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Inventory management in markets with substituting customers is extremely chal-

lenging, not only for a downstream wholesaler, but also for upstream manufacturers.

Motivated by the structures in the agrochemical market, we analyze the optimal pro-

duction and stocking quantities of a manufacturer and a wholesaler, respectively, in

a two-stage supply chain with upstream competition and vertical information asym-

metries. We characterize a monopolistic wholesaler’s optimal stocking quantities and

show that these quantities are not necessarily monotonic, neither in the available

production quantities nor in the customers’ substitution rates. We further derive

the optimal production quantities of a monopolistic and a competitive manufacturer

when they are incompletely informed about the wholesaler’s stocking quantities. We

find that the introduction of competition may lead to decreasing production quan-

tities for some products. Furthermore, a product’s end-of-season inventories at the

manufacturer which arise due to information asymmetries may decrease even when

initial production levels increase.
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1 Introduction

In recent years, a diverse body of research has focused on how firms should react to customers’

substitution behavior. For firms that directly serve customers, investigations range from strate-

gic assortment planning (Kök and Fisher, 2007; Honhon et al., 2010) over promotion strategies

(Walters, 1991) to optimal stocking decisions (Netessine and Rudi, 2003; Jiang et al., 2011). In

a supply chain setting, only the downstream stage experiences the immediate effects of customer

substitution; however, substitution effects also diffuse across the entire supply chain. This paper

therefore investigates how different stages of a supply chain are affected by customer substi-

tution. In particular, we examine the optimal production and stocking decisions of different

supply chain members under upstream competition and vertical information asymmetries.

We are interested in situations when competition and substitution effects arise simultane-

ously within the supply chain. While competition occurs due to the non-cooperative behavior

of independent firms, substitution emerges from the competitive structures within the set of

available products. Note that competition and substitution are neither inclusive nor exclusive

concepts: Competition without substitution arises if multiple independent firms offer an iden-

tical product (in a supply chain setting, e.g., Cachon, 2001; Adida and DeMiguel, 2011), while

substitution without competition occurs if a monopolistic firm offers non-identical, yet similar

products that serve a common customer base.

In this paper, we concentrate on markets where substitution and competition effects exist

simultaneously. Initially, our work is motivated by the agrochemical market. Agrochemical

manufacturers sell their products through locally monopolistic wholesalers to their customers,

mostly farmers or farmer unions. Substitution in this market arises from customers’ focus on

active ingredients, resulting in low brand loyalty. In consequence, stock-outs at the wholesaler

lead to high substitution rates among products. This effect is even further enhanced by the in-

herent finiteness of the selling season for agrochemicals and the non-durability of some chemical

components.

Information asymmetries in this market stem from the wholesaler’s bargaining power and

substantial production lead-times at the manufacturers which can amount to two years (Shah,

2004). While production needs to be initiated well in advance of the desired selling season, the

wholesaler cannot be forced to commit to order quantities at this early stage. Final orders are

typically released close to the selling season when (weather-dependent) demand can be predicted

sufficiently well. In essence, production and ordering decisions are based on potentially different

information sets, and thus, vertical information asymmetries arise.

To analyze the manufacturer’s (wholesaler’s) optimal production (stocking) quantities, we

consider a supply chain in which potentially multiple manufacturers sell partially substitutable

products for a single season through a monopolistic wholesaler. We focus on a single period set-

ting because (i) it yields a very good approximation of the agrochemical market where the selling

season is finite and some chemical components cannot be stored until the next season; and (ii) it

is a necessary first step in the analysis of substitution effects within supply chains which is in line
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with the existing literature. To capture the effects of upstream competition, we compare two

distinct supply chain scenarios: a horizontally integrated (hereafter ’non-competitive’) supply

chain with a single manufacturer producing all available products; and a horizontally compet-

itive (hereafter ’competitive’) supply chain with multiple manufacturers, each producing only

one product. While inspired by the agrochemical market, our framework generally suits indus-

tries in which (1) products are partial substitutes, (2) products and market structures exhibit

typical newsvendor characteristics, and (3) customers are served by a monopolistic wholesaler.

Our work contributes to the literature on (i) vertical information asymmetries in supply

chains; and, most importantly, (ii) optimal stocking levels under customer substitution. In-

formation sharing within supply chains has been a prevalent research area in the last decades

(Li, 2002; Özer and Wei, 2006). Apart from the issue of truthful information sharing, litera-

ture also investigates the effects that asymmetric information exert on operational problems.

In the presence of short capacity at the manufacturer, Cachon and Lariviere (1999) show that

wholesalers exploit their informational advantage by manipulating the manufacturer’s alloca-

tion mechanism. Under asymmetric information, Corbett (2001) depicts that the introduction

of consignment stocks at the wholesaler leads to reduced cycle stocks at the expense of increased

safety stocks. If wholesalers are allowed to share inventories, Yan and Zhao (2011) conclude

that wholesalers share demand information with each other, but not with the manufacturer. We

depart from this stream by incorporating an asymmetric information structure into a supply

chain prone to customer substitution.

There has been an extensive literature on the repercussions of customer substitution on

the wholesaler’s optimal stocking quantities. As common building block, the single-stage

newsvendor inventory (competition) model with stock-out-based substitution as pioneered by

McGillivray and Silver (1978), Parlar (1988), Lippman and McCardle (1997), Bassok et al.

(1999), Smith and Agrawal (2000), and Netessine and Rudi (2003) has evolved. In a seminal

paper, Netessine and Rudi (2003) extend the preceding work by characterizing the structure

of the optimal stocking levels for an arbitrary number of products under both centralization

and competition. Based on these results, recent work has investigated various competitive en-

vironments under customer substitution. Mishra and Raghunathan (2004), Kraiselburd et al.

(2004), and Kim (2008) explore the consequences of introducing Vendor Managed Inventory for

the wholesaler’s stocking levels and advertisement efforts. Nagarajan and Rajagopalan (2008)

embed the substitution framework into a multi-period setting and Jiang et al. (2011) provide

a robust optimization approach that determines stocking levels by minimizing absolute regret.

Recently, Vulcano et al. (2012) develop an efficient procedure to empirically estimate required

substitution parameters.

As common in the newsvendor framework, existing models assume that the wholesaler is

unconstrained in his stocking decision, i.e., any arbitrary amount of products can be ordered.

Being true in a single-stage setting, this assumption fails to hold in a supply chain setting.

Here, a manufacturer’s production or capacity decision constitutes a natural upper bound on
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the wholesaler’s decision space (compare this to the literature on capacity choice, e.g., Cachon

and Lariviere, 1999; Montez, 2007). By explicitly integrating these dependencies into our model

we make a two-fold contribution: first, we investigate a constrained wholesaler’s behavior; sec-

ond, to the best of our knowledge, we are the first to examine how customer substitution affects

upstream stages. To be specific, the contributions of this paper are as follows: (1) We derive

the optimal stocking quantities of a constrained wholesaler and characterize the non-monotonic

effects that a change in a manufacturer’s production quantity exerts on optimal stocking lev-

els. (2) We formally analyze the influence of changing substitution rates on the wholesaler’s

stocking quantities. In contrast to an intuitive conjecture of Netessine and Rudi (2003), we

show that stocking levels for certain products may increase even if customer substitution away

from these products increases. (3) We characterize the optimal production quantities of an

incompletely informed manufacturer both under centralization and competition by applying a

Bayesian (Nash-)Stackelberg game. (4) We explicitly compare optimal production levels under

competition and centralization and find that competition may lead to reduced production. (5)

We show that for some products, end-of-season inventories at the manufacturer may decrease

even when initial production levels are increased under competition.

The remainder of this paper is organized as follows. The structure of the supply chain

under consideration and the distribution of information are described in §2. Furthermore, we

elaborate on the properties of the resulting supply chain game. In §3, we present our model of

a constrained wholesaler and derive the optimal stocking quantities. We proceed by analyzing

the effects of changing substitution rates on these optimal stocking levels. The manufacturer’s

production quantities are the focus of §4. We first characterize the equilibrium production quan-

tities of a manufacturer under competition, before investigating the structure of a monopolistic

manufacturer’s optimal production quantities. We then compare production levels under cen-

tralization and competition, and examine the manufacturer’s end-of-season inventories under

both scenarios. Section 5 provides a discussion of our results and concluding remarks.

2 Supply Chain Structure and Information Distribution

We consider a two-stage supply chain with possibly multiple manufacturers (she) and a single

wholesaler (he) selling N ≥ 2 partially substitutable products for one period. While competition

among manufacturers at the upstream stage may arise, we restrict attention to a monopolistic

downstream wholesaler. In the non-competitive situation, a single manufacturer provides all

N products (bilateral monopoly), whereas in the competitive scenario, N independent manu-

facturers each produce a different product (unilateral monopoly with upstream competition).

