An Incremental Approach to Entity Resolution

Bernd Opitz
University of Mannheim
Mannheim, Germany
jopitz@mail.uni-
mannheim.de

Florian Knip
University of Mannheim
Mannheim, Germany
fknip@mail.uni-
mannheim.de

Timo Sztyler
University of Mannheim
Mannheim, Germany
tsztyler@mail.uni-
mannheim.de

Christian Bikar
University of Mannheim
Mannheim, Germany
cbikar@mail.uni-
mannheim.de

Michael Jess
University of Mannheim
Mannheim, Germany
mijess@mail.uni-
mannheim.de

Bernd Pfister
University of Mannheim
Mannheim, Germany

bpfister@mail.uni-
mannheim.de

Ansgar Scherp
University of Mannheim
Mannheim, Germany
ansgar@informatik.uni-mannheim.de

ABSTRACT

We present a query-time entity resolution process that works
in a highly parallel fashion. We use the application MobEx
to showcase our process, which consists of a mobile client
and a server, where the server takes the role of a mediator
and carries out the resolution. Results are propagated to
the client as early as possible. Resolution results that are
produced later in the process are send as updates to the
client and thus improve earlier results.

Keywords

geospatial entity resolution, fuzzy/approximate matching

1. INTRODUCTION

Due to the evolution of the Internet, today a multitude of
providers for geospatial data such as public places and or-
ganizations as well as temporal data such as events exist.
The data that can be retrieved from these providers usually
have overlaps amongst one another — oftentimes even within
the results from one provider — while at the same time, in-
formation may not always be correct and complete. A fur-
ther problem is that the provision of data is heterogeneous
concerning access methods and data structures. Entity res-
olution in these databases is often considered too expen-
sive which is further complicated by the growth these data
providers face [3]. Thus, when querying these databases,
one has to deal with unclean, incomplete, and duplicate re-
sults. In our approach, we try to combine existing research
as well as our own ideas into an approach that deals with
these issues and provide on-the-fly matching, deduplication
and integration of information from multiple sources.

When querying multiple data providers for information about
the same subject or location, it is quite common to find
redundancy in the overall result. For example, multiple
providers may have complementary information about the
same entity or even (exact) duplicates [T} [3, [6]. This is fur-
ther complicated by variations between the retrieved data
such as different spellings (possibly mistakes) or missing in-

formation [I]. Assuming that we retrieve information from
an arbitrary number of providers in the form of records,
i.e., a composition of information about an entity, an end
user will most likely prefer a consolidated resource repre-
senting an entity instead of multiple resources describing
the same entity. The process of eliminating duplicates and
merging them into one resource is called entity resolution
(ER) or matching. As data and its structure are heteroge-
neous across data providers, preprocessing and refinement of
the data is required, before resolution can take place. In this
paper, we present an on-the-fly entity resolution approach,
i.e., we carry out ER at query-time. The MobEx application
will serve to showcase our approach. We will use techniques
such as fuzzy matching and threading as well as precondi-
tion heuristics that reduce the number of comparisons that
have to be carried out. The key difference between most ex-
isting approaches and our approach is that we do not have
all records when the resolution process is started, i.e., we
do not have a complete view of all (possibly) relevant data.
Thus, the resolution process receives more resources as we
go along and results gradually become more complete.

2. PROBLEM DESCRIPTION

When querying a data provider, one has no guarantee that
it will reply within a given time. When querying multiple
data providers, one cannot expect to receive all results at
the same time. In addition, some providers may not answer
at all. These issues make it infeasible to wait for a complete
result before beginning entity resolution. Thus, one problem
our approach has to handle, is rooted in the asynchronous
nature of the replies from data providers: The complete set
of all resources — which are thus candidates for entities —
is not known a priori and resources arrive asynchronously.
Still, users will not be willing to wait a long time for an
answer from the server — they will most likely expect results
in a matter of seconds. We are therefore faced with the
tradeoff of run time and efficiency: While the process may
not substantially increase the time until the client receives
at least some results, false merges should be avoided at all

costs (as they essentially render the data useless) while a few
remaining duplicates may be acceptable. Thus, we slightly
prioritize precision over recall.

2.1 Our showcase: MobEx

The MobEx application will serve to showcase our resolution
approach, which should — with a few adaptations — be ap-
plicable in any similar scenario. MobEx consists of an (An-
droid) client application (see and a server. The
client queries the server for events, organizations, persons,
and places (with sub-categories or “facets”) for a given lo-
cation. The results a client receives can be navigated in a
facet structure or simply displayed on a map. A details view
for a selected object, e.g., a restaurant also provides further
options such as allowing to initiate a call to that restaurant
if a phone number is available.

Q

26 Facets Selected

a Adrian Zalten 0.23km

E nuARTis 0.29 km

Kampfkunst- &

Meditationszentrum Wu Dao 041 km
Mannheim University of Applied 0.93 km
Sciences
a University of Mannheim 1.39 km
@ East Asia Institute 1.45 km
Mannheimer Abendakademie und 210 km
Volkshochschule GmbH)
=,
(&) Back
Band (4)
Educational Institution (12) Q)

Political Party (2)

Figure 1: A screenshot of the MobEx application
showing the facet view with the facets Band and
Educational Institution selected.

