4-colorings.

Theorem 3.29. The decision problem whether a plane graph is
polychromatically k-colorable is

(i) in P, if k = 2, and
(ii) NP-complete, for k = 3, 4.

Moreover, we consider the decision problem whether a 2-con-
nected plane graph with faces of size restricted to a set of inte-
gers admits a polychromatic 3-coloring. We achieve an almost
complete characterization of such sets of integers (face sizes) for
which the corresponding decision problem is NP-complete and for
the others it is in P.

It can be checked in polynomial time whether a k-coloring is
polychromatic, and therefore the problem is in NP. Every plane
graph is polychromatically 1-colorable. Thus the decision problem
for k = 1 is trivial in the sense that the answer for every instance
is always “Yes”.

Next, we turn our focus to polychromatic 2-colorings and
prove Theorem 3.29(i). At this point, it is worth to remind our-
selves that every plane graph G with p(G) < 2 contains a face of
size at most two.

Proposition 3.30. There is a polynomial time algorithm to de-
cide whether a given plane graph is polychromatically 2-colorable.

Proof. We call a CNF-formula F ∗-planar if its literal-clause in-
cidence graph H is planar. Note that this differs from the com-
mon notion of a planar CNF-formula, where one assumes that the
literal-clause incidence graph H together with a cycle connecting
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80 Chapter 3. Polychromatic Colorings

the positive literals and together with edges between the corre-
sponding positive and negative literals is required to be planar.

A vertex-coloring of a plane graph is 2-polychromatic if no
face is monochromatic. We can associate with one color the logic
predicate ’true’ and with the other color ’false’ and interpret the
vertices as boolean variables. Then we add a clause-vertex to
each face and connect it to its incident variable-vertices. By this
we get a ∗-planar CNF-formula (where all variables occur only as
positive ones).

Deciding whether a plane graph is polychromatically 2-color-
able is equivalent to deciding whether the corresponding planar∗

CNF-formula is not-all-equal satisfiable (∗-PLANAR-NAE-SAT).

In [67] it is shown that PLANAR-NAE-3-SAT is in P by a
reduction to PLANAR-MAX-CUT. The reduction in fact holds
also for PLANAR∗-NAE-SAT. A well known reduction works to
shorten the clauses of a planar (and planar∗) formula to length
3, whilst preserving not-all-equal satisfiability and planarity. We
briefly sketch this reduction which is illustrated in Figure 3.7. A
clause c of length k > 3 is replaced by two clauses c1, c2 of length
3 and k − 1, respectively. A new variable x occurs positive in c1

and negative in c2. Placing the new variable and clauses as in
Figure 3.7 preserves planarity and not-all-equal satisfiability.

v1

v2

v3

v6

v5

v4

c

(a) Clause c.

v1

v2

v3

v6

v5

v4

c2

c1

x

+
−

(b) Clauses c1 and c2.

Figure 3.7: Reducing PLANAR-NAE-SAT to PLANAR-NAE-3-
SAT.
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In the following we want to show hardness results for poly-
chromatic 3- and 4-colorings, by constructing reductions from
proper 3-colorability of plane graphs. We start by proving Theo-
rem 3.29(ii) for k = 3.

Proposition 3.31. It is NP-hard to decide whether a given plane
simple graph is polychromatically 3-colorable.

Proof. It has been shown in [87] that deciding whether a plane
simple graph is properly 3-colorable is NP-hard. Given a plane
simple graph G we construct in polynomial time a plane simple
graph G′ such that G is properly 3-colorable if and only if G′ is
polychromatically 3-colorable.

For every edge e = {u, v} ∈ E(G) we add a new vertex ye

inside one of the two faces and connect it with u and v. Thus
every edge e ∈ E(G) is now contained in a triangle. Furthermore,
for every face f ∈ F (G) select a vertex x incident to f . Then
add a new vertex xf into the interior of f and connect x and xf

by an edge. The resulting graph G′ is simple. In every polychro-
matic 3-coloring of G′ the edges E(G) are not monochromatic,
and every proper 3-coloring of G can be extended to a polychro-
matic 3-coloring of G′ by using the extra vertices xf . Thus G′

is polychromatically 3-colorable if and only if G is properly 3-
colorable.

We will refine Proposition 3.31 by restricting on plane graphs
with only faces of given sizes. To do so we will restrict on 2-
connected graphs. One reason is that a graph G is properly k-
colorable if and only if all its 2-connected components are prop-
erly k-colorable and the maximal 2-connected components (block-
cutvertex graph) of a graph can be computed in polynomial time
by using a depth-first-search. Thus it follows that proper k-
colorability is also NP-hard restricted on 2-connected graphs for
k ≥ 3. Another reason is that any face in a 2-connected plane
graph is a cycle and therefore there are no artifacts such as dan-
gling paths.
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Let L denote some set of positive integers. We define the fol-
lowing two decision problems.

L-PLANE-PROPER-k-COLORABILITY:
Given: A plane 2-connected graph G where the size of each face
of G is in L.
Question: Does there exist a proper k-coloring of V (G)?

L-PLANE-POLY-k-COLORABILITY:
Given: A plane 2-connected graph G where the size of each face
of G is in L.
Question: Does there exist a polychromatic k-coloring of V (G)?

In case we do not impose any restriction on the sizes of the
faces in G we omit the set L.

Let f be a face of a plane graph G and L ⊆ N. We say a plane
graph G′ is an L-extension of f if G′ is a plane graph containing
G and some new vertices V ′ 6= ∅ and some new edges E′ 6= ∅
(thus also some new faces) such that

(i) the new vertices V ′ and the new edges E′ are contained in
the interior of f ,

(ii) every new edge of E′ is incident to at most one old vertex
v ∈ V (f), and

(iii) the size of any new face is contained in L.

An extension is called 2-degenerate if there is an order v1, . . . , vk

of the new vertices V ′, such that the dG′[V (G)∪{v1,...,vi})](vi) ≤ 2,
for all i ∈ {1, . . . , k}. It is easy to observe now that the following
is true.

Let G′ be a 2-degenerate extension of f of G. Any
proper 3-coloring of G can be extended to a proper 3-
coloring of G′, i.e., it preserves proper-3-colorability.

Lemma 3.32. Let k ≥ 3. Every k-face f of a plane 2-connected
graph G has a {3, 4, 5}-extension G′ in G that is 2-degenerate and
2-connected.
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Proof. The statement is trivial for k = 3, 4, or 5. Therefore as-
sume k ≥ 6 and assume that the statement is true for every
smaller k. Let x1, . . . , xk be the vertices of f in clockwise order.
Let H be the graph obtained from G by adding a vertex y in the
interior of f and connecting y with x1 and x4. Then H has a 5-face
and a (k − 1)-face. By induction assumption we can extend the
(k−1)-face to 3-,4-,5-faces such that the extension is 2-degenerate
and 2-connected. Together this yields a {3, 4, 5}-extension G′ that
is 2-degenerate and 2-connected.

Lemma 3.33. Every 5-face f of a plane 2-connected graph G
has a {3, 4}-extension G′ that is 2-connected and moreover G is
properly 3-colorable if and only if G′ is properly 3-colorable.

Proof. First note that every 5-face forms a 5-cycle due to the
assumption that G is 2-connected. We extend each 5-face f by the
construction depicted in Figure 3.8. Specifically, let f be a 5-face
and let v1, v2, . . . , v5 be the five vertices of f . We add two copies
of P2 (the path of length two) with vertices u, v, w, P ′ : u′, v′, w′

and P ′′ : u′′, v′′, w′′ by identifying both u′ and u′′ with v1, w′ with
v3 and w′′ with v4. Further we connect v′ with v′′. This yields the
{3, 4}-extension G′ of G which is 2-connected. It is easy to check
that every Let G′ be a 2-degenerate extension of f of G. Any
proper 3-coloring of G can be extended to a proper 3-coloring of
G′ (i.e., it preserves proper-3-colorability). Any proper 3-coloring
χ of the 5-face has an extension to a proper 3-coloring of G′: We
can assume that χ(v1) 6= χ(v4). Color v′ with χ(v4) and color
v′′ with the third color not appearing on any of the neighbors of
v′′.