Figure 1 illustrates both supply chain structures. In the agrochemical market, a centralized

manufacturer occurs whenever a family of patents that allows for the provision of different,

yet substitutable products is exclusively held by a single firm. In contrast, upstream competi-

tion is introduced if different manufacturers hold different patents for similar, but not identical
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Figure 1: Bilateral monopoly (left) and unilateral monopoly with upstream competition (right).
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products or if patents run out.

We assume that information is asymmetrically distributed between manufacturers and the

wholesaler. As mentioned earlier, this vertical information asymmetry between supply chain

stages arises naturally in the agrochemical market due to the wholesaler’s bargaining power and

manufacturers’ lead-times. Besides such natural causes for differing information sets, literature

has also identified many other reasons including technological issues (Lee and Whang, 2000)

and the fear of information leakage (Anand and Goyal, 2009). Our modeling approach allows

for the inclusion of any such cause for information asymmetries within the supply chain.

To be precise, in line with the literature on vertical information asymmetries, e.g., Li (2002),

Özer and Wei (2006) and Yan and Zhao (2011), we assume that manufacturers are incompletely

informed about the wholesaler’s optimal stocking quantities. In contrast, upstream information

are common knowledge across manufacturers, i.e., no horizontal information asymmetry arises,

and production quantities are commonly verifiable. This assumption is reasonable in the agro-

chemical market since manufacturers produce substitutable, hence comparable products and

thus, they are able to credibly estimate their competitors’ cost structures. Furthermore, to

analyze the change in production quantities under competitive effects, we need to ensure that

decisions are based on identical information sets under both supply chain structures. Follow-

ing the argument of Harsanyi (1968) and Myerson (2004), we assume that manufacturers hold

a common prior belief about the wholesaler’s optimal stocking levels. Hence, manufacturers’

beliefs are consistent. This prior belief represents the manufacturers’ perception about the col-

lection of information that are not common knowledge. In summary, supply chain structure

and information distribution imply a Bayesian (Nash-)Stackelberg Game as first introduced by

Gal-Or (1987). The for our work relevant case of multiple-leader Stackelberg games has first

been studied by Sherali (1984) and recently by DeMiguel and Xu (2009), but only for complete,

non-Bayesian information structures.

The sequence of events is as follows: In the first stage, manufacturers maximize expected

profits and determine their optimal production quantities based on their beliefs about the

wholesaler’s subsequent stocking quantities. In the second stage, before the start of the selling
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Figure 2: Sequence of Events.
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season, the wholesaler learns these production quantities and, given his private information,

derives his optimal stocking levels by maximizing expected profits. Afterwards, orders are

submitted and shipped before the selling season starts. Throughout the selling season the

wholesaler experiences customer demand and realizes profits. We refer to the subgame with

given production quantities as the Ordering Game, while the entire game is denoted as the

Supply Game. Hence, production quantities are exogenously given in the Ordering Game,

whereas they are decision variables in the Supply Game. Figure 2 summarizes the chronology.

We assume that stochastic customer demand appears exclusively at the wholesaler and no

manufacturer can pursue a direct selling strategy. Prices are exogenously given by the market

and neither player can negotiate on the price to pay. Furthermore, we restrict attention to

pure-strategy equilibria.

3 The Ordering Game

Focusing on the Stackelberg follower in this section, we derive the wholesaler’s optimal stocking

levels given the manufacturers’ production quantities and characterize its sensitivity with respect

to (i) changes in a manufacturer’s production quantity, and (ii) substitution effects.

3.1 Optimal Stocking Quantities

For each product i ∈ {1, . . . , N}, the wholesaler pays a unit wholesale price wi to the manufac-

turer and sells the product at a unit retail price ri, satisfying ri > wi > 0. Additionally, the

wholesaler incurs a unit holding or disposal cost of hi ≥ 0 for each unsold item. Total demand

occurrence follows the standard model of stock-out-based substitution processes as defined by

Netessine and Rudi (2003), Kök et al. (2009), and Jiang et al. (2011). Customers arrive at

the wholesaler with an initial product preference. Thus, the wholesaler faces random initial

demand for product i given by Di, which is assumed to have a continuous demand distribu-

tion with positive support. Second choice (substitution) demand stems from customers whose

initially preferred product is out of stock. If a stock-out of product i occurs, an exogenously
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given fraction αij of unserved customers is willing to substitute from product i to j; naturally∑
j 6=i αij ≤ 1 for all i. Each initially unserved customer makes at most one substitution attempt,

which, if again unserved, results in a lost sale. Total demand for product i after substitution

is denoted by Ds
i = Di +

∑
j 6=i αji max{0, Dj − xj}, where xj is the wholesaler’s stocking level

for product j. For future reference, denote by x−j the (N − 1)-dimensional vector of stocking

levels for all products i 6= j.

Let x be the vector of stocking levels and ΠW (x) be the wholesaler’s expected profit when

choosing x. Since the vector of production quantities y is common knowledge and verifiable,

the wholesaler faces an optimization problem under complete information. Thus, he determines

his optimal stocking quantities by solving the following maximization problem Py:

max
0≤x≤y

ΠW (x) = E

[∑
i

ri min{xi, Ds
i } − wixi − hi max{xi −Ds

i , 0}

]

= E

[∑
i

uixi − (ui + oi) max{xi −Ds
i , 0}

]
, (1)

where ui = ri−wi and oi = hi+wi are the wholesaler’s underage and overage costs, respectively.

The wholesaler’s objective is to maximize his expected profit under the quantity restrictions

imposed by the manufacturers’ production quantities y. If there are no such restrictions, we let

y = ∞ and refer to this case as the unconstrained problem P∞. We start our analysis of the

optimal stocking quantities with a brief discussion on the properties of ΠW (x). All proofs are

in the appendix.

Lemma 1. For arbitrary i, ΠW (x) is not concave in xi, in general, for given x−i.

Lemma 1 formalizes the numerical results in Netessine and Rudi (2003) that ΠW (x) is

not always concave in each individual stocking level xi. This also implies that ΠW (x) is not

necessarily jointly concave in x, either. Thus, there may exist multiple local optima.

For the unconstrained problem P∞, we know from Proposition 1 in Netessine and Rudi

(2003) that the optimal stocking quantities x̂ must simultaneously satisfy the following first-

order necessary optimality conditions for all i ∈ {1, . . . , N}:

P(Di < x̂i)− P(Di < x̂i < Ds
i ) +

∑
j 6=i

αij
uj + oj
ui + oi

P(Ds
j < x̂j , Di > x̂i) =

ui
ui + oi

. (2)

In the remainder, denote by x̂i(x−i) the solution to product i’s optimality condition (2)

for given fixed values of x−i. Analogously, let x̂−i(xi) be the solution vector of the remaining

(N −1) optimality conditions in (2) for products j 6= i if xi is fixed. We further refer to product

j’s entry in x̂−i(xi) as x̂j(xi). By Lemma 1, it is not ensured that x̂i(x−i) is unique. Therefore,

for a given problem instance Py, we define x̂i(x−i) to be the largest solution that is feasible in

Py and for simplicity, we let x̂i(x−i) ≡ ∞ if there exists no feasible solution. The introduction

of this tie-breaking rule ensures uniqueness of x̂i(x−i) and helps us to avoid ambiguities when
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comparing two scenarios with multiple optima.

The interpretation of (2) is appealing. It is a standard newsvendor fractile solution, adjusted

by substitution effects. The second term on the left hand side increases the optimal stocking

level to account for additional second choice demand, whereas the third term reduces the optimal

stocking level by considering that a stock-out need not result in a lost sale.

The optimal solution of the constrained problem Py follows a similar pattern. Whenever

feasible, the wholesaler tries to stock the quantity that solves (2), given the other products’

optimal stocking levels. If this is not possible, he procures the entire available production

quantity yi. Proposition 1 formalizes this intuition.

Proposition 1. Denote the vector of the wholesaler’s optimal stocking quantities for the con-

strained problem Py by x?(y). Further, refer to x?(y) as a partially largest optimal solution if

there exists no other optimal solution x′?(y) with x?−i(y) = x′?−i(y) and x?i (y) < x′?i (y) for any i.

Then, any partially largest optimal solution simultaneously satisfies

x?i (y) = min{x̂i(x?−i(y)), yi}, (3)

for all i = 1, . . . , N .

In the remainder, we explicitly restrict our analysis to partially largest optimal solutions.

Thus, from now on, x?(y) refers only to partially largest optimal solutions. Analogously to

our tie-breaking rule for x̂i(x−i), we employ this selection criterion to avoid ambiguities and to

enhance the expositional clarity of our analysis. Obviously, each optimization problem Py has

at least one partially largest optimal solution. In contrast, our numerical experiments indicate

that optimal solutions that are not partially largest occur very rarely. Moreover, we emphasize

that most of our subsequent results also hold for optimal solutions that are not partially largest.