The entity resolution process entirely takes place on the
server. When a client wants to retrieve information, he can
choose from a predefined list of data providers on his phone.
The server in turn queries the selected data providers and
delivers the result to the client. Thus, it takes the role of a
mediator (see [Figure 2)). In MobEx, entity resolution takes
place on resources. The exact formalization valid through-
out the remainder of this paper can be found in Section [2:2]

2.2 Formalization

When retrieving information from data providers, we will
call the received data records, where each record represents
what the provider deems to represent an entity. Each record
is specific to its provider, i.e., the data labels are not con-
sistent across providers. While one provider may call an

Android
Client
,,,,,,,,,, Mobex Server"

(Mediator)

Schema
m@ping

Buissaooid A1and

Figure 2: The data integration architecture of the
MobEx showcase project. The server acts as a me-
diator between data sources and the client.

attribute name, other providers may call it label or title
while the semantics of these attributes are (roughly) iden-
tical. We manually harmonized the schema information of
the data providers by mapping the records into resources.
A resource represents an object that is either an event, or-
ganization, person or place. The relevant properties of a
resource for the entity resolution process are outlined in [Ta]
When querying data providers, all retrieved records
can be mapped into such a resource, allowing for easy com-
parability. We take care that the mapping respects the se-
mantics of the properties, i.e. for any data source, the re-
sult of the mapping has the same meaning. We represent
an entity e; by using a resource which contains informa-
tion taken from one or more resources. Given a set of re-
sources R = {ri,...,r,}, the assumption at the beginning
of the resolution process is that each represents an entity
of its own, which we denote by Vi € {1,...,n} e; = (r;).
During or after resolution, the state will have changed to
ej = (ri;,71;,...) for some js € {1,..,n}, while it re-
mains the same for all others. This represents the resolution
found that resources ry;,71,,... represent the same entity,
namely e;. In other words: after entity resolution, some
resources contain information that previously belonged to
several other resources. No resource can represent two dif-
ferent entities, i.e. Ve;, e; e; # eji’]rk 11, € e; and T € ej.
Thus, after resolution: if a resource r contains information
from resources r, s and ¢, then r, s and ¢ represent the same
entity and none of them represents any entity. While the
resolution process still knows which (source) resource was
merged into which other (target) resource, the information
that were not merged from the source to the target will no
longer be visible to the client. Information that is overwrit-
ten in the target of a merge is no longer available as it is
assumed that the new information is better.

In the remainder of this paper, we will discuss existing ap-
proaches and related work in Section Our match and
merge process will be presented in detail in Section [d] The
evaluation of our approach and its results are discussed in
Section [5} along with an analysis of potential problems. We
will conclude with an outlook in Section [Bl

3. RELATED WORK

Various approaches to entity resolution already exist, among
them semi-automatic/interactive matching as presented in
[4) 10, 1], (fuzzy) logic systems [2, 12, I7] or (machine)
learning and clustering based approaches [13]. However,
any non-automatic approach is infeasible for on-the-fly en-
tity resolution. We therefore focus on automatic approaches.
There are various methods of carrying out automatic entity
resolution. The underlying conditions of a generic entity
resolution process described in [I] are very similar to the
conditions in our approach. These conditions are:

e Pairwise matching and merging: We only compare two
resources with each other and decide whether to merge
them or not. However, this does not imply that the
results of a matching will not affect further matching.
Indeed, previous matches and merges may influence
the further process.

e No confidences: While there may be similarity com-
putations involved in the matching process itself, a
merge is always done with full confidence or not at
all. That is, the matching may use confidence values,
but a merge is an absolute decision after which the
merged resource has no confidence value assigned.

e No relationships: If a concert (as an event) takes places
at a stadium (as a place), there exists a (real world)
relationship between these two entities. While such
relationships do frequently exist in the real world and
using these information thus might lead to better re-
sults in the resolution process, they are not considered
as this makes resolution by far more complex.

e Consistent labels: This condition describes the assump-
tion, that fields of a resource carry a fixed meaning
that is the same for all resources. It is not required
that there is only one value for every field in the re-
source. However, not all attributes in our resources

can carry multiple values (see [Table 1J).

All of these assumptions are commonly used in the com-
mercial world and are also true for the approach used by
MobEx. Aside from these conditions, we use another tech-
nique — namely “buckets”. Buckets work such that some at-
tribute is selected as the bucket label. As “record matching
is inherently expensive” [I], we use the highest level facet,
i.e., type or category (event, organization, person or place)
of a resource as a bucket label. In the matching process,
only pairs of resources that are in the same bucket are com-
pared (for details see Section below). Given the four
aforementioned conditions, this significantly cuts down the
number of comparisons as long as resources are distributed
among the categories.

Multiple systems for entity resolution already exist that we
could have used instead of developing our own approach.
One very-well known system is Silk [20] another system that
would partially suit our needs is LIMES [I6]. We did not
use Silk, because it is designed to access “data sources that
should be interlinked via the SPARQL protocol”, i.e. data
is accessed using SPARQL and then “explicit RDF links be-
tween data items” [9] are set. However, most data providers

that we access do not offer a SPARQL endpoint, which
would provide an open and standardized access method to
their data. For details on SPARQL please see [8], [18]. In-
stead, most of the providers we use are commercial data
providers and thus offer a proprietary API Data access is
regulated at the providers discretion and there is no stan-
dardized method to access multiple providers. If we wanted
to use Silk, we would have to add a further step of indirec-
tion to our matching process, in particular we would have to
apply some sort of transformation of the data to RDF. This
indirection would reduce the performance of our approach.