Lemma 3.34. Let G be a plane 2-connected graph.

(i) Let s ≥ 4. Every 4-face of G has a 2-degenerate {3, s}-
extension G′ such that G′ is 2-connected as well.

(ii) Let t ≥ 5 odd. Every 3-face and every 4-face has a 2-
degenerate {t}-extension G′ such that G′ is 2-connected.
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v1

v2

v3v4

v5

Figure 3.8: Fill graph for 5-faces.

Proof. (i) For s = 11 the extension is drawn in Figure 3.9(a)
and it should be clear how to obtain a similar construction for
arbitrary s.

(ii) In Figure 3.9(b) an extension of a 3-face into 4-faces and 9-
faces is shown. The 4-faces can be extended into 9-faces as shown
in Figure 3.9(c). Together this gives the extensions for the case
t = 9. Again the general case should be clear.

(a) {3, 11}-ext. of 4-face (b) {4, 9}-ext. of 3-face (c) {9}-ext. of 4-face

Figure 3.9: 2-degenerate extensions of faces

This leads to the following complete characterization of the
complexity of L-PLANE-PROPER-3-COLORABILITY:

Corollary 3.35. L-PLANE-PROPER-3-COLORABILITY

(i) ... is in P for L = {2, 3}.
(ii) ... is trivial provided that L contains only even numbers.
(iii) ... is NP-complete provided there is t ∈ L with t ≥ 5 odd.
(iv) ... is NP-complete provided 3 ∈ L and there is s ∈ L with

s ≥ 4.
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Proof. First observe that we can assume that G contains no face
of size two, since deleting one edge from a 2-face does neither
change the size of any other face of G nor does it yield any cut-
vertex.

(i) The only case left is L = {3}, i.e., triangulations. The-
orem 3.22 provides a polynomial time checkable criterion for 3-
colorability of triangulations.

(ii) The graphs are bipartite because any cycle has even length.
Therefore there is a proper 2-coloring which is also a proper 3-
coloring.

(iii), (iv) Using Lemma 3.32, Lemma 3.33, and Lemma 3.34
we can extend every plane 2-connected graph to a graph only
having faces of the given size such that the proper 3-colorability
and 2-connectedness is preserved. Thus the restricted proper 3-
colorability problem on plane, 2-connected graphs is as hard as
the non-restricted one.

Note here that every proper 3-coloring of an odd face is a
polychromatic 3-coloring as well. For even faces some special
care has to be taken.

Lemma 3.36. Let s ≥ 4 even and let C be an s-cycle embedded
in the plane. Then there exists an {s}-extension C ′ of C such
that any proper 3-coloring of C can be extended to a 3-coloring of
C ′ such that every bounded face is polychromatic. Moreover, C ′

is 2-connected as well.

Proof. First, we consider the case for s = 4. We “fill” C by
substituting it with a copy of the graph in Figure 3.10(a). Let
v1, v2, v3, v4 be the four consecutive vertices of C. We identify
vi with the copy of the vertex ui for i ∈ {1, . . . , 4}. The re-
sulting subgraph is polychromatically 3-colorable if f is properly
3-colorable. To see this, we fix a proper 3-coloring χ of f . Suppose
first that all three colors appear on the vertices of f . Without loss
of generality we can assume that χ(v1) = 1, χ(v2) = 2, χ(v3) = 3
and χ(v4) = 2. Then, for instance, coloring the copies of w1 by 3,
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w1 w2

w3w4

u1 = v1 u2 = v2

u3 = v3u4 = v4

(a) 4-face (b) 6-face

(c) 8-face

Figure 3.10: Fill graphs.

w2 by 2, w3 by 1 and w4 by 2 extends χ to a 3-coloring of the new
vertices in f such that each of the five new faces inside f is poly-
chromatic. Suppose now that only two distinct colors appear on
the vertices of C, say χ(v1) = χ(v3) = 1 and χ(v2) = χ(v4) = 2.
We can extend χ to a polychromatic 3-coloring including the new
vertices in C as follows. Color w1 by 3, w2 by 2, w3 by 3 and w4

by 1. Again the five new faces inside C are polychromatic.

The case s ≥ 6 is even simpler and we will only sketch it
here. We use a similar construction as for the previous case (see
Figure 3.10(b),(c) for the cases s = 6 and s = 8). The claim is now
that every proper 3-coloring can be extend to a polychromatic 3-
coloring inside that face. The new faces incident to the original
boundary have a non-monochromatic edge already colored. For
each such face f we can assign one incident vertex xf that is
not incident to the middle face and all these vertices are distinct.
Color the vertex xf such that the face f will be polychromatic
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and color the middle face also polychromatic.

vi vj

(a) Base graph with 3-faces (b) Base graph with 4- and 9-
faces

Figure 3.11: Gadgets for the reduction.

Theorem 3.37. L-PLANE-POLY-3-COLORABILITY

(i) ... is in P for L = {2, 3}.
(ii) ... is trivial if L contains only even numbers.
(iii) ... is NP-complete for L ⊇ {3, s}, s ≥ 4.
(iv) ... is NP-complete for L ⊇ {4, t}, t ≥ 5 odd.
(v) ... is trivial if L ⊆ {6, . . .}.

Proof. If g(G) < 3 then G is certainly not polychromatically 3-
colorable. Thus we can assume that g(G) ≥ 3.

(i) Theorem 3.22 gives a polynomial time checkable criterion
for graphs with 3-faces only.

(ii) Because G is bipartite we have g(G) ≥ 4 and therefore G
is polychromatically 3-colorable by Theorem 3.26.

(iii) If s ≥ 5 is odd then we substitute each edge with a
copy of the base graph Figure 3.11(a) but start with a graph
which contains only s-faces. By Corollary 3.35(iii) the proper
3-coloring problem restricted to such graphs is NP-hard. Each
proper 3-coloring of the s-faces is also a polychromatic 3-coloring
and therefore the old graph is properly 3-colorable if and only if
the new graph is polychromatically 3-colorable.

If s is even then we start with a graph G with 3- and s-faces
only and substitute each edge with a copy of the base graph as in
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88 Chapter 3. Polychromatic Colorings

Figure 3.11(a) and extend each s-face as described in Lemma 3.36.
Then it holds that the new graph is polychromatically 3-colorable
if and only if G is properly 3-colorable.

(iv) Start with a graph G containing only t-faces. We can
modify our base graph as indicated in Figure 3.11(b) such that
we only have 4-faces and t-faces (and the outer face). By substi-
tuting every edge from the input graph G with this new gadget
we get G′. The new graph G′ has only 4- and t-faces and in
every polychromatic 3-coloring of G′ the vertices corresponding
to the endpoints of edges in G are colored with different colors
(Observation 1). Moreover, there exists a 3-coloring of the base
graph where vi, vj have different colors and all bounded faces are
polychromatic. Because t is odd, every proper 3-coloring of G
can be extended to a polychromatic 3-coloring of G′. Applying
Corollary 3.35(iv) shows the NP-hardness.

(v) Theorem 3.20 implies that all these graphs are polychro-
matically 3-colorable.

This result covers all cases except when 5 is the smallest num-
ber in L. If p(5) ≥ 3, which we do not know at the moment, then
also {5, . . .}-PLANE-POLY-3-COLORABILITY is trivial and the
characterization would be complete.

Also note that our base graphs for the Cases (iii), (iv) contain
multiple edges and at the moment we do not know whether the
results carry over if we restrict to simple graphs.

Finally we prove Theorem 3.29(ii) for k = 4.

Proposition 3.38. {4}-PLANE-POLY-4-COLORABILITY is NP-
complete also restricted on simple graphs.

Proof. Again, we use PLANE-PROPER-3-COLORABILITY. Let
G be a simple plane graph. We add a new vertex xe on each edge
e = {u, v} ∈ E(G) and replace the edge {u, v} by a path of length
two with vertices u, xe, v. For each face f ∈ F (G) we add a vertex
vf , place it into the interior of f , and connect vf to the vertices
of f as encountered when traversing the boundary of f in either
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direction. This yields a new plane simple graph G′ where all faces
have size exactly 4. See Figure 3.12 for an example.