Note that x?(∞) = x̂. Therefore, the optimal stocking quantities given in (3) are consistent

with the solution to the unconstrained problem P∞ given in Netessine and Rudi (2003). Further-

more, in any Bayesian (Nash-)Stackelberg equilibrium, the wholesaler plays his best-response

against the manufacturers’ initial decision y, which is given by x?(y).

We now investigate the sensitivity of the wholesaler’s optimal stocking quantities with

respect to changes in a manufacturer’s production quantity. In particular, we are interested

in the question if the wholesaler’s optimal reaction to changes in y is monotonic. From a

manufacturer’s perspective, when altering yi, monotonicity of the wholesaler’s best-response

function at least guarantees predictability of the direction of change of x?(y), even in the

asymmetric information case. In contrast, under information asymmetries, a non-monotonic

best-response function is much harder to predict. We start our analysis by exogenously forcing

one stocking level to increase in the unconstrained problem P∞.

Lemma 2. Let ε > 0 and denote by ei the unit vector for product i.

(i) For given x−i and x′−i = x−i + εej with j 6= i, x̂i(x−i) ≥ x̂i(x′−i).
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(ii) For given xj and x′j = xj + ε, there are instances of P∞ for which x̂i(xj) < x̂i(x
′
j) for

some i 6= j.

Using the results of Lemma 2, we can now endogenize the increasing stocking level by

explicitly considering changes in a manufacturer’s production quantity yj . This is done in the

first part of Proposition 2. Building on this result, the second and third part transfer the

findings of Lemma 2 to the solution of the constrained problem Py.

Proposition 2. Let y′ = y + εej, ε > 0, for arbitrary j. Then:

(i) x?j (y
′) ≥ x?j (y).

(ii) For arbitrary i and j, fix x?k for all k 6= i, j and solve (3) for i and j. Then, there

always exists one optimal solution for which x?i (y
′) ≤ x?i (y).

(iii) Solve (3) for k = 1, . . . , N . There are instances of Py for which x?i (y
′) > x?i (y) for

some i 6= j.

In essence, Proposition 2 highlights that the wholesaler’s best-response is not necessarily

monotonic in a manufacturer’s production decision. The reason for this is the multidimension-

ality of substitution which comprises of direct and indirect effects. If the available production

quantity for one product j is increased, (i) and (ii) indicate that the wholesaler increases his

stocks for product j and, considered in isolation, reduces any other stock i 6= j. This is the

direct effect which is in line with our common understanding of economic substitutes. How-

ever, each increase or decrease in any one product’s stocking quantity has immediate effects

on all other products’ optimal stocking levels. Hence, if the wholesaler optimizes his stocking

quantities across all products, a cascade of indirect effects arises due to all products’ mutual in-

terdependency. We find that in some situations these indirect effects dominate the direct effects

so that, in optimum, the wholesaler may increase stocking levels for more than one product (iii).

Indirect effects are dominant if, e.g., the market’s substitution structure is heterogeneous in the

sense that there is few direct substitution between products j and i, but frequent substitution

between products j and k, and k and i.

3.2 Substitution Effects

We now investigate the sensitivity of the wholesaler’s optimal stocking quantities and expected

profit with respect to changing substitution rates. A change in the customers’ reaction to

product stock-outs implies changing substitution rates. Naturally, this also affects the total

demand for the wholesaler’s products. To be specific, increasing substitution rates imply a

stochastically larger total demand at the wholesaler, or mathematically, Ds
i is stochastically

increasing in αji for all j 6= i. Intuition suggests that this increased demand is always beneficial

for the wholesaler since the probability of incurring lost sales decreases. Moreover, Netessine and

Rudi (2003) conjecture intuitively that optimal stocking levels for a product increase (decrease)

if substitution rates to (from) this product increase. We now test this intuition.
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We start our analysis with the sensitivity of the wholesaler’s expected profit. As already

argued, demand is stochastically increasing in any substitution rate. Furthermore, it is well

known that, on expectation, a wholesaler benefits from increased demand if trade is profitable

(Li, 1992). Accordingly, the wholesaler’s expected profit increases in any substitution rate. The

following proposition formally states this argument.

Proposition 3. Suppose
∑

i 6=j αji < 1. The wholesaler’s expected profit ΠW (x) is increasing in

any substitution rate αji if stocking quantities x are adjusted optimally to changes in substitution

rates.

Note that Proposition 3 is true for the constrained and unconstrained problems Py and

P∞, respectively. If
∑

i 6=j αji = 1, then αji can only increase if at least one other substitution

rate αjk, k 6= i, simultaneously decreases. In this case, ΠW may actually decrease in αji.

While the sensitivity of the wholesaler’s expected profit has a monotonic behavior, we

now show that, in contrast to common intuition, his optimal stocking quantities might be non-

monotonic in substitution rates. As a starting point we analyze how x̂ changes in αji.

Lemma 3. (i) For arbitrary i, ∂x̂i/∂αji ≥ 0 for all j 6= i.

(ii) There are instances of Py for which ∂x̂j/∂αji > 0 for some i and j.

Ceteris paribus, x̂i is monotone increasing in the substitution rates to product i, αji, while

x̂j may change non-monotonically in the substitution rates from product j. Thus, Lemma 3

partially contradicts common intuition. In particular, x̂j need not decrease in αji. Thus, in

a situation where (ii) holds, it is optimal for the wholesaler to limit substitution behavior by

increasing initial stocking levels. Now, the results of Lemma 3 allow us to examine the total

effects that αji exerts on x?.

Proposition 4. There are instances of Py for which dx?j/dαji > 0 for some i and j.

For the constrained optimization problem Py, Lemma 3(ii) remains valid even when includ-

ing all indirect substitution dynamics and not only direct effects. A trade-off argument between

sales volumes and product margins explains these non-intuitive results. With increased substi-

tution the wholesaler achieves a higher total sales volume, but potentially at the cost of reduced

sales for certain high margin products. (Note that the overall sales volume increases, but not

necessarily each single product’s volume.) Consider a high margin product j and a low margin

product i. To restrict substitution from product j to i, the wholesaler may raise x?j even when

αji increases. In such a situation, the wholesaler deliberately reduces his sales volume, because

this negative effect is dominated by the positive effect of more expected sales of the high margin

product. To conclude, Lemma 3 together with Proposition 4 indicate that the wholesaler’s

optimal stocking quantities are in general non-monotonic in changing substitution rates.
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4 The Supply Game

In this section, we analyze the manufacturer’s optimal production quantities under incomplete

information about the wholesaler’s stocking levels. We first focus on the competitive scenario

with multiple Stackelberg leaders and then investigate the situation with a single Stackelberg

leader. Afterwards, we compare the optimal production quantities for both scenarios and illus-

trate our findings with a numerical example.

The Ordering Game which takes production quantities y as given is the second stage of

the Supply Game. In the first stage, manufacturers choose y to maximize their expected prof-

its given their beliefs about the wholesaler’s subsequent behavior. The manufacturers’ unit

production cost and selling price for product i are ci and wi, respectively, with wi > ci > 0,

i ∈ {1, . . . , N}. We assume that manufacturers credibly and simultaneously announce their pro-

duction quantities yi. Further, yi ∈ [0,K], with K sufficiently large so that it never constrains

any manufacturer. Since the wholesaler has private information on his optimal stocking quan-

tities, manufacturers can only hold a belief about the wholesaler’s equilibrium stocking levels.

We explicitly model this uncertainty about the wholesaler’s orders as a random variable which

depends on the chosen production quantities y. To be specific, let χi ∈ Xi(y) with cumulative

distribution Φi(χi, y) and density φi(χi, y) > 0. We assume Φi(χi, y) to be twice continuously

differentiable in all arguments y and define µi(y) ≡
∫
Xi(y)

χidΦi(χi, y). We restrict attention to

rational beliefs.

Definition 1. We say that a manufacturer’s belief about the wholesaler’s stocking quantities is

rational if it satisfies the following conditions for all products i:

1. Xi(y) = [0, yi];

2. ∂2Φi(χi, y)/∂yi∂yj ≥ 0, j 6= i;

3. ∂Φi(χi, y)/∂yi ≤ 0 and ∂2Φi(χi, y)/∂y2i ≥ 0.

Definition 1 ensures three structural properties of a manufacturer’s belief. First, man-

ufacturers assign a positive probability mass only to non-negative stocking levels which are

naturally bounded from above by the chosen production quantity yi. Second, ceteris paribus,

manufacturers consider all products to be economic substitutes. Third, production quantities

exert a stimulating effect on the wholesaler’s stocking decision, i.e. stocking levels stochasti-

cally increase with the available production quantities, but at a decreasing rate (for a thorough

discussion on stimulating effects of inventories, see Balakrishnan et al., 2008).