One problem with LIMES is that it requires all resources to
be available before starting resolution. Given that some data
providers we query answer only after more than 2.5 minutes,
there are two possibilities to handle this issue. We could
send out results without any resolution as soon as we get
them and send updates as soon as all resources have arrived
and undergone resolution. The other possibility would be to
wait for a complete result from the data providers and send
the client only the complete resolved result. In both cases,
it is questionable whether the updated/resolved results are
still relevant to the user when he receives them. Our analysis
of user behavior suggests that most users will not use the
app at one specific location for a long enough time within a
session: the average session time was around three minutes
and only around 23% of all sessions were active for that
long or longer. As most users were not even active for more
than three minutes, it is safe to assume that most users will
not be willing to wait that long until they receive results.
Aside from the already mentioned problems, LIMES is also
designed to work on SPARQL endpoints. This adds the
same indirection that we would have faced with Silk, thus
the same argument as above applies.

As we query multiple data providers, it may not seem intu-
itive why query-time entity resolution is chosen. Still, there
is a clear motivation for it: Firstly, we do not know the
client’s query beforehand and it is infeasible to keep aggre-
gations for different selections of data providers in stock.
Secondly, we do not have complete knowledge of the data
the providers return ahead of the query. Taking into ac-
count query and answer times, we thus have to carry out
resolution on the fly as users will not be willing to wait a
long time. Thirdly, information about events may change
on a daily basis. These three criteria are further motivated
by the approach described in [3] which deals with ER in a
similar scenario, but in a completely different way. The ap-
proach described therein uses relational similarity and col-
lective resolution in addition to attribute similarity. This
requires certain links within the data, e.g. when resolving
author names, looking at co-authors can be helpful as an au-
thor may regularly work together with the same co-authors,
which would then help in identifying both as the same in-
dividuals. However, such links are not present in the closed
silos of data providers. While the methods differ, the goal is
the same, namely that a user querying one (or as in our case
multiple databases) should receive relevant results which are
resolved with respect to the particular query they posed.

Another aspect of the matching process is how comparisons
of resources take place. Fuzzy matching, uses string simi-
larity metrics such as edit distances and was proposed more

than 15 years ago [I4] [I5]. Since then, several matching
methods using fuzzy/inexact string matching were devel-
oped [1,[6] [7, T3], some of them specifically on the attributes
of organizations or locations such as the names, addresses
or phone numbers [1 [7} 13]. Their research also provides
the foundation of our weight assignments. Features that are
more distinctive receive a higher weight, while less distinc-
tive features are weighted such that they may tip the scales
if necessary. As it is well known that exact text match-
ing can be difficult on text formatted in an inconsistent/
heterogeneous way (e.g. [13]), our approach makes use of
string similarity metrics as well.

4. MATCHING PROCESS

4.1 Overview

As we do not have all resources at hand when the resolution
process is started, the resolution process receives more in-
formation as we go along and results gradually become more
complete. Our entity resolution approach takes place in a
highly parallel fashion as can be seen in The num-
bers in the following description of our process correspond
to the numbers in the figure. In the given scenario where a
client queries our server (1), it is important that the records
are processed as fast as possible. Thus, all processes work in
parallel. There are two main stages which are the querying
of the records (upper half of [Figure 3|) as well as the entity
resolution (lower half of [Figure 3|). Both stages are divided
in multiple sub-threads, controlled by three central units,
namely Main-Thread, Entity-Manager-Thread and Entity-
Resolver-Thread. These components enable the parallel ex-
ecution of all available tasks whereas the Main-Thread han-
dles the querying of the records from different data-provider
like Geonames or OpenPOI and the Entity-Resolver-Thread
the entity resolution. The Entity-Manager-Thread decou-
ples these two stages so that they do not have to wait for
each other. Thus, when the Main-Thread receives a re-
quest (1) it starts and controls the data-provider querying
threads (2) which retrieve the desired information such as
restaurants, hospitals and parks and parses the retrieved
records into the local/target schema, namely our resource
model. When a data-provider thread delivers results, they
are passed to the Entity-Manager-Thread (3). The Entity-
Manager-Thread administers a container for the queried and
processed resources. It listens to all data-provider threads
and forwards their results to the Entity-Resolver-Thread (4)
(green lines). The Entity-Resolver-Thread handles, as al-
ready mentioned, the entity resolution, i.e. it tries to find
and handle duplicates such as ‘Cafe Vienna’ and ‘Vienna
Cafe’. All arriving resources are compared to the already
received resources by worker threads (5). The result is re-
turned to the Entity-Manager-Thread (6) which in turn re-
turns it to the Main-Thread (7) (blue lines). The processed
resources are delivered in reply to the request (8) as soon
as they are available, i.e. we do not wait until all records
have arrived from the data-providers and undergone resolu-
tion. Therefore, a delivered result may have to be rectified
or updated in a later step of the resolution.

4.2 Facet Tree

Once a resource object is created it is assigned to a facet. A
facet is a category and part of a large tree. This structure
is called the facet tree and represents categories hierarchi-
cally. The tree is static at run time and part of the resource

client sends request :
‘ Querying Data store queried data

’—L{ Data Provider Thread }*7

Main-Thread 2 10
(Central Unit) L

7 \L{ Data Provider Thread }
J 3.3]

Data Provider Thread }7

forward processed data

| Entity-Manager-Thread
‘ (Central Unit)

Entity Resolufion 616 6
5*[Entity Resolver Worker }J

start entity resolution
with new data

4

(S

*[Entity Resolver Worker }

Entity-Resolver-Thread
(Central Unit)

a1

*[Entity Resolver Worker }

Figure 3: Data flow of processing a client request
and incrementally matching the data. The numbers
denote the order of the processes.

object management. The core of the structure is based on
data from DBpedia, i.e. it originates from the structure of
Wikipedia. The facet tree consists of four subtrees that have
the root nodes event, organization, person, and place. They
originate from different integrated (social media) sources like
DBpedia, Eventful, Qype, OpenPOI and GeoNames. Each
resource object is assigned to one of these root nodes and to
at least one child. Thus, the ‘Cafe Vienna’ is a ‘place’ and a
‘Coffee Shop’ (which is a sub-facet of place). The assignment
of a facet to a resource is determined by the category infor-
mation delivered by the data provider, e.g. ‘Cafe’. Thus, the
mapping process uses predefined rules to determine a correct
match in the facet tree but if this fails, the process tries to
find a match based on string similarity. However, only the
root node (event, organization, person, or place) assigned to
a resource is considered by the entity resolution. The hier-
archical classification of each resource object to categories is
not considered because the run time of the entity resolution
would rise dramatically and speed has a high priority in this
project.