Figure 3.12: Constructing G′.

We claim that G is properly 3-colorable if and only if G′ is
polychromatically 4-colorable. If G is properly 3-colorable with
colors 1, 2 and 3, then we extend this coloring χ in G′ such that
each vertex vf corresponding to a face f in G gets color 4 and
the vertex xe with neighbors u and v gets the color {1, 2, 3} \
{χ(u), χ(v)}. In this way each face of G′ is polychromatic and
therefore the whole coloring χ is polychromatic.

Now let us fix a polychromatic 4-coloring χ′ of G′. Let vf be
any vertex of G′ corresponding to a face f of G. Without loss of
generality suppose that vf has color 4. Then for each edge e =
{u, v} ∈ E(G) which is incident to f the vertices u, xe, v ∈ V (G′)
have to get the colors 1, 2 or 3. Henceforth for every face g of
G that shares an edge with f , the vertex vg gets color 4 as well.
Since the dual graph G∗ is connected color 4 “propagates” from
face to face and χ′(vf ′) = 4 for every face f ′ of G. Also color
4 appears at no other vertex of G′. Now the coloring restricted
to the vertices in G uses only three colors and has to be proper
because every 4-face f with vertices u, xe, v, vf of G′ can only be
polychromatic if all of its four vertices are colored with distinct
colors, and in particular u and v get distinct colors.
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Ich muess mich nid andersch aleggä,
wenn ich so redä.
Ich muess mich nid schträälä,
wenn ich so redä
und ich cha mit bluttä Fiässä
durs heech Gras und under d Lyt,
wenn ich so redä.
Muess nid scheen tue,
wenn ich ebbis gäärä ha.
Es tuets, wenn ich sägä:
Ich mag dich wool.
Und ich traim i dere Schpraach.

Julian Diller

Chapter 4

Extremal Satisfiability

The satisfiability problem was the first problem proven to be NP-
complete and therefore it is sometimes also called the “mother”
of NP-complete languages. Every problem in the class NP can
be reduced to SAT. We will begin this chapter by showing an
endcoding of proper k-colorability of graphs into SAT. This will
serve us as a illustrating example for the definition of the S-SAT
problem, which will be formally introduced in Section 4.1.

Let k ∈ N be fixed and G = (V, E) an instance (graph) of the
proper k-coloring problem PropCol(k), i.e., we want to decide
whether there exists a k-coloring of the vertices V such that there
is no monochromatic edge in E. A k-coloring of the vertices as-
signs to each vertex v ∈ V exactly one of the colors {1, 2, . . . , k}.
Assume that V = [n]. We introduce boolean variables xi,c for
i ∈ V and c ∈ [k], where xi,c indicates whether the vertex i re-
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92 Chapter 4. Extremal Satisfiability

ceives the color c. For T ⊆ [n] × [k] define

AtLeastOneOne(T ) =
∨

t∈T

xt (4.1)

AtMostOneOne(T ) =
∧

t,t′∈T,
t6=t′

x̄t ∨ x̄t′ (4.2)

If both formulas hold then exactly one of the variables with
index in T is set to true.

OneIsOne(T ) = AtLeastOneOne(T )∧AtMostOneOne(T ) .

The condition that an assignment to the variables xi,j encode a
k-coloring can be expressed as

∧

i∈V OneIsOne(Ri) where Ri =
{(i, 1), (i, 2), . . . , (i, k)}. No edge {i, j} ∈ E is monochromatic in
a proper k-coloring which can be expressed by

ProperEdge(i, j) =
∧

c∈[k]

x̄i,c ∨ x̄j,c (4.3)

Putting these things together we define the following CNF
formula.

F (k, G) =
∧

i∈V

OneIsOne(Ri) ∧
∧

{i,j}∈E

ProperEdge(i, j) .

Note that the formula can be constructed in polynomial time. For
different graphs on the same vertex set V = [n] the first part will
always be the same and therefore the essential information is in
the second part. If we restrict the SAT-problem such that only
some assignments of {0, 1}∗ are allowed, then we can capture this
better. Let N = nk and define

SN = {(xi,j)i∈[n],j∈[k] ∈ {0, 1}N : OneIsOne(Ri), for all i ∈ [n]} .

There exists a proper k-coloring of G if and only if the formula
∧

{i,j}∈E ProperEdge(i, j) is satisfiable with an assignment from
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SN . For k = 3 we have S3n = (001|010|100)n and because it is
well-known that proper 3-colorability is NP-hard, the satisfiability
problem restricted to such assignments is NP-hard as well.

This phenomena occurrs quite often in encodings of problems
in NP, i.e., there is one part of the formula which is the same for
all instances of the same size. Therefore, it is preferable to split
this part from the remaining part which captures the instance-
specific information. This is exactly how we define the S-SAT
problem.

4.1 Problem Description

The S-SAT problem is a variant of the SAT problem where we al-
low only some assignments to be considered. For simplicity of no-
tation, we agree that the boolean variables are named v1, . . . , vn,
and they are ordered like this. Since we assume that the set of
variables is ordered, we can interpret x ∈ {0, 1}n as a truth as-
signment of the variables v1, v2, . . . , vn.

Given: S ⊆ {0, 1}∗

Input: formula F , ordered variable set V ⊇ vbl(F )
Output: Yes, if there exists an assignment α ∈ {0, 1}|V |∩
S that satisfies F , otherwise no.

We define Sn := S ∩ {0, 1}n for all n ∈ N and call these sets
the levels of S. Note that V is part of the input but we do not
require every variable in V to occur in F . This is the same as
to say that f(x, y, z) = x is a function in three variables. The
complexity of the input is the size of the formula plus the size of
the variable set. This refers to the time needed to evaluate the
formula F for an assignment x ∈ {0, 1}V (up to some polynomial
factors in n): we need |V | time to read an assignment and the
size of the formula captures the time to evaluate F . We want to
point out that S is fixed and not part of the input.
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94 Chapter 4. Extremal Satisfiability

Example 1. For S = {0, 1}∗, the S-SAT problem is the normal
SAT problem.

Example 2. For S = (001|010|100)∗, the S-SAT problem contains
all instances of the proper 3-colorability problem. Thus, this S-
SAT problem is NP-hard, even restricted to 2-CNF formulas.

Example 3. Let k ∈ N be fixed and G = (V, E) a plane multigraph
with faces F . For f ∈ F we denote by V (f) the vertices of this
face. Instead of (4.3) we define

Polychromatic(f) :=
∧

c∈[k]

∨

i∈V (f)

xi,c . (4.4)

By Theorem 3.29 we know that polychromatic k-colorability is
NP-hard for k = 3, 4. Thus, the S-SAT problem with S =
(001|010|100)∗ is NP-hard even restricted to ∗-planar CNF for-
mulas where each variable occurs only positive.

Example 4. Let H be fixed and G = (V, E) an instance. A k-edge-
coloring can be encoded similarly as before by using the formula
OneIsOne(T ). The property that the edge set Z of a subgraph
of G isomorphic to H is not monochromatic, can be encoded by

NotMonochromatic(Z) :=
∧

c∈[k]

∨

t∈Z

x̄t,c (4.5)

A special case is that H = K1,2, where a graph G is not H-Ramsey
with k colors if and only if G is proper k-edge colorable. Since
this problem is NP-hard, Theorem 3.11, the property of being H-
Ramsey is co-NP-hard.

Example 5. Let G = (V, E) be a graph with V = {1, 2, . . . , n} =
[n]. A Hamiltonian cycle in G is a permutation of the vertices such
that between consecutive vertices there is an edge. A permutation
is a bijection π : [n] → [n]. For i ∈ [n], j ∈ [n], let xi,j be
a boolean variable which is true if and only if π(i) = j. Let
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Ri = {(i, 1), (i, 2), . . . , (i, n)} and Cj = {(1, j), (2, j), . . . , (n, j)}
(one can imagine these index sets as rows and columns of the (n×
n)-array). Then an assignment to the xi,j ’s encode a permutation
if and only if the following condition is satisfied.