We emphasize that Definition 1 imposes very mild restrictions on a manufacturer’s belief.

The wholesaler, by construction, never orders more than y. Therefore, the first property is

in line with the results of Proposition 1. The second property ensures that manufacturers

correctly believe that they compete in a substitution market. Finally, the third property follows

immediately from Proposition 2(i) which states that x?i (y) increases in yi. Irrespective of the
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kind of information asymmetries, any rational manufacturer can always predict these properties,

only the magnitude of these effects may be unknown to her. Note that we neither require beliefs

to be correct on expectation, nor do we make any assumption on how the belief for product i

changes with yj , since Propositions 2(ii) and (iii) indicate that x?i (y) can increase or decrease

in yj .

The manufacturer’s decision problem structurally differs in two ways from the wholesaler’s

optimization problem. First, the wholesaler’s reaction to limited production quantities is fun-

damentally different from the customers’ reaction to stock-outs. While customers only try to

substitute once with a given probability, the wholesaler’s reaction to short production capacities

is based on a non-monotonic optimization strategy across all products. Second, the manufac-

turer can influence the wholesaler’s stocking quantity for product i by changing yi, whereas the

wholesaler cannot influence customer demand for product i by varying xi.

4.1 Competing Manufacturers

We now establish the equilibrium of the first stage of the Supply Game when there are N

competing manufacturers, each selling a different, yet partially substitutable product through

a monopolistic wholesaler. Before the wholesaler communicates his stocking quantities, man-

ufacturers simultaneously choose their production levels. Accordingly, manufacturers act as

Bayesian Stackelberg leaders with respect to the wholesaler, but as Nash competitors with re-

spect to other manufacturers. Thus, each manufacturer maximizes her expected profit, given the

other manufacturers’ production quantities and given her rational beliefs about the wholesaler’s

subsequent reaction. Her decision problem for given y−i is

max
yi≥0

ΠMi(yi|y−i) = wiµi(y)− ciyi, (4)

where ΠMi(yi|y−i) is the ith manufacturer’s expected profit. For brevity, let ΠMi = ΠMi(yi|y−i)
and denote by yci = arg maxyi≥0 ΠMi the ith manufacturer’s best-response to her competitors’

production quantities y−i.

We start our equilibrium analysis by noting that rational beliefs are sufficient to guarantee

concavity of each manufacturer’s expected profit.

Lemma 4. Assume rational beliefs. Given y−i, ΠMi is a concave function of the production

quantity yi for all i.

Due to the concavity of ΠMi we can derive each manufacturer’s best-response yci by exam-

ining the first-order conditions which provide necessary and sufficient optimality conditions.

Proposition 5. Assume rational beliefs. The following system of necessary first-order optimal-

ity conditions characterizes any manufacturer Nash equilibrium:

∂µi(y)

∂yi

∣∣∣∣
y=yc

=
ci
wi
, (5)
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i = 1, . . . , N.

A simple trade-off argument explains the optimality conditions (5). On expectation, in-

creasing the production level raises the wholesaler’s stocking level. This generates a marginal

increase in revenue given by wi∂µi(y)/∂yi, while simultaneously inducing a marginal cost of ci.

Equating marginal revenue and marginal costs provides the desired result. Note that yci consti-

tutes an upper bound on the wholesaler’s decision space. Hence, in any case, the wholesaler’s

stocking level is smaller than yci .

Naturally, (5) not only determines each manufacturer’s best-response in the manufacturer

Nash game, i.e. in the competition among leaders, but also persists in the entire Bayesian Nash-

Stackelberg game. Here, any Bayesian Nash-Stackelberg equilibrium is given by the wholesaler’s

optimal stocking levels x?(yc) and the manufacturers’ production quantities yc which form a

Nash equilibrium in the manufacturer Nash game. In a next step, we establish existence and

uniqueness of the manufacturer Nash equilibrium.

Proposition 6. Assume rational beliefs. For the competitive scenario, a pure-strategy manu-

facturer Nash equilibrium exists and is found by solving (5). If ΠMi is strictly concave in yi

and

2 +
∑
j 6=i

∂yci
∂yj
−
∑
j 6=i

∂2µj(y)/∂yi∂yj
∂2µi(y)/∂y2i

> 0, (6)

i = 1, . . . , N , for all y, then the manufacturer Nash equilibrium is unique.

Proposition 6 states two sufficient conditions for uniqueness of the manufacturer Nash

equilibrium. Each manufacturer’s expected profit ΠMi is strictly concave in yi if and only if

each manufacturer’s belief satisfies ∂2Φi(χi, y)/∂y2i > 0. Further note that a necessary condition

for (6) to hold is given by
∑

j 6=i |∂yci /∂yj | < 2. Intuitively, the sensitivity of each manufacturer’s

best-response with respect to the other manufacturers’ production decisions should be bounded.

A special case where (6) is automatically satisfied occurs if the effects of yi and y−i on µi(y)

are additive separable, i.e. µi(y) = gi(yi) + hi(y−i) for arbitrary differentiable functions gi and

hi. If gi is furthermore strictly concave, then the manufacturer Nash equilibrium is unique.

While Proposition 6 ensures uniqueness of the manufacturer Nash equilibrium, the stated

conditions are not sufficient to generally guarantee uniqueness of the Bayesian Nash-Stackelberg

equilibrium. As discussed in §3, the wholesaler’s optimal stocking levels given the manufacturers’

production quantities are not necessarily unique. Consequently, the wholesaler might have

multiple best-responses. Accordingly, to gain a unique equilibrium in the Supply Game, the

wholesaler’s optimal stocking quantities must be unique. Corollary 1 states a simple condition

that guarantees uniqueness.

Corollary 1. Let the conditions of Proposition 6 hold. Suppose ΠW (x) is jointly concave in x.

Then, the Supply Game has a unique Bayesian Nash-Stackelberg equilibrium in the competitive

scenario.
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4.2 Monopolistic Manufacturer

As a benchmark, we now derive the Bayesian Stackelberg equilibrium of the Supply Game

without manufacturer competition. To be specific, a monopolistic manufacturer simultane-

ously produces all N substitutable products and sells them through a monopolistic wholesaler.

Therefore, the manufacturer serves as Bayesian Stackelberg leader with respect to the whole-

saler. Thus, she maximizes her expected profit ΠM across all products given her belief about

the wholesaler’s subsequent stocking levels. Her decision problem is

max
y≥0

ΠM (y) =
∑
i

wiµi(y)− ciyi. (7)

For given rational beliefs, denote by ync = arg maxy≥0 ΠM a vector of optimal production

quantities. In contrast to the competitive scenario, the manufacturer’s expected profit ΠM is

not generally concave in y. Thus, first-order optimality conditions provide only necessary, but

not sufficient conditions for the manufacturer’s optimal production quantities.

Proposition 7. Assume rational beliefs. In any Bayesian Stackelberg equilibrium of the non-

competitive scenario, the manufacturer’s production quantities satisfy the system of first-order

necessary optimality conditions

∂µi(y)

∂yi
+
∑
j 6=i

wj
wi

∂µj(y)

∂yi

∣∣∣∣∣∣
y=ync

=
ci
wi
, (8)

i = 1, . . . , N .

Analogously to the optimality conditions of the competitive scenario, the monopolistic

manufacturer’s optimal decision also follows a trade-off argument. Again, the manufacturer

equates marginal costs and marginal revenues. This time, the shift in revenue accounts not only

for the increased revenue for product i, but also for the decreased revenue for all other products

j 6= i. Intuitively, the monopolistic manufacturer considers the influence of her production

quantities on the revenue for all products, whereas each competitive manufacturer only cares

about her own product.

Neither the manufacturer’s optimal production quantities ync nor the wholesaler’s optimal

stocking levels x?(ync) are necessarily unique. In consequence, the Bayesian Stackelberg equilib-

rium of the Supply Game is not guaranteed to be unique. A sufficient condition for uniqueness

is given in Corollary 2.

Corollary 2. Suppose ΠW (x) and ΠM (y) are jointly concave in x and y, respectively. Then,

the Supply Game has a unique Bayesian Stackelberg equilibrium in the non-competitive scenario.
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4.3 The Consequences of Manufacturer Competition

Intuitively, competing manufacturers adopt production quantities yc that differ substantially

from a monopolistic manufacturer’s production quantities ync even though they may hold iden-

tical beliefs about the wholesaler’s subsequent stocking levels. In this context, the natural

question arises whether competition causes manufacturers to increase production quantities,

i.e., yc > ync? Furthermore, vertical information asymmetries induce supply chain inefficien-

cies that manifest in end-of-season inventories at the manufacturer. However, are these effects

smaller or larger under upstream competition? We now explore these issues.