4.3 Process

As already pointed out, entity resolution takes place on re-
source objects. FEach attribute of such a resource contains a
certain piece of information about an entity (see examples in
and is thus more or less representative of the actual
entity. Consequently, “some attributes are more important
in determining whether a mapping should exist between two
objects” [I3]. We account for that by assigning weights to
the attributes where a higher weight represents that the fea-
ture is more distinctive or authoritative (see [Table 1f). The
weights were assigned using the information from [, [7], [13].
While none of them gives explicit numbers, there are hints
which properties are important or more distinctive. The
actual numbers were then assigned using empirical results.
For example, it is legitimate to assign the URL the greatest
weight, as URLs are — by their nature — a unique identifier.
A similar argument applies for the label and phone number
which are both designed to serve as an identifier for, e.g., a
person, organization or place. These rules are not without
exception as can be seen in our problem analysis in Section
For example, a postal address may not be distinctive,

e.g. if there are multiple organizations located in the same
office building.

The entity resolution process in the MobEx server is a multi-
threaded and thus parallel processing of the data. We start
a new thread each time we receive a batch of records from
a provider. These records are then mapped into resources
which in turn are resolved against each other as well as all
previously received resources that were part of the same
client query. However, this processing brings up several new
challenges:

1. Duplicate comparisons have to be avoided.

2. Given two resources ri1,r2 where r; is the older ob-
ject (and thus merge target) and r2 have already been
merged, the further merge process is affected as fol-
lows: ro as a merge target no longer exists. Thus, a
resource r3 that would be merged into r2 instead has
to be merged into ry.

3. The (intermediate) results become indeterministic, as
there is no guarantee that resources will always be
compared and merged in the same order. Let us con-
sider the (simplified) example of three resources r1, 72,
rs with labels r;.label =‘Example 1’, rs.label =‘Ex-
ample Two’, r3.label =‘Example Three’, the indexes
represent the age, i.e. r1 is the oldest resource. If we
merge 71 and 72, the client will receive an intermediate
result with r1’s label being “Example Two” as we keep
the longer label when merging. If instead, we matched
(and merged) 72 and r3 first, the intermediate result
would contain re with label “Example Three”. This
example of indeterminism also goes to show that the
delivered results only represent the truth to the best
of our knowledge at a given point in time. Resolution
results at a later point in time may cause updates and
possibly even deletions of resources that were already
delivered earlier, because e.g. these resources no longer
represent an entity of their own.

The first two problems can be addressed by keeping track
of the merge process in a graph, more precisely a forest.
We define a directed graph G = (V, E) where each node
v € V represents a resource. Two resource nodes 11,72 are
connected (i.e. the edge (r1,72) € E), if the entity resolution
process recognized them as identical and thus merged them
(see . The problem of updates and deletions is
handled in so far as that the client receives corrections to
earlier results and eventually updates or deletes duplicates
delivered in an earlier step of the resolution. The details of
the matching process in terms of threading were explained

in Section 411

A further issue that has to be addressed is that all resources
should actually have the chance to be compared with one
another, unless one of the preconditions rules out a match
between them. Without parallel processing, this is easily
ensured. In our threaded approach, we assure this by having
an entity manager that receives the resources from providers
in disjoint sets and thus can start a resolution thread on each
such set against all others.

ry

Figure 4: A forest of resources r; through rs. State:
ro and r3 have been merged into ri; r¢ has been
merged into 75 which in turn has been merged into
ra; 77 and rs are not merged (yet). Entities thus are:
€1 = {7‘1,7’2,7’3}; €2 = {7‘4,7'5, 7’6}; €3 = {7’7}; €4 = {7‘8}.

4.4 Preconditions

When querying data providers, we may very well receive a
total of more than 1000 records in major cities. Naive entity
resolution, i.e. comparing all pairs of resources, is therefore

out of the question, since that would result in (g) and thus

O(n?) comparisons which requires too much time for on-the-
fly matching. Instead, we cut down the number of compar-
isons by applying precondition heuristics which are based
on the conditions described in Section [3] The precondition
heuristics we use are:

e Transitivity: Given two resources, e.g. re,rs from
If they already have a common ancestor ry
in the merge tree, we will not carry out a comparison
of ro with r3. This common ancestor represents that
a merge between ro and r3 or resources either of them
has been merged into, have already taken place.

e Type: Only resources of the same type are compared,
i.e. we compare events with other events, but not with
locations, persons or organizations and so on. This is
consistent with the literature like [I].

e Physical location: The greater the physical distance
between two resources, the less likely it is that they
describe the same entity [16]. We account for that by
calculating the distance between resources using the
Haversine formula [I9]. We will only consider pairs of
resources for resolution if

a) they have a distance of at most 500m from one
another. We call this value the distance threshold.
or

b) their postal addresses are similar (to account for
wrong coordinates from a data provider). We de-
fine two postal addresses as similar, if the average

| Data type | Attribute | W. | Represented information | Example

String uuid * id used on the server

String type * type of resource event, organization, person, place

complex source * a set of data provider names {lastfm, eventful}

Double longitude * latitude of the entity’s location 49.48429

Double latitude * longitude of the entity’s location 8.46301

complex postalAddress | 2 possibly multiple addresses (birth place, | Bismarckstr. 1, 68161 Mannheim (Ger-
death place) split into country, city, | many)
postal code, street and street number

String label 3 the name of the entity University of Mannheim

String description * a short description of the entity

Schedule schedule start date, end date, birthdays, opening | Mon, Tue, Fri: 9:00-18:00; 11.03.1952,
hours e

URL url 4 a website with further information WWW . example.org

URL imageUrl 1 url of a thumbnail /picture www.example.org/image. jpg

String phone 3 a phone number phone number of a ticket hotline

Table 1: The relevant properties of a resource for the entity resolution process.