∧

i∈[n]

OneIsOne(Ri) ∧
∧

j∈[n]

OneIsOne(Cj) (4.6)

Moreover, they correspond to a Hamiltonian cycle in G if between
consecutive elements π(i), π(i + 1) there is an edge, i.e., there are
no non-edges between consecutive elements. By identifying n + 1
with 1, we can encode this by the following formula.

∧

{i,j}6∈E

∧

k∈[n]

x̄i,k ∨ x̄j,k+1 (4.7)

The formulas (4.6) and (4.7) together are a polynomial encoding
of the Hamiltonian cycle problem into SAT. Furthermore, set
N = n2 and define

SN = {(xi,j)i∈[n],j∈[k] ∈ {0, 1}N : (4.6) holds } .

There exists a Hamiltonian cycle in G if there exists an assign-
ment in SN that satisfy formula (4.7). Since the Hamiltonian
cycle problem is NP-hard, also this S-SAT problem is NP-hard.

Outlook. A family S is called asymptotically exponential if
|Sn| ∈ Ω(αn) for some α > 1. Cooper [27] asked whether for
all asymptotically exponential languages S, the S-SAT problem
is NP-hard. We will answer this question negatively in Section 4.7.
This gives rise to the following two questions.

(1) For which languages S is the S-SAT problem NP-hard?
(2) For which languages S is the S-SAT problem in P?

In Section 4.4 we show that it is unlikely that for an asymp-
totically exponential family S the S-SAT problem is in P. In
Section 4.5, we show that for context-free languages S the S-
SAT problem is in P, if |Sn| is polynomial in n, and it is NP-hard
otherwise.
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4.2 Some Observations

If there are only a few elements in S, then the S-SAT problem
cannot be very hard. To make this more precise we state

Proposition 4.1. If |Sn| is polynomial in n and Sn can be enu-
merated in polynomial time then S-SAT is in P.

If we view S itself as a language over the alphabet {0, 1}, and
therefore as a decision problem, we get the following connection:

Proposition 4.2. S can be reduced to S-SAT in polynomial time.

Proof. Given some x = (x1, . . . , xn) ∈ {0, 1}n and define the 1-
CNF formula

Fx :=
∧

i:xi=1

vi ∧
∧

i:xi=0

v̄i .

Then x is the unique assignment in {0, 1}n that satisfies the for-
mula Fx. Hence, Fx is S-satisfiable if and only if x ∈ Sn. Clearly,
this is a polynomial reduction from S to S-SAT.

Corollary 4.3. If S as decision problem is NP-hard, then S-SAT
is NP-hard, even restricted to 1-CNF formulas.

The above considerations are showing that S-SAT is difficult
for some S. We continue by proving that S-SAT is difficult for
every asymptotically exponential S. More precisely, we demon-
strates how we can employ a fast S-SAT algorithm, if existent, to
solve SAT in significantly less than 2n steps. We write O∗(f(n))
if we neglect polynomial factors.

Proposition 4.4. Suppose there is some S with |Sn| ∈ Ω(αn) for
1 < α < 2. If S-SAT can be decided in time O∗(βn), then there is
a randomized Monte Carlo algorithm for SAT with running time
O∗((2β/α)n).

Proof. Let F be a formula over a set V of variables, and let x be
an assignment. For each variable v ∈ V , switch v with probability
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1/2, i.e., invert all its occurrences in F and its value according to
the assignment x, resulting in a new formula F ′ and a new assign-
ment x′. The assignment x′ satisfies F ′ if and only if x satisfies
the original formula F . Moreover, x′ is uniformly distributed over
{0, 1}n. First, assume that F is satisfiable, then the formula F ′ is
S-satisfiable with probability Pr [x′ ∈ Sn] ≥ (α/2)n. This can be
tested in time O∗(βn). After repeating this process (2/α)n times,
the probability that at least one of the randomly generated for-
mulas is S-satisfiable, is at least 1 − 1/e, hence constant. On the
other hand, if F is unsatisfiable, it will not become satisfiable by
switching variables. We therefore have a Monte Carlo algorithm
with running time (2/α)nO∗(βn).

There are no known algorithms for SAT running in time
O∗(γn) for γ < 2, not even randomized ones. Proposition 4.4
with β < α, therefore, is a first indication that S-SAT is a diffi-
cult problem.

Example. The currently best known deterministic algorithms for
3-SAT [79, 14] are based on the algorithm of Dantsin et al. [28].
In fact, it can be viewed as a derandomized version of the random-
ized algorithm in the proof of Proposition 4.4: Let the Hamming
distance d(x, y) of two vectors x, y ∈ {0, 1}n be the number of
coordinates in which they differ. The Hamming Ball of radius r
around x is the set Br(x) := {y ∈ {0, 1}n | d(x, y) ≤ r}. We look
at the family Sn = Bρn(0) where 0 < ρ < 1 is some constant.
Then

|Sn| =

⌊ρn⌋
∑

i=0

(
n

i

)

≈ 2H(ρ)n , H(t) = −t log t − (1 − t) log(1 − t) .

Thus, S = (Sn)n≥0 is an asymptotically exponential family. For
3-CNF formulas, S-SAT can be decided in O∗(3ρn) steps (by
splitting on 3-clauses), which for appropriately chosen ρ is much
smaller than 2H(ρ)n. By choosing many Hamming balls centered
at different points randomly and by choosing the optimal value
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of ρ this yields an algorithm deciding 3-SAT in O∗(1.5n) steps.
Note that choosing a random point as center of the Hamming ball
is equivalent to switching the formula randomly and keeping the
Hamming ball centered at (0, . . . , 0) all the time. It takes some
additional effort to derandomize the algorithm, see [28].

4.3 S-SAT and the VC-dimension

To obtain a systematic way of proving NP-hardness of S-SAT
(if possible), we use the notion of shattering and the Vapnik-
Chervonenkis-dimension (VC-dimension). These concepts were
first introduced by Vapnik and Chervonenkis [89]. Let V be the
set of variables containing v1, v2, . . . , vn. We say I ⊆ [n] is shat-
tered by Sn if any assignment to VI := {vi | i ∈ I} can be realized
by Sn. Formally, for every x ∈ {0, 1}|I| there is a y ∈ Sn with
y|I = x, where y|I denotes the |I|-bit vector (yi)i∈I . The VC-
dimension dVC is the size of a largest shattered set. Obviously,
0 ≤ dVC(Sn) ≤ n. The intuition is that large sets have large VC-
dimensions. This is quantified by the following lemma, which was
proven several times independently, see for example [77, 83, 89].

Lemma 4.5. Suppose dVC(Sn) ≤ d ≤ n/2. Then

|Sn| ≤
d∑

i=0

(
n

i

)

≤ 2H( d
n

)n

where H(x) = −x log(x)− (1−x) log(1−x) is the binary entropy
function.

We will give here a non-standard proof of this lemma using
satisfiability which shows also an interesting fact about the num-
ber of satisfying assignments for a CNF formula.

Proof. By assertion dVC(Sn) ≤ d, hence no index set I ⊆ [n] of
size (d + 1) can be shattered by Sn. This means that for every
I ⊆ [n] with |I| = d + 1 there is some x(I) ∈ {0, 1}d+1 such that
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all y ∈ Sn satisfy y|I 6= x(I). For I = {i1, . . . , id+1} ⊆ [n] consider

the disjunction CI := v
1−x(I)1
i1

∨ . . . ∨ v
1−x(I)d+1

id+1
, where v1 := v

and v0 := v̄. Every assignment not satisfying CI must agree with
x(I) in the variables with indices in I. Thus all elements of Sn

satisfy CI . Define

F =
∧

I⊆[n],|I|=d+1

CI ,

which is a (d+1)-CNF and Sn ⊆ sat(F ), where sat(F ) denotes the
set of satisfying assignments for F . Let F ′ be the unsigned version
of F , i.e., replace every negative literal by its positive counterpart.
This F ′ consists of all unsigned (d + 1)-clauses over n variables,
and x ∈ {0, 1}n satisfies F ′ iff x contains at most d many 0’s.
Therefore sat(F ′) = Bd(1) and |sat(F ′)| = vol(n, d) ≤ 2H(d/n)n

where the last inequality for 0 ≤ d ≤ 1/2 is well known. It is
enough to show that |sat(F )| ≤ |sat(F ′)| which will be done in
the next lemma.