Intuition suggests that the wholesaler prefers competing manufacturers to a monopolistic

manufacturer because we expect production quantities to increase under competition. Hence,

the wholesaler’s decision space is less restricted under manufacturer competition and so, he can

provide a more profitable service level to his customers. Proposition 8 shows that this intuition

is not always true.

Proposition 8. For given rational beliefs, the relationship between yc and ync is as follows:

(i) If

∑
j 6=i

wj
∂µj(y)

∂yi
≤ 0 (9)

for all products i, then yci ≥ ynci for at least one product i.

(ii) There are rational beliefs such that yci < ynci for some product i.

It can never happen that all production quantities decrease under competition, if (9) holds.

This condition ensures that each product has in total a negative effect on the other products,

which is the nature of substitute products. A sufficient condition for (9) are rational beliefs that

additionally satisfy ∂Φi(χi, y)/∂yj ≥ 0 for all j 6= i, or intuitively, each product j should exert

a negative influence on every other product i. Note that Proposition 2(iii) indicates that this

need not be true for all products. There exist situations where two products have a positive

effect on each other, i.e. ∂Φi(χi, y)/∂yj < 0 for some i and j. Condition (9) also captures these

contingencies because we only require the weighted sum over all effects to be negative, not each

single effect. We propose that any product that violates (9) is no longer an economic substitute,

but rather an economic complement for the other products.

An availability trade-off explains why a monopolistic manufacturer sometimes stocks more

than a competitive manufacturer (ii). A monopolistic manufacturer can coordinate the availabil-

ity of all products, i.e. she can optimally build large stocks of a product i, while simultaneously

decreasing the availability for products j 6= i. Under competition, a manufacturer cannot ac-

complish this availability trade-off since she cannot force her competitors to reduce production

quantities. This contingency occurs for a product i if, e.g., manufacturers believe that yi ex-

erts only a limited influence on the wholesaler’s stocking decision for the other products x?−i.

Markets with such a heterogeneous substitution structure typically include no-name and brand
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products (Ailawadi and Keller, 2004) or heterogeneous products.

If the effects of yi and y−i on µi(y) are additive separable for all i, or if (9) holds and all

products are homogeneous and symmetric, then production increases under competition for all

products, i.e. yc ≥ ync.
Note that the results of Proposition 8 are similar to the findings of Netessine and Rudi

(2003) for competition among wholesalers. However, these two results are based on different

problem characteristics because the wholesaler’s and manufacturer’s problem differ structurally

in numerous ways. In particular, substitution dynamics and demand characteristics are com-

pletely different. Therefore, Proposition 8 establishes the transferability of the previous results

to the manufacturer stage.

Naturally, as manufacturers’ production quantities change under competition, the whole-

saler also adjusts his stocking quantities. This implies that end-of-season inventories at the

manufacturer, i.e., excess inventories after trading, change if competition is introduced. Note

that these residual inventories are a direct consequence of the vertical information asymmetry

within the supply chain. If manufacturers could perfectly determine the wholesaler’s best-

response stocking quantities, they would never produce more than this quantity. Accordingly,

manufacturers would never incur end-of-season inventories. Therefore, we now examine the

change in manufacturers’ end-of-season inventories under competition in the case of informa-

tion asymmetries. We denote the end-of-season inventory level of product i at the manufacturer

by Ii(y) = yi − x?i (y).

Proposition 9. Let y′ ≥ y. Then, the following relations between I(y′) and I(y) hold:

(i) Ii(y
′) ≥ Ii(y) for at least one product i.

(ii) There are instances of the Supply Game where Ii(y
′) < Ii(y) for some product i.

The wholesaler is always less restricted in his decision under y′ than under y. This reflects,

e.g., a situation where all production quantities increase under upstream competition. Even

though all production quantities (weakly) increase, end-of-season inventories for some (ii), but

not all (i) products may decrease. In such a case, the wholesaler increases his stocking quantity

for product i more than the manufacturer increases yi. This behavior is closely related to the

findings of Proposition 2. Thus, indirect substitution dynamics at the wholesaler can lead to

such a disproportionate adjustment of stocking levels.

4.4 Numerical Illustration

We now provide a small numerical example to illustrate our theoretical findings. Consider

a market with three substitutable products. For the sake of analytical tractability, suppose

that each manufacturer believes that the wholesaler’s stocking quantities follow a truncated

exponential distribution with support on [0, yi] and rate parameter λi(y), i.e. Φi(χi, y) =

[1 − exp(−λi(y)χi)]/[1 − exp(−λi(y)yi)]. Note that our framework also works for any other

common distribution such as truncated Normal, Gamma, or Weibull distributions, but at the

cost of analytical tractability.
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Parameters Optimal decision
Scenario w1 w2 w3 k21 k31 k12 k32 k13 k23 yc

1 yc
2 yc

3 ync
1 ync

2 ync
3

A 8 8 8 0.5 0.5 0.5 0.5 0.5 0.5 0.70 0.70 0.70 0.61 0.61 0.61
B 8 8 8 0 0 0.5 0.5 0.5 0.5 1.20 0.63 0.63 1.00 0.60 0.60
C 8 8 8 0.5 0.5 0 0.5 0 0.5 0.65 0.84 0.84 0.71 0.69 0.69
D 8 8 8 0 0 0.5 0 0.5 0 1.20 0.75 0.75 0.81 0.85 0.85
E 10 8 8 0.5 0.5 0.5 0.5 0.5 0.5 1.00 0.66 0.66 1.07 0.45 0.45
F 11.9 8 8 0.5 0.5 0.5 0.5 0.5 0.5 1.24 0.62 0.62 1.89 0.06 0.06
G 11.9 10 7 0.5 0.5 0.5 0.5 0.5 0.5 1.20 0.91 0.44 1.44 0.59 0.05

Table 1: Optimal production decisions.

Following Definition 1, beliefs about the wholesaler’s stocking level for product i should

be stochastically increasing in yi. Thus, each rate parameter λi(y) is a function of the manu-

facturers’ production quantities which decreases in yi. To be specific, we employ the following

simple structural form: λi(y) = y−1i +
∑

j 6=i kjiyj + 1. By setting kji ≥ 0 we ensure that the

other requirements of Definition 1 are met. We work with the inverse of yi and not with −yi to

ensure non-negativity of λi(y). Intuitively, each scale parameter kji reflects the magnitude of

influence that yj exerts on the wholesaler’s stocking decision for product i.

The truncated exponential distribution together with the specification of λi(y) ensures that

each manufacturer holds rational beliefs as described in Definition 1. It is readily shown that

µi(y) = [1/λi(y)] − [yiexp(−λi(y)yi)/(1 − exp(−λi(y)yi))]. Thus, the influence of yi and y−i

on µi(y) is not additive separable. For all investigated scenarios, we assume ci = 2 for all

i. All other parameter values wi and kji are given in Table 1. Parameters include high and

low margin cases, and high and low substitution rates. Note that for all displayed parameter

values, a unique Bayesian (Nash-)Stackelberg equilibrium exists. For each scenario, we display

the optimal production decisions for both supply chain configurations.

Obviously, in a market with symmetric price and substitution structure, production quanti-

ties increase if manufacturer competition is introduced (A). In our example, this result remains

valid if there is no substitution to one product in the assortment (B). If instead one product

does not influence the other products, i.e., there is no substitution away from the product,

then production levels decrease for this product under competition (C,D). In such a scenario, a

monopolistic manufacturer optimally increases the availability of the product at the cost of de-

creasing the other products’ availability. In a competitive environment, a manufacturer cannot

coordinate product availability across multiple products because her competitors are reluctant

to lose market shares. In the agrochemical market, these heterogeneous substitution structures

arise due to the coexistence of single- and multi-purpose products. While single-purpose prod-

ucts are specialized to fight a single plant disease such as mildew, multi-purpose products are

effective against a wider class of diseases. Naturally, substitution from the specialized to the

more general product is likely to occur, because the specialized product lies within the applica-

tion range of the general product. In contrast, the specialized product need not be useful for a

customer initially desiring the general product.
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In our example, production quantities for high margin products decrease under competi-

tion, while production increases for low and medium margin products (E,F,G). We observe this

behavior because a monopolistic manufacturer shifts as much demand as possible to the high

margin products, thereby reducing the other products’ availability to a minimum. In contrast,

a similar demand shift cannot be accomplished under competition. Note that under a monopo-

listic manufacturer, low margin products almost disappear from the market, while competition

ensures product diversity (F,G). Concurrent with intuition, overall production increases with

the introduction of manufacturer competition.