Complex types have an

internal structure which is not relevant for the resolution process. The column W. shows the weights used
in the resolution process, a * indicates that the property is not part of the scoring, but is still required

(explanations below).

of their Jaro-Winkler and Levenshtein similarity
is greater than 0.75.

The value of 500m that we use for the distance thresh-
old was determined empirically. When looking at a vi-
sualization of results from data providers on a map, we
found that the last (obvious) duplicates were less than
500m apart. The Haversine formula is more appropri-
ate than other distance measures such as the Euclid-
ian distance since it is easy and fast to calculate and
works well for small distances where other formulas
show rounding errors [5] [19].

4.5 Matching (Scoring & Comparisons)

In the scoring process, we only compare pairs of instances
for which the preconditions apply. When comparing in-
stances, certain properties are more important than oth-
ers. We account for that by assigning weights to the dif-
ferent properties as shown in which are used in
the scoring process. The scoring works as follows: Let
r1,72 be two instances, C' = {c1,...,¢n} the set of resource
attributes with a non-zero weight (see [Table 1)) that are
present on both resources (i.e. they are not null or empty),
n=|C|, wi,...,w, the weights assigned to each attribute
and compare(ry.z,r2.x) a comparing function, defined as
follows:

1 mx=mrex
compare(r,.z,r2.2) = .
0 otherwise

for all properties except for the label and parts of postal
addresses for which we define compare(ry.z, r2.x) as the av-
erage of the Jaro-Winkler and Levenshtein similarity of 1.z
and r2.xz. Thus, compare(x,y) is bounded by 0 (signifying
dissimilarity) and 1 (signifying identity). With the score
calculated as

n

score(ri,r2) = Z w; - compare(ry.ci,T2.c1)

=1

we consider 71 = 72, i.e. the two resources represent the
same entity, if score > t, where we call ¢ the comparison
threshold (we use t = 0.7). There are two exceptions to this
process to speed it up:

e Duplicates that a provider delivers (i.e. the source and
the provider’s id for two instances are identical) are
always considered to be identical.

e Resources with the exact same label and description —
given that both properties are present, i.e. non-empty,
in both resources — are always considered identical.

4.6 Merging

Resources are merged if the scoring determines to do so.
When merging resources, some attributes require special
treatment, while others may not need to be touched at all. In
the merging process, the older/oldest resource takes prece-
dence in so far, as its properties will mostly be assumed to
be correct unless they were empty. Exceptions to this are
the label and respectively the description, where we assume
that longer text is better. A resource is considered old(er) if
it has already been merged into. Thus, the oldest resource
is the root of its merge tree. We call the oldest resource
in a merging process 7,4 Or merge target, while the other
resource is rpew or the merge source. When merging, only
ro14 Will be changed. Thus, given that we want to merge two
resources 71,72, the merging process may or may not actu-
ally merge these two specific resources. If ro has already
been merged into another resource, we will find the root of
r2’s merge tree and set it as Tnew. Respectively, if r1 has
already been merged into another resource, 7,4 Will be set
to the root of r1’s merge tree. In the situation depicted in
if we were to merge r7 into 76, it would be merged
into r4 instead. If we were to merge r¢ into r2, we would
instead merge 74 into r1. Note that the depicted merging
state of r4,r5 and re¢ thus came to pass by merging r¢ into
rs and then merging r5 (or r¢) into 74.

www.example.org
www.example.org/image.jpg

S. EVALUATION

To evaluate our matching approach, we conduct the follow-
ing experiments:

1. We want to determine the effect of the preconditions de-
scribed in Section The first hypothesis is that the
application of the preconditions, especially the distance
condition, massively reduces the number of comparisons
that have to be carried out. We carry out matching on
identical data with different parameter settings and eval-
uate the influence on the results.

2. We run queries for multiple data providers in the 5 largest
cities by population in the United States and Germany
respectively. The cities are: New York (NY), Los An-
geles (CA), Chicago (IL), Houston (TX) and Philadel-
phia (PA) for the Unites States and Berlin, Hamburg,
Munich, Cologne and Frankfurt am Main for Germany.
We query all data providers in the exact center of each
city with a radius of 3.1km and carry out entity resolu-
tion on the received data. We manually check the results
for correct merges, i.e. the merged resources represent
the same entity (true positive) and incorrect merges, i.e.
the merged resources represent different entities (false
positive). Missing merges, i.e. pairs of resources that
were not merged although they represent the same entity
(false negatives) and correct non-merges, i.e. resources
that were not merged, that represent different entities
(true negatives) will not be evaluated on a quantitative
basis. In order to do so, we would have to compare every
resource with all other resources which would result in
(Z) comparisons for n resources. Instead, we will con-
duct a qualitative analysis by looking at examples that
should have been merged, but were not. Based on the
examples, we try to identify flaws in our scoring function
and thus the matching. Based on the outcome of these
evaluations, we will come up with potential improvements
for our approach that should be addressed in future work
on our approach.