Lemma 4.6. Let F be any CNF formula and let F ′ be the un-
signed version of F . Then |sat(F )| ≤ |sat(F ′)|.

Proof. Let v be a variable in F which occurs also negatively. De-
fine Fv to be the CNF formula obtained from F by replacing every
occurrence of the literal v̄ by v, i.e., v occurs only as positive lit-
erals in Fv. Let x be an assignment and x′ the assignment with
x′(v) = 1 and x′(w) = x(w) for w 6= v. If x satisfies F then x′ sat-
isfies Fv. Thus we have a function from sat(F ) to sat(Fv) which we
can make injective: If we obtain x′ twice then x′ and the assign-
ment agreeing in x except setting v to 0 are satisfying assignments
for F and therefore also for Fv. Thus |sat(F )| ≤ |sat(Fv)|. By
repeatedly applying this procedure for every variable leads to the
unsigned version F ′ of F and the inequality follows.

By Lemma 4.5 every asymptotically exponential family S ful-
fills dVC(Sn) ∈ Ω(n). Our goal is to use this to show that S-SAT
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is then NP-hard or unlikely to be in P for an asymptotically expo-
nential families S. Such results become more general if we enlarge
the class of families S for which they apply. Instead of using the
notion of asymptotically exponential we use a generalization of it.
As we have seen in the encodings of NP-hard problems to S-SAT
there might be some levels Sn which do not contain any elements.

Definition 4.7. A monotone increasing sequence Q = (nj)j∈N ⊆
N has polynomial gaps if there is a polynomial p(n) such that

nj+1 ≤ p(nj)

for all j ∈ N.

A sequence (nj) can increase exponentially in j and still have
polynomial gaps. For example, define nj = 2j . Then nj+1 = 2nj ,
so p(n) = 2n shows that this sequence has polynomial gaps. Note
that we can always assume without loss of generality that p(n) is
strictly increasing.

Definition 4.8. The family (Sn)n≥1 is called exponential if there
exists α > 1 and a sequence Q with polynomial gaps such that

∀n ∈ Q : |Sn| ≥ αn .

We also say S =
⋃

n≥1 Sn has exponential size.

For example, families with |Sn| ∈ Ω(αn) are exponential (but
we additionally allow to have some “gaps”). It is easy to see that
the encodings from the beginning of this chapter for k-colorings
are an exponential family but for permutations they are not.
For permutation we have N = n2 and |SN | = n! ≤ 2n log n =

20.5
√

N log N which is subexpontial.
The connection between exponential families and large shat-

tered index set is given trough Lemma 4.5.

Corollary 4.9. Suppose S ⊆ {0, 1}∗ is exponential. Then there is
a polynomial q(n) such that for each n ∈ N there exists N ≤ q(n)
and an index set I ⊆ [N ] with |I| ≥ n such that I is shattered by
SN .
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Proof. Let (nj)j∈N be the sequence with polynomial gaps corre-
sponding to the exponential family S, i.e., there is an α > 1
and a polynomial p such that nj+1 ≤ p(nj) and |Snj

| ≥ αnj

for all j. Let δ ∈ (0, 1/2] such that H(δ) = log α and de-
fine the polynomial q by q(n) = p(n/δ). Choose k such that
nk ≤ n

δ ≤ nk+1 =: N . By Lemma 4.5, dVC(SN ) ≥ δN ≥ n,
so there exists a shattered set I ⊆ [N ] with |I| ≥ n. Note that
N = nk+1 ≤ p(nk) ≤ p(n/δ) = q(n), as required.

Although we know that a large shattered set exists, it is not
clear how we can compute it efficiently. Let us for the moment
assume that we can. Then there is a polynomial reduction from
SAT to S-SAT:

Theorem 4.10. Let S ⊆ {0, 1}∗ be of exponential size and let
p(n) be a polynomial. Suppose that for all n, we can compute, in
time polynomial in n, some number N ≤ p(n) and some index
set I ⊆ [N ] with |I| ≥ n that is shattered by SN . Then S-SAT is
NP-hard.

Proof. Let F be a formula over the variables Vn = {v1, . . . , vn}.
We construct a new formula F ′ over VN by renaming each vj

occurring in F into vij where I ⊇ {i1, . . . , in}. We claim that F
is satisfiable iff F ′ is S-satisfiable. Suppose x ∈ {0, 1}n satisfies
F . Because I is shattered by SN there is an assignment y ∈ SN

that agrees with x in the variables (vi1 , . . . , vin) and thus F ′ is
S-satisfiable. The reverse direction is clear. This polynomial
reduction shows that S-SAT is NP-hard.

Why does this method not work in general? The difficulty is
that we do not know which subset of variables is shattered, we
only know that there is one. The result of Papadimitriou and
Yannakakis [73] states that computing the VC-dimension of an
explicitly given Sn (of size not necessarily exponential in n) is
LOGNP-complete, hence unlikely to be in P. If S is exponential
then a brute force approach can be made to compute the VC-
dimension in time polynomial in |Sn|. However, if computing the
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VC-dimension takes time polynomial in |Sn|, then this is not use-
ful because |Sn| itself is exponential in n.

Example. We give an example of S where the VC-dimension is
uncomputable, and still there is a straightforward reduction from
SAT to S-SAT. Let U ⊆ N be an undecidable set, e.g. U := {n ∈
N | Tn halts on empty tape}, where Tn is the nth Turing machine
in some sensible enumeration. Then define

Ln = {w0⌈2n/3⌉ | w ∈ {0, 1}⌊n/3⌋} ,

Rn = {0⌈n/2⌉w | w ∈ {0, 1}⌊n/2⌋} .

Finally, set

Sn =

{
Ln, if n ∈ U ;
Rn, otherwise.

Clearly, the VC-dimension of Sn is either ⌊n/3⌋ or ⌊n/2⌋, but
is it undecidable which holds. Still, there is a simple reduction
from SAT to S-SAT. For a formula F with n variables v1, . . . , vn,
choose N = 3n. Then in SN , we know that either {1, . . . , N/3} or
{2N/3, . . . , N} is shattered. Let F ′ be the same formula as F , but
with each variable vi renamed into vN+1−i. Certainly, if N ∈ U ,
then F is S-satisfiable, and if N 6∈ U , then F ′ is S-satisfiable.
So ϕ(F ) := F ∨ F ′ is S-satisfiable if and only if F is satisfiable.
Hence ϕ is a polynomial time reduction.

4.4 S-SAT and Polynomial Circuits

We will prove a result that is “almost as good” as proving NP-
completeness: if S-SAT is in P for some exponential S, then SAT
has polynomial circuits. We will briefly introduce the notations
used from circuit theory (see [90, 72] for a more elaborate discus-
sion).

Let B = {¬,∧,∨} be the basis. A boolean circuit over n
variables x1, . . . , xn is a directed acyclic graph G = (V, E) with
labels at each vertex fulfilling the following properties.
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(i) If v ∈ V has in-degree 0, then it is labeled with one of the
variables x1, . . . , xn (these vertices are called input gates).

(ii) If v ∈ V has in-degree 1, then it is labeled with ¬.
(iii) If v ∈ V has in-degree 2, then it is labeled either with ∧

or ∨.
(iv) There is exactly one vertex v ∈ V with out-degree 0 (this

vertex is called the output gate).

Given specific values for the variables x1, . . . , xn we can compute
the value of each inner node (inductively) in the obvious way. The
size of a boolean circuit is the number of gates and the depth is
the length of the longest directed path in G.

A circuit family is a sequence C = (C1, C2, . . . ) of boolean
circuits, where each Cn has n input gates. If each Cn has exactly
one output gate, then C computes a function f : {0, 1}∗ → {0, 1},
or equivalently, decides a language L ⊆ {0, 1}∗. If the size of Cn

grows polynomially in n, then C is a polynomial circuit family.

Definition 4.11. A language L ∈ {0, 1}∗ has polynomial circuits
if there exist a polynomial circuit family (Ci)i∈N that decides L.
The class of all languages L with polynomial circuits is denoted
by P/poly.