5 Discussion and Conclusions

In this paper, we analyzed the optimal production and stocking decisions of a manufacturer and

a wholesaler in a two-stage supply chain with upstream competition and vertical information

asymmetries. We characterize the wholesaler’s equilibrium stocking levels and show that these

quantities are non-monotonic in both, available production quantities and customer substitution

rates. For the upstream stage of the supply chain, we derive the equilibrium production levels

of a monopolistic and a competitive manufacturer, respectively. We find that production levels

for some products decrease if upstream competition is introduced. Furthermore, we highlight

the counterintuitive situation that some end-of-season inventories at the manufacturer decrease

although initial production levels increase.

5.1 Robustness

We now discuss the robustness of our results with respect to changes in the information and

supply chain structure. Additionally, we delineate opportunities for future research.

Concerning the information structure, we assume that (i) manufacturers’ production quan-

tities y are verifiable, and (ii) Φi(χi, y) is differentiable in y. Verifiability of y ensures that the

wholesaler determines his stocking quantities under complete information about the manufac-

turer’s strategy. Consequently, we can ignore communication issues between manufacturer and

wholesaler. This is not true if y is unverifiable and thus privately observed by the manufacturer.

In this case, the manufacturer’s equilibrium behavior consists of her production and commu-

nication strategy, which introduces an additional inference problem for the wholesaler. Under

strategic communication, the manufacturer need not pursue a truth-telling strategy or she may

not communicate any information at all, which inherently changes the timing of the game to

simultaneous moves. Whether the structure of our results remains valid under such a scenario,

or not, is an interesting question for future research.

We further assume that a manufacturer’s belief Φi(χi, y) about the wholesaler’s optimal

stocking quantities x?i (y) is differentiable with respect to y. This is a common assumption

(Cachon and Lariviere, 1999; Özer and Wei, 2006), but clearly, it is not ensured that, in equilib-

rium, x?i (y) is actually differentiable. Nevertheless, it is guaranteed that x?i (y) is continuous in
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y. For such a situation, Cachon and Lariviere (1999) show numerically that the differentiability

assumption provides an excellent approximation. We therefore expect our results to be robust

with respect to differentiability of beliefs.

Concerning the supply chain structure, we assume that competition occurs only among

manufacturers. This assumption is inspired by our observations in the agrochemical market,

but obviously, a general extension of our framework is to allow for downstream competition as

well. Such an extension introduces two new issues that need to be incorporated into the model.

First, manufacturers need to decide on allocation mechanisms for their production quantities

in case that total orders exceed the available production quantities. Second, these allocation

schemes induce strategic ordering behavior of the wholesalers. The influence of these allocation

problems on supply chains in substitution markets should be a focal point of future work.

Additionally, under downstream competition, the assumption that Φi(χi, y) is differentiable

in y becomes much more problematic. At some point, competition among heterogeneous whole-

salers can induce some competitors to leave the market. Generally, such a market exit results

in discontinuities in the stocking quantities of the remaining competitors. Therefore, the dif-

ferentiability assumption provides a less reliable approximation. Nevertheless, we expect that

such an approximation yields structurally valid results, even under downstream competition.

To deepen our understanding of the repercussions that substitution exerts on the individual

supply chain members, more fundamental extensions should also be examined. In particular,

we believe that future models should also incorporate pricing decisions, but this might come

at the expense of analytical tractability. Another aspect that deserves future research is the

introduction of multiple time periods. In such a setting, initial product demand changes dynam-

ically over time because there is a probability of a substituting customer changing his product

preferences due to product unavailability.

5.2 Concluding Remarks

Our analysis demonstrates that substituting customers affect the production and stocking de-

cisions within a supply chain in non-monotonic and partially counterintuitive ways. Thus,

intuition may fail to capture all relevant substitution dynamics and this effect becomes stronger

the more heterogeneous the competing products are. While in completely homogeneous (sym-

metric) markets intuition correctly predicts each supply chain member’s behavior, intuitive

reasoning is prone to crucial misinterpretations as soon as the market becomes heterogeneous.

Reasons for such heterogeneities are widely spread in reality and can be found in terms of profit

margins, brands, and product and demand characteristics.

The agrochemical market, e.g., is shaped by these heterogeneities. Brand manufacturers

and (former) patent holders compete with generic products, which oftentimes differ in price

and profit margins. Furthermore, the market’s substitution structure is skewed due to the

coexistence of single- and multi-purpose products. Hence, in such a heterogeneous market, it

is very important to understand the substitution structures among products to take the right
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decisions.

Appendix

Proof of Lemma 1. For given x−i, the first-order and second-order derivatives of ΠW (x) with

respect to xi are

∂ΠW (x)

∂xi
=ui − (ui + oi)P(Ds

i < xi)−
∑
j 6=i

(uj + oj)αijP(Ds
j < xj , Di > xi)

=ui − (ui + oi)P(Ds
i < xi)−

∑
j 6=i

(uj + oj)αijP(Ds
j < xj |Di > xi)P(Di > xi)

∂2ΠW (x)

∂x2i
=− (ui + oi)fDs

i
(xi)

+
∑
j 6=i

(uj + oj)αij

[
fDi(xi)P(Ds

j < xj |Di > xi)− αijfDs
j |Di>xi(xj)P(Di > xi)

]
,

i = 1, . . . , N , with fY being the density function of random variable Y . By rearranging terms,

ΠW (x) is concave in xi if and only if

(ui + oi)fDs
i
(xi) +

∑
j 6=i

(uj + oj)α
2
ijfDs

j |Di>xi(xj)P(Di > xi) ≥
∑
j 6=i

(uj + oj)αijfDi(xi)P(Ds
j < xj |Di > xi)

(10)

for all x. To prove the lemma, we construct a scenario for which (10) is violated for some x.

Let η > 0, and for given xi, let Xη(xi) be the set of stocking quantities x−i such that

P(Ds
j < xj |Di > xi) ≥ 1/(N − 1) and fDs

j |Di>xi(xj) < η. Note that for any xi, Xη(xi) is

non-empty because P(Ds
j < xj |Di > xi)→ 1 and fDs

j |Di>xi(xj)→ 0 for xj →∞. For all j 6= i,

let (i) αji = 0, i.e., Ds
i =st Di; (ii) αij = 1/(N − 1); and (iii) (uj + oj) = (1 + ν)(ui + oi)(N − 1),

ν > 0. Further assume that Di ∼ Normal(µi, σi) with σi < ν/
[
(1 + ν)η

√
2π
]
.

Given these assumptions,

(ui + oi) [fDi(xi) + (1 + ν)η] > (ui + oi)fDs
i
(xi) +

∑
j 6=i

(uj + oj)α
2
ijfDs

j |Di>xi(xj)P(Di > xi)

(11)

and ∑
j 6=i

(uj + oj)αijfDi(xi)P(Ds
j < xj |Di > xi) ≥ (ui + oi)(1 + ν)fDi(xi). (12)

By (10)-(12), it follows that ΠW (x) is not concave in xi, if for some xi,

(1 + ν)fDi(xi) > [fDi(xi) + (1 + ν)η] , (13)
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or equivalently,

fDi(xi) >
1 + ν

ν
η. (14)

Since Di is normally distributed, we can choose xi such that fDi(xi) = 1/(σi
√

2π) and hence,

(14) holds for any σi < ν/
[
(1 + ν)η

√
2π
]
.

Proof of Proposition 1. Consider the maximization problem Py. Since ΠW (x) and all con-

straints are continuously differentiable in x and all constraints are linear in x, there exists

a unique vector λ such that (x?, λ) satisfies the Karush-Kuhn-Tucker (KKT) conditions:

∂ΠW (x?)

∂xi
− λi = 0 (15)

λi(x
?
i − yi) = 0 (16)

x?i − yi ≤ 0 (17)

x?, λ ≥ 0, (18)

i = 1, . . . , N . Now, suppose x? is a partially largest optimal solution.

Case 1: x?i < yi. For (16) to hold, we need λi = 0, which implies by (15) and (2) that

x?i = x̂i(x
?
−i).

Case 2: x?i = yi. We need to show that yi ≤ x̂i(x
?
−i). Suppose to the contrary that there

exist situations where x?i = yi > x̂i(x
?
−i). By (2), x̂i(x

?
−i) is the wholesaler’s optimal stocking

quantity if he is unrestricted in his stocking decision for product i. Now, if this stocking

quantity is also feasible for the bounded problem Py, then it must also be optimal in Py. Thus,

x?i = x̂i(x
?
−i) < yi = x?i which is a contradiction.

Combining Case 1 and 2 for all i yields x?i (y) = min{x̂i(x?−i(y)), yi}.

Proof of Lemma 2. Given x−i, the wholesaler’s optimization problem is now one-dimensional in

xi. Thus, to analyze how x̂i(x−i) changes in xj , j 6= i, we apply the Implicit Function Theorem

to gain the required differential

∂x̂i(x−i)

∂xj
= −∂

2ΠW (x̂i, x−i)/∂xi∂xj
∂2ΠW (x̂i, x−i)/∂x2i

.