3. Our entity resolution process is run at query time. As
clients will not be willing to wait a long time until they
receive at least some results, we want to determine how
long it takes until a) the first items arrive b) 50% of all
results have arrived c¢) the results are complete.

For all experiments, we will only regard the time added by
the resolution process. Waiting time added by a provider’s
API is ignored, as any application running against an API
would face these.

5.1 Results

In the following, we present our findings and analyze our
approach as well as (potential) problems.

1. We queried all nine data providers implemented in the
MobEx server in the ten cities named above and carried
out entity resolution on the result of these queries for
the following different distance thresholds: 300m, 500m,
1000m, 1500m, 2000m, 2500m, 3000m and infinite dis-
tance. The meaning of these threshold values is explained

Distance | Avg. Matches | Avg. Savings (in %) |

300 103.11 52.69
500 103.11 50.28
1000 102.89 41.06
1500 103.11 28.37
2000 103.11 19.13
2500 103.11 12.78
3000 103.11 7.69
00 103.22 0

Table 2: Avg. number of matches and avg. saved
comparisons for different distance threshold values
on a total of 980 resources.

in Section [£4] The averaged results can be seen in
ible 2

As the results show, the number of matches does not
vary significantly while there is a steep increase in the
number of comparisons that can be saved up to the dis-
tance threshold of 500m. This supports our decision for
the used threshold value. If one wanted to speed up the
matching process even more, one could decrease the dis-
tance threshold to values such as 100m or even less and
evaluate the impact on the outcome. One would expect
that at some point, the number of matches will decrease.
Thus the distance threshold provides a means to trade-
off the number of matches for running time — allowing
for faster results at the cost of (possibly) remaining du-
plicates.

. Regarding the merging, we first of all aggregate over all

cities. This gives us a total of 9834 entities which are the
result of a match an merge process in which 1122 merges
took places. Out of these 1068 were correct merges, i.e.
the merged resources described the same entity and 54
were incorrect merges. This gives us an overall precision
of 95.19%, which is very high. However, it has to be
noted that some of these merges were actually very easy
as they were actually duplicates from a provider which
shared the same id. We consider a match “hard” if it
is not an obvious duplicate. shows the actual
distribution and the precision of our approach for three
assumptions of what an obvious duplicate is:

a) There are no obvious duplicates, i.e. all matches
are considered hard. Thus, matches that are based
on identical id (column ID) or label and descrip-
tion (column L&D) as well as other matches are all
summed up as hard.

b) A duplicate is obvious, if two resources come from
the same provider and share the same id. In that
case, the match will always be considered correct
and will not contribute to the precision. Thus, we
sum up label and description (L&D) matches and
non-ID matches as hard.

¢) In addition to b) we also consider duplicates easy if
they share the same (non-empty) label and descrip-
tion. Thus, only matches where neither the id nor
labels and descriptions were identical are considered
hard.

Several potential problems emerged during the evaluation
of our approach:

[[M. [TP [FP [ID [L&D | “hard” [P |

1122 [1068 | 54 [556 | 315 | 251
a | 1122 | 1068 | 54 1122 | 95.19
566 | 512 | 54 | 556 | 566 | 90.46
c [251 | 197 | 54 871 | 251 | 78.49

Table 3: Result statistics of the match and merge
process aggregated over 10 major cities with a total
of 9834 entities (after matching)

M.=matches, TP=true positives, FP=false posi-
tives, ID=same provider and id, L&D=identical
label and description, hard=matches considered
“hard” for the given assumption, P=precision in %

e A very general problem is that if only little infor-
mation is available and some of these information
vary, then matching is close to impossible. We try
to achieve high precision as remaining duplicates
may be more acceptable than potentially merging
too many records (false positives).

e If the URL was present, it was often weighed too
highly. While an identical URL may be a strong
indicator of identity, this can also cause problems.
A common problem was that resources of supermar-
kets were merged, because the URL, label and phone
number were all identical but the address differed.
This is a problem as it causes perfectly good and
potentially important information getting lost. Ac-
tually, many of the false positives (around 35) are
caused by this error in the matching. We also found
duplicate resources in the results which were not
merged because of a different URL, often in addition
to (slight) variations in another attribute. However,
there were only few cases where this actually caused
remaining duplicates (on average around 10 obvious
duplicates per city), which is of course not desirable
but probably acceptable. Nevertheless, this presents
a starting point for improvements to our approach.

e If only little information is available and those vary
between two resources, the matching will most likely
fail. There is not much that can be done about such
cases as adjustments might as well cause more false
matches.

e In some cases, it seems that obvious duplicates ex-
ist. On a closer look, there are often slight variations
in the address, often in addition to a different phone
number. This raises the question whether the phone
number is a good key attribute in the sense that it
serves as a good identifier for a resource. This ques-
tion cannot be easily answered as larger businesses
or organizations will often have many phone num-
bers while small businesses such as restaurants often
have one phone number. Keeping in mind that the
approach should be somewhat generic, one must ask
whether the introduction of special cases for exam-
ples such as this will decrease the performance or
hinder universal usability of the approach.