Let L be a language which has polynomial circuits (Ci)i∈N. If
there exists an algorithm that computes Cn in time polynomial
in n, then clearly L ∈ P. The other direction holds as well.
We also say here that L has uniform polynomial circuits. There
are undecidable languages L with nonuniform polynomial circuits,
e.g. unary languages defined by an undecidable problem.

Theorem 4.12. If S-SAT is in P for some exponential S, then
SAT has (possibly nonuniform) polynomial circuits.

Proof. From Corollary 4.9, we know that for each n there exists
an N ≤ q(n) and an index set I ⊆ [N ] with |I| ≥ n such that
I is shattered by SN . For each n, there is a boolean circuit of
polynomial size that takes a formula F over n variables as input
and outputs a formula F ′ over N variables, where F ′ is identical
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to F , but with all variables from F replaced by variables in I.
Note that the circuit exists, though it might not be constructible
in polynomial time. By assumption, there is a second circuit of
polynomial size deciding S-SAT for formulas with N variables.
Combining these two circuits yields a polynomial circuit deciding
SAT.

If SAT has polynomial circuits then all problems in NP have
polynomial circuits, because SAT is NP-complete. There are
strong reasons to believe that this is not the case.

Theorem 4.13 (Karp and Lipton [56]). If NP ⊆ P/poly then the
polynomial hierarchy collapses to its second level, i.e., PH = Σ2P.

It might be possible that NP has polynomial circuits and still
P 6= NP. On the other hand if P = NP then also Σ2P = PH.
Hence, this result is weaker than proving NP-hardness for S-SAT
in general. However, there has not been shown any collapse be-
tween some levels in the polynomial hierarchy for the last 27 years.

There are some improvements on the Karp-Lipton Theorem
which we want to mention here (for the involved complexity classes
please visit the Complexity Zoo [1]):

(i) If SAT ∈ P/poly then PH = ZPPNP [60].
(ii) If SAT ∈ P/poly then PH = SP

2 [22].
(iii) If SAT ∈ P/poly then MA = AM [7].

4.5 S-SAT for Context-Free Languages S

Ginsburg and Spanier [43] showed that every context-free lan-
guage S is either polynomial or asymptotically exponential. In
this section, we prove that S-SAT is NP-complete if S is an ex-
ponential, context-free language and S-SAT is in P if S is a poly-
nomial, context-free language.

In the following, we denote the nonterminal symbols appearing
in a context-free grammar for S by upper case letters S0, A, B, C,
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and so on, where S0 is the starting symbol. The only termi-
nal symbols are 0, 1. All rules in a context-free grammar are of
the form A ⇒ w for a word w possibly containing nonterminals.
A

∗
⇒ w means that w can be derived from A in finitely many

steps. Finally, the length of a word x ∈ {0, 1}∗ is denoted by |x|.

Example. Let S = (100|010|001)∗ be the family corresponding to
3-colorings of vertices. The following substitution rules with start
symbol B3 generate S.

Ai−1 → 0Ai|1Bi, i = 1, 2, 3

Bi−1 → 0Bi, i = 1, 2, 3

B3 → ε|A0

This grammar is context-free, actually it is even regular.

Let S be a context-free, exponential language which is gen-
erated by the grammar G. All calculations on the grammar can
be done in advance and therefore do not contribute to the run-
ning time. In particular, we may assume that G does not contain
useless nor unreachable nonterminal symbols, i.e., for every non-
terminal A, we have A

∗
⇒ x for some x ∈ {0, 1}∗, and S

∗
⇒ w for

some w with A ∈ w. We call such a grammar reduced.

Theorem 4.14. Let S ⊆ {0, 1}∗ be a context-free polynomial
language given by a context-free grammar G. Then S-SAT is in
P.

Proof. By the discussion above it is enough to prove the lemma for
reduced context-free grammars G. Moreover, we can assume that
all substitution rules are of the form A → UV or A → ε (Chomsky
normal form). Define for each nonterminal A, W 0

A = {ε} if A → ε
and for 1 ≤ k ≤ n

W k
A := {w ∈ {0, 1}k : A ⇒∗ w} .

It is easy to see that, since S is polynomial, all these sets are
polynomially bounded in n. They can be computed inductively
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by

W k
A =

⋃

A→UV

⋃

0≤ℓ≤k

W ℓ
U × W k−ℓ

V .

This leads to a polynomial enumeration of Wn
S0

= S∩{0, 1}n. By
Proposition 4.1 the S-SAT problem is then in P.

For a nonterminal A, define

ℓ(A) :=
{

x ∈ {0, 1}∗ | ∃y ∈ {0, 1}∗ : A
∗
⇒ xAy

}

,

r(A) :=
{

y ∈ {0, 1}∗ | ∃x ∈ {0, 1}∗ : A
∗
⇒ xAy

}

.

Call some X ⊆ {0, 1}∗ commutative if x1x2 = x2x1 for all x1, x2 ∈
X.

Theorem 4.15 (Ginsburg [43, Theorem 5.5.1]). Let G be a re-
duced context-free grammar and let L(G) be the language gener-
ated by G. Then |L(G) ∩ {0, 1}n| is polynomial in n if and only
if for every nonterminal A, ℓ(A) and r(A) are commutative.

It is not hard to prove that if there is a nonterminal A such
that ℓ(A) (or r(A)) is commutative then the language is asymptot-
ically exponential. Actually, we will perform a similar argument
for proving the next theorem.

Theorem 4.16. Suppose S ⊆ {0, 1}∗ has exponential size and is
a context-free language. Then S-SAT is NP-complete.

Proof. We will show how to compute large shattered sets for every
n. Let G be a reduced context-free grammar for S. Since S has
exponential size, |Sn| is surely not polynomial in n. Therefore,
Theorem 4.15 implies that there is a nonterminal A such that
ℓ(A) or r(A) is not commutative. Since we have only to prove
that there exists a polynomial reduction from SAT to S-SAT,
the existence of such a nonterminal is enough. Suppose without
loss of generality that ℓ(A) is not commutative, and let x1, x2 ∈
ℓ(A) such that x1x2 6= x2x1. Hence, there is a position i such
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that without loss of generality (x1x2)i = 0 and (x2x1)i = 1. By

definition, there are y1, y2 ∈ {0, 1}∗ such that A
∗
⇒ x1Ay1 and

A
∗
⇒ x2Ay2. By applying k times either A

∗
⇒ x1x2Ay2y1 or

A
∗
⇒ x2x1Ay1y2, we can create arbitrary 0s and 1s at the positions

i + k · |x1x2| for any k. In order to reach A from S0, we use

S0
∗
⇒ aAb, and in the end we use A

∗
⇒ w to obtain a word in

{0, 1}∗ for some a, b, w ⊆ {0, 1}∗. Hence if we set N := |a|+ |b|+
|w|+n(|x1x2|+|y1y2|), then I := {|a|+k|x1x2|+i : 0 ≤ k ≤ n−1}
is of size n, and it is shattered by SN . All these calculations can be
done in time O(n) and N is linear in n. Thus, by Theorem 4.10,
S-SAT is NP-hard. It is clear that S-SAT is in NP if S is context-
free, because deciding whether x ∈ S and verifying that x is
satisfying can be done in polynomial time. Therefore, S-SAT is
NP-complete.

Continuation of the example. Let S = (001|010|100)∗ be
the exponential, context-free language from before. Clearly, I ⊆
{1, 4, 7, 10, . . .} is an index set which is shattered by SN for N =
|I|. Look for example at the following SAT-instance

F = (v1 ∨ v̄2) ∧ (v1 ∨ v2 ∨ v̄3), V = {v1, v2, v3} .

Then we can encode it as a S-SAT instance

F ′ = (v1 ∨ v̄4) ∧ (v1 ∨ v4 ∨ v̄7), V ′ = {v1, v2, . . . , v9} .

F is satisfiable if and only if F ′ is S-satisfiable. We see that a CNF
formula will be mapped to a CNF formula again. One could argue
that this is not a “nice” CNF formula, because v2, v3, v5, v6, v8, v9

are variables which do not occur in F ′. By expanding the index set
by 1 and adding a dummy clause one can overcome this drawback.