Due to the optimality of x̂i(x−i), we know that ∂2ΠW (x̂i, x−i)/∂x
2
i ≤ 0. Furthermore, analysis

of the cross-partial yields

∂2ΠW (x̂i, x−i)

∂xi∂xj
= −(ui + oi)

∂

∂xj
P(Ds

i < x̂i)−
∑
k 6=i

(uk + ok)αik
∂

∂xj
P(Ds

k < xk|Di > x̂i)P(Di > xi).

By construction, Ds
k, k 6= j, is stochastically decreasing in xj and so, ∂P(Ds

i < x̂i)/∂xj ≥ 0

and ∂P(Ds
k < xk|Di > x̂i)/∂xj ≥ 0 for all k 6= i, j. Additionally, Ds

j does not depen-

dent on xj and therefore ∂P(Ds
j < xj |Di > x̂i)/∂xj ≥ 0. Combining these arguments gives
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∂2ΠW (x̂i, x−i)/∂xi∂xj ≤ 0 and finally

∂x̂i(x−i)

∂xj
≤ 0.

Thus, it follows that x̂i(x−i) ≥ x̂i(x′−i).
(ii) Consider a three-product scenario with products denoted by i, j, and k, respectively,

and suppose that the density functions of Di, Dj , and Dk are strictly positive on R+. This

implies that the inequality in Part (i) is strict because ∂2ΠW (x̂i, x−i)/∂xi∂xj < 0. Assume

αjk > 0, αki > 0, and any other substitution rate to be zero. Note that x̂i(xj) depends on xj

only indirectly through x̂k(xj). We now prove the lemma by a sequential argument.

First, we analyze the direct effects between the three products. By Part (i), x′j > xj implies

x̂k(x
′
j) < x̂k(xj), and thus x̂i(x

′
j) > x̂i(xj). Second, to complete the proof, we need to show

that an increased stocking quantity for product i also leads to a decreased stocking quantity for

k, but this is again just an application of Part (i).

Accordingly, since direct and indirect substitution effects point in the same direction, we

can conclude that x̂i(xj) < x̂i(x
′
j).

Proof of Proposition 2. (i) Suppose x?j (y
′) < x?j (y). This can never happen because x?j (y

′) is

feasible in Py, but by assumption, it is dominated in Py by x?j (y). This must also be true in

Py′ because any feasible solution of Py is feasible in Py′ . Thus, x?j (y
′) cannot be optimal in Py′ .

This is a contradiction and therefore x?j (y
′) ≥ x?j (y).

(ii) By Part (i) and Lemma 2(i), it is always true that x̂i(x
?
j (y), x?−j) ≥ x̂i(x

?
j (y
′), x?−j). It

follows immediately that x?i (y) = min{x̂i(x?j (y), x?−j), yi} ≥ min{x̂i(x?j (y′), x?−j), yi} = x?i (y
′).

(iii) Assume yi large enough so that it never constrains the wholesaler. This assumption

ensures the applicability of Lemma 2 because we are guaranteed to find an interior solution

to the wholesaler’s optimization problem. Hence, by Part (i) and Lemma 2(ii), there exist

situations where x̂i(x
?
−i(y)) < x̂i(x

?
−i(y

′)) for some i 6= j. Thus,

x?i (y) = min{x̂i(x?−i(y)), yi} = x̂i(x
?
−i(y)) < x̂i(x

?
−i(y

′)) = min{x̂i(x?−i(y′)), yi} = x?i (y
′)

for some i 6= j.

Proof of Proposition 3. The total differential of ΠW (x) with respect to substitution rates is

dΠW (x?(αji), αji)

dαji
=
∂ΠW

∂αji
+
∑
k

∂ΠW

∂x?k

∂x?k
∂αji

.

In a first step, we show that ∂ΠW /∂αji ≥ 0 for all i and j, i 6= j, i.e.

∂ΠW

∂αji
= (ui + oi)E

[
(Dj − xj)1{Ds

i<xi,Dj>xj}

]
≥ 0. (19)

This holds true, since the term under the expectation in (19) is non-negative.
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In a second step, we investigate the indirect effects of αji on ΠW . If x is optimally adjusted,

then, for all k, ∂ΠW /∂xk = 0 if x?k < yk and ∂x?k/∂αji = 0 if x?k = yk. Thus, dΠW /dαji =

∂ΠW /∂αji ≥ 0 for all i and j, if x is adjusted optimally.

Proof of Lemma 3. (i) Choose an arbitrary product i. Application of the Implicit Function

Theorem yields

∂x̂i(α)

∂αji
= −∂

2ΠW (x̂(α), α)/∂xi∂αji
∂2ΠW (x̂(α), α)/∂x2i

. (20)

Due to the optimality of x̂(α), we know that ∂2ΠW (x̂(α), α)/∂x2i ≤ 0. In addition, the cross-

partial ∂2ΠW /∂xi∂αji is explicitly given by

∂2ΠW

∂xi∂αji
= −(ui + oi)

∂

∂αji
P(Ds

i < x̂i), (21)

for all j 6= i. By construction, Ds
i = Di +

∑
k 6=i αki(Dk − xk)+. Thus, Ds

i is stochastically

increasing in αji. It follows that ∂P(Ds
i < xi)/∂αji ≤ 0, and hence, ∂2ΠW /∂xi∂αji ≥ 0. Now,

by (20) and (21), ∂x̂i/∂αji ≥ 0 for all j 6= i due to the optimality of x̂(α).

(ii) Similar to Part (i), the proof proceeds by evaluating

∂x̂j(α)

∂αji
= −∂

2ΠW (x̂(α), α)/∂xj∂αji
∂2ΠW (x̂(α), α)/∂x2j

. (22)

In contrast to the proof of Part (i), the cross-partial can now be positive or negative, since

∂2ΠW

∂xj∂αji
= −(ui + oi)

[
P(Ds

i < x̂i, Dj > x̂j) + αji
∂

∂αji
P(Ds

i < x̂i, Dj > x̂j)

]
, (23)

where ∂P(Ds
i < x̂i, Dj > x̂j)/∂αji ≤ 0.

We therefore prove the lemma by providing an example. Consider a two-product portfolio

with heterogeneous initial demands Di ∼ Uniform(0, 1) and Dj ∼ Beta(2, 1), i.e. Fj(xj) =

x2j . Assume all other parameters to be symmetric across products. To be concrete: ui =

uj = 2, oi = oj = 8, and αij = αji = 0.8. In this setting, we obtain ∂2ΠW /∂x
2
j =

−10
[
(xi + xj)

2 + x2j/4
]
≤ 0, and ∂2ΠW /∂xj∂αji = 125x3i /24 ≥ 0. Consequently, ∂x̂j/∂αji =

25/48 · x̂3i /
[
(x̂i + x̂j)

2 + x̂2j/4
]
> 0 for x̂ > 0, which is satisfied because x̂ = 0 is not an optimum

since there exist stocking quantities that yield a strictly positive profit.

Proof of Proposition 4. The total differential of the optimal stocking level for product j with

respect to substitution rates is

dx?j (x
?
−j(αji), αji)

dαji
=

∂x?j
∂αji

+
∑
k 6=j

∂x?j
∂x?k

∂x?k
∂αji

.
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To prove the claim, we make use of the following two properties: For all k, (a) if x?k = yk, then

∂x?k/∂αji = 0; and (b) if x?k < yk, then ∂x?k/∂αji = ∂x̂k/∂αji. From Lemma 3(ii), for some i

and j, i 6= j, there are instances of Py where ∂x̂j/∂αji > 0. Combining this result with property

(b), we find that there are instances of Py with ∂x?j/∂αji > 0. Now assume that x?k = x̂k = yk

for all k 6= i, yielding dx?j/dαji = ∂x?j/∂αji > 0 and the proposition follows.

Proof of Lemma 4. To prove the desired result, we make use of the inverse distribution function

Φ−1i (ρi, y), ρi ∈ [0, 1]. In particular, Φi(χi, y) = ρi and Φ−1i (ρi, y) = χi. Note that the assump-

tions on rational beliefs imply ∂2Φ−1i (ρi, y)/∂y2i ≤ 0. Further, Φi(0, y) = 0 and Φi(yi, y) = 1.

Assuming rational beliefs and given y−i, each manufacturer’s expected profit can be written

as

ΠMi(yi|y−i) = wi

∫ yi

0
χidΦi(χi, y)− ciyi = wi

∫ yi

0
(1− Φi(χi, y))dχi − ciyi. (24)

Using the inverse distribution function, we can rewrite (24) as

ΠMi(yi|y−i) = wi

∫ 1

0
(1− ρi)dΦ−1i (ρi, y)− ciyi = wi

∫ 1

0
Φ−1i (ρi, y)dρi − ciyi.