3. We carried out a run time analysis by querying all of our
data providers in the ten cities listed above and averag-
ing the results. The analysis was carried out on a Debian

Linux 64 bit machine with a 2.8GHz i5-2300 processor
and 6GB of RAM out of which at most 5 were available
to the resolution server. It can be seen that the more re-
sources are present on the server, the longer the resolution
takes. Still, the resolution process is fairly quick for the
amounts of data that we faced. At an average of 746.13
resources being present in the resolution process, it took
0.046s to resolve one resource against all other resources,
which corresponds to a processing speed of 204.670 re-
sources per second. shows the behavior of the
required time per resource resolution in relation to the
number of resources in the process. It can be seen that
the processing time for each resource increases as more
resources are present on the server, which is caused by
more comparisons that have to be carried out. The cor-
relation coefficient r = 0.7208 show that around 72%
of the increase in run time can be explained by the in-
crease in the number of resources. Other contributing
factors may be that the resolution process runs in paral-
lel threads. Especially those threads that resolve larger
batches of resources may run longer and thus have to
share the processor with other threads.

02
R2=0,52 ¢
0,18
$
0,16 .
£o014 .
E R
¢
30,12
8 *
z ol R
<1
5 0,08 ¢ o ¢
. s b e
=
£006 ; * : . & .
3 * *
? 0,04 . = P *
. * .
. < ISEY. 2N ¢
0,02 St " 344 - ¢
* > PR S 4 *
0 Bee® . o PR

0 200 400 600 800 1000 1200 1400 1600 1800

Total Resources on the server

Figure 5: Run time per resource on the server. The
red dotted line shows a linear regression curve with
a correlation coefficient r = 0.7208 (coefficient of de-
termination r* = 0.52).

The coefficient of determination 72 of the linear regres-
sion in show that 52% of the variations in the
run time of our resolution approach can be explained by
the number of resources. The correlation coefficient r of
0.7208 shows that there is a strong correlation between
the number of resources and the run time.

4. First of all, it is difficult to give an exact number of re-
solved resources that a client will have received at a given
time. As our approach is threaded, it may very well hap-
pen that a thread that was started later than another
will finish sooner. We will thus provide a number that
we call resolved ratio (rr) which represents the number of
resources that the client has received that have undergone
the resolution process in proportion to the total number
of resources the client has received. If we were to di-
vide by zero, rr is undefined. This number should not be
seen as an exact figure, but a lower-bound estimate. Fur-
thermore, we do not directly include answer times from

providers in our calculations. They indirectly affect res-
olution as records that arrive at the server sooner than
others, we start the resolution thread sooner. As already
said, there is no guarantee that threads finish in the order
they were started. shows an example: First, 286
resources were added and resolved, then 13 more (sec-
ond and third row). Now four batches of 100 resources
and one with 25 resources arrived and started resolution.
The batch of 25 resources arrived last, so it was resolved
against 724 (286 4+ 1344100+ 25) resources. It finished
before the four resolution threads that were running on
the batches of 100 resources (fourth row). Thus, at that
point in time 724 resources were forwarded to the client,
but only 324 resources had been resolved.

acc. Add | Time | Res. | Matches | RR
0 0 0 0 -
286 2816 286 2 1
299 304 299 2 0,45
324 1637 724 19 0,59
424 4468 724 22 0,72
524 4608 724 24 0,86
624 4400 724 30 1
724 4816 724 31 1
824 2452 824 34 1
909 1266 909 36 1

Table 4: Example table of the resolution results.
Each row in the table corresponds to one worker
thread that has finished resolution on a bulk of re-
sources. acc. Add=accumulated added resources,
Time=Resolution time in ms, Res=Total resources
at that time, Matches=Total number of matches,
RR=resolved ratio

Analyzing the actual amount of resolved resources that
the client has received at a given time proved difficult due
to our threaded approach. We can provide an estimate
though, which can be seen in It shows the
average percentage of resources that a client as received
(out of all resources to their request) and the percentage
of the received resources that have undergone resolution
so far. In these tests, we retrieved an average of 959.2
resources in total. As can be seen from almost
80% of all resources can be delivered within 5 seconds of
being retrieved, i.e. they are at least partially resolved at
that time. At the same time, around 54% of the received
resources have been fully resolved.

6. CONCLUSION

Our goal was to build an entity resolution approach that is
very precise while not imposing a long waiting time. When
querying external data providers, there is already some wait-
ing time involved which depends on various factors such as
the time of the day and the query complexity. For our data
providers, we found answering times as short as one sec-
ond but also up to 157 seconds. As users are not willing
to wait for a long time, we chose to design our approach
for speed. Furthermore, we wanted to avoid information
getting lost, i.e. we endeavored a precise match and merge
approach. This includes forwarding partially resolved re-
sources to the client and sending updates later on. In gen-
eral, the weights assigned to the different attributes in the

100%
90%
80%
70%
60% == Avg.
Resolved
50% %
40% —— Avg.
Delivered
30% %
20%
10%
0%
0 1 2 3 4 5 6

Time (in seconds)

Figure 6: Resources the client receives and percent-
age of completely resolved resources among them
over time. The point where the client has received
100% of the resources in a resolved state is not
shown, because it depends too strongly on the time
when the last provider answers and would thus dis-
tort the graphic.

scoring process and the scoring threshold may have to be
adjusted, as they were assigned based on empirical obser-
vations and roughly corresponded to experiences found in
other research. Furthermore, while similarity or even iden-
tity between two resources’ attributes may indicate that
they represent the same entity, dissimilarity does not neces-
sarily indicate the contrary. We tried to account for that by
weighted scoring, which fails in case of only little informa-
tion being available.

The approach works fairly well on the data we faced. How-
ever, some problems are visible that can be traced back to
the design of the approach, especially the weights that were
assigned to the different attributes and the reaction of the
approach to only little information being available. For ex-
ample, when only little information is available for a re-
source, but one of these attributes is the (highly weighted)
URL, it can happen that it is merged with another resource
with the same URL although they represent different en-
tities. This can happen with resources representing sub-
sidiaries of large companies where the URL points to the
website of the company. This is one aspect where future
work would have to improve.