F ′′ = F ′ ∧ (v2 ∨ v3 ∨ v5 ∨ v6 ∨ v8 ∨ v9 ∨ v10 ∨ v11 ∨ v12),

V ′′ = {v1, v2, . . . , v12} .

For every assignment of the variables v1, v4, v7 there is an assign-
ment in S12 that agrees on these variables and additionally sets
v10 to true. Every variable in F ′′ appears at least once. Since F
is satisfiable, the pair (F ′′, V ′′) is S-satisfiable.
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4.6 VC-Dimension of Regular Languages

Assume that S is not only context-free but also a regular language,
and is of exponential size. We will show that a maximum size
index set I that is shattered by Sn can be computed efficiently,
i.e., in time polynomial in n. Compare this to the result from
Section 4.5: there, we constructed fairly large shattered index sets
for values n of our choice but not necessarily one of maximum size.

First, we give a polynomial algorithm to decide whether a
given index set I is shattered by Sn. The idea to continue then
is to run this algorithm in parallel for all I in such a way that
the whole computation remains polynomial. Therefore, we will
have to identify different index sets according to their shattering
properties.

We know that S is regular, so we have a deterministic finite
state machine (DFSM) deciding S. This DFSM has a set Q =
{q0, q1, . . . , qd−1} of states and a set A ⊆ Q of accepting states,
and a start state q0. It is equipped with a state transition function
δ : Q × {0, 1} → Q. This δ can be extended to a function δ̂ :
{0, 1}∗ → Q, where δ̂(w) = q if the DSFM starting in q0 will be
in state q after processing the input word w.

For I ⊆ [n], x ∈ {0, 1}I and y ∈ {0, 1}[n]\I , let x◦y denote the
vector w ∈ {0, 1}n with w|I = x and w|[n]\I = y. The condition
that I is shattered by Sn can now be stated as following

∀x ∈ {0, 1}I ∃y ∈ {0, 1}[n]\I : δ̂(x ◦ y) is an accepting state .

We will interpret the states qi as boolean variables, which are set
to true for all accepting states and false to the other states. Thus
the accepting states A determine a true-false assignment ϕA of
the qi’s and for the formula

F I
n :=

∧

x∈{0,1}I

∨

y∈{0,1}[n]\I

δ̂(x ◦ y) ,

we have that ϕA satisfies F I
n if and only if I is shattered by Sn.
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Lemma 4.17. Let S ⊆ {0, 1}∗ be a regular language given by a
deterministic finite state machine as above and I ⊆ [n]. Then
there is an algorithm deciding whether I is shattered by Sn which
runs in time O(n).

Proof. The number of variables in F I
n is exactly |Q| = d which is

a constant. Moreover the formula is monotone, i.e., every variable
occurs only positively. Thus there are at most 2d different clauses
each of size at most d which implies that the size of the formula is
bounded by d2d. We will build the formula F I

n iteratively and in
each step we take care that in each clause there are no repeating
literals and there are no repeating clauses. Define

F I
k :=

∧

x∈{0,1}I

∨

y∈{0,1}[n]\I

δ̂(x ◦ y|{1,2,...,k}) .

Then F I
0 = q0 and for k ≥ 1

F I
k =







∧

C∈F I
k−1

∨

q∈C,t∈{0,1} δ̂(q, t), if k 6∈ I;
∧

C∈F I
k−1,t∈{0,1}

∨

q∈C δ̂(q, t), if k ∈ I,
(4.8)

where by a slightly abuse of notation the AND goes over all clauses
C in F I

k−1 and the OR goes over all variables q in C. The time

to compute this formula is linear in the size of F I
k−1 which is

inductively bounded by d2d. We can delete repeating literals in a
clause and repeating clause such that the formula F I

k has size at
most d2d again. Thus the time in each iteration step is constant
with respect to n and the overall time for constructing the F I

n is
in O(n). Evaluating F I

n for the assignment ϕA given by all the
accepting states can be performed in constant time. Altogether
we can decide whether I is shattered by Sn in time O(n).

Theorem 4.18. If S ⊆ {0, 1}∗ is a regular language given by a
DFSM then dVC(Sn) and a shattered set I ⊆ [n] of this size can
be computed in O(n) time.
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Proof. We say that an index set I ⊆ [k] is k-maximum if it is of
maximum size over all index sets I ′ ⊆ [k] with F I

k = F I′

k . Define

Ck := {(F I
k , |I|) : I ⊆ [k] is k-maximum} .

Clearly, dVC(Sn) is the largest |I| in Cn for which the correspond-
ing formula F I

k is true under ϕA. We have C0 = {(F ∅
0 , 0)} =

{(q0, 0)}. There are at most 22d
different formulas over d vari-

ables, i.e. |Ck| ≤ 22d
. Let k ≥ 1 and (F, |I|) ∈ Ck−1. Define in

analogy to (4.8):

ext((F, |I|), b) :=

{

(
∧

C∈F

∨

q∈C,t∈{0,1} δ̂(q, t), |I|), if b = 0;

(
∧

C∈F,t∈{0,1}
∨

q∈C δ̂(q, t), |I| + 1), if b = 1.

Here, b = 1 signals that we want to include k into the index set,
and b = 0 signals that we do not want to. Observe that for two
index sets I ′ and I with I ′|[k] = I|[k] it holds that F I

k = F I′

k . Thus
for k ≥ 1

Ck = {ext(F, b) : F ∈ Ck−1, b ∈ {0, 1}} .

This computation takes time linear in |Ck−1| which is bounded

by 22d
, so we can perform the computation in constant time. If

there are more than one entries in Ck with the same F I
k then we

delete all but one with a maximum |I|. In the end we obtain
Cn. For each (F, |I|) ∈ Cn, we evaluate F on ϕA. The maximum
|I| for which the F evaluates to true equals dVC(Sn). The whole
computation can be done in time O(n). If we want to compute a
maximum size shattered index set, rather than only its size, then
we can for example in addition store for each formula the decision
b = 0 or b = 1 and a reference from which formula it was derived.
By the usual backtracking technique we can compute a maximum
shattered index set then.

4.7 Some S-SAT which is not NP-hard

S-SAT is NP-hard if and only if there is a polynomial Karp re-
duction ϕ from SAT to S-SAT. The reduction ϕ maps formulas
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to instances of S-SAT such that F is satisfiable if and only if
ϕ(F ) is S-satisfiable. In this section we will prove that there is an
exponential S such that no such reduction ϕ exists, provided that
P 6= NP. An instance of S-SAT is a pair (F, V ) with a formula
F and V ⊇ vbl(F ) an ordered set of variables. Two instances
(F1, V1), (F2, V2) are equivalent, denoted by (F1, V1) ≡ (F2, V2), if
V1 = V2 and F1, F2 agree on every assignment of the variables.
Clearly, two equivalent instances are either both S-satisfiable or
both are not S-satisfiable. We want to use a classical tool of com-
plexity theory: diagonalization. For that we need a generalization
of possible polynomial Karp reductions from SAT to S-SAT.

Definition 4.19. A function ϕ mapping formulas to instances
is called a SAT-reduction if, for all satisfiable formulas F and
unsatisfiable formulas F ′, we have that ϕ(F ) 6≡ ϕ(F ′). If there
exists an algorithm which computes ϕ in polynomial time, then
we say that it is a polynomial SAT-reduction.

Consider for example the mapping ϕ which maps every sat-
isfiable formula to (true, ∅) and every unsatisfiable formula to
(false, ∅). This is a SAT-reduction but it is not polynomial (pro-
vided NP6= P). We could also map satisfiable formulas to (x, {x})
and unsatisfiable formulas to (x ∧ x, {x}). However, this is not a
SAT-reduction, since (x, {x}) ≡ (x ∧ x, {x}). If ϕ is not a SAT-
reduction then there is a satisfiable formula F and an unsatisfiable
formula F ′ such that ϕ(F ) ≡ ϕ(F ′).

Proposition 4.20. Let S be fixed. If ϕ is a polynomial Karp
reduction from SAT to S-SAT, then ϕ is a SAT-reduction as
well.