Therefore,

∂2ΠMi(yi|y−i)
∂y2i

= wi

∫ 1

0

∂2Φ−1i (ρi, y)

∂y2i
dρi ≤ 0.

Proof of Proposition 5. Assuming rational beliefs, each manufacturer’s expected profit given

her competitors’ production levels is

ΠMi(yi|y−i) = wiµi(y)− ciyi.

Taking the first-order derivative and satisfying the optimality condition yields

∂ΠMi(yi|y−i)
∂yi

= wi
∂µi(y)

∂yi
− ci = 0,

and the result follows immediately.

Proof of Proposition 6. A pure-strategy manufacturer Nash equilibrium exists if (i) each manu-

facturer’s strategy space is a non-empty, compact and convex set, and (ii) each manufacturer’s

profit function ΠMi is continuous in y and quasi-concave in yi (Debreu, 1952). Lemma 4 to-

gether with our assumptions ensures that these conditions are satisfied. Thus, there exists at

least one pure-strategy manufacturer Nash equilibrium.

To derive our uniqueness conditions, we rely on the fundamental results of Rosen (1965). In

particular, Theorem 2 in Rosen (1965) asserts that the manufacturer Nash equilibrium defined
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by (5) is unique if (i) ΠMi is twice continuously differentiable in y for all i, and (ii) σ(y, δ) =∑N
i=1 δiΠMi(yi|y−i) is diagonally strictly concave for some fixed δ > 0. While condition (i) is

guaranteed by our assumptions, we need some more definitions to verify condition (ii).

Let g(y, δ) be the pseudogradient of σ(y, δ) for fixed δ, i.e.,

g(y, δ) =


δ1∂ΠM1/∂y1

...

δN∂ΠMN
/∂yN

 ,

and denote by G(y, δ) the Jacobian of g(y, δ) with respect to y, i.e.,

G(y, δ) = ∇yg(y, δ) =
(
δi∂

2ΠMi/∂yi∂yj
)
ij
.

Now, Theorem 6 in Rosen (1965) states that σ(y, δ) is diagonally strictly concave if G(y, δ) is

negative definite for all y ∈ ×i[0, yi] ⊆ [0,K]N and some fixed δ > 0. Thus, the manufacturer

Nash equilibrium is unique if, for some δ > 0, G(y, δ) is negative definite for all y.

Negative definiteness of G(y, δ): Denote by GT (y, δ) the transposed of G(y, δ). A basic

result in fundamental algebra states that G(y, δ) is negative definite if its symmetric part

Gsym(y, δ) =
[
G(y, δ) +GT (y, δ)

]
/2 is negative definite. This is true if all eigenvalues of

Gsym(y, δ) are negative. Note that, due to Definition 1, all elements of Gsym(y, δ) are non-

positive. Hence, by the Gershgorin Circle Theorem (see Varga, 2004), an upper bound for the

ith eigenvalue of Gsym(y, δ) is given by

ubi = δi
∂2ΠMi

∂y2i
− 1

2

∑
j 6=i

[
δi
∂2ΠMi

∂yi∂yj
+ δj

∂2ΠMj

∂yi∂yj

]
,

i = 1, . . . , N . Therefore, Gsym(y, δ) is negative definite if, for all i, ubi < 0. This is true if ΠMi

is strictly concave in yi, and

2 +
∑
j 6=i

∂yCi
∂yj
−
∑
j 6=i

δj
δi

∂2ΠMj/∂yi∂yj

∂2ΠMi/∂y
2
i

> 0 (25)

for all y, where we make use of the Implicit Function Theorem

∂yCi
∂yj

= −∂
2ΠMi/∂yi∂yj
∂2ΠMi/∂y

2
i

.

By choosing δi = 1/wi > 0 for all i, (25) reduces to (6), which proves the proposition.

Proof of Corollary 1. If ΠW (x) is jointly concave in x, then the wholesaler’s optimal stocking

quantity x?(y) is unique for any given y. In addition, under the conditions of Proposition 6,

the manufacturer Nash equilibrium yc is unique. It follows that (x?(yc), yc) defines the unique

Bayesian Nash-Stackelberg equilibrium in the competitive scenario of the Supply Game.
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Proof of Proposition 7. Assuming rational beliefs, the manufacturer’s expected profit is

ΠM (y) =
∑
i

wiµi(y)− ciyi.

Taking first-order derivatives yields

∂ΠM (y)

∂yi
= wi

∂µi(y)

∂yi
+
∑
j 6=i

wj
∂µj(y)

∂yi
− ci,

i = 1, . . . , N . Rearranging terms and satisfying the optimality conditions gives (8).

Proof of Corollary 2. If ΠW (x) and ΠM (y) are jointly concave in x and y, respectively, then the

wholesaler’s optimal stocking quantity given y, x?(y), and the manufacturer’s optimal produc-

tion quantity ync are both unique. Thus, in the non-competitive scenario of the Supply Game,

(x?(ync), ync) defines the unique Bayesian Stackelberg equilibrium.

Proof of Proposition 8. We start this proof with a preliminary result that is useful in the re-

mainder. Let y′−i ≥ y−i and note that

∂2µi(y)

∂yi∂yj
= −

∫ yi

0

∂2Φi(χi, y)

∂yi∂yj
dχi ≤ 0

by the definition of rational beliefs. It follows that for arbitrarily fixed ỹi

∂µi(yi, y
′
−i)

∂yi

∣∣∣∣
yi=ỹi

≤ ∂µi(yi, y−i)

∂yi

∣∣∣∣
yi=ỹi

. (26)

(i) The proof proceeds by contradiction. Assume yc < ync. Now, by comparing and

equating the optimality conditions (5) and (8), we require

∂µi(yi, y
c
−i)

∂yi

∣∣∣∣
yi=yci

=
ci
wi

=
∂µi(yi, y

nc
−i)

∂yi
+
∑
j 6=i

wj
wi

∂µj(yi, y
nc
−i)

∂yi

∣∣∣∣∣∣
yi=ync

i

(27)

to be true. By assumption (9), the second term on the right-hand side of (27) is always non-

positive. So, for (27) to hold, we need

∂µi(yi, y
c
−i)

∂yi

∣∣∣∣
yi=yci

≤
∂µi(yi, y

nc
−i)

∂yi

∣∣∣∣
yi=ync

i

.

By (26) and concavity of µi with respect to yi, this can only be true if yci ≥ ynci , a contradiction

to our initial assumption.

(ii) An example provides the proof. Assume manufacturers’ beliefs about the wholesaler’s

stocking levels for products j 6= i are independent of the production quantity of product i, i.e.
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µj(yi, y−i) = µj(y−i) for all j 6= i. Hence, ∂µj/∂yi = 0 for all j 6= i. Assume further that

∂2Φi(χi, y)/∂yi∂yj > 0 for all j 6= i. Then, the inequality in (26) becomes strict.

Comparing the optimality conditions (5) and (8) for product i gives

∂µi(yi, y
c
−i)

∂yi

∣∣∣∣
yi=yci

=
ci
wi

=
∂µi(yi, y

nc
−i)

∂yi

∣∣∣∣
yi=ync

i

. (28)

Now, assume yc−i ≥ ync−i; otherwise the proof would already be complete. By (26) and concavity

of µi with respect to yi, (28) can only be true if yci < ynci .

Proof of Proposition 9. (i) The proof proceeds by contradiction. Let y′ ≥ y and suppose I(y′) <

I(y). Then, for arbitrary i,

y′−i − x?−i(y′) < y−i − x?−i(y). (29)

As an immediate consequence of (29), we know that x?−i(y
′) > x?−i(y). Now, by repeatedly

applying Lemma 2(i),

x̂i(x
?
−i(y

′)) ≤ x̂i(x?−i(y)), (30)

and recall that x?i (y) = min{x̂i(x?−i(y)), yi}.
If x̂i(x

?
−i(y)) ≥ yi, then Ii(y) = yi − yi = 0, and thus Ii(y

′) ≥ Ii(y). If, to the contrary,

x̂i(x
?
−i(y)) < yi, then applying (30) yields

Ii(y) = yi − x̂i(x?−i(y)) ≤ y′i − x̂i(x?−i(y′)) = Ii(y
′).

Accordingly, Ii(y
′) ≥ Ii(y); a contradiction to our initial assumption that I(y′) < I(y).

(ii) The proof is an application of Proposition 2. Suppose y′ = y+ εej , ε > 0, for arbitrary

j. Then, by Proposition 2(iii), there exist situations where x?i (y
′) > x?i (y) for some i 6= j. Thus,

Ii(y
′) = y′i − x?i (y′) < y′i − x?i (y) = yi − x?i (y) = Ii(y).
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