Acknowledgement. We thank Florian Rang and Katja Beer
of the telegate Media AG for their valuable input and sup-
port for this work. This research is partially supported by
the klickTel Award 2013.

References
[1] Omar Benjelloun, Hector Garcia-Molina, David Men-
estrina, Qi Su, Steven Euijong Whang, and Jennifer
Widom. Swoosh: a generic approach to entity resolu-
tion. The VLDB Journal — The International Journal
on Very Large Data Bases, 18(1):255-276, 2009.

[2] Indrajit Bhattacharya and Lise Getoor. A latent dirich-
let model for unsupervised entity resolution. In Pro-
ceedings of the 2006 SIAM International Conference on
Data Mining, 2005.

[3] Indrajit Bhattacharya, Lise Getoor, and Louis Li-

[4

[7

11

12

[13

[14

]

]

]

camele. Query-time entity resolution. In Proceedings
of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 529-534.
ACM, 2006.

Mustafa Bilgic, Louis Licamele, Lise Getoor, and Ben
Shneiderman. D-dupe: An interactive tool for entity
resolution in social networks. In Visual Analytics Sci-
ence And Technology, 2006 IEEE Symposium On, pages
43-50. IEEE, 2006.

U. S. Census Bureau. Geographic information sys-
tems FAQ, 1997. URL http://www.movable-type.co.
uk/scripts/gis-faq-5.1.html. [Online; accessed 16
September 2013].

Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and
Rajeev Motwani. Robust and efficient fuzzy match for
online data cleaning. In Proceedings of the 2003 ACM
SIGMOD international conference on Management of
data, pages 313-324. ACM, 2003.

William W Cohen. Data integration using similar-
ity joins and a word-based information representation
language. ACM Transactions on Information Systems
(TOIS), 18(3):288-321, 2000.

W3C SPARQL Working Group. SPARQL 1.1
Overview, 2013. URL http://www.w3.org/TR/
sparqllil-overview/. [Online; accessed 19 September
2013].

Robert Isele, Anja Jentzsch, Christian Bizer, and Julius
Volz. Silk - a link discovery framework for the web
of data, 2011. URL http://wifo5-03.informatik.
uni-mannheim.de/bizer/silk/#about. [Online; ac-
cessed 19 September 2013].

Hyunmo Kang, Vivek Sehgal, and Lise Getoor.
Geoddupe: a novel interface for interactive entity reso-
lution in geospatial data. In Information Visualization,
2007. IV°07. 11th International Conference, pages 489—
496. IEEE, 2007.

Hyunmo Kang, Lise Getoor, Ben Shneiderman,
Mustafa Bilgic, and Louis Licamele. Interactive entity
resolution in relational data: A visual analytic tool and
its evaluation. Visualization and Computer Graphics,
IEEE Transactions on, 14(5):999-1014, 2008.

Xin Li, Paul Morie, and Dan Roth. Identification and
tracing of ambiguous names: Discriminative and gener-
ative approaches. In Proceedings of the National Con-
ference on Artificial Intelligence, pages 419-424. Menlo
Park, CA; Cambridge, MA; London; AAAT Press; MIT
Press; 1999, 2004.

Martin Michalowski, Jose Luis Ambite, Snehal
Thakkar, Rattapoom Tuchinda, Craig A Knoblock, and
Steve Minton. Retrieving and semantically integrating
heterogeneous data from the web. Intelligent Systems,
IEFEE, 19(3):72-79, 2004.

Alvaro E Monge and Charles P Elkan. Efficient
domain-independent detection of approximately dupli-
cate database records. In Proc. of the ACM-SIGMOD

(15]

(16]

(17]

Workshop on Research Issues in on Knowledge Discov-
ery and Data Mining, 1997.

Alvaro E Monge, Charles Elkan, et al. The field match-
ing problem: Algorithms and applications. In KDD,
pages 267270, 1996.

Axel-Cyrille Ngonga Ngomo and Séren Auer. Limes: a
time-efficient approach for large-scale link discovery on
the web of data. In Proceedings of the Twenty-Second
international joint conference on Artificial Intelligence-
Volume Volume Three, pages 2312-2317. AAAI Press,
2011.

Hanna Pasula, Bhaskara Marthi, Brian Milch, Stuart
Russell, and Ilya Shpitser. Identity uncertainty and
citation matching. In Advances in neural information
processing systems, pages 1401-1408, 2002.

Eric Prud’Hommeaux, Andy Seaborne, et al. SPARQL
query language for RDF. W&C recommendation, 15,
2008.

BP Shumaker and RW Sinnott. Astronomical comput-
ing: 1. computing under the open sky. 2. virtues of the
haversine. Sky and telescope, 68:158-159, 1984.

Julius Volz, Christian Bizer, Martin Gaedke, and
Georgi Kobilarov. Silk-a link discovery framework for
the web of data. In Linked Data on the Web. Citeseer,
2009.

http://www.movable-type.co.uk/scripts/gis-faq-5.1.html
http://www.movable-type.co.uk/scripts/gis-faq-5.1.html
http://www.w3.org/TR/sparql11-overview/
http://www.w3.org/TR/sparql11-overview/
http://wifo5-03.informatik.uni-mannheim.de/bizer/silk/#about
http://wifo5-03.informatik.uni-mannheim.de/bizer/silk/#about

	Introduction
	Problem Description
	Our showcase: MobEx
	Formalization

	Related Work
	Matching Process
	Overview
	Facet Tree
	Process
	Preconditions
	Matching (Scoring & Comparisons)
	Merging

	Evaluation
	Results

	Conclusion