Proof. Assume for contradiction that ϕ is not a SAT-reduction.
Then there is a satisfiable formula F and an unsatisfiable formula
F ′ such that ϕ(F ) ≡ ϕ(F ′). Since ϕ is a Karp reduction, we have
that ϕ(F ) is S-satisfiable and ϕ(F ′) is not S-satisfiable. This is
a contradiction, because two equivalent instances are either both
S-satisfiable or both are not S-satisfiable.
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Lemma 4.21. Provide that P 6= NP, then for every polynomial
SAT-reduction ϕ and every n0 ∈ N0, there exists a satisfiable
formula F with n(ϕ(F )) ≥ n0, i.e., satisfiable formulas have ar-
bitrarily large images under ϕ.

Proof. For the sake of contradiction, suppose that there is some
SAT-reduction ϕ and some n0 such that n(ϕ(F )) ≤ n0 for all
satisfiable F . Let F0 be the class of all instances that occur as
an image of some satisfiable formula under ϕ. By assumption,
all instances in F0 have not more than n0 variables, implying
that there are only a finite number of non-equivalent instances
in F0. Clearly, F is satisfiable if and only if ϕ(F ) ≡ f ∈ F0.
For the finite language F0 we can store all elements in a look-up
table and therefore F0 ∈ P. Thus, SAT is in P, contradicting our
assumption.

Theorem 4.22. Provided that P 6= NP, there is an S such that
for all n ∈ N0 either |Sn| = 2n or |Sn+1| = 2n+1, and S-SAT is
not NP-hard.

Proof. Let ϕ1, ϕ2, . . . be an enumeration of all polynomial SAT-
reductions (there are countably many). For every n0 ∈ N0, i ∈ N

there exist by Lemma 4.21 a number n(ϕi, n0) and a satisfiable
formula F such that n(ϕi(F )) = n(ϕi, n0) ≥ n0. Define

n1 := n(ϕ1, 0) ,
ni+1 := n(ϕi+1, ni + 2) .

Sn :=

{
∅, if n = ni for some i;
{0, 1}n, otherwise.

Note that ni+1 − ni ≥ 2 and if Sn = ∅, then |Sn−1| = 2n−1.
Therefore, S is an exponential family with α = 2 and p(n) = n+2.
Assume for the sake of contradiction that S-SAT is NP-hard.
Then there is a polynomial Karp reduction ϕ from SAT to S-
SAT. By Proposition 4.20 ϕ is a polynomial SAT-reduction and
therefore ϕ = ϕi for some i. By construction, there is a satisfiable
formula F such that ϕi(F ) has exactly ni variables. But, Sni

is
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empty, so ϕi(F ) is not S-satisfiable, hence ϕi is not a reduction,
which is a contradiction.

This is nice, but has the drawback that S might have gaps,
i.e., not every level has exponential size. The problem above was
that, in order to ensure that for the satisfiable formula F its image
ϕ(F ) is not S-satisfiable, we set Sn = ∅ for n = n(ϕ(F )), creating
a “gap” in S. For a SAT-reduction ϕ we define the functions ϕf

and ϕv by ϕ(F ) = (ϕf (F ), ϕv(F )) for every formula F . Denote
the set of all assignments of the variables ϕv(F ) which satisfy
ϕf (F ) by sat(ϕ(F )). To assure that ϕ is not a allowed reduction,
we could alternatively set Sn = {0, 1}n \ sat(ϕ(F )). Clearly, this
suffices to ensure that ϕ(F ) is not S-satisfiable, preventing ϕ from
being a reduction from SAT to S-SAT. If, in addition, sat(ϕ(F ))
is small, |Sn| will be exponential in n. Let us now first focus on
what happens when it is never small.

Definition 4.23. A SAT-reduction ϕ is called sharp, if there is
some n0 such that for all F with n := n(ϕ(F )) ≥ n0, the following
two statements hold:

(i) F and ϕf (F ) are SAT-equivalent, that is, either both are
satisfiable, or both are not;

(ii) if ϕf (F ) is satisfiable, then |sat(ϕ(F ))| > 2n−1.

The choice of 2n−1 is arbitrary. Any number x with x/2n >
ǫ > 0 and 2n − x being exponential would be good as well. The
image of a sharp reduction consists of formulas with at most n0

variables, unsatisfiable formulas, and formulas with a huge num-
ber of satisfying assignments.

Lemma 4.24. If there is a polynomial sharp SAT-reduction ϕ,
then RP = NP.

Proof. We give a randomized algorithm for SAT with a bounded
error probability. Similar to the proof of Lemma 4.21, let F0 con-
tain all instances with less than n0 variables which are the image
of a satisfiable formula under ϕ. Again, this set is finite up to
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equivalence. There exists a randomized polynomial algorithm as
follows: For all instances with less than n0 we store in a look-up
table whether their preimages under ϕ are satisfiable (recall that
either all preimages are satisfiable or none). We compute satisfi-
ability of some input formula F as follows: if n(ϕ(F )) ≤ n0, we
simply check the look-up table, which can be done in constant
time. Otherwise, either both F and ϕf (F ) are unsatisfiable, or
both are satisfiable, but then sat(ϕ(F )) is huge. Choose x uni-
formly at random out of {0, 1}n for n = n(ϕ(F )) and return
satisfiable if x satisfies ϕf (F ) and unsatisfiable otherwise. If F
is unsatisfiable, the algorithm always answers correctly, otherwise
the answer is wrong with a probability p ≤ 1/2. Thus SAT is in
RP, and hence RP = NP.

The contrapositive of Lemma 4.24 reads as follows: Provided
that RP 6= NP, no polynomial SAT-reduction ϕ is sharp, which
means that for all ϕ, n0, there exist n = n(ϕ, n0) ≥ n0, F =
F (ϕ, n0), such that ϕ(F ) has n variables and one of the following
holds:

(i) F and ϕf (F ) are not SAT-equivalent, or
(ii) they are SAT-equivalent, |sat(ϕ(F ))| ≤ 2n−1, and ϕf (F )

is satisfiable.

Theorem 4.25. Provided that RP 6= NP, there is an S with
|Sn| ≥ 2n−1 for all n such that S-SAT is not NP-hard.

Proof. Using the function n(ϕ, n0) and our sequence ϕ1, ϕ2, . . .
of polynomial SAT-reductions, we define

n1 := n(ϕ1, 0) , F1 := F (ϕ1, 0) ,
ni+1 := n(ϕi+1, ni + 1) , Fi+1 := F (ϕi+1, ni + 1) .

The Fi are the formulas with ni variables provided by the con-
trapositive of Lemma 4.24, and the ni are all distinct. If case (i)
above applies to Fi, we say ni is of type (i), if case (ii) applies, ni

is of type (ii). We define S by

Sn :=

{
{0, 1}n \ sat(ϕi(Fi)) if n = ni is of type (ii);
{0, 1}n otherwise.
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We claim that every ϕ fails to be a reduction from SAT to S-
SAT. Take any ϕi. If ni is of type (i), then Fi and ϕf

i (Fi) are not
SAT-equivalent, and since Sni

= {0, 1}ni , ϕi(Fi) is S-satisfiable
iff Fi is not satisfiable. Thus, ϕ is not a reduction from SAT to S-
SAT. If ni is of type (ii), then Fi and ϕf

i (Fi) are both satisfiable,
but ϕi(Fi) is not S-satisfiable, since Sni

= {0, 1}ni \ sat(ϕi(Fi)).
Hence ϕi fails also in this case. Finally, note that |Sn| ≥ 2n−1 for
all n.

We finish here by comparing our result of this section with a
classical theorem by Ladner [62].

Theorem 4.26 (Ladner’s Theorem [62]). Provided P 6= NP, there
exists a language L ∈ NP \ P that is not NP-hard.

Languages of this form are called NP-intermediate languages
and it is an open question to construct any “natural” examples. It
is not clear if we could use directly an NP-intermediate language
L to construct an S such that S-SAT is not NP-hard. Moreover,
there is no consideration in Ladner’s Theorem how “dense” the
language L is, where in Theorem 4.22 and Theorem 4.25 we have
constructed exponential languages. However, it is not clear if
there exists an exponential language S that is also in NP, such
that the S-SAT problem is not NP-hard.
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[42] L. Gerencsér and A. Gyárfás. On Ramsey-type problems.
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